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Abstract

Methods for fusing two computer vision methods are discussed and several example

algorithms are presented to illustrate the variational method of fusing algorithms. The

example algorithms solve the photo-topography problem; that is, the algorithms seek

to determine planet topography given two images taken from two di�erent locations

with two di�erent lighting conditions. The algorithms each employ a single cost

function that combines the computer vision methods of shape-from-shading and stereo

in di�erent ways. The algorithms are closely coupled and take into account all the

constraints of the photo-topography problem.

One such algorithm, the z-only algorithm, can accurately and robustly estimate

the height of a surface from two given images. Results of running the algorithms on

four synthetic test image sets of varying di�culty are presented.
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We know of no universe, whatsoever,

where music is not in the center of the rocks.

| Brian Swimme, Canticle to the Cosmos (1990)

Acknowledgments

I would like to thank my advisor, Professor Berthold Horn, for providing guidance

and support, and for suggesting the topic which became this thesis. I found working

with him on this project to be very enjoyable. I am also grateful to my committee

members, Professor Derek Rowell and Professor Alan Willsky, for their contribution

to the success of this thesis.

I would like to thank John N. Little of The MathWorks, Inc. for providing me with

alpha and beta copies of Matlab 4.0 which greatly simpli�ed the implementation

and analysis of the algorithms presented in this thesis. I would also like to thank

Mike Caplinger for providing the Viking images of Mars.

I am particularly grateful for the emotional support I have received from my

parents over the years. In many ways, this Ph.D. is also theirs.

Lastly, I would like to thank my girlfriend Susan for her vision, understanding,

and colorful imagery that continues to have a positive impact in my life.

This research was supported in part by NASA contract NAS5-31352. Additional

support came from DARPA contract N00014-91-J-4038 which helps support general

activities at the M.I.T. Arti�cial Intelligence Laboratory.

4



Contents

1 Introduction 13

1.1 Photo-topography : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

1.2 Related Research : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

1.2.1 Relation of this thesis to sensor fusion : : : : : : : : : : : : : 18

1.2.2 Relation of this thesis to vision fusion schemes : : : : : : : : : 19

1.2.3 Relation of this thesis to photoclinometry : : : : : : : : : : : 20

2 Background 21

2.1 Coordinate Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

2.2 Image Generation Process : : : : : : : : : : : : : : : : : : : : : : : : 22

2.2.1 Object irradiance : : : : : : : : : : : : : : : : : : : : : : : : : 22

2.2.2 Object Radiance : : : : : : : : : : : : : : : : : : : : : : : : : 23

2.2.3 Re
ectance Map : : : : : : : : : : : : : : : : : : : : : : : : : 24

2.2.4 Image Projection : : : : : : : : : : : : : : : : : : : : : : : : : 25

2.2.5 Orthographic Projection : : : : : : : : : : : : : : : : : : : : : 26

2.2.6 Image Irradiance : : : : : : : : : : : : : : : : : : : : : : : : : 27

2.2.7 Image Transduction : : : : : : : : : : : : : : : : : : : : : : : : 27

2.3 Stereo : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

2.4 Photo-topography Problem Formulaton : : : : : : : : : : : : : : : : : 30

2.5 Simpli�cations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

2.5.1 Special global coordinate system. : : : : : : : : : : : : : : : : 32

2.5.2 Removing the view direction dependence. : : : : : : : : : : : : 33

2.5.3 Constant albedo. : : : : : : : : : : : : : : : : : : : : : : : : : 33

2.5.4 Aligned cameras. : : : : : : : : : : : : : : : : : : : : : : : : : 34

2.5.5 The simpli�ed equations. : : : : : : : : : : : : : : : : : : : : : 34

2.6 Camera Calibration : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

3 Fusion Strategy 39

3.1 Variable representations : : : : : : : : : : : : : : : : : : : : : : : : : 40

3.2 Cost functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41

3.3 Solution Techniques : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

3.4 Speed-up Techniques : : : : : : : : : : : : : : : : : : : : : : : : : : : 44

5



6 CONTENTS

4 Candidate algorithms 49

4.1 zpq Algorithm. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

4.1.1 Co-grid Implementation : : : : : : : : : : : : : : : : : : : : : 53

4.1.2 Matched-grid Implementation : : : : : : : : : : : : : : : : : : 54

4.2 z-only Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

4.2.1 Expanded Boundary Implementation : : : : : : : : : : : : : : 57

4.2.2 Matched Grid Implementation : : : : : : : : : : : : : : : : : : 58

4.3 Dual-z Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

4.4 Disparity Map Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : 61

5 Test Results 65

5.1 Easy Crater Images : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

5.2 Hill Images : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73

5.3 Mountain Images : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 79

5.4 Hard Crater Images : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85

5.5 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 91

6 Comparison with Shape-from-Shading 95

7 Error Analysis 101

7.1 Measurement Errors : : : : : : : : : : : : : : : : : : : : : : : : : : : 101

7.2 Camera Geometry Error : : : : : : : : : : : : : : : : : : : : : : : : : 101

7.3 Re
ectance map errors : : : : : : : : : : : : : : : : : : : : : : : : : : 104

7.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 106

8 Algorithm Extensions 109

8.1 Varying albedo algorithms : : : : : : : : : : : : : : : : : : : : : : : : 109

8.2 Minimizing departure from a constant albedo. : : : : : : : : : : : : : 110

8.3 Minimizing local albedo change. : : : : : : : : : : : : : : : : : : : : : 111

8.4 Varying albedo test results. : : : : : : : : : : : : : : : : : : : : : : : 112

8.4.1 Crater with dark stripe : : : : : : : : : : : : : : : : : : : : : : 112

8.4.2 Hill with sedimentation : : : : : : : : : : : : : : : : : : : : : : 112

8.4.3 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112

8.5 General Camera Geometry : : : : : : : : : : : : : : : : : : : : : : : : 117

9 Summary 119

9.1 Mars Images : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 119

9.2 Future research : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 120

9.3 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124

A Gradient derivation for z-only algorithm 125

A.1 Cost function. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 125

A.2 Bicubic extrapolation : : : : : : : : : : : : : : : : : : : : : : : : : : : 126



CONTENTS 7

A.3 Gradient of terms based on convolution. : : : : : : : : : : : : : : : : 126

A.4 Cost function derivative. : : : : : : : : : : : : : : : : : : : : : : : : : 127

B M-�le Listings 131

B.1 Cost function and gradient routines : : : : : : : : : : : : : : : : : : : 131

B.1.1 hbdfss cost3c.m : : : : : : : : : : : : : : : : : : : : : : : : : : 131

B.1.2 hbdfss grad3c.m : : : : : : : : : : : : : : : : : : : : : : : : : : 133

B.1.3 hbdfss cost2c.m : : : : : : : : : : : : : : : : : : : : : : : : : : 134

B.1.4 hbdfss grad2c.m : : : : : : : : : : : : : : : : : : : : : : : : : : 136

B.1.5 hbdfss cost4.m : : : : : : : : : : : : : : : : : : : : : : : : : : 137

B.1.6 hbdfss grad4.m : : : : : : : : : : : : : : : : : : : : : : : : : : 138

B.1.7 hbdfss cost7.m : : : : : : : : : : : : : : : : : : : : : : : : : : 139

B.1.8 hbdfss grad7.m : : : : : : : : : : : : : : : : : : : : : : : : : : 140

B.1.9 hbdfss cost8b.m : : : : : : : : : : : : : : : : : : : : : : : : : : 142

B.1.10 hbdfss grad8b.m : : : : : : : : : : : : : : : : : : : : : : : : : 143

B.1.11 hbsfs cost.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : 144

B.1.12 hbsfs grad.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : 145

B.2 Support routines. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 146

B.2.1 rmap.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 146

B.2.2 rmapp.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 146

B.2.3 rmapq.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 146

B.2.4 conjgrad.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : 147

B.2.5 lsearch.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 148

B.2.6 �lter2d.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 150

B.2.7 c�lter2d.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 151

B.2.8 hbasis.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 152

B.2.9 hb.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 153

B.2.10 hbt.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 153

B.2.11 interpx.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 153

B.2.12 domain2d.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : 154

B.2.13 icubic.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 154

B.2.14 dcubicx.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 155

B.2.15 dcubicz.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 156

C Test Surface Descriptions 159

C.1 Crater Surface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 159

C.1.1 makepair4.m : : : : : : : : : : : : : : : : : : : : : : : : : : : : 159

C.1.2 crater depth.m : : : : : : : : : : : : : : : : : : : : : : : : : : 161

C.2 Hill Surface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 161

C.2.1 makepair data.m : : : : : : : : : : : : : : : : : : : : : : : : : 161

C.2.2 data depth.m : : : : : : : : : : : : : : : : : : : : : : : : : : : 163



8 CONTENTS



List of Figures

1-1 Generic module-based fusion method 
ow chart. : : : : : : : : : : : : 14

1-2 Generic variational-based fusion method 
ow chart. : : : : : : : : : : 14

1-3 Example camera and light source geometry for the two images of photo-

topography. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

2-1 Coordinate system choices. : : : : : : : : : : : : : : : : : : : : : : : : 21

2-2 Image generation process steps. : : : : : : : : : : : : : : : : : : : : : 23

2-3 Two Perspective projection geometries. : : : : : : : : : : : : : : : : : 25

2-4 Image irradiance. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

2-5 Stereo geometry. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

2-6 Introduced global coordinate system. : : : : : : : : : : : : : : : : : : 32

2-7 Coordinate systems with aligned optical axes. : : : : : : : : : : : : : 34

2-8 Camera calibration geometry. : : : : : : : : : : : : : : : : : : : : : : 36

3-1 Hierarchical basis functions : : : : : : : : : : : : : : : : : : : : : : : 45

3-2 Non-zero Hessian elements for a 9-by-9 image : : : : : : : : : : : : : 46

3-3 Multigrid levels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

4-1 Centralized algorithm tree. : : : : : : : : : : : : : : : : : : : : : : : : 50

4-2 Decentralized algorithm tree. : : : : : : : : : : : : : : : : : : : : : : : 50

4-3 Centralized algorithm tree based on disparity. : : : : : : : : : : : : : 51

4-4 Relative sizes of the p, q, and z arrays in comparison to the image

arrays for the co-grid representation. : : : : : : : : : : : : : : : : : : : 53

4-5 Relative sizes of the p, q, and z arrays in comparison to the image

arrays for the matched-grid representation. : : : : : : : : : : : : : : : : 55

4-6 Relative size of the z array in comparison to the image arrays for the

expanded boundary implementation. : : : : : : : : : : : : : : : : : : : 57

5-1 Test images of crater on 
at plane (easy case). : : : : : : : : : : : : : 67

5-2 Performance of the zpq algorithm on the easy crater images : : : : : 69

5-3 Performance of the z-only algorithm on the easy crater images : : : : 70

5-4 Performance of the dual-z algorithm on the easy crater images : : : : 71

5-5 Performance of the disparity-based algorithm on the easy crater images 72

5-6 Test images of hill : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

9



10 LIST OF FIGURES

5-7 Performance of the zpq algorithm on the hill images : : : : : : : : : : 75

5-8 Performance of the z-only algorithm on the hill images : : : : : : : : 76

5-9 Performance of the dual-z algorithm on the hill images : : : : : : : : 77

5-10 Performance of the disparity-based algorithm on the hill images : : : 78

5-11 Test images of mountain : : : : : : : : : : : : : : : : : : : : : : : : : 80

5-12 Performance of the zpq algorithm on the mountain images : : : : : : 81

5-13 Performance of the z-only algorithm on the mountain images : : : : : 82

5-14 Performance of the dual-z algorithm on the mountain images : : : : : 83

5-15 Performance of the disparity-based algorithm on the mountain images 84

5-16 Test images of crater on 
at plane (hard case) : : : : : : : : : : : : : 86

5-17 Performance of the zpq algorithm on the hard crater images : : : : : 87

5-18 Performance of the z-only algorithm on the hard crater images : : : : 88

5-19 Performance of the dual-z algorithm on the hard crater images : : : : 89

5-20 Performance of the disparity-based algorithm on the hard crater images 90

5-21 Absolute surface estimation error : : : : : : : : : : : : : : : : : : : : 92

6-1 Performance of the shape-from-shading algorithm on the left easy cra-

ter image. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96

6-2 Performance of the shape-from-shading algorithm on the left hill image. 97

6-3 Performance of the shape-from-shading algorithm on the left mountain

image. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98

6-4 Performance of the shape-from-shading algorithm on the left hard cra-

ter image. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 99

7-1 Performance of z-only algorithm on noisy hill images : : : : : : : : : 102

7-2 Performance of z-only algorithm with hill baseline errors. : : : : : : : 103

7-3 Performance of z-only algorithm with hill interior orientation errors. : 103

7-4 Performance of z-only algorithm with hill epipolar errors. : : : : : : : 105

7-5 Performance of z-only algorithm with hill light source errors. : : : : : 105

7-6 Performance of z-only algorithm with hill albedo errors. : : : : : : : : 107

8-1 Crater on 
at plane with varying albedo : : : : : : : : : : : : : : : : 113

8-2 Performance of the varying albedo algorithm on the varying albedo

crater images. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 114

8-3 Test images of hill with varying albedo : : : : : : : : : : : : : : : : : 115

8-4 Performance of the varying albedo algorithm on the varying albedo hill

images. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 116

8-5 Camera reprojection geometry. : : : : : : : : : : : : : : : : : : : : : : 117

9-1 Stereo images of Mars taken by the Viking probe. : : : : : : : : : : : 121

9-2 Results of running the z-only algorithm on the Viking Mars images. : 122

9-3 High resolution mesh and surface plot of Mars : : : : : : : : : : : : : 123



List of Tables

3-1 Photo-topography problem information sources : : : : : : : : : : : : 40

5-1 Camera geometry. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

5-2 Absolute and relative surface estimation error : : : : : : : : : : : : : 91

6-1 Estimation error of SFS algorithm : : : : : : : : : : : : : : : : : : : : 100

7-1 RMS Estimated surface error from noisy images. : : : : : : : : : : : : 102

7-2 RMS Estimated surface error from geometry errors. : : : : : : : : : : 104

7-3 RMS Estimated surface error from re
ectance errors. : : : : : : : : : 106

B-1 M-�le Descriptions. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 132

11



12 LIST OF TABLES



Chapter 1

Introduction

Over the years computer vision researchers have developed algorithms to interpret

gray scale and color images. These algorithms can be used to extract various types

of information from the images such as relative motion between images (motion-

vision), depth from a pair of images (binocular stereo), surface orientation from a

set of images with di�erent lighting (photometric stereo), surface orientation from a

single image (shape-from-shading and other shape-from-X algorithms). Most of these

algorithms work well in specialized circumstances but not as well in general. They

are not very robust. They work well if everything is perfect, but don't do very well

in sub-optimal conditions. They operate with many restrictive assumptions, which

limit their applicability to many real problems. A way is needed to create more robust

methods that can be applied to wide range of input images.

One obvious approach is to research ways of enhancing the existing methods to

make them applicable to a wider range of inputs. Another approach is to combine one

or more methods to produce a hybrid method with better, more robust performance.

This thesis looks into the latter approach. The resulting algorithms are called fused

algorithms. Fusing of two or more computer vision methods, if they bring di�erent

information to the problem, can create a more robust solution. It's like Kalman

�ltering: with more sensors you get a better estimate.

This thesis explores and answers the following questions:

1. What are the di�erent fusion paradigms and how do they di�er?

2. Which fusion paradigm are best for vision problems?

3. How much additional performance and robustness can be obtained via fusion?

There are two main approaches to fusing disparate algorithms. I call them the

module-based approach and the variational approach. In the module-based approach,

the fused algorithms are run separately on the input images. The various outputs,

(they might be a sparse depth map from binocular stereo and a dense surface ori-

entation from shape-from-shading), are then combined somehow to generate a single

13



14 CHAPTER 1. INTRODUCTION

Algorithm 1

Algorithm 2

Algorithm n

•
•
•

Combine
Inputs Combined Outputs

Figure 1-1: Generic module-based fusion method 
ow chart.

Representation

Algorithm 1 Algorithm 2

Algorithm n

Inputs Common Outputs

Other Algorithms

Algorithm 3

Figure 1-2: Generic variational-based fusion method 
ow chart.

solution (see Figure 1-1). The module-based approach is easy to implement since

existing algorithms can be put together in an ad-hoc manner without having to know

much about the inner workings of each algorithm. The outputs are then combined

using physically derived constraints to generate the desired combined solution. The

approach can be applied successfully, but has the disadvantage that this approach

doesn't fully exploit the information coupling between the methods.

The variational approach, on the other hand, closely couples the algorithms to-

gether (see Figure 1-2). This is achieved by formulating a combined cost function

based on the cost functions of the separate algorithms to be fused. The result is a

combined optimization problem which takes into account both the explicit and im-

plicit constraints between the methods. Variational methods, by their nature, can

exploit any orthogonalities (information content) in the methods. By exploiting all

the information, the variational approach has the potential to create robust, well per-

forming combinations of algorithms which can be applied to a wide range of input

images. How to create such algorithms is the focus of this thesis.
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Geometry for left image. Geometry for right image.

Figure 1-3: Example camera and light source geometry for the two images of photo-

topography.

1.1 Photo-topography

A problem that can bene�t greatly from a fused vision algorithm is the problem of

photo-topography. Photo-topography seeks to determine the topography of a planet's

surface based on two images of the planet, taken from two di�erent vantage points at

two di�erent times. This situation is illustrated in Figure 1-3.

In some ways, this situation is analogous to binocular stereo. Unfortunately, the

images are typically taken with two di�erent light source positions as shown in the

�gure. The two images that result will, in general, look quite di�erent from each

other even though they are images of the same surface patch. One such set of images

is shown in Figure 9-1 on page 121.

Contrast this with the situation that is normally true for binocular stereo images.

Stereo image pairs are usually taken simultaneously (or nearly simultaneously), from

positions that are near to each other, and with the same lighting. The images that

result look very similar to each other except for the relative shift of objects (i.e, the

disparity) due to their distance from the cameras. If the disparity for all points in

the images and the relative geometry of the cameras is known, then the depth of the

objects can be computed directly. The images are similar, so most stereo algorithms

determine the disparity by trying to match features in one image with features in the

other. Since the images from photo-topography look di�erent from each other, this

matching approach doesn't work.

Photo-topography also shares some aspects with a shape-from-shading problem.

Shape-from-shading takes a gray-scale image of a surface and determines the surface

topography by exploiting the shading information in the image. Shape-from-shading

requires that the surface re
ectance properties be known. Assuming the re
ectance

properties of the planet's surface are known, we could use a shape-from-shading algo-

rithm to estimate the surface topography from each of the photo-topography images.

Unfortunately, the surface estimates based on each image will typically be di�erent.

They may not even be very similar. In the worse case, the surface estimates from

each image may not have the same orientation; one could be concave while the other
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is convex. Thus planet photo-topography is a perfect problem on which to test a

fusion algorithm based on shape-from-shading and stereo.

Photo-topography also has aspects in common with a photometric stereo prob-

lem. Photometric stereo uses two images of the same scene taken with two di�erent

lighting conditions. Both images are from the same vantage point; the camera is not

moved between images. The result is two images that look di�erent but where the

correspondence is explicitly known (a position in one image is always matched with

the same position in the other image). If the light positions are far enough apart, it

is possible to determine the surface orientation directly. For Lambertian re
ectance,

two images can constrain the surface orientation to two possible values at each point.

With three images, it is possible to �nd a unique surface orientation at each point.

The photo-topography images have two di�erent light source positions, but the

correspondence is based on binocular stereo. Like photometric stereo, the two light

sources can constrain the surface orientation, but only if the correspondence is known.

Thus in photo-topography, photometric stereo and binocular stereo are closely linked.

Currently, photo-topography problems are solved using a characteristic strips

method [Davis and Soderblom, 1984] or more modern shape-from-shading meth-

ods [Van Hove and Carlotto, 1986]. The characteristic strips method uses a general

method of solving partial di�erential equations and is similar to some early shape-

from-shading algorithms. In this method, the solution is found along strips starting

from a given (or known) point. The solutions obtained are local, and may not cover

the space of interest.

1.2 Related Research

This research is most closely related to the work of Horn [Ikeuchi and Horn, 1981],
[Horn and Brooks, 1986], [Horn, 1986], [Horn, 1989], Gennert [Gennert, 1987], and

Szeliski [Szeliski, 1990], [Szeliski, 1991]. The variational (least squares) approach I

have taken is based signi�cantly on the work of Horn [Horn, 1989], [Horn and Schunk,

1981], [Negahdaripour and Horn, 1985] and on insights gained from my background in

control/estimation. The shape-from-shading part of this thesis builds upon the work

of Horn [Horn, 1989], Szeliski [Szeliski, 1991], and Leclerc and Bobick [Leclerc and

Bobick, 1991]. The stereo part of this thesis builds on the gray-scale stereo algorithm

of Gennert [Gennert, 1987]. I use the hierarchical basis functions of Szeliski and use

conjugate gradient optimization, as do Leclerc and Bobick [Leclerc and Bobick, 1991].

This research is also related to the work of Hartt and Carlotto [Hartt and Carlotto,

1989], [Heipke, 1992], Wildey [Wildey, 1973], and McEwen [McEwen, 1985] in that

they try to solve the same problem; that is, the determination of planet topography

from a pair of images.

Hartt and Carlotto use a Bayesian formulation with multiple images that in some

ways is very similar to the methods I use. Their cost function and their approach is

however very di�erent. The Bayesian formulation leads them to a cost function of
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the form (using my notation)

U(z) =
ZZ X

k

jE(k)(x; y)�Rk(p; q)j+ �jrz(x; y)j2dx dy: (1:1)

While they discuss methods of estimating the albedo of the surface, results are shown

for constant albedo surfaces with Lambertian re
ectance.1

They solve their problem using a Markov Random Field Model via a Gibbs distri-

bution [Geman and Geman, 1984]. They use the Metropolis optimization algorithm
[Metropolis et al., 1953] with a coarse-to-�ne multi-resolution strategy to obtain their

results. They show results for the algorithm on multiple (2) images based on a digital

elevation map of upstate New York. They obtain better estimates when two images

are used instead of one. It is hard to determine from the results they show, but it

appears that their estimates contain quite a bit of error (only the estimated images

are shown). The e�ciency of their algorithm is also hard to gauge. They state in

their paper that approximately. 200 sweeps of each image is performed at each reso-

lution. Inferring that they used 60-by-60 pixel images, with 3 resolution levels, and

each sweep evaluated the cost function n times where n is the number of pixels on

that level, the number of function evaluations they required is approximately

N � 200 � (602 + 302 + 152) (1.2)

� 945000 function evaluations. (1.3)

This is signi�cantly more function evaluations that the algorithms I have developed

(my algorithms typically require at most 1500 function evaluations for 65-by-65 pixel

images and much less on some images).

Heipke discusses the solution to a multiple image photo-topography problem. In

the paper [Heipke, 1992], he states that he uses a least squares cost function. In

addition, the constraint equations that he develops are the same as mine except that

they apply to more than two images. Since Heipke is not very explicit in this paper, it

is di�cult to tell exactly how he solves the problem. His results are encouraging but

also show that his method is very sensitive to noise in the images. Heipke's algorithm

shares many things in common with the algorithms I develop in this thesis since he

starts with the same constraint equations. Even so, his algorithm doesn't perform as

well as my algorithms.

The work of McEwen is based on traditional photoclinometry methods and is

thus pro�le based. In [McEwen, 1985], McEwen uses information from two images of

the same location under di�erent lighting conditions to distinguish between albedo

and re
ectance e�ects. The image sets McEwen uses are taken from nearly the same

location so that the pixel correspondence is easy. In many ways, McEwen's methods

parallel photometric stereo much more than my algorithms.

1I make similar assumptions for most of this thesis.
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Wildey basically solves a stereo problem [Wildey, 1973]. He assumes that that

the light source is in the same position for each image and tries to determine pixel

correspondence by matching image brightness. His method estimates the topography

of the planet surface as it proceeds. He mentions an enhancement to this method

that would take into account the estimated brightness of the reconstructed surface.

This enhancement is closely related to my algorithms (and shape-from-shading) and

would be applicable to images with similar lighting.

Another related paper is the shape-from-shading and stereo fusion algorithm of

Grimson [Grimson, 1984]. In that paper, Grimson describes a method for enhancing

the surface reconstruction step required after feature-based stereo using shading in-

formation. His method uses the shading information only along features to constrain

the surface reconstruction and is loosely based on the methods of photometric stereo
[Woodham, 1980].

1.2.1 Relation of this thesis to sensor fusion

The goal of this thesis is to investigate ways of combining or fusing two di�erent

computer vision methods. Thus this thesis is related to sensor fusion techniques (also

called data fusion or information fusion in some contexts). Sensor fusion is a way of

combining the information from multiple sensors to create better parameter estimates

than can be achieved with the individual sensors alone.

Fusion has a much longer history than its use in vision algorithms. Researchers

and engineers have been combining disparate sensors to obtain better estimates of

the outside world for a long time. In the literature, three di�erent approaches can

be identi�ed; 1) Fusion via estimation theory, 2) Fusion via decision theory, and 2)

fusion via arti�cial intelligence methods.

The traditional approach involves the use of Kalman Filtering [Gelb, 1974]. In

Kalman �ltering, or estimation as it more broadly called, the sensor physics are an-

alyzed and a noise model is postulated. Based on this information, a cost function

is formulated. Typical cost functions are based on maximum likelihood estimation,

maximum a priori estimation, minimum variance estimation, or least squares estima-

tion. For simple noise models (such as Gaussian white noise), these cost functions

have the form,

min
x

J =
Z
L(x; . . .) (1:4)

possibly subject to additional constraints imposed by the physics. L(x; . . .) is some

non-linear functional. This same type of cost function is formed when solving vision

problems using the variational approach [Horn, 1989]. Estimation theory-based fusion

includes methods that rely on Bayesian statistics [Lee, 1990], [Richardson and Marsh,

1988], [Hung et al., 1988], as well as least-squares approaches [Shaw et al., 1988].

Decision theory approaches use Bayesian Reasoning [Thomopoulos, 1989], Shafer-

Dempster Reasoning [Bogler, 1987] or ad hoc methods [Mitiche and Aggarwal, 1986].
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The arti�cial intelligence methods range from rule-based hypotheses [Belknap et al.,

1986], [Belknap et al., 1986], [Nandhakumar and Aggarwal, 1988], to blackboard

schemes [Harmon et al., 1986], to knowledge representation approaches [Pau, 1989],

to arti�cial neural networks [Brown et al., 1991]. Sensor fusion is an important

problem for mobile robots and military threat detection as evidenced by the above

references.

An important problem in sensor fusion that is not addressed in this thesis is the

fusion of widely di�ering sensors. The problem is particularly di�cult for mobile

robots where the sensors may provide information at several conceptual levels. For

example, sensors may be available for wheel rotation, range images, visual images,

touch and sound. Combining information from such disparate sources is much more

di�cult than combining information from sources that operate on the same level (such

as combining infrared, range and visual images).

1.2.2 Relation of this thesis to vision fusion schemes

The computer vision literature is roughly segmented along module boundaries. These

modules are related to our current ideas about how human vision works. For in-

stance there are algorithms for binocular stereo, motion vision, and a whole host

of shape-from-X algorithms. Each of these algorithms performs reasonably well in

ideal conditions but can degrade quickly in typical real-world situations. It has been

suggested by many researchers [Aloimonos and Basu, 1988], [Waxman and Duncan,

1986] that a combination of these modules will do a better job of estimating the ex-

ternal world. Of course, these ideas are �rmly supported by estimation theory where

it can be easily shown that adding sensors cannot degrade an estimate and most often

enhances it.

Along these lines, some researchers in the computer vision community have been

looking into ways of combining more than one vision cue (and associated algorithm)

in order to obtain either better or more robust estimates of the external world. The

techniques for combining the methods range from those that use Bayesian estima-

tion theory [Matthies and Elfes, 1988], [Hartt and Carlotto, 1989], to those that use

module-based methods [Moerdler and Kender, 1987], [Moerdler and Boult, 1988],
[Grimson, 1984]. Another common technique is to use an analytical approach [Wax-

man and Duncan, 1986], [Aloimonos and Basu, 1988], [Hu and Shrikhande, 1990],

relying on the constraints from the fused cues (under particular assumptions) to gen-

erate either a unique or a �nite number of possible solutions.

I prefer the estimation-based methods, since all the information available can be

exploited, and the assumptions behind a particular method can be quanti�ed. These

methods also rest on a �rm foundation. The module-based methods, in contrast,

are more ad hoc. The analytical approach can be used within the estimation-based

approach to constrain the solution.
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1.2.3 Relation of this thesis to photoclinometry

One of the reasons for this research is to improve methods of planetary mapping. In

particular, this research aims to widen the applicability of computer methods to this

di�cult task. Current techniques for planetary mapping work either on symmetric

objects or along ridges [Davis and Soderblom, 1984], or use the same methods as

shape-from-shading [Wildey, 1975], [Van Hove and Carlotto, 1986], [Kirk, 1987] al-

though the theory was developed independently within the geophysics community.

In that community, shape-from-shading is called two-dimensional photoclinometry.

Important aspects for photoclinometry are the determination of the true re
ectance

function for a planet [Davis and McEwen, 1984], [Wilson et al., 1985], [McEwen,

1991], [Helfenstein et al., 1991] and how to deal with non-constant albedo [Davis and

Soderblom, 1984], [Helfenstein et al., 1991].

While there is no doubt that using the correct re
ectance function and accounting

for non-constant albedo is important, most of the algorithms in this thesis are for the

simpli�ed case of Lambertian re
ectance and constant albedo. Both of these simpli-

�cations are not fatal: the algorithms can be easily generalized to other re
ectance

functions and the non-constant albedo case is dealt with in Section 8.1. In fact, the

algorithms developed will work, without change, with any re
ectance function that

is smooth and that doesn't contain multiple extrema.



Chapter 2

Background

2.1 Coordinate Systems

The solution to a photo-topography problem is a description of the surface topog-

raphy. The most straightforward description for the surface is to represent it as a

height function over some suitable 2-D domain,1 that is

z = z(x; y): (2:1)

Within the vision literature, there are two di�erent choices for the 2-D domain. The

image-centered domain uses the coordinates of the image as the fundamental do-

main and assigns a depth (or height) value to the surface point that projects to each

image position. If orthographic projection is used, then the projection mapping is

straightforward. However if perspective projection is used, then this mapping can be-

come quite complex (especially for surface normal calculations). The object-centered

domain uses a coordinate system associated with the object and assigns a surface

1Also known as a Monge patch.

Object

Image Plane

Object Plane

Object

Image-Centered Coordinate System Object-Centered Coordinate System

Figure 2-1: Coordinate system choices.
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height value to each point in the domain (see Figure 2-1). Projecting points on the

object to points in the image is straightforward using this representation for either

orthographic or perspective projection. However, the projected points, won't in gen-

eral map to the center of each pixel. To obtain values at each pixel then requires

some type of interpolation.

In a stereo system, there is also the choice of whether the coordinate system should

favor one image or the other. Since there is no apriori reason to believe that one image

has better information than the other image, it is best to choose a neutral coordinate

system rather than risk biasing the result toward one or the other image.

2.2 Image Generation Process

The photo-topography problem is basically an inverse problem. We seek to determine

the topography of the object that created the images at hand. Those images are based

on the object (a forward problem). That is, the interaction of light with an object,

as seen by the viewer creates the image. The physics behind this process are detailed

in the sections that follow.

The image generation process can be neatly broken into four stages (see also

Figure 2-2),

1. light falls upon an object (object irradiance)

2. the light interacts with the object and is re-emitted or re
ected (object radiance)

3. the light then travels to the viewer where it is projected onto the image plane.

(image projection and image irradiance)

4. the light is absorbed by the material of the image plane and converted into some

signal that can be sensed (image transduction).

2.2.1 Object irradiance

The light that falls on a particular patch of an object depends on the properties of the

light sources that are visible (i.e., unobstructed) from that patch. Among possible

light sources are point sources, distributed sources, and other surface patches (e.g.,

inter
ection). At each point, �, on the surface, and for each direction, ŝ, the irradiance

distribution function, E(�; ŝ) [radiance/solid angle] captures this information. For

instance, the distribution function for a single point source, ignoring inter
ection, is

given by

E(�; ŝ) = ��̂(̂s; ŝ0) (2:2)
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Figure 2-2: Image generation process steps.

where � is the light intensity, ŝ0 is the unit vector in the light source direction, and

�̂ is a direction vector version of the Dirac delta2

�̂(̂t; t̂0) = 0;when t̂ 6= t̂0;ZZ
S

f (̂t)�̂(̂t; t̂0) dt̂ = f (̂t0);
(2:3)

where the integral is over the surface of the sphere S.

2.2.2 Object Radiance

The light that is emitted by a surface depends both on the light that impinges on

the surface and the surface re
ectance properties. The irradiance distribution func-

tion, E(�; ŝ) captures all the needed information about the light source, while the

surface re
ectance properties can be described using the Bidirectional Re
ectance

Distribution Function (BRDF). The BRDF is an intrinsic function of the surface and

doesn't depend on surface irradiance. At the point �, the BRDF f(�; n̂; v̂; ŝ) relates

the brightness of the surface patch with normal n̂ illuminated from the direction ŝ

and as seen from the direction v̂. Using these two distribution functions, the surface

radiance [power/solid angle/area] in the direction v̂ can then be de�ned as

L(�; n̂; v̂) =
ZZ

H(n̂)
f(�; n̂; v̂; ŝ)E(�; ŝ)(̂s � n̂)d!(̂s) (2:4)

2This delta function is de�ned on the surface of the sphere. One way to de�ne it is to repre-

sent the direction t̂ in spherical coordinates, t̂ = (sin � cos�; sin � sin�; cos �)T , so that we requireR �=2
��=2

R
2�

0
�̂(̂t(�; �); t̂0(�0; �0)) cos � d� d� = 1, hence,

�̂(̂t(�; �); t̂0(�0; �0)) = �(�� �0)�(� � �0)=cos(�0);

where �(:) is the normal scalar Dirac delta.
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where H(n̂) is the hemisphere of possible light source directions for the patch at

surface point � with normal n̂, and d!(̂s) is the solid angle subtended in the direction

ŝ. Representing ŝ in spherical coordinates this expression becomes

L(�; n̂; v̂) =
Z �

��

Z �=2

0
f(�; n̂; v̂; ŝ)E(�; ŝ) sin � cos � d� d�: (2:5)

The two most common re
ectance models are the Lambertian model for matte

surfaces, and the specular model for shiny metallic surfaces. In the Lambertian case,

the BRDF is independent of the light source direction, normal direction and viewing

direction,

f(�; n̂; v̂; ŝ) =
1

�
�(�) (2:6)

where �(�) is the surface albedo, or the fraction of light re-emitted by the surface.

Evaluating Equation 2.5 for a Lambertian surface illuminated by a single point source

at in�nity, the surface radiance is found to be

L(�; n̂; v̂) =
��(�)

�
(̂s0 � n̂): (2:7)

In the specular case, all the light from the direction ŝ0 is re
ected into the direction

2(n̂ � ŝ0)n̂� ŝ0 so the BRDF is

f(�; n̂; v̂; ŝ) = �(�)�̂(v̂; 2(n̂ � ŝ0)n̂� ŝ0): (2:8)

For a single point source at in�nity, the surface radiance for a such a surface is found

to be

L(�; n̂; v̂) = ��(�)�̂(v̂; 2(n̂ � ŝ0)n̂� ŝ0) (2:9)

In general, the albedo of a Lambertian surface is di�erent from the albedo of a specular

surface.

See [Wilson et al., 1985], [McEwen, 1985], and [Davis and McEwen, 1984] for a

sampling of the types of radiance functions used within the photoclinometry �eld.

2.2.3 Re
ectance Map

The preceding representation of the surface radiance is a local representation in that

the radiance is de�ned based on local surface orientation, viewer direction and light

source direction. Many vision researchers have found it convenient to use a represen-

tation of the surface radiance based on a global coordinate system. This alternate

representation is called the Re
ectance function. Given known surface properties and

a known light source distribution, the re
ectance function, R(�; n̂; v̂), is de�ned using

the corresponding surface radiance via a change in coordinates,

R(�G; n̂G; v̂G) = L(�; n̂; v̂) (2:10)
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Figure 2-3: Two Perspective projection geometries.

where �G, n̂G, and v̂G are the surface position, normal vector, and viewing direction

in global coordinates.

2.2.4 Image Projection

Points in the image plane are related to points on the object via perspective projection.

Figure 2-3 shows two perspective projection geometries. Figure 2-3(a) shows the

projection geometry for a camera where the image plane is behind the lens. The

projection of the center of the lens into the image plane is called the principal point.3

Choosing the origin of the image coordinate system to be at the principal point leads

to the simple equations presented in this section.4 Note that objects are projected

onto the image plane in an upside down orientation.

An equivalent geometry is shown in Figure 2-3(b). The only di�erence between

the camera geometry shown in Figure 2-3(a) and this geometry is that the image plane

has been moved to in front of the lens. While this geometry is not physically possible,

3The center of projection is at the back nodal point for thick lenses.
4Determining the position of the principal point for a given camera is part of the classic interior

orientation problem (see [Horn, 1986]).
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it produces exactly the same image (as can be seen by similar triangles) except that

the image is no longer upside down. Mathematically, the di�erence between these two

geometries is just a sign change in the equations. For instance, the image position r

of the object point R in Figure 2-3(a) is

r

r � ẑ = � R

R � ẑ ; (2:11)

while it is
r

r � ẑ =
R

R � ẑ (2:12)

for the geometry in Figure 2-3(b). These are Perspective Projection Equations. In

both expressions, ẑ is a unit vector in the direction of the negative optical axis. In

the equations that follow, the geometry of Figure 2-3(b) will be used to avoid having

to keep track of the minus sign in the perspective projection equation.

The equations above can be simpli�ed if a special coordinate system is used,

namely a coordinate system with origin at the principal point, and orientation such

that the x and y axes are aligned with the image coordinates and with the negative

z axis along the optical axis of the lens. This coordinate system is evident in the

labels assigned to the axes in Figure 2-3(b). For this coordinate system, r � ẑ = f (a

negative number). Expanded, these equations are

0
B@

x=f

y=f

f=f

1
CA =

0
B@

X=Z

Y=Z

Z=Z

1
CA (2:13)

when r = (x; y; f)T and R = (X; Y; Z)T .

2.2.5 Orthographic Projection

The projection equations can be further simpli�ed when the depth range of the object

is small compared to the distance of the object from the camera. The resulting

approximation is called Orthographic Projection. Consider the �rst order Taylor's

series expansion of the perspective projection equation about a nominal depth Z0,

r

f
=

R

Z0
+

R

Z
2
0

(Z � Z0) +O((Z � Z0)
2) (2:14)

where R = (X;Y; Z0)
T . When (Z � Z0)� Z0, the �rst order term can be neglected

resulting in the orthographic approximation,

r

f
=

R

Z0
: (2:15)
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Figure 2-4: Image irradiance.

Orthographic projection is convenient for computer vision problems since the map-

ping is linear. In fact, most shape-from-shading algorithms assume orthographic

projection. Unfortunately, the full perspective projection must be used for photo-

topography to avoid throwing out the very information we wish to estimate (i.e., the

stereo depth information).

2.2.6 Image Irradiance

The mapping between object points and image points is only half of the story for

image generation. We also need to know how the brightness of the image is a�ected

by the lens. Figure 2-4 shows that an object patch of area �O projects to an image

patch of area �I. Assuming a perfect lens, the image irradiance [power/area] from

this patch is

E(r) = L(�(r); n̂; v̂(r))
�

4

 
d

f

!2

cos4 � (2:16)

where L(�(r); n̂; v̂(r)) is the radiance of the corresponding object patch, d is the

diameter of the lens, and � is the o�-axis angle of the projecting ray. In this equation,

v̂ and � are functions of r via the projection from image points r to object points.

Equivalently, this expression can be restated using the re
ectance function rather

than the radiance function,

E(r) = R(�(r); n̂; v̂(r))
�

4

 
d

f

!2

cos4 � (2:17)

2.2.7 Image Transduction

The �nal stage in producing an image is the conversion of light into a signal that can

be used, namely digital form. Whether the digital images are scanned photographs

or are obtained directly via a digital camera, they will contain distortion (either

spatially or in color). The e�ect of this distortion can be removed via calibration

so that the measured image irradiance can be related to the object radiance in a
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Figure 2-5: Stereo geometry.

straightforward way. With perfect calibration, the image irradiance equation can be

put in the especially simple form,

E(r) = R(�(r); n̂; v̂(r)) (2:18)

where the cos4 � and constant scale factors have been removed as part of the calibra-

tion. Equation 2.18 is referred to as the Image Irradiance Equation.

2.3 Stereo

The images in a photo-topography problem are taken from two di�erent vantage

points (see Figure 2-5). If the relative position of the cameras is known, and it is

known which pixels in the left image correspond to which pixels in the right image,

then it is possible to determine the depth directly for the surface points that map

to those pixels. This is the basis of binocular stereo. Of course, the hard part is

determining the correspondence between pixels.

For normal stereo situations, the cameras are close together and both pictures

are taken simultaneously.5 The stereo images that result look very similar, mostly

di�ering in the shift of objects in each image caused by perspective projection. The

di�erence in the shift of an object point in the left image and the right image is called

the disparity. The photo-topography images are taken with cameras that are often far

5The stereo images of aerial photography are taken nearly simultaneously.



2.3. STEREO 29

apart and at di�erent times. In this case, it is possible (because of di�ering lighting)

for the two images to look very di�erent. This makes the correspondence problem

even harder.

To see how the depth can be determined directly from the disparity consider

Figure 2-5. Points in each image map to rays in 3-space. If corresponding points

in each image map to rays that intersect, the depth can be determined using simple

geometry. If the rays don't intersect, we can use geometry to determine the depth of

the point that is halfway between the rays at their closest approach.

First, �nd the relationship between the two camera coordinate systems. Suppose

we know the position of the principal point of each camera in some global coordinate

system, P1 and P2, and we also know the rotational transformation matrices from

each local camera coordinate system to the global coordinate system, T1 and T2, then

the coordinates of the point, �, in the two camera coordinate systems is

R1 = T
�1
1 (� �P1)

R2 = T
�1
2 (� �P2):

(2:19)

Equations 2.19 are the Stereo Constraint Equations which relate the position of points

in the global coordinate system to points in each of the local camera coordinate

systems.

By removing � from the above equations and de�ning b = P2�P1, the relationship

between a point in Camera Coordinate System 1 and a point in Camera Coordinate

System 2 is found to be

R1 = T
�1
1 b+ T

�1
1 T2R2: (2:20)

Now, determine the relationship between disparity and depth. Suppose we are

given image points, r1 = (x1; y1; f)
T and r2 = (x2; y2; f)

T (one in each image), that

correspond to the same surface point, then the best estimate for the surface position

can be found by �nding the point on each ray (along r1 and r2) where the distance

between the rays is minimized. That is, the problem

min
s;t
k�sr1 + b+ tr2k2 (2:21)

must be solved where s and t are scalar parameters. For now assume all the vectors

are given on the same basis.

By di�erentiating the above equation with respect to s and t, setting the resulting

equations to zero, and solving, it is found that the minimum occurs when

s =
(r2 � r2)(b � r1)� (r1 � r2)(b � r2)

(r1 � r1)(r2 � r2)� (r1 � r2)2 =
(r2 � b) � (r2 � r1)

kr2 � r1k2
;

t =
(r1 � r2)(b � r1)� (r1 � r1)(b � r2)

(r1 � r1)(r2 � r2)� (r1 � r2)2 =
(r1 � b) � (r2 � r1)

kr2 � r1k2
:

(2:22)
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If r1, r2, and b are coplanar then the above set of equations is just a fancy way of

writing the Law of Sines.

The global position of the point halfway between the two rays at the closest

approach is then

� � P1 + sr1 +
1

2
(�sr1 + b+ tr2); (2.23)

= P1 +
b

2
+
1

2

(T2r2 � b) � (T2r2 � T1r1)

kT2r2 � T1r1k2
T1r1

+
1

2

(T1r1 � b) � (T2r2 � T1r1)

kT2r2 � T1r1k2
T2r2 (2.24)

where Equation 2.24 has been written for P1, P2, and b given in global coordinates,

and r1, r2 given in the appropriate local camera coordinate system.

The equations simplify greatly if the r1, r2, and b are coplanar (i.e., if (r2�r1)�b =

0), the cameras are aligned so that the optical axes are in the direction �ẑ, and x̂ is

along b (ŷ is chosen to complete the right-handed coordinate system). This is exactly

the stereo geometry that is assumed to exist for most binocular stereo algorithms.

With these restrictions, the equation above becomes

� = P1 +
b

2
+

b(r1 + r2)

2(x1 � x2)
: (2:25)

where r1 = (x1; y1; f)
T , r2 = (x2; y2; f)

T , and b = (b; 0; 0)T . The quantity (x2 � x1)

in the above equation is the disparity mentioned earlier. In this form, the depth z is

found to be

z = � � ẑ = P1 � ẑ+ b

2
+

bf

(x1 � x2)
: (2:26)

Note that the disparity can be mapped directly into depth only in this special situa-

tion. For more general situations, Equation 2.24 must be used.

2.4 Photo-topography Problem Formulaton

We now have enough background to formulate the photo-topography problem. The

problem to be solved is:

Given two images of an area on the planet's surface, taken at two di�er-

ent times from two di�erent positions, determine the topography of that

section of the planet's surface.

The solution is constrained by geometry and the image generation process. Speci�-

cally each image is constrained by the perspective projection equation (Equation 2.12),

the image irradiance equation (Equation 2.18) and the stereo constraint equations

(Equations 2.19).
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Combining these equations we �nd that the photo-topography problem is constr-

ained such that
E

(1)(r1) = R
(1)(�; n̂;�T1r1)

E
(2)(r2) = R

(2)(�; n̂;�T2r2)
(2:27)

where

r1 =
fT

�1
1 (� �P1)

T
�1
1 (� �P1) � T1ẑ1

;

r2 =
fT

�1
2 (� �P2)

T
�1
2 (RG �P2) � T1ẑ2

;

(2:28)

are the local image plane position vectors (one in each camera coordinate system),

E
(1) and E

(2) are the image brightness measured in the �rst and second cameras

respectively, and R(1) and R(2) are the re
ectance maps based on the �rst and second

light source positions. As before, �, is the surface position in global coordinates.

Equations 2.27 and 2.28 are the General Photo-topography Constraint equations.

They state that in the absence of noise, the photo-topography images E(i) are created

by the interaction of light with the underlying surface z(�) via the re
ectance maps

R
(i) and as seen by the two cameras. Note that these equations can be used to

generate a set of photo-topography images given the surface description, z(�). In

contrast, determining the surface topography given the images, camera geometry and

re
ectance properties, is an inverse problem.

It's instructive to review the assumptions behind these equations. The perspec-

tive projection equations assume perfect lenses and perfect knowledge of the camera

principal points and optical axes. The surface radiance equation assumes we have

perfect knowledge of the surface re
ectance properties, light source directions, and

all surface points are visible from both cameras (i.e., there are no self occlusions).

The simpli�ed form of the image irradiance equation assumes we either have a per-

fect sensor or we can perfectly calibrate the sensor to remove any abnormalities from

the sensor/lens combination. The stereo equations assume we know the relative posi-

tion and orientation of the two cameras perfectly. The only assumption that is truly

arti�cial is the assumption of perfect knowledge of the re
ectance maps.6 With more

careful measurements and more expensive equipment it is possible to approach per-

fect knowledge of the other assumptions. The assumption that all surface points be

visible merely restricts the bumpiness of the surface that this research is applicable

to.

6Especially since the e�ects of non-uniform albedo and inter
ection are buried in the re
ectance

maps.
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Figure 2-6: Introduced global coordinate system.

2.5 Simpli�cations

The equations in the last section dealt with the general case (subject to the assump-

tions mentioned in that section). There are several simpli�cations that make the

equations easier to solve.

2.5.1 Special global coordinate system.

So far all the equations have been written for any global coordinate system. I would

now like to restrict the equations to a particular global coordinate system, namely the

coordinate system shown in Figure 2-6. This coordinate system is de�ned as follows

1. Place the origin of the global coordinate system half way between the principal

points of the two cameras. (That is, place the origin at the point P1 + b=2.)

2. Choose the x̂0 direction along the line connecting the two cameras,

x̂0 = b=kbk: (2:29)

3. Choose ẑ0 as the average optical axis direction of the two cameras projected

into the plane perpendicular to x0. (That is,

ẑ0 =
(ẑ1 � (ẑ1 � x̂0)x̂0) + (ẑ2 � (ẑ2 � x̂0)x̂0)
k(ẑ1 � (ẑ1 � x̂0)x̂0) + (ẑ2 � (ẑ2 � x̂0)x̂0)k : (2:30)

4. Choose ŷ0 in the direction of ẑ0�x̂0 in order to create a right handed coordinate
system.

5. Also set up a virtual image plane with f = 1.

In this coordinate system, P1 = �b=2, P2 = b=2, and b = (b; 0; 0)T .
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2.5.2 Removing the view direction dependence.

A common simpli�cation for computer vision is the assumption of a Lambertian

re
ectance map. Since a Lambertian surface re
ects light equally in all directions,

we see from Equation 2.7 that the radiance function is not dependent on the viewing

direction. Thus the dependence on v̂ can be removed from all the equations.7

Note that the viewing direction can also be removed from the equations when the

�eld of view is small. In this case, the viewing direction is approximately the same

for all points on the surface and its e�ect can be subsumed into the re
ectance map.

Doing this would, of course, introduce an error into the calculations. This error would

be small for photo-topography since the cameras are so far away from the surface.

The large viewing distance requires the use of a telephoto lens which has a small �eld

of view.

2.5.3 Constant albedo.

Thus far the equations have included terms that denote position on the surface �.

The main reason for this dependence is to take into account varying albedo, varying

re
ectance properties, or both. To simplify the situation we could assume that the

re
ectance properties, albedo, or both are constant across the surface. Assuming the

re
ectance properties, but not the albedo, are constant across the surface results in

a re
ectance function that is separated,

R(�; n̂; v̂) = �(�) �R(n̂; v̂) (2:31)

where �R(n̂; v̂) is the re
ectance function for a surface with uniform albedo, no in-

ter
ection, and no self occlusion. As for R, any light source e�ects are included in
�R.

When both the re
ectance and albedo are constant, the dependence of the re-


ectance map on surface position can be removed,

R(�; n̂; v̂) = R(n̂; v̂): (2:32)

Combined with either Lambertian re
ectance8 or when the �eld of view is small, the

dependence on v̂ can be dropped also,

R(�; n̂; v̂) = R(n̂): (2:33)

This is the representation of the re
ectance function that is seen most often in the

vision literature. The simpli�cation restricts the applicability of that research so

7This is true for any re
ectance function that is view independent, not just Lambertian

re
ectance.
8Or any other view independent re
ectance function.
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Figure 2-7: Coordinate systems with aligned optical axes.

that only uniformly colored surface patches have the possibility of being estimated

correctly. When algorithms based on this simpli�cation are applied to images that

violate these simpli�cations, we would expect errors at the transition between di�erent

colored parts of the surface, within di�erently colored areas, or both. Trying to

estimate both the surface topography and surface albedo substantially increases the

number of unknown variables (possibly by a factor of 2) and signi�cantly slows down

the convergence (see Section 8.1).

2.5.4 Aligned cameras.

The �nal simpli�cation that can be made is to align the cameras so that their optical

axes are parallel (which will also be parallel to the global coordinate system's ẑ0 axis

by construction). This coordinate system is shown in Figure 2-7. When the cameras

are aligned, the rotational transformations T1 and T2 are identity transformations

which simpli�es the stereo equations (Equations 2.19) considerably to

R1 = � �P1;

R2 = � �P2:
(2:34)

While this situation is very unrealistic for the photo-topography problem, any set of

images can be re-projected into this coordinate system (see Section 8.5). Hence this

simpli�cation does not seriously restrict the applicability of the research.

2.5.5 The simpli�ed equations.

The rest of the thesis is based on equations that take into account all of the simpli�-

cations described. In particular, the simpli�cations in the following list are made:
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� A special global coordinate system that is halfway between the two camera

positions is used.

� All surface points are assumed to be visible from the two cameras.

� The re
ectance properties of the surface are assumed to be constant with no

inter
ection and no mutual occlusion.

� The radiance properties of the surface are assumed to be Lambertian, allowing

the view direction dependence to be dropped from the re
ectance equations.

� The surface is assumed to have constant albedo allowing the position depen-

dence to be dropped from the equations.

� The camera optical axes are assumed to be aligned with each other allowing the

rotational transforms to be dropped from the stereo constraint equations.

Unless noted, the rest of the thesis assumes that all these simpli�cations hold. I will

speci�cally point out results that apply to the more general case. Taking into account

all of these simpli�cations we �nd that the simpli�ed photo-topography problem is

constrained such that
E

(1)(r1) = R
(1)(n̂)

E
(2)(r2) = R

(2)(n̂)
(2:35)

where

r1 =
(� + b=2)f

(� + b=2) � ẑ1 =
� + b=2

� � ẑ1 ;

r2 =
(� � b=2)f

(� � b=2) � ẑ2 =
� � b=2

� � ẑ2 :

(2:36)

If we de�ne z = � � ẑ0 and r = f�=z, then the constraint equations can be written

E
(1)(r+

fb

2z
) = R

(1)(n̂);

E
(2)(r� fb

2z
) = R

(2)(n̂):
(2:37)

The de�nitions for z and r above introduces a peculiarity into the equations: the

units for z and r are not the same. In particular, z, b, and � are in planet units (say

miles), while r and f are in camera units (say millimeters).

I �nd it convenient in subsequent chapters to use a slightly di�erent version of

these last equations where the components of r = (x; y; f) are explicit and the normal

vector n̂ is parameterized using gradient components p and q,

n̂ =
(�p;�q; 1)p
p2 + q2 + 1

(2:38)
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Figure 2-8: Camera calibration geometry.

where

p =
fzx

xzx + z
;

q =
fzy

yzy + z
:

(2:39)

Equation 2.39 are referred to as the Integrability Constraint Equations since they

relate the surface normal components to the partial derivatives of the surface height

z. The equations can be used constraint the values of p and q that are consistent

with an underlying surface.

Writing Equations 2.37 in terms of (x; y) and p and q produces the Photo-topography

Constraint Equations

E
(1)(x+

fb

2z
; y) = R

(1)(p; q);

E
(2)(x� fb

2z
; y) = R

(2)(p; q):

(2:40)

I will be working with these equations in the chapters that follow.

2.6 Camera Calibration

In order to relate positions in the image to direction vectors in 3-space, the origin

of the camera coordinate system must be known. Finding this origin is part of the

interior orientation problem of classical optics. As mentioned in Section 2.2.4, this

origin is the principal point in the image plane. In the special coordinate system

of Figure 2-8, the position of the image plane origin with respect to each camera

coordinate system origin can be speci�ed by a vector v = (vx; vy; f)
T . These vectors

specify the o�set (in pixel coordinates) of the image plane for each camera. Suppose

u0 is the pixel position of an object point in the global image and v0 is the position
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of the origin of the global image plane in global coordinates, then given the pixel

position of the projection of this this same object point in the camera images u1 and

u2, the o�set of each image plane is

v1 = v0 + u0 � u1 +
fb

2Z0
; (2.41)

v2 = v0 + u0 � u2 � fb

2Z0
: (2.42)

The values of v1 and v2 can be quite large in the aligned coordinate system indicating

that the images must be shifted far away from the camera coordinate system origin.9

While this is not possible physically, it is a consequence of re-projecting real images

into the aligned coordinate system.10

9This is especially true with the �eld of view is small.
10See Section 8.5 for how to do this.
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Chapter 3

Fusion Strategy

This chapter presents my general solution strategy to the photo-topography problem.

The idea is to closely couple the solution of shape-from-shading and stereo so that

each can help the other. The important thing is to take into account the strengths of

each method and use each method to cover the weaknesses of the others.

The �rst step in solving the photo-topography problem is to analyze the infor-

mation available as part of the problem. The photo-topography problem has two

information sources: 1) the gray levels in the each image are an indication of the

surface orientation with respect to the light source and 2) assuming corresponding

pixels in each image can be matched up, the stereo information can be used to recover

the shape. Of the two, the gray level information is more directly accessible since

no correspondence must be found. Finding the correspondence between pixels is a

classical problem for stereo algorithms and is very hard.

The photo-topography images also o�er one other source of information. Since

the images are typically taken with two di�erent light source positions, the gray

levels of corresponding pixels constrain the set of possible surface orientations as they

would for photometric stereo [Woodham, 1980]. For Lambertian re
ectance, this set

contains at most two orientations. Since extracting this information relies on pixel

correspondence, it has the same limitations as the stereo information.

When designing a fusion algorithm it is also important to analyze whether the

information sources are independent or not. By independent I mean, `Is it possible

to di�erentiate between the two information sources'? Or said another way, `Given a

combined signal containing two or more information sources is it possible to estimate

the relative contributions of each source'? Or said a third way, `Given a combined

signal are the information components observable'?

Doing this analysis on the photo-topography images we �nd that the informa-

tion sources are indeed independent. The shading information is strongest when the

shading is smooth, while the stereo information is strongest near surface discontinu-

ities (which contribute to shading discontinuities) and when the cameras are widely

separated. The photometric stereo information is strongest when the light source

39
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Shading Stereo Lighting

Shape from Shading

Binocular Stereo

Photometric Stereo

Shape from
shading

Binocular
stereo

Photometric
stereo

Surface
constraint

Surface
orientation
constraint

Correspondence
constraint

Correspondence
constraint

Correspondence
constraint

Correspondence
constraint

Table 3-1: Photo-topography problem information sources

positions are widely separated.

Given the previous analysis we would expect that the best estimates of the surface

would be found when the images contain large regions of smooth gray level changes

intermixed with areas of rapidly changing gray level, the cameras are well separated,

and the light source positions are separated.

There are several possible fusion paradigms as I discussed in Chapter 1. The

most promising fusion paradigms take into account the most amount of information.

The modularized approaches (where existing vision algorithms are applied to the

problem individually and where these individual estimates are then combined after-

wards) exploit some of the information but not all of it. In particular, if you think

of these problems in terms of a table or matrix as in Table 3-1, the modularized

approaches exploit the information along the diagonal but do not take into account

the o�-diagonal coupling between methods. On the other hand, I use a close coupled

approach based on variational calculus that exploits all the coupling inherent in the

problem. This approach is not a panacea, however, as we will see later. It is still

possible to choose cost functions that don't encourage cooperation among the var-

ious information sources. However, by understanding the couplings inherent in the

problem a suitable cost function can usually be found.

3.1 Variable representations

The most important decision when developing a fusion algorithm is the variable

representation. Choose the right representation and everything will work together

smoothly. Choose the wrong representation and the algorithm may be hindered by

slow convergence, local minima, discontinuities, etc. Aside from this performance

e�ect, how can a good representation by recognized? I can't o�er a general solution,

but I can o�er some rules of thumb.

� A good representation captures all the necessary information in the problem

with no redundancy. For example it is better to use a parameterized family of
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functions rather than a digitized version of the same function if the number of

parameters would be much less than the number of sampled points.

� A good representation can easily capture the constraints of the problem. For

example, it is better to use a function that automatically matches the boundary

conditions of a problem rather than to impose the constraint using penalty

functions or Lagrange multipliers.

� A good representation usually has equations that are simple and easy to under-

stand.

� A good representation is as close as possible to the problem. It is not removed

by several integrations, di�erentiations, or other mappings that can introduce

non-linearities, bias, drift, or additional unobservable parameters.

� A good representation allows for easy information exchange between the di�er-

ent information sources in the problem. Such a representation would directly

express constraints from one information source so that the other sources will

automatically take them into account.

The variable representation de�nes the space that will be searched. Usually, so-

lution spaces that are lower dimensional, smoother, and more bowl-like will make

�nding the solution faster and easier.

I present four di�erent variable representations for the photo-topography problem

in Chapter 4. The four representations highlight the importance of choosing the right

representation.

3.2 Cost functions

After the choice of variable representation, the choice of cost function is the next

important. Like choosing the right variable representation, choosing the right cost

function will a�ect the performance of the algorithm and the algorithm's robustness.

Building a closely coupled fusion algorithm, requires that all the governing equa-

tions, constraints, and desired outcomes be formulated into a single cost function,

usually some sort of energy-based functional. Since everything is combined together

to generate a single scalar value (the cost), the algorithm is free to perform trade-o�s.

For instance, the algorithm can trade-o� accuracy of the result in order to satisfy

another constraint (such as smoothness). The types of trade-o�s that are allowed

and/or favored can be controlled by changing the relative weights between terms in

the cost function, or by totally reformulating the cost function (I show examples of

both in Chapter 4).

Cost functions are relatively easy to formulate once a variable representation has

been chosen. Simply write the governing equations in terms of these variables, and
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create the cost function directly from these equations. If necessary, sum, integrate or

somehow combine the results from the constraints to form a scalar cost. It might be

necessary to add some regularizing terms to the cost function in order to produce a

well posed problem (see [Tikhonov and Arsenin, 1977] or [Hadamard, 1923]).

Many vision problems require some type of regularization to constrain the solution.

Typically, smoothness is assumed for some variable (such as surface height) and is used

to create a smoothness regularization term. Regularization terms are required when

there are too many solutions to a given problem. The regularization terms can then

be used to constrain the set of possible solutions to be physically reasonable. In all the

photo-topography algorithms presented later in this chapter I have included a surface

smoothness term. While the smoothness term is not strictly required (since shape-

from-shading problems do have unique solutions),1 the regularization term serves to

speed up convergence by making the solution space more bowl-like.

Constraints can be added to a candidate cost function using the method of La-

grange multipliers or by adding a penalty function. The Lagrange multiplier method

is used for hard constraints, while the penalty functions are used for soft constraints.

Hard constraints are required to be met exactly by the solution, while soft constraints

need not be met exactly. Hard constraints restrict the space of the feasible solutions,

while soft constraints create bowl-like edges on the solution space. Both methods can

be used to help convergence to a solution and to restrict the search space to more

desirable solutions.

Di�erent cost functions can be generated from the same set of equations and

variable representation by changing the desired outcome. For instance, the cost func-

tion for determining the surface slopes from the photo-topography problem would be

di�erent from the cost function for �nding the surface height.

3.3 Solution Techniques

A typical cost function for a vision problem is of the form

min
u

J =
ZZ

L(u;u0;u00; . . .) dx dy (3:1)

where u are the optimization variables, and L is a possibly non-linear function of

the optimization variables and its derivatives. The integral is taken over the domain

of the optimization variables or the problem. The solution to this problem can be

found by solving the associated Euler-Lagrange equations (see a variational calculus

book such as [Courant and Hilbert, 1962] or Horn's Appendix [Horn, 1986] for more

details).

The Euler-Lagrange equations for a problem such as the one above are typically

coupled non-linear equations. Such equations are usually very di�cult to solve ana-

1When the images contain singular points [Saxberg, 1989].
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lytically but can sometimes be solved numerically by converting them into discrete

equations. The conversion process involves substituting discrete approximations for

any derivatives of the optimization variables. The optimization variables may have

to be approximated by a discrete vector as well. The equations are then re-arranged

to create iterative update equations of the form

u(k + 1) = f(u(k); u(k � 1); . . .) (3:2)

where u(k) is the value of the optimization variables for the k-th iteration.

When u has many components and when the components are updated in sequence

based on the most current estimate u, the resulting update scheme is called a Gauss-

Seidel optimization. When all of the components of u are updated simultaneously

based on a previous estimate for u, the resulting scheme is called a Gauss-Jordan

optimization. Gauss-Seidel optimization schemes have higher convergence rates and

are more robust, and are best implemented on a serial computer. Gauss-Jordan

schemes, while they have lower convergence rates and are not as robust, can be

implemented on parallel computers. Parallel computations can produce results faster.

Another way of solving the optimization problem posed above is by using direct

optimization techniques. In this case the cost function, instead of the Euler-Lagrange

equations, is discretized. Any integrations are approximated by sums and any deriva-

tives are approximated by di�erences. The resulting cost function is of the form

min
u

J =
X
x

X
y

f(u) (3:3)

where f(u) is a discrete approximation of L(u;u0;u0; . . .). Any of the wide range of

optimization algorithms that are in the literature can then be applied to this problem.

For vision problems, conjugate gradient optimization shows the most promise. The

conjugate gradient scheme doesn't require the formation of the problem Hessian (a

linear approximation to the second order derivative of the solution space at a given

point), which for an optimization problem withN variables is anN -by-N matrix. The

conjugate gradient scheme is important for vision problems since for a typical 256-by-

256 image, the shape-from-shading problem would have 2562 or 65536 optimization

variables. The Hessian for this problem would have 2564 or over 4 billion elements!

Conjugate gradient optimization requires that both the cost function and its gra-

dient are computable. While an approximation to the gradient of the cost function

can be computed using �nite di�erences, this approach is usually slow (since it re-

quires at least N function evaluations for each gradient evaluation). I use analytically

determined gradients in all the algorithms presented later in this chapter.2

One strategy that can also be used to solve non-linear problems is the method of

homotopy or the continuation method. The continuation method involves solving a

2Veri�ed by comparing with numerical gradients.
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series of related problems of increasing di�culty that have similar solutions. Typically,

the original problem is restated to include a parameter, such as �, which controls the

di�culty of the problem. When � = 1 (for instance), the problem is easy to solve

or has a analytical solution. When � = 0 (for instance) the original problem is

recovered. To solve the original problem, a series of problems are solved while �

is slowly decreased. The solution of each subsequent problem is used as the initial

condition for the next problem.

One simple way to use the continuation technique is to introduce a regularization

term based on � that creates a convex problem when � = 1,

minu

X
x

X
y

f(u) + �g(u): (3:4)

where g(u) is a regularization function that forces the problem to be convex.3 During

optimization, � is slowly reduced to zero, where the original problem is recovered.

The hope with the continuation method is that the solutions to the series of problems

will be close to the solution of the original problem so that they are good initial

conditions.

I use a form of the continuation based method for the algorithms in this thesis.

Since shape-from-shading problems have a well de�ned solution when singular points

are in the image, the smoothness terms are not needed to guarantee a solution.

The smoothness terms do, however, help convergence. During optimization, I slowly

reduce the smoothness parameter toward zero in order to avoid biasing the solution
[Horn and Brooks, 1986].

The questions of existence and uniqueness come up when working with optimiza-

tion algorithms such as those presented in this thesis. For the types of cost functions

presented in this thesis, it is clear that a solution exists; the cost functions are bounded

from below by zero. That is, the best possible value for the cost function is zero and

can be achieved only when the estimated surface images and the actual images match

exactly and when any regularization terms are set to zero.

The uniqueness of a solution depends a great deal on the surface to be estimated.

In general, both global and local minima will exist (as evidenced by the Hard Crater

problem discussed in Chapter 7). The optimization techniques discussed above only

guarantee convergence to a local minima. The global minimum may only be achieved

if the initial conditions for the optimization algorithm are close to the true solution.

3.4 Speed-up Techniques

A very well researched part of optimization theory is how to speed up the conver-

gence. For vision problems there are two promising speed up technologies: the use

3Convex problems have the property that the solution space is essentially bowl-like, with no local

minima and a single global minima which makes them very easy to solve.
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Level 1 nodes

Level 2 nodes

Level 3 nodes

Level 4 nodes

9-by-9 grid

Interpolation extent

Level 1 nodes
Level 2 nodes

Level 3 nodes

Level 4 nodes

9-by-9 grid

Top View

Figure 3-1: Hierarchical basis functions. Shown are the hierarchical basis nodes at each level

(circles, triangles, etc.) and the associated interpolation function extent for the front-most

nodes. The nodal basis for the 9-by-9 domain would have nodes at each pixel location and

an extent half-again as small as the level 1 extents shown.

of hierarchical basis functions, and multi-grid methods. Both methods try to speed

up the optimization problems by increasing the information transfer spatially. The

methods are based on the property of many vision algorithms that an optimization

variable within a grid of optimization variables may only be a�ected by its nearest

neighbors. Due to the local connectedness, many vision algorithms have di�usion-

like properties; the solution must di�use throughout the grid. Schemes that directly

transfer information over longer distances instead thus may speed up an algorithm.

Using hierarchical basis functions transforms the optimization space as seen by

the optimization algorithm but not as seen by the vision algorithm. Basically it's like

a change of basis. Figure 3-1 shows how a 9-by-9 domain would be represented in hi-

erarchical basis. In particular, note that the nodes of the hierarchical basis propagate

information over a much larger range (due to their extended interpolation extent)

than the nodes in the nodal basis (particularly for the nodes at the upper levels).

The �gure shows linear interpolation between nodes, but any interpolation scheme

can be used to build a hierarchical basis (see [Szeliski, 1990]). The problem is solved

as before but with the new variables. If necessary, the variables can be transformed

to the nodal basis when computing the cost function or gradient. Unfortunately,

all these transformations have the potential to introduce round-o� errors which can

adversely a�ect sensitive algorithms.

The hierarchical basis functions have the most e�ect on the convergence and are

the easiest to implement when the grid size is 2n + 1 where n is any positive in-

teger. For such a grid it is possible to use n + 1 hierarchical basis levels. Using
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Non-zero Hessian terms for 4 levels

Figure 3-2: Non-zero Hessian elements for a 9-by-9 image. The plot on the left shows the

non-zero Hessian elements when the nodal basis is used. The plot on the right shows the

non-zero elements when a full hierarchical basis is used.

hierarchical basis functions increases the communication between nodes in the image

array as shown in Figure 3-2. This increased communication speeds up the di�u-

sion process considerably. I have noticed a �ve-fold increase in convergence for the

photo-topography algorithms.

The multi-grid methods seek to propagate information over a larger range by

solving a series of problems of di�erent size. Usually the original problem is formulated

on grids that decrease in size by a factor of two when going from one layer to the

next (see Figure 3-3). The solutions on one layer are related to solutions on the layers

above and below via interpolation or prolongation. The solutions are kept consistent

with each other via both intra-layer and inter-layer processes (see [Terzopoulos, 1984]

and [Brandt and Dinar, 1979]).

Multigrid methods have the potential to be much faster than the hierarchical basis

functions since most of the computation (and optimization) is done on the smaller

layers. Multigrid methods are well suited to linear problems (such as surface �tting),

but may not work for non-linear problems. The problem is that typically

X
g(u) 6= g(

X
u) (3:5)

for non-linear functions g(u), and the multi-grid methods require

X
g(u) = g(

X
u) (3:6)
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17-by-17 grid

9-by-9 grid

5-by-5 grid

3-by-3 grid

Figure 3-3: Multigrid levels

to constrain the solutions on the smaller grids so that they don't bias the solution on

the larger grid.

One type of multi-grid method that can be used for non-linear problems is the

coarse-to-�ne method. In this method, the problem is solved on coarse layers �rst

and the solution to each layer provides the initial condition to the next �ner layer

below. This method is signi�cantly faster than just optimizing on the �nest grid but

doesn't produce as much convergence speed-up as the full multi-grid method.

Like the hierarchical basis methods, the multi-grid methods work best when the

grid size is 2n + 1. However, since the multi-grid methods de�ne a series of problems

rather than just choosing a new set of basis functions, the multi-grid methods can be

implemented easily for all grid sizes. There is some evidence, though, that grid size

reductions should be near 2 for best convergence rates [Terzopoulos, 1984].
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Chapter 4

Candidate algorithms

In this chapter I discuss several candidate algorithms for the photo-topography prob-

lem. Since each of the algorithms estimate the surface depth using a combination of

shape-from-shading and stereo I call them Depth From Shading and Stereo (DFSS)

algorithms. Along the way I will discuss the rationale behind each algorithm, its

strengths and weaknesses, and how it �ts in with the fusion techniques discussed so

far. The performance of these algorithms on a set of synthetic test images is presented

in Chapter 5. The performance of the z-only algorithm on real images is presented

in Chapter 9.

The approach I am taking to fuse the vision algorithms is to develop a single cost

function that incorporates the problem constraints along with some regularization

terms to help direct the search path. This approach di�ers from many researchers'

attempts at fusion algorithms in that it closely integrates the methods rather than

building a module-based solution. I believe that this approach will create more robust

solution methods.

In e�ect, I pose a generalized optimization problem which can be solved many

ways. I have tried various solution methods with this research and have chosen

direct optimization via the conjugate gradient method as my preferred method. The

conjugate gradient method, like all direct optimization methods, guarantees reduction

of the cost function at each step, in contrast to the more widely used Gauss-Seidel

or Gauss-Jordan methods. The big advantage of the conjugate gradient method over

other direct optimization methods is that no Hessian needs to be computed or stored.

Computer vision algorithms have thousands of free variables which would result in a

Hessian with millions of terms if it were computed.

I have looked at four basic algorithms for the photo-topography problem.

� The zpq and z-only algorithms estimate everything in a single global coordi-

nate system that is de�ned to be halfway between the two camera positions. I

refer to these algorithms as centralized. Figure 4-1 shows the 
ow of a typical

centralized algorithm as a tree diagram. The current estimate of the surface

height z is used to project points in the global coordinate system to points in

49
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E E

F F

p,q

z

left right

Figure 4-1: Centralized algorithm tree.

E E

p,q p,q

z z

left right

Figure 4-2: Decentralized algorithm tree.

each image (via perspective projection). These points won't in general land

on a pixel center so some type of interpolation (e.g., bilinear or bicubic inter-

polation) is used to determine the value of the image at the projected points.

This interpolated image F is then compared to a computed image based on the

current estimate of the surface. The error is used to update p, q, and ultimately

z. This type of algorithm closely integrates the constraints from both shading

and stereo.

� The dual-z algorithm determines estimates of the surface for each image sepa-

rately and takes into account the stereo information via a penalty term. I refer

to this algorithm as decentralized. Figure 4-2 shows the 
ow of this type of

algorithm. The estimated height for each image is used to compute the cor-

responding image estimate. The errors between this estimated image and the

actual image for each camera are then used to update the associated p, q, and z

for each image. So far this is the same as for a normal shape-from-shading algo-

rithm. However, instead of just updating the surface height estimates directly

from the image errors, the algorithm also takes into account the di�erences be-

tween the two surface estimates. This type of algorithm doesn't integrate the

shading and stereo information as closely as the centralized algorithms.

� The disparity algorithm is also centralized algorithm but uses estimates of the

disparity instead of the surface depth as the fundamental variable. Figure 4-3

shows the 
ow for this algorithm. The current estimate of the disparity u is used

to project points in the global coordinate system to points in each image (via

perspective projection). These points won't in general land on a pixel center
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E E

F F

p,q

u

left right

z

Figure 4-3: Centralized algorithm tree based on disparity.

so interpolation is used to determine the brightness value in the image at the

projected points. This interpolated image F is then compared to a computed

image based on the current estimate of the surface. The error is used to update

p, q, and ultimately u. The surface height, z, is computed from u if needed.

This type of algorithm also closely integrates the constraints from both shading

and stereo.

The algorithms di�er mostly in the representation of the surface topography. The

representation chosen for the optimization variables is very important to the per-

formance of computer vision algorithms. If the right representation is chosen then

the search space will be smoother and contain less local minima than if the wrong

representation is chosen.

4.1 zpq Algorithm.

This algorithm is based loosely on the Height and Gradient from Shading algorithm

of Horn [Horn, 1989]. Following Horn's algorithm, surface height z, and the surface

gradients p, and q, are used as optimization variables. The two photo-topography

images, camera geometry, and surface re
ectance functions are given as inputs to

the algorithm. The equations that govern this situation are the photo-topography

constraint equations (2.40) and the integrability constraint equations (2.39). The

integrability constraint equations are necessary to ensure that p and q are consistent

with the underlying surface z. The cost function for this algorithm is formed by

integrating the squared error introduced by the current estimates for p, q, and z,

together with a penalty functions for departure from integrability and departure from

smoothness,

min
z;p;q

J =
1

2

ZZ 8<
:
 
E

(1)(x+
fb

2z
; y)�R

(1)(p; q)

!2

+

 
E

(2)(x� fb

2z
; y)�R

(2)(p; q)

!2
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+ �

2
4
 

fzx

xzx + z
� p

!2

+

 
fzy

yzy + z
� q

!2
3
5

+ �

h
p
2
x + p

2
y + q

2
x + q

2
y

io
dx dy: (4.1)

This cost function allows the normal vector components p and q freedom to try to

match the input images without requiring integrability. The penalty functions are

then used to bias p and q toward solutions that are integrable and smooth. Using soft

constraints like those above provides for more degrees of freedom which, it is hoped,

will result in fewer local minima. The disadvantages of these extra degrees of freedom

are a non-exact solution (since z will not be exactly consistent with p and q), and

slower convergence.

The cost function above is continuous and must be discretized before it can be

optimized (solved). The discretization process is an approximation process. The idea

is to approximate the integral above by some function of a �nite (usually small) set of

variables. Researchers typically use either a series representation of the integrand or

a sampled version of the integrand. Examples of the �rst representation are Fourier

series and �nite element methods. Examples of the second representation are �nite

di�erence methods.

I have used �nite di�erence methods exclusively for the research presented in this

thesis. The main reason for this is that the images (E(i)(x; y) above) are provided in

digital form. In these images, each pixel represents, in some sense, a weighted average

of the brightness falling within the sensitive area of the corresponding photosensor.

Thus each image is actually an array of brightness values. Given this fact it makes

sense to approximate the values for p, q, and z as arrays of gradient components or

surface depth, as the case may be. Choosing this digital representation results in a

problem of the �nite di�erence class.

Suppose p, q, and z are represented as arrays, as discussed above. Suppose also

that the continuous derivatives of the underlying functions (such as z) are approxi-

mated by �nite di�erences, then the cost function can be approximated by the discrete

sum,

min
p;q;z

J =
1

2MN�2

X
x;y2D

8<
:
 
F

(1)(x+
fb

2z
; y)�R

(1)(p; q)

!2

+

 
F

(2)(x� fb

2z
; y)�R

(2)(p; q)

!2

+ �

2
4
 
p� fzx

xzx + z

!2

+

 
q � fzy

yzy + z

!2
3
5

+ �

h
p
2
x + p

2
y + q

2
x + q

2
y

io
(4.2)

where D is the discrete domain of the underlying variables in the global coordinate
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Image Array

z Array

p,q Arrays

Figure 4-4: Relative sizes of the p, q, and z arrays in comparison to the image arrays for

the co-grid representation.

system, M and N are the row and column dimensions of the discrete domain, and � is

the grid spacing (assumed to the same in both the x and y directions). The F (i)(x; y)

are interpolated from the input images E(i)(x; y) using linear interpolation,

F
(i)(x� fb

2z
; y) = E

(i)(�x; y) + (x� fb

2z
� �x)

h
E

(i)(�x+ 1; y)� E
(i)(�x; y)

i
(4:3)

where

�x = 
oor(x� fb

2z
): (4:4)

The 
oor(x) function returns the greatest integer that is smaller than x. Note that

Equation 4.3 assumes that x is sampled on a unity-spaced grid.

4.1.1 Co-grid Implementation

Two approaches have been taken to implement this cost function. In the �rst ap-

proach, the p and q arrays are the same size as the image arrays and the z array is

one pixel larger in both the column and row directions. That is, the p and q functions

are sampled on the co-grid of the function z (see Figure 4-4). This approach uses

face-centered surface derivatives that are valid in the center of each 2-by-2 \face"

formed by the z grid. In this approach, the x- and y-derivatives are approximated by
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computational molecules of the form,

(:)x =
1

2�

�1 1

�1 1
� (:); (4.5)

and

(:)y =
1

2�

1 1

�1 �1
� (:) (4.6)

(4.7)

which have low approximation error. The diamond operator � is similar to (but

di�erent from) two dimensional convolution.1 In addition, this approach requires

that z be sampled on the co-grid when computing the terms in the cost function that

contain z. Based on a bilinear approximation, z can be sampled using

�z =
1

4

1 1

1 1
� z: (4:9)

The resulting algorithm performs as well as the algorithm to be described next but

has the disadvantage that the hierarchical basis functions cannot be used to full

advantage since not all the p, q, and z arrays can be of the size 2n + 1. Recall that

the hierarchical basis functions are easiest to implement and provide for optimum

communication between pixels in the array when the row and column dimensions are

of size 2n + 1 for some n. In addition, multi-grid methods also cannot be used when

the variable arrays are of di�erent sizes.

4.1.2 Matched-grid Implementation

In the second approach, p, q, and z are chosen to all be the same size as the image

arrays. In such a representation, all the functions are sampled on the same grid (see

Figure 4-5) which is why this approach is called the matched-grid representation. This

approach uses vertex-centered surface derivatives that are valid at each vertex of the

1Suppose h(i; j) is a computational molecule (as an array), then the diamond operation is de�ned

as

(h � z)(i; j) =
X
k;m

z(i�M + k; j �N +m)h(k;m) (4:8)

where M is the row dimension of h and N is the row dimension of h. The de�nition di�ers from

two-dimensional convolution in that h is not \
ipped".
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Image Array

z,p,q Arrays

Figure 4-5: Relative sizes of the p, q, and z arrays in comparison to the image arrays for

the matched-grid representation.

z grid. Computational molecules that exemplify this approximation are,

(:)x =
1

2�
�1 0 1 � (:); (4.10)

(:)y =
1

2�

1

0

�1
� (:) (4.11)

which have higher approximation error than their face-centered counterparts. In

practice, the algorithm based on this approach has nearly the same performance as

the algorithm based on the face-centered approach. Since p and q are the same size

as z, some type of approximation must be made at the array edges (boundaries).

I have chosen to extrapolate the estimates using a bicubic interpolant and use this

extrapolated version of each estimate in subsequent calculations (see Section A.2).

Using the extrapolated estimate is similar to using natural boundary conditions in

variational calculus methods, and allows for easy computation of the gradient.

The performance of the matched-grid zpq algorithm on four test image sets is

presented in Chapter 5. This algorithm gets stuck in a local minimum on the hard

crater images (as do all of the algorithms to be presented), but does reasonable well

on the other test images (except for the mountain images). As a whole, this algorithm

produces surfaces that are too smooth and takes longer to converge than the other

algorithms.
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Like all the algorithms to be presented, this algorithm is run using a exponentially

changing smoothness parameter �, and integrability parameter � (if it exists). A

large initial smoothness parameter helps to make the search space more bowl-like

at the expense of meeting the photo-topography constraints. When the smoothness

parameter is small, the photo-topography constraints are met at the expense of a

possibly bumpy surface. A small initial integrability parameter allows the surface

gradient components p and q to wander far from integrability in order to create image

estimates that match the input images. A large integrability parameter, requires that

these image estimates be created so that p and q are nearly integrable.

While it is not required that the optimization parameters be ramped in this fash-

ion, I have found that doing so allows for faster convergence over optimizing with the

parameters �xed at their �nal values.

4.2 z-only Algorithm

This next cost function is similar to the zpq cost function except that it uses hard

integrability constraints instead of soft constraints. With hard constraints we are

guaranteed that any solutions obtained will be feasible. The trade-o� is that the

algorithm will have less degrees of freedom to work with and may be more susceptible

to local minima.

For this cost function, the depth map z is the only optimization variable thus the

resulting algorithm is called the z-only algorithm. The surface gradient components

p and q are computed directly from the depth map. As before, the photo-topography

images, camera geometry, and surface re
ectance functions are inputs to the algo-

rithm. The constraint equations again come from the photo-topography constraints

and integrability constraints. The cost function is formed by integrating the squared

photo-topography error introduced by the current estimate for z, together with a

penalty function for departure from smoothness,

The penalty function is mainly used to guide the solution towards the minimum.

In practice, the smoothness weighting parameter, �, is slowly reduced toward zero as

the algorithm converges.

min
z

J =
1

2

ZZ 8<
:
 
E

(1)(x+
fb

2z
; y)�R

(1)(p; q)

!2

+

 
E

(2)(x� fb

2z
; y)�R

(2)(p; q)

!2

+ �

h
z
2
xx + 2z2xy + z

2
yy

io
dx dy: (4.12)

The smoothness term is based on what is called the second variation. It is equivalent

to p2x+ p
2
y + q

2
x+ q

2
y when zx � fp=z0 and zy � fq=z0 where z0 is the nominal depth.

2

2The approximations are valid when the �eld of view is small, the image is centered around the

camera's principal point, and the depth of �eld relative to the nominal depth is small.
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Image Array

z Array

Figure 4-6: Relative size of the z array in comparison to the image arrays for the expanded

boundary implementation.

Using an array for z, the discrete approximation of this cost function is,

min
z

J =
1

2MN�2

X
x;y2D

8<
:
 
F

(1)(x+
fb

2z
; y)�R

(1)(p; q)

!2

+

 
F

(2)(x� fb

2z
; y)�R

(2)(p; q)

!2

+ �

h
z
2
xx + 2z2xy + z

2
yy

io
: (4.13)

The F (i)(x� fb
2z
; y) are interpolated from the input images E(i)(x; y) as in the previous

algorithm.

4.2.1 Expanded Boundary Implementation

Two approaches have been taken to implement this cost function. In the �rst ap-

proach, the z array is 1 pixel larger than the image array in all directions (see Fig-

ure 4-6). The normal vector components are estimated on the inner grid which is the

same size as the image arrays. In fact, the outer depth estimates are only used when

computing p and q. This approach is very easy to implement but cannot be used with

a multi-grid scheme since the z array is a di�erent size than the image arrays. The

approach can, however, take full advantage of hierarchical basis functions since z can

be of the size 2n + 1. The implementation uses the vertex-centered derivatives dis-

cussed in the previous algorithm. The second-order derivatives are approximated by
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the following computational molecules which are also vertex-centered approximations,

zxx =
1

4�2

1 �2 1

2 �4 2

1 �2 1

� z; (4.14)

zxy =
1

�2

�1 1

1 �1
� z; (4.15)

zyy =
1

4�2

1 2 1

�2 �4 �2

1 2 1

� z: (4.16)

(4.17)

The algorithm based on this approach has nearly the same performance as the algo-

rithm based on the approach to be presented next.

4.2.2 Matched Grid Implementation

In the second approach, z is chosen to be the same size as the image arrays thus

facilitating a multi-grid implementation. The surface normal components, p and q,

are computed on the boundary using the boundary extrapolation technique discussed

for the zpq algorithm. This approach also uses vertex-centered approximations for

the derivatives.

The performance of the matched-grid z-only algorithm on the four test images

is presented in Chapter 5. This algorithm also gets stuck in the local minimum for

the hard crater images. The performance on the easy crater images and the others

is very good however. In fact, this algorithm has the best performance of the all the

algorithms to be presented. An important thing to note in the performance �gures

is that the algorithm converges to a reasonable surface quite quickly, usually in the

�rst 100 iterations or so. The performance �gures are shown for 1200 iterations so

that it is possible to see the convergence characteristics in the long term.
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4.3 Dual-z Algorithm

This cost function uses a totally di�erent variable representation. In this case the

depth map is represented by two arrays, z(1) and z
(2) which are estimated based

on the images E(1) and E
(2) respectively. This algorithm is referred to as the dual-z

algorithm. The two depth arrays are kept consistent with one another using a penalty

function that enforces the stereo constraint equations,

z
(1)(x(1); y(1)) = z

(2)(x(1) � fb

z(1)
; y

(1));

z
(2)(x(2); y(2)) = z

(1)(x(2) +
fb

z(2)
; y

(2))

(4:18)

where (x(1); y(1)) are the coordinates of points in the �rst image and (x(2); y(2)) are the

coordinates of points in the second image. These equations require that the depth

estimate from one image be the same as the depth estimate at the corresponding

projected point3 in the other image. Each depth map is a constrained shape-from-

shading solution for the corresponding image. This algorithm has a totally di�erent

search space than any of the previous algorithms.

For this cost function, the depth maps z(i) are the optimization variables and

the surface gradients p(i) and q
(i) are computed directly from the z(i). The photo-

topography images, camera geometry, and the surface re
ectance functions are inputs.

The constraints come from the photo-topography constraints, the integrability con-

straints, and the stereo constraints. The cost function is formed by integrating the

squared shading error (in the spirit of shape-from-shading) introduced by the current

estimates of z(i), together with penalty functions for departure from smoothness, and

stereo error.
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:(4.19)

where

r2
z = zxx + zyy: (4:20)

The smoothness penalty function for this cost function is based on the squared Lapla-

3Using perspective projection.
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cian of z(i). The squared Laplacian has roughly the same characteristics as the second

variation [Grimson, 1979], but is much quicker to compute (since it only involves one

convolution).

The cost function contains two shape-from-shading cost functions and the stereo

penalty function. This cost function is not as closely-coupled as the other two cost

functions I have described so far. In particular the stereo constraints are added on

like an addendum to the shape-from-shading cost function. The stereo constraints, in

e�ect, pass their constraints up to the shape from shading parts of the algorithm. I

think of this algorithm as trying to �t together two rubber mountains. The mountains

can be moved back and forth, and molded to �nd the best �t. Since the algorithm

is not as integrated, we would expect that images that don't contain strong shading

information will be di�cult for this algorithm to solve.

Using z(1) and z(2) arrays as before, the cost function can be discretized to become,

min
z(1);z(2)
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1
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The stereo penalty functions include terms involving �z(1) and �z(2) which are inter-

polated versions of z(1) and z
(2). Bicubic interpolation is used [Keys, 1981]. Using

this notation, �z(i)(x; y) is the value of z(i) evaluated at the point (x; y) using bicubic

interpolation. Vertex-centered derivative approximations were used with this cost

function, and the Laplacian is approximated using the computational molecule,

r2
z =

1

6�2

1 4 1

4 �20 4

1 4 1

� z: (4:22)

Both the expanded boundary approach and the matched-grid approach discussed

in the previous section were taken to implement this cost function. Several variations

of the basic implementation were tried with this cost function. For example, in

addition to the smoothness term based on the squared Laplacian, algorithms were
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implemented where the smoothness term was based on the second variation,

min
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Another alternate implementation used face-centered derivatives instead of vertex-

centered derivatives. All of these algorithms have performance very similar to each

other, and they suggest that as long as a reasonable derivative approximation or

smoothness criteria is used, it doesn't really matter which one is chosen. Any reason-

able approximation or smoothness criteria is as good as any other. In light of this, it

makes sense to choose the approximations or smoothness criteria that are the easiest

and the fasted to compute, or that have the best numerical properties.

The performance of this algorithm on four test images is presented in Chapter 5.

Like the previous algorithm, this algorithm also has problems with the hard crater

images but does well on the other images. Unfortunately, the results of this algorithm

are two depth maps which represent the depths as seen from the right and left cameras.

These maps will not, in general, register exactly with one another. To create a

single depth map from these maps requires some type of averaging. This is a major

disadvantage.

To address this disadvantage, an algorithm was implemented that had three depth

maps z(1), z(2), and z, where z is the depth map as seen from the global coordinate

system. In all other ways the algorithm was the same as the dual-z algorithm. The

performance of the algorithm was very similar to the performance of the above al-

gorithm yet it created a central depth map. It is not shown here since it was even

slower than the dual-z algorithm.

The combination of two depth maps and need for bicubic interpolation, caused

the dual-z algorithm to be the slowest to compute. The �gures in Chapter 5 show

the number of function evaluations and not the computation time. In practice this

algorithm was 3-5 times slower than the z-only algorithm.

4.4 Disparity Map Algorithm

Another popular representation for depth that shows up often in the vision literature

is the disparity map. The disparity is the relative o�set of a point in one image with

respect to the corresponding point in the other image. Using the notation we have

used so far, the disparity can be de�ned as,

u =
fb

2z
; (4:24)
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where u is the disparity. Using this de�nition of disparity, the surface gradient com-

ponents are computed using,

p =
fux

xux � u
;

q =
fuy

yuy � u
:

(4:25)

The photo-topography constraint equations can also be re-written using disparity to

become,
E

(1)(x+ u; y) = R
(1)(p; q);

E
(2)(x� u; y) = R

(2)(p; q):
(4:26)

Suppose we adopt the centralized approach for this cost function and have the dis-

parity map u be the optimization variables. The surface gradients p and q are com-

puted directly from u. The photo-topography images, camera geometry, and surface

re
ectance functions are inputs. The cost function for this case is formed by integrat-

ing the squared photo-topography error (based on disparity) together with a penalty

function for departure from smoothness,

min
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where the surface gradient components are given by Equation 4.25. The smoothness

term is based on the second variation of u. The main di�erence between this cost

function and the others I have presented is the smoothness term (it is now based on

disparity instead of depth). The numerical properties will also be somewhat di�erent

since the hierarchical basis functions will be over disparity instead of depth.

Disparity is typically used in vision algorithms for two reasons. First the disparity-

based algorithms usually have fewer division operations which can improve perfor-

mance, and second the disparity has a much smaller dynamic range which can con-

tribute to better numerical properties. Unfortunately, since the photo-topography

problem requires the use of perspective projection, the �rst reason doesn't hold for

my algorithms. The culprits are the surface gradient equations (Equations 4.25). As

for the second reason, the disparity-based DFSS algorithm has pretty much the same

numerical properties as the other DFSS algorithms. However, using disparity, instead

of depth, changes the solution space the optimization is performed in.

Representing u as an array, the cost function can be discretized to obtain,

min
u

J =
1
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The F
(i)(x � u; y) are linearly interpolated from the input images E(i)(x; y) using

disparity,

F
(i)(x� u; y) = E

(i)(�x; y) + (x� u� �x)
h
E

(i)(�x+ 1; y)� E
(i)(�x; y)

i
(4:29)

where

�x = 
oor(x� u): (4:30)

Only the matched-grid approach was used to implement this cost function. In

this case, u is chosen to be the same size as the image arrays. The derivatives

are approximated using vertex-centered computational molecules as for the previous

algorithms.

The performance of this algorithm on four test images is presented in Chapter 5.

This algorithm, like all the previous algorithms, gets stuck in a local minimum for

the hard crater images. The algorithm, however, performs well on the other images.

An interesting observation can be made about the performance of this algorithm on

the mountain images. The algorithm over-estimates the mountain height while the

z-only algorithm under-estimates it. This is clear indication that the search space for

the disparity-based algorithm is fundamentally di�erent from the search space for the

z-only algorithm. Unfortunately, the solution space is not di�erent enough to avoid

falling into the local minimum of the hard crater image.
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Chapter 5

Test Results

It is important when developing a new algorithm to be able to test its performance.

For computer vision algorithms, that means that it must be possible to compare the

estimated surface with the actual surface. The only way to do this with complete

con�dence in the results is to create synthetic images from a known surface topogra-

phy, run the algorithm on these images, and compare the estimate with the known

topography. Only after it is shown that the algorithm works on the synthetic im-

ages, can we be con�dent that the surface estimates for actual planet images will be

accurate.

I have created four image pairs as test images based on three surface topologies.

� Easy Crater Images. This set of images is based on a crater on a 
at plane.

The light sources are oblique which results in images that prove to be easy for

the DFSS algorithms to interpret.

� Hill Images. This set of images is based on a fractally-generated set of rolling

hills. The light sources are oblique. These images are interpreted correctly for

most of the DFSS algorithms but require more iterations of each algorithm since

they are more complicated than the crater images.

� Mountain Images. This set of images is based on a fractally-generated moun-

tainous terrain. The light sources are oblique and the camera baseline is much

smaller. This set of images poses a challenge to the DFSS algorithms due to

the steep terrain and reduced baseline.

� Hard Crater Images. This set of images is also based on a crater on a 
at

plane. The light sources are almost directly behind the camera resulting in a

set images that prove to be di�cult for the DFSS algorithms.

The calibration parameters for the test images are summarized in Table 5-1. The

table lists values for the baseline distance b, camera focal distance f , nominal depth

z0, and light source vector components p
(1)
S , q

(1)
S , p

(2)
S , q

(2)
S . The focal distance and

65
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b f z0 �z=z0 �u p
(1)
S q

(1)
S p

(2)
S q

(2)
S

Easy crater 500 {2750 {997 0.0038 2.62 0.2 {0.5 {0.3 0.1

Hills 500 {12222 {1000 0.0011 3.41 1.0 {1.0 0.3 0.1

Mountain 100 {2292 {996 0.0153 1.77 0.5 0.5 {0.5 0.0

Hard crater 500 {2750 {997 0.0038 2.62 0.1 0.1 {0.1 0.1

Table 5-1: Camera geometry.

nominal depth are negative to be consistent with a right handed coordinate system.

The baseline distance b and depth z have the same units (say miles), while the camera

focal distance, pixel spacing and the light source components are based on camera

units (say millimeters). The table also lists values for relative surface height �z=z0
and disparity �u. These two parameters indicate the di�culty of the problem. Small

values of either indicate a hard problem. Note the units for �u are in pixels for a

65-by-65 problem, and f is computed so that the pixel spacing is 1 (millimeter).

All of the test images are noise-free so that the best performance of each algorithm

can be tested. The performance of the z-only algorithm on images with noise in

presented in Chapter 7. The performance �gures for each test case include mesh plots

of the estimated surface at several points during optimization as well as estimated

images based on the �nal surface. The mesh plots are of a 33-by-33 smoothed (to

avoid aliasing) and subsampled version of the 65-by-65 estimated surface. The lower

resolution mesh plots are used to avoid printing problems.

The performance �gures also show the number of function evaluations (iterations)

computed by each algorithm during convergence. The number of conjugate gradient

updates taken is between one-half to one-third of the number of function evaluations

since 2{3 function evaluations are needed to perform each update step. All of the

algorithms use hierarchical basis functions to enhance convergence.

5.1 Easy Crater Images

The crater on a 
at plane is very simple surface and thus serves as a good test

surface.1 The camera and light source geometry as well as the true surface, light

source contour plots and resulting images are shown in Figure 5-1. As shown in the

�gure, the baseline distance between the cameras is about half the distance to the

surface and the light source (i.e., the sun) positions for the two images di�er greatly

from each other. As a result, this set of images has strong shading information which

is very easy for the DFSS algorithms to take advantage of. The e�ects of the lighting

can be seen in the contour plots of the re
ectance map. The re
ectance contours

are separated enough in gradient space (p-q space) so that brightness values from

1Information on how to generate this surface can be found in Appendix C.
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Figure 5-1: Test images of crater on 
at plane (easy case). Shown are the camera geometry

as projected into the xz- and yz-planes, the true surface as a mesh plot, re
ectance function

contours for the two light source positions, and the left and right synthetic noise-free images.
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one image can easily constraint the possible set of feasible gradient directions.2 The

images are 65-by-65 pixels in size and are noise free.

The Figures 5-2{5-5 show the results of applying the various DFSS algorithms

to this test case. All four algorithms can correctly interpret these images but the

z-only algorithm performs best. The �gures show that the estimated images in this

case very closely resemble the true images and the surface estimates are very good

except in the lower left corner of the surface (see the mesh plots). With the lighting

conditions chosen for these test images, this small anomaly has little e�ect on the

estimated images. It is interesting to note that the anomaly shows up for all four

algorithms.

The most interesting thing about this test case is the rate of convergence that is

obtained with the z-only, dual-z, and disparity algorithms. In those cases, a pretty

good estimate is obtained after only 50 function evaluations! This represents only

about 20 updates since more than one function evaluation is necessary per update

when using conjugate gradient optimization.

2That is, there are regions in the gradient space where a given brightness value from one image

strongly constrains the gradient direction there.
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Figure 5-2: Performance of the zpq algorithm on the easy crater images. The up-

per-left graph shows the cost function (solid line) and RMS error of the estimated surface

(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the � (solid line) and � (dashed-line) cost function parameters. Also

shown are images based on the estimated surface and mesh plots of the surface at di�erent

points during optimization.
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Figure 5-3: Performance of the z-only algorithm on the easy crater images. The up-

per-left graph shows the cost function (solid line) and RMS error of the estimated surface

(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the � cost function parameter. Also shown are images based on the

estimated surface and mesh plots of the surface at di�erent points during optimization.
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Figure 5-4: Performance of the dual-z algorithm on the easy crater images. The up-

per-left graph shows the cost function (solid line) and RMS error of the estimated surface

(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the � (solid line) and � (dashed-line) cost function parameters. Also

shown are images based on the estimated surfaces and mesh plots of the surfaces at di�erent

points during optimization.
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Figure 5-5: Performance of the disparity-based algorithm on the easy crater images. The

upper-left graph shows the cost function (solid line) and RMS error of the estimated surface

(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the � cost function parameter. Also shown are images based on the

estimated surface and mesh plots of the surface at di�erent points during optimization.
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5.2 Hill Images

The second set of images is of an undulating surface similar to eroded hills and was

generated using a fractal technique.3 Figure 5-6 shows the camera geometry, true

surface, re
ectance contours, and test images for this surface. This set of images is

more representative of the type of terrain the DFSS algorithms are likely to encounter.

As shown in the �gure, the left camera is directly over the surface and the right camera

views the surface obliquely. The light sources are separated, as for the easy crater

image, resulting in images with strong shading information. I �nd the relatively low

65-by-65 resolution of these images hard to interpret visually (unlike the crater images

which are easy to interpret). The DFSS algorithms, however, perform well with these

images.

The Figures 5-7{5-10 show the results of applying the various DFSS algorithms

to this test case. All four algorithms work reasonably well with these images, but

the z-only algorithm performs best. Due to the complexity of the surface, this set of

images requires more iterations of each algorithm to obtain a satisfactory estimate of

the surface than the easy crater images. The �gures show that the z-only algorithm

performs best, it even obtains a very good estimate after 50 iterations! The con-

vergence is a little slower for the dual-z and disparity algorithms; they obtain good

estimates after about 200 iterations. The zpq algorithm is the slowest and requires

about 600 iterations to obtain a satisfactory solution. The estimated images in all

cases match very well the true images shown in Figure 5-6.

3Information on how to generate this surface can be found in Appendix C.
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Figure 5-6: Test images of hill. Shown are the camera geometry as projected into the xz-

and yz-planes, the true surface as a mesh plot, re
ectance function contours for the two

light source positions, and the left and right synthetic noise-free images.
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Figure 5-7: Performance of the zpq algorithm on the hill images. The upper-left graph shows

the cost function (solid line) and RMS error of the estimated surface (dashed-line) plotted

against the number of function evaluations. The upper-right graph shows the history of the

� (solid line) and � (dashed-line) cost function parameters. Also shown are images based on

the estimated surface and mesh plots of the surface at di�erent points during optimization.
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Figure 5-8: Performance of the z-only algorithm on the hill images. The upper-left graph

shows the cost function (solid line) and RMS error of the estimated surface (dashed-line)

plotted against the number of function evaluations. The upper-right graph shows the history

of the � cost function parameter. Also shown are images based on the estimated surface

and mesh plots of the surface at di�erent points during optimization.
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Figure 5-9: Performance of the dual-z algorithm on the hill images. The upper-left graph

shows the cost function (solid line) and RMS error of the estimated surface (dashed-line)

plotted against the number of function evaluations. The upper-right graph shows the history

of the � (solid line) and � (dashed-line) cost function parameters. Also shown are images

based on the estimated surfaces and mesh plots of the surfaces at di�erent points during

optimization.
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Figure 5-10: Performance of the disparity-based algorithm on the hill images. The up-

per-left graph shows the cost function (solid line) and RMS error of the estimated surface

(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the � cost function parameter. Also shown are images based on the

estimated surface and mesh plots of the surface at di�erent points during optimization.
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5.3 Mountain Images

The third set of images is of a highly mountainous surface and was created to show

the performance of the algorithms on steep terrain. The steep terrain requires that

the baseline distance from the cameras be shortened so that all the surface points

are visible from both cameras (see Figure 5-11). Thus this set of images can be

used to test the performance of the algorithms when the stereo baseline is small.

As shown in the �gure, the light source positions for this set of images are widely

separated and generate deep shadows on this steep terrain. The re
ectance maps

are 
at within a shadow so no helpful gradient is available to the algorithms. In

addition, knowledge that a particular pixel is in shadow only constrains the set of

possible gradient directions to a sub-plane of gradient space. Thus, within a shadow

region, much more in
uence is given to the brightness values from the other image.

This combination of e�ects results in slower convergence.

The Figures 5-12{5-15 show the results of applying the various DFSS algorithms to

this test case. The z-only, dual-z, and disparity algorithms work reasonably well with

these images, but the z-only algorithm performs best. The zqq algorithm has trouble

with this test case. Due to the complexity of this test case, the algorithms require

many more iterations to achieve a satisfactory solution. The z-only and disparity

algorithms are able to obtain good solutions after about 600 iterations, while 1400

iterations are not enough for the zpq. The dual-z algorithm obtains a reasonable

estimate at about 1200 iterations.
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Figure 5-11: Test images of mountain. Shown are the camera geometry as projected into

the xz- and yz-planes, the true surface as a mesh plot, re
ectance function contours for the

two light source positions, and the left and right synthetic noise-free images.
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Figure 5-12: Performance of the zpq algorithm on the mountain images. The up-

per-left graph shows the cost function (solid line) and RMS error of the estimated surface

(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the � (solid line) and � (dashed-line) cost function parameters. Also

shown are images based on the estimated surface and mesh plots of the surface at di�erent

points during optimization.
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Figure 5-13: Performance of the z-only algorithm on the mountain images. The up-

per-left graph shows the cost function (solid line) and RMS error of the estimated surface

(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the � cost function parameter. Also shown are images based on the

estimated surface and mesh plots of the surface at di�erent points during optimization.
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Figure 5-14: Performance of the dual-z algorithm on the mountain images. The up-

per-left graph shows the cost function (solid line) and RMS error of the estimated surface

(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the � (solid line) and � (dashed-line) cost function parameters. Also

shown are images based on the estimated surfaces and mesh plots of the surfaces at di�erent

points during optimization.
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Figure 5-15: Performance of the disparity-based algorithm on the mountain images. The

upper-left graph shows the cost function (solid line) and RMS error of the estimated surface

(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the � cost function parameter. Also shown are images based on the

estimated surface and mesh plots of the surface at di�erent points during optimization.
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5.4 Hard Crater Images

Like the easy crater images presented earlier, this set of images is also based on the

crater on a 
at plane. However in this case, the light source positions are nearly the

same and are almost directly behind the cameras. The resulting images are very bright

and look very much the same except for slight di�erences in shading (see Figure 5-

16). The re
ectance maps for this case are nearly co-incident which contributes to

a surface orientation ambiguity. This set of images represents a worst case for the

DFSS algorithms since the shading information in the images is weak and the range

of brightness values is small. However, they also have strong stereo correspondence

information, which unfortunately is not readily utilized by the DFSS algorithms. The

test images are 65-by-65 pixels in size and are noise free.

The Figures 5-17{5-20 show the results of applying the various DFSS algorithms

to this test case. All four algorithms get stuck in a local minimum. The �gures

show that the estimated images resemble the true images of Figure 5-16 even though

the estimated surface doesn't match the actual surface. The problem is that the

algorithms incorrectly interpret the surface as concave when it is actually convex (see

also the shape-from-shading results in Chapter 6). Even though the stereo information

in these test images can be used to correctly determine the orientation of the surface,

the DFSS algorithms rely very heavily on the shading information.

The surface orientation ambiguity is a result of having both light sources directly

behind the cameras. All the test images that I have tried that have this light source

geometry cause the algorithms to fail.

The results shown in the �gures are based on algorithms that employ the hier-

archical basis functions. When I run the algorithms on the hard crater test images

without using the hierarchical basis functions, the algorithms can correctly interpret

the images. The convergence is signi�cantly slower, however. Based on several runs I

have made, it appears that the explanation for this behavior is that the hierarchical

basis functions lead the algorithm down a particular path that ends up in the local

minima. When the nodal basis is used, the algorithm goes down a di�erent path that

is able to bypass the local minimum (just barely).

This problem seems to be sensitive to initial condition. In fact, when I start the

algorithms from an initial condition close to the true surface, they do converge to the

true solution as expected.4

This test case has been the impetus for developing a plethora of algorithms, only

a few of which are presented in this thesis. I had hoped that developing an algorithm

with a totally di�erent search space would result in one that could solve this problem.

Unfortunately, all the algorithms I have developed have gotten stuck in the same local

minima shown in the �gures. The other test cases show that the algorithms perform

very well when di�erent lighting is used where at least one lighting condition is oblique.

4Of course, they only achieve the exact solution when the smoothness parameters are set to zero.
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Figure 5-16: Test images of crater on 
at plane (hard case). Shown are the camera geometry

as projected into the xz- and yz-planes, the true surface as a mesh plot, re
ectance function

contours for the two light source positions, and the left and right synthetic noise-free images.
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Figure 5-17: Performance of the zpq algorithm on the hard crater images. The up-

per-left graph shows the cost function (solid line) and RMS error of the estimated surface

(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the � (solid line) and � (dashed-line) cost function parameters. Also

shown are images based on the estimated surface and mesh plots of the surface at di�erent

points during optimization.
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Figure 5-18: Performance of the z-only algorithm on the hard crater images. The up-

per-left graph shows the cost function (solid line) and RMS error of the estimated surface

(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the � cost function parameter. Also shown are images based on the

estimated surface and mesh plots of the surface at di�erent points during optimization.
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Figure 5-19: Performance of the dual-z algorithm on the hard crater images. The up-

per-left graph shows the cost function (solid line) and RMS error of the estimated surface

(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the � (solid line) and � (dashed-line) cost function parameters. Also

shown are images based on the estimated surfaces and mesh plots of the surfaces at di�erent

points during optimization.
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Figure 5-20: Performance of the disparity-based algorithm on the hard crater images. The

upper-left graph shows the cost function (solid line) and RMS error of the estimated surface

(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the � cost function parameter. Also shown are images based on the

estimated surface and mesh plots of the surface at di�erent points during optimization.
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Absolute Error

Algorithm Easy Crater Hill Mountain Hard Crater

dual-z 1.2991 0.2274 0.8774 2.4241

zpq 0.2130 0.0247 2.7494 1.5933

disparity 0.1668 0.0251 0.8383 0.9241

z-only 0.1728 0.0247 0.7799 1.0716

Relative Error

Algorithm Easy Crater Hill Mountain Hard Crater

dual-z 0.3614 0.0968 0.8436 1.0078

zpq 0.1678 0.0205 2.5715 1.5379

disparity 0.1663 0.0176 0.7193 0.9240

z-only 0.1721 0.0175 0.7177 1.0078

Table 5-2: Absolute and relative surface estimation error by algorithm and test case (1200

iterations).

5.5 Summary

A summary of running the algorithms on the test images is shown in Table 5-2 and

Figure 5-21. The table shows the relative and absolute error between the true and

estimated surface at the last iteration. The absolute error is computed using the

formula

Jabs =

vuut 1

NM

X
x;y

(z � z�)2; (5:1)

while the relative error is computed using

Jrel =

vuut 1

NM

X
x;y

((z � �z)� (z� � �z�))2: (5:2)

where z
� is the true surface height and �z is the average of z. The �gure shows

the absolute error normalized by the surface depth change of the true surface (i.e.,

(zmax� zmin)). The �gure can be used to interpret the error as a fraction of the total

surface depth change. All the algorithms were run with 6 hierarchical basis levels

which is one less than the largest number of levels that can be used with 65-by-65

images. Using this number of hierarchical bases sped up the convergence of each

algorithm by a factor of 3{5.

It is clear that all of the algorithms had problems with the hard crater images.

Each one got caught in the local minimum. The reason for this can be seen in the

re
ectance contours of Figure 5-16. For a given brightness level (i.e., along one of

the contours), there are two viable solutions with di�erent surface orientations. The
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Figure 5-21: Absolute surface estimation error scaled by the true surface depth change. The

depth change is shown in parentheses.

local minimum has a orientation in the \dipped" region that is a viable but incorrect

orientation, and the stereo information is not strong enough to pull it out of the local

minimum.

The hard crater images have been the driving force behind much of this research

and are one of the reasons that so many alternate algorithms were implemented.

As each algorithm was created and implemented it was hoped that the new search

space would allow the correct interpretation of the hard crater images. Alas, every

algorithm I have tried has been caught in the local minimum.

The only way the algorithms can correctly interpret the hard crater images is to

perform the optimization with no hierarchical basis levels. The convergence is very

slow but the solution is correct. I hesitate to recommend that all runs be performed

using the nodal basis, however, since the performance hit is huge and there is no

guarantee that the true solution will be found. Consider the fact that the test images

are small and that more normal size images are of the order 513-by-513. One function

evaluation with these images will take 64 times as long to compute as the test images.

In addition, since all of the algorithms are di�usion-type algorithms, we could expect

an 8 times increase in the number of function evaluations to obtain convergence if the

nodal basis is used. As you can see, the rami�cations of not using the hierarchical

bases are huge.

Fortunately, the fact that the algorithms are caught in a local minimum is easy

to see for the hard crater images, since the estimated images that are created as

a by-product of each function evaluation show streaks where the photo-topography

constraints are not met (these streaks are di�cult to see in the halftoned reproductions

of the gray level images). Considering this fact, I recommend that the largest number

of hierarchical basis levels be used to speed convergence and the results checked by
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looking at the estimated images.

Clearly, the algorithm that performed best is the z-only algorithm. Not only is

it the quickest algorithm to compute (i.e., one iteration of the z-only algorithm com-

putes faster that one iteration of any of the other algorithms),5 but it also has the

best convergence rate. This algorithm and the next best algorithm, the disparity

algorithm, were created by directly implementing the problem constraints as a cost

function. There might be a lesson here that the best algorithms are formed by in-

corporating the constraint equations into the cost function in the most direct and

straightforward way.

5The evaluation time for the algorithms is approximately proportional to the number of free

variables; N2 for z-only and disparity, 3N2 for zpq, and 2N2 for dual-z.
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Chapter 6

Comparison with

Shape-from-Shading

In this chapter I show how a simple shape-from-shading algorithm performs on my test

images. By restricting the z-only algorithm to work on a single image and assuming

orthographic projection I can create an algorithm similar to Szeliski [Szeliski, 1991]

and Leclerc and Bobick [Leclerc and Bobick, 1991]. The resulting algorithm is based

on the cost function,

min
z

J =
1

2

ZZ n
(E(x; y)�R(p; q))

2
+ �(r2

z)2
o
dx dy (6:1)

where

p = zx;

q = zy:
(6.2)

The shape-from-shading algorithm is based on z but cannot estimate the true depth;

the algorithm can only estimate the shape. The depth bias is unobservable to this

algorithm.

Following the development of the z-only algorithm, the discretized version of this

cost function is

min
z

J =
1

2NM�2

X
x;y2D

n
(E(x; y)�R(p; q))

2
+ �(r2

z)2
o
: (6:3)

Note that this cost function directly uses the values in E(x; y) without having to

interpolate as was required when forming F (x; y) for the z-only algorithm.

I show the performance of the shape-from-shading algorithm on the left image of

four test image sets in Figures 6-4{6-3. The �gures show the cost function history

and optimization parameters as a function of the number of function evaluations.

Also shown is the estimated surface shape at various stages during the convergence.

95
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Figure 6-1: Performance of the shape-from-shading algorithm on the left easy crater image.
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Figure 6-3: Performance of the shape-from-shading algorithm on the left mountain image.
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Image set Rel. SFS Error Rel. z-only Error

Easy Crater 0.6242 0.1721

Hill 0.2083 0.0175

Mountain 1.6343 0.7177

Hard Crater 1.3532 1.0715

Table 6-1: Estimation error of SFS algorithm on the test images compared to z-only results

(1200 iterations).

The �gures show that the shape-from-shading algorithm can determine the shape

of the surface, but with some error. I have summarized the �nal error between the

estimated shape and true shape in Table 6-1. The estimated surface and true surface

o�set so that their average heights coincide before computing the errors shown in the

table. The error was computed using Equation 5.2.

The estimation error when using shape-from-shading alone is greater than the

estimation error when using the z-only algorithm. While this is not surprising since

the z-only algorithm has two images to work with instead of one, it is nice to see that

signi�cant performance gains are possible when using a fused algorithm.



Chapter 7

Error Analysis

It is equally important when developing algorithms to investigate their robustness in

the face of errors. In this chapter I present the results of running the z-only algorithm

on hill images that contain errors. I have introduced errors of three types:

1. measurement errors,

2. geometry errors,

3. re
ectance errors.

Each error is introduced separately to simplify the analysis. In each case, a �gure is

presented that shows the relative and absolute error between the true and estimated

surface, along with the estimated surface, convergence history and estimated images

for the worse case. All the results below are the error after 600 function evaluations

(about 300 updates). The initial condition for each case was a 
at plane at the

nominal depth. For reference, the relative and absolute errors after 600 function

evaluations on noise-free images are 0.0175 and 0.0247 respectively.

7.1 Measurement Errors

To determine the performance of the z-only algorithm on noisy images I added Gaus-

sian white noise (with signal-to-noise ratios (SNR) of 100, 10, or 2) to the hill images.

The resulting brightness values were then clipped to the range [0; 1]. The results of

running the z-only algorithm on these noisy images are shown in Figure 7-1 and Ta-

ble 7-1. The �gure shows that the algorithm performs well even for a signal-to-noise

ratios of 2 and that the estimate degrades gracefully as the SNR is decreased.

7.2 Camera Geometry Error

The e�ect of errors in the camera geometry were investigated by adding error to the

baseline distance, interior orientation parameters, or by rotating the images to move
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Case Change Rel. Error Abs. Error

Nominal (z-only) 0.0175 0.0247

1 SNR 100 0.0203 0.0275

2 SNR 10 0.0751 0.1323

3 SNR 2 0.1436 0.1701

Table 7-1: RMS Estimated surface error from noisy images.
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Figure 7-1: Performance of z-only algorithm on noisy hill images

the epipolar lines out of alignment. Each change was introduced independently. The

baseline error images were created by changing both the baseline and nominal depth

by the same percentage in order to keep the interior orientation parameters constant

(10%, 20%, and 30% changes where introduced). The interior orientation error images

were created by o�setting the origin of the camera coordinates in a random direction

with magnitude of 1, 3, or 6 pixels. The epipolar error images were created by rotating

the images so the total error introduced between the images was 0.5, 1, or 3 degrees.

The results of running the z-only algorithm on these changed images are shown in

Figures 7-2{7-4 and Table 7-2. The baseline errors mostly a�ect the absolute depth

of surface estimate and have little e�ect on the relative error of the surface. On the

other hand, the small change I introduced into the interior orientation parameters

results in a profound change in the estimated surface (see Figure 7-3). Clearly it

is important to have accurate knowledge of the camera parameters to obtain good
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Figure 7-2: Performance of z-only algorithm with hill baseline errors.
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Figure 7-3: Performance of z-only algorithm with hill interior orientation errors.
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Case Change Rel. Error Abs. Error

Nominal (z-only) 0.0175 0.0247

1 baseline error (�10%) 0.0189 10.0075

2 baseline error (�20%) 0.0374 99.9331

3 baseline error (�30%) 0.0609 199.8330

1 interior orientation error (1 pixel) 0.0716 0.0744

2 interior orientation error (3 pixels) 0.3214 0.3228

3 interior orientation error (6 pixels) 0.9985 1.0506

1 epipolar error (0:5�) 0.0319 0.0499

2 epipolar error (1�) 0.0570 0.0630

3 epipolar error (3�) 0.0943 0.2432

Table 7-2: RMS Estimated surface error from geometry errors.

estimates.

Figure 7-4 shows that a moderate amount of error in the epipolar calibration can

be tolerated with only a small e�ect on the estimated surface. This is good news

since most planetary images will have to be re-projected into the aligned optical axes

coordinate system. Figure 7-4 shows that the algorithm can tolerate some errors in

this projection and still produce meaningful results.

7.3 Re
ectance map errors

The e�ects of errors in the re
ectance map were investigated by changing the light

source positions or by scaling brightness values in the images to simulate an error

in albedo calibration. I did not investigate the e�ects of using the wrong re
ectance

(such as Minnaert re
ectance) since the estimation errors due to this e�ect cannot be

generalized. The light source error images were created by changing the light source

direction by 5, 15, or 30 degrees in a random direction. The albedo error images were

created by scaling the images by 1=0:99, 1=0:95, or 1=0:90. The results of running the

z-only algorithm on these changed images are shown in Figures 7-5{7-6 and Table 7-3

Figure 7-5 shows that light source position errors of up to 30 degrees have relatively

little e�ect on the estimated surface. While, typical photo-topography images have

light source (sun) positions that are known to high precision, these results show that

the z-only algorithm could be applied to images where the light sources are not as

well known.

On the other hand, Figure 7-6 shows that the algorithm can tolerate albedo cali-

bration errors up to 10%. These results are misleading, however, since the algorithms

fail to converge when the albedo error is greater than 10%. The algorithm may not
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Figure 7-4: Performance of z-only algorithm with hill epipolar errors.
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Figure 7-5: Performance of z-only algorithm with hill light source errors.
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Case Change Rel. Error Abs. Error

Nominal (z-only) 0.0175 0.0247

1 light source error (5�) 0.0551 0.1912

2 light source error (15�) 0.0178 0.3219

3 light source error (30�) 0.0922 1.1150

1 albedo error (1%) 0.0241 0.0341

2 albedo error (5%) 0.0681 0.0686

3 albedo error (10%) 0.1234 0.1253

Table 7-3: RMS Estimated surface error from re
ectance errors.

converge in those cases since the Lambertian re
ectance map cannot exceed 1.0 and

the error images produced contain many brightness values beyond that limit. The al-

gorithm can probably tolerate albedo calibration errors that don't create normalized

brightness values greater than 1.0.

7.4 Summary

The foregoing plots and tables indicate the z-only algorithm is fairly robust. In

particular, they indicate that the algorithm can produce a reasonably good estimate

even if the images are noisy, the camera geometry is not known perfectly, and the

re
ectance properties are in error. They also show that it is very important to have

accurate internal orientation parameters, and an accurate baseline in order to estimate

the depth correctly.
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Figure 7-6: Performance of z-only algorithm with hill albedo errors.
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Chapter 8

Algorithm Extensions

In this chapter I discuss two ways of extending the algorithm to varying albedo

surfaces. While all the previous algorithms have been restricted to surfaces with a

constant (known) albedo, the algorithms discussed in this chapter work for surfaces

that have markings or striations. The new algorithms still require that the geometric

re
ectance properties be constant and known for the whole surface.

I also show in this chapter how more general camera geometries can be accommo-

dated. Basically, the images are projected into a coordinate system that has aligned

optical axes.

8.1 Varying albedo algorithms

As mentioned in Section 2.5, the simpli�cation of constant albedo severely restricts

the applicability of the algorithms that are developed in Chapter 4. In this section, I

lift that restriction. The algorithms that result, do converge to a solution close to the

actual surface, but the convergence is slower than for the constant albedo algorithms.

The �rst thing to understand is whether we would expect a varying albedo algo-

rithm to work. In other words, `Does it seem reasonable that a unique value of albedo

can be chosen for each point in the image'? Let's investigate that question.

Each point in the images provides two constraints via the two extended photo-

topography equations

E
(1)(x+

fb

2z
; y) = �(x; y)R(1)(p; q);

E
(2)(x� fb

2z
; y) = �(x; y)R(2)(p; q);

(8:1)

for the two unknowns z and �. Since this is a situation with two equations and

unknowns, a solution is at least conceivable. Investigating further we �nd that for

a given �(x; y) there are at most two gradient directions (p(x; y); q(x; y)) that can
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satisfy each equation.1 These gradient directions cannot be chosen arbitrarily since

they must be consistent with the underlying height z, via the integrability constraint

equations,

p =
fzx

xzx + z
;

q =
fzy

yzy + z
:

(8:2)

A solution is obtained when a common, consistent gradient estimates exist. Con-

versely, a given z de�nes the gradient components and the relationship between points

in the images. A solution is obtained when � can be chosen to match the images E(i)

with the images estimated from the re
ectance maps.

From the foregoing discussion it should be clear that it is possible to create image

sets that are inconsistent so that no solution exists. On the other hand it should

also be clear that given consistent images a solution exists. Thus we �nd that the

extended problem is well-posed.

8.2 Minimizing departure from a constant albedo.

The �rst algorithm is applicable to slowly varying albedo surfaces. It is based on the

z-only cost function but includes a penalty term of the form �(� � ~�)2 where ~� is

the average albedo over the whole image. This additional term penalizes departure

from a constant albedo and can be used to estimate the calibration factor �� on the

re
ectance. The cost function including this term is

min
z

J =
1

2

ZZ 8<
:
 
E

(1)(x+
fb

2z
; y)� �(x; y)R(1)(p; q)

!2

+

 
E

(2)(x� fb

2z
; y)� �(x; y)R(2)(p; q)

!2

+ �

h
z
2
xx + 2z2xy + z

2
yy

i
+ �(�� ~�)2

o
dx dy (8.3)

where

~� =

R
D �dx dyR
D dx dy

(8:4)

and D is the whole image. The smoothness penalty term is used to guide convergence

and is not required to guarantee a unique solution. Usually, � is slowly reduced to

zero as the solution is reached to avoid biasing the solution. The algorithm based

on this cost function converges, albeit slowly, and works best for surfaces that have

nearly constant albedo.

1For surfaces with Lambertian Re
ectance.
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8.3 Minimizing local albedo change.

The second algorithm is applicable to surfaces with piecewise constant or piecewise

linear albedo. In this case, the cost function includes a penalty term of the form

�(�� ��)2 where �� is the average in some local neighborhood N . This term is similar

to a discrete approximation to the Laplacian and penalizes departure from a local av-

erage. For a piecewise constant albedo, this term will be zero except on the boundary

between the constant areas of albedo. The cost function including this term is

min
z

J =
1

2

ZZ 8<
:
 
E

(1)(x+
fb

2z
; y)� �(x; y)R(1)(p; q)

!2

+

 
E

(2)(x� fb

2z
; y)� �(x; y)R(2)(p; q)

!2

+ �

h
z
2
xx + 2z2xy + z

2
yy

i
+ �(�� ��)2

o
dx dy (8.5)

where

�� =

R
N �dx dyR
N dx dy

: (8:6)

Following the implementation of the z-only algorithm, the cost function can be

discretized to become,

min
z

J =
1

2NM�2

X
x;y2D

��
F

(1)(x; y)� �(x; y)R(1)(p; q)
�2

+
�
F

(2)(x; y)� �(x; y)R(2)(p; q)
�2

+ �

h
z
2
xx + 2z2xy + z

2
yy

i
+ �(�� ��)2

o
(8.7)

where �� is the average in a 3-by-3 neighborhood,

�� =
1

9

1 1 1

1 1 1

1 1 1

� �: (8:8)

The performance of this algorithm on the varying albedo test images is shown in

Figures 8-2{8-4.
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8.4 Varying albedo test results.

To test the algorithm based on this cost function, two of the test images were modi�ed

to include either a � = 0:7 albedo strip from the lower left to the upper right (Figure 8-

1) or an � = 0:7 albedo variation in a layer similar to what would be expected from

sedimentation processes (Figure 8-3).

8.4.1 Crater with dark stripe

The �rst set of test images has the � = 0:7 albedo stripe imposed on the easy crater

test case. The light source geometry, true surface, and true albedo are shown in

Figure 8-1. The albedo variation is \painted" on the crater surface.

The Figure 8-2 shows the result of applying the varying albedo algorithm to this

test case. The �gure shows the cost function history and optimization parameters as a

function of the number of function evaluations. Also shown are the estimated surface

and albedo image at various stages during the convergence. While the algorithm

does converge to a surface and albedo map close to the true values, the convergence

is much slower than for the constant albedo algorithm and the �nal surface estimate

has more error. Of course, the constant albedo algorithm would not perform any

better if presented with the varying albedo images.

8.4.2 Hill with sedimentation

The other set of varying albedo test images is based on the hill test case with the

albedo set to � = 0:7 for surface heights in a certain range (see Figure 8-3). The light

source positions and geometry are the same as for the hill test case.

Figure 8-4 shows the result of applying the varying albedo algorithm to this test

case. The �gure shows the cost function history and optimization parameters as a

function of the number of function evaluations. Also shown is the estimated surface

and albedo image at various stages during the convergence. While the algorithm

does converge to a surface and albedo map close to the true values, the convergence

is slower than for the constant albedo algorithm and the �nal surface estimate has

more error.

8.4.3 Summary

The varying albedo algorithm can successfully estimate both the surface depth and

the albedo variation but requires at least 2 times as many function evaluations than

the constant albedo z-only algorithm. In fact, the performance �gures in this section

show surfaces that have not converged even after 2800 function evaluations. However,

these algorithms must be used for surfaces that cannot be estimated correctly with

the z-only algorithm because of varying albedo.
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Figure 8-1: Crater on 
at plane with varying albedo. Shown is the camera geometry as

projected into the xz- and yz-planes, the true surface as a mesh plot, albedo image, and

re
ectance function contours for the two light source positions.



114 CHAPTER 8. ALGORITHM EXTENSIONS

0 1000 2000 3000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Convergence History

Iteration

C
os

t F
un

ct
io

n

0 1000 2000 3000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Lambda and Mu Parameter History

Iteration

L
am

bd
a 

&
 M

u

Estimated images at iteration 2801

Estimated surface at iteration 201 Estimated albedo at iteration 201

Estimated surface at iteration 2801 Estimated albedo at iteration 2801

Figure 8-2: Performance of the varying albedo algorithm on the varying albedo crater

images.



8.4. VARYING ALBEDO TEST RESULTS. 115

-500

0

500

-200
0

200
-1200

-1000

-800

-600

-400

-200

0

xy

de
pt

h

Camera Geometry

True Surface

-5 0 5
-5

0

5

p

q

Reflectance Function Contours

True albedo
True images

Figure 8-3: Test images of hill with varying albedo. Shown is the camera geometry as

projected into the xz- and yz-planes, the true surface as a mesh plot, albedo image, and

re
ectance function contours for the two light source positions.
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Figure 8-4: Performance of the varying albedo algorithm on the varying albedo hill images.
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Figure 8-5: Camera reprojection geometry.

The slow convergence is a direct result of increasing the number of degrees of

freedom available to the algorithm. It has the choice of meeting the photo-topography

constraints by changing the depth or by just changing the albedo. Initially it's easier

to change the albedo since it shows up directly in the constraint equations. However,

using albedo changes alone is not su�cient to minimize the equations, so after a while

the surface height begins the change.

The convergence would probably be faster if the stereo part of the algorithm was

more powerful. The disparity of the albedo edges should provide a strong constraint

on the height. The fact that they don't is due to the weakness of the stereo part of the

algorithm. Hopefully ongoing research will turn up a more powerful stereo algorithm.

8.5 General Camera Geometry

The algorithms presented thus far are based on the simpli�cation that the camera

optical axes are aligned. This is never true for images taken from moving vehicles

such as inner-planetary probes, satellites, or aircraft. The simpli�cation of aligned

optical axes is used since it greatly simpli�ed the equations. The simpli�cation can

be lifted by re-projecting the images from their true camera coordinates into the

coordinates of a virtual camera with its principal point in the same position but

with the aligned orientation (see Figure 8-5). I refer to the true camera coordinates

as the primed coordinate system (i.e., (x0; y0; z0)T and the aligned coordinates using

un-primed notation, consistent with the equations presented so far.

Points in a camera image map to rays in space. The mapping between coordinate

systems preserves the orientation of these rays in the global coordinate system. Let

r0 = (x0; y0; f 0)T be the coordinates of a point in the camera's image. This maps to

the ray in the direction r0. Let T be the rotation matrix relating the two coordinate
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systems, that is,

r0 = Tr; (8:9)

for any vector r (see Figure 8-5). The ray in the aligned coordinate system is then

along the direction Tr0. This ray can be re-projected into the virtual image plane

with focal length f by normalizing,

r =
f(T T r0)

(T T r0) � ẑ (8:10)

where ẑ = (0; 0; 1)T is the unit vector along the z axis in the aligned coordinate

system. Similarly,

r0 =
f(Tr)

(Tr) � ẑ0 (8:11)

relates points in the un-primed image to points in the primed image.

We can use these equations to create the image that would have been seen by a

camera with aligned optical axes. Given E 0(r0) in the true camera coordinate system,

the re-projected image is

E(r) = E
0

 
f(Tr)

(Tr) � ẑ0
!

(8:12)

since T T is the rotation matrix from the aligned coordinates to the true coordinates.

For r = (x; y; f)T this equation written in (x; y) notation is

E(x; y) = E
0(
t11x+ t12y + t13f

t31x+ t32y + t33f
;
t21x+ t22y + t23f

t31x+ T32y + t33f
); (8:13)

where the elements of the 3-by-3 matrix T are tij. For discrete images, the value of

the above expression can be computed using some type of interpolation (say bilinear

interpolation).

Note that this re-projection can be easily incorporated into the z-only, disparity-

based, and varying albedo algorithms by de�ning F (i) to interpolate in E
0 instead of

E.



Chapter 9

Summary

This thesis has presented a methodology for combining or fusing multiple vision algo-

rithms. Four di�erent cost functions (and their associated algorithms) were presented

that illustrate the methodology. The basic methodology is to combine the constraint

equations of the problem to form a single cost function in the spirit of variational

calculus.

The performance of the four algorithms was evaluated using four synthetic noise-

free test images of varying di�culty. The most closely-coupled algorithm, the z-only

algorithm, had the best performance. The z-only algorithm was able to correctly

estimate the synthetic surface in about 200 function evaluations for three of the four

cases. For the remaining case (the hard crater images), the algorithm got stuck in a

local minimum, as did all the algorithms tried. This case has lighting geometry that

results in ambiguous shading information.

It was shown that the z-only algorithm has much better performance using the

two photo-topography images than a simple shape-from-shading algorithm which uses

only one image. This performance increase validates the fusion approach to obtaining

better performing vision algorithms.

The z-only algorithm was also shown to be robust; able to accurately estimate the

synthetic surface in the presence of several types of errors. The performance of the

algorithm based on images that contained noise, geometry error, or re
ectance errors

was shown. In most cases, the algorithm was able to form a good estimate.

9.1 Mars Images

The robustness and performance of the algorithm on synthetic images, builds con�-

dence that the algorithm can perform similarly on real images. One such set of real

images is shown in Figure 9-1.1 The images are Viking stereo images of Mars. The

images as received (and shown) are processed versions of the original Viking images.

1We are grateful to Mike Caplinger for providing these images.
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They have been reprojected into an aligned coordinate system and �ltered to remove

biases due to any large scale albedo variations. The images also have very similar

lighting conditions (they were probably taken close together in time). This image

pair thus doesn't represent the best possible situation for the algorithms developed

in this thesis. Nevertheless, the z-only algorithm performs well.

The estimated surface from the z-only algorithm is shown in Figure 9-2 and 9-

3. The �gures show that the z-only algorithm produces a reasonable estimate

of the Martian surface. It should be noted that the camera geometry and light

source positions were given, but the re
ectance map for the surface of Mars was not.

The results shown are based on the assumption of a Lambertian re
ectance map.

The nominal slope of the estimated surface (see surface plots) is an artifact of the

camera baseline orientation with respect to the planet's surface and can be removed

by shifting the camera positions along their line of sight. In fact, the estimate shown

is based on cameras that are shifted slightly so that the light source positions could

be represented using (ps; qs) gradient components.
2

While it is di�cult to see in the halftone reproduction of the estimated images,

the images contain a slight ghosting e�ect.3 The ghosting is like a double image and

is depth dependent. By running the algorithm with slightly shifted camera principal

points, di�erent parts of the estimated images can be brought into registration. The

ghosting is probably caused by using Lambertian re
ectance instead of the true radi-

ance function for the Martian surface. However, even though the algorithm used an

inaccurate re
ectance function, the surface estimate does contain many of the small

and large scale features found in the Viking images. Examples include the cli� in the

upper right and the valley just below, as well as the craters near the bottom of the

images and the ridges in the center. An even better estimate of the Martian surface

could have been obtained if the true re
ectance function were used with the z-only

algorithm.

9.2 Future research

There are several directions this research can go in the future:

� Apply the fusion methodology outlined in this thesis to other vision problems.

� Apply the z-only algorithm to more real images to further judge its performance.

Particularly apply the algorithm to image sets with di�ering lighting conditions.

� Determine the performance of the z-only algorithm when more realistic re-


ectance maps are used with the algorithm. Recall that while I only tested the

2A requirement for the particular implementation I have used. With slight modi�cations, the

algorithms could be used with any other light source position parameterization.
3The extent of the ghosting is less than 2 pixels for a 257-by-257 image.
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Figure 9-1: Stereo images of Mars taken by the Viking probe.
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Figure 9-3: High resolution mesh and surface plot of estimated Mars surface. The surface

plot was created by coloring the surface using the left estimated image.
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algorithms on surfaces with Lambertian re
ectance, other re
ectance functions

can easily be used with the algorithm.

� Develop an algorithm with better stereo integration that can correctly estimate

the surface for the Hard Crater test case. To do this may require developing a

new innovative stereo algorithm.

Of these possible directions, the last one presents the most challenges and o�ers the

most rewards.

9.3 Conclusions

This thesis has shown that the variational approach to fusion problems can produce

robust, well performing vision algorithms. It has also shown that fused algorithms

can have signi�cant performance gains over non-fused alternatives.

The four example algorithms, each based on a di�erent variable representation,

showed that choosing the right variable representation is important to achieving good

estimates.

Finally in conjunction with this research, a new algorithm, the z-only algorithm,

was developed to solve the photo-topography problem. This is the �rst well perform-

ing algorithm to solve that problem.



Appendix A

Gradient derivation for z-only

algorithm

This appendix presents the gradient derivation for the z-only algorithm for use with

the conjugate gradient optimization technique.

A.1 Cost function.

In the main text, the discrete approximation to the cost function for the z-only

algorithm is given as

min
z

J =
1

2MN�2

X
x;y2D

��
F

(1)(x; y)�R
(1)(p; q)

�2
+
�
F

(2)(x; y)�R
(2)(p; q)

�2

+ �

h
z
2
xx + 2z2xy + z

2
yy

io
(A.1)

where D is the discrete domain of the underlying variables in the global coordinate

system, p and q are computed using

p =
fzx

xzx + z
;

q =
fzy

yzy + z
;

(A.2)

M and N are the row and column dimensions of the discrete domain and � is the

grid spacing (assumed to the same in both the x and y directions). The F (i)(x; y) are

interpolated from the input images E(i)(x; y) via linear interpolation,

F
(i)(x; y) = E

(i)(�x; y) + (x� fb

2z
� �x)

h
E

(i)(�x+ 1; y)� E
(i)(�x; y)

i
(A:3)
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where

�x = 
oor(x� fb

2z
): (A:4)

and the 
oor(x) function returns the greatest integer that is smaller than x. These

equations assume that x is sampled on unity-spaced grid.

A.2 Bicubic extrapolation

Recall that the matched-grid implementation is used for the z-only algorithm. In

this implementation, z is the same size as the image arrays E(i) and the boundary is

extended if necessary based on bicubic interpolation. Let zi1 be a value in the �rst

column of z (i.e., on the left boundary of z). Then the extrapolated value zi0, is

computed using

zi0 = 3zi1 � 3zi2 + zi3: (A:5)

Similar equations work for the other boundaries of z. In this way, a M -by-N matrix

can be extrapolated to form a (M + 2)-by-(N + 2) matrix.

A.3 Gradient of terms based on convolution.

Theorem 1 Let y be computed via a 2-D convolution from the �eld z and the �lter

h, y = z � h. Let f(x) : < ! <, be any scalar point function. Then the derivative of

the scalar cost function J =
P

i

P
j f(yij) with respect to zlm is

@J

@zim

=
df(x)

dx

�����
x=yij

� �h (A:6)

where

�hij = h�i;�j: (A:7)

Proof Using the de�nition of the 2-D convolution,

yij =
X
k

X
s

zkshi�k;j�s; (A:8)

the cost function can be expanded to obtain,

J =
X
i

X
j

f

 X
k

X
s

zkshi�k;j�s

!
: (A:9)
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The sums are taken over the entire range of indices into the matrices. Taking the

derivative and using the chain rule we �nd,

@J

@zlm

=
X
i

X
j

df

dx

@

@zlm

"X
k

X
s

zkshi�k;j�s

#
(A.10)

=
X
i

X
j

df

dx

X
k

X
s

@zks

@zlm

hi�k;j�s (A.11)

=
X
i

X
j

df

dx
hi�l;j�m (A.12)

=
X
i

X
j

df

dx

�hl�i;m�j (A.13)

=
df

dx
� �h : (A.14)

The result holds for computational molecules as well since operating with a com-

putational molecule m is equivalent to convolving with �m.

Theorem 2 Theorem 1 also holds for scalar functions of multiple arguments. In that

case,

@J

@z
=

@f

@x1
� �h+ @f

@x2
� �g: (A:15)

Proof Suppose y and w are de�ned via 2-D convolution, y = z � h, w = z � g,

and f(x1; x2) : [< � <] ! <, then the partial derivative of the cost function J =P
i

P
j f(yij; wij) is

@J

@z
=

@f

@x1
� �h+ @f

@x2
� �g: (A:16)

The proof follows the same lines as the proof for Theorem 1 .

A.4 Cost function derivative.

Using the chain rule, the derivative of the cost function (Equation A.1) is

dJ

dzkm

=
X
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X
y
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#)
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Let's look at each term in turn. The derivatives involving the interpolated images

can be computed using the de�nition of F (i),

@F

@zkm

= Ex(�x; y)
@�x

@zkm

+

 
� fb

2z2
� @�x

@zkm

!
[E(�x+ 1; y)� E(�x; y)]

+

 
x� fb

2z2
� �x

!
[Ex(�x+ 1; y)� Ex(�x; y)]

@�x

@zkm

(A.18)

= � fb

2z2
Ex(�(x); y): (A.19)

That last equality is possible since @�x=@zkm = 0 for one-sided derivatives.

The derivatives of the gradient components p and q can also be computed using

their de�nition. They are,

@p

@zkm

=
f

@zx
@zkm

(xzx + z)� fzx(x
@zx
@zkm

+ @z
@zkm

)

(xzx + z)2
; (A.20)

=
fz

@zx
@zkm

� fzx
@z

@zkm

(xzx + z)2
; (A.21)

and,

@q

@zkm

=
fz

@zy
@zkm

� fzy
@z

@zkm

(yzy + z)2
: (A.22)

As discussed in the main text, the partial derivatives of z (zx, zy, zxx, and so on),

are computed via 2-D computational molecules. Call these molecules, hx, hy, hxx,

and so on, in the obvious way. Using the results of Theorem 1, the derivative of the

cost function can then be written,

@J

@zkm

=
h
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(1))E(1)
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i fb
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+ �
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zxx � �hxx + 2zxy � �hxy + zyy � �hyy

i
: (A.23)

These equations are not the whole story since they don't work on the boundary. I
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will show how to take into account the e�ect of the bicubic extrapolation on the left

boundary; the other boundaries are dealt with in a similar way. Suppose h has either

2 or 3 columns, and let ~z be the extrapolated version of z (for simplicity assume z

is square of size N -by-N). In this case the subscripts on z run from 0 to N � 1.

Theorem 1 states that the derivative of J =
PP

f(~z � h) is
@J

@~z
=

df

dx
~z � �h: (A:24)

Call this matrix ~G. Since ~z is computed from z via the bicubic extrapolation described

in Section A.2, we can compute @J=@z by taking into account the dependence of zi0
on zi1, zi2, and zi3. Let G be the matrix @J=@z, then columns 1{3 of G can be

computed using

Gi1 = ~Gi1 + 3 ~Gi0; (A.25)

Gi2 = ~Gi2 � 3 ~Gi0; (A.26)

Gi3 = ~Gi3 + ~Gi0: (A.27)

Similar expressions hold for the other boundaries.
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Appendix B

M-�le Listings

This appendix contains the Matlab
1 M-�le source �les for the DFSS algorithms.

The source �les are presented for the six algorithms in this thesis: zpq, z-only, dual

z, disparity, sfs, and varying albedo. A key to the �les is given in Table B-1.

B.1 Cost function and gradient routines

B.1.1 hbdfss cost3c.m
1 function [J,FR1,FR2]=hbdfss_cost(v,zsize,levels,params,E1,E2,lambda,mu)
2 %HBDFSS_COST3C Cost function for depth from shading and stereo
3 % problem using hierarchical basis functions. Uses true
4 % perspective projection.
5 %
6 % J=HBDFSS_COST3C(V,ZSIZE,LEVELS,PARAMS,E1,E2,LAMBDA,MU) where
7 % V = [z,p,q] are the optimization variables, ZSIZE is
8 % SIZE(z), LEVELS is the number of h-basis levels. E1 and E2 are
9 % the input images, LAMBDA is the scalar weighting factor on

10 % departure from smoothness and MU is the scalar weighting factor on
11 % integrability. The image parameters
12 % PARAMS = [f,b,z0,ps1,qs1,ps2,ps2,vx1,vy1,vx2,vy2].
13
14 % Clay M. Thompson 5-18-92
15 % Revised to use correct p,q calculation.
16 % Revised to use p,q,z of the same size as E.
17 % Revised to output estimated image.
18 % Revised to support multi-grid scheme.
19
20 % Camera constants
21 f = params(1);
22 b = params(2);
23 z0 = params(3);
24 gamma = f*b/2;
25 delta = params(12);
26 area = prod(zsize)*delta*delta;
27
28 % Light Source positions
29 ps1 = params(4); qs1 = params(5);
30 ps2 = params(6); qs2 = params(7);
31
32 % Camera coordinate calibration
33 vx1 = params(8); vy1 = params(9);
34 vx2 = params(10); vy2 = params(11);

1
Matlab is a product of The MathWorks, Inc., 24 Prime Park Way, Cochituate Place, Natick

MA 01760, (508)653-1415.
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Algorithm cost functions and gradient routines

hbdfss cost3c.m Cost function for zpq algorithm.
hbdfss grad3c.m Gradient function for zpq algorithm.
hbdfss cost2c.m Cost function for z-only algorithm.
hbdfss grad2c.m Gradient function for z-only algorithm.
hbdfss cost4.m Cost function for dual-z algorithm.
hbdfss grad4.m Gradient function for dual-z algorithm.
hbdfss cost7.m Cost function for disparity algorithm.
hbdfss grad7.m Gradient function for disparity algorithm.
hbdfss cost8b.m Cost function for varying albedo algorithm.
hbdfss grad8b.m Gradient function for varying albedo algorithm.
hbsfs cost.m Cost function for shape-from-shading algorithm.
hbsfs grad.m Gradient function for shape-from-shading algorithm.

Support routines

rmap Lambertian re
ectance function.
rmapp Derivative of re
ectance function with respect to p.
rmapq Derivative of re
ectance function with respect to q.
conjgrad.m Conjugate gradient optimization.
lsearch.m Line search function for conjugate gradient optimization.
�lter2d.m 2-D computational molecule �ltering.
c�lter2d.m 2-D computational molecule �ltering with bicubic interpolation.
hbasis.m Main level hierarchical basis conversion.
hb.m Hierarchical basis interpolation.
hbt.m Adjoint hierarchical basis interpolation.
interpx.m Linear interpolation in the x direction.
domain2d.m 2-D plaid domain generation.
icubic.m 1-D cubic interpolation.
dcubicx.m Derivative of 1-D cubic interpolation with respect to x.
dcubicz.m Derivative of 1-D cubic interpolation with respect to z.

Table B-1: M-�le Descriptions.
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35 vx = (vx1+vx2)/2; vy = (vy1+vy2)/2;
36
37 % Extract z,p,q and transform into nodal basis.
38 mz = zsize(1); nz = zsize(2);
39 z = v(:,1:nz);
40 p = v(:,nz+[1:nz]);
41 q = v(:,2*nz + [1:nz]);
42 z(:) = hbasis(z,levels);
43 p(:) = hbasis(p,levels);
44 q(:) = hbasis(q,levels);
45
46 % Spacial coordinates in image.
47 [mz,nz] = size(z);
48 [x,y] = domain2d([0:mz-1]*delta+vx+1,[0:nz-1]*delta+vy+1);
49
50 % Stencils
51 hxz = [-1 0 1]/(2*delta); % X-derivative for zx
52 hyz = [1;0;-1]/(2*delta); % Y-derivative for zy
53 hx = [-1 1;-1 1]/(2*delta); % X-derivative
54 hy = [1 1;-1 -1]/(2*delta); % Y-derivative
55
56 % Compute reflectance map values.
57 R1 = rmap(p,q,ps1,qs1);
58 R2 = rmap(p,q,ps2,qs2);
59
60 % Compute numerical derivatives of p,q, and z.
61 px = filter2d(p,hx,'resize');
62 py = filter2d(p,hy,'resize');
63 qx = filter2d(q,hx,'resize');
64 qy = filter2d(q,hy,'resize');
65 zx = cfilter2d(z,hxz);
66 zy = cfilter2d(z,hyz);
67
68 % Compute estimates of p,q using numerical derivatives of z.
69 pe = f*zx./(x.*zx+z);
70 qe = f*zy./(y.*zy+z);
71
72 % Compute disparity.
73 d = (f*b/2)./z;
74
75 % Determine stereo mapped images F1,F2. Set error to zero where F is NaN
76 F1 = interpx(E1,(x+d-vx1-1)/delta+1);
77 out = isnan(F1); if any(out(:)), F1(out) = R1(out); end,
78 F2 = interpx(E2,(x-d-vx2-1)/delta+1);
79 out = isnan(F2); if any(out(:)), F2(out) = R2(out); end,
80
81 term1 = (0.5/area)*sum(sum((F1-R1).^2 + (F2-R2).^2));
82 term2 = (0.5/area)*lambda*sum(sum(px.^2 + py.^2 + qx.^2 + qy.^2));
83 term3 = (0.5/area)*mu*sum(sum((pe-p).^2 + (qe-q).^2));
84 %disp(sprintf('Terms: %12.5f %12.5f %12.5f',term1,term2,term3));
85 J = [term1+term2+term3,term1,term2,term3];
86
87 if nargout>1,
88 FR1 = [E1;F1;R1;abs(F1-R1)];
89 FR2 = [E2;F2;R2;abs(F2-R2)];
90 end
91

B.1.2 hbdfss grad3c.m

1 function [J,FR1,FR2]=hbdfss_cost(v,zsize,levels,params,E1,E2,lambda,mu)
2 %HBDFSS_COST3C Cost function for depth from shading and stereo
3 % problem using hierarchical basis functions. Uses true
4 % perspective projection.
5 %
6 % J=HBDFSS_COST3C(V,ZSIZE,LEVELS,PARAMS,E1,E2,LAMBDA,MU) where
7 % V = [z,p,q] are the optimization variables, ZSIZE is
8 % SIZE(z), LEVELS is the number of h-basis levels. E1 and E2 are
9 % the input images, LAMBDA is the scalar weighting factor on

10 % departure from smoothness and MU is the scalar weighting factor on
11 % integrability. The image parameters
12 % PARAMS = [f,b,z0,ps1,qs1,ps2,ps2,vx1,vy1,vx2,vy2].
13
14 % Clay M. Thompson 5-18-92
15 % Revised to use correct p,q calculation.
16 % Revised to use p,q,z of the same size as E.
17 % Revised to output estimated image.
18 % Revised to support multi-grid scheme.
19
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20 % Camera constants
21 f = params(1);
22 b = params(2);
23 z0 = params(3);
24 gamma = f*b/2;
25 delta = params(12);
26 area = prod(zsize)*delta*delta;
27
28 % Light Source positions
29 ps1 = params(4); qs1 = params(5);
30 ps2 = params(6); qs2 = params(7);
31
32 % Camera coordinate calibration
33 vx1 = params(8); vy1 = params(9);
34 vx2 = params(10); vy2 = params(11);
35 vx = (vx1+vx2)/2; vy = (vy1+vy2)/2;
36
37 % Extract z,p,q and transform into nodal basis.
38 mz = zsize(1); nz = zsize(2);
39 z = v(:,1:nz);
40 p = v(:,nz+[1:nz]);
41 q = v(:,2*nz + [1:nz]);
42 z(:) = hbasis(z,levels);
43 p(:) = hbasis(p,levels);
44 q(:) = hbasis(q,levels);
45
46 % Spacial coordinates in image.
47 [mz,nz] = size(z);
48 [x,y] = domain2d([0:mz-1]*delta+vx+1,[0:nz-1]*delta+vy+1);
49
50 % Stencils
51 hxz = [-1 0 1]/(2*delta); % X-derivative for zx
52 hyz = [1;0;-1]/(2*delta); % Y-derivative for zy
53 hx = [-1 1;-1 1]/(2*delta); % X-derivative
54 hy = [1 1;-1 -1]/(2*delta); % Y-derivative
55
56 % Compute reflectance map values.
57 R1 = rmap(p,q,ps1,qs1);
58 R2 = rmap(p,q,ps2,qs2);
59
60 % Compute numerical derivatives of p,q, and z.
61 px = filter2d(p,hx,'resize');
62 py = filter2d(p,hy,'resize');
63 qx = filter2d(q,hx,'resize');
64 qy = filter2d(q,hy,'resize');
65 zx = cfilter2d(z,hxz);
66 zy = cfilter2d(z,hyz);
67
68 % Compute estimates of p,q using numerical derivatives of z.
69 pe = f*zx./(x.*zx+z);
70 qe = f*zy./(y.*zy+z);
71
72 % Compute disparity.
73 d = (f*b/2)./z;
74
75 % Determine stereo mapped images F1,F2. Set error to zero where F is NaN
76 F1 = interpx(E1,(x+d-vx1-1)/delta+1);
77 out = isnan(F1); if any(out(:)), F1(out) = R1(out); end,
78 F2 = interpx(E2,(x-d-vx2-1)/delta+1);
79 out = isnan(F2); if any(out(:)), F2(out) = R2(out); end,
80
81 term1 = (0.5/area)*sum(sum((F1-R1).^2 + (F2-R2).^2));
82 term2 = (0.5/area)*lambda*sum(sum(px.^2 + py.^2 + qx.^2 + qy.^2));
83 term3 = (0.5/area)*mu*sum(sum((pe-p).^2 + (qe-q).^2));
84 %disp(sprintf('Terms: %12.5f %12.5f %12.5f',term1,term2,term3));
85 J = [term1+term2+term3,term1,term2,term3];
86
87 if nargout>1,
88 FR1 = [E1;F1;R1;abs(F1-R1)];
89 FR2 = [E2;F2;R2;abs(F2-R2)];
90 end
91

B.1.3 hbdfss cost2c.m
1 function [J,FR1,FR2]=hbdfss_cost(z,n,params,E1,E2,lambda)
2 %HBDFSS_COST2C Cost function for depth from shading and stereo
3 % problem with heirarchical basis functions. Uses true
4 % perspective projection.
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5 %
6 % J=HBDFSS_COST2C(Z,N,PARAMS,E1,E2,LAMBDA) where Z is the surface
7 % height, N is the number of H-basis levels.. E1 and E2 are the input
8 % images, LAMBDA is the scalar weighting factor on departure from
9 % smoothness. The image parameters

10 % PARAMS = [f,b,z0,ps1,qs1,ps2,qs2,vx1,vy1,vx2,vy2,delta].
11 %
12 % J= [Jtot,Jimage,Jsmooth].
13
14 % Clay M. Thompson 2-24-91
15 % Revised 4-3-91 by cmt
16 % Revised 5-10-91 by cmt
17 % Revised 5-19-91 by cmt
18 % Revised 4-30-92 by cmt to support multi-grid scheme.
19 % Revised to output estimated image.
20
21 % Camera constants
22 f = params(1);
23 b = params(2);
24 z0 = params(3);
25 gamma = f*b/2/z0;
26 delta = params(12);
27 area = prod(size(z))*delta*delta;
28
29 % Light Source positions
30 ps1 = params(4); qs1 = params(5);
31 ps2 = params(6); qs2 = params(7);
32
33 % Camera coordinate calibration
34 vx1 = params(8); vy1 = params(9);
35 vx2 = params(10); vy2 = params(11);
36 vx = (vx1+vx2)/2; vy = (vy1+vy2)/2;
37
38 % Spacial coordinates in image.
39 [mz,nz] = size(z);
40 [x,y] = domain2d([0:mz-1]*delta+vx+1,[0:nz-1]*delta+vy+1);
41
42 % Stencils
43 hx = [-1 0 1]/(2*delta); % X-derivative
44 hy = [1;0;-1]/(2*delta); % Y-derivative
45 hxx = [1 -2 1; 2 -4 2; 1 -2 1]/(4*delta*delta);
46 %hxy = [-1 0 1;0 0 0;1 0 -1]/(4*delta*delta);
47 hxy = [-1 1;1 -1]/(delta*delta);
48 hyy = [1 2 1;-2 -4 -2;1 2 1]/(4*delta*delta);
49 del2 = [1 4 1;4 -20 4;1 4 1]/(6*delta*delta);
50
51 % Compute p,q using numerical derivatives of z.
52 z = hbasis(z,n);
53 zx = cfilter2d(z,hx);
54 zy = cfilter2d(z,hy);
55 p = f*zx./(x.*zx+z);
56 q = f*zy./(y.*zy+z);
57
58 % Compute reflectance map values.
59 R1 = rmap(p,q,ps1,qs1);
60 R2 = rmap(p,q,ps2,qs2);
61
62 % Compute numerical derivatives of z.
63 zxx = cfilter2d(z,hxx);
64 zxy = cfilter2d(z,hxy);
65 zyy = cfilter2d(z,hyy);
66
67 % Compute disparity.
68 d = (f*b/2)./z;
69
70 % Determine stereo mapped images F1,F2. Set error to zero where F is NaN
71 F1 = interpx(E1,(x+d-vx1-1)/delta+1);
72 out = isnan(F1); if any(out(:)), F1(out) = R1(out); end,
73 F2 = interpx(E2,(x-d-vx2-1)/delta+1);
74 out = isnan(F2); if any(out(:)), F2(out) = R2(out); end,
75
76 term1 = (0.5/area)*sum(sum((F1-R1).^2 + (F2-R2).^2));
77 term2 = (0.5/area)*lambda*(sum(sum(zxx.^2)) + 2*sum(sum(zxy.^2)) + sum(sum(zyy.^2)));
78 %term2 = (0.5/area)*lambda*sum(sum(delsqz.^2));
79 %disp(sprintf('Terms: %12.5f %12.5f',term1,term2));
80 J = [term1+term2,term1,term2];
81
82 if nargout>1,
83 FR1 = [E1;F1;R1;abs(F1-R1)];
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84 FR2 = [E2;F2;R2;abs(F2-R2)];
85 end

B.1.4 hbdfss grad2c.m

1 function G=hbdfss_grad(z,n,params,E1,E2,lambda)
2 %HBDFSS_GRAD2C Gradient function for depth from shading and stereo
3 % problem with heirarchical basis functions. Uses true perspective
4 % projection.
5 %
6 % G=HBDFSS_GRAD2C(Z,N,PARAMS,E1,E2,LAMBDA) where Z is the height
7 % map, N is the number of H-basis levels. E1 and E2 are the input
8 % images, LAMBDA is the scalar weighting factor on departure from
9 % smoothness. The image parameters PARAMS = [f,b,z0,ps1,qs1,ps2,ps2];

10
11 % Clay M. Thompson 2-24-91
12 % Revised 4-3-91 by cmt.
13 % Revised 5-10-91 by cmt.
14 % Revised 5-19-91 by cmt.
15 % Revised 4-30-92 by cmt for multi-grid scheme.
16
17 % Camera constants
18 f = params(1);
19 b = params(2);
20 z0 = params(3);
21 gamma = f*b/2/z0;
22 delta = params(12);
23 area = prod(size(z))*delta*delta;
24
25 % Light Source positions
26 ps1 = params(4); qs1 = params(5);
27 ps2 = params(6); qs2 = params(7);
28
29 % Camera coordinate calibration
30 vx1 = params(8); vy1 = params(9);
31 vx2 = params(10); vy2 = params(11);
32 vx = (vx1+vx2)/2; vy = (vy1+vy2)/2;
33
34 % Spacial coordinates in image.
35 [mz,nz] = size(z);
36 [x,y] = domain2d([0:mz-1]*delta+vx+1,[0:nz-1]*delta+vy+1);
37
38 % Stencils
39 hx = [-1 0 1]/2/delta; % X-derivative
40 hy = [1;0;-1]/2/delta; % Y-derivative
41 hxx = [1 -2 1; 2 -4 2; 1 -2 1]/4/delta/delta;
42 %hxy = [-1 0 1;0 0 0;1 0 -1]/4/delta/delta;
43 hxy = [-1 1;1 -1]/delta/delta;
44 hyy = [1 2 1;-2 -4 -2;1 2 1]/4/delta/delta;
45 del2 = [1 4 1;4 -20 4;1 4 1]/6/delta/delta;
46
47 % Compute p,q using numerical derivatives of z.
48 z = hbasis(z,n);
49 zx = cfilter2d(z,hx);
50 zy = cfilter2d(z,hy);
51 p = f*zx./(x.*zx+z);
52 q = f*zy./(y.*zy+z);
53
54 % Compute reflectance map values.
55 R1 = rmap(p,q,ps1,qs1);
56 R2 = rmap(p,q,ps2,qs2);
57 Rp1 = rmapp(p,q,ps1,qs1);
58 Rp2 = rmapp(p,q,ps2,qs2);
59 Rq1 = rmapq(p,q,ps1,qs1);
60 Rq2 = rmapq(p,q,ps2,qs2);
61
62 % Compute numerical derivatives of z.
63 zxx = cfilter2d(z,hxx);
64 zxy = cfilter2d(z,hxy);
65 zyy = cfilter2d(z,hyy);
66
67 % Compute disparity.
68 d = (f*b/2)./z;
69 x1 = (x+d-vx1-1)/delta+1;
70 x2 = (x-d-vx2-1)/delta+1;
71
72 % Compute 1st difference in the x direction of image arrays.
73 % Based on the stencil: -1 1
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74 [m1,n1] = size(E1); [m2,n2] = size(E2);
75 stencil = [-1 1]/delta;
76 Ex1 = filter2d(E1,stencil,'resize');
77 Ex2 = filter2d(E2,stencil,'resize');
78
79 % Determine stereo mapped image derivatives.
80 Fx1 = interpx(Ex1,floor(x1)); zz = zeros(m1,n1);
81 out = isnan(Fx1); if any(out(:)), Fx1(out) = zz(out); end
82 Fx2 = interpx(Ex2,floor(x2)); zz = zeros(m2,n2);
83 out = isnan(Fx2); if any(out(:)), Fx2(out) = zz(out); end
84
85 % Determine stereo mapped images F1,F2. Set error to zero where F is NaN
86 F1 = interpx(E1,x1);
87 out = isnan(F1); if any(out(:)), F1(out) = R1(out); end
88 F2 = interpx(E2,x2);
89 out = isnan(F2); if any(out(:)), F2(out) = R2(out); end
90
91 % Compute Gradient
92 G = zeros(mz,nz);
93 ERp1 = (F1-R1).*Rp1; ERq1 = (F1-R1).*Rq1;
94 ERp2 = (F2-R2).*Rp2; ERq2 = (F2-R2).*Rq2;
95 denx = (x.*zx+z).^2;
96 deny = (y.*zy+z).^2;
97 G = -(f*b/2)*((F1-R1).*Fx1 - (F2-R2).*Fx2)./(z.^2) + ...
98 f*((ERp1+ERp2).*zx./denx + (ERq1+ERq2).*zy./deny);
99 G(:) = G - cfilter2d((ERp1+ERp2).*z./denx,-f*hx,'grad');

100 G(:) = G - cfilter2d((ERq1+ERq2).*z./deny,-f*hy,'grad');
101 G(:) = G + cfilter2d(zxx,lambda*hxx,'grad') + ...
102 cfilter2d(zxy,2*lambda*hxy,'grad') + ...
103 cfilter2d(zyy,lambda*hyy,'grad');
104 G = hbasis(G*(1/area),n,'trans');

B.1.5 hbdfss cost4.m
1 function [J,FR1,FR2]=hbdfss_cost4(v,levels,params,E1,E2,lambda,mu)
2 %HBDFSS_COST4 Cost function for depth from shading and stereo
3 % problem using hierarchical basis functions. Uses true
4 % perspective projection and dual z maps.
5 %
6 % J=HBDFSS_COST4(V,LEVELS,PARAMS,E1,E2,LAMBDA,MU) where
7 % V = [z1(:);z2(:)] are the optimization variables, LEVELS is the
8 % number of h-basis levels. E1 and E2 are the input images, LAMBDA
9 % is the scalar weighting factor on departure from smoothness and MU

10 % is the scalar weighting factor on stereo matching. The image
11 % parameters are PARAMS = [f,b,z0,ps1,qs1,ps2,ps2].
12 %
13 % J = [Jtot,Jimage,Jsmooth,Jstereo]
14
15 % Clay M. Thompson 7-18-91
16 % Revised to support multi-grid scheme
17
18 % Camera constants
19 f = params(1);
20 b = params(2);
21 z0 = params(3);
22 delta = params(12);
23 area = prod(size(E1))*delta*delta;
24
25 % Light Source positions
26 ps1 = params(4); qs1 = params(5);
27 ps2 = params(6); qs2 = params(7);
28
29 % Camera coordinate calibration
30 vx1 = params(8); vy1 = params(9);
31 vx2 = params(10); vy2 = params(11);
32
33 % Extract z1 & z2 and transform into nodal basis.
34 [mz1,nz1] = size(E1); mz1 = mz1+2; nz1 = nz1+2;
35 [mz2,nz2] = size(E2); mz2 = mz2+2; nz2 = nz2+2;
36 z1 = zeros(mz1,nz1); z1(:) = v(1:mz1*nz1);
37 z2 = zeros(mz2,nz2); z2(:) = v(mz1*nz1+[1:mz2*nz2]);
38 z1(:) = hbasis(z1,levels);
39 z2(:) = hbasis(z2,levels);
40
41 % Spacial coordinates in image.
42 [x1,y1] = domain2d([0:mz1-1]*delta+vx1+1,[0:nz1-1]*delta+vy1+1);
43 [x2,y2] = domain2d([0:mz1-1]*delta+vx2+1,[0:nz1-1]*delta+vy2+1);
44
45 % Stencils
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46 hx = [-1 0 1]/2/delta; % X-derivative
47 hy = [1;0;-1]/2/delta; % Y-derivative
48 del2 = [1 4 1;4 -20 4;1 4 1]/6/delta/delta;
49
50 % Compute p,q using numerical derivatives of z.
51 zx1 = filter2d(z1,hx,'resize'); zy1 = filter2d(z1,hy,'resize');
52 zx2 = filter2d(z2,hx,'resize'); zy2 = filter2d(z2,hy,'resize');
53 rows = 2:mz1-1; cols = 2:nz1-1;
54 p1 = f*zx1(rows,:)./(x1(rows,cols).*zx1(rows,:)+z1(rows,cols));
55 q1 = f*zy1(:,cols)./(y1(rows,cols).*zy1(:,cols)+z1(rows,cols));
56 rows = 2:mz2-1; cols = 2:nz2-1;
57 p2 = f*zx2(rows,:)./(x2(rows,cols).*zx2(rows,:)+z2(rows,cols));
58 q2 = f*zy2(:,cols)./(y2(rows,cols).*zy2(:,cols)+z2(rows,cols));
59
60 % Compute reflectance map values.
61 R1 = rmap(p1,q1,ps1,qs1);
62 R2 = rmap(p2,q2,ps2,qs2);
63
64 % Compute interpolated images. Set error to zero where zbar is NaN.
65 zbar1 = icubic(x1(1,:)',z1',(x2+(f*b)./z2)')';
66 out = isnan(zbar1); if any(out(:)), zbar1(out) = z2(out); end
67 zbar2 = icubic(x2(1,:)',z2',(x1-(f*b)./z1)')';
68 out = isnan(zbar2); if any(out(:)), zbar2(out) = z1(out); end
69
70 term1 = (0.5/area)*sum(sum((E1-R1).^2 + (E2-R2).^2)); % sfs
71 term2 = (0.5/area)*lambda*sum(sum( ...
72 filter2d(z1,del2,'resize').^2 + filter2d(z2,del2,'resize').^2 )); % Smooth
73 term3 = (0.5/area)*mu*sum(sum((z1-zbar2).^2 + (zbar1-z2).^2)); % Stereo
74 %disp(sprintf('Terms: %12.5f %12.5f %12.5f',term1,term2,term3));
75 J = [term1+term2+term3,term1,term2,term3];
76
77 if nargout>1,
78 FR1 = [E1;R1;abs(E1-R1)];
79 FR2 = [E2;R2;abs(E2-R2)];
80 end

B.1.6 hbdfss grad4.m

1 function G=hbdfss_grad4(v,levels,params,E1,E2,lambda,mu)
2 %HBDFSS_GRAD4 Gradient function for depth from shading and stereo
3 % problem using hierarchical basis representation. Uses true
4 % perspective projection and dual z maps.
5 %
6 % G=HBDFSS_GRAD4(V,LEVELS,PARAMS,E1,E2,LAMBDA,MU) where
7 % V = [z1(:);z2(:)] are the optimization variables, LEVELS is the
8 % number of h-basis levels. E1 and E2 are the input images, LAMBDA
9 % is the scalar weighting factor on departure from smoothness and MU

10 % is the scalar weighting factor on stereo matching. The image
11 % parameters are PARAMS = [f,b,z0,ps1,qs1,ps2,ps2].
12
13 % Clay M. Thompson 7-18-91
14
15 % Camera constants
16 f = params(1);
17 b = params(2);
18 z0 = params(3);
19 delta = params(12);
20 area = prod(size(E1))*delta*delta;
21
22 % Light Source positions
23 ps1 = params(4); qs1 = params(5);
24 ps2 = params(6); qs2 = params(7);
25
26 % Camera coordinate calibration
27 vx1 = params(8); vy1 = params(9);
28 vx2 = params(10); vy2 = params(11);
29
30 % Extract z1 & z2 and transform into nodal basis.
31 [mz1,nz1] = size(E1); mz1 = mz1+2; nz1 = nz1+2;
32 [mz2,nz2] = size(E2); mz2 = mz2+2; nz2 = nz2+2;
33 z1 = zeros(mz1,nz1); z1(:) = v(1:mz1*nz1);
34 z2 = zeros(mz2,nz2); z2(:) = v(mz1*nz1+[1:mz2*nz2]);
35 z1(:) = hbasis(z1,levels);
36 z2(:) = hbasis(z2,levels);
37
38 % Spacial coordinates in image.
39 [x1,y1] = domain2d([0:mz1-1]*delta+vx1+1,[0:nz1-1]*delta+vy1+1);
40 [x2,y2] = domain2d([0:mz1-1]*delta+vx2+1,[0:nz1-1]*delta+vy2+1);
41
42 % Stencils
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43 hx = [-1 0 1]/2/delta; % X-derivative
44 hy = [1;0;-1]/2/delta; % Y-derivative
45 del2 = [1 4 1;4 -20 4;1 4 1]/6/delta/delta; % Laplacian
46
47 % Compute p,q using numerical derivatives of z.
48 zx1 = filter2d(z1,hx,'resize'); zy1 = filter2d(z1,hy,'resize');
49 zx2 = filter2d(z2,hx,'resize'); zy2 = filter2d(z2,hy,'resize');
50 rows = 2:mz1-1; cols = 2:nz1-1;
51 p1 = f*zx1(rows,:)./(x1(rows,cols).*zx1(rows,:)+z1(rows,cols));
52 q1 = f*zy1(:,cols)./(y1(rows,cols).*zy1(:,cols)+z1(rows,cols));
53 rows = 2:mz2-1; cols = 2:nz2-1;
54 p2 = f*zx2(rows,:)./(x2(rows,cols).*zx2(rows,:)+z2(rows,cols));
55 q2 = f*zy2(:,cols)./(y2(rows,cols).*zy2(:,cols)+z2(rows,cols));
56
57 % Compute reflectance map values.
58 R1 = rmap(p1,q1,ps1,qs1);
59 Rp1 = rmapp(p1,q1,ps1,qs1); Rq1 = rmapq(p1,q1,ps1,qs1);
60 R2 = rmap(p2,q2,ps2,qs2);
61 Rp2 = rmapp(p2,q2,ps2,qs2); Rq2 = rmapq(p2,q2,ps2,qs2);
62
63 % Compute interpolated images and related terms. Set gradient to zero where zbar is NaN.
64 d = (f*b)./z1;
65 zbar2 = icubic(x2(1,:)',z2',(x1-d)')';
66 out = find(isnan(zbar2));
67 zbarx2 = dcubicx(x2(1,:)',z2',(x1-d)')'/delta;
68 if length(out)>0, zbar2(out) = z1(out); zbarx2(out) = 0*z1(out); end
69 zbarz2 = dcubicz(x2(1,:)',z2',(x1-d)',(z1-zbar2)')';
70
71 d = (f*b)./z2;
72 zbar1 = icubic(x1(1,:)',z1',(x2+d)')';
73 out = find(isnan(zbar1));
74 zbarx1 = dcubicx(x1(1,:)',z1',(x2+d)')'/delta;
75 if length(out)>0, zbar1(out) = z2(out); zbarx1(out) = 0*z2(out); end
76 zbarz1 = dcubicz(x1(1,:)',z1',(x2+d)',(zbar1-z2)')';
77
78 % Compute error terms
79
80 % Now form gradient
81 rows = 2:mz1-1; cols = 2:nz1-1;
82 ERp = (E1-R1).*Rp1; ERq = (E1-R1).*Rq1;
83 denx = (x1(rows,cols).*zx1(rows,:)+z1(rows,cols)).^2;
84 deny = (y1(rows,cols).*zy1(:,cols)+z1(rows,cols)).^2;
85 dJdz1 = zeros(mz1,nz1);
86 dJdz1(rows,:) = -filter2d(ERp.*z1(rows,cols)./denx,-f*hx);
87 dJdz1(:,cols) = dJdz1(:,cols) - ...
88 filter2d(ERq.*z1(rows,cols)./deny,-f*hy);
89 dJdz1(rows,cols) = dJdz1(rows,cols) + ...
90 f*(ERp.*zx1(rows,:)./denx + ERq.*zy1(:,cols)./deny);
91 dJdz1(:) = dJdz1 + ...
92 lambda*filter2d(filter2d(z1,del2,'resize'),del2) + ...
93 mu*(z1-zbar2).*(1-(f*b)*zbarx2./(z1.^2)) + ...
94 mu*zbarz1;
95
96 rows = 2:mz2-1; cols = 2:nz2-1;
97 ERp = (E2-R2).*Rp2; ERq = (E2-R2).*Rq2;
98 denx = (x2(rows,cols).*zx2(rows,:)+z2(rows,cols)).^2;
99 deny = (y2(rows,cols).*zy2(:,cols)+z2(rows,cols)).^2;

100 dJdz2 = zeros(mz2,nz2);
101 dJdz2(rows,:) = -filter2d(ERp.*z2(rows,cols)./denx,-f*hx);
102 dJdz2(:,cols) = dJdz2(:,cols) - ...
103 filter2d(ERq.*z2(rows,cols)./deny,-f*hy);
104 dJdz2(rows,cols) = dJdz2(rows,cols) + ...
105 f*(ERp.*zx2(rows,:)./denx + ERq.*zy2(:,cols)./deny);
106 dJdz2(:) = dJdz2 + ...
107 lambda*filter2d(filter2d(z2,del2,'resize'),del2) - ...
108 mu*zbarz2 - ...
109 mu*(zbar1-z2).*((f*b)*zbarx1./(z2.^2)+1);
110
111 % Return gradient in h-basis coordinates
112 dJdz1 = hbasis(dJdz1*(1/area),levels,'trans');
113 dJdz2 = hbasis(dJdz2*(1/area),levels,'trans');
114 G = [dJdz1(:);dJdz2(:)];
115

B.1.7 hbdfss cost7.m
1 function [J,FR1,FR2]=hbdfss_cost(u,n,params,E1,E2,lambda)
2 %HBDFSS_COST7 Cost function for depth from shading and stereo
3 % problem with heirarchical basis functions. Uses true
4 % perspective projection.
5 %
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6 % J=HBDFSS_COST7(U,N,PARAMS,E1,E2,LAMBDA) where U is the disparity,
7 % and N is the number of H-basis levels.. E1 and E2 are the input
8 % images, LAMBDA is the scalar weighting factor on departure from
9 % smoothness. The image parameters PARAMS = [f,b,z0,ps1,qs1,ps2,ps2].

10 %
11 % J= [Jtot,Jimage,Jsmooth].
12
13 % Clay M. Thompson 5-23-92
14 % Uses u = fb/2z - fb/2z_0 to enhance the numerical stability of the algorithm.
15 % Revised to support multi-grid scheme
16
17 % Camera constants
18 f = params(1);
19 b = params(2);
20 z0 = params(3);
21 u0 = f*b/2/z0;
22 delta = params(12);
23 area = prod(size(u))*delta*delta;
24
25 % Light Source positions
26 ps1 = params(4); qs1 = params(5);
27 ps2 = params(6); qs2 = params(7);
28
29 % Camera coordinate calibration
30 vx1 = params(8); vy1 = params(9);
31 vx2 = params(10); vy2 = params(11);
32 vx = (vx1+vx2)/2; vy = (vy1+vy2)/2;
33
34 % Spacial coordinates in image.
35 [mz,nz] = size(u);
36 [x,y] = domain2d([0:mz-1]*delta+vx+1,[0:nz-1]*delta+vy+1);
37
38 % Stencils
39 hx = [-1 0 1]/(2*delta); % X-derivative
40 hy = [1;0;-1]/(2*delta); % Y-derivative
41 hxx = [1 -2 1; 2 -4 2; 1 -2 1]/(4*delta*delta);
42 %hxy = [-1 0 1;0 0 0;1 0 -1]/(4*delta*delta);
43 hxy = [-1 1;1 -1]/(delta*delta);
44 hyy = [1 2 1;-2 -4 -2;1 2 1]/(4*delta*delta);
45 del2 = [1 4 1;4 -20 4;1 4 1]/(6*delta*delta);
46
47 % Compute p,q using numerical derivatives of u.
48 u = hbasis(u,n);
49 ux = cfilter2d(u,hx);
50 uy = cfilter2d(u,hy);
51 p = f*ux./(x.*ux-u-u0);
52 q = f*uy./(y.*uy-u-u0);
53
54 % Compute reflectance map values.
55 R1 = rmap(p,q,ps1,qs1);
56 R2 = rmap(p,q,ps2,qs2);
57
58 % Compute numerical derivatives of u.
59 uxx = cfilter2d(u,hxx);
60 uxy = cfilter2d(u,hxy);
61 uyy = cfilter2d(u,hyy);
62
63 % Determine stereo mapped images F1,F2. Set error to zero where F is NaN
64 F1 = interpx(E1,(x+u+u0-vx1-1)/delta+1);
65 out = isnan(F1); if any(out(:)), F1(out) = R1(out); end,
66 F2 = interpx(E2,(x-u-u0-vx2-1)/delta+1);
67 out = isnan(F2); if any(out(:)), F2(out) = R2(out); end,
68
69 %image([F1,F2;R1,R2;abs(F1-R1),abs(F2-R2)],[0 1])
70
71 term1 = (0.5/area)*sum(sum((F1-R1).^2 + (F2-R2).^2));
72 term2 = (0.5/area)*lambda*(sum(sum(uxx.^2)) + 2*sum(sum(uxy.^2)) + sum(sum(uyy.^2)));
73 %term2 = (0.5/area)*lambda*sum(sum(delsqz.^2));
74 %disp(sprintf('Terms: %12.5f %12.5f',term1,term2));
75 J = [term1+term2,term1,term2];
76
77 if nargout>1,
78 FR1 = [E1;F1;R1;abs(F1-R1)];
79 FR2 = [E2;F2;R2;abs(F2-R2)];
80 end

B.1.8 hbdfss grad7.m

1 function G=hbdfss_grad(u,n,params,E1,E2,lambda)



B.1. COST FUNCTION AND GRADIENT ROUTINES 141

2 %HBDFSS_GRAD7 Gradient function for depth from shading and stereo
3 % problem with heirarchical basis functions. Uses true perspective
4 % projection.
5 %
6 % G=HBDFSS_GRAD7(U,N,PARAMS,E1,E2,LAMBDA) where U is the disparity
7 % map, and N is the number of H-basis levels. E1 and E2 are the input
8 % images, LAMBDA is the scalar weighting factor on departure from
9 % smoothness. The image parameters PARAMS = [f,b,z0,ps1,qs1,ps2,ps2];

10
11 % Clay M. Thompson 5-23-92
12 % Uses u = fb/2z - fb/2z_0 to enhance the numerical stability of the algorithm.
13 % Revised to support multi-grid algorithm
14
15 % Camera constants
16 f = params(1);
17 b = params(2);
18 z0 = params(3);
19 u0 = f*b/2/z0;
20 delta = params(12);
21 area = prod(size(u))*delta*delta;
22
23 % Light Source positions
24 ps1 = params(4); qs1 = params(5);
25 ps2 = params(6); qs2 = params(7);
26
27 % Camera coordinate calibration
28 vx1 = params(8); vy1 = params(9);
29 vx2 = params(10); vy2 = params(11);
30 vx = (vx1+vx2)/2; vy = (vy1+vy2)/2;
31
32 % Spacial coordinates in image.
33 [mz,nz] = size(u);
34 [x,y] = domain2d([0:mz-1]*delta+vx+1,[0:nz-1]*delta+vy+1);
35
36 % Stencils
37 hx = [-1 0 1]/2/delta; % X-derivative
38 hy = [1;0;-1]/2/delta; % Y-derivative
39 hxx = [1 -2 1; 2 -4 2; 1 -2 1]/4/delta/delta;
40 %hxy = [-1 0 1;0 0 0;1 0 -1]/4/delta/delta;
41 hxy = [-1 1;1 -1]/delta/delta;
42 hyy = [1 2 1;-2 -4 -2;1 2 1]/4/delta/delta;
43 del2 = [1 4 1;4 -20 4;1 4 1]/6/delta/delta;
44
45 % Compute p,q using numerical derivatives of z.
46 u = hbasis(u,n);
47 uu = u + u0;
48 ux = cfilter2d(u,hx);
49 uy = cfilter2d(u,hy);
50 denx = (x.*ux-uu);
51 deny = (y.*uy-uu);
52 p = f*ux./denx;
53 q = f*uy./deny;
54
55 % Squared denominators for gradient terms below
56 denx(:) = denx.*denx;
57 deny(:) = deny.*deny;
58
59 % Compute reflectance map values.
60 R1 = rmap(p,q,ps1,qs1);
61 R2 = rmap(p,q,ps2,qs2);
62 Rp1 = rmapp(p,q,ps1,qs1);
63 Rp2 = rmapp(p,q,ps2,qs2);
64 Rq1 = rmapq(p,q,ps1,qs1);
65 Rq2 = rmapq(p,q,ps2,qs2);
66
67 % Compute numerical derivatives of z.
68 uxx = cfilter2d(u,hxx);
69 uxy = cfilter2d(u,hxy);
70 uyy = cfilter2d(u,hyy);
71
72 % Compute image projections.
73 x1 = (x+uu-vx1-1)/delta+1;
74 x2 = (x-uu-vx2-1)/delta+1;
75
76 % Compute 1st difference in the x direction of image arrays.
77 % Based on the stencil: -1 1
78 [m1,n1] = size(E1); [m2,n2] = size(E2);
79 stencil = [-1 1]/delta;
80 Ex1 = filter2d(E1,stencil,'resize');
81 Ex2 = filter2d(E2,stencil,'resize');
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82
83 % Determine stereo mapped image derivatives.
84 Fx1 = interpx(Ex1,floor(x1)); zz = zeros(m1,n1);
85 out = isnan(Fx1); if any(out(:)), Fx1(out) = zz(out); end
86 Fx2 = interpx(Ex2,floor(x2)); zz = zeros(m2,n2);
87 out = isnan(Fx2); if any(out(:)), Fx2(out) = zz(out); end
88
89 % Determine stereo mapped images F1,F2. Set error to zero where F is NaN
90 F1 = interpx(E1,x1);
91 out = isnan(F1); if any(out(:)), F1(out) = R1(out); end
92 F2 = interpx(E2,x2);
93 out = isnan(F2); if any(out(:)), F2(out) = R2(out); end
94
95 % Compute Gradient
96 G = zeros(mz,nz);
97 ERp1 = (F1-R1).*Rp1; ERq1 = (F1-R1).*Rq1;
98 ERp2 = (F2-R2).*Rp2; ERq2 = (F2-R2).*Rq2;
99 G = ((F1-R1).*Fx1 - (F2-R2).*Fx2) ...

100 - f*((ERp1+ERp2).*ux./denx + (ERq1+ERq2).*uy./deny);
101 G(:) = G + cfilter2d((ERp1+ERp2).*uu./denx,-f*hx,'grad');
102 G(:) = G + cfilter2d((ERq1+ERq2).*uu./deny,-f*hy,'grad');
103 G(:) = G + cfilter2d(uxx,lambda*hxx,'grad') + ...
104 cfilter2d(uxy,2*lambda*hxy,'grad') + ...
105 cfilter2d(uyy,lambda*hyy,'grad');
106
107 G = hbasis(G*(1/area),n,'trans');

B.1.9 hbdfss cost8b.m
1 function [J,FR1,FR2]=hbdfss_cost(v,n,params,E1,E2,lambda,mu)
2 %HBDFSS_COST8B Cost function for depth from shading and stereo
3 % problem with heirarchical basis functions. Uses true
4 % perspective projection and varying albedo
5 %
6 % J=HBDFSS_COST8B(V,N,PARAMS,E1,E2,LAMBDA,MU) where V=[Z,RHO] are
7 % the optimization variables (height and albedo), N is the number of
8 % H-basis levels.. E1 and E2 are the input images, LAMBDA and MU are
9 % scalar weighting factors on departure from smoothness for height

10 % and albedo, respectively. The image parameters PARAMS =
11 % [f,b,z0,ps1,qs1,ps2,ps2].
12 %
13 % J= [Jtot,Jimage,Jsmooth,Jalbedo].
14
15 % Clay M. Thompson 6-28-92
16
17 % Camera constants
18 f = params(1);
19 b = params(2);
20 z0 = params(3);
21 gamma = f*b/2/z0;
22 delta = params(12);
23 area = prod(size(E1))*delta*delta;
24
25 % Light Source positions
26 ps1 = params(4); qs1 = params(5);
27 ps2 = params(6); qs2 = params(7);
28
29 % Camera coordinate calibration
30 vx1 = params(8); vy1 = params(9);
31 vx2 = params(10); vy2 = params(11);
32 vx = (vx1+vx2)/2; vy = (vy1+vy2)/2;
33
34 % Spacial coordinates in image.
35 [mz,nz] = size(E1);
36 z = v(:,1:nz); rho = v(:,nz+[1:nz]);
37 [x,y] = domain2d([0:mz-1]*delta+vx+1,[0:nz-1]*delta+vy+1);
38
39 % Stencils
40 hx = [-1 0 1]/(2*delta); % X-derivative
41 hy = [1;0;-1]/(2*delta); % Y-derivative
42 hxx = [1 -2 1; 2 -4 2; 1 -2 1]/(4*delta*delta);
43 %hxy = [-1 0 1;0 0 0;1 0 -1]/(4*delta*delta);
44 hxy = [-1 1;1 -1]/(delta*delta);
45 hyy = [1 2 1;-2 -4 -2;1 2 1]/(4*delta*delta);
46 del2 = [1 4 1;4 -20 4;1 4 1]/(6*delta*delta);
47 hr = [0 0 0;0 1 0;0 0 0] - ones(3,3)/9;
48
49 % Compute p,q using numerical derivatives of z.
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50 z = hbasis(z,n); rho = hbasis(rho,n);
51 zx = cfilter2d(z,hx);
52 zy = cfilter2d(z,hy);
53 p = f*zx./(x.*zx+z);
54 q = f*zy./(y.*zy+z);
55
56 % Compute reflectance map values.
57 R1 = rho.*rmap(p,q,ps1,qs1);
58 R2 = rho.*rmap(p,q,ps2,qs2);
59
60 % Compute numerical derivatives of z.
61 zxx = cfilter2d(z,hxx);
62 zxy = cfilter2d(z,hxy);
63 zyy = cfilter2d(z,hyy);
64
65 % Compute disparity.
66 d = (f*b/2)./z;
67
68 % Determine stereo mapped images F1,F2. Set error to zero where F is NaN
69 F1 = interpx(E1,(x+d-vx1-1)/delta+1);
70 out = isnan(F1); if any(out(:)), F1(out) = R1(out); end,
71 F2 = interpx(E2,(x-d-vx2-1)/delta+1);
72 out = isnan(F2); if any(out(:)), F2(out) = R2(out); end,
73
74 %image([F1,F2;R1,R2],[0 1],5)
75
76 term1 = (0.5/area)*sum(sum((F1-R1).^2 + (F2-R2).^2));
77 term2 = (0.5/area)*lambda*(sum(sum(zxx.^2)) + 2*sum(sum(zxy.^2)) + sum(sum(zyy.^2)));
78 term3 = (0.5/area)*mu*sum(sum(cfilter2d(rho,hr).^2));
79 %term2 = (0.5/area)*lambda*sum(sum(delsqz.^2));
80 %disp(sprintf('Terms: %12.5f %12.5f %12.5f',term1,term2,term3));
81 J = [term1+term2+term3,term1,term2,term3];
82
83 if nargout>1,
84 FR1 = [E1;F1;R1;abs(F2-R2)];
85 FR2 = [E2;F2;R2;abs(F2-R2)];
86 end

B.1.10 hbdfss grad8b.m

1 function G=hbdfss_grad(v,n,params,E1,E2,lambda,mu)
2 %HBDFSS_GRAD8B Gradient function for depth from shading and stereo
3 % problem with heirarchical basis functions. Uses true perspective
4 % projection and varying albedo.
5 %
6 % G=HBDFSS_GRAD8B(V,N,PARAMS,E1,E2,LAMBDA,MU) where V=[Z,RHO] are
7 % the optimization variables (height and albedo), N is the number of
8 % H-basis levels.. E1 and E2 are the input images, LAMBDA and MU are
9 % scalar weighting factors on departure from smoothness for height

10 % and albedo, respectively. The image parameters PARAMS =
11 % [f,b,z0,ps1,qs1,ps2,ps2].
12
13 % Clay M. Thompson 6-28-92
14
15 % Camera constants
16 f = params(1);
17 b = params(2);
18 z0 = params(3);
19 gamma = f*b/2/z0;
20 delta = params(12);
21 area = prod(size(E1))*delta*delta;
22
23 % Light Source positions
24 ps1 = params(4); qs1 = params(5);
25 ps2 = params(6); qs2 = params(7);
26
27 % Camera coordinate calibration
28 vx1 = params(8); vy1 = params(9);
29 vx2 = params(10); vy2 = params(11);
30 vx = (vx1+vx2)/2; vy = (vy1+vy2)/2;
31
32 % Spacial coordinates in image.
33 [mz,nz] = size(E1);
34 z = v(:,1:nz); rho = v(:,nz+[1:nz]);
35 [x,y] = domain2d([0:mz-1]*delta+vx+1,[0:nz-1]*delta+vy+1);
36
37 % Stencils
38 hx = [-1 0 1]/2/delta; % X-derivative
39 hy = [1;0;-1]/2/delta; % Y-derivative
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40 hxx = [1 -2 1; 2 -4 2; 1 -2 1]/4/delta/delta;
41 %hxy = [-1 0 1;0 0 0;1 0 -1]/4/delta/delta;
42 hxy = [-1 1;1 -1]/delta/delta;
43 hyy = [1 2 1;-2 -4 -2;1 2 1]/4/delta/delta;
44 del2 = [1 4 1;4 -20 4;1 4 1]/6/delta/delta;
45 hr = [0 0 0;0 1 0;0 0 0] - ones(3,3)/9;
46
47 % Compute p,q using numerical derivatives of z.
48 z = hbasis(z,n); rho = hbasis(rho,n);
49 zx = cfilter2d(z,hx);
50 zy = cfilter2d(z,hy);
51 p = f*zx./(x.*zx+z);
52 q = f*zy./(y.*zy+z);
53
54 % Compute reflectance map values.
55 RR1 = rmap(p,q,ps1,qs1); R1 = rho.*RR1;
56 RR2 = rmap(p,q,ps2,qs2); R2 = rho.*RR2;
57 Rp1 = rho.*rmapp(p,q,ps1,qs1);
58 Rp2 = rho.*rmapp(p,q,ps2,qs2);
59 Rq1 = rho.*rmapq(p,q,ps1,qs1);
60 Rq2 = rho.*rmapq(p,q,ps2,qs2);
61
62 % Compute numerical derivatives of z.
63 zxx = cfilter2d(z,hxx);
64 zxy = cfilter2d(z,hxy);
65 zyy = cfilter2d(z,hyy);
66
67 % Compute disparity.
68 d = (f*b/2)./z;
69 x1 = (x+d-vx1-1)/delta+1;
70 x2 = (x-d-vx2-1)/delta+1;
71
72 % Compute 1st difference in the x direction of image arrays.
73 % Based on the stencil: -1 1
74 [m1,n1] = size(E1); [m2,n2] = size(E2);
75 stencil = [-1 1]/delta;
76 Ex1 = filter2d(E1,stencil,'resize');
77 Ex2 = filter2d(E2,stencil,'resize');
78
79 % Determine stereo mapped image derivatives.
80 Fx1 = interpx(Ex1,floor(x1)); zz = zeros(m1,n1);
81 out = isnan(Fx1); if any(out(:)), Fx1(out) = zz(out); end
82 Fx2 = interpx(Ex2,floor(x2)); zz = zeros(m2,n2);
83 out = isnan(Fx2); if any(out(:)), Fx2(out) = zz(out); end
84
85 % Determine stereo mapped images F1,F2. Set error to zero where F is NaN
86 F1 = interpx(E1,x1);
87 out = isnan(F1); if any(out(:)), F1(out) = R1(out); end
88 F2 = interpx(E2,x2);
89 out = isnan(F2); if any(out(:)), F2(out) = R2(out); end
90
91 % Compute Gradient
92 FR1 = (F1-R1); FR2 = (F2-R2);
93 ERp1 = FR1.*Rp1; ERq1 = FR1.*Rq1;
94 ERp2 = FR2.*Rp2; ERq2 = FR2.*Rq2;
95 denx = (x.*zx+z).^2;
96 deny = (y.*zy+z).^2;
97 Gz = -(f*b/2)*(FR1.*Fx1 - FR2.*Fx2)./(z.^2) + ...
98 f*((ERp1+ERp2).*zx./denx + (ERq1+ERq2).*zy./deny);
99 Gz(:) = Gz - cfilter2d((ERp1+ERp2).*z./denx,-f*hx,'grad');

100 Gz(:) = Gz - cfilter2d((ERq1+ERq2).*z./deny,-f*hy,'grad');
101 Gz(:) = Gz + cfilter2d(zxx,lambda*hxx,'grad') + ...
102 cfilter2d(zxy,2*lambda*hxy,'grad') + ...
103 cfilter2d(zyy,lambda*hyy,'grad');
104
105 Grho = cfilter2d(cfilter2d(rho,hr),mu*hr,'grad') - FR1.*RR1 - FR2.*RR2;
106
107 Gz = hbasis(Gz*(1/area),n,'trans');
108 Grho = hbasis(Grho*(1/area),n,'trans');
109 G = [Gz,Grho];
110

B.1.11 hbsfs cost.m
1 function [J,FR]=hbsfs_cost(z,levels,params,E,lambda)
2 %HBSFS Cost function for shape from shading using hierarchical
3 % basis functions. Based on orthographic projection.
4 %
5 % J=HBSFS_COST(Z,LEVELS,PARAMS,E,LAMBDA) where Z is the depth map,
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6 % LEVELS is the number of h-basis levels. E is the input image, and
7 % LAMBDA is the scalar weighting factor on departure from
8 % smoothness. The image parameters are PARAMS = [f,b,z0,ps,qs].
9

10 % Clay M. Thompson 12-16-91
11
12 % Camera constants
13 f = params(1);
14 b = params(2);
15 z0 = params(3);
16 delta = params(12);
17 area = prod(size(z))*delta*delta;
18
19 % Light Source positions
20 ps = params(4); qs = params(5);
21
22 % Extract z1 & z2 and transform into nodal basis.
23 [mz,nz] = size(E); mz = mz+2; nz = nz+2;
24 z = hbasis(z,levels);
25
26 % Stencils
27 hx = (f/z0)*[-1 0 1]/2/delta; % X-derivative
28 hy = (f/z0)*[1;0;-1]/2/delta; % Y-derivative
29 del2 = [1 4 1;4 -20 4;1 4 1]/6/delta/delta; % Laplacian
30
31 % Compute p,q using numerical derivatives of z.
32 rows = 2:mz-1; cols = 2:nz-1;
33 p = filter2d(z,hx,'resize'); p = p(rows,:);
34 q = filter2d(z,hy,'resize'); q = q(:,cols);
35
36 % Compute reflectance map values.
37 R = rmap(p,q,ps,qs);
38
39 term1 = (0.5/area)*sum(sum((E-R).^2)); % sfs
40 term2 = (0.5/area)*lambda*sum(sum( filter2d(z,del2,'resize').^2 )); % Smoothness
41 %disp(sprintf('Terms: %12.5f %12.5f',term1,term2));
42 J = [term1+term2,term1,term2];
43
44 if nargout>1,
45 FR = [E;R;abs(E-R)];
46 end

B.1.12 hbsfs grad.m

1 function G=hbsfs_grad(z,levels,params,E,lambda)
2 %HBDFSS_GRAD4 Gradient function for shape from shading using
3 % hierarchical basis representation. Based on orthographic
4 % projection.
5 %
6 % G=HBSFS_GRAD(Z,LEVELS,PARAMS,E,LAMBDA) where Z is the depth map,
7 % LEVELS is the number of h-basis levels. E is the input image, and
8 % LAMBDA is the scalar weighting factor on departure from
9 % smoothness. The image parameters are PARAMS = [f,b,z0,ps,qs].

10
11 % Clay M. Thompson 12-16-91
12 % Revised to support multi-grid scheme.
13
14 % Camera constants
15 f = params(1);
16 b = params(2);
17 z0 = params(3);
18 delta = params(12);
19 area = prod(size(z))*delta*delta;
20
21 % Light Source positions
22 ps = params(4); qs = params(5);
23
24 % Extract z1 & z2 and transform into nodal basis.
25 [mz,nz] = size(E); mz = mz+2; nz = nz+2;
26 z = hbasis(z,levels);
27
28 % Stencils
29 hx = (f/z0)*[-1 0 1]/2/delta; % X-derivative
30 hy = (f/z0)*[1;0;-1]/2/delta; % Y-derivative
31 del2 = [1 4 1;4 -20 4;1 4 1]/6/delta/delta; % Laplacian
32
33 % Compute p,q using numerical derivatives of z.
34 rows = 2:mz-1; cols = 2:nz-1;
35 p = filter2d(z,hx,'resize'); p = p(rows,:);
36 q = filter2d(z,hy,'resize'); q = q(:,cols);
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37 del2z = filter2d(z,del2,'resize');
38
39 % Compute reflectance map values.
40 R = rmap(p,q,ps,qs);
41 Rp = rmapp(p,q,ps,qs); Rq = rmapq(p,q,ps,qs);
42
43 % Compute error terms
44
45 % Now form gradient
46 G = zeros(mz,nz);
47 G(rows,:) = filter2d((E-R).*Rp,hx);
48 G(:,cols) = G(:,cols) + filter2d((E-R).*Rq,hy);
49 G(:) = G + lambda*filter2d(del2z,del2);
50
51 % Return gradient in h-basis coordinates
52 G = hbasis(G*(1/area),levels,'trans');

B.2 Support routines.

B.2.1 rmap.m

1 function R=rmap(p,q,ps,qs)
2 %RMAP Reflectance map calculation
3 % R=RMAP(P,Q) computes the reflectance map image of the surface with
4 % the gradients P and Q (in the x and y direction respectively).
5 % P and Q are matrices that contain the gradients over a rectangular
6 % grid.
7 %
8 % R=RMAP(P,Q,Ps,Qs) uses the light source direction (Ps,Qs).
9 %

10 % Currently implements: Lambertian reflectance
11
12 if nargin==2,
13 ps = .1; qs = .1; % Light source direction
14 end
15
16 [n,m] = size(p);
17 R = max( (1+ps*p+qs*q) ./ sqrt(1+p.*p+q.*q) ./ sqrt(1+ps*ps+qs*qs) ...
18 ,zeros(n,m) );
19

B.2.2 rmapp.m

1 function Rp=rmapp(p,q,ps,qs)
2 %RMAPP Reflectance map partial derivative calculation
3 % Rp=RMAPP(P,Q) computes the reflectance map X partial derivative of
4 % the surface with gradients P and Q (in the x and y direction
5 % respectively). P and Q are matrices that contain the gradients
6 % over a rectangular grid.
7 %
8 % Rp=RMAPP(P,Q,Ps,Qs) uses the light source direction (Ps,Qs).
9 %

10 % Currently implements: Lambertian reflectance
11
12 if nargin==2,
13 ps = .1; qs = .1; % Light source direction.
14 end
15
16 [n,m] = size(p);
17 d = ones(n,m) + p.*p + q.*q;
18 e = ones(n,m) + ps*p + qs*q;
19 Rp = (ps - e .* p ./ d ) ./ sqrt(d) ./ sqrt(1+ps*ps+qs*qs);
20
21 ndx = find(rmap(p,q,ps,qs)==0);
22 if length(ndx)>0, Rp(ndx) = zeros(length(ndx),1); end
23

B.2.3 rmapq.m

1 function Rq=rmapq(p,q,ps,qs)
2 %RMAPQ Reflectance map partial derivative calculation
3 % Rq=RMAPQ(P,Q) computes the reflectance map Y partial derivative of
4 % the surface with gradients P and Q (in the x and y direction
5 % respectively). P and Q are matrices that contain the gradients
6 % over a rectangular grid.
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7 %
8 % Rq=RMAPQ(P,Q,Ps,Qs) uses the light source direction (Ps,Qs).
9 %

10 % Currently implements: Lambertian reflectance
11
12 if nargin==2,
13 ps = .1; qs = .1; % Light source direction.
14 end
15
16 [n,m] = size(p);
17 d = ones(n,m) + p.*p + q.*q;
18 e = ones(n,m) + ps*p + qs*q;
19 Rq = (qs - e .* q ./ d) ./ sqrt(d) ./ sqrt(1+ps*ps+qs*qs);
20
21 ndx = find(rmap(p,q,ps,qs)==0);
22 if length(ndx)>0, Rq(ndx) = zeros(length(ndx),1); end
23

B.2.4 conjgrad.m

1 function [x,OPTIONS,J,history]=conjgrad(FUN,x,OPTIONS,GRAD,...
2 P1,P2,P3,P4,P5,P6,P7,P8,P9,P10)
3 %CONJGRAD Conjugate-gradient optimization.
4 %
5 % X = CONJGRAD('FUN',X0,OPTIONS,'GRAD') finds the minimum of the
6 % function 'FUN' with gradient 'GRAD' using a conjugate-gradient
7 % optimization algorithm. X0 is an initial condition. OPTIONS is a
8 % vector that contains optional information for the optimizer (see
9 % FOPTIONS). 'FUN' and 'GRAD' are strings that contain the names of

10 % the cost function and gradient M-files, respectively. 'FUN' should
11 % return a scalar function value, f=FUN(x). 'GRAD' should return the
12 % gradient vector (df/dx), g = GRAD(x).
13 %
14 % Up to ten parameters can be passed to 'FUN' and 'GRAD' using X =
15 % CONJGRAD('fun',X0,OPTIONS,'grad',P1,P2,...) so f=FUN(x,P1,P2,...)
16 % and g=GRAD(x,P1,P2,...).
17
18 % Note: FUNCTION value is returned in OPTIONS(8) and gradient value
19 % is returned in OPTIONS(15). OPTIONS(19)-History save rate.
20
21 % Clay M. Thompson 2-4-91
22
23 tol = 1.e-6; % Minimum allowed alpha
24
25 error(nargchk(4,14,nargin));
26
27 % Form call strings.
28 params = [];
29 for n=5:nargin
30 params = [params,',P',int2str(n-4)];
31 end
32 if ~any(FUN<48), fcall = [FUN,'(x',params,')']; else fcall = FUN; end
33 if ~any(GRAD<48), gcall = [GRAD,'(x',params,')']; else gcall = GRAD; end
34 if ~any(FUN<48),
35 LPARAM = [];
36 for n=5:nargin,
37 LPARAM = [LPARAM,',P',int2str(n-2)];
38 end
39 SEARCH = ['[eval(''x=P1+x*P2;''),',FUN,'(x',LPARAM,')]'];
40 else
41 SEARCH = ['[eval(''x=P1+x*P2;''),',FUN,']'];
42 end
43 linecall = ['lsearch(SEARCH,0,2*alpha,f,GRAD,x,pk',params,')'];
44
45 nvars = length(x(:));
46 [mx,nx] = size(x);
47
48 % Initialize parameters
49 beta = 0;
50 f = eval(fcall); % Function value
51 fold = f;
52 gk = eval(gcall); % Gradient
53 pk = zeros(mx,nx); % Search direction
54 gknorm = norm(gk(:));
55 OPTIONS = foptions(OPTIONS);
56 OPTIONS(10) = OPTIONS(10) + 1;
57 OPTIONS(11) = OPTIONS(11) + 1;
58 if OPTIONS(18)==0, alpha=.01; else, alpha = 2*OPTIONS(18); end % Initial guess
59
60 if size(gk)~=size(x), error('The size of the gradient and x don''t match.'); end
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61 if OPTIONS(1)>0,
62 disp('Fun. Evals --- Value --- Stepsize --- Gradient');
63 disp([sprintf('%5.0f %12.3g %12.3g ',OPTIONS(10),f(1),OPTIONS(18)), ...
64 sprintf('%12.3g ',gknorm)]);
65 end
66 if OPTIONS(19)>0 & nargout>3,
67 history = [OPTIONS(10),f,OPTIONS(10),gknorm];
68 end
69
70 while OPTIONS(10)<OPTIONS(14),
71 % Test for convergence.
72 if gknorm<OPTIONS(2),
73 OPTIONS(8) = f(1); OPTIONS(15) = gknorm;
74 disp('Gradient criteria met.'), break
75 end
76 if OPTIONS(7)==0,
77 pk = -gk + beta*pk; % Compute search direction.
78 else
79 pk = -gk;
80 end
81
82 % Do an inexact line search to determine, alpha.
83 GRAD = gk(:)'*pk(:);
84 if GRAD>0,
85 pk = -gk; GRAD = -gk(:)'*gk(:);
86 if OPTIONS(1)>0, disp('Redirect search.'), end,
87 end
88 [alpha,f,n,how] = eval(linecall); % Line search
89
90 OPTIONS(10) = OPTIONS(10) + n;
91 OPTIONS(18) = alpha;
92
93 x = x + alpha*pk;
94
95 if alpha>tol,
96 % gkold = gk; % Needed only with Polak-Ribiere Method
97 gk = eval(gcall); OPTIONS(11) = OPTIONS(11) + 1;
98
99 %beta = ((gk-gkold)'*gk)/gknorm; % Polak-Ribiere Method

100 %gknorm = norm(gk(:));
101
102 beta = norm(gk(:))/gknorm; % Fletcher-Reeves Method
103 gknorm = beta*gknorm;
104 else
105 beta = 0;
106 alpha = tol;
107 gknorm = norm(gk(:));
108 if OPTIONS(1)>0, disp('Reset alpha.'), end
109 end
110
111 if OPTIONS(1)>0,
112 disp([sprintf('%5.0f %12.3g %12.3g ',OPTIONS(10),f(1),OPTIONS(18)), ...
113 sprintf('%12.3g ',gknorm),how]);
114 end
115
116 if OPTIONS(19)>0 & nargout>3,
117 if OPTIONS(10)>=history(length(history(:,1)),1)+OPTIONS(19),
118 history = [history;[OPTIONS(10),f,OPTIONS(18),gknorm]];
119 end
120 end
121
122 % Test for convergence on relative change in F.
123 if abs((fold(1)-f(1))/(fold(1)+eps))<OPTIONS(3),
124 OPTIONS(8) = f(1); OPTIONS(15) = gknorm;
125 disp('Relative function change criteria met.'), break
126 end
127 fold = f;
128 end
129 OPTIONS(8) = f(1);
130 OPTIONS(15) = gknorm;
131 J = f;

B.2.5 lsearch.m
1 function [alpha,f,n,how] = lsearch(FUN,x0,alpha1,f0,g0,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12)
2 %LSEARCH Inexact line search.
3 %
4 % [ALPHA,F,N] = LSEARCH('FUN',X,ALPHA,F,G) performs an inexact
5 % line search of the 1-D function 'FUN'. 'FUN' is a string variable
6 % that defines the name of an M-file function to be minimized. The
7 % function should return a scalar value, f=FUN(x). X is the initial
8 % starting point. F and G are the value and gradient of the function
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9 % at the initial point X. G must be negative (i.e., downhill). ALPHA
10 % is an initial guess for the step length (i.e. X1 = X + ALPHA).
11 % LSEARCH returns the step length ALPHA, the function value F, and
12 % the number of function evaluations N.
13 %
14 % Up to ten additianal parameters can be passed to 'fun' using
15 % [ALPHA,F,N] = LSEARCH('FUN',X,ALPHA,F,G,P1,P2,P3,...) in which case
16 % the function is called using FUN(x,P1,P2,P3,...).
17
18 % Clay M. Thompson 4-11-91
19
20 showSteps = 0;
21 showPlot = 0;
22
23 tol = 1e-7; % Minimum tolerable value for alpha
24
25 % Check for valid initial condition.
26 if g0>0, error('Initial gradient is not downhill.'); end
27
28 % Form call string
29 params = '(x';
30 for n=6:nargin
31 params = [params,',P',int2str(n-5)];
32 end
33 if ~any(FUN<48), fcall = [FUN,params,')']; else fcall = FUN; end
34
35 how = '';
36 n = 0;
37
38 if showSteps, disp('---Alpha ------ Function Value'), end
39 if showPlot,
40 hold off, plot([0 5*alpha1],[f0(1) f0(1)+5*alpha1*g0],'b-'), hold on
41 plot(0,f0(1),'bo'),
42 s=-alpha1:alpha1/10:5*alpha1;
43 end
44
45 while n<9,
46 % Evaluate function at x+alpha1.
47 x = x0+alpha1;
48 f1 = eval(fcall); n = n+1;
49 if showSteps, disp(['1: ',num2str(alpha1),' ',num2str(f1),' ',how]), end
50 if showPlot, plot(alpha1,f1(1),'bo'), end
51
52 % Fit quadratic function to the points x0,x1. f = a*x^2 + b*x + c.
53 c = f0(1); b = g0; a = (f1(1)-b*alpha1-c)/(alpha1*alpha1);
54
55 if showPlot, plot(s,polyval([a,b,c],s),'r-'), end % Fitted curve
56
57 % Determine next jump based on the quadratic fit.
58 if (a>eps), % Jump forward but not too much.
59 alphaq = -b/(2*a);
60 if (alphaq<5*alpha1) & (alphaq~=alpha1),
61 alpha2 = alphaq;
62 how = [how,'quadratic fit; '];
63 else
64 alpha2 = 5*alpha1;
65 how = [how,'limited jump; '];
66 end
67
68 elseif (a<eps), % Optimum is maximum, jump forward.
69 alpha2 = 5*alpha1;
70 how = [how,'Increase step size (q); '];
71
72 end
73
74 % Evaluate function at x+alpha2.
75 x = x0 + alpha2;
76 f2 = eval(fcall); n = n+1;
77 if showSteps, disp(['2: ',num2str(alpha2),' ',num2str(f2(1)),' ',how]), end
78 if showPlot, plot(alpha2,f2(1),'x'), end % Chosen point
79
80 % Check for adequate solution
81 % if (f2(1)<min(f0(1),f1(1))) & (alpha2<alpha1),
82 % alpha = alpha2;
83 % f = f2;
84 % break % Normal exit
85 % end
86
87 % Try to fit a cubic function, f = a*x^3 + b*x^2 + c*x + d.
88 d = f0(1); c = g0;
89 alphamat = [alpha1.^3 alpha1.^2; alpha2.^3 alpha2.^2];
90 if rcond(alphamat)<eps, % Cubic solution is invalid, use quadratic



150 APPENDIX B. M-FILE LISTINGS

91 alpha = alpha2;
92 f = f2;
93 return % Normal exit
94 end
95 ab = alphamat\[f1(1)-c*alpha1-d;f2(1)-c*alpha2-d];
96 a = ab(1); b = ab(2);
97
98 if showPlot, plot(s,polyval([a,b,c,d],s),'g-'), end % Fitted curve
99

100 % Check descriminent
101 del = b*b-3*a*c;
102 if (del>0) & abs(a)>eps, % Solve for roots.
103 alpha3 = (-b+sqrt(del))/(3*a);
104 elseif abs(a)<eps % Function looks VERY quadratic.
105 alpha3 = alpha2;
106 else
107 alpha3 = inf; % Flag invalid fit.
108 end
109
110 if alpha3<0, % Reduce step size and start over.
111 alpha1 = min(alpha1,alpha2)/2;
112 how = [how,'Reduce step size (c); '];
113 if showSteps, disp(['3: ',num2str(alpha3),' ',how]), end
114
115 elseif alpha3==inf, % Increase step size and start over.
116 alpha1 = 5*max(alpha1,alpha2);
117 how = [how,'Invalid cubic fit; '];
118 if showSteps, disp(['3: ',num2str(alpha3),' ',how]), end
119
120 else
121 if (alpha3-alpha2)/alpha1 < .01, % Extra function evaluation not necessary
122 f3 = inf;
123 else
124 how = [how,'Cubic fit; '];
125 % Evaluate function at x+alpha3.
126 x = x0 + alpha3;
127 f3 = eval(fcall); n = n+1;
128 if showSteps, disp(['3: ',num2str(alpha3),' ',num2str(f3(1)),' ',how]), end
129 if showPlot, plot(alpha3,f3(1),'x'), end % Chosen point
130 end
131
132 % Check if minimum is bracketed.
133 ftest = [f1(1),f2(1),f3(1)];
134 i = find(min(ftest)==ftest);
135 alpha = eval(['alpha',int2str(i(1))]);
136 f = eval(['f',int2str(i(1))]);
137
138 if (f(1)<f0(1)) & (abs(alpha)>tol),
139 return; % Normal exit
140
141 elseif abs(alpha)<tol, % GRAD may not be accurate.
142 x = x0 + tol;
143 f = eval(fcall); n = n+1;
144 alpha = 10*rand(1)*tol;
145 how = [how,'Random Jump; '];
146 return
147
148 else
149 %if alpha==min([alpha1,alpha2,alpha3]),
150 alpha1 = alpha/2;
151 how = [how,'Reduce step size (b); '];
152
153 % else
154 % alpha1 = alpha;
155 % how = [how,'Choose smallest; '];
156 end
157
158 end
159
160 end % while
161
162 % Abnormal exit. No improvement in cost. Use min value for alpha
163 f = f0;
164 alpha = 0;
165 disp('WARNING: Exceeded 9 line search attempts.')

B.2.6 �lter2d.m
1 function x = filter2d(a,stencil,resize)
2 %FILTER2D Two dimensional computational stencil filtering.
3 %
4 % X = FILTER2D(A,STENCIL) returns X which is the result of
5 % applying the computational molecule STENCIL to the matrix A.
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6 %
7 % If SIZE(A) is ma-by-na and SIZE(STENCIL) is ms-by-ns then
8 % SIZE(X) is (ma+ms-1)-by-(na+ns-1).
9 %

10 % FILTER2D(A,STENCIL) is the same as CONV2(A,ROT90(STENCIL,2)).
11
12 % Clay M. Thompson 1-15-91
13
14 [ms,ns] = size(stencil);
15 [ma,na] = size(a);
16
17 % This calculation is the same as conv2(a,rot90(stencil,2))
18 % but is faster.
19 if 0,
20 x = zeros(ms+ma-1,ns+na-1);
21 for i=1:ms
22 for j=1:ns
23 w = stencil(ms-i+1,ns-j+1);
24 if w~=0,
25 x = x + [zeros(i-1,j-1),zeros(i-1,na),zeros(i-1,ns-j);
26 zeros(ma,j-1),w*a,zeros(ma,ns-j);
27 zeros(ms-i,j-1),zeros(ms-i,na),zeros(ms-i,ns-j)];
28 end
29 end
30 end
31
32 else
33 x = conv2(a,rot90(stencil,2));
34 end
35
36 if nargin==3, % Return the central (valid) part.
37 rows = ms-1 + [1:ma-ms+1];
38 cols = ns-1 + [1:na-ns+1];
39 x = x(rows,cols);
40 end
41

B.2.7 c�lter2d.m
1 function c=cfilter2d(a,b,grad)
2 %CFILTER2D Filter bicubic approximation of array.
3 %
4 % C = CFILTER2D(A,B) applies the filter B to the array A where
5 % A is interpolated using bicubic interpolation.
6 %
7 % C = CFILTER2D(A,B,'grad') returns the convolution of B with A
8 % for a gradient calculation.
9 %

10 % The cubic approximation is used extrapolate a 1 pixel border
11 % around the array A.
12 %
13 % See also: FILTER2D.
14
15 % Clay M. Thompson 4-30-92
16
17 [ma,na] = size(a); % Size of array.
18 [mb,nb] = size(b); % Filter size.
19
20 if nargin==2,
21 if nb>1,
22 a = [3*a(:,1)-3*a(:,2)+a(:,3),a,3*a(:,na)-3*a(:,na-1)+a(:,na-2)];
23 end
24 if mb>1,
25 a = [3*a(1,:)-3*a(2,:)+a(3,:);a;3*a(ma,:)-3*a(ma-1,:)+a(ma-2,:)];
26 end
27 c = filter2d(a,b,'resize');
28 else
29 c = filter2d(a,b);
30 if nb>1,
31 c(:,2:4) = c(:,2:4) + c(:,1)*[3 -3 1];
32 c(:,na+nb-4:na+nb-2) = c(:,na+nb-4:na+nb-2) + c(:,na+nb-1)*[1 -3 3];
33 c = c(:,2:nb+na-2);
34 end
35 if mb>1,
36 c(2:4,:) = c(2:4,:) + [3;-3;1]*c(1,:);
37 c(ma+mb-4:ma+mb-2,:) = c(ma+mb-4:ma+mb-2,:) + [1;-3;3]*c(ma+mb-1,:);
38 c = c(2:mb+ma-2,:);
39 end
40 end
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B.2.8 hbasis.m
1 function y = hbasis(x,n,oper)
2 %HBASIS Map from hierarchical basis representation to nodal
3 % representation.
4 %
5 % Y = HBASIS(X,N) or Y = HBASIS(X,N,'nodal') maps X from a
6 % hierarchical basis with N levels to the nodal basis.
7 %
8 % Y = HBASIS(X,N,'trans') maps from the nodal basis to the
9 % hierarchical basis with N levels using the adjoint map.

10 %
11 % Y = HBASIS(X,N,'inv') maps from the nodal basis to the
12 % hierarchical basis with N levels.
13 %
14 % Y = HBASIS(X,N,'tinv') maps from the nodal basis to the
15 % hierarchical basis with N levels using the adjoint map.
16
17 % Reference: "Fast Surface Interpolation Using Heirarchical Basis
18 % Functions", Richard Szeliski, IEEE PAMI, Vol 12, No. 6, June 1990.
19
20 % Clay M. Thompson 4-2-91
21 % Revised 6-10-91 by CMT
22
23 error(nargchk(2,3,nargin));
24
25 if nargin<3, code = 'no'; else code = oper(1:2); end
26
27 % Check to make sure the size of x is compatible with n levels.
28 [mm,nn] = size(x);
29 incr = 2^(n-1);
30 if mm<incr | nn<incr,
31 error(['Each dimension of X must be larger than ',int2str(incr), ...
32 ' for ',int2str(n),' levels.']);
33 end
34
35 if code=='no', % oper=='nodal'
36 y = zeros(mm,nn);
37 rows = 1:incr:mm; cols = 1:incr:nn;
38 y(rows,cols) = x(rows,cols);
39 for level=(n-1):-1:1,
40 xrows = 2*rem(mm-1,incr) >= incr; xcols = 2*rem(nn-1,incr) >= incr;
41 incr = incr/2;
42 row2 = 1:incr:mm; col2 = 1:incr:nn;
43 y(row2,col2) = hb(y(rows,cols),xrows,xcols) + x(row2,col2);
44 y(rows,cols) = y(rows,cols) - x(rows,cols); % Remove extra term
45 rows = row2; cols = col2;
46 end
47
48 elseif code=='tr', % oper=='trans',
49 y = zeros(mm,nn);
50 incr = 1;
51 rows = 1:incr:mm; cols = 1:incr:nn;
52 y(rows,cols) = x(rows,cols);
53 for level=1:(n-1),
54 incr = 2*incr;
55 row2 = 1:incr:mm; col2 = 1:incr:nn;
56 y(row2,col2) = y(row2,col2) + hbt(y(rows,cols));
57 rows = row2; cols = col2;
58 end
59
60 elseif code=='in', % oper=='inv',
61 incr = 1;
62 y = zeros(mm,nn);
63 rows = 1:incr:mm; cols = 1:incr:nn;
64 y(rows,cols) = x(rows,cols);
65 for level=1:(n-1),
66 incr = incr*2;
67 row2 = 1:incr:mm; col2 = 1:incr:nn;
68 xrows = 2*rem(mm-1,incr) >= incr; xcols = 2*rem(nn-1,incr) >= incr;
69 y(rows,cols) = y(rows,cols) - hb(y(row2,col2),xrows,xcols);
70 y(row2,col2) = y(row2,col2) + x(row2,col2); % Add back extra term
71 rows = row2; cols = col2;
72 end
73
74 elseif code=='ti', % oper=='tinv',
75 y = zeros(mm,nn);
76 rows = 1:incr:mm; cols = 1:incr:nn;
77 y = x;
78 for level=(n-1):-1:1,
79 incr = incr/2;
80 row2 = 1:incr:mm; col2 = 1:incr:nn;
81 y(rows,cols) = y(rows,cols) - hbt(y(row2,col2));
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82 rows = row2; cols = col2;
83 end
84
85 else
86 error(['The operation ',oper,' is invalid.']);
87 end
88
89

B.2.9 hb.m
1 function y=hb(x,xtrarows,xtracols)
2 %HB Interpolate a 2-D function on a rectangular grid using
3 % Hierarchical Basis functions.
4 %
5 % Y = HB(X) returns X interpolated to the next level. If X is
6 % m-by-n then Y is (2*m-1)-by-(2*n-1).
7
8 % Clay M. Thompson 4-2-91
9

10 colmask = [.5 .5];
11 rowmask = [.5;.5];
12
13 if nargin<2, xtrarows = 0; end
14 if nargin<3, xtracols = 0; end
15
16 [m,n] = size(x);
17 if xtrarows | xtracols,
18 x = [x,zeros(m,xtracols);zeros(xtrarows,n),zeros(xtrarows,xtracols)];
19 end
20
21 [m,n] = size(x);
22 mm = 2*m-1; nn = 2*n-1;
23 oddrows = 1:2:mm;
24 evenrows = 2:2:mm-1;
25 oddcols = 1:2:nn;
26 evencols = 2:2:nn-1;
27
28 y = zeros(mm,nn);
29 y(oddrows,oddcols) = x;
30 y(oddrows,evencols) = filter2d(x,colmask,'resize');
31 y(evenrows,:) = filter2d(y(oddrows,:),rowmask,'resize');
32
33 if xtrarows | xtracols,
34 y = y(1:mm-xtrarows,1:nn-xtracols);
35 end

B.2.10 hbt.m
1 function y = hbt(x)
2 %HBT Decimate a 2-D function on a rectangular grid using Hierarchical Basis
3 % functions.
4 %
5 % Y = HBT(X) returns X decimated to the next coarsest level.
6 % If X is m-by-n then Y is ((m+1)/2)-by-((n+1)/2).
7 %
8 % Note (m+1) and (n+1) must be divisible by 2.
9

10 % Clay M. Thompson 4-2-91
11
12 [m,n] = size(x);
13 rows = [1:2:m]; cols = [1:2:n];
14 a = [0,zeros(1,n),0;zeros(m,1),x,zeros(m,1);0,zeros(1,n),0];
15
16 y = a(rows, cols) + 2*a(rows, cols+1) + a(rows, cols+2) + ...
17 2*a(rows+1,cols) + 2*a(rows+1,cols+2) + ...
18 a(rows+2,cols) + 2*a(rows+2,cols+1) + a(rows+2,cols+2);
19 y = y/4;
20
21

B.2.11 interpx.m

1 function F=interpx(E,x)
2 %INTERPX Linear interpolation in the x-direction.
3 %
4 % F = INTERPX(E,X) returns a matrix F containing the values of E
5 % at the points X. The matrix X must have the same number of rows as
6 % E. The values in the matrix X must be between 1 and N, where N is
7 % the number of columns of E. The value NaN will be returned where
8 % this is not the case.
9
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10 % Clay M. Thompson 10-17-90
11
12 [m,n] = size(E);
13 [mx,nx] = size(x);
14 if mx~=m, error('X must have the same number of rows as E.'); end
15
16 % Compute nearest x position, xlow.
17 xlow = floor(x);
18 out = (x==n);
19 nout = sum(out(:));
20 if nout>0, xlow(out) = (n-1)*ones(nout,1); end
21
22 % Check for out of range values of x and set to 1
23 out = (x<1)|(x>n);
24 nout = sum(out(:));
25 if nout>0, x(out) = ones(nout,1); xlow(out) = ones(nout,1); end
26
27 % Determine index into matrix elements
28 % Note: y=[1:m]'*mones(1:nx);
29 elem = [1:m]'*mones(1:nx) + (xlow-1)*m;
30 F = E(elem) + (x-xlow) .* (E(elem+m)-E(elem));
31
32 % Set values of F where x is out of range to NaN.
33 if any(out(:)), F(out) = NaN*ones(nout,1); end
34

B.2.12 domain2d.m
1 function [x,y] = domain2d(x,y)
2 %DOMAIN2D Generate X and Y arrays for 3-d plots.
3 % [XX,YY] = DOMAIN2D(X,Y) transforms the domain specified by vectors
4 % X and Y into arrays XX and YY that can be used for the evaluation
5 % of functions of two variables with 3-d mesh plots. For example,
6 % to evaluate the function x*exp(-x^2-y^2) over the range -2 < x < 2
7 % -2 < y < 2,
8 %
9 % [x,y] = meshdom(-2:.2:2, -2:.2:2);

10 % z = x .* exp(-x.^2 - y.^2);
11 % mesh(z)
12
13 % J.N. Little 12-2-85
14 % Revised 20-May-90, LS.
15 % Copyright (c) 1985, 1986, 1990 by the MathWorks, Inc.
16
17 nx = length(x);
18 ny = length(y);
19 x = x(:).'; % make sure x is a row vector
20 x = x(ones(ny, 1),:);
21 y = y(ny:-1:1); y = y(:); % make sure y is a column vector
22 y = y(:,ones(1, nx));
23

B.2.13 icubic.m
1 function F=icubic(x,y,u)
2 %ICUBIC Cubic Interpolation of a 1-D function.
3 %
4 % F=ICUBIC(Y,X1) returns the value of the 1-D function Y at the
5 % points X1 using cubic interpolation. length(F)=length(X1). X1 is
6 % an index into the vector Y. Y is the value of the function
7 % evaluated uniformly on a interval. If Y is a matrix, then
8 % the interpolation is performed for each column of Y.
9 %

10 % If Y is of length N then X1 must contain values between 1 and N.
11 % The value NaN is returned if
12 % this is not the case.
13 %
14 % F = ICUBIC(X,Y,X1) uses the vector X to specify the coordinates
15 % of the underlying interval. X must be equally spaced and
16 % monotonic. X1 must lie within the coordinates in X.
17 %
18 % See also: ILINEAR.
19
20 % Clay M. Thompson 7-4-91
21
22 % Based on "Cubic Convolution Interpolation for Digital Image
23 % Processing", Robert G. Keys, IEEE Trans. on Acoustics, Speech, and
24 % Signal Processing, Vol. 29, No. 6, Dec. 1981, pp. 1153-1160.
25
26 if nargin==2, % No X specified.
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27 u = y; y = x;
28 % Check for vector problem. If so, make everything a column vector.
29 if min(size(y))==1, y = y(:); end
30 if min(size(u))==1, u = u(:); end
31 [nrows,ncols] = size(y);
32
33 elseif nargin==3, % X specified.
34 % Check for vector problem. If so, make everything a column vector.
35 if min(size(y))==1, y = y(:); end
36 if min(size(x))==1, x = x(:); end
37 if min(size(u))==1, u = u(:); end
38 [nrows,ncols] = size(y);
39 % Scale and shift u to be indices into Y.
40 if (min(size(x))~=1), error('X must be a vector.'); end
41 x = x(:);
42 [m,n] = size(x);
43 if m ~= nrows,
44 error('The length of X must match the number of rows of Y.');
45 end
46 u = 1 + (u-x(1))*((nrows-1)/(x(m)-x(1)));
47
48 else
49 error('Wrong number of input arguments.');
50 end
51
52 if nrows<3, error('Y must have at least 3 rows.'); end
53 [m,n] = size(u);
54 if n==1, u = u*ones(1,ncols); [m,n] = size(u); end % Expand u
55 if n~=ncols, error('The number of columns in X1 and Y must match.'); end
56
57 % Check for out of range values of u and set to 1
58 uout = find((u<1)|(u>nrows));
59 nuout = length(uout);
60 if nuout>0, u(uout) = ones(nuout,1); end
61
62 % Interpolation parameters
63 s = (u - floor(u));
64 u = floor(u);
65 d = find(u==nrows); if length(d)>0, u(d) = u(d)-1; s(d) = s(d)+1; end
66
67 % Expand y so interpolation is valid at the boundary.
68 y = [3*y(1,:)-3*y(2,:)+y(3,:);y;3*y(nrows,:)-3*y(nrows-1,:)+y(nrows-2,:)];
69 nrows = nrows + 2;
70
71 % Now interpolate using computationally efficient algorithm.
72 s2 = s.*s; s3 = s.*s2;
73 ndx = u+ones(m,1)*[0:n-1]*nrows;
74 F = y(ndx).*(-s3+2*s2-s) + y(ndx+1).*(3*s3-5*s2+2) + ...
75 y(ndx+2).*(-3*s3+4*s2+s) + y(ndx+3).*(s3-s2);
76 F = F/2;
77
78 % Now set out of range values to NaN.
79 if nuout>0, F(uout) = NaN*ones(nuout,1); end
80

B.2.14 dcubicx.m
1 function G=dcubicx(x,y,u)
2 %DCUBICX Derivative of Cubic Interpolation of a 1-D function w.r.t. x..
3 %
4 % G = DCUBICX(Y,X1) returns the derivative of the 1-D function Y=f(x)
5 % at the points X1 using cubic interpolation. length(G)=length(X1).
6 % X1 specifies the points originally used for the interpolation.
7 %
8 % If Y is of length N then X1 must contain values between 1 and N.
9 % The value NaN is returned if this is not the case.

10 %
11 % G = DCUBICX(X,Y,X1) uses the vector X to specify the coordinates
12 % for Y as for ICUBIC.
13 %
14 % See also: ICUBIC.
15
16 % Clay M. Thompson 7-18-91
17
18 % Based on "Cubic Convolution Interpolation for Digital Image
19 % Processing", Robert G. Keys, IEEE Trans. on Acoustics, Speech, and
20 % Signal Processing, Vol. 29, No. 6, Dec. 1981, pp. 1153-1160.
21
22 if nargin==2, % No X specified.
23 u = y; y = x;
24 % Check for vector problem. If so, make everything a column vector.



156 APPENDIX B. M-FILE LISTINGS

25 if min(size(y))==1, y = y(:); end
26 if min(size(u))==1, u = u(:); end
27 [nrows,ncols] = size(y);
28
29 elseif nargin==3, % X specified.
30 % Check for vector problem. If so, make everything a column vector.
31 if min(size(y))==1, y = y(:); end
32 if min(size(x))==1, x = x(:); end
33 if min(size(u))==1, u = u(:); end
34 [nrows,ncols] = size(y);
35 % Scale and shift u to be indices into Y.
36 if (min(size(x))~=1), error('X must be a vector.'); end
37 x = x(:);
38 [m,n] = size(x);
39 if m ~= nrows,
40 error('The length of X must match the number of rows of Y.');
41 end
42 u = 1 + (u-x(1))*((nrows-1)/(x(m)-x(1)));
43
44 else
45 error('Wrong number of input arguments.');
46 end
47
48 if nrows<3, error('Y must have at least 3 rows.'); end
49 [m,n] = size(u);
50 if n==1, u = u*ones(1,ncols); [m,n] = size(u); end % Expand u
51 if n~=ncols, error('The number of columns in X1 and Y must match.'); end
52
53 % Check for out of range values of u and set to 1
54 uout = find((u<1)|(u>nrows));
55 nuout = length(uout);
56 if nuout>0, u(uout) = ones(nuout,1); end
57
58 % Interpolation parameters
59 s = (u - floor(u));
60 u = floor(u);
61 d = find(u==nrows); if length(d)>0, u(d) = u(d)-1; s(d) = s(d)+1; end
62
63 % Expand y so interpolation is valid at the boundary.
64 y = [3*y(1,:)-3*y(2,:)+y(3,:);y;3*y(nrows,:)-3*y(nrows-1,:)+y(nrows-2,:)];
65 nrows = nrows + 2;
66
67 % Now interpolate using computationally efficient algorithm.
68 s2 = s.*s;
69 ndx = u+ones(m,1)*[0:n-1]*nrows;
70 G = y(ndx).*(-3*s2+4*s-1) + y(ndx+1).*(9*s2-10*s) + ...
71 y(ndx+2).*(-9*s2+8*s+1) + y(ndx+3).*(3*s2-2*s);
72 G = G/2;
73
74 % Now set out of range values to NaN.
75 if nuout>0, G(uout) = NaN*ones(nuout,1); end
76

B.2.15 dcubicz.m
1 function g=dcubicy(x,y,u,dJdf)
2 %DCUBIC Derivative of 1-D cubic interpolation w.r.t. Y.
3 %
4 % G = DCUBICY(Y,X1,dJdF) computes the derivative of the cost
5 % function J(F) with respect to the underlying variables Y. The
6 % matrix dJdF is the derivative of the cost function with respect to
7 % the interpolated value F = ICUBIC(Y,X1). X1 specifies the points
8 % originally used for the interpolation.
9 %

10 % G = DCUBICY(X,Y,X1,dJdF) uses the vector X to specify the
11 % coordinates for Y as for ICUBIC.
12 %
13 % See also: ICUBIC.
14
15 % Clay M. Thompson 7-12-91
16
17 if nargin==3, % No X specified.
18 dJdf = u; u = y; y = x;
19 % Check for vector problem. If so, make everything a column vector.
20 if min(size(y))==1, y = y(:); end
21 if min(size(u))==1, u = u(:); end
22 [nrows,ncols] = size(y);
23
24 elseif nargin==4, % X specified.
25 % Check for vector problem. If so, make everything a column vector.
26 if min(size(y))==1, y = y(:); end
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27 if min(size(x))==1, x = x(:); end
28 if min(size(u))==1, u = u(:); end
29 [nrows,ncols] = size(y);
30 % Scale and shift u to be indices into Y.
31 if (min(size(x))~=1), error('X must be a vector.'); end
32 x = x(:);
33 [m,n] = size(x);
34 if m ~= nrows,
35 error('The length of X must match the number of rows of Y.');
36 end
37 u = 1 + (u-x(1))*((nrows-1)/(x(m)-x(1)));
38
39 else
40 error('Wrong number of input arguments.');
41 end
42
43 if nrows<3, error('Y must have at least 3 rows.'); end
44 [m,n] = size(u);
45 if n==1, u = u*ones(1,ncols); [m,n] = size(u); end % Expand u
46 if any(size(u)~=size(dJdf)), error('dJdF and X1 must be the same size.'); end
47 if n~=ncols, error('The number of columns in X1 and Y must match.'); end
48 if m<2, % Expand u (so sums work) with an out of range value.
49 u = [u;zeros(1,n)]; [m,n] = size(u);
50 dJdf = [dJdf;zeros(1,n)];
51 end
52
53 % Check for out of range values of u and set to 1
54 uout = find((u<1)|(u>nrows));
55 nuout = length(uout);
56 if nuout>0, u(uout) = ones(nuout,1); end
57
58 % Interpolation parameters
59 s = (u - floor(u));
60 u = floor(u);
61 d = find(u==nrows); if length(d)>0, u(d) = u(d)-1; s(d) = s(d)+1; end
62
63 % Compute terms for gradient
64 s2 = s.*s; s3 = s.*s2;
65 t0 = dJdf.*(-s3+2*s2-s);
66 t1 = dJdf.*(3*s3-5*s2+2);
67 t2 = dJdf.*(-3*s3+4*s2+s);
68 t3 = dJdf.*(s3-s2);
69 clear s s2 s3
70
71 % Set out of range terms to zero.
72 if nuout>0,
73 t0(uout) = zeros(nuout,1);
74 t1(uout) = zeros(nuout,1);
75 t2(uout) = zeros(nuout,1);
76 t3(uout) = zeros(nuout,1);
77 dJdf(uout) = zeros(nuout,1);
78 end
79
80 % Form sums for each z value.
81 t0sum = zeros(nrows,ncols);
82 t1sum = zeros(nrows,ncols);
83 t2sum = zeros(nrows,ncols);
84 t3sum = zeros(nrows,ncols);
85 for k=1:nrows,
86 elem = find(u==k);
87 temp = zeros(m,n);
88 temp(elem) = t0(elem); t0sum(k,:) = sum(temp);
89 temp(elem) = t1(elem); t1sum(k,:) = sum(temp);
90 temp(elem) = t2(elem); t2sum(k,:) = sum(temp);
91 temp(elem) = t3(elem); t3sum(k,:) = sum(temp);
92 end
93 clear t0 t1 t2 t3
94
95 % Add terms from boundary conditions
96 t1sum(1,:) = t1sum(1,:) + 3*t0sum(1,:);
97 t2sum(1,:) = t2sum(1,:) - 3*t0sum(1,:);
98 t3sum(1,:) = t3sum(1,:) + t0sum(1,:);
99

100 t2sum(m-1,:) = t2sum(m-1,:) + 3*t3sum(m-1,:);
101 t1sum(m-1,:) = t1sum(m-1,:) - 3*t3sum(m-1,:);
102 t0sum(m-1,:) = t0sum(m-1,:) + t3sum(m-1,:);
103
104 % Now combine to form gradient.
105 g = zeros(nrows,ncols);
106 g(1,:) = t0sum(2,:) + t1sum(1,:);
107 g(2,:) = t0sum(3,:) + t1sum(2,:) + t2sum(1,:);
108 for k=3:nrows-1,
109 g(k,:) = t0sum(k+1,:) + t1sum(k,:) + t2sum(k-1,:) + t3sum(k-2,:);
110 end
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111 g(nrows,:) = t1sum(nrows,:) + t2sum(nrows-1,:) + t3sum(nrows-2,:);
112
113 g = g/2;
114
115
116



Appendix C

Test Surface Descriptions

This appendix contains information on how to create the crater and hill test surfaces

and associated test images.

C.1 Crater Surface

The crater on the 
at plane is formed by intersecting two spheres, one with radius

10 and the other with radius 9.48, with a 
at plane. The routines makepair4 and

crater depth were used to create the crater images.

C.1.1 makepair4.m

1 % Make stereo pair (this is the best routine)
2 clear
3 DEPTH = 'crater_depth'
4 %DEPTH = 'sphere_depth'
5 %GRAD = 'crater_grad'
6 n = 65; % The size of image.
7 mu = 1; % Optimization parameter
8
9 b = 500;

10 f = -1000; % We are working in the same coordinates as the surface for x & y.
11
12 % Camera coordinate calibration
13 z0 = eval([DEPTH,'(0,0)'])
14 v0 = 0;
15 v1 = v0 + b*f/z0/2
16 v2 = v0 - b*f/z0/2
17
18 gamma = f*b/2;
19 delta = z0/f;
20 if 1 % Case a {Hard case}
21 ps1 = .1; qs1 = .1;
22 ps2 = -.1; qs2 = .1;
23 prefix = ['cr',int2str(n),'a'];
24 else % Case b {Easy case}
25 ps1 = .2; qs1 = -.5;
26 ps2 = -.3; qs2 = .1;
27 prefix = ['cr',int2str(n),'b'];
28 end
29 %ps1 = .5; qs1 = -.6;
30 %ps2 = .5; qs2 = -.6;
31 %ps1 = 0; qs1 = 0;
32
33 [x,y] = domain2d(-12:24/(n+1):12,-12:24/(n+1):12 );
34
35 % Image parameters

159
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36 deltax = x(1,2)-x(1,1);
37 params = [f/deltax % Focal length for unity spacing grid
38 b % baseline distance
39 z0 % Calibration depth
40 ps1;qs1;ps2;qs2 % Light positions
41 (x(2,2)+v1)/deltax-1 % x-calibration as offset from E(1,1).
42 y(2,2)/deltax-n % y-calibration as offset from E(1,1).
43 (x(2,2)+v2)/deltax-1 % x-calibration as offset from E(1,1).
44 y(2,2)/deltax-n % y-calibration as offset from E(1,1).
45 1 % Grid spacing
46 ];
47 del = z0*(max(x(:))-min(x(:)))/f/(n+1);
48
49 z = eval([DEPTH,'(x,y)']);
50 eqmesh(z,del)
51 title('True Surface')
52
53 % Determine depth function for left image (1)
54
55 err = 1; m = 0;
56 z1 = z0*mones(x);
57 gamma/z0
58 while (err> 1.e-5)&(m<25),
59 ztemp = eval([DEPTH,'(x+v1-gamma./z1-v0,y)']);
60 err = sum( (ztemp(:)-z1(:)).^2 )
61 z1 = z1 + mu*(ztemp-z1);
62 m = m + 1;
63 end
64 eqmesh(z1,del)
65 title('Left Surface')
66
67 % determine depth function for right image (2)
68 err = 1; m = 0;
69 z2 = z0*mones(x);
70 while (err>1.e-5)&(m<25),
71 ztemp = eval([DEPTH,'(x+v2+gamma./z2-v0,y)']);
72 err = sum( (ztemp(:)-z2(:)).^2 )
73 z2 = z2 + mu*(ztemp-z2);
74 m = m + 1;
75 end
76 eqmesh(z2,del)
77 title('Right Surface')
78
79 hx = [-1 0 1]/2;
80 hy = [1;0;-1]/2;
81 rows = 2:n+1;
82 cols = 2:n+1;
83
84 % Right Image
85 zx = filter2d(z1,hx,'resize')/deltax;
86 zy = filter2d(z1,hy,'resize')/deltax;
87 p1 = f*zx(rows,:)./((x(rows,cols)+v1).*zx(rows,:)+z1(rows,cols));
88 q1 = f*zy(:,cols)./(y(rows,cols).*zy(:,cols)+z1(rows,cols));
89 E1 = rmap(p1,q1,ps1,qs1);
90
91 % Left Image
92 zx = filter2d(z2,hx,'resize')/deltax;
93 zy = filter2d(z2,hy,'resize')/deltax;
94 p2 = f*zx(rows,:)./((x(rows,cols)+v2).*zx(rows,:)+z2(rows,cols));
95 q2 = f*zy(:,cols)./(y(rows,cols).*zy(:,cols)+z2(rows,cols));
96 E2 = rmap(p2,q2,ps2,qs2);
97
98 % Center Global coordinate system
99 zx = filter2d(z,hx,'resize')/deltax;

100 zy = filter2d(z,hy,'resize')/deltax;
101 p = f*zx(rows,:)./(x(rows,cols).*zx(rows,:)+z(rows,cols));
102 q = f*zy(:,cols)./(y(rows,cols).*zy(:,cols)+z(rows,cols));
103 E = rmap(p,q,ps2,qs2);
104
105 clg,
106 subplot(121), eqmesh(z1,del),
107 subplot(122), eqmesh(z2,del)
108 subplot(111), title('Image contours')
109
110 mimage([E1,zeros(n,1),E2],[0 1])
111 clear p1 q1 p2 q2 zx zy p q E gamma err m n ztemp
112 clear ps1 ps2 qs1 qs2 z0 b0 b f delta hx hy rows cols v1 v2
113 clear mu v0 x y deltax
114
115
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C.1.2 crater depth.m

1 function [z,rho]=depth(x,y)
2 %CRATER_DEPTH Depth function for crater on a flat plane.
3 %
4 % Z = CRATER_DEPTH(X,Y). X and Y must be of the same size.
5 %
6 % Crater is defined between -10 <= x,y <= 10.
7
8 z0 = -1000;
9 r1 = 10; r2 = 9.48;

10 d1 = find(x.*x + y.*y <= 0.75*r1*r1);
11 d2 = find(x.*x + y.*y <= 0.75*r2*r2);
12
13 [m,n] = size(x);
14 z = z0*ones(m,n);
15 z(d1) = z(d1) + sqrt(r1*r1 - x(d1).*x(d1) - y(d1).*y(d1))-5;
16 z(d2) = min(z(d2), z0+12-sqrt(r2*r2 - x(d2).*x(d2) - y(d2).*y(d2)));
17
18 %z = z0 + (z-z0)/2; % Reduce height by two
19
20 if nargout>1,
21 % Albedo (rho)
22 rho = mones(z);
23 d = find(abs(x-y)<3);
24 rho(d) = 0.7*mones(d); % Dark strip across diagonal
25 end

C.2 Hill Surface

A fractal based method was used to create the underlying data matrix for the hill

surface. Given this underlying data matrix the hill surface is formed using bicubic

interpolation to de�ne the surface points. The data for the hill is shown in the matrix

(DATA MATRIX) below,

� 1000 +

2
666666666664

0:7210 1:0934 1:1456 0:7672 0:5582 0:6868 1:0628

0:9350 0:4301 1:2280 0:4993 0:5555 0:8574 0:3552

0:8864 1:0791 0:2720 0:5742 0:6650 0:3307 0:2967

0:7894 0:2520 0:5136 0:2594 1:1026 1:0038 0:4796

0:8690 0:4103 0:3271 0:5276 1:0706 1:1861 0:4380

1:1673 1:1548 0:3879 0:2889 0:3674 0:8726 0:7950

1:3493 0:4233 0:3691 0:2568 0:4342 0:6595 0:5902

3
777777777775
: (C:1)

The routines makepair data and data depth were used to create the hill images.

The mountain images were formed using a similar method based on a 33-by-33 data

matrix that is too large to be presented here.

C.2.1 makepair data.m

1 % Make stereo pair based on data
2 clear % clear all data
3 global DATA_MATRIX
4 DEPTH = 'data_depth'
5 n = 65; % The size of image.
6 nn = n+2; % The size of z.
7 mu = 1; % Optimization parameter
8
9 if 1, % Wrinkled surface (hill)

10 load data_matrix
11 b = 500;
12 ps1 = -1; qs1 = 1;
13 ps2 = .3; qs2 = .1;
14 prefix = ['w',int2str(n),'c'];
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15 else % Lake (mountain)
16 load lake_data
17 z0 = -1000;
18 DATA_MATRIX = DATA_MATRIX + z0;
19 b = 100;
20 ps1 = .5; qs1 = .5;
21 ps2 = -.5; qs2 = 0;
22 prefix = ['lk',int2str(n),'b'];
23 end
24 [md,nd] = size(DATA_MATRIX);
25
26 f = -1000; % We are working in the same coordinates as the surface for x & y.
27
28 % Camera coordinate calibration
29 z0 = eval([DEPTH,'(0,0)'])
30 v0 = -b*f/z0/2;
31 v1 = v0 + b*f/z0/2
32 v2 = v0 - b*f/z0/2
33
34 gamma = f*b/2;
35 delta = z0/f;
36
37 [x,y] = domain2d([1:(md-1)/(nn-1):md]-(md+1)/2,[1:(nd-1)/(nn-1):nd]-(nd+1)/2);
38 x = x*.9; y = y*.9; % Center 90% of matrix
39
40 % Image parameters
41 deltax = x(1,2)-x(1,1);
42 params = [f/deltax % Focal length for unity spacing grid
43 b % baseline distance
44 z0 % Calibration depth
45 ps1;qs1;ps2;qs2 % Light positions
46 (x(2,2)+v1)/deltax-1 % x-calibration as offset from (1,1).
47 y(2,2)/deltax-n % y-calibration as offset from (1,1).
48 (x(2,2)+v2)/deltax-1 % x-calibration as offset from (1,1).
49 y(2,2)/deltax-n % y-calibration as offset from (1,1).
50 1 % Grid spacing
51 ];
52 del = z0*(max(x(:))-min(x(:)))/f/(n+1);
53
54 z = eval([DEPTH,'(x,y)']);
55 eqmesh(z,del)
56 %mesh(z)
57 title('True Surface')
58
59 % Determine depth function for left image (1)
60
61 err = 1; m = 0;
62 z1 = z0*mones(x);
63 gamma/z0
64 while (err> 1.e-5)&(m<25),
65 ztemp = eval([DEPTH,'(x+v1-gamma./z1-v0,y)']);
66 err = sum( (ztemp(:)-z1(:)).^2 )
67 z1 = z1 + mu*(ztemp-z1);
68 m = m + 1;
69 end
70 eqmesh(z1,del)
71 title('Left Surface')
72
73 % determine depth function for right image (2)
74 err = 1; m = 0;
75 z2 = z0*mones(x);
76 while (err>1.e-5)&(m<25),
77 ztemp = eval([DEPTH,'(x+v2+gamma./z2-v0,y)']);
78 err = sum( (ztemp(:)-z2(:)).^2 )
79 z2 = z2 + mu*(ztemp-z2);
80 m = m + 1;
81 end
82 eqmesh(z2,del)
83 title('Right Surface')
84
85 hx = [-1 0 1]/2;
86 hy = [1;0;-1]/2;
87 rows = 2:n+1;
88 cols = 2:n+1;
89
90 % Right Image
91 zx = filter2d(z1,hx,'resize')/deltax;
92 zy = filter2d(z1,hy,'resize')/deltax;
93 p1 = f*zx(rows,:)./((x(rows,cols)+v1).*zx(rows,:)+z1(rows,cols));
94 q1 = f*zy(:,cols)./(y(rows,cols).*zy(:,cols)+z1(rows,cols));
95 E1 = rmap(p1,q1,ps1,qs1);
96
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97 % Left Image
98 zx = filter2d(z2,hx,'resize')/deltax;
99 zy = filter2d(z2,hy,'resize')/deltax;

100 p2 = f*zx(rows,:)./((x(rows,cols)+v2).*zx(rows,:)+z2(rows,cols));
101 q2 = f*zy(:,cols)./(y(rows,cols).*zy(:,cols)+z2(rows,cols));
102 E2 = rmap(p2,q2,ps2,qs2);
103
104 % Center Global coordinate system
105 zx = filter2d(z,hx,'resize')/deltax;
106 zy = filter2d(z,hy,'resize')/deltax;
107 p = f*zx(rows,:)./(x(rows,cols).*zx(rows,:)+z(rows,cols));
108 q = f*zy(:,cols)./(y(rows,cols).*zy(:,cols)+z(rows,cols));
109 E = rmap(p,q,ps2,qs2);
110
111 clg,subplot(221)
112 subplot(121), eqmesh(z1,del)
113 subplot(122), eqmesh(z2,del)
114 subplot(111), title('Image contours')
115
116 mimage([E1,zeros(n,1),E2],[0 1])
117
118 clear p1 q1 p2 q2 zx zy p q E gamma err m n ztemp
119 clear ps1 ps2 qs1 qs2 z0 b0 b f delta hx hy rows cols v1 v2
120 clear mu v0 x y md nd nn deltax
121
122 ztrue = z;
123

C.2.2 data depth.m

1 function [z,rho]=depth(x,y)
2 %DATA_DEPTH Depth function based on data matrix.
3 %
4 % Z = DATA_DEPTH(X,Y). X and Y must be of the same size.
5 %
6 % [Z,RHO] = DATA_DEPTH(X,Y) returns albedo also.
7 %
8 % Relies on the global DATA_MATRIX to define surface.
9 %

10 % For DATA_MATRIX m-by-n, values in X must be between -(n-1)/2 and (n-1)/2,
11 % values in Y must be between -(m-1)/2 and (m-1)/2.
12
13 %global DATA_MATRIX
14 [m,n] = size(DATA_MATRIX);
15 [xx,yy] = domain2d(1:n,1:m);
16
17 x = x + (m+1)/2; y = y + (n+1)/2;
18
19 d = find(floor(x)<1); x(d) = ones(length(d),1);
20 d = find(x>n); x(d) = n*ones(length(d),1);
21 d = find(floor(y)<1); y(d) = ones(length(d),1);
22 d = find(y>m); y(d) = m*ones(length(d),1);
23
24 z = bicubic(xx,yy,DATA_MATRIX,x,y);
25 %z = blinear(xx,yy,DATA_MATRIX,x,y);
26
27 d = find(isnan(z));
28 if length(d)>0, keyboard, end
29 if length(d)>0, z(d) = ones(length(d),1)*min(DATA_MATRIX(:)); end
30
31 if nargout>1,
32 %d = find(abs(x-y)<1);
33 z0 = min(z(:));
34 d = find((z>.5+z0) & (z<.7+z0));
35 rho = mones(z);
36 rho(d) = 0.7*mones(d);
37 end
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