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ABSTRACT

We will take the view that the end result of problem solving in some world
should be increased expertness. In the contaxt of computers, increasing expertness means
writing programs. This thesis is about a process, reasoning by analogy, that writes programs.

Analogy relates one problem world to another. We will call the world in which
we have an expert problem solver the IMAGE world, and the other world the DOMAIN
world. Analogy will construct an expert problem solver in the domain world, using the
image world expert for inspiration.

Analogy uses a map (the analogy map) from the expertise of the domain world to
the expertise of the image world. Expertise in a world may be divided into components
corresponding to () declarative description (in the predicate calculus), (2) code for
computing the values of predicates and functions, and (3) plans, which give the overall goal
of the code and a method for achieving that goal; it documents (or, if you prefer, explains
or describes) what the code does without desc:ibing Aow to do it.

A crude view of analogy is

Map domain problem to image problem. Solve image
problem. Lift image sol.tion to get domain solution.
Lift image theorems to get corresponding domain
theorems. Lift image plans to get corresponding
domain plans. Lift image code to get corresponding
domain code. Now solve domain problem using new
domain expertise.

The focus of this research was to develop algorithms to form analogy maps, and to lift solutions,
justifications of solutions (how else can we believe they are correct?), plans, and their justifications.
This process thus writes new expert problem solvers, hence achieving new expertise.

Our theory of analogy is built around the notions of an ob ject, its type, and its
representation. Qb jects (in our sense) are the sub ject of the theory of a world (that is, they are
sub jects in the sentences which describe the world). An intrinsic quality of an ob ject is its type.
We consider type to be meaningful in the descriation of a world, to the extent that we will present
a technique to derive type (and type hierarchies) from world description. Thus, in geometry, one
type would be “line”; the type "algebraic variety" (i, point, line, plane, hyperplane) would not be
used because it typically does not appear in descriptions of geometry world. Finally, an ob ject may

have several representations. In geometry, we might represent a line as a list of points which are
on it.

A reason for the relative success of expert problem solvers over uniform proof
procedures is their ability to use special representations to conveniently encode knowledge about the
world. In mathematics, the notion of representation is of extreme importance. These and other
uses of the notion of a representation led to a realization that perhaps the single most important
thing to be learned from reasoning by analogy was the "proper” way to represent objects in a
world. -

Since the expertise of a world has thres components (code, plan, and description) we need
to specify which component has the notion of representation. The descriptive component
(predicate calculus) does not have representations, but does have the notion of ob ject and type (in
that type can be derived syntactically). The plan component has all three notions. In this
component representations are manipulated cnly by pattern matching. Finally, in the code
component, we have the notion of representaticn, but not (necessarily) the notions of ob ject and



type. Representations may be implemented as property list lists, but this need not necessarily be the
implementation.

A fairly complex picture of analogy emerges. The analogy map goes between world
expertises, preserving components. Other processes (proving code and plans correct, and automatic
programming processes) go between the components of world expertise. Analogy and these other
processes are not independent. We will be able to detect "bugs” in processes which go between
components. These "bugs” will correspond to "bugs” in the analogy map. Similarly, patches to the
analogy map will induce patches in the various components of expertise.
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for inspiration.

TAXONOMY OF ANALOGY This section may be skipped.

Normally when one thinks of analogy, one remembers problems of the form
Angels are to men as x are to animals
where one skillful in verbal analogy would fill in the x with the word men. Evans's clasic Al
program (El] solved geometric analogy problems which have the form
Figure A is o figure B as
figure D is to figure 1, 2, or 3.

The word "analogy” also brings to mind that endangered species, the slide rule. The
basis of the slide rule is, of course, the notion that numbers are analogous to lengths, and adding
numbers is analogous to concatenating lengths.

Since the common examples of reasoning by analogy given above differ, and are
different from our use of the term, we will now explore a taxonomy of analogy. Once we have
this taxonomy we will be able to specify what kind of analogy process we wish to investigate, and
to relate our investigations to other investigations of analogy. In developing a framework in
which to express these differences, we must distinguish three dimensions: setting, usage, and
mechanism.

Setting: Evans’s geometric analogy program [El] worked in only one world, having
relations ABOVE, LEFT-OF, and INSIDE. We can thus claim that the setting of Evans'’s kind of
analogy is INTRA-WORLD, as opposed to our INTER-WORLD analogies between different
worlds (see [NOTE 2] for further discussion of this dimension).

Usage: We can use analogy in at least three different ways: as a kind of mnemonic
device, as a reduction device, or as a speculation device. To make this distinction clear, consider

the following examples:
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1. In chemistry we might claim that organic acids are like inorganic acids, alcohols like
bases, and esters like salts. From this and a knowledge of inorganic chemistry we can
conclude that an organic acid and an alcohol react to form an ester and some water.

This is an example of mnemonic usage. While we might hazard some
guesses about organic reactions on tie basis of the analogy above, the only conclusion
we feel confident in making is tha: both "sides” of the analogy are special cases of
something more abstract.

2. In algebra, when we wish to study some complex structure (like a noncommutative
group) it is often useful to look at homomorphic images. By "throwing away" part of
the problem structure, we reduce hard questions to similar, hopefully easier questions.

This is an example of reduction. Analogy can be used to reduce a problem
to a simpler, easier peoblem in the same or a different problem world. Our ability to
deal with an object (in some world) is closely related to our ability to represent that
object in terms of other objects in its world. This observation links two amazingly
successful problem solving techniques: "Divide and Conquer” (superposition) and
"Change Representations” (linear transforms). One kind of result we would expect
from a reductional use of reasoning by analogy is a way to represent ob jects in the
problem world (which we term the domain world).

3. We might notice that relatively few chemical reactions (outside of breaking
substances down by heating) occur during cooking. Pursuing this we might examine
various organic reactions, such as ester formation (esters smell nice) with an eye
towards being able to use them for cooking.

This use of analogy, speculation, seems at first to be not really analogy at all.
However, as one begins to consider the processes involved (that is, mapping a problem
and solution in one problem world to a problem and solution in another), one is forced
to conclude that the term “analogy” could be used to describe this kind of reasoning.
We can characterize the speculative use of analogy by noting that embarrassingly
often we find ourselves with a very good solution, but with no problem that calls for
it.

Fe————== {
| PROBLEM? |——==———=-— - | PROBLEM
bmm e — )
SOLUTION ANALOGY | SOLUTION

At other times we have a problem and solution, but unfortunately either the problem
isn’t interesting or the solution isn’t profitable.
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r==——=—-< ﬁ
PROBLEM > | PROBLEM? |
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In both cases, analogy might be useful, and when used, it is used for speculation.

The third dimension in our taxonomy concerns the mechanism the analogy process uses
to move between the image world and the domain world (or between image and domain problems
in an intra-world setting). The mechanism used for moving between worlds is strongly dependent
on the way worlds are described. That is, analogy mechanism is (for the most part) determined by
descriptive mechanism. Thus we can make distinctions in this dimension by refering to descriptive

mechanisms. There are at least three popular descriptive mechanisms:

Analytic. Ob jects in some world might be described (or , if your prefer, characterized)
by a set of coordinates in an appropriate feature space. The analogy mechanism for
this descriptive mechanism is then a map on the coordinates.

Example: Evans [El], MERLIN [M9].

Network. Objects are described (characterized) as nodes in a network with
distinguished links. If two nodes (or, more generally, sub-networks) are analogous, a
network mechanism identifies links “rom analogous nodes as analogous, and terminals
of analogous links as analogous, etc.

This mechanism can be distinguished from the analytic mechanism by
noting that with network analogies, the links names do not need to be isomorphic.
Examples: Winston [W6).

Axiomatic The emphasis in this mechanism is not on what ob jects are so much as on
the way they behave, i.e, what various predicates and functions return when applied
to them. We do not need to confine ourselves to the predicate calculus to use this
descriptive mechanism. :

Examples: Sussman, Stallman [S7], Doyle [D1]

We will be concerned exclusively with an inter-world setting, a reductional usage, and an axiomatic

mechanism.
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MAPPING WORLD ENOWLEDGE

Our goal is to use reasoning by analogy to write programs. As a first approximation, the
analogy first constructs a map from the domain (or problem) world to the image (or solution)
world. It then must lift portions of the image expertise to create new domain expertness. For the
remainder of this chapter we will assume that we already have a map from the domain world to the
image world. After obtaining some unders:anding of how such a map is to be used, we will show in
chapter [OVERVIEW OF ANALOGY, FIRST VIGNETTE--TIC-TAC-"0E} how these analogy maps are obtained.

Our goal in using analogy is to write programs. Before I write a program, I need a
description of the world the program is to work in. If I am to write a program for dealing with,
say, plane geometry, I first need a description of the interaction of points and lines. Similarly, if I

am writing a program to play tic-tac-toe, I need to know the rules of the game.

PROBLEM SOLUTION GROBLED CSOLUTIOPD
I ! " 1

L. - 0-0 -

l "EXPERT
™ IMAGE WORLD
DESCRIPTION
OF WORLD
_/

DOMAIN WORLD
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The observant reader may notice that we already have a description of the image world:
the programs that deal with it. Why do we need another description? Unfortunately, this
imperative description is not suitable for our purposes; its utility is both theoretically and
practically limited. We are limited in practice by our inability to decide what a program is doing
without being given further information. That is, we cannot determine the plan (i.e., what is being
accomplished by the computation) of an algorithm given only the code (i.e.,, a sequence of
operations which specify how the computation is accomplished). Moreover, we cannot, even in

theory, deduce that a program is correct only on :he basis of the program. For example

(DEFUN SOLVE-SECOND-DEGREE (A B C)
(QUOTIENT (DIFFERENCE (SQRT (DIFFERENCE (TIMES B B)
(TIMES 4 A O)))
B)

(TIMES 2 A))).
Is this program correct? We might say to ourselves "It is limited; it finds only one real root of a
second degree polynomial. Within that restriction it works." But that raises the real concern:
"Who said anything about polynomials?” Assuming arithmetic works (usually not a valid
assumption due to truncation errors and round-cff errors), the strongest claim we can make of this
program is (1) it halts, and (2) it returns a number (equal to the number it computes). Nor is code
easier to understand than the description of the world it works in, (see [NOTE 3)).

As a working definition, a plan is composed of two parts: an intention and a collection
of subgoals and constraints. A plan is consistent if it can be justified (using the description of the
problem world) by showing that accomplishing the subgoals sub ject to the constraints implies that
the intention of the plan has also been accomplished (we will give an exact definition of plans in
(GEOMETRY WORLD, LANGUAGE FOR PLANS]). In order to prove that code is correct, we first prove that its
plan is consistent, and then prove that the code does what its plan specifies.

One might wonder why we wish to prove programs are correct. We don't. However, we

cannot hope to correctly apply a program from une world to problems in another if we are unable
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to determine if that program is correct even in its own world. We wish to be able to prove that a
lifted program (that is, a domain program created by the invers2 analogy map) is as correct as the
original image program in analogous situations. To emphasize our point by exaggerating it, if the
image code is incorrect, we wish to insure that the new domain code is incorrect in an analogous
way, reasoning “we must have had good reasons to make the program incorrect in that particular
way."

To overcome the difficulties in proving raw code correct, we insist that plans be given

for the programs in an expert problem solver, and that those plans be justified by references to the

description of the world. We will therefore have
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In the image world we have a problemr, stated in terms of the world description (e.g., in
the predicate calculus). In the image expert problem solver’s set of programs, executing Pl and
then P2 will produce a solution, either a truth value or some ob ject of the image world. The code
for Pl is attached by commentary to its plan, which is in turn attached to the image world
description (e.g., axioms). In the domain world we have a problem and an anticipated solution, but
lacking expertise (i.e, having no code and thus no plans) we are unable to forge a link between
problem and suspected solution.

"The analogy process uses a map from the domain world to the image world. A simple

model of analogy would be

(SOLUTION )

PROBLEM 1

: - ! MAP
1 1 [ ]
CCORRESPONDENCﬂ\
1

INVERSE
MAP

=

r___)

INVERSE
MAP FOR CODE

DOMAIN ANALOGY IMAGE
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The meaning of this diagram is: take the domain problem, apply the map to get an image
problem. Solve the image problem, and apply the inverse map to the image solution to get the
solution in the domain world. We can go one step further (so that something will be learned from
solving the problem). Apply the inverse map to the image program to get a program in the
domain world.

This view of analogy has two defects:

1. We have no assurance that the solution is correct.

2. Even if the solution is correct in this particular case, we have no reason to expect
that the new domain program is generally correct. Of course, if the two worlds
are isomorphic (as is usually the case in the literature on ‘reasoning by analogy"),
solution correctness will generally imply program correctness. For this reason,
one should not study analogy between isomor phic worlds.

Although we are ignoring the problem of getting an analogy map for the moment, we
Mmust point out that it is meaningless to discuss map correctness independently of the results
obtained by using it. An analogy map is correct if and only if the lifted solution, lifted plans, etc.,
are correct. The two defects noted above might Je summarized as "we don’t know that the analogy
map is correct” by the definition of an analogy map being correct.

We can remedy the two defects outlined above by making use of plans and world
descriptions. The map from domain problems to image problems can sometimes be extended to
partial maps of domain descriptions to image descriptions. In these cases (and we will not consider
any others) we can derive a description of why a particular solution is correct in terms of the image
world description. This can be (inverse) mapped back into the domain world. See (1) in the
diagram below.

If the facts which justify the image solution remain valid after being (inverse) mapped
into the domain world, then we know that the solution is correct. More importantly, we can now
apply the inverse map to image plans (see (2) in the diagram). If this plan is compatible with
domain plans, we can apply the inverse map to programs (see (3) in the diagram). We will often

abbreviate the expression “apply the inverse anaogy map to" with the verb "lift."
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At this point, the reader may have forrnulated a list of questions:

. What if the map is many to one, or even many to many? Generally this will not
happen with objects. On the other hand, it probably will occur with predicates and
functions.

2. What if a fact (after being lifted) is not correct? Then the validity checker will
ob ject. We must try to salvage the plan.

3. Is it possible for a lifted plan to be invalid, even if all of its facts are valid? Yes,
since part of the theory justifying the plan may not be valid.

4. Is it possible for a plan to be lifted if some of its facts are not valid? Yes.

5. Why can’t we just translate programs and ignore plans? We cannot figure out what
programs do. See the above discussion.

6. Why couldn’t we just produce code directly from plans (in the domain world)?
Perhaps, eventually, we will have the technology to do this. But we certainly don't
have it now.

7. The idea of mapping is good. Where does the map come from? There are two
sources: either analogy can be fold, or it can figure one out for itself.

We will try to answer these questions in what follows.

STRUCTURE OF A THEORY

We have introduced three components of expertise because the analogy process requires

them. We would now like to argue that this division of knowledge is appropriate on other

grounds, first by connecting the two notions of expertise and theory, and second by showing the

dangers involved in not making this division.

Marr and Poggio [M4] suggest that the theory of a world can be divided into four levels.

Using their example of the Fourier transform, these levels are:

L

DESCRIPTION. Mathematically, the Fourier transform obeys various axioms. These

axioms, and relations between the Fourier transform and other mathematical ob jects,
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can be given independently from any discussion of how Fourier transforms can be

“"computed.”

II. PLAN. Given that one wishes to take a Fourier transform of something, one can
proceed in various ways: numerically by way of the old "slow" Fourier transform, or
by the FFT, or the FFFT. One can take them "by analog means" as is done in the ear
(one-dimensional Fourier transform) or by using lasers (two-dimensional Fourier
transform). One can also take symbolic Fourier transforms by doing integration.

Plans specify goals, intentions, and constraints.

III. CODE. Depending on the plan chosen, and the mechanism available, one can encode
in, say, your favorite computer language, a program for actually computing the

transform. Code specifies control flow and data flow (see [R1]).

IV. MECHANISM. Suppose that one has an FFT algorithm in FORTRAN. The
efficiency of running this algorithm will depend on the particular computer having,

for example, hardware multiplication, and bit-reversal instructions.

Normal usage of the term theory refers to a list of definitions and axioms, i.e., the

description level above. Suppose I hac a computer program that, given a periodic function,

returned the Fourier transform of that function. Then it would be proper to claim that the
computer program embodied, or had, or was a theory of Fourier transforms. This program would
be a predictive theory of Fourier transforms at the code level. Now suppose I had two different
programs which took symbolic Fourier transforms equally well (i.e., same answers on all problems),
but one ran twice as fast as the other. It is conceivable that in some sense both programs have the

same theory of Fourier transforms, but in another sense the faster one has a better theory.
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Assuming that the observed difference is due to coding inefficiency, the two theories are different
at the code level, but the same at the plan level.

With this extended notion of theory, .t is easy to see that the components of expertise
correspond to levels of a theory. This suggests that we should claim that analogy operates on
theories of worlds. We will use "expertise” and "theory” interchangably from now on when
refering to knowledge about a world.

Goldstein [G3] used a similar division: at level I he had models; at level II he had plans
for constructing pictures which would satisfy the models; at level III he had LOGO programs
which were supposed to actually draw the pictures.

Thinking in these terms gives us insight into an important difference between Sussman's
(S8] and Goldstein’s approach to debugging. The real world does not present us with level I
theories on a silver platter. Sussman therefore did not give his program debugging system direct
access to the description of the blocks world. Ra:her, he arranged for his primitives (i.e, PUTON)
to simply enforce the hidden blocks world description. Similarly, the level II theory was not
explicitly given to his program debugger; it was merely hinted at in a number of places, leaving
the task of synthesizing the level II theory to HACKER.

In attempting to reflect his view of the real world, Sussman paid a heavy price: most of
the complexity of his thesis was devoted to untangling the theory of the blocks world, not to
debugging programs (i.e,, making level III actually do what level II said it should). We are not
willing to pay this price; we insist that the thres top levels be explicitly provided. We also insist

that the code of our experts do what the plans claim.
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EVANS ANALOGY PROGRAM

EVANS'S GEOMETRIC ANALOGY PROGRAM

We can contrast our theory of analogy with that presented in Evans's landmark paper

(ELL

C D1 D2

Evans’s program solved problems of the form "A is to B as C is to ..." where some list of
pictures DI, D2 are provided to fill in the blanks. If we cast his problem form into ours, we will

have
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Evans first constructs a description of the operation of the image expert in order to

obtain a correspondence between objects in A and in B. He then constructs a number of maps

from C to A (maps Ml and M2, for example).

L] =)

ANALOGY MAPS

Evans then extends each map so that DI, D2, etc., can be mapped to B. Finally, Evans selects the
"best” of these extended maps. B's inverse under this map is the answer. The result of Evans's
analogy program is a "best fit." Winston [W5] suggests an impravement on Evans’s scheme:
instead of constructing all those maps and using the inverse at the last possible moment, why not
use the inverse early in the effort. The modified procedure maps C to A, applies the transform T,

then takes the inverse of the result B. This type of procedure is generally termed “analysis by
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synthesis.”

D)) =2
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If MFITM(C)=DI, then DI is the solut.on. Similarly for D2. Otherwise a new ML T, or
M is tried. We can be clever, using failure analysis to guide the next selection.

If we could apply our theory of analogy to this kind of problem, we would take
Winston’s suggestion one step further. We would insist that the result of reasoning by analogy
should be a program. After constructing and debugging the map between the two sets of
diagrams, we would use the "winning" analogy map to write a program in the domain world so
that the domain expertise may be extended. This last step, the core of our research, is the
fundamental distinction between our approach to analogy and Evans’s. (It might be argued that

Evans also produces a program. For a refutation, see NOTE 4].)
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FOCUS OF THIS RESEARCH

The focus of this research was to devzlop algorithms to form analogy maps, and to lift
solutions, justifications of solutions (how else can we believe they are correct?), plans, and their
Justifications. We are not setting out to make a theory of human reasoning by analogy; our
interest is computational rather than psychological.

Our theory of analogy is built around the notions of an ob ject, its type, and its
representation. Ob jects (in our sense) are the sub ject of the theory of a world. That is, if the first
order predicate calculus is the descriptive language, then the variales are quantified over the
collection of all ob jects (and therefore the sub jects of predicate calculus sentences). An intrinsic
quality of an ob ject is its type. The type of an cb ject is unique (that is, an ob ject cannot have two
types), pre-specified, and immutable. We consicler type to be meaningful in the description of a
world, to the extent that we will present a technique to derive type (and type hierarchies) from
world description. Thus, in geometry, one type would be "line"; the type “algebraic variety” (i.e.,
point, line, plane, hyperplane) would not be used because it typically does not appear in

descriptions of geometry world. Finally, an ob ject may have several representations.
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REPRESENTATIONS

A reason for the relative success of expert problem solvers over uniform proof
procedures is their ability to use special representations to conveniently encode knowledge about the
world. In mathematics, the notion of representat.on is of extreme importance.

We will now give several éxamples of representations. The fundamental result of the
theory of finite abelian groups is that they can be canonically represented as products of prime
power groups. Another ma jor result of algebra is that a polynomial can be represented either by a
sequence of coefficients or by a sequence of values. The importance of the fact that a signal can
be represented as the sum of sine and cosine signals is well known. A ma jor insight results from
the observation that if a signal is represented by the coefficients of a polynomial, then the Fourier
transform of that signal can be represented by a sequence of values of that polynomial. Note that
all of these representations are relatively unstructured; they are simply lists (sometimes ordered) of
other ob jects in the same world. That is, groups are represented in terms of other groups, signal
functions are represented in terms of other functions, and polynomials as a list of elements from
the underlying field (which is part of polynomial world).

These and other uses of the notion of a representation led to a realization that perhaps
the single most important thing to be learned from reasoning by analogy was the "proper” way to
represent ob jects in a world. |

Since our theory of a world is on three levels (code, plan, and description) we need to
specify which levels have the notion of represeatation. The descriptive level (predicate calculus)
does not have representations, but does have the notion of object and type (in that type can be
derived syntactically). The plan level has the notions of ob ject, type, and representation. At this

level representations are lists of plan level objects and are manipulated only by pattern matching.

Finally, at the code level, we have the notion of representation, but not (necessarily) the notions of

object and type. Representations at the plan level may be implemented at the code level by
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property list lists, but this need not necessarily be the implementation. Arrays, tables, and lambda
expressions may also implement (plan level) representations. Typically, at the code level

representations may be manipulated by the LISP functions CAR, CDR, and CONS.

ESTABLISHING CLOSURE

In Artificial Intelligence it is highly desirable to be able to solve all problems of a
specified nature. Generally it has been fairly simple to state the constraints under which a problem
space is closed (in the sense that all problems in the closed space can be solved). However, since
analogy operates on theories of worlds, our problem space is the space of all worlds, and even
stating a closure condition becomes a ma jor pro ject.

We claim (leaving the explanation and demonstration for chapter [LOGIC OF EXPERTS]) to be
able to solve analogy problems at least betweer. worlds whose underlying logics are negationless

intuitionistic.
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OVERVIEW OF ANALOGY

VIGNETTES -- TOWARDS THE ANALOGY PROCESS

Analogy is a process which operates on “expert problem solvers." Simply stated, the
analogy process consists of three phases: map, solve, and lift.

Normally the analogy process will use the map from the previous problem. By using this
"old" map we preserve the context of discussion of the previous problem. This means that some
importance is attached to the order in which problems are presented to the domain expert, and
thus to the analogy process, much as in the Winston learning program [W6].

To try a different analogy, we can either try forming a completely new analogy by
starting with the empty map, or we can use sorie other previously constructed map as a starting
place. We do not suggest any sort of backtracking. When we say (in what follows) “try another
analogy” we have in mind abandoning the current map and starting afresh. A refinement of this
idea would be to guarantee that when we try to form a "new" map, we will have at least one
difference in the way ob ject types are mapped (between the new map and current maps).

Finally, we assume that the image world is given.

We will now give an outline of the analogy process. We will give explicit algorithms in
the chapter [ANALOGY ALGORITHMS], and examples of analogy operation later in this chapter and in

chapter [ANALOGY EXAMPLES].

1. MAP. When some expert encounters a problem which cannot be solved (due to incompleteness

on the part of the expert), analogy can map this problem into an analogous problem in some other

world.
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LI Summarize the domain problem. It is necessary to summarize the domain problem,
since it may be impossible to find an analogy map capable of mapping the entire
domain problem to an image problem.

1.2. Extend the current analogy map to include any new operations. Note that either
the current map or the extension may be empty.

1.3. Apply the analogy map to the summarized problem. The result of this step is an
analogous image problem.
2. SOLVE. The appropriate expert problem solver for the new world solves the analogous image
problem. If the solution attempt fails, then we either change the analogy map, or change the

analogous problem by including further details.

2.1. Obtain a solution to the analogous problem.

2.2. If no solution can be obtained, enlarge the summary from part L.l and continue the
solution attempt.

2.3. Apply the inverse map (extending if necessary) to the solution.

2.4. In cases where the domain solution is anticipated (see [NOTE 5] for an
explanation of "anticipation”), if it and the (inverse of) newly obtained solution
disagree, form a different analogy map.

3. LIFT. If the solution attempt succeeds, then we need to "lift" the solution back into the domain

world.

3.1. Obtain (from the expert problem solver) the reason why the solution is thought to
be correct.

3.2. Apply the inverse map to the reasoning (extending the map if necessary).

3.3. If the reasoning is based on false assumptions (detected by the justification checker
in [ANALOGY ALGORITHMS,DEBUGGING ALGORITHM]), form a different analogy.

3.4. If the reasoning is incomplete, note the presence of a b-ug and obtain a patch.

35. If we are unable to lift all of the reasoning behind the solution, and cannot find a
replacement in the domain, try another analogy.

3.6. If we are able to lift all of the reasoning, then lift the plans and the code which
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generated the solution, making use of previously detected bugs and their patches.

We will present three vignettes to illustrate: how analogy maps are developed, how
process description can be used to obtain the reasoning behind a solution, and finally how
programs can be lifted. Two world pairs are used in the vignettes. The first pair consists of two
simple games: "Tic-tac-toe” and "Jam." The other pair of worlds consists of a version of the
blocks world (as investigated by Fahlman [F1]), znd the "rhetoric” world. These vignettes are very
much “toy” problems; there is no guarantee that the analogy process (as presented in later chapters)

can correctly deal with more complex problems in these worlds.

TIC-TAC-TOE WORLD

Surprisingly, the game of Tic-Tac-Toe (abbreviated TTT from now on) is interesting in
its own right. The grade school 3X3 version of TTT is, of course, a draw if both players move
optimally. The interest in TTT arises from higter dimensions and/or larger boards. The 3X3X3
game is a win for the first player (take the center). The popular 4X4X4 version is still unsolved
(see Sheppard [S3] for strategic considerations). In this TTT, after three moves (6 ply) there are
1,499,409,707 positions, not accounting for symmetry.

TTT is isomorphic to so-called magic squares. In particular, one has an isomorph of 3X3

TTT called "number scrabble™:

8 3 4 Players alternately select integers between 1 and 9.
1 5 9 The first player to total 15 wins.
) 7 2

In number scrabble, of course, the player does nct see the board.

One might naturally ask "Are there magic cubes corresponding to either the 3X3X3 or
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4X4X4 TTT games?” The answer is no (see M. Gardner [Gl]). Well, then, are there any magic
cubes at all? The answer here is, surprisingly, "yes." Gardner gives an 8X8X8 magic cube, while
Wynne [W9] gives a 7X7X7 cube. "Are there magic cubes of other orders, specifically 5X5X5 and
6X6X6?" The answers are, respectively, “yes, unknown, and unknown."

Banerji and Ernst [Bl] investigated the use of analogy to transfer strategies from one
form of TTT to another. Although, as we menticned before, one cannot hope to gain much insight
into the analogy process through considerations ot: isomorphic worlds, we will use TTT and another
of its isomorphs (JAM, described below) to illustrate how initial analogy maps are formed.

Assume that we have an expert TTT playing program. We will describe JAM (i.e, give the
rules and starting configuration of the game) and then use "reasoning by analogy" to obtain a JAM
expert. Since the two worlds are isomorphic, we will be essentially finished after we develop the
analogy map (although we will have no way of knowing this until we actually lift the various
components of expertise). In non-isomorphic worlds (like the rest of the examples in this paper)

the "develop map" step is only the beginning of the analogy process.
RULES FOR TIC-TAC-TOE AND JAM

TTT is played on a grid with squares labeled as above (except numbers are preceeded

with the letter "S"). There is a type hierarchy imposed on the squares:

the CENTER square is S5

the CORNER squares include S8, S2, S4, S6

the SIDE squares include SI, S3, S9, 7

There are eight rows; each row is a triplet of squares. The game is won when all

squares in a row are XED; it is lost when they are all ZEROED. A draw is likely. We list all the

squares in the various rows:
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ROW-A contains squares S8 S3 S+
ROW-B contains squares S1 S5 S9
ROW-C contains squares S6 S7 S2
ROW-D contains squares S8 SI S6
ROW-E contains squares S3 S5 87
ROW-F contains squares S4 S9 S2
ROW-G contains squares S8 S5 S2
ROW-H contains squares S¢ S5 S6

Rows are also broken into types:

the DIAGONALS are ROW-G, ROW-H
the NORMALS are ROW-A, ROW-B, ROW-C, ROW-0, ROW-E, ROW-F.

The game of JAM is played on the following network:

JAM DIAGRAM

The circles are "towns” and the lines are “roads." All sections of a road are blocked when either
the "red” player or the "blue" player blocks the road. A town is isolated when all roads leading to

that town are blocked by one color. The first player to isolate a town wins. Thus if the red player
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blocked roads 2, 6, and 7, then town C would be isolated, and red would win. The names of the

roads and towns make the isomorphism to TTT clear.

WORLD DESCRIPTIONS

Now we will try to give the TTT and JAM world descriptions more formally in the
predicate calculus. I would like to think that the world description below is natural, and merely a
rewrite of the rules given above. In TTT we neec. to say:

(DECLARATION (CENTER SS)

(CORNER S8 S2 S4 SB)

(SIDE S1 S3 S9 S7))
This type of statement simply says that the "declared” assertions are always to be true. In order to
say that the center, corners, and sides are all squares, we give the following facts:
(FORALL (X) (IMPLIES (SIDE X) (SQUARE X)))
(FORALL (X) (IMPLIES (CORNER X) (SQUARE X)))
(FORALL (X) (IMPLIES (CENTER X) (SQUARE X)))
One might wonder why we don’t give the type/sub-type relation (e.g., SIDE is-a SQUARE) explicitly.
We need to be able to discover relations like this anyway, so we will take this opportunity to show
that the system can deduce them. The reader should observe that we have not said what the
predicate SQUARE tests. None of this description is actually used explicitly by the TTT expert code;
it is present because it is needed to justify the TTT expert and for use by the analogy process.

Continuing, we name the rows:

(DECLARATION (ROW ROW-A ROW-B RCOW-C ROW-D ROW-E ROW-F)
(DIAGONAL ROW-G ROW-H))
(FORALL (X) (IMPLIES (DIAGONAL X) (ROW X))
We have rows, a special kind of row we call a diagonal, and three kinds of squares. The final bit

of description says how the squares and rows relate:
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(DECLARATION
(IN-ROW ROW-A S8)
(IN-ROW ROW-A S3)
(IN-ROW ROW-A S4)
(IN-ROW ROW-B S1)
etc.)

As soon as we give the rules of the game, we will be done.

l. A square may be XED or ZEROED, but not both.
(FORALL (X) (IFF (XED X) (NOT (ZEROED X))))
This rule excludes the possibility of a square being blank for technical reasons (see [NOTE

6)).

2. The machine always plays X, so a win ccndition occurs as follows:
(IMPLIES (EXISTS (X) (FORALL (Y) (IMPLIES (AND (ROW X) (SQUARE Y) (IN-RCW X Y))

(XED Y))))
(WIN)) ‘
We do not know that (IN-ROW X Y) implies (ROW Y) yet, so the rule must be stated as
above.

3. Similarly, we describe a lose condition
(IMPLIES (EXISTS (X) (FORALL (Y} (IMPLIES (AND (ROW X) (SQUARE Y) (IN-ROW X Y))
(ZEROED Y))))
(LOSE))
The list continues. There are some rules which cannot be stated because we are missing a

notion of "change” (for example, the rule that play alternates).

I will admit that this isn’t very pretty, but then again there probably isn't a very elegant
way to say the above (other than putting it in English and pictures). In any case, we need to do

the same analysis for JAM.
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(DECLARATION (ROAD Rl R2 R3 R4 RS F6 R7 R8 R9)
(TOW ABCDEFGH

(PLAYERS
(ON-ROAD
(ON-ROAD
(ON-ROAD
{ON-ROAD
(ON-ROAD
{ON-RCAD
(ON-ROAD
etc. )

(FORALL (X) (IFF

RED BLUE)
R8 A)
R& 0)
R& G)
RS G)
RS B)
RS H)
RS E)

(BLOCKED-BY X RED) (NOT (BLOCKED-BY X BLUE))))

(FORALL (Z) (IMPLIES (EXISTS (X)

(FORALL (Y)
(IMPLIES (AND (TOWN X) (ROAD Y)
(PLAYER Z) (ON-ROAD Y X))
(BLOCKED-BY Y Z))))
(WIN Z)))

We should make several comiments about the differences in the two world

descriptions:

1. JAM has players, while TTT does not (or so it seems)

2. TTT’ s expert plays "X", JAM is ambivalent

3. TTT has a type hierarcty, while JAM does not (or so it seems).

These differences were introduced in an attempt to follow the English description, but the real

reason for them is to let us show that none of these differences confuse our analogy process.

WORLD DESCRIPTIONS GENERATE SEMANTIC TEMPLATES

The first step in the analogy map generation process is to produce a set of semantic

templates. A semantic template is a specification of which ob ject types can be valid arguments of a

form. Thus, for each predicate and function, semantic templates give the possible argument types.

For example, in JAM the predicate ON-ROAD takes two arguments: the first is a ROAD; the second is

a TOWN. The semantic template for this predicate looks like
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(ON-ROAD ROAD TOWN)
We will generate semantic templates in a purely syntactic way from the world descriptions given
above.
The first step in forming semantic templates is to decide what types of objects are
present in a world. We make the observation that unary predicates typically are type-checkers.

Thus, by simply listing all the unary predicates we can get a list of potential ob ject types:

aks JAN
SIDE TOWN
CENTER ROAD
SQUARE PLAYER
ROW WIN %
CORNER

DIAGONAL

XED %

ZEROED x

We can reject some of these by noting that a tyse-checking predicate must be used as such, i.e., it
must be applied to a quanfiﬁed variable on the left hand side of an implication (for this purpose
only, IFF is not decomposed into two implications). This eliminates XED and ZEROED in TTT, and
WIN in JAM.

We can make use of a further observation: if P and Q are type checking predicates, then
facts of the form

(FORALL (X) (IMPLIES (P X) (Q X)))

establish a type hierarchy. In the above, P is a kind of Q. Searching the description of TTT for

this pattern yields the two hierarchies:

ROW SQUARE
| e N
DIAGONAL SIDE CENTER CORNER

Since TTT is the image world, it would not be unreasonable to insist that these hierarchies be given
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explicity. Alternatively, we could perform an exhaustive search of all objects in the world, since
TTT world is finite. However, these other techniques are not generally available to us for use on
the domain world (JAM) where we lack the requisite expertise.

Finally, we examine the facts about the games to determine the type of their arguments,

generalizing upward in a type hierarchy if necessary. This gives us the semantic templates

(IN-ROW row square)
(XED square)
(ZERCED square)

in image world TTT, and for domain world JAM we get

(WIN player)
(ON-ROAD road town)
(BLOCKED-BY road player)

The interested reader should see [NOTE 7] for an early form of semantic template. Armed with
the list of ob ject types, the type hierarchy, and the semantic templates we have automatically

derived, we are ready to form the analogy map.
SYNTACTIC GENERATION AND SEMANTIC REJECTION

We are about to use analogy to create enough expertise in a JAM expert to allow it to
make a move. To do this we must first give the JAM expert a problem to solve, then form an
analogy map from JAM to TTT.

We will generate in a very syntactic way possible maps from JAM to TTT, and use our TTT

expertise to reject most of these proposals on semantic grounds. To start, we present the JAM

expert with a problem to solve: our first move
(BLOCKED-EY R8 BLUE).
Since there is no JAM expert yet, we immediately resort to analogy. We want to map this assertion

to the TTT expert in the hopes of gaining enough JAM expertise (by analogy, of course) to proceed.
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We must first summarize the current situation in JAM and then try to map this summary
to TTT. We discuss the summarization process in chapter [ANALOGY ALGORITHMS,MAP FORMATION AND
EXTENSION]. For now, we accept the necessity of first mapping all the declarations in JAM, and then
mapping the first JAM move. Thus the first order of business is to map the assertion (found in the
first DECLARATION)

(ON-ROAD R8 A).

In developing maps, we start as high as possible in the image type-hierarchy. The

domain types are ROAD, TOWN, and PLAYER, while possible image ob ject types are ROW and SQUARE.

Our choices for analogy maps from JAM to TTT are

map ALPHA map BETA map GAMMA

TOWN -> SQUARE ROAD -> SQUARE ROAD, TOWN -> SQUARE
ROAD -> ROW TOWN -> ROW PLAYER -> ROW
PLAYER -> ? PLAYER -> ? or vice versa

While we only have six possibilities now (two maps each for ALPHA and BETA, and the
map GAMMA and its reverse), we will need to contain the possible combinatorial explosion somehow..
One technique is to immediately prune :he possiblities tree. Using GAMMA to map the predicate
ON-ROAD, we get a partial image semantic template

(? SQUARE SQUARE)
with "?" indicating that the image predicate is unknown. This doesn’t match any template in TTT,
so we tentatively reject this map (the rejection isn’t complete since we have more tricks up our
sleeve in chapter [ANALOGY ALGORITHMS,MAP FORMATION AND EXTENSION]) to use if we must). Similar
reasoning rejects GAMMA’s reverse.

In maps ALPHA and BETA, we need to decide what to do with PLAYER. We always prefer
NOT to map an object type at all over making DOUBLE maps. SoAfor our first choice we leave

PLAYER unmapped. This gives BLOCKED-BY a pzrtial image semantic template
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(? ROW) for ALPHA

(? SQUARE) for BETA
The image of BLOCKED-BY's semantic template under map ALPHA doesn’t match anything except
the type checking predicate ROW. Since this would give us a double map (e.g., both BLOCKED-BY
and ROAD would go to ROW), we will tentatively reject it. BETA will map BLOCKED-BY to either XED
or ZEROED by ignoring BLOCKED-BY’s second argument, which is of type PLAYER (see chapter
(ANALOGY ALGORITHMS,MAP FORMATION AND EXTENSION], maj) extension rule 4). Similarly, applying map BETA
to the domain semantic template for ON-ROAD results in a partial image semantic template with an
unknown image predicate:

(? SQUARE ROAD)

There is no direct match here, but there is a ére-dicate with the same type inventory (i.e, the same
number of each argument type in the semantic template): IN-ROW. We will tentatively use this
map (by map extension rule 3). Our analogy map is now

ROAD -> SQUARE

TOWN -> ROW

ON-ROAD -> IN-ROW (suwitch arguments around)

BLOCKED-BY -> XED or ZEROED (igrore second arg)

Note that roads and towns are being mapped into type hierarchies. The inverse map will

then impose a type hierarchy on the domain (JAM), which is exactly what ought to happen.
USING CONSTRAINT PROPAGATION

Now that we know the functional form of the map, we must determine the details of the
correspondence between ob jects in the two worlds. For example, we have 9 roads and 9 squares.
One way to proceed is simply to try all possib'e maps, and rely on the TTT expert to complain
about the maps that are not cricket. Assuming that the map is to be one-to-one, there are

9! or 362880 possible maps. This is too many maps to consider, so we will make use of the type
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hierarchy in TTT (the analogy map must be consistent with this hierarchy). The idea is to generate
partial maps, and then use the TTT expert to force unique extensions. That is, suppose we pick a
road to map to the center square (S5), and then pick 4 other roads to map to the corner squares.
Then either the configuration is illegal as it stands, or all subsequent choices are forced. There are
9:C(8,4) or 630 of these maps. We can do even better, since if we pick a road as center and two
towns as diagonals, then everything else is determined. There are only
1xC(4,2) +6xC(3,2) +4xC(2,2) or 22

such maps. Our strategy is going to be to map roads to the center (and failing that to corners and
sides), and map towns to diagonals (and failing :hat, to other rows). Expertise in TTT will provide
constraints on possible images for roads and towns, and once a particular image is selected, TTT
expertise will propagate further constraints. The reader should notice that our constraint
propagation scheme does not make use of any expertise in JAM. For a discussion of an alternative

“counting” scheme which violates the expertise restriction, see INOTE 8],

IMAGE SEMANTICS AND DEPTH-FIRST SEARCH

To implement our scheme, we need the notion of "most restrictive type.” I don’t know a
general way to determine when one sub-type is more restrictive than another. However, in finite
worlds the most restrictive type is the one with :he fewest members. We can use our expertise in
TTT to determine that CENTER is more restrictive than the other two types of SQUARE, and similarly
that DIAGONAL is more restrictive than ROW (we don't need semantics for the latter since any
sub-type is more (or at least as) restrictive than its super-type).

Following this observation, we will guess that

R8 (which should be a corner) -> SS (the center)
A (which should be a non-diagonal row) -> RON-G (a diagonal)

This lets us map the first of the JAM declarations.
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(ON-ROAD R& A)->(IN-ROW ROW-G SS)
where the latter is true in TTT. Continuing, we map

(ON-RCAD R8 D) ->(IN-ROW ROW-H SE)
(ON-ROAD R8 G)->(IN-ROW ROW-B SE)

.(ON-ROAD RS E) cannot be mapped
The semantics of the image rejects this particular map. We eventually go back to R8->SS and
decide that this must not be true, since it has not been possible to assume this and find an analogy
map not rejected by the semantics of TTT. We will therefore change our mind, and map R8 to S8
(or, equivalently, some other corner). Proceeding we map A->RON-G (again assuming diagonal) and

(ON-ROAD R8 A)->(IN-ROW ROW-G S&)

0->ROW-A
G->R0OW-D

(ON-ROAD RS G)->(IN-ROW ROW-D SE) false!
We go back to the last assumption, and try azain. This time we map A->ROW-A, and D to a
diagonal. This fails, so we finally try mapping G to a diagonal (say ROW-G in TTT world), which
succeeds. In this way the map is completed.

The next problem is to map (BLOCKED-BY R8 BLUE)

(BLOCKED-BY R8 BLUE)->(XED R8).
This is rejected by the TTT program as an illegal move because it wants to make XED assertions. So
we add
BLOCKED-BY -> ZEROED (when second arg = BLUE)

to the analogy map. We will get the other one when TTT gives back proper response, completing
the map formation process.

It is worth pointing out once again thzt all the semantic knowledge resided in the image
world. This is entirely fitting, since that is where the supposed expertise is. The result of playing

JAM "by analogy” will be the construction of a -AM expert (which will be almost a carbon-copy of
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the TTT expert). Since the two worlds are in fact 1somorphic, the lifting process is straightforward.
We will give an explanation of this lifting process in chapter [ANALOGY ALGORITHMS,DEBUGGING ALGORITHM],
and an example in the third vignette (below) operating between the blocks world and rhetoric
world.

SUMMARY -- COMBINATORIAL EXPLOSIONS

This TTT example raises the question of combinatorial explosion in the search for an
analogy map. In the examples we will examine, “his feared combinatorial explosion does not occur.
Indeed, we have introduced several techniques to prevent it. However, our success on this example
should not be taken as a guarantee that this syn:actic search for an analogy map will always work.

For the purpose of making an analogy map, we have assumed that we have no expertise
in the domain world, thus restricting ourselves to using only syntactic clues in the statement of the
axioms of the domain world. We have also avo.ded using so-called high-level characterizations of
the domain world predicates and functions. It is not hard to imagine that, for example, the
hypothesis that some domain predicate is an equivalence relation (if true) could be quite useful in
the map formation process.

To fully state the rules of TTT, we would need to introduce the notion of change, either
by using situation tags ((M5]) or by using some form of modal logic. While 1 have not fully
investigated the impact of the presense of modal operators on the analogy process, they are
particularly interesting since the use of modals (syntactically predicates of several variables and one
predicate, like NOT, FORALL, and EXISTS) introduces another kind of semantic template, and also
allows us to divide predicates into classes depending on which are influenced by which modals.
For example, in TTT we might use the AFTER-MOVE-X modal operator to indicate that some
experssion becomes true after some square has been XED. Surprisingly, introducing change by
introducing modals actually reduces the combinatorial explosion. On the other hand, if situation

tags are used in a way that is equivalent to using modals, then there is a slight increase in the
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combinatorics of mapping ob ject types due to the introduction of a new type: the situation-tag.
Fortunately, by the time the images of the domain predicates ar: determined, all incorrect maps of

ob ject types have been re jected, so the analysis of this case proceeds as above.

INTRODUCTION TO BLOCKS AND RHETORIC WORLD

Our second example is more interesting and less finite. We will make use of an analogy
between the notion of physical support in the blocks world and logical support in rhetoric world.
The example is particularly interesting due to a demonstration that analogy is able to operate in
the presence of logically inconsistent world descriptions.

In the blocks world, if block A’ s center of gravity is over block B, then (modulo friction
and stability considerations) it is safe to remove block C. In this situation, C is said to be

scaffolding.

In a discussion or debate, consider saome conclusion A in a situation whose essential
feature is B. Suppose some inessential feature of the situation C makes the conclusion more
palatable. Then one could (successfully) argue that A would still be the appropriate conclusion on
the strength of B alone. In this situation, C might be called "window dressing” for conclusion A,
provided that C is a relatively minor argumeni. We take this as the definition of the window

dressing predicate.
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Suppose we wish to develop a “rhetoric world"” expert along the lines of a highly
successful blocks world expert. We will do this by means of "reasoning by analogy." In the above,
we might discover that the situations are analogous, and thereby become interested in rewriting a

program SCAFFOLOP of one argument in the blocks world to become a program

WINDOW-DRESSINGP of one argument (in rhetoric world).

SCAFFOLDP -- THE EXAMPLE PROGRAM

Before we can begin to apply the analogy process, we must fully describe the blocks

world expert, which is written in LISP. Our attention will be focused on the following program:

BLOCK is the block we suspect is scaffolding.

SP is used for several purposes, but it is the block BLOCK supports inside the loop.
SPSPL is a list of blocks which support the block supported by the block BLOCK.
It is not necessary to understand this program in detail at this time.

(DEFUN SCAFFOLDP (BLOCK)
(PROG (SP SPSPL)
(SETQ SP (GET BLOCK *SUPPORTS))
(COND ((COR SP) (RETURN NIL)))
(SETQ SP (CAR SP))

(SETQ SPSPL (GET SP ’SUPPQRTED-BY))
LGooP
(COND ((NOT SPSPL} (RETURN NIL))
((EQUAL (CAR SPSPL) BLOCK))
((STABLE (CAR SPSPL) SP) (RETURN *TRUE)))
(SETQ SPSPL (CDR SPSPL))
(GO LOoP)))

This program determines whether or riot some block is scaffolding, that is, it determines
the truth value of the predicate SCAFFOLD. The program does not return FALSE, so it cannot say
definitely that a block is not scaffolding; it is a fairly quick test that can be used when we don't
wish to pay the price of a full analysis of the situation.

This program should be viewed as an imperative description of an aspect of behavior in

the blocks world. It is a description of how tc determine if a block is scaffolding; it does not
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describe what the program does, only how to do it in terms of LISP functions. Indeed, complaints
that this program is not transparent are quite justified. As we will need this "what" information,
we will attach commentary to our program which will describe the plan of the program, after
Goldstein [G3].

We need to say that the program first finds a block X such that BLOCK supports it. We
will write this using the SUPPORTS predicate:

(SUPPORTS BLOCK X)
The program furthermore determines that X is unique. Then the program tries to find a Y such
that Y supports block X:
{SUPPORTS Y X)

sub ject to the restriction that the two blocks X and y be stable in isolation, for which we write:

(STABLE Y X).

INCONSISTENT DESCRIPTIONS ARE ALLOWED

It is worth pointing out here that the program has a "bug” in it. In the following

situation, block C is clearly not scaffolding, yet the program will return "true.”
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While A is “stable"” on B considered in isolation, B is not stable on D without the support C. We
might insist (say, in AXIOM12), in the description of the blocks world, that if some block X is
SCAFFOLDing, then the scene is "globally" stable if X is "disappeared.”
:AXIOM12
(FORALL (X) (IMPLIES (SCAFFOLD X)
(GSTABLE (SCENE-WITHOUT X))))

Then the blocks world in inconsisten:, since removing C (claimed by our program to be
scaffolding) from the above scene results in an unstable block configuration. We will see that this
program can nonetheless be proven correct by using a theorem of the blocks world. Indeed, we will
see the theorem responsible for this (named FAZT29) shortly. Thus it must be the case that the
theory of the blocks world that we are using is inconsistent. See NOTE 9] for a demonstration of
the inconsistency.

Minsky closed his paper "A Framework for Representing Knowledge" [M7] with the

following paragraph:

[ cannot state strongly enough my conviction that the preoccupation with
Consistency, so valuable for Mathematical Logic, has been incredibly destructive to
those working on models of mind. At the popular level .. At the “logical” level it has
blocked efforts to represent ordinary knowledge, by presenting: an unreachable image
of a corpus of context-free "truths” that can stand almost by themselves. And at the
intellect-modelling level it has blocked the fundamental realization that thinking
begins first with suggestive but defective plans and images, that are slowly (if ever)
refined and replaced by better ones.

The relevancy of this comment is that, despit: what appears to be a predicate-calculus proof

approach, we neither insist nor suggest that world theories be either consistent or complete.
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FROM CODE TO PLANS

We will find it convenient to describe programs by stating their plans in terms of pattern
matching. Thus, we will say that the way SCAFFOLOP determines that (SUPPORTS BLOCK X) is by
doing a pattern match on part of BLOCK’s representation:

(PATTERN BLOCK SUPPORTS (?X)).
That is, if the list found under the property 3UPPORTS has one element, the list matches the
pattern, and the pattern variable X is bound to that element. Similarly, the program finds Y by
matching
(PATTERN X SUPPCRTED-BY (x ?Y %))

where « will match any list of elements. Y supports X, which is also supported by BLOCK, the
scaffold candidate. As soon as we make sure that the configuration of X and Y is (locally) stable in
STEP3 below, and that BLOCK and Y are not equal (in STEP4), we will be willing to conclude that
(SCAFFOLD BLOCK) is true. We can combine these into a description of a plan, specifically a plan

TO-DETERMINE the truth value of a predicate SCAFFOLD in four easy steps.

(TO-DETERMINE SCAFFCLDP (SCAFFOLD BLOCK)
(BIND X Y)

:STEP1  (PATTERN BLOCK SUPPORTS (?X))

:STEP2  (PATTERN X SUPPORTED-BY (x ?Y %))

:STEP3  (RESTRICT (Y) (STABLE Y X))

:STEP4  (RESTRICT (Y) (NOT (EQUAL BLOCK Y)))
(RETURN TRUE))

This is the plan of the program. We have labe'ed the four steps using the colon convention (that
is, :LABEL labels the LISP s-expression which follows). We now need to explicitly match up the

steps in the plan with the program:
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(DEFUN SCAFFOLDP (BLOCK)
(PROG (SP SPSPL)
(SETQ SP (GET BLOCK 'SUPPQRTS))
(COND ((COR SP) (RETURN NIL)))
(SETQ SP (CAR SP))
;<- STEP1 (X SP)
(SETQ SPSPL (GET SP 'SUPPORTED-EY))
LooP
(COND ((NOT SPSPL) (RETURN NIL))
;<=STEP2 (Y (CAR SPSPL))
((EQUAL (CAR SPSPL) BLOCK))
s <-STEP4
((STABLE (CAR SPSPL) SP)
; <-STEP3
(RETURN *TRUE}))
(SETQ SPSPL (CDOR SPSPL))
(GO LOGOP)))

The semi-colen introduces commentary which (in this case) indicates that various plan steps have

been tentatively completed, and gives a correspondence between plan variables and code variables.
Having said this, we have two concerns:

(1).Why is it that finding such a block Y allows us to conclude that

(SCAFFOLDP BLOCK) should return TRUE?

(2) Why do we believe that the plan actually finds such a Y?

JUSTIFICATION OF PLANS

Suppose that in the description of the blocks world we declare "If some block supports
another block, and the scene is stable without the first block, then the first block can be considered

scaffolding (for the second).”

:FACT2S
(FORALL (B1 B2)
(IMPLIES (EXISTS (B3) (AND (DISTINCT B3 B2)
(SUPFORTS B3 B1)
(STAELE B3 Bl1)))
(SCAFFOLD B2)))
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Having labeled this declaration FACT23, we can use it as the answer to question (1). This is the fact
responsible for the inconsistency noted above.

Turning to question (2), we need to provide justification for the program’s commentary
(contained in the "plan”). We need to acknowledge the fact that if a block A appears in another
block B’s representation (under the indicator SUPPORTS), then we know (SUPPORTS B A). The
same conclusion can also be drawn if B appears in A's representation under the SUPPORTED-BY

indicator.

:RT10
({REPRESENTATION-CLAIM
(X SUPPORTS (x Y %) (SUPPORTS X Y)) <justification>)

:RT11
(REPRESENTATION-CLAIM
(Y SUPPORTED-BY (x X x) (SUPPORTS X Y)) <justification>)

We are using notation explained in chapter [GEOMETRY WORLD,LANGUAGE FOR PLANS]. Labeling these two
facts as RT18 and RT11 respectively, we can explain why we believe that the plan will accomplish
its aims.

The plan justification has the form of a sequence of named statements relating steps in
the plan to facts about the world. Each statement in a plan justification must give a rule by which
the predicate is "deduced”. The rule %RESTRICT refers to the semantics of that kind of plan step.

EQTHM1 and DISTINCT-DEFINITION refer to equality and dictinctness definitions in the blocks

world description.

(PLAN-JUSTIFICATION SCAFFOLDP
(L1 (SUPPORTS BLOCK X) RT18 STEP1)
(L2 (SUPPORTS Y X) RT11 STEP2)
(L3 (STABLE Y X) #%RESTRICT STEP3)
(L4 (NOT (EQUAL BLOCK Y)) %RESTRICT STEP4)
(LS (NOT (EQUAL Y BLOCK)) EQTHML L&)
(L6 (DISTINCT Y BLOCK) DISTINCT-DEFINITION LS)
(L7 (SCAFFOLD BLOCK) FACT23 L6 L2 L3))

The plan justification is interesting in that use is not made of the fact that X is the only block
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supported by BLOCK. Just as we will allow world descriptions to be inconsistent, so will we allow
plan justifications to be incomplete (one might call this kind of incompleteness a su perstition).

We now have three layers of knowledge about SCAFFOLOP: we have the actual code (i.e.,
how to do the computation), we have the plan (i.e, what the computation does), and finally we
have the description (i.e, why the computation works). We have commentary linking the code to

its plan, and we have the plan justification linking the plan to the description of the blocks world.

FROM PLAN JUSTIFICATION TO RESULT JUSTIFICATION

Having completed the description of tae blocks world and its plans, we can finally start
to apply the analogy process. In order to make use of code, plan, and justification we need to pose
the expert problem solving system a problem. Suppose that in rhetoric world we want to show

(WINDOW-CRESSING C)
and we know that

(SUPPORTS B A)

(SUPPORTS C A)

(DEFENSIBLE A B)

(RELATIVELY-MINGR C A)

Assume that by using the analogy map generation process discussed earlier (and perhaps having
solved previous problems), we have obtained the following analogy map:

WINDOW-DRESSING -> SCAFFOLD

SUPPORTS -> SUPPORTS
DEFENSIBLE -> STABLE

A -> A RTS512 -> RT18
B ->B RTS13 -> RT11
C->C

Applying this map to the summarized rhetoric world problem (see chapter [ANALOGY ALGORITHMS,MAP

FORMATION AND EXTENSION]), we get the assertions
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:GIVENL (SUPPORTS B A)
:GIVEN2 (SUPPORTS C A)
:GIVEN3 (STABLE A B)
in the blocks world. By mechanisms explained elsewhere (chapter [GEOMETRY WORLD,LANGUAGE FOR

PLANS]), these assertions generate ob jects and representations (i.e., property lists):

A SUPPORTS (), SUPPORTED-BY (C B)
B SUPPORTS (A), SUPPORTED-BY ()
C SUPPORTS (A), SUPPGRTED-BY ()

If in the blocks world we now evaluate the predicate (SCAFFOLOP *C) it will return
TRUE. Interpreting the plan while running the cade gives

call BLOCK = C

stepl pattern = (A), X = A

step2 pattern = (CB), Y = B

step4d ---true---

step3 ---true--- by GIVEN3
Note that Y is bound to B. That is because the first time around the loop, (CAR SPSPL) was C, and
of course C equals C.

We use this information in conjuncrion with the plan justification to generate the
following proof that C is SCAFFOLD.

1. (SUPPORTS C A) RT18

2. (SUPPORTS B A) RT11
3. (STABLE B A) (GIVEN3)

6. (DISTINCT B C)
7. (SCAFFOLD C) FACT29 applied to 7, 2, 3
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LIFTING JUSTIFICATIONS OF RESULTS

We can now obtain (via the inverse analogy map) the reason why C’s analog (in rhetoric
world) is window dressing. While the of “icial justification for the conclusion (SUPPORTS C A) in
step 1 of the proof is RT18, we can "unwind” this proof based on representations so that we know
step 1 is "given” by GIVEN2 (see [ANALOGY ALGORITHMS,RESULT JUSTIFICATION]).

The only interesting part of this "lifting" process occurs when we try to lift the last step.
We have (from the introduction to blocks world and rhetoric world) the following fact:

:FACTSS8
(FORALL (Al A2)
(IMPLIES (EXISTS (A3)
(AND (DISTINCT A3 A2) (SUPPORTS A3 Al)
(DEFENSIBLE A3 Al) (RELATIVELY-MINOR A2 A3)))
(WINDOW-DRESSING A2)))

When we apply the inverse map to FACT29 in the blocks world, we discover (using the
one-step deduction algorithm in [ANALOGY ALGOFITHMS,DEBUGGING ALGORITHM]) that in rhetoric world
LIFTED-FACT2S is not provable.

:LIFTED-FACT23
(FORALL (B1 B2)
(IMPLIES (EXISTS (B3) (AND (DISTINCT B3 B2)
(SUPFORTS B3 B1)
(DEFENSIBLE B3 Bl1)))
(WINDOW-DRESSING B2)))

We do, however, discover that the consequent of the domain world version of FACT29 matches the

consequent of FACTS58 and that
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I. All antecedents in LIFTED-FACT29 are trie

2. LIFTED-FACT23’ s antecedents are a subset of FACTS58 s antecedents

3. The rest of LIFTED-FACTSS8" s antecedents are true in rhetoric world.

This configuration indicates that there is a MISSING-PREREQUISITE bug in the
analogy
FACTSS58 -> FACT2S

in that the restriction (RELATIVELY-MINOR A2 43) in rhetoric world’s FACTSS8 was omited. With
this noted, the conclusion that C is window dressing is justified. For a full discussing of bugs, see

chapter [ANALOGY ALGORITHMS,DEBUGGING ALGORITHMS].

PATCHES IN RESULT JUSTIFICATIONS GIVE PATCHES TO
PLANS

We now need to apply the inverse map to the plan. The (RETURN TRUE) step of the
plan is justified by step L7 in the plan justification. This step in turn relies on FACT29. When the
plan is lifted, we naturally also lift its justification. The bug noted above generates a patch to the

plan and plan justification: a further restriction is applied to Y. This gives the domain plan for

WINDOW-DRESSINGP:

(TO-DETERMINE WINDOW-DRESSINGP (WINDOW-CRESSING ARGUMENT)
(BIND X Y)

:STEP1  (PATTERN ARGUMENT SUPPORTS (?X))

:STEP2  (PATTERN X SUPPORTED-BY (x ?Y x))

:STEP3  (RESTRICT (Y) (DEFENSIBLE Y X))

:STEP4 (RESTRICT (Y) (NOT (EQUAL ARGUMENT Y)))

:PATCH1 (RESTRICT (Y) (RELATIVELY-MINOR ARGUMENT Y))
(RETURN TRUE))

and the appropriately patched plan justification {not shown).

We now lift the code. Most of the work is simply replacing function names. The only
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problem is where to insert the patch, anc what the modification looks like. In this case we order
the difficulties associated with routines which compute the restriction and the difficulty associated
with the routine to compute the patch. Then we insert code for the patch immediately before the
code computing the next most difficult plan step (or, rather, before the code that completes the
next most difficult plan step). In this case, the only step more difficult to compute than the patch
is STEP4. Thus in the code, we will place code for PATCH1 immediately in front of code for STEP4.

This gives

(DEFUN WINDOW-DRESSINGP (ARGUMENT)
(PROG (SP SPSPL)
(SETQ SP (GET ARGUMENT °'SUPPQORTS))
(COND ((CDR SP) (RETURN NIL)))
(SETQ SP (CAR SP))
s <- STEP1 (X SP)
(SETQ SPSPL (GET SP ’SUPPORTED-EY))
LooP
(COND ((NOT SPSPL) (RETURN NIL))
; <- STEP2 (Y (CAR SPSPL))
((EQUAL (CAR SPSPL) ARGLMENT))
;1 <- STEP4
( (AND (RELATIVELY-MINOR ARGUMENT (CAR SPSPL))
s <= PATCH1
(DEFENSIBLE (CAR SPSPL SP))
s <- STEF3
(RETURN "TRUE))))
(SETQ SPSPL (COR SPSPL))
(GO LOOP)))

Actually writing the patch requires some sophistication in programming.

Note that this program has the same "bug" (confusion between local and global
defendability) that SCAFFOLOP has. Furthermore, like SCAFFOLDP, it superstitiously insists that the
WINDOOW-DRESSING support only one argument -- even though there is no apparent good reason for

doing so.
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In place of "point”, "line", and "plane" we must at all times be able to say "beer mug",
“table", and "chair."
--- David Hilbert

GEOMETRY WORLD

We saw in chapter [OVERVIEW OF ANALOGY,FIRST VIGNETTE -- TIC-TAC-TOE] the dangers of trying to
study reasoning by analogy between isomorphic worlds. This observation gives us the first of the

following criteria for the sub ject of our next, more advanced and interesting example.

Non-isomorphism. The pair must not be isomorphic.
Richness. The worlds should be rich in analogies.

Non-trivial. The worlds must be non-trivial, since almost any scheme will work on toy
problems. Ideally we would choose a world in which there are still unsolved problems.

Well-defined. The worlds should be welI:defined and understood. Preferably the
description of the worlds should be obtained independently of our investigation.

Existing Expertise. There should already be an expert problem solver for these
worlds. Again, we prefer that the expert be developed independently. Ideally, we want
several expert problem solvers for the worlds
On the basis of these criteria we chose plane geometry and solid geometry as the pair of
worlds in which to study analogy. We then restricted ourselves to a small portion of geometry,
called incidence geometry, which concerns problems of points, lines, and planes intersecting and
being determined (as in "two points determine a line"). Even these portions of geometry satisfy the
Criteria given above.
Recall from [INTRODUCTION TO ANALOGY, ANALOGY AND MAPS] that we plan to reason about the
domain world, solid geometry, by solving analogous problems in the image world, plane geometry.

However, before we can use analogy on these two worlds we must first:

1. Write the code for a plane geometry world expert problem solver.
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2. Give the plans for the code.
3. Give the jﬁstiﬁcation for believing the plans are correct.
4. In order to give the justification of the plans, we will need a description of plane
geometry world.
There are a variety of ways to describe geometry world: set theoretic [F3] and analytic (W8] come
to mind. We will use Hilbert’s axioms [H2] to cescribe these two worlds, both because his axioms

are closest in spirit to Euclid, and because in the literature they are the most widely used.

PLANE Geometry Axioms

We will have two groups of axioms, concerned with incidence and with order. The

axioms are numbered so as to correspond with Hilbert’s axioms in [H2].

Plane geometry axioms are prececed with a P, while solid geometry axioms are
geometry 1S are p : : g : .
preceded with S. We will give the predicate calculus versions of the axioms used in the
problems. The remainder of the axioms are given for completeness.

P-I1. Given two points, there is a line that contains them.
(FORALL (A B) (IMPLIES (AND (PT A) (FT B))
(AND (LN (LINE A B))
(IN-LN (LINE A B) A)
(IN-LN (LINE A B) B))))

Note that we don't insist that the two points be distinct. This claims that two points determine at
least one line.

P-12. For every two distinct points, no more than cne line contains them.
(FORALL (A B)
(IMPLIES (AND (DISTINCT A B) (PT A) (PT B))
(NOT (EXISTS (X Y) (ANC (DISTINCT X Y) (LN X)
(LN Y) (IN-LN X A)
(IN-LN Y A) (IN-LN X B)
(IN-LN Y B)))))) .

P-13a. Each line contains at least two points.
The predicate calculus statement of this axiom has an occurance of the LN predicate on the left of

an implication. This tells us that LN, a unary predicate, is a type checker (see [OVERVIEW OF
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P-13b. T Aere are at least three non-collinear points.

We also have a set of axioms dealing with the concept of "order." These are included,
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