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Abstract

Automated assembly of mechanical devices is studied by researching methods of

operating assembly equipment in a variable manner; that is, systems which may be

configured to perform many different assembly operations are studied. The general

parts assembly operation involves the removal of alignment errors within some

tolerance and without damaging the parts. Two methods for eliminating alignment

errors are discussed: a priori suppressi .on and measurement and removal. Both

methods are studied with the more novel measurement and removal technique being

studied in greater detail. During the study of this technique, a fast and accurate

six degree-of-freedom position sensor based on a light-stripe vision technique was

developed. Specifications for the sensor were derived from an assembly-system

error analysis. Studies on extracting accurate information from the sensor by

optimally reducing redundant information, filtering quantization noise, and careful

calibration procedures were performed.

Prototype assembly systems for both error elimination techniques were imple-

mented and used to assemble several products. The assembly system based on the

a pri-ort' suppressz .on technique uses a number of mechanical assembly tools and

software systems which extend the capabilities of industrial,.robots. The,,need.for
S is c umer

the, tols was determiTied:'th±.qu sembly ta'k: analy��' -of s'evera o"' n s

and automotive products. The assembly system base'd'on'the measueernent and
rem al technique, used ee-o se'

ov. -the s, i xdeg�'r- f-freedom p sition- fisor to measure part�

misalignmients. Robot -commands -,for. ligning the art -were automatically calcu-

rated based on the 'sensor, d-a-ta'' --and 'exe.C`u'ted.

Thesis Sup.ervisor: Warren P SeeriP9
-fessor of Mechanical-En -ngTitle: Associate'Pto gineeri
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Chapter I
t

1.1 Background and Motivation

The current capabilities of mechanical manipulators are inadequate to solve many

industrial assembly problems. Although there has been some success With force

and compliance controlled assembly machines (see 2021 for an overview) and much

success with passive compliant devices, notably the RCC or Remote Center of

Compliance 104,133,2041, most industrial systems depend upon precision assembly

techniques (assembly is performed with no feedback other than precise position-

ing) to accomplish assembly operations. "Hard" automated assembly machines,

machines specially designed for a single function, have been used very success-

fully, but they are capable of assembling only a single product and are inflexible

to changes in product or part style. Because the flexible assembly problem is not

well understood, the approach used in automating the problem has been to emulate

humans by using some vision and force feedback. The approach taken in this thesis

has been to solve the assembly problem by analyzing the task directly. Many of

the techniques developed are fundamentally different from tose used by humans.

1.1.1 Purpose of th Rsearch

In order to develop technologically and economically viable flexible assembly sys-

tems the capabilities of present day systems must be extended so that they are able

to handle a wide variety of part sapes szes, tolerances, and assembly operations

without using excessively costly means. We address this need through theoretical

19
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and experimental investigations of programmable tools and sensors, and investigate

feasibility through the development of a number of prototypes.

1.1.2 Flexible Assembly Systerns and Batch Manufacturing

Flexibility is defined to be the ability to handle different parts and perform different

assembly operations. It is one of the key issues in increasing productivity through

automation in certain industries (see Section 21). Flexible assembly systems are

electronically controlled mechanical systems which are capable of the production

(primarily assembly) of morphologically different products. Theoretically, such a

system is capable of producing sequential runs of many derent products with

relatively short setup times between runs. The size of the subset of products which

a system can handle depends upon the size and weight of the elements as well as

the operations necessary for the products' assembly.

Many of the process and mass production industries have been highly auto-

mated for some time. In contrast, processes used in batch manufacturing are al-

most entirely manual. The batch manufacturing system (a limited set of resources

which is reconfigured to produce a number of different products) presents a num-

ber of unique problems to automation. Productive operation of the system requires

sophisticated scheduling with almost all aspects of the system having some degree

of flexibility.

1.1.3 The Rigid-Parts Assembly Process

An assembly task may be defined as follows

Two or more parts are moved to a desired relative position within some

tolerance. The process which juxtaposes the parts should not physically

alter them unless it is a requirement of the task.

Thus, assembly is a positioning problem. According to Simunovi' 1761

The assembly proces i trictly a positioning problem. Complete knowledge

of the parts and ideal positioning devices would, at least in principle, make

the assembly task a trivial matter. The imperfections of the real world are

materialized as position errors in the physical assembly systems; these errors

translate into an error in the relative position between the parts at mating;
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the resulting error in the relative positions between the parts at ating will

cause interference between the geometry of the parts, and therefore not allow

the parts to be assembled.

In general, parts comprising an assembly are manufactured in batches of identi-

cal parts and are delivered to the assembly system in groups. In order to eliminate

the relative positioning errors, the parts must be separated, grossly positioned,

then mated.

The Three Phase,5 of igid-Parts Assembly

Rigid-parts assembly may be broken down into three main phases independent of

the type of system which performs the assembly.

1. Part acquisition

2. Part alignment

3. Part mating

The part acquisition phase entails part identification and gross orientation hrough

conventional feeding mechanisms, machine vision or other sensing systems, or

through manual techniques. The part alignment phase is typically performed by a

manipulator and might also involve fixtures, sensors and search procedures. Part

mating is the first phase where parts may touch one another. In this phase, ei-

ther force or compliance control pliance, or sufficient precision to allow

non-contact mating is required. The performance of an assembly system in each of

the latter phases is affected by the system performance in previous phases. This

research attempts to increase the system performance in the part alignment phase

and relax the requirements for the part mating phase.

Relation,5hip Between Part Alt'gnment and Part Mating

During the part mating phase, a direct position measurement of one part relative

to the other is not generally available. Any necessary repositioning is driven by

the forces generated between the mating parts. Techniques which have been used

to eliminate positioning errors from force information include force and compli-

ance control, logic branching, and passive compliance (see Reference 202,1 for an
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overview of these techniques). Passive compliance techniques are generally the

simplest to implement for error correction during the mating phase. Relaxation of

requirements for the passive compliance system is possible if the parts are aligned

precisely enough during the part aignment phase.

Relaxation of the passive compliance requirements means that the assembly

can successfully occur with a larger tolerance on the location of the center of

rotational compliance and a larger tolerance on the magnitudes of the translational

and rotational compliances. A successful assembly is one in wich the parts are

completely assembled ithout damage.

1.1.4 Methods for Eliminating Po-sitioning Errors

Errors in part positions may be eliminated by one of two ways 176]

A Priori Suppression: Eliminate errors at their sources.

Measurement and Removal: Eliminate errors during or just before the mating

process.

Hard automated assembly systems and some robotic assembly systems (such as

the one described in Chapter 5) take the a priori suppression approach. These

systems rely on accurate jigs and fixtures and precise actuator positioning. Humans

and some advanced robotic assembly systems rely heavily on the measurement

and removal approach to assembly. These systems use tactile (force) and visual

(position) information to sufficiently align the parts. Te sensor-driven assembly

system described in Capter 6 takes this approach.

A Priori Error Suppression

Elimination of errors by the a priori suppressi.on, method entails controlling error
propagation. In general, when components are originally manufactured, their po-
sition is well known. For example, the location of features of parts machined in
a milling machine are referenced to the cutting too] up until the point where the
vice is released. If the location of a part ere precisely maintained from the point
of manufacture to the point, of assembly, only small errors would need to be elimi-
nated for the mating pase. The a priori suppression method also includes systems
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I.....

which do not constrain the location of parts from their point of manufacture, but

which orient parts at some later time then fixture them in pallets or jigs prior to

their assembly.
Sources of position errors include

• Loss of location information after machining or molding operations.

• Loss of location information after finishing operations such as plating, polishing,
tumbling and cleaning.

• Finite precision orienting techniques (e.g. bowl feeding).

• Finite precision pallet, assembly jig, or gripper fixturing.

• Finite precision manipulator positioning.

• Significant part tolerances.

In order for the a priori suppression method to be successful, errors from all

pertinent sources must be controlled.

Error Measurement and Removal

In the measurement and removal method for eliminating errors, the relative position

of mating part features are measured either directly from position measurements

or indirectly from force measurements. After the measurements are made, the

manipulator reorients the parts nullifying measured misalignments. In an ideal

system using this approach, sensor accuracy and manipulator motion resolution

are precise enough to mate the parts without interference between surfaces. A

more practical system would rely on the forces generated between mating surfaces

to correct any remaining errors with the aid of the passive compliance of the system.

1.1.5 Comparison of the Two Methods of Error Removal

Advantages and Disadvantages of Each Method

A system which uses the measurement and removal method of eliminating position

errors is more flexible than a system based on the a priori,' suppressi .on method;

that is less specialized tooling is required to perform a large variety of tasks. The
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system which uses the measurement and removal method is relatively insensitive to

the accuracy and wear of jigs, grippers, and pallets which locate the parts and the

assembly. Since measurements of the mating features are made, te system is also

relatively insensitive to large non-mating feature part tolerances and imperfections

(such as burrs). The jigs which locate the parts need to locate them to within the

acceptable range of the sensor. This may be as large as an order of magnitude bigger

than the range allowable in the a priori suppress.on method (see Section 66-1) In

some cases it may be desirable for the part jgs (including grippers and pallets) to

only firmly hold the parts and not accurately locate them. Thus the measurement

and removal method supports the use of universal grippers and pallets.

Using the measuring method allows assembly operations to be performed more

reliably. Because the part features are sensed, there is additional assurance that

the part is in the proper position prior to mating. It may also be possible to

more accurately align parts. In addition, successful assembly operations may be

performed without calibrating the robot to all of the pallets and jigs in the cell.

The system operates somewhat uncoupled from the absolute positioning of the

manipulator; that is, all commanded motions are relative to sensed positions with

respect to the world frame. Because of this, offline programming of assembly tasks

is easier and requires less absolute position references and online teaching and

calibration.

There are, however, a number of disadvantages to the measurement and removal

method. First a finite time is required to perform the sensing. Depending on the

type of sensor and the stage of the assembly process in which the measurement

is made the assembly procedure might be slowed. For a vision sensor with the

camera mounted off board of the manipulator, the system must allow sufficient

time for the manipulator to come to rest (let all vibrations settle). Time is also

required to grab a frame sec.) and process the 'image. The system also has
60

finite measurement accuracy which might not be appropriate for all tasks. A vision

based system 'is also sensitive to the surface reflectance properties of objects ad

surface orientations with respect to the sensor.

A limiting consideration in using a ision based measurement and removal

method is that not all features are easily sensed. It is likely that features com-

prised of relatively smple primitives (e.g. quadric surfaces) may be sensed with a

technique similar to the one presented in Chapter 4 but more complicated features



§1.2: Overview of the Thesis 25

may create problems. One study has showed that about 85 percent of "all man-

ufactured parts" may be accurately modeled by planar, cylindrical, and spherical

patches [811. Although the accuracy of this estimate is questionable, the estimate

is at least promising. Even if features of any shape could be located with the sen-

sor, it is likely that the system would not be able to locate features with large size

differences. It might, however, be possible to design a system with an adjustable

field of view to accurately locate different sized features.

Which Method is Better?

Both the a priori error suppression and the measurement and removal methods of

error elimination may be successfully used for robotic assembly tasks. The best

method to use depends upon the requirements of the task'. The a priori error

suppression method is relatively insensitive to te shape of the parts being mated;

however, it is relatively inflexible. A particular set of hardware must be used to

accurately fixture to parts. The measurement d removal is highly flexible since

almost no specialized mechanical fixtures are used, but the types of part shapes

which may be sensed and assembled is limited.

With further development of the sensing system proposed in this hesis (or

other sensing techniques), the sensor-driven assembly technique will be capable of

handling a larger number of part shapes. As compared to the a prt .orz.suppress. on

method it will be much more flexible and cost effective for industrial assembly

systems operating in a batch production mode.

1.2 Overview of the Thesis

This thesis discusses issues 'in programmable mechanical assembly systems. In this

chapter we have introduces the problem and suggested approaches to its solution.

Two methods were proposed to eliminate the errors in part alignment: a priori

elimination, and measurement and removal.

Chapter 2 gives the background on the assembly problem and an elaboration

of the two solution techniques. A literature review of research in programmable

assembly systems is followed by a survey of operations involved in certain mechani-

cal assemblies. Assembly operations are classified with respect to the magnitude of

difficulty for a single chain manipulator. A review of failure modes for the canonical
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peg-in-hole assembly operation is presented. Errors in robotic assembly systems

are analyzed and applied to both the a priori suppression and the measurement and

removal methods. Accuracy specifications for a part position sensor are calculated.

Requirements for an industrial sensing system for measuring part alignment

errors are discussed in Chapter 3 A literature review of ranging techniques is

given and two techniques are analytically explored. Arguments for using a light-

stripe vision system for the part-position-sensing function are presented.

Chapter 4 discusses the details of the development of a light-stripe based part

position sensor. First literature dealing with research in extracting accurate infor-

mation from noisy images is reviewed. Both optical and geometric fundamentals of

the light-stripe technique are then presented. Methods for extract' quantif-

ing the accuracy of information from light-stripe images are then explored. These

include an error analysis of finding straight line features corrupted by quantization

noise, methods for determining the accuracy in finding the center of a light-stripe

using three different techniques, and a technique to combine redundant informa-

tion from multiple light plane illumination of a part feature. The hardware and

algorithms necessary to extract six degree-of-freedom measurements from a single

light-stripe image are also presented.

Chapters and 6 describe prototype assembly systems using the two methods

of error elimination presented in this chapter. The system in Chapter uses a

number of flexibly designed tools and an industrial robot to control the propagation

of position errors during the assembly process. The assembly system in Chapter 6

is vision sensor based. The accuracy of a prototype ligbt-stripe vision system used

for part position measurements is investigated in a specially constructed test bed.

Details of the sensor calibration are also given.

Chapter 7 contains a discussion of what additional research is necessary to

develop the prototype systems into industrial systems which may be used in man-

ufacturing facilities. Uses for the sensing technology in addition to part position

sensing for assembly operations are also presented. Finally conclusions and tech-

nical contributions of the work are enumerated.
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Chapter 2

2.1 Literature Review of Research in Programmable

Assembly

Worker productivity has increased steadily throughout recent history. Within the

last decade, application of automated manufacturing technology has resulted in

dramatic changes in rates of productivity growth within those industrialized nations

choosing to invest the necessary capital and human resources. Tesar rated a number

of elements which produce increased productivity [-92]. He found that technology

produces 38.1 percent, capital - 25.4 percent, labor quality - 14.3 percent, economics

of scale - 12.7 percent and resource allocation - 95 percent. He also notes that all

western trading partners had higher productivity growths than the United States.

The Labor Force

The work force in the-United States has recently undergone a major shift in worker.,

qualifications which could result 'in a growing demand for manually skilled labor.

According to Merchant 1261, 60 percent of the current U.S. workforce hold degrees

from a secondary school, while 50 percent of those entering the workforce have a

college or university education. According to Ctalano 42] there will be a shortage

of manual labor by the year 1990 assuming a moderate GNP growth and limited

productivity increases from automation. i\4erchant, and Catalano suggest that since

there are fewer people who will be entering into the manual labor force, manufac-

turing industries must. either automate a number of their operations or drastically

27
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improve the efficiency of the operations. Catalano gives estimates of manual labor

shortages in the US, but these are probably not accurate since an increased foreign

labor market is not taken into account and the sources of the GNP will shift other

industries.

Manufacturing's Economic Contribution

Merchant notes that although manufacturing industries account for 33 percent of

the international gross national product 24 percent of the U.S. GNP) while ser-

vice industries make up 50 percent 63 percent in U.S.), it produces 66 percent

of the wealth 65 percent in the U.S.). Many of the process and mass production

manufacturing industries have been hghly automated for some time. In contrast,

processes used in batch manufacturing are almost entirely manual. The batch man-

ufactur'ing environment presents a number of unique problems to automation. A

single system (a set of tools and resources) is frequently reconfigured to produce

a number of different products. Productive operation of the system requires so-

phisticated scheduling with almost all aspects of the sys iem having some degree of

flexibility. Anderson 101 notes that since 75 percent (by, value) of all U.S. discreet

engineered products are produced in the batch mode, national productivity can be

significantly increased by making the batch manufacture ing process more efficient.

Automation n Manufacturing

One method of improving batch production efficiency 'is to automate with comput-

ers and computer controlled machinery. Anderson 10' demonstrates that machine

shops have reduced both direct labor cost and manufacturing time by 75 per-

cent with the use of numerically controlled and computer numerically controlled

machines. Increasedcomputerizationinthebatch rodu'ctionindustrywilllikely

increase the utilization of capital equipment as well as increase the quality and uni-

formity of the products produced. Presently, parts beingprocessed in the ob shop

environment are idle about 90 percent of the time [101; 'Whereas, in an automated

job shop environment, in-process inventory 'is substantially reduced. In addition

to the economic benefits of automation, the worker wil I be relieved from boring

trivial tasks which may be readily accomplished by machines and is more likely to

have more interesting skilled work. Yonemoto of the Ja anese Industrial Robot As-
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sociation JRA) 207,2081 shows that some improvements associated with robots

are increased productivity, humanization of working life, increased labor safety,

improved product quality and early return on investment. Many US managers

would probably disagree with Yonemoto's last, "improvement" since low return on

investment has been one of the major factors retarding factory automation through

robot installations.

Economics of Assembly

Anderson estimates that assembly accounts for about 35 percent of the production

cost for discreetly engineered products. Nevins and Whitney of the Charles Stark

Draper Labs 132,133] have studied the science of assembly and have classified

the 3 modes of assembly. Manual assembly 'is appropriate for products with low

production volume. Low fixed costs are also associated with this mode so there

is no economy of scale. The manual assembler has the characteristics of being

very flexible and easy to train. He has excellent sensory capabilities, but may

tend to lack reproducibility and get bored. Assembly via fixed automation is

appropriate for products with high volume constraints. Fixed automation typically

has high fixed costs and high efficiencies. These systems are not very flexible

and tend to fail due to part jams while there is usually little sensory capability.

Programmable automatic assembly has medium fixed costs and is appropriate for

medium production volumes. It has medium efficiency and is capable of responding

to sensory inputs and learning new tasks. Nevins and Whitney have also studied

the amount which is invested in assembly in a number of different industries. Motor

vehicle and radio and television industries have about 30 percent of direct labor

attributable to assembly. They note that a better indication of savings which

comes from automating the assembly process 'is percent value of shipments due to

assembler's pay. These figures are 47 percent for the motor vehicle industry and

3.8 percent for the radio and TV industries. Nevins and Whitney fail to take into

account additional savings from automation due to increased organization, lower

in-process inventory, lower personnel and paper work overhead costs, and higher

efficiency. Boothroyd 33' has also studied the amount of labor and manufacturing

costs attributable to assembly based on a 1967 census of manufacturers. He found

that motor vehicle and telephone industries have about 50 percent of all production

workers 'Involved with assembly. Other industries such as motorcycle. aircraft, farm
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machinery, and refrigerator and freezer have from 20 to 40 percent of labor involved

in assembly. Boothroyd postulates that assembly accounts for about 50 percent

of the total manufacturing cost for a product. The apparent large discrepancies

between costs estimates of Boothroyd, Anderson, and Nevins and Whitney are

most likely due to inaccuracies i estimation, comparison of just wages to all costs

and other factors previously stated.

The Asqembly Poce,5s

The most frequent assembly operations and part orientations during assembly were

studied by Nevins and Whitney by examining ten products. They found that 33

percent of the assembly operations are peg in hole insertions, 27 percent are screw

insertions and 12 percent are push and twist operations. Most other operations

include multiple peg in hole, force fits, insert peg and retainer (all less than 0

percent), flip part, provide temporary support, remove temporary support, remove

locating pin, weld or solder, and crimp sheet metal (all less than 3 percent). Most

of the operations were unidirectional (e.g. 80 percent of all peg in hole insertions

were from the same direction). Nevins and Whitney also cite surveys from General

Motors and John Deere which deal with the average mass of a part which is handled

during vehicle assembly. General Motors found tat 90 percent of the parts in

an average automobile are less than 2 kilograms 44 pounds) while John Deere

reported that 80 percent of the parts in their farm equipment weighed less than 4

kilograms (8.8 pounds).

The Canonical Asgembly Operation. Pg-in-Hole

Since it was found that peg 'in hole nsertion dominated assembly tasks, researchers

at the Draper Labs extensively researched the subject 104,132,133] They studied

clearance ratios (clearance/diameter) of close fits and found that similar types of

parts had similar clearance ratios. Bearings had the smallest clearance ratios of the

parts which were considered. Contact forces were analyzed and criterion for wedg-

ing and jamming of parts were formulated. The forces dring the tree stages of

insertion namely chamfer crossing, one point contact and two point contact could

be calculated as a function of offset of centers and insertion depth Witney and

Nevins made a major breakthrough in te science of assembly with the develop-
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ment of the remote center of compliance (RCC) 204]. This is a passive device

which 'is capable of providing a large degree of translational and rotational com-

pliance in directions orthogonal to the direction of insertion while remaining stiff

in the direction of insertion. In addition, the device locates the system's center

of compliance at the bottom center of the peg beinor inserted. Thus the RCC is

capable of apparently "pulling" the peg into the hole from the bottom. An instru-

mented RCC has been developed which can be used as a teaching aid for a robot

by automatically finding the exact location of a hole or as a sensor for an active

control system for the robot. Whitney and Nevins have also done a number of

studies on chamferless and compliant part insertion. Takeyasu, Goto and Inoyarna

�1871 report on the Hitachi Hi-T-Hand which is also able to do close tolerance peg

in hole insertions using active feedback. However, this manipulator performs the

task somewhat slower than the RCC.

De-8 d Classi

tgn an flcation of Robots

Because of their intrinsic flexibility, robots are often envisioned or utilized in pro-
grammable automatic assembly stations. The literature contains a large range of
opinions as to the optimal design for an assembly robot 66,131,159,187,1941. Since
Japan possessed 69 percent of the industrial robots in operation in 1979 while the
United States possessed only 16 percent (using similar definitions of robots) 661,
many of the studies on robots were done in Japan. McPherson 124]] discusses the
history of robots in Japan as well as some current data on robots. He reports on
JIRA's survey on reasons for the introduction of robots which showed labor sav-
ings as being the most frequenly given response 44.5 percent). Other responses
included improvement of working conditions 24.9 percent), versatility of produc-
tion systems 13.5 percent), facilitation of management (8 percent), and 91 percent
due to other reasons. JIRA also predicts that assembly robots will move from 0
percent of the robot market in 1980 to 17 ercent in 198' and 22 percent in 1990.
JIRA's identifies 6 classifications of robots:

Manual Manipulator - A mchine directly operated by a, uman.

Fixed Sequence - A achine which may be programmed for a. particular task but whose repro-
gramming ability is minimal.

Variable Sequence - Same as te fixed sequence obot but te machine's prograin is easily
clizaiiged.

Playback Robot - This niachine is oly able to memorize sequences directly taught by a, human.
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Numerical Control - A machine which performs according to digita iformatio o sequence,

position, etc.

Intelligent Robot - Tis achine uses vision, sensors, etc. to determine position, action, rate,

etc.

Gevarter reviewed a number of other Japanese studies of robots in his report
to NBS and NASA 661. A 1981 survey of the uses of robots in Japan sowed
unloading and loading the most frequent at 40 percent. 21 percent of the robots
in Japan were used for transfer and sorting, 9 percent for palletizing 6 percent
for welding, 4 percent for work maintenance 3 percent for assembly, 2 percent
for spraying, and other uses such as pouring, screwing, and riveting comprised 5
percent of the robots. The distribution of types of robots produced in Japan are:
manual manipulators - 10 percent, fixed sequence - 67 percent, variable sequence
- 7 percent, playback robots - 10 percent, NC robots - percent and intelligent -
I percent. The results of a 1980 JIRA users survey of necessary research areas (in
order of preference) is:

1. More degrees of freedom

2. More compact robots

3. Higher speed robots

4. A larger assortment of attachn-ients

5. Easier reprogramming

6. Greater reliability

7. Increased working volume

8. Increased payload

'D. Increased accuracy

10. Tactile sensing

11. Vision

12. Pattern recognition

13. Increased emory

14. Higher obility

15. Coordinated control of multiple robots

A 1980 JRA survey of crrent research areas of Japanese robot manufacturers

shows percent involved with increasing robot speed, 7 percent involved witb

making robots more compact, 86 percent with computer control, percent with
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lighter weight robots, 7 percent with modular interchangeability, percent with

object recognition, 46 percent with increased payload, 38 percent with improved

actuators, 38 percent with self diagnosis, and 38 involved with adaptive control.

Still another JIRA study as reported by Yonemoto 207] of the distribution of

robot sales to different industries reveals electric machine industry - 36 percent,

automobile industry - 30 percent, plastics molding - 10 percent, metal working

industries - percent, and metal working machinery industries - 4 percent.

Seering 1681 contends that robots are presently designed to emulate humans

and not designed to perform important assembly tasks. Mechanical manipulators

should not be constrained to move at human speeds, carry human comparable

payloads, work with the same precision, and have te same sensing capabilities of

humans. This philosophy was adhered to in many aspects of this tesis.

Cost8 in As8embly Sy8tems

In order for programmable assembly systems to be implemented in the industrial

environment, they must prove to be more economic than conventional modes of

assembly. According to Elbracht and Schaler 571, the economics of programmable

assembly may be compared to the economics of manual assembly by comparing

the costs of necessary capital equipment versus the cost of labor. They note that

an acceptable cost for automated equipment depends on both the number of shifts

being considered as well as the country where te installation will occur. A num-

ber of authors discuss methods for predicting the economic feasibility of flexible

assembly systems. Boothroyd 31,331 and Dewhurst and Boothroyd 50] calculate

per part costs versus volume per shift-year for a number of assembly systems.

Systems which were considered are totally manual systems, manual systems with

feeders indexing type fixed automatic machines (all workpieces indexed simulta-

neously), free transfer machines (buffers between each workhead), programmable

workheads (robots), two arm programmable stations, and a universal assembly

station consisting of two or more arms with programmable end effectors and pro-

grammable feeders. He found tat manual tpes of assembly are economic below

about 35,000 units/shift-year, fixed automation assembly is economic above about

850,000 units/shift-year, and programmable assembly is economic between tese

production volumes. Boothroyd demonstrates tat the volumes where the various

modes of assembly become economic vary strongly as a function of number of prod-
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uct design changes per year, number of product styles to be produced, and number

of different products to be produced. Nevins and Whitney predicted similar levels

of production volume where the various modes of assembly become economic using

somewhat different models 132,1331. Their models for cost per assembly (finished

unit) were based on payback period methods and are as follows:

Manual:

I CostlAssy AssyTzmelPart x LaborCost x PartslAssy

Fixed automation:

PartslAssy x MachCost/Part
CostlAssy 

PaybackPeriod x Volume

Programmable assembly:

PartslAssy StationPrice x7lme/Part ToolingCost Part
CostlAssy - X +

PaybackPerlod Second8lYear Volume

Depending on the payback period and labor costs, the results of analysis on 0

part units are: manual assembly is economic up to 100,000 units, programmable

assembly is economic from 100,000 units to 2 million units and fixed automation

is economic above 2 mllion units.

Benedetti discusses another method of calculating the most economic mode of

assembly by optimizing a profitability condition with respect to some volume of

production 211. This condition compares the costs involved with the purely manual

operations to the costs of automated machine operation, automation machinery

capital costs and the costs of manual intervention. Benedetti notes tat this method

is not based on discounted cash flow techniques and performs other analyses which

are. From these models he calculates the best method of assembly based on both

cycle time and annual production volume assuming some rate of return and some

utilization period. He also determines the amount of 'Investments available for

automation as a function of operator reduction.

To accurately predict the actual costs involved with the implementation of

a flexible manufacturing system, any model used should be based on discounted

cash flow techniques. The Boothroyd, and Nevins and Whitney models could be

made more precise by taking into account the time value of money. None of the

above economic model-s take into account the loss of business if automation is not
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pursued. In other words, companies which do decide to automate may attract

a larger market share due to their increased flexibility and shorter delivery time.

Companies which do not automate may find their share of business taken over

by a more productive company using flexible automation. Another concern wen

considering the economic feasibility for a newly automated system as cited by

Elbracht and Schaler 57] is the fact that automated equipment costs are presently

rising at a slower rate than labor costs.

Design for Assembly

Assembly research involving the programmable automatic assembly of parts which

were designed to be manually assembled without redesign have shown that system

implementation is both uneconomic and difficult 84,119,132,181]. These findings

imply that design or redesign of parts for programmable assembly is extremely

important if a newly designed system is to succeed economically. Boothroyd has

documented methods to improve designs for ease of assembly 31,331. He suggests:

1. Reduce number of parts. 2. Unidirectional assembly.
.3. Chanifer insertion iterfaces. 4. Make parts locatable.
5. Use a base part. 6. Layered assembly.
7. Simple fastening operations.

Other authors 51,109,123] suggest additional methods for improving designs for

assembly such as good interfacing between base part and fixtures, logical assembly

order designing for facilitation of inspection, keeping tight part tolerances or using

a passive remote center of compliance, designing parts with a low center of gravity

for stability, protecting fragile surfaces. providing a suitable gripper and feed track

surface, and avoiding or not using separate fasteners.

Boothroyd et al. 32,331 and others 1,51,109] also suggest improvements of de-

signs to facilitate automatic feeding including designs which decrease the likelihood

of part tangling and hooking, maximize part symmetry or exaggerate asymmetry,

have smooth surface finishes for feeding, use special orienting faces, use high qual-

ity components, have part geometries which fit into magazines, and designs which

use preoriented parts on tapes. Lewis also suggests a clean assembly environment

to avoid feeder jams 109].

A number of authors make a point of looking at each part and making sure that

it is necessary in the total product 11,31,33]. Boothroyd rates the efficiency of a
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given design with respect to the minimum number of parts and minimum handling

and assembly time. Design efficiency is defined as:

TheorMt'n#Parts x (Nom.HandleTime + Nom.AssembleTlme)
ActualAssembleTz'me

Boothroyd has designed a system which will help the designer increase the

efficiency of a design and predict the costs and the amount of time necessary

for assembly. The system classifies each part in an assembly with two digits the

first of which quantifies the amount of symmetry and ease of grasp. The second

digit is based on the mode of insertion or fastening. The technique was designed

with manual assembly 'in mnd but may also be used for programmable automated

assembly.

Andreasen [11] classifies the derent types of assembly structures as being

frame, staked (some components hold others), composite product (different mate-

rials), base component (base for transport and assembly), modules, and building

block. Djupmark [51] rates a number of fastening techniques with respect to ease

of 'Implementation 'in an automatic assembly workhead (from simplest to most dif-

ficult):

1. Pressing 2. Snap joints

3. Lap joints 4. Baking in

5. Welding 6. Riveting

7. Screws 8. Pins and Rings

9. Crimping 10. Soldering

11. Gluing

The above list is machine dependent and is most likely not accurate for new machine

designs.

Techniques which may reduce the cost of programmable assembly automation

as cited by Redford 1591 include increasing the speed of robots (although it is

likely that less than an order of magnitude increase is possible), use of limited

capability and inexpensive robots, versatile, inexpensive grippers (using more than

one gripper on a robot arm, designing a programmable gripper, designing parts

to minimize gripper change or assembling a number of assemblies at a time to

minimize gripper changes), identification of assembly families, and lower feeding

costs.
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Parts Feeding

Redford analyzes a number of different types of feeders with respect to cost of

implementation in a programmable assembly center 159,1-601. The types of feeders

considered were:

1. Dedicated (bowl feeders).

2. Multi-part (5 parts, drive, different orienting tracks).

3. Programmable.

4. Dedicated feeders serving ore ta 1 obot.

5. Feeders with vision.

6. Magazine systems (better utilization of feeders, secondary ispection before assy).

(a). Manually Loaded. (b). dedicated feeders.

(c). Multi-part feeders. (d). programmable feeders.
(e). Loaded by prior manufacturing operation.

7. Manually loaded feed tacks.

Feeding costs depend on:

1. Material handling cost. 2. System tending cost.

3. Fault correction cost. 4. Change over cost.

5. Equipment depreciation cost. 6. Tooling depreciation cost.

The results of Redford's feeder cost analysis were based on a study of two

product families with volumes of 200,000 units per year. One family consisted of

66 product types and the other consisted of 20 part types. Variable batch sizes

were considered from 50 to 4350 units. Results showed that all systems except

magazines loaded from prior manufacturing operations exhibited dramatic cost

increases at batch sizes below 450 units. All cost versus batch size curves were

parallel at higher volumes (independent of batch size). Multi-part feeders, feeders

with vision, and magazines loaded at prior manufacturing operations were the most

economic feeding techniques. Manual loading of robots was more economic than

programmable or dedicated feeding. It was suggested that a mix of different feeder

types is probably best.

Conventional bowl feeders were examined by Boothroyd 1'32,33' who determined
L I

the variables responsible for feed rate. Feed rate is a function of orienting efficiency

(dependent upon the number of natural resting states of a part) and track conveying
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velocity. Conveying velocity is a function of ram-p angle, vibration angle, frequency

of vibration, coefficient of friction, and load sensitivity (change of part velocity due

to the amount of material in. the bowl) - A number of non-conventional feeders are

also discussed by Boothroyd such as non-vibratory feeders for parts with simple

geometries such as discs and cylinders. Out of phase feeders are also described

whose main attribute is an increase in feeding efficiency de to a decoupling of the

two principal directions of vibration. Bootbroyd is also involved with the design of

belt feeders some of which are programmable with simple optical sensing capability.

In addition, he has derived a part feeding and orienting coding system which can

help designers to design -parts for ease of feeding. Te code is based on the shape

of the part (relative dimensions). te amount of part symmetry, and protruding or

other orientable features. The system points out difficult to feed parts as well as

serving as a guide for the designer.

A number of researchers have developed "smart" feeders to increase the flexi-

bility of automated assembly systems. Hill and Sword 891 use vision to check part

orientation. If reorientation is necessary, parts are turned over by being pushed

off a ledge and rotated on a rotary table. The cycle time including visual pro-

cessing time is 15 seconds. Suzuki and Kohno of Hitachi 1851 report te use of

a multi-level bowl feeder with no orientation tracks which uses adjustable wipers

and disb-outs to partially orient parts. After being partially oriented, the part is

pressed up against datum planes and visually scanned. The part's orientation is

then determined and either the feeder flips it into the pro-per position or the robot

reorients it before insertion in the assembly. This type of feeder is very flexible

and can accommodate a wide variety of part shapes and sizes. The Swedish In-

stitute for Production Engineering uses a simple linear array camera with a belt

conveyer equipped with wiper blades to flexibly feed parts [511. Another flexible

feeder which uses vision is reported by Heginbotham [85]. The system consists of a

bowl feeder feeding onto a belt. From the belt, te part is pushed past fiberoptics

along two perpendicular walls. The fiberoptics terminate af a linear scan camera

which send the visual data to acomputer. The robot which reorients the part

before it is assembled is also capable of rejecting parts wich do not pass the visual

inspection.
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Selective Assembly

A system with fairly sophisticated inspection facilities is discussed by Camera and

Migliardi 391. It uses the DEA PRAGMA robot and automatic inspection equip-

ment to dimensionally and functionally inspect precision parts such as atomobile

crankshafts or injectors. They note that instrumented grippers may also be used

for some gross dimensional inspection. After being inspected, the parts are placed

in tolerance groups for later insertion into other parts belonging to appropriately

matched groups.

Time Motion Studies

A major concern when considering the costs of a manual system versus a robotic

system is -the reduction of thoughput time. Rogers of Unimation demonstrates

how robot time and motion studies may be used to compare robotic manufac-

turing with other modes of manufacturing 161]. These studies are similar to

manual Methods-Time Measurement studies (MTM) and may be used to help find

optimal manufacturing sequences, balance a prodution line and compare robots

from different manufacturers on an individual task basis. He notes, as do oth-

ers 21.,33,50,57,66,85,112,137,1-38,139,140,141,148,159], that asembly costs are very

sensitive to the speed of a robot (much more than to the price of the robot). Since

robots are very consistent, robot time motion standard times can be much more

accurate than MTM standard times. Rogers discusses three techniques for deter-

mining a standard time for robot tasks. The first and simplest technique is just

to calculate the average time needed to perform a number of typical tasks wth a

typical number of tool changes. The second technique takes into account te type

of task being performed and the third technique takes the robot control scheme

into account (accounting for ramped and different maximum velocities). Nof et al

�137,138,139,140,141,148] take a, similar approach to arrive at standard times for

robot tasks. They compare Robot Time Motion TM) times directly to MTM

times for a number of tasks. They find that humans are not capable of performing

al I of the tasks that robots can perform. Of course the converse is also true. A

comparison of times necessary for te assembly of a fuel pump for both manual and

robotic systems demonstrated that te human was capable of doing the task about

8 times faster. than the robot. Other studies such as the Draper Lab alternator
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assembly have yielded similar assembly time ratios 132,1331

Integrated Factory Control

Anderson has suggested that maximum impact of computers on manufacturing

systems will be the complete, real-time computer ognizance and control of all

processes and resources allowing precise scheduling and allocation [1-0]. He also

states that a system like IBM's COPICS system (Communications Oriented Pro-

duction Information and Control System) which is a fctory data collection system

is necessary for such computer control. Fisher et al 621 cite authors who attempt

to model the facility and planning of a computer controlled manufacturing system

using a number of different techniques many of hich are based on closed queuing

networks. A number of simulation models are also cited. Fisher et alconstruct a

model based on probabilistic analysis of part., recirculation were a part is circu-

lated through inspection and rework until it is within specification. Gershwin 651

and Kimemia and Gershwin l; consider te control of a computerized manufac-

turing system with buffer storages between each work station. They calculate line

efficiencies based on mean time between failure and mean time to repair for each

machine. The analysis, which is based on optimal stochastic control models, be-

comes extremely complex for more than 2 or 3 work stations and thus has practical

limitations.

Schr6der 167] discusses how machines and humans may be optimally inte-

grated in an assembly environment. System configurations are discussed which

make manual assembly independent of machine cycle time. It is suggested that

lines be put together in a modular fashion so that they may be easily changed.

Grouping manual stations close to one another yet separate from automatic sta-

.tions will promote worker communication and avoid worker dislocation. He gives

configurations for grouping manual stations together even when automatic oper-

ations are interspersed. Schr6der notes that if manual and automatic operations

are not mixed in this manner, even work distribution is not always possible.

Worker Acceptance of Autornation

The implementation and employee acceptance of a computer controlled planning

system is presented in a case study by Shaiken �1701. TOPS (Total OperationI j
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and Planning System) was implemented in a large tool and die shop of a large

automobile manufacturer. Its function was to control te complex scheduling of

operations involved with producing a die. The system was despised by the workers

after it was implemented. Tey thought that the system ook te skill out of their

job and that the tme they spent working was constantly being monitored. Part of

the problem with the computerized planning system as that it tried to quantify

a highly skilled job which takes over a decade for a good toolmaker to master.

The computer was not able to make "seat of the pants" type decisions which are

sometimes essential in die manufacture.

Although labor unions are concerned with the short term consequences of in-

creased automation, they know that robots will benefit society by increasing pro-

ductivity and relieving people from dangerous and undesirable jobs [831. According

to the UAW, after a new piece of automation as been installed, it is still important

that the worker ave a sense of security and obligation.

Programmable, A88embly Sy8tem Implementation8

To date, just more than a handful of flexible manufacturing systems are in operation

with only a few involving assembly. Many of the systems are experimental wth te

exception of some Japanese systems which are involved in a significant part of the

manufacturing process. Over years acro Westinghouse undertook its Adaptable

Programmable Assembly System (APAS) project with the intent of developing a

state of the art system 1,119,1811. One of the firsts tasks Westinghouse studied was

choice of a product line which was suitable for programmable assembly. Abraham

�11 points out that over 60 product lines were considered and after an intricate

process of elimination, 3 were chosen as possible APAS candidates. Each line was

rated on (In order of importance):

1. Use of APAS technology 2. Degree of transfer

3. Social desirability 4. Inspection ad recognition

.5. Fixturing toling 6. Economics

7. Product edesign

Four system configurations were considered and evaluated separately for each

product line. The first configuration involved separate subassembly and final as-

sembly stations. Another configuration used a single arm robot with off-line parts
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feeding. The third system utilized lower degree of freedom arms in a line with off-

line parts feeding and the fourth configuration used many assembly stations with

off line parts feeding. It was found that the system configuration utilizing lower

degree of freedom manipulators is best for short cycle time products with limited

style variations. The most significant costs were equipment and cycle time with

cycle time being the most significant. The use of I to 2 second cycle times was

suggested for cost reduction. From the initial study, fractional horsepower elec-

tric motors were chosen for system implementation. To date, the system has been

implemented for the end bell assembly of the motors. The system incorporates a

number of fairly new technologies such as programmable belt feeders, multi-part

handling end effectors, and visual inspection. Although one of the original goals of

the system was that it should be capable of assembling existing parts, it wasfOUTid

that these resrictions on part redesign made implementation extremely difficult

and expensive.

Nippondenso Corporation in Japan uses flexible assembly lines for manufac-

turing automobile instruments 131]. They have developed their own simple non-

sensing robots to do the assemb y because fast, inexpensive, limited degree of

freedom robots were unavailable. They made the following evaluations of humans

and a number of robots:

TECHNIQUE CYCLE TIME (SEC) TEACH TIME (MIN)

Hunians 1.4 1

Nippondenso

robot 1.9 too

SCARA

robot 2.7 120

PUMA

robot 3.1 40

Nippondenso is capable of producing a number of different automobile instru-
ments on short notice with almost no inventory due to teir highly flexible lines.
Another Japanese manufacturer which has developed its own robots for production
is Yamaha Motor Corporation 1311. They have developed the CAME Computer-
Aided Manufacturing Equipment for assembly operation) robot witb the following
specifications:

* Capable of handling nia-terizal

* Capable of feeding prts

* Capable of assembling parts
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• Has set up times less than cycle long 20 - 60 sec)

• Operates at speeds as fast as humans

• Positional accuracy of < .1 nim

• Weighs about te same as a. n-ian

• Same cost, as yearly salary of a operator

Yamaha has used these robots with multi-level vibratory bowl feeders predom-

inantly for motorcycle engine assembly.

Ranky describes a project which is sponsored for the most part by the Hungarian

government and is implemented at the Cspel Machine Tool company [1581. The

system uses a direct access part handling robot versus an in line system. The robot

can choose from a number of different process sequences and has direct access to

any machining or inspection station. A fairly sophisticated flexible manufacturing

system is currently being operated at the Fujitsu-Fanuc plant in Japan 1311. The

plant produces robots and small machine tools using unmanned machining. Robots

load the machine tools and machined parts and raw materials are carried from

station to station by wire guided carts. Presently, all assembly at the plant is

being done manually.

Sony has developed the FX-1 assembly system which assembles 0 percent of

the parts in the drive mechanism for the Walkman 11 131]. The system consists

of X-Y tables which position pallets containing parts and assembly areas for four

Walkman 11 assemblies. Unidirectional insertion is performed by single degree of

freedom actuators which may be fitted with any number of end effectors. The pal-

lets which are molded plastic trays are manually loaded before entering the system.

Conveyers move pallets in and out of the assembly stations. The system can easily

tolerate changes in both model design (by remolding the part trays) and produc-

tion quantity. Other attributes of the system are 2 second cycle time, 0.015mm

accuracy, an average reprogramming time of one minute, and a production rate of

500 sets an hour 48 pieces set). The Daini Seikosha Co., Ltd. (manufacturer of

Seiko watches) have been producing watches with almost no manual intervention

for about 10 years [1311. They use rotary and in line machining and assembly

centers for the production of mechanical and IC quartz watches. There are 6 lines

utilized for the production of 10 models. people fix jams during the second shift,

which is the production shift, and 80 people maintain 300 machines during the first
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shift. There is no central monitoring or diagnostics and the machines are capa-

ble of positional accuracies smaller than 0004 'Inches (10 microns) and production

quantities of 200,000 watch baseplates per month.

A utomated Factories of the Future

Continuing investment in automated manufacturing equipment will result in con-

tinuing improvements in productivity. There will be a corresponding change in the

nature of many existing jobs on the manufacturing floor. Possibly more signifi-

cantly, as more tasks are automated, manufacturing plants ill run in more struc-

tured ways. This will result 'in a reduction in the need for support personel As

a factory's performance more closely resembles performance of a computer model

of the factory, more of the jobs involving flow of information will be performed

by computer. The long term result will be a restructuring of te manufacturing

environment.

2.2 Classification of Assembly Operations

Successful flexible assembly systems will come about trough new developments

in robots, versatile peripheral hardware, and more efficient cell programming tech-

niques. In order to design useful systems, it is first 'Instructive to study common

mechanical assembly operations. A study at the Charles Stark Draper Laboratory

04,133] lists the twelve most common assembly operations in ten products. Re-

searchers at the Draper Labs found that about 33 percent of the operations studied

are peg-in-hole operations, 27 percent are screw 'Insertions, and 12 percent are push

and twist operations. It was also found that most of the operations occurred from

the same direction of the assembly (e.g. 80 percent of all peg in hole operations

were from the same direction).

When considering the set of capabilities which automatic assembly machines

should exhibit, one needs to consider tat the operations cited in the Draper study

as well as the present study were from products which were designed for human

assembly. Integration of the process and product design may produce products with

a relatively small set of required assembly operations which are capable of being

assembled with present state of the art machines. Extension of the capability of

these machines will generate more permissible assembly operations for the product
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designer's consideration. Thus, the compatibility between product and flexible

assembly system is dynamic and is extendable through an iterative design process

between the two elements.

2.2.1 Assembly Task Analysis

The operations necessary to perform the assembly of 7 consumer and automotive

products were studied. The 'Investigation was carried out to

0 investigate which mechanical assembly operations are prevalent in. certain

types of products,

* determine which operations can and cannot, be accomplished by an unaided

six degree-of-freedom manipulator,

* investigate the difficulty of the different operations.

None of the products were machine assembled, nor was their design optimized for
ease of assembly (i.e. they were not designed for automated assembly 31,33]). Ten
of the most prevalent mechanical assembly operations were identified:

I - Unstable Assembly: Any operation where a part will not maintain its proper position
under just the force of gravity. A plate without fasteners covering a long, thin
compression spring is an example.

2 - Required Orientation of Another Part Prior to Assembly: Stabilizing (fixing the posi-
tion) of an already assembled part prior to insertion of a new part.

3 - Retaining Clip Insertion: includes assembly of internal and external snap rings and
" E" clips.

4 - Spring InsertionlCompression: Operations which require insertion of parts which must
be mechanically stressed prior to their installation.

- Plastic Heading: Heading of rivets and other fastening techniques requiring plastic de-
formation of material.

6 - Unstable Inversion: Requires that a part or assembly of parts be reoriented prior to
assembly such that without constraint, they would become unstable and fall apart.

7 - Non-8crew Twisting: Includes all helical insertions which are not performed with stan-
dard screws.



1) Unstable Assembly 2) Orient Another Part 3) Clip Insertion

4) Compress Spring 5) Plastically Deform 6) Unstable Inversion

7) Non-Standard Screwing 8) Press Fit 9) Standard Screwing
10) Unidirectional Insertion

Figure 21: Summary of frequency of assembly operations for products studied.

- Press Fit: Similar to unidirectional insertions except there is an interference fit rather

than a clearance.

9 - Screw Insertion: Driving of standard shaped screws only. Specially designed parts

which are screwed into an assembly are not included in this classification.

1 - Unidirectional Isertion.- Any unidirectional insertion with a clearance fit. There is

no restriction on the geometric form of the parts so long as the parts are rigid and

the insertion direction is a straight line.

The frequency of occurrence of these operations for a number of automotive

parts and consumer electromechanical products is summarized in Figure 21 No

electrical component assembly operations (wiring, switch connection, printer cir-

cuit board component assembly, etc.) were included in this classification. The

operations are listed along the abscissa in order of increasing ease of task com-

pletion for a single armed robot using only very simple tools. A subjective rating

system was used for comparisons.

The simplest operation for a single manipulator is te um'di'rech'onal nsertion

operation where parts may be assembled in a straight, line fashion and no sensing

other than manipulator position feedback is required. This operation is te most
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INCREASING EASE OF OPERA Ti
FREO. OF OPERATIONS - SUMMA R Y
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prevalent comprising about 36 percent of all assembly operations in the assemblies

studied. The unidirectional insertion operation is similar but slightly ore com-

prehensive than the Draper peg-in-hole classification. The 36 percent frequency of

occurrence seems to be in agreement with te 33 percent frequency reported for

peg-in-hole operation in the Draper study. Screwing and Non-standard Screwing

operations comprised about 18 percent of the operations studied. This is a bit less

than the 27 percent reported by the Draper Labs. A significance test showed that

not enough data was taken and too few assemblies were analyzed 'in either of the

studies to allow meaningful comparisons to be made.

Operations 7 and 10 in Figure 21 may usually be accomplished with an unaided

six degree of freedom manipulator. Fewer degrees of freedom may often be sufficient

(e.g. a SCARA robot successfully performs many assembly operations ith three

or four degrees of freedom). A robot with a limited rotation wrist can usually

perform screwing operations successfully, but laboriously 153]. Operations 3 4,

5 8 and 9 are best performed by a manipulator with the assistance of a special

tool. Although operations 1 2 and 6 may be accomplished with two or more

manipulators, in many cases they may be performed with less complexity using a

single manipulator and a relatively simple auxiliary device.

02.3 Peg-in-Hole Assembly Failure Modes

The most frequent assembly operation according to the Draper Lab study is the

peg in hole insertion. Both two-dimensional 201' and three-dimensional 38,801

peg-in-hole tasks have been studied in detail. Te results from some of the two

dimensional studies are included here. The two-dimensional results approximate

the results for the three-dimensional cylindrical peg-in-hole with small clearances.

The two-dimensional analysis is also accurate for the rectangular peg-in-h-ole case

when the rotation errors are about one of the bottom edges of the peg. More

complicated interactions between rectangular peg and hole occur with arbitrary

misalignments 38].

Three modes of failure for a peg-in-hole assembly are considered (see Figure 22)

Chamfer crossing failure: Initial translational alignment of parts is not within

the range defined by the chamfers.
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e"*N figure 22: Failure modes for te peg i bole assem' ly. ra. Initial traiislational

alignment is ot wthin clianifer I'mits. b. Janiinhicr occurs. c. We(lg;ng occurs.

Jamming failure: Te 'sertion force is not i the proper dection to overcon-te

the friction during two point contact.

Wedging fcallure. The initial misaligninciats ad/or coefficient of friction re large

enough sch that the forces gnerated dring two point contact will always

equal the applied insertion force. When wedging occurs, often the oly way

to proceed with the assembly wthout damaging te prts 'is to reverse the

direction of the isertion.

Failure modes involving jamming during oe point contact and fction induced

reaction forces during chamfer crossing --ire not considered ere.

The chamfer crossing failure ode ay be overcome by increasing the acc'u-

racy of the part alignment or by icreasing te chamfer size of the parts, although

such a part design change my not almlays be possible. The Jamming failure mode

may be oercome by applying a larger insertion force along the hole -axi's without

proportionally increasing forces in the. perpendicuta dections. Many mechani-

cal.nianipulators can apply forces which re imich greater tan those needed to
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gure 23: Parameters for t e two-diine-jisional peg in hole assembly from 2011).

j"all-Imi d wedging.ra'Itire -odes are often than

overcome ng. The chainfer crosshi,-,an

i-nost constraining -id will. be used to qnantitziti'vely valuate he performanc of

,Ictssembly system's.

The criterion for voiding -the above ailure aodes re derived in [201] Te

criterion for chamfer crossing and wedgiin.g are included here (refer -to Figurt" 23

* To cross the chanifer we -need

16 I < LcIlamfer (2.1)

* To avoid wedging we must have

10 + 'E < (2.2)

where
L9

L2 + <olKx
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tt is the coefficient of friction and c is the clearance ratio

R - r
C R

Equations 21) and 22) give an analytical technique for determining the limits

of the assembly tasks which can be performed by an assembly system based upon

the translational and orientation errors of the system.

2.4 Manipulator Repeatability, Accuracy and Local

Accuracy

In this section, definitions of terms related to the accuracy of a manipulator are

reviewed.

What Should be Measured?

Repeatability and accuracy are each often specified by a single number in the

literature; presumably the maximum value. Since the location of the manipulator

near some specified position can be described as a random vector (see Section 27.3),

the specification for these errors should be given as moments (actually sample

statistics) of the probability density of the components of the vector. Since it is

often reasonable to assume that the distribution is approximately Gaussian shaped

and that it is symmetric in all directions, it is sufficient to give just the second

moment to describe the stochastic behavior about the mean. The sample standard

deviation 531 is the metric used in this thesis.

Repeatability and accuracy should be specified for all degrees of freedom. Often

robot specifications from the manufacturer only include translational repeatability.

Robot RepeatabzIzty

Robot repeatability is defined to be the capability of the robot to return to a pre-

viously visited location; that is, a particular location where the joint angles were

recorded. The robot may return to this position using any path in the workspace.

Some other definitions of repeatability assume that the manipulator always ap-
proaches from the same direction.
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Repeatability is usually measured by making a number of readings the location

of the manipulator after it has moved to a particular position. An accurate measur-

ing device such as a theodolite 117,2031 a set of dial gages 186] or a part position

sensor such as the one described in Chapter 4 is used to take the measurement.

In between measurements, the manipulator should. move each of its joints through

a significant fraction of their full range. During an assembly procedure, the robot

might approach a previously specified position using a, different path from that

used during the teaching process. It might also execute a different path to contend

with certain part misalignments. Thus, for an accurate repeatability measure, the

test should entail approaches through different paths.

Robot Accuracy

Accuracy is the ability of a manipulator to move to a specified position in its

world coordinate frame. This is a difficult quantity to measure because the actual

location of the world coordinate frame with respect to observable robot frames is

usually not known precisely. A good approximation to the accuracy measurement

may be obtained using a sensing system which can measure the position of the

end effector of the robot with respect to an arbitrary coordinate frame throughout

the workspace A "best fit" world frame may then be found from data taken over

the entire workspace 182]. An absolute error may then be calculated from this

approximate world frame.

Local Accuracy

Local accuracy is the accuracy of the manipulator within a limited volume with

respect to an arbitrary base coordinate frame. This base frame is often the center of

the specified volume of interest. This specification is more appropriate in a position-

sensor-based assembly system since measurements and corrections are always made

within a small volume about a nominal position. Relatively large inaccuracies

which might occur near the bounds of te workspace do not affect a measurement

of the local accuracy near the center of the workspace.

,to

'I'O" �



-Step Task
0. Teach tsk, calibrate system.

1. Feed an(I pi-ecisely orient pail.
2. Acquire pa.rt..

3. Move o inating appi-oadi position.

4. Mate part'.

Table 21: Assembly procedure for the a priori' suppressi .on method of error elimi-

nation.

2.5 Assembly Procedure Using the A PrZ'on'Error

Suppression Method

As an assembly system which relies solely on the precise location of the parts and

the precise motion of te manipulator, the assembly procedure for the a priori

suppression method is deterministic; that is, it is not altered by the state of the

system. Since all of the part locations are precisely known, the job of the manipula-

tor is to go to one of these positions, grasp the part, reposition it over the assembly

and mate it. Table 21 gives the assembly procedure for the a priori suppression

technique. The method used to teach the, task to the manipulator is usually the

"teach by showing" method. In this teaching method, the operator digitizes robot

positions by positioning the manipulator with a teach box.

Alternatively, an oine programming technique may be used to teach the task

to the robot (see References 29 11.41 for overviews). In this teaching method

a model of the workspace is stored in the computer. The assembly sequence is

input by the user and the task is either automatically or manually generated.

A manually generated task usually involves a user interacting with a computer

aided design and graphics system, planning manipulator motions and checking for

interference. Present oine programming systems do not model certain physical

phenomena, and do not offer the programmer much assistance with some of the more

important issues in, planning the assembly. Since forces between parts, friction, and

dimensional tolerances are not usually modeled, assembly failure modes cannot be

predicted.

Some experimental offline programming systems attempt to model some impor-

-0-- - --
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tant Dhvsical interactions. Part clearances and tolerances are taken into account

in 34,189] and planning of fine motion with friction is dealt with in 36,115]. Some

authors have dealt with the grasp planning issue [142,1641.

In order that the actual assembly environment conform closely to te model,

the elements of the assembly system must be referenced to the world coordinate

frame. This may either be done by accurately jigging the components or by having

the manipulator calibrate their location.

2.6 Assembly Procedure Using the Measurement and

Removal Method

A sensor-driven assembly system relies on a sensing device to determine the location

of certain part features with a precision sufficient for required assembly tasks. A

sketch of such a system is shown in Figure 24. The feature sensing occurs just prior

to the part being mated to the assembly. In order to avoid specialized fixturing,

reduce the amount of uncertainty in the position of the mating part, and reduce

user introduced teaching errors, it may be desirable to equip a system with two

part position sensors; one sensor to measure the location of the part in the assembly

and one to measure to position of the part in the robot end effector (in some cases

it may be possible to use a single sensor for both functions).

Manipulator mounted vision sensors have previously been used in a1 attempt

to locate parts prior to grasping them 4231. Because significant part positioning

errors may occur during part grasping, part sensing should occur after the part has

been firmly grasped. A stationary sensor mounting was chosen over a manipulator

mounting for the following reasons.

• The best features to sense are the mating features of parts. If the sensor

were mounted on the manipulator, the mating feature may be difficult to

sense since it will most likely face away from the upper part of te robot

arm.

• With a manipulator mounted sensor there is limited flexibility in part orien-

tation during sensing. Only the joints between the sensor mount and the end

effector are available for reorientation prior to sensing. Additional degrees
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Figure 24: Sensor-driven assembly system.
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of freedom would be required for arbitrary part positioning relative to the

sensor.

If the measurement is made relative to te wrld frame rather than to te

robot frame, the positioning of the part in the assembly is less dependent on

the calibration between the sensor and the manipulator. This means that te

manipulator may be moved slightly or substituted with an entirely different

manipulator without having to reteach the assembly task.

2.6.1 Assembly Procedures for Systems Ung One and Two
Sensors

The basic assembly system consists of one or tIATopart position sensors, a six degree-

of-freedom mechanical manipulator, an end effector which can firmly grasp all

required parts, and a part orientation and deliN-ery system. It is not required that

the end effector fixture the position of a part, merely secure it so there is no relative

motion between it and the last link of the manipulator. Only approximate part

orientation is required at the feeder. The precision of the feeding-orientation device

depends upon the size of the sensing volume of the part position sensor. If only a

single part position sensor is used, an assembly jig which locates the base part of

the device being assembled is also required.

Table 2.2a lists the steps involved in a typical sensor-driven assembly task with a

single sensor and Table 2.2b describes the procedure for a system with two sensors.

A calibration procedure must first be performed to find the transformation. between

each sensor coordinate system and the robot coordinate system.

For the single sensor system, the actual assembly procedure is also preceded

by a teaching session where the user digitizes two, nominal manipulator positions:

a position which aligns the part with the assembly and a position in the vicinity

of the active sensor volume. Alignment to the assembly is performed by either

"eyeballing," using gaging instruments, or by guiding the manipulator through

trial-and-error insertions. During teaching, the sensor system records a nominal

feature location with the part positioned at a sensing location. This sensor reading

is used as a baseline reading for subsequent measurements. The baseline reading is

the "correct" sensor reading for te system to assemble the part using the nominal

program learned during teaching. During an assembly task, commanded robot
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Step

0.

1.

2.

3.

4.

5.

6.

Task

Teach task, calibrate system.

Feed and grossly orient part.

Acquire part.

Position to non-tinal sensor position.

Sense part feature.

Move to corrected approach position.

Mate part sing corrected patli.

Step Task

0. Calibrate both seiisors to robot.

1. Sense prt feature in assembly.
2. Feed ad gossly orieiit prt.

3. Acquire art.

4. Position to iiomhi-alseiisor position.

5. Sense part feature ii eiid effector.

6. Move to corrected approach position.

7. Mate part ising corrected path.

a.

b.

Table 22: Assembly procedures for a

Procedure for a single sensor system, b.

typical sensor-driven assembly tasks. a.

Procedure for a dual sensor system,

positions are calculated based on differences between a current reading and the

baseline reading. The calculated robot positions create small alterations to the

nominal robot program which cause part misalignments to be nullified.

In the dual sensor system, the task need never be directly taught to the manip-

ulator. When the mating features are sensed by the two sensors, the necessary part

reorientation may be directly calculated from the sensor data and the sensor-robot

calibration.

For a system with a single part position sensor, the assembly procedure starts

with the robot acquiring the part and bringing it to the sensing position. The sensor

takes a reading and while the computer is processing the image, the manipulator is

free to transfer the part to the vicinity of the assembly. After processing the sensed

information, the computer calculates the transformation from the sensed feature

position to the previously recorded feature position. The robot is then instructed

to execute the transformation which reorients the part for assembly.

In a system with two part position sensors, the part in the assembly is sensed

in the first step. Depending upon the cycle time and the processing time, it may

be possible to use a single set of image processing hardware for both images.

2.6.2 Coordinate Frame Definitions

The following are abbreviations used to specify the location of a particular coor-

dinate frame of the assembly system (Figure 24 shows the approximate location
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of these frames). The convention for representing rigid transformations 'is given in

Section 27.2.

W: Te world frame. Tis is te world coordinate fra.me of e robot.

WA** Tis is te apparent world frame as defined by te obot's axes ear the assembly position.

R: Te robot coordinate frame. Tis is te frame ssociated with the obot grippers.

A: Te assembly frame. This is te frame associated it te ating part i te assembly. It is

assumed to be fixed with respect to te world frztme.

AA: Te assembly approach frame. Tis is te frame associated with he position just above the

mating part. It is typically associated with the position of te robot wen it is olding the

part just over te assembly.

S: Te sensor frame. Tis frame is associated wit te ima-ge plane of te sensor camera. It, is

fixed with respect to te world frame. It lso refers to te robot location i te vicinity of

the ative sensor volume.

P.' Te part frame. Tis is fixed to te part ,-laid is located at te feature to be sensed.

2.6.3 Correcting Sensed -1/lisalignments

The system's knowledge of the required task is derived from the teaching phase.

Deviations in part position from those defined during the teaching phase must be

compensated by altering the robot's path. In this section, the transformation which

aligns the part to the mating part is calculated.

The position of the sensed part feature with respect to the gripper frame is (see

Figure 25)
RTp T1 Tcalib -1 STp, (2.3)R,� W

where Tcalib is the calibrated transformation from the sensor frame to the worldW
frame, Tp ', is the part feature position with respect to the sensor and TR, is the

robot position while sensing is taking place. The robot position which will move
the part back to the nominal sensing position, sTteach isPI

T-1 STcal - ST teach RT-1R,,-�,corr W P,� P
callb

ST I 1 Tp,,,, ST ̀ 1'b T R�, (2.4)
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��- G r i p pe is

Figure 25: Calctilation of te robot o prt tr;,mis-Fosnnal.-iorl.

where

,� t .1 s ITp = T (,('(, - T .)s
,,, t I av It 1",5

and T"Ih is thenoininalfeatiure position withrespect to t snsor during tach-
PS

ing.

e t 4-1When the robot sows" the part- to t snsor during; te ex c io i of ta

'it imoves to the Slame snsin position �lI3 the one during te teachingphase, (T9 R,

T teach ). Tbus, the corrected robot positio nar the assenibly pproach position -'t sRs

T T1: e, a c1 T
RAA R,,;, A A ]?,,;,(,,orr

Tt"Ic" ST calib - STp "�T("' ibTtcach (2.5)
.[?.';,AA WI (L'-tteach j?";

tcachwhere T is the comm-and ti-ansfor-m fro te sensing position to the assembly
RS, A A-approach position dur'Utig te teacli' PIng session. 1,quation 25) give te corrected

asscuibly approach pos'Ition as a functi'an of the deviavion of te oication of the
4"114INi part from tlie taught position.
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2.7 Classification and Analysis of Errors

In this section methods for predicting the errors in an assembly system are pre-

sented in order to determine he specifications for a part, position sensor. First a

calculus for manipulating position errors is discussed, then errors from propagation

of uncertainties in initial part positioning, obot- motion commands, internal kine-

matic models, sensor readings, and sensor-frame to manipulator-frame calibration

are explored.

2.7.i Assumpt?'on8

In order to simplify the analysis we make the following assumptions.

* Robot position is specified to (not read from) Joint encoders whenever possi-

ble. This avoids doubling the robot repeatability error.

* All errors are small and Gaussian (where applicable).

9 Inaccuracies in the robot's internal kinematic model (differences between

commanded and actual motion) may be accurately modeled by a transfor-

mation error (small rigid rotation and displacement) in its world coordinate

frame and a finite robot repeatability.

A robot independent representation is used and exact kinematics are not modeled;

thus, only approximate dependencies may be examined with this error model. The

magnitudes of position errors as a function of the position of the three oints of a

spherical wrist are analyzed in Appendix D.

2.7.2 Repre-sentati'on of Rigid Transformatz'ons

Homogeneous transformation matrices 4 x 4 matrices - see 147') are used to

represent rigid transformations and are denoted by the boldface letter T. The

subscript denotes the object that the transform refers to. Te second level of

subscript signifies the start and end region specified by te transform. The optional

left superscript denotes the reference frame in which the transform is defined. This

superscript defaults to the world frame (W). For example, the transformation of a



60 ry 11U-Itapter 2 PrograMmable Assembly Systems

ime B

Frat

Figure 26: Graphical representation of a rig'd traTIS-FOrIM1--tiOn. The transformationI J C
Shown) TAB, 'is fron-1 frame A (six coordinates) to franic B. Te ex-tra lne from

the world frame to the transforinzition indicates that te transformatilon is specified

with -respect to tis fame.

part from the ensing position to tfle assembly aproach position with respect to

the sensor fame is `4TPHAA'

A rigid trailsfor-tuation my also be tought of as a vector in six space start-

ing at. a set of in-itial coordinates 3 translations and 3 rot�ations a(] ending at a

set of final coordinates. We may raphically represent a rgid t-ransformation in a

three-dimensional subspace (say te space dfined 'by the tran91-ation coordinates

and z) projected into two-din,�,11-nnsious. This is a twvnsforniaLion ra-Ph In

order to differentiate between a transformation ad a 3-vector, the transforniation

is drawn as a double arrow (see Figiire 26). An extra lne xtends fom some point

in the subspace to the transformation which 'Indicates the frame from which the

-transformation is specified. If te transformation is defined In -the frame associ-
ated with the starting oordinates ine nee .

the extra I' d -not be drawn. A certain

transformation ma-y be found froni a transformation gaph by tracing througli the

graph.. Traci:ug backwards over a transformation mans that the inverse of' the

transformation should be used; thu�, the transformation from B to / n the graph

ad Fig-Lire 26 'is T AD,
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2.7.3 Representation of Errors

Errors in a transformation are composed of a dsplacement error and a rotation

error, each having a magnitude and a, direction; tus, we can represent each of

them them as a random vector'

(x ax

y Y
CZ az

An element of the displacement error vector, �, is just the artesian error (distance

from the origin) times the appropriate drection cosine of the unit vector pointing

in the direction of the error. An element of the rotation error vector, 6, is the

total rotation error angle times the appropriate direction cosine of the unit vector

pointing in the direction of the axis of rotation.

We now define a random transformation matrix,,AT, as the homogeneous trans-

formation matrix which is associated with a random displacement error. and a

random rotation error, &. This transformation is a function of a vector of six

variables

6 T

The statistics of the random transformation matrix are governed by te six dimen-

sional joint probability density function (PDF) This density function

gives the distribution of probability for the components of the rotation and dis-

placement error vectors. A sample joint three-dimensional PDF is sketched in

Figure 27. The density of the "cloud" represents the probability density. In gen-

eral the joint PDF's for transformation errors ave a zero mean (the expected value
for the error vector is E[�_T_ [ 0 0 0 0 ]T).

2.7.4 Combining Errors From Independent Sources

The PDF of a random transformation error wich is the sum of N independent

random transformation errors

6T 6T + 0'2 + 6TI

'A randoin vector is a one dimensional atrix of random variables. It, is denoted by - over a

symbol.
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Figure 27: Three dmensional probability density function.

may be found by convolving the component PDFs 53'

(2.6)P6�, (�-To) P6�, 1 6T 110) (D 6�'2 (6T2,O) P6�'N (6TNO)

where is the convolution operator. Fgure 28 shows a sketch of the result of

convolving two independent planar displacement error PDF's.

Simplifications for Axisymetric Probability Density Functions

If the component PDF's are symmetric 'in ex, cl and c, and also symmetric in

ax, ay and a, then rigidly transformed PDF's are identical to the untransformed

PDF's (see Section 2.7.7).

Transformation of Prrors in Di rent Reference Frames

In order to combine their PDF's, all transformation errors must be specified in te

same coordinate system. If the errors are specified in different coordinate systems,

the PDF's must undergo a coordinate transformation to bring them to a base

coordinate system. For the case of N error transformations each specified in a

different frame, Y i jrN

716�'l i 26T2 "N6TN

we must first transform them to the same frame to obtain

6T T1 + "16Y2 + + -"16TN (2.7)
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Figure 28: Result of convolving two two-dimensional probability density functions.

before convolving their PDF's. If, however, the PDF's are symmetric, the errors

may be combined without transforming to the same coordinate system

4 - 6T� + 1'26�-, + ... + ""V6T'. (2.8)

Gau,5,5ian Distributed Errons

If the PDF's of components of a sum of transformation error matrices are Gaussian;

that is, of the form

(6 To) expl- '�T'P-16-Toll
P6-T (2-Ft)3 !PI' 0

i 2 2

where P is the covariance matrix (diagonal for symmetric PDF's) defined by

TEr6To6TI 0

where E is the expectation operator, then the result of the convolution of N PDF's

is a PDF wich is also Gaussian. The width (standard deviation) of each dimen-

sion of the resulting Gaussian is the square root of the corresponding diagonal
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component of P or

Ci - or2iJj_1
where the index Z' is taken over the six dimensions of 4T and c-,j is the width in

,1h 1hthe dimension of the PDF of the transform error.

2.7.5 Random Transformations

A random transformation, AT, is a homogeneous 4 x 4 matrix whose rotation

and translation components are random variables (Section 41). It describes the

difference between a coordinate frame with uncertainty, TA, and its mean, TA

TA-ATTA (2.9)

Aside from having random variable components, this description is slightly

different from the differential transformation, A, described in Paul 1471. The

relationship between a random transformation, AT, and Paul's differential trans-

formation, A, is

A AT - I

where I is the identity transform. The two representations have similar proper-

ties and many of the relationships derived in 147] are used ere. The random

transformation representation was chosen over the differential transformation rep-

resentation because random transformations are homogeneous matrices and may

be manipulated in the same manner as deterministic transformations.

2.7.6 Relative Random Transformations

A random transformation may describe the difference between a transformation

and its mean in the global coordinate system as well as in a local coordinate system

TA_ TPA AA T (2.10)

whereAAT is relative to frame TA 

The relationship between the relative random transformation and the global

random transformation may be found by equating Equations 2.9) and 210)

AAT -- T'(ATjA- (2.11)
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This is a coordinate transformation of the random transformation from the world

frame to the frame A. If we assume the mean transformation is of the form

n a d
TA 

0 0 I

where n', o, and a' are unit vectors in the respective local x, y, and z directions and

d is the vector from the origin of the world frame to the origin of the frame TPA,

then the vector components of the relative random transformation with respect to

the global components are (follows from Paul's derivation 1471)

n
A =

0 a (2.12)

a

n X d) + i)
Ai = . 0 x d) + Z) (2.13)

a X d) + i)

Alternatively, if we describe the transformation, TA, as a rotation by an angle,

0, about an axis, k, then a translation by a vector d then the rotation vector

corresponding to the relative random matrix, AAT is

A& AI
- k(k + sin(O)(k x &) + cos(0)1,& - k(k (2.14)

Thus the magnitude of the rotation error is the same but the direction of the

original rotation error axis, Ce has been rotated about the k axis by an angle .
II

The displacement component of AT in vector form is
A A

Ai ' '.' i] +k(k i + sin(O)'k x i] + cos(O)[ - k(k (2-15)1
A A

(& k)(d x k) sin (0)'k (d &) (d k) ] + cos (0) [d x (& k) k)I

The first line of the above expression is the contribution of displacement error

vector, Z, after being rotated. The second line is the displacement de to the

rotational uncertainty, &, of the commanded coordinate frame.

Unlike the rotation error, the magnitude of the displacement error is a function

of the direction of the frame TA. The contribution from Ai is a displacement of the

same magnitude as but rotated about axis k by the angle -0. The contribution

from -a depends upon the relative directions between a, k, and d. Thus the

magnitude of the displacement error of the relative transformation is function of

the location of the original frame, TA-
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2.7.7 Identi ficat'on of Sources of Error

Position errors in assembly systems are usually generated from sources n differ-

ent locations in the workspace. The following sections analyze some manipulator

dependent errors.

Errors due to Transformations of Frames with Uncertainty

Assume that a coordinate frame, TAhas an error associated with it

TA TAAATA� (2.16)

where A is the mean (deterministic) frame and ATA is the homogeneous trans-

formation matrix probabilistic) describing te transformation of the actual with

respect to the mean frame. AATAhas a zero rotation and displacement mean (the
expected value of the associated vector is [O 0 0 0 OJT). Post multiplication

implies that the transformation is carried out with respect to the mean frame, TA-

We are interested in investigating the positional error after the frame TAhas

undergone the commanded transformation T deterministic). The final position

is

TF Tc TA

- - A
- TcTAATA- (2.17)

The final mean position is

TF TCr!A- (2.18)

The error in the final position with respect to the mean final position is [from

Equations 217) and 218)]

,A TF - TCF _1TF

A TA- (2.19)

Thus, the magnitude of the relative error is insensitive to rgid transformations;

however, the direction of the error vectors change with respect to the world frame

(since each of the probabilistic error matrices are relative to the nominal transfor-

mation). Symmetric PDF's remain invariant through rigid transformations.
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Errors Due to Moving Througn ransformations with Uncertainty

Here we assume that the commanded transformation T-,, is in error

Tc -- FcCATc,1 (2.20)

where Te, is the mean (deterministic) transformation and ATC is the relative

homogeneous transformation matrix probabilistic) describing the transformation

of the actual with respect to the mean commanded transformation. The final

position of frameTA after undergoing transformation T- is

TF Tcrk A

- Tr c,'-A Tcrk A (2.21)

The error in te final position with respect to te mean final position is

FATI. T__'TrF

T_'C�ATc4A- (2.22)

This is just a coordinate transformation through the transformation TA. This

makes sense since Equation 220) may be thought of as an error defined in the

world frame, ATA_ ATC, which is associated with the initial frame TA

Errors Due to Moving in a World Frame wth Uncertainty

In this case we assume the world coordinate frame is in error. Errors in robot

motion due to the robot's internal kinematic model may be modeled by errors in

the world frame (see Figure 2.9).

WTWI Tw AT",,l

or
W I
ATw T Twi (2.23)

where TW is base world frame and Ti is frame about which commands are exe-

cuted and ATW is the relative transformation between te two. We have assumed

that errors in the robot's internal kinematic model may be modeled as errors in

the world frame. The desired final position, TF ,of a frame, TA, after undergoing

transformation T is

TF - TcTA (2.24)
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Fij�-3yu-re 2.9: Erro-rs i pt positions due to manipulator errors may b euivalently

repr.esented by .errors i te location of te world frame.

We aware interested '111 errors de to te commanded transfo.nii�-ttioii) tc, being exe-
i -r L I � k,

cii-Led ia f an).e "vI, ra'-her than 'n frame . First we find the location of frame

Vvith respect to the W coordinate fain as
WAT-- (2.25)

A il. TA

The final position after undergoing transformation te in te W coordinate fraine

is

WI TF tcWIT A

TGWATwTA

(2.26)

The fi-lial position in the W coordinate frame is

TF- ATWtCAT- ltA- (2.27)

The. error in the final position with respect to te W frame is

ATF i --'TFF
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T - "I _'WA T w rt WA T -"iA (2.28)A C W

This equation is essentially a nested form of Equation 2.22). The expression in the

square brackets is of the same form of Equation 222) and generates a relatively

small' transformation matrix when ATw is small. Postmultiplying this matrix

by AT-1 gives another small transformation matrixW

WAT*w [T 'WATwtcjWAt-'C W

The equation then takes the form 'AT. WCA which is of the same form asA

Equation 2-22).

We now investigate errors which are deviations of a final position from a taught

position rather than from an absolute position. In a position-sensor-driven as-

sembly system, tA might be the position of the manipulator during the sensing

phase and TC might be the commanded transformation which brings the parts into

alignment. Thus, T would vary depending on the part position in the grippers.

Still assuming a world coordinate frame with uncertainty, the final position

during the teaching phase is ftom Equation 2.27)]

T teach ATwTteach AT-' T-A- (2.29)F C W

The final position during an assembly operation after sensing and calculating the

corrected command transform is identically Equation 227) where tc is now the

commanded transformation based on the sensed data. The difference between the

taught final position and the actual final position is

ATF = AT teach -1TFF

= rt-1WATwT WAT-1 T (2.30)A Cdif f W Ai

where
each 1Tc, - Tt Tc.if f C

The deviations from the taught positions are a function of errors in the world

frame only if the commanded transformation, TC, is different from the commanded

2A sall transform,-ition atrix is te identity transformation rotated by a small angle and
shifted by a sall displacement.
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transformation during teaching, Vacl . The effect of Equation 230) is to rotateC
the errors in ATW by the correction angle contained in T,,.ff, and depending

upon the magnitude of the correction, the resulting error may be quite small.

In other words, if the part misalignments between the teaching phase and the

measurement phase is relatively small, the accuracy in part positioning is insensitive

to errors in the robot kinematic model.

If we assume that both the world frame uncertainty, wATW, and the difference

on ommands Tc,,Iff are random transformation matrices, we may obtain a PDF

for the vector associated with the resulting final position error, TF-

The difference in the commanded transformation, T dif f in an assembly system

(such as the one described 'in Section 66) is due to the part being in a different

position in the gripper than the original position during teaching. We assume that

this change in position is small (small angle approximations are valid) and the

rotation associated with Tc,,,.ff is described by a vector 0; that is, the angle of

rotation is bi and the axis of rotation is For small, the difference between
A

a vector X' and the rotation of X' by is approximately 0 x Y We assume the

displacement errors in ATW are described by a random vector, i, the rotation by

a random vector, &, and the displacement component of TA is d deterministic)-

We also assume that te PDF's for &, and are symmetric Gaussians with

characteristic widths cro, cr, and c, respectively. It is helpful to note that the

one dimensional marginal PDF for any component of a multi-variate Gaussian is

Gaussian as well.

We are presently interested only in the errors from the uncertainty in the world

frame, ATW. In Equation 230), the start frame, TA, is rotated by the negative

(the inverse rotation) of the rotation error vector, -&, then by the difference in

part orientation, b, then by the rotation error, a-. When all rotations are small,

the resultant rotation error is

(2.31-)

or

02a, - 3a2

&F 03a - 1a3 (2.32)

Ola - 02al

,1hwhere Oj, and a correspond to the component of and -a respectively. The

total displacement from the last two matrices in Equation 230) is + d + (& x d).
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The final displacement error in Equation 2.30) due to the contributions of ATw

(terms with and only) is

�F -_ 0 x [ + (6e, x d).. (2.33)

or
02 ((3+ ceid2- a2di) - 03 2 + a3d - a, d)

iF 03 (Cl + EA - a3d2) 01 ((3 ctld - e2di) (2.34)

01 (C2 + a3d - ceid3) 02 (I a2d - a3d2)

The PDF's of the components of and are the marginal PDF's of uncoupled

multivariate Gaussians which are independent Gaussian distributions. A number

of terms in Equations 2.32) and 2.34) are products of two random variables. The

PDF of the product of two Gaussian distributed independent random variables is a

modified Bessel function of the second kind, order (see Appendix E). Convolving

a number of these Bessel fnctions gives a distribution which may be approximated

by a Gaussian (central limit theorem'!531). We make te assumption that the re-

suiting distributions of Equations 232) and 234) are Caussians with covariance

matrices E(&F &T) and E�F J) respectively. Since we ave assumed all of te orig-F F

inal distributions are symmetric and independent, te vectors of diagonal elements

of the covariance matrices are

2 cr2 012
a

Cr 2 or 2
P 2 e (2.35)

2a 2 a2

and
or2 [2 or 2 (2d2+ d 2 + d 2 2

0 E 1 2 DU,

2 or 2+ 2 2 2 2
Cr [2 (d + 2d + d (2.36)IEP 0 t 1 2 3 Cra

2 Or2+ d 2 2 2
0 2 (d' + 2dO[ f 2 3 Cr.'

2.8 Errors 'in the A Prt'ori Error Suppression Method

The sources of error which contribute to the misalignment of the parts include

* Positioning accuracy of the assembly jig.

* Inaccuracies in gripper constraint. Tese may be due to clearances between

the gripper interface and the part, slop in the gripper mechanism, etc.
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* Tolerance and clearance buildup in the parts already assembled.

* Robot repeatability.

9 Teaching errors.

In an assembly system based on the a pri'orz' suppression method of error re-

moval, parts are initially constrained in jigs. The locations of te jigs, and therefore

the parts themselves, are referenced to some global frame in the assembly system.

The positional uncertainty for parts constrained i jgs depends on the geometry

of the parts and the method of constraint used by the jigs. To properly constrain

parts with varying dimensions, the clearance between the parts and the jigs must

be greater than the tolerances between the interfacing surfaces of the part. The

clearances mst also be large enough so tat the parts do not jam dring removal.

Whether or not a part jams depends on the manner in wich it is gripped as wll

as the jig clearances.

The function of the manipulator is to reposition the parts to an assembled

position. In so doing it must retain the accurate position information provided

by the part constraint system while altering the part positions. Part grasping

is a critical phase where relatively large uncertainties in part location may be

introduced. Uncertainties may be minimized by either fixturing parts in specially

formed grippers or by maintaining the positional accuracy provided by the part

j gs.

Experiments with the system described in Chapter showed that it is difficult

to maintain the accurate location of certain parts without using grippers which

constrain the part's position. The act of grasping a part tends to displace the part

slightly and cause it to apply a force to the constraining jig- Due to finite' system

compliance, once the part is free from the jig, this force may sometimes displace the

part significantly. The displacement was found to be above the acceptable bounds

for some of the assembly operations. A gripper which conforms to the shape of

parts (self-conforming gripper) would maintain the position of te part without

imparting unnecessary forces.

The part positioning accuracy of a system which constrains the location of a

part in the grippers is somewhat, decoupled from the accuracy of part fixturing

provided by the part jigs. As long as the part jigs deliver the parts within a certain
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range, the parts will be reoriented by the grippers, although the constraint might

not be in all degrees of freedom.

Other contributing errors are not discussed here. Errors from tolerance stackup

and clearance buildup are presented in References 4,1891 and robot repeatabilityJ

and teaching errors are discussed in Section 210.

2.9 Errors in the Aleasurernent and Removal Method

This section discusses errors which are generated in a system using a single part

position sensor. All references to an assembly procedure refer to the task described

in Table 2.2a.

2.9.1 Error Sources

We model the errors in aligning a part with its mating part as being from five

major sources.

teaching robot positioning robot kinernatics robot-sensor align. calculated transform

Yteach 11 -
6T PA A, A PA A. A+ 6TRAA + 6Tfr. shift robot + 6Tfr sift sensor + 6 Tcornmand

(2.37)

Errors not being considered 'in this analysis are those associated with the part

model inaccuracies and out of tolerance parts, non-orthogonal coordinate systems,

stackup of part tolerances and clearances and certain robot positioning errors.

Table 23 shows the errors which occur during the calibration and teaching

phase (step 0). and Table 24 shows the pertinent errors which occur during the

task execution phase (steps I through 6.

2.10 Errors in a Typical Assembly Task

This section describes a hypothetical peg-in-hole assembly task which is performed

using the measurement and removal method. Requirements for a, part position

sensor which can reliably perform the task in conjunction with a PUMA manipu-

lator are calculated. Because of the relative sparsity of robot accuracy data in the

literature, some of the values of the errors may not accurately correspond to actual
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Step

0

Variable Descript ion
- cet

` 6 T�ill Error due to the clibrated alignment of te sensor

- tcacll, frame ad te motion of te robot world frame).

6T R AA Error in te robot position at te assen-ibly
approach.

- teach

6TR,
,�6- tcach
I T ;

- teach

6T lA A, A

Error i te robot position at, te sensor.

Error in te location of te object by the sensor

in the sensor coord. frame.

Error due to iitial alignment of te part and te

assembly. It is due predominantly to user errors.

Table 23: Vectors corresponding to transformation errors which occur during the

calibration and teaching phase.

Step Variable Description

3 6�,,S Error due to positioning of te obot t the nom-

inal sensing position.

4 6 Tr., Error in te location of te bject by te sensor

in the sensor coord. frame.

5 6T, AA Error due to positioning of te robot at te nom-
inal assembly position.

6T,,, 1'. I AVector corresponding to transformation of te ap-

parent robot world coordinate system as te obot

moves front a. position ear te sensor to a, posi-

tion near te assembly. This is due prim,--irily to
inaccuracies of te obot's iternal model of its

kinematics.

Table 24: Vectors corresponding to transformation errors which occur during the

task execution phase.
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values for certain tasks or particular robots. Most of the numbers mentioned in

the following sections are standard deviations not maximum values.

The task consists of the insertion of a 175 inch 44.5 mm) square cross-section

aluminum peg into a steel hole with 004 inches (A mm) clearance on each side

(clearance ratio is c .0025). The hypothetical peg has small chamfers (about 02

inches or about .5 mm) and the hole is chamferless. The task corresponds to one

of the demonstration tasks in Section 66.1.

Analysis of the Task

In order to successfully complete the task, both the non-wedging criterion, Equa-

tion 22), and the chamfer bound criterion, Equation 21), have to be satisfied.

We assume that the center of rotational compliance is 10 inches 254 mm) from

the tip of the peg (Lg 10 inches) and that the displacements from the trans-
2). Wlational and rotational compliances are about the same. L ith these

Kj 9

assumptions, the criterion for successful task completion 'is

CO C
Oo + � < (2.38)

2L9

and

1col < Lchamf er (2.39)

where co is the initial translational misalignment perpendicular to the insertion

direction 00 is the initial angular misalignment, and L is the size of the

chamfer. I;

The coefficient of fction between an aluminum peg and a steel hole is about

0.3 19]. The wedging constraint becomes

Co .0025
00 <

20 .3

Thus for reasonable misalignment errors the wedging criterion is dominated by the

rotational offsets (10o > "I and the chamfer crossing failure criterion depends20

on the displacement offsets; thus, the errors decouple and may be investigated
separately.

The maximum allowable displacement erroris [from Equation 2.1)] co ±Lchamf er

±.02 inches .5 mm). The maximum allowable rotational error is [from Equa-

tion 2.2)] 00 c ±8.5 milliradians (.5 degrees). If 98.8 percent of the assembly
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trials (5 standard deviations) are to be successful, the allowable standard deviations

in errors are
2(.02)

or Co .008 inches (.2 mm)
5

C60 2(8.5) 3.4 milliradians (.2 degrees)
5

Teaching Errors

Teaching errors discussed here are those that the user is directly accountable for.

With a single sensor system, the alignment of the part with its mating part in the
each

assembly, �_T' is the sole error source. All other errors during teaching are
PAA.A'

accounted for in the commanded transform error. It is assumed that the human

operator can specify a position for a low clearance ratio mating operation to within

a standard deviation of 002 inches (.05 mm) in translation and .1 degrees (.0017

radians) in rotation. The values of these numbers will vary depending on what, if

any, measuring tools are used to aid the alignment.

Robot Positioning Error

Only the error in positioning at the assembly approach position is included here;

the robot positioning errors at other locations in the workcell are accounted for in

subsequent sections.

We assume that this error is equal to the robot repeatability (other local in-

accuracies of the manipulator are taken into account in the kinematics error)-

Repeatability is the error associated with the robot moving to a position associ-

ated with a certain set of joint angles. It is usually measured by having the robot

move to random positions in between measurements at the position of interest.

Repeatability of the PUMA robot was investigated by Lozinski 117] and Whit-

ney, Lozinski and Rourke 2031. Maximum values rather than statistical data was

presented; therefore, the repeatability standard deviation is estimated to be of
4

the reported value, 1.004 .001 inches (.025 mm). No information was found on4

orientation repeatability in the literature.

The repeatability of a PUMA robot was measured with the prototype sensor.

The errors were of the same order as the sensitivity of the sensor so accurate

readings could not be made. The readings obtained may, however, be used as a
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maximum bound for the standard deviation repeatability of the manipulator; they

were .001 inches (.025 mm) translation and 06 degrees (.001 radians) i rotation

(see Section 6.5).

Robot Kinematics Error

A robot does not move precisely in its workspace because of an imprecise model of

its link and joint parameters, finite position encoder accuracies, structural defor-

mations, transmission errors, etc (see 117,203] for a discussion). We assume that

errors from all of these sources may be modeled by an error in the location of the

world frame. A manipulator will execute a given transformation with respect to a

slightly different world frame as certain conditions change. If it were to execute the

transformation with respect to a single world frame, it would have infinite accuracy.

This error taken over a small region and combined with the robot repeatability is

a measure of the local accuracy of the robot.

Here we consider errors wich are generated from inaccuracies in the location

of the world frame and deviations from a nominal taught path. The orientation

error is given by Equation 2.35) and the translation error by Equation 2.36) We

assume that the location of the part (measured location) from the nominal location

(taught location) is described by a symmetric Gaussian of width 1.5 degrees (.024

radians) in rotation, and the PDF for the error in the robot's world coordinate

frame has width .05 inches 1.3 mm) in translation and .5 degrees (.008 radians)

in rotation. In addition, we assume that the starting coordinate of the robot is at
]T ]Tposition d - 12 12 - 12 inches ([305 305 - 305 mm). From Equations 2.35)

and 2.36) the standard deviation of the final error in each direction is

08)2 .0005 radians (.015 degrees)

in rotation and

)2 412)2 (.008)2 -
UCkz.Ft tit a t i c e .005 inches (.12 mm)

in displacement.

Sensor-Robot Coordinate Agnment Error

Errors in robot motion due to a coordinate frame misalignment with the sensor

may be modeled with the same euations as the robot kinematics error. In this
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case, the error in the world frame is due to the misalignment between the sensor

and the robot frames with the error specified near the sensed part feature (d 0).

The error is assumed to be .05 inches 1.3 mm) in displacement and 2 degrees (.032

radians) rotation.

U., .cn oor - r , hot 32)2 .001 radians (.06 degrees)

2(.024)2 (.05)2 .0017 inches (.043 mm)
HI, Yi. tit r - r d) 4

'Thus the total error is fairly small even with a relatively large sensor-robot mis-

alignment.

Errors in the Commanded Transformation

The errors not yet accounted for include: the sensor measurement error (SbTp�,),
(S6- leach),

the sensor measurement error during teaching T PS the robot repeatability in

positioning the part at the sensor 6TRj, and the robot repeatability in positioning
- teach

the part at the sensor during teaching (6TR,, The errors which occur during

teaching become embedded in the nominal transform which moves the part from

the sensor position to the assembly approach position. After a number of executions

of the assembly procedure, the commanded transform may be manually corrected

until most of these embedded repeatable errors are nullified; tus, they were not

included in the error budget. The only remaining errors are 6Tp, and 6TR,. The

robot repeatability is assumed to be .001 inches (.003 mm) in translation and 06

degrees (.001 radians) in rotation; thus, the error due to the calculated command

transformation is

12

'or C,, -,, Fri. art. a i. d62

Total Errors in an Example Assembly System

Quantitative values for the five error sources in Equation 237) are

.008 12 + 0052 + 00172 + 0012 SU2 inches (2.40)

in translation and

(2.41)
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in rotation. Thus, the allowable standard deviations in measurement accuracy for

the sensor for the hypothetical peg-in-hole task are

S
U�Ps 005" inches (.14 mm)

S .14 degrees (.0025 radians)
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Chapter 3

3.1 Lterature Review on Vsion Based Part Sensing

3.1.1 Ranging Systems

Identification and three-dimensional position measurement of objects require a

sensing system which can detect points or features on the object's surface. Contact

or non-contact sensing techniques may be used to acquire surface position data.

Non-contact systems are generally faster, more versatile and higher resolution than

contact systems. Vision based systems are usually hghly flexible and have high

resolution, but are sometimes slow. Jarvis 99] presents an overview of various

ranging techniques including light stripe systems, texture gradients, range from

focusing, stereo disparity, range from motion, moire fringe contours, single spot

triangulation, and time of flight measurements. Joseph and Hansel 231 also give

an overview, but it is predominantly a concise version of Jarvis's article. Benton

and Scarborogh 23] describe some commerciall aailable systems. Techniques for

obtaining depth information not cited in the aforementioned literature include an

optical proximity sensor Floor, projection of regular patterns 184], focusing a ring

pattern 102], and a technique which servos the light source on a positionable sen-

sor 121 A discussion of some systems which use te light stripe ranging technique

follows.

The "light stripe" technique for obtaining three dimensional measurements of

81
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points on surfaces of objects uses a planar light source projected across the scene.

The light source is usually either a white light projected through a slit or a thin laser

dispersed in one direction through a cylindrical lens. The scene is usually sensed

with a video camera. Three-dimensional coordinates may be calculated for each

illuminated point in the image (see Section 42.2 for a more detailed description)-

Shirai and, Suwa 175] scanned a light stripe across a scene containing polyhedral

objects. They segmented the planar surfaces by detecting discontinuities in image

stripe slope and spacing. Planes were ten fitted to the points from lines in a

group. Agin and Binford �5] fit data generated from multiple images of a scanned

light stripe to generalized cylinders. Their technique only worked well on parts of

objects which were close 'in structure to a generalized cylinder. Popplestone, Brown,

Ambler and Crawford 154] were able to construct models of objects composed of

planar and cylindrical surfaces from light stripe data. They clustered segments of

the light stripes and attempted to fit planes or cylinders to each cluster.

A sensor system developed at the National Bureau of Standards 7 used two

parallel light planes and a point source of light. Two images are taken. The first,

using the planar sources, 'is used to get range, pitch and yaw information. The

second using just the point source obtains position information perpendicular to

the optical axis and roll information. Because only two planes were used in the

NBS sensor, there was usually no confusion about which source a line in the image

corresponded to. In general, however, multiple planar sources can create stripe

to source correspondence problems 162]. By using multiple cameras, Echigo and

Yachida 56] solved the multiple stripe identification -problem.

Cain 37] uses curve matching to inspect a motor end bell and a plastic bottle

from light stripe data. He 'is able to filter out spurious reflections by checking that

the direction of the ray from the source to the illuminated points in adjacent line

segments are consistent. Other references which use a light stripe ranging system
for object recognition or inspection include f4 23 129 130 155 156 183 95 198 2091.

1 5 I I I I I I J
This type of ranging system has also been extensively used for robotic welding (see

[31 for a reference list).

Accuracies in locating three dimensional features using tese light stripe sys-

tems were usually not presented. Since little attention appeared to be given to

precise calibration, it is likely that the accuracies of tese techniques were poor

with respect to the requirements for a vision-driven precision-assembly task (Sec-
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tion 34 discusses these requirements) 

3.1.2 Model Ba8ed Object Recognition and Position Determination

Overviews of model based vision systems for identification and location of two and

three dimensional parts in a scene are given in 124 C-1 A model based system

assumes a priori models of objects potentially in a scene. The goal is usually

to identify the objects and determine their position through matching with the

models.

Ikeuchi et al. 951 used a photometric stereo technique 206,93] to determine

the orientation of objects of known shapes and known surface properties stacked

in a pile. A needle map (surface normals plotted over the image) of the scene

was formed and used to segment the scene into regions corresponding to different

objects. The Extended Gaussian Image (EGI) rl-7,93,1771 was then used to deter-

mine te orientation of a selected object. An EGI is essentially a mapping of all

the surface normals of an object onto the surface of a sphere. After determining

the object's orientation, a grasp point for te object was chosen and a manipulator

was instructed to pick the object out of te pile. Brou 35] also used the EGI to

determine the pose of objects whose surface normals were calculated from data

points generated from a laser ranging system.

Oshima and Shirai 145,173,174] use a region growing algorithm on range data

to construct planar and quadric surface patches corresponding to surfaces of objects

in the scene. A kernel region from the scene is used to search possible models for a

correspondence (data driven search). Once found, regions surrounding the kernel

region in the candidate models are used to search through te scene for additional

matches (model driven search) until enough regions of a particular object are found.

This procedure is repeated for each object in the scene. Oshima et al. also report

using two other techniques: a potometric stereo-EGI technique for certain shaped

parts and a polarimetric technique 106] for somewhat specular objects.

Faugeras et al. at INRIA [[,58,059,60[ have developed a system which represents,J
recognizes, and finds the position of three-dimensional objects from range data.

Objects are modeled by points, lines, planes, and quadric surfaces. They use a

hypothesize-and-test algorithm for determining the relative position of a sensed

object to a model. A rigidity constraint is used to help determine an initial hy-

pothesis. They -have developed techniques for finding the best-fit rotation and
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translation which, although computationally efficient, fail to take into account the

relative measurement accuracy of each of te scene normal vectors.

Horaud and Bolles 91,281 have developed a three-dimensional feature based

system to recognize parts within a jmbled pile. The parts are modeled wth

cylindrical and planar surfaces and a list of features is associated with each part

type. Light stripe range data is used to obtain points on te surfaces of the parts.

Edges between surfaces are found and classified as lines or arcs. An edge is matched

to possible model features then additional features in the 'image are used to guide

a tree search to converge to the proper interpretation. Tomita and Kanade 131

have developed a similar feature based approach to the matching problem. They

find circular and straight surface bounding edges which are used as the matching

features. An initial match is found by essentially an exhaustive search. They

suggest that after a number of feature matches have been found the pothesized

transformation may be more accurately determined by performing a least squares

minimization of the errors between all the matched features.

Lozano-Perez and Crimson r76 77 78 79] use local constraints on geometric fea-

tures to prune an interpretation tree of possible three-dimensional object config-

urations. Earlier work described a similar technique for determining the position

of an object in a plane from sparse tactile data 63]. Tese techniques need only

sparse scene data; thus, the time needed to acquire three dimensional data from a

ranging system, which can sometimes take tens of minutes, may be substantially

reduced. Their technique 'is robust to partial occultation and is a possible solution

to the bin picking problem. This technique is very good at finding gross object

positions, but like most of the other systems described in the literature, does not

always produce accurate location information. This sparse range technique may,

however, be used to determine the pose of an object before it is grasped by a ma-

nipulator. Once grasped, the part may be repositioned so that a precise position

measurement may be taken by a sensor such as the one described in this thesis.

The following is a brief description of some other techniques which have been

used to determine the three-dimensional position of objects in a, scene. Goad 67]

describes a technique which matches discontinuities in two-dimensional image in-

tensity to features in a part model. A matching hypothesis is formulated and

checked with multiple images from cameras positioned around the part. When a

certain number of edges agree in all views, the hypothesis is assumed to be valid.
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Herman 86] generates three dimensional models from light stripe range data by

finding discontinuities in the data (edges) using Hough transforms, then identifies

vertices and faces along with the edges to complete the model. Hebert and Kanade

�82] also model a part by its edges (they call this representation a 3-D profile). They

discretize the space of possible orientations of the ob'ect and precompute occluding

boundaries of a hypothesized image of the object 'in each of the orientations. In the

recognition pase, they attempt to match the precomputed occluding boundaries

to those in the actual image. The accuracy of the technique is highly dependent

on the fineness of the tessellation of the orientation space. Hough transforms have

been used in a non-feature based approach 18,111,127]. Edge curves, and planar

and quadric faces of objects in a scene may be found directly from the data.

3.1.3 Vision-Sensor-Driven Assembly

Sensor based assembly literature deals almost exclusively ith force control and

active and passive compliance techniques (see 2021 for an overview); very little

attention has been given to sensing in the alignment phase of an assembly task.

Shirai and Inoue 172] used a video camera mounted on the manipulator to monitor

a peg-in-hole insertion. Part alignment corrections ere made as the assembly

progressed. Only two dimensional data was used and the bandwidth of te system

was very slow due to the image processing step. Inoue and Inaba [97] describe

a "hand-eye" system based on binocular stereo which can perform manipulations

with a length of rope. A commercial automated electronic component assembly

system (Automatix Multisert system) uses vision-driven assembly for both surface

mount and through hole components. Benton proposed using a light stripe system

to monitor and correct for errors in the the assembly of microswitch parts 23]. Park

[231 discusses this technique and some problems encountered, including sensing

positions of specular parts. Rutkowski and Benton 231 report on the algorithm

used to determine the pose. They use an iterative algorithm which transforms

imaginary data points in a part model until they align with the sensed data in the

laser stripe scene. Theoretical accuracy of part alignment for their system was 007

inches (.2 mm) and experimental accuracy under ideal conditions was .015 inches

(A mm). Experiments on real parts showed errors as much as 033 inches (.8 mm).

Test procedures and statistical results were not given.
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3.2 Locating Objects from Range Data

In this section, the question of which type of model fitting algorithm should be

used on raw range data is addressed. One method tries to fit the range data to one

of a number of previous observations of the part while another method tries to fit

an a priorz'mathematical model to the data.

3.2.1 Introduction

The precision of two techniques for finding the orientation of objects using range

data is investigated. The first method, a fitted boundary interpolation technique,

uses range sensor data recorded during a learning phase from many sensor scans of

a sample part at various precisely controlled positions about a nominal position.

This data is later used as te source for an interpolation routine which estimates

the exact position of a similar part based on data from a single scan. n the second

method, a feature locating technique, an accurate geometric model of the part fea-

tures. of interest is used in conjunction with sensed data to calculate the orientation

and position of the part. Results from two-dimensional studies using these tech-

niques produce insight on the performance of the two algorithms in locating actual

three dimensional parts. Performance is evaluated as a function of the number of

data points, and the shape and the orientation of the object producing the data.

3.2.2 Method of Evaluation

The Sensor Model

A generalized three-dimensional range sensor is modeled in two dimensions by a one

dimensional camera array sensing contours , y coordinates of "visible" bound-

aries) of a two dimensional object (see Figure 31). The effect of discretization due

to the geometry of the sensing array and the finite resolution in range information

is studied. The width of the image and the precision of the range data are both

assumed to be represented by eight bit numbers 256 x 256 array).
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The Fitted Boundary Interpolation Technique

In t1lis 111.10thod r erpoLitio-r tble is creaCcd ori dzit,a froin sc--,_t11s of the

Part n,Cl Se.ries of Rnow-.11 Orientations. A crve or surface is firt 1 the data for each

orientation iind pzara-inet."ns escribing each cirrve or urface, are stored in it table.

The orie.nUation of a snsed ob'ect is oun(l by usincf newly fitted ctirve para-n-leters,

as a idex into t1z tble td interj)olatinc te object's or'ei1-'u,;1Aion froni the coef-

ficients. For te pesent Andy a straight, fine s fittet.-I to the sitrface contour hata

and the two elenie-tit agrangian interl)olation techniqtte (linear wo point interpo-

tation) is tised to calcidate the orientation of t1ie object (tts�ually different fom the

orientatio o t fitted ine) lroiiv�vafiies stored 'I-n Lhe table. The dependency of

the algorithm o te density of the entries i t tab le is sor n in Figlire IL' U As

the density of the able entries ncreases, the algorithm beconies niore accurate.

When te spacing betwe en orientation entries 'is es tan abont 10 minutes, (.this

corresponds to te otiter dge of the iniage oving abcout 01 pxels from oe entry

to tile next), the algorithm does not becoine significantly more accurate. At tis

sattiration" point, fitted slopes of almos a S be pn iages have one or

more corresponding entries i tie taMe. Whe te fitted boundary prameters

correspond to nitiltiple etries i te iterpolation able, tbe nican. of t tble

'Vill-ties for the ide-n-tical etries is tilized.
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The F eature Locating Techn'zque

In two-diin'ensions relatively straight-line fe.-Aures are ideiitified ;uid used -to per-

form inatching between odel and the snsed dta. For alliple, fo te shilu-

hAed mage of a pan shown i Figure 3.3a, th- straight ection of he handle may

be sed to determine the orientation of the entire in.iage W wl se the results

(-,f Section .3 which present the errors i least squares ie fitting to evaluate this

t,�chnique in this two dimensional case.

3.2.3 Studies

The magnitude of the errors fro a ensor wh discrete eleraents is sensitive to

the exact position nd orientatio o a oNect's image within te pixel arrivy.

Small hanges n mage position can ]igure -,, large effect on the error. Errors were

es tiniated by calculating sample standard devicit t ions of randomly oriented ii-nages

within sonie orientation range (either a 25 or degree range). Sample statistics

front 30 trials i each range were calculated ad used as bases for con-tparisons.
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a)

b)

O
Figure 3.3:_TWodjm64� st te accuracy of the part locating

algorithms. a) Pan image. b) Rectangle image. c) Ellipse image

Sensitivity to Image Size

In evaluating the fitted boundary technique, measurements were interpolated from

a table consisting of 6 equally spaced entries from to 10 degrees (I degree in-

crements). The pan image was used in the evaluation. After the interpolation

table was constructed the imaae was oriented precisely in the range from to 0

degrees. Contour data was generated from the sensor model and the resulting dis-

crete image was evaluated to get an estimate of part position. This estimate was

then compared to the actual part position and the difference was recorded. The

length was varied (the aspect ratio is kept constant) and the errors in measured

orientation recorded. Errors in orientation as a function of image length are shown'

in Figure 0.4.

The feature locating technique was evaluated as follows. A randomly oriented

image (within a range of to 10 degrees) of a straight line portion of an object

was located by least squares line fitting data from the sensor model. Differences in

orientation between the measured and actual orientation were recorded for different

length edge images. Results are shown in Figure 413 in Section 43.

Although the results (standard deviations of errors in orientation) from the

fitted boundary interpolation technique appear to be quite inferior to the results
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of the feature locating technique, they fire extreltiely sensiti-w! to thC iD. Cerpolation
ACable dcmsit-Y (see Figure 32). In the limit of i-t ft,11y s,-,thirated Cable, the fitted

&-Amd-,i�ry intexpolation table has explicit vlues for all dis(-,.Cet,-- RN'tges a.td
igives e.13111ts of eual or g.Leater accurate than the featim- locating approach. Vari-

- -es which deteradne the accuracy of the fitted bonn'tary ii-iterpolation technique

-vvith sub-satuxation table densities are discussed in subsequent sections.

Image Orientation

The accuracy of te fitted boundary interpohation algorithm ;as unction of iniage

ori(--,-ntation ws investigated I tbis test statistics from 30 trials i each degree

range fron 0 to 65 dgrees were collected. Orientation tables witih one egree

incTem.ents for both the pan finlage &d the rectangle; i-Inage, wre sed. 1-niages

of the an and sbsequently of th rctangle were presented to the sensor witb.in

the working range of he tble. The results are shown i'Figures 35 ad 36.

Errors in orientation for te pan 'linage are larger and vary nior tan those for

the rectangle iage. The decrease in accuracy wth increasing tingle as seen 'in the
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rectangle is due to the decrease in projected length of the image of the rectangle

and to an increase in the number of discontinuities in the interpolation table as

described later.

The accuracy of the feature locating technique as a function of feature orienta-

tion is the same as the accuracy of the linear least squares technique (see Figure 41.0

in Section 4.3)_

The rectangle interpolation table with I degree increments was sufficiently fine

to produce errors which were comparable to those of the feature locating (least

squares line fitting) technique while the pan table with degree increments pro-

duced errors to 10 times greater than the feature locating technique.

Image Shapes

The errors in locating an image using the fitted boundary interpolation technique

can change more than an order of magnitude depending upon the shape of te

object. The closer the shape of the object is to a straight line, the better the

performance of the algorithm. This conclusion is supported by the fact that the

method more accurately locates the rectangle than it does the pan (Figures 35 and

3.6 and Section 32.3). Rectangles and ellipses with large aspect ratios are more

accurately located than similarly shaped images with aspect ratios approaching I

(Figures 37 and 38). This shape dependence 'is due to the number and magnitude

of the discontinuities in the orientation tables. Comparing the number of discon-

tinuities in the table generated for the pan image (aspect ratio 2 - Figure 39)

to the tables for ellipses and rectangles of various aspect ratios (Figures 310 and

3.11), we may conclude that the longer and straighter the object, the higher the

accuracy of the fitted boundary technique. Only the first part of the interpo-

lation table (where the table was single valued) was used. Table interpolation of

orientations above about 65 degrees were not performed.

The discontinuities in the interpolation table are an artifact of the discretization

of the image. At certain positions, small rotations of an object may change only

a few pixels states; alternatively, a large number of pixels may change state. If

subsequent small rotations of the object (in the same direction) during the learning

phase of the fitted boundary technique generate very few pixel state changes then

a large nmber of pixel state changes, a discontinuity in the interpolation -table

will result. Since the pixel state changes may appen simultaneously, a very fine
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pect rtio of a rectangular image

Nw- .(11
C.,
m i6-
i5
m 14 %ft

:Z:I...
12.z111�

bft lo.

a
Aft
&ft

ui a. 

6.

4 -

2.

0 - - a - I . - a - ---- a ---- -- a
2 4 6 8 1 0 1 2 1 4 1 6

A§pect Ratio
Ellipse, Orientation vs. Aspect Ratio

Fgure 38: Dependence of the fitted boundary interpolation technique on the as-
pect rtio of n elliptical image



I .- -- -

fitted boundary interpolation technique

" 1.40.
-4
,�5 1.20,

1.00.

.80.

.60. i

I

.40 i
I
i.20.

i
i

07 10 20 30 40 50 60 70 0.
Orientation (D I

Rectangle Table with an Aspect Rat- i

I - I

F- A.- II

II0 10 20 30 40 50 60 70 80
Orienta (ion (Degrees)

Rectangle Table with an Aspect Ratio of 16

3

2

1

1

--- ----- -11-----------.---------------=-=-=---- -- -- ,-

Figure 310: Tables for rectangles of various "aspect ratios

i- - I 

IOllapter 9: Part Position Sensing for Assembly94

I - n PriI -
-;j

a

0

(1)

0

Figure 39: Pan inlage table entries for the

a a

7

a

5

i

.. I



§ 3.2: Locating Objects from Range Data 95

60.

.40.

.20.

30 40 50 60 70 8 0
Orientation (Do rees)

Ellipse Table with an Aspe t Ratio 2

Figure 311: Tables for ellipses of various aspect ratios

interpolation table may also exhibit many discontinuities. Figure 312 shows the

quantized outline of an ellipse. A small rotation, 6a, of the ellipse can bring about a

relatively large rotation in the line fitted to the upper boundary of the ellipse due to

the change of state of a number of the pixels on the right and left boundaries. This

change in the fitted line orientation results in a discontinuity in the interpolation

table.

Since the feature locating technique studied herein is only capable of locating

straight line features, it will not be discussed in this section.

3.2.4 Conclusion'S

Accuracies of the fitted boundary interpolation technique approach those

of the feature locating technique if the table density approaches saturation.

Some shapes may be located accurately without using a fully saturated ta-

ble. These shapes ave relatively smooth (few discontinuities) interpolation

tables.

* Both techniques perform best when the "longest" side of the object is fac-
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a

sa

Figure 312: A small rotation, 6a, in the discretized ellipse can bring about a

relatively large rotation of a line fitted to the upper boundary of the ellipse.

ing the sensor so as to reduce 'image foreshortening. The feature locating

technique requires objects to have certain features while the fitted boundary

interpolation technique works best with relatively thin, straight objects.

• Extending te number of required elements in an interpolation table for a six

degree of freedom boundary interpolation technique suggests an extremely

large interpolation table and lengthy searching algorithms which may not be

appropriate for a real time industrial environment.

• Although we ave assumed no a prl'ori'model for the fitted boundary interpo-

lation technique, the location of the example part in the learning phase must

be positionally referenced to a base coordinate frame. This requires defining

some local coordinate frame on the part from which the sensed boundary 'is

referenced. Thus, the technique cannot be used w ithout constructing some

sort of a prz'orl model; although, the model can be quite simple. The model

needed for the feature locating technique can also be simple since only te

features which are to be sensed need to be modeled.

• Both object locating techniques ave limitations. The fitted boundary in-

terpolation technique cannot andle objects with aspect ratios near one and



§3.3: Assembly Systems Which Use a Part Position Sensor 97

the feature locating technique requires an object to have easy to sense and

easy to model features. As implemented the fitted boundary interpolation

technique will only work about a nominal orientation where the coefficientsI
of the fitted contour curves are single valued.

The two-dimensional feature locating approach may be applied to objects in

three dimensions and still remain relatively fast (perhaps a few tenths of a

second) and relatively accurate; however, it is currently limited to finding

only fairly simple geometric features.

3.3 Assembly Systems Which Use a Part Position Sensor

Programmable assembly systems such as the one described in Chapter often

require special tooling. Trading jigs, fixtures, end effectors, and special part pallets

into and out of the assembly environment produces a less flexible (less able to

handle different products, part shapes, and assembly operations) and less efficient

system. Instead of precisely fixturing parts, a sensing technique may be used to

localize features of a part. In addition to making the assembly cell more flexible, a

part position sensor can make the assembly operations more reliable. Factors such

as out-of-tolerance parts, slightly out-of-position parts, burrs, and worn fixtures

contribute to the "error budget" for an assembly operation. Most of these error

sources can be eliminated if a part position sensor is used to sense the mating

features of parts just prior to their assembly.

An assembly system which uses part position sensing in lieu of precise fixtures is

shown in Figure 313. The system consists of a feeding station which separates and

roughly orients the parts, two part position sensors, a mechanical manipulator

a series of assembly nests to hold the base parts of assemblies, and "universal"

grippers which can firmly fixture parts of many shapes and sizes. One of the

sensors is positioned under a transparent stage at te end of the feed track. In an

assembly operation, a part is fed to the stage in an approximate orientation and

the manipulator grasps it. As the manipulator lifts the part off the stage, the part

position sensor takes a reading. It need not fully process the reading at this time.

The manipulator then approaches the assembly. By the time the robot is ready

to insert the part, the sensor has processed the measurement and the manipulator

is instructed to reorient the part so that it is aligned with the mating part in the
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Manipulator

Assembled

Sensor[

Figure 313: An assembly system which uses part position sensing needs no spe-

cialized fixtures. Parts are taken from a feed track by tbe 'manipulator sensed

repositioned then assembled. A part position sensor upline of the assembly sta-

tion determines and records the position of the base parts of the assembly.
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assembly nest. A second part position sensor is located upstream of the assembly

station and locates the position of the mating parts in the assembly nest before

they enter the assembly station.

Univer8al Assembly Jigs

With a part position sensor, there is no requirement that te end effector and

assembly jig geometrically constrain the parts. These elements of the system need

only stably (no slipping) grasp te parts. Clamping mechanisms with resilient,

high friction surfaces can adequately constrain a large variety of parts.

The elimination of gripper and fixture changing during an assembly operation

saves time and costs in assembly operations. An automobile alternator assembly

system developed at the Draper Laboratory spent about 13 of its cycle time

performing tool changing operations 431. Time spent performing any non-assembly

tasks means a lower throughput ad, thus, a more expensive system.

Uses for a Part Position Sen,5or in an Automated Factory

Some uses for a part-feature-based sensing system operating in an automated man-

ufacturing environment are

• Measure and feedback surface positions during machining operations.

• Determine manipulator endpoint positions for a servo position controller.

• Measure part positions during assembly operations.

• Inspect part features.

• Verify proper part positions after assembly operations.

• Provide part orientation information for feeding systems.

• Sense absolute end effector positions for robot calibration.

This thesis will deal mostly with the part position sensor as used in an assembly

environment.
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3.4 Sensor Design Requirements

In an assembly environment, a part position sensor is used to accurately locate

mating part features. The sensor design goals were split ito two groups; desirable

attributes for the prototype sensor, and additional attributes for a commercial

sensor.

Prototype Sensor Goals

• Measure to within .0055 inches (.14 mm) in translation and 14 degrees (.0025 radi-

ans) in orientation (see Section 210).

• Measure polyhedral part features.

• Complete measurements in less than sec.

• Measure mating features if possible.

• Have a large enough sensing area to allow for initial misalignments of about ±2

inches ±3 mm) and ±5 degrees (±.01 radians).

Commercial Sensor Design Goals

• Measure commonly found part features.

• Extendable to non-standard features.

• Complete measurements in less than I sec.

• Requires little or no manual intervention for sensing different parts.

• Inexpensive.

• Relatively small and light.

• Easy to calibrate.

• S afe.

• Reliable.

• Works well in an industrial environment.
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3.5 Choosing a Part Position Sensing Technique

A good design for a part position sensing system will be a system which can

precisely digitize and represent geometric information from the three dimensional

world in a digital computer. Vision based technologies currently used to extract

three dimensional information about objects include photometric stereo, binocu-

lar stereo, time of flight measurements, depth cues from two dimensional images,

depth from motion and triangulation techniques (see Section 31 for an overview).

Our interest is in locating the position and orientation of objects for automated

industrial assembly tasks; thus, high accuracies and short computation times are

essential. Initially a high precision stereo system which used two cameras viewing

an object onto which a random texture has been projected 1351 was considered;

however, the processing speed for such a system was too long.

A light stripe ranging system uses a plane of light projected across a scene as

the sole illumination source. Only a few points in the visual field of the camera

are illuminated and consequently only a potentially small amount of data need be

processed to obtain three dimensional data. Since there is an isomorphic. mapping

between points in the image and points on three-space, geometric computations

are relatively fast. The technique used to locate objects from sparse light stripe

data is presented in Chapter 4 Some other techniques use sparse range data for

locating objects 76,77,78,79', but these generally need more information than the

proposed light stripe system, are still too slow for most industrial tasks, and are

not designed to locate objects with the required precision.

The literature review, Section 31, produced nsufficient accuracy data to de-

termine whether or not a light-stripe-based vision system could e used as a high

precision part position sensor. A simulation study was undertaken to determine

whether a carefully calibrated system could locate objects to a high enough accu-

racy to be used in an automated assembly environment.

3.5.1 Predzcted Sensor Performance

Prior to deciding to built a prototype based on the light stripe technique a number

of computer simulations were performed to predict the accuracy available with

off-the-shelf hardware. The simulations modeled a light plane source intersecting

a right corner feature. The line segments generated from the intersection were
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t.-ransfornied, sani-pled i a two-diniensional grid -Lhen used t locate

t1le tCature- sing the I-Tchnique described in Sction 47.2. The discrete grid odels
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pl.arie ws assu-tued to be two-diniensional and ge-nerated zo width i-nes.
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orientation is Cs-hown in Fig-tire 3.15a. The cartesian displacement bietween

tlw actnal. Position ad measurements re shown 'in r igure 3151). The, standard

dc,viiatious in o-rientation are below about .15 degrees 3 milliradi.,tns) and a stan-

daird (le-viations in displacement less han 004 inches (.1 nun) rs prefin-linary

study showed that 1e accuracies expected froyn te sensor were o n- tb e, saine order

'lie pecificatiom; in Section 34.
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Chapter 4

In this chapter a high-accuracy light-str'pe vision stem is presented and some

mechanisms which generate errors in measuring part positions are analyzed. Errors

may be generated from the discrete nature of sensors inaccuracies in part, models,

errors in the calibration procedures, inaccurate sensor system model, and system

parameter variations due to changing environmental conditions. Quantization er-

rors are analyzed and some techniques for 'improving measurement accuracy are

developed as a result of the analysis.

4.1 Lterature Review of Feature Extraction Techniques

Accuracy n Feature Detectz'on

Little attention has been given in the literature to extracting accurate information
from visual images. Most vision research deals with qualitative scene analysis
(trying to get machine vision systems to do what human vision systems are capable
of doing) rather than making accurate measurements. Typical methods used to
identify features in an image are Hough transforms and edge detection techniques.
Hough transforms were originally developed as a computationally efficient method
for detecting lines in an image 17,54,94]. Their use has been extended to non-
linear features as well 18,111,1271. The accuracy of the Hough transform depends
upon the resolution of the tessellation of the parameter space; thus, relatively
large storage requirements are needed for high precision measurements. For images
containing only a few well defined lines, such as a light stripe illuminated scene,
Hough transforms are usually not necessary for identifying lines. A large volume

105
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of literature which sometimes concerns itself with accuracy issues 'is the edge and
feature detection literature 40,41,49,92,118,121]. MacVicar and Binford 118] claim

subpixel edge detection accuracy for a modified Binford-Horn detector although no

data is presented. Canny 40,41] derive 's an edge detector operator which is optimal

with respect to three performance criterion:

Good detection. There sould be a low probability of both failing to ii-iark real edge points nd

a low probability of falsely arking non-edge points,

Good localization. Points ii-tarked as edge points should be close to te actual edge.

Only oe response per edge.

Canny defines a localization metric for a feature detector which is used in Sec-

tion 44 for investigating the accuracy in locating the center of a light stripe.

The accuracy of dimensional measurements from visual 'images has been studied

by groups at General Electric 128,155,156] and SRI International 88]. Mundy

and Porter at G.E. determine the accuracy in measuring surfaces with reflectance

variations. The technique has been applied to turbine blade inspection. Hill at

SRI determines the accuracy of locating binary "blobs" in images based on the

number of pxels illuminated by the blob. The accuracy of area calculations are

also considered. A probabilistic approach was taken and results were verified with

Monte Carlo simulations and laboratory experiments. A similar approach is used

to determine the standard deviation in fitted line parameters in Section 43.

Using Multiple Measurements

The error in estimating variables from noisy measurements may be decreased by

using multiple independent or partially dependent measurements. Additional mea-

surements may come from the same sensor or a completely different source.

Bajcsy and Allen 89,15] integrate vision and touch to make measurements of

points on the surfaces of objects. First, the outline of the object is determined by

• vision system. This information is then used to drive a manipulator fitted with

• touch sensor. A model of the object is constructed from the tactile data. Visual

information is never directly integrated with tactile information so conflicting data

from disparate sources is not dealt with.

Accumulation and propagation of errors 'in mechanical assemblies was studied

by Taylor 189] and Brooks 341. Taylor propagates geometric errors through a

physical model of an assembly. Brooks addresses a similar problem, but uses a
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symbolic rather than numerical representation. By assuming maximum bounds on

the errors, Brooks is able to propagate certain geometric constraints to determine

final errors from a number of sources. Both of these geometric error propagation

systems assume a maximum error at each source (non-probabilistic) and will gve

gross over estimates of errors if a significant number of sources- are involved.

Optimal estimation theory 641 may be applied to the best fit orientation and

displacement estimation problem. The maximum likelihood estimator gives an

estimate from overconstraining data weighted by te covariance between the com-

ponents of the measurement. No prior knowledge about the position of the object

being measured is assumed. A Kalman filter technique 64] may be used to op-

timally update a current estimate from subsequent independent measurements.

Durrant-Whyte 55] combines information from independent observations to get a

minimum-risk best estimate of the state of the environment. A Bayesian approach

is used to combine errors and a non-recursive estimate is presented. Differential

transformations as developed in 1471, are used to represent small errors in ori-

entation and translation. The possibility of spurious measurements is taken into

account and when it is likely that such a measurement occurred, it is rejected.

A significant number of measurements must be taken in order to do this reliably.

New estimates are propagated throug a world model to maintain consistency of

the model.

Shekhar Khatib and Shimojo 1711 use a. non-probabilistic method to com-

bine a number of rotation and translation measurements into a single estimate.

They use a quaternion representation for rotations and assume a diagonal weight-

ing matrix for the set of measurements; thus, dependence between components of a

measurement are ignored. Their results are similar to the maximum likelihood re-

sults from optimal estimation theory ith diagonal covariance matrices. Smith and

Cheeseman 179,1801 develop two ways of combining wat they call "fuzzy transfor-

mations." Compounding two fuzzy transformations increases the uncertainty and

merging them decreases the uncertainty. Compounding uses the Jacobian of the

resultant transformation (derivatives are ith respect to te components of the un-

compounded transformations) and the covariance matrices of the uncompounded

transformations. Merging uses an extended Kalman filtering result. An example

covariance matrix calculation for measurements of the planar position of a mobile

robot is given.
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Light Plane

CLI I L U CL

Figure 41: Three line segments generated by the intersection of a plane of light

and the surfaces of a polyhedral feature may be sensed b a deo camera and used

to locate a part.

4.2 Light Stripe Part Position Sensor Fundamentals

The part position sensor developed in this thesis uses the light stripe technique

to locate parts in six degrees of freedom with respect to a global reference rame.

A plane of light is projected across one or more features (such as a corner of a

polyhedron or an end of a truncated circular cylinder) of a part (see Figure 4.1).

Data from an image taken by a video camera positioned at some disparate angle

with respect to the light plane is processed to locate the feature.

The ranging system consists of a line illumination source and a two-dimensional

light sensing element whose optical axis is positioned at some finite disparity angle

from the plane of the source, Figure 42. Triangulation is used to obtain three-

dimensional data from the two-dimensional sensing element data. A common light

source for light stripe systems is a laser beam wich has been passed through a

cylindrical lens. The lens diverges the beam in a direction perpendicular to the

lens' cylindrical axis. The light sensitive element is often a Vidicon, CCD charged

coupled device) or CID camera Reference 17] gives a description of each of these

cameras).

The light plane is the sole functional illumination source in the scene as viewed

by the camera. Light from the line source reflects off surfaces in the scene and
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Figure 42: Light stripe sensor configuration.
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appears on the two-dimensional image plane of the camera. An isomorphism exists

between all points in the image and points lying in te light plane in three-s ace. In

order to determine the transformation from the two-dimensional image coordinates

to accurate three-dimensional space coordinates, the system must be precisely cal-

ibrated (see Section 63). During the calibration, the values of three parameters

must be determined which locate the lial-it plane with respect to a coordinate frame

defined by the camera 'image plane. A disparity angle, OLP a tilt angle, OLP, and

an offset, YLP, are the parameters used for defining the light plane location (these

are not unique), Figure 42.

Light rays from illuminated points on the part's surfaces undergo a perspective

projection into the camera; thus, lluminated lines in space remain lines in the

image plane, but most other shapes are distorted. Most of our discussion will be

limited to objects whose surfaces are planar (actually only those surfaces being

sensed need be planar); thus, the intersection curves between the light plane and

part surfaces are fines.

4.2.1 evzew of Elementary Opt'c8

Only optical relationships needed for the subsequent analysis are included in this

section. The reader is referred to an introductory optics text such as 17,93,103,1781

for more detailed explanations.

We model the camera lens using a tick lens model 17,93,103,178]. The image

plane is positioned behind the rear principle plane and the object before the front

principle plane. Light rays which go troug te front principle plane at the optical

axis, pass through the rear principle plane at the optical axis, then onto the image

plane. For a lens with no distortion, te angle of a light ray with respect to the

-optical axis is of the same magnitude as the angle of the ray as it leaves the rear

principle plane. Spherical or other abberations 178' may change the direction of

the ray as it leaves the rear nodal point. From Figure 43 we may determine the

relationship between the object size, zo, and the image sizes, z. For a lens with

no distortions, al a2

ZO ZI
tan ce, - tan 2

_X fo
so

ZI Z( fo (4.1)
X
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Figtire 43: Paraineters for ino(lefing tck lens.

The Its sgns re due to t oentation of the x axis.

4.2.2 Determining World Coordinates from Sensor Data

Here we derive the cordinates of a point in space as a fnction of the icage plane

coordinates ad the light plane and caniera calibration parameters. Some. authors

have used a atrix description for the geometry of a light stripe system 3136].

Separate equations are maintained here. An equation similar to Equation 41)

desCTibes the sze of the 'Image in the y direction

YO A (4.2)
Yi

x

We obtain the x coordinate from the geometric rlationships, shown i Figure 42

tan OLP
= O + tanOLP Y - Z Sill OLP

where xO is the osition along the optical xis where the liorlit PIane crosses,p C>

x = YLP tan OLP 

In general x < . Combining Equations 4.1) 42), and 4-3), we obtain

(4.3)

(4.4)=

z /
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YI XO
Y fo (4-5)

1 + " + tanOLP --L
COS OLP f0 fo

Zi X0

z fl) (4.6)
1 + 12P� z tan OLP -YL

COS OLP fo fo

These equations describe the position of a point in space , 5 Z) as a function of

the coordinates of the corresponding point in the image plane yj, z).

Calculation of Three-Dimenstonal Vectors from the Lght Stripe Im-

age

The measurements obtained from the image of the intersection of a light plane and

a polyhedral feature' is a set of line parameters, [MI, bji', which are defined by the

equation of the line (refer to Figure 44)

yj - miz + bij. (4.7)

Using Equations 44), 45), 46), and 47) we may obtain expressions for te

vectors along the light stripes in real space, 1j, and vectors from- the origin to the

intersection of the light stripes and the z = plane, bi.

mi tan OLP

1i Mi (4.8)

and

xL tanOLP N

1+ tan p
7

XLP tan OLPbi Al (4.9)
1 + �! tn OL P

A

0

where
bl, 2, tzan L p

fl) COS OL"
M- (4.10)

I b" tan OLP
fo
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Figure 44: Parameters for a line in the iage plane and vectors specifying the

light stripe.
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4.3 Locating Straight Line Features in Quantized Images

4.3.1 Introduc6on

The precision of a least squares technique in locating the orientation and position

of thin line segments in the presence of quantization noise is investigated. A similar

technique to Hill's 88] is used to determine te accuracy in finding these param-

eters. Accuracy in locating two dimensional images, edges, hin lines, and curve

segments are important for precise manipulation with endpoint sensing 1901, robot

calibration 1531, integration of vision with precise mechanical and electronic as-

sembly tasks (see examples in Chapter and 22,1721) surface inspection 130,1561

and vision feedback servo control 191.

We are interested in quantifying the apparent positional shift in measurements

of the location of objects due to te discrete nature of data from many optical sens-

ing systems. Straight line segments are of primary interest, ecause they are surface

bounding curves for polyhedra and are frequently generated from data from light

stripe ranging sensors. Aside from sparse range data techniques 69 76 77 78 79,

systems in the literature capable of determining part pose from light stripe data

construct a depth map of the entire object 260,91,1.74]. If geometric parameters

of the light plane are used in conjunction with an accurate part model, only a

single scan of a non-occluded polyhedron is necessary to determining is location

and orientation. This is possible if the a priori orientation of te object is known

within a certain range. If the light plane intersects the polyhedron across three in-

dependent surfaces, te object may be accurately located in six degrees of freedom

(see Section 47). Te accuracy with which a polyhedron may be located in three

dimensions can be derived from the results for the two dearee of freedom line.

4.3.2 Errors n Kttz'ng Linear Parameter,5 to Discretlized Data

Data generated by straight-line features appear as discrete points of various inten-

sities located within some width of a central axis in te image plane of a discrete

array sensor. These points can be processed to find the best fit line through them

using a least squares technique 220, . This section explores the accuracy with

which straight line features may be found. Te variables used in the subsequent

analysis are listed in Table 41.
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,C i Line target
Image of in the camera's iage plane

N Number of illuminated pixels.
(fi � -) Coordinates of the enter of te it" illuminated pixel

(XII-) Y?') Coordinates (probabilistic) of points lying on
6 Yi Probabilistic distance i te y direction froni te

center of te th, -11uniinated pixel to 
0 Orientation angle of C easured counterclockwise

fro te x axis
W y axis itercept of 

6 W Least squares estimators for ad yo

0 , yo
AO A '

I yo

LI)iX(,'l
or 2
y

X,.Irl,

Estimators for ad -oni discrete data (f

Difference between etimated line par,-mieters (O , Y(

and actual parameters (0 Y)
Length of ech square pixel

Variance of 6y,- for all Z' . . . N

Distance from te center of to te y axis
measured parallel to te x axis

Variable Description

I

Table 41: Nomenclature for line parameter error analysis.
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Figure 45: Parameters for the image of a line (infinitely thin).

-1 eoretical Errors from Linear Least Squares Approximations

For the following analysis it is assumed that an 'image is generated from a single

line (infinitely thin), , which lies in a plane parallel to the image plane. An

approximation to an infinitely thin line might be a bounding edge of a surface or

the intersection curve of a thin plane of light and a planar surface. The line is

located at orientation from the horizontal (x) axis and passes over the y axis at

intercept y. For simplification, the projection of into the image plane produces

an image, fimage identical to (that is, the angle and intercept remain and y)

respectively - see Figure 4.5). A typical output from a CCD charge coupled device)

-Video camera (the only type be-ing considered here) is an analog signal constructed

from a number of intensity readings from discrete pixels in a rectangular grid. For

this analysis, we assume that the image has been thresholded and transformed into

a binary array of square elements with length Lx.1 -

For geometric reasons, when I 7r], one pixel per row is illuminated and
4 4

when 4 4 only one pixel for every column is illuminated. We define an

illuminated pixel as the one in a particular row (or column) whose border circum-

scribes the longest segment Of fimage- Although this definition loses some positional

information from -the array, it simplifies the subsequent analysis. Later in this

- WAVRRM- -
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section corrections are suggested which preserve more of the available positional

information.

The sensor data used for curve fitting is a list of pxel center coordinates for

the illuminated elements (�fi Y) i - I... N. A "best fit" orientation and intercept

(O and yo respectively) may be found in the least squares sense by minimizing the

sum of the squares of the distances from te best fit line to data points MI

with distance measured one of three ways:

A: Minimize distances parallel to the y axis.

B.- Minimize dstances parallel to the x axis.

C: Minimize distances perpendicular to the line.

Each of these gives a slightly different result for and and the best choice is not

immediately apparent.

Selection of the most appropriate metric to minimize depends upon the gross

orientation of f. As a result of our definition of an illuminated pixel, (one pixel

for every y coordinate is illuminated when I 3F], and one pixel for every x
4 4

coordinate is illuminated when 7 , r]), we can choose an x coordinate in the
4 4

first case which is deterministic will always correspond to a point on the line

within that pixel - see Figure 4.6a), and a y coordinate in the second case which

is deterministic. With these choices of coordinates we should minimize errors in

probabilistic coordinates y- in the first case (metric A) and xi in the second case

(metric )

In the subsequent analysis is assumed to lie in the interval The least
4 4

squares estimates for orientation and intercept are found by minimizing errors

parallel to the y axis 2201

N X. EN
i:N yiX.

0 - arctan (4.11)
EN X? (E

i-_1 i N

i:N 'ENi_1 Y - tan Xi
YO (4.12)

N

where (xi, y) are the coordinates of points lying on If (xi, yi) were know pre-

cisely, the least squares estimates would be identical to the actual line parameters;

however, in the interval C- I- 'I, only precise xi values are available.
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Figllre, 46: Probabilistic ocation of Points O-n luersection of ohmin f

-P i ("Is with a ne i-11 the range b. Pro1mbilit dr1S.,1tY,.ri.1nctio.11 for te

location of te y coordinate Of Limaye measured froni the ce-ater of fl-ie illi-niiinated

P.

We I consideri�ng the case where Xi IS deterni'Mistic and y 'is probabiliEAk and

we dsire a net-ric for te, confidence of the estimated 1hae parall-leters 0 and Y()
1C411c-ti1at(-.,1d from te easurements (Fi, Wi,, shall drive the varia-ace of andi Yo

2 2 Al (fi, ffi)'s ad Che vari ,I'l `C(0,0and ,( rspectively) as a fnction of f Yj (01%
E

ach. random variable y may be ritten as

Y = + 6 (4.13)

where Y-i 'IS dK-,Aerministic tend byj is a random variable wth Jj(,,ro mean. At first it

-Inight aPear that the 6yi's are ighly- correlated -since tre all lie on the same ine;

however soine ati-thors 88,1441 have sugg,,1,sted that indepe-lidence btwee 4 is

a good assumption for certai cses. Ii the case of the straight ine, the degree

of correlation depends upon the orientation of te line. At solne orientations, the

values of�yj may change in an unrelated fasldoI n (slightly correlated) while at other

orientations, the values of 6yj may exhibit a periodic pattern ighly correlated).

We stake the iitial assumption that te yj's re i-ndependerit and a sup! sition

that t'hi,,-, inight ot be valid for fines at certain orientations.

If Cille maxi,11111111 bsolute value of te 6yi's re sall, El quations 4.11 ad 4.12)

cf,.-m be finearized about the points LFi, Yi) by taki-ng 'the rayior series expansion,
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and keeping the first two terms

N t9o

O O + E byj (4.14)
i_ di

N ag-

Yo Yo + ayi 6 YT (4.1 )

where is the partial derivative with respect to y evaluated at ±j, y) and
11 y

N N I Y?.EN - El ' = -
0 arctan 9A N (4.16)

N
EN 2 (Ei=l t)

N

EN N
i=I tan Ei- f (4.17)

Yo N

For all 6yj independent of one another 1'531�

N 2
2 ao 2?1,11 (4.18)

'9 yi

N 1--l- 2
2 YO 2

01 �11 U (4.19)
yo yi �Yi'

Substituting Equations 411) and 412) into Equations 418) and 419) respec-

tively then making the assumption that all 6yj have the same variance o .2 and

setting x- to ±j, we obtain

Or 2
2 y (4.20)

19� (I ffi2 2 (E NEN z,2
N

N _2Xi
2 N 2

U,-, e"-, 1 + (EN Cr (4.21)
yo - 2 yN EN Z,2 i= I Xi

N

where
N N

EN, i__ ti E' I i
N

N
EN 2 2

N

Equations 420) and 421) give the variances of the fitted line parameters as

a function of the data points (xi, g) and the variance of the location of the y
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coordinate of the line in any column containing an illuminated pixel (similar results
are obtained in 20]).

If columns have an illuminated pixel for all i 1,. N then the expressions

for the variance of and become

1 2or'2 Y

I + ffi2)2N3- N (4.22)

1 2X2
0- + -- -C a2 (4.23)

Yo N N - Y

NZ. = Xi
where X,. is the center of the line segment in the x direction.N

These results describe the accuracy with which a line may be found from a least

squares technique as a function of the approximate slope (ffi), the orthographic

projection of the length of the line (in pixels) onto the x axis (N), the center of the

line in the x direction CM), and the variance of the location of the y coordinate

for any one column of the 'image U2). u� does not depend on the position of theY 0
2line segment in the pixel grid, while a, depends on the distance of the center ofyo

the line segment from the y axis. For a line (zero width), the probability density

function for mutually independent byi is a uniform distribution one pixel 'in width
with a 2 a 2 L (see Figure 4.6b). The standard deviations a� and cr- are

Y 12 yo

plotted in Figure 47 as a function of the number of points N for a line positioned
near and with xm N

2

The above analysis is valid for a grey scale images of finite width lines as well

as binary images of thin lines. If is permitted to take on subpixel values, and

grey scale levels are used 'in an intensity weighted "center-of-mass" calculation,

9i becomes a better estimate of the actual value y (a 2 would be smaller). TheY
reduction in 2 is a function of the width of the line and the resolution (in intensityY
measurements) of the camera.

We now consider a bound for the line parameters assuming that all y are

perfectly correlated. Because we have very little knowledge as to where a line is

located on the pixel array, we assume that the a priori' joint probability density

function, p0,Y (Oa) Ya), for orientation and position of the line center y is uniform

Figure 4.8a. We take the a priori' bounds on the orientation and location to be

such that all lines must be within an envelope one pixel wide by N pixels long

(O and y E The marginal density functions po(Oa) and
N 2 2
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Py (ya) may be calculated from poy 0, ya) (see Figure 4.8b-c)

Po (a) Pb'Y (Oa Ya) dya i PY (Ya) P0'Y (Oa Ya) dOa

The variances of the resulting triangular distributions are

2
Cro (4.24)

6N2

L2
2 pixel (4.25)

Y 24

Errors for Linear Least Squares Approximations from Simulation and

Experimental Tegts

A study investigating the accuracy of the linear least squares fitting technique

as a, function of the orientation and location of a ne target was performed by

way of computer simulation and an experimental test using a CCD video camera.

The target used for the tests was a straight-line step discontinuity in intensity,

Figure 49. Line defines the location and orientation of the edge.

Errors a a Function of Image rientation from Smulation Tests

The least squares estimator from the discrete data, 0, 'is compared to the actual

orientation of the line 0. Measurements of the errors in the estimator AO 0 - 0

are made at various orientations of the line. For a selected orientation, AO is

locally studied by generating lines at random orientations within a small range.

Sample statistics from 30 trials are calculated and used as a basis for comparisons.

Figure 410 shows the results of the study with statistics generated in each of

eighteen equally spaced orientations from zero to forty-five degrees. The sample

standard deviations for each set of thirty trials (each trial is at a different random

orientation within a 25 degree range) with a line 128 pixels long are plotted for
I -imageeach interval along with the theoretical result Equation 422)] A mirror

plot is generated above forty-five degrees for fitted parameters calculated using
1 3metric B. Singularities in AO occur at slopes near 0, and 1. In these

41 31 2' 4

areas, measurements of the location and orientation of f jag, are not as accurate

because there is more space for to translate and rotate before pixels are caused to
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mental tests.
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Figure 410: Accuracy of the least squares fitting routine for discretized lines as a

function of their orientation. Theoretical, computer simulation and experimental

results are shown.
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(see Figure 411). Statistics were collected over a fir,.'

range to ide,,iitify the veas rost prone to errors. The theoretical result is an
accurate bound except at flie siTiaular'ties ear pixel ra" , lop(-,S) of 0, 1 and

I .10 I ('10S �s

-1. The -heoretical rsult does t predict t1I-SC SillrUllarities becantse te mitual

irtc-lependence ssui-aption i's ot vahd there. The epe-ri-niental swti.iple standard

(1ie-lviations ati all orientations are,,, however, bounded -by th-c-, theoretical result for

thel- perfectly correlated c;rtse [Equa�ion 424)].

.Evrrors as a Ft unction of Image Orientation from El xperimental Tests

rhe theoretical and smulation re ul -18 t were ver'fied b tests perforn-ted wit a CCD

c4inera (114DIchi inodel K P120). The cai-riera was externally synced (horizontal

find vertical) to a frame grabber which was interhacied to a Syinbolics 3600 Lisp

A/Ifachine. A machinist's rotary table and -the bed of a ertical --611ing achine

were used, as accurate ositioning stages for he dg tget (C(,,, Figure 4.12)-

,rests were pefforined at various target orientations by analyzing binary arays

lypnierated foin thresholded bit frame grabber arrays. At each orie-n-tation thirty

td-ials were performed. The target was rnslated abo-Lit -L of a pixel for each12
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trial. Results are shown in Figure 41.0. The experimental results are close to the

computer simulation results except for an apparent absence of singularities. This

is due to the difference in test procedures. In the computer simulations, the target

was randomly oriented within a 2)' degree range ad had a larger probability of

being near a singularity orientation than the target in the experimental test.

Error Sources

Careful camera calibration was important for accurate line parameter fitting. In

addition to finding the affine transformation between the camera and target co-

ordinate frames, it was necessary to accurately determine a eight to width ratio

of the frame-grabbed image. The ratio may differ from I if te pixel rate clocks

in the camera (not externally synced) and the frame grabber differ. Most video

cameras do not, have an external pixel clock syncing facility and are subject to

error. These errors were found to be temperature sensitive. Table 42 gives sources

of errors in measuring line parameters found during the test bed tests. The size of

the check mark corresponds to the estimated contribution of each error source. All

errors were small, but the most significant were due to pixel aspect ratio inaccu-

racies, changes in camera aperature light source position, and significant variation

in camera temperature which as brought about by moving the light source near

the camera. Lens abberations also affected the measurements, but these were not

investigated.

Errors as a Function of Image Length from Simulation Te8ts

Sample statistics from a number of trials performed for lines of various lengths

randomly oriented within a range to 1.0 degrees from the horizontal are plotted

along with the theoretical bound for the standard deviation in orientation [Equa,

tion 422)1 in Figure 413. The sample standard deviation of te angular error

as a function of the number of illuminated points in the image is bounded by the

theoretical result. At this orientation, the sample standard deviation is an average

of 62 percent of the theoretical result.
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Error Source Contribution

Pixel Aspect. Ratio
Pixel Loca.t.1011
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Table Positioning Errors
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Variation in Camera Terriperature
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Reflectance of Target
Camera Blossorning
Uniforrn Light Source

Figure 4110: Dependenceof the least squares algorithm on the ength of an image

of a line 'se' ment at orientations. is between 5 and 109 - degrees.
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�4.3: Locating Straight Line Features in Quantized Images

Table 42: Experimental error sources for measuring straight-line features.
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4.3.3 Conclustons

For a discretized image of a thin line, least squares estimators which minimize

distances parallel to the pixel axis most nearly perpendicular to the line image

should be employed. This minimizes errors in the drection of greatest uncertainty

since the line always passes through the center of the pixels along the axis most

nearly parallel to the line.

Standard deviations in least squares fitted line parameter errors are bounded by

curves proportional to f n- 2 in orientation and + in translation-N N'-N

where ffi is the aproximate slope of the line, N is te number of data points along

the line and x, is the x coordinate of the center of the line. Certain singularity

configurations of the line produce relatively large errors in fitted parameters which

are not modeled by these expressions. These singularities occur at orientations and

locations where the inter-column (row) correlation of the distances being minimized

in the least squares algorithm are fairly high. For most orientations, however, these

distances may be considered mutually 'Independent.

4.4 Single Row Subpixel Localization of Light Stripe
Features

The accuracy in estimating line parameters may be improved by using the ad(ii-

tional. information contained in a finite width line generated by a stripe source. Bet-

ter accuracy may be attained by decreasing the errors in locating points used in the

least squares line fitting. Three techniques for locating points along a light stripe

are explored: thresholding, center of area, and match-filtering /peak-detection.

4.4.1 Inten8ity Profile of the b'ght Strz'pc

In a plane perpendicular to t he projector axis, the intensity of the light sheet is a

function of the distance from the center of the stripe, Figure 4.14a. The shape of

the intensity is the square of the Fourier transform of the source. This is due to

diffraction at the source. We assume that the light source is finite in one direction

and infinite in the other two orthogonal directions. The Fourier transform of the

source is a one-dimensional Fourier transform across the finite width, since the

Fourier transform along the infinite direction of the source is a pulse at the origin.
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Figtir 4 4 Intensity profile of it light stripe.

The one-dimensioral Four-icr t-r-ansforn-1 of a ttiiforn-i source 'is a sinc(x) function

[1781,1 Fig-tire 4.14b; hus, the intensity profile is (Fig-Lire 4.14c)

I M -. Amax Sinc'(ax = A,,, sin' ax) (4.26)
ax (ax) 2

When a discrete sensing system like a CCD alliera observes the si P. I(X)IX2

profile, each sensor lement integrates te itensity over a fite area. If the sensor

elements re rectangtilar and the light stripe is nearly aligned with one of te edges

of the rectairigles, ten the 'image produced o the sensor is a smpled sliloothed
,&, 2 X)sinc"(x)- that is, a sinc convolved wth a square pulse there multiplied by a

pulse train, Fig-Lire 415. Figure 416 shows -the intensity profile of a light 'ripe

from one row of an image froni a CCD camera.

1,;inc(x) .x

§-qL/j: Single Row Subpixel Localization of Light Stripe Features 120 '
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a CCD camera.Figure 416: Intensity profile of a light stripe as measured by

Gaussian Approximation of the Intensity Profile

For simplicity in some of the subsequent analyses, we assume that a smoothed

sinc'(ax) function may be accurately modeled as a Gaussian.

G(x) AoN(x,.tcr)

where N(x,±, a) is the unit normal function

I (x -. ( 2

N (x, ±, or) -- e 2eT2

-/27 (7
(4.27)

and AO is an arbitrary constant. By equating the areas under the curves, I(x) and

G(x), and equating the values at x 0, the width of the approximating Gaussian

is
f 7- I

Crapprox- / -L
2 a

and the constant AO is

AO Aax
a

A better approximation (empirically determined) of only the center portion of the
2 X)sznc function is a Gaussian of width 0.9,v[�2 . This approximation is shown in

a

Figure 417.
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Smoothed sc'_
issian

4.4.2 Minimum Sampling Frequency

We determine the Nyquist' frequency for the intensity profile by considering its

Fourier transform, Figure 415. The Fourier transform of a sinc(ax) function is a

rectangular pulse of width The Fourier transform of the sinc'(ax) function is the

convolution of two rectangular pulses or a triangular pulse of width 2. Multiplying

this by the Fourier transform of the thin sampling rectangular pulse (a very wide

sinc(x) function) then convolving the result with a pulse train (the transform of a

pulse train is another pulse train), we get the desired Fourier transform; a series of

nearly triangular pulses of width 2. For no distortion, the corners of the triangles

must not touch. The sample spacing of the original waveform must be less than
2a

in order to retain all information after sampling.

A similar analysis may be performed for the Gaussian approximation of the

intensity profile. To retain all information in the Gaussian an infinite sampling

frequency must be used (the Fourier transform of a Gaussian contains all fre-

quencies); however, since the Fourier transform of a Gaussian (also a Gaussian)

approaches amplitude fairly rapidly, we may select a finite sampling frequency

which preserves most of the information of the Gaussian. The Fourier transform

of a Gaussian of width a is a Gaussian of width 1 -. Figure 418 shows the Fourier
2 ra

transform of a sampled Gaussian. Figure 419 is a plot of the amount of energy

'The Nyquist frequency of a waveform is te niiiiinium frequency zat which te waveforni niay
be sampled such tat no information is lost due to te sampling process.
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Figure 419: Fraction of energy lost in the frequency domain due to undersampling

a Gaussian.

lost in the frequency domain due to te oerlapping of the Gaussian "tails." For

an error of 0.1 percent or less, the Gaussian must be sampled at an intervals closer

than one standard deviation.

4.4.3 Adju,5ting the Width of the Light Stripe

Accurate location of light stripe features are studied to determine what stripe

width will produce the smallest errors. In adjusting the width of the light stripe

(smoothed s1nc'(x) function), we assume that the power of the light source is also

adjustable and in order to obtain the best signal to noise ratio we always wish to

raise the power such that the maximum intensity in the image, A, is a constant

and is near the upper intensity limit for te sensor. Te equation for a Gaussian

w'th peak value A,,,x is

G (x) A x \,/2 7r a N (x, �t, cr) (4.28)

where N(x,±, c) is defined in Equation 427).

The following sections discuss the accuracy with which some feature of the

intensity profile (such as the peak or the center of area) may be located in the

presence of quantization and intensity noise, These results are compared to the

results for the case of the line (infinitely thin).
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Figure 420: DeterniiTling the location of huage of --t light stripe by thres-holding.

4.4.4 Thresholding Techn'�que
One of te simplest ad mopt fequently -sed image processing Lecti-

,� niquesis hresh-

oldi-tig an i.-Inage creating a binary iniage). Given an hiterisil-T pro-file whic etends

over ca sg-nifiCa-.rit umber of sensing lenients, but w1iose precise width is vailmowirl,

and a reasonable flaresfiold'1lievel say bout htlf of h vlue of the maxiiim-ni inten-
Sity 4-11e base -oise xitensity) then the im-age w.'1 hv a ce-ntral "o-n"

I I i-riary .1

region flanked by two "off" regions Fgure 420. The only iforniation available

in the binary iage -to locate te light stripe are te two transitions between the

off-on-off region3 Sce we have assumed that the precise wdth of the light. ripe

is Unknown te location ef 'lb-he two edges of -the binary iniage re tudepelident.

The, location of each of these edges in a prticular pxel row inay be described by

a random variable, x.� If we ass-time o kowledge about the shape or location

of te original profile, h the pobability density function for each of tIlLese ran-

doni 'variables is a uniform distribution with a width of oe pixel. The standi"ard

deviation of a oe pixel wide uniforni distributio is

- 1.1pixel
ax = 12 (4.29)
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where Lpixel is the width of the pixel. If we use the average position of the two

edges
XI 2

XCIM -
2

as a metric to locate the light stripe, the variance of this metric (since they are

independent) is

+ U2 L 2
XI X2 Pixel (4.30)

4 V2 12

which is times the standard deviatio ' locating the thin line.
,v/2

4.4.5 Center of Area Technique

In this technique we take advantage of the grey level information in the image. The

metric for locating the light stripe is the center of area of the intensity profile

Ej xjyj (4.31)
xCM Ei Yi

where xi is the location of the 1'h pixel in a particular row and y is the intensity of
'ththe pixel. We will investigate deviations of this metric from the actual center of

a profile due to two sources. The first error source is associated with the noise in the

intensity information, and the second source deals with non-symmetric sampling

with respect to the peak of the profile.

Errors From Noi8e n Intensity Levels

If we assume that errors in y are small (that is, intensity signal-to-noise is relatively
large), we may linearize Equation 4.31).

(9XCM 6yi
xCM tc + ayi (4.32)

where 6y. is a random variable with zero mean which is the difference between the
actual intensity, y, and the measured intensity, y-i and

E- x-Yj-tcm - I
& 91 '
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For 6yj independent, the variance of the metric is

2 (9 X cm,2 2
Cr Cri, (4.33)

dy.

(X, tcm) 2 (4.34)

y1i)

We now assume that the samples are precisely centered about the origin 0)

and they are bounded by ±Aa; that is,

x- -Au -Au + ... 0 ... Au - I Ar

Using this assumption and te fact that the sum of sequential samples along unit

spacings of a zero-mean unit Gaussian may be approximated by 531

Yf X + 1 T Iy� _-_1 erf 2_ _ el-f 2). (4.35)
or

where xi is the x coordinate which corresponds to yi, we obtain

2 (A Cr 3+ 3(A Cr 2 (Au) a 2
a2 - �Yi . (4.36)

x".111 2 xf + 2 42
67cr erf ( ' - e r f maxI Cr

Figure 421 shows Equation 436) plotted for cr from .5 to samples and for A
1_�

from .5 to 4 and noise ratio (A2 set to .05.

From Figure 421 we see that we want the Gaussian as thin as possible (small

a) and we want to minimize the number of samples (small A). Note that errors

from asymmetric location of the samples relative to the actual peak are considered

in the following section.

Errors from Sample Pogitioning Relative to the Actual Peak

When the center of area metric is used on an intensity profile, the position of the

samples relative to the profile may generate errors in the center estimate. In the

previous section it was assumed tat the samples were centered about the enter of

mass; whereas, when the location of the profile is unknown a priori' (this is always

the case since the point of making the easurement is o locate the profile), the

probability density for te location of the samples is uniformly distributed across
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Figure 423: Errors in center of area estimate as a function of relative sampling

position. Curve A is the numerically calculated error for 10 samples nder the

main part of the profile and curve is a sinusoidal approximation to the error.

one pixel width. Figure 422 shows the parameters used for the analysis. Assuming
2• profile of shape sznc x, the error in center of area estimate lquation 431) as

• function of sampling offset Esamples is shown in Figure 423 for the case of 0

samples. Center estimation errors (curve A) from offsets in sample positions from

to from the peak are shown. Curve is a sinusoidal approximation2 2

to the errors

6 sin 47rbx
Xe7w Cmax Lpixel

where 6x is the offset from the peak of the profile to one of the sample ositions

and 6max is the maximum amplitude of the error from the center of area estimate.

For computational simplicity, this approximation is used to obtain an expression

for the standard deviation of errors. By definition

476xo
2

fmax Sin'(---) px (6xo) d6xO (4.37)
Lpixel

where p6x(6xo) is the probability density function for the offset 6x. This PDF is
uniform over the range 6x E + 12 2 and has a height of Using the
relationship

2 x sin (2ax)
sin (ax) dx

2 4a
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Figure 424: Standard deviation of errors due to sample offsets of a sine 2 X) shaped

intensity profile as a function of the number of samples.

Equation 437) becomes

(max
cx,. .707cmax

v2

Figure 424 shows the standard deviations in errors of center of area estimates for

intensity profiles with to 21 samples under the main "hump" (that is x c [T, ]

for the sinc'(x) function).

The relatively small magnitude of the errors from non-symmetric sampling

about the peak is due to the truncation of the samples; that is, the samples com-

pletely span the main hump but do not go past it. If samples are allowed to extend

from the main hump, significant center of area errors may result.

Total Errons From the Center of Area Estimation.

Errors from the three sources (noise in 'Intensity levels, finite sampling width, and

sample offsets) are slightly statistically correlated. The coupling is due to the small

change in the denominator of Equation 436) as the samples are shifted relative

to the peak. For simplicity we assume the errors are independent. Thus the total

errors from the center of area technique may be found by reading the appropriate



54-4: Single Row Subplxel Localization of Light Stripe Features 141

standard deviation values from Figures 421 and 424 and taking the suare root

of the sum of their squares.

The error due to intensity noise increases as the number of samples increases

while the error due to sampling offset decreases as the number of samples icreases;

thus, there is a tradeoff of errors from the two sources. Because the error due to

intensity noise will usually be much larger than te errors from sampling offsets,

Equation 436 and Figure 421 should be used for determining errors from the

center of area technique.

4.4.6 Match Filtering and Peak Detection

In this approach, the image is smoothed to reduce noise errors then the peak of

the intensity profile is found. This approach is similar to edge and feature finding

techniques 413401121192149,1181. It differs from the center of area calculation in

that after the smoothing, the center finding is done locally and is not very sensitive

to the intensities near the "tails" of profiles.

The subsequent analysis follows Canny's feature detection results 41,40] We

assume the waveform containing the feature is F(x) and the impulse response of the

filter (the feature detection function) is f (x). The response of the feature detector

at the "center" of the waveform is defined by

00
0 (X) - F(-x)f (x)dx (4.38)

which is the convolution integral evaluated at the origin. Peak detection of O(x)

will give an approximation to the location of the feature xO (the peak of the profile

with the noise removed). Canny defines the localization, A, as the inverse of the

approximation of the standard deviation in finding the peak

A -- I ff�, F (- x) f " (x) dx (4.39)
ax,) no dx

where no is the variance of the noise (assumed Gaussian). Assuming that the

waveform is symmetric [F(-x) F(x)l we may integrate the numerator of Equa-

tion 4.39) by parts to obtain

00 F'(x) f (x) dx
A (4.40)

no dx
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We would like to maximize A (as well as maximize signal to noise ratio). Using te

Cauchy-Schwartz 'inequality [1051 we know that

00 F'(x) f (x) dx < 00 F 12 (x)dx 00 f " (x) dx
00 00 00

Thus to maximize A (as well as the signal-to-noise ratio [41,40]), we want f(x)

F'(x) (the "match" filter). Using the match filter in Equation 439), the standard

deviation in locating the feature is

no (4.41)
O�Xo

dx

Assuming the intensity profile is approximately Gaussian [Equation 4.28)], the

standard deviation 'in locating the stripe is

v'2-cr no (4.42)
X �/7_r Amax

Equation 4.42) gives the standard deviation in locating the peak of the light stripe

as a function of the ratio of the noise standard deviation to the maximum intensity

amplitude and the square root of the width of the stripe intensity. Thus, the noise

may be minimized by minimizing the width of the light stripe; however, sampling

too thin a stripe will give rise to undersampling problems (see Section 44.2). For

a noise-to-maximum-intensity ratio of five percent, match filtering the finite width

stripe gives a result is about four times more accurate 4 of the standard deviation)

than the results for the thin line.

In summary, the match-filter/peak-detection technique filters the noisy inten-

sity profile with a similarly shaped filter, Figure 425. The filtered profile is then

scanned for the peak whose location is an approximation to the location of te

peak of the profile with the noise removed.

4.5 Using Redundant Sensed Information

Techniques for combining similar information from a number of sources are now

considered. The techniques discussed are applicable to many types of sensed i-

formation; in fact, fusion of information from fundamentally different sources is

possible as long as a measure of the expected accuracy (covariance matrix) of the

information is available. The analysis in this section closely follows the derivation

in 641.
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4-5-1 Optimal Eistimation Theory

Optimal estimation theory my be used to find te best estintabe for the orienta-

tion of a feature from edundant sensed inforniation. Measurements, Z, in ay e

expressed as a fnction of te actual states, X'-') and u-teasureni4mt 701'se7V� [64]

Z ' H + V--* (4.43)

where H i's te matrix which relates the states to the rneasurements. To find an
A

estimate, X, for the states, X, we may se a maxim-u-ni likelihood philosophy or

a Bayesian approach. In 4he mZMM-M-ii liRclihood approach, no a przori knowl-

edge about the actual states, X7 is assumed and the probability of obtaining the
-0 A

measurements, , from some state IX is aximized. That is, we wsh to find the

which aximizes pz-#IX--#). In the Bavesian approach a prior dstribution on X is

assumed. Tis will be altered by new ineasurenients Z'. Depending on te criterion

for optiniality, we may compute an estimate of the states from Bayes' theorem

z X Xpmi = P( -,)P(-')X (4.44)
P(i)

where p(i) is te probability dnsity function of the measurements.

§4.5.- Using Redundant Sensed [nformation 1.43



/-'Y 11Ulbapter 4 Feature Localization losing a Light Stripe Vision System144

Optimal Estimates using a Maximurn L11"kehhood Philosophy

The conditional probability density function for conditioned on X' has the identical

shape as te probability density function for 7'�, but ba a mean of HY. With

the assumption that V' is a zero mean. gaussian distributed andom variable with
_0covariance matrix C, we may obtain an expression for pZ�x

1. I TX) exp - (Z-- - HY C z-" --- H (4.45)
P('1 _0

27, 2 2 2IC1,

where n is the order of Z'. To maximize Equation 445) we must minimize the

exponent. Differentiating the exponent with respect to and setting this equal to

zero, we obtain a value for X' which is the maximum likelihood estimate

TC- -IHTc-l-X -_ (H 1 H) Z (4.46)

Optimal Estimates Using a Bayesian Philo,5ophy

A Bayesian approach to the optimal estimation problem assumes that there is some

prior knowledge about the states represented by the prior density function p );

that is, we assume a prior mean, X'- and a prior covariance matrix P-. If we choose

a minimum variance optimality criterion, the X' which minimizes the criterion is

the conditional mean of 
A

X -- E [ "' a]

We may calculate the posterior state estimate, X'-�- by assuming gaussian distri-

butions for X' and 
A+ +K[--O_ HA-]
X -X Z X (4.47)

where K is the Kalman gain matrix defined as

T T + 1_1K P-H [HP--H (4.48)

and C is the covariance matrix for the measurement vector Z'. The covariance

matrix for the new estimate X' is

P+ [I -- HIP- (4.49)1

where I is the identity matrix.
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Figure 426: Sensing and image processing system components.

Equation(4.47) gives a recursive estimation technique for determining the esti-

mate of a number of parameters from sensed data. The noise from the consecutive
I --- 10s are independent). The measurementsmeasurements must be independent ( 4 1

need not be from the same source. For instance, measurement estimates of a part's

orientation may come from gripper psitions, prior knowledge, and part position

sensor output. Each of these sources provide some additional information to the

estimate and are weighted according to their expected accuracy.

4.6 Processing Light Stripe Images

4.6.1 Sensing and Image Processing Hardware

The sensing and image processing system is shown schematically in Figure 426.

It consists of a laser and cylindrical lens assembly, a video camera, a controlling

computer, a frame grabber a hardware convolver, and an optional color graphics

display.
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4.6.2 Image Processing Steps

An object is initially located in the sensor area. Te sensor area is defined to be

the area of the light plane which would be visible to the camera were the plane

an opaque solid sheet. Te camera, which is externally synced by the computer,

is constantly sending video information to te frame grabber. Wen so instructed

by the controlling computer, the frame grabber records a frame from the camera.

The information in the frame grabber array, which i's essentially an extension of

the computer's memory, is then analyzed by the computer. The computer crops

a smaller array which contains the features of interest (the curve generated by

the visible 'Intersection of the light plane and part surfaces) out of the image ar-

ray. The cropped array is then passed through the hardware convolver where it

is smoothed with a Gaussian filter. Te filtered image of the intersection curve

is then segmented into separate regions to which curve fitting algorithms may be

applied. Each row is then scanned to determine the location of the peak intensity

of the light stripe (approximately the center of the profile), then the curve fitting

algorithms are applied to each segment of the intersection curve. The fitted curve

parameters along with the calibrated sensor model parameters are then used to

determine the location of the feature in space.

In the following description of details of the image processing system, we assume

that each segment of the intersection curve is nearly a straight line. That is, all

surfaces of interest of the part are planar. This constraint limits the types of parts

which may be sensed to ones with polyhedral features.

Filtering

two-dimensional convolution eration is used to smooth the noise in the image

of the intersection curve. This operation improves the accuracy with which the

�4 center" of the light stripe may be found. Metrics for determining the location of

light stripe features are discussed in Section 44. Because a design specification for

the sensor is real time operation, it is necessary to use a, hardware convolver for

this image processing step.

If the line segments in the image are nearly vertical (this would be the case

for many segments generated from a laser plane which is nearly vertical) filtering

in one dimension along the rows of the 'image would be sufficient. This type of
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filtering may be performed by a filter operating o te vdeo signal directly and

would appreciably speed this processin ste-D.

Segmcntatt'07�

The intersection curve of a light plane and a plyhedral object consists of a number

of straight line segments linked end to end. In order to determine the parameters of

each of the segments it'is. necessary to determine where one segment ends and the

other starts. In addition, not all real parts have surface bounding edges with high

curvature (sharp corners) and not all lines in the image correspond to light plane

intersections with faces of interest; thus, the segmentation algorithm must be ro-

bust enough to ignore unwanted information. Curve segmentation algorithms have

been extensively reported in the pattern recognition, computer graphics, ad signal

processing literature (for example see, [.150,1571 or Reference 31 for an overview).

A few of these algorithms were implemented.. A merging algorithm was initially

used. It essentially walks along the original curve from one end to the other and

checks whether a new data point is out-of-line with a line fitted to the previous

data points. If the distance to the new point is above a certain threshold, the

algorithm splits the data and starts checking along a new line.

A recursive split-and-merge algorithm similar to the one reported by Ramer

[157] was also used. For simplification, we assume that none of the line segments

are nearly horizontal (this is not a bad assumption for a system with a near vertical

light plane source). The splitting phase uses the following steps (see Figure 427).

1. Construct a straight line between the endpoints of the curve to be segmented.

Call these end points PI and P2 .

2. Find the point on the light stripe along the same row as the midpoint of the

constructed line. Call this the test point, PT 

3. Calculate the perpendicular distance from the constructed line to PT.

4. If the distance is within some threshold level, exit returning the constructed

line. I

5. Otherwise, split the line and recursively apply step I to two sets of new

end-points: (Pi, PT) and (PTP2).
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Figure 427: Recursive split-and-merge segmentation'algorithm. The center of a

line drawn between the two end points in a iage� of line segments is tested for

being near the line segments. If it is 'not the proposed line is split and the algorithm

is applied to the two new lines.
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Figure 428: Coordinates used for the Jine fitting algorithm.

Generally, after the splitting is complete, a number of groups of points lie along

the same line Figure 4.27d A mer Igorithm is then used to conso lidate the

point groups.

1. The slope of a group of points is determined from the positions of the end

points. The relative angle between adjacent groups is also calculated.

2. If the angle between adjacent groups is above some threshold, the breakpoint

between the groups is maintained.

3. Otherwise, the groups are merged in to one group.

4. The algorithm starting with sep I is iterated ntil no further merging occurs.

The split-and-mer e procedure was found to be more robust than the merge

algorithm when dealing with images with smooth transitions between line segments.

The computation times required for the two algorithms were similar.

Peak Detection

The coordinates used in the line fitting procedure are shown in Figure 428. One

data point is aken for each row of the image z coordinate). The y coordinate is

taken to be te peak of the filtered image along that row. The location of the peak

is found o a subpixel level b finding the maximum of a, quadratic fitted to the

points near te peak inten-s ty alone tat row. The maximum intensity in the first

row is found by scanning the entire row. The maximum intensities in remaining

rows are found by locally scanning each row near the y coordinate of the maximum

111-
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P igure 429: Sonic -feat-tires whic may e located i five or six dgrees of f-reedoni

from dta generated bv te itersection of a single igh pane.

from te previous row. '11-tis, only a sill -percentage of tbe pixels i -the iage

are actually scanned.

Linear Least Squares Line Fitting

After segmentation, filtering, and 'peak detecto te be�-:A fit line p.Irameters inust

be deterinined for the sets of data points. Tn the least square tchnique, te sum of

the suares of dstance from the bt_-,st-fit line to the data points are ininhilized. Er-

rors parallel to te pixel coordinates are minimized (see Section 43 for a dscussion

of the technique and coice of metric -to -nini.mize).

4.7 Measuring the Location of Features wt a ingle

Light Stripe

With the rght geometric relationship, the intersection of a light plane and crtain

geometric features will generate crves of intersection wich contain nough infor-

niation to locate the fatures in six degrees of freedom (or five egrees of freedoni

for rotationally ymmetric parts), Fgure 429. Te followffio� analysis deals ostly

with polyhedral etures Also, we assum a known orrespondence between the
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Mode,

Base I 'I

R

A

Figure 430: Light plane intersecting a polyhedral fature --and a corrasipo-nding

1A of he fen�+,,-ure.

groups of &tta ffIiin the se-ttsor ad the fces of te n-iodel (for istance, 'We now

which surface the part genera-Led data comprising a particular line eZt-nent).

4.7.1 Locating General Polyhedral Features

This ection discusses the calculations involved "in deter-ti-lining the orientatio-n and

,j)'acertient of a polyhedral featur o a object. Te position is referenced relat'

to a model of the feature i a base coordinate syste�in, Figure 4,Uf';0. The arientation

of thefeature maybe determined y the lopes of -three lne Segments in the iniage.
The d's I .1 <

pacenient inay be deterniiiiedfrom the rsults of -the or'entation cakul-ttion

and the intercepts of te three Iffies; Lhus, te orientation C"Alculatiol m be

decoupled from the displacement calculation.
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Sufficient Conditions for Position Constraint

The sufficient conditions for three lines lying o tree faces of a polyhedron to
constrain the polyhedron in six degrees of freedom may be determined using screw
theory 16,143,164]. Each line segment provides constraint in two freedoms; trans-
lation. perpendicular to the surface and rotation about an axis perpendicular to
bot te normal of the surface and the line. With the proper geometric conditions,
three line segments will provide six freedoms of constraint. According to Salisbury
[164], these conditions are

• Pairs of lines must not be parallel.

• Pairs of faces in which lines lie must not be parallel.

• The common normal of any pair of lines must not be parallel to the line of intersection
of any two faces in which the lines lie.

Determining the Orientation

Assume that the three normal vectors for faces A, B, and C of the model 'in

Figure 430 are known to be nA, nB, and n'c respectively. The normal vectors of

the object are unknown, but vectors along the intersection line segments are known

from the sensed data. Assuming that the correspondence between faces is known,

the unit vectors along the intersection line segments for faces A, B, and C are
A A

IA, IB, and 1. respectively. The rotation matrix R from the model to the object

is found using quaternion notation 93,151,163]. We denote a quaternion by the

bold face letter, q. Every quaternion has a corresponding four vector h os e

components are the four elements of the quaternion. A quaternion with a zero

scalar element represents a three vector; thus a quaternion multiplied by a vector

is defined. A rigid rotation of a vector V is

qvq

where q is a unit quaternion and q` 'is the quaternion complement of q.

If the proper rotation is found, the line vectors, i, will be perpendicular to the

rotated model normal vectors, qn,-q-"; that is, the dot product will be zero

A
I A 7-1 --If t A ?-' I-N

li qhiq' A . (4.50)
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Each of these equations are quadratic in components of q. Rewriting this in matrix

form

q Aiq - 01 A) Blc�

I qI - 1 (4.51)

which is a coupled set of four quadratic equations. We can solve for the components

of q using a numerical technique. The rotation matrix, R, may be calculated from

the components of q 1631

2+ q 2 2 - q 2 2 (qo q2 -4- q q3)q0 - q2 3 2(-qoq3 + qlq2) I

(qo q3 + q q2) q q q q2 2(-qoql + q2q-)
0 2 3

2 2 2 2
L 2(-qoq2 + qlq3) 2(qoql + q2q.3) q0 _ qI _ q2 + q3 J

Determining the Displacement

Once the rotation from the model to the object is known, the normal vectors of

the object, hobji� May be calculated

A A

nobji Rni I - Al BIC. (4.52)

The locations of a line on the " face is defined by the intercept with te plane

5 We denote the intercept vector bi. The equation of the plane which lies on
'Ihthe face is 61]

Ab-) _n 0. (4.53)

where [X y ZIT is the location of a point in space. Solving these three equations

simultaneously for the planes on'faces A, B, and C, we obtain te location of the

corner[611

A A + PC( A A
PA nobjB x nobjC) + PB (nobjC x nobjA nobjA x nobjB)

Xcorner -- A A (4.54)
nobjA nobjB x nobjC

where pi is the perpendicular distance from the origin to the i1h plane

PA (bA " objA)

PB (bB ""',)bj-,B)

PC (bC objC)

(4.55)
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Figure 431: A right corner feature and reference frames used to determine its

orientation.

4.7.2 Locating Right Corner Features

In this section , the solution for the rotation of the right polyhedral corner feature

is solved in closed form (in contrast to using a numerical technique for general

polyhedra) using a direct method of calculation.

We define a right corner feature as the intersection of three half spaces (see

Figure 41) whose bounding planes are mutually orthogonal. A right-hand co-

ordinate system, F, with axe endicular to the bounding planes

of the half spaces and origin located at the point Of itersection of the bounding

planes defines the position of the feature in six degrees of freedom. We wish to

determine the orientation and position of this feature reference frame with respect
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to the world frame, , located at the camera image plane.

Determining the Orientation

The orientation of the feature reference frame, Yp-, with respect to the world refer-

ence frame, , is determined by locating an intermediate reference frame associ-

ated with the laser plane, p. For the present analysis, we assume that he light

plane has no width (two-dimensional). We also assume that three line segments (no

width) are generated when the light plane intersects the feature. The orientation

of the three line segments are defined by the three vectors IA, 1B, and IC, as shown

in Figure 431.

We assume the ranging sensor has been accurately calibrated and the unit vector

normal to the light plane, 'LP, is known. The intermediate coordinate system, YP,
A

has axes 'LP in direction of one of the lines of intersection /A), ZLP in direction
y n

nLP and 'LP in direction 'LP X 1A where x is the vector product.

The rotational transformation (in matrix form) from Fw to p is

A
RWLP IA, nLP X 1A� nLP (4.56)

' by realizing that the cross prod
.TLp may be located with respect to YF uct of any

two of the three vectors 1A, B , or IC is normal to the light plane (in the direction
3z IA lies on theOf 'LP) and YF i ZF Plane. The transformation from :Fw to is

F^ F^ FA F^ Fj X F A
RFLP lAi 1B X IA) X A B IA (4.57)

sin Sill OA COS 

/C S �2 2
0A-Sin2 OD+sin OA

Sin OA COS OD - sin Op sin OA
COS OA F

N/ '2 OA OD Sill-

- COS O_n COS Sin D COS OAsin OA N/, ' /C 0 S2 �O, S i �j
OS2 OA Sin2OL3 --i--s in 2 A CS- A bill OD +sin2OA 

A

where OA is the angle between A and ZF and OB is the angle between IB and YF
A

The angles OA and OB may be calculated from te angle between A and (OAC)
A

and the angle between A and 1B (OAB) (these angles are both easily obtainable

from the processed image)-

OA arctan tan OAB
taii OAC

'The left superscripts '- denotes that the vector is expressed with respect to te F reference
frame.
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COSOAB
OB arccos -

COS OA

Multiple values of the rotation matrix, RFLP -,which correspond to different light

stripe image interpretations result from these equations. The proper rotation ma,-

trix. is the one closest to the expected nominal rotation matrix. The orientation of

the feature reference frame, YF, with respect to the world coordinate frame, j1W' is

RWF- RoLpR-1 (4.58)

Determining the Di-splacement

Once the rotation 'is known the displacement of the corner from the base coordinate

system is given by Equation 454.

4.7.3 Locating Other Features

In order to extend the range of parts which may be handled by the sensor, features

other than just polyhedral ones should be measurable. Locating parts with quadric

surfaces (cylinders, cones, spheres, etc.) was considered, but not implemented in

detail. The intersection of the light plane and a quadric surface generates conic

sections. In general, the perspective projection of a conic changes its parameters;

thus curve fitting should be done in the light plane (that is, points recorded in

image plane coordinates should be projected back to the light plane). Algorithms

Which fit conic sections are given in 6,30,166. A number of the algorithms were

tried on synthetic quantized data of the intersection curve between a light plane and

a cylindrical feature. As noted in 166] the Bookstein algorithm 30' was the most

accurate of the conic fitting routines; although, it was significantly less accurate

in locating a feature than the right corner algorithm. Troubles in using ellipse

fitting routines on light stripe data were reported by Bolles and Fischler 26] In

their RANSAC approach, they chose a set of five points, constructed an ellipse ad

tested to see if it was a reasonable estimate. If it is not reasonable, the procedure

is tried again.
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4.8 Using Multiple Light Planes to Locate Polyhedral

Features

With the sufficient conditions otlined in Section 47 tree lines locate a polyhe-

dron in six degrees of freedom; thus, more than three lines can overconstrain te

calculation. this section, a least squares approach is used to solve the over-

constrained problem. A technique which performs a least squares estimate can

more precisely determine a feature's position tan a technique which just uses the

minimum number of line segments.

The equivalent of four or more line segments may be generated on a polyhedral

feature either by using two or more images with the part or light plane displaced

slightly, or by using multiple light planes and a single image. In addition to allowing

a more accurate calculation of the location of a part feature, a system of multiple

light planes has te advantage of having illumination sources which are not in a

single plane; thus, it may e possible to generate longer line segments or have line

segments in more desirable locations with respect to the part feature. In fact, some

features may be localized with a number of light planes but not with a sngle light

plane.

4.8.1 Non-Oph'mal On'.entation Esh'rnatzon for Polyhedral Features

This technique 'is non-optimal because it doesn't take the quality of different mea-

surements into account. It is, however, somewhat simpler than the optimal estimate

and is similar to approaches taken in the literature [a 60,08]. A least squares tech-

nique is used to determine the best fit rotation for the general polyhedral. object.

Because no surface normal information is directly available in the sensed data, we

cannot use the technique developed by Faugeras et al. 59,60,581. The approach

and the notation used here is similar to that in Section 47.1. The sum of the

squares of the dot products are minimized

E (^ ' ' 2min 1i qniq-) (4.59)
i

A value for q wich minimizes this expression may be found using a numerical

technique.
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Figtire 4..'32: E-tile agJ,es sed i the east squares estimate for the orientation of

ICt Iolyhedral feature.

4.8.2 OP-timal 13istlimaticn, (f Orientation for a Polyhedral Feature

Represen11ation of Rotations

TI-tre idependent roun-tions 'Chad three idependent displacements --ire sfficient to

describe flie position f object '-a three-space A umber of different descript'
aila,'ble -to odel te Oire rtational degrees of freedom.' Forthe subsequen t

-a qI 1CIV, (I

analysis w se the eule agle description because the umber of varizables needed

to describe the rotation 'is equal to te uniber of degrees of frecdom. The etiler

angle convention 'is shown 'in Figure 432. A coordinate fraine located at enler

a-n g I es

0
-4a=

is first rotated bout te base syste z xis 'by ngle then bout t own x CO i S

b agle , teir about s own z xis by angle V).

We assiti-ne that orientation estiniates expressed in ettler angle otation, IcKil,

4Frequently used descriolian.,; for rtations re th 3 x 3 orthatiormal rot.;ttioll inatrix 93,147],
culer imgIcs 1(9314711 wid quaternions 93,151,163].
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are available. In general, these may be obtained from three appropriately chosen

line segments.

at __ fi ( Si I Si, 2 Si,3 1 ... N (4.60)

where f is a vector function, Sij i Si,2 andS,,3 are the slopes of the tree line seg-

ments from the sensor, and N is the number of different estimates. We wish to

combine these estimates to arrive at the most accurate estimate possible, 'a, given

the expected errors of the measurements.

The functions f are functions of the calibration variables and part model pa-

rameters as well as the slopes of the line segments. For simplicity, only the errors

in slope are considered in the following Kalman filter design. If the magnitude of

the unmodeled uncertainties are large enough, imprecise results may be generated.

In general the functions f in Equation 460) are non-linear and we cannot

.directly apply linear optimal estimation theory with the state vector, , being

the euler angles and the measurement vector, , being the line slopes. We can,

however, assume that errors in slope measurements, 6Sit,, are small and linearize

Equation 460). Taking the Taylor series expansion and keeping terms of first

order or less
-4 (9 fi

i l-, di 6 Si, (4.61)
(9 Si, ,

where I takes on the appropriate values for the lines used in the estimates and 6 Sie,

is a random variable which is the difference between the actual slope for line and

the measured slope. In matrix form, Equation 4.61 is

ai a + Ki6si (4.62)

where
6 Si',

(9 fi (9fi (9 fi
K sj and 6S - (4.63)

(9Sil' (9Si,2' (9Si,3 Si,2
So

The partial derivatives may be calculated directly if an analytical expression is

available for L If f involves a numerical technique, the partial derivatives may be

approximated by
_(9fi fi(Siji ... (Sij + () ... Si, 3)

(9 SiJ
where is a small number whose addition to Sij will produce a result in the

numerical calculation significantly larger than the numerical error.
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Rearranging terms, Equation 4.62) becomes

Ks".&' - Ks,-a - 6S. (4.64)

All N equations in 464) may be combined into a single equation by adding the

rows of each vector term corresponding to the same line segment

Zs Hs a VS (4.65)

where
ZS - YK-1-ai - EK-1

Hs S'i

E ,
VS Si.

i
Equation 465) has the same number of rows as independent line slopes in the

image.

Equation 465) is in the same form as the linear optimal estimation equation

(4.43); thus, the maximum likelihood estimate, Equation 4.46), of the euler angles

is
A T TC- -- (H C-'Hs)-'H (4.66)s s s S Zs

where Cs is the covariance matrix of te noise vector 's. The minimum variance

Bayesian estimate of the euler angles given an a prlorz' estimate X'- and initial

covariance matrix P- is 64]

-4 TC- TC-I(-4X-X-([P-]-'+Hs S'Hs)-'Hs s ZS-HS X_` ) . (4.61)
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Chapter 5

5.1 Introduction

In order to perform assembly operations without position sensing, it is necessary to

control the propagation of part position errors. Fixtures, pallets, and grippers must

be designed to geometrically constrain the parts. The design of these items becomes

difficult if many different shaped parts must be handled and fixture interchange is

undesirable. This chapter discusses some tools which were developed to address

some of the more difficult assembly operations cited in te assembly tas� analysis

in Section 22.1. The tools are designed so as to minimize the number of fixture

changes during an assembly process. Excessive interchange of fixtures leads to

inefficient use of the assembly machine. In the Draper Labs automobile alternator

assembly system, about a third of the cycle time was spend interchanging robot

end effectors 43].

The assembly tools are integrated with an industrial robot and a manipulator

path generation system in a prototype assembly cell. The path generation system

automatically calculates via points to relieve te user from manually digitizing an

excessive number of robot positions. The manipulator is able to set up the cell

by changing grippers and fixtures and is able to assemble and test consumer hand

drills.

161
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5.2 Versatile Tools for Programmable Assembly Systems

A number of the more "difficult" assembly operations discussed in Section 22.1

may be accomplished using precision. assembly techniques and programmable e-

chanical tooling. Precision assembly entails the mating of parts using only position

controlled moves (no sensing or force control). Tis section describes the ele-

ments of a prototype flexible assembly cell which was developed to demonstrate

the feasibility of precision assembly techniques and to xtend the types of assembly

operations possible with a single six degree of freedom mechanical manipulator.

5.2.1 Prototype Assembly Cell Hardware

The prototype assembly cell is a collection of assembly tools which augments the

capabilities of a six degree of freedom robot in performing a variety of assembly

tasks. A reference base plate with an accurately machined array of locating holes

covers the base of the cell. Flexible fixtures are used to assist te robot in the

performance of several assembly operations. An assembly vise is used to fixture

the base part of an assembly. Since the simple, parallel-jaw gripper of the chosen

manipulator is not capable of sufficiently grasping some parts a special gripper

interface and auxiliary fingers were developed which allow the robot to more firmly

grasp a larger number of parts.

Assembly Robot

For a system of automated machines being used to their maximum capability (con-

stantly working), the cost of performing the required tasks is a strong function of

-- the process cycle time and, therefore, of manipulator speed. Te speed at which

robots perform assembly tasks depends upon robot acceleration, deceleration, top

speed, servo loop bandwidth, manipulator vibration settling time, firmness of ed

effector grip, and limiting speeds when mating parts.

At the time the cell was developed, the choice robot was the IBM 7565. Tis

hydraulically driven manipulator has relatively high speed operation, force ad

optical sensing capabilities, good repeatability (about 0.1 mm.). and is controlled

by the powerful AML language 1911. Because the 7565 has six degrees of freedom,

it is facile enough to perform most of the necessary tasks in the study; although, a
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Figure 53: Different combinations of Nrise fixturing systems which may be used to

constrain the base part in an assembly.
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fixtured without relying on the location of (inaccurate) external surfaces. After

the part has been located and properly secured by a set of clamps, the entire pin

plate can be moved down and then laterally out of the way. These motions are

provided by pneumatic cylinders, and are actuated by te 7565 controller. Tis

feature allows another part to be inserted through the locating hole in the base

part.

Two jaws close about the base part from the sides. The jaws are kinematically

constrained to remain equidistant from the center of the jig plate as they close.

These jaws are also specific to the assembly task and may be changed by the

robot as part of the vise setup procedure. The jaw carriages are DC-motor driven,

and can be locked in position by an electronically actuated brake. Jaw motion is

terminated in one of two ways: in the first mode, the jaws run into the base part

until the motor stalls, and ten the brake is applied; te second manner employs

a software timer to provide open-loop position commands. These relatively simple

jaw positioning schemes eliminate the need for more expensive and complex servo

controls.

The final moving elements of the vise are a pair of hold-down clamps used to

secure the base part. The clamps are mounted on the jaw carriages so that they

also move about the vise center. A set of clamps forms a turret of tools which can

be positioned by the robot over the part to be secured. The clamps are- actuated

vertically by pneumatic cylinders which are also controlled by the computer.

Flexible Fixtures

The assembly task analysis in Section 22.1 demonstrated that a set of actuatable

fixtures, positioned around the assembly jig, could greatly increase the capability of

a single manipulator arm. -Many of the tasks which cannot be performed by a single -

manipulator require only one or two additional active decrees of freedom; thus,

a second fully-programmable six degree of freedom manipulator is unnecessary.

The success of the flexible fixture design depends greatly upon te accuracy and

programmability of the robot. Each fixture is essentially a passive manipulator

with a single active degree of freedom at its end effector. The passive joints may

be locked and unlocked on computer command. The active degree of freedom,

also triggered by the robot controller is used o reposition the fixture end effector

during the assembly operation.
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consists of alternating cylinders and spheres, each with a hole bored through its

center. These elements are strung onto a steel cable which when placed under

high tension makes the structure rigid. The tension in the cable is controlled by

a computer-actuated air cylinder; tus, the fixture may be made rigid or slack

as directed by the computer. The end eectors of the fixtures are mounted with

special quick-release adapters which ae necessary if the robot is to iterchange tile

special tooling.

The fixtures are intended to be used for a number of different tasks. With

the appropriate end effectors in place, they assist the robot in performing assembly

operations on workpieces which would otherwise be unstable (see Section 22.1 for a

definition of unstable assemblies) After the robot positions the potentially unstable

part onto the assembly, the fixture is actuated and its "finger" momentarily secures

the part while the robot performs the stabilizing operation, such as driving a screw,

or inserting a shaft. The fixture may also be used as a reference surface for the

assembly. For example, as more parts are stacked onto a base part, the uncertainty

in absolute position of the last inserted paxt increases. A flexible fixture may be

used to locate an assembly so te robot can proceed with the task. It may also be

used to hold a sub-assembly in a certain orientation pending the assembly of the

next part. Additionally, when provided with more sophisticated end effectors, the

simple flexible fixtures could be used to perform an auxiliary assembly tasks, such

as testing or inspection.

A force of about 3 lbs. (.5 kg.) could be withstood at the end of the fixture's

arm before the frictional forces within the arm were overcome. This upper-bound

on the force is a limitations of the device in performing many tasks. Since proof-of-

concept and short development time were goals in building te prototype system.,

suboptimal arm strength using off-the-shelf hardware was acceptable. An analy-

sis of arm component size versus arm strength is presented in Appendix C. An

appropriate arm for a certain set of tasks may be determined from this analysis.

Prototype Pallets

Extension of part feeding cost research by Redford [159,1601 shows that off-line

feeding can reduce the cost of programmable feeding if the cost of pallets call

be kept relatively low. Off-line feeders are decoupled from the assembly process

and are not assembly-machine paced. In order to transfer single parts and sub-
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Figure 59: Position definition system.

5.3 A Hybrid On/Off-Line Programming System

In order to simplify the current practice of generating robot trajectories usin te

"teach by showing" technique, a system was developed which allows the program-

mer to generate a trajectory off-line. Although a number of authors report off-line

programming systems 52 107 110 113 116 152 1891 the state-of-the-art program-

ming method in the factory is still teach by showing. The technique described here

utilizes a relatively small set of general paths or trajectory shapes and path trans-

forms to perform most of the robotic operations necessary in assembly tasks. With

this technique, a number of robot, configurations must still be manually taught by

showing; however, this! number is relatively small (usually one position per task) A

user friendly Position Definition System (PODS program) was developed to provide

an easy method of storing and altering a sequential set of robot configurations.

5.3.1 Posz'tion Definztion Sy,5tcm

A menu driven AML program has been created to help the programmer record and

edit robot configurations for use in subsequent assembly programs. This Position

Definition System (PODS program) performs a, number of fnctions related to the

creation and debugging of position files (see Figure 5.9). A position file is a file
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containing a list (set of records) of sets of robot joint angles (AML aggregates of

7 real numbers). In addition to the sets of joint angles, a set of reference post

locations corresponding the positions of I to 4 posts in the workspace are stored as

the first record of the file. These posts are used as a reference frame for subsequent

playbacks of the positions in the file.

The main menu in PODS allows the user to choose one of the following sub-

menus:

• Choose or Create Position File

• Recalibrate

• Assemble (playback positions)

• Change Speed

• Edit positions

• Create a path

• Execute a path

The user responds to the menu by typing the first two letters of the chosen submen.u

or ST to stop the program.

The Choose or Create Position Files option prompts the user for the name of

a position file. PODS then checks to see if a file with such a name exists and if so

reads in the reference post locations and the positions. If no file exists with that

name, a new file is allocated and the user is automatically shown the calibration

menu.

The Calibration submenu gives the user a number of choices in the selection of an

appropriate set of reference post locations. The user may read in te post locations

from another previously defined position file, execute te full calibration procedure

thus changing the stored reference post locations, calibrate only the rotary joints,

or find a new set of reference posts and use these locations to reference any newly

defined points without changing the stored set of post locations (see Section 54.2

for a more detailed description of the calibration procedure).

The Assemble submenu prompts the user for starting and ending position num-

bers and then moves the robot through the commanded set of positions. A position
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number is an index within a sequence of positions listed in a file. The robot speed

may be changed using the change speed submenu.

The Position Editing submenu allows the user to perform thefOllOWing editing

operations on a set of positions:

* Insert positions using guide box

* Manually insert positions from the keyboard

9 Change positions using guide box

9 Manually change positions from the keyboard

9 Copy positions

* Delete positions

* Display positions

* Print positions

* Choose or create position file

The Insert commands allow the user to define new positions in between two

existing positions or at the beginning or end of a set of existing positions. These

commands are also used for the initial definition of positions in a new file. The

Change commands allow the user to change a subset of previously defined positions.

The Copy command prompts the user for a subset of existing positions to be copied

to a new location in the list of positions. Any existing positions in the list are moved

down the list to make way for the new positions. The Delete command wll erase a

specified subset of positions. The Display command will display a specified subset

of positions on the terminal screen, while the Print command will print the specified

positions on the printer.

The last two commands in PO S' main menu deal with the creation and exe-

cution of a path. A path is a general shape or template which is useful in assembly

operations (see Section 53.3). A set of positions may be made into a path by

translating and rotating the set so that the robot, box frame becomes the path

coordinate frame (see Appendix A.1 for a definition of the path coordinate frame

After a path has been defined, it may be executed between two points defined in

the workspace using the Execute Path option.
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Figure 5.10: Task execution system.

5.3.2 Generation of Robot'Paths in a Assembly Cell

path definition system has been developed to sim' lify the teaching of robot

assembly tasks. The system allows the robot controller to generate most of the

details involved in the execution of an assembly task. Such'a system allows much

of the programming for a complete assembly task to be done off-line at a fairly high

level. With this technique, the majority of robot action commands in an assembly

task programmed by the user would be conveyed as tasks such as getting or

putting a part) instead of as point to point moves. By so doing, the controlling

computer will automatically perform operations such as simple obstacle avoidance,

part presence checking, gripper opening, speed control, andsome error correction.

The basic elements used in generating tasks are shown in Figure 5.10 A path

is a set of robot positions in the workplace which are used as a, shape template for

the task. The path transform performs, a geometric and in some cases functional

transformation of a path. A geometric transform translates, rotates, scales and

sometimes skews the path such that the resulting curve, is shaped similar to the

original path, but connects two newly specified sartin ad, ending positions. A

functional transformation allows the path to be used as a template for an assembly

task (i.e. getting a part from a fixtured position)
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5.3.3 Path Dfinition

A path is defined as a set of two or more robot configurations in the workspace.

Only the X, Y, and Z coordinates (this is te 765 BOX frame r9811) are used as the

template for subsequent transformations. Rotary axes are handled separately. The

path is most easily defined using PODS (see Section 53.1). Paths are used as gen-

eral shape templates for subsequent moves through trajectories in the workspace.

Since only the shape of the path is used. te first location is arbitrary and is de-

fined to be robot coordinates <0A0>. For many assembly applications it is useful

to have a path library from which to select the appropriate path. Different path

shapes may be selected for simple obstacle avoidance and minimal trajectory exe-

cution times. A more rigorous definition of a path may be found in Appendix A.I.

5.3.4 Path Tra-7tsforrns

Before a path becomes useful in an assembly environment, it must be operated upon

by a path transform. The inputs to a path transform are sown in Figure 5.10.

The path transform translates, rotates, scales and sometimes skews a path so that

the first and last points of the path correspond to the start and end positions of

the desired trajectory (see Figure 5.11). Since the two end points do not uniquely

define a reference frame, into which the path should be transformed, the path is

constrained not to rotate along the line through te start and end points. With

this constraint, the location of the two end points is sufficient to scale translate

and rotate the path into the proper trajectory. For the cylindrical transformation,

it is also necessary to specify an approach, vector at each end point.

To date, four path transforms have been defined and found to be useful in

an assembly-environment. A fifth more general path transform, the cylindrical

transform, has been developed but not implemented.

Spatial Path Transform

The spatial path transform rotates the selected pat N Y, and Z coordinates

only) into the reference frame defined by the start and end trajectory positions

and equally scales the X, Y, and Z local coordinates of te path so as to make the

first and last points of the path coincide with the start and end points of the desired
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trajectory (see Appendix A.2.1 for a more rigorous definition). An example of a

spatially transformed path in two dimensions is sown in Figure 5.11a. In many

assembly tasks, the robot wrist configuration is not dependent upon the X, Y Z

trajectory of the anipulator. If the wrist angles wre rotated with the drection of

the trajectory, parts fixed in the workspace would be gripped at different locations

as a function of the trajectory. This is clearly undesirable. A fairly simple echnique

is used to address the requirement of retaining wrist angles with different X, Y Z.

trajectories. The wrist angles for te trajectory are taken from the desired start

and end manually taught trajectory points and have no relation to the path or the

spatial transformation of the path. The rotary joint angles from the start position

are used for the first half of the trajectory positions and tose from the end position

are used for the second half of the trajectory.

Planar Path Tramsform,

The planar path transform performs the same function as the spatial path trans-

form except that the final trajectory shape is skewed from the original path shape

such that all Z direction motions between path points remain Z direction motions

in the trajectory. (See Figure 5.11b.) In addition, the local Z coordinates of the

path (the local Z distance from a path point to the line through the starting and

ending path points) remain unchanged after transforming. Thus, large excursions

across the workspace do not cause increases in local Z motions. The wrist joints

during a trajectory are configured as in the spatial path transform. The planar

path transform is useful in assemblies with Z direction insertions. Since the Z co-

ordinates of the path remain nchanged, the Z insertion pase of a task remains

independent of the location of the end points. The planar path transform is a

degenerate case of the cylindrical path transform with Z direction unit approach

vectors.

Cylindrical Path Transform

The cylindrical path transform is very similar to the planar path transform but

somewhat more general. Two approach vectors in addition to the two end points

must be specified to cylindrically transform a path to a tajectory (see Figure 5.1 1c.)

The starting approach vector specifies te departure direction from the starting tra-
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jectory point and the ending approach vector specifies the direction from which the

trajectory is to approach the ending trajectory point. The second point of the path

is positioned along the starting approach vector at a distance equal to the local Z

distance of the path. The next to last trajectory point is similarly spaced from -the

ending trajectory point. The intermediate path points are helically positioned so

as to join the second and next to last trajectory points (see Appendix A.2.2 for a

more rigorous definition).

Get Path Tran-sform

The get path transform is a functional as well as geometric path transform. It calls

the planar path transform for the necessary geometric path transformation and

adds the gripper motions necessary for grasping a part at the end of the trajectory.

In addition to the two end trajectory points, the get path transform must be passed

a flag which signifies an external or internal grip on the part. This path transform

also limits the speed at which te robot grasps the part so that the dynamics of

the part do not significantly affect the grasping process.

Put Path Tramsform

The put path transform is similar to the get path transform except the gripper

is configured to grasp the part during the planar path transformed trajectory and

release the part at the completion of the trajectory. Te speed of withdrawal of

the part (the section between the first and second trajectory points) is limited y

the put path transform so that the robot dynamic forces are insignificant and don't

jam the part during its removal from a pallet. During the grasping phase of the

trajectory, the put path transform checks the strain gages in the grippers for the

proper gripping force. If an unexpected force is found, an error recovery subroutine

is automatically called by the put path transform (see Section 5.3.6).

5.3.5 Automatic Pallet Indexing

For assembly tasks 'Where pallets are used to hold parts, te robot will need to

access similar parts from different locations in a pallet. It is assumed that te

parts are very accurately spaced in their pallets. The location of each pallet in te
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workspace is recorded by storing a single set of robot joint configurations which

position the robot at a known reference point on the pallet. The location of the

robot with its gripper positioned at the first part position of a pallet is stored in a

pallet file. This configuration the-- part grasping configuration) defines te location

of the local pallet frame. The other parts in the pallet are accessed by adding an

X Y Z offset to te origin of te frame. The information in a pallet file contains

The name of the part being held

The robot configuration at the first part position

The X, Y� Z, offset between part locations

The maximum number of parts in the pallet

In an assembly program, the position of the next available part in each pallet is

stored in a globally defined aggregate. The pallet indexing subroutine uses the

current pallet location for the goal of the next move and then indexes the current

pallet location variable for that pallet. When the final pallet location is reached, the

current pallet location is reset to the first location. In a real assembly environment

an instruction would also be issued forthe pallet changer to exchange te empty

pallet for a full one.

5.3.6 Error Recovery

During te portion of an assembly task when the robot is in contact with its

environment (i.e. holding parts), force sensing may be used to assure proper task

completion. A number of error recovery algorithms have been designed which

use the path definition system described in Section 53.2. Four different types of

assembly procedure errors are handled by this system.

o Part mssing at pallet

* Part slips during withdrawal from pallet

* Part dropped during trajectory from pallet to assembly

* Part dropped prematurely over assembly
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If after an error correction procedure has been initiated another error occurs, the

new error is handled before the first in a nested (recursive) fashion. The error

recovery subroutine described in the present section is only called during a trajec-

tory using the put path transform (a put task) which occurs only after a trajectory

using a get path transform (a get task).

Part mssing at pallet. If the error recovery subroutine is called before te first

move of a put path transformed trajectory, it is assumed that no part is present

in the current pallet location and a get task is issued to the next position of te

current pallet. Upon the completion of the get task, the put task in which the error

occurred is reissued.

Part slips from gripper during withdrawal from pallet. If the error recovery

subroutine is called during a move from the first to second trajectory point during

a put task, the subroutine infers that the part is stuck on the pallet. The subroutine

reissues a get task to the same pallet location to try and regrab te part. If the

part is not found or if it slips from te gripper for a second time during the reissued

put task, a Part missing at pallet error recovery procedure is issued.

Part dropped during trajectory from pallet to assembly. This procedure is fol-

lowed if the error recovery subroutine is called during a trajectory move between

the second and second to last trajectory points. It is assumed that the part has

dropped in an out of the way place and the Part missing at pallet procedure is

followed.

Part dropped prematurely over assembly. If the error recovery subroutine is

called during the final move of a put path transformed trajectory, it is assumed that

the part has been dropped into or near the assembly. Since the computer cannot

be sure where the part has been dropped and whether or not it might interfere with

the operation of the final assembly, te error recovery subroutine halts execution

and calls for human help before proceeding. The operator is instructed to either

clear the part and restart the operation or to allow the robot to continue normal13.

5.4 Assembly System Implem entation

In a factory flexible-assembly environment a number of the multifunctional assern-

bly modules or cells could be used to perform te assembly or subassembly of one

or more products. Prior to the start of a new assembly task, a cell would be put
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through a setup procedure designed for that particular assembly or subassembly.

This setup phase may consist of the manipulator changing the end eff-ectors on

fixtures and jigs, moving fixtures around te cell, recalibration, and changing its

fingers to accommodate the, ew parts. Following the setup phase, a new ssembly

procedure would be loaded into the cell controller for the next subassembly to be

assembled. The assembly system described in Sections 52.1 and 53 are used to

demonstrate such a factory assembly environment. In the setup phase the 7565

installs the proper fixturing in the assembly vise, positions the flexible fixtures

around the workcell, and performs the calibration. The calibration procedure in-

volves calibrating the rotary and linear joints of the robot to the workspace (see

Section 5.4.2). The assembly procedure utilizes the hardware and the path defini-

tion software described previously to assemble and final test a number of consumer

hand drills.

The software system for the cell was designed such that there is an integration

between off-line and on-line task programming. Te majority of the assembly

procedure for the cell is programmed off-line using te AML subroutine modules

described in Section 53. Selecting the robot grasp points and debugging the final

program are performed on-line.

5.4.1 Assembly Cell Setup Procedure

The 'Initial state of the assembly cell prior to the setup phase of the drill assembly

consists of a disassembled assembly vise (plates and jaws removed) with the vise

components fixtured in their storage magazines, flexible fixtures with end effectors

retracted and the robot arm positioned far from obstacles.

A flowchart for te setup procedure of the prototype assembly cell for the

assembly of a hand drill is sown in Figure 512. When the robot moves from one

procedure to the next, the moves are buffered from one another so that the robot

will not collide with its environment. The buffering operation involves te robot

moving into a "freeway" area which is defined as the space above the assembly

hardware (positive Z direction). The setup procedures in Figure 512 are defined

as follows:

Check Grz'pper Status. After entering the freeway, the robot moves to all empty

area of the finger magazine and checks to see wich fingers are currently attached.
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Figure 512: Assembly cell setup procedure.
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Each set of fingers is a different length and the checking operation is performed by

initiating a pinching motion at various heights above a bar. When the presence of

the bar is sensed (fingers make contact). the robot can determine which fingers are

mounted by checking its Z coordinate.

Check Flexible Fixture Status. The Series-1 computer prints an inquiry message to

the user as to the initial location of the flexible fixtures (they are either positioned,

retracted, or lost). The user is instructed to type in the proper response to the

inquiry. If the fixture is lost, a flexible fixture positioning subroutine must be

called. This subroutine sets the proper fixture to the slack condition and allows

the user to insert the flexible fixture gripper interface into the setup fingers of the

robot. The robot then positions and locks the fixture in the proper location.

Initialize Vise Positions. In this procedure, the computer instructs te user to

make sure that all components are removed from he assembly vise and properly

positioned in their respective magazines. The, computer then actuates the vise so

that it is in te proper configuration for the rest of the setup procedure.

Calibrate. The user is asked if the system needs calibration (see Section 54.2) if

not, the next setup procedure 'is performed. If te system needs to be calibrated,

the computer will first determine if the fixtures need moving in order for he robot

to access the calibration posts. If the fixtures need moving the robot will first don

the setup fingers then proceed to move the fixtures to their retracted - ositions.

The calibration procedure described in Section 54.2 is then performed.

Put On Setup Gripper Fingers. If the setup fingers are not on the robot grippers,

the robot will take off any fingers it is wearing and put on the setup grippers using

the technique described in Section 52.1.

Retract Flexible, Fixtures. If the flexible fixture which is near the assembly vise is

not in its retracted position, the robot will perform a fixture approach, positioning

and deproach subroutine to place the fixture into its retracted configuration.

The next few operations involve the robot grasping an assembly vise component
and inserting it into the vise.

Assemble Pin Plate. The pin plate is grasped in the center portion of te grippers

where there is a section of elastomeric material. The robot is then moved trough a

set of previously taught points which extract the pin plate from its fixture, move it
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to the assembly vise and assemble it into its proper location. The pin plate, as well

as all of the other plates and jaws for the vise, are designed to be extremely easy for

the robot to assemble (large bevels and chamfers are on mating features). Because

of this, the assembly of tese components has proven to be extremely reliable and

no force sensing is necessary to verify task completion.

Assemble Jg Plate. Te jig plate assembly proceeds uch like te pin plate assern-

bly except that the jig plate itself has elastomeric material mounted on its gripper

mating surface to enhance grasp stability.

Assemble Drill Jaws. Each of the jaws used in the assembly vise to clamp the base

part of the drill assembly has two accurately positioned pins which plug into the

setup gripper fingers. Thus, each jaw 'is accurately located in the robot's grippers

prior to insertion into the assembly vise. Each jaw has an accurately machined

dovetail on its rear surface which slides into a mating dovel ail on the vise carriage.

The dovetail on the vise carriage has a chamfered-dovetailed lead-in. section as well

as a cam actuated gib to lock the jaw 'in place. After the robot places the jaw

in position it actuates a lever which pushes the gib against the jaw's dovetail o

accurately lock it in place.

Position Hold Clamps. The robot uses the tips of its setup fingers to rotate the

proper hold-down clamp into position.

Position Flexible Fixtures. Here the controller runs a, program which reverses the

actions used in the Retract Flexible Fixtures procedure.

Exchange Fingers. The robot executes its finger canging moves to replace the

drill assembly fingers for the setup fingers.

5-4.2 Workspace Calibration Procedure

While performing experiments on close tolerance assembly operations, a time de-

pendency of robot repeatability was found. It was proposed tat a calibration

of the robot joints would improve the performance of close tolerance tasks. If the

workspace happened to be displaced with respect to the robot BOX frame, it would

still be possible to perform tasks after a recalibration. In te workspace calibra,-

tion procedure, all six axes of the robot are calibrated. The calibration procedures

for the yaw and pitch axes use two straight edges fixed in the workspace. The
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its Y axis. The fixture was moved until it aligned with the axis within 002 inches.

The pitch axis is calibrated at a 60 degree angle with respect to the reference base

plates. An accurate 60 degree triangle was used as a straight edge at the proper

angle. The roll axis is calibrated with a single post i the workspace using te

CALROLL subroutine. Before the CALROLL procedure is performed, the yaw

and pitch axes are set to their calibrated values.

Linear Joint Calibration

The location of the workspace in robot X, Y, Z coordinates is found through the

location of 3 posts in the workspace. Any changes between the robot linear axes and

the workspace location are assumed to be rigid body displacements and rotations.

The robot locates the workspace by using the AML FINDPOST subroutine �98 to

locate 3 posts numbered through 2 The vector from post to I defines the Y

workspace axis and the vector from post to 2 defines the X workspace axis. Before

the linear axes are calibrated, the yaw and pitch axes are set to their calibrated

values.

Assembly Environment Calibration Procedure

Each time a set of positions are stored, a set of post locations are associated with

it (see Section 53.1). In an assembly procedure, the transformation in BOX frame

coordinates from te location of 3 stored posts to newly measured locations of the

same 3 posts is used to calculate a correcting transformation when playing back the

points. Another technique of storing te transformation data was considered. This

second technique involves finding te transformation from the workspace frame as

defined by the 3 posts to the BOX frame and then performing an inverse trans-

formation of the location of the robot joints prior to storing them. When playing

them back, the forward transformation from te newly found workspace frame to

the BOX frame is used. Because te second technique transforms the positions

so they no longer appear as robot joint coordinates in te file, it becomes more

difficult to edit the points and was therefore not used.

The rotary joint calibrations are used in a slightly different fashion than the X,

Y Z calibrations when making joint position corrections. The values returned from

the rotary calibration procedures are the rotation angles which will position the
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joints to the measured 0 location relative to the calibration fixtures. In general, all

values returned are relatively small. The calibration angles measured at-, the time

the positions are stored are subtracted from the positions before they are recorded

in a file. When the positions are played back, a. new set of rotary offsets are added

to the roll, pitch and yaw joint agles before executing a robot action.

Variation of Calibration Mea8urements

7565 repeatability tests were performed to determine how robot repeatability varied

over time. At the time the test was performed, oly the linear calibration fixtures

were in place, so no rotary calibration was done prior to measuring the location

of the posts in the workspace. The test consisted of exercising the robot and then

instructing it to perform a FINDPOST procedure on three posts. The entire cycle

lasted about 6 minutes and was repeated for 2 hours. Te test results showing the

measured X, Y, and Z locations of the 3 posts relative to teir nominal ositions

measured during 2 hours of operation for two separate runs is shown in Figure 5.14a

through 5.14c. Each run was started with the robot hydraulics at room temperature

and the computer and 1/0 electronics warmed up for at least 24 hours. The smallest

variations were in the Y axis direction - about 006 inches maximum. T]e largest

excursions in positions were seen in the Z axis direction which varied 06 to 020

inches in the first 45 minutes of the test and then varied less than 003 inches for

the duration of the test.

The results of the test show that there appears to be a warm up period before

the robot can be considered repeatable to less than .015 inches. A warm up time

of about 45 minutes conforms to the suggested time in the AML manuals 98].

The source of the time dependent errors has not been investigated to date, but 'is

likely to be temperature sensitivity of the tempo-sonic linear position transducers,

potentiometers, the servo electronics and mechanical structures or some combina-

tion of these elements. A temperature sensitivity of te tempo-sonic transducers

may explain the large variations seen in the Z axis and the smaller variations in

the X and Y axes because te Z axis transducer is the only one positioned next to

incoming hot hydraulic oil. The larger variation in the X axis compared to the Y

axis may be due to the temperature sensitivity of the pitch potentiometer since the

pitch axis is aligned with the Y axis during te entire test calibration procedure.

After numerous calibrations were performed prior to high tolerance assembly
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tasks, it became apparent that the robot was incapable of locating its workspace

to a sufficient accuracy for the successful completion of the tasks. It was also noted

that when the robot was warmed up for more han about 45 minutes, many of

the high tolerance assembly tasks could be performed as long as no calibration

procedure preceded the task. Thus, the robot could not locate its workspace to the

same accuracy as its steady state (warmed up) repeatability. At times 'it was as

much as 030 inches (.75 mm) out of calibration. Position errors often appeared to

be larger than the calibration offsets as the robot chanced its joint configurations

for different phases of the assembly tasks.

5.4.3 Power Drill Assembly Procedure

The assembly of Black and Decker inch band drills was used to demonstrate some8

of the assembly hardware and software concepts in Sections 5.2.1 and 53. The drill

assembly task consists of the mechanical insertion of 13 of the 19 parts of the drill,

Figure 5.15. Electrical wiring, switch, brush and handle assembly operations are

not addressed., The layout of the drill assembly cell is shown in Figure 516. The

assembly procedure is coded in AML and uses the path definition system described

in Section 53.2. The majority of te assembly procedure is programmed off-line.

Only the gripper grasp point for the parts need be programmed on-line.

The top level cell control program is generated off-line by a programmer. An

example of part of a drill assembly program is shown in Figure 517. Each MOVE--

PATH instruction is essentially a task level instruction for the robot. Te argu-

ments to this instruction contain information about the type of task to be per-

formed, the shape of the path through which the robot should move, the type of

grip to be used on the part and the part with which the task should be performed.

MOVE-PATH instructions with alternating calls to GET-PXF and PT-PXF (get

and put path transforms) comprise the skeleton of te assembly program. Addi-

tional commands for calling subroutines which control peripheral hardware (devices

other than te robot) make up the majority of the remainder of the assembly pro-

cedure.

The assembly procedure is shown in flowchart form in Figure 5.18. Most of

the operations involve the acquisition and te insertion of the appropriate part

in the assembly. Robot motions corresponding to the get then put instructions

in Figure 5.18 consist of the robot moving through the desired path to the proper
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DRILL: SUBR;

EXAMPLE AML PROGRAM

FIRST PROMPT USER FOR INITAL INPUT

INIT-INOUIRE;

CAUBRATE-WORKSPAM,

law START THE DRILL ASSEMBLY HERE

PREPARE-VISE;

MOVE-PATH(SHRT-P,'GET-PXF'oSTARTPTNEXTPT('BELL,));

MOVE-PATH(TALL-P,'PUT-PXF',,NEXTPT('VISE'));
00

WAITMOVF ,

SECURE-VISE;

MOVE-PATH(SHRT-Pt'GET-PXF19STARTPTNF.XTPT("GRI I);

MOVE-PATH(TALL-Ps"PUT-PXF'*,,NEXTPT('VISE'));

MOVE-PATH(SHRT-Ps"GEPXF'ISTARTPTNEXTPT(*THW")h

MOVE-PAT'H(TALL-Ps'PUT-PXF*,NEXTPT("VISEl))-'

MOVE-PATH(SHRT-Ps'GET-PXFsSTARTPTINEXTPT(tTHB#))-

MOVE-PATH(TALL-PotPUT-PXrslNEXTPT("VISE'));

MOVE-PATH(SHRT-PGET-PXF',STARTPTMEXTPT(-rHW#)),-

MOVE-PATH(TALL-PsPUT,.PXFtsNEXTPT(WISE#));

MOVE-PATH(SHRT-Pt'GET-PXF'tSTARTPToNEXTPT(OGR2'));

MOVE-PATH(TALL-P,'PUT-PXF's1,NE.XTPT("VISE"));

I � III Igo NINO loom I "IN

Figure 517: Example top level assembly program.
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Finish

Figure 5.18: Drill assembly procedure.
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Drill Assembly Operations

Part Name T �-S-sembly Fixtil.re Type of T-ip equired

Bell Housing Vise

er Vise se,-Iting

Thrust Washer Vise

Thrust Bearing Vise
Thrust Washer Vise

Gear 2 Vise Meshing
Bushing Plate Vise

Soft Washer Flexible Fixture

R-otor Vise Meshing

Soft, Washer Vise Low Tolerance Mating

Shroud Stator Pallet Seating

tator Vise

Chuck Chuck Jig

Table 5.1: Hand drill parts in order of assembly.

the chuck to the bottom of the drill (see Figure 519). In this operation, the flexible

fixture is used to locate and actuate the end effector which applies power to the

drill. This device has a standard flexible fixture end effector interface. It also

has contacts which plug into the stator windings and brushes which are actuated

by solenoids to contact the commutator of the rotor. A micro-switch sensor is

mounted under the chuck in the chuck jig and senses when the chuck has been fully

threaded onto the shaft. This sensor also acts as a final test to check the proper

operation of the drill motor.

The intermediate part fixturing function of the flexible fixtures is demonstrated

in the assembly of the first soft washer. Just after the acquisition of the soft

--washer, the flexible fixture is extended to a position over the assembly to provide

an intermediate fixturing location. The washer is then inserted into the flexible

fixture. Next, the rotor is acquired and 'Inserted through the fixtured washer.

The flexible fixture is then retracted and the rotor is positioned to its proper

position in the assembly. This procedure was necessary for the reliable assembly

of the soft washer. If the washer were directly assembled onto the previous part

(the bushing plate), it would be unstable (see Section 22.1 for a definition of an

unstable assembly) 

As ects of the assembly procedure which are taught on-line include gripper



---

�5.5: Conclusions and Discussion 199

two trajectory points is not appropriate for obstacle avoidance,another path should

be selected or defined on-line. It was found that most of the on-line programming

effort was in teaching reliable grasping geometries between the robot and he parts

and modifying the pallets to accurately fixture the parts without over constraint

which may cause jamming upon part removal. The basic assembly procedure (top

level program) remained relatively unchanged during the debugging phase with the

exception of the addition of some "tap" operations for a, few parts.

5.5 Conclusions and Discussion

After studying this and past prototype programmable assembly cells, a, number

of conclusions have been drawn and a list of issues which have yet to be fully

addressed has been formulated.

1. Only a small subset of assembly tasks are possible with most single armed

robots. Special assembly tools and end effectors are required for many tasks.

2. High precisionassembly (clearances between mating parts from 025 to 1.0

mm) is possible at moderate to fast speeds (I meter per second) using position

feedback only and the following stipulations

(a) Joint stiffness must be high enough for fast mechanical settling, but

low enough to allow adjustments for part misalignments with negligible

interpart forces. The location of the rotational compliances strongly

affects which operations may be performed as well as the speed at which

the operations may be performed.

(b) Adequate manipulator repeatability. This quantity depends pon the

size of the part chamfers, the manipulator's compliance, and the sta-

bility of the manipulator's grasp on te part. For parts which are eld

relatively firmly (not easily displaced from the gripper) and have rela-

tively large chamfers (about I mm), assembly with clearances as low as

0.01 inches 025 mm) is possible with the 7565 (robot repeatability

0.1 mm). Smaller clearance insertions such as the 002 inch (.05 mm)

clearance first-gear shaft insertion was possible if the parts were allowed

to fall together then tapped into place. The compliance of the 7565
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is difficult to accurately measure due to the robot's integral position

controller.

(c) Certain operations which involve the interaction of the manipulator or

.part being held by the manipulator with a "stiff" environment must

be performed at reduced speeds for reliable operation. Also because the

grippers were often tipped 45 degrees form their rest position, Z direction

accelerations produced appreciable X and Y direction dynamics induced

deflections and had to be limited.

(d) Part grasping and extraction is difficult for accurately fixtured parts

and must be performed so that the point of application of the with-

drawing force is in a location which minimizes the possibility of wedging

or jamming 201]. For a part with a cylindrical hole fixtured on a close

tolerance pin, the center of compliance 104,1331 of the manipulator-part

system should be just above the top of the fixturing pin. If such a grasp

location cannot be found, an offset moment may be applied to the part

to facilitate its extraction.

3. Force feedback controlled assembly and force monitored assembly (guarded

moves 113]) cannot be performed with many commercial robots at speeds

which are appropriate for high speed industrial assembly. A very igh band-

width system is required (see reference 202' for an overview of force control).

4. The cost of performing operations inside a robotic assembly cell is extremely

expensive; therefore, time inside the cell needed to perform operations other

than assembly (such as gripper changing) should be minimized.

5. A significant amount of time in an assembly task is spent waiting for the

manipulator or other mechanical devices to come to rest.

6. Development time needed to automate an assembly may be reduced by per-

forming most of te assembly cell programming tasks off-line.

7. Tasks such as teaching adequate manipulator grasp points for parts is ex-

tremely difficult to perform off-line due to unforeseen gripper deflections and

part-fixture jams during part removal.
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8. Robot fixture tooling may be readily changed by a robot such as the 765,

but should be specially designed for ease of assembly (and disassembly).

Issues which were cited as requiring much additional research include

1. The use of sensors to eliminate much of the required accuracy in fixtures,

pallets, grippers and other hardware upstream of the assembly cell.

2. Investigation of the effect of anipulator impedance on the speed and ease

of performing assembly operations.

3. Systems that will allow more complete off-line programming of an assembly

task including geometric and other physical models.

4. Modeling of dynamic interaction of parts, manipulator, and environment and

efficient, modes of control for these interactions.

5. Systems which are capable of sufficiently accurate and reliable programmable

part feeding.

6. Te development of assembly tools to accomplish the operations not yet

addressed.
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A prototype part position sensor was designed based on analysis in Chapters 3

and 4 It measures the location of certain part features in six degrees of freedom

based on triangulation of points illuminated by a light plane source.

The prototype was constructed and then calibrated on a test bed. The calibra-

tion procedure entailed quantifying relevant parameters for both the camera and

the light source. Accuracy in measuring the location of a right corner feature was

then determined through a battery of tests. Finally, te sensor was removed from

the test bed and used with a mechanical manipulator to perform assembly tasks

with real parts.

6.1 Components of the Prototype Sensor

The sensor consists of a helium-neon laser (.'N/tells Griot, model 05-LHR-151) and

cylindrical lens (Mells Griot model LM-60), an MOS-type camera with 320 x 244

pixels (Hitachi model KP-120) and a 0mm lens (see Figure 61) a Symbolics 3600

Lisp machine and bit-graph terminal, a 454 x 576 x bit frame-grabber (built at

the MIT Al lab by Noble Larson), a hardware convolver (also built at the MIT Al

lab by Noble Larson 1341) and a color graphics display. Both the camera and the

frame-grabber are synced by the same clock. The camera constantly sends a video

signal to the frame-grabber. When so instructed by te Lisp Machine, te frame-

grabber fills its memory with the output from te camera. The pixel clock internal

to the camera is not synced with the frame-gra-bber pixel clock; thus, the pixels in

203
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The disparity angles (OLP) of the two lasers (only one laser is shown in Figure 62)

.were 64 and 68.5 degrees.

6.3 Calibration of the Camera-Light Stripe System

Both the camera optical and laser geometric parameters were calibrated on the

test bed. The camera magnification factor was independently calculated along the

two directions of the image plane. The apparent difference in the magnification

factor was due to non-synchronized sampling along the horizontal direction (see

Section 43). Magnification is defined as the length from the rear nodal plane to

the image plane divided by the width of a pixel (see Section 42.1 for lens parameter

definitions). The following camera parameters were calibrated

rpixel: Apparent aspect ratio of the pixels in the frame-grabber.

Xtarget: Distance from the front nodal plane to the base position of the target.

(YCOEZCOE) O Sensor frame coordinates of the center of expansion.

Magnification along the sensor y coordinate.

Magnification along the sensor z coordinate.

It was necessary to calculate the base distance from the camera to the target,

Xtargeti for accurate modeling of perspective projections.

The calibrated laser parameters (described in detail in Section 63.2) were (refer

to Figure 42)

OLP: Disparity angle of the laser plane from the optical axis.

OLP: Tilt angle of the laser plane from the vertical.

YLP: Distance from the center-of-expansion in the image plane to the laser plane along theI
camera y axis.

6.3.1 Camera Cahbration Procedure

A single step procedure was designed for the camera calibration. A series of images

of an optical target were recorded at different distances from the camera (along

the approximate optical axis). A second set of images were taken at the same

distances, but with the target rotated 90 degrees.
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Figure 63: Sketch of target used for caniera c-i.,Ii')-ration.. U-nes are ccurately

Spacled -inch 6.35 nnn) ii.part.
4 

Camera Calibration Target

The tget ttse(l to clibrate te cainerzi par-arneters coytsisto or a flat stirface with

a rutniber of tbin parallel lines drawn t za 25 iTI C 11 6.35 nni-) spacings, Figtvr 63.

The lines are prposely positioned so tat -they are not riented along tbe Fixes of

the pixel array of the camera. Tis avoids measure'nients at singtilarity positions

identified ' Section 43.

Pixel Aspect Ratio

The apparent zispect ratio of the pixeJs In lblie frame-grabber may be different

froni nity if the cai-nera 'is ot synced on the pixel level wh the frame grabber.

Most video cameras do not have an external pxel clock ssync Input, thas a slight

distortion 'in iniage, sape occurs fter digitizat-Ion in he fraine grabber. Because

of the asynchronous clocking of the fraine grabber -end the camera, this distortion

is ensitive to environmental 0,einperattire) (-changes.

The frai-ne grabber aspect ratio my b calcidated' from two images of the target

(call thein image and image Botb mages re tken. wth the tget at the

saine dist-ance fro t cainera but one target hn,,-tge is rotated 90 fron te other.
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The distance between the lines in the Zt h image, DI,., is a function of the distance

between the lines on the target, Dt,,,gt,

DI, sino. 2 (D�, ,,i Lri,,,cos . 2 - Dtarget f (6.1)
Xi

where 0. is the angle of the target line, Dpix'i is the distance between target lines

in the image measured in pixels and xi is the distance from- the front nodal plane

to the target. Taking the ratio DI.. equal to unity, and after some rearrangement,

we obtain an expression for the pixel aspect ratio

L S2D2 (I SI) - 2D2ix 2)
r - Pix'y 1 PiX'1 2 2 p 2 (1 + I- (6.2)

pixel LPiX'z DI (I 2 - D2. 2)
Pix,2 1 Pz X, 2

where we have used the relationships

tan 0- - S.

sinO. - Si (6.3)
2+ 

Cos
�/�I+ Si2

Center-of-Expansion Calibration

The center-of-expansion is a point in the image plane of a camera which is defined

by a certain straight line motion of a target (see Figure 64):

Given an object plane (more specifically, a set of points which lie in a

plane and are visible to a camera) which is not parallel to the optical

axis of a camera and a motion of the object plane which -is not parallel

with the plane, the center-of-expansion is the point in the image plane

which corresponds to a single point in the object plane throughout the

motion.

As the target in Figure 63 moves away from te camera (motion should be

roughly parallel to the optical axis), the lines in the image appear to separate from

one another. An imaginary line parallel to te target lines which passes through

the center-of-expansion will be the only line which appears not to move (this line

will most likely be located in between a pair of actual lines on the target) This
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f-I fx t I

Iy I
iI

C.Upl. -11-1

C� C�0
0

Motion of obiect vlanc I--

oints,, q�)pc�it, to ir(- ve towards

cellu,r of millsioll

Figure 64: Camera and object plane used o define the center-of-expansion. Images

are stored as the object plane is moved along te camera's x axis.

line is denoted as te stationary line. The intersection of stationary lines from two

image sequences (the target foreacb sequence is rotated 90 degrees) defines the

center-of-expansion.

The parameters of the stationary lines are calculated from pairs of images within

each sequence. Results from the calculations from the image pairings are combined

to obtain a sequence result. Two stationary line calculation sequence results are

then used for te center-of-expansion estimate. The contribution from each line

in the image is appropriately weighted line parameter weights are NA"here a 2
012

is the parameter variance) based upon its length. Equations 422) and 423 in

Section 43 gives the relationships between segment length and parameter variances.

The ratio of perpendicular distances of a pair of lines in the image to the center-

of-expansion is the same as the ratio of distances between lines in the corresponding

images.
Li,jetut-11 - DI (6.4)

L2,,,-t c t u a ID2

where Lactual is the distance from the center-of-expansion to a certain line in the

first image and L2,atual is te distance from te center-of-expansion to the image of

the same line in the second image (the target as been moved to a different depth

for the second image), and Di is the weighted average distance between adjacent

lines in the Z"' image of the target. Measurements of distances to the lines are

initially made from a point wich is- not the center-of-expansion since its location
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is not known a priori. Thus, the distance to the center of expansion from a certain

line is
.,atual Lmeas +AL (6.5)

2 1

where Lmeas- is the perpendicular distance from the initial reference point to the

line and AL is the perpendicular distance from the stationary line to the initial

reference point. Thus, once AL is known, the location of the stationary line is

known. Substituting Equation 65) into Equation 6.4) and solving for L

AL DjL - D2L, (6.6)
D - DI

The slope of the stationary line in a sequence of images is the weighted mean slope

of all of the lines 'in all of the images and the intercept 'is the weighted average

intercept calculated from the intercept of each line and Equation 6.6).

An iterative procedure is used to find the center-of-expansion. An initial guess

is made and the calculation described above is performed. Using a, good first guess,

the procedure converges after one iteration.

Calculation of the Ba8e Po8ition of the Target

Accurate direct measurement of the distance from the camera lens front nodal

plane to the target is difficult to make since physical access to the lens is limited.

The following is a technique for making this measurement from a set of images of

a target of precisely spaced lines. The target Figure 63) is positioned at precisely

incremented distances from the camera. Because the incremental target positioning

and line spacing is precise, an accurate range estimate may be obtained without

knowledge of the lens parameters.

An 'arbitrary position of the target from the front nodalplane of the lens, Xtarget i

is orrelated to x settings on the test bed in order to obtain absolute distance mea-

surements of the target. The distance between lines in the image plane (measured
'Ihin pixels) for the image as a function of the distance from the lens is given in

Equation 61). We will consider calculations made from two images, say and

k, which correspond to test bed x position readings xj and Xk respectively. A

certain distance from the lens to the target, Xtarget-, May be selected such tat te

actual distance from the lens to the target at positions xj and Xk is Xtarget + j
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andXtarget + Xk respectively. Taking the ratio of the distance' between lines in two

images (from Equation 6.1) and the appropriate choice0f Xtargt)

Dpixk - Xtarget + XJ (6.7)
Dpixj Xtarget + Xk

Solving forXtarget

D
X Xk

Xtarget DIJ2,14 (6.8)
Dpix�k Xk

DII'X -i

Pairs of images are used to generate estimates for Xtarget- These estimates are

then combined using appropriate weightings. The weightings are based on the

fitted line parameter errors for lines in the image of the target. Errors i manual

positioning of the test bed were- fairly small and an order of magnitude calculation

showed they had little effect on the total error.

Magnification Calibration

The camera magnification calculation uses the same set of images as te center-

of-expansion calculation. A separate magnification calculation was performed for

each image and the weighted mean was used as the final value. The quantity used

for the magnification includes the conversion from inches (mm's) to pixels. The

apparent magnifications in the y and z directions are different if the pixel aspect

ratio is not unity.

Using Equations 61) and 64) we may solve for the magnifications in the y

and z image plane directions

-xiDpixi r2 + Sfo pix"I (6.9)
__r 2Lpixy Dtarget I

2
fo -xiDpixi I rpixel Si)

(6.10)
Lpixz Dtarget I Si2

For good resolution, Equation 6.9) should be used on images of lines with large

slopes (Si >> 1) and Equation 610) should be used on images of lines with small

slopes (Si < 1).
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6.3.2 Calibration of Laser Parameters

The light plane calibration procedures are similar to those used for the camera

calibration. Instead of a target with lines, a geometrically flat, white calibration

surface is employed. A series of images is taken of the lser plane intersecting the

calibration surface with the surface located at incrementally decreasing positions.

Tilt Angle Calibration

The tilt angle, OLP, defined in Figure 42, may be determined by fitting a straight

line to the image of the stripe generated from the intersection of the light plane

and the calibration surface. A number of images of a sequence of target positions

are used for this calibration and the appropriately weighted mean of the slopes of

the lines is used (see Figure 65). Because the pixel aspect ratio may be different

than unity, the slope of the stripe in the image (measured from the pixels) may be

slightly different from the slope of the line generated by the light plane

tanOLP- rxels

where is the slope of the stripe measured from the pixels in the image.

Disparity Angle Calibration

The disparity angle, OLP, is determined by locating the intercept of the stripe in

a sequence of images. For convenience, the stripe intercept is taken along the y

direction on the z ZCOEaxis. The intercept information is combined with the test

bed x distance settings (this calibration is described in Section 63.1) and a least

squares slope fitting procedure is used to determine the tangent of the disparity

angle (see Figure 6.5).

Light Plane to Camera Distance

This distance, YLP is measured along the y direction of the image plane and is

from the center-of-expansion to the light plane. It is obtained from a least squares

intercept estimate of te data from the disparity angle calibration (see Figure 65).
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C.O.fl".

Points sed to calculate
disparity angl ad

light plane to
camera distance

line

Angles sed to

CaICUIatc tilt angle

Figure 65: Method for determining the disparity angle, tilt angle, and light plane

to camera distance.

6.4 Performance Evaluation of the Prototype Sensor

The measurement accuracy of the test-bed-mounted sensor was studied by mea-

suring the corner feature of a cube, Figure 66. Corner location measurements

were compared to the settings on the six stages of the test apparatus. These mea-

surements were relative to an arbitrary reference location. Tt was not necessary to

obtain absolute measurements since relative accuracy is the specification required

to determine sensor performance in an assembly environment where all measure-

ments are relative to the robot frame.

The relative accuracy in locating the corner of the cube using information from

two light planes was also studied. The maximum likelihood technique developed

in Section 48 was used to obtain estimates of te orientation of the cube.

6.4.1 Te8t Procedure

The test procedure for determining the accuracy of te sensor entailed locating

the cube at a home position then moving one of the six positioning stages (call
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this the test direction) a small amount. An image of the cube was recorded and

the same stage was moved the same amount once again. This was repeated a

number of times. The positions of the cbe corner from a series of 'images were

compared to the apparatus positions and sample statistics were calculated from

differences between stage motion and sensed corner position. The test procedure

was repeated for all six stages. The rotational degrees of freedom in stage motion,

Xrot i Orot i and ?P rot are defined in Figure 66. Measurements were made in the ,

0, and degrees of freedom, which are the Euler angles of the cube. Figure 432

shows the convention used. Since the cube was fairly accurately aligned to te axes

of the positioner, Orot 'corresponds closely to and V),,t corresponds closely to .

The range of motions for the tests were 0.5 inches 12.7 mm) in each transla-

tional degree of freedom and 8.5 degrees (.15 radians) for theOrt rotation. and t

rotation and 20 degrees (.35 radians) for the x,,t rotation. In general, measure-

ments near the center of the ranges of motion were more accurate than tose near

the ends. This was because line segments on -some cube faces were smaller as the

cube was moved from a central position under the laser stripe.

Because the cube is not absolutely referenced to the stationary camera frame,

accurate measurements in some degrees of freedom were difficult to obtain. Most

measurements were made in degrees of freedom which were stationary during test

direction motions. For example, rotation about the x axis slightly changes the y

and z positions of the corner of the cube since the rotation 'is not exactly through

the corner, however, the x position remains unchanged. Thus, only estimates of

the x coordinate of the corner would be computed.

6.4.2 Single Lght Plane Tt Re8ults

Figure 67 shows a typical plot of the measured location of the cube in the z

direction due to motions in the y direction. The larger errors at the ends of the

range are due to smaller line segments on some of the cube faces. Similar plots

were generated for measurements and motions in all pairs of degrees of freedom.

Table 61 shows the results of the tests for motions of each of the six degrees of

freedom. The blank spaces in the table correspond to degrees of freedom which

were non-stationary or were not linearly related to the test direction motion. The

mean of the sample standard deviations are 002 inches (.05 mm) in translation

and 0095 degrees (0.0015 radians) in rotation. Assuming the distribution of errors



Direction of Laser X error Y (,,r-tor Z error 0 rror rror

Motion. Nrimber (h)(11cs) (inclics) (illche"i) (degs.) (deg'8,) (degs.)

Tr,,-ujs. X 1 .0030 .0010 .0M 05 .03 .08

Trwis. X 2 .0(25 .00 15 -13 .04 .11

Trans. Y I 0 3 5 .0025 -0015 J2 .09 .14

Trans. Y 2 -0(80 0 0 2 5 J)025 .12 .05 .13

Tr.-.tiis. Z I .0010 .0020 5 .11 .07 .13

Trans. Z 2 .0025 M05 .0015 .15 .06 .14

Rot. Orot 1 -0(15 .(5 .08

Rot. q6,t 2 .0015 .09 .08

Rot. O"'t 1 .0020 .09 .1 2

Rot. V),,,t 2 .0(20 .14 .08

not. Xrot 1 M15

Rot. Xrot 2 .0(5
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.Figure 68: The hq.tersectioin. of two iidependert fight '.,I 1-1 a cube.

c-ti- e G �',.uss'an 98.8 ercent of te meastire-nients (5 standard dviation,-),) will be

Wi-tll.E...L a.n accuracy of 10 inches (.9.5 and .5 degrees (.007 radians). Tese

are wif',hi t- dsign goals presentod i ec-Ition 3A.
T - re I 1. - k,

III., peatab'lity of te Lensor was ext"'CIIInly Ivigh (abow�- .0001 ii-icIi.es or 0025

pe.r scandzvrd deviation) when niiltiple reztdi]198'Were ta'kt�.:- wthout niovingthe

J i between readi-Figs. 'if thetarget posit-;.Oil is 1- erturbed, lightly te readings

change n-iore appreciably (about .00 iches or 025 nim pr standard dviation)

6_1j. - 3 Ididtiple Light lane Test Re, ults

The, acc-aracy i .1ocating t cbe's corner using two light stripes as invostigated.

Six Ii-ile segments hree front each hiser) were generated f each position of the

cube (-,�ee leigure 68). Two independeTit orientation estimates (E-aler agle vectors)

were obtahied from he line segments. These were combined using a maxijimm like-

lihood technique 'Eqn-ation 465)]. Two sets of results were obtained: on.e with

II Sx estiniates eing sed in ca single I'K' fil�elihood calculation, Calid oe

with olily pairs of correspondin Ealer ngles bing sed W prs (f single
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Euler angles are used in the estimate, correlations with other Euler angles are ig-

nored. Figure 69 sows the Euler angle estimates for lines from laser number ,

laser number 2 and the maximum likelihood estimate using all six angles. The

calculated angles from each of the lasers have different means due to calibration

errors. The maximum likelihood estimate does not always fall between the two

calculated angles and for some angles seems to be an 'imprecise estimate. This is

most likely due to the coupling between the Euler angles and the unmodeled ca]i-

bration uncertainties. The maximum likelihood estimates from pairs of angles are

shown in Figure 60. Here the maximum likelihood estimate is between the two

independent laser estimates. The estimate nears one of the single laser estimates

when that one is more reliable (longer line segments) than the other. The esti-

mate always uses the combination of the measurements which reduces the overall

error. Since calibration errors were not taken 'Into account, the estimate weighs

the two calculations equally for equal length line segments. Because the maximum

likelihood estimate performs a weighted average of the two estimates, and the two

estimates have different means, the sample standard deviation of the maximum

likelihood estimate is not always less than the smaller sample standard deviation

of the single laser estimates; although, the tests showed that it was usually very

close to the lower standard deviation of the two.

6.5 Repeatability and Accuracy of the Unimation PUMA

Robot

A study was performed to determine the repeatability and local accuracy of a Uni-

mation PUMA robot using the prototype part position sensor. A right rectangular

prism, which was held in the PUMA's grippers, was used as the target for he

sensor, Figure 611.

6.5.1 Repeatabzhty Tt

The test procedure for the robot repeatability test is as follows. Define an arbitrary

home position with in the active sensing volume for the sensor. Move te arm o

various locations around the workspace. After each motion away from the home

position return the PUMA to the home position and make a measurement using
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Figure 69: Maximum likelihood estimates of rotation angles of the test cube.
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Figure 610: Maximum likelihood estimates of rotation angles of test cube from

pairs of angles. Plots are for Euler angles 0, and .
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Figure 612: Results from the PUMA local accuracy tests. Robot motion in the

xi , and z directions are along the abscissas and measured position deviations are

along the ordinates. The standard deviations listed correspond to errors over te

full range of motion indicated.

rection parallel to one of its coordinate axes and the sensor was used to measure

the total displacement of the prismatic target. Figure 6.2 shows the deviations

in PUMA motions as measured by the sensor. As might be expected the local ac-

curacy decreased with larger motions. For instance, the x direction local accuracy

over a 1.8 inch 46 mm) range was 0067 inches (.17 mm), wereas, over a inch

range in the x direction, the local accuracy was about 003 inches (.08 mm).

6.6 Prototype Sensor-Driven Assembly System

A prototype position-sensor-driven assembly system was developed and its capa-

bilities in performing assembly tasks were studied. The prototype system consists

of a Unimation PUMA robot a part position sensor described in Section 61) a

Symbolics Lisp machine model 3600, some image processing hardware, and a color

graphics display system (see Figure 613). The sensor is mounted on the work table
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Plane

I

Figure 613: The prototype position-sensor-based assembly system. The

nents include a Uimation PUMA robot, a part position sensor based on

stripe ranging technique, a Symbolics Lisp machin'6 'model 3600 and a color

display system.

compo-

laser-

raphics
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Demonstration Task Procedure

Each of the three demonstration tasks followed essentially the same sens5ing and

assembly procedure, although-, the manipulator configurations were often c .tuite dif-

ferent fo r corresponding phases of the tasks. The manipulator first acquires an

approximately positioned part from a prespecified location on the worktable, Fig-

ure 6.17a. The part is then field in a sensing location, Figure 6.17b, while the

camera grabs a frame, Figure 618. After the frame as been grabbed, the manipu-

lator repositions te part to the assembly approach and part realignment position,

Figure 6.17c. At this point the manipulator remains idle until the computer has

calculated the position of the part from the video frame. After the computer com-

pletes the sensing calculation, it displays te results (the location of the corner

feature) on the graphics terminal, Figure 619. When the part position infor-

mation is available sometimes immediately after the robot reaches the assembly

approach position), the robot reorients the part. ad proceeds with the aSsembly,

Figure 6.17d.

Results of the Test Part Assembly

The sensor-driven assembly system was able to reliably assemble all three of the

test parts. The processing of the sensed information takes about 2 to 3 3econds.

This is somewhat dependent on the size of the laser stripes in the image. The

sensing volume is located about 24 inches 70 cm) from the assembly jigs; thus,

the robot has to make gross motions between sensing and assembly. The results of

these test are available on a video tape which accompanies this thesis.

6.6.2 Square Peg-in-hole Analy8is and Tests

A three-dimensional square peg-in-hole task was performed using a PUM.A robot

and the part position sensor. The task was also attempted without the u-se of the

sensor. The rectangular shape is used so that the clearance between the peg and the

hole is easily adjusted. The non-axisymetric shape presents some eometric com-

plications 381, but, for small misalignments the to dimensional peg-hole-analysis

provides a good approximation to the actual pysics of the task. The ad ustable

clearance peg-in-hole apparatus used in the tests in this section is described in
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Section 66.1.

Theoretical Analysis of the Task

In order to successfully complete te task, both the non-wedging criterion and

the chamfer bound criterion, Equations 22) and (2.1) respectively), have to be

satisfied. We make the same assumptions ad use many of the same uantities

as those discussed in Section 20. Using Equations 240) and 241), and the

sensor accuracy values given in Section 64.2 for and aP,, , we may solve for

the standard deviations for te total misalignments at, the assembly, ,, and P.

This results in a translational error of CrP = 006 inches (.17 mm) and a rotational

error of a, .18 degrees (.003 radians). For 98.8 percent reliability (5 tandardP
deviations), the chamfers must be

L > 5(.006) - .01.05 inches A mm)charnf er 2

and the clearance ratio must be from Equation 238);

> 5(.3)(.003) 0022.
2

For a 175 inch 44.5 mm) square peg this implies a minimum clearance of 0039

inches (.1 mm).

Experimental Limit,5 of the Task 11'ithout Sensing

The peg and hole were carefully aligned then displaced by controlled increments

in either rotation or translation. Translation of the peg relative to the ole more

than 02 inches (.5 mm) caused the edge of the hole to interfere with the ottom of

the peg which caused the insertion to fail. edging was initiated by rotating the

peg about one of its bottom edges prior to insertion. The depth of insertion before

wedging occurred depended on the magnitude of the initial rotation. With the peg

misaligned by 2 degrees (no translation error) wedging occurred at a depth of 32

inches (8 mm). With a misalignment of I degree, wedging occurred at a depth

of 6 inches. Small displacement misalignments did not significantly affect tese

results. Tus, for the successful assembly of the peg in the hole, te orientation

of the peg had to be aligned with the hole's orientation to within about 7 degrees

and aligned translationally to within 02 inches (.5 mm).
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Experimental Limits of the Task with Sensing

The acceptable initial position of the peg was significantly larger for te system

which used the sensor than for te one wich did not. At the pic�up station the

peg could be displaced as much. as ±25 inches ±6.05 mm) in the y direction, ±75

inches ±19 mm) in the x direction and ±2 inches 5 mm) in the z direction. Te

larger acceptable displacement in the x direction was due to the grippers closing

and centering the peg in that direction. The limit in that direction was due to te

maximum gripper opening. The volume limitations in the other directions were

due to the limited sensing volume of the sensor. Rotational misalignments up to

about ±4 degrees ±.07 radians) could be tolerated.

Comparison of Risults and Discwqszon

The error analysis predicted a minimum clearance of 0039 inches (.1 mm). and

a minimum chamfer size of .015 inches A mm). The tightest tolerance peg-in-

hole assembly which could be reliably performed was with a clearance of 004

inches (.1 mm) and a charnfer of 02 inches (.5 mm). The analysis agrees with the

experimental bounds fairly closely. Because the chamfer size on the peg and hole

were not easily adjusted, it was difficult to determine if te system could reliably

assemble a peg with only .015 inches A mm) of cbamfer. Also, ot enough data

was collected to verify the assumed 98.8 percent reliability.

The system using the part position sensor could assemble parts with initial

uncertainties about 10 times greater than the uncertainties in a system without

the sensor.
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Chapter 7

7.1 Discussion

Assembly of rigid parts involves the removal of misalignments between them. In

order to accomplish this with different shaped parts, a versatile error elimination

technique is required. Two methods for eliminating position errors and performing

mechanical assembly tasks are presented in this thesis: the a priori suppression

technique and the measurement and elimination technique. The a priori sup-

pression technique uses primarily passive methods to control the propagation of

'tion errors; whereas, the measurement and el'm'nation technique uses sensing

and manipulation to reduce interpart alignment errors. Technical issues for both

techniques were dealt with, but the majority of te work concentrated on develop-

ing the less traditional error measurement and removal technique. In this section,

further developments which are required for flexible assembly systems so that they

may be used in the factory are discussed.

7.1.1 Development of Computer Integrated Manufacturz'ng Systems

This thesis addresses only a, small part of te computer integrated manufacturing

problem. Many unresolved problems in areas such as product design for automated

assembly, material handling, flexible parts feeding, workcell design, plant layout,

and production scheduling ave yet to be resolved before an efficient and workable

233
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flexible automated factory may be built.

In order for flexible assembly systems to handle larger classes of operations, new

tools in addition to those described in Chapter must be developed. In conjunction

with the development of tools, new assembly techniques should be developed. For

example, there is a need for fasteners which may be easily inserted by a mechanical

manipulator and would take the place of machine screws, nuts ad rivets.

Parts feeding and orienting operations are not directly addressed in either of

the prototype systems presented in Chapters and 6 There 'is a need for feeding

systems that are flexible and reliable; that is, systems which may be easily recon-

figured (preferably automatically) to feed and orient many different parts. Because

standard parts feeding equipment is customized for particular parts and, therefore,

fairly expensive, it is often not economic to purchase separate feeding devices for

each part unless they will be fully utilized (constantly feeding parts for two or

three shifts). Programmable feeders which may be reconfigured to feed different

shaped parts would be useful in an industrial assembly system. Such feeding sys-

tems would be more highly utilized since many different parts could be run through

them. Feeding similarly shaped parts with a certain feeder would facilitate the de-

velopment of flexible feeding systems. It is easier to develop separate systems o

feed disc, rod and prismatic shaped parts than a single system which can feed all

of them.

One problem with many present-day robot systems is that they perform tasks

slow relative to the speed with which humans perform similar tasks. Since man-

made mechanical devices are not biologically bound in either speed or force, there

is no a priori reason that they should run so slow. Insufficient speed is often

the factor which makes these systems ueconomic in many industrial applications.

Sensing and control systems which are used in an industrial environment mst

not contribute sgnificantly to the time required to assemble a product. The oly

factors which should limit a manipulator's speed are inertial, actuator power, and

part frailty.

7.1.2 Development of the Sensor

Although the part-position sensing system presented in Chapter 4 takes a few

seconds to make a measurement, slight changes will enable it to make measurement-Is

in about .5 seconds. The required changes entail a faster hardware convolver andI
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possibly other electronic hardware which can scan through the image and extract

the intensity values of the pixels of interest. Both of these hardware implemented
features have recently become commercially available 48,961.

More accurate information may be obtained from the sensor if ultiple mea-

surements are taken. Because of quantization effects, it is necessary to slightly

shift the object with respect to te imaging device in order to take advantage of

the multiple measurements. If the object is not shifted with respect to the dis-

crete array, the same errors in position measurements are obtained and the noise

cannot be filtered. A lower resolution camera or a larger field of view may be

used if the measurement environment allows multiple readings to be taken. Sec-

tion 45 gives the technique for combining multiple measurements. If the 'images

used for the measurements are almost the same, the technique degenerates to a

simple averaging technique.

Multiple images or single images with multiple light source planes may be used

to sense features which are difficult to locate from an image of the itersection

between the object and a single light plane. Objects such as circuit boards, and

conical and cylindrical features may be accurately located by intersecting them with

multiple light planes positioned in very different locations in space. Alternatively,

the objects may be moved in between subsequent images of intersections with a

single light plane in order to obtain different cuts" throug te surfaces of the

object.

The technique for optimal scaling of each measurement of a feature was devel-

oped for straight line 'image features. Non-polyhedral features generate nonlinear

curves of intersection and a method of determining the covariance matrix for the

parameters of more general curves is required.

More work is required in sensing non-polyhedral features and analyzing non-

linear curves in light stripe images. Some researchers have reported difficulty in

fitting conic sections to data 261. Multiple light plane intersection of cylindrical

features produce additional constraints which could be used in the fitting procedure

to produce better results.

7.1.3 Development of Position-Sensor-Based Assembly Systems

In the sensor-based assembly system described in Chapter 6 it is necessary to let

the manipulator come to rest before sensing the position of the part. The overall
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cycle time of the system may be reduced by sensing the part while the robot, is

moving. If the sensor is mounted off board the moving robot, a frame grabbed

with a video camera produces a blurred image. The part location can be frozen"

if the light source is strobed at a high power and short pulse width. Either a pulsed

laser or a fast mechanical shutter may be used. In addition, the light pulse must

be timed such that it occurs during te time tat the pixels are integrating he

impinging radiation and not while they are shifting out their accumulated output.

In order for the system to know the location of the part when the robot finally

comes to rest, the location of the manipulator must be known at the same moment

that the light pulse occurs (the instant the measurement is taken). Immediate

joint encoder data access (manipulator position) is required. Even if the position

of the robot is known at the tme of measurement, dynamic forces and torques may

produce an offset in the predicted absolute position of the part; although, it may be

possible to take the deflections due to dynamic loads into account when calculating

the part's position. If the sensor is mounted on board the moving robot, it might

be possible to freeze all degrees of freedom between the sensor and the part ad

make an accurate measurement with a moving robot. The manipulator joints are

available for either gross motion or positioning of the part in the sensor field of

view and with only six joints, it might be difficult to both. move the part and the

sensor in unison and have enough degrees of freedom in part positioning to obtain

a good view for measurement.

Using position sensing data to calculate manipulator position commands allows

certain components of the system to be somewhat positionally sloppy. The pallets,

or feeding-orienting devices need not locate the parts precisely. A system which

constrains the general orientation of a part is much less expensive and more flexible

than a system which must constrain the part in some absolute location. The robot

grippers also do not need to precisely locate the part, although, they must firmly

hold the part with respect to the last link of the manipulator. In this case "firmly"

means some compliance is acceptable, but slip is not.

7.2 Applications of the Sensing Technology

The light stripe sensor presented in this thesis has many applications in addition

to spplying part positioninformation to a mechanical assembly system. Light
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stripe systems in the literature (Section 31) independently use each of -the points

along the light stripe and usually no curve is fit through sets of points. Fitting a

curve through the points in the image, then calculating the location of the feature

of interest in three-space is faster than projecting each point into three-space then

fitting them to the feature. The resulting higher speed sensing system has uses in

locating part surfaces during closed-loop machining operations, and inspecting part

surfaces after being machined. The system is also useful in determining whether

parts are in the proper orientation in a flexible feeding system. Either the feeder

could recirculate parts which are not in the proper orientation, or the information

could be passed to the manipulator which would compensate for the displaced part

by altering the grasp position.

Since the sensor system makes accurate six degree-of-freedom measurements it

-may be used as a robot calibration system. Robot accuracy errors occur because

the position of the manipulator does not correspond to the commanded position.

Using a sensing system to measure the position of the manipulator, correction

factors may be calculated such that for a given position command, the repeatable

errors are eliminated and the robot moves very near the commanded position.

The sensing system described in this thesis does not have sufficient resolution to

make accurate measurements in the large field of view corresponding to an entire

robot workspace. Multiple sensors or a single sensor whose field of view may be

aimed at different sections of the workspace could be used or a higher resolution

camera could be used. Section 33 lists other uses for te sensor in an industrial

environment.

The sensing system presented in tbis tbesis gives useful information about te

location of objects only if they are very near here the system expects them to

be. The system cannot deal with randomly oriented objects. In order to etermine

an object's location without a prl'orl'orientation information a system such as the

sparse data system described in 76,77,78,791 could be used as a preprocessor. The

part could ten be grasped and realigned so that te light stripe sensor could make

an accurate measurement.

Instead of measuring the location of the part remote from its final destination,

the sensor could be used to measure the location of te part very near its final

position. A position loop could then be closed around te manipulator which

would allow the part to be positioned more accurately. Errors due to uncertainties
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in robot motion and sensor-robot calibration discussed in Section 27.7 would be

virtually eliminated.

7.3 Technical Contributions and Conclusions

This thesis has addressed many areas related to flexible assembly systems and pre-

cision measuring techniques; however, the major contribution of the work is te

analysis, development and demonstration of a position-sensor-driven assembly sys-

tem. The success of the system was due to the task requirement and error analysis

studies for mechanical assembly operations, te development of the laser stripe

vision system, and the algorithms associated with extracting accurate position

information from noisy images. The position error measurement and removal tech-

nique employed by the sensor-based assembly system provides high flexibility for

handling many different parts without custom fixture designs. Because the system

eliminates aignment errors before the mating phase of an assembly and does not

attempt to monitor the assembly operation during the ating phase, parts mating

progresses faster than it would otherwise if limited-bandwidth force feedback were

used. Mating occurs open loop and relies on the passive compliance of the system

to eliminate any alignment errors remaining after the measurement and removal

phase. Because the sensor-robot system can eliminate most of the alignment errors,

mating is less sensitive to the passive compliance parameters. The system was able

to accomplish assembly operations with initial part misalignments to 10 times

greater than allowable misalignments in a system which does not use a sensor.

The prototype sensing system used to make the part position measurements

was relatively 'inexpensive and operated with sufficiently high accuracy and speed.

Theoretical and experimental studies showed that the prototype sensor coupled

with a commercial six degree of freedom manipulator could perform peg-in-hole

type assembly operations on parts with clearance ratios (clearance/diameter) as low

as about 0025. This clearance ratio corresponds to many high precision industrial

assembly tasks.

In addition to the development of the technology for position-sensor-based as-

sembly this thesis presents a technique for analyzing the potential success of this

type of system. Chapter 2 enumerated the various error sources which occur in

assembly systems and presented a methodology for combining-the errors and de-
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termining the feasibility of an assembly task given a certain set of resources. The

example error calculation for the square peg-in-hole task gave results wich were

verified through experiments in Chapter 6.

In order to make accurate measurements with a discrete element sensor, it is

necessary to apply certain filtering techniques to the image. A number of techniques

for finding the location of a light sripe on a row by row basis were presented in

Chapter 4 It was found that the light stripe feature could be located to subpixel

resolution along each row of the image. The light stripe location on each row was

combined to find the parameters of a least squares fitted line. The accuracy of

finding the parameters of fitted lines was also discussed and found to be highly

dependent of the length of the image of the light stripe.

In addition to using certain image processing techniques, careful sensor system

calibration was important for making accurate position measurements. A relatively

fast and simple procedure was developed for performing accurate camera and laser-

stripe calibration.

. Techniques for locating objects from sparse light stripe data were central to the

success of the real-time-part-position sensor. Because a closed-form solution to the

right-corner-feature location problem was used, the computation time for locating

these features was very short.

The selection of the ranging technique was based on a literature review of rang-

ing technologies and a study of the accuracy of two feature locating techniques

(Chapter 3 The light stripe ranging technique was selected because of its po-

tential for high resolution, fast operation, and relative simplicity in making three-

dimensional measurements. The feature locating technique was cosen over the

fitted boundary interpolation technique because of its potential for high accuracy

and relative simplicity.

A technique for increasing the accuracy of position easurements by combin-

ing multiple measurements was presented in Chapter 4 The technique optimally

combined object position estimates based on the expected accuracy of each mea-

surement. The technique can be used on position estimates obtained from different

sources so long as an estimate for the quality (covariance matrix) of the measure-

ment is available.

In addition to being used as an assembly system tool, the sensor was lised as a

robot position measuring device. Repeatability and local accuracy measurements
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of a Uimation PUMA 600 manipulator were made. The measured specifications

were then used in error calculations in Chapter 2.

Other contributions in this thesis include the development of mechanically pro-

grammable tools to address certain difficult assembly operations. The need for

some of the tools were determined from an assembly task analysis. The tools we're

designed so that a robot could easily reconfigure them to fit its needs for a partic-

ular assembly task. The tools were integrated into a prototype flexible assembly

cell and used to assemble consumer hand drills.

Experiments showed that the position-sensor-based assembly system can make

more accurate non-contact part misalignment measurements and corrections than

unaided humans. With more accurately aligned parts, failure modes such as wedg-

ing, jamming and missed chamfer crossing are less likely to occur. This means

that the process requires less real-time monitoring and can proceed relatively fast.,.

Thus, position-sensor-based machine ssembly can be more efficient than manual

assembly.
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Appendix A

A.1 Paths

A path is defined as an ordered set of N points (Pi 1 ... N) in 3-space (see

Figure A. ). The path coordinate system, with axes Xp, Yp, Zp and corresponding

unit vectors X^p, 'p, zp are defined by the first, and last points of the path in

the following manner. The Xp axis of the path coordinate system is along the

vector from the first point of the path to the last point. The Zp axis of the path

coordinate frame is positioned such that the global Z component of the unit Z'P

vector is maximized (or the Xp, Zp plane is made orthogonal to the , EC) plane).

If the Xp axis of the path coordinate system is parallel to the global Z axis, the

Zp axis of the path coordinate system is made parallel to the global axis. The

two approach points of the path (the second and second to last points) must always

have the same Xp and Yp coordinates as their respective end points.

The path may equivalently be described by a set of vectors �Ipp'i whose Xp, Yp,

Zp components are the Xp, Yp, Zp coordinates of the corresponding set of points.

The vector notation �'Bj describes a vector from the origin of the A coordinate

system to the Zth point in the coordinate system.
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A �

yp

A

.xp

-------

X0

Figure A.l: Path coordinate system.i

(A.I.)

where the P and T super- and subscripts denote references to the path and tra-
:.-Pjectory coordinate frames respectively. To scale the path each rp, (the Z"" path

A.2 Path Transforms

A-2-1 S atial Path Tramsforms

The spatial path transform translates, rotates and scales a predefined path to the

first and last trajectory points defined in the global X, Y, Z coordinate system.

The trajectory coordinate system is defined by te XT, YT, ZT axes and the A

and 'T unit vectors which are located by the position of the start and end points

using the same technique described for the path coordinate system (see Figure A.2).

The intermediate points of the trajectory are located in the trajectory frame by

the scaled path vectors. The scaling factor for the vectors of a path is the ratio of

distances from the first to last trajectory points and the first to last path points.

For a path and a corresponding trajectory with N points, the scale factor is:

-T
rTN

S. F. 
jTN 11
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, p

I

Figure A.2: The spatial path transform.

position vector) may be multiplied by a scaling matrix.

S I S.F. (A.2)

where I is the 3 X 3 identity matrix. Since the first Point of the path is at the

origin, the path scaling creates no offset from the path coordinate system.

The path and trajectory :� coordinate frames were defined in similar fashions

(from the two end points); thus, the scaled path vectors, Sj;'PP'0 may be used as the

XT, YT, ZTcoordinate system vectors for the trajectory. Since the robot ontroller

uses joint angles (global coordinates) to move the robot, the trajectory vectors

must be expressed in the global frame. The set of transformed vectors fom the

path coordinate frame to te global frame with end points at the specified start

and end trajectory points is:

-10 0
r T, i -- r T+ RT S pi 7 ... IN (A.3)

where r'T is the vector from the origin of the , Y, Z frame to the origin of
the XT, YT, ZT frame and R" ion ma

TO is the 3 X 3 rotat' trix from the XT, YT, ZT

frame to the X, Y ZO frame:

RTO ["'T ""T T] (A.4)
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ZP

Y.
- Ap

m

...................................

Figure A.3: The cylindrical path transform.

A-2-2 Cylindrical Path Transforms

The cylindrical path transform warps the original path space to a specified tra,-

jectory space. The path coordinate system and the trajectory coordinate system

are defined as above. In addition to' the two end points, a trajectory specification

includes starting and ending approach unit vectors. These approach vectors specify

the direction of the robot departure from the start point and the direction from

which the robot should approach the end point. In a cylindrical transformation,

each of the vectors to the path points in the path coordinate frame are scaled and

rotated as a function of their Xp path coordinate. The cylindrical path scaling 'is

similar to the spatial path transform scaling except that it is performed only on

the path Xp coordinate of each path vector. For a cylindrical path transform, it

is necessary to split each path vector, iT,., into two components, r
XNOr,ALi'

The F, vector lies along the Xp axis and the r' ve ctor is orthogonal to the,

Xp axis and terminates at Pi (see Figure A.3)-

--f - -P -P. r - rpi - riIs XNOPAIi (A-5)
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The action of the cylindrical path transform scales the i vectors and rotates the

rXNORMivec.tors. The scale factor is the same as that in Equation A1. The 'XNo.RMi

vectors are rotated about an axis parallel to a vector, kA, which is orthogonal to

the start and end approach unit vectors (At,,,t and Aend -defined in the rajectory

frame)

kA start end (A.6)

where x is the vector product operator. The angle of rotation for the r'XNORM)i

vectors is a fraction of the total rotation angle, 0, between the two approach vectors.

0 may be found by satisfying the following two equations (from the definition of

the vector scalar product and the magnitude of the cross product) in the interval

0 COS_,(A A

Astart Aend) (A. 7)

0 Sin- (jkA I (A.8)

In the cylindrical transformation, each r' vector is first rotated via aXN(ITAfi
A

rotation matrix, RTA, which rotates the Tvector into the Astar.t vector and then
by a rotation matrix RKi wich rotates the Astart vector by an angle Oi towards

A

the And vector. The expression for a rotation matrix R which rotates a vector
A ]T

about a rotation vector K - kkyk_ and through an angle is

k, k, v e r s + c as (0) k1lk,vers(o - ks'n(�) kkxver8(0 + k, ;n(O)

R k,,k vers(o) + k,sin(o) k,,k.,,vers(o) + cos(O) kk, vers(o - kxnn(o) (A.9)Y
v e r s (0) + k, 'n () k,

k, k, v e r 8 (0 - k, s in ) k7/ t k,,vers(o) + cos(o)

where vers(o) I - cos(o) (from 147]).
A

Thus, the expression for the RTAmatrix 'is Equation A.9 with K ad set to

A kTA
K = --#

jkTAj

A

kTA ZTXA,;tart

CO' (A
ZT Astart = sin-1(jk'TAj), [0, 7r]

A

For the RAT matrix, K and are

kA
K - -+ -

JkAj
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i;,xPi

'WP, N

The cylindrically transformed trajectory vectors with respect to te global frame

are
-0 -0
T,' T + RTO (S Pi RAiRTA' --- I.. IN (A. I 0)z X,
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Appendix B

Prior to positioning the reference baseplates, (Section 52.1) onto the 7565's work

surface, the variation of the 7565 surface plate height was measured. For assembly

task programming, the surface height variation ith respect to the manipulator

reference frame (as an observer in the gripper reference frame would measure the

surface) is more critical than absolute height variation. The changes i height

with respect to the manipulator frame was measured using a mechanical indicator.

The indicator was placed in the grippers and Z direction measurements were taken

every 2 inches over the entire X-Y workspace, Figure B.I. The resulting indicator

readings are shown in two perspectives in Figure B.2. The low point of the surface

is 4 inches forward and 2 inches right of the left rear corner in the first view of

Figure B.2. The highest deviation measured occurs at the near right corTler of the

same view and is 012 inches above the lowest point.
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Figure B.2: Two views of 7565 surface plate height variation.
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Appendix C

The flexible fixtures in the prototype assembly cell are locked into place by tight-

ening a cable in the arm of the device, Figure C.I. The arm consists of alternating

spheres and cylinders with holes through the center and a steel cable running

through the holes. In this section, the relationship between cable tension and the

maximum allowable force applied to the end of the device without ball/cylinder

slip is determined.

A free body diagram of one of the balls of the arm is shown in Figure C.2 We

assume that the slip is brought about by the "bending" moment applied to the ball

from an applied force at the end of the arm

MB F,,p,, x

where MB is the moment applied to the ball, F,,,,, is the force applied to the end of

the flexible fixture and x is the distance form the end of the fixture to the center of

the ball. We assume that the shear force across the arm does not make a significant

contribution to the forces at the ball/cylinder interface. The cylinder radius at the

point of contact with the sphere is RC, and the sphere radius is Rs. The angle of

contact, 0, is defined by the equation

Cos 
Rs'

is the angle about the contact circle with pointing towards the applied

force Fpp.
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'�app

F
T

app
Io 9--- x

Figure C: Strulct-ure of the flexible fixt-ure am.

Filytire, C.2-. Free body diagrrain of a single ball i te fixture a-0 >
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The normal force per unit length along the contact circle is

FT FT (C. 1)

UN = 7rRC sin 2-rRs sin cos O'

where FT is the force pushing the' ball and cylinder together along the cylinder

axis. If the sphere slips in the cylinder, points on the cylinder edge would trace

out circles (lines of latitude about a horizontal axis) on the surface of the sphere.

The frictional force per unit length of contact is directed tangent to these circles

and has magnitude

9F = PUN (C. 2)

where is the coefficient of friction. The distance from a point of contact to the

sphere center perpendicular to the axis of potential rotation is

2 S2 2 I 2Rsm R + R -R =Rc - - sin (C.3)C C 2 
COS 

The torque contribution along a differential segment of the contact circle is

dM = RsmCF(RcdO). (C.4)

Substituting Equations (C. ), (C.2), and (C-3) into Equation (C.4) and integrating

around the contact circle gives the total moment due to friction which can resist

slipping

M ttRsFT in2 do
,7r sin 

2yRsFT E Cos (C 5)
,7r sin 2

where E is the solution to an elliptic integral of the second kind. The function

log 2 E cos 0 T is plotted for from to in Figure C.3.7 sing 2 2

To maximize the resisting moment the contact angle should be small; however,

too small a contact angle will produce a locked condition between the ball and

cylinder. In order for the structure to remain unlocked we need > tan-1 ft.

Assuming steel on steel with a coefficient of friction = 3 the value of the

contact angle which just produces locking is = 29. Reading the scaled moment

from Figure C.3, the maximum resisting moment just before the locking condition

is

Mmax- log-'(-37)pFTRs = 7FTRs
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Figure C.3: Log plot of scaled resisting moment as a function of the ball-cylinder

contact angle for the flexible fixture arm.

and the maximum allowable applied force is

Fapp,?nax 7F7, Rs
X

For example, given a steel sphere with radius Rs .5 inch 12.7 mm) and a cable

with tension FT- 700 Ibs. 9114 Nt.), te maximum force which may be applied

at 10 inches 254 mm) from the ball is 24.5 Ibs. 109 Nt.).
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Appendix D

In this section we investigate errors in positioning the endpoint of a spheri-

cal wrist joint, Figure D.1, due to errors in actuator positioning. The ifferent

types of endpoint positioning errors for robot manipulators are discussed in Sec-

tion 27. Errors may be divided into repeatable errors and nonrepeatable errors.

A nonrepeatable error (probabilistic) is essentially the repeatability (as defined in

Section 24) at a point in te workspace. The repeatable error is essentially the

accuracy minus the repeatability. We assume that errors are either due to inac-

curacies in joint positioning or to other factors such as non-rigid members, link

geometric inaccuracies and misalignment, etc. The repeatable and nonrepeatable

errors in joint positions produce errors at the endpoint proportional to te value

of the Jacobian at that particular configuration. The four components of endpoint
error are

J ep + �P

eendpoint x) e, x er X) + f ep + fr �p (D. )

where x is te vector of joint positions, JX') is the Jacobian matrix e x

repeatable joint error vector, e.,,(Y-) is the nonrepeatable joint error vector, and

frep and fr-�,(X') are all remaining repeatable and nonrepeatable errors repec-
tively.

In this section we investigate the magnitude of endpoint position errors due to

joint positioning errors for a spherical wrist; that is, we are only concerned with the

terms in Equation D.1 involving the Jacobian. Assuming rotary joint positioning
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0 Yaw
I

I

I

I 

I

Figure DA: Spherical Wrist Joint

errors in the pitch and yaw directions of 1.5 milliradians or of a revolution the
d' bined directions are shown in Figure D.2.

errors in positioning in the x, , z an com

Errors in the roll actuator do not produce position errors for parts centered in the

grippers and are not included in the analysis. Note that the errors in the x and. y

directions produce complementary errors; hat is, when combined they sum to a

constant throughout the workspace.

If accuracy is more important in one direction rather than another, the best

wrist configuration may be selected using te plots in Figure D.2. The owest

overall errors occur when the itch axis Iis in the position (grippers pointing

straight down)

'This vahie was chosen because inexpensive commercial ecoder,,: ae available to tis accuracy.

Higher accuracy ecoders, re also ailable
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i
I pll--
i Error-------

X Direction Y' Direction Z Direction � 5
--------I -- , - - -. .q � , f 

0 0

Cartesian Distance

Figure D.2: Spherical wrist errors in the tree coordinate directions and the carte-

sian sum. Errors are generated from yaw and pitch actuator errors of 1.5 millira-

dians.
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Appendix E

In this section the probability density function for the product of two normally

distributed random variables is derived. Te sample space for te random variable

z - xy,

where x and y are also random variables is shown in Figure E.I. Te curve

for a specific value of z zo is shown, that is, the curve xO is plotted,Y()
where xO and yo are specific values of random variables x and y respectively. The

procedure given in 53] is followed for deriving the distribution pzo) fom the

joint x and y distribution, pxy(XoYo) (PXAXO�Yo) px(xo) py(yo) for x and y
linearly independent). First the cumulative density function, p<_(z()), is found by

integrating pxy (XO I YO) over the portion of the sample space corresponding to z < zo

zo 0 00
P < ,, (ZO) Y() Px'y (X I O) dxo dyo + PX1 (O I YO) dx(-) dyo.

-0
(E. 1)

Integrating over xO, then differentiating with respect to zo, we obtain an expression

for the derived density function for z

co I ( ZO
Pz (ZO 2 PX1Y -! YO dy(. (E.2)

(1-0 YO M.)

We are interested in the case where x and y are independent normally distributed

random variables with respective variances or 2 an d cr2 ; thus, the joint density func-

2 5 9
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I

y 0

IFigure E.I-. Sample space for va-zlidom vriable z = xy.
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Figure E.2: Derived distribution for the product of two normally distributed inde-

pendent random variables.

tion for x and y is

2 2
X0 Y

PXIY (Xol YO) exp + �O
2T Cr or 2 or2 a2x x Y

Substituting this joint distribution into Equation (E.2)

00 )2 2

Pz (ZO) - I I exp + YO dyO. (E.3)
T 0 YC) 2 a2 C2Crx cry x

The solution to this equation may be found in a table of integrals 75]. The solution

is
Izol

Pz (Z() K( (EA)
T C x or 2 C Cr

Y V x 

where Kx) is a modified Bessel function of the second kind, order 0 87] A plot

of p(zc)) is shown in Figure E.2.
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