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Abstract

This paper describes the problem of three-dimensional object correspondence and
presents an algorithm for matching two three-dimensional colored surfaces using poly-
gon reduction and the minimization of an energy function. At the core of this algo-
rithm is a novel data-dependent multi-resolution pyramid for polygonal surfaces. The
algorithm is general to correspondence between any two manifolds of the same dimen-
sion embedded in a higher dimensional space. Results demonstrating correspondences
between various objects are presented and a method for incorporating user input is
also detailed.
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Chapter 1

Introduction

1.1 The General Correspondence Problem

This paper presents a solution to one instance of the correspondence problem. Corre-
spondence problems, stated generally, are of the form: given two instances of a class
of objects, find a relation from parts of one object to “corresponding” parts on the
other object. The most classic domain of objects for such problems is images. Image
registration, mosaicing, optical flow, stereo matching, and image morphing are all
versions of the correspondence problem with images.

In the particular example of optical flow!, the correspondence problem can be
refined to: given two images of a moving three-dimensional scene taken in temporal
proximity, find a vector field which maps points in the first image to their corre-
sponding points in the second image. Here, corresponding points are points whose
intensities result from the same real point in the scene. Figure 1-1 shows a typical
example of such a pair of images.

In this work, we will explore a new area of correspondence. In particular, we
will focus on correspondence between two-dimensional manifolds in three-dimensional
space. While much attention has been paid to correspondences between images
and some attention has been given to three-dimensional volumetric correspondences
(e.g. between MRI scans, see [4] and [6]), there has been little work on surface corre-

Isee [1] for a good overview of optical flow algorithms

Figure 1-1: Optical flow example
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Figure 1-2: The optical flow field for the first image pair is ambiguous since it is
uncertain whether the circle rotated about its center as it was translating. The flow
field for the second is ambiguous since we cannot recover the translation along the
direction of the bar; we can only recover the vector components perpendicular to
the edges. These are only simple cases for rigid motions and the assumption that
intensity does not change across images. Once we add non-rigid transformation and
the ability for the color of a point to change as it moves, the problem becomes much
harder.

spondences.

1.2 Correspondence as an Ill-Posed Problem

Correspondence is not a well-posed problem. For example, in optical flow, there are
often multiple motions that would explain the same image pair (figure 1-2 gives two
such examples) or a point in one image is not visible in the other image (either due
to the boundary of the image or occlusion in the image).

The first problem (multiple solutions) is far worse for the case of three-dimensional
correspondence. Optical flow is the inverse problem of motion rendering. Thus, while
it may be ambiguous which motion caused the image pair, there is a forward prob-
lem to which to refer in order to gauge success. In this paper, we are interested in
finding correspondences between similar, yet distinct objects. Consider the cars in
figure 1-3. There was no process which produced the second car from the first. Thus,
whether the correspondence produced by our algorithm is “correct” depends upon
a subjective evaluation of what the proper correspondence should be. So, far from
it being that there are multiple correct correspondences (as in the case of optical
flow), many correspondences are potentially correct. Only once an application which
uses the correspondences is chosen, can the quality of the correspondence be evalu-
ated. Although we can not completely remove the subjectivity of the correspondence
problem for this paper, in section 1.4 we do give a more concrete definition of what
constitutes a “good” correspondence.

The second difficulty in optical flow (points having no correspondence) also exists
for three-dimensional correspondence. The rear lights of the two cars in figure 1-3
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Figure 1-3: An example of two surfaces for which the correspondence is uncertain:
one car has one main tail light while the other has two. It is difficult to find the
corresponding point for a point in the blue section between the two tail lights on the
right car.

provide a good example of this. Since one car has one tail light and the other has
two, there is no obviously correct correspondence. We could create some artificial
assignment of points on one surface to those on the other, but it would not truly be
a correspondence.

Yet, just as these difficulties can be overcome in the image domain to produce
useful algorithms, we can also work around the problems of the subjectivity and
ambiguity of correspondences to develop a practical algorithm that gives good results.

1.3 Application Areas

There are many applications for a three-dimensional correspondence algorithm. The
resulting flow fields can be used to produce a morph between the two objects. This
morph is fully three-dimensional and produces viable three-dimensional shapes at
each step of the morph. For graphics applications, this allows interesting animation
sequences generated automatically or semi-automatically.

Furthermore, by setting a group of shapes from a single class of objects in corre-
spondence with a base shape from the class, we can generate a linear model of that
class of objects [13] [12]. Each correspondence between the base shape and another
shape represents one flow field. These flow fields can be linearly combined to produce
new flow fields which represent novel objects whose shapes are still part of the same
class of objects. Thus, if we have a set of surfaces each of a different four-legged
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animal, by setting them each in correspondence with one arbitrary four-legged an-
imal, we can form a model of four-legged animals in general. Of course this isn’t
limited to models of four-legged animals; the same technique would work with three-
dimensional models of cars, faces, or coffee mugs. Similar work has already been done
for the domain of images in the case of faces, handwritten digits, and cars [9)].

This parameterized model can be used for a number of interesting applications.
New examples of objects in the class can be described in terms of these parameters and
easily compared for similarity. Novel models formed from the class can be generated
easily by adjusting the parameters (or learned combinations of the parameters). This
provides the user with a much simpler method of designing new objects for virtual
reality environments or other situations in which novel three-dimensional models are
needed.

Lastly, the model provides an easy way of encapsulating information about the
shape of a class of objects. This information can be used to aid in three-dimensional
reconstruction from images. With the knowledge that the shape being reconstructed
is a member of the specified class of objects, the model can be used to help disam-
biguate or constrain the shape during reconstruction. Thus, we can incorporate prior
information about the shape into the reconstruction algorithm.

Just as setting images in correspondence allows for easy comparison of images,
finding abnormalities in groups of images, tracking important features across sets of
images, or the building of models of types of images, the same operations can be
performed on three-dimensional models provided a good correspondence algorithm
exists.

1.4 Problem Statement

There are a number of representations for three-dimensional objects. In medical data,
often volumetric representations are used: the space is divided into cells and a value
given to each cell. By contrast in this work, we will be considering surface models
defined by a mesh of polygons, as are often used in computer graphics.

Specifically, we will let a surface consist of a set of triangles in three-dimensional
space. These triangles share common vertexes and edges to form one or more two-
dimensional manifolds. Further, we will allow a color to be associated with each
triangle or, alternatively, each vertex of the object. Triangles, instead of general
polygons are used for simplicity since any three points are guaranteed to be coplanar
and any polygon can be broken into a set of triangles. Thus, any movement of the
vertexes of the triangle will still result in a valid triangle and any surface previously
defined in terms of polygons can be converted without changing its shape to a triangle
representation.

We will define an object X to be a mesh of triangles defined by the pair (X, Xv)
where Xy is an ordered set, {vy,va,...,v,}, of vertices and Xy is the connectivity
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of the mesh, or a simplicial compler describing the topology of the triangles. For
our purposes, we may think of Xy as an ordered set of triangles each described
by referencing three vertexes from Xy . [8] has a nice technical description of this
mesh representation, but for this paper, we will not need to use that mathematical
machinery.

A correspondence algorithm on such meshes will take as input two objects A and
B and produce as output a displacement set D of vectors. Each member of D has
an associated member in Ay. The object A can be warped by the vector set D by
adding each member of D to the corresponding vertex location of A. Let us denote
the object X warped by the displacement D as 5(X ).

Thus a good correspondence algorithm will produce a D such that 5(A) will be
as similar as possible to B. Furthermore, points on A will be warped by D to be
aligned spatially with their corresponding points on B.

The desired correspondence relation which takes a point on the first object and
finds the corresponding point on the second object is implied by the output set D.
Any point on a triangle of A (not just the vertexes) can be mapped through the
deformation of D as described in Appendix A.2. Thus, given a point on A, we map it
though the displacement D and then find the closest point on B to this new warped
point. Provided that ﬁ(A) is a good approximation of B and aligns corresponding
points well, this will be a good correspondence function.

The algorithm specification above does not allow arbitrary mappings of A to B.
Since D only specifies changes to the vertexes, all points on the same triangle in A
must be coplanar after A is warped. However, for shapes with enough triangles, this
approximation to an arbitrary mapping is sufficient and allows for a tractable method
for correspondence computation.

The only task remaining for defining the problem is to specify what is a “correct”
correspondence. This requires going back to the application of the correspondences.
For this paper, we are going to assume that the purpose of finding the correspondence
is to create a morphable model of a class of objects. Thus, since we wish to use the
correspondence between A and B to produce new similar objects (e.g. the correspon-
dence between two four legged animals should help us produce a novel four legged
animal), we will judge a correspondence by how well the object (ﬁ?(A) fits into the
class of objects to which both A and B belong for all § on [0, 1]. In this notation, §D
refers to the warping field produced by taking D and multiplying all of the vectors
by the scalar §. 52)(14) can be thought of as taking a morph from A to B using the
correspondences of D and stopping it in the middle (at the point determined by §).
This “intermediate” object should also look like a reasonable object from the same
class as the original two. Although this definition is not concrete enough to directly
deduce the proper constraints on an algorithm, it is good enough to evaluate the
results and hints at an algorithm.

In section 2, we describe a “colorless” version of the algorithm which assumes
the two surfaces are not colored and thus only the geometry need be matched. In
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section 3, we add two extensions to the basic algorithm: the color component of the
shapes is added to the algorithm as a natural extension of the “colorless” version in
section 3.1 and user input is optionally incorporated in section 3.2. Section 4 shows
some examples of the algorithm on different surfaces and section 5 describes related
and future work. The appendix details most of the mathematical derivations: The
first section derives a necessary derivative; the second extends coefficients from the
first to warp triangles; and the third derives a new operator which extends the notion
of a scalar product from vectors to subspaces.
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Chapter 2

The Basic Algorithm

In this section we will consider the case where the triangles are uncolored. Thus the
problem becomes one of only trying to match two geometric surfaces embedded in
three dimensions.

2.1 Energy Minimization

Given the definition of section 1.4, the problem is to find new positions of the vertices
of A that best set A in correspondence with B.

We will try to place an ordering on different displacement sets D and then find
the “best” D in terms of this ordering. To specify this ordering, we will associate an
energy function E(D) with D such that lower values of E(D) correspond to better
values of D.1

There are two qualities a solution, D, must have. First of all, 5(14) must have the
same shape (or as similar as possible) as B. Secondly, D must represent a “plausible”
movement of the shape of A; we would like D to represent a motion from one surface to
the other that preserves the common structures between the two shapes throughout
the motion. If we were to apply only half of D to A (i.e. instead of applying the
displacements in D to the corresponding vertices, apply 1/2 of the displacements to
the vertices), we would like the resulting shape to appear as similar as possible to both
A and B and not to be an arbitrary shape having little relationship to the structure
of the two input shapes. This comes from our problem definition where we specified
that the correspondences will be used to produce a morphable model.

To this end, the energy term describing the quality of a potential solution will
have two terms. The first term will measure the similarity of the two surfaces in
terms of distance. The second term will measure the changes in the structure of the
object.

!The energy function also implicitly depends on A and B
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2.1.1 Similarity Term

Ultimately, we want every point of B(A) to coincide with a point on B and vice-versa.
Merely requiring that every point of D(A) lic on the surface B is not sufficient as it
allows degenerate solutions (e.g. D maps all points to a single point on B). Similarly,
only requiring that all points of B lie on D(A) will also allow trivial solutions.

For a given point p let us define dx (p) to be the square of the distance from p to
the closest point on the manifold X. dx(-) is a continuous, but not smooth, function
over all space. It can be defined as follows:

A .
dx(p) 2 mip p — ] (2.1)

Given p, da(p) can be efficiently computed for the case where A is composed of a set
of triangles by placing the triangles of A in a geometric hash-table.

We might like to compute [5da(b) as a measure of the total distance from the
manifold A to the manifold B. Unfortunately, this can take a lot of computation time.
Therefore, instead we chose to approximate the integral with a sum over randomly
sampled points. If we let S,,(A) be a set of n points sampled uniformly from the
manifold A, we can let our similarity term be:

Yo ds(s)+ Y dja)(5) (2.2)

s€S,(D(A)) SESn(B)

In practice, we have found that it is best to modify this slightly by adding all of
the vertices of 5(/1) and B to the sets of points. Since the vertices are the “most
extreme” points on the manifold, it makes sense to insure that their distances are
being counted in the sum. Otherwise, this formula tends to “round” the corners of
the surfaces. As well, we modify the d(-) function slightly (renaming it d’(-)). This
yields the final formula of

Egn(D)= > dps)+ Y d'p5u)s) (2.3)

sesS! (D(A)) s€S}(B)

where S! (X)) is the set S,,(X) with the addition of Xy . Letting Nx(z) be the normal
to the point x on the surface X, d’(-) is

d'x(y) £ minlly — ]* + p(1 = (Ny (4)" Nx(x))?) (2.4)

assuming that y is from the surface Y.

The addition of the second term in the definition of d’(-) captures the orientation
of the surface at the two points being considered. The square of the inner product of
the normals is one if the surfaces are parallel at the point and zero if the surfaces are
perpendicular. One minus this term therefore penalizes matching two points on the
surfaces whose orientations do not match well.
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2.1.2 Structure Term

In order to assure that the correspondence found isn’t arbitrary, we will add a struc-
ture term. This term should try to preserve the structure and features of the original
shape of the manifold. To aid in our explanation of this term, we will define the idea
of a directional spring. While a normal spring tries to keep the distance between its
end points constant with a quadratic energy function, a directional spring tries to
keep the vector of the difference of its endpoints a constant with a quadratic energy
function. Thus, if ay and by are the original endpoints of a directional spring and
a and b are the current endpoints of the same directional spring, then the energy
associated with that spring is
k

||6L0 —_ bOH ||((l0 - bO) - (CL - b)” (25)

The fraction in front is the spring constant divided by the original length of the spring.
The denominator insures that springs combine in the proper fashion: we would like
the energy associated with one spring of length 2 to be the same as the energy of two
springs of length 1 placed end-to-end.

While a spring does not penalize rotation or translation, a directional spring allows
only translation without an increase in energy. It might seem odd that we are going
to use directional springs in our definition of the structure term when rotations of
an object should probably be considered as acceptable transformations that do not
change the shape. The reason for our choice of directional springs is that they provide
the rigidity necessary and help to preserve the volume of the object, which will become
more clear later. Our energy term (as a whole) will already have enough local minima
that it would be implausible for our minimization technique to be able to match
arbitrary rotations of an object. Thus, we will give up our ability to match large
rotations for the ability to better match the volumetric shape under small rotations.

Our structure term for the energy function will be composed of the sum of energies
of directional springs each connecting two vertices of A. We will add a directional
spring from each vertex in A to all adjacent vertices in A (two vertices are adjacent
if and only if some triangle of A contains both vertices as vertices of the triangle.).
Then, for each vertex in A, we will add directional springs to every other vertex which
is closer than the most distant adjacent vertex.

To be more precise, if we let the preposition ad(-) evaluate to true if and only if
the arguments are adjacent vertices on the surface A, we can write the set of all pairs
of vertices on a surface A connected by directional springs as

Cy 2 {(a,b) |a#b A () [ (ada(a,c) Vada(b,c)) A
(la=bl<la—c|l Via=b <[o—c)]} (2.6)

If we furthermore define C as

cz2oun{(ab) | a=z} (2.7)
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Figure 2-1: Two flat surfaces each tessellated differently (the thick edges mark the
difference). The point marked with the circle will have different forces on it due to
the different triangulations.

then the energy of the structure term is (taking the sum over the energies of the
directional springs)

[(a—b) — (D(a) - D)
la— b Cq]

Estr(D) =k Z (28)

(a7b)€CA

The term |C%| normalizes the energy due to a point by the number of directional
springs connected to that point. This helps to insure that a point on the surface
does not contribute more to the structural energy solely because it is connected to
more points. If we look at the two surfaces defined by the triangles in figure 2-1,
they clearly define the same surface and should deform in the same way given the
same force on the marked point. Without this normalizing term, the second surface
with more connections to the marked point would deform more slowly simply due to
a difference in the triangulation of the surface. This normalization does not exactly
account for differences in triangulations, but it does an approximate job that has been
good enough in practice.

This formula could easily have been written in terms of regular springs.?2 However,
tests showed that such an energy term provided far worse results. Since a regular
spring has no sense of direction, placing springs along the surface of an object will
not, in general, help to keep the shape of the surface intact. Each spring only attempts
to keep one end point on a sphere centered around the other end point. This means
that if a flat surface is subjected to a compressive force, it will prefer to “buckle”
and produce a ridge rather than remain flat and compressed. This is undesirable
for most surfaces. Similarly, angles and bends in the surface will not be held in the
proper relation to each other to produce the overall surface shape. Each spring is

2While regular springs lead to a natural and understood physical model of the properties of a
surface, it is an open and interesting question what physical model directional springs describe.
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completely local and has no sense of what orientation it should keep relative to the
points around it. One solution might be to add “higher order” springs which look at
more than two points. This becomes excessively computationally expensive and it is
difficult to balance and set all of the parameters correctly. Rather, it is simpler to
observe that rotation of the entire object will seldom be realizable and to change to
directional springs instead of patching regular springs.

Lastly, there is the question of why we use directional springs between points
which are not adjacent. The answer is that we wish to preserve the volume of the
shape and the relative positions of the features. If you consider the cars shown in
section 4, the tires and bodies of these cars are each independent manifolds. Yet,
we would like to try to preserve their relationships to each other. Similarly, for the
animals shown in section 4, the feet are close together and their relative positions
are important for the overall look of the animals despite the fact that the distance
between the feet along the manifold is much farther. Along small thin sections, like
the tails of the animals, non-adjacent connections help to preserve the volume on the
shape and keep it from collapsing or expanding.

2.1.3 Total Energy Minimization

If we combine the two energy terms from above, we end up with
E(D) = Egm(D) + aEg,.(D) (2.9)

where « is used to control the tradeoff between matching the objects and preserving
the structure. We will start a off high and gradually anneal, or reduce, its value
during the minimization until the two surfaces match well enough. This annealing
parameter is common in situations where one would like to minimize one function
subject to the minimum of another. In this case, we would like to make E;,. as small
as possible subject to the constraint that Ej;, is at its global minimum. Clearly the
above equation for £ does not guarantee it, but it does provide a way of computing
a suitable approximation.

We will use gradient descent to minimize E(D). Note that since E(D) already
involves a random sampling of the two surfaces, such a minimization already has a
stochastic element.

In order to write down the derivative of E with respect to the vector D, (the
vector of D associated with the point p from A), we must first introduce two new
definitions. First, we will let ny(z) be the set of triangles of A which contain z as a
vertex (the neighborhood of z). Second, we will let d’.(-) be defined as

Tx(y) = argmin [ly — 2l + p(1 = (Ny (9)" Nx (2))?) (2.10)

Note that d’x (y) is exactly the same as d’x(y) except that we are taking the arg min
instead of the min.
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Figure 2-2: Consider the two lines shown in the first frame. We would like to produce
the correspondence shown in the second frame. However, due to local minima, we
might end up getting stuck with a correspondence more like the third frame. By
finding the most important control points (those points circled in the first frame) and
only working with them in the initial stages, we can avoid many such local minima.

With those definitions out of the way, we can now derive that

d — Ly
—5E(D) x > (d'g(s) — S)Kp’
b s€(S1,(D(A) Nnp ) (D(p))) e
L,
=T E5] (S)
+ > (s — d'ﬁ(A)(S))Kp_&
s€{s | €S (B) AT 54, (s)En5 4 ()} P54y (5)
ak —a)+ (D(a) = D
+ ’ Z (p ) ( ( ) (p)) (211)
|CA| (p,a)eCh, ||p - CLH

where the ratio L/K is the same ratio derived in Appendix A.1.

Thus, we can minimize E(D) by following the gradient of equation 2.11 with
standard gradient descent techniques. We will choose an initial large value for o and
gradually reduce it by a constant multiple 1 (i.e. ay11 = noy) at each iteration of the
gradient descent. Initial high values for a will force the algorithm to concentrate on
moving A in a consistent fashion. As the algorithm continues and manages to match A
to B approximately while keeping the shape roughly the same, o will decrease allowing
the algorithm to concentrate on matching the places that could not be matched
before with the higher values of a. The algorithm terminates after a fixed number of
iterations or after D(A) is “close enough” to B.

2.2 Polygon Reduction

The energy minimization described in the above section is only half of the algorithm.
There are two major problems with the algorithm as described thus far. First, it
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takes too long to complete. For objects involving thousands of vertices, it takes a
long time to compute the gradient each iteration and many iterations are needed
to move the vertices to their final positions. And secondly, the energy function has
too many local minima. This is also due to the large number of vertices. Consider
the two-dimensional case shown in figure 2-2. Although the best match would be as
shown by the arrows in the second frame, clearly there are many solutions like the
arrows in the third frame that correspond to local minima of the energy function.

Both of these difficulties can be reduced by finding a smaller set of vertices of
the shapes which capture the “essential control points” of the surface. Thus, given a
shape as the one in figure 2-2, we would like to find just the most important points
to the surface (those marked in the first frame) and work with them first. They will
only give an approximate solution since flexibility is more limited when working with
this smaller set of vertices. However, such an approximate solution can be used as a
starting point for finding a solution involving more control points. If we can pick the
proper set of important control points, we will gain a speed up in running time since
we can compute much of the movement due to D with fewer vertices, and we will also
reduce the number of local minima the energy minimization algorithm might find.

This problem of reducing the complexity of the description of a surface has already
been studied in great lengths in the computer graphics literature. Polygon reduction
algorithms essentially solve the exact problem we have. The idea is to create a new
mesh with fewer triangles and vertices that looks as close as possible to the original
mesh. For our work, we chose to use the mesh simplification algorithm of Hoppe
called Progressive Meshes [7]. Hoppe’s algorithm has a number of nice properties but
most importantly for this work is the fact that it tries to preserve the surface shape
and not just geometry: it pays attention to the discontinuity curves of the surface and
attempts to keep their topology constant throughout the reduction. We will not detail
the progressive mesh algorithm here but rather just refer to [7]. It is important to
note that polygon reduction algorithms in general (and Hoppe’s progressive meshes in
particular) can give as output meshes which contain no vertices in the same positions
as those of the original object. So, unlike the original formulation where we were to
pick out existing control points and use them, we may end up with a completely new
set of control points.

2.2.1 Polygon Pyramid

In order to be able to describe the role of polygon reduction more concretely, we will
introduce a little more notation. Considering the polygon reduction algorithm as a
black box, if we are given a mesh X with v vertices, we will let X to be the result of
running the reduction algorithm on X to produce a mesh with 27%v vertices. Thus,
9X is the same as X and ‘X has half as many vertices as " 1X.

To begin the process of creating a correspondence, we first create a “pyramid”?

3We call this ordered set of shapes a pyramid since it plays a similar role to Gaussian pyramids
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of shapes for both A and B, {°A,1A,... ;" A} and {°B,'B,...2B}. This involves
running the polygon reduction algorithm repeatedly until we have a set of reduced
versions of both A and B each with half as many vertices as the previous member
of the set. The simplest version (a value for [; or l3) is determined by selecting the
last reduction which still looks reasonable. Either the user can manually pick the last
usable shape or the distance between the reduce shape and the original shape can be
used along with a threshold to choose the number of reduction steps automatically.

We then proceed “down” the pyramid creating correspondences between succes-
sively more complex meshes using the results from the previous correspondence. We
start by creating the correspondence between “* A and 2B, which we will denote as
gD. We then continue producing each ;'-D for successively smaller values of ¢ and 7,
decrementing ¢ and j by one each time. At each stage, we use the value of the last
produced D as a starting point for our algorithm at the current stage.

Let us first assume that we can extend our definition of D so that it can be used to
warp any object (and not just the one for which is was created). This will be shown
in the next section. We can then formulate our pyramid scheme as such: Assuming
we have ;ﬂD, we can produce ;'-D with the energy minimization described previously
except that we will not take D to be all zeros for the starting position of the gradient
descent; we will warp ‘A by z*jrllD to produce the starting position for the energy
minimization.

We continue in this fashion, until we have produced ;D for e <0 and 57 < 0. Note
that if I; # I, then we must define *X to be equal to °.X for all k¥ < 0. This final D
will be the desired displacement field for the full versions of A and B.

2.2.2 Extending Warps

The above description of the algorithm works well provided we can use D to warp a
mesh other than the one for which it was produced. If the vectors of D correspond
to the vertices of X, then B(X ) is simple to compute. But now we wish to expand
the warp field to fill the entire space and not just to be defined on the vertices of X.

We can use the triangle warping mechanism described in Appendix A.2 to extend
the warp field of D across the surface of X. Namely, given a point, p, on X, we find
the triangle which contains p. We then warp the vertices of the triangle using D. We
now have two triangles in correspondence and the point p can be mapped from one
to the other using the coordinate transformation in Appendix A.2. The difference in
the two points (p warped and p) we will call the extension of D across the surface of
X.

We can then easily extend D to cover all of space. Given a point p which does
not lie on X, we find the closest point on X to p and use the displacement at this
projected point as the displacement for p. In this way, any point can be warped

of images used in some optical flow algorithms. Note, however, that the reduction described in this
section is data-dependent whereas Gaussian pyramids are constructed in a data-independent way.
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Figure 2-3: How to extend a warp field from the vertices of a shape to all of space:
First point p is projected onto the nearest triangle, Aabc, to produce p’. The point
p’ is then mapped through the coordinate transformation described in Appendix A.2
producing a new point P’. Finally, the difference P’ —p' is taken to be the translation
vector for the point p. The green vector is the extension of the warp field across the
surface and the red vector is the extension of the warp field to all space (taken by
translating the green vector). The black vectors are the original warp field as defined
on the vertices of the triangles.

using the displacement field D. Thus, we redefine 5(X ) to be the new, more general,
warping which does not require X to be the same as the mesh for which D was
produced. Figure 2-3 pictorially demonstrates this extension.
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Chapter 3

Extensions to the Basic Algorithm

3.1 Adding Color

3.1.1 Dimension Extension

The algorithm presented in chapter 2 can be extended naturally to handle colored sur-
faces by moving the vertex positions from three-dimensional space to six-dimensional
space. The three original dimensions remain, but now we add an additional three
dimensions for color.

In general, any number of dimensions can be used to describe color. In computer
graphics, color is often parameterized in terms of three quantities since the human
eye perceives only three axes of color. Hue-saturation-value, hue-lightness-saturation,
and red-green-blue are all well used axes along which to measure color. The algorithm
below will work well with any of these (or any other) axes for color,! but we shall use
the red-green-blue coordinate system for these examples.

Thus, each vertex now has six values describing its position: x, y, z, red, green, and
blue. To place all six dimensions in the same space, we need a conversion factor (or
scaling) of color units to spatial units. We will define this to be the color:shape ratio
and denote it by the symbol v. v is the value by which to multiply the color com-
ponents to set them in the same units as the spatial components. Thus it has units
of distance per energy. v has the natural interpretation in this context of being the
relative importance of matching color verses shape. It is a fairly simple parameter to
set based on the user’s knowledge about the coloring of the surface.

We can now perform the algorithm exactly as described in chapter 2 except that
the geometry will be performed in R® instead of IR®. But, why is this a good represen-
tation for color? Clearly it is simple and mathematically elegant, but that does not
mean it will produce correct results. Yet, let us first consider how we would change
the algorithm if color were not automatically encoded as three extra dimensions. In
the previous algorithm, instead of matching a point to the other surface based solely
on spatial distance, we would add a penalty for matching based on the colors of the

!The results may be different since the conversions among these different color coordinates are
non-linear.
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two points. However, this would not be enough. The color boundaries on surfaces
are very important visually and contain a lot of information about the surface; we
would like to try to specifically match those as well. Thus, we might sample an extra
set of points from along color boundaries and attempt to match those to other color
boundaries (again, with a penalty if we could not find a color boundary whose color
or orientation exactly matched).

Constructing a surface in IR® accomplishes exactly those goals. By matching
points in a space which also includes color, we automatically include a natural penalty
term for matching two points whose colors don’t agree: the squared distance in this
six-dimensional space has three terms corresponding to the squared distance in the
original three-dimensional space plus three terms which penalize differences in color.
More subtly, and more importantly, in constructing a complete surface in R®, we
add explicit surfaces along the color boundaries which we then must match (this is
demonstrated clearly in the next section). These surfaces are sampled with points
just as before and thus lead to a direct mapping of color boundaries. Since we
have an explicit term in the energy term for matching orientation of surfaces, this
automatically takes into account the different colors along the color boundary and
the orientation of the boundary.

As an important extra bonus, by having both color and position in the same
coordinate system, the algorithm can change the colors and color boundaries as needed
to ensure a match. The algorithm is free to create or remove color boundaries simply
by changing the color coordinates of the vertices along with the spatial coordinates.
Once again, the structure term of the energy function keeps these changes reasonable.

3.1.2 Constructing the Surface

There are two primary ways of specifying colored surfaces for computer graphics. The
easiest case, from our stand point, is when each vertex is assigned a color. In this
case, a point in a polygon is colored based on a linear combination of the colors of
the vertices. Thus, our surface already naturally lies in IR® and nothing else needs to
be done.

The other case is where each polygon has a single color. Therefore, distinct color
boundaries exist between polygons of different colors. In this case, if we look at each
triangle in the original model and construct a new triangle in our 6D version such that
each vertex of the triangle has spatial coordinates as given in the original model and
all three vertices have the same color coordinates as the triangle itself, we will be close
but not quite done. After “pulling” the vertices into IR® by this method, there will
now be gaps in the surface where there weren’t before. In particular, vertices which
previously coincided (since they only had spatial coordinates) will now be distinct if
the two triangles from which they came had different colors. This will produce gaps
along the lines in the original model where color boundaries were before.

To complete the surface, we add triangles along these gaps. For every color bound-
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Figure 3-1: Filling the gap caused when triangles are “pulled” into six dimensions.
For this simple example, the two triangles lie in two dimensions and there is only
one dimension of color. Thus, when the triangles on the left are “pulled” into the
third dimension of color the gap shown on the right appears which can be patched by
the checked triangles. They have a spatial projection of the color boundary on the
surface and a color projection of a line from one color to the other.

ary in the original surface, we will add one rectangle (or rather two triangles) whose
spatial projection is the line of the color boundary but who stretches the color differ-
ence between the vertices on either side. Figure 3-1 shows this solution for a simple
case. This will cover all of the gaps except those at vertices where more than two
differently colored polygons touch. In the surfaces used for this paper, no more than
three different colors ever met at a single vertex. Thus, it was sufficient for each such
point to add a single triangle all of whose vertices shared the same spatial coordinates
but each of which had different color coordinates. If more than three colors join at
a single point, some decision must be made about the connectivity of those colors
and the triangles arranged appropriately since, using only planar objects, it is not
possible in general to construct a single polygon which will connect all of the colors.

3.1.3 Algorithmic Implications

The only major difference between working with a two-dimensional surface in IR?
and a two-dimensional surface in IR® is that there no longer exists a single normal
vector for each surface triangle. Although points can still be projected to the nearest
point on the surface, distances and derivatives can be computed as before, and the
directional springs continue to provide structure, the definition of d’() as used in
section 2.1.1 no longer holds since N4(z) no longer exists as a single vector.

In general, we would like this technique to extend to arbitrary dimensional surfaces
in higher dimensional spaces. Thus, just as we don’t want to restrict the algorithm
to three-dimensional space, we don’t want to restrict it to two-dimensional manifolds
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either. Returning to the definition of N4(x) in equation 2.4, we see that we do
not explicitly need a normal but rather just a method of measuring the rotational
similarity between two subspaces. In Appendix A.3 we describe a new operator, ¢,
which is a generalization of the scalar product to subspaces. In equation 2.4, we
replace the scalar product of the normals with this new operator and obtain a version
which will work for any dimensional subspace:

&' 4(p) £ mingeallp — al® + p(1 = Vyo V) (3.1)

where V,, is the matrix of basis vectors (as in the Appendix) describing the linear
subspace on which the point x lies on the surface X.

3.2 Adding User Input

Sometimes it is not desirable for the algorithm to be completely automatic. Although
the best way of incorporating user knowledge about the desired correspondence would
be to encode the types of allowable deformation of the surface into the structure term
in the energy function (thus changing the generic one given in Section 2.1.2), some-
times it is easier to specify specific points on the surface and their correspondences.
Often the algorithm works for all but a small section of the shape. In this case, it is
usually sufficient to mark a few points on each of the two surfaces and specify their
correspondences.

Let us denote this type of user input as the set U {uy,us, ..., u,} where u; is
the pair (u?,u?): u¢ is a point on A and u! is the corresponding point on B. We

incorporate this user input into the energy function by adding a third term:

a

Bue =C > [ Dlut) =l

(ug,ub)ely

(3.2)

This essentially adds a spring of zero rest length from each point picked on surface A
to the corresponding point on the surface B. The parameter ¢ dictates how rigorously
the algorithm will follow the input of the user. Note that when taking the derivative
of this new term, the derivative of the summation term involving u{ will be spread
over the three vertices of the triangle on which u{ lies (as detailed in Appendix A.2)
in a similar fashion as the sampled points were in the derivative of Ej;,,.
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Chapter 4

Results

The algorithm described in the previous chapters has a number of parameters. Fig-
ure 4-1 shows the settings for these parameters for each of the examples given in this
section. We have tried to keep all of the parameters the same across all experiments.
There are only two differences in the setting of the parameters. For the car models,
we set v to be 5.0 instead of 1.0. This is because the car models are all colored in
the same fashion so the color of the surface contains a lot of information about corre-
spondences. The only other change is in the energy minimization parameters for the
second car correspondence. Due to the larger shape differences between the models
in figure 4-3 we needed to run the algorithm for longer. This meant changing ¢ and ¢,
which in turn required changing 1 so that the springs would still decay at the same
relative rate. None of these parameters were found to be sensitive to changes; they
only needed to be within a factor of 2 or more for the algorithm to work as well as
the results seen in this section.

Instead of drawing D directly for each correspondence (which would result in
an uninterpretable diagram), we have drawn a sequence of frames of a morph from
the first object to the second. Thus, if 4D is the result of taking the scalar 6 and
multiplying each element of D by it, we have drawn (57)(14) for evenly varying values
of 6 between 0 and 1. These shapes should represent a smooth transition between A
and B, and when ¢ = 1, 62)(/4) should be as similar as possible to B.

It should be noted that all of the images in this section are two-dimensional ren-
derings of three-dimensional shapes. The two-dimensional renderings were produced
solely for the purposes of inclusion in this paper. Only the full three-dimensional
representations are used by the computer for computation and warping. Thus, the
correspondences and shapes are three-dimensional and only on a per image basis do
we convert them back to a two-dimensional image. The images are rendered using
a Lambertian shading model with a single light source at the same position as the
camera.
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figure number

description 4-6 4-7 4-8 4-9 4-13
v | color:shape ratio 5.0 5.0 1.0 1.0 1.0
ap - k | starting spring constant 50.0 50.0 50.0 50.0 50.0
1 | spring constant annealing rate || 0.995 0.9988 0.995 0.995  0.995
n | number of sampled points 3000 3000 3000 3000 3000
p | orientation weighting 1.0 1.0 1.0 1.0 1.0
¢ | user control spring strength N/A  N/A 50 50 N/A
t | number of gradient steps 100 400 100 100 100
to | number of steps on last level 1000 4000 1000 1000 1000
€ | gradient step size 0.0005 0.0005 0.0005 0.0005 0.0005

Figure 4-1: Parameter settings for the correspondences shown in this chapter. = is
explained in section 3.1.1, a and 7 in 2.1.3, n and p in 2.1.1, and ¢ in 3.2. At each
level of the pyramid scheme, we take t steps with the gradient step size at €, except
for the final layer (to compute JD) where we take t, steps.

4.1 Colored Surfaces

We chose two different classes of objects for testing the colored surface algorithm.
Figures 4-2 and 4-3 show the cars we used as one set of surfaces and figures 4-4 and 4-5
show the four-legged animals we used as another set of surfaces.

For the cars, the correspondences were generated as normal. For the animals, we
added 11 user specified points as in the description in section 3.2. These points are
shown in figures 4-4 and 4-5: one for each ear, eye, and foot, one for the nose, one for
the end of the tail, and one for the start of the tail.

Figures 4-6 and 4-7 both show a generated correspondence between cars. Fig-
ures 4-8 and 4-9 show correspondences between animals.

In figure 4-6 the objects appear to be very similar. However, there are some im-
portant differences that the algorithm manages to deal with properly. The Mercedes
has three side windows, whereas the Lexus has only two. The algorithm nicely re-
moves the extra window by collapsing it to a line instead of changing the color of
the middle blue bar (which would have produced unnatural looking middle frames).
As well, the rear lights also require change. Again, the algorithm moves the lights
instead of changing the color of the surface.

Figure 4-7 shows a morph between two very different cars. In particular, there are
many unclear correspondences (e.g. how does one match the orange front lights in a
consistent manner with the surrounding body? or how does one make three windows
from only two? or what does one do with the rear view mirrors?). The algorithm
does a nice job of matching smooth consistent changes (like the side of the car where
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a step and large wheel hubs must be created) and it does an acceptable job of finding
some way of matching the very different front lights and grill structures.

The morph shown in figure 4-8 shows some problems. The eyes are not properly
matched and the ears of the dog cannot be formed from the ears of the cat. The tail
shows yet another difficulty as the shrinking of the tail is not generally allowed by the
directional springs used to control the shape. However, the overall shape and stance
of the dog is well matched (including the asymmetric rear legs).

Finally, figure 4-9 demonstrates the most difficult correspondence attempted. The
neck shape gives the algorithm clear problems. However, this is most due to a lack
of needed flexibility in the starting shape’s polygons. Yet, the change in leg stance,
facial shape, as well as the obvious difference in back shape are all matched as well
as can be expected.

To give a sense of the complete running of the program on this final example,
figure 4-10 shows the output of the program at each stage. In this figure, the “base”
column shows the polygon reduced versions of the giraffe. The “target” column shows
the polygon reduced versions of the camel. Since the camel had fewer polygons, the
last three shapes in this column are all the same. The middle two columns show the
output of the algorithm after each stage in the pyramid scheme. The “after warping”
column is the result of warping the left shape by the correspondence produced at
the previous level and the “after energy minimization” is the result of the energy
minimization using the “after warping” shape as a starting point. The first row has
no “after warping” shape since there was no previous level in the pyramid scheme to
use.

4.2 Images

As a final example, we consider the special case of images. An image is degenerate
form of a colored surface in that it lies in a 2D subspace of IR®. We took the two images
shown in figure 4-11 and ran exactly the same algorithm as in the other examples.
The polygon reduction algorithm produced the results shown in figure 4-12 and the
final correspondence is shown in figure 4-13.

Aside from the artifact in the nose, we feel this represents a very good correspon-
dence. Looking at the morph, we can see the light move from the left side to the right
side, the stripes are added to the shirt, and there is a smooth transition between the
facial pose and expression.
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Mercedes 280C 94 (6860 vertices and 13684 faces)
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aVavivz

VALY AN ENAVAY:

Lexus ES300 "93 (6989 vertices and 13958 faces)

Figure 4-2: Two of the car models
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Dodge Stealth 94 (10568 vertices and 21104 faces)

VW Beetle '70 (1888 vertices and 3748 faces)

Figure 4-3: Two more of the car models
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Cheetah (5702 vertices and 11402 faces)

Doberman Pincher (4640 vertices and 9268 faces)

Figure 4-4: Two of the animal models: The green octahedra show the points added
as user control points
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Giraffe (4595 vertices and 9174 faces)

Camel (2567 vertices and 5132 faces)

Figure 4-5: Two more of the animal models: The green octahedra show the points
added as user control points

33



starting shape 0 =0.125 0 =0.250

0 =0.375 0 = 0.500 0 =0.625

£
e O

0 =0.875 0=1.0 target shape

Figure 4-6: Morph showing the generated correspondence between the two cars shown
in figure 4-2. The shape in the upper left was specified as A and the shape in the
lower right was specified as B. The frames in between represent § D(A).
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0 =0.875 0=1.0 target shape

Figure 4-7: Morph showing the generated correspondence between the two cars shown
in figure 4-3. The shape in the upper left was specified as A and the shape in the
lower right was specified as B. The frames in between represent  D(A).
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starting shape

0 =0.375 0 = 0.500 0 =0.625

0 =0.875 target shape

Figure 4-8: Morph showing the generated correspondence between the two animals
shown in figure 4-4. The shape in the upper left was specified as A and the shape in
the lower right was specified as B. The frames in between represent 6 D(A).
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starting shape 0 =0.125 0 =0.250

target shape

Figure 4-9: Morph showing the generated correspondence between the two animals
shown in figure 4-5. The shape in the upper left was specified as A and the shape in
the lower right was specified as B. The frames in between represent 6 D(A).
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Figure 4-10: The output of the system at various points on each level of the algorithm.
Please see the text for a description of the images.
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Figure 4-11: Two images converted into a triangle mesh lying in a single plane. Each
mesh has 4250 vertices and 8232 faces.
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Figure 4-12: The original surface (at the top) and the reduced versions each with
successively fewer polygons and vertices (each surface has half as many vertices as
the previous)
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starting shape 0 =0.250

0 =0.375

target shape

Figure 4-13: Morph showing the generated correspondence between the two images
shown in figure 4-11. The shape in the upper left was specified as A and the shape
in the lower right was specified as B. The frames in between represent 6D (A). The
outlines of the triangles (as shown in previous morph sequences) have been removed
here for clarity. A1
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Chapter 5

Conclusion

5.1 Related Work

Blanz and Vetter have also done work on surface correspondences [3]. In their work,
the surface is first projected onto a surrounding shape which is then unrolled and
optical flow techniques are used to find correspondence across these unrolled sheets.
This has the advantage that the resulting objects (these sheets of color and distance
values) are dense and optical flow techniques work well. Unfortunately, this also
means that only a limited class of objects can be represented (namely it places limits
on the curvature of the surfaces).

The energy minimization portion of the algorithm was inspired by the formulation
of elastic nets [5]. It is also similar to snakes [10]. [11] provides an overview of such
deformable models and their uses in matching. Our technique differs from other
methods in its easy extension to higher dimensions, handling of colored surfaces, and
multi-resolution approach.

The pyramid structure of the algorithm was originally inspired by Gaussian pyra-
mid schemes used in optical flow such as the hierarchical method in [2]. Yet, this is the
first time that a data-dependent method of reduction has been used for hierarchical
correspondence generation. In hierarchical methods previously used in correspon-
dence, the pyramid was created in the same way regardless of the data, whereas in
this work, the shapes are reduced in a data-specific manner.

We feel that this is the most important contribution of this work. By using a
compression technique which depends on the data (instead of Gaussian pyramids or
other fixed methods), we perform implicit feature extraction. We do not work at a
generic coarse level first, but rather with the most fundamental features (or points) on
the shape where such features depend on the shapes given. This allows the algorithm
to match gross features first. Otherwise, until the general outline of the two objects
are set in correspondence, it is impossible to try to match the more detailed features.
While a data-independent method of compression may pull out some of the important
coarse features, a data-dependent method, like the mesh reduction used here, has a
much better chance of finding coarse descriptions which have the important high-level
features of the original objects.
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5.2 Future Work

The algorithm developed in this thesis is a general automatic correspondence algo-
rithm. As such, it does not produce exact correspondences for specific types of sur-
faces, but rather tries to produce acceptable results automatically for a wide range
of surfaces.

There are a few additions to the algorithm which may help its performance. Since
the energy function is locally quadratic, there may be faster methods for finding the
minimum. It may also be helpful to consider matching curvature and not just position
and orientation for the points on the surface. Adding the ability to refine the mesh of
the base object further (i.e. to cut existing triangles) might give more flexibility and
allow more general correspondence.

But, probably the most important improvement would be to modify the algorithm
to be symmetric. That is, the correspondence between A and B should be the same
as the correspondence between B and A. At the moment that requirement does not
exist. However, adding such a qualification to the problem statement may aid the
algorithm in finding the “correct” correspondence. Some points on surface A may not
have an obvious match on surface B (there may be many points which look plausible
or they may be no points which look reasonable); yet, by considering points on B, it
may become obvious which point on B maps to the problematic point on A. Similar
techniques have been used for optical flow and there is good reason to believe they
would also work well here.

But, clearly the most important extension to this work will be to use the corre-
spondences generated by this algorithm in an application. That can be the only true
method of evaluation, for ultimately its usefulness depends on how well the corre-
spondence allow an application to perform. With any automatic technique there will
be flaws in the correspondences but the real question is whether those flaws are fatal
for the desired application and that can only be answered through implementation
and tests.
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Appendix A

Mathematical Derivations

A.1 Derivative of the distance from a point to a
triangle

Consider figure A-1. We have the triangle Aabc and the point p where p is not in
the same plane as Aabc. p’ is the point on the triangle closest to p. For the moment
we will assume that p’ is the same as the projection of p into the plane of Aabc (or
phrased differently, the projection of p onto the plane of Aabc lies inside of Aabc). We
wish to find d(%) (where a is the vector of the position of a by an abuse of notation
and D is the distance from p to p’). That is, we wish to find the derivative of the
square of the distance from p to Aabc with respect to the point a.

First we construct the line segment ag which is a segment running from a through
p' and terminating on the line segment bc. We then note that the derivative of D?
with respect to a must be parallel to the vector p — p’ since movement of a in the
plane of Aabe will not produce a change in D (it can similarly be shown that in higher
dimensions, of all of the directions normal to the plane of Aabc, only in the direction
of p— p’ will D change instantaneously).

Now that we must only determine the magnitude of the derivative, we can limit
ourselves to look at the slice of figure A-1 containing the points p, ¢, and a. This is
shown in figure A-2. We set a coordinate system with ¢ at the origin and the line
segment aqg along the x axis. If we let L be the distance from ¢ to p’ and K be the
distance from ¢ to a, then p has coordinates (L, D) in this coordinate system.

We now consider allowing the y coordinate of the point a to change so that we can
take the derivative of the square of the distance with respect to this new variable. To
do this, we let @’ be a “new” version of a restrained to have the same x coordinate.
Then, p” becomes the point closest to p along the line from ¢ to ¢’ and D’ becomes
the distance from p to p”. We now want to find the derivative of D? with respect to
y (the y-axis coordinate of a’).

Noting that the two angles labeled S in figure A-2 are the same, we can quickly
find that
DK — Ly

_D, = (D—LtanS)COSS: ﬁ

(A.1)
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Figure A-1: Distance from a point to a triangle
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Figure A-2: Cross section of figure A-1 along the plane containing p, ¢, and a.
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Thus the derivation of d(dLj) goes as follows:

d(D?) _ d (DK — Ly)?
dy —  dy K2 +y?
 —2(DK — Ly)L(K? +y?) — 2(DK — Ly)%y
- (K2 +y2)2
d(D"?) _ —2(DK)LK?
dy |, K4
L
= —_2D—
K

The derivative of D? with respect to the point a is a vector in the direction from point
p to point p’ with distance proportional to both D and the ratio of L to K. This
result makes good sense: the closer p’ is to ¢ the smaller the derivative since moving
a will change D less since a is much farther from the point of rotation (¢) than p’ is.

If we now consider the more general case where the projection of p onto the plane
of Aabe does not lie in Aabe, p’ will lie on the edge of Aabe. Fortunately, the results
above extend to this case as well. If p’ lies on on b, % is 0, which is correct since
small changes to a will have no effect on p’. If p’ lies on @c or @c, then, provided we
are careful to take the direction of the derivative to be along the vector p —p’ and not
perpendicular to Aabe, we can form the same cross section as shown in figure A-2 and
get the same result. The three special cases of p’ coinciding with a vertex of Aabc are
limiting cases of the above result. If p’ and either b or ¢ coincide, then clearly % is

zero as desired. If p’ and a coincide, then % is 1 despite the fact that ¢ is not unique.

A.2 Warping a single triangle

The fraction % played an important role in the derivative developed in appendix A.1.
The same ratio will be key in our formulation of correspondence between triangles.
Consider the two triangles (Aabc and Ad’b'c) in figure A-3. Given that we know the
correspondences between the vertexes of the two triangles (i.e. a corresponds to @', b
to b’ and ¢ to ) and given an arbitrary point inside of Aabe, p, we would like to find
the corresponding point, p/, in Aad'b'c.

The two triangles need not be similar so finding p’ is not trivial. We would like
p’ to have the same “relationship” to a’, b, and ¢ that p has to a, b, and ¢. One
example would be that if p lies on ab, then p’ should lie on @’b/, preferably such that
the ratio of the lengths of @p and pb is the same as the ratio of the lengths of a/p/
and p/b/. Similarly, if p rests in the middle of Aabe, p’ should also sit in the middle
of Ad'b/d. To make this more concrete, we shall say that the ratios of the areas of
the three subtriangles Aabp, Abcp, and Aacp to the total area of the triangle Aabe
should be the same as the corresponding ratios in the “prime” triangle (namely the
ratios of Ad't'p’, AV Y, and Ad'dp’ to Ad'l' ().
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Figure A-3: Correspondence between two triangles

This constraint on p’ is interestingly related to the % in appendix A.1. If one
constructs the points A, B, and C as shown in figure A-3, then for example, the ratio
of the area of Aabp to the area of Aabc is the same as the ratio of the length of pB
to the length of bB. This ratio is the same length ratio as % in appendix A.1. %
determined the degree to which a vertex of the triangle effected the distance from the
triangle to another point. Here, this ratio will determine how much moving a vertex
of the triangle will pull or push another point inside of the triangle.

We will define a(p) to be the ratio of the length of aA to the length of pA, 3(p)
to be the ratio of the length of bB to the length of pB, and v(p) to be the ratio of
the length of cC to the length of pC. o/, 3, and ' are similarly defined for p’ and
Ad't'd. We can then state our constraint on the position of p’ as the following system

of equations.

alp) = o(p)
B(p) = B'¥) (A.2)
) = V@)

Since «, [, and ~ are invariant to warps of the triangle and uniquely define a point on
the triangle, we may view these three variables as a warp invariant coordinate system
on the triangle. This may seem like three constraints for only two unknowns (since
p and p’ each lie in a plane). However, returning to our initial formulation of «, (3,
and 7 as ratios of areas, we can easily see that a(p) + 3(p) + v(p) = 1 for all p inside
Aabe and thus one of the three coordinates is redundant. Thus, to warp a point from
one triangle to another, we first convert the point from the Cartesian coordinates to
the vertex relative coordinates (o, 3,7) and then perform an inverse mapping back
to Cartesian coordinates, but using the new “prime” vertexes instead of the original
vertexes.

The inverse mapping from («, 3,7) back to Cartesian coordinates can be accom-
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plished by calculating the intersection of two lines. Note that, given the positions
of a, I/, and ¢, knowing o’ fixes p’ to be on a line parallel to &'¢’ between a’' and
b'c. 3 defines a similar line parallel to /¢’ and 7 defines a third line parallel to a't/.
Provided that these three coefficients sum to 1, the three lines will meet at the single
point p’. In practice, it is best to take each pair of lines and find their intersection
and then average the three resulting points to get p'.

A.3 A new operator: the scalar product of two
planes

We would like to be able to define a similarity measure for the orientation of two linear
subspaces. First consider two lines in space that pass through the origin. These
lines can be parameterized by their tangent normal vectors, v and w. The angle
between the two lines is arccos(vi'w) and (vIw)? provides a reasonable measure
for the similarity in orientation between two one-dimensional subspaces (we wish to
square the inner product since our subspaces are not oriented surfaces and thus angles,
©, greater than 7/2 should actually be measured as m — ©).

Now consider the case of two planes of the same dimension passing through the
origin. We will describe each subspace as the column space of a matrix (V' and
W). If V and W have dimensions d by d — 1 (e.g. a two dimensional plane in three
dimensions), then the common definition of the angle between the two planes is
arccos (v’ Tw' ) where v’ is the normal vector perpendicular to the column space of V/
and w’ is similarly defined relative to W. From this we may conclude that (V’TW’ )2
is a reasonable rotational similarity measure for subspaces of dimension one less than
their embedding space.

However, neither of these work for cases in which the dimensionality of the sub-
space is neither 1 nor d — 1. There are still definitions for the angle between two
planes, but these unfortunately do not capture the desired properties. For instance,
consider the planes defined as the column spaces of X, Y, and Z:

10 10 00
01 00 00

X = 00 , Y = 01 , 4= 10 (A.3)
0 0 00 01

The angle between the planes defined by X and Y is /2 and the angle between the
planes defined by X and Z is also /2. However intuitively, it seems that the rota-
tional distance between the planes of X and Z should be greater than the rotational
distance between the planes of X and Y: the column spaces of X and Y intersect in
a line whereas the column spaces of X and Z intersect only at the origin.

Thus we will construct a new measure for the rotational similarity between two
subspaces. We will, as before, define the two subspaces as the column spaces of the
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matrices V' and W. We will further restrict V' and W to have same dimensions (d
by n) and to each have orthonormal columns. The subspaces (or column spaces of V'
and W) will be denoted by V and W. Furthermore, we will denote the left nullspace
of V.and W by V' and W’ respectively. We will also let V' and W’ be two matrices
of orthonormal columns whose column spaces are V' and W' respectively. All of
these definitions are analogous to the definitions in the first few paragraphs of this
appendix. V is the column space of V. The column space of V' is the space of all
vectors perpendicular to V and we have denoted this space as V. Thus, if V is a
plane, V' has column vectors which lie in the plane, and V' has column vectors which
are normal to the plane.

Let us denote this new measure with the symbol ¢, a binary operator on two
matrices both of dimension d by n (i.e. V ¢ W). There are a number of properties it
should observe:

Lifn=1, VoW = (VIW)?

2. ifn=d—1,VoW = (VTW)?

3. VoW =WoV

4. VoW=VoW

5. Given an orthogonal matrix R, (VR)oW =V o W.
6. f V=W, VoW =1

The first two properties simply state that it should reduce to the two examples
listed in the beginning of this section. The third property states that the operator
should be commutative. The fourth property says that the operator applied to the
left nullspaces of two matrices should be the same as it applied to the column spaces
of those matrices. This is an extension of the observation that for planes of dimension
one less than the dimension of the space, the angle can be computed using the inner
product of the normals to the planes. The left nullspace is, in general, all of the
directions which are perpendicular to the column space. Thus, properties one and
four together imply property two. The fifth property maintains that the measure
should be invariant to the basis used to describe the subspace and the final property
says that the value of 1 will indicate parallel planes. There is one final property that
is not listed and that is we want it to handle cases like the case of X, Y, and Z given
in equation A.3 properly (e.g. it should assign a smaller value to X ¢Z than to X oY).

In order to construct this similarity measure, let us consider the matrix P which
will be equal to VW . This matrix has all possible inner products of the columns
of V with the columns of W. ||P||% is almost the operator we desire.! We can view

Y| - || represents the Frobenius Norm, or the square root of the sum of the squares of all of the

elements of a matrix
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| P||% as the sum of the squares of the lengths of the projections of the bases of V onto
W (or vice-versa). Consider that each row of P contains the inner products of one
basis vector of V with each of the basis vectors of WW. Thus, the sum of the squares of
a row is the square of the length of the a basis vector of V projected onto W. Clearly,
this is invariant to choice of the basis vectors for W (provided they are orthonormal).
Since this operator is invariant to the particular choice of W to represent YV and is
obviously commutative, it must also be invariant to the choice of V' to represent V.

Why || P||%? Tt satisfies properties one, three, and five and property six is simple
to fix by scaling or translation. It also produces different values for X ¢Y and X ¢ Z.
There remains only one problem: |[|[VIW|% # ||[VTW'||%4. Yet, this is the precise
reason that we chose the square of the Frobenius Norm. Consider the two orthogonal
matrices V and W created by concatenating V and V' and W and W’ respectively.
If we now consider VIW pictorially we can view the importance of the Frobenius
Norm:

o VT VIw vVIw’ R
VIW = W W | = =P (A.4)
V/T V/TW V/TW/T

Note that P is orthogonal since both V and W are. This means that the sum of
squares of the elements of each column or row of P is 1. Thus, the square of the
Frobenius Norm of the first n rows of P is equal to n. Furthermore, it can be broken
up into the sum of the squares of the Frobenius Norms of the upper left and upper
right quadrants of p. Similarly, the square of the Frobenius Norm of the right d —n
rows of P is equal to d — n and can be broken into the sum of the squares of the
Frobenius Norms of the upper right and lower right quadrants. Thus we have that

VWG + VW = n
IVEW + VAW = d-n
—
VWG —n = [VIWE —(d—n)

which is exactly what we want. The constant n on the left side is the size of the
column spaces of V' and W and the constant (d —n) on the right side is the size of the
column spaces of V' and W’. We need only translate the operator so that property
six is held and we have the following definition of the operator <:

At © Baxn 2 | ATBIlp —d +1 (A.5)
Since || A]|% = tr(AT A), we can rewrite this definition as
AoBEtr(BTAATB—1)+1 (A.6)
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and remove an explicit mention of the dimensions of A or B.

What are the properties of this operator? For two subspaces of dimension d of a
space of dimension n, the range of the operator is [1 — min(d, n — d), 1] which means
that for hyperplanes with one fewer dimensions than their embedded space or for one
dimensional lines the operator measures the square of the cosine of the angle between
either the normals or the tangents respectively. If the two hyperplanes are orthogonal
and intersect along a d — 1 dimensional subspace, then the operator evaluates to 0.
If they are orthogonal, but intersect in a smaller dimensional subspace, the operator
evaluates to a negative number indicating “hyper-orthogonality.” It should finally be
noted that this operator is robust: small changes in the matrices do not produce large
changes in the result.
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