
Technical Report 1358

1\41T Artificial Intelligence Laboratory

I

I I 4

0 0

C:) 0

JL %.-Ill

0T 11 -r, A A n -ex XI 7"'I 1 1 v
m I a I 1 7:04 1 'IL I ff --4 5 It %I ILI a 0 1 %h.:

111%ja ILCLI Y v v 1113 I

M-;,"m o �

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Technical Report No. 1358 July 1992

Autornated Prograni Recognition by Graph
Parsing

Linda Mary Wills

Abstract

The recognition of standard computational structures cliche's) in a
program can help an experienced programmer understand the program.
Based on the known relationships between the cliche's a hierarchical
description of the program's design can be recovered. We develop and
study a graph parsing approach to automating program recognition in
which programs are represented as attributed dataflow graphs and a
library of cliche's is encoded as an attributed graph grammar. Graph
parsing is used to recognize cliche's in the code.

We demonstrate that this graph parsing approach is a feasible and
useful way to automate program recognition. In studying this ap-
proach, we have experimented with two medium-sized, real-world sim-
ulator programs. There are three aspects of our study. First, we eval-
uate our representation's ability to suppress many common forms of
program variation which hinder recognition. Second, we investigate
the expressiveness of our graph grammar formalism for capturing pro-
gramming cliche's. Third, we empirically and analytically study the
computational cost of our recognition approach with respect to the
real-world simulator programs.

Copyright Massachusetts Institute of Technology, 1992

The research described here was conducted at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laboratory's artificial intelligence research has
been provided in part by the following organizations: National Sience Foundation under grants
IRI-8616644 and CCR-898273, Advanced Research Projects Agency of the Department of Defense
under Naval Research contract N00014-88-K-0487 IBM Corporation, NYNEX Corporation, and
Siemens Corporation.

The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the policies, expressed or implied, of these organizations.

Acknowledgments

I would like to thank my thesis advisor, Chuck Rich, for his continual support ad encour-

agement over a my years at MIT. He has provided valuable guidance and advice at crucial

times and he has shared many interesting ideas with me. I admire his eergy, generosity,

and integrity.

I am thankful to Richard Waters for his constant encouragement and cheerfulness, and

for providing many fresh insights.

I am grateful to the members of my committee, David McAllester, Peter Szolovits as

well as Chuck Rich and Richard Waters, for their patient and careful reading of my thesis.

They offered valuable insights and suggestions for presenting t1lese ideas ad they have

broadened my perspective.

I appreciate Rudi Lutz's willingness to discuss the subtleties of his parsing algorithm.

I ave also benefited from helpful discussions with Yishai Feldman, John Hartman, Stan

Letovsky, and Dilip Soni.

Several members of the Al Lab have provided encouragement and interesting discus-

sions, especially Bonnie Dorr, Eric Grimson, Bob Hall, Ellen HildretE, Tomas Lozano-Perez,

Howard Reubenstein, Monica Strauss, Tanveer Fathima Syeda-Mahmood, and Yang Meng

Tan. I greatly appreciate the friendliness and exceptional helpfulness of Andrew Chien, Bill

Dally, and Mike Noakes.

The generosity, support, and encouragement of Christian Bauer, Avelino Gonzalez, and

Soheil Khajenoori made it possible for me to finish this thesis. I am grateful to Ashok Goel,

Janet Kolodner, Robert McCurley, and Spencer Rugaber for many interesting tecltnical

conversations.

I appreciate the moral support of my friends, Janet Allen, Anita illian, Auja Mari-

wala Elizabeth Turrisi ad especially Jean Moroney.

I am thankful to my family - Mom and Dad, Len ad Janet, Judy Ann and Jim, Diane,

Tom, Stephen, Mark, Mom and Dad Wills, Kitty and Stevie - for providing many happy

distractions.

I am fortunate to have a wonderful husband, Scott, who gives me unfailing love and

support, ad so mch happiness.

Finally I am grateful to my parents for their constant love and their confidence 'in me.

This thesis is dedicated to them.

I

5

5

8

10

12

15

18

19

19

20

21

23

33

33

38

38

39

53

3 The

3.1

3.2

Flow Graph Formalism

Flow G raphs .

Flow Graph Grammars

3.2.1 Embedding Relation

3.2.2 Flow Graph Grammar Derivations

3.2.3 Attribnte Conditions and Transfer RnIes,

3.3 Motivations for Formalism: Program Recognition Application

3.3.1 The Partial Program Recognition Problem

3.4 Extensions to the Flow Graph Formalism

3.4.1 Structure-Sharing .

3.4.2 Aggregation .

. 69

. 73

. 74

. 76

80

59

60

62

62

64

65

2

-'on en s

1 Introduction

1. 1 M otivations .

1.2 Toward a Hybrid Program Understanding System

1.3 What is Involved in Automating Program Recognition?

1.4 Graph Parsing Approach .

1.5 Goals and Contributions .

1.6 Outline of Report .

2 The Knowledge, Program Corpus, and Recognition Examples

2.1 What are the Cliche's? .

2.1.1 Simulation Domain Context .

2.1.2 Informal Cliche' Acquisition Strategy

2.1.3 Sequential Simulation Cliche's .

2.1.4 The General-Purpose Cliche's .

2.2 Real-World Programs .

2.3 Recognition Examples .

2.3.1 Common Program Variations .

2.3.2 Examples of Capabilities .

2.4 Breadth of Coverage .

---- ---- --

3.5 Chart Parsing Flow Graphs .

3.5.1 Recognizing Share-Equivalent Flow Graphs

3.5.2 Recognizing Aggregation-Equivalent Flow Graphs

3.5.3 Matching St-Thrus .

3.6 Related Graph Grammar Work .

3.6.1 Classes of Graphs .

3.6.2 Embedding Mechanism .

3.6.3 Graph Parsers .

4 Applying Parsing to Recognition

4.1 Expressing Programs ad Cliche's in the Flow Graph Formalism

4.1.1 Attribute Language .

4.1.2 The Plan Calculus .

4.1.3 Codifying Cliche's: Using the Plan Calculus as a Stepping Stone

4.1.4 Examples of Codifying Simulation Cliche's

4.2 Architectural Details .

4.2.1 Translating Programs to Flow Graphs

4.2.2 Additional Monitor to Handle Recursion Unfolding

4.2.3 Paraphraser .

100

109

110

113

119

119

120

120

122

122

123

130

134

143

154

154

156

160

5 Capabilities and Limitations

5.1 Variations Tolerated

5.1.1 Syntactic Variation

5.1.2 Organizational Variation .

5.1.3 Delocalized Cliche's

5.1.4 'Unrecognizable Code

5.1.5 Function-Sharing

5.1.6 Redundancy

5.1.7 Implementation Variation .

5.2 Limitations

5.2.1 Missing or Derived Dataflow

5.2.2 "Missing" Cliche' Parts

163

. 163

. 164

. 167

. 169

. 169

. 174

. 174

. 175

. 175

. 176

. 178

,e Constraints 179

d Event s 183

.0gram s 184

. 186

Expressing Cliclie's with Loos

Enqueuing New Messages a(

Modifications to Example Pr(

Conclusion

5.2.3

5.2.4

5.2.5

5.2.6

6 Analysis

6.1 C ost .

6.1.1 Brief Algoritltm Description

6.1.2 Complexity

187

. 188

. 188

. 192

3

6.2 Counting Items .

6.2.1 Item Trees .

6.2.2 Constraints Prune Item Trees .

6.2.3 Grammar Facilitates Reusing Sub-Searcli Space Exploration

6.2.4 Empirical Observations of Item Trees

6.2.5 Modeling Constraint Consistency .

6.2.6 Counting Zip-ups .

6.2.7 Partial Node Orderings .

6.2.8 Summary of Item Count .

6.3 Component Costs .

6.4 Other Performance Improvements .

6.4.1 Decomposition

6.4.2 Indexing .

6.4.3 Interleaved Decomposition and Indexing

6.4.4 Avoiding Unnecessary Copying .

6.5 Conclusion .

7 Conclusions

7.1 Empirical Studies .

7.2 Future .

195

196

197

208

208

213

214

216

222

222

225

225

227

227

228

229

231

232

233

233

233

234

237

240

243

244

248

254

255

259

7.2.1 Multiple Recursion .

7.2.2 Interfacing with Other Recognition Techniques

7.2.3 Disambignating Data Structure Operation Instances

7.2.4 Side Effects to Mutable Data Structures

7.2.5 Advising GRASPR .

7.3 Related W ork .

7.3.1 Representation .

7.3.2 Other Recognition Techniques .

7.4 A pplications .

A Flow Graph Recognition 'is NP-Complete

B The Example Programs

C The Grammar Encoding the Cliche Library 289

4

n ro Uc ion

Experienced egineers are able to quickly determine the behavior and properties of a com-

plex device by recognizing familiar, standard forms in its design. These standard forms,

which we call cliche's [110, 112, 115, 137, 117], are combinations of primitive mechanisms

which engineers use frequently because the combinations have been found useful in prac-

tice. From experience, the engineers have come to expect the cched forms to exhibit certain

known behaviors. By relying on this "pre-compiled" knowledge, engineers are able to effi-

ciently understand and build complex devices containing cliched components without always

reasoning from first principles. Rich [110, 112, 117] has developed a model of egineering

problem solving in which synthesis and analysis methods are based on the recognition and

use of cliche's. He calls these inspection methods.

This report deals with automating the recognition of cliche's in computer programs.

Cliche's in the software engineering domain are stereotypical algorithmic computations and

data structures. Examples of algorithmic cliche's are list enumeration, binary search, and

quick-sort. Examples of data-structure cliche's are sorted list, priority queue, and ash table.

Several experiments [58, 83� 128, 142] give empirical data supporting the psychological

reality of cliche's and their role in understanding programs. In trying to understand a pro-

gram, an experienced programmer may recognize parts of the program's design by identify-

ing cliche'd computational structures in the code. Knowing how these structures implement

other more abstract structures, the programmer can build a hierarchical description of the

program's design. We call this process program recognition. Program recognition is one

technique, among several, used by programmers in the more general task of understanding

programs.

1. 1 Motivations

It is because hman software egineers recognize cliche's that we would like to automate

program recognition. This gives us both theoretical and practical motivations.

From a theoretical standpoint, automated program recognition is an interesting artificial

5

Chapter

intelligence problem. It is an ideal task for studying how programming knowledge and

experience can be represented and used. (However, in automating program recognition, the

goal is not to mimic the cognitive process used by programmers to recognize cliche's, but

to mimic only the use of experiential knowledge in the form of cliche's to achieve a similar

result of understanding the program.)

Our practical motivation stems from an interest in building automated systems tat

assist software engineers with tasks requiring program understanding, such as specting

maintaining, and reusing software. Such collaboration requires that the automated assistant

be able to communicate with engineers in the same way as they communicate with each

other when performing these tasks. They refer to instances of cliche's and assume knowledge

of their well-known properties and behaviors. For example, they might discuss changing a

program from using an ordered associative linked list to using a hash table to gain efficiency.

They discuss the change at a hgh level of abstraction and 'ustify their design decisions

using the established properties of the cliche's. They are also able to explain te design of

a program to each other on multiple levels of abstraction. They can convince each other of

the properties or behavior of a program by pointing ot the existence of cliche's in its design

and then leveraging off the accumulated body of experience surrounding the cliche's. The

known properties of the cliche's are used directly, rather than constructing formal proofs or

performing formal complexity analyses to establish that the properties hold.

If an automated assistant is to collaborate with human engineers in the same way, it

must share the same knowledge of cliche's and their properties. It must be able to recognize

instances of cliche's, without requiring the human engineer to explicitly identify and locate

them in a program.

This recognition ability would be a valuable component of automated software tools

and assistants that perform tasks requiring program understanding. They would be able to

explain their understanding of the program in terms familiar to a human engineer. They can

respond to requests from the engineer that are phrased in terms of abstract computational

structures in the program, rather than low-level commands that spell out actions to be

performed on language primitives. (For example, Waters' KBEmacs 116, 117, 139 sows

how an automated assistant can aid a human engineer while communicating at a high-level

of abstraction. In KBEmacs, this model is constructed as the program is being built. A tool

like KBEmacs can be used to maintain existing code (not written with the help of KBEmacs),
if the cliche's from which the code is constructed are recognized.)

Incorporating an automated recognition system into software tools and assistants yields

more than just communications benefits for human-computer interaction. By mimicking the

human engineer's "short-cut" to understanding a program's design, an automated recogni-

tion system provides an efficient way to reconstruct design information. It bypasses complex

reasoning about how beliaviors and properties arise from a certain combination of language

primitives. The behaviors and roperties can be used directly by these tools.

Collaboration between a person and an automated recognition system is mutually ben-

6

eficial. An automated recognition system provides capabilities which complement te per-

son's abilities. An atomated system has significantly better memory capabilities than a

person. These are valuable in maintaining multiple possible views of te program and in

keeping track of details about w1tat has been found so far. Also, some cliche's may be easier

for the computer to recognize because they are hidden or delocalized i the textual code

representation, but are localized in the computer's 'Internal representation.

On the other hand, people have some capabilities that can greatly aid the recognition

system. They may have access to many different sources of knowledge about the program,

beyond the source code, including its goals or specification, documentation, comments,

execution traces, a model of the problem domain, and typical properties of the program's

inputs and outputs. Even though some of this information can be incomplete ad inaccurate,

it provides an important independent source of expectations about a program's purpose

and design. These expectations can be used to guide the recognition system by focusing its

search on particular parts of a program for particular cliche's.

The person can also provide information not easily recoverable from the code which can

help the recognition system to recognize more of te program. For example, the person

can undo an optimization that takes advantage of an opportune dataflow equality. This

may uncover a dataflow dependency that must exist for a particular cliche' to be recognized.

(More concrete instances of the type of information that can help push the recognition of

some cliche's through are described in Section 52.)

Automated tools are also being developed to aid the human egineer in extracting

design information and generating expectations from many different sources in addition to

the code. An exemplary system is DESIRE, which i's being developed by Biggerstaff 12, 13].

A central part of DESIRE is a rich domain model, which contains machine-processable

forms of design expectations for a particular domain as well as informal semantic concepts.

It includes typical module breakdowns and typical terminology associated with programs

in a particular problem domain. Techniques for recognizing patterns of organization ad

linguistic idioms i the program are being developed to generate expectations of the typical

concepts associated with these patterns. These expectations can be used to quickly draw

attention to sections of the program where there may be cliche's related to a particular

concept in the domain.

Other more conventional techniques for reverse engineering large programs have focused

on extracting a given system's module structure. This is typically done by sing clustering

[62] and slicing 59, 140, 141] techniques, which bring together parts of a program based on

identifier and procedure names, data dependencies, and call relationships, among other fea-

tures 13, 19, 46, 51, 561 1237 1241 143]. Programming and maintenance evironments, such

as MicroScope 7 Cleveland's system 20], and Marvel 66], provide tools for performing

various types of dependency, dynamic, and impact analyses and for browsing the results in

the form of call graphs, dataflow graphs, execution histories, and program slices.

These techniques and evironments can contribute to a user's understanding of a pro-

7

gram. While they alone do not provide a deep understanding, they extract information that

can help a person generate advice and expectations. Based on these the person can guide

an automated recognition system, so that a deeper understanding may be obtained. The

results of recognition can in turn enhance the capabilities of these automated techniques

by providing a more abstract view of a program. For example, dependencies between more

abstract data objects can be computed ad used to create more abstract dusters.

1.2 Toward a Hybrid Program Understanding System

Because program understanding requires many different techniques besides program recog-

nition, and draws upon various sources of knowledge besides the code, program under-

standing systems of the future will be hybrid systems. They will 'integrate many different

special-purpose components for extracting design information from a program and its asso-

ciated documentation, domain model, etc. The components will communicate with human

engineers, who can provide additional guidance and information.

The benefits of such co-operation between specialists i solving complex problems that

require several, diverse types of knowledge are well known. For example, research in black-

board architectures 37, 63, 99] and hybrid knowledge representation systems 113] study

ways of achieving co-operative problem solving.

Figure 1-1 shows a model of a hybrid program -understanding system. It is roughly

divided into two complementary processes: expectation-driven (top-down) and code-driven

(bottom-up). The heuristic top-down process uses knowledge such as the program's goals,

domain model, and documentation to generate expectations about the program's design.

These can be used to guide the code-driven process, which can confirm, amend, or reject

them by checking tem against the code.

Since there are many different types of things a egineer or application tool might

wish to understand about a program, the program understanding system can be directed

by specific questions from the engineer or application.

The details of this hybrid system have not yet been fleshed out. We believe that a

key part of the code-driven component is an automated recognition system. The labels on

the communication links between the expectation-driven and code-driven components are

useful inputs and outputs to a code-driven system based on recognition. However, these do

not entirely specify the communication between, or the nature of, these components. Also,

the diagram is not meant to imply that all the techniques integrated into the hybrid system

are either solely code-driven or expectation-driven. Some may themselves be hybrids.

Some of the questions that must be answered in the design of such a hybrid system

are what techniques should be incorporated and what is the appropriate division of labor

between them? Tere are also managerial problems in the co-ordination of techniques and

the integration of different types of knowledge ad representations 93].

Determining which techniques to icorporate and what their idividual responsibilities

8

Applications

Bare Source Code

Figure 1-1 A ybrid program understanding system.

9

are requires analyzing the candidate techniques to determine their relative strengths, mi-

tations, and computational expense. Our research takes a step toward the long-term goal

of a hybrid program understanding system by exploring the strengths and weaknesses of a

particular program recognition technique.

In particular, we develop and study a graph parsing approach to program recognition.

This approach represents the program in a dataflow graph representation and the cche

library in a graph grammar and then uses graph parsing to recognize cliche's 'in the code.

The grammar rules capture implementation relationships between the cches. The parsing

technique yields a hierarchical description of a plausible design of the program in the form

of derivation trees specifying the cches found and their relationships to each otl-ter.

We demonstrate that te flow graph parsing approach is a feasible and -useful way to

automate program recognition. We also identify its shortcomings. This information will

help us to make the appropriate division of labor between te integrated components of the

hybrid program understanding system.

To do this, we developed an experimental system that performs recognition on realistic,

medium-sized programs. Given a program and a ibrary of cches, it finds all occurrences of

the cches in the program ad builds a hierarchical description of the program in terms of

the cches found. (In general, there may be several such descriptions.) We call or system

GRASPR, which stands for "GRAph-based system for Program Recognition."

1.3 'What 'is Involved 'in Automating Program Recognition.

To atomatically recognize interesting cliche's in real-world programs, a number of issues

must be addressed. This section discusses the key issues.

What are the cliche's? We must identify the cches that programmers use. These

include both general programming ches that most programmers -use (e.g., those found in

textbooks on programming 3 21, 76]) and domain-specific cches that are used to solve

particular problems. For the results of recognition to be useful, we also need to collect

the information that is associated with each cliche', such as its behavior, pre- and post-

conditions, complexity, and common design rationale for choosing it. In general, cche

library acquisition requires domain modeling, which is itself an entire area of active research

[106].

How are cliche's and programs encoded? Once cches are identified, they must be ex-

pressed in a machine-manipulable form which makes relationships between the cches ex-

plicit. To facilitate recognition, the representation of cches and programs should suppress

details that obscure the similarity between two istances of the same cliche'. A negative

example is a textual representation of cches and programs. The program text contains

details about how data and control flow is achieved in terms of programming language

constructs. This introduces syntactic variation across programs that achieve the same data

and control flow but use different constructs or different programming languages. Other

10

types of variation besides syntactic nclude variations 'in the 'Implementations of some ab-

stract cliche', the organization of components, the amount of redundant computation, and

the contiguousness (or localization) of cliche's. These are described further in Sections 23.1,

5.1, and 52. The representation should remove as much variation as possible between two

instances of the same cliche'.

How are cliche's recognized efficiently? The recognition technique must deal with vari-

ation, allow partial recognition of a program, and have a flexible control strategy. To deal

with the variation that the chosen representation cannot eliminate, the recognition tech-

nique might view the program in multiple ways and at several levels of abstraction, or

introduce transformations to reveal the similarities between programs and cche's.

In addition to dealing with variation, the recognition technique should aow partial

recognition of the program, since programs are rarely constructed entirely of cliche's. Unfa-

miliar parts of the program must not deter recognition of the familiar parts.

Finally, the recognition technique should have a flexible control strategy, particularly if

it 'is expected to interact with other components in a hybrid system. There may be a range

of possible inputs to the recognition system as well as a variety of types of outputs desired

from it. The types of inputs to the recognition system that tend to vary are the advice given

to guide the search for cliche's and the expectations and hypotheses generated from external

knowledge sources. These vary depending on the amount of information that already exists

about the program and its development (e.g., in its associated documentation). The input

also changes as the recognition system and expectation-driven components interact. The

task to which recognition is being applied also affects the type of iformation available

as iput. For example, in debugging, verification, or program tutoring applications, a

specification of the program 'is often available from which strong gidance can be generated,

while this information is often lacking in maintaining old code.

The application task can also place restrictions on the time and space allotted to the

recognition system. For example, a real-time response may be required of the system if a

person is using it interactively as an assistant in maintaining code. In this situation, it may

be more desirable to quickly recognize cliche's that are more "obvious" rather than spending

more time to un'cover cliche's that are more hidden (e.g., by an optimization which must be

undone for them to be revealed). It should be possible to prioritize the search for certain

cliche's so that obvious ones are recognized early, while still reserving a "try harder" phase

in which te more hidden cliche's can be found. This allows us to gain efficiency without

permanently sacrificing completeness.

Not only 'is it important that the recognition system be responsive to directions and

additional information besides the code, it must have a control strategy that is flexible

enough to perform a variety of recognition tasks. There are many reasons a hman engineer

or some application tool may want recognition to be performed, since they typically want

to understand many different things about a program. The recognition task depends on

what needs to be understood. For example, if the recognition system is going to be applied

11

'NWNN-

to verification, it can -use a strategy that finds any complete recognition of the program.

On the other hand, if it were applied to documentation generation, it would be better for

it to produce all possible fll, as well as partial, analyses. For applications in which ear-

misses of cliche's should be recognized, such as debugging te best partial aalysis m ht

be desired. A flexible control strategy is needed that can be tailored to a variety of different

recognition tasks.

To summarize the main issues in automating recognition are: acquiring the cliche' i-

brary, choosing a representation and ecient technique tliat tolerates variation, and provid-

ing a flexible control strategy. This report deals primarily with the problems of tolerating

variation and providing a flexible, efficient recognition technique. It deals secondarily with

the cliche' acquisition problem by dscussing experiences in manually acquiring or cliche'

library. It does not discuss aids for acquisition.

1.4 Graph Parsing Approach

There are two key aspects of our approach.

1. Representation shift: Instead of looking for cliche's directly 'in the source code, GRASPR

translates the program and cliche's into a language-independent, graphical representa-

tion. The cliche's and the relationships between them are encoded in graph grammar

rules.

2. Flexible recognition architecture: Recognition is achieved by parsing the program's

graphical representation in accordance with the graph grammar encoding of the

cliche's. A chart parsing algorithm is used which makes search and control strategies

explicit, enabling them to accept advice and additional 'Information from external

agents.

Figure 12 shows GRASPR's architecture. In keeping with the bottom-up nature of the

recognition process, the figure shows the program and cliche' library inputs at the bottom

and the more abstract results of recognition at the top. The recognition process is to be

read upward. This also makes it easier to see how GRASPR fits 'into te hybrid system shown

in Figure I .

GRASPR translates the program into a flow graph, which is a restricted type of directed

acyclic graph (as is described in Section 3 Basically, the graph represents operations in its

nodes and dataflow dependencies between them in its edges. It is annotated with attributes

which represent additional information about the program, for example, its control flow.

A program is translated into an attributed flow graph in two steps. The first step per-

forms a data ad control flow analysis of the program to yield a Plan Calculus representation

of it. The Plan Calculus is a program representation developed by Rich, Shrobe, and Wa-

ters [110, 111, 112� 117, 127, 137] in which a program is captured in an annotated directed

12

,-,sign

,,, e s)

Advice

- ----------------- -------
i------ I
I I

--f)so
(Flow Graph)

Encode

a

Plan

Translate

It

Source Code

Attributes

Figure 12: GRASPR's architecture.

13

--IWW --7- + Constraints

0 ----> " "-30-

(Flow Graph Grammar)

Encode
I ------- __j

Cliche Library

(Plans and Overlays)

graph, called a plan. The structure of this graph explicitly captures both data and control

flow, as well as aggregate data structure accessors and constructors, and recursion. The

second step of the translation encodes the plan in a attributed flow graph representation.

The Plan Calculus is used as a stepping stone in the translation of the program to

an attributed flow graph. The main reason the program is not translated directly to the

flow graph is that the attributes are easier to compute from te plan than to generate in

one shot during the data and control flow analysis. A secondary reason is that GRASPR

is intended as one component of an intelligent software engineering assistant, called the

Programmer's Apprentice (PA) 117]. By being able to encode plans in its internal flow

graph representation, GRASPR can more easily interface to other components of the PA,

which all sare the Plan Calculus representation.

The Plan Calculus is also a representation that has been found useful in representing the

cliche' library. It aows relationships between cliche's to be captured in the form of overlays.

These represent the kowledge that an instance of one cliche' can be viewed as an instance

of another (e.g., a specification cche ad an implementation cliche').

Cliche's are translated from a Plan Calculus representation to an attributed flow graph

grammar by a process similar to the encoding of plans 'in attributed flow graphs. The gram-

mar rules encode the relationships specified in overlays. Each rule also places constraints

on the attributes of any flow graph structurally matching the rule's right-hand side. These

constraints explicitly encode the variations that are aowed 'in the values of attributes in

cliche' instances.

Once the program and cliche' library are encoded 'in an attributed flow graph and flow

graph grammar, recognition is achieved by parsing the flow graph in accordance with the

grammar. Constraint checking is interleaved with parsing for efficiency (as described in

Sections 32.3 and 62.2). Essentially, graph parsing matches the dataflow structure of cliche's

and constraint checking deals with the other details of cliche's that cannot be represented

in te graph structure or are sources of too much variation if graphically represented.

Parsing yields hierarchical descriptions of the program's design in te form of the possible

derivations of the program's flow graph from the flow graph grammar that was extracted

from the cliche library. These are called design trees.

By shifting the representation of programs and cliche's from text to a flow graph, GRASPR

is able to overcome man of the difficulties of syntactic variation and noncontiguousness.

It abstracts away the syntactic features of the code, exposing the program's algorithmic

structure. It concisely captures the data and control flow of programs, independent of the

language in which they are written. Also, many cliche's that are delocalized in the program

text are much more localized in the flow graph representation.

The graph grammar captures relationships between cliche's so that the results of recog-

nition can be given on multiple levels of abstraction. Grammar rules relate abstract cliche's

to their implementations. This enables GRASPR to deal with implementation variation: two

implementation cliche's can be recognized as the same abstract cliche'. The grammar also

14

captures commonalities between cliche's so that large numbers of cliche's can be encoded

more compactly.

In using a graph parsing approach, we are not trying to mmic the recognition process

of human programmers. No claim is being made that formal parsing 'is a psychologically

valid model of how programmers understand existing programs. For the present work, a

grammar is simply a useful way to encode the programmer's experiential knowledge about

programming so that parsing can be used for program recognition.

1.5 Goals and Contributions

The goal of this research is to show that graph parsing is a good computational model

for atomating program recognition, and to identify its capabilities and limitations We

demonstrate t1te following:

0 We can encode many interesting programming cliche's and the relationships between

them 'in a flow graph grammar.

0 The flow graph formalism provides an effective representation for tolerating many

classes of variation.

* Flow graph parsing can be -used to recognize the cliche's. The derivation trees that

result provide a useful herarchical description of the program, over multiple levels of

abstraction.

e imitations in the power of te recognition system to recognize certain cliche's can be

alleviated by accepting additional des n nformation from an external agent suc as

a person), who is interacting with it.

* ecognition by flow graph parsing can be performed efficiently in real-world situations.

* The complexity of the recognition process can be controlled if the parser's control

strategy is sufficiently flexible and responsive to advice from an external agent.

We sow these things by experimenting with real-world program examples, which are

medium-sized (in the 500 to 1000 line range) simulation programs written in Common Lp

by members of a parallel-processing research group at MIT. (Section 22 describes them

further.) We are able to express both general programming cliche's and cliche's from the

simulation domain in a flow graph grammar. GRASPR recognizes these cches in the example

programs efficiently.

Our experimentation also reveals shortcomings in our graph parsing approach. Many

of the limitations can be compensated for by other techniques and by using other sources

of knowledge which may be available 'in the context of a hybrid program understanding

system.

15

The specific contributions of this research are the following. (This list includes brief

statements of how tese contributions advance the state-of-the-art of recognition research.

More details on related research are given in Section 73.)

* We develop ad se a flow graph grammar formalism in which programs and cliche's

can be concisely represented so that much variation is eliminated and relationships

between cliche's are encoded.

This graph-based representation has significant advantages over the text-based rep-

resentations sed by many other recognition systems, particularly in dealing with

syntactic variation.

* We present a recognition architecture with a general, flexible control structure that can

accept advice and gidance from external agents. The trade-off between recognition

power and computational expense can be explicitly controlled so that some cliche's are

recognized quickly, while other more expensive recognitions are postponed to a try-

harder" pase. The algorithm exhaustively finds all possible recognitions of cliche's and

can generate mltiple views of a program as well as partial "near-miss" recognitions.

This architecture forms a seed for a hybrid program understanding system,.,

Other recognition systems are committed to a rigid (often ad hoc) control strategy.

Most search for a single best terpretation of the program, while permanently ctting

off alternatives. They often build heuristics into the system for controlling cost t1lat

are chosen on a trial-and-error basis. They cannot try harder later to incrementally

increase teir power. They also cannot generate multiple views of the program when

desired, nor provide partial information when only near-misses of cliche's are present.

Some recognition techniques can use information obtained from one or two other

techniques (e.g., theorem proving or dynamic aalysis of program executions) with

which they are 'integrated. Many recognition techniques also take information about

the goals and purpose of the program (in the form of a specification or model program).

While these techniques show the -utility of these additional sources of information, they

rely on this information being given as input, rather tan accepting it and responding

to it if it becomes available.

* We analyze the graph parsing approach to program recognition to determine how it

would fit into the context of a hybrid program understanding system.

We address the questions:

- What types of variations is the technique robust under? What types of variations

are a problem. What other techniques must be used to remove the variation?

- Are graph grammars expressiveness enough to ecode programming cliche's?

- Is the technique feasible for large programs.? How can the cost be controlled?

16

The observations we make 'in this analysis are based o our experiences in applying

GRASPR to the recognition of two example programs. Tey do not represent com-

plete lists of the capabilities and lmitations of the graph parsing approach. Further

experimentation is needed with more programs and in multiple problem domains.

Much of the early work in program recognition provides no analysis of te represen-

tations or techniques used. More recent research icludes some empirical analysis,

typically studying the accuracy of recognition and the recognition rates over sets of

programs (usually student programs in program tutoring applications). With the

exception of Hartman's work [55], discussions of limitations have focused mainly on

practical implementational limitations, rather than on general limitations of the ap-

proach. They also do not describe how additional information or guidance can help.

Our recognition system is able to recognize programs and cliche's containing a wide

range of types of program features. In particular, it is able to represent and recognize

programs that contain conditionals, loops with any number of exits, recursion, ag-

gregate-data structures, ad simple side effects due to assignments. (Suggestions for

future work in dealing with side effects to mutable data structures are given in Sec-

tion 72.4.) This allows GRASPR to recognize larger programs than existing recognition

systems. It also enables encoding and recognition of domain-specific cliches as well as

general-purpose ones, since many domain-specific licl-tes are aggregate data structure

cliche's. This allows empirical study of our recognition technique on programs that

are not contrived nor biased toward our work.

With the exception of CPU 84], existing recognition systems cannot handle aggregate

data structure cliche's and a majority do not handle recursion. Talus 95] heuristically

handles some side effects to lists and arrays. The largest program recognized by any

existing recognition system is a 300-line database program recognized by CPU. All

other systems work with programs on the order of tens of lines. None deal with

domain-specific cliche's, except Laubsch's system [81, 82].

A secondary contribution is a graph parsing algorithm which is an extension of the

parsers of Lutz 90] and Brotsky [15] to handle a wder class of graph grammars. In

particular, it i's able to parse graph grammars that encode aggregation, which hierar-

chically groups graph edges, not 'ust nodes. This algorithm has potential applications

in areas other tan program recognition, e.g., circuit verification and plan recognition.

Section 72 discusses some applications.

We do not contribute automated aids to the acquisition of the cliche' library. However,

we do discuss our experiences in manually acquiring the cliche's.

This type of discussion has not appeared in any other work on program recognition

of which we are aware.

17

1.6 Outline of Report

Chapter 2 describes the cliche' library and our experiences in acquiring it. It also demon-

strates GRASPR's recognition of these cliche's in the example simulation programs. Chapter 3

describes the flow gra-Ph formalism which forms the basis of or representation shift. It also

presents a flow grapIt chart parsing algorithm, which provides a flexible recognition control

strategy. It includes a summary of related work in te general area of graph grammar

formalisms. Chapter 4 gves details of issues that arise in applying flow graph parsing to

program recogialRion and how GRASPR solves them. Chapter discusses te capabilities and

limitations of te parsing approach in terms of the variations tolerated, and the expressive-

ness of flow graph grammars. Chapter 6 studies the computational cost of our approach,

both empirically and analytically. Finally, Chapter 7 concludes with a summary of the

strengths ad weaknesses of the parsing approach, ideas for future work particularly in te

context of a hybrid system),and a brief comparative summary of related work in program

recognition.

18

---- ---- ---- -

Chapter 2

e novv e e, ro ranl /or us

an eco ni ion xairn es

An important part of automating program recognition is codifying the knowledge that
experienced programmers use to recognize programs. This knowledge is in the form of
algorithmic and data structure cliche's. It includes both general-purpose cliche's that occur

1 in.
in programs over a problem domains, as well as those spedfic to a particular doma'

Our library must capture and express these cliche's at a level of abstraction that aows
them to be recognized in a broad range of programs. The ideal is that the cliche's be concisely
represented, but efficiently recognized i many forms. Recognition of a cche should be
immune to many common syntactic and implementational variations. For example, the
same cliche's should be recognized in programs that differ only in which syntactic binding
and control constructs they use or in which programming languages they are written. Also,
an abstract cched operation that exists 'in two programs should be recognized in both
even if the programs differ in which standard implementation of the operation is used.

This capter discusses the cliche's we have captured so far in our library. It also describes
the corpus of programs we chose on which to base both our cliche' acquisition and our
empirical study of recognition. Finally, it gives examples of the capabilities of GRASPR in

recognizing these cliche's not only in our example corpus, but also in a range of variations

of them. (Chapter 3 discusses the formalism we use to abstractly and concisely capture

our cliche's to make this possible.) Our examples provide both a demonstration of what is

feasible as well as motivation for our formalism and recognition technique.

A 2.1 'What are the Cliches.

Our cliche' library contains a core set of general-purpose, "utility" cliche's, along with a set

of cliche's from the domain of sequential simulation. The domain-specific cliche's are built on

top of the core utility cliche's (i.e., they use utility cliche's as components or implementations)

The general-purpose cliche's are well-known, widely used algorithms and data structures,

19

sucli as tose described in introductory computer science textbooks (e.g., 3, 21, 76]). They

are found in programs across all problem domains. They include common operations on

priority queues, hash tables, lists, and first-in-first-out (FIFO) qeues, as well as basic

iteration cliche's, such as sequence eumeration, fltering, umulat' , d counting.

The domain-specific cliche's in our library are found in programs that sequentially simu-

late parallel systems. More specifically, we have encoded the subset of common algorithms

and data structures found 'in this domain that are used to sequentially simulate essage-

passing parallel systems.

A message-passing system contains a collection of processing nodes which communicate

witIt each other via messages. Each processing node contains a processor, a network in-

terface, and a block of distributed memory. The message-passing system takes a program

in the form of a set of message handlers and a starting message. The program begins by

sending the starting message to its destination node. The node executes the handler for

that message's type. In addition to changing the state of the node, this can cause the node

to send messages to other nodes (e.g., to request the value of some variable or to delegate

some sub-tasks). When these messages are handled by their destination nodes, additional

messages might be sent.

It is possible for a message to be received by a node while it is handling another message.

Therefore, each node has a local buffer which accumulates the messages received while the

node is busy. When the node finishes handling a message, if its buffer is non-empty, the

node plls a message from te buffer and handles it. The buffer is emptied in FIFO order.

This is done to maintain the invariant that two messages received by the same node must

be handled in the order in which they are received.

The behavior just described is simulated by the programs in which our library's domain-

specific cliche's are found. This is a subset of the actual behavior of a real message-passing

system, which also includes routing messages through the network, for example. However,

this simplified model is a typical one smulated in parallel architecture research. The simu-

lation allows statistics to be gathered on such properties as the number of nodes busy over

time (a measure of concurrency), average message execution times, and average message

waiting times.

2.1.1 Simulation-Domain Context

It is instructive to see how the domain we have chosen fits 'Into the larger world of simulation

programs. It is a subset of the problem domain of sequential simulation, as opposed to par-

allel simulation, of parallel systems. Our cliche' library contains only sequential algorithmic

cliches.

Within the domain of sequential simulation, there are two types of simulators: discrete-

event and continuous. Discrete-event simulators model the behavior of a system over discrete

points in time. Continuous simulators model behavior that is characterized by state t1tat

20

changes continuously. Continuous smulators typically solve a set of differential equations

that express how the system's state changes over time. Continuous simulation is used for

example, to study lieat dssipation in computer systems.) Our simulation cliche's are found

in discrete-event simulators. The discrete points in time at which a message-passing system

can be modeled are when a message is sent, received, or handled.

Within the domain of discrete-event sequential simulation, our class of simulator pro-

grams are most similar to simulators that model queueing systems 91]. In a queueing

system, there is a collection of one or more servers which service tokens (sometimes called

44 customers"). There 'is a notion of arrival time and processing time of tokens; tokens et9
buffered 'in a ueue if they arrive while a server is busy. The queueing discipline is typically

first-in, first-out, but it can be a different one 'if tokens need not be serviced in the order in

which they arrive. A common real-world situation captured by te queueing system model

is the servicing of bank customers by one or more tellers, where the customers wait in a

single line.

The queueing system model (using a FIFO queueing discipline) 'is similar to the message-

passing mltiprocessor model. Servers are analogous to processing nodes and servicing a

token 'is analogous to handling a message. However, there are two key differences. One

is that in the queueing system, servicing a token does not create new tokens which feed

back to the servers. In the message-passing machine model, handling a message .can cause

new messages to be sent. The other key difference 'is that in the queueing system model,

the waiting tokens are not targeted for 'a particular server to service. Whichever server is

idle when a token 'is removed from the qeue is the one that gets the job. In the message-

passing model, on the other hand, each message is sent to a particular node for handling.

The message's destination is determined when the message is sent. Our class of simulator

programs can be seen as modeling a multi-que-ue multi-server system with feedback (in

which tokens are targeted for particular servers ad servers have local FIFO queues for

buffering tokens when the server is busy)-

2.1.2 Informal Cliche' Acquisition Strategy

In acquiring our domain-specific cliche's, we used an informal strategy. (Developing a do-

main modeling methodology for cliche' acquisition is beyond the scope of this research.) We

worked in two directions. One was bottom up by manually understanding two program

examples in our domain. (These are described in Section 22.) This aowed us to identify

concrete computational structures that were -used 'in the simulators' designs. The differences

between the two programs in implementing the same high level operation helped -us to gen-

eralize our cliche's. The similarities between the programs pointed out common components

that some cliche's shared. We were fortunate in that the authors of the programs were ac-

cessible for aswering our questions about the design of te programs. Their explanations

helped us not only to understand the programs, but also to identify the cliche's since the

21

authors often referred to algorithms and data structures tat they considered to be typical.

Our second direction was top-down. We read textbooks 'in the area of simulation, such

as 91, 151], to pick up the vocabulary and descriptions of typical high-level computational

structures that are used. We then mapped these down to portions of the example programs

that embody them.

In identifying the cliche's to be captured, we tried to 'Identify te most general form of

each cliche and then express it in a way that canonicalized specializations of it. (This was

done both by using an abstract representation and by providing mechanisms for viewing

specializations as the more general form.) However, sometimes this canonicalization was

not possible and we needed to include specializations of the cliche' in the library along with

the generalized forms. In these cases, we relied on empirical frequency of occurrence of the

specialized forms, to avoid enumerating all possible variations (which can be expensive and

incomplete)

This issue came up most frequently in trying to capture cliched operations on aggre-

gate data structures. We encountered three distinguished ty-Des of parts of aggregate data

structures:

o Primary - a part that holds a piece of data directly. (For example, a Hash Table data

structure contains a Buckets part which is usually an array).

o Handle - a part that is used to look up a primary part. (For example, a data structure

might contain a primary part Node that represents a processing node or it might

contain an integer (an identification number) that is used to index into another data

structure to retrieve the structure representing a node.)

o Secondary - a piece of data that is an unnecessary part of a data structure in tat it

can be computed from a primary part or a handle part of the data structure. These are

usually cached values. (For example, a CircnIar-Indexed Sequence includes a sequence

part, and two 'Indices which keep track of te bounds on the filled-in portion of the

sequence. It can have an additional secondary part which keeps a running count of

the number of elements in the Circular-Indexed sequence. This part 'is unnecessary

because it can be computed from the size of the sequence ad the boundary indices.)

If we were to capture a aggregate data cliche's in their general form - as aggregates

of only primary parts - we would have trouble recognizing them in cases where handles

are used and in cases where secondary (cached) parts are used to circumvent computation

performed on primary parts. So, we capture these specialized forms, bt only if they are

common. That is, we capture data cliche's that are common optimizations and common

uses of handles.

Sometimes an optimization of some generalized cliche' 'is possible in the particular context

in which it is used, but this optimization is not a common one. Perhaps 'it takes advantage

of a rare alignment with other cches or of opportune dataflow equalities. Since it is not

22

common it is not in the cliche' library. (Likewise for handles.) Unless we can undo the

optimization or use of a handle, the recognition of the cliche' win be hindered. Section 5.1.5

describes a class of common optimizations which can be undone. Sections 5.2.2- and 52.1

discuss some optimizations and uses of handles that should be able to be undone, but which

require advice from an external agent.

2.1.3 Sequential Simulation Cliches

There are two common designs for sequential smulators of parallel systems. One is a

synchronous simulation, which mimics the real system by maintaining a global clock and

simulating the actions of the nodes in "lock-step." On each tick of the clock, the simulator

�4 advances" each node by simulating what the node would do in te real system on that

clock tck. In this type of simulation, all simulated nodes are synchronized to the global

clock. At each clock tck te state of the simulated nodes gives a snapshot of te state of

the system at the time represented by the clock tick.

The other common sequential simulator design is event-driven. In this type of simulator,

there is an agenda of events, which represent work to be done by the nodes. The simulator

iteratively pulls an event from the agenda ad performs the work associated with it. This

may cause new events to be generated, which are added to the agenda. The simulation ends

when the agenda is empty. Unlike in synchronous imulation, the actions of the nodes are

simulated asynchronously rather than all being in step with a global clock. The nodes each

keep track of their own local time, which is updated when they process an event.

Our cliche' library contains algorithmic ad data structure cliche's that make up the

designs of event-driven ad synchronous simulators for message-passing systems. The next

two sections discuss these designs and the cliche's from which they are constructed.

A Common Synchronous Simulation Design

A common design -used in synchronous simulators of message-passing systems has data

structures representing processing nodes and messages. (In this discussion, we denote the

data structure representing a node as SYNCH-NODE to distinguish it from the real processing

node. Similarly, MESSAGE denotes the data structure representing a real message.) Each

SYNCH-NODE contains a Local-Buffer part, whose value is a FIFO eue of messages, and a

Memory part which represents the state of the node being represented. Each MESSAGE data

structure contains a Destination-Address which specifies the node to which the message it

represents was sent. It also typically contains a message Type, which 'is used to look -up a

handler for the message, Arguments which are used 'in executing the handler, and Storage-

Requirements which specify how much local memory space is need to store arguments and

locals during handler execution.

All SYNCH-NODEs are collected in a sequence, called an ADDRESS-MAP, which maps an nteger

address to a SYNCH-NODE. The SYNCH-NODE indexed by an integer i is the one representing the

23

real node whose address is i in te machine being simulated A global buffer of MESSAGEs is

also maintained to help model message delivery delay, as 'is explained below.

A common algorithm -used for synchronous simulation proceeds as follows. The sim-u-

lation is begun by adding a "start" MESSAGE, which is given as input, to the global MESSAGE
buffer. On each iteration of the simulation, the following actions are taken.

* A termination condition is checked ad if satisfied, the simulation stops. This condi-

tion is that the global MESSAGE buffer ad a the Local-Buffers of the SYNCH-NODEs are

empty.

* The MESSAGEs in the global buffer are "delivered," which means each is placed in te

Local-Buffer of te SYNCH-NODE to which they were sent (i.e., the SYNCH-NODE in the

ADDRESS-MAP indexed by the MESSAGE's Destination-Address part).

* Each SYNCH-NODE is polled to see if it has any work to do, i.e., if it has any MESSAGEs in

its Local-Buffer. If so, a MESSAGE is pulled from the buffer maintaining FIFO order)

and handled. If any new MESSAGEs are sent as a result, they are buffered in the global

MESSAGE buffer.

The global MESSAGE buffer is used to esure that delivery delay is modeled. Buffering the

MESSAGEs sent during a clock cycle prevents a message from being sent and handled during
the same cycle.

The invariant that messages to the same node are handled in the order in which they are

received is modeled by using a FIFO queue to locally buffer the MESSAGEs that a SYNCH-NODE

must handle. A MESSAGE will not be handled by a SYNCH-NODE until all the MESSAGEs enqueued

on the FIFO qeue ahead of it have been handled.

What it means for a MESSAGE to be "handled" (or what action of a processing node

is simulated) by the simulator varies across simulators. It depends on why a simulation

is being performed and which aspects of a message-passing system are of interest. For

example, some smulators might want to simulate the message handler execution on the

node 'in order to gather statistics about operation frequencies or average message -execution

time on each node. Other simulators might only want to simulate message sends that result

from handler execution, in order to gather information about average message waiting times,

typical size of buffers needed, and the number of nodes busy. In addition, the set of message

handling actions that are simulated varies over the machines that are being simulated. Te

machine architecture of a real node determines which actions 'it performs; only these can

be simulated.

We have begun to identify and capture some cliche's in the area of simulating node

actions. These include algorithms for looking up and executing message handlers as wen

as cliche's found in the domain of program execution. Below we discuss the cliche's we have

captured so far and Section 52 describes the difficulties we encountered in acquiring them.

24

Although we have identified some cliche's 'in thi's area, it is unlikely that the code for

simulating the actions of nodes will always be a cliche'. There is a wide variety of reasons to

simulate a message-passing system, resulting in a wide range of node behaviors to mimic.

This variation is reflected in the diverse code responsible for smulating a node's actions.

So, we also look at the issues involved when an integral part of an algorithmic. cliche' for

synchronous or event-driven simulation may be filled with unfamiliar, non-cliche'd code. It

is difficult to encode such a cliche' in a flow graph grammar so that it can be recognized by

graph parsing. This is discussed in Sections 41.4 and 52.3.

There are many variations of the algorithm described in this section that still achieve

synchronous smulation. For example, on each iteration, our algorithm performs three

actions in the following order: test for termination, deliver messages, and poll and advance

nodes by one step. The other variations of this algorithm in which a different ordering is

used also perform synchronous simulation. However, the current cliche' library contains only

the one given above as an algorithmic cliche'. Section 52 discusses the problems we face in

trying to concisely encode and recognize the other variations.

The algorithm and data structures used 'in this synchronous simulation design are cap-

tured in our cliche library as cliche's. However, the cliche's are not flat structures, but are

hierarchically built out of other cliche's. The hierarchical organization aows sharing of

common sub-computations among cliche's, which helps us avoid redoing work during recog-

nition. This also highlights the salient characteristics between two similar cche's which is

useful in controlling recognition cost and choosing between near-miss recognitions of the

cliche's. (However, no static organization can do this perfectly, since saliency is relative.)

Figure 21 shows the names of the algorithmic cliche's upon which the Synchronous-

Simulation algorithmic cliche' is built. Lines connecting the names indicate relationships

between the named cliche's. (This is only a portion of the cliche' library. Figure 23 shows

additional algorithmic cliche's used in a common event-driven simulation design which is

described in the next section. Also, the fringe of the trees in Fgures 21 and 23 contain

the names of general-purpose cliche's and small triangles to 'Indicate that the sub-tree of

cliche' names upon which they are built is not shown. Refer to Figure 25 for these cliche'

names and how they relate to the other general-purpose cliche's in the lbrary.) Figure 22

shows the aggregate data cliche's in our library and how they relate to each other.

The trees of cliche' names are shown only to give a flavor of the structure of the cliche'

library. More description of the cliche's and details of how they are encoded are given in

Section 41.

There are three types of relationships between the cliche's i the library. One type of

relationship is composition: Cliche's may contain other cliche's as parts. (This relation is

shown in the trees of Figures 21 and 22 as a set of branching lines, grouped by a circular

arc. The root name represents a cliche' that is composed of the cliche's named by te

branches.)

For example, the aggregate data structure SYNCH-NODE consists of two parts a Buffer ad

25

Sequential-Simulation-of-Message-Passing-System

Synchronous-Simulation Event-Driven-Simulation

Synchronous-Simulation w-Global-Message-Buffer

Queue-Insert Generate-Global-Buffers-and-Nodes Earliest-Simulation-Fnished

x x

Stack- FIFO- Priority-Queue Deliver-Messages-and-Step-Nodes Synchronous-Simulation-Fni.

Push Enqueue. Insert

Deliver-Messages Advance-Nodes Global-and-Local-Buffers-Err
I

I s-Empt ? Queue-E ty?

tte-Nodes- Stack- FIFO- Priority-

uffers Empty? Empty? Queue,

Empty?

Local-Buffers-

Always-Empty?

x

Local-Buffer-

Non-Empty?

FIFO Y?

ished?

iTty?

Enumerate-and-Deliver-Messages

Destructive- Deliver-

Queue-Enumeration Message-

Accumulate

x

Deliver-Message

Lookup-Node-and-Enqueue-

and-Update

Lookup- Local-Buffer- Record-at-

Destination Enqueue Destination

Select-Term FIFO- New-Term

Enqueue

Local-Bu

Enumeral

Bu

I

Poll-Nodes-and-Do-Work

Sequence-and- Do-Work

I

I

Index- Accumulate, Check-I

Enumeration
x

Sequence-
Do-Work Enumeration
Accumulation

Extract-

and-

Handle-

Fifst-Message

Local-Buffer- Local- New- Handle,

None Buffer- Term Message

D eue

FIFO- FIFO-

Empty? Dequeue,

Figure 2- 1: Synchronous simulation cliches.

26

lExecution-Context Handler

Node

Integer

FIF

Cir

Ind

Sec

N
Sequence...Integer

Indexed- Link

Sequence List

ience Integer ,er

Associative- Associative-

List List

Event

Message Real

Integer Sequence Symbol Integer

Instruction

Symbol Sequence

Figure 22: Aggregate data cliches.

27

a Memory, each of which is another cliche': a Queue ad an Associative Set, respectively.

A similar relationship can occur between algorithmic cliche's. The algorithmic cliche' of

Synchronous Simulation using a Global Message Buffer is composed of three other cche's:

Queue-Insert, Generate-Global-Buffers-and-Nodes, and Earliest-Simulation-Finislied.

The second type of relationship that can occur between two cliche's is an implernenta-

tion relationship: A cliche' may implement a more abstract cliche'. For example, a FIFO,

Stack, or Priority Queue can implement a Queue. Poll-Nodes-and-Do-Work is an imple-

mentation of Advance-Nodes. (Lines between cliche' names in Figures 21 and 22 that are

not grouped or starred represent this relationship. Of two cliche's connected by a line, the

upper one is implemented by the lower. Branching ungrouped lines represent alternative

implementations of the root.)

The third type of relationship occurs when one cliche' is a temporal abstraction of an-

other. Temporal abstraction 'is a technique developed by Waters 117, 137, 138] and further

extended by Rich and Shrobe [110, 127], in which a cliched fragment of iterative computa-

tion is viewed more abstractly as an operation on a sequence of values - the sequence of

values that are processed over time, one per iteration. For example, Sum is a temporally

abstract operation that takes a sequence of numerical values and produces their total. This

is a temporal abstraction of a loop fragment in which each iteration computes the sum of

a new value and the result of the sum computed on the previous iteration. The temporal

abstraction of this fragment views the sequence of new values accumulated in the sum as

the input to Sum. (Lines marked with a asterisk in Figure 21 indicate tat the upper

cliche' name is an operation that temporally abstracts the lower iterative cche.) In Figure

2-1, Generate-Global-Buffers-aiad-Nodes is an example of a temporally abstract operation.

It takes the initial global MESSAGE buffer ad the initial collection of SYNCH-NODEs and creates

a sequence of new global MESSAGE buffers and SYNCH-NODE collections. (This 'is a temporally

abstract vew of the iterative computation performed on each iteration of the simulation in

whicIt MESSAGEs are delivered and SYNCH-NODEs are stepped.)

A Common Event-Driven Simulation Design

This section describes a common event-driven smulator design for message-passing systems.

It has data structures ASYNCH-NODE and MESSAGE, representing processing nodes and messages,

respectively. It also has an EVENT data structure, which represents the arrival of a MSSAGE at

an ASYNCH-NODE. Each ASYNCH-NODE data structure maintains its own local Clock. It also has

a Memory part, holding its state. There is a sequence containing all ASYNCH-NODEs, called

an ADDRESS-MAP, which maps each integer address to an ASYNCH-NODE (as 'in the synchronous

simulation design). MESSAGEs typically have the same parts as those in the synchronous sim-

ulation design (Destination-Address, Type, Arguments, Storage-Requirements). An EVENT

contains an Object, which is a MESSAGE to be handled, and a Time at which the work to be

done on the object (i.e., handling a message) was scheduled (i.e., when the MESSAGE arrives

28

at an ASYNCH-NODE)

A global agenda, called the EVENT-QUEUE, keeps track of EVENTs that need to be processed.

The agenda is implemented as a Priority Queue, in which the EVENT with the earliest Time

has the highest priority.

The event-driven simulator is given an initial EVENT, whose Object is a starting MESSAGE

and whose Time is the MESSAGE's arrival time. This is added to the EVENT-QUEUE. On each step

of the simulation, the highest priority EVENT is plled from the EVENT-QUEUE and processed.

Processing an EVENT means simulating te handling of the MESSAGE in the EVENT's Object

part. The simulated message handling is done in the context of the ASYNCH-NODE that

-represents the real node that is the destination of the message. This 'is looked up using

the Destination-Address part of MESSAGE as an index 'Into the sequence ADDRESS-MAP. (As we

mentioned earlier, the portion of the simulator that simulates a processing node's message

handling actions varies. Below we describe a initial set of cliche's that may be used.

However, this portion of the simulator is not guaranteed to always be cliched.)

When an EVENT is processed, the Clock of the destination ASYNCH-NODE for 'Its MESSAGE

Object is updated: the ASYNCH-NODE's Clock becomes the maximum of its current time

and the arrival time of the MESSAGE (i.e., EVENT's Time). (The ASYNCH-NODE's current time

can be later than the arrival time if the simulator is mimicking a real situation in which

the real node was busy when the message arrived. The arrival time can be later tha an

ASYNCH-NODE5s current time if in the real situation being simulated, the real node is idle

when the message arrives.)

Handling a MESSAGE can cause other MESSAGEs to be sent. These are added to the

EVENT-QUEUE. The event-driven simulation eds when the EVENT-QUEUE is empty.

An important characteristic of this algorithm is that the MESSAGEs are handled non-pre-

emotively, which means that once an ASYNCH-NODE starts to handle a MESSAGE, it will not be

interrupted, e.g., by receiving another MESSAGE.

Another property of the algorithm is that at each step, the globally earliest unprocessed

MESSAGE received so far is chosen to be handled. Since the EVENT pulled from the EVENT-QUEUE

is always the one with the earliest Time, and since Time is the arrival time of the MESSAGE

in the EVENT's Ob'ect part, the MESSAGE chosen to be handled next 'is always t1le one with

the earliest arrival time of the MESSAGEs that have not yet been handled.

These two properties ensure that once a MESSAGE 'is chosen for handling, no MESSAGEs

will subsequently be generated that have an arrival time earlier than the MESSAGE chosen.

In other words, MESSAGEs are handled in the order they arrive. So the simulator models tlie

invariant obeyed by the real machine: messages to the same node are handled in the order

in which they are received.

Figure 23 shows the structure of the portion of the cliche' library that contains the

event-driven simulation cliche' and the cliche's it is built -upon. (For data cliche's, refer to

Figure 22.)

29

Sequenfial-Simulafion-of-Message-Passing-System

Event-Driven-Simulation Synchronous-Simulation

Priority Q e-Insert Generate-Event-Queues-and-Nodes Co-Earfiest-EDS-Finished

Dequeue-and-Process-Generation Co-Iteradve-EDS-Finished

Pfiority-Queue-Extract Process-Event Priority-Queue-Empty?

Lookup- Update- Record-at- Handle-

Destination Node-Time Destination Message

Select-

Term
New-

Term
Max

Figure 23: Event-driven smnlation cliches.

30

Node Action Simulation Cliche's

The two simulators for message-passing parallel systems contain a component that simulates

some or a of the actions that a real processing node takes when handling a message.

Which actions are smulated depends on the behavior of interest for the simulation We

have begun to collect some cliche's that occur in simulators tat model message handler

lookup and execution on a node. These cEche's are found in the broader domain of program

execution in general, and the domain of program 'Interpretation (or evaluation) in particular

[1]. Figure 24 sows the structure of this portion of the library.

The cliche's we have collected so far are those for the following.

0 Looking p a handler based on a MESSAGE's Type, which is typically an Associative-

Set-Lookup or Property-List-Looknp, depending on how the handlers are stored.

* Loading the MESSAGE's Arguments into the Memory part of an ASYNCH-NODE or SYNCH-

NODE (depending on whether the simulator is event-driven or synchronous). This in-

volves looking p the ASYNCH-NODE or SYNCH-NODE indexed by the MESSAGE's Destination-

Address, enumerating the Arguments, accumulating them in a sequence, and adding

the sequence to the Memory part (typically an Associative Set).

* Executing the handler on the input data given in the Arguments. An EXECUTION-

CONTEXT data structure is used to keep track of the Node executing the handler (which

is an ASYNCH-NODE or SYNCH-NODE), the Status of the execution (a Symbol), Bindings

of variable names to Memory locations (in an Associative Set), and the Instructions

being executed (which is an Indexed Sequence: a data structure with two parts: a Base

sequence of INSTRUCTIONs and an integer Index which acts as an instruction pointer).

An INSTRUCTION consists of an Operator (symbol), ad a set of Arguments typically

in a list or an adjustable-length sequence), which may be other INSTRUCTIONs.

The handler execution involves iteratively fetching the next instruction to be executed

using the current value of the 'instruction pointer. A standard Lisp EVALUATE/APPLY

recursion is then used to 'interpret the INSTRUCTION with respect to the current values

of the variable names stored in Memory. The Operator part of the INSTRUCTION is used

to look up a Common Lisp function for simulating the actions of the processing node in

applying that operator type to arguments. The EVALUATE/APPLY recursion "evaluates"

an INSTRUCTION by iterating through its Arguments, recursively evaluating each one,

and then applying the function associated wth the INSTRUCTION's Operator to the

results.

We have made a first attempt at capturing the knowledge needed to recognize program

execution cliche's. Our experiences in encoding these cliche's in the graph grammar elped

us to understand both the strengths and weaknesses of the formalism for expressing certain

types of programming ideas. This is discussed further in Chapter .

31

Handle-Message

Lookup-and-Execute-Handler

Lookup- Lookup- Load- Record-at- Fetch-Instruction Interpret- Running-

Handler- Destination Arguments Destination Instruction Status?

for-Message

Load-Args- Load-Args- Indexed- X

Lookup- Select- Synch- Asynch- New- Sequence- Evaluate- Running-

Handler Term Node Node Term Extract Apply Test

Load-

Property-List- Associative- Arguments- Evaluate- Fetch-and

Lookup Set-Lookup into-Memory Arguments Apply-Op

List-to- Associative-

Sequence Set-Add Enum-Eval-Collect Fetch-Op, apply

List- Evaluate Cons- Property- Associative-

Enumeration Ma Accumulate List-Lookup Set-Lookup

Figure 24: Node action simulation cliches.

32

2.1.4 The General-Purpose Cliche's

Figure 25 gives an abstract picture of the relationships between the groups of general-

purpose cliche's that are contained in the library. Each box represents a set of algo-

rithmic cliche's that represent either operations on some aggregate data structure cliche'

(e.g., Priority-Queue) or basic iteration or computational cliche's (e.g., Snm, Sequence-

Enumeration, Absolute-Value). Each box contains the names of some of the cliche's con-

tained in the group it represents.

The arows between the boxes indicate that the cliche's in the source group use the

cliche's in t1te snk group as components, or the cliche's in the source group are abstractions

of tose in the sink group. For example, the arrow from FIFO to Circular-Indexed-Seq-uence

(CIS) indicates that cliched operations on FIFOs can be implemented as cliched operations

on CSs. The arrow from CIS to Basic-Iteration-Cliche's indicates tat the operations of

manipulating a CIS use basic iteration cliche's as components (e.g., the operation of enmer-

ating a CIS uses a Bounded-Count operation as a component, which generates a sequence

of integers within some interval).

The cliche' library does not contain all existing algorithmic cliche's that operate on the

data structures mentioned in Figure 25. We captured a fair number, but due to time

limitations, we could not collect a complete set.

2.2 Real-'World Programs

In studying program recognition, we focused on two programs which were written in Com-

mon Lisp by researchers 'in a parallel architecture group at MIT. The programs sequentially

simulate the parallel execution of programs by a fine-grain message-passing parallel machine

(which is described in 26]).

One program, called PiSim smulates the parallel execution0f programs in terms of te

operations of a "parallel interface" PO 146, 147]. (A parallel architecture interface sepa-

rates parallel programming model issues from machine hardware issues, 'in a way analogous

to the von Neumann interface for sequential computers. For more details, see 146].) It uses

the event-driven algorithm and the program interpretation cliche's that are in our library.

The other simulator simulates the parallel execution of programs written in a language

called Concurrent SmallTalk" 25]. We will refer to this smulator as CST. It -uses the

synchronous simulation design.

The CST simulator program is actually a module 'in a larger program which provides a

programming environment for compiling, simulating, tracing, and gathering ad displaying

statistics on the execution of Concurrent SmallTalk code. unctions that call the simulator

are not analyzed, neither are the metering, tracing, and plotting functions that it calls.

There are a few 'important points about the example simulators that are relevant to our

study of recognition. One is that currently, GRASPR is unable to recognize cliche's 'in programs

33

10, -,%

Ordered-Associative-

List

Extract

Lookup

Delete
*

Unordered-Associative-

List

Insert

Lookup

Delete
* *

Indexed-Sequence

Extract

Fetch+Update

Insert

Bump+Update

Update+Bump
0 0 0

Linked-

List

Enumeration

Cons-Accumulation

Reverse

0 0 0

L

'I

i

Property-List

Lookup

Figure 25: General-purpose cliche's.

34

that contain operations that destructively modify mutable data structures. Our plan is to

study the recognition of aggregate data structures independent of issues concerning Side ef-

fects to them, and then attempt to tackle the problems of mutable data structures later. So,

we manually converted the example programs to programs that contain only non-destructive

versions of the data structure operations. For example, we replaced destructive alterations

to data structures with canges to copies of the data structures. We also propagated these

changes to the data structures that pointed to the altered data structure, and so on. We

essentially routed the data-flow by hand so that a aliasing was taken into account. (Section

7.2.4 gives more details. Appendix contains the original versions of the two simulator

programs, followed by their functional translations.)

In doing the translation, we found that many of the translation steps are automatable.

For certain types of side effects, it may be possible to automatically uncover straightforward

types of aliasing patterns and replace them witli their non-destructive counterparts. The

insights we gained should help us extend GRASPR 'in the future to deal with side effects to

mut able ob ects as discussed in Section 72.4.

All of the cliche's in our current library are "pure" in that they include no destructive

operations (such as RPLACD, RPLACA, or SETF in Common Lisp).

Another important point concerns how te programs simulate message handling. We

mentioned earlier that we have only begun to ecode the clicl-le's found in code that is

responsible for simulating a processing node's action of handling a message. We have

experimented with recognizing these cliche's 'in Pisim , which contains them. However, we

would also like to explore the issues that arise when a integral -part of a algorithmic

cliche' can be filled with unfamiliar, perhaps loosely constrained code. The CST program

allows us to explore these difficulties because it contains code for simulating a node's action

that is not cliched (at least with respect to our current library of cliche's). Details of t1tese

difficulties and suggestions for solving them are given in Sections 41.4 and 52.3.

Our final point is that even though Pisim contains cliched node action simulation code,

problems still arise in expressing and recognizing certain cliche's. This is because part of

the information about how to simulate a node's action is given as mput, rather than being

statically contained 'in the program. In particular, Pisim takes a set of message handlers as

input. Each handler provides a set of instructions to be executed when handling a certain

type of message. For example, Figure 26 gves a handler for a Factorial message, wich

iteratively computes the factorial of a single argument (N). (The X is a local variable.) Te

instructions in the handlers are written in a language of Machine Operations (e.g., Times,

Branch-Zero). Each Machine Operation has a Common Lisp function associated with it

that specifies how to simulate the actions of the processing node in executing that machine

operation. They are defined in terms of simulator functions. For example, Figure 27 shows

the functions that are associated with the operations Times and Branch-Zero.

Like the set of handlers, the definitions of Machine Operations are inputs to PiSim. This

means they are not available for analysis or recognition. The problem that this poses is

35

(define-handler Factorial (N) W

(print-user `&running simple loop test-V)

(write (self) X 1)

Loop

(branch-zero (read (self) N) Done)

(write (self) X (times (read (self) X) (read (self) N)))

(write (self) N (minus (read (self) N) 1))

(branch-zero Loop)

Done

(print-user `&the answer is -d-%" (read (self) X))

(destroy-segment (selfM

Figure 26 A message handler for Factorial.

that the data and control flow of the entire PiSim program cannot be statically computed.

It depends on the iput for a particular simulation. The implication of this is that we do

not have complete knowledge about who calls the simulator fnctions or how their inputs

and outputs are connected. The problems we have encountered as a result are discussed in

Section 52.

Choice of Programs: Breaking Out of the Toy Program Rut

In choosing programs to use in our study of recognition, our goal was to break out of the rut

of automating the recognition of "toy" programs, 'in which most earlier recognition research

has been caught. Both simulator programs isim ad CST) do this. Their sizes fall in the

500 to 1000 line range, rather than being on the order of tens of lines, which is the typical

size of programs dealt with in previous recognition research.

Program length is only a approximate indicator of the potential difficulty of recognizing

a program. In addition to choosing larger programs, we have chosen programs not written

by us (the designers of the recognition system). The simulator programs are not contrived

examples. They were written, without bias, to solve a particular real-world problem.

A key advantage of this is that it provides challenges to the recognition approach tat

might not be anticipated by -us, as developers of it. Even tough we may need to change or

simplify the original program to aow recognition to occur, we are aware of the limitation of

our approach that requires this. We also are aware of the type of transformation that should

be made or the advice that should be gven to help deal wth the shortcoming. (Section

5.2 discusses the limitations observed and Section 52.5 summarizes changes made to te

original programs to yield the programs that GRASPR recognizes.)

Additionally, the programs indicate which characteristics of programs are typical. This

helps us in analyzing or recognition technique. For example, recognition by graph parsing

can be expensive 'if there are excessive amounts of redundant computation, which causes

36

------ -

(Define-Operation Times (Active-Task X Y)

(multiple-value-bind (New-Time Task-Node New-Task)

(Increment-Time-Of Active-Task)

(values (* X Y) New-Task)))

(Define-Operation Branch-Zero (Active-Task Test-Variable Label)

(multiple-value-bind (New-Time Task-Node New-Task)

(Increment-Time-Of Active-Task)

(if (zerop Test-Variable)

(values Label

(Make-Task :Handler (Task-Handler New-Task)

:Node (Task-Node New-Task)

:Segment (Task-Segment New-Task)

:IP Label

:Status (Task-Status New-Task)))

(values nil New-Task))))

Figure 27: The definition of two Machine Operations.

ambiguity. However, this characteristic 'is rare in the example smulator programs. Knowing

which characteristics are typical or rare in real-world programs helps us determine which

factors influence the practicality of our approach.

Another aspect of te simulator programs which distinguishes them from the "toy" pro-

grams studied previously is that they contain domain-specific cliche's. These go beyond

general-purpose cliche's, such as operations on queues, stacks, and hash tables, which have

been the focus of previous recognition research. The programs contain common simulation

algorithms ad data structures. By recognizing these cliche's, GRASPR provides more useful

program understanding capabilities than if it recognized te general-purpose cliche's alone.

This allows us to explore the expressiveness of the graph grammar formalism as a repre-

sentation. for domain-specific cliche's. (On the other hand, the current cche library has

been acquired with the example programs in mind. More empirical studies are needed to

evaluate the ability of the existing system to recognize new programs with te same library

and to determine how much the library must change to recognize them.)

The simulator programs also contain a fair amount of unfamiliar code mixed in wth

cliched computational structures. In experimenting with them, we test GRASPR's abilities

to perform partial recognition, which is required in dealing with any realistic non-trivial

program.

37

Besides identifying the knowledge -needed to understand and construct programs, it is im-

portant to capture this knowledge in such a way that it can be applied to a broad range of

programs. In automating program recognition, our goal is to codify programming cliche's

at a level of abstraction tat allows us to recognize them 'in programs that vary widely in

such details as syntactic constructs used, programming language chosen, data structure and

subroutine decomposition, ad implementational choices. In addition, we provide recogni-

tion techniques that are robust under other types of variation, such as variation de to

function-sharing optimizations ad unfamiliar code.

This section gives examples of the recognition capabilities of GRASPR. This serves to

demonstrate what GRASPR can do in terms of the classes of variation it can tolerate. It also

provides motivating examples, of the goals we have for our representational formalism and

recognition technique.

2.3.1 Common Program Variations

Program recognition is difficnlt due to the wde range of possible variations among programs.

An instance of a cliche' may appear in a variety of forms. The following is a list of some of

the common types of variation found in programs. (This does not provide a complete list

of the variations we encountered in our empirical recognition studies with Pisim and CST.

Chapter discusses more variations, both those tolerated and not tolerated by our current

system.)

9 Syntactic variation in control and binding constructs. There are typically many ways

to achieve the same net flow of data and control. Variable, function, data structure,

and part names vary widely. Also, syntax varies over programming languages.

0 Implementation variation. A given abstraction can often be implemented by a set of

different concrete algorithms and data structures.

* Delocalization. Parts of a cliche' are sometimes widely scattered throughout the text

of a program, rather than being contiguous.

* Unrecognizable code. Not all programs are constructed completely of cliche's. Recog-

nition must be able to ignore an unpredictable amount of unrecognizable code.

* Variation in the organization of components. Programs can be decomposed into sub-

routines in a variety of ways. Also, data structures can aggregate pieces of data in a

multitude of dfferent nested organizations.

* Redundancy. Programs may vary in how much computation is repeated in te same

instance of a cliche'. For example, when the result of some inexpensive computation

38

2.3 Recognition Examples

is needed more than once the program may simply recompute the value each tme it

is needed rather than caching the result in a temporary variable.

e Optimizations. A great deal of variation occurs between optimized and unoptimized

programs even though they may contain the same abstract cliche'. A common form

of optimization introduces function-sharing in which the implementations of two or

more distinct abstract structures are merged.

2.3.2 Examples of Capabilities

GRASPR is able to recognize both CST and PiSim as sequential simulators of message-passing

parallel systems. It recognizes the synchronous simulation design in CST and the event-driven

simulation design in Pisim. It also recognizes the message-passing program execution cliche's

in the portion of Pisim's code that simulates handling messages.

The primary output of GRASPR 'is a forest of design trees. A design tree indicates te

cliche's found in the program and how they are related to each other. Figure 28 shows a

portion of the design tree produced in recognizing Pisim. Subtrees that are not sown are

collapsed into small triangles below a cliche' name. The dashed lines at the tree's fringe are

links to primitive operations in the source code, which indicate the location of a particular

cliche' in te code. The drawing of te design tree is a simplified version of the actual

description produced by GRASPR. The description is simplified (for presentation purposes)

in that only operations are specified in the leaves of the tree, while the actual description

includes information about the data involved in each cliche' instance. In general, GRASPR

may produce several design trees, representing recognition of multiple, perhaps overlapping,

cliche's in the code.

(The design trees are graph grammar derivation trees, which are described in Section

3.2.2. In general, they may be graphs in that a recognized cliche' may be a component or

implementation of two or more higher-level cches.)

A secondary way to view the output of GRASPR 'is provided by a tool, called "Para-

phraser," which takes the design trees produced during recognition and generates textual

documentation based on them. Paraphraser knits together schematized textual fragments

associated with the recognized cliche's, filling in slots with identifiers taken from the source

code (e.g., *EVENT-QUEUE*). It bases the structure of the text on the relationships between

the cliche's.

Figure 29 shows some of the documentation generated for the design tree shown in Fig-

ure 28. The documentation, althouah stilted, does describe the important design decisions

in the program and can help a programmer locate relevant objects in te code (via the

identifiers).

One potential benefit of automated program recognition is to use such automatically

produced documentation to maintain poorly documented or undocumented programs. A-

tomatically produced documentation can be updated whenever the source code changes,

39

Sequendal-Simulation-of-Message-Passing-System

Event-Driven-Simulation

Priority- ueue-Insert Generate-Event-Queues-and-Nodes Co-Earliest-EDS-Finished

X x
Ordered-Associative- I

List-Insert Dequeue-and-Process-Generation Co-Iterative-EDS-Finished

'act Process-EventPriority-Queue-Extr.

Ordered-Associative-List-E

List-Pop

S el ect- Select-

Head Tail

car car

Ordered-Associative-

List-Empty?

List mpty?

null

'extract

Handle-

Message

Lookup- Update- Record-at-

Desfinafion Node-Time Destinadon

Select- Max New-
Term Term

max copy-replace-elt
aref

Lookup-and-Execute-Handler

Lookup- Lookup- 0 0 0

Handler- Destination

for-Message

Property- Select-Term

List-Lookup

get aref

Figure 28: Design tree for PiSim.

40

Priority-Queue-Empty?

I

PISIM sequentially simulates a parallel message-passing system.

It is implemented as an Event-Driven Simulation.

1: Event-Driven Simulation asynchronously simulates a collection of

processing nodes handling messages, using an event-driven algorithm. An

event-queue *EVENT-QUEUE* of events is maintained. To start, an initial

event EVENT is inserted in the event-queue. On each step, an event is

pulled off and processed, which may create new events to be added to the

event-queue. The asynchronous nodes (which represent processing nodes)

are collected in an address-map, called *NODES*.

Event-Driven Simulation is composed of a Priority-Queue Insert, a Co-Earliest

Event-Driven Simulation Finished and a Generate Event Queues and Nodes.

2: Priority-Queue Insert inserts EVENT in the priority queue

EVENT-QUEUE. An element's priority P is higher than another's Q,

if P < Q. If an element already exists in the priority queue with

the same priority, then the new element is inserted into the queue

after the existing element.

Priority-Queue Insert is implemented as an Ordered Associative List Insert.

3: Ordered Associative List Insert inserts EVENT in the

ordered associative list *EVENT-QUEUE*...

2: Co-Earliest Event-Driven Simulation Finished takes a sequence of

event-queues and a sequence of address-maps and returns the address-map

in the sequence of address-maps that corresponds to the first empty

event-queue in the sequence of event-queues.

Co-Earliest Event-Driven Simulation Finished temporally abstracts

Co-Iterative Event-Driven Simulation Finished.

3: Co-Iterative Event-Driven Simulation Finished terminates

the simulation when the current event-queue (*EVENT-QUEUE*)

is empty, returning the current value of the address-map (*NODES*).

The event-queue is implemented as a Priority Queue.

The Event-Driven Simulation Finished Test is implemented as a

Priority Queue Empty.

4: Priority Queue Empty tests whether the priority queue

EVENT-QUEUE is empty....

2: Generate Event Queues and Nodes generates event-queues and address-

maps by repeatedly dequeuing the current event-queue and processing

the event dequeued. Processing an event causes new events to be added

to the event-queue and a new address-map to be created. The initial

event-queue is *EVENT-QUEUE* and the initial address-map is *NODES* ...

Generate Event Queues and Nodes temporally abstracts Dequeue and

Process Generation....

Figure 29: Some of the documentation generated for Pisim.

41

solving te pernicious problem of misleading, out-of-date documentation.

The current implementation of Paraphraser s heuristic and fragile. Documentation

generation is not a primary focus of this research. The problem of applying recognitio to

program documentation needs further study, perhaps borrowing techniques from natural

language generation.

Besides documentation, there are a variety of ways to present the results of recognition,

depending on how the results will be used. Future work is needed to find the presentation

appropriate for effective interaction with people and other automated tools.

Syntactic Variation

The design tree and documentation shown 'in Figures 28 and 29 were produced by

GRASPR in recognizing Pisim. The top-level portion of Pisim 'is shown in Figure 210. (Ttle

source code for data structure definitions ad some subroutines are not shown.) Inject is

the top-level function which starts the PiSim smulator. It takes an initial start message

type and the message's arguments. After some iitialization, it creates a Message data

structure, based on information about storage requirements computed from the Handier

that is associated with the message type. It randomly generates a destination address for

the message and computes the message's arrival time from the destination Node's current

time. Once the message is created, an Event is constructed, whose Object part is te Message

and whose Time is the arrival time. The Event is placed on the event-queue *Event-Queue*

and Execute-Events is run to iteratively extract and execute the highest priority event on

the event-queue.

Given a syntactic variation of this code, such as the code in Fgure 211, GRASPR is able

to recognize the same cliche's to produce the same design tree and documentation (mod-

ulo identifiers). Recognition is robust under variations in variable names (Length versus

Memory-Needed), binding and control constructs (cond versus if), ad names of data struc-

tures and their parts (Message versus Msg and Messa ge-Destination versus Msg-Dest-Addr).

Start-PiSim also differs from Inject in the ordering of computations in the let binding

clauses. It routes dataflow differently, using fewer local variables. It also passes the event

queue around explicitly, rather than maintaining a global variable. Recognition robustness

is achieved as a result of the representation shift performed by GRASPR which translates both

programs into the same graphical representation. In this representation, syntactic details

are suppressed.

Organization of Components

The representation used by GRASPR also suppresses details of how programs are decom-

posed into subroutines and how aggregate data structures are organized. For example, the

code in Figure 212 differs from the original Pisim code shown in Figure 210 in structural

organization. It bundles up the initialization and storage requirement computations into

42

(defvar *Event-Queue* nil "this is the global event-queue")

(defvar *Nodes* nil "this is the node array")

(def struct Message

(Destination nil)

(Length)

(Type nil)

(Arguments nil))

(defstruc t Event

(Time)

(Object nil))

(defun Inject (Type &rest Arguments)

(Make-Nodes)

(Clear-Nodes)

(Clear-Event-Queue) resets *Event-Queue* to NIL

(let* ((Handler (Get-Handler Type))

(Length (Handler-Arity Handler)

(Handler-Number-Of-Locals Handler)

2))

(Destination (random (Number-Of-Nodes)))

(Arrival-Time (Node-Time (Translate-Node Destination)))

(Message (Make-Message :Destination Destination

:Length Length

:Type Type

:Arguments Arguments))

(Event (Make-Event :Time Arrival-Time

:Object Message)))

(Enqueue-Event Event)

(Execute-Events)))

(defun Equeue-Event (New-Event)

(if (or (null *Event-Queue*)

(< (Event-Time New-Event)

(Event-Time (first *Event-Queue*))))

(setq *Event-Queue*

(cons New-Event *Event-Queue*))

(setq *Event-Queue*

(Insert-Event New-Event *Event-Queue*))))

(defun Execute-Events 0

(cond null *Event-Queue*)

Nodes)

(t (Execute-Next-Event)

(Execute-Events))))

Figure 210: Top-level portion of Pisim code.

43

(defvar *P-Nodes* nil "collection of nodes")

(defstruct Msg

(Dest-Addr nil)

(Storage-Length)

(Type nil)

(Args nil))

(def struct Event

(Time)

(Object nil))

(defun Start-PiSim (Start-Msg-Type Args)

(Make-Nodes)

(Clear-Nodes)

(let* ((Address (random (Number-Of-Nodes)))

(Msg-Handler (Get-Handler Start-Msg-Type))

(Memory-Needed ((Handler-Arity Msg-Handler)

(Handler-Number-Of-Locals Msg-Handler)

2))

(Pending-Events

(Enquene-Event

(Make-Event :Time (Node-Time (Translate-Node Address))

:Object (Make-Msg :Dest-Addr Address

:Storage-Length Memory-Needed

:Type Start-Msg-Type

:Args Args))

nil)))

(Execute-Events Pending-Events)))

(defun Enqneue-Event (New-Event'Event-Queue)

(if (or (null Event-Queue)

(< (Event-Time New-Event)

(Event-Time (first Event-Quene))))

(setq Event-Queue

(cons New-Event Event-Queue))

(setq Event-Queue

(Insert-Event New-Event Event-Queue)))

Event-Queue)

(defun Execute-Events (Pending-Events)

(if (null Pending-Events)

P-Nodes

(Execnte-Events

(Execute-Next-Event Pending-Events))))

Figure 211 A syntactic variation of the portion of Pisim. shown in Figure 210.

44

(defvar *Message-Queue* nil "this is the global message queue")

(defvar *Nodes* nil "this is the node array")

(defstruct Msg

(Destination nil)

(Arrival-Time)

(Data nil))

(def struct Handler-Data

(Type nil)

(Length)

(Arguments nil))

(defun. Initialize-Simulator O

(Make-Nodes)

(Clear-Nodes)

(Clear-Message-Quene)) ;; resets *Message-Queue* to NIL

(defun Compute-Storage-Rqmts (Type)

(let ((Handler (Get-Handler Type)))

(+ (Handler-Arity Handler)

(Handler-Number-Of-Locals Handler)

2)))

(defun Inject (Type &rest Arguments)

(Initialize-Simulator)

(let* ((Length (Compute-Storage-Rqmts Type))

(Destination (random (Number-Of-Nodes)))

(Arrival-Time (Node-Time (Translate-Node Destination)))

(Handler-Data (Make-Handler-Data :Type Type

:Length Length

:Arguments, Arguments))

(Message (Make-Msg :Destination Destination

:Arrival-Time Arrival-Time

:Data Handler-Data)))

(Enqueue-Message Message)

(Process-Messages)))

(defun. Equeue-Message (Message)

(if (or (null *Message-Queue*)

(< (Msg-Arrival-Time Message)

(Msg-Arrival-Time (first *Message-Queue*))))

(setq *Message-Queue*

(cons Message *Message-Queue*))

(setq *Message-Qneue*

(Insert-Message Message *Message-Queue*))))

(defun Process-Messages

(cond ((null *Message-Queue*) *Nodes*)

(t (Process-Next-Message)

(Process-Messages))))

Fignre 212: An organizational variation of the top-level portion of Pisim.

45

subroutines. It also aggregates data differently. The original code defines an Event data

structure with two parts: an Object and a Time. The Object part is fined by a Message

data structure, which has te parts Destination, Length, Type, and Arguments. Pending

Events containing messages to be handled) are queued in an *Event-Queue*.

In the variation of this code shown in Figure 212, there is no Event data structure.

Instead Msg data structures are placed directly 'in an event-queue, called *Message-Queue*.

Each Msg contains a the data that is in a Message in the original code and additionally

has an Arrival-Time part, which plays the role of the Time part of Events in the original

code. Some of the data aggregated in Msg is aggregated further into a sub-structure, called

Handler-Data. This structure contains the parts Length, Type, and Arguments found in

message originally and it is nested inside the Msg data structure, under the Data part.

Despite these differences, GRASPR recognizes the same cliches in this code as in the original

code in Figure 210.

It is 'Important that recognition be robust -under organizational variations because te

cliche's 'in the current library are themselves organized herarchically. It is crucial that the

program need not mirror this same organization for the cliche's to be recognized 'in it.

This is because the library organization is not necessarily based on the typical way

these cliche's are organized in programs. There are two reasons it 'is not. One is that there

is not always exactly one "typical" or common decomposition of cliche's into subroutines

or nesting of aggregate data structures. The second is that it may be better to base the

library's organization on other criteria besides what is typical. For example, the organization

might be chosen to emphasize salient parts of cliche's to facilitate recognition performance

improvements or to help choose the best partial analysis during near-miss recognition.

On the other hand, information about typical decompositions may provide aluable

expectations about the location of cliche's in a program. This can considerably narrow

down te search for cliche's, as discussed in Section 64.1.

Our representation does not eliminate information about the boundaries of subroutines

and user-defined data structures within the program. It merely suppresses it, so that the or-

ganizational variation does not hinder recognition. It places this information in annotations

on the graphical representation of the program. So, although in general we do not require

that a program's function and data structure organization match the organization of the

cliche's in our library, it is possible to impose constraints on the cliche's being recognized,

requiring that they occur within certain boundaries. These boundaries can be heuristically

defined based on information, such as subroutine or data structure decomposition. (See

Section 64.1 for more details.)

Delocalized Cliche's and Unfamiliar Code

Programs are rarely constructed entirely of cliche's. Non-trivial programs are usually a

mix of cched computational structures ad unfamiliar code. In addition, the cliclie's are

46

(defun cst-start (init-msg)

(send-msg init-msg)

(shell-go))

(defun send-msg (msg)

(setq *step-queue*

(enquene *step-queue* msg)))

(defun shell-go O

(cond ((step-done) nil)

(t (step-nodes)

(shell-go))))

(defun step-nodes O

(when *Profile* (profile-step)) ?

(when *log* (log-step))

(when *trace*

(record-traced-selectors *trace-selectors*)) ?

(deliver-msgs)

(when *meter-message-queues* ?

(record-message-queue-data))

(iteratively-step-nodes 0)

(setq *step-nr* 1 *step-nr*))))

(defun iteratively-step-nodes W

(if >= x (array-total-size *nodes*))

nil

(step-node x)

(iteratively-step-nodes 1 x))))

(defun step-node (node-nr)

(let* node (get-node node-nr))

(q (node-quene nodeM

(if (queue-empty? q)

nil

(multiple-value-bind (msg new-queue)

(dequeue q)

(setq node

(make-node ueue new-queue

:objects (node-objects node)

:contexts (node-contexts node)

:bnsy-count 1 (node-busy-count node)) ?

:method-cache (node-method-cache node))) ?

(setq *nodes* (copy-replace-elt node node-nr *nodes*))

(multiple-value-bind (new-nodes new-step-queue)

(process-msg msg *nodes* *step-qneue*)

(setq *nodes* new-nodes

step-queue new-step-queueMM

Figure 213: Top-level portion of CST. Question marks indicate ufamiliar code.

47

often interleaved with unfamiliar computation as well as with each other. This means that

parts of a cliche' may be scattered throughout the text of a program. Both of these factors

make recognition difficult not only to atomate, but also for people to do correctly.

GRASPR is able to ignore ufamiliar code to partially recognize the program. It also

addresses the difficulty of recognizing delocalized cliche's by employing a program represen-

tation shift from source text to flow graph. Cche parts that are separated by unrelated

expressions in the text become neighboring nodes in a flow graph.

For example, Figure 213 shows the top-level portion of the CST program, which uses the

synchronous simulation design. (The source code for data structure definitions and some

subroutines are not shown.) In addition to the simulation algorithm and data tructures,

this code contains calls to functions that perform various metering, logging, and statistics-

gathering operations. These operations are not cliched, at least with respect to our current

library. The figure indicates unfamiliar portions of the code with question marks. The

cliche's in the program are not found in one contiguous section of program text, but are

interrupted with unrelated computations.

Not only are there unfamiliar computations interleaved with tlie algorithmic cliches, but

there are also parts of data structures that are not recognizable as part of any data ccl-le'.

For example, the data structure node consists of a Queue part (which acts as the local FIFO

buffer in the SYNCH-NODE data cliche) and a Contexts part (which contains a data structure

that has a part corresponding to the Memory part of the SYNCH-NODE). The rest of the parts

of node b'ects, Busy-Count, and Method-Cache) are novel, specific to this program. They

are used for gathering statistics and smulating the action of handling a message.

Despite the delocalization of the cliche's and the unfamiliar code, GRASPR is able to

recognize cliched parts of this program. The design tree and documentation produced are

shown in Figures 214 and 215 (in abbreviated form).

Implementation Variation

Often, there is more than one cched implementation of an abstract operation or data type.

This can introduce variability between programs tat on a high level of abstraction perform

the same abstract operation or use the same abstract data types. It is 'important that

GRASPR be able to recognize the same abstract cliche's in these variations.

For example, the CST program uses a FIFO queue to implement the queue of messages

collected on each cycle of the synchronous simulation and then delivered on the next. The

FIFO queue is implemented as a Circular Indexed Sequence, as shown in Figure 216.

However, anotlier possible implementation of the queue is a LIFO queue (or stack), as

shown in Figure 217.

GRASPR produces the design-tree shown in Figure 218 for the code that ses this 'imple-

mentation. It differs from the tree in Figure 214 only in the subtrees that are hghlighted

by dotted boxes in the figure. The rest of the tree, including the high-level description of

48

- " - I

Sequential-Simulation-of-Message-Passing-System

Synchronous -Simulation

Synchronous-Simulation w-Global-Message-Buffer

Queue-Insert Generate-Global-Buffers-and-Nodes Earliest-Simulation-Finished

X X

Deliver-Messages-and-Step-Nodes Synchronous-Simulation-Fnished?

Enqueue

Deliver-Messages Advance-Nodes Global-and-Local-Buffers-Empty?

Enumerate-and-Deliver-Messages Poll-T.-des-and-Do-Work Local-B s-Empty? Queue-Empty?

ive- Deliver- Sequence-and- Do-Work Enu -Nodes- FIFO-

Message- Index- Accumulate Check-Buffers Empty?

Accumulate Enumeration

X Sequence- Local-Buffers-
�Ork

Deliver-Message Accumulation Enumeration Always-Empty?

X ""��X�

Destructi

Queue-E-

jell,

Lookup-Node-and-Enqueue-

and-Update

Lookup- Local-Buffer- Record-a-

Destination Enqueue Destiuati4

-1.,,t-Terrn FIFO- Ier
I

Enqueue I
I II

ar�f copy-replace

Local-Buffer-

Non-Empty?

Y_

Circular-Indexed-

Sequence;K7ty?

%
Commutative- %%

Binary-Function null-test

I
Extract-

and-

Handle-

Fifst-Message
it-

[on

Local-Buffer- Local- New- Handle-

None y- Buffer- Term Message

queue

)-elt
FIFO- FIFO- COPY-

Empty? Dequeue replace-eft

Circular-Indexed-

Sequence-Extract

Select-Term Bump- mod Decrement

Index

aref Increment

1+

Figure 214 A portion of design tree produced in recognizing CST.

49

--ll I------

, t! I man - - - I -1- - -1-1--�--,.-------NNNININMNIIml-----

CST sequentially simulates a parallel message-passing system.

It is implemented as a Synchronous Simulation.

1: Synchronous Simulation synchronously simulates a collection of processing

nodes handling messages. The synchronous nodes (which represent the

processing nodes) are collected in an address-map, called *NODES*. Each

node maintains a local buffer of pending messages to handle. Synchronous

Simulation is implemented as a Synchronous Simulation using Global

Message Buff er.

2: Synchronous Simulation using Global Message Buffer iteratively advances

each synchronous node in *NODES* by handling one message a piece. It uses

a global message buffer to ensure that nodes advance in lock-step. The

global buffer's initial value is *STEP-QUEUE*. The simulation starts by

adding an initial message INIT-MSG to *STEP-QUEUE*. The simulation ends

when no node has work to do (i.e., no more messages to handle) and the

global message buffer *STEP-QUEUE* is empty. As messages are handled, new

messages are created which are buffered on the global message buffer.

Synchronous Simulation using Global Message Buffer is composed

of a Queue Insert, an Earliest Simulation Finished and a Generate

Global Message Buffers and Nodes.

3: Queue Insert equeues INIT-MSG on the Queue *STEP-QUEUE*, which is

implemented as a FIFO. Queue Insert is implemented as a FIFO Enqueue.

4: FIFO Enqueue enqueues INIT-MSG on the FIFO queue *STEP-QUEUE*,

which is implemented as a Circular Indexed Sequence

3: Earliest Simulation Finished takes two input sequences: a sequence

of address-maps, starting with *NODES*, and a sequence of global

message buffers, starting with *STEP-QUEUE*. It outputs the first

address-map in the input sequence of address-maps that satisfies the

predicate that all nodes in the address-map have empty local buffers

and the corresponding global message buffer is empty.

Earliest Simulation Finished temporally abstracts Synchronous

Simulation Finished?.

4: Iterative Synchronous Simulation Finished tests whether a

synchronous simulation is finished by testing whether the

global buffer and all of the nodes' local buffers are empty....

3: Generate Global Message Buffers and Nodes generates address-maps

and global message buffers by repeatedly delivering all

messages in the global message buffer *STEP-QUEUE* and

advancing the synchronous nodes in *NODES* by one step each....

Figure 215 A portion of the documentation generated for CST.

50

the program as a sequential simulation, remains te same.

It is impractical to eumerate all possible implementational variations of an abstract

cliche in the cliche' library. The hierarchical organization of the clicl-te' library aows imple-

mentation variation to be represented compactly.

Function-Sharing

Programs can vary widely, depending on which optimizations they make. A type of opti-

mization that occurs frequently in programs is one in which two abstract cliche's share some

functional part. In this case, the implementations of the cliche's overlap. GRASPR is able to

recognize the two cliche's in a program whether or not their implementations overlap.

For example, one of the things the CST program does 'in gathering statistics is tat it

iterates through the nodes ad computes the average length of their FIFO queues before

it delivers messages on each clock cycle. Suppose we added te cliche' to our library that

performs this operation: it polls the SYNCH-NODEs, keeps a running total of their local buffer

sizes, and divides the sm by the number of SYNCH-NODEs.

This cliche' is found 'in the current CST code 'in the function avg-queue-length, which

is called by prof ile-step 'in step-nodes, as shown 'in Figure 219. The recognition of this

cliche' results 'in the design tree shown in Figure 220. (This tree is generated by GRASPR in

addition to the design tree shown in Figure 214.)

Figure 221 shows a variation of the CST code in which the function-sharing optimiza-

tion has been introduced. In this code, the average qeue length computation has been

moved into the iteration in iteratively-step-nodes that polls nodes and advances each

one in lock step. This function is already iterating through the nodes. So, 'in addition to

stepping each one, it has been made to keep a running total of their local queue lengths.

Its caller, step-nodes, finishes off the averaging computation. This optimization increases

the program's efficiency by enumerating the nodes only once.
GRASPR is able to recognize both the queue averagin Clich' and the advance nodes clich'

e e

in this optimized program, even though the implementations of the cche's overlap. The

resulting design trees share a sb-tree, as shown in Figure 222.

Redundancy

Sometimes a part of a cliche' might appear more than once in the same instance of a cliche'.

The repeated part is most often some 'inexpensive computation whose result is needed more

than once. The program may simDIV repeat this computation, rather tan caching the

result in a temporary variable. An example of this occurs in the fnction Splice-in-Bucket

shown in Figure 223, which is used by a hash table insertion function contained in Pisim.

Splice-in-Bucket creates ad iserts a entry into a hash table bucket, called Bucket-List,

which 'is an ordered associative list. It does tis by "cdr'ing" down the Bucket-List, looking

for a place to insert the new entry so that the entries remain ordered with respect to their

51

(def-an cst-start (init-msg)

(send-msg init-msg)

(shell-go))

(defun deliver-msgs 0

(cond ((queue-empty? *step-qneae*) nil)

(t (multiple-valne-bind (msg new-step-queue)

(dequeue *step-queue*)

(setq *step-q-ueue* new-step-quene)

111)

(deliver-msgs))))

(defstruct qeue

(head)

(tail)

(length)

(data-size *defan1t-queue-size*)

(data (make-array *default-queue-size* :adjustable t)))

(defun queue-empty? ueue)

(= (queue-length queue) OM

(defun enqne-ue (queue obj)

(let* length (queue-length queue))

(old-size (quene-data-size queue))

(big-enough-queue (if < length (1- old-size))

queue

(grow-quene queueM)

(enqueue-base big-eno-ugh-queue obj)))

(defun enquene-base (ueue obj)

(let ((old-size (quene-data-size ueue)))

(make-queue :head (queue-head quene)

:tail (mod (queue-tail qeue)) old-size)

-.length (queue-length queue))

:data-size (queue-data-size queue)

:data (copy-replace-elt obj

(queue-tail queue)

(quene-data ueneM))

(defun dequene queue)

(let ((elt (aref (quene-data queue) (q-aeue-head uene))))

(setq qeue (make-queue :head (mod (quene-head queue))

(queue-data-size qeue))

:tail (queue-tail queue)

:length (1- (queue-length queue))

:data-size (queue-data-size queue)

:data (queue-data ueue)))

(valnes elt queue)))

Figure 216: Buffer queue implemented as a FIFO, which in turn is implemented as a CIS.

52

(defun queue-empty? (queue)

(null queue))

(def un enqueue (queue obj)

(cons obj queue))

(defun dequeue (queue)

(values (car queue)

(cdr queueM

Figure 217: Buffer qeue implemented as a stack (LIFO).

Key parts. If an entry exists with the same Key as the new entry (Key), then the existing

entry's Value part is changed to the new Value. Number-Entries keeps track of the number

of entries in the hash table. It is incremented only if the new entry is inserted not if an

existing entry is changed.

This function repeats the computation of accessing the first element of Bucket-List, us-

ing car, as indicated 'in the figure by asterisks. However, the cliche' for Ordered-Associative-

List-Insert contains only one part corresponding to these expressions. It matches more

closely the program shown in Figure 224. GRASPR is able to recognize Ordered-Associative-

List-Insert in both variations.

2.4 Breadth of Coverage

The cliche's captured in our library cover a broad range of programs. The domain-specific

cliche's occur in programs in the domain of sequential simulation of message-passing parallel

systems, while our general-purpose utility cliche's are found in programs across all domains.

However, the library's coverage is not absolute. Our "example-driven" cliche' acquisition

was based on an extremely small sample set of programs in a particular domain. We make

no claims of fully modeling the simulation domain or eveia the subset of it that deals with

message-passing systems. Also, our library does not contain a utility cche's used by

experienced software engineers.

Despite these limitations, our library demonstrates the kinds of algorithms and data

structures that can be expressed within a graph grammar formalism. This formalism cap-

tures these cliche's at a level of abstraction that enables recognition by graph parsing to be

robust under many common types of program variations.

53

Sequential-Sirnulation-of-Message-Passing-System

Synchronous-Simulation

Synchronous-Sinmlation-w-Global-Message-Buffer

Queue-Insert Generate-Global-Buffers-and-Nodes Earliest-Simulal

X

OLMAI,-Push Deliver-Messages-and-Step-Nodes Synchronous-Si

cons Deliver-Messages Advance-Nodes Global-and-Loc
.....................

Enumerate-and-Deliver-Messages Poll-Nodes-and-Do-Work Local-Du -Empty?

uctive- Deliver- Sequence-and- Do-Work Enui -,-Nodes-

numeration Message- Index- Accumulate Check-Buffers

Accurnalate Enumeration

Numeration X
rork Sequence- Local-Buff

Wiver-Message Accumulation Enumeration Always-En
.meration

X

ition-Finished

x

imulafion-Finished?

uffers-Empty?

............. 0

eue- mpty?

Stack

Empty?

'fers-

mpty?

Local-Buffer-

Non-Empty?

FEFO-Ermty?

Circular-Indexed-

Sequence- ty?

ive- %

notion null-test

I

p

I

I

.0

Commutati

Binary-Fur
I

I

11

Destn
: Queue-Er

: Stack-En

: List-Enun
a

�f x : Lookup-Node-and-Enqueue-
................

and- e

Lookup- Local-Buffer- Record-al

Destination Enqueue Destinati<

Select-Term FIFO- I en

11 Enqueue II

aref copy-replace.

Extract-

and-

Handle-

First-Message

Lt-

.on

Local-Buffer- Local- New- Handle-

None Buffer- Term Message
M. D eue

1elt FIFO- 10- copy-

Empty? Dequeue replace-elt

Circular-Indexed-

Sequence-Extract

Select-Tenn Burnp- mod Decrement

Index

aref Increment

1+

Figure 218: Design tree for implementational ariation in which the buffer 'is a stack.

54

-

(def un step-nodes

(when *Profile* (profile-step))

(iteratively-step-nodes 0)

(defun profile-step

(avg-queue-length)

(defun avg-queue-length O

(let ((tql 0))

(setq tql (sum-queue-lengths 0 tql))

U tql (array-total-size *nodes*))))

(defun sum-queue-lengths (x tql)

(if >= x (array-total-size *nodes*))

tql

(sum-queue-lengths

(1+ X)

(+ tql (queue-length (node-queue (get-node XMM)

(defun iteratively-step-nodes W

(if >= x (array-total-size *nodes*))

nil

(step-node x)

(iteratively-step-nodes 1 x))))

Figure 219: Portion of CST that averages node queue lengths.

Average-Local-Buffer-Size

Enumer Nodes+

Compute-Average

Sum Sequence-and- �ivide sequence-size
I

Index-Enumeration

X

Summing array-total-size

Figure 220: Design tree for queue length averaging computation.

55

(defun step-nodes

(when *profile* (profile-step))

(iteratively-step-nodes 0 0)

U *total-queue-length*

(array-total-size *nodes*))

(defun iteratively-step-nodes (x tql)

(cond ((>= x (array-total-size *nodes*))

(setq *total-queue-length* tql)

nil)

(t (step-node x)

(iteratively-step-nodes

(1+ X)

(+ tql (queue-length (node-queue (get-node XMM)

Figure 221: Optimization 'in which averaging is performed while advancing nodes.

56

Delive essages Advance-Nodes

.......................................
....................................... I.... i.....................I -- ----- --------------- ---------------------

II A,,?,ftrnn I N,,nl 1D,,ffar

II

p

II

II

II

II

II

II

GloW-and-Local-Buffers-Empty?

Local-B s-E ? Queue- ty?

Enumerate-Nodes- FIFO-

Check-Buffers Empty?

x

Sur

array-
I

total-
size

Summing
I
I
I
I

I I

.. !
I

Figure 222: Design tree for optimized code, with shared sub-tree.

57

Sequenfial-Simulation-of-Message-Passing-System

Synchronous-Simulation

Synchronous-Simulation-w-Glob�-Message-Buffer

Queue-Insert Generate-Global-Buffers-and-Nodes Earliest-Simulation-Finished

x x

FIFO- Deliver-Messages-and-StqNodes Synchronous-Simulation-Fhshed?

Enqueue

A

(defun Splice-In-Bucket (Value Key Bucket-List Number-Entries)

(cond ((Empty-or-Low-Priority-Head? Key Bucket-List)

(values (cons (Make-Entry :Key Key :Value Value)

Bucket-List)

(1+ Number-Entries)))

Ustring= Key

(Entry-Key (car Bucket-List)))

(values (cons (Make-Entry :Key Key :Value Value)

(cdr Bucket-List))

Number-Entries))

(t (multiple-value-bind (New-Bucket-List Num-Entries)

(Splice-In-Bucket Value

Key

(cdr Bucket-List)

Number-Entries)

(values (cons (car Bucket-List)

New-Bucket-List)

Num-Entries)))))

Figure 223: Code containing a redundant CAR computation.

(defun Splice-In-Bucket (Value Key Bucket-List Number-Entries)

(cond ((Empty-or-Low-Priority-Head? Key Bucket-List)

(values (cons (Make-Entry :Key Key :Value Value)

Bucket-List)

(1+ Number-Entries)))

(t (let ((This-Entry (car Bucket-List)))

(cond string= Key

(Entry-Key This-Entry))

(values

(cons (Make-Entry :Key Key :Value Value)

(cdr Bucket-List))

Number-Entries))

(t (multiple-value-bind (New-Bucket-List Num-Entries)

(Splice-In-Bucket Value

Key

(cdr Bucket-List)

Number-Entries)

(values

(cons This-Entry New-Bucket-List)

Num-Entries)))))))))

Figure 224: Code i which te result of CAR is cached and reused.

58

Chapter 3

e o-vv xra lrbi�na isna

GRASPR is able to tolerate many of the common types of program variations mentioned

in Section 23.1 by using a dataflow graph representation for programs ad by -using a

flow graph grammar to encode programming cliches. Program recognition is achieved by

parsing the dataflow graph in accordance with the flow graph grammar. There are several

advantages to sing a graph grammar formalism to represent programs and cliches:

* Quasi-canonical form. Dataflow graphs abstract away irrelevant syntactic details and

give the representation programming-language independence.

0 Localization. Dataflow graphs make dataflow dependencies explicit, imposing a partial

ordering on the program's operations (rather tha te linear total ordering imposed

by text). The effect is that patterns that are textually delocalized. (oncontignons)

can often become localized in a flow graph where only essential dataflow relationships

are captured.

0 Compact representation. Only primitive operations ad dataflow between them are

represented by the graph.

* Fragmentary patterns can be represented without including unnecessary details.

* Hierarchical relationships can be drawn between graphs, with the graph grammar

formalism providing a firm mathematical basis.

In this chapter, we define the flow graph grammar formalism used to represent programs

and cliches. We present the basic formalism first and then describe extensions to it that allow

us to deal with variations de to redundancy versus structure-sharing, and variations in

aggregation organization. We then present a chart parser for flow graphs in this formalism.

Interleaved with the description. of the formalism are sections that ground the description

in the concrete application of program recognition. These may help clarify and motivate

the restrictions on flow graphs and graph grammar rules. These sections are unnecessary

for understanding the general description of the formalism, which has a broad range of

59

applicability to other problem domains besides program recognition (as discussed in Section

7.4). In the final section, we summarize related graph grammar research.

3.1 Flow Graphs

A flow graph 'is a attributed, drected, acyclic graph, whose nodes have ports - entry ad

exit points for edges. Flow graphs have the following properties and restrictions:

1. Each node has a type which is taken from a vocabulary of node types.

2. Each node has two disjoint tuples of ports, called its inputs and outputs. Each port

has a type, taken from a vocabulary of port types. All nodes of the same type have

the same number and type of ports in their 'input and output port tuples. The size

of the input port tuple of a node is called the input arity of the node, while its output

arity 'is the size of the node's output port tuple.

3. A node's iputs (or outputs) may be empty, in which case the node is called a source

(or sink, respectively).

4. Edges do not merely adjoin nodes, but rather edges adjoin ports on nodes. AR edges

run from an output port on one node to an input port on another node. The ports

connected by an edge must have the same port type.' (An exception to this is that a

port of te special designated tpe Any can connect to ports of ay type.)

5. More than one edge may adjoin the same port. Edges entering te same input port

are called fan-in edges, while edges leaving a common output port are called fan-out

edges.

6. Ports need not have edges adjoining them. Any input (or output) port in a flow graph

that does not have an edge running into (or out of) it is called an input (or output)

of that graph.

7. Each flow graph has a vocabulary of attributes, which is partitioned into two disjoint

sets of node attributes and edge attributes. Each attribute has a (possibly infinite)

set of possible values. Associated with each node type is a finite sbset of the node

attributes. These are the only attributes for which nodes of that type can hold values.

AR edges hold a value for each of the edge attributes.

Flow graphs were first defined by Brotsky [15], drawing -upon the earlier work on web

grarnrnars 27, 94, 102, 105, 119]. Wills 144, 145] extended Brotsky's definition so that flo'

graphs can include sinks and sources (item 3 above), fan-in ad fan-out edges (item 5), and

attributes (item 7.

'In the future, a type hierarchy system may be used to allow ports to be connected if one port's type is

a subtype of the other's.

60

e

color red N
e , color: red

age: 5
size: 60

Figure 31: An example attributed flow graph.

Figure 31 shows an example flow graph. We refer to nodes by their node type. If

there are two nodes with the same type, we precede the node type with a unique label.

Ports are identified using numeric annotations on the nodes. Each numeric port identifier

is followed by a colon and the port's type. The edges of the flow graph have been labeled

with subscripted "e"s.

Edge e connects two ports of typet3 while edge e4 connects a port of typet4with one

of type Any. Edges el and e2 fan out of port 2 on node b, while edges e3 and e6 fan into

port of node g. Node d is a sink. Port of node b is an input of the graph and ports 2

and 3 of node g are otputs of the graph. (Pictorially, we emphasize iputs ad outputs of

the graph by drawing edge stubs adjoining them.)

In the figure, attribute-value pairs (in the form attribute:value) are shown in italics near

the node or edge which holds a value for te attribute. In this example, all node types have

t1te node attribute color. The node type g additionally has the attributes age and ize

and te node of type g in this particular graph has values 1 ad 60, respectively, for these

attributes A edges have the attribute distance.

Useful Defini'tions

A flow graph H is a sub-flow graph of a flow graph G if and only if H's nodes are a sbset

of G's nodes, and H's edges are the subset of G's edges that connect only those ports found

on nodes of H.

Isomorphism can be defined between flow graphs using a variation of its standard def-

inition, which accounts for edges adjoining ports, rather than nodes. Two flow graphs F,

and 2 are isomorphic if and only if there is a one-to-one mapping of the nodes of F,

onto the nodes of 2, such that adjacency is preserved - i.e., the ith output of a node ni is
connected to te jh input of a od F, if and only if the ih

e n2 In output of the node 0(ni)
is connected to the jh input of the node 0(n2) in 2.

61

3.2 Flow Graph Grammars

A flow graph grammar is a set of rewriting rules (or productions), each specifying how a

node in a flow graph can be replaced by a particular sub-flow graph. All rules in a flow graph

grammar rewrite a single left-hand side node to a right-hand side flow graph. Te grammar

specifies which flow graphs are in a particular set of flow graphs, called the language of the

grammar.

In addition, the flow graph grammar may be attributed: Each rule can specify how

to compute attribute values of the rule's nodes from te attributes of other nodes in the

rule. Each rule can also impose constraints on the attributes of the rule's nodes. Every

flow graph 'in the language of an attributed grammar has attribute values that satisfy the

constraints of the rules generating te flow graph.

More precisely, a flow graph grammar G has four parts: two disjoint sets N and T of

node types, called non-terminals and terminals, respectively, a set P of productions ad

a set of distinguished non-terminal types, called the start types of G. (By convention,

non-terminal types are denoted by capital letters, while terminal types are in lower case.)

Each production in P consists of the following five parts:

* A flow graph L, called the left-hand side, containing a single node having a non-

terminal type.

* A flow graph R called the right-hand side, containing nodes of non-terminal or ter-

minal types.

* An embedding relation C which specifies the correspondence between the ports of L

and R.

* A set of attribute conditions, which 'impose constraints (in the form of relations) on

the attribute values of nodes and edges in R.

* A set of attribute transfer rules, each of which specifies the value of a attribute of

L's node in terms of the attributes of the nodes and edges i R.

Sections 32.1 and 32.3 discuss the embedding relation ad the attribute conditions and

transfer rules in more detail.

3.2.1 Embedding Relation

The embedding relation is necessary in flow graph grammar rules (unlike string grammar

rules) to provide connectivity information when an occurrence of a left-hand side is rewritten

during a derivation. It specifies how the ports connected to the left-hand side should be

connected to the right-hand side flow graph,- and possibly to each other, when te left-hand

side is replaced by the right-hand side. (It is used 'in an aalogous way in the reverse process

62

of reducing an occurrence of a rule's right-hand side to its left-hand side during recognition

or parsing.)

The embedding relation C is a binary relation on f, x R UC, where C denotes the set of

left-hand side ports and R denotes the set of right-hand side ports of a rule. A left-hand side

port 1i and a right-hand side port or another left-hand side port pj are said to "correspond"

if pj) E C. The embedding relation is restricted in the following ways.

1. If a left-hand side port corresponds to a right-hand side port, then both ports must

be of the same direction input or output). If two left-hand side ports correspond to

each other, they must be of opposite directions.

2. More than oe right-hand side port and/or left-hand side port may corr espond to

the same left-hand sde port. However, more than oe left-hand side port may not

correspond to the same right-hand side port.

3. Each left-hand side port corresponds to at least oe right-hand side or left-hand side

port. (A right-hand side port need not correspond to some left-hand side port.)

The rght-hand side ports corresponding to ports o te left-hand side ode need not be

inputs or outputs of the right-hand side graph (i.e., they may be connected to other ports

in the graph).

The definition of the embedding relation is extended (as described in Section 34.2 to

encode aggregation 'Information. However, the extended relation still obeys these restric-

tions.

When a left-hand side port 11 corresponds wth another left-hand side port 12, the rule

is said to contain a straight-through (abbreviated "st-thru"). We discuss the sgnificance of

st-thrus in the next section, where we describe how the embedding relation is used in the

derivation of flow graphs.

Figure 32 shows a example flow graph grammar. In this example, ports are referred

to as subscripted node types (e.g., a, refers to the port labeled I on the node with type a-

Port types are not shown. The port correspondences of each rule are indicated pictorially

by matching Greek letters. For example, left-hand sde port Al corresponds to right-hand

side port a,. (This grammar does not have attribute conditions or attribute transfer rules,

so they are not shown. See Section 32.3 for the details of attribute handling and Figure

3-5 for a complete picture.)

By convention, when a port correspondence involves an 'Internal right-hand side port

(not an input or output of the right-hand side graph), we draw an edge stub coming into

or out of that port. We annotate the edge stub with te port correspondence label. For

example, this is done in drawing the rule for non-terminal A in Figure 32. Also, when

two or more right-hand side ports correspond to the same left-hand side port, the edge

stubs from the right-hand side ports are drawn as if they are merged with each other. This

abbreviated notation is used, for example, in depicting the rule for B. (This makes it easier

63

(X ot
M+ x A F 4 y

R
p

ot A 14

(X p ,
I M+

ly.

8
F -

x

Figure 32: An example flow graph grammar.

to visualize how the right-hand side of a rule is embedded into a graph when the left-hand

side i's expanded during derivation.)

Similarly, st-thrus are depicted as lines which do not adjoin any port, but which may

be merged with an edge stub and/or aother st-thru. In drawings, they are anotated with

the pair of correspondence labels associated with the left-hand sde ports that correspond.

The rule for F contains a st-thru, since ports F and 4 correspond.

3.2.2 Flow Graph Grammar Derivations

A flow graph is derived from a start type S, of a flow graph grammar by starting wth a flow

graph contaiing a single ode of type S, and repeatedly applying the grammar's rewrite

rules (productions) to the non-terminals in this graph until no non-terminals are left.

Each rewrite rule specifies how an isomorphic occurrence of the rule's left-hand side L

can be replaced by the rule's right-hand side graph R. The embedding relation C of the

rule is used to embed R in the graph once L has been removed. In particular, for each

right-hand side port ri and left-hand side port 1i related by C, ri is connected to all of the

ports that were connected to 1i before L was removed.

In addition, if a left-hand side input port 1i corresponds to a left-hand side output port

1j, then edges are drawn connecting each of the ports connected to i to each of the ports

connected to j. I other words, when a rule contains a st-thrii, the embedding relation

64

between te ports involved, li ad j, imposes the constraint that the ports adjacent to i

and li become connected directly to each other when the left-hand side is rewritten.

For example, a sample derivation of a graph from the grammar of Figure 32 is shown in

Figure 33. WI-ten the non-terminal node A is expanded in the second step of the derivation,

A is removed from the graph, along with the edges adjoining its ports. Then the right-hand

side of the rule for A is added to the graph. Finally, edges are drawn between the right-hand

side ports a,, B2, and a2 and te ports to which Al, A2, and A3 (respectively) had been

connected (i.e., X3, 2, and F3).

In string grammars, the derivation tree is used as a canonical representation of equivalent

derivations, which abstracts away from the order in which productions are applied in the

derivations. It is useful to make use of a similar representation for flow graph derivations.

As in the string case, a derivation tree has vertices labeled with the node type of a

non-terminal that was expanded during the derivation. However, unlike the string case, the

children of each vertex are related in a partial ordering. The right-hand side graph in the

production for the vertex's label defines this partial ordering. (Derivation trees are normally

shown without the edges between the nodes of tte tree to reduce clutter.) For example, the

derivation sequence of Figure 33 is represented by the derivation tree of Figure 34.

3.2.3 Attribute Conditions and Transfer Rules

So far, we have discussed the aspects of flow graph grammars tat impose structural con-

straints on the flow graphs 'in their languages, for example, by constraining teir node types

and edge connections. This section describes how the non-structural aspects of a flow graph

are constrained. Attributes are used to represent information that cannot be adequately

expressed in the structure of a flow graph. Attribute conditions 'in grammar rules impose

constraints on these attributes.

The concept of an attributed string grammar was formalized by Knuth 77] as a way to

assign semantics to strings in a context free language. Attribute values are computed from

other attribute values within a rule. This is called attribute evaluation. Te attributes t1lat

are computed represent some aspect of the meaning" of the string being parsed (e.g., the

decimal value of a binary number).

Since then, attribute grammars have been used extensively in such areas 'as pattern

recognition 16, 17, 39, 48, 86, 135], compiler technology 40, 41, 47, 68, 74, 78, 79], pro-

gramming environments 6 28], software specification and development 38, 97, 98, 101, 131],

and test case generation 30]. Raiha 107] gives a bibliography of the early papers. These

systems use attribute grammars to deal with nonstructural, semantic properties of a pat-

tern and to reduce te complexity of the grammar. Much of the theoretical work in this

area has focussed on developing efficient attribute evaluation strategies 28, 68, 73, 109],

the complexity of checking that attribute grammars are well-formed 64], and assisting the

writing of attribute grammars which contain complex dependencies among the attributes

65

4-

2 F 4

x 2 F Y 2

Figure 33: An example derivation sequence.

66

S

.0

X A F Y

a B e f

h d

Figure 34: An example derivation tree.

[29].

Our flow graph grammars ae attributed grammars in the sense that their productions

contain attribute transfer rules for computing attribute values from the attribute values

of other nodes and edges within the rule. (These are also called "semantic rules" 77],

44 attribute transfer functions" 16], or "attribute transfer specifications"[145].)

In general, attribute transfer rules ca-n associate the attribute of some node or edge on

either side of a rule with a function for computing its value from the attributes of the other

nodes and edges (on either side) of the rule. Attributes that are computed for the left-hand

side node from the attributes of te right-hand side are called synthesized atributes. Those

that are computed for a right-hand side node or edge from the attributes of te left-hand

side node and/or other nodes and edges in the right-hand side are called nherited attributes.

Currently, te flow graph grammar used by the recognition system uses only synthesized

attributes. This is because our attributed flow graph grammars are not used so much for

computing attribute values, as for imposing constraints on the attributes of the flow graph

being parsed. Inherited attributes are useful if the value of an attribute involves complex

dependencies across the derivation tree. However, the attribute values computed in the

current system are based on simple relationships among attributes. Synthesized attributes

are adequate.

Constraints are imposed on attributes in the form of attribute conditions on grammar

rules. Attribute conditions are relations on the attribute values of the nodes ad edges of a

flow graph grammar rule's right-hand side. They specify constraints that must be satisfied

by te attributes of a flow graph if it is in the language of t1le grammar. (These are also

called "context conditions" 68], "constraints" 145], and "applicability predicates"[16].)

The attribute conditions and attribute transfer rules of a production are used primarily

during parsing. Tey can be used during generation to produce a set of conditions tat

must be satisfied by the attribute values of the flow graph generated. However, this is not

how they are typically used.)

A parser for an attributed grammar engages in the following three activities when given

67

Attribute-Conditions:

p p Color(b = Color(A = Color(g)
a

S 04 I 1 9 Attribute-Transfer Rules:

x Size(S):= IOSize(g)lAge(g)
Color(S):= Color(A)

(X p 14

Attribute-Conditions:
Distance(<a . d > < Distance(<h . >)

2

Attribute-Transfer Rules:
Color(A) = ftColor(a), Color(h))

Figure 35: An example attributed flow graph grammar.

a string (or graph, in the case of attributed graph grammars) x:

1. Structural aalysis - recover a derivation of x from a start type of the grammar ad

create a derivation tree to represent the derivation. If no derivation tree is found,

reject x for membership in the language of the grammar. (This is the usual activity

performed by recognizers for non-attribnted grammars.)

2. Attribute evaluation - propagate attribute values throughout the derivation tree in

accordance with the attribute transfer rules. Values for synthesized attributes move

upward as a function of the attribute values of the descendants of a node, while

inherited attribute values move downward from the ancestors.

3. Attribute condition checking - maintain the invariant tat if all attribute values are

known for the attributes related by an attribute condition, then the condition must

hold. If a condition fails to hold, reject x.

If the recognizer finishes with a attributed derivation tree for x and all attribute con-

ditions of all productions involved are satisfied, then x is recognized as a member of the

language.

For example, Figure 36 shows the derivation tree that would result from parsing the

attributed flow graph in Figure 31 in accordance with the grammar of Figure '3-5 Te

edges are drawn between the leaves of the derivation tree to show the edge attributes t1tat

are involved in the parse. Dashed arrows show the propagation of attribute values.

The three parsing activities can be interleaved. The interleaving is particularly simple

in our parser, since only synthesized attributes are used. All attribute values of a derivation

node depend only on the attributes of the node's descendants. Attribute conditions can

be checked as soon as the right-hand side of a rule is recognized. Attribute values can

68

color: size: 40I- I -

-age: 5
1 size: 60

color: red

e,

Figure 36: An attributed derivation tree.

be computed and transferred to the left-hand side node during the reduction of the right-

hand side to the left-hand side. Because the attribute condition checking is folded into the

structural parsing process (i.e., conditions are checked each time a reduction is attempted),

invalid parses can be cut off early.

In the future, if inherited attributes are needed, a more sophisticated attribute evaluation

and condition checking strategy will need to be employed (for example 28, 68, 73, 109]).

3.3 Motivations for Frmalism* Program Recognition Ap-

plication

So far, the basics of the flow graph formalism have been described. There are two major

extensions to this formalism that increase the class of flow graphs and grammars that can

be succinctly expressed in it. However, before they are described, this section briefly shows

how the basic formalism is used in a particular application domain. This provides some

rationale for the restrictions on the grammar formalism that have been described so far.

(This section is not needed to understand the extensions. It may be read after the extensions

have been discussed.)

We apply the flow graph formalism to the representation of programs and programming

cliche's. In particular, flow graphs serve as graphical abstractions of programs, flow graph

grammars encode allowable implementation steps between abstract operations and lower-

level operations, ad the derivation trees resulting from parsing give the program's top-down

design.

69

(DEFUN RIGHTP (HYPOTENUSE SIDEi SIDE2)

(LET* ((HYP-SQ (SQ HYPOTENUSE))

(DIFF (- HYP-SQ

(+ (SQ SIDE1)

(SQ SIDE2M)

(DELTA (IF < DIFF 0)

(NEGATE DIFF)

DIFFM

(IF <= DELTA (* HYP-S 002))

T

NIL)))

Figure 37: Testing whether the three input sides form a right triangle.

The flow graph 'is used to represent the operations of a program and the dataflow between

them. Each non-sink node in a flow graph represents a function, with ports on the node

representing distinct iputs and outputs of the function. The ports' types ae determined

by the signature of the function. Sink nodes represent conditional tests. The edges of a

flow graph represent dataflow constraints between the functions and tests. When the result

of a function is consumed by more than one function, te edges representing the dataflow

fan out. Edges that fan in represent the conditional merging of more tan one dataflow.

For example, Figure 38 shows te flow graph representing t1le code shown in Figure

3-7. RIGHTP determi nes whether the inputs could be the lengths of the sides of a right

triangle. It checks whether the square of HYPOTENUSE is approximately equal to te sum of

the squares of SIDE ad SIDE2.

Two special nodes of type B and E, which are not in N U T cap the ends of te

flow graph. These hold ports that represent the input and output values of data consumed

or produced by the code. These odes make it easy to represent the fan-out of input data

to more than one function and the conditional fan-in of output data. For example, port I

on E receives fan-in representing te conditional output of either constant T or NIL.

Attributes on nodes and edges are used to capture characteristics of a program that

cannot be adequately expressed in the structure of a flow graph. Control flow information

is stored in the attributes of the flow graph representing a program. Each ode has a

control environment attribute whose value indicates -under which conditions the operation

represented by the node i's executed. Nodes in the same control environment represent

functions that are a executed under te same conditions. (Section 41.1 describes the

vocabulary of attributes and attribute conditions used by the recognition system in more

detail.)

Sink nodes, representing conditional tests, carry two additional attributes, success-ce

'The function RIGHTP is taken from Problem 39 (p.42) in 148].

70

Figure 38: Attributed flow graph for RIGHTP.

and failure-ce. These specify the control evironments whose operations are execnted when

the conditional test succeeds or fails, respectively.

Each edge holds a ce-from attribute which indicates the control environment in which

the edge carries dataflow. (In Figure 38, only ce-from attributes of edges that fan-in are

shown, to reduce clutter. The edges that do not fan-in a have ce, as their ce-from attribute

value.)

Each edge also carries a constant-type attribute whose value is either a constant suc as

T, NIL, 0) or undef ined, depending on whether the edge represents dataflow from a constant.

For edges whose source is not a port on node B, the constant type is always undef ined.
This attribute is not shown in Fgure 38 for edges for which its value is undef ined.

Program cliche's are encoded 'in flow graph grammar rules. Informall a rule can be seen

as specifying how an abstract operation, represented by the rule's left-hand side node, is im-

plemented in terms of lower-level operations, represented by the right-hand side flow graph.

(Section 41 gives more details of how this 'is done, as well as other relationships between

cliches, besides implementation relationships, which are captured in grammar rules.)

Figure 39 shows a grammar containing a rule that represents te common cliche' of

testing whether two nmbers are within some "epsilon" of each other. The rules representing

two common implementations of the Absolute Value cliche demonstrate that te grammar

allows us to modularly specify implementation variations. The rules have typical embedding

relations. In the rule for Negate-if-Negative, two right-hand side ports <, and negate,)

correspond to the same left-hand side port. This represents the constraint that the input

to an isomorphic 'Instance of the rght-hand side must come from a source that fans out to

both <1 and negate,.

The rule for Negate-if-Negative also has a right-hand side port <2) that does not

correspond to any left-liand side port. This right-hand side port represents the input coming

from the constant 0. It is important that in our formalism a right-hand side port is not

required to correspond to a left-hand side port, since otherwise we would have to add an

input to Negate-if-Negative to orrespond to <2. This would destroy the modularity of te

71

04

Attribute-Transfer Rules:
ce = ce(n WI- test).
su ccess- ce = fa ilu re- ce(n ull- test).
failure-ce:= success-ce(null-test).

a so ute- 4
alue

Attribute-Transfer Rules:
ce:= ce(Negate-if-Negative).

cc qu
14 1 Root-

e

a so ute-

alue

Attribute - Transfer Rules:
ce:= ce(Square-Root-of-Square).

(ap)

Attribute- Conditions:
I . -- - t- .�, --- -.-
1. econd input to -< receives constant type = U.
2. Dataflows outfrom "negate" infailure-ce(null-rest).
3. Data flows straight-throughfrom input to output in success-ce(null-test).

Attribute-Transfer Rules:
ce:= e(null- test).

a Square-
Root- 4

(X
1

Attribute-Transfer Rules:
ce:= ce(SQRT).

Figure 39: Flow graph grammar encoding cliche's ound in RIGHTP. ..

72

grammar, since te extrainput must be propagated up through t1te rules that use Negate-if-

Negative. We would need to add an put to the Absolute-Value node, but this extra iput

would be meaningless for Absolute-Value's other implementation as Square-Root-of-Square.

The rule for Negate-if-Negative also shows how st-thrus are used to represent cched

operations in which some of the input data is not acted upon, but passes directly to the

outpnt.

This grammar also shows typical attribute conditions and attribute transfer rules.

(These are stated informally in English in Figure 39. Section 41.1 gives a more formal

description of te actual attribute language used in encoding cliche's.) A typical attribute

condition placed on an edge's attribute in a grammar rule is that it must carry dataflow in

a particular control environment (e.g., the failure-ce of some test).

Attribute conditions and transfer rules may refer to attributes of nodes and edges of the

rule's right-hand side. In addition, they may refer to edges 'in the input graph whose sources

or sinks match the inputs or outputs of the rule's right-hand side, or to edges matching st-

thrus. For example, the rule for Negate-if-Negative constrains the iput t <2 to come from

a constant source of type 0. It also constrains the ce-from attribute of edges whose sources

match negate2 and of edges matching the st-thru.

3.3.1 The Partial Program Recognition Problem

We formulate the problem of recognizing cche's in programs in terms of solving a parsing

problem for flow graphs. This section defines these problems.

The parsing problem for flow graphs is: Given a flow graph F and a flow graph grammar

G� if F is in te language of G then produce all possible parses for F (i.e., au possible

derivation trees that yield F).

The subgraph pool for flow graphs s Given a flow graph F and a flow graph

grammar G find all possible parses of all sub-flow graphs of F that are in the language of

G.

There are two types of program recognition: total, in which the entire program is rec-

ognized as a single cliche', and partial, in which the program may contain unrecognizable

parts but as much of the program as possible is recognized as one or more cches.

The total recognition problem for programs is.- Given a program and library of cliche's,

determine which cliche's 'in the library are instantiated by te program as a whole. (Usually

a single program is recognizable as an instance of only one cliche', but this general definition

includes cases in wich a program can be viewed in more than one way.)

The partial recognition problem is: Given a program and a library of cliche's, find all

instances of the cliche's in the program (i.e., determine which cliche's are in the program and

their locations).

In this work, we are more interested in the partial recognition problem for programs.

(The total recognition problem is subsumed by 'It.) When we say "program recognition" we

73

Equality-within-Epsilon

Absolute- null-
Value test

Negate-if-
Negative

< null- negate
test

Figure 310: Cliche's recognized in RIGHTP.

mean partial program recognition.

The partial program recognition problem is solved by ormulating it as a subgraph

parsing problem: Given a flow graph F representing the program's dataflow ad a cliche

library encoded as a flow graph grammar G (with all non-terminals that represent cliche's

as start types), solve the subgraph parsing problem on F and G.

The derivation trees that are produced are called design tees. The root of the tree

identifies a particular cliche' that was recognized and the yield of the tree indicates where

the cliche was found. Intermediate non-terminals in the tree indicate the subcliches that

implement the cliche' that was found. Thus, casting partial program recognition as a parsing

problem yields as output not only the set of cliche's ad their locations, but also relationships

between the cliclie' instances.

For example, Figure 310 shows the design tree produced by partiaRy recognizing the

program RIGHTP, represented as the flow graph in Figure 38 and using the graph grammar

of Figure 39.

When a program is partially recognized, one or more sub-flow graphs of the program's

flow graph encoding are recognized as members of the language of the graph grammar which

encodes the cliche' library. From the definition of a sub-flow graph, we can see that it is

poss'ble to ignore portions of a flow graph before and after a recognizable sub-flow grapl-1,

as well as portions that fan out from or into a internal port in the sub-flow graph.

3.4 Extensions to the Flow Graph Formalism

The next two sections discuss two major extensions to the flow graph grammar formalism

described so far. The first extension foRows closely an extension made by Lutz 90] to a

graph formalism similar to ours, while the second is novel to or research. The extensions

are the following.

74

1. We expand the language of a flow graph grammar to include all flow graphs derivable

not only from a start type of t1te flow graph grammar, but also from flow graphs that

are �4 share-equivalent" to a sentential form3 of the grammar. The notion of share-

equivalence captures the types of variation de to structure-sharing tat the extended

formalism abstracts away. In a structure-sharing flow graph, a node plays the role

of more than one node of the same type by generating output that fans out or by

receiving input that fans in.

2. We extend the expressiveness of the flow graph grammar to allow it to capture the

rewriting of a single iput (or output) of a non-terminal node into an aggregation of

inputs (or otputs) of a sub-flow graph. We then further expand the language of a

flow graph grammar to include all flow graphs that are "aggregation-equivalent" to

the flow graphs derivable from the grammar. The notion of aggregation-equivalence

defines the variation tolerated in how aggregates are organized.

In the program recognition application, the first extension is needed to deal with varia-

tion due to the common engineering optimization of function-sharing. The second extension

is important in being able to represent ad recognize cliched operations on aggregate data

structures.

These extensions to the formalism are described in this section. However, the mecha-

nisms by which the parsing problem is solved for flow graphs in the extended formalism

are described in Section 35, after the parsing process for the basic extended formalism

is presented.

We make these extensions to remove some forms of variation between semantically equiv-

alent programs that are not abstracted away by the graph representation alone. We essen-

tially do this by imposing an equivalence relation on the graphs representing the programs.

Alternatively, we could 'impose the equivalence relation at the source text level by trans-

forming program expressions directly. For example, a great deal of work has been done in

the term rewriting area 60, 61, 75]. These techniques are good for canonicalizing localized

parts of a program (e.g., by algebraic simplification and normalization). However, if the

expression that we want to rewrite is delocalized and interleaved with unrelated expres-

sions, we need to first apply subexpression shuffling and copying transformations to localize

it. This is avoided in the graph representation which tends to localize elated operations.

Expression-based techniques also fall prey to syntactic variation. It would be useful to

combine the expression-based rewriting techniques with graph-based parsing. One way is

to canonicalize the text as much as possible first and then convert to the graph-based repre-

sentation and parse. Another is to interleave the two (maintaining multiple representations)

so that expression-based smplifications ad normalizations can be done to aid recognition

and the graph-based representation can localize expressions to rewrite and abstract away

3A sentential form of a graph grammar is any flow graph that is derivable from a start type of the

grammar by the application of zero or more productions of the grammar.

75

bD

2

'Y

F3

Figure 311 Tese flow graphs should a be seen as equivalent.

syntactic differences.

3.4.1 Structure-Sharing

Flow raphs can be used to represent collections of components having inputs and outputs

that are produced or consumed by each other. In using this representation, we would like

to be able to view a flow graph in which two or more components of te same type are

collapsed into a single shared component as being equivalent to a flow graph in which te

two components are not collapsed. See Figure 311.

This is important in dealing with variation due to function-sharing, in engineering ap-

plications of the formalism. Function-sharing is a common egineering optimization made

during design, in which oe component fulfills more than one purpose. For example, in an

optimized program, two or more functions may be applied to the result of a single (shared)

function application.

We employ a notion of share-equivalence to capture the relationship between flow graphs,

such as those in Figure 311. This notion was introduced by Lutz 90] for graphs similar to

ours. Sliare-eqnivalence is defined in terms of a binary relation collapses (denoted < on

flow graphs. Flow graph F collapses flow graph 2 if and only if there are two nodes nj

and n2 of the same node type t in 2, having iput arity I ad output arity 0, such tat

all of these conditions hold:

1. Either one or both of the following are true:

(a) Vi = ... 1, the ih iput port of nj is connected to the same set of output ports

as the ih iput port of n2

(b) V = 1-0, the jth Output port of nj is connected to the same set of input ports

as the jth output port of n2-

2. F can be created from 2 by replacing nj and n2 with a new node n3 of type t with.

the ih input (resp., output) of n3 connected to the uion of the ports connected to

76

(X

(X

01

a b

-OX

D--.O-

C

Figure 312: a) A grammar. b) Its core language. c) Some flow graphs in its expanded

language.

the ith inputs (resp., outputs) of ni and n2-

3. The attribute values of n ad n2 can be "combined." This is done by applying an

attribute combination function, which is defined for each attribute, to te attribute

values of nj and n2. The attribute combination functions may be partial fnctions If

the unction is not defined for n and n2's attributes, then the attribute values cannot

be combined (and F does not collapse 2).

For example, in Fgure 311, F collapses 2 which collapses 3. Performing the trans-

formation in condition 2 from 2 to F is called "zipping up" 2. Its inverse 'is referred to

as unzipping

The reflexive, symmetric, transitive closure of collapses, ,*, defines the equivalence

relation share-equivalent. (In Figure 311, F, 2, and 3 are all share-equivalent.)

The directly derives relation (�,) between flow graphs is redefined as follows. A flow

graph F directly derives aother flow graph 2 if and only if either 2 can be produced by

applying a grammar rule to F1, F <I 2, or 2 j Fl.

As in string grammars, the reflexive, transitive closure of is the derives relation

The language of a flow graph grammar G (denoted L(G)) is the set of a flow graphs, wose

nodes are of terminal type ad which can be derived from a start type of G.

Thus, the notion of a language of a flow graph grammar G as been extended to include

77

S
X Z A X Y

X

b a C

(C)

(b)

Figure 313: a) A grammar. b A derivation sequence. c A derivation graph representing

the derivation.

flow graphs that are generated by a series of not only production rule applications but

also zp--up and uzipping transformations. Since a zip-up or unzipping step can happen

anywhere in the derivation sequence, the language of a graph grammar G in this extended

formalism is a s-uperset of the set of flow graphs share-equivalent to flow graphs in te

44 core" language of G in the extended formalism. For example, the flow graphs in Figure

3-12c are included in the language of the grammar in Figure 3-12a, even though they are

not share-equivalent to either of the flow graphs in the grammar's core language, shown in

Figure 3-12b.

Both generators and parsers for the language of a flow graph grammar can interleave

zipping and unzipping transformation steps with their usual expansion and reduction steps.

The parser used by tlie program recognition system ported here simulates the itroduction

of these transformations into 'Its reduction sequence, as is described 'in Section 35-1.

Structure-Sharing Derivation "Trees"

The extensions to the language of a flow graph grammar affect how equivalent derivation

sequences are captured in a sngle canonical tree representation. Because flow graph zip-up

can occur as part of a derivation sequence and this results in a shared subderivation, the

representation of a derivation as a tree is no longer possible. Derivations must be represented

as graphs. For example, see Figure 313.

In addition there may be different derivation graphs, depending on when unzipping

is done in the derivation sequence. For example, Figure 3-14a shows a simple flow graph

78

(X 0

"4sc-w

f-O&L-m M+

(a)

4

-- Wcc:: 4 4

4

-pec: 4 4

4 4

(b)

s

w z
0

lla

c c

I I

s

w A

0

a

a I

(C)

Figure 314: (a) A grammar. (b) Two derivations of same flow graph. (c) Two derivation

graphs representing the derivations.

79

grammar and Figure 3-14b gives two possible derivation sequences. In the first sequence,

the -unzipping transformation happens in the second step. In the second derivation se-

q-uence, this transformation happens in the third step. An unzipping step is represented in

a derivation graph by a vertex that is a group of instances of that vertex, each with its own

sub-derivation. Te two derivation sequences are represented by the two derivation graphs

in Figure 3-14c.

We arbitrarily coose those derivation graphs as canonical that represent derivation

sequences in which uzipping occurs at the earliest possible moment in the derivation se-

quence (i.e., unzip a non-terminal before it is expanded). In our example, the derivation

graph on te left is taken as canonical.

3.4.2 Aggregation

Grammar rules in our flow graph formalism specify how a non-terminal node can be rewrit-

ten as a particular grouping of terminal ad non-terminal nodes (in the frm- of a flow

graph). We now extend it to also specify how a sngle input or output of a non-terminal

node can correspond to an aggregation of the inputs or outputs of a flow graph to which

the non-terminal node is rewritten.

In engineering application domains, this is useful in representing not only how aggrega-

tions of components make up a higher-level component, but also how the inputs and outputs

of the components are aggregated into fewer, more abstract types of iputs and outputs

of the higher-level component. In the programming domain, for example, te Circular In-

dexed Sequence Insert cliche' has two inputs: an element to insert and a clicEe'd aggregate

data structure (the Circular Indexed Sequence). The insert is implemented by a group of

primitive operations with several of their inputs representing the various parts aggregated

by the single Circular Indexed Sequence data type.

This section first considers a way to capture the aggregation of port types without

extending the formalism. This is found to be too intolerant of the variation tat may

exist in te way port types are aggregated. However, it provides useful insights into wat is

required to handle the variation. In particular, a notion of aggregation-equivalence is defined

to relate flow graphs that differ only in how they aggregate port types. The language of a

flow graph grammar is expanded to consist of all flow graphs aggregation-equivalent to flow

graphs derivable from a start type of the grammar.

Using Make and Spread Nodes

This section sets -up a straw man which is a smple way to capture the aggregation of

port types into a single, more abstract port type without extending te graph grammar

formalism. This technique will work in restricted cases. However, as the next section

shows� it is too intolerant of variations in the organization of aggregates.

A simple way to capture the aggregation of port types into fewer, more abstract port

80

types is to use special nodes, called Make and Spread nodes. A Make node represents te

aggregation of input port types into the output port type, while a Spread node represents

the decomposition of the input port type into the output port types.

Each Make node has a t-uple of iput ports whose types compose the type of the Make's

single otput port. The node type of a Make node is defined by the ordered tple of its

output ports' types and its aggregate input port's type. Two Make nodes match if tey

collect the same tple of input port types into the same aggregate otput port type. Spread

nodes are analogous to Make nodes, but have a single 'Input port of aggregate port type

and a tuple of otput ports which have ty-Des composing the put port's type.

Make and Spread node types come in pairs, called corresponding pairs. For each Make

node type, there is a corresponding Spread node type (and vice versa) for the same aggregate

type, such that the i1h input of the Make corresponds to the i1h output of the Spread in that

they have the same port type and represent the same part of te aggregate port type.

Using Make and Spread nodes, we can now write production rules such as the ones

shown in the grammar of Fgure 315. For example, in the right-hand side of the rule for

A, Spread and Make nodes explicitly show how the iputs and outputs of nodes a and b

are aggregated into the abstract port type P. This port type is the type of both the iput

and the output of the left-hand side node A. These types of rule require no extension to

the graph grammar formalism describe in Section 32. F in Figure 316 is the (only) flow

graph 'in the language of the grammar in Figure 315.

To simplify the discussion, we assume right-hand sides only have Spreads and Makes

on fringes and that no nesting of Spreads or Makes occurs on ay right-hand side. A flow

graph grammar can always be transformed so that this is true.

We also assume that abstraction monotonically increases as we move up through the

grammar rules. Left-hand side port types are always either aggregates of (i.e., more ab-

stract than) their corresponding right-hand side port types or are of the same type as their

corresponding right-hand side port types. Right-hand side port types are never aggregates

of left-hand side port types. This means no flow graph in the language of a flow graph

grammar has inputs going to a Make node or outputs coming from a Spread node.

Problems Due to the Inflexibility of Makes and Spreads

The flow graph F in Figure 316 'is the only one derivable from the start type S. However,

we would Eke to expand the language of the grammar to include flow graphs that differ

from this one solely in the way port types are aggregated within the graph. In particular,

the organization of aggregated port types may vary in any of the following ways:

1. Port types may be aggregated in any order, since aggregation is commutative. For

example, flow graph 2 in Figure 316 aggregates types x and y into P in the opposite

order in which F does.

81

:Q 2: 2: 0
(X n.r-% p (X- 14

cc
: E : so -

(X 1% --1 p 04

(X 1% � p ,- 14 -

04

Figure 315 A grammar representing aggregation, using Spread and Make nodes.

82

F
3

e�

11 - A ' , -

:y e :y

: f z
3: Om

F
4

F
5

Figure 316: F is the flow graph in the language of the grammar in Figure 315. The rest

are flow graphs aggregation-equivalent to it.

83

2. Aggregations of port types may be nested within other aggregations and the organi-

zation of this nesting does not matter, since aggregation is associative. For example,

flow graph 3 aggregates y and w into type R and then aggregates x and R, while F,

groups together x and y 'into P which is then aggregated with w.

3. Port types might not be aggregated at all. For example, flow graph F4is a variatio of

flow graph F in which no aggregation i's done. A special case of this type of variation

is te variation de to the choice of which compositions of Spreads with Makes (and

vice versa) to simplify. For example, flow graph 5 results from the simplification of

Fl's composition of a Spread with a Make.

Aggregation-Equivalence

We ould like the flow graphs 2, ... , F5 to be in the language of te grammar of Figure

3-15, not just Fl. To describe the relationship between these flow graphs, we define the

equivalence relation aggregation-equivalent on flow graphs.

First, we eed to define the following terms.

A Make-of-Spread composition is a Spread node connected to a Make node of cor-

responding type via edges between their corresponding part type ports. More pre-

cisely, a Make-of-Spread is a corresponding pair of Make and Spread nodes, such tat
Vi = 1 ... M te ith output of the Spread node connects directly to the ih input of

the Make node and there are no other edges adjoining these ports (where m is the

number of part port types aggregated).

* A Spread-of-Make composition is analogous. It is a Make node connected to a Spread

node of corresponding type via an edge between the Make's output port and the

Spread's input port.

Now we can define the reflexive, symmetric, transitive relation aggregation-equivalent.

A flow graph F is aggregation-equivalent to another 2 (denoted F =A 2) if and only if

there exists a flow graph 3 sch that F and 2 can each be transformed to a flow graph

isomorphic to 3, using a (possibly empty) sequence of the following transformations:

1. For some corresponding pair of Spread and Make node types, Ts and TM, permute the

outputs of all (Spread) nodes of type Ts and the iputs of a (Make) nodes of type

TM, keeping connections 'Intact and using the same permutation for all the Spreads

and Makes. (The flow graphs F and 2 in Figure 316 can be transformed into each

other using this transformation.)

2. For a compositions of Spread nodes, replace the composition sub-flow graph with a

single Spread whose otput arity, m, is the number of outputs of te sub-flow graph

and Vi = ... I M, the ith Output of the new Spread has the same port type and

84

P,
6

Figure 317: 3 and F can be transformed to this flow graph by flattening nested Makes

and Spreads.

connections as the ith output of the sub-flow graph. Flatten all compositions of Make

nodes analogously. (This can be used to transform F to F6 (shown in Figure 317)

and 3 to F6, so F A 3 in Figure, 316.)

3. For any Make-of-Spread composition, replace the Make-of-Spread composition with

edges from the ports adjacent to the iput of the Spread to the ports adjacent to the

output of the Make.

4. For any Spread-of-Make composition, replace te Spread-of-Make composition with

new edges drawn in the following way: Vi m connect the ports adjacent to the

ith iput of the Make to the ports adjacent to the ith output of the Spread (where

m the Make's input arity = te Spread's output arity). (F5 results from applying

this transformation to F in Figure 316.)

5. Remove any Spread node whose input is an input of the flow graph and remove ay

Make node whose output is an output of the flow graph. (F5 can be transformed to

F4 by using this transformation and by removing the Spread-of-Make composition.)

Transformations and 2 allow variation due to commutativity and associativity of ag-

gregation, respectively, while conditions 3 and 4 allow variability in the simplification of

Spread-Make compositions. Transformation 'is needed to allow flow graphs, like 4, that

use no aggregation to be in the language of a grammar that aggregates port types.

We will call the first transformation te permutation transformation, since it permutes

the part port tples of Makes and Spreads. The rest of the transformations are aggregation-

removal transformations. We will call the inverse of aggregation-removal transformations

aggregation-introduction transformations, since they insert Spreads and Makes into a flow

graph.

We can -use the aggregation-equivalence relation to expand what we mea-n by the lan-

guage of a flow graph grammar. If we call the set of flow graphs derivable from the graph

grammar (using the "derives" relation defined in Section 34.1) the "core" language of the

85

grammar, then we can define the language of te grammar to consist of a flow graphs

aggregation-equivalent to flow graphs in the core language.

Useful Definitions and Facts

A flow graph F is said to be less-aggregated than another 2 if and only if F can be

generated from 2 by applying any of the aggregation-removal transformations above. This

relation is transitive. If there is no flow graph less-aggregated than a flow graph F t1te F

is said to be minimally-aggregated.

There is only one minimally-aggregated flow graph less-aggregated than or isomorphic

to a particular flow graph that can be obtained by the aggregation-removal transformations.

(However, there may be more than one minimally-aggregated flow graph less-aggregated or

isomorphic to a particular flow graph F that is aggregation-equivalent to F. These can be

transformed 'Into one aother by applying the permutation transformation.)

Whether the minimally-aggregated flow graph has any Spreads or Makes depends on

whether te formalism allows ports on terminal nodes to have aggregate port types. If

terminal nodes have no ports of aggregate type, then minimally-aggregated flow graphs win

have no Spreads or Makes.

To see this, suppose we have a minimally-aggregated flow graph F, with a Spread or

Make node n. The node n cannot be on F's fnge since otherwise it could be removed

by Transformation to create a flow graph less-aggregated tan F. So, n must be an

internal node. It must also be flat (i.e., it 'is not nested wit aother Spread or Make node),

since otherwise Transformation 2 could be applied to create a less-aggregate flow graph.

Since n 'is internal, its aggregate port p, is connected to another port P2, which must be of

aggregate port type. However, P2 must be the aggregate port of a node of corresponding

Make or Spread type, since only Spreads and Makes can have ports of aggregate type. This

would mean F contains a Spread-of-Make composition, which means F is not minimally-

aggregated. Therefore, a minimally-aggregated flow graph cannot contain a Spread or Make

node if there are no aggregate port types allowed on terminal nodes.

On the other hand, if terminal nodes have ports of aggregate type, then minimally-

aggregated flow graphs might have one or more Spread or Make nodes. Using reasoning

similar to that above, we can see that all Spread or Make nodes would be internal and flat,

with their aggregate port connected to ports on terminal nodes that are not Spread or Make

nodes.

These facts are useful in developing a recognizer for languages of flow graph grammars

that aggregate port types.

Recognizing Aggregation-Equivalent Flow Graphs

A generator or parser for the language of a flow graph grammar may perform the perm-u-

tation, aggregation-introduction and aggregation-removal transformations as steps in their

86

derivation or reduction sequence. Because there are many possible orderings in which to

apply the transformations ad because doing thi's efficiently involves a extension to the

embedding relation of the graph grammar formalism, it is important to discuss how scl- a

recognizer is constructed. (A generator for the language 'is ot described here, since we are

more interested in building recognizers for languages than we are in constructing language

generators, for the purposes of program recognition. A generator can easily be imagined by

reversing the recognition process.)

One way a recognizer for the language can work, given an input flow graph F, is in two

stages. The first would apply some sequence of the permutation, aggregation-removal and

aggregation-introd-uction transformations to F to produce a flow graph P, while the second

would apply a recognizer for the core language to P A flow graph F would be recognized

if a sequence of transformations is found which yields a new flow graph that is accepted

by a recognizer for the core language. Unfortunately, the first stage could involve a great

deal of search to find the appropriate transformation sequence.

A more promising approach is to divide up the stages differently so that no choices need

to be made. In the first stage only aggregation-removal transformations that work "down-

ward" by creating less-aggregated flow graphs are applied until a minimally-aggregated flow

graph 'is obtained. Then in the second stage, the aggregation-introduction and permutation

transformations are interleaved with the reduction actions of the recognizer for the core

language. The idea is that the grammar rules can provide guidance as to what to aggregate

and ow to organize the aggregation so that the flow graph will be recognizable as a member

of the core language. The aggregation guidance is found in the Spreads and Makes of the

rule's right-hand side. This section gives the details of how the interleaving of recognition

with aggregation-introduction transformations works.

This i's explained first for a restricted formalism in which no terminal nodes ave ports of

aggregate port type and the union port type Any is a union of only primitive (non-aggregate)

port types. This smplifies the discussion since each minimally-aggregated flow graph 'In te

language of the graph grammar contains no Spreads or Makes.

Then a second formalism is considered in which the restriction is relaxed to allow t1le

type Any to be a union of all port types (including aggregate port types). This formalism

is still restricted in that the only (possibly) aggregate port type a (non-Spread, non-Make)

terminal node's port may have is Any. In this case, the minimally-aggregated flow graphs

in the graph grammar's language might contain Spreads and Makes. However, as discussed

above, these Spreads and Makes wl each be flat and internal. Each Spread node must have

its input aggregate port connected to a port of type Any. The same must be true for each

Make node's output aggregate port.

87

(DEFUN PP-TWICE2 (STK)

(LET* ((FIRST (AREF (STACK-ELTS STK)

(STACK-PTR STK)))

(NEW-STK (MAKE-STACK :ELTS (STACK-ELTS STK)

:PTR 1 (STACK-PTR STK))))

(SECOND (AREF (STACK-ELTS NEW-STK)

(STACK-PTR NEW-STK)))

(NEWER-STK (MAKE-STACK :ELTS (STACK-ELTS NEW-STK)

:PTR 1 (STACK-PTR NEW-STK)))))

(VALUES FIRST SECOND NEWER-STKM

(DEFUN POP-TWICE (A I)

(LET* ((FIRST (AREF A I))

(NEW-I I))

(SECOND (AREF A NEW-I))

(NEWER-I 1 NEW-I)))

(VALUES FIRST SECOND A NEWER-I)))

Figure 318: Two programs each performing two consecutive Stack Pops.

What the Restrictions Mean in the Program Recognition Application

These two restricted formalisms are sufficient for capturing the types of aggregation that

arise in dataflow graphs representing programs that operate on aggregate data structures.

Allowing only non-aggregate port types on terminals, although restrictive, is still very

useful in representing a wide class of programs and cliche's in the program recognition

domain. For example, the minimally aggregated flow graph for both of the programs shown

in Figure 318 is given in Figure 319. (Attributes are not shown.) Each program can be

recognized as a Stack Pop, followed immediately by another Stack Pop, where the Stack is

implemented as an Indexed Sequence aggregate data cliche' whose parts are an Index (an

integer) and a Base (a sequence).

(When we create the minimally-aggregated flow graph representing a program that uses

user-defined aggregate data structures, we remove Spread ad Make nodes, which contain

naming information that is useful for presenting the results of recognition. We convert this

information to another form attributes). See Section 42.3 for a discussion of how this

information is used.)

The second less-restrictive formalism is useful in representing programs in which ag-

gregate data structures are collected into primitive data types such as arrays and lists (in

Common Lisp). Te accessors and constructors of these primitive data types (e.g., CAR,

CONS, AREF) are primitives. They cannot be treated like Spreads or Makes of aggregate data

structures that have fixed, named parts, because their "parts" are accessed and inserted

88

Figure 319: The flow graph for the programs POP-TWICE ad POP-TWICE2.

I

Figure 320: Flow graph with a node whose output port is of type Any.

at variable, computed positions. These primitive accessors and constructors have ports of

type Any.

For example, the code fragment > New-Time (Event-Time (car Event-Queue))) is part

of a program for inserting a user-defined data structure, called an Event, into a Priority

Queue which is 'Implemented as a Ordered Associative List. The Event has parts Time

(an integer) and Object (a Message, which is a user-defined type). The Event is treated as

a priority queue element, whose pority is the Time part. This code fragment is testing

whether the first element of the 'Input list, Event- Queue, has a Time part less tan the value

of New-Time (which is the Time of the event being inserted).

The attributed flow graph representing this code fragment is shown in Figure 320. Its

CAR has an output of type Any. (Ratlier than numeric port labels, te Spread in this example

uses mnemonic names, such as Time, for clarity.)

No Aggregate Port Types on Terminals

This section shows how the actions of a recognizer for the core language are interleaved

with aggregation-intro'duction transformations in a formalism tat does not allow ports of

aggregate type on terminal nodes.

Since minimally-aggregated graphs have no Spreads or Makes, the Spreads and Makes

in the right-hand sides of rules cannot be matched. Only a sub-flow graph of the right-

hand side can be matched to nodes in the input graph. This snb-flow graph, called the

89

---- Nwmw --- - -

non-aggregated rhs, consists of the subset of nodes that are not Spreads or Makes and the

subset of edges connecting their ports.

Since right-hand sides of rules are assumed to contain no iternal Spreads and Makes,

the non-aggregated rhs is the rght-hand side graph minus its boundary Spreads and Makes.

These boundary Spreads and Makes contain valuable information about how the iputs and

outputs of the non-aggregated rhs should be aggregated to recognize a left-hand side that

has aggregate port types. We move'this information into the embedding relation. We

remove the boundary Spreads and Makes so the right-hand side of each graph grammar

rule becomes the non-aggregated rhs.

Recall that the embedding relation, as described so far, relates left-hand side ports to

right-hand side ports and other left-hand side ports. (That is, C is a binary relation on

,C x R UC, where C and are the sets of left- and right-hand side ports, respectively.) A

single left-hand side port can correspond to a non-empty set of right-hand side and left-hand

side ports, while a single right-hand side port can correspond to at most one left-hand side

port.

We extend this embedding relation to relate each left-hand side port to a tuple of right-

hand side and left-hand side port sets, where the position in the tple is significant. More

precisely, the embedding relation C is now on C x (2R`C)' where n varies. (A left-hand side

port and each right-hand side port in the tuple related to it are still said to "correspond"

with each other.)

The right-hand side ports are tupled and related to the left-hand sde ports based on

the fringe Spread and Make nodes that are removed from each rule's right-hand side. When

a Spread node of output arity is removed, the left-hand side input port corresponding

to its input port becomes related to a tuple in which Vi = I-, the i1h element of te

tuple is te set of right-hand side ports (if ay) connected to the i1h output of the Spread.

Similarly, when a Make node of input arity 'is removed, the left-hand side output port

corresponding to its output becomes related to a tuple, in which Vi = 1., , the i1h element

of the tuple is the set of right-hand side ports (if any) connected to the ih iput of the

Make.

The rule for A in Figure 3-21a. becomes the rule shown in Figure 3-21b when Spreads

and Makes are removed. Left-hand side port Al is related to te tuple of right-hand side

ports < a,, d, , b > This is shown by tupling the Greek annotations associated with each

left-hand side port to reflect the aggregation of right-hand side ports corresponding to the

left-hand side port. (For smplicity, elements of tuples that are singleton sets degenerate to

the single element of the set in drawings. Tnples containing one element degenerate to that

one element.)

If any Spread node has an output j that connects directly to an input k of a Make node,

then a st-thru results between the left-hand side ports (11 and 12) tat originally corre-

sponded with the input of the Spread ad the output of the Make, respectively. Specifically,

the j1h element of the tuple corresponding with 11 contains 12 and the k h element of the

90

(X p

14

(a)

I:x A

cc x

04 :x a :x

0 I:y :y 5

<(CP> 5>

(b)

Figure 321: (a) A rule which aggregates port types. (b) The same rule with aggregation

information moved to the embedding relation.

triple corresponding with 12 contains 11.

This is illustrated in Figure 322 where the rule 'in part (a) is converted to the rule of

part (b) which contains a st-thru. Al corresponds with A2 in part y of aggregate port type

P.

Relation To Concrete Application Domain-. St-Thrus in Data Aggregation

This case arises quite frequently in the program recognition domain. Operations on ag-

gregate data structures in which all parts of the data structure are used and/or changed

are rare in te simulator programs. Most operations work on only a subset of the parts.

For example, the operation for removing the first element from the cched aggregate data

structure Circular Indexed Sequence (abbrev. CIS) accesses oly four of its five parts and

changes only two parts. As shown in Figure 323, the CIS data structure has a Base, which

is a sequence, a Size, which is an integer, a Fill-Count, which is an integer count of the

number of elements in the CIS, and two index pointers (First and Last), which ae positive

integers that specify the indices of the first and last elements in the CIS. The removal op-

eration uses the CIS's First part as an index into its Base part to retrieve the first element.

Then the First part is updated by being incremented or decremented (depending on the

direction of growth), modulo the Size part. The Fll-Count is also decremented. The Last

part is not used or changed. Also, the Base and Size parts are used but not changed. So,

91

:x 2:

et 0,., 2:x 1:x 91.4 p
0, 1:p m :.,, a :x L 3:P ---w-t)

0I C�43:ycn �5
L��

1:y 2:

a 2: p - No

X

1:P 2:

Boo

(b)

Figure 322: (a) A edge connects a Spread and Make. (b) This edge becomes a st-thru
when aggregation information is moved to the embedding relation.

there are three st-thrus in the rule for CIS Extract, representing t1te Last, Base, and Size
parts. The rule for CIS Extract is shown in Figure 324. (The CIS part names correspond-
ing to the elements of the tuples of correspondence labels are shown in the lower left-hand
corner.)

Using the Embedding Relation in Reduction

The embedding relation plays a key role in reduction which is at the heart of the recognition
process. A flow graph is recognized if it can be reduced to a single node having a start type.
Reduction steps are analogous to rewriting (or generation) steps. Rather than rewriting
an occurrence of the left-hand side of a rule to a sub-flow graph isomorphic to the rule's
rigl-tt-hand side, we reduce an isomorphic occurrence of the right-hand side to an instance
of the left-hand side. In both cases, the embedding relation is used to determine how to
connect the replacement sub-flow graph to the rest of the graph, called the host graph.

The following i's only a conceptual description of the reduction mechanism. While a
recognizer can be implemented to perform exactly these actions, it is not necessary that
it do so. In most generators, recognizers, and parsers, the flow graph is not destructively
transformed at each derivation or reduction step. The rewriting or reduction is simulated
in the state of the generator, recognizer, or parser. This allows backtracking and multiple
results to be formed (e.g., for ambiguous grammars).

Recall that the uextended embedding relation is used as follows. When a sub-flow

graph R is reduced to an istance of a rule's left-hand side L, an edge is created between a

port pi in the host graph and a port L of L, if and oly if pi was connected to a port in R3

92

Base:

Last -

First -

E el
1. Integer Decrement 2: Integer .

J

(8 t

i 310

Size

F il I -
Count

Figure 323: Circular Indexed Sequence data tructure

K

93

Fill-
Count

'K
r, "IN

<aPXSF-> CIS- 2: Any

10 1: CIS Extract 1*

t, 3: CIS

<0,7"nt,(P>

Mnemonic tuple element names:

<Base, First, Size, Last, Fill-Count>

Figure 324: The rule for Circular Indexed Sequence Extract.

t1-tat corresponds to L, according to the embedding relation.

Reduction using the extended embedding relation is more complicated. Several right-

hand side ports may correspond to the same left-hand side port, but we do not want all ports

in the host graph that are connected to these right-hand side ports to become connected to

the left-hand side port when the right-hand side is replaced with the left-hand side. Instead,

before we connect the left-hand side instance up to the ports of the host graph, we insert

Make and Spread nodes into the graph surrounding the left-hand side to bundle -up the

inputs and outputs coming from or going to the ports of the host graph.

More specifically, for each left-hand side input port Lj having an aggregate port type,

a Make node is inserted. Its output 'is connected to L - and its i1h iput i connected to3

the host graph ports that are connected to the right-hand side ports in the i1h element of

the tuple corresponding to Lj. Likewise, for each left-hand side otput port Lk having an

aggregate port type, a Spread ode is inserted. Lk i connected to the Spread's input and

tlie ith output of the Spread is connected to the host graph ports that are connected to te

right-hand side ports in the i1h element of the tuple corresponding to Lk-

The Make and Spread nodes specify how the minimally-aggregated flow graph should

be aggregated to recognize it as the left-hand side of the rle. When the reduction result- in

a Make-of-Spread composition, the composition is simplified. (Note t1lat Spread-of-Makes

are never created by this action.)

For example, the flow graph grammar of Fgure 315, which expresses aggregation using

Spreads and Makes, is converted to the flow graph grammar of Figure 325, which expresses

aggregation 'in the embedding relation. A sample reduction sequence using the rules of this

grammar is shown in Figure 326.

A flow graph is recognized if it is reduced to a flow graph consisting of node of a start

type of te grammar, with (possibly empty) trees of nested Makes and Spreads, whose roots

are connected to the start type node's inputs and outputs, respectively.

The reduction transformation described here is simulated by our parser. Spreads and

Makes are not actually added to the graph being parsed just as the graph being parsed is

not destructively reduced). Section 35.2 gives details of how the parser does this simulation.

No Aggregate Port Types on Terminals Except "Any"

We now sghtly relax the restriction on our formalism that no terminal nodes have ports

of an aggregate type. We aow ports of type Anyon terminal nodes to take on any port

type, including an aggregate port type. In this formalism, the minimally-aggregated flow

graphs in a graph grammar's language might contain Spreads and Makes which are flat and

internal. We call these residual Spreads or Makes. Each residual Spread node must have its

input aggregate port connected to a port of type Any. Likewise, the output aggregate port

on each residual Make node must connect to a port of typeAny.

The main difference this makes to the reduction mechanism is that the simplification

94

(X "I . p

A.. -I:Q 2: I:Q E 2 p

(X x .
IT

:w 4: 8

cc x
T

p 8- w C :w

ot x
:x a :x

- 8- 1:y :y

cx 8
:x A

<UP> < 5>
1:Q E : 14

<(XP> 5>
:Q 2: M#

<(XP> <7 8>
2: 14

<aP> <5,F->

T
B

:w

Figure 325: The grammar of Figure 315 with aggregation ecoded in the embedding

relatioll.

95

I 11, 11 I loll IN I II III, III 11-I 11 - -

Ir

1T

1T

Figure 326 A reduction sequence using the grammar of Figure 325.

96

opmoolmr-�,". ",-

(a)

(b)

1: V g 2, 2:

(C)

cc
g 1: Q 2: Any h 2:

(d)

Figure 327: The reduction of a sub-flow graph using the rule for D from Figure 3-25.

of Spreads and Makes is not as straightforward. When a snb-flow graph isomorphic to the

right-hand side is reduced to a left-hand side with surrounding Makes and Spreads, t1le

Makes and Spreads may become connected to residual Spreads and Makes.

A composition of a Make with a Spread node may arise. However, the Make ad Spread

will not usually be of corresponding type. The residual Make or Spread may even become

connected to a tree of nested Spreads or Makes, respectively. The usual, straightforward

Make-of-Spread simplification cannot be applied to thi's composition.

For example, the sub-flow graph containing nodes a, b, and c in Figure 3-27ais reduced

to a on-terminal node of type D, surrounded by Makes ad Spreads, using the rule for D

from Figure 325. The result of the reduction is sown in Figure 3-27b.

There are two solutions to this. One is built on the other and is more powerful in that

it allows a useful form of partial recognition to be done. The basic solution 'is to perform

a special-case simplification to the composition. In particular, if all of the otputs of a

residual Spread are connected to inputs of a Make or tree of nested Makes (as they are

97

in Figure 327), then we can simplify this composition by drawing an edge from each port

connected to the residual Spread's input to each port connected to the output port of the

Make or of the root of the Make tree. We can simplify compositions involving residual

Makes 'in a analogous way.

For example, the flow graph in Fgure 3-27b would simplify to the one in Figure 3-27c,

which can be recognized as an S, whose rule is in Figure 3-27d.

The main limitation of this basic solution is that 'it does not enable us to handle a form

of partial recognition that we find crucial in performing partial program recognition. In

particular, we would like to be able to recognize aggregate port types that aggregate only

a subset of te parts that are aggregated by a port type used in the input flow graph.

For example, sppose we have the flow graph shown in Fgure 3-28a and we want to

recognize an in it whose rule is shown in Figure 3-28b. (Perhaps the flow graph in Figure

3-28a represents a program in which some cched op eration is being done to some parts (of

type x and y) of a user-defined data structure F where these parts compose a cched data

structure P. At the same time, the user-defined data structure might contain additional

parts (of type and n) that are keeping track of some statistics, such as how many times

the parts of type x and y are accessed. The operations (p and q) to the statistics-keeping

parts are unfamiliar and need to be ignored when partially recognizing the program.)

The key to partial recognition of flow graphs is the ability to separate recognizable

portions of a flow graph from unrecognizable portions. For partial recognition of a flow

graph F to succeed, the recognizable section must be a sub-flow graph of F. (Recall the

discussion of Section 33.1.) The problem here is that residual Spreads and Makes keep

the urecognizable portion of te input flow graph connected to te recognizable portion,

preventing simplification and recognition of a sub-flow graph of the input flow graph.

The reduction of te flow graph using the rule for A yields the flow graph in Figure

3-28c. We cannot simplify the composition of the residual Spread (Spread-F) with the

Make (Make-P) as we do in te first solution because not all of the residual Spread's outputs

are connected to t1te Make's inputs. The same is true for compositions involving residual

Makes.

(Note that if tere are no aggregate port types on terminal nodes, there are no residual

Spreads or Makes. So this form of partial recognition 'is handled easily in the more restricted

formalism.)

To solve this, we make use of the fact that fan-in and fan-out facilitate partial recognition

in that unrecognizable portions of a flow graph that fanont from or into ports internal to

recognizable portions can easily be ignored simply by not being included n the sub-flow

graph matched.

The idea is to break up residual Spreads into two Spreads, one of whose outputs connect

to the recognizable portion while the other's outputs connect to the unrecognizable portion.

(The input port types of the two Spreads become some brand new type.) The inputs to the

Spreads are connected to edges which fanout from the port(s) of type Any that connected

98

(a)

14 An h

(b)

< 14

(d)

Figure 328: (a) A flow graph only partially recognizable as the Ron-terminal S, whose rule

is i (b). (c) Result of reduction. (d) Breaking up residual Spreads ad Makes to facilitate

partial recognition.

99

to t1te input of the original residual Spread. Residual Makes are broken -up into two Makes

analo ously. Thus, we 'Isolate the recognizable portion from the nrecognizable portion by

inserting a fan-in or fan-out. For example, the sub-flow graph enclosed in a dashed line in

Figure 3-28d can be recognized as an once the residual Spreads and Makes are broken

up.

How a residual Spread or Make 'is to be broken up is determined by which connections

we are trying to make with ports of type Any. In other words, the decomposition is not

guessed. It 'is determined by what we are trying to connect together. It may be broken -up

in more than one way, depending on how many subsets of parts of an aggregate port type

can be partially recognized as distinct aggregate port types.

As is the case with the rest of the reduction mechanism discussed so far, this is all

simulated in the state of the parser. No graph operations are actually done. See Section

3.5.2 for more details.

3.5 Chart Parsing Flow Graphs

GRASPR uses a new graph parser which has evolved from Brotsky's flow graph parser 1].

It also has been influenced by a chart-based flow graph parsing algorithm developed by

Lutz 90]. See Figure 329. Brotsky's parsing algorithm generalized Earley's string parsing

algorithm 32] to flow graphs. Kay 71, 72] and Thompson 132, 133] also generalized

Earley's parser to create string chart parsing. This was a generalization of the control of

Earley's algorithm to aow flexibility in the rule-invocation and search strategies employed.

Lutz then generalized string chart parsing to a type of flow graph that is a sghtly restricted

form of te flow graphs defined 'in this report. (Section 36 explains the difference.) The

flexibility of control in Lutz's flow graph chart parsing algorithm as been adopted by the

flow graph parser presented here.

An earlier version of our parser (described in 144, 145]) was an extension of Brotsky's

parser that allowed it to handle flow graphs that contain edges that fan-in or fan-out. It

also dealt with some variations due to structure-sharing (in particular, for parsing flow

graphs in which the derivations of two non-terminals overlap). Lutz independently devel-

oped more techniques for dealing with structure-shariffig variations. These techniques ave

been incorporated into our parser.

Our formalism further extends that of Lutz and our earlier formalism to include graph

grammars that encode aggregation information. Our parser also extends the class of flow

graph variations that are tolerated to include variations due to aggregation organization.

The main characteristics of the parser are:

* It deterministically smulates a non-deterministic parser.

0 It finds all possible parses and keeps track of a partial analyses.

* It can handle ambiguous grammars.

100

Earley 69

generalized to generalized control
flow graphs

Bro ky 84 Kay '80, Thompson '81

extended class of flow neralized to flowgraphs,
structure-sharing

graphs and grammars

Wills'87 Lutz 89

generalized control, tended class of flow
extended class of flow
graphs and grammars, graphs and grammars,

(aggregation) (aggregation)

Wills 92

Figure 329: Flow graph parser evolution.

9 It reuses previously found parses so that it can avoid re-doing work (i.e., it shares

subderivations).

* It has a flexible control structure. Its rule ivocation strategy (top-down vs. bottom-

-up) and its search strategy can be specified as part of its inputs.

* The order in which parses are constructed does not matter. (This is useful in being

able to incrementally construct parses and to advise the parser to focus on certain

parts of its search while postponing others.)

* It is able to make use of analyses it has obtained while parsing to create alternative

views of the iput graph. This can in turn allow more analyses to be constructed.

o During reduction, it can aggregate not only a set of right-hand side nodes into a single

left-hand side non-terminal, but also an aggregation of inputs (or outputs) of a right-

hand sde flow graph into a single input (or otput) of a left-1-tand side non-terminal.

The Basics of Chart Parsing

Chart parsers maintai a database, called a chart, of partial and complete aalyses of the

input. This is shown in Figure 330. The elements in the chart are called items. (in

string chart parsing, they are called "edges." Lutz 901 calls them "Patches.") An item

might be either complete or partial. Complete items represent the recognition of some

terminal or non-terminal in the grammar. Partial items represent a partial recognition of a

non-terminal.

A complete item for a terminal node is created for each node in the iput graph during

initialization. A complete item for a non-terminal node 'is created when there are complete

101

Chart:

...............................

3

...

I...

..
,-.m" :

5

4

6

... I

.0

I

I

Grammar:

4

Input:

-+ - C.0

4

x+

Figure 330: Graph chart parsing.

102

Itcomplete item"

44,(��

Irpaitial item"----------- 7� -----------------

4

i
2

2

"fiinclnmi,ntA -ZwGyi-w--

3 BP

7

I

items for each of the constituents of the right-hand side of some rule for the node's type, a-Rd

the locations of the constituents satisfy the right-hand side's edge connection constraints.

Each complete item keeps track of the location in the iput graph at which the instance

of the node type has been found. It also contains pointers to the snbitems on which it

depends, as well as other information.

Partial items, on the otlier hand, contain information about how much of a rule's right-

hand side. has been recognized so far. It contains a dotted rule, which specifies the on-

terminal being recognized, the rule used to recognized it which constituents have been

found, and which constituents are still needed.

Fundamental Event

The most basic operation of a chart parser is to create new items by combining a partial

item with a complete one. This is called the fundamental etyent. If there is a partial item

that needs a non-terminal A at a particular location and if there is a complete item for

non-terminal A at that location, then the partial item can be extended with the complete

item. During extension, a copy of the partial item is created and augmented. This results in

a new item which is added to the chart. When a partial item is extended with a complete

one, they are said to be "combined.") Duplicate items are never added to the chart. This

avoids redoing work. (Also, items are never removed from the chart.)

In the string cart parsing literature, the chart is described as a graph. The nodes

represent locations in the string being parsed and the edges represent the partial or complete

recognition of some terminal or non-terminal between two locations. In string chart parsing,

the retrieval of pairs of edges to participate in the fundamental event is based primarily on

location. Whenever a partial and complete edge meet (i.e., satisfy the adjacency criterion),

the pair becomes a candidate. The set of pairs are then further refined by an extendibility

criterion which typically checks terminal or non-terminal types).

In string chart parsers, it makes sense to use the adjacency criterion as the frst filter in

retrieving pairs of edges to be combined. It only requires looking up the edges that start at

a particular node in the chart (graph). Then the extendibility criterion can be applied to

these edges.

However, in graph parsing, the "edges" (items) are between sets of ports. The adjacency

criterion now requires that the inputs and outputs of the completed item be a subset of the

outputs and inputs (respectively) of the partial one. Since there can be many possible pairs

of items that satisfy this criterion, we use part of the extendibility criterion to help retrieve

pairs of items to combine. Additional constraints have been added to the extendibility

criterion as a way of narrowing down the search for analyses. For example, some of the

non-structural constraints on attributes have been incorporated into the criterion. The

choice of which constraints to include depends on the cost of checking the constraints at

this point in the parsing. (See Section 62.2.)

103

-M1111 -- -- I I - .m. -

Agenda Agenda

Chatt

t. N
k".) (b)

Figure 331: (a) Adding a complete item to te cart. (b) Adding a partial item to te

chart.

Agenda-Based

In chart parsers, an agenda is used to queue up the items to be added to the chart. Items are

continually pulled off the agenda and placed in the chart. As an item is added, it is paired

with other items with which it can be combined. If the item being added is a complete

item, then it is paired with partial items that need it. On the other hand, if the item added

is a partial item, then it is paired with any complete items for the non-terminals it needs.

These two cases are iustrated in Figure 331.

The agenda makes it easy to control which things are added to the chart and wen they

are added. This explicit control can be used to enforce a particular rule invocation strategy

or search strategy.

For example, we can make the parser adopt a bottom-up parsing strategy, as shown in

Figure 332. Whenever a complete item is added to the cl-tart, new empty items ca be

added to the agenda for each rule that needs the complete item to get started (i.e., the rule

has a minimal right-hand side node that is of the same type as the type derived by te

complete item). The new item is instantiated at a location that depends on the location of

the complete item.

Likewise we can achieve a top-down parsing algorithm. First, during initialization,

empty items must be added for each rule that derives a start type of the grammar. (An

46 empty" item is a partial item that needs complete items for all of its rule's right-hand

side constituents.) For each such rule, a empty item must be istantiated at each of the

possible matchings of the inputs of the input graph to the inputs of the rule's left-hand side.

Second, whenever a partial item is added to the chart, a new empty item must be added to

104

Agenda bottom-up Kuie invocation strategy:

new
items

I

I i i

I . -1

%wassommussif

:08mumummusewa

Fe a on a a am Ea a am.

v W

I -j

I -j

% a a au a a a a ago a Mama a a.?

I ::j
% a as a an owns anew v mm up

0... v :
%a an* was Eamesa M a v or amp

new
partial
items

I - Me I r� I

%wasummummul
spossmosommuz

Ml
Combination complete item Invocation monitor:
monitor: "Which rules need
"Who needs this item to get
this complete started?"
item?"

Homogeneous

...... Grammar%Bonuses

Chart

Figure 332 A bottom-up rule invocation strategy affects adding a complete item to chart.

the agenda for each rule that derives a non-terminal needed by the partial item. The new

item must be instantiated at a location that depends on where the partial item needs te

non-terminal constituent.

(In the current program recognition system, we use only a bottom-up strategy, since this

facilitates partial recognition. This also makes it easier to recognize non-terminals for which

there are rules witli mismatching arity between the left-hand and right-hand sides. This is

necessary in handling rules whose right-hand sides have inputs (representing constants) that

do not correspond to left-hand side input ports. Alowing a right-hand side to have more

inputs and outputs than the left-hand side is also crucial in allowing the type of embedding

relation that encodes aggregation relationships. A top-down strategy would require that we

predict the organization of aggregation when each empty item is first instantiated (before

the item's rule's right-hand side is matched). In other words, it requires searching for the

appropriate sequence of aggregation-introduction transformations needed to recognize the

flow graph, as discussed in Section 34.2.)

The way in which the agenda is maintained determines not only the rule invocation

strategy, but also the parser's search strategy. While we can control whether the parsing

algorithm proceeds top-down or bottom-up by controlling what gets added to the agenda,

we can choose a particular search strategy (e.g., depth-first or breadth-first), simply by

controlling the order in which items are pulled off of the agenda. The agenda might be

maintained as a first in, first out (FIFO) queue to achieve breadth-first search, for example.

The strategy for maintaining the agenda can be given by the user. It is one of the ways

D-++-- - D-1-

105

I I

I :1
Vowasommommuffamosom:

%goof Boaass Sam a an an IF

I --i

% a OR am a as a a a a a as NO

% a a a a***** amass� kp

...........

%m nummosommoso %monsoon

Chart

Figure 333: Search strategy as input to parser.

advice from an expectation-driven component or a human user can be 'incorporated into

the code-driven component. See Figure 333.

The parser is guaranteed to find every parse exactly once, no matter which rule invoca-

tion or search strategy is used.

Additional Monitors

One final aspect of the architecture of the parser i's that it contains additional monitors that

watch te chart. See Figure 334. These detect the existence of certain kinds of items or

collections of items in the chart which can be used to generate other items. In particular,

they look for opportunities to view part of the input graph in an alternative way in order to

yield more parses. The graph is not explicitly changed to the alternative view. Instead, new

items are created which represent the alternative views ad these are added to te agenda.

An example of this is employed in simulating the zipping -up of an input grap as

explained in Section 35.1, which describes how share-equivalent flow graphs are recognized.

Selectively Trying Harder

We do not necessarily want the parser to generate all of the alternative views '' of the i-

put graph. So, the opportunities for generating new items representing these views are

queued on an agenda. Tese opportunities can be selectively pulled from the agenda and

performed. The parser can be given advice from an external agent about how and when

to make the selection. The parser can be made to incrementally try harder. It can report

Agenda

106

Agenda

- I

I I

I ---i

% a II* mm III* no a a gasp

I I

%as a a an a mg ass *ma Sp

Vanamommommummummum: I

%a a aseams sow Oa a awn IF

I

New Item
Generator

I b-.. "

Al

I

I......I
k

"I

Additional
agendas

I I I

2
A

4 1

-j
L

v

1 -7 F I
1 71 :...........1

:wwassommessums: :......1
1 %a nowassommusso %womosso

I

Chart

Figure 334: Additional monitors.

easy recognitions early, and then be given more tme later to generate alternative views
e without sacrificing

that uncover the obscured clich's. So, qick results can be obtained,

completeness in the long run.

The parser can also be directed to generate alternative views only within a certain area

of te input graph. For example, if no cliche's were found 'in a particular area of the input

graph, the parser could try generating alternative views in that area in case this would aow

more cche's to surface.

Asking for Advice

The monitors might also detect question-triggering patterns in the chart. These are patterns

that indicate that a particular constraint is likely to hold. This is useful if the constraint is

costly for the parser to check. When such a pattern is found, the recognition system can ask

whether the constraint 'is satisfied. The question might be more easily aswered by some

other source such as a expectation-driven component in a hybrid recognition system).

Now that the basic operation of the chart parser for flow graphs has been described,

the next three sections give details of how the extensions to the formalism and st-thrus are

handled.

Motivations for Copying Before Extension

Each time a partial item is extendable by a complete one, a copy of the partial item is

created and the copy is extended. There are three reasons that the parser extends a copy

of partial item, rather than the original. One 'is that the parser is leaving itself ope to

107

the possibility of ambiguity. It might be possible in the future for the partial item to be

extended with another complete item for the same right-hand side node. By ot changing

the original partial item, the parser continually has a partial item that can accept alternative

derivations for its immediately eeded nodes.

The alternative complete item need not be a duplicate of the first. If both satisfy the

constraints of the partial item, with respect to its matching so far, then both can extend

the partial item. For example, the two complete items might have overlapping locations,

but if the partial item only constrains the location that is shared by the two items, both

can extend the partial item. So the parser is using copying to deal with partial ambiguity.

The second reason is that copying facilitates partial recognition. When a complete item

is recognizing a partial item's immediately needed node that is on the left fringe, then

extending a copy of the partial item aows the partial item to be extended with a different

complete item, representing a instance of the left-fringe node at a different location in the

input graph. (This is a special case of ambiguity.)

A third reason to copy before extending is that this facilitates incremental analysis

[149]. There are two forms of incremental analysis. One is incrementally analyzing a static

input graph. This is achieved in chart parsing by iteratively adding complete items for each

of the input graph's nodes to the chart. A depth-first retrieval of items from the agenda

can ensure that a partial analyses of the input graph considered so far are created before

another node of the 'Input graph is considered (i.e., the complete item for the node is added

to the chart).

The other type of incremental aalysis is useful to do when the input graph is changing.

(This might happen when the recognition system is being used to aid maintenance, for

example.) It 'involves updating the results of a previously parsed input graph to account for

a modification to the input graph. This type of incremental analysis requires 1) creating

analyses of the new sub-flow graph and 'incorporating them into the existing analyses, and

2) retracting analyses that depend on the old sub-flow graph tat has changed. Augmenting

existing analyses based on the new information is another case of the first type of incremental

analysis. Retracting analyses that are no longer valid involves first finding the items to

retract and then doing the retraction.

Copying before extension makes doing the retraction of an item easy. AR partial items

whose copies were extended with the item are still around, unmodified. They represent

intermediate states in the search for an analysis, before the complete item advanced the

search. Retraction of an item can be done by "killing" the item in the chart and each

partial item it extended, as well as their item tree descendants. The original partial item
will remain.

Finding the 'items to retract requires keeping track of dependencies between the input

graph's structure (and attributes) and the items that represent recognitions of it. Most of

this dependency 'Information is contained in the 'item's structure in the form of links to sb-

items tat represent 'Its components. The leaves of these links are the items for terminal

108

S

A

-3b

b D C

(a)

(b) (C)

Figure 335: Sharing a sub-derivation.

nodes in the input graph. However, more dependency information mst be maintained

than is in the current implementation. If any edges are added or attributes are changed,

constraints might no longer be satisfied. The information of how items depend on the nodes,

edges, and attributes of the input graph is important not oly i deciding which items to

retract, but also wich previously failing items or item combination attempts might now

be valid. So this dependency information is also relevant in the incremental addition of

analyses and the augmentation of existing analyses.

3.5.1 Recognizing Share-Equivalent Flow Graphs

Recall from Section 34.1 tat a recognizer or parser for a structure-sharing flow graph

grammar may work by interleaving zipping and unzipping transformation steps with the

usual reductions steps. Our chart parser imulate,5 this introduction in two ways. First,

unzipping the input graph is simulated by allowing sub-derivations, in the form of sub-items,

to be shared. For example, suppose we give the paf ser te input flow graph shown i Figure

3-35a with the grammar of Figure 3-35b. Once the parser creates a complete item for D,

it is sared between te items for A and B. Parsing yields te derivation graph sow in

Figure 3-35c.

Second, zipping up the input graph is simulated using a "zip-up" monitor. For example,

an input flow graph might redundantly contain two instances of the same non-terminal A,

where the inputs and/or the outputs of the two instances fan out from or into the same

port(s). (See Figure 3-36b.) The right-hand side flow graph that we are ooking for might

maximally share a single instance of the non-terminal (as does the rule for in Figure

3-36a). We would like to view the input program as maximally sharing the two instances

of A, so that the right-hand side flow graph will match. This is done by generating an

item for A that "zips up" the two items for A that were created. (See Figure 3-36c.) The

location and sub-items of the new zipped up item is the union of the locations and sub-items

(respectively) of its zip-up components.

109

ON-Oll Om go milli I--

Also, the attribute values of the zipped -up item's left-hand side are computed based on

those of the zip-up components. The attribute combination function associated with each

attribute held by the zip-up components' left-hand sides is used to compute a new value

of the attribute. In particular, for each attribute ai associated with the left-hand side's

noiri-terminal type, ai's combination function 'is applied to fl-te attribute values held for ai

by the left-hand sides of the ip-np components. (The attribute combination functions may

be partial functions. If the function is not defined for the attributes of some left-hand sides

whose 'items are being zipped up, then te zip-up attempt fails.)

3.5.2 Recognizing Aggregation-Equivalent Flow Graphs

Following the discussion of Section 34.2, this section describes the recognition of aggregation-

equivalent flow graphs first for the restricted formalism in which no terminal has an aggre-

gate port type and then for the less restrictive formalism. Recall that the recognition

process for the restricted formalism included "inserting" Spread and Make nodes whenever

an isomorphic occurrence of a right-hand side is reduced to a left-hand side Ron-terminal

node with aggregate ports. The Spread and Make nodes serve to bndle up the edges

surrounding the non-terminal node. The recognition process also smplified" any Make-

of-Spread composition that results from the insertion of Spreads and Makes. These actions

are simulated by the flow graph chart parser.

In particular, 'items keep track of where the right-hand side is found, using a set of

location pointers, which indicate which edges correspond to te iputs and otputs of the

right-hand side of the item's rule. To represent the addition of a Make or Spread, the

location pointers are placed in tuples, which are nested 'in tree structures. The nested

triples reflect the organization of the aggregation of the edges to which they refer. An

element of the t-uple can be either another tuple or a set of location pointers. (A set of more

than one location pointer represents fan-in or fan-out.) Wen items are combined, their

location pointers are compared to see if they represent a Make-of-Spread that simplifies

correctly. The corresponding parts of the tuples are compared. If both parts are tUples,

they are compared recursively. If both are sets, the sets must ave a non-empty intersection

for the comparison to succeed. If one is a set and the other a tuple, the comparison fails.

For example, Figure 3-37a shows the flow graph in tlie language of the gramma in

Figure 325, whose reduction is shown in Figure 326. Location pointers are shown as

integers annotating te edges and edge stubs. Figure 3-37b shows the items created by the

parser in parsing this graph. The nested t-uple on the iput in the 'item for D, for istance,

represents the nested Make nodes "inserted" dring the reduction sequence of Figure 326.

The creation of the complete item for shows the comparison between the nested tuples

on the otput of D and the input of E.

Note that the simulation method used by the parser relies on using a bottom-up rule

invocation strategy. It compares the tuples of location pointers that are organized based

110

.q.."Pow" Of 1-11J I III 01001 NPOWINAMMMOMMM1111

M+

m+ au

M+ mm

(a)

......................

I
a I
---------------------- I

I :
A

(b)

(C)

Figure 336: (a) A graph grammar that maximally shares the non-terminal A. (b) An iput

flow graph containing two edundant instances of A. (c) An alternative view created by
C�zipping up" the input graph.

ill

<4,5> <7,8>

B
2 4:w

1
1

< 12>
1:P 2

<<1,2>,3> <<4,5>,6>�1

1:Q 2 2: :Q

%............

Compare Soit
Derivations:

<<1,2> 3> 8> 1
:QS

(b)

Figure 337: (a) A flow graph wth location pointers. (b) Items created during parsing.

1 4 7
:x a :x :x 'X

2 5 8
:y 2:y : e

:z

3 6
lwc w f :z 10

3:z IN-

(a)

,,�-A ;,, A�.

112

on t1te recognition of a rule's right-hand side, rather than predicting the organization and

then verifying it by trying to match the right-hand side at the predicted location.

We now consider recognizing flow graphs i the less restrictive formalism in which there

still are no aggregate port types on terminal nodes, but the type Any is a nion type of

aggregate and non-aggregate types. Recognition involves a special-case simplification of

compositions of residual Makes (or Spreads) with the nested Spreads (or Makes) that are

"inserted" dring reduction. Recall that to perform partial recognition, in which parts of

an aggregate port type used in the input graph are ignored, we need to "break up" te

residual Spreads (or Makes) so that recognizable portions of the flow graph are separated

from -unrecognizable portions.

This is simulated in the state of the parser, using operations on the location pointers

of items. Residual Spreads and Makes are removed from the iput flow graph. They are

replaced with fan-out and fan-'in, respectively.

(As is discussed in Section 42.3, some of the information found in residual Spreads and

Makes is useful for generating documentation about which data structure cliche's were found

in a program and how their parts relate to user-defined structures' parts. This information

is placed in attributes on the fan-out or fan-in edges that replace a Spread or Make.)

In the combination operation, a -nested tuple of location pointers "inserted" during

reduction of a rule's right-hand side may be compared with a flat, unordered set of location

pointers, representing the fan-ont or fan-in edges that replaced a residual Make or Spread.

The combination is valid if for each Est L of location pointers in the fringe of the tree

formed by the nested tuple, at least one location ointer in L is a member of the flat set

of location pointers. Not all of the pointers in the flat set of location pointers need to be

members of some list of location pointers within the nested tuple.

For example, the input flow graph generated from the example of Figure 328 is sown

in Figure 338. In creating a complete item representing the recognition of S, the flat set of

location pointers representing the residual Spread, 2 3 4 51, is compared with te tuple

of location pointers, < 23 > representing the aggregation of types x and y into A's input

port type P. (See Figure 3-38b.) Likewise, the tuple < 6 7 > is compared with the flat set

of pointers 6 7 8 9. Both comparisons succeed.

3.5.3 Matching St-Thrus

When two left-hand side ports of a rule correspond with each other in the embedding

relation, the rule contains a st-thru. Because st-thrus are part of the embedding relation

rather than the right-hand side flow graph, they are not matched in the same way as nodes

and edges of the right-hand side. They can possibly match any edge in the input flow graph.

St-thrus impose a global constraint. Suppose a rule for a non-terminal A contains a

st-thru ivolving ports labeled I and 3 on A, as in Figure 339. If an item completes for A

and is combined with a partial item, the complete 'item places a constraint on te locations

113

2 6

1 10

(a)

1 10

v 2:v M+ 10 v 9 2:P h :v

, 45} <2,3> <6,7> 16,7,8,91

0

(b)

Figure 338: Simulating the break up of residual Spreads ad Makes.

of non-terminals that are connected to A at ports I and 3 in the partial item's rule. The

constraint requires that these adjacent non-terminals be located at edpoints of the same

edge. The st-thru essentially imposes a constraint that the non-terminals connected to A

at ports and 3 be connected to each other. (See Figure 340.)

St-thrus differ based on whether or not they are structurally constrained and whether

or not they are optional. A st-thru is structurally constrained if the embedding relation

restricts it to matching edges that fan out (or in) with edges coming into (or out of) an

isomorphic occurrence of a right-hand side. In other words, a st-thru is constrained if one

or both of the two corresponding left-hand side ports also correspond to some right-hand
side port.

Structurally unconstrained st-thrus are not restricted in this way. They exist when two

left-hand side ports correspond to each other and no other right-hand side port. These

types of st-thrus often arise when a right-hand side with Spreads and Makes is translated

to a non-aggregated right-hand side. If te otput of a boundary Spread connects directly

to an input of a boundary Make and neither port connects any other ports, a structurally
unconstrained st-thru arises.

We refer to structurally constrained st-thrus as simply "constrained" st-thrus (and struc-

turally unconstrained ones as "unconstrained"), with the understanding that this is refer-

ring only to structural constraints. Most st-thrus including unconstrained ones, have non-

structural constraints (in the form of attribute conditions) imposed upon them by their

114

(C p

Figure 339: Grammar containing a rule with a st-thru.

0..4
I;-- - -I

IIII

i
i

0

0I 0 1
I

-0.(1+ 00
0

II..

Actual constraint:
..............................

--'6 ...

Figure 340: Constraint on combination imposed by st-thrus.

115

(C p

M* 1 A4 D

(u.,x)

M* Do

p 8

0
0
0

-0.(m+
011is.

0*#.

- Mh---i

rule.

Constrained and unconstrained st-thrus are both matched to a set of edges, which is

then narrowed down, based on the context in which its rule's right-hand side is reduced to

its left-hand side. An unconstrained st-thru iitially matches the set of all edges, while the

constrained st-thru. matches the subset of edges that satisfy the restrictions imposed by the

embedding relation. These sets of matching edges are shrunk as non-structural constraints

are checked and the reduction of higher-level non-terminals in the parse tree occurs.

For example, suppose a Circular Indexed Sequence Insert and a Circular Indexed Se-

quence Extract non-terminal were recognized in the input graph, as sown in Figure 341.

When the locations of the Insert and Extract non-terminals are compared during combina-

tion, the location pointer tples are compared element-by-element. The First part of te

output of CIS Insert represents an unconstrained st-thru and is initially matched to all edges

(shown pictorially by a wild-card *). During combination, this First part is matched with

the Frst part of the input to the CIS Extract instance. This arrows down its matching

set of edges to those indicated by location pointers 10 and 13. The Size part of the CIS

Insert output also comes straight through CIS Insert's right-1-tand side, but because it fans

out with te iput to MOD, it is constrained to be matched to a small number of edges

(those 'indicated by location pointers and 6.

Global constraints represented by the st-thru are imposed by propagating reductions

in sets of matching edges across non-terminals and across edges. For example, once the

item for CIS Extract extends the partial item of Figure 341, the wild-card matches can be

reduced to a small set of matches. Figure 342 shows the result of propagation of st-thru

match reduction. Now CIS Extract's output constrains the location of its Last part (to

location 9 restricting the location at which the second CIS Insert should be found.

Constrained ad unconstrained st-thrus can additionally be described as either optional

or required. Required st-thrus must be assigned a match, while optional st-thrus need not.

Optional st-thrus are useful in the program recognition domain, where it is often the

case that there is no edge matching a st-thru. This occurs if no operation makes use of the

data represented by the st-thru. For example, the edge indicated by the location pointer 8

in Figure 341 might not exist if no operation foRowing the CIS Extract uses the Base part

of the output CIS. St-thrus representing data structure parts are optional. An example of

a required st-thru 'is that of the rule representing the Negate-if-Negative implementation of

the Absolute Value cliche'. (See Figure 39.)

The only difference this designation makes is in what it means if the reduction of sets of

matching edges results 'in a empty set of possible matches. If the st-thru 'is required, this

empty set means the recognition of the rule's left-hand side failed. Otherwise the set of

possible matches of an optional st-thru can become empty without causing the recognition

t o fail.

116

<B, , L, S, C> <B, , L, S, FC>
14 <(17,18),*,9,(5,6),2> <(17,18),(10,13),*,(5,6),2> 19

ert rac

<16,*,(15,7),(4,5,6),I> <18,12,* 3>

1 <B, , L, S, FC> I I <Bl , L, S, FC> I

lb-

11

It,

11I

2

IIs

.1

Partial item:
a ..

1��
II NI.,

Is

.01- ol�
<16,*,(15,7),(4,-"'1

6..
--

Complete Items for non-terminals found in input graph:

See Next
Figure

4%
,;p *4

0
I

0

I
I

1 -.0

i-.
0

0

0* 14 lb

q,

11

3 No

5

117

Input Graph

Figure 341: Constrained and unconstrained st-thrus.

:.. II

SS

11-0,

II
<16,*,(15,7),(411

i
'L ... :

<B, , L, S, FC>
<17,18),(10,13),*,(5,6),2> 19

- Ex rac

<18,12,* 3>
<B, , L, S, FC>

d..

0 4
I,

9 14 <17,18),(10,13), 0 a
"IsII., 0 (� 6 I .

af NA
9
I

11-11

,Q),z;

IN

110
19 a

MD..;
n

.01, < I Zs, I Z,9,:),i > -,
11,

< 16,(10,13),(15,7),(4,5,6), 1 >

..

Compare Sort
Derivations:

<17,18), *, 9,(5,6),2>

1 1 1 1 1
<17,18),(10,13),*)(5,6))2>

Resulting partial item. Notice that the location pointers have been propagated to
replace the wild-cards.

Figure 342: Propagating matches of st-thrus.

118

3.6 Related Graph Grammar 'Work

Graph grammars have been used widely in automatic circuit uderstanding and verification,

pattern analysis, compiler technology, and in software development environments. (See

[34, 35, 134] for several examples in these areas.)

There are many varieties of graph grammar formalisms. They vary both in the classes

of graphs that are generated and by the embedding mechanisms used. In this section, we

briefly discuss the classes of graphs commonly studied and relate our flow graphs to them.

Then we discuss typical embedding mechanisms. Finally, we describe interesting graph

parsers related to ours.

3.6.1 Classes of Graphs

Early graph grammar work focused on traditional graphs, 'in which odes do not have

distinct entry and exit points (44 ports"). This includes work on webs and web grammars

[27, 94, 102, 105, 119]. These traditional types of graphs are also generated by node-label

controlled (NLC) graph grammars 120] and by the algebraic rewriting approacl-les 23, 33].

(NLC grammars are controlled by node labels (i.e., our node types) in that labels are

important in choosing a node to rewrite and in that the embedding relation is -defined in

terms of labels, rather than specific nodes in a rule's right-hand side or in the host graph.

Edge-label controlled graph grammars 52, 92] are closely related in that they can simulate

NLC grammars.) NLC grammars and algebraic rewriting is discussed further in Section

3.6.2. Their relation to each other is studied by Kreowski and Rozenberg 'in [80].

Traditional graphs are a special case of graph classes in which nodes have ports. These

more general graph classes include Lutz's flowgraphs 90] and hypergraphs 53], as wel as

our flow graphs.

Lutz's 90] "flowgraphs" are a special type of our flow graph. They contain, in addition

to nodes, ports, and edges, tie-points which are intermediate points through which ports

are connected to each other. Since each port is connected to exactly one tie-point, fan-in

and fan-out are not captured to the same level of granularity as is captured by flow graphs.

For example, they cannot express the following situation an output port p, fans out to

input ports P3 and P4, while output port P2 is only connected t P4-

Hypergraphs can be seen as flowgraphs (in Lutz's sense), where nodes in a hypergraph

correspond to tie-points and hyperedges correspond to flowgraph nodes. Engelfriet and

Rozenberg 36] and Vogler 136] study the relationships between hypergraph grammars and

boundary NLC graph grammars. (In boundary NLC grammars, no two non-terminal nodes

are neighbors in any right-hand side 121].)

119

3.6.2 Embedding Mechanism

Our basic flow graph formalism makes use of a smple embedding relation to specify the

connectivity of te right-hand side with the host graph when a left-hand side is expanded

during derivation. This type of embedding mechanism is quite common. However, 'in some

formalisms, embedding is more complicated.

In NLC rewriting, the connectivity of the right-hand side odes with the odes i the

44 embedding area" (i.e., those nodes adjacent to the left-hand side node being expanded) is

determined by a connection relation on node labels (types). In particular, a right-hand side

node is connected to a node in the embedding area if their node labels are related by the

connection relation. (For example, if label 11 is related to label 12 a right-hand side nodes

having label 11 become connected to aR nodes of label 12 in the embedding area.)

In set-theoretic approaches 96], the embedding can involve nodes that are not in te

immediate neighborhood of the left-hand side being replaced. The nodes to which the

right-hand side nodes are connected are specified by path expressions, sch as "all nodes

that can be reached from the left-hand side node by following an otgoing edge of label k

and then an incoming edge of label i." These complicated embedding transformations are

used mainly 'in graph generation (e.g., for specification prposes in software development

environments 98, 97]).

Part of eachpToduction in the algebraic approach 38] is a set of gluing points, which

can be edges as weR as nodes. Both the left- and right-hand sides of the productions can

be graphs containing more than one node. The gluing points are two sets of nodes and/or

edges, one for each side of the production. These sets are in bijective correspondence with

each other. They remain when the left-hand side is removed and form an anchor for the

right-hand side that replaces it. In other words, the embedding relation 'is captured in the

sets of corresponding gluing points.

3.6.3 Graph Parsers

Work on applications of graph grammars has focused mostly o graph generation, rather

than analysis. However, recently there has been more interest in developing graph parsers.

Bamji [8 9 developed a special case of a chart parser for graphs equivalent to Lutz's flow

graphs. The interesting aspect of BamJi"s graph grammar formalism is that his grammar

rules have an embedding relation in which each left-hand side port can be related to a set

of right-hand side ports. Unlike tuples in our embedding, these sets are not ordered and

the riglit-hand side ports aggregated in them are homogeneous in that they have the same

type and are not dstinguished by position in the set. The chart parser imposes simple

set-intersection conditions between the port sets of adjacent non-terminals in right-hand

sides of rules.

Bamji developed this formalism for the purposes of representing and verifying circuit

designs. His parser's efficiency is gained by using only deterministic grammars and using

120

a straightforward rewriting: whenever a right-hand side matches a subgraph, replace it

(destructively) with the left-hand side. Bamji's parser does not try to obtain all possible

parses, just one is sufficient for verification.

Franck 44 ad Kaul 69, 70] study precedence graph grammars. They both present a

precedence graph parser which is a straightforward extension of string precedence parsing

using the well-known Wirth-Weber precedence relations. Graphs can be parsed in linear

time with these parsers. However, precedence graph grammars a-re restricted to be unam-

biguous, and uniquely invertible. Precedence techniques may be useful to use on subsets of

our graph grammar that have these properties.

Bunke and Haller [18 ad Peng, et al. 103] have both developed a parser for plex

grammars which are generalizations of Earley's algorithm similar to Brotsky's.

Wittenburg, et al. [150] give a -unification-based, bottom-up chart parser which is similar

to Lutz's and our chart parser. Grammar rules place a strict (total) ordering on the nodes

in teir rght-hand sides. This ordering determines the order in which items are extended.

This creates fewer partial analyses, which is advantageous in terms of efficiency, bt is a

drawback in terms of generating partial results when the graph contains -unrecognizable

sections.

121

0

14.4. in -1arsin 0 ceco ni* ion

Chapter 2 described the cliche's that we ave collected in our library and Chapter 3 described

the basics of the parsing technique that we apply to recognize them in a wide range of

programs. This chapter fills in the details of encoding programs ad cliche's in the flow

graph formalism and of applying the flow graph parser to the partial program recognition

problem. Sections 33 and 34.2 gave glimpses of how programs and cliche's are encoded in

the flow graph formalism. In Section 41, we review and fill in more details of this encoding.

Then in Section 42, we complete the picture by providing details of GRASPR's architecture.

4.1 Expressing Programs and Cliche's 'in the Flow Graph

Formalism

We use the flow graph formalism to represent programs and programming ciches. In partic-

ular, flow graphs serve as graphical abstractions of programs, flow graph grammars encode

allowable implementation steps between abstract operations and lower-level operations, and

the derivation trees resulting from parsing give the program's top-down design.

The flow graph is used to represent the operations of a program and the dataflow between

them. Each non-sink node in a flow graph represents a function, with ports on the node

representing distinct 'Inputs and outputs of the function. The ports' types are determined

by the signature of the function. Sink nodes represent conditional tests. Te edges of a flow

graph represent dataflow constraints between the functions and tests. When the result of

a function is consumed by more than one function, the edges representing the dataflow fan

out. Edges tat fan in represent the conditional merging of more than one dataflow. For

example, Figure 38 sows the attributed flow graph representation of the program RIGHTP,
given in Figure 37.

Information about a program's control flow, recursion, and data aggregation is captured

in the attributes of the flow graph representation of the program. Section 41.1 describes

the key attributes and conditions used 'in representing programs and programming cliche's.

Attributed flow graphs and grammar rules can become difficult for people to read. For

122

Chapter 4

presentation purposes, we make use of a macro-notation called the Plan Calculus (developed

by Rh, Shrobe, and Waters 110, 114,117,127, 137]), which graphically summarizes some

classes of attributes and conditions, making them more readable. Section 41.2 introduces

this notation. The Plan Calculus is used here only as a visual aid; the primary representation

used by GRASPR is the flow graph.

The Plan Calculus aided us 'in building the cliche' library. It formed a representational

stepping stone between English descriptions of cliche's ad their encoding as attributed

flow graph grammar rules. It facilitates the capture of relationships between cliche's, such

as implementation relationships and temporal abstractions. Section 41.3 discusses this

further.

Section 41.4 demonstrates how the event-driven simulation cliche' and the cliche's it is

built upon are expressed in the flow graph formalism. It goes from the English description

of the cliche's to teir Plan Calculus rendering ad then to the flow graph grammar rules

that GRASPR actually uses to recognize Pisim.

4.1.1 Attribute Language

Attributes on flow graphs store control flow, recursion, and data aggregation information

about a program. In particular, each node has a control environment attribute which

specifies when the operation represented by the node 'is executed, relative to when other

operations in the program are executed. Nodes in the same control environment represent

operations that are performed under the same conditions (so they are each performed the

same -number of times). These nodes are said to co-occur.

Nodes that represent conditional tests have two additional attributes, success-ce and

failure-ce. Operations in the success-ce (resp. failure-ce) control environment are executed

when the conditional test succeeds (resp. fails).

Control environments form a partial order. A control environment cei 'is less than or

equal to another control environment ce (denoted ce E ce iff nodes in cej are performed

at least as many times as those in cei. For example, the success-ce of a node representing a

conditional test is less than or equal to the control environment of the same node, because

operations on a conditional branch are performed less often than the conditional test.

A flow graph representing a recursive function F contains a node whose type is F.

This is called the recursive node. We assume our recursive functions always have at least

one eX't test and are singly recursive. (Section 72.1 discusses extensions for modeling

multiple recursion in the future.) Figure 42 shows the flow graph representing the program

HT-Insert given in Figure 41. (This is a simple hash table program in which structure

is an array of buckets. Each bucket is a list of strings, ordered lexicographically.) The

recursive node is the one labeled "Splice-In-Bucket."

We distinguish three control environments in flow graphs representing recursive func-

tions:

123

(defun HT-Insert (Element Structure)

(let* ((Key (Hash Element Structure))

(Bucket (aref Structure Key)))

(copy-replace-elt (Splice-In-Bucket Element Bucket)

Key

Structure))))

(defun Splice-In-Bucket (Element Bucket)

(if (null Bucket)

(cons Element Bucket)

(let ((Entry (car Bucket)))

(if (string> Entry Element)

(cons Element Bucket)

(let ((Rest (cdr Bucket)))

(if (string= Entry Element)

(cons Element Rest)

(cons Entry (Splice-In-Bucket Element Rest))))))))

Figure 41: A recursive function with multiple exits.

e recur-ce - the top-most control environment of the flow graph representing the recur-

sive function. It is te control evironment of the node representing the first operation

performed by the recursive function I Fgure 42, this is ce2.

* feedback-ce - the control environment of the node representing the recursive can within

the body of the recursive function. In Figure 42, this is ce8.

* outside-ce - the control environment i which the recursive fnction is called and

into which 'it exits. In Figure 42, it is cel. (If the recursive function is analyzed

independent of any callers, a new control environment is created to be the otside-

ce.)

The feedback-ce and the outside-ce are always the recur-ce. Operations performed

before the exit test i.e., in the recur-ce) are always performed more times than the recursive

call or the operations done -upon exit, since they are performed when the recursion exits

as well as when it repeats. If there is only one exit, then the node representing the exit

test as the recur-ce as its control environment, the feedback-ce as its failure-ce, and the

outside-ce as its success-ce. (If a new control environment had been created to represent

the outside-ce, then it becomes equal to the success-ce of the test.)

Summing Incomparable Control Environments

Some subsets of control environments are said to be incomparable. In particular, if ce, and

ceb are the snccess-ce and failure-ce of the same node, then the set f Cea� eb} is incomparable.

124

ce: cel

ce: e8

Figure 42: Flow graph representing HT-Insert.

ce

125

In addition, the set of control evironments in which a recursion is exited are incomparable.

(There will be more than one such control environment if the recursion has multiple exits.)

These are the set of control environments of the nodes that are executed in the base cases

of the recursion. For example, in Figure 42, the set f ce3, ce5, ce7l is incomparable.

We define a partial function ,, as the ollowing. If a set of control environments

is not incomparable, then ,,(S) is undefined. Otherwise, if is a success-ce/failure-ce

pair for the same node, then ,,(S) is the control environment of that node. If is a

set of control environments i which a recursion is exited, then ,,(S) is the ontside-ce of

that recursion. In Figure 42, ,,fce3,ce5,ce7 = cel, while ,jce3,ce5j is undefined.

(Intuitively, the result of ,, can be viewed as the control environment in which operations

are performed as many times as the combined number of times operations in the control

environments of the incomparable set are performed.)

Another function E,, on sets of control environments is defined recursively in terms of

+ce as:

6 If S = 2 then E,, = +e(s).

* If there is a set S' C which is incomparable, then E,, = Ec,(+,,S'U (- S)).

* Otherwise, E,, S is undefined.

In other words, if a single control environment can be obtained by recursively reducing

(using ce) all 'incomparable subsets of the put set S, then that control environment is the

result. Otherwise, Ec, is undefined. For example, in Figure 42, Ecj ce3, ce5, e7, ce8}

Ecjce3,ce5,ce6} Ejce3,ce4 = e2. Also, Ecjce3,ce5,ce8 = undefined, while

Ecf ce3, ce5, ce7j cel.

This summing function is used as the attribute combination function for control en-

vironment attributes. Recall from Section 35.1 that when two items are zipped up, the

attribute values of the resulting 'Item's left-hand side are computed based on those of the

zip-up components. Each attribute has an attribute combination function associated with

it. This is used to compute a new value of an attribute, based on the values of that attribute

held by the zip-up components' left-hand sides. For all control environment attributes, the

attribute combination function is E, This is a partia fnction. If the sum is not defined

for the set of control evironments being combined, the zip-up of the items ivolved fails.

Partial Order Graph of Control Environments

We represent the partial ordering of control environments in an annotated partial order

graph which facilitates the operations of checking and computing c, and E, The

annotated partial order graph has nodes representing control environments. An edge is

drawn from one node representing cei to aother representing cej iff cei E: cej. This edge is

annotated with the set of control environments that together with the source cei form an

incomparable set.

126

Recursion information: [recur-ce: ce2, feedback-ce: e8, outside-ce: cel]

Figure 43: Annotated partial order graph representing the relationships between the control

environments of HT-Insert.

Associated with this graph 'is a set of triples, one for each recursive function call rep-

resented by the flow graph. (There may be more than one if the flow graph represents a

program that calls more tan one recursive function, icluding nested recursions.) Each

triple contains te recur-ce, feedback-ce, and outside-ce of te flow graph representing the

recursive function.

For example, Figure 43 shows the anotated partial order graph for the control envi-

ronments of the flow graph in Figure 42. One triple of recursion information is associated

with the graph.

Edge Attributes

Besides attaching control environment attributes to nodes, control flow information is con-

tained in attributes on edges. Each edge holds a ce-frorn attribute, which indicates the

control environment in which the edge carries dataflow. For example, in Figure 42, the ce-

from attribute on the edge from the top-most cons (in the figure) to the copy-replace-eit

indicates that the operation copy-replace-elt receives dataflow only in the control environ-

ment ce3 which 'is the success-ce of the first null-test node. (Edges that fan in represent

conditional merging of dataflow.)

Each edge also carries a constant-type attribute whose value is either a constant suc as

T, NIL, 0) or undef ined, depending on whether the edge represents dataflow from a constant.

Flow graphs for programs containing user-defined aggregate data structures hold at-

tributes that represent the aggregation information. Each edge holds an accessor attribute

that describes how the data it carries results from the destructnring of some data struc-

127

ture. Each edge also holds a constructor attribute that describes ow the data it carries

becomes part of some data structure. (The value of these attributes is undefined if the

edge is not carrying data involved in some aggregation.) The attributed flow graph can

be seen as the flow graph that results from 1) making a flow graph that icludes Spreads

and Makes to represent aggregation ad then 2 transforming it into a minimally aggre-

gated flow graph using aggregation-removal transformations, and 3 replacing any residual

Spreads and Makes with fan-out and fan-in edges, respectively.

As these nodes are removed, the naming information tey contain is placed 'into at-

tributes. This information is useful 'in presenting the results of recognition ad can be a

source of guidance for the recognition system, as discussed in Section 42.3 64.1 ad 72.3.

Because these attributes are primarily used by the Paraphraser, we defer describing them

-until Section 4.2-3.

Input and Output Correspondences

In addition to control environment attributes, flow graphs for recursive fnctions have at-

tributes which represent the relationship between the 'inputs (resp. outputs) of the flow

graph and the inputs (resp. outputs) of the node representing the recursive call. In par-

ticular a output port p, input-corresponds to an input port pi iff p, is connected to the

jth iput of the recursive node and p represents an input to an operation that receives

dataflow from the jth input of the recursive function.' Similarly, an iput port pi output-

corresponds to an output port po iff pi 'is connected to the kth output of the recursive node

and p, represents an output that sends dataflow to the kth output of the recursive function.)

The inp-tit-corresponds and outp-ut-correspoiads relations are not symmetric, transitive, or

reflexive.

For example, in te flow graph representing HT-Insert, shown in Figure 42, the output

port on the cdr ode input-corresponds with each of the input ports of null-test, car, cdr,

and the second input of each of the cons's in control environments ce3 and ce5. (Input

and output correspondences are iustrated by subscripted asterisks and stars , respectively.)

The second input of the cons in the feedback-ce output-corresponds with the output port

of each of the cons nodes.

Because recursions can be nested within each other, it is necessary to be more specific

about te conditions under which a pair of ports input- or output-correspond (i.e., in

which recursion does the correspondence occur). This is done by associating with each

correspondence relation the feedback-ce of the recursion in wich the ports correspond. An

correspondences in this flow graph have the feedback-ce e8 associated wth them.

'The input-corresponds relation was previously called feeds-back 145] in flow graphs representing tail-

recursive functions, but it was renamed in the current representation which is generalized to represent regular
recursion, as well as tail recursion.

128

- -- ---- -- -

(X I egate- 2 1*

Attribute-Conditions:
I I-- I)

I

i. source-e p> < 2 u)
2. (e= (ce-from (e> negate 2 Negate-If-Negative 2)

(failure-ce (n> null-test)))

3. (ce= (ce-from (st-thru> 2)

(success-ce (n> null-test)))

Attribute-Tfansfer Rules:

1. ce = ce (n> null-test))

Figure 44: Flow graph grammar rule for Negate-if-Negative, with actual attribute condi-

tions.

Attrl'bute Conditi'ons and Transfer Rules

Graph grammar rules impose constraints on the attributes of the flow graphs to which their

right-hand sides match. The attribute conditions and attribute-transfer rules are expressed

in terms of:

0 Functions that map a port, node, or edge in a rule's right-hand side or a rule's st-

thru to t1te port, node, or edge in the input graph to which it is matched when the

right-hand-side (and st-thru) are recognized. These are p>, >, e>, and st-thruX

0 Attribute accessor functions which when given a node or edge return the value of that

attribute of the node or edge. For example, ce-from computes the ce-from attribute

value of an edge. Tese accessor functions are both primitive accessor retrieval func-

tions and functions built on top of them, such as control environment computations

involving ,,.

* Relations on the attribute values, such as _ and predicates on nodes and edges that

are defined in terms of these primitive relations and the attribute accessor functions.

For example, co-occur is a predicate that takes two nodes and checks whether their

control environments are equal.

For example, Figure 44 gives the rule for Negate-if-Negative a common implementation

of the Absolute-Value cliche'. (This rule is repeated from Figure 39, where the attribute

conditions were given informally.) In the first condition, (p> < 2 refers to te input graph

port matching the port labeled 2 on < source? tests whether this port receives dataflow

from a constant equal to .

129

(a,)

I 1*

Attribute Conditions:

1. (input-corresponds? (p> 2 (p> 1 1)
(feedback-ce (innermost-recur (n> 1)))

2. (ce= (ce-from (st-thru 2)
(recur-ce (innermost-recur (n> 1)))

Attribute-Transfer Rules:

1. ce = ce (n> 1)

Figure 45: Grammar rule for counting-up cliche.

In te second condition, e> is used to refer to an edge in te input grap wose source

matches an output of te rule's right-hand side. It constrains tis edge to leave a ce-from

attribute tat is equal to the failure-ce of the node that matches null-test.

The third condition uses st-thru> to refer to an edge t1tat matches te st-thru It

constrains this edge to have a ce-from. attribute that is equal to the success-ce of the node

that matches null-test.

The attribute-transfer rule computes the control environment of the left-hand side node

to be the control environment of te node matching null-test.

Attribute accessor functions are provided to compute the recursion information for te

innermost recursion containing a particular node. These are used in many constraints

for iterative cches. A typical constraint is that two ports input-correspond or output-

correspond in the feedback-ce of the innermost recursion containing some node.

For example, Figure 45 shows the grammar rule representing the iteration cliche,

counting-up, which repeatedly increments the value of its 'input, which starts with some

initial value and is subsequently the result of the increment performed on the previous it-

eration. The rule constrains the input graph ports matching the output and input ports

of to input-correspond in the feedback-ce of the innermost recursion in which the input
graph node matching + occurs.

4.1.2 The Plan Calculus

Flow graphs annotated with the attributes ad conditions described in t1le previous section

can become difficult for people to read. For presentation purposes, we make use of a graphical

notation, called the Plan Calculus [110, 117], which aids people in viewing flow graphs with

130

certain classes of constraints pertaining to programming. However, althoug te Plan

Calculus is -used as a visual aid, te underlying attributed flow graph representation is

conceptually primary to our recognition approach.

The Plan Calculus is a graphical ormalism for representing programs, cliche's, and

relationships between cliche's. In the Plan Calculus, both cliche's and idividual programs

are represented as plans. The relationships between cliche's are captured in overlays. This

section briefly describes plans and overlays as they relate to our attributed flow graph

formalism. (For more details, see Rich [110, 117].)

A plan graphically represents the operations of a program and the data and control flow

constraints between tem in what 'is called a plan diagram. (Plans also specify preconditions

and postconditions in a separate logical language.) A plan dagram is a hierarchical graph

structure composed of boxes and arrows. Boxes denote operations and tests, while arrows

denote control flow and dataflow.

Plan diagrams can be seen as graphical depictions of flow graphs with certain classes

of attributes and conditions - those that pertain to control flow and data aggregation.

Plan diagrams and flow graphs share the same dataflow structure in that boxes represent

operations and arcs denote dataflow between them. However, plan diagrams also have arcs

that denote control flow and join boxes that represent the merging of control flow. A control

flow arc from a box A to a box denotes that eventually (not necessarily immediately)

follows A. A branch 'in control flow is represented by a test box. The rejoining -of control

flow is represented by a join box. It has two sets of incoming dataflow arcs, one for each case

of the corresponding test that caused the control flow to branch out. The set of dataflow

arcs leaving the join carry the data of the set of inputs on either the T or the F side of the

join, depending on whether the T or the F branch (respectively) of the conditional is taken.

Like flow graph edges, dataflow arcs may fan out (which means the result of an operation

is used by more than one operation). However, they cannot fan into the same input, as

edges can in flow graphs. Instead, tey are merged by join boxes. Control flow arcs may

fan in or out.

Figure 46 shows an example of a plan diagram, representing the following code fragment.

(let tax 0.0))
(when > gross min)

(setq tax (* percent grossM

gross tax))

Solid arcs denote dataflow; cross-hatched arcs denote control flow. Each box 'in the Plan

has a label, composed of a part name and a type. For instance, the label "multiply:*"

specifies that the plan in Figure 46 has a part amed "multiply" of type The part

names serve to distinguish between boxes i the plan that have the same type. The part

names in a given plan diagram must be distinct. The part "test" is a test box. Although in

this example, "test" has no data otputs i general, data may flow ot of a test box from

either the side labeled T or the side labeled F, depending on whether the output is produced

131

Figure 46: The plan diagram for a code fragment.

when the test succeeds or fails, respectively. The box named "end" is a join. Its outgoing

dataflow arc carries the data coming from "multiply" when GROSS>MIN (and the F branch

of "test" is executed), and 0.0, otherwise.

The control flow arcs, test, and join boxes represent the control flow information that is

in the control environment attributes. Boxes that represent operations tat are tied together

by control flow arcs correspond to nodes that are all in the same control environment in our

flow graphs. The relationships between control evironments are reflected in the structure

of the control flow arcs. Te ce-from attributes and conditions on dataflow edges are

represented by dataflow routed through joins, which explicitly specify 'in which case of a

conditional branch data flows from a particular operation to another.

Control flow arcs are sometimes omitted when there 'is no conditional structure (i.e., all

operations are in the same control environment). For example, in Figure 46, the control

flow arcs between "compare" and "test" and between "end" and "subtract" can be omitted.

Plans may contain other plans as parts. If the type of a plan and a subpla-n within it

are the same, then the plan i's recursively defined. An example is given in Figure 47. This

is the plan diagram representing the following code fragment which iterates over a list L,

counting the number of elements i it. A dashed box delimits the recursive subplan, with

enough details filled in to show the iput- and output-corresponds relations.

(LET ((COUNT 0))

(LOOP (WHEN (NULL L) (RETURN COUNT))
(SET L (CDR L))
(SETQ COUNT COUNT))))

132

I
I
I
I
I
I
I
I
I

0

com

cdr-and-cc

Figure 4- 7: A recursively defined pla-n.

a

sequence

s .

integer

-coun

integer

r I

integer

St

integer

Circular-indexed-sequence

Figure 48: Data plan for Circular Indexed Sequence.

133

Ol& Circular-Indexed-Sequence

I------------------------------------- IL --------------------------------
I II

se: Seqtwnc rst., J e: eger t: er unt: In er I
I Ia I
II
I--------- ----------- ------------ -----------

i
- - -

i

CIS-Extract

Figure 49: Plan for extracting an element from a Circular Indexed Sequence.

Plan diagrams can contain data as parts. A data plan 'is a plan whose parts are all

either data or (hierarchically) data plans. For example, Figure 48 sows a data plan

diagram representing the Circular Indexed Sequence (CIS) data structure. Figure 49 sows

a hierarchical plan tat contains both data and computational parts. It is te plan diagram

for the familiar computation of extracting an element from a CS. The two data subplans,

which represent te aggregation of data, depict te accessor and constructor information

that we encode in accessor and constructor edge attributes on flow graphs.

4.1.3 Codifying Cliche's: Using the Plan Calculus as a Stepping Stone

Plans are used in the Plan Calculus both to represent programs ad to define cliche's.

Relationships between cliche's are represented by overlays. A overlay is a pair of plans and

a set of correspondences between their parts. They show how an istance of one cche can

be viewed as an instance of another. Overlays provide a general facility for representing

common shifts of viewpoint, such as implementing specifications and data abstractions, and

temporally abstracting iterations.

As grammar writers, we found it easier to express cliche's in the Plan Calculus first and

tl-ten to translate the plan definitions and overlays into graph grammar rules.

This section describes overlays and shows examples of how relationships between cliche's

are captured in them. It then describes how overlays and plan definitions of cliche's are

134

-------------------------------- IL --------------------------------

s e: coun

se, nce integ integ intege integer

------ --- ------- ------- -----

CIS-Extract

CIS-Extract-as-FIFO-Dequeue

Figure 410: Implementation overlay showing how FIFO-Dequeue can be implemented by

CIS-Extract.

encoded in attributed flow graph grammar rules.

Implementation Relationships

Recognizing cliche's on multiple levels of abstraction requires being able to view some cliche's

as implementations of more abstract cliche's. In tte Plan Calculus, implementation overlays
capture these relationships.

The plan o the right of a implementation overlay is the plan definition for a abstract

operation or data structure. The plan on the left of the overlay is the plan definition of a

correct implementation of the abstract operation or data structure represented on the right.

For example, Figure 410 shows an implementation overlay that expresses the relation-

ship between the abstract cliched operation FIFO-Dequeue and one possible implementation

135

Of it, which is as a CIS-Extract cliche'. The correspondences between the two sides of the

overlay show how the inputs and outputs of the abstract operation are related to those

of the implementation. They may be labeled with names of data overlays, as is the cor-

respondence between the iput FIFO on the right ad the iput CIS on the left. The

CIS-Extract-as-FIFO-Deqneue overlay represents an implementation of the FIFO-Dequeue

operation, in which the FIFO 'is 'implemented as a Circular dexed Sequence. The old ad

new FIFOs of the FIFO-Dequene operation correspond to the old and new Circular Indexed

Sequences of the mplementation plan. These correspondences are labeled with the name

of the Circular-Indexed-Sequence-as-FIFO data overlay, which means that tile old (resp.

new) CIS of CIS-Extract, when viewed as a FIFO correspond to the old (resp. new) FIFO

of FIFO-Dequeue.

Encoding Implementation Overlays in Grammar Rules

Our grammar formalism was developed to make it easy to represent shifts of viewpoint

from both abstract operations and abstract data structures to their implementations. It is

specifically able to encode the relationships expressed 'in 'implementation overlays, including

those in which te left-side plan definition contains data plans for aggregate data structures

as subplans.

Each plan definition of the algorithmic cliche's is encoded in a flow graph grammar rule.

The type of the left-hand side node of the rule is the plan's name. The right-hand side is

the flow grapti encoding of the plan, in which the control flow constraints summarized in

the structure of the plan are listed in attribute conditions. If the inputs or outputs of the

plan definition are data plans, the aggregation they represent is encoded in the embedding

relation of the rule.

In particular, suppose an 'input (or output) of a plan definition is an aggregate data

structure of type D, represented by a data subplan. The rule encoding of the plan definition

will have a left-hand side port whose type is D which corresponds to a tuple of right-hand

side and left-hand sde ports. For each part pi of the data plan, the ith element of the tuple

is the set of right-hand side ports (if any) that encode the iputs or outputs of boxes to

which the part is connected. If the part is connected drectly to a part in another data plan

in the plan definition, then the tuple will include the left-hand side port that encodes that

data plan.

(One way to see this encoding is: the ports in the tuple are determined as if the input

(or output) data plan were replaced by a fringe Spread (or Make) node. The embedding

relation that results from removing these fringe nodes (as described in Section 34.2) is the

same as the embedding resulting from this encoding.)

For example, Figure 411 shows the flow graph grammar rule encoding of t1le CIS-

Extract plan definition of Figure 49. (This figure is a repeat of Figure 324.) Attribute

conditions and transfer rules are not shown.

136

- ------)

c 1: Integer Decfement 2: Integer 910

- __j

-- ------ 30
K

<ajp'x'8'e> CIS- 1:
---lo 1: CIS Exftxt 10

3: CIS
__j

437nt1q>

Mnemonic tuple element names:

dase, First, Size, Last, Fill-Count>

D.

11

K
0

11

Figure 411: Rule encoding plan for CIS-Extract.

Currently, we are limited to encoding only those plans that contain data subplans only

at its inputs or outputs. However internal data subpla-ns can be represented by collapsing

a sub-flow graph of the flow graph that represents the left side of the overlay into a on-

terminal. This sub-flow graph can have the data plan as its input/output.

In addition to plan definitions of cches, each implementation overlay is encoded as a

flow graph grammar rule. These rules contain single nodes on both sides. The left-hand

side node's type is the type of the abstract operation on the right side of the overlay. The

right-hand sde node's type is the name of the implementation plan on the overlay's left

side.

The embedding relation encodes the correspondences between the two sides of te over-

lay. If there is a correspondence between an iput (or otput) of the abstract operation on

the right side of the overlay and an input (or output) of the 'Implementation plan, then flie

left- and right-hand side ports that encode t1tem in the grammar rule correspond to each

other 'in the rule's embedding relation. For example, Figure 412 shows the grammar rule

encoding of the overlay of Figure 410.

Sometimes a correspondence is labeled with the name of a data overlay that ma-Ds

an abstract data tpe to a concrete one. This mapping information is associated with the

corresponding ports in the rle. Different ports may have different data mappings associated

with them, even if tey are of the same type.

When a rule that encodes an overlay 'is used 'in a parse, it uncovers a design decision

to implement a certain abstract operation or data structure as another operation or data

137

FIFO- 2: Any cis- 2 An

1: FIFO Dequeue 1: CIS Extract

3: FIFO 3: CIS

Data Overlays:

a: Circular-Indexed-Sequence-as-FIFO

X: Circular-Irdexed-Seqwnee-as-FIFO

Figure 412: Rule encoding the CIS-Extract-as-FIFO-Dequeue overlay.

structure. The overlay mapping information is used to generate documentation of this
design decision.

Temporal Abstraction

In recognizing an iterative program, it is often useful to vew cliched fragments of itera-
tive computation as operations on a sequence of values. This technique is called temporal
abstraction. (See [110, 117, 127, 138].)

For example, a common computation that occurs 'in iterative programs is: on each
iteration a fnction is applied to the result of the previous application of the fnction (or to
an initial value on the first iteration). This is called the generation cche. The plan diagram
for this iteration cliche' is shown on the left 'in the overlay of Figure 413. A common stance
of generation is counting-up, in which te generating function is .

The temporally abstracted view of generation is as an operation Generate that takes an
initial value and a generating function and creates a sequence of values - the values processed
over time, one per iteration. For example, the temporal abstraction of the counting-np cliche'
is the operation Count, which takes an initial value (i) and produces the sequence of values

+ 1 � (+ 1) + 1� ... 1.
The temporal abstraction of iteration cliche's is formalized 'in the Plan Calculus using

temporal overlays. These relate a temporally abstract operation (on the right side of the
overlay) to the plan for an iteration cliche' (on the left side). Figure 413 shows a temporal
overlay formalizing te temporal abstraction of generation as a Generate operation.

The correspondence labeled wth an asterisk is called a temporal correspondence. This
denotes the relationship between the left side data part (the input to apply) and the right
side temporal sequence (the otput of Generate). It specifies that the first term of the
temporal output sequence of Generate 'is equal to the initial put to apply; the second term
is equal to the same part of the recursively defined plan; and so on recursively. Temporal
overlays always contain at least one temporal correspondence.

Temporal abstraction allows an iterative program that is composed of iteration clicl-te's

138

aput:

I
continue: I

I
generation I

I
I
I
I
I
I
I
I
I 0 1
1 1
1 0 1

1 & I
I I
---------- I

ut:

I
I
I
I
I
I
I
I
I

generation

Figure 413: Temporal overlay showing the view of Generation as a Generate operation.

to be seen as a composition of functions on sequences. This makes the program as easy to

understand and reason about as a non-iterative (straight-line) program.

Temporal abstraction also enables GRASPR to undo common function-sharing optimiza-

tions within iterative programs, such as loop-jamming, using the same techniques it uses to

deal with function-sharing due to common s-abexpressioirt elimination. (These are the tech-

niques for parsing str-ac ture-sharing flow graphs, as is discussed further in Section 5.1.5.)

Also, it is easy to encode cliche's by building them out of temporally abstract operations,

rather than expressing them as large, flat iteration patterns. Additionally a composition

of abstract operations is easier to describe than a combination of overlapping, interleaved

iteration cliche's.

Encoding Temporal Abstractions 'in Grammar Rules

As with implementation relationships, flow graph grammar rules are able to capture tem-

poral abstractions by a straightforward encoding of temporal overlays.

Like any other algorithmic cliche', the plan diagram for an iteration cliche' is encoded in

a grammar rule whose left-hand side is a node whose type is the name of the cliche'. The

right-hand side is the dataflow structure of the plan diagram.

The relationships between the inputs (resp. outputs) of the recursively defined plan and

the iputs (resp. outputs) of the recursive subp1an a-re captured in "input-corresponds?"

and "outp-ut-corresponds?" conditions. For example, the rule for generation is. show in

Figure 414. It has attribute conditions that constrain the output of f to input-correspond

139

((XP)

e -I
a 0

1 generation2no
%. J

Node-Type Constraints:

f: (lambda (node-type) T)

Attribute Conditions:

1. (input-corresponds? (p> f 2 (p> f 1)
(feedback-ce (innermost-recur (n> f))))

2. (ce= (ce-from (st-thru 2)
(recur-ce (innermost-recur (n> f))))

Attribute-Transfer Rules:

1. ce = ce (n> f))

2. generating-function = (node-type (n> f))

Figure 414: Grammar rule encoding te plan for Generation.

to te input of f.

This rule's right-hand side 'is not exactly te dataflow structure of generation's plan

definition. Te plan definition takes a function as input which is iteratively applied, but the

right-hand side flow graph does not explicitly represent this functional input and application.

Instead, the right-hand side node has a generalized node type, which means the rule imposes

a constraint on the types of input graph nodes or non-terminal instances that can match

this node. In the rule for generation, the node type constraint is loose: any node type

matches. So any instances of a cliched unary operation or a unary primitive operation that

satisfies te input-corresponds relationships wl be recognized as a instance of generation.

(Generalized node types are used as a shorthand for several rules that I-lave the same left-

and right-hand sides, except for variation in the node types of the right-hand side nodes.)

The reason the apply operation is not encoded directly in the grammar rule as a node

of type "apply" is that there would not be an 'input graph node to match it. Also, this

grammar rule cannot be used to recognize generation in programs in which the generating

function is an abitrary composition of functions. This limitation i's discussed in more detail

in Section 52.3.

The type of the input graph node matching the right-hand side is transferred to te left-

hand side's generating-function attribute. This can be constrained in attribute conditions

of rules that use generation.

Control flow constraints captured in the iteration cliche's plan are encoded in attribute

conditions referring to the control environments of the recursion (recur-ce, feedback-ce, and

ontside-ce). For example, the plan diagram for the cliche' iterative-search is shown on the

left i the overlay of Figure 415. This iteration cliche' is the familiar pattern of repeatedly

140

Continue: :
iterative-
search I

II
II

II

I

iterative-search
Iterative-Search-as-Earliest

Figure 415: Temporal overlay relating the plan for Iterative Search and the operation

Earliest.

applying some test ntil it is satisfied by some value. When the test succeeds, the iteration

is terminated and the value is made available outside the iteration. This iteration cliche' is

encoded 'in the flow graph grammar rule shown in Figure 416. (In the figure, e<= stands

for 1: and ce= is the equality relation between control environments.)

The first condition in this rule encodes the constraint summarized by the control flow

arcs, test, and join: the test must be an exit test of the iteration. This constraint translates

to a condition on how te control environments of the test and the recursion relate. In

particular, the recursive call should occur in the failure-ce of the test and te recursion

should be exited in te success-ce of the test.

The attribute condition actually loosens this constraint slightly to allow for other exit

tests of the recursion. The two parts of the condition are:

1. It must be possible for the recursive call to occur in the failure-ce of the test (but

another exit test may occur in the failure-ce wich can prevent this from happening).

This is expressed as: the feedback-ce of the innermost recursion containing the test

must be the failure-ce of the test.

2. Te success-ce of the test is one possible way to eit the recursion but there may be

another exit test 'in whose success-ce the recursion is also exited). This 'is expressed

as the success-ce must be the ontside-ce of the recursion.

This constraint occurs in the encoding of many iteration constraints, so we defined a

141

a Iterative- No P
,, Search U

Node-Type Constraints:

P: (lambda (node-type) (predicate? node-type))

Attribute Conditions:

1. (and (ce<= (feedback-ce (innermost-recur (n> P)))
(failure-ce (n> P)))

(ce<= (success-ce (n> PH
(outside-ce (innermost-recur (n> P)))))

2. (ce= (ce-from (st-thru> 2)
(success-ce (n> P)))

3. (ce= (ce-from
(output-edge (recursive-node (innermost-recur (n> P)))

(edge-sink (st-thru> 2))
(feedback-ce (innermost-recur (n> P)))

Attribute�Transfer Rules:

1. ce = ce (n> P))

2. search-predicate = (node-type (n> P))

3: success-ce (success-ce (n> P))

4. failure-ce (failure-ce (n> P))

Figure 416: Grammar rule for Iterative Search cliche.

predicate, exit-predicate, that takes a terminal or non-terminal test node and checks these

conditions. So the abbreviate form of the first condition in Figure 416 is (exit-predicate

(n> P)). For example, te top-most null-test terminal node in Figure 42 is an exit-

predicate.

The second attribute condition in the rule for iterative-search constrains the otput to

carry dataflow in the success-ce of te test. This expresses the constraint that the output

of the iterative-search cliche' is the first element to pass the test.

The third condition encodes the constraint that is depicted by the data and control

flow edges from the recursive sub-plan to the exit join in the plan diagram of Figure 415.

This constraint is that the output dataflow of the recursion that merges with the st-thru

must carry dataflow in the feedback-ce of the innermost recursion containing the test. This

ensures that there 'is no additional computation being performed on the way up out of te

recursion.

The function recursive-node finds the input graph node that represents the recursive

call of the reCUTSiORcontaining the exit test. The function output-edge finds the edge from

some output port of a recursive node to an input port. This function is only used when te

recursive node is expected to have only one output port that connects to the input port.

(The constraint fails if this is not true.) In this case, output-edge finds te edge that shares

its sink with the edge matching the st-thru.

This rather awkward type of condition is iposing a structural constraint (as well as

the ce-from constraint) which cannot be expressed in the structure of the rule's right-hand

142

a a Iterative-
1 Earliest 2 2 W

Search

Attribute-Transfer Rules:

1. ce = outside-ce (innermost-recur (n> Iterative-Search)))

2. search-predicate = (search-predicate (n> Iterative-Search))

Figure 417: Grammar rule encoding the temporal overlay Iterative-Search-as-Earliest.

side flow graph. It requires that there be an edge from a recursive node directly to the

output that merges with the st-thru. This constraint is expressed in attribute conditions

rather than in the structure of the right-hand side of the rule because there is no way to

represent the edge from the recursive node to the output without including the recursive

node in the right-hand side. The edge cannot be expressed as a st-thru, since its source is

not an nput to the non-terminal. If we did include the recursive node, we would have to

specify its arity. This would severely restrict the programs in which it can be matched to

only those with recursive nodes of the specified arity.

The attribute-transfer rules shown in Figure 416 specify that'all of the control envi-

ronment attributes of the exit predicate are transferred to the non-terminal representing

'iterative-search.

A temporal abstraction of iterative-search is the Earliest operation. This operation takes

a sequence of values and a predicate and finds the first term in the sequence satisfying the

predicate. This relationship is shown in the overlay of Figure 415.

A temporal overlay is ecoded 'in a grammar rule in the same way as implementation

overlays. Figure 417 shows the rule for Earliest.

When an iteration cliche' 'is viewed as a temporally abstract operation, the operation

is seen as being in the control evironment from which the iteration is called (i.e., its

outside-ce). This is expressed in the attribute-transfer rules of the rule encoding a temporal

abstraction: the control environment of the temporally abstract operation is the outside-ce

of the inermost recursion containing the iteration cche.

4.1.4 Examples of Codifying Simulation Cliche's

We used the Plan Calculus as a stepping stone 'in capturing our cches and then encoding

them in a flow grapli- grammar. This section gives a flavor for how we did this. It shows the

plan definitions and overlays that capture some of the cliche's that were described in English

in Chapter 2 It then gives the grammar rules GRASPR uses in recognizing these cliche's.

Encoding Event-Driven Smulation Cliche's

Recall from Section 21.3, that the event-driven simulation algorithm consists of the follow-

ing key steps:

143

Event-Queue:
Input: ority-Queue
Event Address-Map:

Se uence

Start:
Priority-Queue
Insert

IF I I

Step:
Generate-Event-
Queues-and-Nodes _J

End.
Co-Earliest-
EDS-Finished

Event-Driven Simulation

Figure 418: Plan definition for Event-Driven Simulation cliche'.

* The event-driven simulator is given a initial EVENT, whose Object is a starting MESSAGE

and whose Time is te MESSAGE's arrival tme. This is added to the EVENT-QUEUE.

* On each step of the simulation, the highest priority EVENT is pulled from te EVENT-QUEUE

and processed.

* Processing an EVENT means simulating the handling of the MESSAGE in the EVENT's

Object part. This involves:

- looking p the ASYNCH-NODE in the ADDRESS-MAP that is idexed by the Destination-

Address part of the MESSAGE.

- updating the ASYNCH-NODE's Clock to be the maximum of its crrent time and

the Time part of the EVENT. This creates a new ASYNCH-NODE.

- creating a new ADDRESS-MAP in which MESSAGE's Destination-Address part 'is mapped

to the new ASYNCH-NODE.

- handling MESSAGE in the context of the ASYNCH-NODE.

* The event-driven simulation ends wen the EVENT-QUEUE is empty.

The event-driven smulation algorithm is encoded as a composition of two temporally ab-

stract operations, called Generate-Event-Queues-and-Nodes and Co-Earliest-EDS-Finished,

and a Priority-Quene Insert. The Priority-Queue Insert 'is the operation performed on the

first step of the simulation, which is to add a starting EVENT to the EVENT-QUEUE.

The temporally abstract operations embody the following temporally abstract view of

the iterative actions of the simulator. The simulator generates two sequences: one is a

Imlow Om ! 111 1 1 -

144

sequence of EVENT-QUEUEs and the other is a sequence of ADDRESS-MAPs, using an operation

called Generate-Event-Queues-and-Nodes. It does this by repeatedly applying a function

that extracts the highest priority element an EVENT) from the EVENT-QUEUE and processes

it. These two sequences feed into a temporally abstract operation called Co-Earliest-EDS-

Finished. This operation returns the ADDRESS-MAP in the iput sequence of ADDRESS-MAPs

that corresponds to the first empty EVENT-QUEUE in the other iput sequence of EVENT-QUEUEs.

(These two operations are described further below.)

Temporal abstraction allows us to express this cliche' as a simple composition of tempo-

rally abstract operations. The complexity of how data feeds back during iteration and how

the output relates to the exit predicate is pushed down into the encoding of the individual

operations.

Generate-Event-Queues-and-Nodes

Generate-Event-Queues-and-Nodes is a temporal abstraction of theiteration cliche' Dequelle-

and-Process-Generation, as shown in the overlay in Figure 419. This iteration cliche' is a

special case of the generation cliche'. The generating function is a composition of Priority-

Queue Extract and Process-Event.

This is slightly more complicated than the generation cliche' described in Section 41.3 in

that it generates two sequences, rather than one. On each iteration, the generating function

is applied to the two results of the function's application on the previous iteration.

Co-Earliest-EDS-Finished

Co-Earliest-EDS-Finished is a special case of a more general temporally abstract operation,

called Co-Earliest, which is related to the Earliest operation described in Section 41.3. Co-

Earliest takes two input sequences, Si and S2, and a predicate and it returns the term Of 2

that corresponds to the first term of satisfying the predicate. Co-Earliest-EDS-Finished

is an instance of Co-Earliest in which the predicate is a test for whether the simulation is

finished.

It is a temporal abstraction of the Co-Iterative-EDS-Finished iteration cliche', as shown

in the overlay of Figure 420. This iteration cliche' is the iterative fragment that terminates

the smulation when the current EVENT-QUEUE is empty, returning the current value of the

ADDRESS-MAP.

The temporally abstract operation Co-Earliest-EDS-Finished views the sequences of

EVENT-QUEUEs and ADDRESS-MAPs processed over the iterations as its two inputs. It returns the

ADDRESS-MAP in the sequence of ADDRESS-MAPs that corresponds to the first empty EVENT-QUEUE

in the sequence of EVENT-QUEUEs.

The grammar rules in Figures 421 ad 422 encode the information in the plan def-

initions and overlays discussed so far. A legend specifies port type abbreviations used in

the figure. (The plan definitions, overlays, and the corresponding grammar rules for the

145

I I I I
continue:

Dequeue-

Process-

Generation

Dequeue-Process-Generation

EDS-Generate-as-Dequeue-Process-Generation

Figure 419: Overlay showing the temporal abstraction of the iteration cliche' Dequene-and-

Process-Generation.

146

I

Continue:

Co-Iterative-

EDS-

Finished

Add

Seqi

Co-Iterative-EDS-Finished

Co-Iterative-EDS-Finished-as-Co-Earliest-EDS-Finished

Figure 420: Overlay showing the temporal abstraction of the iteration cliche' Co-Iterative-

EDS-Finished.

147

...

...

-4-2:s Dequeue- 4:S 3:S

Process- Process- 5:S
PrioritY 3 P 2:PQTQ 3:P U. Q Event-7;V�l P GeneraliQn- QJV-a--

1:PQ Queue- 2:E 1: E 4:PQ 0-
EX

Attribute Conditions:

Attribute Conditions: [AR nodes co-occur]

Attribute-Transfer Rules: 1. ce = ce (n> Priority-Queue-Insert))

((XX)
1. (input-corresponds? (p> Process-Event 4)

(p> Priority-Queue-Extract 1)

(feedback-ce (innermost-recur (n>
2. (input-corresponds? (p> Process-Event)

(p> Process-Event 3)

(feedback-ce (innermost-recur (n>
3. (co-occur (n> Priority-Queue-Extract) (n> Process-Event)))

Attribute-Transfer Rules:

1. ce = ce (n> Process-Event))

Priority-Queue-Extract))))

Priority-Queue-Extract))))

Legend:

E--Event

PQ=Priority-Queue

S=Sequence

A=Any

AN=Asych-Node

M=Message

I=Integer

Figure 421: Grammar rules for some Event-Driven Smulation cliches.

148

x r I

- *h 3:S Event-Driven
--"' 2:PQ 5
p Simulation 4:S --P.

.--w �.I:E
a

0 F, --) 8 F, I
-,_� Is Generate- 4:S -10' Im. 2:s Dequeue- 4:S, ---W

Event-Queues- 0 Process-

-al., IN and-Nodes --"" ':PQ Qeaag 3-PQ(X ML�X�

Attribute-Transfer Rules:
1. ce = outside-ce (innermost-recur (n> Dequeue-Process-Ceneration)))

:s Co-Earhest-

EDS- 3: S --w
I Is x

a Finished

I

AMbute-Transfer Rules:

1. ce : (outside-ce (innermost-recur (n> Co-iterative-EDS-Finished)))

...

2:S Co-Iterafive-
EDS- 3:S Priofi�-

-- Pt NFinished I:PQ Queue-
Efflp�?

Aft6bute Condifions:

1. (exit-predicate (n> Priority-Queue-Empty?))

2. (ce-- (ce-from (st-thru> 2 3)
(success-ce (n> Priority-Queue-Empty?)))

3. (ce= (ce-from (output-edge (recursive-node (innermost-recur (> Priority-Queue-Empty?)))

(edge-sink (st-thru> 2 3))))
(feedback-ce (innermost-recur (n> Priority-Queue-Empty?))))

Aftfibute-Transfer Rules:

1. ce : (ce (n> Priority-Queue-Empty?))

2. success-ce, (success-ce (n> Priority-Queue-Empty?))

2. failure-ce (failure-ce (n> Priority-Queue-Empty?))

Figure 422: Grammar rules for cliche's used by Event-Driven Simulation cliche'.

149

Priority-Qneue operations of Empty?, Insert, and Extract are not shown here, since they

do not iustrate any new points.)

Process-Event

The plan definition for the Process-Event cliche' is shown in Figure 423. This cliche' consists

of the four operations that are performed when a event 'is processed (as described at

the beginning of this section): looking -up a destination ASYNCH-NODE, updating'its Clock,

updating the ADDRESS-MAP, ad handling the MESSAGE.

This plan contains a hierarchical data plan within it, which represents the EVENT data

cliche'. It has two parts: an Object (a MESSAGE) and a Time (an integer). The Object part

is a MESSAGE data plan, which has four parts. Te Destination-Address part (an integer) is

-used to index into the ADDRESS-MAP sequence to look up the destination ASYNCH-NODE. This

ASYNCH-NODE is then given as iput to the pdate-Node-Time cliche', along with the Time

part of the EVENT. A new ASYNCH-NODE is returned and NEW-TERM is used to insert it into a

copy of the input ADDRESS-MAP, using the Destination-Address part of the MESSAGE as an

index. Finally, a Handle-Message operation is used to simulate the handling of the MESSAGE

in the Object part of EVENT. This operation takes the new ADDRESS-MAP ad the EVENT-QUEUE
as inputs, as well as the MESSAGE, ad returns an ADDRESS-MAP and EVENT-QUEUE.

Figure 424 shows the rule that encodes the Process-Event cliche', plus two rules tat

derive the non-terminals Lookup-Destination and Record-at-Destination. These two ad-

ditional rules are needed because we cannot directly encode the hierarchical data plan for

EVENT in the embedding relation of one grammar rule. Grammar rules can only represent oe

level of aggregation at a time. (This is a limitation of the crrent implementation of GRASPR.

It does not appear to reflect an inherent difficulty with the graph parsing approach.) To get

around this limitation, we decompose the dataflow graph structure of the plan so that we

separate those parts that access parts of the MESSAGE from tose that access the EVENT. We

then create rules taking the non-terminals Lookup-Destination and Record-at-Destination

to the s-ub-flow graphs representing those parts that access the parts of MESSAGE.

T1te rules for Look-up-Destination and Record-at-Destination contain embedding rela-

tions in which a left-hand side port is mapped to a tuple containing some emptv elements

(denoted by asterisks). This represents the fact that not a of t1le parts of the MESSAGE data

structure are used by the operations represented by nodes on the rule's right-hand side.

Part of the Process-Event cche is the Handle-Message operation. We have grammar

rules that encode one possible cliched implementation of this operation. Tese are not

shown here, snce they are more of the same type we have seen already.)

However, we would also like to allow Process-Event (and the rest of the Event-Driven

Simulation cliche') to be recognized in simulators in which the Handle-Message operation

is non-cliche'd. That is, we would like to think of this as applying a on-cliche'd function

to the MESSAGE which simulates the handling of a real message by a real processing node.

150

Address-Map: Sequence

I F iI
A� a

I I I

I I r,

Get-Node:

Select-Tenn

v

Synchronize:

Update-Node-

Time I

. 11 I
I I I

Update-Addren

New-Tenn

Process:

Handle-Message I

6

L

--

Object: Message
I --
I I
I torage I

Type: rgu es nation- I Time:Requireme) IS:
Svmbol J Seauenc Address: Intege Inte2er

; ;I1
1L-------------------------------

I
I II- - - - - - - - - - - - - ------------------- i

..3'. "', Iv) fo mo V -01, I 'I-- Z a

1-1 ;I
----------------------- I

- I

I
I
I
I
I

- - - - - -j

if

New-Event-Queue: New-Address-Ma :
Priority-Queue Sequence

Process-Event

Figure 423: Plan definition for the Process-Event cliche'.

151

V..
ILI ve t-Queue: Priority-Queue

S:

-------s

i

...... "", - I-

Attribute Conditions: [AR nodes co-occur]

Attribute-Transfer Rules: 1. ce : (ce (n> Lookup-Destination))

Mnemonic tuple element names:

<Object, Time>

n
p

I:s Lookup- x I
3AN

Destinafion

�," .1. .I 4 -

I

<aj*�*:�>

Auribute-Transfer Rules:

1. ce = e (n> Select-Term))

Mnemonic tuple element names.-

<Destination-Address, Type, Arguments, Storage-Requirements>

7

p

Attribute-Transfer Rules:

1. ce : (ce (n> New-Term))

Mnemonk tuple element names:

<Destination-Address, Type, Arguments, Storage-Requirements>

Fignre 424: Rules for Process-Event cliclie'.

152

,""NM -- I., 4 �..
pi P. ------

Old: Asynch-Node

put:
reger

------ ----------------- --------

mory:
Associative-

Set

New: Asynch-Node

Update-Node-Time

Figure 425: Plan definition for te Update-Node-Time cliche'.

Unfortunately, it is difficult to do this within the graph parsing framework. It would require

the Handle-Message non-terminal in the rule for Process-Event to derive an arbitrary flow

graph. In general, it is difficult to express and match a cliche' that is parameterized over

non-primitive, non-cliche'd functions. (This is the same problem we ran into in codifying the

generation cliche' 'in Section 41.3. See Section 52.3 for more discussion of this problem.)

Update-Node-Time

Update-Node-Time is a cliched operation that synchronizes an ASYNCH-NODE's Clock to te

current "simulated time which is the time of the most recent EVENT pulled from the

EVENT-QUEUE. Te operation takes a ASYNCH-NODE and the simulated time (an integer) and

returns a new ASYNCH-NODE whose Clock is either the simulated time or the time of te

input ASYNCH-NODE's Clock, whichever is later. The plan definition of this operatio is

shown in Figure 425. An ASYNCH-NODE has two parts: a Memory (an Associative Set)

and a Time (an Integer). This cliche' takes an ASYNCH-NODE ad an integer and creates a

new ASYNCH-NODE whose Time part 'is the maximum of the iput integer and Time part of

the input ASYNCH-NODE. The Memory part of the output is the same as that of the input

ASYNCH-NODE. The rule tat encodes this plan definition is shown in Figure 426.

Enqueuing New Events

One of the actions of a processing node that is simulated as part of the simulation of message

handling is the creation and sending of new messages. One of the constraints on the event-

driven simulation algorithm is that whenever a message send is simulated, a new EVENT

153

1: Asynch- Update- 2: Integer
Node <8,F-> max

Node- 1: Asynch- 2: Integer -- o.

Time Node Integer
2:lnteger

J

Mnemonic tuple element names:
<MemoryTime>

Figure 426: Grammar rle encoding the pdate-Node-Time plan.

must be created and added to the EVENT-QUEUE. (Similarly, in the synchronous simulation

algorithm, when the message handling simulation simulates the sending of a message, the

MESSAGE that represents it must be added to the global MESSAGE bnfrer.)

Unfortunately, this constraint is difficult to express in the grammar rule encoding and

to check in the simulator code. Partly this is because the node action simulation code is not

guaranteed to be cched, so we have no context in which to express the constraint. Another

reason is that the part of the simulation code that performs the activity of equeuing new

EVENTs (or MESSAGEO is typically given as input to the simulator. So, 'it is not available for

analysis. (As discussed in Section 22, PiSim takes as input a set of functions each of which.

specifies how to simulate the actions of a node in executing some machine operation. Some

of these functions create new EVENTs and equeue them.) These problems are discussed

further in Section 52.4.

Although this constraint is difficult to express and check within the current graph parsing

framework, it is not a hard constraint for a person to check. It might be easier to just ask

the user whether the constraint holds. This question can be asked with reference to the

particular locations in the program, corresponding to locations in the iput graph were

the Handle-Message operation is likely to occur. (This can be based on where the rest of

Process-Event has been found.)

4.2 Architectural Details

This section fills in details of how flow graph parsing is used to solve the partial program

recognition problem. Section 42.1 describes how textual source code is translated into an

attributed flow graph. Section 42.2 discusses an additional monitor that tailors the parser

to deal with a type of graph variation that is specific to the program recognition application.

Section 42.3 describes how the Paraphraser presents the parser's results.

4.2.1 Translating Programs to Flow Graphs

A program is translated from source code to attributed flow graph in two stages. First, a

plan representation of the source code is created. Then, an attributed flow graph is com-

154

pnted from this intermediate representation. Creating the 'intermediate plan representation

of the code facilitates the computation of attributes for the flow graph.

Source Code to Plan Diagram

The plan creation stage is itself composed of two stages: macro-expansion, followed by

symbolic evaluation. The macro-expander translates the program into a simpler language

of primitive forms. It does this by expanding any macro calls in the source program and

by using a set of additional macro-like definitions to expand each complex construct in the

source into a set of simpler forms. In particular, all of the control constructs are converted

to simple conditional and unconditional branches. AR of the data constructs a-re converted

into bindings of or assignments to simple atomic variables.

The macro-expanded code is then symbolically evaluated. Te evaluator follows al

possible control paths of the program, starting with some topmost (44 main") fnction of

the program. It converts operations to boxes and places arcs between them, corresponding

to data and control flow. Whenever a branch in control flow occurs, a test box is added.

Similarly, when control flow comes back together, a join box is placed in the graph and all

data representing the same variable are merged together.

Boxes for user-defined functions are replaced with the plans for their definitions, except

for those within recursive functions. This flattening allows variability in the way programs

to be aalyzed are broken down into subroutines. The user may also advise that certain calls

not be expanded for efficiency reasons. (Any unexpanded function whose name happens to

be a non-terminal 'in the grammar is systematically renamed, unless the user specifies that

the function is an instance of the cliche named by the non-terminal.)

The symbolic evaluator inserts explicit selector and constructor boxes into the plan

diagram for each user-defined accessor and constructor.

The plan representation may be used as the target representation for many different

languages. The flow analyzer used by GRASPR translates Lisp programs into plans. Similar

analyzers were previously written not only for Lisp ([114, 137, 139]) bt also for subsets of

Cobol 42], Fortran 137], and Ada 139], but are not used in this system.

Plan Diagram to Attributed Flow Graph

Once the plan representation for the program is created, it is encoded as an attributed flow

graph. The dataflow structure of the plan is retained in the flow graph. Control environment

attributes are computed from the control flow structure. Joins are replaced with edges that

fan in, annotated with ce-from attributes. Explicit accessors and constructors are also

replaced by attributed edges. Eacl-t accessor and composition of accessors is treated as a

Spread node and each constructor as a Make node. These Spreads and Makes are removed

using the aggregation-removal transformations described in Section 34.2. The residual

Spreads and Makes are then replaced with attributed fan-out and fan-in edges.

155

(defun Insert-Queue (Entry)

(cond ((Empty-or-Low-Priority-Head? Entry *Event-Queue*)

(push Entry *Event-Queue*))

(t (let ((Next (cdr *Event-Queue*))

(Previous *Event-Queue*))

find spot to splice Entry in:

(loop do

(when (Empty-or-Low-Priority-Head? Entry Next)

(return))

(setq Previous Next)

(setq Next (cdr Next)))

perform the splice:

(rplacd Previous (cons Entry Next))))))

Figure 427: Code that side effects the mutable data structure *Event-Queue*.

4.2.2 Additional Monitor to Handle Recursion Unfolding

One of the types of variations that can arise in recursive programs is that a loop in one

can be unrolled in aotl-ter, or more generally, a recursion can be unfolded. This variation

arises in our program examples when we convert the impure programs to pure ones (leaving

no side effects to mutable objects). In this situation, special cases of a recursion sometimes

translate to the general recursive case. This means that the general case is redundantly

performed once, before the recursion is called.

For example, the code in Figure 427 destructively inserts Entry 'into the ordered asso-

ciative list *Event-Queue*. It first tests for the special case in which Entry belongs on the

front of the list (either because the list is empty or its first element has a lower priority

than Entry). In this case, it destructively places Entry on the front of *Event-Queue* using

push. Insert-Queue then performs the general case in which *Event-Queue* is searched for

the place to insert Entry and then Entry i's spliced in at that place.

When this program is translated 'into its non-destructive version, shown in Figure 428,

the special case head insertion becomes the same as the normal splice-in operation.

Insert-Queue-Pure can be rewritten as Folded-Insert-Queue, shown n Figure 429, in which

the recursion is folded back up.

To deal with this type of variation, we provided an additional monitor to the flow

graph parser, which looks for an opportunity to view a program that contains an nfolded

recursion as one in which the recursion is folded back up. By generating this alternative

view, the parser is then able to recognize the program as if it did not have a unfolded

recursion. This augmentation of the parser with a new monitor tailors it to solve a problem

specific to its application to the program recognition problem. This section describes the

new monitor and how the new view is generated.

156

(defun Insert-Queue-Pure (Entry)

(setq *Event-Queue*

(cond ((Empty-or-Low-Priority-Head? Entry *Event-Queue*)

(cons Entry *Event-Queue*))

(t (cons (car *Event-Queue*)

(Splice-in Entry (cdr *Event-Queue*)))))))

(defun Splice-In (Entry Next)

(cond ((Empty-or-Low-Priority-Head? Entry Next)

(cons Entry Next))

(t (cons (car Next)

(Splice-In Entry (cdr Next))M)

Figure 428: Functional version of Insert-Queue.

(defun Folded-Insert-Queue (Entry)

(setq *Event-Queue* (Splice-In Entry *Event-Queue*)))

(defun Splice-In (Entry Next)

(cond ((Empty-or-Low-Priority-Head? Entry Next)

(cons Entry Next))

(t (cons (car Next)

(Splice-In Entry (cdr Next))))))

Figure 429: Version of Insert-Queue-Pure in which recursion is folded up.

157

,,e: ce2

ce: cel

success-ci

failure-ce
- - .1

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I I
I

I I

I

I

I

I

I

I

I

I

I

I

I

I

- -. i

Figure 430: Flow graph representing Isert-Queue-Pure.

I ce: ce2

ce-from:

ce2

158

[ce3j

Recursion information.- [recur-ce.- ce5, feedback-ce.- ce4, outside-ce.- ce3l

Figure 431: Partial ordering relationships between the control environments of Insert-

Queue-Pure's flow graph.

Figure 430 shows the flow graph representation of Insert-Queue-Pure A dashed box

is drawn around the boundary of the sub-flow graph representing its recursion. GRASPR

generates an alternative view of this flow graph in which the recursion boundary is expanded

outward and the redundant computation is collapsed together.

The way it works is based on the observation that when GRASPR tries to recognize an

unfolded program, most of the constraints (structural as well as attribute conditions) are

satisfied. Te only ones that are not are those that refer to the program's recursion in-

formation (e.g., those constraining two ports to 'input-correspond or those referring to the

feedback-ce of the recursion).

So, constraints are placed into two classes: regular ad recursion. When an item fails

only its recursion constraints, it is suspended, which means it is placed in a holding data

structure used by the new monitor. The monitor watches for another complete item, called

a partner, to be added to the chart that can collapse with the suspended 'item. An item

1, can collapse with another item 1. if they are recognizing the same non-terminal type

in control environments that are analogous. (This relation is defined below.) Collapsing

two items means creating a new item which is the same as te sspended item, but whose

constraints are checked in te context of the partner item.

Intuitively, two control environments are analogous if they contain operations that

would collapse together if the recursion were folded back up. For example, Figure 4-

31 shows the partial ordering of the control environments and recursion information for

Insert-Queue-pure. The analogous pairs of control environments are el, ce5), (ce2, ce3),

and (e3, ce4).

The aalogy relations are symmetric, but not reflexive, or transitive. Analogy relations

between control environments are computed from the surface plan during its translation to

an attributed flow graph.

Once a suspended item is collapsed with a partner, the new "collapsed" item is added

to the agenda. Its constraints are satisfied because they refer to attributes of the sub-flow

159

graph matched by the partner item. The collapsed item's left-l-land side control environment

attributes are computed by applying the rule's attribute-transfer rules in the context of the

partner item and then translating them to the analogous control environment. Attribute-

transfer rules that use recursion information in their computation are handled specially. In

particular, if the rule computes the outside-ce of the innermost recursion containing some

node, the control environment analogous to the recur-ce of this recursion is transferred.)

When a collapsed item is used to extend another item, it imposes new edge connection

constraints on the items for adjacent non-terminals. Suppose a collapsed item I havi g

partner IP extends another item to create an item IC, where IA is representing the derivation

of non-terminal A in the right-hand side of IC's rule. If an item 1B for a non-terminal

adjacent to A as a partner 1q, then p and Iq should be connected together in t1le same

way as IA and IB.

The suspend-collapse-resume mechanism for recursion folding can be generalized to a

"try-liarder" technique for handling more types of near-misses besides those that fail recur-

sion constraints. More classes of constraints can be 'identified. When an item fails certain

classes of constraints, something might be done to cause them to be satisfied (e.g., changing

an attribute) or weakened (e.g., changing a co-occurence condition between two nodes to a

F condition). Then the item can be resumed simply by putting it back on the agenda. Te

changes can be reported as conditions or assumptions under which some cliche' is recognized

in the program.

4.2.3 Paraphraser

The output of the recognition process is a forest of design trees, representing the cliche's

found and how they relate to each other. One way to use this output is to automatically

generate documentation for the program recognized. Paraphraser is a tool which takes the

forest of design trees produced by GRASPR and generates textual documentation for each.

Each cliche' in our library has an associated schematized textual explanation fragment wose

slots may be filled in with identifiers in the program. (This is based on earlier work by

Cyphers 24] and Frank 45].)

Paraphraser starts at the root of a design tree and traverses it depth first, generating a

hierarchical description based on the explanation fragments associated with each cliche' en-

countered. It reports the relationships between each cliche' in the tree and those immediately

below it (e.g., Queue-Insert is implemented by FIFO-Enqueue, Sum temporally abstracts

Summing). If an implementation relationship exists between two cliche's and a data abstrac-

tion is uncovered, this is reported as well (e.g., The Queue is implemented as a FIFO.).

Variable names are included in the text to indicate the location of the cliche'. Also, some

slots 'in the explanation fragments are filled in with primitive operation types, sch as <

in An element I s priority P is higher than another I s Q if P < Q. This often happens

when generalized node types are used. In this case the generalized node type matched

160

any primitive predicate that was a comparator. Paraphraser is also able to compute some

mappings from user-defined data structure part names to the part names of aggregate data

cliche's that are recognized. This 'is described below.

The user can select which design trees to document. By default, Paraphraser documents

all of them, starting with those whose roots are at the highest level in the library. Currently,

all cliche's recognized are reported, including those that represent multiple views of some part

of the program. No single best interpretation is preferred. We view the job of selecting views

of the program and focusing on particular results of the recognition as the responsibility of

a higher-level control mecl-tanism which has information about how the results will be used

and which view of the program is most useful.

Mapping Cliche'd Aggregate Names to User-Defined Data Structure Names

Paraphraser heuristically computes mappings from the names of user-defined data structures

and their parts to those of a gregate data cliche's that are recognized in the program.

However, the current implementation is not robust. The mappings are often incomplete

and ambiguous. (This is a area requiring further work.)

The names of user-defined data structures and their parts are associated with edges in

the program's flow graph in the form of accessor and constructor attribute values. Each

accessor attribute has a value that describes how the data it carries to the edge's sink is

a part of the data structure at the edge's source. Because data structure accesses and

constructions can be composed, the values of these attributes are sets of ordered it of

tuples of the form <structure-type part-name>, where the order corresponds to the order

of composition of te accesses or constructions. They are sets of ordered lists because an

edge can represent dataflow from more than one output of a selector to more than one

input of a constructor. For example, in the flow graph representing (queue-length

(node-queue (aref *nodes* i)))), the edge from the output of "aref" to the input of 1+"

has an accessor attribute of value (<Node Queue> <Queue Length>).

Each ordered list can be seen as a "path" that describes ow the source data structure

is destructured to result in the piece of data at the sink. The path may be of arbitrary

length, since the piece of data may be nested deeply within several data structures.

Similarly, each edge holds a constructor attribute that describes ow the data it carries

becomes part of some data structure. The value of the accessor and constructor attributes

is nndefined if the edge is not carrying data involved i some aggregation.

The edge attributes are used to create the mappings between names in cliched structures

and in user-defined ones. When an operation on a cliched aggregate data structure is

recognized, the parser has matched each part of the structure to an edge (or recursively

to a tuple of sub-part matchings, if the part itself is an aggregation). This creates a tree

representing the cliched aggregate data structure's organization, "With the leaves matching

edges in the flow graph representing the program. Those accessor and constructor values

161

FIFO Dequeue is implemented as a Circular

Sequence Extract. The FIFO is implemented as a CIS.

Circular Indexed Sequence Extract extracts the

first element from the Circular Indexed Sequence.

The First part: (<NODE QUEUE> <QUEUE HEAD>)

The Fill-Count part: (<NODE QUEUE> <QUEUE LENGTH>)

The Size part: (<NODE QUEUE> <QUEUE DATA-SIZE>)

The Base part: (<NODE QUEUE> <QUEUE DATA>)

Figure 432: Documentation containing a cliche'd-to-user-defined name mapping.

that are defined are combined to form trees that represent the portions of the user-defined

data structure organization. (There may be more than one if the recognition involves parts

from more than one -user-defined data structure.) The fringes of tese trees are matched

to the fringes of the cliched organization tree. This generates mappings between the part

names of the lowest level structures involved. Mappings between higher level nodes of te

trees are heuristically computed. For example, if a parts of a cliched data structure map

to a parts of a user-defined structure, then the two data structures map to each other.

Equality constraints are imposed locally by the rules for cche' data structure operations.

These require that each cliched part name map consistently to the same programmer-defined

part name (or set of names, if there is ambiguity in which attributes match)-

Figure 432 gives an example of a mapping computed from the recognition of a CIS-

Extract. The mapping is included in the documentation of this cliche'. This mapping 'is

incomplete in that the "Last" part of the Circular Indexed Sequence is not mapped to

anything. This is because in the program, the optional unconstrained straight-through rep-

resenting the "Last" part was not matched. Because not a of the parts of the cliched

data structure are mapped, the mapping cannot be refined. If Last were mapped to

(<NODE QUEUE> <QUEUE TAIL>) then since the user-defined data structure QUEUE as no more

parts, QUEUE can be mapped to CIS and each of the part mappings can be reduced from

(<NODE QUEUE> <QUEUE x>) to (<QUEUE x>). if "Last" were mapped to (<NODE MAX-INDEX>),

and NODE had only parts "Queue" and "Max-Index," then NODE would be mapped to CIS

and the mappings would remain the same (i.e., not be reduced).

Ambiguity arises when an accessor or constructor attribute has a set of values that are

mapped to some cliched part. It also occurs when some part of a program is recognized as

more tan one data structure operation.

In addition to these local refinements to the mappings, global constraint propagation

should be used to refine them further. Future research will focus on this. The results

can be valuable not only in presenting te results of recognition, but also as a source of

expectations which can be used to further guide ad refine data structure recognition. (See

Section 72.3.)

162

Chapter

0 0 0 * 0
1�'a a i i ies an inli a ions

There are two parts of our analysis of te graph parsing approach. One is identifying its

practical capabilities and limitations in the context of real-world programs. The other is

studying the computational cost of this approach. This chapter discusses the first aspect,

while Chapter 6 deals with the second. In this chapter, we consider both the robustness of

our recognition technique under common program variations and the expressiveness of our

graph grammar formalism for encoding programming cliche's.

5.1 Variations Tolerated

Automated recognition of cliche's must be robust under a wide range of variations in pro-

grams. We employ three basic strategies for achieving this goal. First, we use an abstract

representation for programs and cliche's. This representation suppresses many details which

can vary across programs but which do not constitute significant differences between the

cliche's that exist in the programs. Our representation exposes the algorithmic and dataflow

structure of the program, while abstracting away syntactic and organizational differences.

When some unimportant details are not suppressed by our representation (i.e., when

two or more program variations are not represented the same), we try a second strategy. We

provide ways for GRASPR to generate cheap alternative views of the program representation.

These views are created by additional chart monitors during parsing, sch as those that

deal with redundancy.

It is possible to also handle this in a preprocessing stage (rather than during parsing)

by choosing one variation as canonical and applying cheap transformations to canonicalize

other variations with respect to this one. However, sometimes seeing the transformation

opportunity requires performing recognition. For example, zipping -up two instances of an

abstract operation that each involve a different 'implementation requires recognition to view

the redundant code as performing the same operation.

When a cliche' exists in two programs that are not represented the same in our represen-

tation or cannot be cheaply viewed as the same, we fall back on our third strategy. This is

163

to enumerate te variations in our library. For example, we use this tactic to deal with im-

plementation variation. However, when enumerating variations, we rely o our knowledge

of the empirical frequency of occurrence of the variations. We do not collect every variation

of a cliche' we can think of, only tose that are common. Te hierarchical structure of the

cliche' library helps to make the enumeration concise.

These three tactics allow us to automate program recognition so that it is robust under

the common program variations described in Section 23.1. Our abstract representation

eliminates syntactic and organizational variation, as well as variation de to delocalization,

unfamiliar code, and some function-sharing optimizations. This is discussed in more detail

in Sections 5.1.1-5-1.5. By generating alternative views cheaply, GRASPR is able to deal

with variation due to redundancy, as is discussed in Section 5.1-6. Because implementation

variations are concisely enumerated in the cliche' library, GRASPR is able to recognize the

same abstract cliched operation in programs tat contain different implementations of the

operation. This is discussed in Section 51.7.

5.1.1 Syntactic Variation

In Section 23.2, we showed two programs (in Figures 210 and 211) which GRASPR recognized

as containing the same cliches, even though they differ syntactically. This is due to the fact

that both programs are represented as the same flow graph, shown in Figure 5-1.

The figure does not show the complete flow graph. Some function cans are depicted as

nodes for brevity. However, they are sub-flow graphs in the actual representation Tese

nodes are drawn with dotted lines to show that they hide some detail. Also, dashed lines

are drawn around te sub-flow graph representing the recursive function Execute-Events.

(Small fiRed-in circles indicate fan-in and fan-out. They are not special vertices in the flow

graph. They are used to distinguish edges that share sinks or sources from those that merely

cross each other.)

- Accessor and constructor attributes on edges are not shown 'in the -figure because they

differ for the two programs. Instead, the edges for which these attributes have defined values

(i.e., not undefined) are labeled <el>, ... <e7>. Figure 52 lists the actual attribute values

for these edges for the programs of Figures 210 211, as well as Figure 212.

The flow graph representation abstracts away syntactic differences between programs.

Attributed dataflow edges explicitly represent the net effect of binding ad control con-

structs, abstracting away such details as which constructs are used, which variables are

bound, and whether data is passed through nested expressions or via bindings to interme-

diate variables.

Information concerning the names of user-defined data structures and their parts is

relegated to edge attributes, so tliat differences due to explicit accessor and constructor

functions do not arise in the structure of the graph.

Also, the representation captures only "essential" orderings of operations, which are

164

0 i II

.ceO

null

ce: ce3-fnilure-ce: ce3

ce: ce3

Figure 5-1: Flow graph representing the code in Figures 210 211, and 212.

165

<el >: Accessor.-

Constructor:

<e2 >: Accessor.-

Constructor:

<e3>: Accessor.-

Constructor:

<e4>: Accessor.-

Constructor-

<e5>: Accessor.-

Constructor:

<e6>: Accessor.-

Constructor:

<e7>: Accessor.-

Constructor:

undefined

[(<Message Arguments> <Event ObJect>)]

undefined

((<Message Length> <Event Object>)]

undefined

[(<Message Type> <Event OJect>)]

[(<Node Tme>)]

[(<Event Tme>)]

undefined

f(<Message Destination> <Event Object>)]

f(<HandlerArity>)J

undefined

f(<HandlerNumber-qf-Locals>)J

undefined

undefined

f(<Msg Args> <Event Object>)]

undefined

[(<Msg Storage-Length> <Event Object>)]

undefined

[(<Msg Type> <Event Object>)]

[(<Node Tme>)]

f(<Event Tme>)]

undefined

[(<Msg Dest-Addr> <Event Object>)]

f(<HandIerArity>)]

undefined

[(<Handler Number- of-Locals>)]

undefined

ba

<el >: Accessor.-

Constructor-

<e2>: Accessor.-

Constructor-

<e3>: Accessor.-

Constructor-

<e4>: Accessor.-

Constructor-

<e5>: Accessor.-

Constructor-

<e6>: Accessor.-

Constructor-

<e7>: Accessor.-

Constructor-

undefined

[(<Handler-Data Arguments> <Msg Data>)]

undefined

[(<Handler-Data Length> <Msg Data>)]

undefined

ft<Handler-Data Type> <Msg Data>)]

[(<Node Tme>)]

[(<Msg Arrival-Time>)]

undefined

[(<Msg Destination>)]

((<HandlerArity>)j

undefined

f(<H,andlerNumber-of-Locals>)]

undefined

c

Figure 52: Attribute values for accessor and constructor attributes annotating te' flow

graphs representing the programs in Figures 210 (column a), 211 column b), and 212

(column C).

166

those determined by dataflow dependencies. Dataflow graphs make dataflow dependencies

explicit, imposing a partial ordering on the program's operations (rather than the linear, to-

tal ordering imposed by text). So programs which vary only in their ordering of independent

computations will. have the same flow graph representation.

The attributed flow graph representation also captures constraints on data and control

flow, independent of the language in which they are expressed. This means the same library

of cliche's can be used to recognize cliche's regardless of the language in which te program

containing them is written. If the data and control flow of a program can be statically

determined, then the program can be represented as an attributed flow graph. This is

true for most imperative, sequential programs written '111 onventional languages sch as

Fortran, Cobol, Lisp, and Ada.

Some examples of programs for which this is not true are those that contain nondeter-

ministic or concurrent language features. Also, programs that take other programs as iput

cannot be fully modeled by our dataflow graph representation because part of teir data

and control flow information is hidden in their input. (This is discussed further in Section

5.2.)

The abstraction properties of the flow graph representation enable cliche's to be rec-

ognized in programs without having to anticipate (and eumerate) all, possible syntactic

variations of each cliche and without relying on so-urce-to-source transformations to canon-

icalize the code.

5.1.2 Organizational Variation

The flow graph representation is also the key to dealing with variation in how programs

are decomposed into subroutines and how aggregate data structures are organized. In

this representation, the subroutine structure is flattened. Each call to a sbroutine is

represented by te flow graph of the subroutine's body. In essence, te program is seen

as completely open-coded. The key benefit of this is that instances of cliche's which cross

subroutine boundaries are recognized as easily as those tat are within a boundary. Te

hierarchical organization of cches built pon other cches need not be reflected in the

program's decomposition for the cliche's to be recognized.

Of course, flattening a sbroutine calls is not always advantageous. When a subron-

tine is used in several places throughout the code and contains cliche's entirely within its

boundaries, flattening it unnecessarily creates a large input flow graph and causes GRASPR

to repeat work. For example, utility subroutines for basic data structures often contain

general-purpose cliche's entirely within their boundaries ad they are usually called by sev-

eral higlier-level functions. In this case, the subroutines should be reco nized independently.

The results of recognition should then be duplicated and used wherever the subroutine was

called. For example, if a sbroutine is recognized as a cliche', caRs to it in the program should

be represented as an already-reduced non-terminal, which can be used in te recognition of

167

higher level cliches. Tis involves smply adding complete items to te chart, representing

already-reduced non-terminals.

Besides eliminating variation due to subroutine decomposition, GRASPR also deals with

variation in data structure organization. It does this by representing accessors and con-

structors as attributed edges, rather than as explicit nodes in the flow graph, as are other

operations in the program. If the accessors and constructors were represented explicitly

as odes, then the representation would fail to eliminate variation between programs that

aggregate the same data, but -use different orderings of parts or different nesting of aggrega-

tions. (The problems with explicit representation of accessors and constructors as Spread

and Make nodes were discussed in more detail in Section 34.2.)

The flow graph formalism was specifically designed to allow aggregation-equivalent flow

graphs to be recognized. Programs are represented as minimally-aggregated flow graphs,

with any 'internal residual Spreads and Makes replaced with attributed fan-out and fan-in

edges. Cliche's involving aggregate data structures are expressed in grammar rules in which

the aggregation is specified in the embedding relation. The cliche's are then recognized in

programs by using the embedding relation to introduce the cliched aggregation organization

into the parsing process.

In Section 23.2, two organizational variations of Pisim are pointed out (in Figures 210

and 212). In one, the initialization and storage-requirements computations are found within

Inject, while te other separates these computations out into the fnctions Initialize-

Simulator and Compute-Storage-Requirements. The first aggregates four pieces of data into

a Message data structure and then nests this inside an Event data structure, along with a

Time part. The other aggregates three pieces of data into a Handler-Data data structure

and then nests it inside a Msg data structure, along with a Destination and Arrival-Time

part. Both aggregate the same pieces of data, but using different nesting organizations,

ordering of parts, and names for structures and parts.

However, these two programs have the same basic flow graph representation, which is

shown in Figure 5-1. The only difference between the two is in their edge attributes, as

shown in Figure 52. (One program, Inject, iteratively calls a function Execute-Next-Event,

while the other, Start-Pisim, calls Process-Next-Message. The flow graph representations

of tese two calls is the same for both. This flow graph is hidden in the dotted node labeled

"Execute-Next-Event." Likewise, the dotted node labeled "Enqueue-Event" represents calls

to the functions Enquene-Event (by Inject) and Enquene-Message (by Start-Pisim), which

each have the same flow graph representation. Also, the recursive node shown in Figure

5-1 is labeled "Execute-Events," but in the flow graph for Start-Pisim, the recursive node

is labeled "Process-Messages." This difference is not significant, since the recursive nodes

are never expected to match ay right-hand side node dring parsing.)

168

5.1.3 Delocalized Cliche's

Using the flow graph representation also addresses the problem that parts of a cche may

be scattered throughout the text of a program. Many cliche's become much more localized

in the flow graph than in the program text because only essential dataflow relationships are

captured. For example, in Figure 213 a portion of the CST code is sown. Even though

parts of a smulation cliche' are separated by unrelated expressions in the source text they

are translated into neighboring nodes in the flow graph representation of the program. This

representation is shown in Figure 53. The nodes that are unrelated to the simulation cliche'

are shaded.

5.1.4 Unrecognizable Code

GRASPR is able to recognize cliche's despite the presence of unrecognizable code in te pro-

gram. This is partly due to GRASPR's cliche' localization abilities which helps to separate the

familiar from the unfamiliar parts of the program. The cliched sections of a program tend

to become localized 'in sub-flow graphs of the program's flow graph representation.

The other aspect of GRASPR's approach that makes partial recognition possible is the

bottom-up parsing strategy it uses. It recognizes and reports low-level cliche's, even if it

cannot reconstruct the higher level design that puts them together. AR non-terminals are

treated as start-types of the grammar, so that each instance of ay non-terminal is reported.

GRASPR has been specifically designed to solve the partial program recognition problem,

which is defined in Section 33.1: Given a program and a ibrary of cliche's, find all instances

of the cliche's in the program (i.e., determine which cliche's are in the program- and their

locations). It formulates this problem in terms of the subgraph parsing problem, which is:

Given a flow graph F and a flow graph grammar G find a possible parses of all sub-flow

graphs of F that are in the language of G.

In other words, when a program is partially recognized, one or more sub-flow graphs

of the program's flow graph encoding are recognized as members of the graph grammar

which encodes the cliche' library. It follows from the definition of a sub-flow graph, t1lat it is

possible to ignore portions of a flow graph before and after a recognizable sub-flow graph,

as well as portions that fan ot from or into an internal port in the sub-flow graph.

What this means in terms of partially recognizing programs is that GRASPR can recognize

a cliche' in te presence of unrecognizable code or code that belongs to other cliche's, as long

as the cliche' is localized into a sub-flow graph of the program's flow graph representation.

It must be possible to separate the cliche' from the rest of the flow grapl-t by disconnecting

a set of edges.

GRASPR is able to ignore unfamiliar code that "surrounds" a cliche' (in that it sends

dataflow to it and/or receives dataflow from it). See Figure 5-4b. It is also able to ignore

unfamiliar code that is done conditionally assuming that te control flow constraints do

not require co-occurrence relations to hold between the component operations). See Figure

169

..A I....

Shell-Go: . Enqueue I ce: ceO

--------------- ---- ---
------------ I--- I

Figure 53: Flow graph representing the CST code of Figure 213.

170

2

I

I

a

c

b

Figure 54: a) Average cliche'. b-c) Some cases in which a program can be partially recog-

nized.

5-4c.

GRASPR can partially recognize a program that not only has unfamiliar algorithmic frag-

ments, but also has data structures that aggregate -unfamiliar parts. It is able to ignore

computation on unfamiliar parts of an aggregate data structure. This is a direct result of

the parser's techniques-for recognizing aggregation-equivalent flow graphs, as described in

Sections 34.2 and 35.2. These techniques aow recognition of a cliched data structure in

a user-defined data structure even when the cliche' aggregates only a subset of the parts

aggregated by the user-defined structure.

For example, suppose the cliche' library contained a cliche' called Extract-Message, which

is the common computation of looking up a SYNCH-NODE in an ADDRESS-MAP, given a integer

index, deqneuing its Buffer part and updating the ADDRESS-MAP so that the integer index

points to the new SYNCH-NODE. The rules encoding Extract-Message and the Local-Buffer-

Dequene cliche' it contains as a part are shown in Figure 5-5.

This cliche' is found in the program shown in Figure 56 which operates on a ser-defirted

node data structure. The node consists of five parts, oe of which Queue) corresponds to

the Buffer part of a SYNCH-NODE. The value of *nodes* corresponds to the ADDRESS-MAP In

addition to performing the Extract-Message operation, this program increments te Bsy-

Count part of the new node created. It also calls process-message on te msg dequeued, the

ADDRESS-MAP, and *step-queue* (which is the global MESSAGE bffer).

GRASPR partially recognizes the node data structure as well as te program step. The flow

graph representation of step is stiown in Figure 5-7. (The dotted node labeled "Dequeue"

is an abbreviation for a flow graph that 'is derived by the FIFO-Deq-ueue non-terminal.)

The destruct-uring and construction of the user-defined node data structure is represented

171

<(XP> r -%� F-

---O Local-Buffer- 2,:M
1:SN Dequeue so3:S

Attribute-Transfer Rules:

1. ce = ce (n> FIFO-Dequeue))

Mnemonic tuple element names:

<Buffer, Memory>

(P18) -30.

p 8
2:1 ExtraCt_ 4:M

Message 3:S_)-,,,,,,
cx

x

so

Attribute Conditions: [AU nodes co-occur]

Attribute-Transfer Rules: 1. ce, = ce (n> Select-Term))

F,

(X FIFO- 3: A
IT x

Dequeue 2-F - -k, -in

Legend:

I=Integer

F=FIFO

S=Sequence

A=Any

SN=Synch-Node

M=Message

Figure 5-5: Rules for Extract-Message and Local-Buffer-Dequene cliche'.

(def un step (node-nr)

(let* ((node (get-node node-nr))

(q (node-queue node)))

(multiple-value-bind (msg new-queue)

(dequeue q)

(setq node

(make-node :queue new-queue

:objects (node-objects node)

:contexts (node-contexts node)

:busy-count 1 (node-busy-count node))

:method-cache (node-method-cache node))))

(setq *nodes* (copy-replace-elt node node-nr *nodes*))

(multiple-value-bind (new-nodes new-step-queue)

(process-message msg *nodes* *step-queue*)

(setq *nodes* new-nodes *step-queue* new-step-queue)))))

Figure 56: Code containing a partially recognized data structure.

172

E

Figure 57: Flow graph representation for step.

173

in attributed fan-out and fan-'in edges. This facilitates the separation of the -unfamiliar

computation (the increment of the node's Busy-Count) from the familiar. It allows GRASPR

to recognize Extract-Message by parsing the sub-flow graph that results from disconnecting

the shaded portion of step's flow graph from the rest of the flow graph.

5.1.5 Punction-Sharing

The derivations generated for programs by te flow graph parser do not have to be strictly

hierarchical. This means that GRASPR is able to recover the design of a program, even when

parts of the implementation of two distinct abstract operations overlap as a result of an

optimization. In effect, GRASPR "undoes" the optimization.

For example, in Section 23.2, Figures 219 and 221 show two programs that differ only

in that one optimizes the other by enumerating the array nodes once instead of twice. The

enumeration is shared between the two cliched operations of advancing each node in nodes

and computing the average length of their Queue parts.

GRASPR is able to recognize these two cliche's in both programs, even though they overlap

in one. GRASPR does not destructively reduce te input flow graph representing the program.

It allows the recognition of a part of the flow graph to be seen as part of more than one

higher-level cliche'. The resulting design trees share a sub-tree, as is shown in Figure 222.

5.1.6 Redundancy

GRASPR is able to deal with variation due to redundancy which occurs when some part of

a cliche appears more than once 'in the same instance of a cliche'. There are two types of

redundancy that we encountered in dealing witIt real programs.

One type is the repetition of some computation on the same set of iputs and/or produc-

ing outputs that are conditionally merged into the same consumer operation. An example

of this is discussed in Section 23.2 and shown in Figure 223. In this example, the compnta-

tion of accessing the first element of Bucket-List using car is performed twice. The parser's

ability to recognize share-equivalent programs allows GRASPR to tolerate the variatio de

to this type of redundancy. In particular, the parser zips up the flow graph representation

of the program, allowing it to recognize the cliche'. Ordered-Associative-List. That is, it

generates an alternative view of the program in which the redundancy is removed.

The second type of redundancy occurs when a loop is nrolled or, more generally a

recursion is unfolded. This arises in our example programs when we convert the original

programs, which contain destructive operations (causing side effects to mutable data struc-

Wres), to their nondestructive versions. As described in Section 42.2, this is handled by

an additional chart monitor tat creates an alternative view in which the recursion is folded

back up.

174

5.1.7 Implementation Variation

GRASPR is able to recognize two programs that perform the same cliched abstract operation,

even though they may use two different implementations of that operation. Thisis because

the cliche' library is encoded 'in a grammar that explicitly captures implementation rela-

tionships between the cliche's. So GRASPR is able to view and describe structures on various

levels of abstraction.

This enables it to produce te same high-level description of the two versions of the CST

program shown in Figures 216 and 217 of Section 23.2, even though tey differ on a lower

level of abstraction in their implementation of the global message queue. GRASPR produces

the design-trees shown in Figures 214 and 218 for the two versions. They differ only in

the subtrees that are highlighted by dotted boxes in Fgure 218.

It is impractical to enumerate all possible implementational variations of an abstract

cliche' in the cche library as flat structures. However, the hierarchical organization of the

cliche library aows implementation variation to be represented compactly.

5.2 Limitations

Our recognition approach is based pimarily on dataflow graph matching and control flow

constraint cecking. The success of this approach depends on being able to:

1. faithfully capture the program's dataflow in our flow graph representation and the

program's control flow in the attributes, and

2. express a programming liche in an attributed graph grammar rule in terms of its data

and control flow constraints (i.e., operation types and arity, dataflow connections,

control environment relationships).

In general, the limitations of our approach arise when one or both of these are not

possible to do. The first criterion is not possible when the dataflow or control flow of

the program cannot be completely captured by static analysis or the dataflow is not made

explicit (in that it is derived from intermediate computations). The second criterion is not

satisfied for cliche's that have loosely constrained data and control flow or tat are defined

by characteristics other than data and control flow.

This section gives specific situations in which we encountered these limitations in ex-

perimenting with the recognition of our example programs. It also suggests ways of dealing

with these problems, e.g., by collaborating with other mechanisms or eliciting and accepting

advice from a person. (There are additional limitations to te current recognition system

that represent open research problems, rather than inherent difficulties with the approach.

These are discussed in Section 72.)

175

5.2.1 Missing or Derived Dataflow

Our cliche's are basically expressed as dataflow graphs. A cliche' can be recognized only if a

sub-flow graph of the flow graph representing the program is isomorphic to the cliche"s flow

graph representation. Unfortunately, sometimes a cliche exists in a program, but GRASPR

fails to find 'it because dataflow links are derived or missing.

The principal cause of missing dataflow (and control flow) information in or example

simulator programs is that they accept functions for simulating individual machine oper-

ations as input. This prevents data and control flow from being completely determined

statically.

We ound three common causes of derived dataflow links in our example programs. One

is that a primary part of a cliched data structure may correspond to a part of a data

structure in the program that is a handle. The handle is used to look up the piece of data

that actually corresponds to the cliches primary part. For example, our Execntion-Context

data cliche' contains a sequence of INSTRUCTIONs as a primary part. In the CST program, on

the other hand, the corresponding data structure, called context, has a "Code" part that

is a symbol. This symbol is used to look up a Block, which is a sequence of INSTRUCTIONs,

in a pooling structure containing a existing Blocks.

The problem with non-cliche'd uses of handles is that they ntroduce 'Intermediate com-

putation which interrupts data flowing from one primitive operation to another. This

computation looks p a piece of data using a handle into a pooling structure.

Unsimplified code is a second cause of obscured dataflow links. For example, in

(F (Abs-val (G x))), where (G x) is always positive, there is always direct dataflow from

G to F.

A third cause is that a program may implicitly aggregate heterogeneous pieces of data,

rather than explicitly aggregating the data into a structure with named parts, rising a struc-

turing primitive such as DEFSTRUCT in Common Lisp). In implicit aggregation, a primitive

data structure, such as a list (in Common Lisp) or an array, is used to aggregate heteroge-

neous pieces of data, where the position in the data structure matters. For example, Pisim

creates ad uses an array whose first two elements cache iformation about a MESSAGE (Type

and Storage-Requirements), while the rest of the array holds the MESSAGE's Arguments. This

array should be treated as an aggregate data structure with three parts: Type (a symbol),

Storage-Requirements (an integer), and Arguments (an array

Implicitly aggregated data structures are accessed and constructed with primitive op-

erations (such as aref) on the data structures at fixed indices. These operations are not

converted to attributed edges, as are selectors ad constructors for explicit aggregations.

There are two problems with this. One is that with explicit aggregation, the data

from one operation to another is represented as a direct edge annotated with accessor

and constructor attributes, but with implicit aggregation, this dataflow is interrupted by

primitive operations that access or update at a fixed index. In other words, the explicit

176

dataflow link is replaced by a "derived" dataflow link.

The other problem is that it loses the benefit of our representation for explicit aggre-

gation which facilitates the separation of familiar and unfamiliar computations on parts of

a data structure. This separation allows partial recognition of the data structure and t1le

computation on it. (This capability is discussed in Section 51.4.)

The underlying difficnIty is that implicit aggregation hides the information that a certain

primitive access or update at a fixed location 'is actually a selector or constructor involving

a certain data structure and its parts. When data is-explicitly aggregated (e.g., using

DEFSTRUCT), the structuring primitive serves as a machine-readable comment that specifies

that some pieces of data are aggregated and are only accessed and constructed using certain

functions. It also provides information about which user-defined data structure and parts

are involved in the selection or construction. Additionally, it represents the intent of the

programmer to only use these accessors and constructors to manipulate the aggregation and

never deal with it directly using primitive operations.

(Note that people find it hard to deal with mplicit aggregation as well. It requires

knowing how fixed locations in the data structure translate to the particular pieces of data

being aggregated. It requires effort to perform this mapping during recognition.)

Solution Suggesti'ons

To deal with the variation due to missing or derived dataflow, GRASPR would profit from

advice from a user or collaboration with other automated techniques. For example, classical

rewriting or partial evaluation techniques can be applied to simplify parts of the program.

(See Letovsky 84] and Murray 95], for example.) By interleaving recognition wth these

other techniques, alternative views of the program can be generated to facilitate recognition.

Recognition in turn can provide a more abstract view of the program and generate assertions

about parts of it, based on the known properties associated with the cches that ave been

recognized so far.

One way for GRASPR to ecit advice is by looking for "q-uestion-triggering" patterns

(in addition to cches) which point to the possibility that some dataflow is derived. For

example, by looking for standard look up and update operations (such as associative-set

cliche's), GRASPR might uncover a use of a handle. Recognizing that each node created during

initialization is put into *NODES* triggers asking the user if *NODES* always contains a the

NODEs ever created. A fixed-position array or Est access suggests an implicit aggregation

is being used. These ypotheses can then be presented to the user or some expectation-

driven component for confirmation. Once the use of a handle or an implicit aggregation is

-uncovered, GRASPR can generate an alternative view of the flow graph in which the derived

links are made ex licit attributed edges.

It can be more difficult for GRASPR to confirm its ypotheses on its own than for a

human user to confirm them, since the user can take advantage of expectations generated

177

from the mnemonic names and documentation. For example, it can be easy for a person

to tell whether a particular data structure is a pooling structure, just by its name: *Nodes*

contains all Node data structures in PiSim, *Blocks* contains all Block structures in CST.

(Alternatively, the user can give GRASPR advice about which structures are pooling structures

up front, without waiting for GRASPR to ask for it).

A special (and common) case of implicit aggregation for which it is easy for a person

to give advice is manual abstraction. In this case, functions are explicitly defined which

perform te accesses and constructions involving fixed indices in an implicitly aggregated

data structure. In other words, the programmer manually defines the accessor and con-

structor functions for an implicitly aggregated data structure. (These functions are defined

automatically by explicit aggregation primitives such as DEFSTRUCT).)

This is distinguished from general implicit aggregation in that the aggregation is ex-

plicit to people, even though it "looks" the same as implicit aggregation to GRASPR. The

aggregation is expressed in the aming conventions the manual abstraction functions use.

They also express the programmer's intent not to violate the abstraction by manipulating

the aggregate directly using primitive operations. Since GRASPR does not take naming con-

ventions into account, these functions are flattened just Eke any other function. However,

a person can easily give GRASPR the information that certain functions should be seen as

accessors and constructors for an aggregate data structure.

5.2.2 "Missing" Cliche' Parts

Another common reason for an algorithmic cliche' not to be recognized is because part of

the cliche is replaced in t1te program by a special-case optimization. This optimization is

not a cliche'd one; it happens to be possible in the context 'in which the cliche' is used.

A common instance of this occurs when some computation is avoided by using a value

that equals the result of that computation. Tis can be an opportune equality or an

intentionally cached value. For example, the cliche' for polling the smulated nodes and

stepping those that have work to do contains an enumeration of the collection of simulated

nodes. The che for enumeration when the collection is implemented as a equence has

a part that computes the size of the sequence and then uses it to determine how many

elements to enumerate. The istance of this cche 'in the CST code does not compute the

size of *NODES* bt instead uses *NUMBER-NODES* which 'is a global variable specifying the

size of *NODES*. This variable is used during initialization to create *NODES*.

Sometimes part of a che is missing in the program because the general case represented

by the cliche has been simplified in the context of the program. For example, a part of the

Event-Driven Simulation cliche' is a Priority-Queue Insert which adds an initial EVENT to the

Event-Queue. Because the Event-Queue is empty at this point, te general case of this cliche'd

operation can be reduced to the computation done when the priority queue is empty. (For

example, if the priority queue is 'Implemented as an ordered associative list, the isertion

178

would simply cons the event onto the empty priority queue without testing whether it is

empty or providing actions for splicing 'it in if its not empty.) If the special-case version

of the cliche' is a common optimization, then 'it is included in the library along with the

general case. However, when it i's not, recognition of the cliche' fails. (We cannot expect all

possible optimizations in the context of use to be cliched ad we do not want to enumerate

them a in the library.)

Solution Suggestions

What is needed for recognition to succeed 'in these cases is for the special-case computation

and the general-case cliche' to be seen as equivalent. In general, this cannot be done.

However, it may be possible to apply limited reasoning techniques to ucover dataflow

equalities or conditional simplifications i simple cases such as those discussed above.

Non-cliche'd special-purpose optimizations often cause some, bt not all of a cliche' to be

recognized. ne way to elicit advice on whether some computation is a special-case opti-

mization is to fd maximally-sized near-misses (partial recognitions) of the cliche' and then

generate a hypothesis that te cached value used is equal to the result of the computation

in the part of the cliche' not yet matched.

Recognizing maximaRy-sized near-misses is costly (as is discussed in Section 62.7).

However, we can generate them only for particular cches and at particular locations in the

program in order to reduce the cost. For example, we can choose only promising cliche's,

such as tose for which some salient part has been recognized, ad we can look for them

only 'in the areas of te program that have not already been recognized as part of other

unrelated liche's.

5.2.3 Expressing Cliche's wth Loose Constraints

In encoding cliche's as constrained dataflow graphs in graph grammar rules we are required to

specify exactly which operations (or classes of operations) make up a cliche', how dataflow

connects them to each other, and their arity. For some cliche's tat we identified i our

simulator domain, this is difficult to do.

There are three different cases in which we encounter difficulties Oe is in expressing

cliche's that have as an 'Integral part the application of an arbitrary, non-cliche'd and on-

primitive function. A second case is 'in compactly representing possible variations in the

implementation of an algorithmic cliche' whose parts may be combined in several possible

valid configurations. The third case is in capturing a cliched data and control flow pattern

in which the operations and tests are not tightly constrained to be of particular types. The

dataflow between tem 'is only loosely constrained as well.

179

Arbitrary Function Application

We encountered two examples of types of cliche's that are difficult to encode because a part

of them 'is the application of an arbitrary function. They are second-order patterns, in that

they are parameterized over arbitrary functions, which are non-cliche'd and non-primitive.

One example arises in encoding iteration cches, as discussed in Section 41.3. These

cliche's a contain applications of arbitrary functions or predicates in an iteration. However,

we cannot encode these cliche's without requiring the functions or predicates to be primitive

operations (terminals) or cliched functions (non-terminals). For example, it is not possible

to recognize the generation cliche' in the following code.

(def u f (1)

(f (cdr (cdr 1M)

This is because the generating function is an arbitrary composition of primitives (i.e., the

generating function is (lambda (cdr (cdr x))).

Another example of this problem arises in trying to capture the simulation cliche's witli-

out requiring that the code for simulating message handling be cliched. In particular, we

wanted to express the cliche' for processing an event (in event-driven simulation) or ad-

vancing a node (in synchronous simulation) as aving a part that applies some non-cliche'd

message handling smulation function.

Solution Suggestions

What is needed is a special-purpose mechanism (separate from the graph parser) to bundle

up the sub-flow graph that satisfies certain constraints. This mechanism can make use of

information about how much of the cliche' has already been matched to focus on certain

locations. It can also make use of information available in the cliche"s constraints.

For example, in the iteration cliche's, the input and output correspondence constraints

place restrictions on which sub-flow graph can be bundled up. Waters 138] has developed

general-purpose dataflow-based techniques for decomposing a program into temporally ab-

stract fragments. It would be useful to incorporate these decomposition techniques into

the recognition process to help bundle up possible functions. For instance, bundling up te

composition of cdrs in our example above can be done by grouping togetlier the sub-flow

graph that is bounded by input and output ports that input-correspond.

In the case of bundling up message handling simulation code when no cliched function

for it is recognized (as in CST), it might be possible to ask for advice on which part of the

program achieves this purpose. Also, based on the location of the rest of the cliche' and

which nearby parts of the program are unrecognizable, GRASPR miglit be able to hypothesize

approximately which part of the program should be bundled up.

180

Implementational Variations

As we mentioned in Section 21.3, there are many variations of our synchronous simulation

algorithm. O each iteration, the algorithm we described performs three actions in the

following order: test for termination, deliver messages, and poll and advance nodes by one

step. The other variations of this algorithm in which different ordering 'is used also perform

synchronous simulation.

However, each of these variations is represented by a different dataflow graph. For

example, the algorithm described in Section 21.3 has the form sown in Figure 5-8a. (This

is a sentential form of our current grammar which encodes the algorithm.) Two other valid

configurations are shown in Figure 5-8b ad 5-8c. In fact, all six permutations of the three

actions are valid configurations.

The problem i's that we must deal with these variations by enumerating them in the

cliche library. This is because the flow graph encoding forces us to specify the exact dataflow

connections between the three operations and therefore a particular ordering.

It is an open question whether there is a more compact representation for algorithmic

cliches that vary in this way. (For example, reasoning about a program's functional seman-

tics, as is done by Allemang's DUDU 4 5], may help tolerate this variation.) In addition,

more experience with encoding cches is needed to tell how severe this problem is and how

frequently 'it occurs in practice.

General Data and Control Flow Pattern

Because our formalism forces -us to specify many details of dataflow, operation types, etc.,

it is sometimes hard to express some common data and control flow patterns that are not

tightly constrained. One cche we had difficulty expressing is a common type of conditional

dispatch which occurs in program interpreters (particularly for the Lisp-like languages).

This cliche' 'is the Evaluate" part of an EVALUATE/APPLY recursion for interpreting state-

ments in a language. The standard algorithm for this dispatches on the type of a expression

to code for handling that expression. For some expression types, there are standard com-

p-atations to perform. For example, for expressions that are constants, the expression is

simply returned. For expressions that are applications of some operator to a set of argu-

ments (which are themselves expressions), each argument is recursively evaluated and te

operation is applied to the set of evaluated arguments.

However, instances of this cche vary with the types of expressions that can be evaluated,

which depends on the language of the program being 'Interpreted. The mber ad ty-De of

test cases in the conditional dispatch vary. The actions that are dispatched to also vary.

The dataflow connection constraints are flexible. The problem is that in our formalism, we

must specify the number and types of tests and actions, and the exact dataflow between

them. A more abstract language for expressing abstract data and control flow patterns is

needed.

181

ba

c

Figure 5-8: Some valid variations of Synchronous Simulation algorithm.

182

i

The point of this section and the previous is that athough the flow graph formalism

allows s to encode cliche's on a high level of abstraction, the level of abstraction is still

limited by the amount of detail that must be specified. Perhaps there are ways of com-

bining this formalism with even more abstract formalisms that will aow looser dataflow

constraints. For example, perhaps we can encode and recognize parts of cliche's within the

dataflow graph formalism, and then use a different encoding to express constraints on how

these parts fit together.

5.2.4 Enqueuing New Messages and Events

This section deals with a problem that arises both as a result of not being able to fully

determine the data and control flow of the example programs and of not being able to

express and efficiently check certain constraints.

As mentioned in Section 41.4, one of the actions of a processing node that is simulated

as part of the simulation of message handEng is the creation and sending of new messages.

One of the constraints on both simulation algorithms is that whenever a message send is

simulated, a new EVENT or MESSAGE must be created and added to te event-quene or global

message buffer, respectively.

We did not include this constraint in the grammar rule encoding of the rles for te

synchronous and event-driven simulation cliche's. There are three obstacles to expressing

and checking this constraint within our graph parsing framework.

One is that the computation involved (enqueuing new EVENTs or MESSAGEs) is buried

within the code for simulating a processing node's action. This code is not guaranteed to

be cliche'd, so we do not have grammar rules that derive a possible flow graphs representing

this code. This means that we have no context in which to express the constraint.

Suppose it is ched, we still have a second problem which is that the part of the

simulation code that performs the activity of enqueuing new EVENTs (or MESSAGEs) is typically

given as input to the simulator. So, 'it is not available for analysis. The cliche models te

application of functions for simulating a processing node's actions during an instruction

execution. Since these functions are not part of wat is analyzed te exact data and

control flow connecting the enqueuing operation to the rest of the cliche' are not explicitly

represented.

Finally, suppose we had the code available. That is, rather than accepting functions

to simulate the actions of a processing node 'in executing some machine operation, suppose

the simulator program contains a large conditional which dispatches on machine operation

types to the code simulating operation execution. We encounter yet a third problem which

is tat in the crrent parsing framework, it is difficult to express and check the constraint

that each time a message send is simulated, - i.e., a new EVENT (or MESSAGE) is created, - the

new EVENT (or MESSAGE) is added to the event-queue (or global message buffer). It requires

expressing and checking constraints that are quantified overinstances of some computation.

183

44M�- -

A special-purpose global mechanism is needed to check this constraint snce the parser

is currently oly able to ceck constraints on individual instances. In addition, it requires

some means of finding a instances of creating whatever user-defined data structure that

corresponds to our cliched aggregate EVENT (or MESSAGE). Tis requires -unambiguous infor-

mation about the mapping from cliched data structures to user-defined ones. Also, since

aggregate data structure creation is encoded in edge attributes, finding the instances of

user-defined data structure creation cannot be done by recognizing a flow graph. Instead it

must focus on patterns in edge attributes.

In summary, problems arise when:

* an integral part of cliche' is non-cliche'd and the constraint we want to express refers

to this non-cliche'd part,

9 the data and control flow relating the constrained part of the cliche' to the rest of the

cliche' are not completely and statically determined (e.g., because part of the program

is read in as input), or

te constraint quantifies over istances of some computation, particularly if te com-

putation is a data structure creation or access, not the application of some primitive

operations.

Solution Suggestions

Although the equeuing constraint is difficult to express and check within the current graph

parsing framework, it 'is not a hard constraint for a person to check. The person has

the avantages of understanding memonic names which give clues about the purposes of

machine operations. A person might also have expectations about which machine operations

cause message sends, based on knowledge of the machine being Simulated.

Rather than requiring that more code be given to GRASPR for analysis or extending the

parser to quantify constraints over instances, it might be easier to just ask the user whether

the constraint holds. The constraint should be expressed more generally as a condition on

the code that simulates a node's action. If we are already eciting advice on which part

of the program handles a message (as suggested in Section 52-3), then we could also ask

whether this general constraint holds. GRASPR might also ask for the simulator function that

is called to perform the enqneuing and then can analyze tat code to understand better

how the event-queue (or global message buffer) is implemented.

5.2.5 Modifications to Example Programs

To eable GRASPR to recognize the example simulator programs, we made 'the following

changes to te programs. Some avoid the inherent limitations of the graph parsing approach

discussed in this section. Others help GRASPR deal with difficulties in the current system,

which we expect to be addressed by extensions to GRASPR in the future. (For example,

184

these iclude recognizing programs that are multiply-recursive or that perform side effects

to mutable objects. See Section 72). Appendix contains the original versions of the two

simulator programs, as well as their translations.

* We translated instances of implicit aggregation icluding manual abstractions) to

explicit aggregations. For example, we defined a Task-Segment data structure in PiSim

to explicitly aggregate the Type, Storage-Requirements, and Arguments of a MESSAGE.

In CST we replaced the manual abstraction for MS9 with a msg structure definition.

o We simplified conditionals and. canonicalized conditions ivolving NOT, OR, and AND.

(See step-done and enqueue i CST, for example.)

o We manually undid special-case (noncliche'd) optimizations that take advantage of an

opportune dataflow equality or a cached value. That is, we restored the computational

part of a cliche' tat 'is avoided by an optimization. For example, in CST's step-nodes

function, which enumerates and steps the simulated nodes, the use of *number-nodes*

is replaced by a call to array-total-size.

o To deal with the problem of encoding and recognizing loosely constrained cliche's we

provided advice to GRASPR about where these cl-iche's were located. (In a future hybrid

system, we expect this advice to come from other recognition techniques that can deal

with these types of cches. See Section 72.2.) During the translation of the PiSim

program to a plan, we advised the symbolic evaluator that the box representing the

call to te function valuate not be expanded. This avoids a limitation 'in the current

implementation of GRASPR which prevents it from translating multiply-recursive pro-

grams into meaningful attributed flow graphs. (See Section 72.1.) We also specified

that te expanded call to Evaluate is an instance of the "Evaluate" cliche'. (See

Section 72-2.) Similarly, during the translation of the CST program, we specified that

the process-msg function not be expanded and that it represents an instance of the

Handle-Message non-terminal.

WI-ten the symbolic evaluator creates the plan representation of a program (which is

then translated to an attributed flow graph), it starts with some topmost fnction

and recursively expands calls to user-defined functions into their plan representations.

Only plans for functions whose calls are reached by the evaluator are included in the

plan representation. This means the flow graphs for some fnctions in the example

programs are not included as sub-flow graphs of the input graph parsed. particular,

those that are only called by Evaluate in PiSim and process-msg (or its subfunctions)

in CST are not included. Also, functions in Pisim called by the Machine-Operation

functions given as input to PiSim cannot be expanded into the program's plan repre-

sentation. In addition, some logging and tracing functions in both programs are not

expanded.

185

0 We translated, the programs into their functional versions by replacing destructive

operations with their non-destructive counterparts. (See Section 72.4 for ideas on

partially automating this translation.)

9 All iterative computations are treated as tail-recursions by GRASPR. Currently, the

translation from iterative to tail-recursive procedures is done manually, but it is well-

known that this translation is straightforward to automate.

* Program breaks, errors, and non-local program exits are currently ignored in that

they are treated as ordinary calls to primitive operations. The non-local control flow

they cause is not modeled in our control flow attributes. Further researcl-I is needed

to determine how best to model non-local flow. See 117], Section 34, for further

discussion of this problem.

5.2.6 Conclusion

We ave made observations of difficulties encountered in recognizing two programs. These

might be relatively rare problems or they might be common. There is currently no natural

partitioning of programs based on the difficult features they contain wth respect to recogni-

tion. This report starts to point ot some features that might distinguish programs that are

hard to recognize from others (at least within the realm of recognition based on dataflow

and control flow). Much more research is needed to map out this space of recognition

difficulty.

186

n a I S

Our flow graph parsing algorithm is worst-case exponential in both space and time. For

each rule of the grammar, the parser is searching for a way to match each node of tte

rule's right-hand side to an instance of the node's type in te iput graph. This search is

inherently exponential. In fact, t1te flow graph recognition problem for flow graphs - given

a flow graph F and a grammar G, determine whether or not F is in the language of G

- is NP-complete. (Appendix A gves one proof of the NP-completeness of this problem.)

The flow graph recognition problem is simpler than the flow graph parsing problem for flow

graphs, so it is -unlikely that there is a flow graph parsing algorithm that is not exponential

in the worst case.

Nevertheless, we apply our flow graph parsing algorithm to the problem of partial recog-

nition of programs and do not encounter the exponential behavior 'in practice. The reason

is that we take advantage of constraints specific to the program domain which are strong

enough to reduce the complexity and prevent the worst case from happening. (The appli-

cation of the parser to other problem domains requires similar use of strong constraints.)

Efficiency is also gained by using a graph grammar that captures mch of the common-

ality among the flow graphs the parser is searching for. This enables the parser to reuse

results of exploring parts of the search space.

This chapter gives an expression for the time requirements of the parser, showing that

they depend on the number of full and partial analyses the parser generates. It points out

how the algorithm can be made to exhibit exponential behavior in the worst case. It ten

explains how constraints make it feasible for us to apply this inherently exponential process

to practical program recognition. Weak constraints can ase in the general flow graph

parsing case in the form of ambiguity and disconnected right-hand sides of graph grammar

rules. However, additional program domain-specific constraints compensate for these weak

structural constraints.

Empirical evidence supports these arguments and shows the effectiveness of the con-

straints used. The empirical results were obtained by experimenting with the recognition of

the two example simulator programs, referred to as CST and isim. (These programs have

187

Chapter 6

-I

been modified from their original form (see Section 52.5) to get around the limitations of

the current system that are discussed in Sections 52 and 72. Even with these''modifica-

tions, the programs provide a realistic base for experimentation in that the modifications

did not significantly affect the strength of constraints.) Further experimentation on more

programs is needed to broaden our understanding of which constraints are crucial and which

programs are inherently difficult to understand.

This chapter concludes with a few suggestions for improving the performance of the

parser.

6.1 Cost

This section presents a expression for the time requirements of the parsing and constraint

checking process which is at the heart of the recognition system. We first briefly describe

the particular instantiation of the general chart parsing algorithm, which is -used by the

recognition system. The instantiation fixes the rule invocation strategy to be bottom-up.

(This is the strategy used by the current recognition system for reasons described in Section

3.5. The top-down version of the algorithm for grammars with a simple embedding relation

which encodes no aggregation relationships, is equivalent to Brotsky's graph parsing algo-

rithm. See [15], for an analysis. For the top-down string parsing case see Earley's analysis

[31� 32].)

We derive a formula for the average-case complexity of the bottom-up algorithm. The

cost depends on the number of items that are created by the parser. Section 62 characterizes

this umber and shows ow the worst-case exponential growth in the number of items is

prevented by domain-specific constraints in practice.

In the complexity expression, the numbers of various types of items created by the parser

are weighted by the costs of the parser's actions. Section 63 gives details of what the costs

of these actions depend upon.

6.1.1 Brief Algorithm Description

For the purposes of or aalysis, we need to describe a few additional details about the

structure of items and graph grammars, so that we can refer to them.

Each rule in the grammar has an associated node ordering. This is a reflexive ati-

symmetric relation, that need not be transitive. We denote it as ,,. We distinguish node

orderings in which all nodes are related in a chain, as strict node orderings. In these, there

is exactly one minimal node nj (i.e., no other node is <n nj) and exactly oe maximal

node nk (i.e., nk i nt < any other node), a of the nodes are ordered from nj to nk ina

sequence nj, ... , nk) such that ni n ni+l for i 1, ... , k - 1 ad no other pair of nodes is

related besides these. (The transitive closure of a strict node ordering is a total ordering.)

We call non-strict node orderings partial node orderings. The transitive closure of a partial

188

node ordering is a partial ordering.

We call the node type that an item is recognizing its label. Each partial item has a

grammar rule associated with it which is being used to recognize this node type. Also, each

partial item contains a set of needed nodes which are nodes not yet matched in the item

rule's right-hand side. We distinguish a subset of these as immediately needed. This subset

is determined by the rule's node ordering. Initially, the 'immediately needed nodes are the

minimal nodes. When a node x is matched,it is replaced in the immediately needed set

by a other nodes not yet matched that x is less than in the ordering. (If a partial item's

rule has a strict node ordering, the item will always have exactly one immediately needed

node.)

The 'immediately needed set determines which nodes are allowed to be matched next.

If a complete item for node-type A is added to the chart, only partial items that ave

immediately needed nodes of type A can be extended by the complete item. Similarly, if a

partial item is added to the chart, it is only combined with complete items for those nodes

in its 'Immediately needed set.

Each item has a set of input and output mappings which specify the location of the ode-

type being recognized. For partial items, these might be empty. The location is specified in

the form of a set of mappings of ports on a node (whose type is the item's label) to sets of

location pointers (which may be nested due to aggregation, as described in Section 34.1).

Each location pointer specifies some 'input graph edge.

We are now ready to describe the chart parsing algorithm which uses a bottom-up rule

invocation strategy.

1. Initialization:

* Add complete items to the agenda for each input graph node. The label of each

item is the node label of the input graph node it represents.

* For each rule, add an empty partial item to the agenda. The label of the item is

the node-type of the rule's left-hand side. Make te item immediately need the

set of nodes that are minimal in the rule's right-hand side ode ordering.1

2. Until the agenda is empty, continually pull an item X from the agenda and if X is not

a member of the chart, do the following:

* Add X to tlie chart.

* If X is a complete item and X's constraints are satisfied, then for each partial

item P in the chart that is extendable by X, make a new item extending P with

X and put it o the agenda.

'One or the other, but not both, of these initialization steps can add the items to the chart as an

optimization. Also, the empty partial items can be added to the agenda as they are needed, as described in

Section 35. To simplify the analysis, neither optimization is done here.

189

* If X is a partial item, then for each complete item C in the chart that can extend

X, make a new item extending X with C and put it on the agenda.

* Apply the tests and operations of the additional monitors to the item. For

example, for each complete item X whose constraints are satisfied, the zip-np

monitor determines whether there are items that can zip up with X. If so, it

performs the zip-ups ad adds the results to the agenda.

To clarify, the check that "X is not a member of the chart" 'is checking that there is no

item in the cl-tart that represents the same aalysis as X. If X is partial, then this cecks

that there is no other partial item that matches the same right-hand side nodes of some rule

to the same input graph terminal nodes or non-terminal instances. If X is complete, then

this cliecks that there is no other complete item with t1te same label at the same location

as X.

There are two situations in whicl-i an item can be created that is a duplicate of an

existing item. One occurs when there is structural ambiguity (i.e., there is more than one

way to derive the same flow graph from the same non-terminal).

The other situation occurs when two complete or partial items are created as a result

of a series of extensions, starting from the same partial item and involving the same set of

complete items for te same right-hand side nodes, but occurring in two different orders.

Figure 61 gives an example. The partial item 1. immediately needs two nodes, n of

type A and n2 of type B. Two complete items are formed, one for A and the other for

B, such that both can extend 1p. 1-p is extended to two new items I., andlp2 Since the

complete items for A and B are compatible in that they satisfy the binary constraints that

IP �s rule imposes o ni and n2 , Ip a d p 2 are extended with the complete item for B

and A, respectively. The two resulting items are duplicates of each other, since they have

the same right-hand side nodes (n, and n)matched to the same non-terminal instances

(represented by the complete items for A and B).

This can only happen if a partial item is able to have more than one immediately needed

right-hand side node. Therefore, it occurs only when a rule has a partial node ordering.

Each complete and partial analysis created by the parser is added to the chart exactly

once. This is guaranteed because before adding an item to the chart, the parser explicitly

checks for a duplicate item already existing in the chart.

A grammar that is structurally ambiguous provides multiple ways to hierarchically view

a subgraph. The multiple derivations are sometimes useful for understanding purposes.

So, rather than simply throwing away duplicate complete items that represent different

derivations, we can store tem in an auxiliary structure to be accessed when presenting the

parser's results.

Another clarification of the algorithm concerns the timing of constraint checking. Gram-

mar rules place a number of constraints on the nodes and edges that match their right-hand

sides. Some of these constraints are checked in the extendibility criterion (e.g., node type

190

I I II 1 -

1"):
-IDL' lw
-FA'

� w �4= GM �00 � � 4M M OD � � W 00 � 4M4M-� � AM � W OM � � "

I I I

a

I I I
I I 1. I

....
: . . I

--3w I

I I I

I I
I

II I i I

. I %� I
R � W � M, as ON, SM, MW m, me Nome i �00,00, OWNS, 00, 00,00,� ON, �00t M,�MM, M, 00, NO, MW ON'SM, am. i

t ON ANO NINON MW 00 W � Oft Am ON, 41 1 Momwmw� No ON, No w momm, ow m, No m, mommomm, wo, w, aw m; mm w I

I I a 9 I

I I I
... : I
:., . I.. X

:- I I...............
-0. I I

I
I% .10, I I

I I

I
I

I

I

I

01

1

1

1
I I 6 II

�� � �� � am � � ��Wl a � � 04

Inl I
I

I � � �

I

I

I

I

I

I

I

I...........

I��� � 4w � ��� � � 4w

1

Figure 6- 1: Two series of extensions esulting in duplicate items.

191

I
I

I
......I

I
I
I
I........

and edge connection constraints). Others (e.g., most attribute conditions) are checked when

a complete item 'is added to the chart, before it is paired up with partial items to extend.

Section 62.2 discusses the design decision concerning which constraints should be checked

in tlie extendibility criterion and which should be postponed to apply to complete items

alone.

Additional details of this algorithm will be fleshed out as needed. In particular, many of

the details that are relevant to the actions of the parser sch as adding items to or looking

up items in the chart, have not been presented. These will be described when the cost of

each of these actions 'is considered.

6.1.2 Complexity

We can determine the cost of the parsing algorithm by considering the cost of each of its

s-ub-operations and how often they are performed (i.e., the total number of items they act

upon). To do this, it is useful to categorize the types of items created. We partition the

full set of items ever created, denoted by IT, in two ways. As shown in Figure 6-2a, one

partitioning views IT as consisting of four disjoint sets of items which are differentiated by

how the items in the sets were created. (The relative sizes of the sets in the figure is not

meant to reflect the relative sizes of the actual item sets.)

* 1, is the set of complete items created during initialization for each of the terminal

nodes of the input graph.

* IR is the set of empty partial items created dring iitialization for each rule.

I is the set of items created by zipping up two or more items.

* IE contains all items created by extension.

The second partitioning breaks up IT into two disjoint sets, as shown in Figure 6-2b:

'D ID is the subset of 1E that contains duplicate items that were created but not added

to the chart, and

IC is the set of items that are in the chart.

Figure 6-2c shows how the sets overlap across partitionings. We denote as 1f the subset

of items in the chart which are complete items. If 'is shown in Figure 6-2c as the shaded

portion.

We can now characterize the overall cost of the parsing algorithm by considering the

number of times each of the actions of the parser is applied. This can be expressed in terms

of the sizes of the various sets of items described above. This is because each action of tl-te

parser acts pon a particular type of item and it is applied exactly once for each item of

that type. There are no additional costs not accounted for. The overall cost is a sum of the

action costs weighted by the number of items to which they apply.

192

a) Partitioning based on how items are created.

b) Partitioning based on whether items enter cart.

f -.**. I f

c

c) The relationship between the prtitions

Figure 62: Partitions of the total item set.

193

, III .1 ... I o

We consider which actions are applied to each of the items in each type of item set.

Each action is followed by a variable denoting the run-time cost of performing this action

on a item. These variables are used below in expressing the algorithm's complexity.

The following actions are taken upon each item ever created, whether or not it is added

to the chart (i.e., for a I E IT):

* create it, which is one of these actions

if I E I,,, create complete item for a terminal node (C-,,,t,,tit,-terminaI)

- if I E IR istantiate empty partial item (Cinstantiate-empty)

- if I E IE, create item by extension (Cextend)

- if I E I, create item by zipping up other 'items (CZip-UP)

* add it to the agenda (Cagenda-add)

* pull. it from the agenda (Cagenda-retrieve)

* look for a duplicate of it (Cduplicate-test)

Each item added to the chart (i.e., each item in IC) additionally has the following actions

applied to it. (For now, assume the only additional monitor is the zip-up monitor.)

* add it to the chart (Cchart-add)i

* look up items to combine with it (Ccornbination-lookup)

* look up items to zip up with it (Czip-up-lookup)-

Each complete item in the chart (i.e., those in If has its constraints checked (Cconstraint-check)_

The total run-time cost of this algorithm, in terms of the component action costs and

the size of te item sets is:

IITI * (Cagenda-add + Cagenda-retrieve + Cduplicate-test) +

I IE I Cextend +

IICI * (Cchart-add + Ccombination-lookup) +

I IR * instantiate-empty +

I In Cinstantiate-terminal +

11ZI CZiP-UP +

Ilf I (Cconstraints-check + Czip-up-lookup)

The sizes of the component action costs are typically quite small. Tey depend polyno-

miaRy upon the sizes of various parts of an item, such as the number of iputs or outputs.

These costs are detailed in Section 63, where empirical averages are also presented.

194

In a typical recognition run, the dominant terms in the complexity formula are the first

three. IE is typically the largest of the 'item sets in the first partitioning. Ic is the largest in

the second partitioning. It usually consists mostly of items that were created by extension

as opposed to instantiation or 'p-up (i.e., a majority of IC overlaps with IE).

The run-time space requirements of the parser also depend on the number of items

created by the parser. The space cost is O(JITI).

6.2 Counting Items

The algorithm's complexity (both time and space) depends on how much is recognized.

This is a feature of the algorithm and is a consequence of the bottom-up rule invocation

strategy used by the parser. The amount recognized can be measured by the number of

items the parser creates, since each represents a partial or complete recognition of some

snb-flow graph.

This section focuses primarily on characterizing the number of items that are created

by the parser throngl-t extension. In practice, more items are created by extension than

by instantiation or zip-up. Its size dominates the space cost, and the run-time cost of

operations over this set dominates the parser's time complexity.

To simplify the presentation, we temporarily ass-Lime that o items are created by zip-

ping up items. In this way, we avoid cluttering the discussion with details about zip-ups

which might be irrelevant to other applications of the graph parser besides program recog-

nition which do not require parsing structnre-sharing graph grammars. In Section 62.6,

we consider the effect of zip-ups on te total item count.

We also simplify the discussion by assuming for now that the nodes of eacl-I rule's right-

hand sde are matched according to a strict node ordering. One effect of eforcing a strict

node ordering 'is that the parser does not generate duplicate items representing the same

analysis. That is, each item created by extension is uique in tat there is no other item

for the same rule R which has the same matches for each of R's right-hand side nodes.

To see this, suppose an item I, were created for which there is a duplicate item 12.

The two items would have to be created through a series of extensions involving the same

complete items for the same right-hand side nodes, but the extensions would have to occur

in different orders. This is because each partial and complete item is added to the chart at

most once and t1tey are combined with each other only once - when the second of the two

is added to the cart. So, the same partial item cannot be extended more than once by the

same complete item for the same node. Since the series of extensions must have occnrred

in different orders, some partial item must have been extended with complete items for

more tan one right-hand side node. This can only appen to a partial item that has more

than one immediately needed node, which can only occur when partial node orderings are

being used. Therefore, with strict node orderings, no duplicate items representing the same

analysis will be created.

195

Ohio 1011 11101 "PRIPPIP, --- -1- wommol"I iI i � m

Another effect of using a strict node ordering 'is that fewer partial items are created.

By the argument just given, strict node orderings permit only one possible series of partial

items leading to a complete item through extension. Partial node orderings may allow

several series of extensions, each involving a different set of partial items.

The reason we consider the case of using strict node orderings first is that this makes

it easier to see the effect of constraints on reducing the parser's search. We want to study

tlie growth in the nmber of items for a particular rule as the size of the items increases.

This growth 'is affected by two things: the constraints that are acting on the right-hand

side nodes matched so far and the number of immediately needed nodes an item can have.

Strict node orderings force the number of immediately needed nodes of any partial item to

be exactly one. So imposing a strict node ordering on all. rules allows us to study the effect

of constraints on the growth of the number of items, dependent of the effect of multiple

immediately needed nodes.

Another reason we make this smplification 'is that parsing using a strict node ordering

is one of the ways in which this parser is expected to be used. It 'is more efficient than

parsing with partial node orderings since, in general, 'it allows fewer partial items to be

created. (String chart parsing is a general case in which strict node ordering i typically

used, where the "nodes" are string symbols.)

The analysis of the algorithm when partial node orderings are being used is an extension

of the analysis of this simplified form. This is given in Section 62-7, where the advantages

of using strict versus partial node orderings are also discussed.

The organization of this section is centered around the characterization of the number

of items generated for a single rule through extension. The total number of items created by

extension is the sum of this number over all the rules of the grammar. Section 62.1 defines

item trees, which relate the items created by the parser in matching a rule's right-hand side.

Sections 62.2 and 62.3 discuss the effect that constraints and the grammar have on the

growth of tese trees. Empirical observations of the shape of item trees (i.e., the growth of

the number of items) created in two typical recognition runs are given in Section 62.4 In

Section 62.5, we borrow a theoretical model presented by Grimson 49, 50] in his analysis

of the constrained search object recognition technique, which is similar to the sub-flow

graph matching subprocess performed by our parser. The model helps us to understand

the role of constraints and suggests future research into ways of concretely measuring their

effectiveness for a particular input flow graph and grammar. The final two sections 6.2.6

and 62.7) lift the two simplifying assumptions of suppressing zip-ups and using only strict

node orderings and discuss the effects this has on the parser's complexity.

6.2.1 Item Trees

For each rule, the parser searches for a match of the rule's right-hand sde nodes, such that

the rule's constraints hold. Each right-hand sde node is matched to some terminal ode or

196

some non-terminal instance that has been found in the iput graph. The rule's constraints

are unary such as node type constraints) or binary such as edge connection constraints).

The items for a rule R represent each of the stages in this search. The size of an item is

the number of rght-hand side nodes of the item's rule it has matched so far. The number

of items created is an indication of the amount of search the parser is doing.

The items for a rule R can be viewed as vertices of an item tree. The root of the tree is

the empty item for R. An item is the child of another item (called the parent) iff the parent

was extended to the child during parsing.

A parent item can be extended to two children 'Items if more than oe istance of

some right-hand side node type is found in the input graph ad these instances satisfy the

constraints imposed by the item's rule with respect to the matches of other nodes that have

been made so far. (With partial node orderings, additional cl-tildren are generated if an item

has more than one immediately needed node, as is discussed in Section 62.7.)

The growth in te number of items that are created by extension can be modeled by

these item trees. In the worst case, the number of items at the fringe of an item tree for

a given rule R can be exponential in the number of nodes in R's right-hand side, k In

particular, if each node in the right-hand side can be matched to istances of its node

type, flien the number of possible complete items (of size k) is mk and the total number of

items created in recognizing R's right-hand side is 0 m'

Furthermore, in general, can be much worse than linear in the number of nodes of

the input graph because of the recursive -nature of the matching process in parsing. Each

of the complete items at the fringe of an item tree for a rule R represent istances of R's

left-hand side node type. Since there can be an exponential number of them, can be

exponential. In the worst case, this exponential can build -up as higher-level non-terminals

are recognized. Assuming the grammar contains no cycles, we define the height of a node

type recursively as: the height of a terminal type 'is and the height of non-terminal type

A is one plus the maximum of the heights of all node types on the right-hand sides of the

rules for A.)

As te worst case, sppose the following. All rules have right-hand sides of size k. Each

non-terminal has only one rule for it. Each right-hand side has either only terminals or only

non-terminals. Each terminal node can match n input graph nodes. Each non-terminal

in tlie same right-hand side is at the same height.,in the rammar. Then, the number of
khcomplete items for a non-terminal at height h is n

6.2.2 Constraints Prune Item Trees

It would be crazy to use this inherently exponential algorithm for program recognition

if it were not that, in practice, constraints prune item trees considerably. For example,

node type constraints alone are able to reduce the branching factor, which is the base of the

exponential. In the program examples, there is a variety of terminal and non-terminal node-

197

types, with a fairly flat distribution of instances. In CST the average number of instances

of each node type is 36, with a median of 2 In PISIM, the average is 37, with median 2.

The exponential build-up of the number of instances of non-terminals as their eight

increases is not typically encountered, either. The number of instances of non-terminals is

usually small and decreases as their height in the grammar increases. The reason is that

the recognition of high-level non-terminals requires more constraints to be satisfied than for

low-level non-terminals.

The worst-case exponential behavior of the parser is only encountered if the constraints

imposed by the grammar rules are weak. This section explores the constraints used in

applying the graph parser to program recognition and describes their effect on the growth

of item trees in terms of empirical observations.

A complete item for a non-terminal A is one in which for some rle for A, all the rule's

right-hand side nodes are matched to input graph nodes or non-terminal instances, sch

that the rule's unary and binary constraints are satisfied. The unary constraints are the

node-type constraints that each node 'in the right-hand side imposes on the nodes matched

with it. The binary constraints are the following.-

* Edge connection constraints between pairs of ports on nodes. (These iclude the

constraints on aggregation organization discussed in Section 35.2.)

* Attribute conditions, which are binary relations on the attributes of nodes and edges.

* Port precedence restrictions, which are constraints on the edges in an iput graph that

can be mapped to the ports of a non-terminal. In particular, a transitive, irreflexive,

and antisymmetric relation precedes imposes an ordering on te ports in the iput

graph. The source of each edge precedes the sink of the edge and the input ports of

each node precede each of the node's output ports. The port precedence constraint

is that no two input (or output) ports on a non-terminal can be mapped to a pair of

input graph edges in which the sink of one precedes the source of the other.

The port precedence restrictions are used to avoid cyclic reductions, such as the one

shown in Figure 63. The non-terminal A's top iput port is mapped to te input graph

edge with location pointer 12 coming into b while A's bottom 'input port maps to the edge

with location pointer 15 coming from a. This is illegal, since b's iput precedes a's otput.

The reason cyclic reductions are prevented is that they are -unnecessary:

* flow graphs are acyclic,

* all sentential forms of a flow graph grammar are acyclic (i.e., you cannot derive a flow

graph that is cyclic),

* a reduction step that creates a cyclic graph cannot be the inverse of any valid deriva-

tion step, so the cyclic graph will not be reduced further.

198

X Xcc

a) A simple grammar.

1 1 12 13 16 17

15

b) An input graph.

1 1 12 16 17

15

c) A cyclic reduction.

Figure 63: Grammar and input graph leading to an illegal, cyclic reduction.

Cyclic reductions do not cause any problems. They simply result in dead-end items that

are not used by anyone. We avoid them simply because they waste time and space. This

restriction can be lifted if a cyclic reduction is a useful interpretation to report and the flow

graph formalism is extended to include cycles.

Some of these unary and binary constraints are applied icrementally to each partial

item as the complete match is being built up. Since these are 'Interleaved wit te matching

process, we refer to them as match-interleaved constraints. They are applied as soon as the

portions of the right-hand side to which they refer ae matched. These constraints are part

of the extendibility criterion.

Other constraints are postponed until te match is complete (i.e., all nodes and edges

of the right-hand side are paired wth nodes and edges of the iput graph). These are

interleaved with the parsing process and are referred to as pa's�e-inte'rleaved constraints.

The decision about whether to match-interleave or parse-interleave a particular co-n-

straint depends on its effectiveness in pruning the search, te cost of applying it, and

its degree of applicability. Ideally, the match-interleaved constraint should be satisfied

by relatively few matches, be inexpensive to check, and apply to most nodes or pairs of

nodes. The current recognition system match-interleaves node-type, edge connection, co-

occurrence, and port precedence constraints. AU attribute conditions besides co-occurrence

constraints, are parse-interleaved. This section discusses how this decision was made and

199

I
node-type number of instances

aref 6

mod 4

Increment-or-Decrement 12

Decrement 3

Table 61: Number of instances of CIS-Extract's node types.

describes te impact that match-interleaving of these constraints has on the complexity of

matching right-hand sides in the two example simulator programs.

We are not only trying to show the advantages of match-interleaving some constraints

versus parse-interleaving them. (The advantages are obvious.) We are mainly trying to show

the effect t1tat various constraints have on the complexity. Te case in which a constraint is

parse-interleaved is simply a base-line to which to compare the case in which the constraint

is match-interleaved. The improvement is a measure of the effectiveness of that constraint.

For most rules, ode type ad edge connection constraints are strong. The strength of

a node-type constraint depends on the number of instances of that node-type in the iput

graph. Since the distribution of node types is fairly flat in the flow graphs representing

t1te two example programs, the node type constraint can usually significantly reduce the

number of possible matchings between right-hand side nodes and node type instances in

the input graph.

The strength of an edge connection constraint depends on the number of edges in the

input graph. If this number is low, then few pairs of incorrect matches between nodes win

satisfy the constraint. The flow graphs representing the two example programs had sparse

edge sets. Te average degree of the ports in CST is 13, with a median of 1. In PISIM, the

average degree is 1.5, with a median of .

However, there is a class of rules for which node type and edge connection constraints are

weak. In particular in rules representing cliched operations on aggregate data structures,

the right-hand side graph is usually made -up of disconnected nodes. The operations on ag-

gregate data structures tend to be implemented using a set of less abstract operations that

act on the parts of the structure independently. In addition, manyof the aggregate opera-

tions are 'implemented by primitive operations that are relatively common in the program

(e.g.,), as well as being common among the aggregate operations.

The plan for Circular-Indexed Sequence Extract is an example (see Figure 6-4). The

rule encoding a plan like this imposes few structural constraints since it has few edges

between its nodes. It also contains nodes that are of relatively common node types. Table

6.1 shows the distribution of number of instances over these node types.

If no other constraints are interleaved with the matching process, a combinatorial ex-

plosion occurs in the number of items created in recognizing CIS-Extract. Figure 65 shows

200

I

OU Circular-Indexed-Sequence

I------------------------------------- T---------------------------------
II
I
I
I
I
I
I
I
I
I

CIS-Extract

Figure 64: The plan for extracting from a Circular-Indexed Sequence.

201

0:
I
2:

3:

4:

Figure 65: Bushy item tree produced in recognizing CIS-Extract with weak match-

interleaved constraints.

the bushy item tree created for CIS-Extract in this case. The items of size are those

created in extending the initial empty partial item with the complete items representing

three instances of Decrement. Each of these ae then extended with the six complete items

for te AREF terminal nodes, yielding IS items. Each of these is extended by the 12 complete

items for Inc-or-Dec, yielding 216 items. Finally, the parser extends these with each of the

four complete items for MOD for which the edge connection constraint is satisfied.

This shows how a lack of strong match-interleaved constraints causes the number of

partial items to build up exponentially. In fact, flow graph parsing with a flow graph

grammar w-tose rules impose no edge connection constraints or any other binary constraint

is NP-complete. Appendix A shows that the problem of recognizing unordered context-

free grammars (UCFG) can be reduced to flow graph parsing. UCFGs are context-free string

grammars in which the symbols in the right-hand side string are considered -unordered. (For

example, given a UCFG containing the rule - xyz, S can be recognized in the strings xyz,

yxz, zyx, etc.)

Fortunately, in applying the flow graph parser to program recognition, other constraints

can be interleaved with the matching process to prune item trees early. These are the co-

occurrence and port precedence constraints. (As described 'in Section 41.1, if two nodes in

a right-hand side are constrained to co-occur, then they must match nodes that represent

operations in the same control-environment.)

The precedence relation constraint enforces the condition that the data structure oper-

ation must cut across slices of dataflow, rather than aowing the disconnected peces of the

operation to be recognized vertically in the same slice. See Figure 66. Cyclic.,reduction

avoidance prevents from being recognized in the rightmost graph.

The advantage of match-interleaving these constraints can be seen by contrasting te

parser's performance when match-interleaving the constraints toits performance when these

constraints are parse-interleaved. In the parse-interleaving caseIitem trees for data structure

operations are extremely bushy and can be exponential in the worst case. Most of the items

at the leaves are killed by the co-occurrence and port precedence constraints wen they

are finally applied. For example, the item tree for CIS-Extract, shown in Figure 65, has

202

- -------- -

A legal reduction. An illegal reduction.

Figure 66: The restriction on legal instances imposed by the precedence relation constraint.

203

a p x

4

8

A grammar rule

O.-
I .. 3

2: 3

3.- 3

4: 3

Figure 67: Skinny item tree produced 'in recognizing CIS-Extract with strong match-

interleaved constraints.

372 items at height 4 but only 3 of these satisfy the co-occnrrence and port precedence

constraints.

With match-interleaving, the items trees are much shorter and skinnier, since the co-

occurrence constraints are applied as early as possible. Figure 67 shows the item tree for

CIS-Extract. As soon as the Decrement node is matched, the matches of all the other nodes

are disambiguated to involve only nodes in the same control environment.

The influence that match-interleaving co-occ-urrence constraints has on reducing t1le

parser's search can also be seen by contrasting the parser's time and space requirements

when match-interleaving is performed versus when parse-interleaving is used. We do the

same in order to study the influence of match-interleaved port precedence constraints. This

helps us evaluate the effectiveness of each constraint in reducing the overall complexity of

the parser and it allows us to compare the relative effectiveness of the two constraints.

Figure 68 shows the results of running the CST example -under the following four

conditions: a) parse-interleave both constraints, b) match-interleave co-occurrence, parse-

interleave port precedence, parse-interleave co-occurrence, match-interleave port prece-

dence, and d) match-interleave both.' In Figure 68, the number of items created by the

parser is shown as the number of items of three different types. Successful" items a-re com-

plete items which satisfy all their rules' constraints. "Killed" items are complete or partial

items tat have failed their rules' constraints. "Extendable" items are partial items that

have not yet failed any match-interleaved constraints and may be extended with complete

items for their immediately needed nodes. (The relationship between these sets and the

sets of complete and partial items is shown in Figure 69.)

The number of successful items remains the same over all the cases as it should. The

effect of the two constraints can be seen in the total number of killed and extendable

items, which is reduced by more tan 70% (from 2235 to 662) by match interleaving both

constraints. This as the effect of dramatically speeding up the parser - when match-

'The run times for the experiments in this chapter were obtained by running the recognition system on
a Sparc 2 in Lucid. These statistics were collected with zip-up creation being performed, since zip-ups are
needed to recognize the simulator cliches. However, the number of zip-ups created in these rns'is relatively
small, as is discussed in Section 62.6.

204

I- Successful 2.1� Killed - Extendable A

F -I- -1

I
I
I
I

L I I- -
. � 11 , A

a

L J.,m -1

F I" -.-- -1 - -I- 1r, - -1

a) Parse-Interleave Both

Time: 201 seconds

Successful: 329

Killed: 1432 2235

Extendable: 803

b) Match-Interleave Co-occur;

Parse-Interleave Precedence

Time: 86 seconds

Successful: 329

Killed: 505

Extendable: 244 749

c) Parse-Intefleave Co-occur;

Match-Interleave Precedence

Time: 190 seconds

Successful: 329

Killed: 1230

Extendable: 736 1966

d) Match-Interleave Both

Time: 86 seconds

Successful: 329

Kifled: 446

Extendable: 216 662

Figure 68: Results of running CST example with constraints parse-interleaved versus match-

interleaved.

Complete Partial

Figure 69: Relationship of the sets of successful killed ad extendable item sets to the

sets of complete and partial items.

205

AVINA"

a) Parse-Intefleave Both

Time: 179 seconds

Successful: 436

Killed: 774
1113

Extendable: 339

b) Match-Intefleave Co-occuf; c) Parse-Interleave Co-occur;

Parse-Interleave Precedence Match-Interleave Precedence

Time: 161 seconds Time: 173 seconds

Successful: 436 Successful: 436

Killed: 572 835 Kil.led: 682 1010
Extendable: 263 Extendable: 328

d) Match-Intefleave Both

Time: 148 seconds

Successful: 436

Killed: 525
788

Extendable: 263

Figure 610: Results of running PISIM example with constraints parse-interleaved versus

match-interleaved.

interleaving both constraints, the parser is 133% faster than when parse-interleaving them.3

This is because partial items are killed earlier. Only 12% of the killed items had less than half

of their rules' right-hand sides matched when the two constraints were parse-interleaved.

However, when the constraints were match-interleaved, 53% of the killed items had less

than half of their rles' right-hand sides matched. This causes fewer extendable items to

be created, and therefore fewer killed items as well.

Most of the savings are the result of match-'interleaving co-occurrence constraints which

reduces the number of killed and extendable items by 66% (from 2235 to 749). Port prece-

dence constraints have a more modest effect, reducing this number by only 12% (from 2235

to 1966).

In the PISIM example, match-interleaving has a less dramatic impact than in the CST

example, but it still helps, as can be seen in Figure 610. Match-interleaving both constraints

reduces the killed and extendable item count by 30% (from 1113 to 778). This is simply

because the rules used in recognizing the cches in PISIM had strong node type and edge

connection constraints with respect to the 'input graph representing the PISIM program.

There 'was not as much need to rely on co-occurrence or port precedence constraints to

prune the search.

As in the CST example, match-interleaving co-occurrence constraints had more of an

3Performance is the reciprocal of execution time, so performance increase n (as in "X is n% faster than

Y") is computed from the relationship: 1 + n = Perf ormanceX Executiony . (See Hennessy and Patterson,100 Perf ormancey Executionx

Section 12 57].)

206

effect than match-interleaving port precedence constraints. Match-interleaved co-occurrence

checking reduces the number of killed and extendable items by 25% (from 1113 to 835),

while match-interleaved port precedence checking oly reduced the number by 9 (from

1113 to 1010).
The two experiments above aow us to evaluate the co-occurrence and port precedence

constraints as candidates for match-interleaving, with respect to two particular input flow

graphs and a specific graph grammar. Co-occurrence constraints are excellent candidates, in

terms of their effectiveness, cost, and applicability. Co-occurrence constraints are effective

as evidenced by the vast decrease in the number of items created when they are match-

interleaved. They are particularly valuable when other binary constraints are weak which

is the case in the rules representing aggregate data structure cches that are activated in

recognizing the CST example. Co-occurrence constraints can be checked cheaply by simply

comparing two attribute values. Since all nodes have control evironments, co-occurrence

constraints are applicable to any pair of nodes 'in a right-hand side.

Port precedence constraints are also good candidates for match-interleaving, although

not as good as co-occurrence constraints. They are modestly effective in reducing the

number of 'items created. The cost of checking port precedence constraints incrementally

is no more tha te cost of checking them a at once when an item is complete. Their

applicability is limited to only input ports of a right-hand side graph. That is, if they

are icluded as part of the extendibility criterion, they only apply to pairs of partial and

complete items in which the complete item is representing the recognition of a left-fringe

node.

Implications for Chart Organization

The decision as to which constraints should be interleaved with the matching process con-

cerns which constraints should be icluded as part of the extendibility criterion. The ex-

tendibility criterion 'is checked in two steps. Some parts of te extendibility criterion are

enforced when a candidate item is retrieved from the chart. The rest are checked by filtering

the candidate items that have been retrieved. The parts that are checked during candidate

retrieval influence the design of the organization of the chart.

If a certain constraint is strong in that it can usually be satisfied by only a few items and

this constraint refers to some attribute or part of an item, tten it can be used as an index

into the chart. Node type and edge connection constraints are very important in reducing

the combinatorics of matching many right-hand sides. Currently, te chart is organized so

that complete items are indexed by their label and location and partial items are indexed

by the node types of their immediately needed nodes and the locations at which they are

needed. Constraints on node type ad location are therefore eforced during 'item retrieval.

In the fture, it might be beneficial to index on control-environment information as well..

207

6.2.3 Grammar Facilitates Reusing Sub-Search Space Exploration

In addition to constraints, the complexity of parsing can be reduced if the grammar captures

the commonalities among the flow graphs being recognized in its hierarchical structure. The

grammar may specify that a non-terminal derives some sub-flow graph tat is common to

several other flow graphs. When an instance of this non-terminal is found, the results of

the recognition are reused in recognizing a the flow graphs that contain it, rather than

repeatedly matching the common sub-flow graph.

In terms of 'item trees, tlie effect of a good grammar organization such as this is that 'it

prevents multiple redundant sub-trees from being grown within each tree. In other words,

if the grammar captures commonality, the parser can avoid exploring parts of the search

space over and over.

6.2.4 Empirical Observations of Item Trees

In using the graph parser to recognize two example simulator programs, we have ound the

item trees to be typically sparse ad sinny. This section smmarizes statistics concerning

the characteristics of the item trees that are created in recognizing the CST and isim

programs.

In the recognition runs, both co-occurrence and port precedence constraints are match-

interleaved. Also zip-up creation was being performed by the parser snce it is needed to

recognize the simulator cliches. Zip-up items increase the number of instances of particular

node types. However, the number of zip-ups only negligibly increases the number of items

created in parsing. Since there are so few of them, they do not significantly affect the node

type distribution nor the branching factor of item trees. Section 62.6 characterizes the

number of zip-up items created by the parser and gives empirical statistics for the actual

number created in practice.

The "bushiness" of the item trees gives an indication of whether the parser is encoun-

tering exponential beliavior. We measure this property of the trees in the following ways.

We look at the maximum width of the item trees and observe how it changes as t1le, height

of the item trees increases. The maximum width of an item tree is the maximum, over all

possible sizes of items, of the number of items in the tree of a particular size. (It is the

same as the maximum number of items at a particular level in an item tree.) If the parser

requires exponential space and time, the maximum width will increase exponentially with

the height of the tree. The height of an item tree is the maximum size of the items in the

tree.

We also look at the branching factor of the trees and how it varies as we increase the

height of the non-terminal being recognized. This is done to detect an exponential buildup

in the number of instances of non-terminals as their height in the grammar increases. Recall

the worst case of this can cause 0(nkh) number of instances of a non-terminal at height h

to be created using a rule whose rght-hand side is of size k, as discussed at the beginning f

208

tree maximum average median

height maximum width maximum width maximum widthI I I I
0 1 1.00 1

1 28 5.84 3

2 28 10.88 5

3 13 6.60 6

4 43 19-00 16

1 5 1 3 1 3.00 1 3

tree maximum average median

, height maximum width , maximum width maximum width

0 1 1.00 1

1 24 5.77 4

2 43 8.09 5

3 9 6.00 6

4 38 13.25 4

5 0 0.00 0

6 0 0.00 0

7 32 32.00 32

Table 62: Tree height versus maximum width statistics for item trees i CST.

Table 63: Tree height versus maximum Width statistics for item trees in isim.

Section 62.) If the parser 'is experiencing an exponential explosion, the average branching

factor over all the trees of non-terminals of a particular height 'in te grammar will increase

as the height is increased. Otherwise, it will stay the same or decrease.

Maximum Width

For each item tree, we computed 'Its maximum width, which is the maximum number of

items on any level in the tree. Tables 62 and 63 show, for each tree height, t1le maximum,

average, and median maximum width of the trees of that height.

As the tree height increases, none of the statistics for te maximum width of the trees

increase exponentially. This includes the maximum of the maximum widths of the trees

at each possible height, which would indicate the existence of even one bushy tree. For

the trees over a particular height, the average maximum width is typically mch smaller

than the maximum maximum wdth and the median maximum width is even smaller. This

means that there are few relatively wide trees among trees of a particular height.

209

0: 0: 0:

1: 1: I.

2: 12 2: 38 2: 4

3: 43 3: 1 3: 4

4: 4: 4: 32

5: 12

6: 8
a) Tree from CST example b) Tree from PISIM example 7:

(height = 4 maximum width 43) (height = 4 maximum width 38)

c) Tree from PISIM example

(height = 7 maximum width 32)

Figure 611: The shapes of item trees having maximum maximum width.

In general, for trees of height 4 to 7 the maximum width level of an item tree occurs

in the middle of the tree. The width tapers off deeper in the tree, as constraints prune it.

Figure 611 shows the shapes of trees of height 4 and 7 which have the maximum maximum

width. The shapes are shown in terms of the width of each level.

Branching Factor

We now observe how fl-te branching factor of an item tree changes as we vary the height of

the non-terminal being recognized by the items in the item tree. Tables 64 and 65 sow the

maximum average ad median branching factor over all the item trees of each possible on-

terminal height for CST and PISIM, respectively. In general, the branching factors of item

trees produced in both examples decrease as the height of their -non-terminal increases.

So there is no exponential build-up occurring as non-terminals higher i the grammar are

recognized.

For low-level non-terminals, the maximum branching factor is much worse than t1te

average or median branching factors. This shows that the relatively bushy trees for t1lese

non-terminals are few in mber. (For high-level non-terminals, the maximum branching

factor is comparable to the average and median branching factor, which is small - only

for most high level non-terminals in te CST example!)

The table also icludes the maximum maximum width of all the trees at each on-

terminal height. This shows that in general the maximum width trees occur in recognizing

low-level non-terminals.

These statistics show that the item trees produced in recognizing the two example

programs are typically skinny. These examples represent two real programs, showing the

good behavior of the parser 'in practice, despite its potential for worst case exponential

performance. urther experimentation is need wth other programs to see how t pical this

is and what additional constraints may be needed to keep the complexity under -control.

210

non-terminal maximum average median maximum

height branching branching branching maximum

factor factor factor width

1 12.00 8.17 6.00 12

2 28.00 16.34 6.80 28

3 9.00 7.75 8.00 9

4 7.00 3.01 2.33 43

5 19-00 4.76 3.00 19

6 19-00 4.76 3.00 19

7 3.00 1.50 1.00 3

8 6.75 3.16 1.74 14

9 4.00 2.33 2.00 5

10 3.00 1.83 1.33 3

11 9.00 3.25 1.00 9

12 2.50 2.50 2.50 6

13 1.00 1.00 1.00 1

14 1.00 1.00 1.00 1

15 1.50 1.50 1.50 2

16 1.00 1.00 1.00 1

17 1.00 1.00 1.00 I

18 1.00 1.00 1.00 I

19 1.00 1.00 1.00 1

20 2.33 1.67 1.00 6

21 0.00 0.00 0.00 1

22 0.00 0.00 0.00 1

23 0.00 0.00 0.00 1

Table 64: CST: Branching factor statistics for item trees of non-terminals

possible node-type heights.

over the range of

211

non-terminal maximum average median maximnm

height branching branching branching maximum

factor factor factor width

1 15-00 8.35 7.00 38

2 24.00 8.90 4.00 24

3 10-00 6.46 6.25 43

4 4.00 2.69 2.50 16

5 7.00 2.13 2.00 7

6 2.00 1.51 1.50 9

7 5.00 2.73 2.33 6

8 2.00 2.00 2.00 2

9 3.00 2.33 3.00 3

10 3.00 1.87 1.60 4

11 3.33 3.33 3.33 6

12 7.00 4.50 2.00 7

13 2.00 2.00 2.00 2

14 2.00 2.00 2.00 2

15 3.00 2.50 2.50 4

16 4.00 3.00 4.00 4

17 4.00 2.50 LOO 4

18 2.39 2.39 2.39 32

19 4.00 4.00 4.00 4

20 2.56 2.56 2.56 8

21 4.50 4.50 4.50 5

22 4.00 4.00 4.00 4

23 1.60 1.60 1.60 4

Table 65: Pisim: Branching factor statistics for item

of possible node-type heights.

trees of non-terminals over te range

212

6.2.5 Modeling Constraint Consistency

We can discuss the effect constraints have on the complexity of recognition in terms of a

model of consistency Eric Grimson 49, 50] presented in analyzing his constrained search

object recognition algorithm. (This in turn is based on general analyses of the consistent

labeling problem of which constrained search and sub-flow graph matching are specializa-

tions.)
In constrained search, sensory data are searched for an object model, by icrementally

building a tree of interpretations, which are lists of pairings of data and model features.

Each node in the interpretation tree represents an interpretation of size k, where k is the

level of the node in the tree. The size of the interpretation 'is the number of pairings it

contains. Each of the children of a node that represents an interpretation I represent an

augmentation of I with an additional pairing. At each step, the additional pairings are an

between the same data fragment and each of the possible model features.

Interpretation trees are analogous to item trees that are produced when strict node

orderings are used. However, the roles of model and data fragments correspond to the roles

of the input graph and right-hand side graph, respectively. (At each step in the item tree,

the partial items are all extended with complete items for the same right-hand side node,

not the same input graph node.)

Unary and binary constraints are used to prune the interpretation trees. For example,

these are edge length and relative distance constraints. Grimson's formulation captures

the notion that as the size of an interpretation increases, the probability that a random

matching of that size is consistent 'in terms of the constraints decreases. This means that

if the unary and binary constraints are strong enough, the interpretation trees will tend to

be sparse rather than bushy.

Grimson defines the number of analyses of a particular size in terms of the probability

that an analysis of that size will be consistent in terms of the constraints.

The probability that a set of data-model pairings will satisfy unary and binary con-

straints even if they are not part of a correct interpretation depends on the strength of the

constraints. This in turn depends on the properties of the data and models. In the flow

graph parsing problem, several input graph nodes of the same type (ambiguity) will weaken

the unary node type constraints of right-hand sdes containing that node-type. This win

make it more likely that a random pairing of an input graph node with a right-hand side

node will satisfy this constraint even though the pairing is not part of a valid interpretation.

Similarly, if the input graph is highly connected, edge connection constraints are more likely

to be satisfied by random pairings.

Grimson relates this probability to properties of the object recognition problem, sch

as the amount of sensory error, the number of model fragments, and the model object's

perimeter. He then proves that the expected amount of search to find a correct interpreta-

tion is quadratic in the parameters (when all the data belong to the same object ad the

213

identity of the object 'is known).

In the future, it would be 'interesting to compute the analogous relationship of proba-

bilities of consistency to properties of programs ad cliches sch as node-type or control

environment distributions or number of dataflow dependencies. The probabilities provide

a measure of te effectiveness of the constraints. This information could then be used to

automatically generate advice concerning the optimal order of application of constraints.

Grimson also provides interesting results that point out the need for good indexing and

selection techniques to control the complexity of recognizing partially occluded objects in

noisy, cluttered scenes. Indexing is the problem of selecting from the model object library a

small number of model objects that are likely to be in the scene. Selection is the problem of

grouping together data features tat are likely to have come from the same object. These

results carry over to te program recognition domain. They will be relevant to fu ture work

in applying our parser to the analogous task of near-miss recognition, which is the task

of finding the "best" partial recognition of a cliche'. (Currently, our recognition system is

able to do partial recognition of programs, bt does not generate maximally-sized partial

recognitions of cliches.) Section 62.7 discusses this further.

6.2.6 Counting Zip-UPS

The effect of zipping -up complete items 'is that more instances of aon-terminals may arise.

This can cause the branching factor to increase in item trees for higher-level non-terminals.

Usually, however, the binary constraints on the inputs and outputs of the zipped up items

(especially the edge connection constraints) are powerful enough to quickly disambiguate

the instances so the branching factor is not affected much.

The mber of zip-ups depends on the number of instances of a non-terminal found at

a particular location such that:

* either all of the edges specified in the candidates iput mappings share the same

source ports or all of te edges in their otput mappings share the same sink ports,
or both

* none of the input mappings of the candidates overlap (i.e., contain common edges)

and neither do the output mappings, and

te attribute values of the zipped p item's left-hand side are defined, with respect to

the attribute combination function. (See Section 35.1.) In other words, zipping p

the candidates makes sense in terms of the attributes of the resulting non-terminal

instance.

To count the number of zip-ups for some non-terminal or terminal node-type, partition

items for the node-type into maximally-sized groups of items that can be zipped up, ac-

cording to the above definition. These groups may overlap. Within each group of items,

214

CST Pisim

height number of zip--ups height number of 'p--ups

0 3 0 7

1 4 1 10

2 3 2 5

3 1 3 0

4 0 4 0

5 1 5 0

> 6 0 > 6 0

Table 66: Distribution of zip-up count over Eeiglit of node-type in grammar.

zip-ups are created from each subset of te group (for subsets of size greater than one). So,

for a group g of items that can be zipped up, 2191 - gI - I items a-re created.

Empirical Observations

Zipping p is actually a rare occurrence in practice. The reason is that programmers tend

not to write redundant code. Function-sharing is a common optimization employed to avoid

redoing work - for the programmer in writing the code and for the machine in executing it.

(Optimizations usually add to the complexity of recognition, but in this case, the. function-

sharing optimization actually helps.)

The need for zip--ups does occur, but relatively infrequently. Programmers cannot (or do

not want to) share a common sub-computations. One reason is that sometimes it is cheap

to recompute some value whenever it is used ad the programmer does not want to go to

the trouble of defining a local variable to hold the shared result. Another situation in which

redundancy can occur is in writing conditionals in which some but not a of the branches

contain common computations. The code is sometimes more understandable, and easier to

write correctly if the computation is repeated, rather tha sared. This situation is rare,

since it is usually possible to combine the conditional cases that have the same consequence

into a single case. Both of these situations normally involve small expressions, containing

primitive functions. So the complete items that are typically zipped up are for terminals in

the input graph or low-level non-terminals.

In the CST example, only 12 zip-ups were created (out of 991 total items) and they all

were zip-ups of low level non-terminals. In PISIM oly 22 zip-ups were created (out of

1224 total items). In both cases, they all were zip-ups of items for terminals or low-level

non-terminals, as the dstribution of zip-up count over node-type height shows 'in Table 66.

(Terminal node types have height 0.)

In both examples, the size of the group of candidate items being zipped -up was either

215

two or three, wth an average of 21 and a median of 2.

(Both examples were run with strict node orderings on the rules and match-interleaved

co-occurrence and port-precedence constraints.)

6.2.7 Partial Node Orderings

When node orderings are not restricted to being strict, partial items can have more than

one immediately needed node. This causes more partial items to be created. It also causes

duplicate 'items to arise, which are worthless and are not added to the chart.

In terms of item trees, partial node orderings increase the branching factor of the trees.

A partial item can be extended more than once with complete items for the same node (if

there is ambiguity) and/or with complete items for more than one node (if the item has

more than one 'immediately needed node). Section 62 explored the effect of ambiguity on

the branching factor of item trees. This section discusses the effect of using partial node

orderings.

The worst case partial node ordering is no ordering at a: no pair of right-hand side

nodes is related. In this case, the number of different (non-duplicate) items created in

recognizing a rule's right-hand side of size k nodes is at least 2 k. There is a partial item for

each member of the power set of the rule's right-hand side nodes. (More than 2 k items are

created if there is any ambiguity.) Contrast this with strict ordering in which only k items

will be created if there is no ambiguity.

With no node ordering, there will be m - dplicates of an item of size m. To see

this, consider an item I, of size m. 11's parent is one of m possible parents since there are

m ways of choosing a subset of size - of 1i's already matched nodes). All possible

parents have been created, since there is no node ordering. One is te parent of 11. The

other m - I are parents of duplicates of 1.

So with no node ordering, the total number of dplicate items created in recognizing a

right-hand side flow graph of size k is

k k
E (- 1)M=1 M

This section gives some empirical observations of the recognition of our example pro-

grams under the conditions of three different node orderings. It then discusses te advan-

tages of using partial node orderings versus using strict node orderings, in terms of efficiency

and recognition power. Finally, it discusses ways of choosing a rule's node ordering.

Empirical Results

To get a feel for how partial node orderings affect recognition performance, we perform

recognition on our two example programs, using two different partial node orderings and

compare the results to those obtained using strict node orderings.

216

One partial node ordering is edge-based in that a node nj is <n aother n2 if ni has all

output connected to an input of n2 and n2 has no input tat is an input of the right-hand

side graph. The minimal nodes in this ordering are all the nodes in the right-hand side that

are on the left-fringe (i.e., have input ports that are inputs to the right-hand side flow graph).

When this node ordering is used, an empty partial item for recognizing some rule has an the

left-fringe nodes of the rule's right-hand side as its initial set of immediately needed nodes.

When a partial item is created by extending another partial item with a complete item for

some node x, all nodes connected to x that have not already been matched are added to

the immediately needed node set.

With the grammar used by the Crent system, an edge-based node ordering is an

approximation of having no node ordering, which the current recognition system cannot

handle because the current implementation is not flexible or robust enough. Edge-based

orderings take advantage of the fact that many of the right-hand sides of rules in our

grammar consist mostly of nodes that have at least one input that is an input of the right-

hand side flow graph. These nodes will all be considered mnimal nodes in te node ordering.

If all nodes of a right-hand side have some input that is a right-hand side flow graph input,

then none of the nodes will be ordered with respect to any other node.

The other node ordering considered is topological: a node nj is < another n2 if the

two nodes are connected by an edge from nj to n2 and tere is no other node n sch that

ni nn3 and n3 n n2- (This is not exactly the same as a topological sort of a dag 21],

since it does not completely linearize the partial order 'imposed by the edges of the flow

graph. Nodes that have no edges connected to their inputs are not ordered with respect to

each other.)

Each program was run with the edge-based node ordering and then with the topological

node ordering. The results of these two runs can be compared to the results of recognizing

the programs using a strict node ordering on the rules. The strict node orderings are optimal

in that they are designed to match salient nodes first. They are manually assigned to the

grammar rules.

Tables 67 and 68 show the results of the three experimental runs on the CST and isim

programs, respectively. In the CST example, the strict node ordering is more than 200%

faster than the edge-based ordering, reducing the total number of items by 62%, creating

less than a third of the number of killed ad extendable items. In fact, it creates less than

one fourth the number of partial items that are not killed (i.e., ae extendable). The strict

node ordering does not save as much over the topological node ordering as it did over the

edge-based ordering. However, it nearly halves the number of extendable items.

Similarly, in the PISIM example, using the strict node ordering allows the parser to run

238% faster than with te edge-based ordering and there is a reduction by more than 50%

in the total number of items created with the edge-based ordering. Less than one fourth of

the umber of extendable items are produced. Again, tere 'is only a slight difference in the

number of items created in using the topological versus using strict node orderings.

217

items edge-based topological strict

successful 329 329 329

killed 1296 491 446

extendable 994 418 216

total 2619 1238 9911 1 1
killed+extendable 2290 909 662

time (seconds) 260 104 86

items edge-based topological strict

successful 436 436 436

killed 953 597 525

extendable 1073 356 263

total 2462 1389 1224

killed+extendable 2026 953 � 788

time (seconds) 501 187 148

Table 67-. Experimental runs with CST using three different types of node orderings.

Table 6: Experimental runs with Pisim using three different types of node orderings.

218

It is significant tat te topological node ordering does early as well as te strict

node ordering in terms of efficiency, since it i's based on an easy, automatable ordering

heuristic. The reason that the two ode orderings yield comparable results is tat the rules

are typically long and skinny so that te partial topological node orderings are nearly strict

node orderings. The strict node orderings can be seen as topological node orderings tliat

are improved using saliency information.

The strict node orderings that were used in the example runs above were assigned

manually ad were designed to place node types early in the ordering that are salient with

respect to the input graph. The measure of saliency of a node type is based on the number of

instances of that node tpe there are in the input graph; lower instance counts mean higher

saliency. This takes into consideration non-terminal node type counts, so this assignment of

strict node orderings relies on knowledge of the input graph and results of prior recognition

runs. Below, we discuss ways of approximately measuring the saliency of non-terminal node

types automatically.

Partial Versus Strict Node Orderings

There is no doubt that using partial node orderings is more expensive than using strict node

orderings. However, using partial node orderings has advantages in terms of flexibility and

tolerance when a cliche' is not entirely recognizable. Since it allows more t1lan one order

in which to match right-hand side nodes, if a portion is missing, an order in which the

other portion is matcl-ted first can still yield usefnl partial information. With a strict node

ordering, only one order of matching is tried, so if a node i's msing a nodes following it

in the strict ordering wl be prevented from being matched.

In other words, partial node orderings allows partial recognition of right-hand sides of

rules. This is a type of partial recognition which is different from the partial recognition of

the input graph. (In the program recognition domain, this 'is partial recognition of cches,

as opposed to partial recognition of programs, as defined in Section 33.1.) To distinguish

it from partial recognition of the input graph, we use te term near-miss recognition.

Near-miss recognition is useful 'in being able to try harder. Pure near-miss recognition -

using no node ordering - generates maximally-sized partial analyses. These can give clues as

to which sall set of constraints must be relaxed, suspended, or satisfied (e.g., by changing

the input graph) in order for some cliche to be recognized. This has applications both in

debugging programs (in which a programmer meant to use a cliche' but did so incorrectly)

and in learning new cliches.

In general, with partial node orderings, the partial analyses can become larger and more

plentiful than with strict node orderings. This reveals a trade-off between te efficiency of

strict node orderings, which cut off analyses as soon as constraints are violated, and the

near-m' gnition power afforded iss reco _y -partial ode orderings, which explores more of the

search space, "tolerating" constraint violations to gather more information about the input

219

graph.

To do near-miss recognition efficiently, the parser's search must be focused on a small

number of non-terminals at a small number of places in the input graph. Grimson provided

theoretical confirmation of this in his study of constrained search. The mapping between

constrained search ad right-hand sde matching makes his results applicable to near-miss

recognition by flow graph parsing as well.

Grimson found that constrained search is efficient when indexing and selection are per-

fect, as discussed in Section 62.5. However, an exponential amount of work is needed to tell

that a possibly partially occluded ob'ect model is not in a scene, even wen good (but not

perfect) selection techniques are performed. So it 'is portant that indexing techniques are

used to narrow down the library of models, rather than sequentially searching trough the

library and using the exponential process to rule out incorrect models. Also, an exponential

amount of work is needed to find an object model in a cluttered scene if adequate selection

techniques are not used to distinguish the object from the noise. This is the case even if

perfect indexing is done. So both good indexing and good selection are needed to efficiently

perform recognition of partially occluded ob'ects 'in cluttered scenes.

A few program recognition researchers, such as Johnson 65], Lukey 87], and Murray

[95], have worked on the problem of guiding the recognition system to a "best" partial

analysi's in the context of program debugging applications. They -use heuristics based on

saliency, mnemonic names, and partial aalysis size, for example. Section 64 gives some

suggestions for ways of incorporating other possible indexing and selection techniques into

the current recognition system.

Choosing a Node Ordering

The node ordering of a rule determines the order in which individual unary and binary

constraints are applied. The best order is one in which stronger constraints are applied

first. An automatic assignment of node orderings to rules can look at the structure of the

rules' right-hand sdes and at te input graph to get clues as to which ordering is most

likely to impose stronger constraints earlier.

Unary Constraints

The unary node-type constraints are strongest for salient node types. So a node-ordering

in which salient nodes are matched first is best. There are two useful notions of saliency.

One notion is a node type that is rare in the input graph. The other is a node type that

only appears in a few grammar rules.

The unary node-type constraint for nodes that are salient with respect to the input

graph is strong in that they reduce the branching factor of item trees. Applying them early

can help disambiguate partial analyses while they are still small. Reduction of branching

is most beneficial near the top of item trees, since binary constraints can usually keep the

220

branching factor down at lower levels.)

Ideally, node orderings that are based on saliency of node types with respect to the

input graph should take 'Into account the number of instances of non-terminal as wen as

terminal node types in the input graph. However, this requires knowledge of te results of

recognition.

We can use heuristics to automatically produce node orderings that approximate this

ideal assignment. Given a right-hand side, we can compute a frequency number for each

right-hand side node. The nodes of a rule's right-hand side are ten ordered from smallest

to largest frequency of their node-type, so that salient nodes are earlier in the ordering.

(This is not necessarily a strict node ordering.)

For each terminal, the frequency number is the number of nodes in the input graph with

the same type. For a non-terminal A, take each rule R for A and recursively compute the

frequency nmbers of the nodes in R's right-hand side, choosing the minimum frequency

number as the frequency of A with respect to R. Finally, combine these frequency numbers

over all the rules for A to get A's frequency. The combination function (e.g., sum, max,

average) chosen depends on how conservative or optimistic we want the heuristic to be.

The advantage of matching nodes that are salient with respect to te grammar first is

that the growth of an 'Item tree for a rule does not begin until the salient node is ound.

This has the effect of only activating the matching process for a particular rule when it is

worth it (i.e., when the rule's right-hand side or a near-miss of it is likely to exist in the

input graph). This is a form of indexing. It helps speed up recognition and it also produces

better partial analyses for near-miss recognition.

An issue that arises when using saliency measures based on the grammar is that as the

parsing proceeds, the grammar is cl-tanging. As the set of item trees is pruned away, the set

of grammar rules -under consideration is effectively becoming smaller. Since the saliency of a

node-type is relative to the grammar, saliencies change as the grammar changes. Matching

a node that is salient with respect to an entire grammar might narrow down the grammar

to a few rules that contain that node. Then, with respect to these rules, there are other

salient node types (which might not have been salient wth respect to the entire grammar)-

These salient node types should be matched first, to disambiguate between the possibilities,

and so on. The point is that saliency with respect to a grammar changes as the grammar

changes, so if we are basing or node orderings on it, we will have to change the node

orderings dynamically as parsing proceeds.

Binary Constraints

Node orderings can also be created to force strong binary constraints to be checked earlier.

For example, the topological partial node ordering used 'in the experimental runs was effec-

tive in reducing complexity. It ensured that no node was matched until all nodes preceding

it in te right-hand side flow graph had been matched. This meant that when a node is

221

matched, there are edge connection constraints applicable to it and its preceding nodes.

The partial items are always extended by complete items for nodes that can be constrained

the most by the preceding nodes.

Another ordering heuristic 'is to match nodes earlier that have more binary constraints

appEed to them. For example, match those with more otput edges, before those witli few

outputs, or match those that are constrained to co-occur, before those that are ot. The

advantage of these heuristics is that they require no kowledge of the input graph.

6.2.8 Summary of Item Count

Recall from Section 61.2 that the overall cost of the parsing algorithm is

11T1 * Wagenda-add + Cagenda-retrieve + Cduplicate-test) +

I IE I Cextend +

11C I (Cchart-add + Ccombination-lookup) +

IR * instantiate-empty +

In Cinstantiate-terminal +

VA CZiPU +

11f I (Cconstraints-check + Czip-up-lookup)

The number of items created dring 'Initialization for the terminal nodes of the iput

graph (Inj) is n, the number of nodes in the put graph. The number of empty partial

items also created during initiaEzation (IIRI) is te number of rles in the grammar (IPI).

This section has discussed the number of items created by extension and zip-np and how

constraints and node orderings infinence the size of these sets (JIEJ and Izj). The umber

of items in te chart is Ic = (I IE I - I ID 1) + n I P 1, where ID is the set of duplicate items.

If strict node orderings are -used, then I ID I = 0. The set of complete items that enter the

chart (If) are those in In and I and the subset of the complete items created by extension

that contains no duplicate items. The total number of items IT = JIE + n + PJ + _1zj

JICJ + JIDJ-

We now detail te costs of the actions that are performed o each of these types of

items.

6.3 Component Costs

The sizes of the various types of item sets are weighted 'in the complexity formula by te

costs of applying the basic paTser actions to each type of item. Te terms in the formula

a-re ordered by the typical size of the set of items in the term, based on the empirical study

of recognizing CST ad PISIM. The first three terms are dominant. It is best for the costs

weighting them to be small. We will consider the cost of each of the parser's actions in the

order in which it appears in the complexity formula.

222

The cost of adding to and retrieving an itemi Cagenda-add and Cagenda-retrieve� are
small constants in the current implementation. They are implemented as simple queue

operations. In general, however, they may be more complex operations, depending on the

type of structure imposed on te agenda to 'implement more complicated search strategies.

Cduplicate-test i the cost of testing whether an item is a dplicate of an existing item

already in the chart. There are two different tests used, depending on whether the item is

partial or complete.

To describe te test of partial items, we need to define two more parts of the structure

of items. One is a set of sub-items which are complete items that represent the recognition

of the nodes that have been matched so far in the item rule's right-hand side. These are the

items that have successively extended partial items to ultimately result in this 'item. Te

other new part of items is a set of super-items which are items that resulted from extending

a partial item with this item. Only complete items have super-items. An item might have

more than one super-item if a sub-derivation is being shared between two derivation trees.

(Super-items and sub-items of an item 11 are different than the item's parent or children

in item-trees. Links to sper- and snb-items encode the structure of the derivation graphs

generated by the parser. The links to parent and children items in an 'item tree show the

history of extensions performed on items for the same rule.)

Each partial item will have a sub-item for each of the nodes of its rule's right-hand side

that have been matched so far. If a duplicate Id of a partial item exists, Id will share all

of its sub-items with Ip. So, given any partial item p, we can tell if a duplicate of it exists

by taking any one of its sub-'items 1 and looking for one of its super-items (other than Ip)

that as the same set of sub-items matched to the same nodes as Ip. If none is found, the

partial item is not a dplicate. The average cost is polynomial in the average number of

super-items an item can have and the number of sub-items being compared (which is the

size of the partial 'item being tested and which 'is less than the size of its rule's right-hand

side). The average number of super-items is 284 in CST and 207 in PISIM. Right-hand side

sizes range from to 7 nodes.

To test whether a duplicate of a complete item 1, exists, we look in the cart for items

with the same label as 1, at the location of 1,. For each location pointer in the input

and output mappings of , the items for s label at that location pointer are retrieved.

The sets of items retrieved for- the location pointers are intersected. The average cost is

polynomial in the average number of location pointers per 'Input or otput mapping 321

in CST, 292 in PISIM) and the average number of items retrieved 2.91 in CST 261 in isim).

The number of location pointers 'in the mappings is not the same as the number of

inputs and outputs of the left-hand side non-terminal of an item's rule or the number of

internal edges to immediately needed non-terminals. It depends on the degree of fan-out or

fan-in of edges in the input graph, and on the bushiness of nested location pointers which

represent aggregation. (In terms of the program recognition application, the size of the

nested location pointers representing aggregation depends on the complexity of the cliched

223

data structure - ow many parts it has and how many its s-ub-parts have, and so on.)

The cost of extension extend i the sum of the cost of

e copying a item: linear in the sizes of its parts, such as lists of callers ad sub-items.

* updating iput and output mappings: polynomial in the number of location pointers

in the input and output mappings of the complete item.

* comparing location pointer t-uples on theinputs and otputs of adjacent non-terminals

and propagating st-thru matches: polynomialin the number of edges in the right-hand

side and the number of location pointers per right-hand side edge. (There may be

more than one location pointer on an edge due to fan-in or fan-out and aggregation.)

The average number of edges 'in a riglit-hand side is 053 ad the average number of

location pointers per edge is 263 in CST and 416 in PISIM.

The cost of recording a item (complete or partial) in the chart, Ch,,t-add� is linear

in the number of location pointers in the 'input and otput mappings of te item. This is

because the item is recorded 'in the chart multiple times, once for each location pointer.

(For partial items, the "output mappings" are the sets of location pointers on the edges

to immediately needed non-terminals.) The chart is broken into two parts, one containing

only complete items and the other containing only partial items. The set of complete items

is indexed on the label of the item ad on the location pointers of the item's input and

output mappings. The set of partial items is indexed on the location pointers and node

types of the item's immediately needed non-terminals. This makes it easier to look p all

complete items for a particular node type at a particular location (to combine with a given

partial item), and to look -up all. partial items needing a particular node type at a particular

location (to combine with a given complete item). The average number of times an item is

entered into the chart is 751 in CST and 635 in isim.

ccombination-lookup is the cost of looking up partial or complete items to combine with

an item that is entering the chart. Given a complete item for a non-terminal A, looking

up partial items for it to extend involves taking each location pointer in the mappings of

the complete item and looking up a partial items that immediately need A at the location

pointer. Te candidate items retrieved are organized by item and for each candidate,

a validity check is performed. The validity check 'is an application of unary and binary

constraints. So, the cost of looking up partial items is a polynomial in the number of

location pointers in the mappings, te number of candidate items retrieved, and the cost of

applying the unary and binary constraints.

Given a partial item that immediately needs non-terminals Al An a similar cost is

incurred in looking up complete items for each of these non-terminals. This cost is summed

over the sets of location pointers on the edges going to each of the immediately needed

non-terminals.

224

The cost of checking parse-interleaved constraints constraint-check is hard to character-

ize, since the constraint expressions can be arbitrarily complex. However, the current

system, the constraints applied are very simple and this term contributes little.

The cost of looking up items to zip up with a given item 1A is Czip-up-lookup. This

involves looking p eacl-t item Ic for IA's label A that satisfies the following conditions:

9 either a of tlie edges pointed to by the location pointers in ,'s and IA's input

mappings share the same source ports or all of the edges pointed to by the location

pointers in their output mappings share the same sink ports, or both,

* none of the iput mappings of either item overlap (i.e., contain common location

pointers) and neither do the output mappings, and

* the attribute values of the zipped up item's left-hand side are defined, according to

the attribute combination function.

The cost of doing this is polynomial in the number of location pointers contained in the

input and output mappings of 1A, 'in the number of items retrieved per location pointer,

and in the cost of applying the attribute combination fnction.

The costs of creating empty partial items, Cinstantiate-emptyi and complete items for

terminal nodesi Cinstantiate-terminali during instantiation are both small constants.

The cost of zipping up a set of items Cip-up is polynomial in the number of items

being zipped up (for the example programs, the typical number 'is 2 or 3 and i the cost

of zpping up the parts of the items (e.g., unioning sets of callers).

6.4 Other Performance Improvements

This section contains suggestions for improving te performance of the parser. These are

useful when constraints are not strong enough to prune the parser's search adequately. They

are also important if the parser is to be used for near-miss recognition in the future. Most

of these can benefit from advice from an external agent.

6.4.1 Decomposition

Parsing smaller flow graphs can be easier than parsing larger ones if the smaller flow graphs

are less ambiguous. Decomposing an 'Input graph and then focusing the parser only on

sub-flow graphs within the decomposition boundaries can speed up recognition.

John Hartman [55] demonstrates the advantage of decomposition in program recog-

nition. He provides an efficient recognition technique for cliched control concepts, which

hierarchically decomposes a program represented as a control flow graph 'into propers (single

entry/single exit control flow sub-graphs) and performs simple graph matching within the

propers.

225

This section gives some examples of program domain-specific heuristic decompositions

that can be used to focus our parser. They are a static decompositions that occur before

parsing 'is begun. Section 64.3 discusses dynamic decompositions.

Subroutinization provides one type of heuristic decomposition. The parser can be forced

to recognize non-terminals only within the boundaries of a subr outine or module. (When

using this euristic, there is no need to "flatten" the program by expanding out a subrou-

tines within their callers. When the flow graph for an entire subroutine body is recognized

as a non-terminal. A, all nodes representing calls of that subroutine can be replaced by a

node of type A.)

An analogous decomposition can be made based on data structure organization. The

idea is to require a non-terminal to be recognized only in sub-flow graphs whose nodes all

represent operations that are acting on parts of the same user-defined data structure. For

example, and AREF occur all over the input graph, but we should not pair them up as an

instance of the Stack-Pop cliche' if one 'is applied to the Tail part of a user-defined structure

Queue and the other is applied to the Instructions part of a Handier. Since our cliche's are

primarily based on dataflow, this partitioning seems natural. A sgle dataflow slice is not

always tlie best unit of decomposition, since aggregate data structures typically involve a

bundle of slices. This partitioning aows a bndle of slices to be considered as a unit.

Both of these decompositions work best if the programmer's decomposition of the pro-

gram into procedural and data abstractions is very close to a typical way programs i that

domain are decomposed.

The main problem with focusing the parser on each partition independently is tat

completeness can be lost if cliche's occur across te partition boundaries. A more flexible

partitioning technique is to augment the extendibility criterion of the parser with a binary

partitioning constraint which requires that a complete 'Item can oly extend a partial item

if all of the partial 'item's sub-items and the complete item represent the recognition of

sub-flow graphs in te same partition. Combination attempts that fail this constraint can

be postponed, rather than eliminated altogether. This allows certain combinations to be

preferred over others, while allowing less favorable combinations to still be tried in a try-

harder phase.

The drawback with this scheme is that more combinations between pairs of items will

be attempted. When parsing is focused on sub-flow graphs 'Independently, the combinations

that cross boundaries are not even attempted.

An advantage of incorporating a partitioning constraint into the extendibility criterion 'is

that it can be selectively applied. It would be like any other match-'interleaved co- straint in

that it can be specified on a rule-by-rule basis to apply to certain (not necessarily al) nodes

of each rule's right-hand side. The match-interleaved co-occnrrence constraint currently

used by the parser can be seen as a partitioning constraint that requires certain rght-hand

side nodes to occur within the same control-environment boundary.

Finally, tlie recognition system can make use of advice from an external agent, that has

226

access to more nformation about the program than is found n the source code. People

can often break up the program into pieces that "go together" in that they provide a

particular functionality or belong to the same abstract domain-specific concept. They base

this decomposition on design documentation and program comments or even just names

of subroutines and variables. (As part of the DESIRE project 12, 13] Josiah Hoskins has

proposed a eural-network-based approach to automating this process.) This information

can be used to focus the recognition system on particular sub-flow graphs and also to suggest

clic-te's to look for within them (i.e., index into the cliche' library - see the next section).

6.4.2 Indexing

Efficiency can be gained not only by reducing the focus of the parser to smaller sub-flow

graphs, but also by reducing its focus to a smaller subset of the grammar. For large

grammars, it is advantageous for recognition to be sub-linear in the sze of the grammar.

The current parser makes use of indexing to some extent in that it only creates (non-

empty) items for rules when part of the rule's right-hand side has been found in the input

graph. The chart's structure allows the parser to index on the node type found to retrieve

partial items that immediately need it. Heuristics have been discussed in Section 62.7 for

choosing a node ordering that will force salient nodes to be matched first. This stunts the

growth of item trees until it is likely that a non-terminal instance or a near-miss of one

exists in the iput graph.

Advice can also be given to the program recognition system from an external agent,

based on expectations about which cliche's are likely to be found in the program. This can

be used to narrow down the grammar given to the parser.

6.4.3 Interleaved Decomposition and Indexing

We, can also interleave indexing and decomposition (selection) techniques with the parsing

process. The idea is to use strict node orderings first and then try harder later by giving

certain partial items partial node orderings, expanding their immediately needed nodes

based on the new orderings, and returning them to the agenda to continue parsing. Advice

from an expectation-driven component or heuristics can be used to choose the partial items

to "encourage". An example heuristic might be to choose partial items that have started

recognizing non-terminals 'in an area of the input graph in which no cliche' has been fully

recognized. Another heuristic is to choose the partial items that have the salient nodes of

their rght-hand side matched already.

Interleaved indexing and decomposition techniques have an advantage over static teclt-

niques that are applied before recognition in that they can make use of deeper knowledge

about the input graph based on the previous recognition results.

Hierarchically representing patterns 'in a graph grammar facilitates tis process. If a

"flat" pattern were searched for using a strict node ordering, the search would end as

227

soon as te parser fails to matc te "next" node in te ordering. With a hierarchical

organization, more parts of te pattern can be recognized and used to make a more informed

decision about which candidate partial aalyses should be pursued further with a partial

node ordering. This information can also be used to decide which node ordering to try.

6.4.4 Avoiding Unnecessary Copying

When a partial item is extendable by a complete one, a copy of the partial item is created

and the copy is extended. The reason is that this helps the parser deal with ambiguity

and aows it to perform partial recognition ad incremental analysis. (See Section 35.)

However, sometimes a large number of the copies made are unnecessary, ether because the

input graph is not ambiguous, it does not contain multiple instances of some node types, or

it is expected to remain static. This section suggests ways of avoiding unnecessary copying.

We can identify unnecessary copies retrospectively by looking for partial items that have

been extended with only one complete item for the same immediately needed node. In the

CST example (using strict node orderings), the percentage of copies that were unnecessary

is 13.5%. The percentage of the total number of items that are the results of unnecessary

copies is 10.9%. In te PISIM example (using strict node orderings), the percentage of copies

that were unnecessary is 14.7%. The number of items that are the result of an unnecessary

copy as a percentage of the total number of items i's 11.6%.

Unnecessary copies contribute to both the height and width of item trees. When strict

node orderings are used, they contribute only to the height of trees.

The following are a few techniques for avoiding copying.

1. Lazy copying: Make a copy only when 'it is necessary. Extend partial items with

complete items wthout copying. However, when an alternative complete item arises

for an already matched node A in some item 10, make a copy, I,, of Io and restore it

to the state was in before the old complete item IA, was used to extend it. To do

this, we remove ay links it has to super-items (since only complete items can ave

super-items). We must also find out which sub-items of 11 must be retracted. These

are IA, and a complete items that extended it after I 1, which can be computed from

the node ordering and a history of the immediately needed sets. These are removed

from Il's set of sub-items and aR information associated with I, that was derived from

them is removed. (This requires keeping track of dependencies of parts of an item on

the sub-item parts, such as its inputs ad otputs. It also requires allowing partial

'items to be indexed based on already matched nodes as well as immediately-needed

nodes, so that new complete items can be paired up with them.) Once the retraction

is finished, I, can be extended with the alternative complete item.

This scheme is only worthwhile when the majority of copying is unnecessary. It

can be applied selectively to certain extensions if the parser has been given advice

228

that certain node-types are not likely to be found more than once or in a partially

ambiguous situation.

2. Structure-sharing: A common technique to avoid copying when there is little change

between te original and the copy is to share the common structure. The parser

can store one "original item" per rule plus a log of augmentations, representing te

successive extensions. This is a more compact way to record intermediate states in the

search. This technique is used in resolution theorem proving 14] and in unification-

based grammar parsing 67, 104].

3. Estimating Number of Instances: We can heuristically count the maximum possible

number of instances of a particular node type, based on te node type distribution of

the input graph. As soon as the maximum number of instances of a node-type A are

entered in the chart, if a partial item immediately needing A arises, the parser can

tell whether there is more than one possible complete item for A that can extend it.

If there is only one, then the partial item need not be copied before being extended.

However this sc-teme is only beneficial if the heuristic for counting 'Instances is good 4

and most of the partial items that need a node-type A enter the chart after the

maximum number of istances of A have been found. An alternative is to use a less

conservative heuristic that computes a lower bound on the number of istances in

conjunction with lazy copying. This allows copying to be prevented earlier, without

sacrificing safety.

4. Restricted Control Strategy: The parser can be forced to produce all complete items

for node-types of a particular height h in the grammar before going up to the next

height h 1 starting with te terminal node types (h = 0). This guarantees that all

instances of a node-type A have been found when a partial item immediately needing

A enters te chart. The partial item need not be copied before being extended if only

one complete item for A can extend it. The disadvantage is tat the control of t1te

parser is severely restricted.

The decision and technique used to avoid copying depends on the severity of the problem

of unnecessary copying. In te two example programs, it is not severe enough to merit the

overhead of these techniques.

6.5 Conclusion

This section as shown the following.

Although flow graph parsing is exponential in the worst case, it is feasible to apply it

to practical partial program recognition. Structural (node-type and edge connections

'Perfectly counting the number of instances of a node-type is no easier than recognition itself.

229

constraints as well as program domain-specific constraints (e.g., co-occurrence) are

able to control the complexity in practice.

The type of node ordering imposed on the ght-hand side nodes of rules affects the

parser's efficiency. Strict node orderings focus the search, generating fewer partial

analyses and duplicate items than partial node orderings. This reveals a trade-off

between efficiency ad recognition power. The choice of how to order nodes within

a strict or partial node ordering also affects performance. This choice can be made

with the help of external advice or euristics. It may need to dynamically change as

parsing proceeds.

The capability of generating maximally-sized partial recognitions of cliche's (i.e., ear-

miss recognition) is expensive. Future near-miss recognition capabilities must take

advantage of advice and automated techniques for indexing and decomposition to be

feasible. These techniques can be interleaved profitably with recognition, rather than

being performed statically beforehand.

230

Chapter 7

/onc usions

We have developed and studied a graph parsing approach to program recognition 'in which

programs are represented as attributed flow graphs and the cched library is encoded as an

attributed graph grammar. Graph parsing is used to recognize cches i the code. We have

demonstrated that this graph parsing approach is a feasible and useful way to atomate

program recognition.

The approach has two key features. One is the representation shift it employs. The

other is its exhaustive, systematic, but flexible control strategy. The graph representation

is able to suppress many common forms of program variation which hinder recognition.

This enables our recognition approach to be robust nder syntactic, organizational, and

implementational variation, as well as variation due to delocalization ufamiliar code, and

common function-sharing optimizations. Difficulties arise when a program's data and con-

trol flow are implicit or derived or cannot be determined statically.

The flow graph formalism is able to concisely encode algorithmic ad data aggregation

cliches whose constraints are primarily based on data and control flow. These include

not only general-purpose programming cliche's, but also cches specific to the simulation

domain. Limitations arise in capturing loosely constrained clicl-le's. Although the flow graph

formalism allows us to encode cliche's on a high level of abstraction, the level of abstraction is

still limited by the amount of detail that must be specified about the cliche's (e.g., operation

types and arity, daltaflow connections, control environment relationships).

In studying the graph parsing approach, we have experimented with two real-world

simulator programs. We empirically ad analytically studied the computational cost of

our recognition system with respect to these programs. We have found that although our

graph parsing algorithm is exponential in the worst case, its complexity is reduced in its

practical application to program recognition. Structural (node-type and edge connection)

constraints as well as constraints which are specific to the program recognition application

(e.g., co-occurrence) improve the parser's performance in practice. Section 71 discusses the

need for more empirical study.

Section 72 discusses some open research issues that have not yet been fully explored.

231

An important future goal is to complement our code-driven technique with an expectation-

driven technique that provides guidance based on such knowledge as the program's goals,

problem domain, and documentation. With its flexibility, our recognition architecture forms

a seed for this future hybrid program understanding system. It can make -use of advice and

guidance from external agents. Section 72.5, we summarize or observations,-of typical

forms of advice that would be helpful to our recognition system in controlling its complexity

and its search for cches.

Section 73 gives a comparative summary of related work in program recognition. Fi-

nally, in Section 74, we briefly discuss applications of program recognition and of our

parsing ormalism in general.

.7.1 Empirical Studies

Our study is a step toward understanding a particular recognition technique in the context

of real-world programs. It tries to break out of the "toy" program rut. Our example

programs are medium-sized and not written by us. Tey start to give some indication of

what is typical in terms of characteristics of real-world programs. They contain domain-

specific cliche's as well as general utility cliche's. They also contain unfamiliar code. This

allows us to study the ability of our parsing-based technique to perform various types of

partial recognition.

However, it is important to keep the findings of our empirical studies with just two

programs in perspective. We have made some general observations that we expect to be true

of programs and libraries other than those studied here. For example, we point out general

classes of variation that are handled, which types of constraints are effective in improving

performance, and situations in which partial recognition can occur. On the other hand, we

have also made specific observations about recognizing these programs using the current

library. For example, we observed that recognition by graph parsing can be done efficiently

in practice. We also discuss weaknesses of our representation and approach, but only those

that we encountered in our study. This is not a complete list. Tese are interesting only if

these programs and the library are typical.

Our example programs are still small, relative to real-world programs in the software

industry. There are bound to be issues of scaling up to large programs that have not yet

been encountered. More empirical studies are needed to:

* expand and refine te cliche' library,

0 identify more classes of variation that can or cannot be tolerated,

* determine how severe and common the limitations are that we have pointed out,

* identify other factors that affect efficiency,

* determine if our experiences with good performance were lucky or typical and,

232

* evaInate the ability of the existing system to recognize ew programs.

7.2 Fut ure

This section discusses aeas in which additional research is needed.

7.2.1 Multiple Recursion

Currently, GRASPR can represent and recognize singly-recursive programs. In the future,

we will extend its attribute language to capture the control flow information of multiply

recursive programs as well. This involves a straightforward generalization of recursion

information triples to hold more than one feedback-ce - one for each recursive call To

express constraints on the control environment attributes of these programs, we win need

new ways of referring to particular feedback-ce's. We can no longer refer simply to the

"feedback-ce 'in the innermost recursion" containing a particular operation or test. We

may need to identify common forms of multiple recursions, such as the familiar binary tree

recursion, in which the feedback-ces are related in standard ways. Then individual feedback-

ces can be referred to, based on their relationship to others in the multiple recursion.

In addition, more research is needed to extend te temporal abstraction techniques to

abstract multiply recursive programs. There may be some common types of multiple recur-

sion for which temporal abstraction is a straightforward generalization of the techniques for

singly recursive programs. For example, Rich [110] (Section 94) briefly discusses temporal

abstraction of binary tree recursions. In these programs, the feedback-ces are the same con-

trol environment. Other programs seem not to be amenable to temporal abstraction, such

as those in which one feedback-ce is F the other. (This arises when two or more functions

are mutually recursive ad one calls itself, as in the familiar Evaluate/Apply recursion.)

Because the current implementation of GRASPRI's not able to translate multiply-recursive

programs into meaningful attributed flow graphs, we selectively flattened the Evaluate/Apply

recursion within Pisim to avoid generating more than one recursive call. During the trans-

lation of te program to a plan, we specifically advised that the box representing the call

to the function Evaluate not be expanded into a flow graph representing the function's

body. The resulting flow graph contained only one recursive call, (in the iterative mapping

of Evaluate over a list of Arguments to which an operation is to be applied). The function

Evaluate in Pisim corresponds to what we would Eke to recognize as the "Evaluate" cliche.

7.2.2 Interfacing with Other Recognition Techniques

Recall from Section 52.3 that we had difficulty encoding the Evaluate cliche', due to its

loose constraints on data and control flow. Suppose that we not only advise GRASPR not to

expand the node representing the call to Evaluate, but we also specify that it is an istance

of the "Evaluate" cliche'. Normally when a -user specifies that a function is not to be

233

expanded wose name appens to be a non-terminal in the grammar, GRASPR systematically

renames te function. We specify that the function is an instance of the "Evaluate" cliche'

by overriding this renaming and labeling te node "Evaluate.")

This can be seen as a way to use results from another recognition technique (in this

case, performed by people), which applies more flexible constraints and can recognize te

body of Evaluate as the "Evaluate" cliche'. In other words, GRASPR uses results from another

recognition technique in the form of an already reduced non-terminal Evaluate" which te

other technique inserted into the flow graph representing the program.

An alternative way for GRASPR to use recognition results from other techniques is for these

techniques to create items representing the recognition results and add them directly to

GRASPR's parser agenda. For example, rather than directly relabeling the node representing

the call to Evaluate, a complete item can be created for the "Evaluate" non-terminal and

added to the parser's agenda. This has the advantage that the program is not destructively

modified by the insertion of the already-reduced non-terminal.

7.2.3 Disambiguating Data Structure Operation Instances

GRASPR as been designed to exhaustively and algorithmically recognize a liche's in a

program. It does not employ global consistency checks to rule out some analyses or to

disambiguate multiple views of the same part of a program. Its recognition process is

44 monotonic" in that new recognitions cannot invalidate previously recognized structures.

Recognition of one cche does not depend on the failure to recognize aother cliche'.

There are two main reasons for this. One is that the code-driven parsing approach is not

best sited to perform the disambiguation of multiple views or global consistency cecks.

These should be done by a higher-level control mechanism that has access to information

other than the program's data and control flow. It may have expectations about which

interpretations are most likely. Also, the parsing approach does relatively local constraint

checking. AR consistency checks ad disambiguation refer to individual instances of cches

that are parts of some larger cliche'. A higher level mechanism can quantify over cche

instances that are not explicitly related by being part of some larger cliche'.

The second reason that GRASPR generates multiple, possibly ambiguous analyses is that

sometimes multiple views are useful n -derstanding a program. A higher-level control

mechanism may require different views at different times, depending on how the recognition

results are being used.

The interaction between GRASPR and a higher-level control mechanism would be partic-

ularly profitable in the recognition of aggregate data cliches. Data clicl-le's ae recognized

by recognizing operations on them. These operations form groups, called "suites," eacli of

which represents a globally consistent set of operations with respect to some data structure.

For example, Figure 71 shows four different consistent pairs of operations for inserting and

extracting elements from an indexed sequence. Each of these represent valid operations to

234

be used together in 'Implementing a stack, snce they maintain stack discipline. Each pair

is a suite.

When GRASPR recognizes an individual cliched data structure operation, it reports the

recognition of the operation and the data cliche'. Some of these may be locally ambiguous.

For example, zerop and null can be empty tests for a variety of ciched data structures. Also,

some recognitions might not be globally consistent with the recognition of other operations

on the same data elsewhere in the program. For example, recognizing one operation from a

suite in Figure 71 does not necessarily mean a Stack is being used in the program. Another

access or update to this same aggregate data structure elsewhere in the program might -use

an operation from another suite.

GRASPR does not attempt to disambiguate recognitions of data structure operations. Nor

does 'it globally check that the data that has been recognized as the data cliche' is always

operated upon by operations in the same suite. The main reason is that GRASPR is not the

one best suited for this task.

It is difficult to do these things in the flow graph parsing framework, based only on the

data and control flow of the program. This is because instances of operations that act on the

same aggregations of data are often difficult to group together, in order to apply onsistency

constraints (i.e., check that they are a in the same suite). As we discussed earlier, data and

control flow cannot always be completely determined or made explicit. So, te operations

are not always connected directly by dataflow. It may be possible to uncover direct dataflow

in some cases (e.g., implicit aggregation might be made explicit). However, often aggregate

data structures are collected in primitive data structures (e.g., lists or arrays) which do not

represent implicit aggregations. (For example, PiSim's *Event-Queue* is a homogeneous list

of Events.) For these, the connections between operations on the aggregate structures must

be derived.

In addition, egative constraints, such as that no other operations beside those in some

suite act on certain pieces of data, are difficult to check in our recognition framework. This

is particularly true when parts of the program are not available for analysis. For example,

in isim, the function Next-Instruction takes a user-defined data structure Task (which

corresponds to the EXECUTION-CONTEXT data cliche') ad fetches an INSTRUCTION from an

array of INSTRUCTIONs nested within the Task data structure. The function uses the current

integer value of the Task's "IP" part (which stands for "Instruction-Pointer") to index into

the array. It then increments the "IP" part. GRASPR recognizes this function as a "Stack-

Pop." However, in the machine operation simulation functions, which are given as input to

Pisim, the "IP" part of a Task is sometimes updated to an arbitrary value (in the code for

simulating branching operations), rather than being incremented or decremented.

Disambiguation and preferring recognitions may be done more easily by a higher-level

control mechanism which has access to other iformation about the program. For example,

-user-defined part names provide a powerful clue to which structures an operation is acting

upon. It is often te case that the operations acting on data that was selected using the

235

Implementations of Stack-Push Implementations of Stack-Pop

index base elt base index

new-index new-base
new-base elt new-index

--

index base elt base index

new-index new-base
new-base elt new-index

--

index

base elt base index

G I if if

new-term) select-t I-

I i I i

new-index new-base new-base elt new-index

--

Figure 71: Four ways of implementing Stack-Push and Stack-Pop with the Stack imple-

mented as an Indexed-Sequence.

236

index

base elt

io -- I If if

new-tenn)

4 i
new-index new-base

base index

ect- +

new-base elt new-index

101-11" Illoommom

same set of part names or generating data that's always stored in the same set of part names,

are the only ones used to access or change those parts. Mnemonic variable names including

Synonyms) and stylistic conventions (e.g., module decomposition) can also be a good source

of expectations about how operations should be grouped. This 'information must be used

heuristically and non-monotonically. (Section 42.3 discusses an initial attempt to map

user-defined data structure and part names to cliched structure names. However, these

mappings are not always complete or -unambiguous.)

When portions of a program are not available for analysis, there may be other informa-

tion available about the interface between the unavailable code and the rest of the program,

such as which functions of the program are called and which new data structures are cre-

ated. This information can be -used, for example, to determine that the "IP" part of a Task

is not always updated using increment or decrement but can be given an arbitrary integer

value. The recognition process can be seen as giving as output the cliche's recognized ad a

set of assumptions or ivariants on which the recognition of those cliche's is dependent.

7.2.4 Side Effects to Mutable Data Structures

We studied the recognition of aggregate data structures independent of issues concern-

ing side effects to mutable data structures. In order to do this, we manually translated

our example programs to pure (functional) versions and recognized pure cliche's in ttem.

Fortunately, the translation was straightforward and much of it may be antomatable.

An open problem for the fture is dealing with programs that contain mutable data

structures and destructive operations on them. Te problem is modeling te dataflow

correctly in representing our programs as dataflow graphs. This is complicated, of course,

by aliasing. While we will not be able to automatically resolve all aliasing, it seems possible

to use recognition to uncover common, stereotypical aliasing patterns. Complex aliasing

patterns are not the norm 126, 127].

If recognition is interleaved with dataflow analysis, aliasing patterns might be recognized

and used to help correctly translate a destructive operation into its ondestructive version.

There are two main classes of mutations to mutable data structures:

1. mutations to fixed, named parts (e.g., (setf (queue-head queue) new-head))-

2. mutations to a derived" part (e.g., searching through a list for'an element with some

property or satisfying some predicate and then deleting that element).

When a change 'is made to a fixed, named part of a data structure, this destructive

assignment should be replaced with non-destructive code which creates a new data structure

containing the new value for the part and the old values for the rest of the parts. It must

also recursively create new versions of the data structures within which this data structure

is nested. For example, consider the following destructive operation which updates the Time

part of a Node data structure, which 'is the value of the Node part of a given Task.

237

(def un Set-Time-Of (Task New-Time)

(setf (Node-Time (Task-Node Task))

New-Time))

The following nondestructive translation of this operation creates a copy of the Task's

Node, but giving the Time part the New-Time. It also creates a copy of the Task, with the

new Node as its Node part. It also returns te new, pdated structures so that the callers of

Set-Time-Of can use them.

(defun Set-Time-Of (Task New-Time)

(let ((Task-Node (Task-Node Task)))

(setq Task-Node (Make-Node :Time New-Time

.-ID (Node-ID Task-Node)

:Segments (Node-Segments Task-Node)

:Nodals (Node-Nodals Task-Node)))

(values New-Time

Task-Node

(Make-Task :Handler (Task-Handler Task)

. Node Task-Node

:Segment (Task-Segment Task)

:IP (Task-IP Task)

:Status (Task-Status Task)))))

For nesting of fixed, named parts, it may be possible for the symbolic evaluator to keep

track of how the structures are nested. The symbolic evaluator can treat the variables bound

to data structures as bound to sets of "part variables," which are bound either -to regular

values or to other data structures (i.e., sets of part variables). When a part is modified, the

part variables are traced backward to see what other objects are modified.

Aliasing is harder to -uncover when mutations are made to derived parts because it's

harder to prove that te part changed 'is the same as the part pointed to by something

else. (In other words, the nesting" relationships are derived.) However these tpes of side

effects usually occur 'in cliched operations, such as searching through a list and modifying

the element found or changing all elements of an array. If we heuristically (and nonmono-

tonically) assume that the aliasing pattern is localized and standard, we can transform the

cliched side effecting operation to the functional version.

For example a common aliasing pattern occurs in splicing an element into a recursive

data structure, such as a list. An example 'is 'in the following function which is used in

PiSim to enqueue events on an event queue which 'is a priority-queue).

(defun Insert-Event (New-Event Event-Queue)
(if (or (null (cdr Event-Queue))

(< (Event-Time New-Event)
(Event-Time (second Event-Queue))))

push New-Event on (cdr Event-Queue)

238

IwAlmonow

(rplacd Event-Queue

(cons New-Event (cdr Event-Queue)))

(Insert-Event New-Event (cdr Event-Queue))))

In this splice-in operation, the program "drs-down" the list Event-Queue until it finds a

spot to insert the element New-Event. Then the new element is spliced in by destructively

modifying te cdr of the current list. However, the current list is not only pointed to by the

variable holding the current list, but also by the cons cell at the end of the snb-list already

passed. This aliasing pattern 'is simple and localized within the recursive data structure and

the variables used in the splice-in program. It is very common in our example programs.

Suppose GRASPR recognized the pattern of cdr-ing down a list and replacing the cdr

(using rplacd) of the current list with a new list consisting of the new element followed by

the old cdr of the current list. Then it may be possible to replace this pattern with the

following non-destructive version in whic te side effect is propagated up to the top of the

data structure.

(defun Insert-Event (New-Event Event-Queue)

(if (or (null (cdr Event-Queue))

(< (Event-Time New-Event)

(Event-Time (second Event-Queue))))

(cons (car Event-Queue)

(cons New-Event (cdr Event-Queue)))

(cons (car Event-Queue)

(Insert-Event New-Event (cdr Event-Queue)))))

In particular, the tail-recursive destructive programs replaced with a recursive non-destruc-

tive program and the list is dr'd down as usual, but te elements passed on te way are

remembered in the stack of recursive calls and are used to create a copy of the front of the

list on the way back out of the recursion.

Another common type of aliasing involves pooling structures whicl-I contain all existing

instances of some type of data structure. For example, the array *Nodes* contains all NODE

structures. When a part "Time" of NODE is modified, this mutation sould be replaced witli

non-destructive code that not only creates a new NODE, with the new value for the part

"Time," but also creates a new *Nodes* array, with the new NODE in place of the old.

This update of the pooling structure requires kowing the inverse translation of an

object to its pooling structure. This can be difficult to compute. However, we found that in

our example programs, a of the objects contained in pooling structures had a part, such as

an "ID" number or a "Tag" symbol, that held an index into the pooling structure. A useful

form of advice i's an identification of a pooling structures in the program (which is usually

easy for a person to provide, based on mnemonic variable names and documentation) and an

inverse mapping (if any) from the objects pooled to the pooling structure. As was suggested

for dealing with variation due to handles, GRASPR can elicit advice about pooling structures

by recognizing question-triggering patterns. (See Section 52.1.)

239

7.2.5 Advising GRASPR

We ave presented a recognition architecture that has a flexible control structure 'in that it

can accept advice to help control its complexity ad to guide its search for recognitions. This

advice can be given in a data-directed way, as opposed to modifying the parsing algorithm

to build heuristics into the system. There are a variety of "control knobs" ad parameters

that are available to provide GRASPR with guidance.

* Strict versus partial node orderings: One form of advice that can be given to control

the computational complexity of the recognition system is a specification of the type of

node ordering that should be imposed on te right-hand side nodes of grammar rules.

Strict node orderings are cheaper, since they generate fewer partial and duplicate

items. However, partial node orderings provide more near-miss information, which is

important in dealing with buggy programs and 'in eliciting more advice.

* Node orderings: Another form of advice is the oice of how to order nodes within

a strict or partial node ordering. These can affect the order in which constraints

are imposed, so that stronger constraints are imposed early. (For example, requiring

salient nodes to be matched first imposes strong disambiguation constraints early.)

* Selection of items from agenda: Procedures can be provided which decide which items

to pull from the current agenda ad process. This is one way to control GRASPR's search

strategy. For example, certain partial items might be pulled from the agenda, based

on which part of the input program they have started to match or based on how much

of their right-hand sides they have matched already.

* Additional monitors: Special-purpose monitors can be defined to watch the chart for

particular types of items to enter. Additionally, rules for question-triggering patterns

can be included in the grammar along with the rules for cches. Monitors can watch

for these patterns and then interact with outside agents. Monitors can also be de-

fined to watch for opportunities to "try-harder" by generating alternative views or by

weakening some constraints that make an analysis fail. The recursion folding monitor

described in Section 42.2 is a example of monitoring for 'Items that are failing certain

constraints, but which might be made to complete by forcing certain constraints to

be satisfied. The tasks set up by chart monitors can be prioritized so that those that

are expensive or less likely to be effective can be postponed while quick, promising

tasks are accomplished first.

0 Indexing partial analyses: In addition to indexing into the chart to retrieve successful

recognitions, it is possible to index into the chart to retrieve partial analyses that

fail certain types of constraints. It is also possible to find ot approximately how

far the recognition of some cliche' has gotten. GRASPR does this by taking the non-

terminal representing the cliche' ad enumerating, in breadth-first fashion'- the on-

240

that this non-terminal is built upon in the grammar. For each non-terminal,

it looks up all successful and failed recognitions of the non-terminal in the flow graph

representing the program. It cuts off the breadth-first traversal whenever a successful

or failed item is found for a non-terminal. These are collected and given as output.

In other words, this finds the highest roots of the possible sub-derivation trees that

can build up to the recognition of the cliches non-terminal. This currently does not

use any iformation about the location of te recognized non-terminals. It is best for

high-level cliche's whose parts occur infrequently in the input flow graph. Failed items

contain information about which constraints they failed to satisfy. This is useful in

determining what can be done to push the recognition through.

Partitioning constraints: Section 64.1 described various heuristics for decomposing

a program into partitions which can be used to focus the parser. This information

can be used by augmenting the extendibility criterion with a binary partitioning con-

straint. This requires that a pair of complete and partial items tat are candidates for

combination represent the recognition of sub-flow graphs within the same partition.

Combination attempts that fail this constraint can be postponed, rather than elimi-

nated altogether. This aows certain combinations to be preferred over others, while

allowing less favorable combinations to be available in a later try-harder phase. The

advantage is that completeness will not be lost due to heuristic partitioning. Also,

the partitioning constraint can be selectively applied o a rule-by-rule basis and to

particular pairs of nodes in a rule's right-hand side.

While GRASPR has flexible control capabilities, the control knobs and parameters listed

above form its current interface for accepting advice. More work is needed to develop a

higher-level interface between GRASPR and the other agents it will interact with in the uture

hybrid system.

Other forms of advice that are useful to GRASPR include indications of which structures

in the program a-re pooling structures (for side effect aalysis, and ncovering the use of

handles), and pointing ot when implicit aggregation and manual abstraction are being

used. These might be elicited during recognition (based on question-triggering patterns) or

they might be given as machine-readable comments.

For GRASPR to intelligently ask questions of a user (e.g., based on recognizing question-

triggering patterns), it must be able to refer to parts of the source text. When GRASPR

represents programs as attributed flow graphs, it suppresses a great deal of detail. Although

the information is still around in annotations, GRASPR currently has only limited facilities

for efficiently mapping from one representation to another. (For example, it associates sets

of variables to dataflow edges. It can also recreate small expressions in the program.)

Additionally, GRASPR is expected to interact with other reasoning components in -the fu-

ture, which will perform such things as conditional smplifications, reasoning about dataflow

equalities, and data structure operation disambiguation ad consistency checking. Multiple

241

I - WOMW---, -- l- .-- � .-, -, 1 1 1 1,11

representations of the program (including source text) will need to be maintained for GRASPR

to interface with these other components.

Additional Code-Based Information Sources

Aside from eliciting advice from an external agent, some additional information can be

gleaned from the leftover non-cliche'd parts of the program, particularly in the program's

error checking and its initialization ocedures.

Error Conditions. Non-local exits are crrently ignored. (The non-local control flow

they represent is not modeled.) However, error conditions could be a useful form of machine-

readable comment. They often give part of the specification for the program. For example,

when a Handler is invoked for a message and a list of arguments, PiSim checks whether

exactly the right number of arguments were given to the handler:

(when (not = Handler-Arity Handler) (length Arguments)))
(error "PiSim error: arity mismatch")).

If a cliche is being looked for that has (length Arguments) as a snbcomp-utation, but

the program -uses (Handler-Arity Handler) instead, then we can use te assertion from the

error condition to push the recognition through.

A key advantage of error conditions is fl-tat they are easier to process and more up-to-date

than textual comments.

Initialization. GRASPR normally does not recognize computations for program initializa-

tion or reading in input, since these are usually nonstandard. They vary with the way

the data is organized. However, we can extract information from this non-standard code

about how data structures are organized. For example, the following code for Clear-Nodes

tells how te parts of a Node interact. The part Nodals of a node is a key into the node's

Segments part, which is a hash table. The elements of tis ash table are Segment data

structures, whose Data parts are arrays.

(defun Clear-Nodes O

(loop for Node being the array-elements of *Nodes*
for Nodals-ID = (Node-Nodals Node)

for Nodals = (Hash-Lookup (Node-Segments Node) Nodals-ID)
doing (setf (Node-Time Node)

doing (Clear-Hash-Table (Node-Segments Node))
doing (Hash-Insert (Node-Segments Node) Nodals-ID Nodals)
doing (loop with Data = (Segment-Data Nodals)

f or Index from below (array-total-size Data)
doing (setf (aref Data Index) 'Unbound))))

242

� 11

7.3 Related Work

We can contrast our work on program recognition with tat of other researchers along

several lines. This section focuses mainly on the distinctions between the program and cliche'

representations and the recognition techniques used. Both affect how well the recognition

systems can deal with variation, aow partial recognition, and fit into a hybrid system.

Our work is also distinguished from other program recognition research in that we an-

alyze our approach, both empirically and analytically. Much of the early work 'in program

recognition provides no analysis of the representations or techniques used. Some of te

more recent research includes some empirical analysis of techniques Tey typically study

the accuracy of recognition and the recognition rates over sets of programs (usually stu-

dent programs in program tutoring applications) 65, 95]. However, with the exception of

Hartman's work [55], discussions of limitations have focused mainly on practical implemen-

tational limitations, rather than on general limitations of the approach. They also do not

describe how additional information or guidance can help.

Our recognition work can also be compared to other work along the lines of the types

of programs and cliche's recognized. Our recognition system is able to recognize structured

programs and cliche's containing conditionals, loops with any umber of exits, recursion,

aggregate data structures, ad simple side effects due to assignments. This allows GRASPR to

recognize larger programs than existing recognition systems. It also enables encoding and

recognition of domain-specific cche's as well as general-purpose ones since many domain-

specific cliche's are aggregate data structure cliche's. With the exception of CPU 84], existing

recognition systems cannot handle aggregate data structure cliche's ad a majority do not

handle recursion. Talus 95] heuristically handles some side effects to lists and arrays.

The largest program recognized by any existing recognition system is a 300-line database

program recognized by CPIU. AR other systems work with programs on the order of tens

of lines. None deal with domain-specific cliche's, except Laubsch's system [81, 82]. Hart-

manis UNPROG [55] is the only system that has demonstrated recognition of ustructured

programs.

Our earlier work on the "Recognizer" 118, 144, 145] is typical of previous approaches

to automating program recognition. It recognized small, contrived example programs, on

the order of tens of lines. Its cliche' library consisted exclusively of general-purpose, utility

cliche's. Te Recognize'r could deal wth programs'-containing conditionals, loops, but not

regular (non-tail) recursion or data aggregation. Like GRASPR, it used a dataflow graph

representation for programs and cliche's, but it employed a rigid control strategy. (It was

based on a sbgraph parsing algorithm. that evolved from Brotsky's algorithm. See Section

,3.5.) The development of the Recognizer was a feasibility study to demonstrate that graph

parsing can be used to automate recognition, remove many types of variation, and create

a useful description of a program. Our current work moves beyond studying feasibility

by analyzing computational costs, studying GRASPR's tolerance (or vulnerability) to various

243

types of variation, identifying limits in graph grammar expressiveness for programming

cliche's, and studying how GRASPR can fit into a hybrid understanding system. GRASPR moves

into te next level of maturity of recognition systems.

7.3.1 Representation

Johnson's PROUST 65], Ruth's system 122], Lkey's PUDSY 87], Looi's APROPOS2 [85]

and Allemang's DUDU 4] operate directly on the program text. This limits the variabil-

ity and complexity of the structures that can be recognized, because these systems must

wrestle directly with syntactic variations, performing ource-to-source transformations to

twist the code into a recognizable form. Most of these systems' effort is expended trying to

canonicalize the syntax of the program, rather than concentrating on its semantic content.

In addition, diffuse cliche's pose a serious problem.

Because the types of patterns searched for in tese systems are sets of statements, they

limit the types of programs in which they can be found. In PUDSY, the group of statements

matching a pattern must be contiguous, not scattered throughout the code. Ruth's system

translates programs into a Lisp-like odel language consisting of a small set of primitive

operations. This representation abstracts away information about which particular bind-

ing ad control constructs were used. However, it assumes program statements are totally

ordered (by control flow as well as dataflow), rather than partially ordered (by data de-

pendencies only). This prevents the system from recognizing that two programs that differ

only in the order of execution of two independent statements a-re the same modulo this

difference.

PROUST uses plan-difference rules to account for mismatches between the cliche's (which

Johnson calls "plans") it is looking for and the actual text of the program. These may aow

the code to be transformed into a equivalent syntactic variation of the code or tey may

trigger the identification of a bug as being one listed in its bug catalog. Thus, allowable

variations in code are limited to those accounted for by plan-difference rules. To be flexible

and powerful, PROUST must have a large knowledge base of these rules. The number of

rules could be reduced, however, if a more abstract representation for programs were used,

or if the semantic equivalence of the mismatched code with the cliche' could be confirmed

using a theorem prover 95] or symbolic evaluation [87].

Allemang's DDU (which stands for Debugging Using Device Understanding) 4

attaches information about a program's functional semantics to its representation. DDU's

representation of cliche's extends Johnson's text-based plan representation 65] to include

not only goals and components for achieving them, bt also causal links to show ow

the components achieve the goals. For example, an iterative cliche' would be represented

as a program template of statements with assertions that the loop invariants hold after

initialization, after each iteration, and when the loop terminates, as well. as assertions that

the terminating conditions hold when the loop terminates.

244

The fnctional representation specifies which parts of a cched program's proof of cor-

rectness are supported by which parts of its plan representation. (Allemang uses the func-

tional representation language of Sembugamoorthy and Chandrasekaran 125].) A key ben-

efit gained by this representation is that it provides -useful information that can make it

easier to tolerate variation in how a function is achieved. Because it explicitly describes the

purpose or function of each part of a cliche' in the context of a larger proof of correctness, if

some part of the cliche' does not match the program, the functional representation describes

the function of that part. It may then be possible to prove that the mismatched portion

of te program still achieves this function. How much variation can be tolerated depends

on the generality of the associate proof (e.g., -how gene .rally are the loop invariants and

terminating conditions expressed).

Reasoning about functional semantics in this way requires that the recognition system

know the intended function or purpose of a program. Like Proust, DUDU was developed

in the context of debugging student programs, where this information is readily available.

However for purely code-driven recognition (as is usually required i maintenance situa-

tions), near-miss recognition of cliche's must first be performed. This can be used to elp

generate expectations about which sbset of cliche's to try harder to recognize by prov-

ing that the functions of their unrecognized parts are still being achieved. However, this

requires overcoming the expense of near-miss recognition (see Section 62.7) and defining

preferences among near-misses.

One drawback of Allemang's representation is that it is limited by its text-based rep-

resentation of cliche's and programs. Since 'it directly extends Proust's text-based repre-

sentation, it inherits Proust's problems with syntactic variation. This can be avoided by

using a graph representation, such as ours, as the base upon which to attach the functional

information (see 4 Section 74).

Adam and Laurent's LAURA 2 represents programs as graphs, thereby aowing some

syntactic variability. However, the graph representation differs from ours 'in that dataflow

is represented implicitly in the graph structure. Nodes represent assignments, tests, and

input/output statements, rather than smply operations; arcs represent only control flow.

Because of this, LAURA must rely on the use of program transformations to "standard-

ize" the dataflow. (GRASPR need not perform these transformations since te flow graph

representation shows net dataflow explicitly.) LAURA debngs a program by comparing it

to a given correct implementation, called the program model, of the algorithm which the

program is spposed to be using. Only the program model's implementation is recognizable

in the program; no implementational variation is aowed.

The system proposed by Fickas and Brooks 43] uses a Plan Calculus-like notation,

called program building blocks (pbbs), for cliche's. Each pbb specifies iputs, outputs, post-

conditions, and pre-conditions. (Pbbs are equivalent to Water's segments 137].) The

structure of the library is provided by implementation plans, which are like implementation

overlays in the Plan Calculus. They decompose non-primitive pbbs into smaller pbbs, linked

245

--F-

by dataflow and purpose descriptions. However, on the lowest level of their library (unlike

that used by GRASPR), the pbbs are mapped to language-specific code fragments which are

matched directly against te program text. Tus, this system also falls prey to the syntactic

variation problem.

Murray's Talus 95] uses an abstract frame representation (called a E-frame) for pro-

grams. The slots of an E-frame contain information about the program, including the type

of recursion used, the termination criteria, and the data types of the inputs and otputs.

This representation helps abstract away from the syntactic code structure by extracting

semantic features from the program, allowing greater syntactic variability. However, listing

all cl-taracteristics of te code in E-frame slots fails to expose constraints (such as dataflow

constraints) in a way that facilitates recognition.

� Bertels [11] defines a broad hierarchy of programming knowledge with programming

primitives on the bottom, problem solving strategies at the top and cliche's at successively

higher levels of abstraction in between. The problem solving strategies are strategies for

debugging (e.g., slicing), program nderstanding (e.g., conjecturing), and program synthe-

sis (e.g., divide and conquer). Each level builds on the levels below it. Bertels' model

of programming knowledge also includes rules of programming discourse 128] which are

applicable at all levels in the hierarchy.

To represent cliche's, Bertels uses conceptual schemes, which are essentially hierarchical

semantic networks. Like our flow graph formalism, these schemes focus on data and control

flow constraints. Each conceptual scheme hierarchically represents the decomposition of

some goal into subgoals and the methods for achieving them. They can also represent

multiple alternative methods for achieving some goal. Their hierarchical structure resembles

the organization of cliche's in our library, as shown in Figures 21 23, and 24. Additional

information included in te conceptual scheme identifies the roles and various characteristics

of the pieces of data used by the methods (e.g., that some piece is a divisor and has a

minimum value of 0). Dataflow connections are not explicitly represented.

At the lowest level, conceptual schemes are built out of Semantically Augmented Pro-

gramming Primitives" (or SAPPs). These are programming primitives that have been clas-

sified in terms of teir role in the program on a slightly higher level of abstraction. For

example, an assignment might be viewed as an 'increment and a predicate can be seen as

a loop exit test or a filter. In general, it is difficult to unambiguously make this classifi-

cation of primitives, but Bertels uses a very restricted unambiguous set of SAPPs. These

correspond to our lowest level cliche's.

Letovsky's Cognitive Program Understander (CPU) 84] uses a lambda calculus represen-

tation for programs. CPU uses transformations to standardize (i.e., make more canonical)

the program's syntax and to simplify expressions. However, Letovsky generalizes canonical-

ization to be the entire means of program recognition. Canonicalization involves not only

standardizing the syntax of the program, but also standardizing the expression of standard

plans (i.e., cliche's) in the program. Recognizing a plan that achieves a particular goal is

246

equivalent to canonicalizing the plan expression to the goal. So, CPU -uses a single, general

transformation mechanism for dealing with syntactic variability and for recognition.

contrast, GRASPR uses a special-purpose mechanism (the program-to-flow graph translator)

to factor out most of the syntactic variability before recognition is attempted.

For CPU to localize cliche's in a lambda expression so tat a transformation rule can.

apply, numerous transformations need to be made to copy subexpressions and move them

around the program. For example, function-inside-if ([84], p.109) copies functional appli-

cations to all branches of a conditional and stored expressions are copied to replace each

corresponding variable reference. This is expensive both in the time it takes to apply

transformations ad in the exponential space blow-up that 'occurs as a result. In or repre-

sentation, cliche's are localized in the connectivity of the flow graphs. In addition, the ability

of the parser to generate multiple analyses enables GASPR to recognize two cliche's whose

implementations overlap without first copying the parts that are shared, as CPU must.

Another difference arising from the use of the lambda calculus formalism is in the types of

cliche's that can be expressed. The component's of a cliche' expressed in the lambda calculus

must be connected in terms of dataflow 'Interaction. CPU's assumption is that cliche's are

tied together by dataflow, otherwise there is nothing bringing the results together. (One

exception to this is a data abstraction plan in which a non-lambda-calculus tupling operation

is used to bind together mltiple dataflows into a single value.) In flow graph grammar rules,

cliche's can contain components that are dsconnected in terms of dataflow bt which are

tied together by other constraints, such as control flow.

There is also a difference between CPU's transformations ad our grammar rules. Simple

transformations are similar to grammar rules, but complex transformations often specify

procedurally how to change the program. For example, the loop analysis transformation

is procedural. Loop cliche's, such as -filtering ot certain elements from a list that is being

enumerated, are transformed using a recursion elimination technique in which the patterns

of dataflow in a loop are analyzed and classified as stream expressions. Then based on

dataflow dependencies, occurrences of primitive loop plans are identified ad composed to

represent the loop. (This is Waters' temporal abstraction technique 137, 138].) Our rles,

on the other hand, are declarative. They can be used in both synthesis (generation) and

analysis (parsing).

Laubsch and Eisenstadt [81, 82 ad Lutz [88] use variations of the Plan Calculus.

Lanbsch and Eisenstadt's system differs from GRASPR i the recognition technique it employs.

Lutz proposes using a program recognition approach similar to ours. See Section 36 for

the relationship of Lutz's "flowgraphs" to our flow graphs. (Both of tese approaches win

be described further in the next section.)

Ning's PAT [100, 54] organizes its cliche' library as a hierarchy of event classes. Each

instance of a cliche' is an object, which is an instance of an event class. Each object is a

set of attrib-tite-value pairs, representing information about a abstract cched operation.

They specify the variables involved ad lexical information (given in terms of statement line

247

---- 10"1.1 111 1,11101 1 1111 ---- - -

numbers and block numbers) describing the control path leading to the event. Relationships

between program components, such as calling, declaration, ad data dependencies, are

all encoded implicitly 'in the event object attributes. Interval logic (which is similar to

Allen's temporal logic) is used to derive these relationships during recognition. Because

these relationships are not made explicit in the representation, their derivation places a

computational burden on the recognition process.

Hartman's UNPROG [55] uses a graphical representation, called a hierarchical program

model, or HMODEL, that is roughly the dual of our dataflow graph representation. UNPROG

recognizes cliched patterns of control flow, called control concepts, such as "read-process

loop", and "bounded linear search". The HMODEL representation consists of a hierarchi-

cally decomposed control flow graph ad a type of dataflow graph. The nodes of the control

flow graph are primitive actions, tests, joins, or other sub-HMODELS and its edges rep-

resent the control flow between them. The control flow graph is hierarchically partitioned

by proper decomposition, which bundles -up sub-graphs that are single-entr single exit.

This static partitioning is performed before recognition is attempted. Te dataflow graph

represents definition-use relations between the variable names referred to by the control

flow graph nodes.

The HMODEL representation can be seen as an encoding of plan diagrams (see Section

4.1.2) in a graph representation which retains te control flow information in the graph

structure, but which relegates the dataflow information to attributes (definition-use rela-

tions). However, unlike plan diagrams, HMODEL does not represent net dataflow: tte

definition and use of variable names is explicitly captured and assignment is considered a

primitive action.

Due to its emphasis on control flow, the HMODEL representation is able to concisely

represent general control flow patterns, which are more difficult to capture in our dataflow

graphs. (See Section 52.3.) On the other hand, our dataflow graphs concisely capture

constraints on patterns of dataflow that must exist for instances of algorithmic and data

structure cliche's to occur. The two representations are complementary. UNPROG and

GRASPR could profitably co-operate as co-routines: UNPROG could quickly provide coarse-

grain analysis of control patterns, which suggest the existence of certain algorithmic cliche's,

while GRASPR could focus on a more detailed recognition of these cliche's in the parts of the

program narrowed down by UNPROG.

7.3.2 Other Recognition Techniques

Besides representational differences, GRASPR differs from other current recognition systems

in its technique for performing recognition. Existing recognition techniques differ from ors

mainly in the flexibility of teir control strategy, how they se heuristics, ad how much

knowledge about the purpose or goals of the program they require as input to elp guide

their search.

248

I 1-1111,01111011 ---- ----

Our recognition architecture has a general, flexible control structure which can accept

advice and guidance from external agents. Other existing recognition systems are committed

to a rigid (often ad hoc) control strategy. Most search for a sngle best interpretation of the

program, while permanently cutting off alternatives. This can cause cliche's to be missed.

They cannot try harder later to icrementally increase their power and find cliche's that

the heuristic recognition missed. They also cannot generate mltiple views of the program

when desired, nor provide partial information when only near-misses of cliche's are present.

In addition, many of these systems have heuristics for controlling cost built in directly.

These are are chosen on a trial-a-nd-error basis. For example, they often evolve through

experimentation wth sets of student programs until a good level f -Performance is reached.

Interesting future work with GRASPR will try to formulate probabilities of consistency for

constraints (see Section 62.5), which can be computed and used to automatically tailor

the recognition system to check certain constraints before others. This would dynamically

prioritize constraints based on a given program and library of cche's, rather than statically

prioritizing them for good performance over "typical" programs and cliche's.

Many recognition techniques also take information about the goals ad purpose of the

program (in the form of a specification or model program). Some recognition systems can

accept and respond to information from other non-recognition techniques (e.g., a theorem

prover 95] or dynamic analysis of program executions [85]) with whicl-I they are integrated.

While these techniques show the utility of these additional sources of information, they

rely on this information being given as input, rather than accepting it and responding to

it if it becomes available. Most of tliese systems have been developed in the context of

intelligent tutoring systems for teaching programming skills. In this domain, the purpose of

the program being analyzed is very well-defined. It can be used to provide reliable guidance

to the program recognition process. However in many other task applications, especially

software maintenance, information about the purpose of the program and its design is rarely

complete, accurate, or detailed enough to rely on as required input.

Johnson's PROUST 65] is a system that analyzes ad debugs PASCAL programs written

by novice programmers. It takes as input a description of the goals of the program and

knowledge about how goals can be decomposed into subgoals, as well as the relationships

between goals and the computational patterns (cliche's) that achieve them. Based on this

information, PROUST searches the space of goal decompositions, using heuristics to perma-

nently prune the search. (For example, it uses heuristics about which goals and patterns

are likely to occur together.) PROUST looks up the typical patterns that implement the

goals and tries to recognize at least one in the code. The low level patterns that actually

implement the goals are then found by simple pattern matching.

Ruth's system 122], like PROUST, is given a program to aalyze and a description of

the task that the program i's supposed to perform. The system matches the code against

several implementation patterns (cliche's) that the system knows about for performing the

task. Ruth's approach is similar to GRASPR's in that the system uses a grammar to describe a

249

class of programs and then tries to parse programs using that gammar. The differences are

that Ruth's system makes use of knowledge about the purpose of the program (in the form

of a task description) to narrow down its search and the program is analyzed in 'its textual

form and is therefore parsed as a string. Another difference is that Ruth's system does no

partial recognition. The entire program must be matched to an algorithm implementation

pattern for the analysis to work.

Lukey's Program Understanding and Debugging System (PUDSY) 87] also takes as

input information about the purpose of the program it is analyzing, in the form of a pogram

specification, which describes the effects of the program. This description is not used,

however, in guiding the search for cliches. Rather, PUDSY analyzes the program and then

compares the results of the analysis to the program specification. Any discrepancy is pointed

out as a bug. The analysis proceeds as follows. PUDSY first uses heuristics to segment t e

program into chunks, which are manageable units of code (e.g., a loop is a chunk). It then

describes the flow of information (or interface) between the cunks by generating assertions

about the values of te output variables of each chunk. These assertions are generated by

recognizing familiar patterns of statements (called schema), similar to GRASPR's cliches in

the chunks. Associated with each schema are assertions describing their known effects on

the values of variables 'Involved. For chunks that have not been recognized, assertions are

generated by symbolic evaluation.

Adam and Laurent's LAURA 2 receives information about the program to be analyzed

and debugged in the form of a odel program, which correctly performs the task tat the

program to be analyzed is supposed to accomplish. LAURA then compares the graphs of the

two programs and treats ay mismatches as bugs. Since nodes are really statements of the

program, the graph matching i's essentially statement-to-statement matching. The system

works best for statements that are algebraic expressions because they can be normalized

by unifying variable names, reducing sums and products, and canonicalizing their order.

The system heuristically applies graph canonicalizing transformations to try to make the

program graph better match the model graph. It can find. low-level and localized bugs by

identifying slight deviations of the program graph from the model graph.

The system proposed by Fickas ad Brooks' 43] starts with a high-level cliche' abstractly

describing the purpose of the program. From this, it hypothesizes refinements and decom-

positions to subcliche's, based on its implementation plans (analogous to overlays in the Plan

Calculus). These ypotheses are verified by matching the code fragments of the cliche's on

the lowest level of the library with the code. While a hypothesis is being verified, oflter

outstanding clues (called beacons) may be found that suggest the existence of other cches.

This leads to the creation, modification, and refinement of other hypotheses about the code.

Murray's Talus system 95] is given a student program to be aalyzed and debugged, as

well as a description of the task the program is supposed to perform. It has a collection of

reference programs that perform various tasks that may be assigned to the student. The

task description is used to narrow down the reference programs that need to be searched

250

to find one tat best matches the student's possibly buggy program. Heuristic and formal

methods are interleaved in Talus's control structure. Symbolic evaluation and case analysis

methods detect bugs by pointing out mismatches between the reference program and the

student's program. Heuristics are then used to form conjectures about where bugs are

located. Theorem proving is used to verify or reject these conjectures. The virtue of this

approach is that heuristics are used to pinpoint relatively small parts of the program were

some (expensive) formal method such as theorem proving) may be applied effectively.

However, the success of the system depends heavily on the heuristics that identify the

algorithm, find localized dissimilarities between the reference program and the student's

program, and map the student's variables to reference variables.

Looi's APROPOS2 [85] uses a technique very close to Talus's. It matches a Prolog

program against a set of possible algorithms for a particular task. Like Talus, it applies a

heuristic best-first search of the algorithm space to find the best fit to the code.

Bertels' [11] Camus performs recognition of programs for the purposes of debugging

student programs. It compares student programs against a model program as follows.

Camus uses a knowledge base containing the knowledge necessary to analyze a program

that is intended to solve the classic Noah Rainfall Problem 65]. The model and student

programs are each analyzed using this knowledge base. The analysis converts each program

into a "High Level Descri tion" (HLD), containing the conceptual schemes that are found in

the program. Camus first "augments" the programming primitives found in the program by

classifying them in terms of their role on a slightly higher level of abstraction (i.e., it creates

SAPPs - see Section 73.1). Based on these SAPPs, conceptual schemes are recognized in

a bottom-up, heuristic fashion, using beacons as guides. The two HLD's are compared

(currently by a straightforward manual process) ad ay inconsistency or incompleteness

in the student HLD is reported as a bug.

There are a few other recognition techniques that, like GRAM, are purely code-driven.

These will be described in the remainder of this section.

Letovsky's CPU 84] uses a technique called transformational analysis. It takes as input a

lambda calculus representation of the source code and a collection of correctness-preserving

transformations between lambda expressions. Recognition is performed by opportunistically

applying the transformations: when an expression matching a standard plan (cliche') is

recognized, it is rewritten to an expression of the plan's goal. This is similar to the parsing

performed by GRASPR, except that CPU does not find all possible analyses. Rather it

uses a simple recursive control structure in applying transformations: when more than one

standard plan matches a piece of code, an arbitrary choice is made between them. The

program is destructively reduced ad the alternative is never explored further. Letovsky

defines a well-formedness criterion for the library of cliched plans which requires that no

plan be a generalization of any other lan. If the library is well-formed then this arbitrary

choice will not matter since recognizing one plan will not prevent the recognition of aother.

251

However, this relies on the fact that CPU performs a great deal of copying: if two cliche's

overlap 'in a program (e.g., as a result of merging implementations as an optimization), their

common subparts are copied so that each cliche' can be recognized individually without

interfering with the recognition of the other cliche'. Unfortunately, this leads to the problem

of severe "expression swell."

CPU is not able to generate multiple partial aalyses of the program. There are situ-

ations in which it is better (or necessary) to carry along multiple possible analyses, while

sometimes it is sfficient to generate just one analysis. For example, in verification applica-

tions, any analysi's is all. that is required. However, multiple analyses are often helpful for

programs in which there are unrecognizable sections which lead to several useful ways of

partially recognizing the program. Being able to generate partial (near-miss) recognitions

is important in robustly dealing with buggy programs as well as in eliciting advice.

The value of our flexible control strategy 'is that we can tailor it to a particular ap-

plication or put/output environment. GRASPR can be made to produce a single analysis,

by allowing each complete item to extend at most one partial item. Unlike CPU, however,

GRASPR can be made to generate more recognition results by exploring alternative'' aalyses,

trying harder to find certain cliche's, and responding to incremental changes in the iput

program that may -uncover more cliche's and cause others to disappear.

Laubsch and- Eisenstadt's system [81, 82] distinguishes between two types of cliche's:

standard (general programming knowledge) and domain-specific. Standard cliche's are rec-

ognized in the program's plan diagram by nonhierarchical pattern matching (as opposed to

parsing). Then the recognized cliche's attach effect descriptions to the code in which they are

found. Symbolic-evaluation of the program's plan diagram computes te effect-description

associated with the entire program. Domain-specific library cliche's are recognized by com-

paring the program's effect description to the effect descriptions of cches in the library.

This transforms the problem of program recognition into the problem of determining the

equivalences of formulas. For the examples given, effect-descriptions are simple expressions.

However, in general, proving the equivalence of formulas is extremely hard.

Lutz [88, 89] has developed his flowgraph parsing algorithm as a general tool for use

in artificial intelligence. He proposes some applications which include program recognition.

The examples he sketches use flowgraphs to represent plan diagrams, such as the one shown

in Figure 46. He proposes using a program recognition process similar to GRASPR's In

addition his system will use symbolic evaluation to deal with unrecognizable code. Or

graph parsing algorithm evolved from the graph parsing algorithm Lutz developed 90] for

this purpose. Our algorithm extends Lutz's to handle data aggregation.

Ning's PAT 54, 100] uses basically a bottom-up parsing approach, though not within a

formal parsing framework. PAT uses a rule-based inference engine to recognize cliche's (i.e.,

derive high-level program concepts, or events, from lower-level ones). Each rule consists

of a trigger pattern of program events, which specifies the events (operations and data

types) composing a cliche' and how they ae related by various types of dependencies and

252

lexical relationships. The action of the rule is a assertion that a particular higher-level

event (cliche') exists in the program at a particular location. PAT can recognize overlapping

as well as delocalized cliche's and it can do partial recognition. Its rules also distinguish

some events within patterns as "key" events, Eke beacons, that are searched for first. This

helps to reduce the search. This is similar to specifying a node ordering in our graph

grammar rules. The main difference between PAT's recognition architecture and GRASPR's

chart-parser-based architecture is in GRASPR's flexibility of control. GRASPR has explicit data-

directed mechanisms for guiding and advising the recognition process.

Hartman's UNPROG [55] performs a tyPe of recognition that is complementary to ors.

Hartman has identified a restricted class of cliche's, called control co'ncepU, that can be

recognized efficiently. As mentioned earlier, UNPROG hierarchically models the program's

flow of control by performing a proper decomposition on te program's control flow graph.

Recognition is then performed by simple exact graph matching. This takes advantage of

the fact that typically the implementations of control concepts are not interleaved with each

other or with unrecognizable code within propers.

The difference between this technique and our parsing technique is that UNPROG's de-

composition of the program is static and independent of the matching, while in parsing, the

decomposition is dynamically driven by what is matched. The static, a priori decomposition

yields efficiency and scalability advantages. The search is reduced because control concepts

are localized within propers. There is no need to generate all partial matches of propers.

There is no ambiguity about how to match inputs and outputs of cliched control concept

implementations to those of a proper, since a propers have one input and one output.

Hartman's research shows the benefits of good decomposition techniques.

This technique works well for control concept recognition. However in general the

danger of decomposing the program representation and then looking for particular cliche's

only within the partitions is that a cliche' might be missed if it is not contained within

some partition boundary. This technique works best if there are standard decompositions

of cliche's and the cliche's appear in programs in these same organizations. Futnre research

should look for other classes of cliche's like control concepts and for methods of decomposition

that allow them to be recognized efficiently.

One way GRASPR can benefit from the efficiency of a priori decomposition wthout sac-

rificing completeness is to use some sort of decomposition, such as snbroutinization or

bundles of slices all contributing to the same user-defined, aggregate data structure to do

an initial, quick recognition. Then "try-harder" later by looking for cliche's that might cross

the boundaries e.g., in areas where no cliche' was recognized or by extending partial items

that are near-misses or have salient parts matched already. Section 64.1 discussed some of

these ideas.

A novel type of recognition is being pursued by Soni 129, 130] as part of the develop-

ment of a Maintainer's Assistant. This system will focus on recognizing guidelines which

constrain the design components of a program ad embody global interactions between

253

.....-

the components. For example, gidelines express relations between the slots of data struc-

tures and constraints on how they may be accessed or updated. This type of recognition is

orthogonal to the recognition of cliche's reported in this paper.

A completely different approach to recognition was proposed by Biggerstaff 12, 13].

A central part of his recognition system is a rich domain model. This model contains

machine-processable forms of design expectations for a particular domain, as well as infor-

mal semantic concepts. It includes typical module structures and the typical terminology

associated with programs in a particular problem domain. The goal of te recognition is to

link these conceptual structures to parts of the program, based on the correlation (experi-

entally acquired) between the structures and the memonic rocedure and variable names

-used and the words used in the program's comments. A grep-like pattern recognition is

performed on the program's text (including its comments) to cluster together parts of the

program that are statistically related. (The Unix tool grep searches files for given regular

expressions.)

The virtue of this type of recognition is that it quickly directs the user's attention to

sections of the program where there may be computational entities related to a particular

concept 'in the domain. While this technique cannot be extended to provide a deeper

understanding, it provides a way of focusing the search of other more formal and complete

recognition approaches, such as GRASPR's. Like Soni's recognition, it is orthogonal and

complementary to the recognition of cliche's reported here.

7.4 Applications

Being able to automatically recognize existing code has applications in many areas of soft-

ware development and maintenance, including software reuse, verification, debugging, op-

timization, program translation ad documentation. The ability to recognize cliche's in a

broad range of programs is also useful for computer-aided istruction of programmers. See

Wills 144, 145] and Hartman [55] for discussions of these applications.

Two other applications of our flow graph formalism and parser, not related to program-

ming, are automatic circuit verification and plan recognition. Circuit verification has been

cast as a graph matching problem, with much work focusing on heuristic techniques for

solving graph isomorphism 22, 108]. More recently, BamJi [8 9 as shown how graph

parsing can be applied to this problem. This gains the advantage of being able to encode

an entire design methodology into a design grammar, so that a circuit can be verified with

respect to a class of correct circuits, not just one. Our parsing algorithm is applicable 'in

this area.

Plan recognition shares several difficulties with program recognition, such as dealing

with variation due to loose temporal ordering constraints, interleaved steps, and shared

steps among plans. Graphical nonlinear plan representations are amenable to the graph

parsing technique we used to solve these problems in program recognition.

254

I .1

)�Ppendix

o-vv xra eco ni ion is

oi e e

Barton, Berwick, and Ristad Q10], Chapter 7 give a clever red-action of the vertex cover

problem to the problem of recognizing sentences according to an unordered context-free

grammar (UCFG) A UCFG is a context-free string grammar in which the symbols in a right-

hand sde string are considered unordered. (So, for example, given a UCFG containing the

rule S --+ xyz, S can be recognized in the strings XYZ, yxz� ZYX, etc.)

Our flow graph parsing algorithm can be sed to perform UCFG parsing (and te simpler

recognition problem) on a special class of UCFGs, whic I will call fixed-UCFGs." Furthermore,

tl-ie same reduction proof given by Barton, et al. can be used to prove that the fixed-UCFG

recognition problem is NP-complete. This can be sed to show that flow graph recognition

is NP-complete.

The class of fixed-UCFGs is the class i which each non-terminal derives strings of a fixed

length k, where k can be dfferent for different non-terminals. For example, this grammar

S A C D E

A a I x

B b Y I w z

C C

D d f

E e g I h

is a fixed-UCFG.S only derives strings of length three (s-uch as awz or cfh), B only derives

strings of length two, the rest of the non-terminals all derive strings of length one. This

grammar

S A B

A a x I x z

B b

255

is not a fixed-UCFG, ince A can derive two different length strings.

The grammar constructed in Barton, et al.'s NP-completeness proof to encode the vertex

cover existence estion is always a fixed-UCFG. So, the same construction can be sed to

reduce the vertex cover problem to the fixed-UCFG recognition problem i polynomial-time.

We reduce the fixed-UCFG recognition problem to flow graph recognition as follows. For

each, non-terminal, we first compnte the length k of the strings 'it derives. This can be done

by imposing a partial ordering on the non-terminals, where non-terminal A < non-terminal

B if A appears on B's right-hand side.' Then the k's can be computed bottom-up through

the partial ordering from the non-terminals that have only terminals on at least one of their

rules' right-hand sides.

Next, for each rle 'In the fixed-UM A --+ X1X2X3 ... xn� deriving strings of length k we

create a graph grammar rule with

1. a left-hand side node of type A having k inputs and k outputs,

2. a right-hand side flow graph containing n nodes, where the i-th node has type xi and

each terminal node has a single input ad a sgle output, while each non-terminal

node has j inputs and j outputs, where j equals the length of strings derived by that

non-terminal and

3. the rule embedding function maps the i-th input (resp. output) of A to the i-th iput

(resp otput) of the right-hand side graph. (None of the right-hand sides have edges

between ports.)

Finally, the input string is translated ito a flow graph by creating a node for each

symbol, with the type of the node being the symbol type. Each node has one input and

one otput. There are no edges between ports.

For example, Figures A-la ad b show a fixed-UCFG and the graph grammar into which

it would be translated. Figure A-Ic shows how the input string is translated into a flow

graph.

Now, we can decide wether a particular input sentence is in the language generated by

the fixed-UCFG simply by determining wether the flow graph is in the language generated

by the flow graph grammar encoding of the fixed-UCFG. The flow graph is in the language

of the flow graph grammar iff the input sentence is in the fixed-UM's language.

Since the NP-complete problem of fixed-UCFG recognition can be reduced to flow graph

recognition, the flow graph recognition problem is also NP-complete.

Note that the type of flow graph recognition that we ae sowing to be NP-complete is

simpler than the flow graph parsing problem. This in turn is even simpler than the sbgraph

parsing problem in which program recognition is cast. Tis means that even if we were ust

'Cycles in the grammar can be handled, but I do not describe how here. Alternatively, we can do this
NP-completeness proof with acyclic fixed-UCFGs.

256

s P- AB I CDE

A Do a I x

B --*-- b y I w z

C -00 c

D -- a- d

E ---m- e

a) An Unordered Context-Free Grammar.

14

W#
MO) Pa.

M# --a 4) p10

xZ--Om-

5
Do

(Y' 8

x

U 8

x

a P

oc --/-%\

a - /-,-\

8

04 9
x

14

so

a

p

x (C M x

0 0 8 ---- 0 /'-N 8
a 0

b) Graph grammar that the UCFG above is translated into.

ON(

awz => W

1-0

c) An input string. I The flow graph it is translated into.

Figure A-1: Reducing fixed-UCFG recognition to flow grapl� recognition.

257

trying to recognize an entire program as a single cliche and even if we did not need to deal

with fan-in or fan-out, we can still encounter exponential behavior.

Readers famffiar witli Brotsky's algorithm might contrast flow graph parsing (not sb-

graph parsing and not dealing with fan-in or fan-out or aggregation) with the parsing

Brotsky's algorithm does in polynomial time. The same types of flow graphs are parsed,

using t1te same types of flow graph grammars; no extension to the flow graph formalism is

necessary. The crucial distinction 'is that Brotsky's parser takes an additional iput besides

the input flow graph ad the flow graph grammar, which is a specification of how the iputs

of te input graph match to the inputs of the start type of the grammar. This information

is used to predict the start type at a particular location (e.' a particular matching of inputs

of the iput graph to inputs of the start type). Our parser, on te other hand must figure

out all the possible locations at which a non-terminal can be found. This increases t1le

computational complexity of the problem.

258

,kppendix B

I e xairn e -ro rarns

This appendix contains the original Pisim and CST source code, as well as their functional

versions. Section 52.5 lists the changes made in translating between the original ad

functional versions. The original isim code is listed on pages 260 to 265. Its functional

version is found on pages 266 to 274. The original CST code is on pages 275 to 280 and its

functional version 'is on pages 281 to 288.

259

Global variables

(defconstant *Machine-Dimensions* 1(4 4 4)
,this is the machine dimensions')

(defvar *Event-Queue* nil

Othis is the global event queue')

(defvar *Nodes* nil

,this is the node array')

(defvar *Global-Bindings* (Make-Hash-Table)

,these are the bindings for nodals, constants, etc.')

(defvar Nodal-Count*
'This is the number of defined nodals-)

(defvar *Debug-Level*
,this is the debugging lvel,)

(defvar *Log* nil
,this is the logging information')

Structures

(defstruct Node

(Time
(ID
(segments (ake-Hash-Table))

(Nodals nil))

(defstruct Segment

(Type nil)
(Data nil)
(size 0))

(defstruct Task

(Handler nil)
(Node nil)
(Segment nil)
(IP)

(Status 'New))

(defstruct Message
(Destination nil)
(Length)

(Type nil)

(Arguments nil))

(defstruct Event

(Time)
(object nil))

(defstruct Handler
(Name nil)
(instructions nil)

(Arity 0)

(Number-of-Locals 0)

(Bindings (Make-Hash-Table)))

(defstruct D-Sync

(suspended-Tasks nil))

(defstruct B-Syno
(Count 0)

(Suspended-Tasks nil))

(defstruct Log

(Type 'All)
(Task-Status-Profile (ake-Hash-Table))

(Task-Type-Profile (Make-Hash-Table))
(Instruction-Type-Profile (Make-Hash-Table))
(Operation-Type-Profile (Make-Hash-Table))

(Concurrency-List nil)
(old-Logs nil))

(defstruct Delta
(Time
(value 0))

;; This translates a node ID to a node.

(defun Translate-Node (Node-TD)
(aref *Nodes* Node-ID))

This function returns the number of nodes.

(defun Number-of-Nodes ()
(array-total-size *Nodes*))

This function creates the node array according to the dimension
constant.

(defun Make-Nodes
(loop with Number-of-Nodes = (apply #* *Machine-Dimensions*)

with Nodes = (make-array Nurnber-of-Nodes)
for ID from below Number-Of-Nodes
for Node = (Make-Node :ID ID)
for Nodals-Segment = (Create-Read-Write-Segment 100)
do (setf (aref Nodes ID) Node)
do (setf (Node-Nodals Node)

_(Add-Segment Nodals-Segment Node))
finally (setq *Nodes* Nodes)))

This function resets the node time and clears the node segment.

(defun Clear-Nodes
(loop for Node being the array-elements of *Nodes*

for Nodals-ID = (Node-Nodals Node)
for Nodals = (Translate-Segment-On-Node Nodals-ID Node)
doing (setf (Node-Time Node)
doing (Clear-Hash-Table (Node-Segments Node))
doing (Hash-insert (Node-Segments Node) Nodals-ID Nodals)
doing
(loop with Data = (Segment-Data Nodals)

for Index from below (array-total-size Data)
doing (setf (aref Data Index) 'Unbound))))

Segments

This adds a segment to the node's segment translations. It
returns the unique segment ID.

(defun Add-Segment (segment Node)
(let ((Segment-ID (gensym 'Segment-')))

(Hash-Insert (Node-Segments Node)
Segment-ID
segment)

Segment-ID))

This removes a segment ID from the node's segment translations.

(defun Delete-Segment (Segment-ID Node)
(Hash-Delete (Node-Segments Node)

Segment-ID))

This translates a segment ID to a segment on the specified
task's node.

(defun Translate-Segment (Segment-ID Task)
(Translate-Segment-On-Node Segment-ID

(Task-Node Task)))

This translates a segment ID on a specified node.

(defun Translate-Segment-On-Node (Segment-ID Node)
(let (Segment (Hash-Lookup (Node-Segments Node)

Segment-ID)))
(if (null segment)

(break PiSim error: missing segment,)-
Segment)))

This function creates a read-write segment.

(defun Create-Read-Write-Segment (Size)
(Make-Segment :ize Size

:Type 'Read-Write
:Data (make-array Size)))

This function creates an associative set segment.

(defun Create-Associative-set-Segment (Size)
(Make-Segment :ize Size

:Type 'Associative-set
:Data (Make-Hash-Table Size)))

This function creates a cache segm&nt.

(defun Create-Cache-Segment (Size)
(Make-Segment :ize Size

:Type 'Cache
:Data (make-array Size)))Nodes

;;; -*- Syntax:Common-Lisp; Mode:LISP; Base:10; Package:USER -*-

P i S i m u 1 a t o r -- original version

(in-package user)

(proclaim (optimize (compilation-speed 0) (safety 3 (speed 3))

260

(defun Match-Cache (Key Segment)
(let* ((Index (Cache-Hash Key (Segment-Size Segment)))

(Entry (aref (Segment-Data Segment) Index)))
(if (and (not (equal Entry 'Empty))

(equal (first Entry) ey))
(rest ntry)

,miss)))

This function writes an entry in the cache, possible overwriting
another value.

(defun Insert-Cache (Key Segment New-Value)

(setf (aref (Segment-Data Segment)
(Cache-Hash Key (Segment-Size Segment)))

(cons Key New-Value)))

This function removes a key from a cache. If the key is not present,
no action is taken.

(defun Remove-Key-Cache (Key Segment)

(let* ((Index (cache-Hash Key (Segment-size Segment)))
(Entry (aref (Segment-Data Segment) Index)))

(when (and (not (equal Entry 'Empty))
(equal (first Entry) Ky))

(setf (aref (segment-Data Segment) Index)

'Empty))))

This function clears a cache.

(defun Clear-Cache (Segment)

(loop with Data = (Segment-Data Segment)
for index from below (array7total-size Data)
doing (setf (aref Data Index) Empty)))

Tasks

This returns the node ID of the specified task's nodes.

(defun Node-of (Task)
(Node-ID (Task-Node Task)))

This returns the time of a task. This is defined as the node
time for the specified task.

(defun Time-Of (Task)

(Node-Time (Task-Node Task)))

This sets the time of the specified task (i.e. the time of
the node of the specified task).

(defun Set-Time-of (Task New-Time)

(setf (Node-Time (Task-Node Task))

New-Time))

This increments the task time by the specified delta.

(defun Increment-Time-of (Task Delta)
(incf (Node-Time (Task-Node Task))

Delta))

This returns the handler type of the task.

(defun Handler-Name-Of (Task)
(Handler-Name (Task-Handler Task)))

This function creates a new task segment of the specified length.

The number of arguments and message length values are compared with

the handler arity and arity plus number of locals respectively. Two

is added to the arity and number of locals to account for the message

length and type information stored'in the segment. The segment is
then initializes with the supplied arguments.

(defun Create-Task-Segment (Length Task-Type Arguments Handler)
(let ((New-Segment (Create-Read-Write-Segment Length)))

(when (not = Handler-Arity Handler)
(length Arguments)))

(break PiSim error: arity mismatch,))

(when (not = Length (+ (Handler-Arity Handler)

(Handler-Number-of-Locals Handler)
2)))

(break Pisim error: length/ handler storage msmatch,))
(Write-Segment New-Segment Length)
(Write-Segment New-Segment Task-Type)

(loop for Argument in Arguments

for Index from 2

doing (write-segment New-Segment Index Argument))
New-Segment))

This function creates a new task for a message. The handler and

node are determined. A new segment is created and initialized.
After the new task is created, its segment is added to the task's
node. Finally the new task is returned.

Caches

In PiSim, caches are implemented as direct mapped arrays. A
hash function computes an index into an array. Array entries
are cons cells are of the format: (Key Value).

This is the hash function for caches.

(defun Cache-Hash (Key Size)
(when (numberp Key)

(setq Key (format nil '-a' Key)))
(loop with String = (string Key)

for Character being the array-elements of string
summing (char-int Character)

into Value
finally (return (mod Value Size))))

This function attempts to match a key in a hash table.
If the key is found, the corresponding value is returned.
Otherwise, 'Miss is returned.

This function reads a read-write segment.

(defun Read-segment (segment offset)
(unless (equal (Segment-Type Segment)

'Read-Write)
(break PiSim error: incorrect access operation for

segment type,))
(aref (segment-Data Segment) Offset))

This function writes a read-write segment.

(defun Write-Segment (Segment Offset New-Value)
(unless (equal (Segment-Type Segment)

'Read-Write)
(break OPiSim error: incorrect access operation for

segment type,))
(setf (aref (Segment-Data Segment) Offset)

New-Value))

This function attempts to match a key in an associative set
or cache segment.

(defun Match-Segment (Segment Key)
(case (Segment-Type Segment)

(Associative-Set
(Hash-Lookup (segment-Data Segment) Key))

(Cache
(Match-Cache Key Segment))

(otherwise
(break PiSim error: incorrect access operation for

segment type,))))

This function inserts a key in an associative set or cache
segment.

(defun Insert-Segment (Segment Key New-Value)
(case (Segment-Type Segment)

(Associative-set
(Hash-Insert (Segment-Data Segment)

Key
New-Value)

(cache
(Insert-Cache Key Segment Nbw-Value))

(otherwise
(break Pisim error: incorrect access operation for -

segment type,))))

This function removes a key from an associative set or cache
segment.

(defun Remove-Key-Segment (Segment Key)
(case (segment-Type Segment)

(Associative-set
(Hash-Delete (segment-Data Segment) Key))

(Cache
(Remove-Key-Cache Key Segment))

(otherwise
(break PiSim error: incorrect access operation for -

segment type,))))

This function clears an associative set or cache segment.

(defun Clear-Segment (segment)
(case (segment-Type Segment)

(Associative-set
(Clear-Hash-Table (Segment-Data Segment)))

(Cache
(Clear-Cache Segment))

(otherwise
(break PiSim error: incorrect access operation for -

segment type"))))

261

(defun Create-Task (Message)
(let* ((Handler (Get-Handler (Message-Type Message)))

(Node (Translate-Node (Message-Destination Message)))

(New-Segment (Create-Task-Segment
(Message-Length Message)
(Message-Type Message)

(Message-Arguments Message)
Handler))

(New-Segment-ID (Add-Segment New-Segment Node))

(New-Task (Make-Task :Handler Handler
:Node Node
:Segment New-Segment-ID)))

New-Task))

This function executes a task. It executes instructions which

change a task's status. If the status is 'Running, another
instruction is executed.

(defun Execute-Task (Task)
(loop doing (Execute-Next-Instruction Task)

while (equal (Task-Status Task) 'Running)))

Events

This function enqueues an event in the global event queue.
Events are enqueued in order on increasing event time.
** Note that when 2 events have the same time, the one sent

to Enqueue-Event first has higher priority.

(defun Enqueue-Event (New-Event)

(if (or (null *Event-Queue*)
(< (Event-Time New-Event)

(Event-Time (first *Event-Queue*))))
(push New-Event *Event-Queue*)

(Insert-Event New-Event *Event-Queue*)))

This function is used to enqueue events inside the event queue.

it is part of a recursive, priority queue insert algorithm.

(defun Insert-Event (New-Event Event-Queue)

�if (or (null (rest Event-Queue))

(< (Event-Time New-Event)

(Event-Time (second Event-Queue))))

(push New-Event (rest Event-Queue))
(Insert-Event New-Event (rest Event-Queue))))

This function dequeues and returns a event from the global

event-queue. If the queue is empty, nil is returned.

(defun Dequeue-Event ()
(pop *Event-Queue*))

This function clears the event queue.

(defun Clear-Event-Queue ()

(setq *Event-Queue* nil))

This function dequeues and executes the next event in the event
queue. If the event is a message, a new task is created. The

node time is adjusted if the event time is later than node
time. If a event is executed, t is returned.

(defun Execute-Next-Event
(let* ((Event (Dequeue-Event))

Task)

(setq Task (Create-Task (Event-object Event)))

(Set-Time-Of Task
(if > (Event-Time Event)

(Time-of Task))
(Event-Time Event)

(Time-Of Task)))

(Debug-Print
,[start: task -a node -d time -d old status -a]-&'
(Handler-Name-Of Task) (Node-Of Task)
(Time-Of Task) (Task-Status Task))

(Log-Task Task)
(setf (Task-Status Task) 'Running)

(Adjust-Concurrency-List (Time-Of Task)
(Execute-Task Task)

(Adjust-Concurrency-List (Time-Of Task) -1)
(Debug-Print

[stop: task -a node -d time -d status -a]-&'
�Handler-Name-Of Task) (Node-Of Task)

(Time-of Task) (Task-Status Task))))

This predicate tests if a statement is an instruction.

(defun Instruction? (Statement)
(listp Statement))

This function inserts a binding into a handler's bindings. If the
specified handler is 'Global, the binding is inserted in the global
bindings.

(defun Insert-Binding (Name Value Handler)
(if (equal Handler 'Global)

(Hash-Insert *Global-Bindings* Name Value)
(Hash-Insert (Handler-Bindings Handler) Name Value)))

This function looks up the binding of a symbol in the handler. If
it is not found there, the global bindings are checked.

(defun Lookup-Binding (Name Handler)
(or (Hash-Lookup (Handler-Bindings Handler) Name)

(Hash-Lookup *Global-Bindings* Name)))

This function returns the number of instructions in a handler.

(defun Number-of-Instructions (Handler)
(array-total-size (Handler-Instructions Handler)))

This function returns the handler object for the handler name. if
the handler does not exist, an error message is printed.

(defun Get-Handler (Name)
(let ((Handler (get Name 'Handler)))

(if (null Handler)
(break PiSim error: unknown handler')
Handler)))

This function determines the number of instructions in a sequence
of statements and builds a instruction array of the correct size.
It then reads each statement. If it is an instruction, it is
inserted into the array. If it is a label, the label and
statement index is inserted into the handler's bindings.

(defun Make-Instructions (Statements Handler)
(let (Instructions)

(loop for Statement in Statements
unless (Label? Statement)

count Statement
into Number-Of-Statements

finally (setf Instructions
(make-array Number-of-Statements)))

(loop with Index =
for Statement in Statements
when (Label? Statement)

do (Insert-Binding Statement Index Handler)
when (Instruction? Statement)

do (setf (aref nstructions Index)
Statement)

(incf Index))
(setf (Handler-instructions Handler)

Instructions)))

This function indexes the parameters and locals in a handler.
This includes assigning a each parameter and value an index in the
handler segment. These assignments are included in the handler's
bindings. The arity and number of locals parameters are also set.

(defun Index-Parameters-And-Locals (Parameters Locals Handler)
(loop for Parameter in Parameters

for Index from 2
doing (Insert-Binding Parameter Index Handler))

(loop for Local in Locals
for Index from (length Parameters) 2)
doing (Insert-Binding Local Index Handler))

(setf (Handler-Arity Handler)
(length Parameters))

,(setf (Handler-Number-of-Locals Handler)
(length Locals)))

This function reads a handler from an expression. The resultant
handler is stored on the property list of the handler name.

(defun Read-Handler (Expression)
(let ((Name (first Expression))

(Parameters (second Expression))
(Locals (third Expression))
(Statements (nthcdr 3 Expression))
(New-Handler (Make-Handler)))

(setf (Handler-Name New-Handler) Name)
(Index-Parameters-And-Locals Para�neters Locals New-Handler)
(Make-Instructions Statements New-Handler)
(setf (get Name 'Handler) New-Handler)))

This allows the definition of handlers. This should be part
of a more general reader.

Handlers

;; This predicate tests if a statement is an instruction.

(defun Label? (statement)

(symbolp Statement))

262

(defun Define-Handler (rest Expression)

(Debug-Print 0 4&loading handler -a-&' (first Expression))

(Read-Handler Expression)
nil)

Nodals

This allows the definition of nodals (node variables). An
index is assigned (using the number of existing nodals) A

new global binding is added.

(defun Define-Nodal (Name)
(Debug-Print -&defining nodal -a-&, Name)

(cond Hnot (null (Hash-Lookup *Global-Bindings* Name)))

(format t
.-&Warning: -a has already been defined globally-&,

Name))

(t
(insert-Binding Name *Nodal-Count* 'Global)

(incf *Nodal-Count*))))

Constants

This allows the definition of global constants. The binding

is added to the global bindings.

(defun Define-Constant (Name Value)
(Debug-Print -&defining constant -a-&' Name)

(Insert-Binding Name Value 'Global))

Instructions

This function returns the next instruction of the handler to be

executed. The current instruction pointer (IP) is obtained

from the task. The instructions are obtained from the handler.
The task instruction pointer is incremented. Note: the

instruction pointer is incremented AFTER the next instruction
is fetched.

(defun Next-Instruction (Task)
(let ((IP (Task-IP Task)))

(when >= IP
(Number-Of-Instructions (Task-Handler Task)))

(break Pisim error: IP out of range'))

(incf (Task-IP Task))

(aref (Handler-Instructions (Task-Handler Task))

IPM

This function executes a single instructions. it first
locates the next instruction using the task instruction

pointer. The instruction pointer is incremented. Then it

applies the operation to the arguments.

(defun Execute-Next-instruction (Active-Task)
(let ((Instruction (Next-Instruction Active-Task)))

(Debug-Print 2 (executing instruction -a]-&,
(first Instruction))

(Log-instruction Instruction)

(Apply-operation (first Instruction)
Active-Task

(rest Instruction))))

operations

This function applies a processor operation to a list of
arguments. Each argument is evaluated before the operation

is applied. The apply only takes place if the task status
is 'RUNNING.

(defun Apply-operation (Operation Active-Task Arguments)

(let ((Argument-List
(loop for Argument in Arguments

collecting (Evaluate Active-Task Argument))))
(when (equal (Task-Status Active-Task) 'RUNNING)

(Log-Operation Operation)

(push Active-Task Argument-List)
(apply (Get-operation operation)

Argument-List))))

This function evaluates the expression and returns the results.

This is an evaluator appropriate for the limited expressions
in a Pi program. Expressions are only evaluated if the task
status is 'RUNNING. The following expression types are
possible:

A number or string returns the value of the number or string.

A symbol is looked up in the handler bindings. If it is
present, the corresponding value is returned. Otherwise, the
symbol is returned.

Debugging

This prints debug messages depending on the debug level.

(defmacro Debug-Print (Level Format rest Arguments)

,(when <= Level *Debug-Level*)

(format t Format Arguments)))

This function sets the debug level.

(defun Set-Debug-Level (New-Level)

(setq *Debug-Level* New-Level))

Logging

This predicate starts a new log, saving the current log.

(defun Start-New-Log
(setq *Log*

(Make-Log :Type (Log-Type *Log*)

:Old-Logs *Log*)))

This is used in a counting profile. The category count is
incremented, or created, if non-existent.

(defun Collect-Profile (Category Profile)

(if (Hash-Lookup Profile Category)

(Hash-Insert Profile

Category

(1+ (Hash-Lookup Profile Category)))
(Hash-Insert Profile Category 1)))

This predicate tests if logging is enabled. If the log is nil, logging
is on.

(defun Logging?

(not (or (null *log*)

(equal (Log-Type *Log*) 'None))))

This function logs the specified task. Presently, profiles of task types

and status' are maintained.

(defun Log-Task (Task)
(when (Logging?)

(Collect-Profile (Task-Status Task)

(Log-Task-Status-Profile *Log*))
(when (equal (Task-Status Task) 'New)

(Collect-Profile (Handler-Name-of Task)
(Log-Task-Type-Profile *Log*)))))

This function collects statistics on instruction types.

(defun Log-instruction (instruction)
(when (Logging?)

(cond ((not (equal (first Instruction) 'Write))

----------- -

A nested expression (a list) is in the form (symbol argl arg2 ...
In this case, Apply-Operation is recursively called.

(defun Evaluate (Active-Task Expression)
(when (equal (Task-Status Active-Task)

'RUNNING)
(typecase Expression

((or number string)
Expression)

(symbol
(or (Lookup-Binding Expression (Task-Handler Active-Task))

Expression))
(list
(Apply-operation (first Expression)

Active-Task
(rest Expression)))

(otherwise
(break Pisim error: unknown expression,)M)

This function returns the operation function for the operation
name. If the operation does not exist, an error message is
printed.

(defun Get-Operation (Name)
(let ((Operation (get Name operation)))

(if (null operation)
(break PiSim error: unknown operation')
Operation)))

This is used to define processor operations.

(defmacro Define-operation (Name rest Rest)
(setf (get ',Name 'Operation)

I (lambda , Rest)

263

finally (return
(loop for source-Component

in Source-Components
for Destination-Component

in Destination-Components
summing (abs (- Source-Component

Destination-Component))
into Distance

finally (return Distance (- Length 1)))))))

This function injects a starting message into the machine. It
starts calculating the message length and destination. The
message is then enqueued, and events are executed until the
event queue is empty.

(defun Inject (Type &rest Arguments)
(Make-Nodes)
(Clear-Nodes)
(Clear-Event-Queue)
(let* ((Handler (Get-Handler Type))

(Length (+ (Handler-Arity Handler)
(Handler-Number-of-Locals Handler)
2))

(Destination (random (Number-of-Nodes)))
(Arrival-Time (Node-Time (Translate-Node Destination)))
(Message (Make-Message :Destination Destination

:Length Length
:Type Type
:Arguments Arguments))

(Event (make-Event :Time Arrival-Time
:Object Message)))

(Enqueue-Event Event)
(loop

(cond ((null *Event-Queue*)
(return))

(t
(Execute-Next-Event))))))

Hash Table Functions

(defconstant MINLHASH-TABLE-SIZE 11)

(defstruct Entry
(Key nil :type symbol)
(value nil :type any))

(defstruct HashTable
(Num-Buckets nil :type integer)
(Number-Entries nil :type integer)
(Buckets nil :ype array))

This function inserts a entry into the hash table. If a bucket
collision occurs, the entry is inserted in the list in increasing key
order. If a key collision occurs, the older entry is overwritten.
This function also increases the hash table size if necessary.

(defun Hash-Insert (Table Key Value)
(let* ((Index (Hash-Function Key

(HashTable-Num-Buckets Table)))
(Bucket-List (aref (HashTable-Buckets Table)

Index)))
(cond ((or (null Bucket-List)

(string< Key (Entry-Key (car Bucket-List))))
(push (make-Entry :Key Key

:Value Value)
(aref (HashTable-Buckets Table)

Index))
(setf (HashTable-Number-Entries Table)

(1+ (HashTable-Number-Entries Table))))
(t

(let ((This-Entry (car Bucket-List)))
(cond (string= Key (Entry-Key This-Entry))

if Key = key of This-Entry, then overwrite older
bucket entry. (New bucket has same Key as older
Bucket entry, but new entry value.)

(format t '-&Bashing older bucket entry -A.'
This-Entry)

(setf (Entry-value This-Bntry)
Value))

(t
(Splice-In-Bucket

Key Value Bucket-List Table)))))))
(if (HashTable-Number-Entries Table)

(HashTable-Num-Buckets Table))
(Hash-Resize Table)

Table)))

(defun Splice-in-Bucket (Key Value Bucket-List Table)
(let* ((Next-List (cdr Bucket-List))

(cond ((or (null Next-List)
(string< Key (Entry-Key (car Next-List))))

(rplacd Bucket-List

(Collect-Profile (first Instruction)

(Log-Instruction-Type-Profile *Log*)))
((not (listp (fourth nstruction))

(Collect-Profile 'Initialize
(Log-Instruction-Type-Profile *Log*)))

((equal (first (fourth Instruction)) 'Read)

(Collect-Profile 'Move
(Log-instruction-Type-Profile *Log*)))

(t
(Collect-Profile (first (fourth Instruction))

(Log-Instruction-Type-Profile

Log))))))

This function creates an operation profile.

(defun Log-operation (operation)

(when (Logging?)
(Collect-Profile Operation

(Log-operation-Type-Profile *Log*))))

This function searches down a sorted list of deltas looking
for an entry at a specified time. If such an entry is found,

its value is adjusted by change. if no such value is found,
a new delta is created an inserted at the correct position

in the list.

(defun Adjust-Concurrency-List (Time Change)

(when (Logging?)
(let ((Con'urrency-List (Log-Concurrency-List *Log*)))

(cond ((or (null Concurrency-List)

Time
(Delta-Time (first Concurrency-List))))

(push (Make-Delta :Time Time

:Value Change)

(Log-Concurrency-List *Log*)))
Time

(Delta-Time (first Concurrency-List)))
(incf (Delta-Value (first Concurrency-List))

Change))

(t
(Adjust-Rest-Of-Concurrency-List

Time Change Concurrency-List))))))

This is the recursive part of Adjust-Concurrency-List.

(defun Adjust-Rest-Of-Concurrency-List (Time Change
Concurrency-List)

(cond or (null (rest Concurrency-List))

(< Time (Delta-Time (second Concurrency-List))))

(rplacd Concurrency-List
(cons (Make-Delta :Time Time

:Value Change)

(rest Concurrency-List))))

Time

(Delta-Time (second Concurrency-List)))
(incf (Delta-Value (second Concurrency-List))

Change))

(t
(Adjust-Rest-Of-Concurrency-List

Time Change (rest Concurrency-List)))))

This function prints the information from the current log.

(defun Print-Log-Information

(when (or (equal (Log-Type *Log*) 'All)
(equal (Log-Type *Log*) 'Profile))

(Print-Profile-Data))
(when (or (equal (Log-Type *Log*) 'All)

(equal (Log-Type *Log*) 'Plot))

(Plot-Concurrency)))

Randoms

This function estimates the delivery delay of a message. It

should be better than it is now.

(defun Delivery-Delay (source Destination Length)

(when (or >= Source (Number-of-Nodes))

(minusp source)
(>= Destination (Number-of-Nodes))
(minusp Destination))

(break PiSim error: illegal node number,))
(when (or (minusp Length)

(zerop Length))

(break PiSim error: illegal message length,))
(loop for Dimension in *Machine-Dimensions*

collecting (mod Source Dimension)
into source-components

doing (setq source (floor Source Dimension))

collecting (mod Destination Dimension)
into Destination-Components

doing (setq Destination (floor Destination Dimension))

2 6 4

(cons (Make-Entry :Key Key

:Value Value)

Next-List))
(setf (HashTable-Number-Entries Table)

(1+ (HashTable-Number-Entries Table))))
(t

(let ((This-Entry (car Next-List)))

(cond Hstring= Key (Entry-Key This-Entry))
if Key = key of This-Entry, then overwrite

older bucket entry's value.
(format t '-&Bashing older bucket entry -A.,

This-Entry)
(setf (Entry-Value This-Entry)

Value))

(t
(Splice-Tn-Bucket

Key Value Next-List Table))))))))

This function resizes the hash table and rehashes the

entries. The hash table size is approximately doubled.

(defun Hash-Resize (Table)

(let* ((Old-Buckets (HashTable-Buckets Table))
(old-Size (HashTable-Num-Buckets Table))

(New-size

(Determine-Hash-Table-Size

(* (HashTable-Num-Buckets Table) 2))
(setf (HashTable-Num-Buckets Table)

New-Size)
(setf (HashTable-Buckets Table)

(Make-Hash-Buckets Nw-Size))

(setf (HashTable-Number-Entries)
0)

(Copy-Over-Buckets Old-Size Old-Buckets Table)
Table))

(defun Copy-Over-Buckets (Index old-Size old-Buckets Table)
(cond >= Index old-size)

Table)

(t
(let ((Bucket-List (aref old-Buckets Index)))

(Copy-Over-Bucket Bucket-List Table)

(Copy-Over-Buckets

(1+ index) Old-Size Old-Buckets Table)))))

(defun Copy-Over-Bucket (Bucket-List Table)
(cond ((null Bucket-List) Table)

(t

(let ((This-Entry (car Bucket-list)))

(Hash-Insert Table
(Entry-Key This-Entry)

(Entry-Value This-Entry))
(Copy-Over-Bucket (cdr Bucket-List) Table)

This function creates a hash table having the specified of

buckets. Since the size of a hash table must be a prime
number, the specified number of buckets is rounded up to a
nearby prime. The new table'is then initialized.

(defun Make-Hash-Table (&optional Num-Buckets)

(let ((Size (Determine-Hash-Table-size

(or Num-Buckets MINLHASH-TABLE-SIZE))))
(Make-HashTable :Num-Buckets Size

:Buckets (Make-Hash-Buckets size)

:Number-Entries 0)))

;;This function creates and initializes a bucket array.

(defun Make-Hash-Buckets (size)

(make-array Size))

This function looks up a key in the hash table. If it is

found, the entry pointer is returned. otherwise, nil is
returned.

(defun Hash-Lookup (Table Key)
(let* ((Index (Hash-Function

Key (HashTable-Num-Buckets Table)))

(Bucket-List (aref (HashTable-Buckets Table)

Index)))
(loop

(cond ((or (null Bucket-List)

(string< Key
(Entry-Key (car Bucket-List))))

(return nil))
((string= Key

(Entry-Key (car Bucket-List)))

(return (Entry-value (car Bucket-List))))
(t

(setq Bucket-List (cdr Bucket-List)))))))

This function deletes an entry in the hash table.

(defun Hash-Delete (Table Key)
(let* ((Index (Hash-Function Key

(HashTable-Num-Buckets Table)))
(Bucket-List (aref (HashTable-Buckets Table)

Index)))
(if (null Bucket-List)

Table

(let ((This-Entry (car Bucket-List)))

(cond ((string> Key (Entry-Key This-Entry))
(Splice-Out-Bucket Key Bucket-List Table))

((string= Key (Entry-Key This-Entry))

(setf (aref (HashTable-Buckets Table)

Index)

(cdr Bucket-List))
(setf (HashTable-Number-Entries Table)

(1- (HashTable-Number-Entries Table))))
(t ;; Key string< key of This-Entry, so Key isn't found

Table))))))

(defun Splice-Out-Bucket (Key Bucket-List Table)

(let ((Next-List (cdr Bucket-List)))

(if (null Next-List)

Table ;; fell off end of bucket list, Key not found
(let ((This-Entry (car Next-List)))

(cond ((string> Key (Entry-Key This-Entry))
(Splice-Out-Bucket Key Next-List Table))

((string= Key (Entry-Key This-Entry))
(rplacd Bucket-List

(odr Next-List))

(setf (HashTable-Number-Entries Table)

(1- (HashTable-Number-Entries Table))))
(t ;; Key tring< Key of This-Entry, Key not found

Table)M)

This function clears for all entries in the specified hash table.

(defun Clear-Hash-Table (Table)
(let ((Size (HashTable-Num-Buckets Table)))

(setf (HashTable-Num-Buckets Table) Size)

(setf (HashTable-Number-Entries Table)
(setf (HashTable-Buckets Table) (Make-Hash-Buckets Size))))

This function picks the first prime number greater then or equal to
the specified size estimate. The minimum hash table size is enforced
here.

(defun Determine-Hash-Table-Size (Size-Estimate &aux Size)

(if < Size-Estimate MINLHASH_TABLE_SIZE)

(setq Size MIN-HASHLTABLE_SIZE)
(setq Size Size-Estimate))

(if = (mod Size 2

(setq size Size)))

(loop

(if (null (Prime-Number-Test Size))

(setq Size Size 2)

(returnM
Size)

(defun Prime-Number-Test (Number)
(let ((Index 3)

(cond Number 2 t)

(mod Number 2 0) nil)
(t
(loop

(cond ((<= (square index) Number)

(if = (mod Number index)

(return nil))

(setq index Index 2)
(t (return t))))))))

(defun Square (n)
n n))

This function calculates a hash table index from a key
(symbol->string) and the hash table size.

(defun Hash-Function (Key Size)

(let* ((Sum

(Key-string (string Key))

(Length (1- (string-length Key-String))))
(loop

(cond ((< Length 0) (return))
(t

(setq Sum

(+ Sum (char-int (aref Key-String Length))))
(setq Length 1- Length)))))

(mod Sum Size)))

265

Global variables

(defconstant *Machine-Dimensions* 1(4 4 4)
,this is the machine dimensions')

(defvar *Event-Queue* nil
,this is the global event queue')

(defvar *Nodes* nil
,this is the node array')

(defvar *Global-Bindings* (Make-Hash-Table)
,these are the bindings for nodals, constants, etc.')

(defvar *Nodal-Count*
'This is the number of defined nodals-)

(defvar *Debug-Level*
,this is the debugging level,)

(defvar *Log* nil
,this is the logging information')

(defvar *Global-Plist* nil
'The global property list.,)

Structures

(defstruct Node
(Time
(ID)
(Segments (Make-Hash-Table))
(Nodals nil))

(defstruct Segment
(Type nil)
(Data nil)
(size 0))

(defstruct Task
(Handler nil)
(Node nil)
(Segment nil)
(IP 0)
(Status 'New))

(d6fstruct Message
(Destination nil)
(Length)
(Type nil)
(Arguments nil))

(defstruct Event
(Time
(object nil))

(defstruct Handler
(Name nil)
(Instructions nil)
(Arity 0)
(Number-of-Locals 0)
(Bindings (Make-Hash-Table)))

(defstruct D-Sync
(Suspended-Tasks nil))

(defstruct B-Sync
(Count 0)
(Suspended-Tasks nil))

(defstruct Log
(Type 'All)
(Task-Status-Profile (Make-Hash-Table))
(Task-Type-Profile (ake-Hash-Table))
(Instruction-Type-Profile (Make-Hash-Table))
(Operation-Type-Profile (Make-Hash-Table))
(Concurrency-List nil)
(old-Logs nil))

(defstruct Delta
(Time
(Value 0))

(destruct Task-Segment
(Storage-Rqmts 0)
(Type nil)

Nodes

This translates a node ID to a node.

(defun Translate-Node (Node-ID)

(aref *Nodes* Node-ID))

This function returns the number of nodes.

(defun Number-Of-Nodes ()

(array-total-size *Nodes*))

(defun Copy-Replace-Node (New-Node ID Nodes)

(Copy-Replace-Elt New-Node ID Nodes))

This function creates the node array according to the dimension

constant.

(defun Make-Nodes
(let* ((Number-of-Nodes (apply #* *Machine-Dimensions*))

(Nodes (make-array Number-of-Nodes))

(ID 0)
(Node nil)

(Nodals-Segment NIL))
(Make-Nodes-1 Number-of-Nodes Nodes ID Node Nodals-Segment)))

(defun Make-Nodes-1 (Number-of-Nodes Nodes ID Node Nodals-Segment)
(cond Hnot < ID Number-of-Nodes))

(setq *Nodes* Nodes))

(t
(setq Node (Make-Node :ID ID))

(setq Nodals-Segment (Create-Read-Write-Segment 100))
(setq Nodes (Copy-Replace-Node Node ID Nodes))

(multiple-value-bind (Sgmt-ID Intermediate-Node)

(Add-Segment Nodals-Segment Node)

(setq Node
(Make-Node :Time (Node-Time Intermediate-Node)

:ID (Node-ID Intermediate-Node)

:Segments (Node-Segments Intermediate-Node)
:Nodals Sgmt-ID))

(setq Nodes (Copy-Replace-Node Node (Node-ID Node) Nodes)))

(Make-Nodes-1 Number-of-Nodes Nodes (+ ID 1) Node

Nodals-Segment))))

This function the node time and clears the node segment.

(defun Clear-Nodes

(let ((Node nil)
(Nodes-index)
(Nodals-Id nil)
(Nodals nil)

(End-index (array-total-size *Nodes*)))
(Clear-Nodes-1 Node Nodes-Index Nodals-Id Nodals End-Index)))

(defun Clear-Nodes-1 (Node Nodes-Index Nodals-Id Nodals End-index)
(cond not < Nodes-Index End-Index))

nil)

(t

(setq Node (aref *Nodes* Nodes-index))

(setq Nodals-Id (Node-Nodals Node))

(setq Nodals (Translate-Segment-On-Node Nodals-Id Node))
(setq Node (Make-Node :Time ;; (setf (Node-Time Node)

:ID (Node-ID Node)
:Segments (Node-Segments Node)
:Nodals (Node-Nodals Node)))

(setq *Nodes* (Copy-Replace-Node Node (Node-ID Node) *Nodes*))
(setq Node

(Make-Node :Time (Node-Time Node)

:ID (Node-ID Node)

:Segments (Clear-Hash-Table (Node-Segments Node))
:Nodals (Node-Nodals Node)))

(setq *Nodes* (Copy-Replace-Node Node (Node-ID Node) *Nodes*))
(setq Node (Make-Node :Time (Node-Time Node)

:ID (Node-ID Node)

:Segments (Hash-Insert (Node-Segments Node)

Nodals-ID
Nodals)

:Nodals (Node-Nodals Node)))
(setq *Nodes* (Copy-Replace-Node Node (Node-ID Node) *Nodes*))
(let* ((Data (Segment-Data Nodals))

(index 0)
(Data-Size (array-total-size Data)))

(Clear-Nodes-2 Data Index Data-Size))

(setq Nodes-Index Nodes-index))

(Clear-Nodes-1 Node Nodes-Index Nodals-Id Nodals End-Index))))

;; * Syntax:Common-Lisp; Mode:LISP; Base:10; Package:USER -*-

i S i m u 1 a t o r -- functional version

(Arguments nil))

(defstruct instruction

(Op nil)
(Args nil))

266

Segments

This adds a segment to the node's segment translations. It
returns the unique segment ID.

(defun Add-Segment (Segment Node)

(let* ((Segment-ID (gensym 'Segment-'))

(New-Segments

(Hash-Insert (Node-Segments Node)
Segment-ID
Segment))

(New-Node

(Make-Node :Time (Node-Time Node)
:ID (Node-ID Node)

:Segments New-Segments

:Nodals (Node-Nodals Node))))
(values Segment-ID New-Node)))

This removes a segment ID from the node's segment
translations.

(defun Delete-segment (Segment-ID Node)
(let* ((New-Segments

(Hash-Delete (Node-Segments Node)

Segment-ID)
(New-Node (Make-Node :Time (Node-Time Node)

:ID (Node-ID Node)

:Segments New-Segments
:Nodals (Node-Nodals Node))))

New-Node))

This translates a segment ID to a segment on the specified

task's node.

(defun Translate-Segment (Segment-ID Task)

(Translate-Segment-On-Node Segment-ID
(Task-Node Task)))

This translates a segment ID on a specified node.

(defun Translate-Segment-on-Node (Segment-ID Node)
(let ((Segment (Hash-Lookup (Node-Segments Node)

Segment-ID)))

(if (null segment)

(break Pisim error: missing segment')
Segment)))

This function creates a read-write segment.

(defun Create-Read-Write-Segment (Size)

(Make-Segment :Size Size

:Type 'Read-Write
:Data (make-array Size)))

This function creates an associative set segment.

(defun Create-Associative-Set-Segment (Size)
(Make-Segment :Size Size

:Type 'Associative-Set

:Data (Make-Hash-Table size)))

This function creates a cache segment.

(defun Create-Cache-segment (Size)
(Make-Segment :Size Size

:Type 'Cache
:Data (make-array Size)))

This function reads a read-write segment.

(defun Read-Segment (segment offset)

(unless (equal (Segment-Type Segment)
'Read-Write)

(break

'PiSim error: incorrect access operation for segment type,))
(aref (Segment-Data Segment) Offset))

This function writes a read-write segment.

(defun write-Segment (Segment Offset New-Value)

(unless (equal (Segment-Type Segment)
'Read-Write)

(break

'PiSim error: incorrect access operation for segment type'))

(values New-value

(Make-Segment :Size (Segment-Size Segment)

:Type (Segment-Type Segment)
:Data (Copy-Replace-Elt New-Value

offset

(Segment-Data egment)))))

This function attempts to match a key in an associative set or cache
segment.

(defun Match-Segment (Segment Key)

(case (Segment-Type Segment)

(Associative-Set

(Hash-Lookup (segment-Data Segment) Key))
(cache

(Match-Cache Key Segment))
(otherwise

(break PiSim error: incorrect access operation for segment type,))))

This function inserts a key in an associative set or cache segment.

(defun Insert-Segment (Segment Key New-Value)
(case (Segment-Type Segment)

(Associative-Set

(values

(Make-Segment :Type (Segment-Type Segment)

:Data (Hash-Insert (Segment-Data Segment)

Key

New-Value)
:Size (Segment-Size Segment))

New-Value))

(Cache
(Insert-Cache Key Segment New-Value))

(otherwise

(break Pisim error: incorrect access operation for segment type,))))

This function removes a key from an associative set or cache segment.

(defun Remove-Key-Segment (Segment Key)

(case (Segment-Type Segment)
(Associative-Set

(Make-Segment :Type (Segment-Type Segment)

:Data (Hash-Delete (Segment-Data Segment) Key)
:Size (Segment-Size Segment)))

(Cache (Remove-Key-Cache Key Segment))

(otherwise
(break PiSim error: incorrect access operation for segment type'))))

This function clears an associative set or cache segment.

(defun Clear-Segment (Segment)
(case (Segment-Type Segment)

(Associative-Set

(Make-Segment ype (Segment-Type Segment)

:Data (Clear-Hash-Table (Segment-Data Segment))
:Size (Segment-Size Segment)))

(Cache
(Clear-Cache Segment))

(otherwise

(break Pisim error: incorrect access operation for segment type,))))

caches

In PiSim, caches are implemented as direct mapped arrays. A hash

function computes an index into an array. Array entries are cons
cells are of the format: (Key Value).

This is the hash function for caches.

(defun Cache-Hash (Key Size)
(when (numbers Key)

(setq Key (format nil '-a' Key)))

(let* ((String (string Key))
(Character nil)
(Value
(Index

(End-Index (array-total-size String)))

(Cache-Hash-1 String Character Value size index End-Index)))

(defun Cache-Hash-1 (String Character Value Size Index End-Index)
(cond Hnot < Index End-Index))

(mod Value Size))

(t

(setq Character (aref String Index))
(setq value (char-int haracter) Value))
(setq index Index))

(Cache-Hash-1 String Character Value Size Index nd-Index))))

This function attempts to atch a key in a hash table. If the key

is found, the corresponding value is returned. otherwise, 'Miss is
returned.

(defun clear-Nodes-2 (Data Index Data-Size)
(cond not < Index Data-Size))

nil)
(t.
(setq Data (Copy-Replace-Elt 'UNBOUND Index Data))
(setq Index Index))
(Clear-Nodes-2 Data Index Data-Size))))

267

(defun Match-Cache (Key Segment)
(let* ((Index (Cache-Hash Key (Segment-Size Segment)))

(Entry (aref (Segment-Data Segment) Index)))
(if (and (not (equal Entry 'mpty))

(equal (first Etry) Key))
(rest Entry)
'Miss)))

This function writes an entry in the cache, possibly
overwriting another value.

(defun insert-Cache (Key Segment New-Value)
(let* (alue (cons Key New-value))

(New-Segment-Data
(Copy-Replace-Elt Value

(Cache-Hash Key
(segment-size Segment))

(Segment-Data Segment))))
(values (Make-Segment :Type (Segment-Type Segment)

:Data New-Segment-Data
:Size (Segment-Size Segment))

Value)))

This function removes a key from a cache. If the key is not
present, no action is taken.

(defun Remove-Key-Cache (Key Segment)
(let* ((Index (Cache-Hash Key (Segment-Size Segment)))

(Entry (aref (segment-Data Segment) Index)))
(if (and (not (equal Entry 'Empty))

(equal (first Entry) Key))
(values

(Make-Segment :Type (Segment-Type Segment)
:Data (Copy-Replace-Elt 'Empty

index
(Segment-Data
Segment))

:Size (Segment-Size Segment))
'Empty)

(values Segment nil))))

This function clears a cache.

(defun Clear-Cache (Segment)
(let* ((Data (Segment-Data Segment))

(Index)
(End-Index (array-total-size Data)))

(Clear-Cache-1 Data Index End-Index Segment)))

(defun Clear-Cache-1 (Data Index End-Index Segment)
(cond ((not < Index End-Index))

Segment)
(t

(setq Data (Copy-Replace-Elt IF24PTY Index Data))
(setq Segment (Make-Segment :Type (Segment-Type Segment)

:Data Data
:Size (Segment-Size Segment)))

(setq Index Index))
(Clear-Cache-1 Data Index End-Index Segment))))

Tasks

This returns the node ID of the specified task's nodes.

(defun Node-of (Task)
(Node-ID (Task-Node Task)))

This returns the time of a task. This is defined as the node
time for the specified task.

(defun Time-Of (Task)
(Node-Time (Task-Node Task)))

This sets the time of the specified task (i.e. the time of
the node of the specified task).

(defun Set-Time-Of (Task New-Time)
(let ((Task-Node (Task-Node Task)))

(setq Task-Node (make-Node :Time New-Time
:ID (Node-ID Task-Node)
:Segments (Node-Segments Task-Node)
:Nodals (Node-Nodals Task-Node)))

(values New-Time
Task-Node
(Make-Task :Handler (Task-Handler Task)

:Node Task-Node
:Segment (Task-Segment Task)
:IP (Task-IP Task)
:Status (Task-Status Task)))))

This increments the task time by the specified delta.

(defun increment-Time-Of (Task Delta)
(let* ((Task-Node (Task-Node Task))

(New-Time (+ (Node-Time Task-Node) Delta)))
(setq Task-Node (make-Node :Time New-Time

:ID (Node-ID Task-Node)
:Segments (Node-Segments Task-Node)
:Nodals (Node-Nodals Task-Node)))

(values New-Time
Task-Node
(Make-Task :Handler (Task-Handler Task)

:Node Task-Node
:Segment (Task-Segment Task)
:IP (Task-IP Task)
:Status (Task-Status Task)))))

This returns the handler type of the task.

(defun Handler-Name-of (Task)
(Handler-Name (Task-Handler Task)))

This function creates a new task segment of the specified length.
The number of arguments and message length values are compared with
the handler arity and arity plus number of locals respectively. Two
is added to the arity and number of locals to account for the message
length and type information stored in the segment. The segment is
then initializes with the supplie�l arguments.

(defun Write-Arguments (Arguments Index New-Segment)
(cond ((null Arguments)

New-Segment)
(t
(multiple-value-bind (New-Value Written-Segment)

(Write-Segment New-Segment Index (car Arguments))
(write-Argurnents (cdr Arguments)

(1+ Index)
Written-Segment)))))

(defun Create-Task-Segment (Length Task-Type Arguments Handler)
(let (New-Segment (Create-Read-Write-Segment Length)))

(when (not = Handler-Arity Handler)
(length Arguments)))

(break PiSim error: arity ismatch,))
(when (not = Length (Handler-Arity Handler)

(Handler-Number-Of-Locals Handler)
2)))

(break 'PiSim error: length/ handler storage mismatch,))
(Make-Task-Segment

:Storage-Rqmts Length
:Type Task-Type
:Arguments (Write-Arguments Arguments 2 New-Segment))))

This function creates a new task for a message. The handler and
node are determined. A new segment is created and initialized.
After the new task is created, its segment is added to the task's
node. Finally the new task is returned.

(defun Create-Task (Message)
(let* ((Handler (Get-Handler (Message-Type Message)))

(Node (Translate-Node (Message-Destination Message))))
(Make-Task :Handler Handler

:Node Node)))

This function executes a task. It executes instructions which
change a task's status. If the status is 'Running, another
instruction is executed.

(defun Execute-Task (Task)
(multiple-value-bind (Value New-Task)

(Execute-Next-Instruction Task)
(setq Task New-Task))

(if (equal (Task-Status Task) 'Running)
(Execute-Task Task)))

Events

This function enqueues an event in the global event queue.
Events are enqueued in order on'increasing event time.
** Note that when 2 events have the same time, the one sent to
Enqueue-Event first has higher priority.

(defun Enqueue-Event (New-Event)
(if (or (null *Event-Queue*)

(< (Event-Time New-Event)
(Event-Time (first *Event-Queue*))))

(setq *Event-Queue*
(cons New-Event *Event-Queue*))

(setq *Event-Queue*
(Insert-Event New-Event *Event-Queue*))))

This function is used to enqueue events inside the event queue.
It is part of a recursive, priority queue insert algorithm.

268

Handlers

;; This predicate tests if a statement is an instruction.

(defun Label? (Statement)
(symbolp Statement))

;; This predicate tests if a statement is an instruction.

(defun Instruction? (statement)
(listp Statement))

This function inserts a binding into a handler's bindings. If the
specified handler is 'Global, the binding is inserted in the global
bindings.

(defun insert-Binding (Name Value Handler)
(cond ((equal Handler 'Global)

(setq *Global-Bindings*
(Hash-Insert *Global-Bindings* Name Value))

(values Value Handler))
(t
(setq Handler

(Make-Handler :Name (Handler-Name Handler)
:Instructions (Handler-Instructions Handler)
:Arity (Handler-Arity Handler)
:Number-of-Locals
(Handler-Number-of-Locals Handler)
:Bindings
(Hash-Insert (Handler-Bindings Handler)

Name
Value)))

(values Value Handler))))

This function looks up the binding of a symbol in the handler. If
it is not found there, the global bindings are checked.

(defun Lookup-Binding (Name Handler)
(or (Hash-Lookup (Handler-Bindings Handler) ame)

(Hash-Lookup *Global-Bindings* Name)))

This function returns the number of instructions in a handler.

(defun Number-of-Instructions (Handler)
(array-total-size (Handler-Instructions Handler)))

This function returns the handler object for the handler name. If
the handler does not exist, an error message is printed.

(defun Get-Handler (Name)
(let ((Handler (get Name 'Handler)))

(if (null Handler)
(break Pisim error: unknown handler.)
Handler)))

This function determines the numbe� of instructions in a sequence
of statements and builds a instruction array of the correct size.
It then reads each statement. If it is an instruction, it is
inserted into the array. If it is a label, the label and
statement index is inserted into the handler's bindings.

(defun Make-Instructions (Statements Handler)
(let (instructions)

(let ((Temp-Stmts Statements)
(Statement nil)
(Number-Of-Statements 0))

(setq Instructions
(Make-Instructions-1 Instructions Temp-Stmts Statement

Number-of-Statements)))
(let ((Index

(Statement nil)
(Temp-Stmts Statements))

(multiple-value-bind (Instructions New-Handler)
(Make-Instructions-2 Instructions Temp-Stmts Statement

index Handler)
(setq Handler New-Handler))

(setq Handler
(Make-Handler :Name (Handler-Name Handler)

:Instructions Instructions
:Arity (Handler-Arity Handler)
:Number-of-Locals (Handler-Number-of-Locals

Handler)
:Bindings (Handler-Bindings Handler)))

(values Instructions Handler)))

(defun Make-instructions-1 (Instructions Temp-Stmts Statement
Number-of-Statements)

(cond ((null Temp-Stmts)
(setq instructions (make-array Number-Of-Statements)))

(t
(setq Statement (car Temp-Stmts))
(setq Temp-Stmts (cdr Temp-Stmts))
(cond ((not (Label? Statement))

(if Statement
(setq Number-Of-Statements

(1+ Number-Of-Statements)M)
(Make-Instructions-1 Instructions Temp-Stmts Statement

Number-of-Statements))))

(defun Make-Instructions-2 (Instructions Temp-Stmts Statement Index Handler)
(cond ((null Temp-Stmts)

(values instructions Handler))
(t (setq Statement (car Temp-Stmts))

(setq Temp-Stmts (cdr Temp-Stmts))
(cond ((Label? Statement)

(multiple-value-bind (value New-Handler)

(defun insert-Event (New-Event Event-Queue)
(if (or (null (rest Event-Queue))

(Event-Time New-Event)
(Event-Time (second Event-Queue))))

(cons (car Event-Queue)
(cons New-Event (rest Event-Queue)))

(cons (car Event-Queue)
(Insert-Event New-Event (rest Event-Queue)))))

This function dequeues and returns a event from the global

event queue. If the queue is empty, nil is returned.

(defun Dequeue-Event
(let ((Event (car *Event-Queue*)))

(setq *Event-Queue* (cdr *Event-Queuefl)
Event))

This function clears the event queue.

(defun Clear-Event-Queue ()
(setq *Event-Queue* nil))

This function dequeues and executes the next event in the

event queue. if the event is a message, a new task is

created. The node time is adjusted if the event time is

later than node time. If a event is executed, t is returned.

(defun Execute-Next-Event ()

(let* ((Event (Dequeue-Event))
Task)

(setq Task (Create-Task (Event-object Event)))

(multiple-value-bind (New-Time Task-Node New-Task)

(Set-Time-Of Task

(if > (Event-Time Event)

(Time-Of Task))
(Event-Time Event)

(Time-Of Task)))

(setq *Nodes*
(Copy-Replace-Node

Task-Node
(Translate-Node

(message-Destination (Event-object Event)))

Nodes))
(setq Task New-Task))

(let* ((Message (Event-object Event))
(Node (Translate-Node (message-Destination Message)))

(New-segment (Create-Task-Segment

(Message-Length Message)

(Message-Type Message)
(message-Arguments Message)

(Task-Handler Task))))

(multiple-value-bind (New-Segment-ID New-Node)

(Add-Segment New-Segment Node)

(setq Node New-Node)

(setq *Nodes* (Copy-Replace-Node
Node

(Message-Destination Message)

Nodes))
(setq Task (Make7Task :Handler (Task-Handler Task)

:Node Node

:Segment New-Segment-ID
:IP (Task-IP Task)

:Status (Task-Status Task)))))
(Debug-Print 1

'[start: task -a node -d time -d old status -a]-&,

(Handler-Name-of Task) (Node-of Task)

(Time-Of Task) (Task-Status Task))

(Log-Task Task)
(setq Task

(Make-Task :Handler (Task-Handler Task)

:Node (Task-Node Task)
:Segment (Task-Segment Task)

:IP (Task-IP Task)

:Status 'Running))

(Adjust-Concurrency-List (Time-Of Task)
(Execute-Task Task)

(Adjust-Concurrency-List (Time-Of Task) -1)
(Debug-Print '[stop: task -a node -d time -d status -a]-&,

(Handler-Name-Of Task)'(Node-Of Task)
(Time-of Task) (Task-Status Task))))

- (Index-Parameters-And-Locals Parameters Locals New-Handler))
(multiple-value-bind (Instructions Newer-Handler)

(Make-Instructions Statements New-Handler)
(setq New-Handler Newer-Handler))

(setq *Global-Plist*
(Update-Plist Name 'Handler New-Handler))))

This allows the definition of handlers. This should be part

of a more general reader.

(defun Define-Handler (rest Expression)
(Debug-Print -&loading handler -a-&, (first Expression))

(Read-Handler Expression)

nil)

Nodals

This allows the definition of nodals (node variables). An

index is assigned (using the number of existing nodals). A new

global binding is added.

(defun Define-Nodal (Name)
(Debug-Print -&defining nodal -a-&' Name)

(cond Hnot (null (Hash-Lookup *Global-Bindings* Name)))
(format t -&Warning: -a has already been defined globally-&,

Name))
(t

(multiple-value-bind (Value Handler)
(Insert-Binding Name *Nodal-Count* 'Global))

(setq *Nodal-Count* *Nodal-Count*)))))

Constants

This allows the definition of global constants. The binding

is added to the global bindings.

(defun Define-Constant (Name Value)

(Debug-Print -defining constant -a-&' Name)
(multiple-value-bind (Value Handler)

(Insert-Binding Name Value 'Global)))

Instructions

This function returns the next instruction of the handler to be
executed. The current instruction pointer (IP) is obtained from

the task. The instructions are obtained from the handler. The

task instruction pointer is incremented. Note: the instruction
pointer is incremented. AFTER the next instruction is fetched.

(defun Next-Instruction (Task)

(let HIP (Task-IP Task)))

(when >= IP

(Number-of-Instructions (Task-Handler Task)))
(break Pisim. error: IP out of range'))

(setq Task (Make-Task :Handler (Task-Handler Task)

:Node (Task-Node Task)
:Segment (Task-Segment Task)

:IP (1+ (Tabk-IP Task))

:Status (Task-Status Task)))
(values (aref (Handler-instructions (Task-Handler Task))

IP)

Task)))

This function executes a single instructions. It first locates the

next instruction using the task instruction pointer. The
instruction pointer is incremented. Then it applies the operation

to the arguments.

(defun Execute-Next-Instruction (Active-Task)

(multiple-value-bind (instruction New-Task)
(Next-Instruction Active-Task)

(setq Active-Task New-Task)
(Debug-Print 2 [executing instruction -a]-&'

(Instruction-Op Instruction))
(Log-Instruction nstruction)

(multiple-value-bind (Value New-Task)

(Apply-operation (Instruction-Op Instruction)

Active-Task

(Instruction-Args instruction))
(setq Active-Task New-Task)
(values Value Active-Task))))

Operations

This function applies a processor operation to a list of arguments.
Each argument is evaluated before the operation is applied. The

apply only takes place if the task status is RUNNING.

(defun Apply-operation (operation Active-Task Arguments)

(Insert-Binding Statement Index Handler)
(setq Handler New-Handler)))

((Instruction? Statement)

(progn
(setq Instructions

(Copy-Replace-Elt
Statement Index Instructions))

(setq Index index)))))

(Make-Instructions-2
Instructions Temp-Stmts Statement Index Handler))))

This function indexes the parameters and locals in a handler.

This includes assigning a each parameter and value an index
in the handler segment. These assignments are included in

the handler's bindings. The arity and number of locals

parameters are also set.

(defun Index-Parameters-And-Locals (Parameters Locals Handler)

(let ((Parameter nil)
(Temp-Parameters Parameters)

(Index 2)
(setq Handler

(Index-Parameters-And-Locals-1
Parameter Temp-Parameters

Index Handler)))
(let ((Local nil)

(Temp-Locals Locals)
(Index (lengthPararneters 2)

(setq Handler
(Index-Parameters-And-Locals-2 Local Temp-Locals Index

Handler)))
(setq Handler (Make-Handler :Name (Handler-Name Handler)

:Instructions (Handler-instructions
Handler)

:Arity (length Parameters)

:Number-of-Locals

(Handler-Number-of-Locals Handler)

:Bindings (Handler-Bindings
Handler)))

(setq Handler (Make-Handler :Name (Handler-Name Handler)
:Instructions (Handler-instructions

Handler)

:Arity (Handler-Arity Handler)
:Number-of-Locals (length Locals)

:Bindings (Handler-Bindings

Handler)))

Handler)

(defun Index-Parameters-And-Locals-I (Parameter Temp-Parameters

index Handler)
(cond ((null Temp-Parameters) Handler)

(t
(setq Parameter (car Temp-Parameters))

(setq Temp-Parameters (cdr Temp-Parameters))

(multiple-value-bind (Value New-Handler)
(Insert-Binding Parameter Index Handler)

(setq Handler Nw-Handler))

(setq index Index))
(Index-Parameters-And-Locals-1 Parameter Temp-Parameters

Index Handler))))

(defun Index-Parameters-And-Locals-2 (Local Temp-Locals
Index Handler)

(cond ((null Temp-Locals) Handler)

t
(setq Local (car Temp-Locals))

(setq Temp-Locals (cdr Temp-Locals))
(multiple-value-bind (Value New-Handler)

(Insert-Binding Local index Handler)
(setq Handler New-Handler))

(setq index Index))
(Index-Parameters-And-Locals-2 Local Temp-Locals Index

Handler))))

This function reads a handler from an expression. The

resultant handler is stored on the property list of the

handler name.

(defun Read-Handler (Expression)

(let ((Name (first Expression))

(Parameters (second Expression))
(Locals (third Expression))
(Statements (nthcdr 3 Expression))
(New-Handler (Make-Handler)))

(setq New-Handler
(make-Handler :Name Name

:Instructions (Handler-Instructions
New-Handler)

:Arity (Handler-Arity New-Handler)
:N=ber-of-Locals

(Handler-Number-of-Locals New-Handler)
:Bindings (Handler-Bindings New-Handler)))

(setq New-Handler

270

Debugging

This prints debug messages depending on the debug level.

(defmacro Debug-Print (Level Format rest Arguments)
,(when <= Lvel *Debug-Level*)

(format t Format Arguments)))

This function sets the debug level.

(defun Set-Debug-Level (New-Level)

(setq *Debug-Level* New-Level))

Logging

This predicate starts a new log, saving the current log.

(defun Start-New-Log

(setq *Log* (Make-Log :Type (Log-Type *Log*)

:Old-Logs *Log*)))

This is used in a counting profile. The category count is
incremented, or created, if non-existent.

(defun Collect-Profile (Category Profile)

(cond ((Hash-Lookup Profile Category)

(let ((New-Value (Hash-Lookup Profile Category))))
(setq Profile

(Hash-Insert Profile Category New-Value))
(values New-value Profile)))

(t

(values 1 (Hash-Insert Profile Category 1)))))

This predicate tests if logging is.enabled. If the log is nil,
logging is on.

(defun Logging?

(not (or (null *log*)

(equal (Log-Type *Log*) 'None))))

This function logs the specified task. Presently, profiles of task
types and status' are maintained.

(defun Log-Task (Task)
(when (Logging?)

(multiple-value-bind (New-value New-Profile)

(Collect-Profile (Task-Status Task)

(Log-Task-status-Profile *Log*))
(setq *Log*

(Make-Log :Type (Log-Type *Log*)

:Task-Status-Profile New-Profile
:Task-Type-Profile (Log-Task-Type-Profile *Log*)
:Instruction-Type-Profile

(Log-Instruction-Type-Profile *Log*)
:Operation-Type-Profile

(Log-operation-Type-Profile *Log*)

:Concurrency-List (Log-Concurrency-List *Log*)
:Old-Logs (Log-old-Logs *Log*)))

(when (equal (Task-Status Task) 'New)

(multiple-value-bind (New-Value New-Profile)

(Collect-Profile (Handler-Name-Of Task)

(Log-Task-Type-Profile *Log*))
(setq *Log*

(Make-Log :Type (Log-Type *Log*)

:Task-Status-Profile

(Log-Task-Status-Profile *Log*)
:Task-Type-Profile New-Profile

:Instruction-Type-Profile

(Log-instruction-Type-Profile *Log*)
:Operation-Type-Profile

(Log-operation-Type-Profile *Log*)

:Concurrency-List (Log-Concurrency-List *Log*)
:Old-Logs (Log-old-Logs *Log*))))))))

This function collects statistics on instruction types.

(defun Log-Instruction (Instruction)
(when (Logging?)

(cond ((not (equal (first instruction) 'Write))

(multiple-value-bind (New-value New-Profile)
(Collect-Profile (first Instruction)

(Log-Instruction-Type-Profile *Log*))
(setq *Log*

(Make-Log :Type (Log-Type *Log*)

:Task-Status-Profile

(Log-Task-status-Profile *Log*)

:Task-Type-Profile (Log-Task-Type-Profile
Log)

(multiple-value-bind (Argument-List New-Nodes

New-Task New-Event-Queue)
(Evaluate-Arguments Arguments Active-Task)

(setq *Nodes* New-Nodes

Active-Task New-Task
Event-Queue New-Event-Queue)

(cond ((equal (Task-Status Active-Task)

'RUNNING)
(Log-operation Operation)

(multiple-value-bind (Result New-Nodes New-Task
New-Event-Queue)

(apply (Get-operation Operation)

Argument-List

Nodes
Active-Task

Event-Queue)
(setq Active-Task New-Task

Nodes New-Nodes

Event-Queue New-Event-Queue)

(values Result Active-Task)))
(t (values nil Ative-Task)))))

(defun Evaluate-Arguments (Arguments Active-Task)
(let ((Argument nl))

(Evaluate-Arguments-1 Argument Arguments *Nodes*
Active-Task *Event-Queue*)))

(defun valuate-Arguments-1 (Argument Arguments Nodes

Active-Task Event-Queue)
(cond ((null Arguments)

(values nil Nodes Active-Task Event-Queue))
(t

(setq Argument (car Arguments))
(setq Arguments (cdr Arguments))

(multiple-value-bind (value New-Nodes New-Task
New-Event-Queue)

(Evaluate Active-Task Argument)
(multiple-value-bind (Argument-List Newer-Nodes

Newer-Task Newer-Event-Queue)
(Evaluate-Arguments-1 Argument Arguments New-Nodes

New-Task New-Event-Queue)
(values (cons Value Argument-List)

Newer-Nodes Newer-Task Newer-Event-Queue))))))

This function evaluates the expression and returns the

results. This is an evaluator appropriate for the limited
expressions in a Pi programs. Expressions are only evaluated
if the task status is 'RUNNING. The following expression

types are possible:

A number or string returns the value of the number or string.

A symbol is looked up in the handler bindings. If it is

present, the corresponding value is returned. Otherwise, the

symbol is returned.

A nested expression (a list) in the form (symbol argl arg2..).
In this case, Apply-operation is recursively called.

(defun Evaluate (Active-Task Expression)

(when (equal (Task-Status Active-Task)

'RUNNING)

(values
(typecase Expression

Hor number string)
Expression)

(symbol

(or (Lookup-Binding Expression (Task-Handler Active-Task))
Expression))

(list

(multiple-value-bind (Value New-Task)

(Apply-operation (Instruction-Op Expression)
Active-Task

(Instruction-Args Expression))
(setq Active-Task New-Task)
Value))

(otherwise

(break PiSim error: unknown expression,)))

Active-Task)))

This function returns the operation function for the operation
name. If the operation does not exist, an error message is
printed.

(defun Get-operation (Name)

(let ((Operation (get Name operation)))
(if (null operation)

(break PiSim error: unknown operation')
Operation)))

This is used to define processor operations.

(defmacro Define-Operation (Name rest Rest)

(setq *Global-Plist*

I(Update-Plist Name 'Operation #'(lambda Rest))))

271

Randoms

This function estimates the delivery delay of a essage It

should be better than it is now.

(defun Delivery-Delay (source Destination Length)
(when (or >= source (Number-of-Nodes))

(minusp Source)

(>= Destination (Number-of-Nodes))
(minusp Destination))

(break PiSim error: illegal node number,))
(when (or (minusp Length)

:Instruction-Type-Profile New-Profile

:Operation-Type-Profile
(Log-Operation-Type-Profile *Log*)
:Concurrency-List

(Log-concurrency-List *Log*)
:Old-Logs (Log-old-Logs *Log*)))))

((not (listp (fourth Instruction)))

(multiple-value-bind (New-Value New-Profile)
(Collect-Profile 'Initialize

(Log-instruction-Type-Profile
Log))

(setq *Log*

(Make-Log :Type (Log-Type *Log*)
:Task-Status-Profile
(Log-Task-Status-Profile *Log*)

:Task-Type-Profile
(Log-Task-Type-Profile *Log*)

:Instruction-Type-Profile New-Profile

:Operation-Type-Profile
(Log-operation-Type-Profile *Log*)

:Concurrency-List

(Log-Concurrency-List *Log*)
:Old-Logs (Log-old-Logs *Log*)))))

((equal (first (fourth Instruction)) 'Read)

(multiple-value-bind (New-value New-Profile)
(Collect-Profile

'Move (Log-Instruction-Type-Profile *Log*))

(setq *Log*

(Make-Log :Type (Log-Type *Log*)
:Task-Status-Profile

(Log-Task-Status-Profile *Log*)

:Task-Type-Profile

(Log-Task-Type-Profile *Log*)
:Instruction-Type-Profile New-Profile

:Operation-Type-Profile
(Log-operation-Type-Profile *Log*)

:Concurrency-List

(Log-Concurrency-List *Log*)

:Old-Logs (Log-old-Logs *Log*)))))
(t
(multiple-value-bind (New-Value New-Profile)

(collect-Profile (first (fourth instruction))

(Log-Instruction-Type-Profile
Log))

(setq *Log*

(Make-Log :Type (Log-Type *Log*)
:Task-Status-Profile

(Log-Task-Status-Profile *Log*)

:Task-Type-Profile
(Log-Task-Type-Profile *Log*)
:Instruction-Type-Profile New-Profile
:Operation-Type-Profile

(Log-operation-Type-Profile *Log*)

:Concurrency-List

(Log-Concurrency-List *Log*)

:Old-Logs (Log-old-Logs *Log*))))))))

This function creates an operation profile.

(defun Log-operation (operation)

(when (Logging?)

(multiple-value-bind (New-Value New-Profile)

(Collect-Profile Operation

(Log-operation-Type-Profile *Log*))
(setq *Log*

(make-Log :Type (Log-Type *Log*)

:Task-Status-Profile

(Log-Task-Status-Profile *Log*)

:Task-Type-Profile
(Log-Task-Type-Profile *Log*)
:Instruction-Type-Profile New-Profile
:Operation-Type-Profile

(Log-operation-Type-Profile *Log*)
:Concurrency-List

(Log-Concurrency-List *Log*)

:Old-Logs (Log-Old-Logs *Log*))))))

This function searches down a sorted list of deltas looking

for an entry at a specified time. If such an entry is found,
its value is adjusted by Change. If no such value is found,

a new delta is created an inserted at the correct position in
the list.

(defun Adjust-Concurrency-List (Time Change)

(when (Logging?)

(let ((Concurrency-List (Log-Concurrency-List *Log*)))
(cond (or (null Concurrency-List)

(< Time (Delta-Time (first Concurrency-List))))
(let ((New-Delta (make-Delta :Time Time

:Value Change)))
(setq *Log*

(Make-Log :Type (Log-Type *Log*)

:Task-Status-Profile

(Log-Task-Status-Profile *Log*)

:Task-Type-Profile

(Log-Task-Type-Profile *Log*)
:Instruction-Type-Profile

(Log-Instruction-Type-Profile *Log*)
:Operation-Type-Profile

(Log-operation-Type-Profile *Log*)

:Concurrency-List
(cons New-Delta

(Log-Conourrency-List *Log*))
:Old-Logs (Log-Old-Logs *Log*)))

New-Delta))

Time (Delta-Time (first oncurrency-List)))
(let* ((First-Delta (first Concurrency-List))

(New-Delta

(Make-Delta :Time (Delta-Time First-Delta)

:Value (+ (Delta-Value First-Delta)

Change))))
(setq *Log*

(Make-Log :Type (Log-Type *Log*)

:Task-Status-Profile
(Log-Task-Status-Profile *Log*)

:Task-Type-Profile
(Log-Task-Type-Profile *Log*)

:Instruction-Type-Profile

(Log-Instruction-Type-Profile *Log*)
:Operation-Type-Profile

(Log-operation-Type-Profile *Log*)
:Concurrency-List
(cons New-Delta

(cdr (Log-Concurrency-List *Log*)))
:Old-Logs (Log-Old-Logs *Log*)))

(Delta-Value New-Delta)))

(t
(setq *Log*

(Make-Log :Type (Log-Type *Log*)

:Task-Status-Profile

(Log-Task-Status-Profile *Log*)
:Task-Type-Profile

(Log-Task-Type-Profile *Log*)
:Instruction-Type-Profile

(Log-Instruction-Type-Profile *Log*)

:Operation-Type-Profile
(Log-operation-Type-Profile *Log*)
:Concurrency-List
(Adjust-Rest-Of-Concurrency-List

Time Change Concurrency-List)
:Old-Logs (Log-Old-Logs *Log*))))))))

This is the recursive part of Adjust-Concurrency-List.

(defun Adjust-Rest-Of-Concurrency-List (Time Change Concurrency-List)
(cond Hor (null (rest Concurrency-List))

(< Time (Delta-Time (second Concurrency-List))))

(cons (car Concurrency-List)
(cons (Make-Delta :Time Time :Value Change)

(rest Concurrency-List))))

Time (Delta-Time (second Concurrency-List)))

(cons (car Concurrency-List)
(cons (Make-Delta :Time (Delta-Time

, (second Concurrency-List))
:Value

(+ (Delta-value (second Concurrency-List))
Change))

(cdr (rest Concurrency-List)))))
(t

(cons (car Concurrency-List)

(Adjust-Rest-of-Concurrency-List
Time Change (rest Concurrency-List))))))

This function prints the information from the current log.

(defun Print-Log-Information ()

(when (or (equal (Log-Type *Log*) 'All)

(equal (Log-Type *Log*) 'Profile))
(Print-Profile-Data))

(when (or (equal (Log-Type *Log*) 'All)

(equal (Log-Type *Log*) 'Plot))

(Plot-Concurrency)))

272

(defun Execute-Bvents ()

(cond Hnull *Event-Queue*)
(values *Event-Queue* *Nodes*))

(t (Execute-Next-Event)
(Execute-Events))))

Hash Table Functions

(defconstant MIN-HASH_TABLE_SIZE 11)

(defstruct Entry

(Key nil :type symbol)
(Value nil :type any))

(defstruct HashTable
(Num-Buckets nil :type integer)

(Number-Entries nil :type integer)

(Buckets nil :type array))

(defun Hash-Insert (Table Key Value)

.(let* (Index (Hash-Function Key (HashTable-Num-Buckets Table)))

(New-Table
(multiple-value-bind (New-Bucket-List Number-Entries)

(splice-in-Bucket Value
Key

(aref (HashTable-Buckets Table) Index)
(HashTable-Number-Entries Table))

(Make-HashTable
:Nurn-Buckets (HashTable-Num-Buckets Table)

:Buckets (Copy-Replace-Elt New-Bucket-List
Index

(HashTable-Buckets Table))
:Number-Bntries Number-Entries))))

(if (HashTable-Nurnber-Entries New-Table)

(HashTable-Nurn-Buckets New-Table))

(Hash-Resize New-Table)

New-Table)))

(defun Splice-In-Bucket (Value Key Bucket-List Number-Entries)

(cond ((or (null Bucket-List)
(string< Key (Entry-Key (car Bucket-List))))

(values (cons (Make-Entry :Key Key

:Volue Value)

Bucket-List)
(1+ Number-Entries)))

(t (let ((This-Entry.(car Bucket-List)))

(cond ((string= Key (Entry-Key This-Entry))

(format t -&Bashing older bucket entry -A.,
This-Entry)

(values

if Key = key of This-Entry, then overwrite the older
bucket entry. (New bucket has same Key as older

Bucket entry, but new entry value.)

(cons (Make-Entry :Key Key
:Value Value)

(cdr Bucket-List))

Number-Entries))
(t (multiple-value-bind (New-Bucket-List Num-Entries)

(splice-In-Bucket Value

Key

(cdr Bucket-List)

Number-Entries)
(values

(cons This-Entry New-Bucket-List)
Num-Entries))))))))

(defun Hash-Resize (Table)
(let* ((Old-Buckets (HashTable-Buckets Table))

(old-Size (HashTable-Num-Buckets Table))

(New-Size (Determine-Hash-Table-Size
(* (HashTable-Num-Buokets Table) 2M

(New-Table (Make-HashTable :Num-Buckets New-Size

:Number-Entries

:Buckets (Make-Hash-Buckets New-Size))))
(Copy-Over-Buckets 0 Old-Size Old-Buckets New-Table)))

(defun Copy-over-Buckets (Index Old-Size old-Buckets New-Table)

(cond ((>= Index Old-Size) New-Table)

(t (let ((Bucket-List (aref old-Buckets index)))
(Copy-over-Buckets 1 Index)

Old-Size
Old-BLckets

(Copy-Over-Bucket Bucket-List New-Table))))))
(defun Copy-over-Bucket (Bucket-List New-Table)

(cond Hnull Bucket-List) New-Table)
(t (let ((This-Entry (car Bucket-list)))

(Copy-over-Bucket (dr Bucket-List)
(Hash-Insert New-Table

(Entry-Key This-Entry)

(Entry-Value This-Entry)))))))

;;This function creates a hash table having the specified of buckets.

(zerop Length)
(break PiSim error: illegal message length,))

(let ((Dimension nil)

(Temp-Dimensions *Machine-Dimensions*)
(source-Components nil)
(Destination-Components nil))

(Delivery-Delay-1 Dimension Temp-Dimensions
Source-Components Destination-Components
Source Destination Length)))

(defun Delivery-Delay-1 (Dimension Temp-Dimensions
Source-Components

Destination-Components
Source Destination Length)

(cond ((null Temp-Dimensions)
(let ((Source-Component nil)

(Destination-Component nil)

(Distance 0))

(Delivery-Delay-2
Source-Component
Destination-Component Distance Length

Source-Components Destination-Components)))

(t
(setq Dimension (car Temp-Dimensions))

(setq Temp-Dimensions (cdr Temp-Dimensions))
(setq Source-Components

(Put-on-End (mod Source Dimension)
Source-Components))

(setq source (floor Source Dimension))
(setq Destination-Components

(Put-on-End (mod Destination Dimension)
Destination-Components))

(setq Destination (floor Destination Dimension))

(Delivery-Delay-1
Dimension Temp-Dimensions Source-Components

Destination-Cornponents Source Destination

Length))))

(defun Put-on-End (X List)

(cond ((null List)
(list))

(t (cons (car List)

(Put-on-End X (cdr List))))))

(defun Delivery-Delay-2 (source-Component Destination-Component
Distance Length Source-Components
Destination-Components)

(cond null source-Components)

(+ Distance (- Length 1)))

(t
(setq Source-Component (car Source-Components))

(setq Source-Components (cdr ource-Components))

(cond ((null Destination-Components)
(+ Distance (- Length 1)))

(t
(setq Destination-Component

(car Destination-Components))

(setq Destination-Components
(cdr Destination-Components))

(setq Distance

(+ (abs (- Source-Component
Destination-Component))

Distance)Y
(Delivdry-Delay-2

Source-Component Destination-Component
Distance Length Source-Components

Destination-Components))))))

This function injects a starting message into the machine. it

starts calculating the message length and destination. The
message is then enqueued, and events are executed until the

event queue is epty.

(defun Inject (Type &rest Arguments)

(Make-Nodes)
(Clear-Nodes)

(Clear-Event-Queue)
(let* ((Handler (Get-Handler Type))

(Length (Handler-Arity Handler)

(Handler-Number-of-Locals Handler)
2))

(Destination (random (Number-of-Nodes)))
(Arrival-Time (Node-Time (Translate-Node Destination)))
(Message (Make-Message :Destination Destination

:Length Length
:Type Type
:Arguments Arguments))

(Event (Make-Event :Time Arrival-Time
:Object Message)))

(Enqueue-Event Event)

(Execute-Events)))

273

Since the size of a hash table must be a prime number, the
specified number of buckets is rounded up to a nearby prime.
The new table is then initialized.

(defun Make-Hash-Table (&optional Num-Buckets)
(let ((Size (Determine-Hash-Table-size

(or Num-Buckets MIN�_HASH__TABLE_SIZE))))
(Make-HashTable :Num-Buckets Size

:Buckets (Make-Hash-Buckets Size)
:Number-Entries 0)))

;;This function creates and initializes a bucket array.

(defun Make-Hash-Buckets (size)
(make-array Size))

This function looks up a key in the hash table. If it is
found, the entry pointer is returned. otherwise, nil is
returned.

(defun Hash-Lookup (Table Key)
(let* ((Index (Hash-Function Key

(HashTable-Num-Buckets Table)))
(Bucket-List (aref (HashTable-Buckets Table)

Index)))
(Hash-Lookup-1 Bucket-List Key)))

(defun Hash-Lookup-1 (Bucket-List Key)
(cond ((or (null Bucket-List)

(string< Key
(Entry-Key (car Bucket-List))))

nil)
((string= Key

(Entry-Key (car Bucket-List)))
(Entry-value (car Bucket-List)))

(t
(Hash-Lookup-1 (dr Bucket-List) Key))))

This function deletes an entry in the hash table.

(defun Hash-Delete (Table Key)
(let ((Index (Hash-Function Key

(HashTable-Num-Buckets Table))))
(multiple-value-bind (New-Bucket-List Number-Entries)

(Splice-Out-Bucket
Key
(aref (HashTable-Buckets Table) Index)
(HashTable-Number-Entries Table))

(Make-HashTable
:Num-Buckets (HashTable-Num-Buckets Table)

:Buckets (Copy-Replace-Bucket New-Bucket-List
Index
(HashTable-Buckets Table))

:Number-Entries Number-EntriesM)

(defun Splice-Out-Bucket (Key Bucket-List Nurnber-Entries)
(if (null Bucket-List)

(values nil Number-Entries) ;; fell off end of bucket list
(let ((This-Entry (car Bucket-List)))
(cond ((string> Key (Entry-Key This-Entry))

(multiple-value-bind (New-Bucket-List Num-Entries)
(Splice-Out-Bucket Key

(cdr Bucket-List)
Number-Entries)

(values
(cons This-Entry New-Bucket-List)

Num-Entries)))
((string= Key (Entry-Key This-Entry))
(values (cdr Bucket-List)

(1- Number-Entries)))
(t Key string< Key of This-Entry => Key isn't found
(values nil Number-Entries))))))

This function clears for all entries in the specified hash
table.

(defun Clear-Hash-Table (Table)
(let ((Size (HashTable-Num-Buckets Table)))

(Make-HashTable :Num-Buckets Size
:Number-Entries
:Buckets (Make-Hash-Buckets Size))))

This function picks the first prime number greater then or
equal to the specified size estimate. The minimum hash table
size is enforced here.

(defun Determine-Hash-Table-Size (Size-Estimate &aux size)
(if < Size-Estimate MINLHASK_TABLE_SIZE)

(setq Size MIR_HASH__TABLE_SIZE)
(setq Size Size-Estimate))

(if = (mod Size 2
(setq size Size)))

(Determine-Hash-Table-size-1 Size))

(defun, Determine-Hash-Table-Size-1 (size)
(if (null (Prime-Number-Test ize))

(Determine-Hash-Table-size-1 (Size 2)
Size))

(defun Prime-Number-Test (Number)
(let ((Index 3)

(cond Number 2 t)
(mod Number 2 0) nil)

(t (Prime-Number-Test-1 Index Number)))))

(defun Prime-Number-Test-1 (Index Number)
(cond ((<= (Square index) Number)

(if = (mod Number Index)
nil)

(setq Index index 2)
(Prime-Number-Test-1 index Number))

(t tM

(defun Square (n) (* n n))

Thisfunction calculates a hash table index from a key
(symbol->string) and the hash table size.

(defun Hash-Function (Key Size)
(let* ((Sum)

(Key-String (string Key))
(Length (1- (string-length Key-String))))

(setq Sum (Hash-Function-I Sum Key-string Length))
(mod Sum izeM

(defun Hash-Function-1 (Sum Key-String Length)
(cond (< Length)

sum)
(t

(setq Sum
(+ Sum (char-int (aref Key-string Length))))

(setq Length (1- Length))
(Hash-Function-1 Sum Key-String Length))))

274

-*- Syntax: Common-lisp; Base: 10.; Package: USER

CST simulator -- original version

queue stuff

(defvar *default-queue-size 16
'Initial Queue Size')

(defstruct queue

(head)
(tail

(length)
(data-size *default-queue-size*)
(data (make-array *default-queue-size*)))

(defun queue-first (queue)
(if > (queue-length queue)

(aref (queue-data queue)
(queue-head queue))))

(defun queue-empty? (queue)

(zerop (queue-length queue)))

(defun queue-list (queue)

(if (queue-empty? queue)

I)
(let (data (queue-data queue))

(head (queue-head queue))
(tail (queue-tail queue)))

(if < head tail)
(loop for index from head below tail

collect (aref data index))

(nconc (loop for index from head
below (ueue-data-size queue)

collect (aref data index))

(loop for index from below tail
collect (aref data indexM))))

(defun enqueue (queue obj)
(let* ((tail (queue-tail queue))

(length (queue-length queue))

(data (queue-data queue))
(old-size (ueue-data-size queue)))

(if < length (- old-size 2)

(progn

(setf (aref data tail) obj)
(setf (queue-tail queue)

(mod (queue-tail queue))
old-size))

(incf (queue-length queue)))

(progn
(adjust-array data (* old-size 2)

(setf (ueue-data-size queue)

(* old-size 2)

(let ((head (queue-head queue)))
(if > head tail) other case requires no copy

(progn

(loop for index from head below old-size
do (setf (aref data (+ old-size index))

(aref data index)))
(setf (queue-head queue)

(+ old-size had)))))
(enqueue queue obj)))))

(defun dequeue (queue)

(if (queue-empty? queue)
(error '-&Attempt to dequeue from an'empty queue -SI queue)
(progn

(let ((elt (aref (queue-data queue)
(queue-head queue))))

(setf (queue-head queue)

(mod (queue-head queue))
(queue-data-size queue)))

(decf (queue-length queue))

elt))))

code to access a node descriptor

node = queue X objects X contexts X method-cache

(defstruct node

(queue (make-queue))
(objects (make-array 32))
(contexts (make-array 32))

(method-cache (make-array *method-cache-size*))
(busy-count 0)

(defvar *nodes*)

(defvar *contexts*)

(defvar *nr-nodes* 256 'Must also change nrnodes in CST world')

(defvar *step-queue*) holds messages awaiting deliver

(defvar *step-nr*)

(defvar *Profile*) profiling flag, statistics recorded wh(

(defvar *Profile-list*)

(defvar *log* I 'Message Logging Enable,)

(defvar *trace* 0 'Whether or not we're tracing')

(defvar *trace-selectors* 0
*list of selectors we're tracing')

(defvar *method-cache* t)

(defvar *method-cache-size* 10)

(defvar *method-cache-trace I)
'Switch for method cache tracing')

(defvar *method-cache-trace-list*
'Global MC Trace list')

(defvar *eter-message-queues*
'Enable message queue size tracing')

(defvar *message-queue-trace* M

(defun get-node (node-nr)
(aref *nodes* node-nr))

code to access a message
msg is of the form (msg node-nr header selector obj-id args)

(defun new-msg (node-nr header selector receiver args)
(if (listp args)

(append (sg nde-nr header selector receiver) args)
1(msg node-nr hader selector receiver args)))

(defun msg-node (msg)
(cadr msg))

(defun msg-header (msg)
(caddr msg))

(defun msg-slotn (n sg)
(nth (n 3 msg))

(defun sg-selector (msg)
(msg-slotn 0 msg))

(defun msg-receiver (msg)
(msg-slotn 1 msg))

(defun msg-args (sg)
(nthcdr 5 msg))

(defun msg-argn (n sg)
(nth n. (msg-args sg)))

(defun is-msg (msg)
(eq (car sg) msg))

(defun msg-length (sg)
(1- (length msg)))

(defun deliver-msgs
(do ()

((queue-empty? *step-queue*))
(let* (msg (dequeue *tep-queue*))

(node-nr (,msg-node msg))
(node (get-node node-nr))
(q (node-queue node)))

(enqueue q msg))))

step-nodes walks through the nodes and attempts to run a
message on each node

(defun step-nodes
(when *Profile*

(profile-step))
(when *log*

(log-step))
(when *trace*

(record-traced-selectors *trace-selectors*))
(deliver-msgs)
(when *eter-message-queues*

(record-message-queue-data))
(doti-mes (x *nr-nodes*)

(step-node x))
(incf *step-nr*)

�ry

Len true

275

;; Run until no more work.

(defun step-done
(if (queue-empty? *step-queue*)

(do Hi (i 1M

((or = i *nr-nodes*)

(not (queue-empty? (node-queue (get-node i)))))
i *nr-nodes*)))))

(de-fun step-node (node-nr)

(let* ((node (get-node node-nr))

(q (node-queue node)))

(if (not (queue-empty? q))

(let ((msg (dequeue q)))

(incf (node-busy-count node))
(process-msg sg)))))

(defun send-msg (sg)

(enqueue *step-queue* sg))

(defun cst-start (init-msg)
(send-msg init-msg)

(shell-go))

(defun shell-go
(cond ((step-done)

nil)

(t (step-nodes)
(shell-go)))))

(defun process-msg (msg)
(if *profile*

(setq *nr-msgs-received*
(1 *nr-msgs-received*)))

(let ((header (sg-header msg)))

(case header

(send (process-send msg))
(call (process-call msg))
(new (process-new msg))
(newco (process-newco msg))
(reply (process-reply msg)))

nil))

new creates a new object on a node
new is of the form (new class reply-context reply-slot)

or if the object is distributed, a count may be appended
for distributed objects, new-co messages are sent in a fanout

tree to all constituents.

(defun process-new (sg)

(let* ((class-name (msg-slotn 0 msg))

(reply-context (msg-slotn 1 msg))

(reply-slot (msg-slotn 2 msg))

(dist (class-dist (get-class class-name)))

(id (new-object class-name (msg-node msg))))
(if dist

(let ((size (sg-slotn 3 msg)))
(init-distributed-object id size (msg-node msg)

reply-context rply-slot))

(reply-to-context reply-context reply-slot id))))

(defun init-distributed-object (id size node reply-context
reply-slot)

(let* Hsize (if size
(min size *nr-nodes*)

default-distobj-size*))

(did (new-did node sizeM
(send-dist-init node id did size node reply-context

reply-slot))) -

(defun send-dist-init (node id did index size root reply-context

reply-slot)
(let ((msg (new-msg node send Inewco id

(list index size root reply-context

reply-slot))))
(set-object-did (get-object (ref-id id)) did)
(send-msg msg)))

the newco message is a hack to allow distributed object to be
created.

(defun process-newco (msg)
(let* ((class-name (msg-slotn 0 msg))

(did (sg-slotn 1 msg))
(index (msg-slotn 2 msg))

(size (msg-slotn 3 msg))
(root (msg-slotn 4 sg))

(reply-context (sg-slotn 5 msg))
(reply-slot (msg-slotn 6 sg))

(id (new-object class-name (msg-node msg))))

(send-dist-init (msg-node msg) id did index size

root reply-context reply-slot)))

on a reply, stuff data into slot and resume context
message is (reply context-nr slot-nr data)
if value is a value, must allocate copy

(defun process-reply (msg)
(let* (context-nr (msg-slotn 0 msg))

(slot (msg-slotn 1 msg))
(data (msg-slotn 2 msg))
(context (get-context context-nr)))

(if context
(progn

(set-slot slot context data)
(resume-context context-nr)l)))

code to send a reply

(defun reply-to-context (context-nr slot value)
(let ((msg (new-msg (context-to-node context-nr)

'reply context-nr slot (list value))))
(send-msg msg)))

handle did receiver
send creates a new context and executes the first statement
if receiver is not atomic, look up class
ids are referred to like (id 3 to distinguish them from the integer 3.

(defun process-send (msg)
(let.* receiver (msg-receiver msg))

(node (msg-node msg)))
(cond His-did receiver)

(let* ((id (did-on-node receiver node)))
(if id

(process-normal-send msg id)
(forward-did-message node msg receiver))))

((is-co receiver)
(let id (did-on-node (did (second receiver)) node)))

(process-normal-send msg id)))
((is-block receiver)
(process-block-send msg))

(t
(process-normal-send msg receiver)))))

(defun. process-normal-send (msg receiver)
(let* ((selector (msg-selector Tnsg))

(args (sg-args msg)))
(if (is-id receiver)

(let* ((id (second receiver))
(obj (get-object id))
(class-name (object-class obj))
(code (method-lookup selector class-name)))

(start-code code msg receiver args))
(let* ((class-name

(cond ((integerp receiver) integer)
((floatp receiver) float)
((symbolp receiver) symbol)))

(code (method-lookup selector class-name)))
(start-code code msg receiver args)))))

(defun. forward-did-message (node msg receiver)
(setf (second msg) (id-to-node receiver))
(send-msg sg))

(defun process-block-send (msg)
(let ((block (get-block (blkid-get-id (msg-receiver msg))))

(selector (msg-selector msg))
(args (msg-args msg)))

(if (eq selector value)
(start-code block msg nil args)
(cst-error '-&Block message other than value msg))))

(defun start-code (code msg receiver args)
(if code

(let ((nr-args (block-nr-args code)))
(cond ((= nr-args 2)

(length args))
(start-method (sg-node msg) code receiver args))

(t
(progn

(cst-error -&Wrong number of arguments in -SI msg)
(cst-error -&-S actuals, to match -S formals,

args nr-args)))))))

create a context, copy args from message, execute to first send

(defun start-method (node code receiver args)
(let ((context-nr (ref-id (new-context node code receiverM)

(copy-args args context-nr)
(advance-context context.-nrM

(defun copy-args (args context-nr)
(let ((context (get-context context-nr)))

(loop for arg in args
for i from do
(set-context-slot context i arg))))

276

;;; advances context over next action

(defun advance-context (context-nr)
(let next (execute-instruction context-nrM

(when *profile*
(incf *nr-icodes-executed*))

(when *method-cache*
(let* ((node-nr (context-node (get-context context-nr)))

(node (get-node node-nr))
(block (context-code (get-context context-nr))))

(when *method-cache-trace*
(let ((prev (first ethod-cache-trace-list*)))

(if (not (and (equal (first prev)
step-nr)

(equal (second prev)
node-nr)))

(push (,*step-nr* node-nr (block-id block)
,(length (block-insts block)))

*method-cache-trace-list*M)
(when (not (method-cache-present-p

block
(node-method-cache nodeM

(progn
(incf *nr-blocks-loaded*)
(method-cache-insert block

(node-method-cache node))))))
(case next

(suspend nil)
(back-up (back-up-context context-nr))
(continue (advance-context context-nr))
(dispose (remove-context context-nr))
(otherwise

(cst-error -&Illegal value in advance context:-SI
next)))))

other opcodes

(defun execute-instruction (context-nr)
(let* ((inst (fetch-instruction context-nr))

(opcode (car inst)))
(if *Profile*

(setq *nr-insts-executed*
(+ (- (length inst) 1)

*nr-insts-executed*M
(execute-instruction-1 inst opcode context-nr)))

(defun execute-instruction-1 (inst opcode context-nr)
(case opcode

(move
(execute-move context-nr inst))

((send csend forward)
(execute-send context-nr inst))

((falsejump jump)
(execute-jump context-nr inst))

(label
'continue)
(reply reply-x)
(execute-reply context-nr inst))

Hreturn return-x)
(execute-return context-nr inst))

;; implement return icodes
(reply-console
(execute-reply-console context-nr inst))

(echo-console
(execute-echo-console context-nr inst))

(newco
(execute-newco context-nr inst))

(new
(execute-new context-nr inst))

(touch
(execute-touch context-nr inst))

(suspend
,suspend)
exit
,disposeM

(defun execute-touch (context-nr inst)
(let* Hontext (get-context context-nr))

(ref (second inst)))
(if (equal (get-slot ref context) c-fut)

,back-up
'continueM

sends away for a new object

(defun execute-new (context-nr inst)
(let* context (get-context context-nr))

(class-name (caddr inst))
(dest (cadr inst))
(size (get-slot (cadddr inst) context)))

(if (eq class-name array)
(progn

(set-slot dest context

new-array (context-node context) size)
'continue)

(progn
(set-slot dest context c-fut)
(cst-new class-name context-nr dest size)
,suspend))))

creates a onstitutent of a distributed object

(defun execute-newco (context-nr inst)
(let* Hcontext (get-context context-nr))

(slot �cadr inst))
(args (mapcar (I ambda x)

(get-slot x context))
(cddr inst)))

(object (get-object (ref-id (context-receiver context))))
(class (object-class object))
(did (object-did object))
(msg (new-msg (car args) Inewco class did

(append (cdr args) (list context-nr slot)))))
(set-slot slot context c-fut)
(send-msg msg)
'continue))

(defun execute-jump (context-nr inst)
Uet* Hopcode (car inst)))

(case opcode
(falsejump

(if (eq (get-slot (cadr inst)
(get-context context-nr))

'false)
(do-jump context-nr (caddr inst))
'continue))

(jump
(do-jump context-nr (adr inst))))))

(defun do-jump (context-nr target)
(let* Hcontext (get-context context-nr))

(code (block-insts (context-code context))))
(set-context-ip context

(find-jump-target code target 0))
'continue))

(defun find-jump-target (code target nr)
(if code

Uet* Ustat (car code)
(type (car stat)))

(if (and (eq type label)
(= (cadr stat) target))

nr
(find-jump-target (cdr code) target nr

does a primop or sends a message

(defun execute-send (context-nr inst)
(let* Hopcode (first inst))

(context (get-context context-nr))
(operation

(let ((oper (third inst)))
(if (syinbolp oper)

oper
(get-slot oper (get-context context-nr)))))

(rargs (cdddr inst))
(reply-to

(case opcode
((send csend)

(cons context-nr (second inst)))
(forward
(get-slot (second inst) cntext)))))

(basic-send opcode context-nr operation rargs reply-to)))

if the operation is primitive, do.it and continue
otherwise, actually do a message send

(defun basic-send (opcode context-nr operation rargs reply-to)
(let* ((context (get-context context-nr))

(all-args (mapcar #,(lambda x)
(get-slot x context))

rargs))
(node (context-node context))
(dest (cdr reply-to)
(op (is-primitive operation all-args)))

(if (member 'c-fut all-args)
,back-up
(if (and op

(equal (car reply-to) context-nr))
(progn

(set-slot dest context (apply op all-args))
'continue)

(progn
(cst-send node (car all-args)

operation (cdr all-args)
(car reply-to) (cdr reply-to))

277

(ivar
(object-ivar

(get-object (ref-id (context-receiver context)))
index))

((arg var temp)
(let ((n (compute-slot slot context))

(context-slot context nM
(block

slot)
(global

(get-global index))
(const

index)))
(case slot

(self
(context-receiver context)).

(group
(object-did

(get-object (ref-id (context-receiver context)))))
(requester

(cons (context-reply-context context)
(context-reply-slot context))))))

sets a slot

(defun set-slot (slot context value)
(let ((type (car lot))

(index (cadr slot)))
(case type

((arg var temp)
(let ((n (compute-slot slot context)))

(set-context-slot context n value)))
(ivar

(set-object-ivar
(get-object (ref-id (context-receiver context)))
index
value))

(global
(set-global index value))

P O
10) ;; do nothing if it's nil

(otherwise
(cst-error -&Slot error -SI slot)))))

- temporary hack to implement globals need to generate
code to send and receive

(defun set-global (name value)
(let* ((cell (assoc name *globals*)))

(if cell
(rplacd (cdr cell) value)
(cst-error -&unknown global -SI name))))

(defun get-global (name)
(let* Hcell (assoc name *globals*)I)

(if cell
(cddr cell)
(cst-error -unknown global -SI name))))

(defun fetch-instruction (context-nr)
(let* Hcontext (get-context context-nr))

(ip (context-ip ontext))
(inst (blocking ip (context-code context))))

(set-context-ip context 1 ip))
inst))

(defun next-instruction (context)
(let (ip (context-ip context)))

(blocking ip (context-code ontext))))

(defun back-up-context (context-nr)
(let* (context (get-context context-nr))

(ip (context-ip context)))
(set-context-ip context (- ip 1))))

resumes a suspended context

(defun resume-context (context-nr)
(advance-context context-nr))

(defun init-nodes ()
(setq *step-queue* (make-queue))
(setq *nodes* (make-array *nr-nodes*))
(dotimes (x *nr-nodes*)

(setf (aref *nodes* x) (make-node))))

(defun is-node (node)
(node-p node))

(defun random-node
(random *nr-nodes*))

(defun print-node (node-nr)

(case opcode
(send

(set-slot dest context Ic-fut)
suspend)

(csend
(set-slot dest context Ic-fut)
'continue)

(forward
'continue)))M)

(defun execute-move (context-nr inst)
(let* Hcontext (get-context context-nr))

(dest (second inst))
(src (third inst)))

(set-slot dest context (get-slot src context))
'continue))

Reply sends the result and exits the context

(defun execute-reply (context-nr inst)
(let* Hcontext (get-context context-nr))

(reply-context (context-reply-context ontext))
(reply-slot (context-reply-slot context))
(value (get-slot (cadr inst) context)))

(if reply-context
(case reply-context

(console
(cst-display value))

(otherwise
(when reply-slot

(reply-to-context reply-context reply-slot value)))))
,dispose))

Return sends the result and continues to run in the context

(defun execute-return (context-nr inst)
Uet* Ucontext (get-context context-nr))

(reply-context (context-reply-context context))
(reply-slot (ontext-reply-slot context))
(value (get-slot (cadr inst) cntext)))

(if reply-context
(case reply-context

(console
(cst-display value))

(otherwise
(when reply-slot

(reply-to-context reply-context reply-slot value)))))
'continue))

(defun execute-reply-console (context-nr inst)
(let* Hcontext (get-context context-nr))

(value (get-slot (cadr inst) ontext)))
(cst-display value)
,dispose))

(defun execute-echo-console (context-nr inst)
(let* Hcontext (get-context context-nr))

(val-list
(loop for val in (rest inst)

collecting (get-slot val context))))
(cst-display-list val-list))

'continue)

returns a numerical offset into a context's arg/var list

(defun compute-slot (slot context)
(let ((type (car slot))

(index (adr slot))
(code (context-code context)))

(case type
(var

(+ index
2

(block-nr-args code)))
(arg

index)
(temp

(+ index
2

(block-nr-args code)
(block-nr-vars odeM

(otherwise
(cst-error -Slot must be temp, var, or arg: -SI

slot))M

gets a slot e.g., (ivar 0)
<??> fix const and global

(defun get-slot (slot context)
(if (listp slot)

(let ((type (car lot))
(index (cadr slot)))

(case type 278

(let ((node (get-node node-nr)))
(format *standard-output*

'-&NODE -S QUEUE -S OBJECTS -S CONTEXTS -S'
node-nr (node-queue node)
(node-objects node) (node-contexts node))))

(defun init-contexts ()
(setf *contexts* (make-array *init-nr-contexts* :adjustable t))
(setf *nr-contexts* *init-nr-contexts*)
(setf *next-context*
(setf *free-contexts* (make-stack))
(setf *context-state-resource* (make-array-resourceM

(defun initial-context (nr-slots)
(get-array *context-state-resource* nr-slots))

(defun context-nr (context)
(nth 1 context))

(defun context-node (context)
(nth 2 context))

(defun context-code (context)
(nth 3 context))

(defun context-ip (context)
(nth 4 context))

(defun set-context-ip (context x)
(setf (nth 4 context) x))

(defun context-state (context)
(nth 5 context))

(defun context-receiver (context)
(nth 6 context))

(defun context-slot (context n)
(aref (context-state context) n))

(defun set-context-slot (context n x)
(setf (aref (context-state context) n) x))

(defun context-reply-context (context)
(context-slot context

(block-nr-args (context-code context))))

(defun set-context-reply-context (context x)
(set-oontext-slot context

(block-nr-args (context-code context))
x))

(defun context-reply-slot (context)
(context-slot context

(1 (block-nr-args (context-code context)))))

(defun set-context-reply-slot (context x)
(set-context-slot context

(1 (block-nr-args (context-code context)))
x))

(defun get-context (context-nr)
(aref *contexts*'context-nr))

(defun context-to-node (context-nr)
(context-node (get-context context-nr)))

(defun find-context (c-nr clist)
(loop for context in -list

until = -nr (context-nr context))
finally (return context)))

(defun live-contexts
(loop for index from below (length *contexts*)

when (aref *contexts* index)
collect (aref *contexts* index)))

(defun context-method (context)
(block-method (block-id (context-code contextM)

A block identifier abstraction
a block id is (block blksymbol)

(defun make-blkid
(gensym -BLOCK-))

(defun blkid-get-id (blkid)
(cadr blkid))

(defun is-blkid (id)
(equal (car id) block))

(defun block-method (blkid)
(loop for method in *methods*

when (eq (caddr method) blkid)
return method))

(defvar *blocks* 1()
'Icode blocks')

(defun get-block (block-tag)
(assoc block-tag *blocks*))

(defun block-id (block)
(car block))

(defun block-nr-args (block)
(cadr block))

(defun block-nr-vars (block)
(caddr block))

(defun block-nr-temps (block)
(cadddr block))

(defun block-insts (block)
(nth 4 block))

(defun blocking (n block)
(nth n (block-insts block)))

returns the code

(defun method-lookup (selector class-name)
(let method (method-lookupl selector class-name)))

(if (null method)
(progn

(format *standard-output*
'-&message -S not implemented for class -SI
selector class-name)

M
method)))

(defun method-lookupl (selector class-name)
(let* ((class (get-class class-name)))

(if class
(let* ((supers (class-supers class))

(methods (class-methods class))
(method (assoc selector methods)))

(if method
(get-block (caddr mthod))
(if (or (not (listp supers))

(eq class-name object.)
('eq class-name nil))

(method-lookupl selector (car supers))))))))

(defvar *classes* 1()
'Class Structure and mthods')

(defun get-class (class-name)
(let ((class (assoc class-name *classes*)))

(if class
class
(cst-error -Undefined Class -SI class-nameM)

(defun class-name (class)
(car class))

(defun class-supers (class)
(cadr class))

(defun class-vars (class)
(caddr class))

(defun class-methods (class)
(cadddr class))

(defun class-dist cass)
(fifth class))

(defvar *objects* nil)

(defun get-object (id)
(aref *objects* id))

(defun object-id (obj)
(second obj))

(defun object-did (obj)
(third obj))

(defun set-object-did (obj x)
(setf (third obj) x))

279

(defun object-node (obj)
(fourth obj))

(defun object-class (obj)
(fifth obj))

(defun object-state (obj)
(sixth obj))

(defun object-ivar (obj n)
(nth n (object-state obj)))

(defun set-object-ivar (obj n x)
(setf (nth n (object-state obj)) x))

(defun is-object (obj)
(eq (car obj) object))

(defun is-id (ref)
(and (listp ref)

(eq (car ref) id)))

(defun is-did (ref)
(and (listp ref)

(eq (car ref) did)))

(defun is-co (ref)
(and (listp ref)

(eq (car ref) 'co)))

(defun is-block (ref)
(and (listp ref)

(eq (car ref) block)))

(defun ref-id (ref)
(cadr ref))

(defun cst-error (string &rest args)
(apply #,format *standard-output* string args)
nil)

(defun cst-display-list (alist)
(format *standard-output* -&-3D I *step-nr*)
(loop for val in alist

do (st-display-1 val)))

(defun cst-display (value)
(format *standard-output* -&-3D I *step-nr*)
(cst-display-l.value))

(defun cst-display-1 (value)
(cond ((listp value)

(let ((type (car value))
(index (cadr value)))

(case type
(id

(format *standard-output* I -I (get-object index)))
(otherwise

(format *standard-output* I -SI value)))))
((arrayp value)
(display-array value))

(t
(format *standard-output* -SI value))))

(defun display-array (value)
(let ((y nil))

(dotimes (x (length value))
(setq y (cons (aref value x) y)))

(format *standard-output* I -SI (reverse y))))

statistics functions

(defvar *log-list* 1()
'Log of Messages')

log all messages this step

(defun log-step
(push (list *step-nr*

(copy-list (queue-list *step-queue*)))
log-list))

(defvar *trace-list* I
'Messages we've recorded')

record traced messages'this step

(defun record-traced-selectors (traced)
(let ((new-msgs

(selectively-copy-traced traced
(queue-list *step-queue*))))

(when new-msgs
(push (list *step-nr* new-msgs) *trace-list*))))

Filter out the traced selectors

(defun selectively-copy-traced (sel-list msglist)
(loop for msg in msglist

when (member (msg-selector msg) sel-list) collect msg into result
finally (return rsult)))

(defvar *nr-msgs-received* 0
'Number of msgs received in the current time step')

(defvar *nr-insts-executed* 0
'Insts executed, current time step')

(defvar *nr-icodes-executed* 0
'Icodes, current time step')

(defvar *nr-blocks-loaded* 0
'Number of Method Cache misses, current time step,

(defun profile-step
(push (make-profile-frame *step-nr*

(queue-length *step-queue*)
nr-:msgs-received
nr-insts-executed
nr-icodes-executed
nr-blocks-loaded
(avg-queue-length)
(total-message-length))

ptofile-list)
(setf *nr-insts-executed* 0)
(setf *nr-icodes-executed* 0)
(setf *nr-blocks-loaded* 0)
(setf *nr-msgs-received* 0))

(defun make-profile-frame (time-step msgs-new msgs-done
insts-exec icodes-exec blocks-loaded
avg-q-length msgs-words)

(list time-step msgs-new msgs-done
insts-exec icodes-exec blocks-loaded
avg-q-length msgs-words))

(defun record-message-queue-data
(push (cons *step-nr*

(loop for index from below *nr-nodes*
with mqlen =
unless (zerop

(setf mqlen
(loop for message

in (queue-list
(node-queue (get-node index)))

sum (msg-length message))))
collect (list index mqlen)))

message-queue-trace))

(defun avg-queue-length
(let ((tql 0))

(dotimes (x *nr-nodes*)
(setq tql

(+ tql
(queue-length (node-queue (get-node x))))))

tql *nr-nodes*)))

(defun total-message-length
(reduce #+

(mapcar #,message-length (queue-list *step-queue*))))

(defun message-length (message)
(- (length message) 2)

280

-*- syntax: Common-lisp; Base: 10.; Package: USER
CST simulator -- functional version

queue stuff

(defvar *default-queue-size* 16 'Initial Queue Size,)

(defstruct queue

(head)
(tail
(length)
(data-size *default-queue-size*)

(data (make-array *default-queue-size* :adjustable t)))

(defun queue-first (queue)
(if > (queue-length queue)

(aref (queue-data queue) (queue-head'queue))))

(defun queue-empty? (queue)

(= (queue-length queue) 0))

(defun queue-list (queue)

(if (queue-empty? queue)

I
(let ((data (queue-data queue))

(head (queue-head queue))

(tail (queue-tail queue)))
(if < head tail)

(let Hindex head)
(list nil)

(end-index til))
(queue-list-1 index end-index data list))

(append

(let Hindex head)
(list nil)
(end-index (queue-data-size queue)))

(queue-list-1 index end-index list))

(let index)
(list nil)
(end-index tail))

'(queue-list-1 index end-index list)))))))

(defun queue-list-1 (index end-index data list)

(cond ((not < index.end-index))

list)
(t (setq list (cons (aref data index) list))

(setq index index))
(queue-list-1 index end-index data list))))

(defun enqueue (queue obj)
(let* ((length (queue-length queue))

(old-size (queue-data-size queue))
(big-enough-queue

(if < length (1- old-size))

queue
(grow-queue queue))))

(enqueue-base big-enough-queue obj)))

(defun enqueue-base (queue obj)
(let ((old-size (queue-data-size queue)))

(setq queue
(make-queue :head (queue-head queue)

(queue-tail queue)
:length (queue-length queue)

:data-size (queue-data-size queue)
:data (copy-replace-elt obj

(queue-tail queue)

(queue-data queue))))

(setq queue

(make-queue :head (queue-head queue)
:tail (mod (queue-tail queue))

old-size)
:length (queue-length queue)

:data-size (queue-data-size queue)
:data (queue-data queue)))

(setq queue
(make-queue :head (queue-head queue)

:tail (queue-tail queue)

:length (queue-length queue))
:data-size (queue-d'ata-size queue)
:data (queue-data queue)))

queue))

(defun grow-queue (queue)

(let* ((old-size (queue-data-size queue))

(new-size (* old-size 2)
(old-data (queue-data queue))

(new-data (make-array nw-size))
(head (queue-head queue))
(number-elements (queue-length queue)))

(setq new-data
(copy-over-elts
old-data new-data head old-size number-elements))

(setq queue
(make-queue :head

:tail (queue-tail queue)
:length (queue-length queue)
:data-size (queue-data-size queue)
:data (queue-data queue)))

(setq queue
(make-queue :head (queue-head queue)

:tail number-elements
:length (queue-length queue)
:data-size (que�me-data-size queue)
:data. (queue-data queue)))

(setq queue
(make-queue :head (queue-head queue)

:tail (queue-tail queue)
:length number-elements
:data-size (ueue-data-size queue)
:data (queue-data queue)))

(setq queue
(make-queue :head (queue-head queue)

:tail (queue-tail queue)
:length (queue-length queue)
:data-size (* old-size 2)
:data (queue-data queue)))

(setq queue
(make-queue :head (queue-head queue)

:tail (queue-tail queue)
:length (queue-length queue)
:data-size (queue-data-size queue)
:data new-data))))

(defun copy-over-elts (old-data new-data from old-size number-elements)
(copy-over-elts-I old-data new-data from old-size number-elements))

(defun copy-over-elts-1 (old-data new-data new-index from old-size
number-elements)

(cond H>= new-index number-elements)
new-data)

(t (copy-over-elts-1
old-data
(copy-replace-elt

(aref old-data (mod from new-index) old-size))
new-index
new-data)

(1+ new-index)
from
old-size
number-elements))))

(defun dequeue (queue)
(let ((elt (aref (queue-data queue)

(queue-head queue))))
(setq queue (make-queue :head (mod (queue-head queue))

(queue-data-size queue))
:tail (queue-tail queue)
:length (queue-length queue)
:data-size (ueue-data-size queue)
:data (queue-data queue)))

(setq queue
(make-queue :head (queue-head queue)

:tail (queue-tail queue)
:length (1- (queue-length queue))
:data-size (ueue-data-size queue)
:data (queue-data queue)))

(values elt queue)))

code to access a node descriptor
node = queue X objects X contexts X method-cache

(defstruct node
(queue (make-queue))
(objects (make-array 32))
(contexts (make-array 32))
(method-cache (make-array *ethod-cache-size*))
(busy-count 0)

(defstruct sg
(node nil) ;; a node number
(header nil)
(selector nil)
(receiver nil)
(args nil)) ;; a list

(defstruct context
(nr nil)
(node nil)
(code nil)
(ip nil)
(state nil)
(receiver nil))

(defstruct block
(id nil)

281

(nr-args nil)
(nr-vars nil)
(nr-temps nil)
(insts il))

(defstruct class
(name nil)
(supers nil)
(vars nil)
(methods nil)
(dist nil))

(defstruct object
(id nil)
(did nil)
(node nil)
(class nil)
(state nil))

(defun object-ivar (obj n)
(nth n (object-state obj)))

(defun is-object (obj)
(object-p obj))

(defun blocking (n block)
(nth n (block-insts block)))

(defvar *nodes*)

(defvar *contexts*)

(defvar *step-queue*)

(defvar *step-nr*)

(defvar *nr-nodes* 256 'Must also change nrnodes in CST world')

(defvar *profile*);profi1ing flag, statistics recorded when true.

(defvar *profile-list*)

(defvar *log* 1()) message logging enable

(defvar *trace* 0 'whether or not we're tracing,))

(defvar *trace-selectors* 1() IList of selectors we're tracing')

(defvar *method-cache* t)

(defvar *method-cache-size* 10)

(defvar *method-cache-trace* 1()
'Switch for method cache tracing')

(defvar *method-cache-trace-list*
'Global MC Trace listl)�

(defvar *meter-message-queues*
'Enable message queue size tracing')

(defvar *message-queue-trace*

(defvar *blocks*
'Icode blocks')

(defvar *classes* 1()
'Class Structure and methods')

(defvar *objects*)

(defun get-node (node-nr)
(aref *nodes* node-nr))

(defun get-block (block-tag)
(assoc block-tag *blocks*))

(defun get-class (class-name)
(let ((class (assoc class-name *lasses*)))

(if class
class
(cst-error -Undefined Class -SI class-name))))

(defun get-object (id)
(aref *objects* id))

(defun sg-argn (n msg)
(nth n (msg-args msg)))

(defun sg-length (msg)
(if (listp (msg-args msg))

(4 (length (msg-args msg)))
5))

(defun deliver-msgs ()
(cond ((queue-empty? *step-queue*)

nil)
(t (multiple-value-bind (msg new-step-queue)

(dequeue *step-queue*)
(setq *step-queue* new-step-queue)
(let* ((node-nr (msg-node msg))

(node (get-node node-nr))
(q (node-queue nde))
(new-q (enqueue q sg))
(new-node

(make-node :queue new-q
:objects (node-objects node)
:contexts (node-contexts node)
:method-cache
(node-method-cache node)
:busy-count
(node-busy-count node))))

(setq *nodes*
(copy-replace-elt new-node node-nr *nodes*))))

(deliver-msgs))))

step-nodes walks through the nodes and attempts to run a message
on each node

(defun step-nodes
(when *profile*

(profile-step))
(when *log*

(log-step))
(when *trace*

(record-traced-selectors *trace-splectors*))
(deliver-msgs)
(when *meter-message-queues*

(record-message-queue-data))
(iteratively-step-nodes 0)
(setq *step-nr* 1 *step-nr*M

(defun iteratively-step-nodes (x)
(if >= x (array-total-size *nodes*))

nil
(step-node x)
(iteratively-step-nodes 1 x))))

Run until no more work.

(defun step-done
(if (queue-empty? *step-queue*)

(nodes-unemployed?
nil))

(defun nodes-unemployed? (i)
(cond ((>= i (array-total-size *nodes*))

((queue-empty? (node-queue (get-node i)))
(nodes-unemployed? (i 1)))

(t nilM

(defun step-node (node-nr)
(let* ((node (get-node node-nr))

(q (node-queue node)))
(if (queue-empty? q)

nil
(multiple-value-bind (msg new-queue)

(dequeue q)
(setq node

(make-node :queue new-queue
:objects (node-objects node)
:contexts (node-contexts node)
:busy-count (node-busy-count node))
:method-ca�he (node-method-cache node)))

(setq *nodes*
(copy-replace-elt node node-nr *nodes*))

(multiple-value-bind (new-nodes new-step-queue)
(process-msg msg *nodes* *step-queue*)

(setq *nodes* new-nodes
step-queue new-step-queue))))))

(defun send-msg,(msg)
(setq *step-queue* (enqueue *step-queue* msg)))

(defun cst-start (init-msg)
(send-msg init-msg)
(shell-go))

(defun shell-go
(cond ((step-done)

nil)
(t (step-nodes)

(shell-go)))))

(defun process-msg (msg)
(if *Profile*

282

(setq *nr-msgs-received*
(1 *nr-msgs-received*)))

(let (header (msg-header msg)))
(case header

(send (process-send msg))
(call (process-call msg))
(new (process-new msg))
(newco (process-newco msg))
(reply (process-reply msg)))

nil))

new creates a new object on a node
new is of the form (new class reply-context reply-slot)
or if the object is distributed, a count may be appended
for distributed objects, new-co messages are sent in a
fanout tree to all constituents.

(defun process-new (msg)
(let* ((class-name (msg-selector msg))

(reply-context (msg-receiver msg))
(reply-slot (first (msg-args msg)))
(dist (class-dist (get-class class-name)))
(id (new-object class-name (msg-node msg))))

(if dist
(let size (second (msg-args msg))))

(init-distributed-object id size (msg-node msg)
reply-context reply-slot))

(reply-to-context reply-context reply-slot id))))

(defun init-distributed-object (id size node reply-context
reply-slot)

(let* Hsize (if size
(min size *nr-nodes*)
default-distobj-size*))

(did (new-did node size)))
(send-dist-init node id did size node reply-context

reply-slot)))

(defun send-dist-init (node id did index size root reply-context
reply-slot)

(let ((msg
(make-msg :node node

:header send
:selector Inewco
:receiver id
:args
(list index size root reply-context reply-slot)))

(object (get-object (ref-id id))))
(setq *objects*

(copy-replace-elt
(make-object :id (object-id object)

:did did
:node (object-node object)
:class (object-class object)
:state (object-state object)
:ivar (object-ivar object))

(ref-id id)
objects))

(send-msg msg)))

the newco message is a hack to allow distributed object to be
created.

(defun process-newco (msg)
(let* ((class-name (msg-selector msg))

(did (msg-receiver sg))
(index (first (msg-args msg)))
(size (second (msg-args msg)))
(root (third (msg-args msg)))
(reply-context (fourth (msg-args msg)))
(reply-slot (fifth (sg-args msg)))
(id (new-object class-name (msg-node msg))))

(send-dist-init (msg-node sg) id did index size
root reply-context rply-slot)))

on a reply, stuff data into slot and resume context
message is (reply context-nr slot-nr data)
if value is a value, must allocate copy

(defun process-reply (msg)
(let* Hcontext-nr (msg-selector msg))

(slot (msg-receiver msg))

(data (first (msg-args msg)))
(context (get-context context-nr)))

(if context
(progn

(set-slot slot context data)
(resume-context context-nrM))

code to send a reply

(defun reply-to-context (context-nr slot value)
(let (msg

(make-msg :node (context-to-node context-nr)
:header reply
:selector context-nr
:receiver slot
:args (list value))))

(send-msg msg)))

;;;<??> handle did receiver
send creates a new context and executes the first statement
if receiver is not atomic, look up class
ids are referred to like (id 3 to distinguish them from the integer 3.

(defun process-send (msg)
(let* Hreceiver (msg-receiver msg))

(node (msg-node msg)))
(cond His-did receiver)

(let* (id (did-on-node receiver node)))
(if id

(process-normal-send msg id)
(forward-did-message node msg receiver))))

((is-co receiver)
(let ((id (did-on-node (did (second receiver)) node)))

(process-normal-send msg id)))
((is-block receiver)
(process-block-send msg))

(t
(process-normal-send msg receiver)))))

(defun process-normal-send (msg receiver)
(let* Hselector (msg-selector msg))

(args (msg-args msg)))
(if (is-id receiver)

(let* ((id (second receiver))
(obj (get-object id)
(class-name (object-class obj))'
(code (method-lookup selector class-name)))

(start-code code sg receiver args))
(let* ((class-name

(cond ((integers receiver) integer)
((floatp receiver) float)
((symbolp receiver) symbolM

(code (method-lookup selector class-name)))
(start-code code sg receiver args)))))

(defun forward-did-message (node msg receiver)
(setq sg

(make-msg :node (id-to-node receiver)
:header (msg-header msg)
:selector (msg-selector msg)
:receiver (msg-receiver msg)
:args (sg-args sg)))

(send-msg msg))

(defun process-block-send (sg)
(let ((block (get-block (blkid-get-id (sg-receiver msg))))

(selector (msg-selector msg))
(args (sg-args msg)))

(if (eq selector value)
(start-code block msg nil args)
(cst-error 0&Block message other than value -So msg))))

(defun start-code (code msg receiver args)
(if code

(let ((nr-args (block-nr-args cde)))
(cond ((= (+ nr-args 2)

(length args))
(start-method (msg-node msg) code receiver args))

(t
(progn

(cst-error -&Wrong number of arguments in -SI msg)
(cst-error -&-S actuals, to match -S formals,

args nr-args)))))))

create a context, copy args. from message, execute to first send

(defun start-method (node code receiver args)
(let ((context-nr (ref-id (new-context node code receiverM)

(copy-args args context-nr)
(advance-context context-nrM

(defun copy-args (args context-nr)
(let ((context (get-context context-nr)))

(let (arg nil)
(i 0))

(copy-args-1 arg args i context))))

(defun copy-args-1 (arg args i context)
(cond ((null args)

nil)
(t
(setq arg (car args))

283

(multiple-value-bind (value new-context)
(set-context-slot context i arg)

(setq context new-context))
(setq args (dr args))
(setq i 1 i))
(copy-args-1 arg args i ontext))))

advances context over next action

(defun advance-context (context-nr)
(let next 6xecute-instruction context-nrM

(when *profile*
(setq *nr-icodes-executed*

(1+ *nr-icodes-executed*M
(when *method-cache*

(let* ((node-nr (context-node (get-context context-nr)))
(node (get-node node-nr))
(block (context-code (get-context context-nr))))

(when *method-cache-trace*
(let ((prev (first *ethod-cache-trace-list*)))

(if (not (and (equal (first prev)
step-nr)

(equal (second prev)
node-nrM

(setq *method-cache-trace-list*
(cons (list *step-nr* node-nr

(block-id block)
(length (block-insts block)))

method-cache-trace-list)M)
(when (not (method-cache-present-p

block
(node-method-cache node)))

(progn
(setq *nr-blocks-loaded*

(1+ *nr-blocks-loaded*))
(method-cache-insert block

(node-method-cache node))))))
(case next

(suspend nil)
(back-up (back-up-context context-nr))
(continue (advance-context context-nr))
(dispose (remove-context context-nr))
(otherwise

(cst-error -&Illegal value in advance context:-SO
next)))))

<??> other opcodes

(defun. execute-instruction (context-nr)
(let* Hinst (fetch-instruction context-nr))

(opcode (car inst)))
(if *Profile*

(setq *nr-insts-executed*
(+ (- (length inst) 1)

*nr-insts-executed*M
(execute-instruction-1 inst opcode context-nr)))

(defun. execute-instruction-1 (inst opcode context-nr)
(case opcode

(move
(execute-move context-nr inst))

((send csend forward)
context-nr inst))

((falsejump jump)
(execute-jump context-nr inst))

(label
'continue)

((reply reply-x)
(execute-reply context-nr inst))

Hreturn return-x)
(execute-return context-nr inst))

;; implement return icodes
(reply-console
(execute-reply-console context-nr inst))

(echo-console
(execute-echo-console context-nr inst))

(newco
(execute-newco context-nr inst))

(new
(execute-new context-nr inst))

(touch
(execute-touch context-nr inst))

(suspend
,suspend)

(exit
,dispose)))

(defun. execute-touch (context-nr inst)
(let* Hcontext (get-context context-nr))

(ref (second inst)))
(if (equal (get-slot ref context) c-fut)

,back-up
'continueM

;;; sends away for a new object

(defun execute-new (context-nr inst)
(let* Hcontext (get-context context-nr))

(class-name (caddr inst))
(dest (cadr inst))
(size (get-slot (cadddr inst) context)))

(if (eq class-name array)
(progn

(set-slot dest context
new-array (context-node context) size)

'continue)
(progn

(set-slot dest context c-fut)
(cst-new class-name context-nr dest size)
I suspend))))

creates a constitutent of a distributed object

(defun execute-newco (context-nr inst)
(let* context (get-context context-nr))

(slot (cadr inst))
(args (mapcar #,(lambda (x)

(get-slot x context))
(cddr inst)))

(object (get-object (ref-id (context-receiver contextM)
(class (object-class object))
(did (object-did object))
(MSg

(make-msg :node (car args)
:header Inewco
:selector class
:receiver did
:args
(append (cdr args) (list context-nr slot)))))

(set-slot slot context Ic-fut)
(send-msg msg)
'continue))

(defun execute-jump (context-nr inst)
(let* Hopcode (car inst)))

(case opcode
(falsejump

(if (eq (get-slot (cadr inst)
(get-context context-nr))

'false)
(do-jump context-nr (caddr inst))
'continue))

(jump
(do-jump context-nr (cadr inst))))))

(defun do-jump (ontext-nr target)
(let* ((context (get-context context-nr))

(code (block-insts (context-code context))))
(setq *contexts*

(copy-replace-elt
(make-context :nr (context-nr context)

:node (context-node context)
:code (context-code context)
:ip (find-jump-target code target
:state (context-state context)
:receiver (context-receiver context))

context-nr
contexts))

'continue))

(defun find-jump-target (code target nr)
(if code

(let* Hstat (car code))
(type (car stat)))

(if (and (eq type label) = cadr stat) target))
nr
(find-jump-target (dr code) target (+ nr 1))))))

does a primop or sends a message

(defun execute-send (context-nr inst)
(let* (opcode (first inst))

(context (get-context context-nr))
(operation

(let (oper (third inst)))
(if (symbolp oper)

oper
(get-slot oper (get-context context-nr)))))

(rargs (cdddr inst))
(reply-to

(case opcode
Hsend csend)

(cons context-nr (second inst)))
(forward
(get-slot (second inst) context)))))

(basic-send opcode context-nr operation rargs rply-to)))

284

if the operation is primitive, do it and continue
otherwise, actually do a message send

(defun basic-send (opcode context-nr operation rargs reply-to)
Uet.* context (get-context context-nr))

(all-args (mapcar (lambda (x)
(get-slot x context))

rargs))
(node'(context-node context))
(dest (cdr reply-to))
(op (is-primitive operation all-args)))

(if ember c-fut all-args)
,back-up
(if (and op

(equal (car reply-to) context-nr))
(progn

(set-slot dest context (apply op, all-args))
'continue)

(progn
(cst-send node (car all-args)

operation (cdr all-args)
(car reply-to) (dr reply-to))

(case opcode
(send

(set-slot dest context c-fut)
,suspend)

(csend
(set-slot dest context c-fut)
'continue)

(forward
continue)MM

(defun execute-move (context-nr inst)
Uet* Hcontext (get-context context-nr))

(dest (second inst))
(src tird inst)))

(set-slot dest context (get-slot src context))
'continue))

Reply sends the result and exits the context

(defun execute-reply (context-nr inst)
(let* Hcontext (get-context context-nr))

(reply-context (context-reply-context context))
(reply-slot (context-reply-slot ontext))
(value (get-slot (cadr inst.) ontext)))

(if reply-context
(case reply-context

(console
(cst-display value))

(otherwise
(when reply-slot

(reply-to-context reply-context reply-slot
value))M

,dispose))

Return sends the result and continues to run in the context

(defun execute-return (context-nr inst)
(let* context (get-context context-nr))

(reply-context (context-reply-context ontext))
(reply-slot (context-reply-slot context))
(value (get-slot (cadr inst) context)))

(if reply-context
(case reply-context

(console
(cst-display value))

(otherwise
(when reply-slot

(reply-to-context reply-context reply-slot value)))))
'continue))

(defun execute-reply-console (context-nr inst)
(let* context (get-context context-nr))

(value (get-slot (adr inst) context)))
(cst-display value)
,dispose))

(defun execute-echo-console (context-nr inst)
(let* ((context (get-context context-nr))

(val-list
(let (val nil))

(execute-echo-console-1 val (rest inst) context))))
(cst-display-list val-list))

'continue)

(defun execute-echo-console-1 (val vals context)
(cond Hnull vals)

nil)
(t
(setq val (car vals))
(setq vals (cdr vals))

(cons (get-slot val context)
(execute-echo-console-1 val vals context))M

returns a numerical offset into a context's arg/var list

(defun compute-slot (slot context)
(let ((type (car slot))

(index (cadr slot))
(code (context-code ontext)))

(case type
(var

(+ index
2
(block-nr-args cde)))

(arg
index)

(temp
(+ index

2
(block-nr-args code)
(block-nr-vars ode)))

(otherwise
(ost-error -Slot must be temp, var; or arg: -S. slot)))))

gets a slot e.g., (ivar 0)
<??> fix const and global

(defun get-slot (slot context)
(if (listp slot)

(let ((type (car slot))
(index (cadr slot)))

(case type
(ivar

(object-ivar
(get-object (ref-id (context-receiver context)))
index))

((arg var temp)
(let ((n (compute-slot slot context))

(context-slot context n))))
(block

slot)
(global

(get-global index))
(const

index)))
(case slot

(self
(context-receiver ontext))

(group
(object-did

(get-object (ref-id (context-receiver ontext)))))
(requester

(cons (context-reply-context context)
(context-reply-slot context))))))

sets a slot

(defun set-slot (slot context value)
(let ((type (car slot))

(index (cadr slot)))
(case type

((arg var temp)
(let ((n (compute-slot slot ontext)))

(multiple-value-bind (value new-context)
(set-context-slot context n value)

valueM
(ivar

(let* Hid (ref-id (context-receiver context)))
(object (get-object id)))

(setq *objects*
(copy-replace-elt

(make-object :id (object-id object)
:did (object-did object)
:node (object-node object)
:class (object-class object)
:state
(replace-nth index

(object-state object)
value))

id
objects))

value))
(global

(set-global index value))
(I

IM do nothing if it's nil
(otherwise

(cst-error -Slot error -S, slot)))))

(defun replace-nth (n list value)
(cond ((null list)

nil)
((= n 0)

285

(cons value (cdr list)))
(t
(cons (car list)

(replace-nth (1- n)
(cdr list)
value)M)

<??> - temporary hack to mplement globals need to generate
code to send and receive

(defun. set-global (name value)
(let* ((cell. (assoc name *globals*)))

(if cell
(setq gloats

(replace-global
name
(cons (car cell) value)
globals))

(cst-error -&unknown global -SI name))))

(defun replace-global (name cell globals)
(cond ((null globals)

nil)
((eql name (car (car globals)))
(cons (cons name cell)

(cdr globals)))
(t
(cons (car globals)

(replace-global name cell (cdr globals))))))

(defun get-global (name)
Uet* cell (assoc name *globals*)))

(if cell
(cddr cell)
(cst-error -&unknown. global -I name))))

(defun fetch-instruction (context-nr)
Uet* Hcontext (get-context context-nr))

(ip (context-ip context))
(inst (blocking ip (context-code ontext))))

(setq *contexts*
(copy-replace-elt

(make-context :nr (context-nr context)
:node (context-node context)
:code (context-code context)
:ip (+ p)
:state (context-state context)
:receiver (context-receiver context))

context-nr
contexts))

inst))

(defun. next-instruction (context)
(let ((ip (context-ip context)))

(blocking ip (context-code context))))

(defun. back-up-context (context-nr)
(let* Hcontext (get-context context-nr))

(ip, (context-ip context))
(new-ip (- ip 1)))

(setq *contexts*
(copy-replace-elt

(make-context :nr (context-nr context)
:node (context-node context)
:code (context-code context)
:ip new-ip
:state (context-state context)
:receiver (context-receiver ontext))

context-nr
contexts))

new-ip))

resumes a suspended context

(defun. resume-context (context-nr)
(advance-context context-nr))

(defun. init-nodes
(setq *step-queue* (make-queue))
(setq *nodes* (make-array *nr-nodes*))
(let Hx 0))

(init-nodes-1 x *nr-nodes*)))

(defun init-nodes-1 (x n)
(cond ((not < x n))

nil)
(t
(setq *nodes*

(copy-replace-elt (make-node) x *nodes*))
(setq x 1 x))
(init-nodes-1 x n))))

(defun is-node (node)
(node-p node))

(defun random-node
(random *nr-nodes*))

(defun print-node (node-nr)
(let ((node (get-node node-nrM

(format *standard-output* '-&NODE -S QUEUE -S OBJECTS -S CONTEXTS -I
node-nr (node-queue node)
(node-objects node) (node-contexts node))))

(defun init-contexts ()
(setf *contexts* (make-array *init-nr-contexts* :adjustable t))
(setf *nr-contexts* *init.-nr-context,s*)
(setf *next-context*
(setf *free-contexts* (make-stack))
(setf *context-state-resource* (make-array-resource)))

(defun. initial-context (nr-slots)
(get-array *context-state-resource* nr-slots))

(defun context-slot (context n)
(aref (context-state context) n))

(defun set-context-slot (context n x)
(let ((new-context

(make-context :nr (context-nr context)
:node (context-node context)
:code (context-code context)
:ip (context-ip context)
:state (copy-replace-elt

x n (context-state context))
:receiver (context-receiver contextM)

(setq *contexts*
(copy-replace-elt

new-context
(context-nr context)
contexts))

(values x new-context)))

(defun context-reply-context (context)
(context-slot context

(block-nr-args (context-code ontext))))

(defun set-context-reply-context (context x)
(set-context-slot context

(block-nr-args (context-code context))
x))

(defun context-reply-slot (context)
(context-slot context

(1 (block-nr-args (context-code context)))))

(defun set-context-reply-slot (context x)
(set-context-slot context

(1 (block-nr-args (context-code context)))
x))

(defun get-context (context-nr)
(aref *ontexts* context-nr))

(defun context-to-node (context-nr)
(context-node (get-context context-nr)))

(defun find-context cnr clist)
(let Hcontext nil))

(find-context-1 context c-nr c-list)))

(defun find-context-1 (context c-nr clist)
(cond (null clist)

context)
(t
(setq context (car clist))
(cond = c-nr (context-nr context))

context)
(t.

(setq clist (r clist))
(find-context-1 context -nr c-list))))))

(defun live-contexts
(let index

(limit (length *contexts*)))
(live-contexts-1 index limit)))

(defun live-contexts-1 (index limit)
(cond not < index limit))

nil)
(t
(setq index index))
(let ((rest-live-contexts

(live-contexts-1 index limit)))
(if (aref *contexts* index)

286

(cons (aref *contexts* index)
rest-live-contexts)

rest-live-contexts)))))

(defun context-method (context)
(block-method (block-id (context-code contextM)

A block identifier abstraction
a block id is (block blksymbol)

(defun make-blkid.
(gensym -BLOCK-))

(defun lkid-get-id (blkid)
(cadr blkid))

(defun is-blkid (id)
(equal (car id) block))

(defun block-method (blkid)
(let Hmethod nil)

(.methods *methods*))
(block-method-1 method methods blkid)))

(defun block-method-1 (method methods blkid)
(cond ((null methods)

nil)

(t,
(setq method (car methods))
(setq methods (cdr methods))
(if (eq (caddr method) blkid)

method
(block-method-1 method methods blkid)))))

returns the code

(defun method-lookup (selector class-name)
(let ((method (method-lookupl selector class-name)))

(if (null.method)
(progn

(format *standard-output*
'-&message -S not implemented for class -SI
selector class-name)

M
method)))

(defun. method-lookupl (selector class-name)
(let* ((class (get-class class-name)))

(if class
(let* ((supers (class-supers class))

(methods (class-methods class))
(method (assoc selector methodsM

(if method
(get-block (addr method))
(if (or (not (listp supers))

(eq class-name object)
(eq class-name nil))

U
(method-lookupl selector (car supers))))))))

(defun is-id (ref)
(and (listp ref)

(eq (car ref) id)))

(defun is-did (ref)
(and (listp ref)

(eq (car ref) did)))

(defun is-co (ref)
(and (listp ref)

(eq (car ref) 'co)))

(defun is-block (ref)
(and (listp ref)

(eq (car ref) block)))

(defun ref-id (ref)
(cadr ref))

(defun cst-error (string &rest args)
(apply 4format *standard-output* string args)
nil)

(defun cst-display-list (alist)
(format *standard-output* -&-3D I *step-nr*)
(let ((val nil))

(cst-display-list-1 val alist)))

(defun. cst-display-list-1 (val alist)
(cond ((null alist)

nil)

t
(setq val (car alist))
(setq alist (cdr alist))
(cst-display-1 val)
(ost-display-list-1 val alist))))

(defun cst-display (value)
(format *standard-output* -&-3D I *step-nr*)
(cst-display-1 vlue))

(defun cst-display-1 (value)
(cond ((listp value)

(let ((type (car value))
(index (cadr value)))

(case type
(id

(format *standard-output* I -SI (get-object index)))
(otherwise
(format *standard-output* I -SI value)))))

((arrayp value)
(display-array value))

(t

(format *standard-output* I -I value))))

(defun display-array (value)
(let ((y nil)

(x 0)
(limit (length value)))

(setq y (display-array-1 x limit y value))
(format *standard-output* I -SI (reverse y))))

(defun display-array-1 x limit y value)
(cond Hnot < x limit))

Y)
(t
(setq y (cons (aref value x) y))
(setq x 1 x))
(display-array-1 x limit y value))))

statistics functions

(defvar *log-list* 1()
$Log of Messages')

log all messages this step

(defun log-step
(setq *log-list*

(cons (list *step-nr*
(copy-list (queue-list *step-queue*)))

log-list)))

(defvar *trace-list* 0
'Messages we've recorded')

record traced messages this step

(defun record-traced-selectors (traced)
(let ((new-msgs

(selectively-copy-traced traced (queue-list *step-queue*))))
(when new-msgs

(setq *trace-list*
(cons (list *step-nr* new-msgs)

trace-list)))))

Filter out the traced selectors

(defun selectively-copy-traced (sel-list msglist)
(let ((msg nil))

(selectively-copy-traced-1 msg sel-list msglist)))

(defun selectively-copy-traced-1 (sg sel-list msglist)
(cond ((null msglist)

nil)
(t
(setq msg (car msglist))
(setq msglist (cdr msglist))
(let ((rest-of-result

(selectively-copy-traced-1 msg sel-list msglist)))
(if (member (msg-selector msg) sel-list)

(cons msg rest-of-result)
rest-of-result)))))

(defvar *nr-msgs-received* 0
'Number of msgs received in the current time step')

(defvar *nr-insts-executed* 0
'Insts executed, current time step')

(defvar *nr-icodes-executed* 0
'Icodes, current time tep')

287

(defun message-length (message)
(if (listp (msg-args mssage))

(3 (length (msg-args mssage)))
4))

(defvar *nr-blocks-loaded* 0
'Number of Method Cache misses, current time step'

(defun profile-step
(setq *profile-list*

(cons (make-profile-frame
step-nr
(queue-length *step-queue*)
nr-msgs-received
nr-insts-executed
nr-icodes-executed
nr-blocks-loaded
(avg--�queue-length)
(total-message-length))

Profile-list))
(setf *nr-insts-executed* 0)
(setf *nr-icodes-executed* 0)
(setf *nr-blocks-loaded* 0)
(setf *nr-msgs-received* 0))

(defun make-profile-frame (time-step msgs-new sgs-done
insts-exec icodes-exec
blocks-loaded
avg-q-length sgs-words)

(list time-step msgs-new msgs-done
insts-exec icodes-exec blocks-loaded
avg-q-length msgs-words))

(defun record-message-queue-data
(setq *essage-queue-trace*

(cons
(cons *step-nr*

(let index)
(limit *nr-nodes*)
(mqlen 0))

(record-message-queue-data-1
index limit mqlen)))

message-queue-trace)))

(defun record-message-queue-data-1 (index limit mqlen)
(cond ((not < index limit))

nil)
(t.
(setq mqlen

(let ((message nil)
(messages (queue-list

(node-queue (get-node index))))
(sum 0))

(record-message-queue-data-2 message messages
sum)))

(let (rest-queue-data (record-message-queue-data-1
(1+ index) limit 0)))

(if (not (zerop mqlen))
(cons (list index mqlen)

rest-queue-data)
rest-queue-data)))))

(defun record-message-queue-data-2 (message messages sum)
(cond ((null messages)

sum)
(t
(setq message (car messages))
(setq messages.(cdr mssages))

(setq sum sum (msg-length message)))
(record-message-queue-data-2 message messages sum))))

(defun avg-queue-length
(let (tql 0))

(setq tql (sum-queue-lengths 0 tql))
(/ tql (array-total-size *nodes*))))

(defun sum-queue-lengths (x tq1)
(if >= x (array-total-size *nodes*))

tql
(sum-queue-lengths

(1+ X)
(+ tql (queue-length (node-queue (get-node x)))))))

(defun total-message-length
(let ((sum 0))

(total-message-length-1
sum
(mapoar #'message-length (queue-list *tep-queue*)))))

(defun total-message-length-1 (sum lengths)
(cond ((null lengths)

sum)
(t
(setq sum sum (car lengths)))
(setq lengths (cdr lengths))
(total-message-length-1 sum lengths))))

288

,kppendix C

I e xranarnar nco in e

IC e 1 rar

This appendix contains the grammar that encodes our cliche' library. It is an extraction of

key parts of the grammar rules, showing their graph structure and the documentation asso-

ciated with the cliche's they represent. Due to space limitations, non-structural constraints

are not included.

The syntax of a grammar rule is as follows:

(Defrule lhs node type>

<cliche name>

:RHS-Node-Types

<node label-type pairs>

:Edge-List

<source-sink pairs>

:Input-Embedding

<lhs-to-rhs mappings>

:Output-Embedding

<lhs-to-rhs mappings>

:St-Thrus

<lhs-to-lhs mappings>

:L-R-Link <cliche relationship>

:Doc

(<documentation string> <documentation arguments))

The non-terminal node type of the rule's left-hand sde is given by lhs node typeX

The name of the cliche' represented by this non-terminal type 'is given by <cliche name>.

The keywords :RHS-Node-Types and :Edge-List specify the right-hand side flow graph.

:RHS-Node-Types describes the rght-hand side nodes. The <node label-type pairs> is a

list of pairs of the form (<node-label> <node-type>), each of which specifies the label

of a right-hand side node ad its type. :Edge-List indicates which ports are connected

by a directed edge. The <source-sink pairs> is a list of pairs of the form (<source port

289

specif ication> . <sink port specif ication>), where each port specification is of the form

(<node label> <numeric port identifier>).

The keywords : Input-Embedding, Output-Embedding, and : St-Thrus specify the embed-

ding relation of the rule. The lhs-to-rhs mappings> in the 'input and otput embeddings

is a Est of mappings of the form (lhs port specification> <rhs port specif ication>

[<data part or overlay name>]). The pair of port specifications describes the correspon-

dence between a port on the left-hand side node and a port on a right-hand sde node.

The <data part or overlay name> is optional. It can name either a part of a cched ag-

gregate data structure or a data overlay. For example, in the rule for CIS-Extract, there

is the Ihs-to-rhs mapping ((CIS-Extract 1) (Access-Base 1) Base)'-. This maps the Base

part of the CIS aggregate data structure represented by port of the left-hand side node

CIS-Extract to port of the right-hand side node Access-Base. An example of a Ihs-

to-rhs mapping tat includes a data overlay name is found in a rule for FIFO-Dequeue:

((FIFO-Dequeue 1) (Extract-CIS-First 1) Circnlar-Indexed-Sequence>FIFO). This maps

the first ports of the left-hand sde and right-hand side nodes to each other and it specifies

that they are related by a data overlay that views a Circular-Indexed-Seqnence as a FIFO

queue. Similarly, the lhs-to-lhs mappings> following the :St-Thrus keyword is a Est of

mappings of the form lhs input port specif ication> lhs output port specif ication>

[<data part or overlay name>]). Such a mapping specifies that te two left-hand sde ports

correspond, i.e., the rule contains a st-thru.

The <cliche relationship> gven with the :L-R-Link keyword describes how te cched

operation represented by the left-hand side node is related to the ccll-ed operation(s) rep-

resented by the right-hand side node(s). This information is used in annotating the links

of a design tree and 'in generating documentation.

The explanation fragment associated with a cliche' 'is given in the :Doc keyword, whose

value consists of a <documentation string> with slots that are filled in by the <documentation

arguments>. The arguments are in the form of expressions that are evaluated in the context

in which the right-hand side of the rule is reduced to the left-hand side during parsing.

If a rule as been depicted 'in a figure in the document, then the figure's number is given

in a comment preceding the rule. (There is an index of the list of figures following this

appendix.)

The grammar rules are followed by an alphabetical list of te non-terminal node types

and the types of their ports. For example, a node of type ABC, having three ports of type

Integer, Symbol, and Queue, respectively, is listed as: (ABC 1:Integer 2:Symbol 3:Queue).

The number preceding each node type specifies the page on which the rules for the node

type begin.

290

(Defrule SEQUENTIAL-SIMULATION-OF-MESSAGE-PASSING-SYSTF24
'Sequential Simulation of Parallel Message-Passing System'
:RHS-Node-Types
((SIMULATE-ASYNCHRONOUSLY . EVENT-DRIVEN-SIMULATION))
:Input-Embedding
(((SEQUEWIAL-SIMULATION-OF-MESSAGE-PASSING-SYSTEM 1)

(SIMULATE-ASYNCHRONOUSLY 3)
((SEQUENTIAL-SIMULATION-OF-MESSAGE-PASSING-SYSTEM 2)

(SIMULATE-ASYNCHRONOUSLY
:Output-Embedding

(((SEQUENTIAL-SIMULATION-OF-MESSAGE-PASSING-SYSTEM 3)
(SIMULATE-ASYNCHRONOUSLY 4)

:L-R-Link IMPLEM ENT ATION
:Doc

(,sequentially simulates a parallel message-passing ystem.,))

(Defrule SEQU=IAL-SIMULATION-OF-MESSAGE-PASSItTG-SYSTE24
'Sequential Simulation of Parallel Message-Passing System'
:RHS-Node-Types
((SIMULATE-SYNCHRONOUSLY SYNCHRONOUS-SIMULATION))
:Input-Embedding
(((SEQUENTIAL-SIMULATION-OF-MESSAGE-PASSIIZG-SYSTEM 1)

(SIMULATE-SYNCHRONOUSLY 1))
((SEQUENTIAL-SIMEJLATION-OF-MESSAGE-PASSING-SYSTEM 2)

(SIMULATE-SYNCHRONOUSLY 2)
:Output-Embedding

(((SEQUENTIAL-SIMULATION-OF-MESSAGE-PASSING-SYSTEM 3)
(SIMULATE-SYNCHRONOUSLY 3))

:L-R-Link IMPLEMENTATION
:Doc

(,sequentially simulates a parallel message-passing system.,))

;;; Figure 421.

(Defrule EVENT-DRIVEN-SIMULATION
'Event-Driven Simulation'

:RHS-Node-Types
((INSERT-INITIAL-EVENT . P-INSERT)
(GENERATE-EVQ+NODES . GENERATE-EV ENT -QUEUES-AND-NODES)

(ED-FINISHED? . CO-EARLIEST-EDS-FINISHED))
:Edge-List
(((INSERT-INITIAL-EVENT 3 . (GENERATE-EVQ+NODES 1))

((GENERATE-EVQ+NODES 4 (ED-FINISHED? 2)

((GENERATE-EVQ+NODES 3 (ED-FINISHED? M
:Input-Embedding
(((EVENT-DRIVEN-SIMULATION 1) (INSERT-INITIAL-EVENT 1))

((EVENT-DRIVEN-SIMULATION 2) (INSERT-INITIAL-EVENT 2)

((EVENT-DRTVEN-SIMULATION 3) (GENERATE-EVQ+NODES 2)
:Output-Embedding
(((EVENT-DRIVEN-SIMULATION 4) (ED-FINISHED? 3))

:L-R-Link COMPOSITION
:Doc
(,asynchronously simulates a collection of processing nodes -

handling messages, using an event-driven algorithm. An -
event queue -A of events is maintained. To start, an -

initial event -A is inserted in the event-queue. On each -

step, an event is pulled off and processed, which may -
create new events to be added to the event-queue. -

The asynchronous nodes (which represent processing nodes) -
are collected in an address-map, called A.-

(INPUT-PORT-NAME> (DOC-BP> (EVENT-DRIVEN-SIMULATION 2))
(INPUT-PORT-NAME> (DOC-BP> (EVENT-DRIVEN-SIMULATION 1)))
(INPUT-PORT-NAME> (DOC-BP> (EVENT-DRIVEN-SIMULATION 3))))

Figure 421.

(Defrule GNERATE-EVENT-QUEUES-AND-NODES
'Generate Event Queues and Nodes,
:RHS-Node-Types
((EVENT+NODE-GEN-F . DEQUEUE-AND-PROCESS-CENERATION))
:Input-Embedding

(((GENERATE-EVENT-QUEUES-AND-NODES 1) (EVENT+NODE-GEN-F M
((GENERATE-EVENT-QUEUES-AND-NODES 2 (EVENT+NODE-GEN-F 2)

:Output-Embedding
(((GENERATE-EVENT-QUEUES-AND-NODES 3 (EVENT+NODE-GEN-F 3)

((GENERATE-EVMTr-QUEUES-AND-NODES 4 (EVENT+NODE-CEN-F 4M
:L-R-Link TEMPORAL-ABSTRACTION

:Doc

(,generates event queues and address-maps by repeatedly -

dequeuing the current event queue and processing the event
dequeued. Processing an event causes new events to be

added to the event queue and a new address-map to be -

created. The initial event queue is -A and the initial
address-map is A.-%-
The outputs of this operation are 2 series:-%-
one is the series of event queues and the other is the
series of address-maps created.,

(INPUT-PORT-NAME>
(DOC-BP> (GENERATE-EVENT-QUEUES-AND-NODES 1)))

(INPUT-PORT-NAME>
(DOC-BP> (ENERATE-EVENT-QUEUES-AND-NODES 2))))

;;; Figure 421.

(Defrule DEQUEUE-AND-PROCESS-GENERATION
'Dequeue and Process Generation'
:RHS-Node-Types
((DQ-EVENT . PQ-EXTRACT)

(PROCESS-THE-EVENT . PROCESS-EVENT))
:Edge-List
(((DQ-EvENT 3 (PROCESS-THE-EVENT 2)

((DQ-EVENT 2 (PROCESS-THE-EVENT 1)))

:Tnput-Embedding
(((DEQUEUE-AND-PROCESS-GENERATION 1) (DQ-EVENT 1))

((DEQUEUE-AND-PROCESS-GENEPATION 2 (PROCBSS-THE-EVENT 3))
:St-Thrus

(((DEQUEUE-AND-PROCESS-CENEPATION 2 (DEQUEUE-AND-PROCESS-GENERATION 4)

((DEQUEUE-AND-PROCESS-CENERATION 1) (DEQUEUB-AND-PROCESS-GENERATION 3M
:L-R-Link COMPOSITION
:Doc

(Idequeues the event queue -A and processes the event dequeued,-%-
using the address-map -A.,

(INPUT-PORT-NAME> (DOC-BP> (DEQUEUE-AND-PROCESS-CENERATION 1)))
(INPUT-PORT-NAME> DOC-BP> (DEQUEUB-AND-PROCESS-GENEPATION 2))))

Figure 422.

(Defrule CO-EARLTEST-EDS-FINISHED

'Co-Earliest Event-Driven Simulation Finished,
:RHS-Node-Types

((EDS-FINISHED? . CO-ITEPATIVE-EDS-FINISHED))
:Input-Embedding

(((CO-EARLIEST-EDS-FINISHED 1) (EDS-FINISHED? 1))

((CO-EARLIEST-EDS-FINISHED 2 (EDS-FINISHED 2)
:Output-Embedding

(((CO-EARLIEST-EDS-FINISHED 3 (EDS-FINISHED 3)
:L-R-Link TEMPORAL-ABSTRACTION

:Doc

('takes a sequence of event-queues and a sequence of address-maps and
returns the address-map in the sequence of address-maps that --
corresponds to the first empty event-queue in the sequence of -%-
event-queues.,))

Figure 422.

(Defrule CO-ITERATTVE-EDS-FTNISHED

'Co-Iterative Event-Driven Simulation Finished,
:RHS-Node-Types

((TERMINATE-EDS? . PQ-EMPTY))
:Input-Embedding

(((CO-ITEPATIVE-EDS-FINISHED 1) (TERMINATE-EDS? 1)))
:St-Thrus

(((CO-ITERATIVE-EDS-FINISHED 2 (CO-ITERATIVE-EDS-FINISHED 3))
:L-R-Link COMPOSITION
:Doc

(,terminates the simulation when the current event-queue (-A)-%-

is empty, returning the current value of the address-map (-A).-%-

The event-queue is mplemented as a Priority Queue.'
(INPUT-PORT-NAME> (DOC-BP> (CO-ITERATIVE-EDS-FINISHED 1)))

(INPUT-PORT-NAME> (DOC-BP> (CO-ITERATIVE-EDS-FINISHED 2)))

Figure 424.

(Defrule PROCESS-EVENT
'Process Event'
:RHS-Node-Types

((GET-DEST . LOOKUP-DESTINATION)

(TIME-UPDATB UPDATE-NODE-TIME)

(RECORD-DEST RECORD-AT-DESTINATION)

(PROCESS-THE-MSG HANDLE-MESSAGE))
:Edge-List
(((CET-DEST 3 (TIME-UPDATE 1))

((TIME-UPDATE 3 (RECORD-DEST 1))
((RECORD-DEST 4 (PROCESS-THE-MSG 2)

:Input-Embedding

(((PROCESS-EVENT 1) (PROCESS-THE-MSG 1)
OBJECT)

((PROCESS-EVENT 1) (RECORD-DEST 2)

OBJECT)

((PROCESS-EVENT 1) (GET-DEST 2)

OBJECT)

((PROCESS-EVENT 1) (TIME-UPDATE 2)
TIME)

((PROCESS-EVENT 2 (PROCESS-THE-MSG 3)
((PROCESS-EVENT 3 (RECORD-DEST 3)
((PROCESS-EVENT 3 (GET-DEST 1)))

:Output-Embedding
(((PROCESS-EVENT 4 (PROCESS-THE-MSG 5))

((PROCESS-EVENT 5) (PROCESS-THE-MSG 4)
:L-R-Link COMPOSITION
:Doc

(,processes the event -A whose object -A is a Message,-%-

using the asynchronous node that is the destination of the message.-%-
First the time of this node is updated with respect to the-%-
time of the event's object -A. Then the node-%-

2 91

handles the message, creating a new address-map and event
queue.'

(INPUT-PORT-NAME> (DOC-BP> (PROCESS-EVENT 1)))
(INPUT-PORT-NAME> (DOC-BP> (PROCESS-EVENT 1) OBJECTH
(INPUT-PORT-NAME> (DOC-BP> (PROCESS-EVENT 1) TIME))))

Figure 426.

(Defrule UPDATE-NODE-TIME
'Update Node Time'
:RHS-Node-Types
((FIND-MAX . MAX))
:Input-Embedding
(((UPDATE-NODE-TIME 1) (FIND-MAX)

TIME)
((UPDATE-NODE-TIME 2 (FIND-MAX 2)

:Output-Embedding
(((UPDATE-NODE-TIME 3 (FIND-MAX 3)

TIME))
:St-Tbrus
(((UPDATE-NODE-TIME 1) (UPDATE-NODE-TIME 3)

MEMORY))
:L-R-Link COMPOSITION
:Doc
(,updates the time of the asynchronous node A-%-

to be the maximum of its current time A-%-
and the input time -A.,

(INPUT-PORT-NAME> (DOC-BP> (UPDATE-NODE-TIME 1)))
(INPUT-PORT-NAME> (DOC-BP> (UPDATE-NODE-TIME 1) TIME))
(INPUT-PORT-NAME> (DOC-BP> (UPDATE-NODE-TIME 2)))

(Defrule LOCAL-BUFFER-NQ
'Local Buffer Enqueuel
:RHS-Node-Types
((BUFFER-MSO-LOCALLY . FIFO-ENQUEUE))
:Input-Embedding
(((LOCAL-BUFFER-NQ 1) (BUFFBR-MSC-LOCALLY 1))

((LOCAL-BUFFER-NQ 2 (BUFFER-MSG-LOCALLY 2)
LOCAL-BUFFER))

:Output-Bmbedding
(((LOCAL-BUFFER-NQ 3 (BUFFER-MSG-LOCALLY 3)

LOCAL-BUFFER))
:St-Thrus
(((LOCAL-BUFFER-NQ 2 (LOCAL-BUFFER-NQ 3)

MEMORY))

:L-R-Link COMPOSITION
:Doc
(lenqueues the Message -A on the local buffer of the

synchronous node -A.,
(INPUT-PORT-NAME> (DOC-BP> (LOCAL-BUFFER-NQ 1)))
(INPUT-PORT-NAME> (DOC-BP> (LOCAL-BUFFER-NQ 2))))

Figure 5-5.

(Defrule LOCAL-BUFFER-DQ
'Local Buffer Dequeuel
:RHS-Node-Types
((EXTRACT-MSG . FIFO-DEQUEUE))
:Input-Embedding
(((LOCAL-BUFFER-DQ 1) (EXTRACT-MSG

LOCAL-BUFFER))
:Output-Embedding
(((LOCAL-BUFFER-DQ 2 (EXTRACT-MSG 2)

((LOCAL-BUFFER-D 3 (EXTRACT-MSG 3)
LOCAL-BUFFER))

:St-Thrus
(((LOCAL-BUFFER-DQ 1) (LOCAL-BUFFER-D 3)

MEMORY))
:L-R-Link COMPOSITION
:Doc
(Idequeues the first message (if any) from the local buffer

of the Synch-Node -A.'
(INPUT-PORT-NAME> (DOC-BP> (LOCAL-BUFFER-DQ 1)))))

(Defrule LOOKUP-NODE+NQ+UPDATE
'Lookup Node, Enqueue Message, and Update Node Map'
:RHS-Node-Types
((LOOKUP-DEST-NODE LOOKUP-DESTINATION)

(NQ-MSG . LOCAL-BUFFER-NQ)
(UPDATE-MAP . RECORD-AT-DESTINATION))

:Edge-List
(((LOOKUP-DEST-NODE 3 . (NQ-MSG 2)

((NQ-MSG 3 (UPDATE-MAP 1)))
:Input-Embedding
(((LOOKUP-NODE+NQ+UPDATE 1) (UPDATE-MAP 2)

((LOOKUP-NODE+NQ+UPDATE 1) (NQ-MSG 1))
((LOOKUP-NODE+NQ+UPDATE 1) (LOOKUP-DEST-NODE 2)
((LOOKUP-NODE+NQ+UPDATE 2) (UPDATE-MAP 3)
((LOOKUP-NODE+NQ+UPDATE 2) (LOOKUP-DEST-NODE 1)))

:Output-Embedding
(((LOOKUP-NODE+NQ+UPDATE 3) (UPDATE-MAP CH
:L-R-Link COMPOSITION
:Doc
(,looks up the synchronous node at the address in the

Destination Address part of message -A in the global address-map -
-A. It then creates a new node wl the message on the front of the
new node's local buffer. The new node is added to the global
address-map.,

(INPUT-PORT-NAME> (DOC-BP> (LOOKUP-NODE+NQ+UPDATE
(INPUT-PORT-NAME> (DOC-BP> (LOOKUP-NODE+NQ+UPDATE 2)))

(Defrule DELIVER-MESSAGE
'Deliver Message'
:RHS-Node-Types
((MAKE-DELIVERY . LOOKUP-NODE+NQ+UPDATE))
:Input-Embedding
(((DELIVER-MESSAGE 1) (MAKE-DELIVERY 1))

((DELIVER-MESSAGE 2 (MAKE-DELIVERY 2)
:St-Thrus
(((DELIVER-MESSAGE 2 (DELIVER-MESSAGE 3M
:L-R-Link IMPLEMENTATION
:Doc
(,iteratively delivers the message -A to the node addressed by the-%-

message's Destination-Address part.,
(INPUT-PORT-NAME> DOC-BP> (DELIVER-MESSAGE 1)))))

(Defrule DELIVER-MESSAGE-ACCUMULATE
'Deliver Message Accumulate'
:RHS-Node-Types
((THE-DELIVERY DELIVER-MESSAGE))
:Input-Embedding
(((DELIVER-MESSAGE-ACCUMULATE 1) (THE-DELIVERY 1))

((DELIVER-MESSAGE-ACCUMULATE 2 (THE-DELIVERY 2)
:Output-Embedding
(((DELIVER-MESSAGE-ACCUMULATE 3 (THE-DELIVERY 3))
:L-R-Link T4PORAL-ABSTRACTION
:Doc
(,accumulates the new nodes created by delivering the message in the-%-

series from -A into a new address-map -A.,
(INPUT-PORT-NAME> (DOC-BP> (DELIVER-MESSAGE-ACCUMULATE 1)))
(INPUT-PORT-NAME> (DOC-BP> (DELIVER-MESSAGE-ACCUMULATE 2)))

(Defrule ENUMERATE-AND-DELIVER-MESSAGES
'Enumerate and Deliver Messages'
:RHS-Node-Types
((ENUMERATE-MESSAGES . DESTRUCTIVE-QUEUE-ENUMERATION)

(DELIVER-THE-MESSAGES . DELIVER-MESSAGE-ACCUMULATE))
:Edge-List
(((ENUMERATE-MESSAGES 2 . (DELIVER-THE-MESSAGES
:Input-Embedding
(((ENUMERATE-AND-DELIVER-MESSAGES 1) (ENUMERATE-MESSAGES 1))

((ENUMERATE-AND-DELTVER-MESSAGES 2 (DELIVER-THE-MESSAGES 2))
:Output-Embedding
(((ENUMERATE-AND-DELIVER-MESSAGES) (DELIVER-THE-MESSArES 3))
:L-R-Link COMPOSITION
:Doc
(,enumerates the messages in the global message buffer -A -

and delivers each one to the nodes addressed by the message's
Destination Address part. The new nodes created during delivery
are accumulated into a global address-map, implemented as a -
sequence, whose initial value is A.-%-
The new (accumulated) global address-map is returned.,

(INPUT-PORT-NAME> (DOC-BP> (FIRMERATE-AND-DELIVER-MESSAGES 1)))
(INPUT-PORT-NAME> (DOC-BP> (ENUMERATE-AND-DELIVER-MESSAGES 2))))

(Defrule DELIVER-MESSAGES
'Deliver Messages'
:RHS-Node-Types
((ENUMERATE-AND-DELIVER . NUMERATE-AND-DELTVER-MESSAGES))
:Input-Embedding
(((DELIVER-MESSAGES 1) (ENUMERATE-AND-DELIVER 1))

((DELIVER-MESSAGE 2 (NUMERATE-AND-DELTVER 2)
:Output-Embedding
(((DELIVER-MESSAGE 3 (ENUMERATE-AND-DELIVER 3))
:L-R-Link IMPLEMENTATION
:Doc
(,delivers the messages in the global message buffer -A, creating

new nodes, which are accumulated into a global address-map --
whose initial value is -A.'

(INPUT-PORT-NAME> (DOC-BP> (DELIVER-MESSAGES
(INPUT-PORT-NAME> (DOC-tP> (DELIVER-MESSAGES 2)))

(Defrule LOCAL-BUFFER-EMPTY?
'Local Buffer Fpty Test'
:RHS-Node-Types
((CHECK-BUFFER FIFO-EMPTY?))
:Input-Embedding
(((LOCAL-BUFFER-EMPTY? 1) (CHECK-BUFFER 1) LOCAL-BUFFER))
:L-R-Link COMPOSITION
:Doc
(,tests whether the local buffer of synchronous node -A is epty.'

(INPUT-PORT-NAME> (DOC-BP> (LOCAL-BUFFER-EMPTY?

(Defrule LOCAL-BUFFER-NONEMPTY?
'Local Buffer Nonempty Test'
:RHS-Node-Types
((CHECK-BUFFER FIFO-EMPTY?))

292

:Input-Embedding
(((LOCAL-BUFFER-NONEMPTY? 1) (CHECK-BUFFER)

LOCAL-BUFFER))
:L-R-Link COMPOSITION
:Doc
('tests whether the local buffer of synchronous node -A is

nonempty.1
(INPUT-PORT-NAME> (DOC-BP> (LOCAL-BUFFER-NONEMPTY?

(Defrule LOCAL-BUFFERS-ALWAYS-EMPTY?
'Local Buffer Always Empty Test'
:RHS-Node-Types
((CONTINUOUS-CHECK . LOCAL-BUFFER-NONEMPTY?))
:Input-Embedding
(((LOCAL-BUFFERS-ALWAYS-EMPTY? 1) (CONTINUOUS-CHECK
:L-R-Link TEMPORAL-ABSTRACTION
:Doc
(,continually checks that each node in the input series of

nodes -A has an epty local buffer.,
(INPUT-PORT-NAME> (DOC-BP> (LOCAL-BUFFERS-ALWAYS-EMPTY? 1)))))

(Defrule ENUM-NODES+CHECK-BUFFERS
'Enumerate Nodes and check Buffers,
:RHS-Node-Types
((ENUMERATE-NODES SEQUENCE-ENUMERATION)

(BUFFER-ALWAYS-EMPTY LOCAL-BUFFERS-ALWAYS-EMPTY?))
:Edge-List
(((ENUMERATE-NODES 2 (BUFFER-ALWAYS-EMPTY
:Input-Embedding
(((ENUM-NODES+CHECK-BUFFERS 1) (ENUMERATE-NODES)
:L-R-Link COMPOSITION
:Doc
('enumerates the sequence of nodes -A and checks that each

node has an empty local buffer.,
(INPUT-PORT-NAME> (DOC-BP> (ENUM-NODES+CHECK-BUFFERS

(Defrule LOCAL-BUFFERS-EMPTY?
'Local Buffers Fznptyl
:RHS-Node-Types
((CHECK-ALL-NODE-BUFFERS . ENUM-NODES+CHECK-BUFFERS))
:Input-Embedding
(((LOCAL-BUFFERS-EMPTY? 1) (CHECK-ALL-NODE-BUFFERS 1)))
:L-R-Link IMPLEMENTATION
:Doc
(,checks that all nodes in -A have an empty local buffer.,

(INPUT-PORT-NAME> (DOC-BP> (LOCAL-BUFFERS-EMPTY?

(Defrule GLOBAL-AND-LOCAL-BUFFERS-EMPTY?
'Global and Local Buffers Empty Test'
:RHS-Node-Types
((CHECK-LOCAL-NODE-BUFFERS . LOCAL-BUFFERS-EMPTY?)

(CHECK-GLOBAL-BUFFER . QUEUE-EMPTY?))
:Input-Embedding
(t(GLOBAL-AND-LOCAL-BUFFERS-F24PTY? 1)

(CHECK-LOCAL-NODE-BUFFERS 1))
((GLOBAL-AND-LOCAL-BUFFERS-EMPTY? 2)

(CHECK-OLOBAL-BUFFER
:L-R-Link COMPOSITION
:Doc
('tests whether the local buffers of the synchronous nodes in

are all empty and the global message buffer -A is also empty.,
(INPUT-PORT-NAME>

(DOC-BP> (GLOBAL-AND-LOCAL-BUFFERS-EMPTY?
(INPUT-PORT-NAME>

(DCC-BP> (GLOBAL-AND-LOcAL-BUFFERS-EmPTY 2)))

(Defrule SYNCHRONOUS-SIMULATION-FINISHED?
'Synchronous simulation Finished?,
:RHS-Node-Types
((CHECK-ALL-BUFFERS . GLOBAL-AND-LOCAL-BUFFERS-Fl4PTY?))
:Input-Embedding
(((SYNCHRONOUS-SIMULATION-FINISHED? 1) (CHECK-ALL-BUFFERS 1))

((SYNCHRONOUS-SIMULATION-FINISHED? 2 (CHECK-ALL-BUFFER 2)
:St-Thrus
(((SYNCHRONOUS-SIMULATION-FINISHED? 1)

(SYNCHRONOUS-SIMULATION-FINISHED? 3))
:L-R-Link COMPOSITION
:Doc
('tests whether a synchronous simulation is finished by -

testing whether the global buffer and all of the nodes,
local buffers are mpty.'))

(Defrule EXTRACT-AND-HANDLE-FIRST-MESSACE
'Extract and Handle First Message'
:RHS-Node-Types
((HAS-WORK? . LOCAL-BUFFER-NONEMPTY?)

(EXTRACT-FIRST-MSG . LOCAL-BUFFER-DQ)
(RECORD-WORKING-NODE NEW-TERM)
(HANDLE-THE-MESSAGE HANDLE-MESSAGE))

:Edge-List
(((EXTRACT-FIRST-MS 2 (HANDLE-THE-MESSAGE 1))

((EXTRACT-FIRST-MS 3 (RECORD-WORKING-NODE 1))
((RECORD-WORKING-NODE 4 . (HANDLE-THE-MESSAGE 2)

:Input-Embedding
(((EXTRACT-AND-HANDLE-FIRST-MESSAGE 1) (EXTRACT-FIRST-MSC 1))

((EXTRACT-AND-HANDLE-FIRST-MtSSAGE 1) (HAS-WORK? 1))
((EXTRACT-AND-HANDLB-FIRST-MESSAGE 2) (RECORD-WORKING-NODE 2)
((BXTRACT-AND-EAN'DLE-FIRST-MES8AGB 3) (RECORD-WORKINC-NODE 3)
((EXTRACT-AND-BA14DLB-FIRST-MESgAGE 4) (HANDLE-THE-MESSAGE 3))

:Output-Embedding
(((EXTRACT-Al4D-HANDLE-FIRST-MESSAr.E 5) (HANDLE-THE-MESSAGE 4)

((EXTRACT-AND-HANDLE-FIRST-MESSAGE 6) (HANDLE-THE-MESSAGE 5)))
:St-Thrus
(((EXTRACT-AND-HANDLE-FIRST-MESSAGE 4)

(EXTRACT-AND-BANDLE-FIRST-MESSAGE 6))
((EXTRACT-AND-HANDLE-FIRST-MESSAGE 3)

(EXTRACT-AND-HANDLE-FIRST-MESSAGE
:L-R-Link COMPOSITION
:Doc
(,extracts the first message from the local buffer of synchronous node-%-

-A if the node has work, i.e., messages queued up. The message is-%-
then processed, which may generate new messages. The new messages --
are collected on the message queue.,

(INPUT-PORT-NAME> DOC-BP> (EXTRACT-AND-HANDLE-FIRST-MESSAGE 1)))))

(Defrule DO-WORK-ACCUMULATION
'Do Work Accumulation'
:RHS-Node-Types
((EXTRACT-AND-HANDLE . EXTRACT-AND-HANDLE-FIRST-MESSAGE))
:Input-Embedding
(((DO-WORK-ACCUMULATION 1) (TRACT-AND-HANDLE 1))

((DO-WORK-ACCUMULATION 2) (EXTRACT-AND-HANDLE 2)
((DO-WORK-ACCUMULATioN 3) (EXTRACT-AND-HANDLE 3)
((DO-WORK-ACCUMULATION 4) (EXTRACT-AND-HANDLE 4))

:St-Thrus
(((DO-WORK-ACCUMULATION 4) (DO-WORK-ACCUMULATION 6)

((DO-WORK-ACCUMULATION 3) (DO-WORK-ACCUMULATION 5)))
:L-R-Link COMPOSITION
-Doc
(,iteratively receives a synchronous node -A, extracts and handles its-

first message if it has one in its local buffer, and accumulates the-
new messages that this generates in a global message buffer -A. This-
also creates new nodes, which are accumulated in an address-map, whose-
initial value is -A..

(INPUT-PORT-NAME> (DOC-BP> (DO-WORK-ACCUMULATION 1)))
(INPUT-PORT-NAMB> (DOC-BP> (DO-WORK-ACCUMULATION 4)
(INPUT-PORT-NAME> (DOC-BP> DWORK-ACCUMULATION 3))))

(Defrule DO-WORK-ACCUMULATE
'Do Work Accumulate-
:RHS-Node-Types
((DW-ACCUMULATION . DO-WORK-ACCUMULATION))
:Input-Embedding
(((DO-WORK-ACCUMULATE 1) (DW-ACCUMULATION 1))

((DO-WORK-ACCUMULATE 2) (DW-ACCUMULATION 2))
((DO-WORK-ACCLTMULATE 3) (DW-ACCUMULATION 3))
((DO-WORK-ACCUMULATE 4) (DW-ACCUMULATION 4)))

:Output-Embedding
(((DO-WORK-ACCUMULATE 5) (DW-ACCUMULATION 5))

((DO-WORK-ACCUMULATE 6) (DW-ACCUMULATION 6)))
:L-R-Link TEMPORAL-ABSTRACTION
:Doc
(,takes a series of nodes and simulates them taking one step ie.,-

handling one message a piece from their local buffers). It -
accumulates the new nodes that this creates in an address-map, which
is given as output. It also accumulates all new messages generated
during the node stepping in a global message buffer, which it also
produces as output. The initial value of the address-map is -A and
of the global message buffer is -A.,

(INPUT-PORT-NAME> (DOC-BP> (DO-WORK-ACCUMULATION 3))
(INPUT-PORT-NAME> (OC-BP> (DO-WORK-ACCUMULATION 4)))

(Defrule POLL-NODES-AND-DO-WORK
'Poll Nodes and Do Work,
:RHS-Node-Types
((POLL-NODES . SEQUENCE-AND-INDEX-ENUMERATION)

(WORK . DO-WORK-ACCUMULATE))
:Edge-List
(((POLL-NODES 3 (WORK 2)

((POLL-NODES 2 (WORK 1)))
:Input-Embedding
(((POLL-NODES-AND-DO-WORK 1) (WORK 3)

((POLL-NODES-AND-DO-WORK 1) (POLL-NODES
:Output-Embedding
(((POLL-NODES-AND-DO-WORK 2 (WORK 5))

((POLL-NODES-AND-DO-WOR 3 (WORK 6)
:L-R-Link COMPOSITION
:Doc
(,polls all nodes in -A and for each node that has messages on its

local queue, it handles one of the messages.,
(INPUT-PORT-NAME> (DOC-BP> (POLL-NODES-AND-DO-WORK

(Defrule ADVANCE-NODES
'Advance Nodes'
:RHS-Node-Types
((STEP-NODES . POLL-NODES-AND-DO-WORK))

2 93

:Input-Embedding

(((ADVANCE-NODES 1) (STEP-NODES 1)))
:Output-Embedding
(((ADVANCE-NODES 2 (STEP-NODES 2)

((ADVANCE-NODES 3 (STEP-NODEs 3))
:L-R-Link IMPLEMENTATION

:Doc
(,steps each node in -A that has work by processing message

each.,
(INPUT-PORT-NAME> (DOC-BP> (ADVANCE-NODES

(Defrule EARLIEST-SIMULATION-FINISHED

'Earliest Simulation Finished,

:RHS-Node-Types
((FINISHED-TEST . SYNCHRONOUS-SIMULATION-FINISHED?))

:Input-Embedding
(((EARLIEST-SIMULATION-FINISHED 1) (FINISHED-TEST 1))

((EARLIEST-SIMULATION-FINISHED 2 (FINISHED-TEST 2)

:Output-Embedding
(((EARLIEST-SIMULATION-FINISHED 3 (FINISHED-TEST 3))

:L-R-Link TEMPORAL-ABSTRACTION

:Doc
(,takes two input sequences: a sequence of address-maps, -

starting with -A, and a sequence of global message buffers,

starting with -A. It outputs the first address-map in the
input sequence of address-maps that satisfies the predicate

that all nodes in the address-map have empty local buffers

and the corresponding global message buffer is empty.,
(INPUT-PORT-NAME> (DOC-BP> (EARLIEST-SIMULATION-FINISHED 1)))

(INPUT-PORT-NAME> (DOC-BP> (EARLIEST-SIMULATION-FINISHED 2)))

(Defrule DELIVER-MESSAGES-AND-STEP-NODES
'Generate by Message Delivery and Node Stepping'

:RHS-Node-Types
((DELIVER-ALL-MSCS DELIVER-MESSAGES)

(STEP-ALL-NODES . ADVANCE-NODES))

:Edge-List
(((DELIVER-ALL-MSGS 3 . (STEP-ALL-NODES 1)))

:Input-Embedding
(((DELIVER-MESSAGES-AND-STEP-NODES 1) (DELIVER-ALL-MSGS 2)

((DELIVER-MESSAGES-AND-STEP-NODES 2) (DELIVER-ALL-MSCS 1)))

:St-Thrus

(((DELIVER-MESSAGES-AND-STEP-NODES 2)
(DELIVER-MESSAGES-AND-STEP-NODES 4))

((DELIVER-MESSAGES-AND-STEP-NODES 1)
(DELIVER-MESSAGES-AND-STEP-NODES 3)))

:L-R-Link COMPOSITION

:Doc
(,generates address-maps and global message buffers by -

repeatedly delivering all messages in the global message -
buffer -A and advancing the nodes -A by one step each. -
This causes more messages to be generated and added to the
global message buffer and a new address-map to be created
on each iteration. The outputs of this operation are 2 -

series: one is the series of address-maps created and the

other is the series of global message buffers.,

(INPUT-PORT-NAME>
(DOC-BP> (DELIVER-MESSAGES-AND-STEP-NODES 2))

(INPUT-PORT-NAME>
(DOC-BP> (DELIVER-MESSAGES-AND-STEP-NODES

(Defrule ENERATE-GLOBAL-BUFFERS-AND-NODES
'Generate Global Message Buffer and Nodes,
:RHS-Node-Types
((GEN-BUFFER-AND-NODES . DELIVER-MESSAGES-AND-STEP-NODES))
:Input-Embedding

(((GENERATE-CLOBAL-BUFFERS-AND-NODES 1)

(GEN-BUFFER-AND-NODES 1))
((GENEPATE-CLOBAL-BUFFERS-AND-NODES 2)

(GEN-BUFFER-AND-NODE 2)

:Output-Embedding
(((GENERATE-GLOBAL-BUFFERS-AND-NODES 3)

(GEN-BUFFER-AND-NODES 3)

((GENERATE-GLOBAL-BUFFERS-AND-NODE 4)
(GEN-BUFFER-AND-NODES 4)

:L-R-Link TEMPORAL-ABSTRACTION
-Doc
(,generates address-maps and global message buffers by -

repeatedly delivering all messages in the global message
buffer -A and advancing the synchronous nodes in -A by one

step each.,

(INPUT-PORT-NAME>
(DOC-BP> (GENERATE-GLOBAL-BUFFERS-AND-NODES 2)

(INPUT-PORT-NAME>

(DOC-BP> (GENERATE-CLOBAL-BUFFERS-AND-NODES

(Defrule SYNCHRONOUS-SIMULATION-W-CLOBAL-MESSAGE-BUFFER
'Synchronous Simulation using Global Message Buffer,

:RHS-Node-Types

((INITIAL-INSERT QUEUE-INSERT)

(SIMULATION-STEP GENERATE-GLOBAL-BUFFERS-AND-NODES)

(SIMULATION-FINISHED? . ARLIEST-SIMULATION-FINISHED))
:Edge-List

MINITIAL-INSERT 3 (SIMULATION-STEP 2)

((SIMULATION-STEP 4 (SIMULATION-FINISHED? 2)
((SIMULATION-STEP 3 (SIMULATION-FINISHED? M

:Input-Embedding
(((SYNCHRONOUS-SIMULATION-W-CLOBAL-MESSACE-BUFFER 1) (SIMULATION-STEP

t(SYNCHRONOUS-SIMULATION-W-GLOBAL-MESSAGE-BUFFER 2 (INITIAL-INSERT

:Output-Embedding
(((SYNCHRONOUS-SIMULATION-W-CLOBAL-MESSAGE-BUFFER 3)

(SIMULATION-FINISHED?
:L-R-Link COMPOSITION

:Doc
(,iteratively advances each synchronous node in -A by handling one -

message a piece. It uses a global message buffer to ensure that -

nodes advance in lock-step. The global buffer's initial value is
-A. The simulation tarts by adding an initial message -A to -A.

The simulation ends when no node has work to do (i.e., no more
messages to handle) and the global message buffer -A is empty.
As messages are handled, new messages are created which are -

buffered on the global message buffer.,

(INPUT-PORT-NAME>
(DOC-BP> (SYNCHRONOUS-SIMULATION-W-GLOBAL-MESSAGE-BUFFER 1)))

(INPUT-PORT-NAME> (DOC-BP> (INITIAL-INSERT 2)
(INPUT-PORT-NAME>

(DOC-BP> (SYNCHRONOUS-SIMULATION-W-GLOBAL-MESSAGE-BUFFER 2M

(INPUT-PORT-NAME> (DOC-BP> (INITIAL-TUSERT 2))
(INPUT-PORT-NAME> (DOC-BP> (INITIAL-INSERT 2))))

(Defrule SYNCHRONOUS-SIMULATION
'Synchronous Simulation using Global Buffer,

:RHS-Node-Types

((SIMULATE-W-BUFFER . SYNCHRONOUS-SIMULATION-W-GLOBAL-MESSAGE-BUFFER))

:Input-Embedding
(((SYNCHRONOUS-SIMULATION 1) (SIMULATE-W-BUFFER 1))

((SYNCHRONOUS-SIMULATION 2 (SIMULATE-W-BUFFER 2)
:Output-Embedding
(((SYNCHRONOUS-SIMULATION 3 (SIMULATE-W-BUFFER 3)

:L-R-Link IMPLF14ENTATION

:Doc
(,synchronously simulates a collection of processing nodes handling

messages. The synchronous nodes (which represent the processing

nodes) are collected in an address-map, called -A. Each node
maintains a local buffer of pending messages to handle.,

(INPUT-PORT-NAME> (DOC-BP> (SYNCHRONOUS-SIMULATION 1)))))

(Defrule ENUMERATE-NODES+COMPUTE-AVERAGE

'Enumerate Nodes and Compute Average'

:RHS-Node-Types
((ENUM-NODES . SEQUENCE-AND-INDEX-ENUMERATION)

(COMPUTE-BUFFER-SIZE . SUM)

(SIZE-OF-SEQUENCE . SEQUENCE-SIZE)
(COMPUTE-AVG DIVIDE))

:Bdge-List
(((ENUM-NODE 2 . (COMPUTE-BUFFER-SIZE 1))

((COMPUTE-BUFFER-SIZ 2 (COMPUTE-AVG 1))

((SIZE-OF-SEQUENCE 2 (COMPUTE-AVG 2)

:Input-Embedding
(((ENUMERATE-NODES+COMPUTE-AVERACE 1) (SIZE-OF-SEQUENCE 1))

((ENUMERATE-NODES+COMPUTE-AVERAGE 1) (ENUM-NODES 1)))
:Output-Embedding
(((ENUMERATE-NODES+COMPLTTE-AVERACE 2 (COMPUTE-AVG 3))

:L-R-Link COMPOSITION
:Doc
(,enumerates all nodes in -A and computes the average of the sizes

of their local buffers.,

(INPUT-PORT-NAME> (DOC-BP> (ENUMERATE-NODES+COMPUTE-AVERACE 1)))))

(Defrule AVERAGE-LOCAL-BUFFER-SIZE

'Average Local Buffer Size'
:RHS-Node-Types

((AVG-LB-SIZE . ENUMEPATE-NODES+COMPUTE-AVERAGE))
:Input-Embedding
(((AVERAGE-LOCAL-BUFFER-SIZE 1) (AVG-LB-SIZE 1)))

:Output-Embedding

(((AVERAGE-LOCAL-BUFFER-SIZE 2 (AVG-LB-SIZE 2))

:L-R-Link IMPLEMENTATION
:Doc

(,computes the average of the local buffer sizes of all nodes in
(INPUT-PORT-NAME> (DOC-BP> (AVERAGE-LOCAL-BUFFER-SIZE

(Defrule DSTRUCTIVE-QUEUE-ENUMERATION
'Destructive Queue Enumeration'

:RHS-Node-Types
((ENUM-PQ . P-ENUMERATION))
:Input-Embedding

(((DESTRUCTIVE-QUEUE-ENUMBRATION 1) (NUM-PQ 1)

PRIORITY-QUEUE>QUEUE))
:Output-Embedding

(((DESTRUCTIVE-QUEUE-ENUMERATION 2 (ENUR-PQ 2)

:L-R-Link IMPLEMENTATION
:Doc

(,destructively enumerates the Queue -A, which is implemented-%-
as a Priority Queue.'

(INPUT-PORT-NAME> (DOC-BP> (DESTRUCTIVE-QUEUE-ENUMERATION 1)))))

294

-Rolm! Iffiallow � I

(Defrule DESTRUCTIVE-QUEUE-ENUMERATION
'Destructive Queue Enumeration'

:RHS-Node-Types
((ENUM-FIFO . FIFO-DESTRUCTIVE-ENUMERATION))
:Input-Embedding
(((DESTRUCTIVE-QUEUE-ENUMERATION 1) (ENUM-FIFO 1)

FIFO>QUEUE))
:Output-Embedding
(((DESTRUCTIVE-QUEUE-ENUMERATION 2 (NUM-FIFO 2)

:L-R-Link IMPLEM ENT ATION
:Doc
(,destructively enumerates the Queue -A, which is -

implemented as a FIFO.'
(INPUT-PORT-NAME>

(DOC-BP> (DESTRUCTIVE-QUEUE-ENUMERATION

(Defrule DESTRUCTIVE-QUEUE-ENUMERATION
'Destructive Queue Enumeration'

:RHS-Node-Types
((ENUM-STACK STACK-ENUMERATION))
:Input-Embedding
(((DESTRUCTIVE-QUEUE-ENUMERATION 1) ENUM-STACK 1)

STACK>QUEUE))
:Output-Embedding

(((DESTRUCTIVE-QUEUE-ENUMERATION 2 (ENUM-STACK 2))

:L-R-Link IMPLEMENTATION
:Doc
(,destructively enumerates the Queue -A, which is -

implemented as a Stack.,
(INPUT-PORT-NAME>

(DCC-BP> (DESTRUCTIVE-QUEUE-ENUMERATION

(Defrule STACK-ENUMERATION
'Stack Enumeration-

:RHS-Node-Types
((ENUM-LL-DESTRUCTIVELY LE))

:Input-Embedding
(((STACK-ENUMERATION 1) (ENUM-LL-DESTRUCTIVELY 1)

LINKED-LIST>STACK))
:Output-Embedding
(((STACK-ENUMERATION 2 (ENUM-LL-DESTRUCTIVELY 2)

:L-R-Link IMPLEMENTATION
:Doc
(,destructively enumerates the Stack -A, which is -

implemented as a Linked-List.'
(INPUT-PORT-NAME> (DOC-BP> (STACK-ENUMERATION

(Defrule STACK-ENUMERATION
'Stack Enumeration-

:RHS-Node-Types
((ENUM-IS-DESTRUCTIVELY . INDEXED-SEQUENCE-ENUMERATION))
:Input-Embedding
(((STACK-ENUMERATION 1) (ENUM-IS-DESTRUCTIVELY 1)

INDEXED-SEQUENCE>STACK))
:Output-Embedding
(((STACK-ENUMERATION 2 (ENUM-IS-DESTRUCTIVELY 2)

:L-R-Link IMPLEMENTATION
:Doc
(,destructively enumerates the Stack -A, which is

implemented as an indexed Sequence.,
(INPUT-PORT-NAME> (DOC-BP> (STACK-ENUMERATION

(Defrule QUEUE-EXTRACT
'Queue Extract'
:RHS-Node-Types
((EXTRACT-FROM-PQ . PQ-EXTRACT))
:Input-Embedding
(((QUEUE-EXTRACT 1) (EXTRACT-FROM-PQ 1)

PRIORITY-QUEUB>QUEUE))
:Output-Embedding

(((QUEUE-EXTRACT 2 (EXTRACT-FROM-PQ 2)
((QUEUE-EXTRACT 3 (EXTRACT-FROM-PQ 3)

PRIORITY-QUEUE>QUEUE))
:L-R-Link IMPLEMENTATION
:Doc
(,extracts an element from the queue -A, which is

implemented as a Priority Queue.,

(INPUT-PORT-NAME> (DOC-BP> (QUEUE-EXTRACT

(Defrule QUEUE-EXTRACT
'Queue Extract'
:RHS-Node-Types
((EXTRACT-FROM-FIFO . FIFO-DEQUEUE))

I nput -Embedd i ng

(((QUEUE-EXTRACT 1) (EXTRACT-FROM-FIFO 1)
FIFO>QUEUE))

:Output-Embedding
(((QUEUE-EXTRACT 2 (EXTRACT-FROM-FIFO 2)

((QUEUE-EXTRACT 3 (EXTRACT-FROM-FIF 3)
FIFO>QUEUE))

:L-R-Link IMPLEMENTATION
:Doc

(,extracts an element from the queue -A, which is

implemented as a FIFO.'
(INPUT-PORT-NAME> (DOC-BP> (QUEUE-EXTRACT 1)))))

(Defrule QUEUE-EXTRACT
'Queue Extract'
:RHS-Node-T`ypes

((EXTRACT-FROM-STACK STACK-POP))
:Input-Embedding

(((QUEUE-EXTRACT 1) (EXTRACT-FROM-STACK 1)
STACK>QUEUE))

:Output-Embedding

(((QUEUE-EXTRACT 2 (EXTRACT-FROM-STACK 2)

((QUEUE-EXTRACT 3 (EXTRACT-FROM-STACK 3)
STACK>QUEUE))

:L-R-Link IMPLEMENTATION
:Doc

('extracts an element from the queue -A, which is implemented as a
Stack.'

(INPUT-PORT-NAME> (DOC-BP> (QUEUE-EXTRACT 1)))))

(Defrule QUEUE-INSERT
'Queue Insert'
:RHS-Node-Types
((ADD-TO-Q3 . PQ-INSERT))

:Input-Embedding
(((QUEUE-INSERT 1) (ADD-TO-Q3 1))

((QUEUE-INSERT 2 (ADD-TO-Q3 2)
PRIORITY-QUEUE>QUEUE))

:Output-Embedding
(((QUEUE-INSERT 3 (ADD-TO-Q3 3)

PRIORITY-QUEUE>QUEUE))
:L-R-Link IMPLEMENTATION

:Doc

(lenqueues -A on the Queue -A, which is implemented as a
Priority-Queue.'

(INPUT-PORT-NAME> (DOC-BP> (QUEUE-INSERT

(INPUT-PORT-NAME> (DOC-BP> (QUEUE-INSERT 2)))

(Defrule QUEUE-INSERT
'Queue Insert'

:RHS-Node-Types

((ADD-TO-Q2 . FIFO-ENQUEUE))

:Input-Embedding

(((QUEUE-INSERT 1) (ADD-TO-Q2 1))
((QUEUE-INSERT 2 (ADD-TO-Q2 2)

FIFO>QUEUE))

:Output-Embedding
(((QUEUE-INSERT 3 (ADD-TO-Q2 3)

FIFO>QUEUE))
:L-R-Link IMPLEMENTATION

-Doc

(lenqueues -A on the Queue -A, which is implemented as a FIFO.'
(INPUT-PORT-NAME> (DOC-BP> (QUEUE-INSERT 1)))

(INPUT-PORT-NAME> (DOC-BP> (QUEUE-INSERT 2)))

(Defrule QUEUE-INSERT
'Queue Insert'
:RHS-Node-Types
((ADD-TO-Q1 STACK-PUSH))
:Input-Embedding

(((QUEUE-INSERT 1) (DD-TO-Ql 1))
((QUEUE-INSERT 2 (ADD-TO-Ql 2)
STACK>QUEUE))

:Output-Embedding

(((QUEUE-INSERT 3 (ADD-TO-Ql 3)

STACK>QUEUE))

:L-R-Link IMPLEMENTATION

:Doc

(lenqueues -A on the Queue -A, which is implemented as a Stack.,

(INPUT-PORT-NAME> (DOC-BP> (QUEUE-INSERT 1)))

(INPUT-PORT-NAME> (DOC-BP> (QUEUE-INSERT 2)))

(Defrule QUEUE-EMPTY?

'Queue Empty?'

:RHS-Node-Types

((EMPTY3? . PQ-EMPTY))

:Input-Embedding

MQUEUE-EMPTY? 1) (EMPTY3? 1)

PRIORITY-QUEUE>QUEUE))

:L-R-Link IMPLEMENTATION

:Doc

('tests whether the ueue -A is empty.-%-

The Queue is implemented as a Priority-Queue.,

(INPUT-PORT-NAME> (DOC-BP> (QUEUE-EMPTY? 1)))))

(Defrule QUEUE-EMPTY?

'Queue Epty?'

:RHS-Node-Types

((EMPTY2? . FIFO-EMPTY?))

:Input-Embedding

MQUEUE-EMPTY? 1) (EMPTY2? 1)

FIFO>QUEUE))

:L-R-Link IMPLEMENTATION

295

:Doc

(,tests whether the Queue -A is empty.-%-
The Queue is implemented as a FIFO.'

(INPUT-PORT-NAME> (DOC-BP> (QUEUE-EMPTY?

(Defrule QUEUE-EMPTY?
,Queue Empty?,
:RHS-Node-Types
((EMPTY1? STACK-EMPTY?))
:Input-Embedding
(((QUEUE-ZMPTY? 1) EMPTY1? 1)

STACK>QUEUE))
:L-R-Link IMPLEMENTATION
:Doc

(,tests whether the Queue -A is empty.-%-
The Queue is implemented as a stack.,

(INPUT-PORT-NAME> (DOC-BP> (QUEUE-EMPTY?

(Defrule STACK-BMPTY?
'Stack Empty?'
:RHS-Node-Types
((LL-EMPTY? LIST-EMPTY))
:Input-Embedding
(((STACK-EMPTY? 1) (LL-EMPTY? 1)

LINKED-LIST>STACK))
:L-R-Link IMPLEMENTATION

:Doc
(,tests whether the Stack -A is mpty.-%-

The Stack is implemented as a Linked List.'

(INPUT-PORT-NAME> (DOC-BP> (STACK-EMPTY? 1)))))

(Defrule STACK-EMPTY?
'Stack Empty?'
:RHS-Node-Tlypes
((IS-EMPTY? . INDEXED-SEQUENCE-EMPTY))
:Input-Embedding

(((STACK-EMPTY? 1) (IS-EMPTY?
INDEXED-SEQUENCE>STACK))

:L-R-Link IMPLEMENTATION
:Doc
(,tests whether the Stack -A is empty.-%-

The Stack is implemented as an Indexed Sequence.,

(INPUT-PORT-NAME> (DOC-BP> (STACK-EMPTY? 1)))))

(Defrule STACK-PUSH
'Stack Push,

:RHS-Node-Types
((ADD-TO-LL . LIST-PUSH))
:Input-Embedding
(((STACK-PUSH 1) (ADD-TO-LL 1))

((STACK-PUSH 2 (ADD-TO-LL 2)
LINKED-LIST>STACK))

:Output-Embedding
(((STACK-PUSH 3 (ADD-TO-LL 3)

LINKED-LIST>STACK))
:L-R-Link IMPLF14ENTATION
:Doc
(,pushes -A onto the stack -A, which is iplemented as a

Linked List.'
(INPUT-PORT-NAME> (DOC-BP> (STACK-PUSH
(INPUT-PORT-NAME> (DOC-BP> (STACK-PUSH 2)))

(Defrule STACK-PUSH
'Stack Push'
:RHS-Node-Types
((ADD-TO-IS . INDEXED-SEQUENCE-INSERT))

:Input-Embedding

(((STACK-PUSH 1) (ADD-TO-IS 1))
((STACK-PUSH 2 (ADD-TO-TS 2)

INDEXED-SEQUENCE>STACK))
:Output-Embedding

(((STACK-PUSH 3 (ADD-TO-IS 3)

INDEXED-SEQUENCE>STACK))
:L-R-Link IMPLF14ENTATION
:Doc
(,pushes -A onto the stack -A, which is implemented as an

Indexed sequence.,
(INPUT-PORT-NAME> (DOC-BP> (STACK-PUSH)
(INPUT-PORT-NAME> (DOC-BP> (STACK-PUSH 2)))

(Defrule STACK-POP
'Stack-Pop'
:RHS-Node-Types
((EXTRACT-FROM-LL . LIST-POP))
:Tnput-Embedding

(((STACK-POP 1) (EXTRACT-FROM-LL 1)
LINKED-LIST>STACK))

:Output-Embedding

(((STACK-POP 2 (EXTRACT-FROM-LL 2)
((STACK-POP 3 (EXTRACT-FROM-LL 3)
LINKED-LIST>STACK))

:L-R-Link IMPLEMENTATION
:Doc

(,pops the stack -A, which is implemented as a Linked List.'
(INPUT-PORT-NAME> (DOC-BP> (STACK-POP 1)))))

(Defrule STACK-POP

'Stack-Pop'
:RHS-Node-Types

((EXTRACT-FROM-IS . INDEXED-SEQUENCE-EXTRACT))
:Input-Embedding
(((STACK-POP 1) (EXTRACT-FROM-IS 1)

INDEXED-SEQUENCE>STACK))
:Output-Embedding
(((STACK-POP 2 (EXTRACT-FROM-1 2)

((STACK-POP 3 (EXTRACT-FROM-I 3)

INDEXED-SEQUENCE>STACK))
:L-R-Link IMPLEMENTATION

:Doc

(,pops the stack -A, which is implemented as an indexed-sequence.,
(INPUT-PORT-NAME> (DOC-BP> (STACK-POP 1)))))

(Defrule CIS-DESTRUCTIVE-ENUMERATION

'Circular-Indexed-Sequence Destructive Enumeration'
:RHS-Node-Types

((ENUM-FINISHED? CIS-EMPTY)
(EXTRACT-NEXT CIS-EXTRACT))

:Input-Embedding

(((CIS-DESTRUCTIVE-ENUMERATION 1) (EXTRACT-NEXT 1))

((CIS-DESTRUCTIVE-ENUMERATION 1) (ENUM-FINISHED? 1)))
:Output-Embedding
(((CTS-DESTRUCTIVE-ENUMERATION 2 (EXTRACT-NEXT 2)
:L-R-Link COMPOSITION

-Doc
(,enumerates all of the elements in the Circular-indexed-Sequence -A,

by destructively extracting them from the sequence. The sequence
is filled in -A.'

(INPUT-PORT-NAME> (DOC-BP> (CIS-DESTRUCTIVE-ENUMERATION 1)))
(GROWTH-DIRECTION (N> CIS-DESTRUCTIVE-ENUMERATION))))

(Defrule FIFO-DESTRUCTIVE-ENUMERATION
'FIFO Destructive Enumeration'

:RHS-Node-Types
((ENUM-CIS-DESTRUCTIVELY . CIS-DESTRUCTIVE-ENUMERATION))

:Input-Embedding

(((FIFO-DESTRUCTIVE-ENUMERATION 1) (ENUM-CIS-DESTRUCTIVELY 1)
CIRCULAR-INDEXED-SEQUENCE>FIFO))

:Output-Embedding

(((FIFO-DESTRUCTIVE-ENUMERATION 2 (ENUM-CIS-DESTRUCTIVELY 2M
:L-R-Link IMPLEMENTATION

:Doc

(,destructively enumerates the FIFO queue -A, which is implemented
as a Circular indexed Sequence.,

(INPUT-PORT-NAME> (DOC-BP> (FIFO-DESTRUCTIVE-ENUMERATION 1)))))

(Defrule CIS-EMPTY
'CIS Empty'

:RHS-Node-Types

((ZERO-FILL-COUNT? . COMMUTATIVE-BINARY-FUNCTION)
(TEST-EQUALITY NULL-TEST))

:Edge-List
(((ZERO-FILL-COUNT 3 (TEST-EQUALITY 1)))
:Input-Embedding

(((CIS-EMPTY 1) (ZERO-FILL-COUNT? 1)
FILL-COUNT))

:L-R-Link COMPOSITION
:Doc

(,tests whether the Circular-Indexed-sequence -A is epty.,

(INPUT-PORT-NAME> (DOC-BP> (CIS-EMPTY 1)))))

(Defrule FIFO-EMPTY?
'FIFO Epty'

:RHS-Node-Types

((CIS-EMPTY? CIS-EMPTY))
:Input-Ernbedding

(((FIFO-EMPTY? 1) (CIS-EMPTY 1)

CIRCULAR-INDEXED-SEQUENCE>FIFO))
:L-R-Link IMPLEMENTATION
:Doc

('tests whether the FIFO queue -A is empty. The FIFO is implemented
as a Circular indexed sequence.,

(INPUT-PORT-NAME> (DOC-BP> (FIFO-EMPTY? 1)))))

(Defrule CIS-FULL
,CIS Full,
:RHS-Node-Types
((ONE-LESS DECREMENT)

(MAX-FILL-COUNT? LT)
(TEST-COMPARTSON NULL-TEST))

:Edge-List

(((ONE-LESS 2 . (MAX-FILL-COUNT 2)

((MAX-FILL-COUNT 3 (TEST-COMPARISON 1)))
:Input-Einbedding

(((CIS-FULL 1) (ONE-LESS
SIZE)

((CIS-FULL 1) (MAX-FILL-COUNT? 1) FILL-COUNT))

2 9 6

:L-R-Link COMPOSITION

:Doc
('tests whether the Circular-Indexed-sequence -A is full.,

(INPUT-PORT-NAME> (DOC-BP> (CIS-FULL

(Defrule GROW-CIS

'Grow Circular-Indexed-Sequence,
:RHS-Node-Types

((THE-GROWER . INTERMEDIATE-GROW-CIS))
:Input-Embedding

(((GROW-CIS 1) (THE-GROWER
:Output-Embedding

(((GROW-Cis 2 (THE-GROWER 3))
:L-R-Link COMPOSITION

:Doc
(,makes a new Circular Indexed Sequence that is double the

size of the Circular Indexed Sequence -A and then -

transfers all of the elements of -A to the new CIS. The

new CIS's First is at index and its Last is at index
the number of elements in the equence.-%-

The new sequence grows -A.,
(INPUT-PORT-NAME> (DOC-BP> (THE-GROWER 1)))

(INPUT-PORT-NAME> (DOC-BP> (THE-GROWER M
(GROWTH-DIRECTION (N> THE-GROWER))))

(Defrule INTERMEDIATE-GROW-CIS

'Grow Circular-Indexed-Sequence (Intermediate),
:RHS-Node-Types

((ENUMERATE-WHOLE-CIS . BOUNDED-CIS-ENUMERATION)

(DOUBLE-SIZB DOUBLE)

(MAKE-NEW-BASE . NEW-SEQUENCE)
(SUCCESSIVE-INDICES COUNT)
(ACCUMULATE-NEW-BASE SEQUENCE-ACCUMULATE))

:Edge-List
(((ENUMERATE-WHOLE-CIS 5) . (ACCUMULATE-NEW-BASE 1))

((DOUBLE-SIZE 2 . (MAKE-NEW-BASE 1))

((MAKE-NEW-BASE 2 . (ACCUMULATE-NEW-BASE 3)
((SUCCESSIVE-INDICES 2 . (ACCUMULATE-NEW-BASE 2))

:Input-Embedding
(((INTERMEDIATE-GROW-CIS 1) (ENUMERATE-WHOLE-CIS 1)

BASE)
((INTERMEDIATE-GROW-CIS 1) (�NUMERATE-WHOLE-CIS 2)

FIRST)
((INTERMEDIATE-GROW-CIS 1) (ENUMERATE-WHOLE-CIS 3)

FILL-COUNT)
((INTERMEDIATE-GROW-CIS 1) (DOUBLE-SIZE 1) SIZE)

((INTERMEDIATE-GROW-CIS 1) (ENUMERATE-WHOLE-CIS 4)

SIZE)
((INTERMEDIATE-GROW-CIS 2 (SUCCESSIVE-INDICES 1)))

:Output-Embedding
(((INTERMEDIATE-GROW-CI 3 (ACCUMULATE-NEW-BASE 4)

BASE)
((INTERMEDIATE-GROW-CIS 3 (DOUBLE-SIZE 2)

SIZE))

:St-Thrus
(((INTERMEDIATE-GROW-CI 2 (INTERMEDIATE-GROW-CIS 3)

((INTERMEDIATE-GROW-CIS 1) (INTERMEDIATE-GROW-CI 3)

FILL-COUNT)
((INTERMEDIATE-GROW-CIS 1) (INTERMEDIATE-GROW-CIs 3)

FILL-COUNT))

:L-R-Link COMPOSITION
:Doc
(,intermediate non-terminal: Grow-CIS.'))

(Defrule COMBINATION-FUNCTION
'Combination Function'

:RHS-Node-Types

((SUBTRACT-THEM MINUS))
:Input-Embedding
(((COMBINATION-FUNCTION 1) (SUBTRACT-THEM 1))

((COMBINATION-FUNCTION 2 (SUBTRACT-THEM 2))

:Output-Embedding

(((COMBINATION-FUNCTION 3 (SUBTRACT-THEM 3))
:L-R-Link COMPOSITION

:Doc
(,subtracts -A from -A.,

(INPUT-PORT-NAME> (DOC-BP> (COMBINATION-FUNCTION 2)
(INPUT-PORT-NAME> (DOC-BP> (COMBINATION-FUNCTION 1)))))

(Defrule COMBINATION-FUNCTION

'Combination Function'
:RHS-Node-Types
((SUM-THEM . COMMUTATIVE-BINARY-FUNCTION))
:Input-Embedding

(((COMBINATION-FUNCTION 1) (SUM-THEM 1))
((COMBINATION-FUNCTION 2 (SUM-THEM 2))

:Output-Embedding

(((COMBINATION-FUNCTION 3 (SUM-THEM 3))
:L-R-Link COMPOSITION

:Doc
(,combines -A and -A by adding them to each other.,

(INPUT-PORT-NAME> (DOC-BP> (COMBINATION-FUNCTION 1)))
(INPUT-PORT-NAME> (DOC-BP> (COMBINATION-FUNCTION 2))))

(Defrule BOUNDED-CIS-ENUMERATION

'Bounded circular-indexed-Sequence Enumeration'
:RHS-Node-Types

((COUNT-N-TIMES . BOUNDED-COUNT)

(COMBINE-COUNT-FIRST COMBINATION-FUNCTION)

(WRAP-INDEX MOD)

(MAP-ACCESS-CIS SELECT-TERM))

:Edge-List
(((COUNT-N-TIMES 3 . (COMBINE-COUNT-FIRST 2)

((COMBINE-COUNT-FIRST 3 . WR.AP-INDEX 1))
((WRAP-INDEX 3 . (MAP-ACCESS-CIS 2)

:Input-Embedding

(((BOUNDED-CIS-ENUMERATION 1) (MAP-ACCESS-CIS 1))
((BOUNDED-CIS-ENUMERATION 2 (COMBINE-COUNT-FIRST 1))

((BOUNDED-CIS-ENUMERATION 3) (COUNT-N-TIMES 2)
((BOUNDED-CIS-ENMERATION 4) (WRAP-INDEX 2M

:Output-Embedding
(((BOUNDED-CIS-ENUMERATION 5) (MAP-ACCESS-CIS 3))

:L-R-Link COMPOSITION

:Doc
(,enumerates N elements of the Circular-Indexed-Sequence -A starting

.from -A, where N = A. The sequence is filled in -A.,
(INPUT-PORT-NAME> (DOC-BP> (BOUNDED-CIS-ENUMERATION 1)))
(INPUT-PORT-NAME> (DOC-BP> (BOUNDED-CIS-ENUMERATION 2)

(INPUT-PORT-NAME> (DOC-BP> (BOUNDED-CIS-ENUMERATION 3)
(GROWTH-DIRECTION (N> BOUNDED-CIS-ENUMERATION))))

(Defrule CIRCULAR-INDEXED-SEQUENCE-ENUMBRATION

'Circular-Indexed-Sequence Enumeration'

:RHS-Node-Types

((ENUMERATE-ENTIRE-CIS . BOUNDED-CIS-ENUMERATION))
:Input-Embedding

(((CIRCULAR-INDEXED-SEQUENCE-ENUMERATION 1) (ENUMERATE-ENTIRE-CIS 1)
BASE)

((CIRCULAR-INDEXED-SEQUENCE-ENUMERATION 1) (ENUMERATE-=IRE-CIS 2)

FIRST)

((CIRCULAR-INDEXED-SEQUENCE-ENUMERATION 1) (ENUMERATE-ENTIRE-CIS 3)
FILL-COUNT)

((CIRCULAR-INDEXED-SEQUENCE-ENUMERATION 1) (ENUMERATE-ENTIRE-Cis 4)
SIZE))

:Output-Embedding
(((CIRCULAR-INDEXED-SEQUENCE-ENUMERATION 2 (ENUMERATE-ENTIRE-CIS 5)))

:L-R-Link IMPLF14ENTATION
:Doc

(,enumerates all of the elements in the Circular-Indexed-Sequence -A.
The sequence is filled in -A.,

(INPUT-PORT-NAME> (DOC-BP> (CIRCULAR-INDEXED-SEQUENCE-ENUMERATION 1)))
(GROWTH-DIRECTION (N> CIRCULAR-INDEXED-SEQUENCE-ENUMERATION))))

(Defrule FIFO-ENUMERATION

'FIFO Enumeration'

:RHS-Node-Types
((ENUMERATE-CIS . CIRCULAR-INDEXED-SEQUENCE-ENUMERATION))

:Input-Embedding

(((FIFO-ENUMERATION 1) (ENUMERATE-CIS

CIRCULAR-INDEXED-SEQUENCE>FIFO))

:Output-Embedding
(((FIFO-ENUMERATIO 2 (ENUMERATE-CIS 2))

:L-R-Link IPLEMENTATION
:Doc

('enumerates the FIFO queue -A, which is implemented as a circular -
Indexed Sequence. The queue is not changed. The queue grows -A.'

(INPUT-PORT-NAME> (DOC-BP> (FIFO-ENUMERATION 1)))
(GROWTH-DIRECTION (N> FIFO-ENUMERATION))))

(Defrule CIS-ADD

'Circular-indexed-Sequence Add,
:RHS-Node-Types

((FULL? CIS-FULL)
(ROOMY-ADD ROOMY-CIS-ADD)

(MAKE-ROOM GROW-CIS))

:Edge-List

(((MAKE-ROOM 2 (ROOMY-ADD 2)
:Tnput-Embedding
(((CIS-ADD 1) (ROOMY-ADD 1))
((CIS-ADD 2 (MAKE-ROOM 1))

((CIS-ADD 2 (ROOMY-ADD 2)

((CIS-ADD 2 (FULL? 1)))

:Output-Embedding

(((CIS-ADD 3 (ROOMY-ADD 3))

:L-R-Link COMPOSITION
:Doc

(,adds the element -A to the Circular-indexed-Sequence -,-%-
making room for it if the Circular-indexed-Sequence is full.-%-

The sequence is filled in -A.,
(INPUT-PORT-NAME> (DOC-BP> (CIS-ADD 1)))
(INPUT-PORT-NAME> (DOC-BP> (CIS-ADD 2)

(GROWTH-DIRECTION (N> CIS-ADD))))

(Defrule ROOMY-CIS-ADD

'Roomy Circular-Indexed-sequence Add,
:RHS-Node-Types
((ADD-TO-DATA NEW-TERM)

297

(BUMP-LAST . INCREMENT-OR-DECREMENT)
(WRAP-INDEX-AROUND MOD)
(INCREMENT-FILL-COUNT INCREMENT))

:Edge-List

(((BUMP-LAST 2 . (WRAP-INDEX-AROUND
:Input-Embedding

(((ROOMY-CIS-ADD 1) (ADD-TO-DATA 1))
((ROOMY-CIS-ADD 2 (ADD-TO-DATA 3)
BASE)

((ROOMY-CIS-ADD 2 (WRAP-INDEX-AROUND 2)
SIZE)

((ROOMY-CIS-ADD 2 (INCREMENT-FILL-COUNT 1)

FILL-COUNT)
((ROOMY-CIS-ADD 2 (BUMP-LAST 1)

LAST)

((ROOMY-CIS-ADD 2 (ADD-TO-DATA 2)
LAST))

:Output-Enbedding

(((ROOMY-CIS-ADD 3 (WRAP-INDEX-AROUND 3)
LAST)

((ROOMY-CIS-ADD 3 (INCREMENT-FILL-COUNT 2)
FILL-COUNT)

((ROOMY-CIS-ADD 3 (ADD-TO-DATA 4)

BASE))

:St-Thrus

(((ROOMY-CIS-ADD 2 (ROOMY-CIS-ADD 3)
SIZE)

((ROOMY-CIS-ADD 2 (ROOMY-CIS-ADD 3)

FIRST))
:L-R-Link COMPOSITION

:Doc
(,adds the element -A. to the Circular-Indexed-Sequence -A,

(which has room for it).-%-
The sequence is filled in -A.'

(INPUT-PORT-NAME> (DOC-BP> (ROOMY-CIS-ADD 1)))
(INPUT-PORT-NAME> (DOC-BP> (ROOMY-CIS-ADD 2M

(GROWTH-DIRECTION (N> ROOMY-CIS-ADD))))

(Defrule FIFO-ENQUEUE

'FIFO Enqueuel

:RHS-Node-Tlypes

((ADD-TO-CIS-LAST CIS-ADD))

:Input-Embedding

(((FIFO-ENQUEUE 1) (ADD-TO-CIS-LAST 1))
((FIFO-ENQUEUE 2 (ADD-TO-CIS-LAST 2)

CIRCULAR-INDEXED-SEQUENCE>FIFO))

:Output-Embedding
(((FIFO-ENQUEUE 3 (ADD-TO-CIS-LAST 3)

CIRCULAR-INDEXED-SEQUENCE>FIFO))
:L-R-Link IMPLEMENTATION
:Doc

(lenqueues -A. on the FIFO queue -A., which is implemented as
a Circular indexed equence.-%-

The queue grows -A.'
(INPUT-PORT-NAME> (DOC-BP> (FIFO-ENQUEUE 1)))

(INPUT-PORT-NAME> (DOC-BP> (FIFO-ENQUEUE 2))
(GROWTH-DIRECTION (N> FIFO-ENQUEUE))))

Figures 324, 411.

(Defrule CIS-EXTRACT
'Circular-Indexed-Sequence Extract'
:RHS-Node-Types
((ACCESS-BASE SELECT-TERM)

(BUMP-FIRST INCREMENT-OR-DECREMENT)

(WRAP-AROUND-INDEX MOD)

(DECREMENT-FILL-COUNT DECREMENT))
:Edge-List

(((BUMP-FIRST 2 (WRAP-AROUND-INDEX 1)))
:Input-Embedding
(((CIS-EXTRACT 1) (BUMP-FIRST)

FIRST)

((CIS-EXTRACT 1) (ACCESS-BASE 2)
FIRST)

((CIS-EXTRACT 1) (ACCESS-BASE
BASE)

((CIS-EXTRACT 1) (WRAP-AROUND-INDEX 2)
SIZE)

((CIS-EXTRACT 1) (DECREMENT-FILL-COUNT 1)
FILL-COUNT))

:Output-Embedding

(((CIS-EXTRACT 2 (ACCESS-BASE 3)

((CIS-EXTRACT 3 (WRAP-AROUND-INDEX 3)
FIRST)

((CIS-EXTRACT 3 (DECREMENT-FILL-COUNT 2)
FILL-COUNT))

:St-Thrus

(((CIS-EXTRACT 1) (CIS-EXTRACT 3)
LAST)

((CIS-EXTRACT 1) (CIS-EXTRACT 3)

SIZE)

((CIS-EXTRACT 1) (CIS-EXTRACT 3)
BASE))

:L-R-Link COMPOSITION
:Doc

(,extracts the First element from the Circular Indexed-Sequence A.-%-
The sequence is filled in -A.'

(INPUT-PORT-NAME> (DOC-BP> (CIS-EXTRACT 1)))
(GROWTH-DIRECTION (N> CIS-EXTRACT))))

Figure 412.

(Defrule FIFO-DEQUEUE
'FIFO Dequeuel
:RHS-Node-Types

((EXTRACT-CIS-FIRST CIS-EXTRACT))
:Input-Embedding

(((FIFO-DEQUEUE 1) (EXTRACT-CIS-FIRST 1)

CIRCULAR-INDEXED-SEQUENCE>FIFO))
:Output-Embedding

(((FIFO-DEQUEUE 2 (TRACT-CIS-FIRST 2)

((FIFO-DEQUEUE 3 (EXTRACT-CIS-FIRST 3)
CIRCULAR-INDEXED-SEQUENCE>FIFC))

:L-R-Link IMPLEMENTATION
--:Doc

(Idequeues the FIFO queue -A, which is implemented as a Circular
Indexed-Sequence.-%-

The queue grows -A.,

(INPUT-PORT-NAME> (DOC-BP> (FIFO-DEQUEUE 1)))
(GROWTH-DIRECTION (N> FIFO-DEQUEUEM)

(Defrule EVALUATE-ARGUMENTS
'Evaluate-Arguments'

:RHS-Node-Types

((EVAL-EXPS . ENUM-EVAL-COLLECT))
:Input-Embedding

(((EVALUATE-ARGUMENTS 1) (EVAL-EXPS 1))
((EVALUATE-ARGUMENTS 2) (EVAL-EXPS 2))
((EVALUATE-ARGUMENTS 3) (EVAL-EXPS 3))

((EVALUATE-ARGUMENTS 4) (EVAL-EXPS 4)))
:Output-Embedding

(((EVALTJATE-ARGUMENTS 5) (EVAL-EXPS 5))

((EVALUATE-ARGUMENTS 6) (EVAL-EXPS 6))
((EVALUATE-ARGUMENTS 7) (EVAL-EXPS 7))

((EVALUATE-ARGUMENTS 8) (EVAL-EXPS 8)))

:L-R-Link IMPLEMENTATION
:Doc

(,evaluates the arguments -A.'

(INPUT-PORT-NAME> (DOC-BP> (EVAL-EXPS 1)))))

(Defrule ENUM-EVAL-COLLECT

'Enumerate, Evaluate, and Collect'
:RHS-Node-Types

((ENUMERATE-ARGS LE)
(EVALUATE-THEM EVALUATE-MAP)

(COLLECT-RESULTS . CONS-ACCUMULATE-UP))
:Edge-List

(((ENUMERATE-ARGS 2 (EVALUATE-MAP 1)))
:Input-Embedding

(((ENUM-EVAL-COLLECT 1) (ENUMERATE-ARGS 1))

((ENUM-EVAL-COLLECT 2) (EVALUATE-MAP 2)
((ENUM-EVAL-COLLECT 3) (EVALUATE-MAP 3)

((ENUM-EVAL-COLLECT 4) (EVALUATE-MAP 4)

:Output-Embedding
(((ENUM-EVAL-COLLECT 5) (COLLECT-RESULTS 2)

((ENUM-EVAL-COLLECT 6) (EVALUATE-MAP 6)
t(ENUM-EVAL-COLLECT 7) (EVALUATE-MAP 7)

((ENUM-EVAL-COLLECT 8) (EVALUATE-MAP 8)))

:L-R-Link COMPOSITION

:Doc

(,enumerates the arguments -A, evaluates each one, and collects-%-
the evaluated arguments in a list, which it returns.'

(INPUT-PORT-NAME> (DOC-BP> (ENUMERATE-ARGS 1)))))

(Defrule EVALUATE-MAP

'Evaluate Map'

:RHS-Node-Types
((ITER-EVAL ITERATIVE-EVALUATION))
:Input-Embedding
(((EVALUATE-MAP 1) (ITER-EVAL 1))

((EVALUATE-MAP 2 (ITER-EVAL 2))

((EVALUATE-MAP 3 (ITER-EVAL 3))
((EVALUATE-MAP 4 (ITER-EVAL 4)))

:Output-Embedding

(((EVALUATE-MAP 5) (ITER-EVAL 5))
((EVALUATE-mA 6 (ITER-EVAL 6))
((EVALUATE-MAP 7 (ITER-EVAL 7))

((EVALUATE-MAP 8) (ITER-EVAL 8)))

:L-R-Link TEMPORAL-ABSTRACTION
:Doc

(,applies the function EVALUATE to each expression in the input
series of expressions.,))

(Defrule ITERATIVE-EVALUATION

'Iterative Evaluation,
:RHS-Node-Types

298

� - - --- - 11 - -

((MAP-EVAL . EVALUATE))

:Input-Embedding
(((ITERATIVE-EVALUATION 1) (MAP-EVAL 1))

((ITERATIVE-EVALUATION 2) (MAP-EVAL 2)
((ITERATIVE-EVALUATION 3) (MAP-EVAL 3)
((ITERATIVE-EVALUATION 4) (MAP-EVAL 4)

:Output-Embedding
(((ITERATIVE-EVALUATION 5) (MAP-EVAL 5)))

:St-Thrus
(((ITERATIVE-EVALTJATION 4) (ITERATIVE-EVALUATION 8))

((ITERATIVE-EVALUATION 3) (ITERATIVE-EVALUATION 7)
((ITERATIVE-EVALUATION 2) (ITERATIVE-EVALUATION 6)

:L-R-Link COMPOSITION

:Doc
(,iteratively applies the function Evaluate.,))

(Defrule RUNNING-STATUS?

'Execution Still Running Predicate,

:RHS-Node-Types
((STATUS-RUNNING? RUNNING-TEST))

:Input-Embedding
(((RUNNING-STATUS? 1) (STATUS-RUNNING? 1)

STATUS))
:L-R-Link TEMPORAL-ABSTRACTION

:Doc

(,checks whether the execution context -A is still running

by looking at its STATUS part.,
(INPUT-PORT-NAME> (DOC-BP> (STATUS-RUNNING?

(Defrule RUNNING-TEST

'Running Test'
:RHS-Node-Types
((RUNNING? COMMUTATIVE-BINARY-FUNCTION)
(RUN-SPLIT NULL-TEST))

:Edge-List

(((RUNNING? 3 . (RUN-SPLIT 1)))

:Input-Embedding

(((RUNNING-TEST 1) (RUNNING?
:L-R-Link COMPOSITION

:Doc

(,checks whether -A -A -A.'
(INPUT-PORT-NAME> (DOC-BP> (RUNNING? 1)))

(FUNCTION-TYPE (FUNCTION-INFO (N> RUNNING?)))

(SOURCE-TYPE (DOC-BP> RNING 2)))

(Defrule HANDLE-MESSAGE

'Handle Message'
:RHS-Node-Types

((PROCESS . LOOKUP-AND-EXECUTE-HANDLER))
:Input-Embedding

(((HANDLE-MESSAGE 1) (PROCESS
((HANDLE-MESSAGE 2) (PROCESS 2)
((HANDLE-MESSAGE 3) (PROCESS 3)

:Output-Embedding

(((HANDLE-MESSAGE 4) (PROCESS 6)
((HANDLE-MESSAGE 5) (PROCESS 7)

:L-R-Link IMPLEMENTATION
:Doc
(,handles the message -A by looking up its handler code and

executing it.'

(INPUT-PORT-NAME> (DOC-BP> (HANDLE-MESSAGE

(Defrule LOOKUP-HANDLER-FOR-MESSAGE
'Lookup Message Handler'
:RHS-Node-Types

((LOOKUP-HANDLER-OF-TYPE LOOKUP-HANDLER))

:Input-Embedding

(((LOOKUP-HANDLER-FOR-MESSAGE 1) (LOOKUP-HANDLER-OF-TYPE 1)
TYPE))

:Output-Embedding

(((LOOKUP-HANDLER-FOR-MESSAGE 2 LKUP-HANDLER-OF-TYPE 2))
:L-R-Link IMPLEMENTATION

:Doc

(,looks up the handler for message -A's type -A.'

(INPUT-PORT-NAME> (DOC-BP> (LOOKUP-HANDLER-FOR-MESSAGE
(INPUT-PORT-NAME> (DOC-BP> (LOOKUP-HANDLER-FOR-MESSAGE 1)

TYPE))))

(Defrule LOOKUP-HANDLER

'Lookup Handler'
:RHS-Node-Tlypes

((ASSOCIATE-HANDLER-NAME . ASSOCIATIVE-SET-LOCKUP))
:Input-Embedding

(((LOOKUP-HANDLER 1) (ASSOCIATE-HANDLER-NAME

:Output-Embedding
(((LOOKUP-HANDLER 2 (ASSOCIATE-HANDLER-NAME 3))
:L-R-Link IMPLEMENTATION
:Doc

('looks up the handler named A.-%-
The global associative set of operators is -A.'

(INPUT-PORT-NAME> (DOC-BP> (LOOKUP-HANDLER 1)))
(SOURCE-TYPE (P> (ASSOCIATE-HANDLER-NAM 2))))

(Defrule LOOKUP-HANDLER

'Lookup Handler'

:RHS-Node-Types

((LOOKUP-HANDLER-PROPERTY . PROPERTY-LIST-LOOKUP))
:Input-Embedding

(((LOOKUP-HANDLER 1) (LOOKUP-HANDLER-PROPERTY 1)))

:Output-Embedding

(((LOOKUP-HANDLER 2 (LOOKUP-HANDLER-PROPERTY 3))
:L-R-Link IMPLEMENTATION
:Doc

(,looks up the handler named -A.,
(INPUT-PORT-NAME> (DOC-BP> (LOOKUP-HANDLER 1)))))

(Defrule FETCH-OP

'Fetch Operator'
:RHS-Node-Types

((LOOKUP-OP . ASSOCIATIVE-SET-LOOKUP))
:Input-Embedding

(((FETCH-OP 1) (LOOKUP-OP

:Output-Embedding
(((FETCH-OP 2 (LOOKUP-OP 3))

:L-R-Link IMPLEMENTATION
:Doc

(,looks up the operator named A.-%-

The global associative set of operators is -A.,

(INPUT-PORT-NAME> (DOC-BP> (FETCH-OP 1)))
(SOURCE-TYPE (P> (LOOKUP-OP 2))))

(Defrule FETCH-OP
'Fetch Operator'

:RHS-Node-Types
((THE-PLIST-LOOKUP . PROPERTY-LIST-LOOKUP))
:Input-Embedding
(((FETCH-OP 1) (THE-PLIST-LOOKUP 1)))
:Output-Embedding

(((FETCH-OP 2 (THE-PLIST-LOOKUP 3))

:L-R-Link IMPLEMENTATION
:Doc

(,looks up the operator named -A.,
(INPUT-PORT-NAME> (DOC-BP> (FETCH-OP 1)))))

(Defrule FETCH-AND-APPLY-OPERATOR

'Fetch and Apply Operator'
:RHS-Node-Types

((CET-OPERATOR . FETCH-OP)
(APPLY-OPERATOR APPLY))

:Edge-List

(((GET-OPERATOR 2 (APPLY-OPERATOR

:Input-Embedding

(((FETCH-AND-APPLY-OPERATOR 1) (GET-OPERATOR 1))
((FETCH-AND-APPLY-OPERATOR 2) (APPLY-OPERATOR 2)
((FETCH-AND-APPLY-OPERATOR 3) (APPLY-OPERATOR 3))

((FETCH-AND-APPLY-OPERATOR 4) (APPLY-OPERATOR 4))
(�FETCH-AND-APPLY-OPERATOR 5) (APPLY-OPERATOR 5)))

:Output-Embedding
(((FETCH-AND-APPLY-OPERATOR 6) (APPLY-OPERATOR 6))

((FETCH-AND-APPLY-OPERATOR 7) (APPLY-OPERATOR 7))

((FETCH-AND-APPLY-OPERATOR 8) (APPLY-OPERATOR 8))
((FETCH-AND-APPLY-OPERATOR 9) (APPLY-OPERATOR 9)))

:L-R-Link COMPOSITION

:Doc

(,fetches the operator associated w/ -A and applies it to the-%-
evaluated arguments -A.'

(INPUT-PORT-NAME> (DOC-BP> (FETCH-AND-APPLY-OPERATOR

(INPUT-PORT-NAME> (DOC-BP> (FETCH-AND-APPLY-OPERATOR 2)))

(Defrule EVALUATE-AND-APPLY

'Evaluate Arguments and Apply Operator'

:RHS-Node-Types
((EVAL-ARGS EVALUATE-ARGUMENTS)

(APPLY-OP . FETCH-AND-APPLY-OPERATOR))
:Edge-List

(((EVAL-ARGS 8) (APPLY-OP 5))

((EVAL-ARGS 7 (APPLY-OP 4)
((EVAL-ARGS) (APPLY-OP 3)

((EVAL-ARGS 5) (APPLY-OP 2))

:Input-Embedding

(((EVALUATE-AND-APPLY 1) (APPLY-OP 1))

((EVALUATE-AND-APPLY 2) (EVAL-ARGS 1))

((EVALUATE-AND-APPLY 3) (EVAL-ARGS 2)

((EVALUATE-AND-APPLY 4) (EVAL-ARGS 3)
((EVALUATE-AND-APPLY 5) (EVAL-ARGS 4)

:Output-Embedding
(((EVALUATE-AND-APPLY 6) (APPLY-OP 6)

((EVALUATE-AND-APPLY 7) (APPLY-OP 7)
((EVALUATE-AND-APPLY 8) (APPLY-OP 8))

((EVALUATE-AND-APPLY 9) (APPLY-OP 9)

:L-R-Link COMPOSITION
-Doc

(,evaluates the arguments -A, fetches the operation -A and applies-%-
it to the evaluated arguments.'

(INPUT-PORT-NAME> (DOC-BP> (EVALUATE-AND-APPLY 2)
(INPUT-PORT-NAME> (DOC-BP> (VALUATE-AND-APPLY 1)))))

299

(Defrule INTERPRET-INSTRUCTION

'Interpret Instruction'
:RHS-Node-Types

((EVAL-APPLY . EVALUATE-AND-APPLY))
-Input-Embedding
(((INTERPRET-INSTRUCTION 1) (EVAL-APPLY 1)

OP)
((INTERPRET-INSTRUCTION 1) (EVAL-APPLY 2)

ARGS)
((INTERPRET-INSTRUCTION 2) (EVAL-APPLY 3))
((INTERPRET-INSTRUCTION 3) (EVAL-APPLY 4))

((INTERPRET-INSTRUCTION 4) (EVAL-APPLY 5)))

:Output-Embedding
(((INTERPRET-INSTRUCTION 5) (EVAL-APPLY 7))

((INTERPRET-INSTRUCTION 6) (EVAL-APPLY 8))
((INTERPRET-INSTRUCTION 7) (EVAL-APPLY 9)))

:L-R-Link IMPLEMENTATION

:Doc

(,interprets the instruction -A by evaluating its arguments

-A and applying its operator -A to them.,
(INPUT-PORT-NAME> (DOC-BP> (INTERPRET-INSTRUCTION 1)))
(INPUT-PORT-NAME> (DOC-BP> (INTERPRET-INSTRUCTION)

INST-ARGS))
(INPUT-PORT-NAME> (DOC-BP> (INTERPRET-INSTRUCTION)

INST-OP))))

(Defrule LOOKUP-AND-EXECUTE-HANDLER
'Lookup and Execute Message Handler'
:RHS-Node-Types
((GET-DESTINATION-NODE . LOOKUP-DESTINATION)

(LOAD-ARGS . LOAD-ARGUMENTS)
(RECORD-NEW-NODE RECORD-AT-DESTINATION)
(GET-HANDLER-CODE LOOKUP-HANDLER-FOR-MESSAGE)

(GET-NEXT-INSTRUCTION FETCH-INSTRUCTION)
(INTERPRET INTERPRET-INSTRUCTION)

(STILL-RUNNING? RUNNING-STATUS?))

:Edge-List
(((GET-DESTINATION-NODE 3 . (LOAD-ARGS 2)

((LOAD-ARGS 3 (INTERPRET 3)

((LOAD-ARGS 3 (RECORD-NEW-NODE 1))
((RECORD-NEW-NODE 4 (INTERPRET 2)

((GET-HANDLER-CODE 2 (INTERPRET 3)

((GET-HANDLER-CODE 2 (GET-NEXT-INSTRUCTION 2)
((GET-NEXT-INSTRUCTION 4 (INTERPRET 3)

((GET-NEXT-INSTRUCTION 3 (INTERPRET 1))

((INTERPRET 6 (STILL-RUNNING?
:Input-Embedding
(((LOOKUP-AND-EXECUTE-HANDLER 1) (RECORD-NEW-NODE 2)

((LOOKUP-AND-EXECUTE-HANDLER 1) (LOAD-ARGS 1))
((LOOKUP-AND-EXECUTE-HANDLER 1) (GET-DESTINATION-NODE 2)
((LOOKUP-AND-EXE=E-HANDLER 1) (CET-HANDLER-CODE 1))

((LOOKUP-AND-EXECUTE-HANDLER 2) (RECORD-NEW-NODE 3)
((LOOKUP-AND-EXECUTE-HANDLER 2) (GET-DESTINATION-NODE 1))

((LOOKUP-AND-EXECUTE-HANDLER 3) (INTERPRET 4)

((LCOKUP-AND-EXECUTE-HANDLER 4) (GET-NEXT-INSTRUCTION 1))
((LOOKUP-AND-EXECUTE-HANDLER 5) (INTERPRET 3))

:Output-Embedding
(((LOOKUP-AND-EXECUTE-HANDLER 6) (INTERPRET 5))

((LOOKUP-AND-EXECUTE-HANDLER 7) (INTERPRET 7))

:L-R-Link COMPOSITION

:Doc
(,looks up the handler for the message -A, loads the -

arguments of the message into the message's destination -

node, and then executes the handler instructions, starting
with the one pointed to by -A. As long as the execution -

context's status is -A, the next instruction (pointed to -

by -A) is executed.,

(INPUT-PORT-NAME> (DOC-BP> (LOOKUP-AND-EXECUTE-HANDLER 1)))
(INPUT-PORT-NAME> (DOC-BP> (LOOKUP-AND-EXECUTE-HANDLER 4)
(INPUT-PORT-NAME> (DOC-BP> (LOOKUP-AND-EXECUTE-HANDLER 5)))
(INPUT-PORT-NAME> (DOC-BP> (LOOKUP-AND-EXECUTE-HANDLER 4)))

(Defrule FETCH-INSTRUCTION
'Fetch Next Instruction'
:RHS-Node-Tlypes
((FETCH-Il . INDEXED-SEQUENCE-EXTRACT))

:Output-Embedding
(((FETCH-INSTR-UCTION 3 (FETCH-Il 2)

((FETCH-INSTRUCTION 4 (FETCH-Il 3))
:L-R-Link COMPOSITION

:Doc

(,fetches the next instruction (pointed to by -A) in the
sequence -Al

(INPUT-PORT-NAME> (DOC-BP> (FETCH-INSTRUCTION 1)))

(INPUT-PORT-NAME> (DOC-BP> (FETCH-INSTRUCTION 2))))

(Defrule LOAD-ARGUMENTS-INTO-MEMORY
'Load Arguments into Memory'
:RHS-Node-Tlypes
((TRANSFER-ARG-LIST . LIST-TO-SEQUENCE)

(ADD-TO-MEMORY . ASSOCIATIVE-SET-ADD))
:Edge-List
(((TRANSFER-ARG-LIST 3 . (ADD-TO-MEMORY

:Input-Embedding
(((LOAD-ARGUMENTS-INTO-MEMORY 1) (TRANSFER-ARG-LIST 1)

ARGUMENTS)
((LOAD-ARGUMENTS-INTO-MFMORY 1) (TRANSFER-ARG-LIST 2)
STORAGE-REQUIREMENTS)

((LOAD-ARGUMENTS-INTO-MEMORY 2 (ADD-TO-MEMORY 3))
:Output-Embedding
(((LOAD-ARG-UMENTS-INTO-MEMORY 3 (ADD-TO-MEMORY 4)
:L-R-Link COMPOSITION
.Doc
Makes the list of arguments in the message -A and converts it to -

an indexed-sequence of size -A, which it then stores in the memory
-A, at key -A.'

(INPUT-PORT-NAME> (DOC-BP> (LOAD-ARGUMENTS-INTO-MEMORY 1)
ARGUMENTS))

(INPUT-PORT-NAME> (DOC-BP> (LOAD-ARCUMENTS-INTO-MEMORY 1)
STORAGE-REQUIREMENTS))

�INPUT-PORT-NAME> tDOC-BP> (LOAD-ARGUMENTS-INTO-MEMORY 2)
(INPUT-PORT-NAME> (DOC-BP> (ADD-TO-MEMORY 2)))

(Defrule LOAD-ARGUMENTS-INTO-SN
'Load Arguments into Synch-Node'
:RHS-Node-Types
(tBASE-LOAD-ARGUMENTS . OAD-ARGUMENTS-INTO-MEMORY))
:Input-Embedding
(((LOAD-ARCUMENTS-INTO-SN 1) (BASE-LOAD-ARGUMENTS 1))

t(LOAD-ARCUMENTS-INTO-SN 2 (BASE-LOAD-ARGUMENTS 2)
MEMORY))

:Output-Embedding
(((LOAD-ARGUMENTS-INTO-SN 3 (BASE-LOAD-ARGUMENTS 3)

MEMORY))
:St-Thrus
(((LOAD-ARGUMENTS-INTO-SN 2 (LOAD-ARGUMENTS-INTO-SN 3)

LOCAL-BUFFER))
:L-R-Link IMPLEMENTATION
:Doc
(,loads the arguments of the Message -A into the Memory part of the

Node A- which is mplemented as a Synch-Node.,
(INPUT-PORT-NAME> (DOC-BP> (LOAD-ARGUMENTS-INTO-SN M)
(INPUT-PORT-NAME> (DOC-BP> (LOAD-ARGUMENTS-INTO-SN 2)))

(Defrule LOAD-ARGUMENTS-INTO-AN
'Load Arguments into Asynch-Nodel
:RHS-Node-Types
((BASE-LOAD-ARGUMENTS . LOAD-ARGUMENTS-INTC-MEMORY))
:Input-Embedding
(((LOAD-ARGUMENTS-INTO-AN 1) (BASE-LOAD-ARGUMENTS 1))

((LOAD-ARGUMENTS-INTO-AN 2 (BASE-LOAD-ARCUMM,7T 2 MEMORY))
:Output-Embedding
(((LOAD-ARGUMENTS-INTO-AN 3 (BASE-LOAD-ARGUMENTS 3 MEMORY))
:St-Thrus
(((LOAD-ARGUMENTS-INTO-AN 2 (LOAD-ARGUMENTS-INTO-AN 3)

TIME))
:L-R-Link IMPLEMENTATION
.Doc
(,loads the arguments of the Message -A into the Memory part of the

Node.-A which is implemented as an Asynch-Node.,
(INPUT-PORT-NAME> (DOC-BP> (LOAD-ARCUMENTS-INTO-AN
(INPUT-PORT-NAME> (DOC-BP> (LOAD-ARCUMENTS-INTO-AN 2)))

(Defrule LOAD-ARGUMENTS
'Load Arguments'
:RHS-Node-Types
((LOAD-AN . LOAD-ARCUMENTS-INTO-AN))
:Input-Embedding
(((LOAD-ARGUMENTS 1) (LOAD-AN 1))

((LOAD-ARGUMENTS 2 (LOAD-AN 2)
ASYNCH-NODE>NODE))

:Output-Embedding
(((LOAD-ARGUMENTS 3 (LOAD-AN 3)

ASYNCH-NODE>NODE))
:L-R-Link IMPLEMENTATION
.Doc
(,loads the arguments of Message -A into the memory of node -A.,

(INPUT-PORT-NAME> DOC-BP> (LOAD-ARGUMENTS 1)))
(INPUT-PORT-NAME> (DOC-BP> (LOAD-ARGUMENTS 2)))

(Defrule LOAD-ARGUMENTS
'Load Arguments'
:RHS-Node-Types
((LOAD-SN . LOAD-ARGUMENTS-INTO-SN))
:Input-Embedding
(((LOAD-ARGUMENTS 1) (LOAD-SN 1))

((LoAD-ARcumENTs 2 (LOAD-SN 2)
SYNCH-NODE>NODE))

:Output-Embedding
(((LOAD-ARGUMENTS 3 (LOAD-SN 3)

SYNCH-NODE>NODE))
:L-R-Link IMPLEMENTATION
:Doc
(,loads the arguments of Message -A into the memory of node

(INPUT-PORT-NAME> (DOC-BP> (LOAD-ARGUMENTS 1)))
(INPUT-PORT-NAME> (DOC-BP> (LOAD-ARGUMENTS 2)))

3 0

(Defrule FETCH+UPDATE

'Fetch and Update'

:RHS-Node-Types
((FETCH-FROM-BASE SELECT-TERM)

(BACKUP-INDEX . INCREM ENT -OR-DECREMENT))
:Input-Embedding

(((FETCH+UPDATE 1) (FETCH-FROM-BASE 2 INDEX)

((FETCH+UPDATE 1) (BACKUP-INDEX 1) INDEX)
((FETCH+UPDATE 1) (FETCH-FROM-BASE 1) BASE))

:Output-Embedding

(((FETCH+UPDATE 2 (FETCH-FROM-BASE 3))

((FETCH+UPDAT 3 (BACKUP-INDEX 2 INDEX))

:St-Thrus
(((FETCH+UPDATE 1) (FETCH+UPDATE 3 BASEH
:L-R-Link COMPOSITION
:Doc

(,extracts an element from an indexed-Sequence, which has
parts:-%-

Base (an sequence)

and an Index -A into the sequence.-%-
The sequence is filled in -A. The Index is updated after

the output is fetched from the Base.,
(INPUT-PORT-NAME> (DOC-BP> (FETCH+UPDATE 1) BASE))

(INPUT-PORT-NAME> (DOC-BP> (FETCH+UPDATE 1) INDEX))

(GROWTH-DIRECTION (N> FTCH+UPDATE))))

(Defrule UPDATE+FETCH
'Update and Fetch'

:RHS-Node-Tlypes

((FETCH-FROM-BASE2 SELECT-TERM)

(BACKUP-INDEX2 . INCREMENT-OR-DECREMENT))
:Edge-List
(((BACKUP-INDEX2 2 . (FETCH-FROM-BASE2 2)
:Input-Embedding

(((UPDATE+FETCH 1) (BACKUP-INDEX2 1) INDEX)
((UPDATE+FETCH 1) (FETCH-FROM-BASE2 1) BASE))

:Output-Embedding

(((UPDATE+FETCH 2 (FETCH-FROM-BASE2 3)
((UPDATE+FETCH 3 (BACKUP-INDEX2 2 INDEX))

:St-Thrus
(((UPDATE+FETCH 1) (UPDATE+FETCH 3 BASE))
:L-R-Link COMPOSITION

:Doc
(,extracts an element from an Indexed-Sequence, which has

parts:-%-
Base (an sequence)

and an Index -A into the sequence.-%-
The sequence is filled in -A. The index is updated before

the output is fetched from the Base.,

(INPUT-PORT-NAME> (DOC-BP> (UPDATE+FETCH 1) BASE))
(INPUT-PORT-NAME> (DOC-BP> (UPDATE+FETCH 1) INDEX))
(GROWTH-DIRECTION (N> UPDATE+FETCH))))

(Defrule UPDATE+BUMP

'Update and Bump'
:RHS-Node-Types
((BUMP-INDEX INCREMENT-OR-DECREMENT)

(ADD-TO-BASE NEW-TERM))
:Edge-List

(((BUMP-INDEX 2 . (ADD-TO-BASE 2))
:Input-Embedding

MUPDATE+BUMP 2 (BUMP-INDEX 1) INDEX)
((UPDATE+BUMP 2 (ADD-TO-BASE 3 BASE)
((UPDATE+BUMP 1) (ADD-TO-BASE 1)))

:Output-Embedding
MUPDATE+BUMP 3 (BUMP-INDEX 2 INDEX)

((UPDATE+BUMP 3 (ADD-TO-BASE 4 BASEH
:L-R-Link COMPOSITION

:Doc
(,adds -A to an indexed-sequence, which has parts:-%-

Base (an sequence) A-
and an index -A into the sequence.-%-

The sequence is filled in A.-%-

The Index is updated before the input is added to the Base.,
(INPUT-PORT-NAME> (DOC-BP> (UPDATE+BUMP M)

(INPUT-PORT-NAME> (DOC-BP> (UPDATE+BUMP 2 BASEH

(INPUT-PORT-NAME> (DOC-BP> (UPDATE+BUM 2 INDEX))
(GROWTH-DIRECTION (N> UPDATE+BUMP))))

(Defrule BUMP+UPDATE

'Bump and Update'

:RHS-Node-Types
((BUMP-INDEX2 INCREMENT-OR-DECREMENT)

(ADD-TO-BASE2 NEW-TERM))

:Input-Embedding
(((BUMP+UPDATE 2 (ADD-TO-BASE2 2 INDEX)

((BUMP+UPDATE 2 (BUMP-INDEX2 1) INDEX)
((BUMP+UPDATE 2 (ADD-TO-BASE2 3 BASE)
((BUMP+UPDATE 1) (ADD-TO-BASE2 1)))

:Output-Embedding

(((BUMP+UPDAT 3 (BUMP-INDEX2 2 INDEX)
((BUMP+UPDATE 3 (ADD-TO-BASE2 4 BASE))

:L-R-Link COMPOSITION

: Doc

(,adds -A to an indexed-sequence, which has parts:-%-
Base (an sequence) A-

and an index -A into the sequence.-%-
The sequence is filled in A.-%-

The Index is updated after the input is added to the Base.,

(INPUT-PORT-NAME> (DOC-BP> (BUMP+UPDATE 1M
(INPUT-PORT-NAME> (DOC-BP> (BUMP+UPDATE 2 BASEH

(INPUT-PORT-NAME> (DOC-BP> (BUMP+UPDATE 2 INDEX))
(GROWTH-DIRECTION (N> BUMP+UPDATE))))

(Defrule INDEXED-SEQUENCE-INSERT

'Indexed-Sequence Insert'

:RHS-Node-Types
((I-S-INSERT2 . UPDATE+BUMP))
:Input-Embedding

(((INDEXED-SEQUENCE-INSERT 1) (I-S-INSERT2 1))
((INDEXED-SEQUENCE-INSERT 2 (I-S-INSERT2 2)

:Output-Embedding

(((INDEXED-SEQUENCE-INSEPT 3 (I-S-INSERT2 3))
:L-R-Link IMPLF14ENTATION
:Doc

(,inserts -a into the Indexed Sequence -A.'

(INPLJT-PORT-NAME> (DOC-BP> (INDEXED-SEQUENCE-INSERT 1)))

(INPUT-PORT-NAME> (DOC-BP> (INDEXED-SEQUENCE-INSERT 2)))

(Defrule INDEXED-SEQUENCE-INSERT
'Indexed-Sequence Insert'

:RHS-Node-Types
((I-S-INSERT1 . BUMP+UPDATE))

:Input-Embedding

(((INDEXED-SEQUENCE-INSERT 1) (I-S-INSERT1 1))
((INDEXED-SEQUENCE-INSERT 2 (I-S-INSERT1 2M

:Output-Embedding
(((INDEXED-SEQUENCE-INSERT 3 (I-S-INSERT1 3M
:L-R-Link IMPLEMENTATION

.Doc

(,inserts -a into the indexed Sequence -A.,

(INPUT-PORT-NAME> (DOC-BP> (INDEXED-SEQUENCE-INSERT 1)))

(INPUT-PORT-NAME> (DOC-BP> (INDEXED-SEQUENCE-INSERT 2)))

(Defrule INDEXED-SEQUENCE-EXTRACT

'Indexed-Sequence Extract'

:RHS-Node-Types
((I-S-EXTRACT2 . UPDATE+FETCH))
:Input-Embedding

(((INDEXED-SEQUENCE-EXTRACT 1) (I-S-EXTRACT2 1)))
:Output-Embedding

(((INDEXED-SEQUENCE-EXTRACT 2 (I-S-EXTRACT2 2)

((INDEXED-SEQUENCE-EXTRACT 3 (-S-EXTRACT2 3)
:L-R-Link IMPLEMENTATION
:Doc

('extracts the current element from the Indexed sequence -A.'

(INPUT-PORT-NAME> DOC-BP> (INDEXED-SEQUENCE-EXTRACT 1)))))

(Defrule INDEXED-SEQUENCE-EXTRACT

'Indexed-Sequence Extract'
:RHS-Node-Types

((I-S-EXTRACT1 . FETCH+UPDATE))
:Input-Embedding

(((INDEXED-SEQUENCE-EXTRACT 1) (I-S-EXTRACT1 1)))
:Output-Embedding

(((INDEXED-SEQUENCE-EXTRACT 2 (I-S-EXTRACT1 2)
((INDEXED-SEQUENCE-EXTRACT 3 (I-S-EXTRACT1 3))

:L-R-Link IMPLEMENTATION
:Doc

('extracts the current element from the Indexed Sequence -A.'
(INPUT-PORT-NAME> (DOC-BP> (INDEXED-SEQUENCE-EXTRACT 1)))))

(Defrule INDEXED-SEQUENCE-ACCUMULATION
'Indexed-Sequence Accumulation,
:RHS-Node-Types

((INSERT-INTO-1-S . INDEXED-SEQUENCE-INSERT))
:Input-Embedding

(((INDEXED-SEQUENCE-ACCUMULATION 1) (INSERT-INTO-1-S 1))
((INDEXED-SEQUENCE-ACCUMULATION 2 (INSERT-INTO-I-S 2)

:St-Thrus

(((INDEXED-SEQUENCE-ACCUMULATION 2 (INDEXED-SEQUENCE-ACCUMULATION 3))
:L-R-Link TEMPORAL-ABSTRACTION
:Doc

(,accumulates the elements in the series into a new indexed-sequence.,

(INPUT-PORT-NAME> (DOC-BP> (INDEXED-SEQUENCE-ACCLNULATION 1)))))

(Defrule ASSOCIATIVE-SET-ADD

'Associative Set Add,
:RHS-Node-Types

((THE-ALIST-INSERT . ASSOCIATIVE-LIST-INSERT))
:Input-Embedding

(((ASSOCIATIVE-SET-ADD 1) (THE-ALIST-INSERT 1))
((ASSOCIATIVE-SET-ADD 2 (THE-ALIST-INSERT 2)

((ASSOCIATIVE-SET-ADD 3 (THE-ALIST-INSERT 3))
:Output-Einbedding

(((ASSOCIATIVE-SET-ADD 4 (THE-ALIST-INSERT 4)

3 1

:L-R-Link IMPLEMENTATION

:Doc
(,inserts -A (associated w/ key -A) in the associative set A.-

An element X occurs before another Y if X's key -A Y's key.
An element X replaces another Y if X's key -A Y's ky.'

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SET-ADD 1)))

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SET-ADD 2M

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SET-ADD 3M
tFUNCTION-NAME (FUNCTION-TYPE

(KEY-COMPARATOR-INFO (N> THE-ALIST-INSERT))))

(FUNCTION-TYPE (FUNCTION-TYPE

(KEY-EQUALITY-INFO (N> THE-ALIST-INSERT))))))

(Defrule ASSOCIATIVE-SET-ADD
'Associative Set Add'

:RHS-Node-Types
((THE-HT-INSERT HASH-INSERT))

:Input-Embedding

((tASSOCIATIVE-SET-ADD 1) (THE-HT-INSERT 1))
((ASSOCIATIVE-SET-ADD 2 (THE-HT-INSERT 2)
((ASSOCIATIVE-SET-ADD 3 (THE-HT-INSERT 3))

:Output-Embedding
(((ASSOCIATIVE-SET-ADD 4 (THE-HT-INSERT 4))
:L-R-Link IMPLEMENTATION

:Doc
(,inserts -A (associated w/ key -A) in the associative set A.-

An element X occurs before another Y if X's key -A Y's key.-

An element X replaces another Y if X's key -A Y's key.'
(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SET-ADD 1)))
(INPLJT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SET-ADD 2M

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SET-ADD 3))

(FUNCTION-NAME (FUNCTION-TYPE
(KEY-COMPARATOR-INFO (N> THE-HT-INSERT))))

(FUNCTION-NAME (FUNCTION-TYPE
(KEY-EQUALITY-INFO (N> THE-HT-INSERT))))))

(Defrule ASSOCIATIVE-SET-REMOVE

'Associative Set Remove'

:RHS-Node-Types
((THE-ALIST-DELETE . ASSOCIATIVE-LIST-DELETE))

:Input-Embedding
(((ASSOCIATIVE-SET-REMOVE 1) (THE-ALIST-DELETE 1))

((ASSOCIATIVE-SET-REMOVE 2 (THE-ALIST-DELETE 2))

:Output-Embedding
(((ASSOCIATIVE-SET-REMOVE 3 (THE-ALIST-DELETE 3))

:L-R-Link IMPLEMENTATION
:Doc
(,deletes an element associated w/ key -A in the associative

set -A. An element X occurs before another Y if xs key -A
Y's key. Keys are compared using -A.'

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SET-REMOVE 1)))

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SET-REMOVE 2)
(FUNCTION-NAME (FUNCTION-TYPE

(KEY-COMPARATOR-INFO (N> THE-ALIST-DELETE))))

(FUNCTION-NAME (FUNCTION-TYPE
(KEY-EQUALITY-INFO (N> THE-ALIST-DELETE))))))

(Defrule ASSOCIATIVE-SET-REMOVE
'Associative Set Remove'

:RHS-Node-Types

((THE-HT-DELETE HASH-DELETE))

:Input-Embedding
(((ASSOCIATIVE-SET-RF14OVE 1) (THE-ET-DELETE 1))

((ASSOCIATIVE-SET-REMOVE 2 (THE-HT-DELETE 2)

:Output-Embedding
(((ASSOCIATIVE-SET-REMOVE 3 (THE-HT-DELBTE 3))

:L-R-Link IMPLEMENTATION

:Doc
(,deletes an element associated w/ key -A in the associative

set -A. An element X occurs before another Y if X's key -A
Y's key. Keys are compared for equality using -A.'

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SET-REMOVE 1)))

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SET-REMOVE 2)
(FUNCTION-NAME (FUNCTION-TYPE

(KEY-COMPARATOR-INFO (N> THE-HT-DELETE))))
(FUNCTION-NAME (FUNCTION-TYPE

(KEY-EQUALITY-INFO (N> THE-HT-DELETE))))))

(Defrule ASSOCIATIVE-SET-LOOKUP

'Associative Set Lookup'
:RHS-Node-Types

((THE-ALIST-LOOKUP . ASSOCIATIVE-LIST-LOOKUP))
:Input-Embedding

(((ASSOCIATIVE-SET-LOOKUP 1) (THE-ALIST-LOOKUP 1))

((ASSOCIATIVE-SET-LOOKUP 2 (THE-ALIST-LOOKUP 2))
:Output-Embedding

(((ASSOCIATIVE-SET-LOOKUP 3 (THE-ALIST-LOOKUP 3))
:L-R-Link IMPLEMENTATION
:Doc
(,looks up an element associated w/ key -A in the associative -

set -A. An element X occurs before another Y if X's key -A -
Y's key. Keys are compared using -A.,

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SET-LOOKUP 1)))

(INPUT-PORT-NAME> tDOC-BP> (ASSOCIATIVE-SET-LOOKUP 2))
(FUNCTION-NAME (FUNCTION-TYPE

(KEY-COMPARATOR-INFO (N> THE-ALIST-LOOKUP))))
(FUNCTION-NAME (FUNCTION-TYPE

(KEY-EQUALITY-INFO (N> THE-ALIST-LOOKUP))))))

(Defrule ASSOCIATIVE-SET-LOOKUP
'Associative Set Lookup'

:RHS-Node-Types
((THE-HT-LOOKUP . HASH-LOOKUP))
input -Embedding

(((ASSOCIATIVE-SET-LOOKUP 1) (THE-HT-LOOKUP 1))

((ASSOCIATIVE-SET-LOOKUP 2 (THE-HT-LOOKUP 2)

:Output-Embedding
(((ASSOCIATIVE-SET-LOOKUP 3 (THE-HT-LOOKUP 3))
:L-R-Link IMPLEMENTATION

:Doc
(,looks up an element associated wl key -A in the associative set -A.

An element X occurs before another Y if X's key -A Y's key.
An element X is retrieved if X's key -A -A.'

(INPUT-PORT-NAME> (DO-C-BP> (ASSOCIATIVE-SET-LOOKUP 1)))
(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SET-LOOKUP 2)
(FUNCTION-NAME (FUNCTION-TYPE

(KEY-COMPARATOR-TNFO (N> THE-HT-LOOKUP))))

(FUNCTION-NAME (FUNCTION-TYPE
(KEY-EQUALITY-INFO (N> THE-HT-LOOKUP))))

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SET-LOOKUP 1)))))

(Defrule PROPERTY-LIST-LOOKUP
'Property List Lookup,

:RHS-Node-Types

((GET-AT-INDICATOR GET))
:Input-Embedding
(((PROPERTY-LIST-LOOKUP 1) (GET-AT-INDICATOR 1))

((PROPERTY-LIST-LOOKUP 2 (GET-AT-INDICATOR 2)
:Output-Embedding

(((PROPERTY-LIST-LOOKUP 3 (GET-AT-INDICATOR 3))

:L-R-Link IMPLEMENTATION
:Doc

(,looks up the value associated w/ the indicator -A in the
property-list of the symbol -A.,

(INPUT-PORT-NAME> (DOC-BP> (PROPERTY-LIST-LOOKUP 2))

(INPUT-PORT-NAME> (DOC-BP> (PROPERTY-LIST-LOOKUP 1)))))

(Defrule HASH-LOOKUP
'Hash Table Lookup,
:RHS-Node-Types
((CHT-LOOKUP . CHAINING-HT-LOOKUP))

:Input-Embedding
(((HASH-LOOKUP 1) (HT-LOOKUP 1))

((HASH-LOOKUP 2 (CHT-LOOKUP 2)

:Output-Embedding
(((HASH-LOOKUP 3 (CHT-LOOKUP 3))

:L-R-Link IMPLEMENTATION

:Doc
(,looks up an element with key -A from the Hash-Table -A.'

(INPUT-PORT-NAME> (DOC-BP> (HASH-LOOKUP M

(INPUT-PORT-NAME> (ALL-BP> (HASH-LOOKUP 2)))

(Defrule HASH-DELETE

'Hash Table Delete-
:RHS-Node-Types

((CHT-DELETE . CHAINING-HT-DELETE))
:Input-Embedding
(((HASH-DELETE 1) (CRT-DELETE 1))

((HASH-DELETE 2 (CHT-DELETE 2)

:Output-Embedding

(((HASH-DELETE 3 (CHT-DELETE 3))
:L-R-Link IMPLEMENTATION
:Doc

(,deletes an element with key -A from the Hash-Table -A.'

(INPUT-PORT-NAME> (DOC-BP> (HASH-DELETE 1)))

(INPUT-PORT-NAME> (ALL-BP> (HASH-DELETE 2))))

(Defrule HASH-INSERT

'Hash Table Insert-
:RHS-Node-Types
((CHT-INSERT . CHAINING-HT-INSERT))

:Input-Embedding
(((HASH-INSERT 1) (CHT-INSERT 1))

((HASH-INSERT 2 (CHT-INSERT 2)
((HASH-INSERT 3 (CHT-INSERT 3M

:Output-Embedding
(((HASH-INSERT 4 (CRT-INSERT 4)

:L-R-Link IMPLEMENTATION

:Doc
(,inserts -A with key -A into the Hash-Table -A.,

(INPUT-PORT-NAME> (OC-BP> (HASH-INSERT M
(INPUT-PORT-NAME> (DOC-BP> (HASH-INSERT 2M

(INPUT-PORT-NAME> (ALL-BP> (HASH-INSERT 3))))

(Defrule CAINING-HT-LOOKUP
'Chaining Hash Table Lookup,

3 02

:RHS-Node-Types

((RETRIEVE-AND-SEARCH FETCH+LOOKUP))

:Input-Embedding
(((CHAINING-HT-LOOKUP (RETRIEVE-AND-SEARCH 1))

((CHAINING-HT-LOOKUP 2 (RETRIEVE-AND-SEARCH 2))
:Output-Embedding
(((CHAINING-HT-LOOKUP 3 (RETRIEVE-AND-SEARCH 3M

:L-R-Link IMPLEMENTATION
:Doc
(,looks up an element with key -A from the chaining -

hash-table -A.,
(INPUT-PORT-NAME> (DOC-BP> (CHAINING-HT-LOOKUP 1)))

(INPUT-PORT-NAME> (ALL-BP> (CHAINING-HT-LOOKu 2))))

(Defrule CHAINING-HT-DELETE
'Chaining Hash Table Delete,

:RHS-Node-Types
((RETRIEVE-AND-DELETE CHAINING-HT-FTLL-COUNT-DELETE))

:Input-Embedding
(((CHAINING-HT-DELETE (RETRIEVE-AND-DELETE 1))

((CHAINING-HT-DELETE 2 (RETRIEVE-AND-DELETE 2))

:Output-Embedding
(((CHAINING-HT-DELETE 3 (RETRIEVE-AND-DELETE 3))

:L-R-Link IMPLEMENTATION

:Doc
(,deletes an element with key -A from the chaining -

hash-table -A.'
(INPUT-PORT-NAME> (DOC-BP> (CHAINING-HT-DELETE 1M

(INPUT-PORT-NAME> (ALL-BP> (CHAINING-HT-DELETE 2)))

(Defrule CHAINING-HT-INSERT

'Chaining Hash Table Insert'

:RHS-Node-Types
((RETRIEVE-AND-INSERT . CHAINING-HT-FILL-COUNT-INSERT))

:Input-Embedding
(((CHAINING-HT-INSERT 1) (RETRIEVE-AND-INSERT 1))

((CHAINING-HT-INSERT 2 (RETRIEVE-AND-INSERT 2)

((CHAINING-HT-INSERT 3 (RETRIEVE-AND-INSERT 3))

:Output-Embedding
(((CHAINING-HT-INSERT 4 (RETRIEVE-AND-INSERT 4)

:L-R-Link IMPLEMENTATION

:Doc
(,inserts -A with key -A into the chaining Hash-Table -A.'

(INPUT-PORT-NAME> (DOC-BP> (CHAINING-HT-INSERT 1)))
(INPUT-PORT-NAME> (DOC-BP> (CHAINING-HT-INSERT 2)

(INPUT-PORT-NAME> (ALL-BP> (CHAINING-HT-INSERT 3))))

(Defrule FETCH+LOOKUP

'Fetch Bucket and Lookup Element'

:RHS-Node-Types
((HASH-KEY-AND-SIZE HASH-FUNCTION)

(GET-BUCKET SELECT-TERM)

(LOOKUP . ASSOCIATIVE-LIST-LOOKUP))
:Edge-List
(((HASH-KEY-AND-SIZE 3 (GET-BUCKET 2)

((GET-BUCKET 3 (LOOKUP 2))
:Input-Embedding
(((FETCH+LOOKUP 1) (LOOKUP 1))

((FETCH+LOOKUP 1) (HASH-KEY-AND-SIZE 1))
((FETCH+LOOKUP 2 (HASH-KEY-AND-SIZE 2)

NUMBER-BUCKETS)

((FETCH+LOOKUP 2 (GET-BUCKET)
BUCKETS))

:Output-Ernbedding
(((FETCH+LOOKUP 3 (LOOKUP 3M

:L-R-Link COMPOSITION
:Doc

(,looks up an element with key -A from the hash-table -A, -
which is iplemented as an sequence -A of buckets. The -
bucket is fetched indexing into the sequence using an -
index computed by applying a hash function to the key -
-A and the number of buckets in the hash table A.-%-

Each bucket is implemented as an associative list.-%-

Collision resolution is performed using a chaining strategy.,

(INPUT-PORT-NAME> (DOC-BP> (FETCH+LOOKUP 1)))
(INPUT-PORT-NAME> ALL-BP> (FETCH+LOOKUP 2)))

(INPUT-PORT-NAME> (DOC-BP> (FETCH+LOOKUP 2) BUCKETS))

(INPUT-PORT-NAME> (DOC-BP> (FETCH+LOOKUP 1)))
(INPUT-PORT-NAME> (DOC-BP> (FETCH+LOOKUP 2) NUMBER-BUCKETS))))

(Defrule FETCH+DELETE

'Fetch Bucket and Delete Element'

:RHS-Node-Tlypes
((HASH-THE-KEY HASH-FUNCTION)

(FETCH-BUCKET SELECT-TERM)

(REMOVE . ASSOCIATIVE-LIST-DELETE)
(UPDATE-BUCKETS NEW-TERM))

:Edge-List

(((HASH-THE-KEY 3 (UPDATE-BUCKETS 2)
((HASH-THE-KEY 3 (FETCH-BUCKET 2)
((FETCH-BUCKET 3 (REMOVE 2)

((REMOVE 3 (UPDATE-BUCKETS 1)))

:Input-Embedding
(((FETCH+DELETE 1) (REMOVE 1))

((FETCH+DELETE 1) (HASH-THE-KEY
((FETCH+DELETE 2 (HASH-THE-KEY 2)
NUMBER-BUCKETS)
((FETCH+DELET 2 (UPDATE-BUCKETS 3)
BUCKETS)

((FETCH+DELET 2 (FETCH-BUCKET)
BUCKETS))

:Output-Embedding
(((FETCH+DELETE 3 (UPDATE-BUCKETS 4)

BUCKETS))
:St-Thrus
(((FETCH+DELETE 2 (FETCH+DELET 3)

NUMBER-BUCKETS))
:L-R-Link COMPOSITION
:Doc
(,deletes an element with key -A from the hash-table -A, which is

implemented as a sequence -A of buckets. The bucket is fetched by
indexing into the sequence using an index computed by applying a
hash function to the key -A and the number of buckets in the hash
table -A.-%�- - � 11 : -
Each bucket is implemented as an associative list.-%-
collision resolution is performed using a chaining strategy.'
(INPUT-PORT-NAME> DC-BP> (FETCH+DELETE 1)))
(INPUT-PORT-NAME> (ALL-BP> (FETCH+DELETE 2)))
(INPUT-PORT-NAME> DOC-BP> (FETCH+DELETE 2) BUCKETS))
(INPUT-PORT-NAME> DOC-BP> (FETCH+DELETE 1)))
(INPUT-PORT-NAME> (DOC-BP> (FETCH+DELETE 2) NUMBER-BUCKETS))))

(Defrule FETCH+INSERT
'Fetch Bucket and Insert Element'
:RHS-Node-Types
((COMPUTE-HASH HASH-FUNCTION)

tFETCH SELECT-TERM)
(INSERT ASSOCIATIVE-LIST-INSERT)
(UPDATE NEW-TERM))

:Edge-List
((tCOMPUTE-HASH 3 (UPDATE 2)

((COMPUTE-HASH 3 (FETCH 2)
((FETCH 3 (INSERT 3)
((INSERT 4 (UPDATE 1)))

:Input-Embedding
(((FETCH+INSERT 1) (INSERT 1))

((FETCH+INSERT 2 (INSERT 2)
((FETCH+INSERT 2 (COMPUTE-HASH
((FETCH+INSERT 3 (COMPUTE-HASH 2)
NUMBER-BUCKETS)

((FETCH+INSERT 3 (UPDATE 3)
BUCKETS)

((FETCH+INSERT 3 (FETCH
BUCKETS))

:Output-Embedding
(((FETCH+INSERT 4 (UPDATE 4)

BUCKETS))
:St-Thrus
(((FETCH+INSERT 3 (FETCH+INSERT 4)

NUMBER-BUCKETS))
:L-R-Link COMPOSITION
:Doc
(,inserts -A into the hash-table -A, which is implemented as a

sequence -A of buckets. The bucket is fetched by indexing into
the sequence using an index computed by applying a hash function
to the key -A and the number of buckets in the hash table A.-%-
Each bucket is implemented as an associative list.-%-
Collision resolution is performed using a chaining strategy.,

(INPUT-PORT-NAME> (DOC-BP> (FETCH+INSERT 1)))
(INPUT-PORT-NAME> (ALL-BP> (FETCH+INSERT 3)))
(INPUT-PORT-NAME> (DOC-BP> (FETCH+INSERT 3) BUCKETSH
(INPUT-PORT-NAME> (DOC-BP> (FETCH+INSERT 2)))
(INPUT-PORT-NAME> (DOC-BP> (FETCH+INSERT 3) NUMBER-BUCKETS))))

(Defrule CHAINING-HT-FILL-COUNT-DELETE
'Hash Table with Fill Count Delete'
:RHS-Node-Tlypes
((DELETE-ELEMENT . FETCH+DELETE)

(DECREMENT-ELT-COUNT DECREMENT))
:Input-Embedding
(((CHAINING-HT-FILL-COUNT-DELETE 1) (DELETE-ELEMENT 1))

((CHAINING-HT-FILL-COUNT-DELETE 2 (DELETE-ELEMENT 2)
HASH-TABLE)

((CHAINING-HT-FTLL-COUNT-DELETE 2 (DECREMENT-ELT-COuNT 1)
FTLL-COUNT))

:Output-Embedding
(((CHAINING-HT-FILL-COUNT-DELET 3 (DELETE-ELEMENT 3)

HASH-TABLE)
((CHAINING-HT-FILL-COUNT-DELETE 3 (DECREMENT-ELT-COUNT 2)
FILL-COUNT)

:St-Thrus
(((CHAINING-HT-FILL-COUNT-DELETE 2 (CHAINING-HT-FILL-COUNT-DELETE 3)

FILL-COUNT))
:L-R-Link COMPOSITION

3 03

:Doc

(,deletes an element with key -A from the chaining -

Hash-Table+Fill-Count -A. This is a hash-table which -
contains a fill count -A, keeping track of the number of -
elements in the hash table.,

(INPUT-PORT-NAME> (DOC-BP> (CHAINING-HT-FILL-COUNT-DELETE 1)))
(INPUT-PORT-NAME> (ALL-BP> (CHAINING-HT-FILL-COUNT-DELETE 2))

(INPUT-PORT-NAME> (DOC-BP> (CHAINING-HT-FILL-COUNT-DELETE 2)
FILL-COUNT))))

(Defrule CHAINING-HT-FILL-COUNT-INSERT
'Hash Table with Fill Count Insert'

:RHS-Node-Types
HADD-ELEMENT . FETCH+INSERT)

(INCREMENT-ELT-COUNT INCREMENT))
:Input-Embedding

(((CHAINING-HT-FILL-COUNT-INSERT 1) (ADD-ELEMENT 1))
((CHAINING-HT-FILL-COUNT-INSERT 2 (ADD-ELEMENT 2)

((CHAINING-HT-FILL-COUNT-INSERT 3 (ADD-ELEMENT 3)
HASH-TABLE)

((CHAINING-HT-FILL-COUNT-INSERT 3 (INCREMENT-ELT-COUNT 1)
FILL-COUNT))

:Output-Embedding

(((CHAINING-HT-FILL-COUNT-INSERT 4 (ADD-ELEMENT 4)
HASH-TABLE)

((CHAINING-HT-FILL-COUNT-INSERT 4 (INCREMENT-ELT-COUNT 2)
FILL-COUNT))

:St-Thrus
(((CHAINING-HT-FILL-COUNT-INSERT 3)

(CHAINING-HT-FILL-COUNT-INSERT 4)

FILL-COUNT))
:L-R-Link COMPOSITION
:Doc
(,inserts -A with key -A into the chaining -

Hash-Table+Fill-Count -A. This is a hash-table which -

contains a fill count -A, keeping track of the number of -
elements in the hash table.,

(INPUT-PORT-NAME> (DOC-BP> tCHAINING-HT-FTLL-COUNT-INSERT 1)))
(INPUT-PORT-NAME> (DOC-BP> (HAINING-HT-FILL-COUNT-INSERT 2)
(INPUT-PORT-NAME> (ALL-BP> (CHAINING-HT-FILL-COUNT-INSERT 3)
(INPUT-PORT-NAME> (DOC-BP> (CHAINING-HT-FILL-COUNT-INSERT 3)

FILL-COUNT))))

Figure 424.

(Defrule LOOKUP-DESTINATION
'Lookup Destination Node'
:RHS-Node-Types
((COMPUTE-DEST SELECT-TERM))
:Input-Embedding
(((LOOKUP-DESTINATION 1) (COMPUTE-DEST 1))

((LOOKUP-DESTINATION 2 (COMPUTE-DEST 2)
DEST-ADDR))

:Output-Embedding

(((LOOKUP-DESTINATIO 3 (COMPUrE-DEST 3))
:L-R-Link COMPOSITION
:Doc

(,looks up the node whose address is in the Dest-Addr part of
message -A.'

(INPUT-PORT-NAME> (DOC-BP> (LOOKUP-DESTINATION 2))))

Figure 424.

(Defrule RECORD-AT-DESTINATION
'Record Node at Message Destination'
:RHS-Node-Types
((RECORD NEW-TERM))
:Input-Embedding

(((RECORD-AT-DESTINATION 1) (RECORD 1))
((RECORD-AT-DESTINATION 2 (RECORD 2)
DEST-ADDR)

((RECORD-AT-DESTINATION 3 (RECORD 3))
:Output-Embedding
(((RECORD-AT-DESTINATION 4 (RECORD 4)

:L-R-Link COMPOSITION
:Doc

(,records node -A at the address in the Dest-Addr part of
message -A in the address map -A.'

(INPUT-PORT-NAME> (DOC-BP> (RECORD-AT-DESTINATION
(INPUT-PORT-NAME> (DCC-BP> (RECORD-AT-DESTINATION 2)
(INPUT-PORT-NAME> (DOC-BP> (RECORD-AT-DESTINATIO 3))))

(Defrule ASSOCIATIVE-LIST-LOOKUP
'Associative Linked List Lookup,
:RHS-Node-Tlypes
((THE-UOAL-LOOKUP . UNORDERED-ASSOC-LIST-LOOKUP))
:Input-Embedding

(((ASSOCIATIVE-LIST-LOOKUP 1) (THE-UOAL-LOOKUP 1))
((ASSOCIATIVE-LIST-LOOKUP 2 (THE-UOAL-LOOKUP 2)

:Output-Embedding

(((ASSOCIATIVE-LIST-LOOKUP 3 (THE-UOAL-LOOKUP 3))
:L-R-Link IMPLEMENTATION

:Doc

(,looks up the element associated w/ key -A -A in the associative
list -A.'

(FUNCTION-NAME (FUNCTION-TYPE

(KEY-EQUALITY-INFO (N> ASSOCIATIVE-LIST-LOOKUP))))
(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-LIST-LOOKUP

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-LIST-LOOKUP 2))))

(Defrule ASSOCIATIVE-LIST-LOOKUP

'Associative Linked List Lookup,
:RHS-Node-Types

((THE-OAL-LOOKUP . ORDERED-ASSOC-LIST-LOOKUP))

:Input-Embedding

(((ASSOCIATIVE-LIST-LOOKUP 1) (THE-OAL-LOOKUP 1))
((ASSOCIATIVE-LIST-LOOKUP 2 (THE-OAL-LOOKUP 2))

:Output-Embedding

(((ASSOCIATIVE-LIST-LOOKUP 3 (THE-OAL-LOOKUP 3))
:L-R-Link IMPLEMENTATION

:Doc

(,looks up the element associated w/ key -A -A in the associative
list -A.'

(FUNCTION-NAME (FUNCTION-TYPE

(KEY-EQUALITY-INFO (N> ASSOCIATIVE-LIST-LOOKUP))))

(INPUT-PCRT-NAME> (DOC-BP> (ASSOCIATIVE-LIST-LOOKUP 1)))

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-LIST-LOOKUP 2))))

(Defrule ASSOCIATIVE-LIST-DELETE
'Associative Linked List Delete'
:RHS-Node-Types
((THE-UOAL-DELETE . NORDERED-ASSOC-LIST-DELETE))

:Input-Embedding

(((ASSOCIATIVE-LIST-DELETE 1) (THE-UOAL-DELETE 1))

((ASSOCIATIVE-LIST-DELETE 2 (THE-UOAL-DELETE 2))
:Output-Embedding

(((ASSOCIATIVE-LIST-DELETE 3 (THE-UOAL-DELETE 3))
:L-R-Link IMPLEM ENT ATION

:Doc

(,deletes the element associated wl key -A -A in the associative
list -A.'

(FUNCTION-NAME (FUNCTICN-TYPE

(KEY-EQUALITY-INFO (N> ASSOCIATIVE-LIST-DtLETE))))

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-LIST-DELETE 1)))

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-LIST-DELETE 2))))

(Defrule ASSOCIATIVE-LIST-DELETE

'Associative Linked List Delete'
:RHS-Node-Types

((THE-OAL-DELET . ORDERED-ASSOC-LIST-DELETE))

:Input-Embedding
(((ASSOCIATIVE-LIST-DELETE 1) (THE-OAL-DELETE 1))

((ASSOCIATIVE-LIST-DELETE 2 (THE-OAL-DELETE 2))
:Output-Embedding

(((ASSOCIATIVE-LIST-DELETE 3 (THE-OAL-DELETE 3))
:L-R-Link IMPLEMENTATION

:Doc

(,deletes the element associated w/ key -A -A in the associative
list -A.'

(FUNCTION-NAME (FUNCTION-TYPE

(KEY-EQUALITY-INFO (N> ASSOCIATIVE-LIST-DELETE))))

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-LIST-DELETE

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-LIST-DELETE 2)))

(Defrule ASSOCIATIVE-LIST-INSERT

'Associative Linked List Insert'
:RHS-Node-Types

((THE-UNORDERED-AL-INSERT . UNORDERED-ASSOC-LIST-INSERT))

:Input-Embedding

(((ASSOCIATIVE-LIST-INSERT 1) (THE-UNORDERED-AL-INSERT 1))

((ASSOCIATIVE-LTST-TNSERT 2 (THE-UNORDERED-AL-INSERT 2)

((ASSOCIATIVE-LIST-INSERT 3 (THE-UNORDERED-AL-INSERT 3))
:Output-Embedding

(((ASSOCIATIVE-LIST-INSERT 4 (THE-UNORDERED-AL-INSERT 4))

:L-R-Link IMPLEMENTATION
:Doc

('inserts -A (associated w/ key -A) in the associative list A%-

An element X replaces another Y if X's key -A Y's key.'
(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-LIST-INSERT 1)))

(INPUT-PORT-NA14E> (DOC-BP> (ASSOCTATIVE-LTST-INSERT 2)

(INPUT-PORT-NAME> DOC-BP> (ASSOCIATIVE-LIST-INSERT 3))
(FUNCTION-NAME (FUNCTION-TYPE

(KEY-EQUALITY-INFO (N> THE-UNORDERED-AL-INSERT))))))

(Defrule ASSOCIATIVE-LIST-INSERT
'Associative Linked List Insert'

:RHS-Node-Types

((THE-OAL-INSERT . ORDERED-ASSOC-LIST-INSERT))
:Input-Embedding

(((ASSOCIATIVE-LIST-TNSERT 1) (THE-OAL-INSERT 1))
((ASSOCIATIVE-LTST-INSERT 2 (THE-OAL-INSERT 2)
((ASSOCTATIVE-LTST-INSERT 3 (THE-OAL-INSERT 3))

:Output-Embedding
(((ASSOCIATIVE-LIST-INSERT 4 (THE-OAL-INSERT 4)
:L-R-Link IMPLEMENTATION

3 04

: Doc

(,inserts -A (associated w/ key -A) in the associative

list A.-%-
An element X replaces another Y if X's key -A Y's key.,

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-LIST-INSERT 1)))
(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-LIST-INSERT 2))

(INPUT-PORT-NAME> (DOC-BP> (ASSOCIATIVE-LIST-INSERT 3M
(FUNCTION-NAME (FUNCTION-TYPE

(KEY-EQUALITY-INFO (N> ASSOCIATIVE-LIST-INSERT))))))

(Defrule UNORDERED-ASSOC-LIST-LOOKUP
'Unordered Associative Linked List Lookup,

:RHS-Node-Types
((UOAL-ENUM LE)

(FIND-ELT EARLIEST-EQUAL-PRIORITY))
:Edge-List

(((UOAL-ENUM 2 . (FIND-ELT 1)))
:Input-Embedding

(((UNORDERED-ASSOC-LIST-LOOKUP 1) (FIND-ELT 2)
((UNORDERED-ASSOC-LIST-LOOKUP 2 (UOAL-ENUM 1)))

:Output-Embedding

(((UNORDERED-ASSOC-LIST-LOOKUP 3 (FIND-ELT 3))

:L-R-Link COMPOSITION
:Doc

(,searches the elements of the unordered associative list -A
for an element with key -A -A. If no such element is -
found, NIL is returned.'

(INPUT-PORT-NAME> (DOC-BP> (UNORDERED-ASSOC-LIST-LOOKUP 2)
(FUNCTION-NAME (FUNCTION-TYPE

(KEY-EQUALITY-INFO (N> UNORDERED-ASSOC-LIST-LOOKUP))))
(INPUT-PORT-NAME> (DOC-BP> (UNORDERED-ASSOC-LIST-LOOKUP 1)))))

(Defrule UNORDERED-ASSOC-LIST-INSERT
,unordered Associative Linked List Insert,
:RHS-Node-Types
((UOAL-PUSH LIST-PUSH))
:Input-Embedding
(((UNORDERED-ASSOC-LIST-INSERT 1) (UOAL-PUSH 1))

((UNORDERED-ASSOC-LIST-INSERT 2 (UOAL-PUSH 2)
:Output-Embedding

(((UNORDERBD-ASSOC-LIST-INSERT 3 (U0AL-PUSH 3))
:L-R-Link IMPLEMENTATION

:Doc
('inserts -A into the unordered associative list -A.'

(INPUT-PORT-NAME> (DOC-BP> (UNORDERED-ASSOC-LIST-INSERT 1)))
(INPUT-PORT-NAME> (DOC-BP> (UNORDERED-ASSOC-LIST-INSERT 2)))

(Defrule UNORDERED-ASSOC-LIST-EMPTY?
'Unordered Associative List Empty'
:RHS-Node-Types
((UOAL-EMPTY? . LIST-EMPTY))
:Input-Embedding

(((UNORDERED-ASSOC-LIST-EMPTY? 1) (UOAL-EMPTY? 1)))
:L-R-Link IMPLEMENTATION
:Doc
(,tests whether the unordered associative list -A is epty.'

(INPUT-PORT-NAME> (DOC-BP> (UNORDERED-ASSOC!-LIST-EMPTY? 1)))))

(Defrule INTERMEDIATE-UOAL-DELETE
'Unordered Associative Linked List Delete (Intermediate),

:RHS-Node-Types
((GENERATE-CURRENT+NEXT-SUBLIST TRAILING-GENERATE)

(LIST-EXHAUSTED TRUNCATE)
(ELTS-BEFORE-P TRUNCATE-EQUAL-PRIORITY-HEAD)
(COLLECT-REMAINING . CONS-ACCUMULATE-UP-FROM-SUBLIST))

:Edge-List

(((GENERATE-CURRENT+NEXT-SUBLIST 3 (COLLECT-REMAININ 2)
((GENERATE-CURRENT+NEXT-SUBLIST 2 (LIST-EXHAUSTED 1))
((LIST-EXHAUSTED 2 (ELTS-BEFORE-P 1))
((ELTS-BEFORE-P 3 (COLLECT-REMAINING 1)))

:Input-Embedding

(((INTERMEDIATE-UOAL-DELETE 1) (ELTS-BEFORE-P 2)
((INTERMEDIATE-UOAL-DELETE 2)

(GENERATE-CURRENT+NEXT-SUBLIST 1))
((INTERMEDIATE-UOAL-DELETE 3 (COLLECT-REMAINING 2)

:Output-Embedding
(((INTERMEDIATE-UOAL-DELETE 4 (COLLECT-REMAINING 3)
:L-R-Link COMPOSITION
:Doc

(,intermediate nonterminal: Unordered-Assoc-List-Delete.1))

(Defrule UNORDERED-ASSOC-LIST-DELETE
'Unordered Associative Linked List Delete'
:RHS-Node-Types

((SPLICE-OUT-ELT . INTERMEDIATE-UOAL-DELETE))
:Input-Embedding

(((UNORDERED-ASSOC-LIST-DELETE 1) (SPLICE-OUT-ELT 1))
((UNORDERED-ASSOC-LIST-DELETE 2 (SPLICE-OUT-ELT 2))

:Output-Embedding
(((UNORDERED-ASSOC-LIST-DELETE 3 (SPLICE-OUT-ELT 4)

:L-R-Link COMPOSITION

:Doc

(,splices out the element of the unordered associative list

-A whose key is -A -A.'

(INPUT-PORT-NAME> (DOC-BP> (UNORDERED-ASSOC-LIST-DELETE 2))
(FUNCTION-NAME (FUNCTION-TYPE

(KEY-EQUALITY-INFO (N> T3NORDERED-ASSOC-LIST-DELBTE))))
(INPUT-PORT-NAME> (DOC-BP> (UNORDERED-ASSOC-LIST-DELETE

(Defrule PQ-ENUMERATION
'Priority Queue Enumeration'

:RHS-Node-Types

((PQ-ENUM-FINISHED? . PQ-EMPTY)
(PQ-EXTRACT-NEXT PQ-EXTRACT))

:Tnput-Embedding

(((PQ-ENUMERATION (PQ-EXTRACT-NEXT 1))

((PQ-ENUMERATION 1) (PQ-ENUM-FINISHED? 1)))
:Output-Embedding

(((PQ-ENUMERATION 2 (PQ-EXTRACT-NEXT 2)
:L-R-Link COMPOSITION
:Doc

(,enumerates all of the elements in the Priority-Queue A%-

by destructively extracting them from the queue.,
(INPUT-PORT-NAME> (DOC-BP> (PQ-ENUMERATION

(Defrule PQ-EMPTY

'Priority Queue Empty*

:RHS-Node-Types
((EMPTY-LIST? TEST-PREDICATE))

:Input-Embedding

(((PQ-EMPTY 1) EMPTY-LTST? 1))
:L-R-Link IMPLEMENTATION
:Doc

(,tests whether the Priority Queue -A is epty.'
(INPUT-PORT-NAME> (DOC-BP> (PQ-EMPTY 1)))))

(Defrule PQ-EXTRACT
'Priority Queue Extract,
:RHS-Node-Types

((EXTRACT-FROM-OAL . ORDERED-ASSOC-LIST-EXTRACT))
:Tnput-Embedding

(((PQ-EXTRACT 1) (EXTRACT-FROM-OAL 1)))
:Output-Embedding

(((PQ-EXTRACT 2 (EXTRACT-FROM-OAL 2)
((PQ-EXTRACT 3 (EXTPACT-FROM-OAL 3))

:L-R-Link IMPLF14ENTATION

:Doc

(,extracts the highest priority element in the Priority Queue A-
The priority queue is implemented as an ordered associative list.,

(INPUT-PORT-NAME> (DOC-BP> (EXTRACT-FROM-OAL

(Defrule PQ-INSERT
'Priority Queue Insert'
:RHS-Node-Types

((ORDERED-SPLTCE-IN . ORDERED-ASSOC-LIST-INSERT))
:Input-Embedding

(((PQ-INSERT 1) (ORDERED-SPLICE-TN 1))

((PQ-INSERT 2 (ORDERED-SPLICE-IN 2)
((PQ-INSERT 3 (ORDERED-SPLICE-I 3))

:Output-Embedding

(((PQ-INSERT 4 (ORDERED-SPLICE-IN W)
:L-R-Link IMPLEMENTATION
:Doc

(,inserts -A in the priority queue A%-

An element's priority P is higher than another's Q if P -A Q-%-

If an element already exists in the priority queue with the same
priority, then the new element is inserted into the queue after
the existing element.,

(INPUT-PORT-NAME> (DOC-BP> (ORDERED-SPLICE-IN 1)))

(INPUT-PORT-NAMt> (DOC-BP> (ORDERED-SPLICE-I 3))
(FUNCTION-NAME (FUNCTION-TYPE

(PRIORITY-COMPARATOR-INFO (N> ORDERED-SPLICE-IN))))))

(Defrule ORDERED-ASSOC-LIST-INSERT

,ordered Associative List Insert'

:RHS-Node-Types

((THE-UNSAFE-INSERT . ORDERED-ASSOC-LIST-INSERT-Ut4SAFE))
:Tnput-Embedding I

(((ORDERED-ASSOC-LIST-INSERT 1) (THE-UNSAFE-INSERT 1))

((ORDERED-ASSOC-LIST-INSERT 2 (THE-UNSAFE-INSERT 2)
((ORDERED-ASSOC-LTST-INSERT 3 (THE-UNSAFE-INSERT 3))

:Output-Ernbedding

(((ORDERED-ASSOC-LIST-INSERT 4 (THE-UNSAFE-INSERT 4)
:L-R-Link IMPLEMENTATION
:Doc

(,inserts -A in the ordered associative list -A, associated with

priority -A. An element X occurs before another Y if X's priority
-A Y's priority.'

(INPUT-PORT-NAME> DOC-BP> (ORDERED-ASSOC-LIST-INSERT 1)))

(INPUT-PORT-NAME> (DOC-BP> (ORDERED-ASSOC-LIST-INSERT 3))
(INPUT-PORT-NAME> (DOC-BP> (ORDERED-ASSOC-LIST-INSERT 2)
(FUNCTION-NAME (FUNCTION-TYPE

(PRIORITY-COMPARATOR-INFO (N> THE-UNSAFE-INSERT))))))

(Defrule ORDERED-ASSOC-LIST-TNSERT

'Ordered Associative List Insert-

3

---- -- IN sol-11,111 M

:RHS-Node-Tlypes

((THE-SAFE-INSERT . ORDERED-ASSOC-LIST-INSERT-SAFE))
:Input-Embedding

(((ORDERED-ASSOC-LIST-INSERT 1) (THE-SAFE-INSERT 1))
((ORDERED-ASSOC-LIST-INSERT 2 (THE-SAFE-INSERT 2)

((ORDERED-ASSOC-LIST-INSERT 3 (THE-SAFE-INSERT 3))

:Output-Embedding
(((ORDERED-ASSOC-LTST-INSERT 4 (THE-SAFE-INSERT 4))
:L-R-Link IMPLEMENTATION
:Doc

(,inserts -A in the ordered associative list -A, associated

with priority -A. An element X occurs before another Y if

X's priority -A Y's priority.,

(INPUT-PORT-NAME> (DOC-BP> (ORDERED-ASSOC-LIST-INSERT
(INPUT-PORT-NAME> (DOC-BP> (ORDERED-ASSOC-LIST-INSERT 3))

(INPUT-PORT-NAME> (DOC-BP> (ORDERED-ASSOC-LIST-INSERT 2)
(FUNCTION-NAME (FUNCTION-TYPE

(PRIORITY-COMPARATOR-INFO (N> THE-SAFE-INSERT))))))

(Defrule ORDERED-ASSOC-LIST-INSERT-SAFE

'Ordered Associative List Insert Safe'
:RHS-Node-Types

((ENUMERATE-FRONT . ENUM-OAL-FRONT)
(FIND-TAIL FIND-OAL-TAIL)

(DO-INSERT OAL-SPLICE-IN))
:Edge-List

(((ENUMERATE-FRONT 3 (DO-INSERT 1))
((FIND-TAIL 3 (DO-INSERT 3))

:Input-Embedding

(((ORDERED-ASSOC-LIST-INSERT-SAFE 1) (DO-INSERT 2)

((ORDERED-ASSOC-LIST-INSERT-SAFE 2) (FIND-TAIL 2)
((ORDERED-ASSOC-LIST-INSERT-SAFE 2) (ENUMERATE-FRONT 2)

((ORDERED-ASSOC-LIST-INSERT-SAFE 3) (FIND-TAIL 1))
((ORDERED-ASSOC-LIST-INSERT-SAFE 3) (ENUMERATE-FRONT 1)))

:Output-Embedding
(((ORDERED-ASSOC-LIST-INSERT-SAFE 4) (DO-INSERT 4)

:L-R-Link COMPOSITION
:Doc

(,inserts -A (associated w/ priority -A) in the ordered -
associative list -A. An element X occurs before another Y
if X's priority -A Y's priority.-%-

If an element already exists in the list with priority -A,

then the new element is inserted into the list after the

existing element.,
(INPUT-PORT-NAME> (DOC-BP> (DO-INSERT 2)

(INPUT-PORT-NAME> (DOC-BP> (ENUMERATE-FRONT 2)

(INPUT-PORT-NAME> (DOC-BP> (ENUMERATE-FRONT)
(FUNCTION-NAME (FUNCTION-TYPE

(PRIORITY-COMPARATOR-INFO

(N> ORDERED-ASSOC-LIST-INSERT-SAFE))))
(INPUT-PORT-NAME> (DOC-BP> (ENUMERATE-FRONT 2)))

(Defrule ENUM-OAL-FRONT

'Enumerate Ordered Associative List Front,

:RHS-Node-Types
((CDR-DOWN GENERATE)

(HEAD-IN-FRONT? . TRUNCATE-OAL-POSITION)
(THE-HEAD-MAP CAR-MAP))

:Edge-List
(((CDR-DOWN 2 (HEAD-IN-FRONT? 1))

((HEAD-IN-FRONT 3 . (THE-HEAD-MAP 1)))

:Input-Embedding
(((ENUM-OAL-FRONT 1) (CDR-DOWN 1))

((ENUM-OAL-FRONT 2 (HEAD-IN-FRONT 2)

:Output-Embedding
(((ENUM-OAL-FRONT 3 (THE-HEAD-MAP 2)

:L-R-Link COMPOSITION
:Doc

(,enumerates the elements of the Ordered Associative list -A

up to, but not including, the element (if any) that has -
lower priority than -A. If there is no such element, all
elements of the list are enumerated.,

(INPUT-PORT-NAME> (DOC-BP> (CDR-DOWN 1)))
(INPUT-PORT-NAME> (DOC-BP> (HEAD-IN-FRONT 2)))

(Defrule FIND-OAL-TAIL
'Find Ordered Associative List Tail.
:RHS-Node-Types

((CDR-DOWN2 GENERATE)

(HEAD-OF-TAIL? EARLIEST-OAL-POSITION))
:Edge-List
(((CDR-DOWN2 2 (HEAD-OF-TAIL?
:Input-Embedding

(((FIND-OAL-TAIL 1) (CDR-DOWN2 1))

((FIND-OAL-TAIL 2 (HEAD-OF-TAIL 2)
:Output-Embedding

(((FIND-OAL-TAIL 3 (HEAD-OF-TAIL 3))
:L-R-Link COMPOSITION
:Doc

(,finds the tail of -A (if any) whose head has lower priority
than -A.'

(INPUT-PORT-NAME> (DOC-BP> (CDR-DOWN2 1)))
(INPUT-PORT-NAME> (DOC-BP> (HEAD-OF-TAIL 2)))

(Defrule ENUM-OAL-FRONT-UNSAFE
'Unsafe Enumerate Ordered Associative List Front'
:RHS-Node-Types
((CDR-DOWN-FRONT GENERATE)

(HEAD-BELONG-IN-FRONT? . TRUNCATE-OAL-POSITION-UNSAFE)
(EXTRACT-HEAD CAR-MAP))

:Edge-List
(((CDR-DOWN-FRONT 2 (EXTRACT-HEAD 1))

((CDR-DOWN-FRONT 2 (HEAD-BELONC-IN-FRONT? 1)))
:Tnput-Embedding

(((ENUM-OAL-FRONT-UNSAFE 1) (CDR-DOWN-FRONT 1))
((ENUM-OAL-FRONT-UNSAFE 2 (HEAD-BELONG-IN-FRONT 2)

:Output-Embedding

(((ENUM-0AL-FRONT-UNSAFE 3 (EXTRACT-HEAD 2)
:L-R-Link COMPOSITION
:Doc

(,enumerates the elements of the Ordered Associative list -A up to,--%-
but not including, the element (if any) that has equal or lower -

priority than -A. If there is no such element, all elements of the
list are enumerated. Priority equality is tested using -A and the
priorities are ordered by -A.,

(INPUT-PORT-NAME> (DOC-BP> (CDR-DOWN-FRONT
(INPUT-PORT-NAME> (DOC-BP> (HEAD-BELONG-IN-FRONT 2)
(FUNCTION-NAME (FUNCTION-TYPE

(PRIORITY-EQUALITY-INFO (N> ENUM-OAL-FRONT-UNSAFE))))
(FUNCTION-NAME (FUNCTION-TYPE

(PRIORITY-COMPARATOR-INFO (N> ENUM-OAL-FRONT-UNSAFE))))))

(Defrule FIND-OAL-TAIL-UNSAFE
'Unsafe Find Ordered Associative List Tail'

:RHS-Node-Types
((PREV-CURRENT-SUBLISTS . TRAILING-GENERATE)

(THE-SAFE-EARLIEST . EARLIEST-OAL-POSITION)
(THE-UNSAFE-EARLIEST . .ARLIEST-EQUAL-PRIORITY-HEAD))

:Edge-List
(((PREV-CURRENT-SUBLISTs 2 (THE-UNSAFE-EARLIEST 1))

((PREV-CURREW-SUBLISTS 2 (THE-SAFE-EARLIEST 1)))
:Input-Embedding

(((FIND-OAL-TATL-UNSAFE 1) (PREV-CURRENT-SUBLTSTS 1))
((FIND-OAL-TAIL-UNSAFE 2 (THE-UNSAFE-EARLIEST 2)
((FIND-OAL-TAIL-UNSAFE 2 (THE-SAFE-EARLIEST 2))

:Output-Embedding

(((FIND-OAL-TAIL-UNSAFE 3 (PREV-CURRENT-SUBLISTS 3)
((FIND-OAL-TAIL-UNSAFE 3 (THE-SAFE-EARLIEST 3))

:L-R-Link COMPOSITION
:Doc
(,finds the tail of -A (if any) whose head has equal or lower priority

than -A. Priority equality is tested using -A and the priorities

are ordered by -A.'
(INPUT-PORT-NAME> (DOC-BP> (PREV-CURRENT-SUBLISTS 1)))
(INPUT-PORT-NAME> (DOC-BP> (THE-SAFE-EARLIEST 2)

(FUNCTION-NAME (FUNCTION-TYPE
(PRIORITY-EQUALITY-INFO (N> FIND-OAL-TAIL-UNSAFE))))

(FUNCTION-NAME (FUNCTION-TYPE

(PRTORITY-COMPARATOR-INFO (N> FIND-OAL-TAIL-UNSAFE))))))

(Defrule ORDERED-ASSOC-LIST-DELETE
'Ordered Associative List Delete'
:RHS-Node-Types
((UNSAFE-FRONT-ENUMERATION . ENUM-OAL-FRONT-UNSAFE)

(UNSAFE-TAIL-SEARCH FIND-OAL-TAIL-UNSAFE)
(CONS-UP-REMAINING CONS-ACCUMULATE-UP-FROM-SU13LIST))

:Edge-List

(((UNSAFE-FRONT-ENUMERATION 3 . (CONS-UP-REMAINING 1))
((UNSAFE-TAIL-SZARCH 3 . (CONS-UP-REMAINING 2)

:Input-Embedding

(((ORDERED-ASSOC-LIST-DELETE 2 (UNSAFE-TAIL-SEARCH 1))
((ORDERED-ASSOC-LIST-DELET 2 (UNSAFE-FRONT-ENUMERATION 1))
((ORDERED-ASSOC-LIST-DELETE 1) (UNSAFE-TAIL-SEARCH 2)

((ORDERED-ASSOC-LIST-DELETE 1) (UNSAFE-FRONT-ENUMERATION 2)
:Output-Embedding

(((ORDERED-ASSOC-LIST-DELETE 3 (CONS-UP-REMAININ 3))

:L-R-Link COMPOSITION

:Doc

(,deletes the element associated w/ priority -A from the ordered

associative list A%-

The predicate used to test for priority equality is A%-

if there is more than element with this priority, only the first

is removed. An element X occurs before another Y if X's priority

-A Y's priority.'

(INPUT-PORT-NAME> (DOC-BP> (UNSAFE-FRONT-ENUMERATION 2)

(INPUT-PORT-NAME> (DOC-BP> (UNSAFE-FRONT-ENUMERATION 1)))

(FUNCTION-NAME (FUNCTION-TYPE

(PRIORITY-EQUALITY-INFO (N> ORDERED-ASSOC-LIST-DELETEM)

(FUNCTION-NAME (FUNCTION-TYPE

(PRIORITY-COMPARATOR-INFO (N> ORDERED-ASSOC-LIST-DELETE))))))

(Defrule ORDERED-ASSOC-LIST-INSERT-UNSAFE

'Unsafe Ordered Associative List Insert'

:RHS-Node-Types

((ENUMERATE-FRONT-UNSAFELY . ENUM-OAL-FRONT-UNSAFE)

(FIND-TAIL-UNSAFELY . FIND-OAL-TAIL-UNSAVE)

(THE-INSERTION . OAL-SPLICE-IN))

3

, i .

:Edge-List
(((ENUMERATE-FRONT-UNSAFELY 3 (THE-INSERTION 1))

((FIND-TAIL-UNSAFELY 3 (THE-INSERTION 3))
:Input-Embedding
(((ORDERED-ASSOC-LIST-INSERT--UNSAFE 1) (THE-INSERTION 2)

((ORDERED-ASSOC-LIST-INSERT-UNSAFE 2 (FIND-TAIL-UNSAFELY 2)

((ORDERED-ASSOC-LIST-INSERT-TJNSAFE 2)
(ENUMERATE-FRONT-UNSAFELY 2)

((ORDERED-ASSOC-LIST-INSERT-UNSAFE 3)

(FIND-TATL-UNSAFELY 1))
((ORDERED-ASSOC-LIST-INSERT-UNSAFE 3)

(ENUMERATE-FRONT-UNSAFELY
:Output-Embedding
(((ORDERED-ASSOC-LIST-INSERT-UNSAFE 4 (THE-INSERTION 4))

:L-R-Link COMPOSITION
:Doc
(,inserts -A (associated w/ priority -A) in the ordered -

associative list -A. The insertion is unsafe in that if -

there is an existing element in the list that has priority

-A -A, then that existing element is replaced by A.-%-
An element X occurs before another Y if X's priority -A Y's

priority.,
(INPUT-PORT-NAME> (DOC-BP> (THE-INSERTION 2)
(INPUT-PORT-NAME> (DOC-BP> (ENUMERATE-FRONT-UNSAFELY 2)
(INPUT-PORT-NAME> (DOC-BP> (ENUMERATE-FRONT-UNSAFELY
(FUNCTION-NAME (FUNCTION-TYPE

(PRIORITY-EQUALITY-INFO
(N> ORDERED-ASSOC-LIST-TNSERT-UNSAFE))))

(INPUT-PORT-NAME> (DOC-BP> (ENUMERATE-FRONT-UNSAFELY 2)
(INPUT-PORT-NAME> DOC-BP> (THE-INSERTION 2)

(FUNCTION-NAME (FUNCTION-TYPE
(PRIORITY-COMPARATOR-INFO

(N> ORDERED-ASSOC-LIST-INSERT-UNSAFE))))))

(Defrule OAL-RETRIEVE-IF-EXISTS
,ordered-Associative List Retrieve (If Exists)'
:RHS-Node-Types
((ENUM-OAL . ORDERED-ASSOC-LE)

(EARLIEST-ELEMENT . ERLIEST-EQUAL-PRIORITY))
:Edge-List
(((ENUM-OAL 3 (EARLIEST-ELEMENT
:Input-Embedding

(((OAL-RETRIEVE-IF-EXISTS 1) (EARLIEST-ELEMENT 2)

((OAL-RETRTEVE-IF-EXISTS 1) (ENUM-OAL 2)
((OAL-RETRIEVE-IF-EXISTS 2 (ENUM-OAL 1)))

:Output-Embedding
(((OAL-RETRIEVE-IF-EXISTS 4 (EARLIEST-ELEMENT 3))
:St-Thrus
(((OAL-RETRIEVE-IF-EXISTS 3 (OAL-RETRIEVE-IF-EXIST 4)
:L-R-Link COMPOSITION
:Doc
(,intermediate non-terminal: Ordered-Assoc-List-Lookup.1))

(Defrule ORDERED-ASSOC-LIST-LOOKUP
'Ordered Associative List Lookup,
:RHS-Node-Types
((THE-RETRIEVAL . OAL-RETRIEVE-IF-EXISTS))
:Input-Embedding
(((ORDERED-ASSOC-LIST-LOOKUP 1) (THE-RETRIEVAL 1))

((ORDERED-ASSOC-LIST-LOOKUP 2 (THE-RETRTEVAL 2)

:Output-Embedding
(((ORDERED-ASSOC-LIST-LOOKUP 3 (THE-RETRIEVAL 4)
:L-R-Link IMPLEMENTATION
:Doc
(,finds and returns the element associated w/ priority -A in

the ordered associative list A.-%-
If no element with priority -A is found, NIL is returned.-%-

The predicate used to test for priority equality is A.-%-
If there is more than element with this priority, only -
the first is retrieved. An element X occurs before another

Y if X's priority -A Y's priority.'

(INPUT-PORT-NAME> (DOC-BP> (ORD-RED-ASSOC-LTST-LOOKUP
(INPUT-PORT-NAME> (DOC-BP> (ORDERED-ASSOC-LIST-LOOKUP 2)
(INPUT-PORT-NAME> (DOC-BP> (ORDERED-ASSOC-LIST-LOOKUP 1M
(FUNCTION-NAME (FUNCTION-TYPE

tPRIORITY-EQUALITY-INFO (N> ORDERED-ASSOC-LIST-LOOKUP))))
(FUNCTION-NAME (FUNCTION-TYPE

(PRIORITY-COMPARATOR-INFO
(N> ORDERED-ASSOC-LIST-LOOKUP))))))

(Defrule ORDERED-ASSOC-LE
'Ordered Associative List Enumeration'
:RHS-Node-Types
((THE-ORDERED-ASSOC-SLE . ORDERED-ASSOC-SLE)

(EACH-ELEMENT CAR-MAP))
:Edge-List
(((THE-ORDERED-ASSOC-SLE 3 . (EACH-ELEMENT
:Input-Embedding
(((ORDERED-ASSOC-LE 1) (THE-ORDERED-ASSOC-SLE 1))

((ORDERED-ASSOC-LE 2 (THE-ORDERED-ASSOC-SLE 2))
:Output-Embedding
(((ORDERED-ASSOC-LE 3 (EACH-ELEmENT 2)

:L-R-Link COMPOSITION

Doc

(,enumerates the elements of -A, up to, but not including,-%-

the element that has lower priority than -A.,
(INPUT-PORT-NAME> (DOC-BP> (ORDERED-ASSOC-LE 1)))

(INPUT-PORT-NAME> (DOC-BP> (ORDERED-ASSOC-L 2))))

(Defrule ORDERED-ASSOC-SLE

'Ordered Associative Sublist Enumeration,
:RHS-Node-Types

((OAL-GENERATE GENERATE)
(OAL-TRUNCATE TRUNCATE-OAL-POSITION))

:Edge-List

((t0AL-GENERATE 2 . (OAL-TRUNCATE 1)))
:Input-Embedding

(((ORDERED-ASSOC-SLE 1) (OAL-GENERATE 1))
((ORDERED-ASSOC-SL 2 (OAL-TRUNCATE 2))

:Output-Embedding
(((ORDERED-ASSOC-SLE 3 (OAL-TRUNCATE 3))

:L-R-Link COMPOSITION

:Doc

('enumerates the successive sublists of -A, up to, but not including,-%-
, the sublist with a head that has lower priority than -A.,

(INPUT-PORT-NAME> (DOC-BP> (ORDERED-ASSOC-SLE 1M
(INPUT-PORT-NAME> (DOC-BP> (ORDERED-ASSOC-SLE 2)))

(Defrule LIST-PUSH
'List Push'

:RHS-Node-Types

((THE-CONS CONS))

:Input-Embedding

(((LIST-PUSH 1) (THE-CONS 1))

((LIST-PUSH 2 (THE-CONS 2)
:Output-Embedding

(((LIST-PUSH 3 (THE-CONS 3))
:L-R-Link MPLEMENTATION

:Doc

(,pushes -A onto the list -A.,
(INPUT-PORT-NAME> (DOC-BP> (LIST-PUSH 1)))
(INPUT-PORT-NAME> (DOC-BP> (LIST-PUSH 2)))

(Defrule OAL-SPLICE-OUT
'Splice out of Ordered Associative List'

:RHS-Node-Types

((POP-TAIL CDR)
(ADD-FRONT CONS-ACCUMULATE-UP-FROM-SUBLIST))

:Edge-List
(((POP-TAIL 2 (ADD-FRONT 2)

:Input-Embedding

(((OAL-SPLICE-OUT 1) (ADD-FRONT 1))

((OAL-SPLICE-OUT 2 (POP-TAIL 1)))

:Output-Embedding
(((OAL-SPLICE-OUT 3 (ADD-FRONT 3)
:L-R-Link COMPOSITION

:Doc

(,splices the head of the -A out of the ordered associative list-%-
that contains it as a tail.'

(INPUT-PORT-NAME> (DOC-BP> (POP-TAIL 1)))))

(Defrule OAL-SPLTCE-IN
'Ordered Associative List Splice In'

:RHS-Node-Types

((PUSH-ONTO-TAIL LIST-PUSH)
(CONS-UP-FRONT CONS-ACCUMULATE-UP-FROM-SUBLIST))

:Edge-List
(((PUSH-ONTO-TAIL 3 . (CONS-UP-FRONT 2))

:Input-Embedding

(((OAL-SPLICE-IN 1) (CONS-UP-FRONT 1))
((OAL-SPLICE-IN 2 (PUSH-ONTO-TAIL 1))

((OAL-SPLICE-I 3 (PUSH-ONTO-TAIL 2M

:Output-Embedding

(((OAL-SPLICE-IN 4 (CONS-UP-FRONT 3))

:L-R-Link COMPOSITION

:Doc

(,splices -A in between the front of the list -A and the tail -A.,
(INPUT-PORT-NAME> (DOC-BP> (PUSH-ONTO-TAIL 1)))

(INPUT-PORT-NAME> (DOC-BP> (CONS-UP-FRONT 1)))

(INPUT-PORT-NAME> (DOC-BP> (PUSH-ONTO-TAIL 2)))

(Defrule TRUNCATE-OAL-POSITION-UNSAFE
'Unsafe Truncate at Priority Position'
:RHS-Node-Types
((THE-SAFE-TRUNCATE . TRUNCATE-OAL-POSITION)

(THE-UNSAFE-TRUNCATE . TRUNCATE-EQUAL-PRICRITY-HEAD))
:Edge-List

(((THE-SAFE-TRUNCATE 3 . (THE-UNSAFE-TRUNCATE 1)))
:Input-Embedding

(((TRUNCATE-OAL-POSITION-UNSAFE 1) (THE-SAFE-TRUNCATE 1))
((TRUNCATE-OAL-POSITION-UNSAFE 2 (THE-UNSAFE-TRUNCATE 2)
((TRUNCATE-OAL-POSITION-UNSAFE 2 (THE-SAFE-TRUNCATE 2)

:Output-Embedding

(((TRUNCATE-OAL-POSITION-UNSAFE 3 (THE-UNSAFE-TRUNCATE 3))
:L-R-Link COMPOSITION
:Doc

3 07

�--- --- ---- - - I--- --- -1-- - --� A

('outputs the elements of the input series (each elt. is an -
ordered associative list), -
up to but not including the one that is empty or has a head
with priority less than or equal to A.-
• priority P is less than another Q if P -A .-
• priority P is equal to another Q if P -A Q.'

(INPUT-PORT-NAME> (DOC-BP> (THE-SAFE-TRUNCATE 2)
(FUNCTION-NAME (FUNCTION-TYPE

(PRIORITY-COMPARATOR-INFO (N> THE-SAFE-TRUNCATE))))
(FUNCTION-NAME (FUNCTION-TYPE

(PRIORTTY-EQUALITY-INFO (N> THE-UNSAFE-TRUNCATE))))))

(Defrule TRUNCATE-EQUAL-PRIORITY-HEAD
'Truncate Equal Priority Head,
:RHS-Node-Types
((PH-EQUALITY-TEST . EQUAL-PRIORITY-HEAD))
:Input-Embedding
(((TRUNCATE-EQUAL-PRIORITY-HEAD 1) (PH-EQUALITY-TEST 1))

((TRUNCATE-EQUAL-PRIORITY-HEAD 2 (PH-EQUALITY-TEST 2))
:St-Thrus
(((TRUNCATE-EQUAL-PRIORITY-HEAD 1)

(TRUNCATE-EQUAL-PRIORITY-HEAD 3)
:L-R-Link T4PORAL-ABSTRACTION
:Doc
('outputs the elements of the input series (each elt. is an

associative list), up to but not including the one that is
empty or has a head with lower priority than -A.'
(INPUT-PORT-NAME> (DOC-BP> (PH-EQUALITY-TEST 2)))

(Defrule EARLIEST-EQUAL-PRIORITY-HEAD
'Earliest Equal Priority Head,
:RHS-Node-Types
((EQUAL-PH-SEARCH . EQUAL-PRIORITY-HEAD))
:Input-Embedding
(((EARLIEST-EQUAL-PRIORITY-HEAD 1) (EQUAL-PH-SEARCH 1))
((EARLIEST-EQUAL-PRIORITY-HEAD 2).(EQUAL-PH-SEARCH 2)

:St-Thrus
(((EARLIEST-EQUAL-PRIORITY-BEAD 1)

(EARLIEST-EQUAL-PRIORITY-HEAD 3))
:L-R-Link TEMPORAL-ABSTRACTION
:Doc
(,outputs the first element of the input series (each elt is

an ordered associative list), that has a head with -
priority -A.'

(INPUT-PORT-NAME> (DOC-BP> (EARLIEST-EQUAL-PRIORITY-HEAD 2)))

(Defrule EQUAL-PRIORITY-HEAD
'Equal Priority Head'
:RHS-Node-Types
((ACCESS-HEAD CAR)
(CHECK-PRIORITIES EQUAL-PRIORITY-TEST))

:Edge-List
(((ACCESS-HEAD 2 (CHECK-PRIORITIES 2))
:Input-Embedding
(((EQUAL-PRIORITY-HEAD 1) (ACCESS-HEAD 1))

((EQUAL-PRIORITY-HEAD 2 (CHECK-PRIORITIES 1)))
:L-R-Link COMPOSITION
:Doc
('tests whether the head of the input associative list -A has

priority -A.,
(INPUT-PORT-NAME> (DOC-BP> (ACCESS-HEAD 1)))
(INPUT-PORT-NAME> (DOC-BP> (CHECK-PRIORITIES

(Defrule TRUNCATE-EQUAL-PRIORITY
'Truncate Equal Priority'
:RHS-Node-Types
((PRIORITY-EQUALITY-TEST . EQUAL-PRIORITY-TEST))
:Input-Embedding
(((TRUNCATE-EQUAL-PRIORITY 1) (PRIORITY-EQUALITY-TEST 2)

((TRUNCATE-EQUAL-PRIORITY 2 (PRIORITY-EQUALITY-TEST 1)))
:St-Thrus
(((TRUNCATE-EQUAL-PRIORITY 1) (TRUNCATE-EQUAL-PRIORITY 3))
:L-R-Link TEMPORAL-ABSTRACTION
:Doc
(,outputs the elements of the input series,-

up to but not including the one that has lower priority
than -A.'

(INPUT-PORT-NAME> (DOC-BP> (PRIORITY-EQUALITY-TEST

(Defrule TRUNCATE-EQUAL-PRIORITY
'Truncate Equal Priority,
:RHS-Node-Types
((PRIORITY-EQUALITY-TEST . EQUAL-PRIORITY-TEST))
:Input-Embedding
(((TRUNCATE-EQUAL-PRIORITY 1) (PRIORITY-EQUALITY-TEST 1))

((TRUNCATE-EQUAL-PRIORITY 2 (PRIORITY-EQUALITY-TEST 2)
:St-Thrus
(((TRUNCATE-EQUAL-PRIORITY 1) (TRUNCATE-EQUAL-PRIORITY 3))
:L-R-Link TEMPORAL-ABSTRACTION
:Doc
(,outputs the elements of the input series, up to but not -

including the one that has lower priority than -A.'
(INPUT-PORT-NAME> (DOC-BP> (PRIORITY-EQUALITY-TEST 2))))

(Defrule EARLIEST-EQUAL-PRIORITY

'Earliest Equal Priority'
:RHS-Node-Types

((EQUAL-P-SEARCH . EQUAL-PRIORITY-TEST))
:Input-Embedding

(((EARLIEST-EQUAL-PRIORITY 1) (EQUAL-P-SEARCH 2)

((EARLIEST-EQUAL-PRIORITY 2 (EQUAL-P-SEARCH
:St-Thrus

(((EARLIEST-EQUAL-PRIORITY 1) (EARLIEST-EQUAL-PRIORITY 3))
:L-R-Link TEMPORAL-ABSTRACTION
:Doc

(,outputs the first element of the input series-

-&that has priority -A.,

(INPUT-PORT-NAME> (DOC-BP> (EQUAL-P-SEARCH

(Defrule EARLIEST-EQUAL-PRIORITY
'Earliest Equal Priority'
:RHS-Node-Types

((EQUAL-P-SEARCH . EQUAL-PRIORITY-TEST))
:Input-Embedding
(((EARLIEST-EQUAL-PRIORITY 1) (EQUAL-P-SEARCH 1))
((EARLIEST-EQUAL-PRIORITY 2 (EQUAL-P-SEARC 2))

:St-Thrus

(((EARLIEST-EQUAL-PRIORITY 1) (EARLIEST-EQUAL-PRIORITY 3))
:L-R-Link T4PORAL-ABSTRACTION

:Doc
(,outputs the first element of the input series-

-&that has priority -A.'

(INPUT-PORT-NAME> (DOC-BP> (EQUAL-P-SEARCH 2)))

(Defrule EQUAL-PRIORITY-TEST

'Equal Priority Test'
:RHS-Node-Types
((EQUAL-PRIORITIES . COMMUTATIVE-BINARY-FUNCTION)
(THE-TEST NULL-TEST))

:Edge-List

(((EQUAL-PRIORITIES 3 (THE-TEST 1)))
:Input-Embedding

(((EQUAL-PRIORITY-TEST 1) (EQUAL-PRIORITIES 1))

((EQUAL-PRIORITY-TEST 2 (EQUAL-PRIORITIES 2))
:L-R-Link COMPOSITION
:Doc

('tests whether -A and -A have -A priorities.,

(INPUT-PORT-NAME> (DOC-BP> (EQUAL-PRIORITY-TEST 1)))

(INPUT-PORT-NAME> (DOC-BP> (EQUAL-PRIORITY-TEST 2)
(EQUALITY-PRBDTCATE? (N> EQUAL-PRIORITY-TEST))))

(Defrule TRUNCATE-OAL-POSITION

'Truncate at Priority Position'

:RHS-Node-Types
((POSITION-TEST . EMPTY-OR-LOW-PRIORITY-HEAD))

:Input-Embedding
(((TRUNCATE-OAL-POSITION 1) (POSITION-TEST 1))

((TRUNCATE-OAL-POSITION 2 (POSITION-TEST 2)

:St-Thrus

(((TRUNCATE-OAL-POSITION 1) (TRUNCATE-OAL-POSITIO 3))
:L-R-Link TMPORAL-ABSTRACTION

:Doc
(,outputs the elements of the input series (each elt. is an

ordered associative list), -

-&up to but not including the one that is empty or has a head
-&with lower priority than -A.'

(INPUT-PORT-NAME> (DOC-BP> (POSITION-TEST 2))))

(Defrule EARLIEST-OAL-POSITION

'Earliest Priority Position'

:RHS-Node-Types

((OAL-POSITION-SEARCH . EMPTY-OR-LOW-PRIORITY-HEAD))
:Input-Embedding

(((EARLIEST-OAL-POSITION 1) (OAL-POSITION-SEARCH 1))
((EARLTEST-OAL-POSITION 2 (OAL-POSITION-SEARCH 2)

:St-Thrus

((�EARLIEST-OAL-POSITION 1) (EARLIEST-OAL-POSITION 3))
:L-R-Link TEMPORAL-ABSTRACTION
:Doc

(,outputs the first element of the input series (each elt. is an
ordered associative list),-

-&that is either epty or has a head with lower priority than -A.'

(INPUT-PORT-NAME> (DOC-BP> (EARLIEST-OAL-POSITION 2))))

(Defrule EMPTY-OR-LOW-PRIORITY-HEAD
'Empty or Low Priority Head,

:RHS-Node-Types

((EMPTY? NULL)

(CONTROL-COMPARISON NULL-TEST)
(GET-HEAD CAR)

(COMPARE-PRIORITIES ANY-COMPARATOR)
(OR-TEST NULL-TEST))

:Edge-List
MEMPTY? 2 (OR-TEST 1))

((EMPTY? 2 (CONTROL-COMPARISON 1))

((GET-HEAD 2 (COMPARE-PRIORITIES 2)
((COMPARE-PRIORITIES 3 (OR-TEST 1)))

3

:Input-Embedding

(((EMPTY-OR-LOW-PRIORITY-HEAD 1)
(GET-HEAD 1))

((EMPTY-OR-LOW-PRIORITY-HEAD 1) (EMPTY? 1))
((EMPTY-OR-LOW-PRIORITY-HEAD 2 (COMPARE-PRIORITIES 1)))

:L-R-Link COMPOSITION
:Doc
(,tests whether the list -A is either empty or has a first -

element that has a lower priority than -A.,
(INPUT-PORT-NAME> (DOC-BP> (EMPTY-OR-LOW-PRIORITY-HEAD 1)))
(INPUT-PORT-NAME> (DOC-BP> (MPTY-OR-LOW-PRIORITY-HEAD 2))))

(Defrule ORDERED-ASSOC-LIST-EXTRACT
'Ordered Associative List Extract'

:RHS-Node-Types
((THE-POP LIST-POP))
:Input-Embedding
(((ORDERED-ASSOC-LIST-EXTRACT 1) (THE-POP 1)))
:Output-Embedding

(((ORDERED-ASSOC-LIST-EXTRACT 2 (THE-POP 2)

((ORDERED-ASSOC-LIST-EXTRACT 3 (THE-POP 3))
:L-R-Link IMPLEMENTATION

:Doc
(,extracts the highest priority element from the ordered

associative list -A by popping the first element.'
(INPUT-PORT-NAME> (DOC-BP> (THE-POP 1)))))

(Defrule LIST-POP
'List Pop'
:RHS-Node-Types
((PULL-OFF-HEAD CAR)

(GET-TAIL CDR))
:Input-Embedding
(((LIST-POP 1) (GET-TAIL 1))

((LIST-POP 1) (PULL-OFF-HEAD 1)))
:Output-Embedding

(((LIST-POP 2 (PULL-OFF-HEAD 2)

((LIST-POP 3 (GET-TAIL 2))
:L-R-Link COMPOSITION
:Doc
(,pops the first element off of the list -A.'

(INPUT-PORT-NAME> (DOC-BP> (GET-TAIL 1)))))

(Defrule ACCUMULATION-UP
'Accumulation Up'
:RHS-Node-Types
((ACCUM-FUNCTION . ANY-BIN-F))
:Input-Embedding

(((ACCUMULATION-UP 2 (ACCUM-FUNCTION
:Output-Embedding
(((ACCUMULATION-UP 3 (ACCUM-FUNCTION 3)
:St-Thrus
(((ACCUMULATION-UP 1) (ACCUMULATION-UP 3))

:L-R-Link COMPOSITION
:Doc
(,iteratively applies the function -A to the result of the

recursive call and a new value. The result of the application

is returned as the result of the recursive call.,
(FUNCTION-TYPB (FUNCTION-INFO (N> ACCUM-FUNCTION)))))

(Defrule ACCUMULATE-UP
'Accumulate on the way up'
:RHS-Node-Types
((ITER-ACCUM-UP ACCUMULATION-UP))
:Input-Embedding

(((ACCUMULATE-UP 1) (ITER-ACCUM-UP 1))
((ACCUMULATE-UP 2 (ITER-ACCUM-UP 2)

:Output-Embedding
(((ACCUMULATE-UP 3 (ITER-ACCUM-UP 3))
:L-R-Link TEMPORAL-ABSTRACTION
:Doc

(,accumulates the values of the input series 'on the way up,
using the function -A. The initial value of the accumulation
is -A.'

(FUNCTION-TYPE (FUNCTION-INFO (N> ITER-ACCUM-UP)))
(INIT-VALUE (N> ITER-ACCUM-UP))))

(Defrule CONS-ACCUMULATE-UP
'Cons Accumulate on the way up'
:RHS-Node-Types
((THE-UP-ACCUM ACCUMULATE-UP))
:Input-Embedding

(((CONS-ACCUMULATE-UP 1) (THE-UP-ACCUM 2M
:Output-Embedding

(((CONS-ACCUMULATE-UP 2 (THE-UP-ACCUM 3)
:L-R-Link IMPLEMENTATION
:Doc

(,accumulates the elements of -A into a list using cons.,

(INPUT-PORT-NAME> DOC-BP> (CONS-ACCUMULATE-UP 1)))))

(Defrule CONS-ACCUMULATE-UP-FROM-SUBLIST
'Cons Accumulate on the way up from Sublist,
:RHS-Node-Types

((THE-UP-ACCUM ACCUMULATE-UPH

:Input-Embedding

(((CONS-ACCUMULATE-UP-FROM-SUBLIST 1) (THE-UP-ACCUM 2)
((CONS-ACCUMULATE-UP-FROM-SUBLTST 2 (THE-UP-ACCUM 1)))

:Output-Embedding

(((CONS-ACCUMULATE-UP-FROM-SUBLIST 3 (THE-UP-ACCUM 3))
:L-R-Link IMPLEMENTATION

:Doc

(,accumulates the elements of -A into a list whose tail is -A.'
(INPUT-PORT-NAME> (DOC-BP> (CONS-ACCUMULATE-TJP-FROM-SUBLIST 1M
(INPUT-PORT-NAME> (DOC-BP> (CONS-ACCUMULATE-UP-FROM-SUBLIST 2)))

(Defrule LIST-EMPTY
'List Epty'

:RHS-Node-Types
((THE-NULL . TEST-PREDICATE))

:Input-Embedding
(((LIST-EMPTY 1) (THE-NULL 1)))

:L-R-Link IMPLEMENTATION

:Doc

(,checks whether the list -A is empty.'
(INPUT-PORT-NAME> (DOC-BP> LIST-EMPTY 1)))))

Figure 414.

(Defrule GENERATION
'Generation'

:RHS-Node-Types
((GEN-FUNCTION . ANY-GEN-F))

:Input-Embedding

(((GENERATION 1) (GEN-FUNCTION 1)))
:St-Thrus
(((GENERATION 1) ENERATION 2))

:L-R-Link COMPOSITION
:Doc

(,generates the successive elements of -A by repeatedly applying the

function -A to the result of its preceding application.,
(INPUT-PORT-NAME> (DOC-BP> (GENERATION 1)))
(FUNCTION-TYPE (FUNCTION-INFO (N> GEN-FUNCTION)M)

(Defrule GENERATE

'Generate'

:RHS-Node-Types

((THE-COUNT COUNT))
:Input-Embedding

(((GENERATE 1) (THE-COUNT 1)))

:Output-Embedding
(((GENERATE 2 (THE-COUNT 2)

:L-R-Link IMPLEMENTATION

:Doc
(,generates the elements of -A by counting them.,

(INPUT-PORT-NAME> (OC-BP> (GENERATE 1)))))

(Defrule GENERATE

'Generate'
:RHS-Node-Types

((ITER-GEN GENERATION))
:Input-Embedding
(((GENERATE 1) (ITER-CEN 1)))
:Output-Embedding

(((GENERATE 2 (ITER-GEN 2)

:L-R-Link TEMPORAL-ABSTPACTION
:Doc

(,generates a series of elements of -A by repeatedly applying the
function -A.'

(INPUT-PORT-NAME> (DOC-BP> (GENERATE 1)))

(FUNCTION-TYPE (FUNCTION-INFO (N> ITER-GEN)))))

(Defrule COMMUTATIVE-BINARY-FUNCTION

'Commutative Binary Function'

:RHS-Node-Types
((COMM-BIN-FUNCTION . ANY-COMM-BIN-F))

:Input-Embedding

(((COMMUTATIVE-BTNARY-FUNCTION 1) (COMM-BIN-FUNCTION 2)
((COMMUTATIVE-BINARY-FUNCTION 2 (COMM-BIN-FUNCTION 1)))

:Output-Embedding

(((COMMUTATIVE-BINARY-FUNCTION 3 (COMM-BIN-FUNCTION 3))
:L-R-Link IMPLEMENTATION

:Doc
(,applies the commutative binary function -A.'

(FUNCTION-TYPE (FUNCTION-INFO (N> COMM-DIN-FUNCTION)))))

(Defrule COMMUTATIVE-BINARY-FUNCTION
'Commutative Binary Function'

:RHS-Node-Types

((COMM-BIN-FUNCTION . ANY-COMM-BIN-F))
:Input-Embedding

(((COMMUTATIVE-B-INARY-FUNCTION 1) (COMM-BIN-FUNCTION 1))
((COMMUTATIVE-BINARY-F'UNCTION 2 (COMM-BIN-FUNCTION 2)

:Output-Embedding

(((COMMUTATIVE-BINARY-FUNCTION 3 (COMM-BIN-FUNCTION 3))
:L-R-Link IMPLEMENTATION
:Doc

3 9

(,applies the commutative binary function -A.,
(FUNCTION-TYPE (FUNCTION-INFO (N> COMM-BIN-FUNCTION)))))

(Defrule INCREMENT
'Increment'
:RHS-Node-Types
((COMM-INC . COMMUTATIVE-BINARY-FUNCTION))

:Input-Ernbedding
(((INCREMENT 1) (COMM-INC 1)))

:Output-Embedding
(((INCREMENT 2 (COMM-INC 3))
:L-R-Link IMPLEMENTATION

:Doc
(,increments -A by 1.1

(INPUT-PORT-NAME> DOC-BP> (INCREMENT

Figure 45.

(Defrule COUNTING-UP
'Counting Up'

:RHS-Node-Types
((COUNTER INCREMENT))

:Input-Embedding
(((COUNTING-UP 1) (COUNTER

:St-Thrus
(((COUNTING-UP 1) (COUNTING 2))

:L-R-Link COMPOSITION
:Doc

(,repeatedly increments -A by 1.1
(INPUT-PORT-NAME> (DOC-BP> (COUNTING-UP

(Defrule COUNT
'Count,

:RHS-Node-Types
((ITER.-COUNTING COUNTING-UP))
:Input-Embedding

(((COUNT 1) (ITER-COUNTING 1)))

:Output-Embedding
(((COUNT 2 (ITER-COUNTIN 2)
:L-R-Link TEMPORAL-ABSTRACTION

:Doc
(,generate a series of successive integers starting with -A.'

(INPUT-PORT-NAME> (DOC-BP> (COUNT

(Defrule BOUNDED-COUNT

'Bounded Count'
:RHS-Node-Types

((THE-COUNTER COUNT)

(STOP-AT-LIMIT BINARY-TRUNCATE))

:Edge-List
(((THE-COUNTER 2 (STOP-AT-LIMIT

:Input-Embedding
(((BOUNDED-COUNT (THE-COUNTER 1))

((BOUNDED-COUNT 2 (STOP-AT-LIMIT 2))

:Output-Embedding
(((BOUNDED-couNT 3 (STOP-AT-LIMIT 3))

:L-R-Link COMPOSITION

:Doc
(,generates a series of successive integers from -A up to, but

not including -A.'

(INPUT-PORT-NAME> (DOC-BP> (BOUNDED-COUNT 1)))
(INPUT-PORT-NAME> (DOC-BP> (BOUNDED-COUNT 2)))

(Defrule DECREMENT
'Decrement'

:RHS-Node-Types

((SUBTRACT MINUS))
:Input-Embedding
(((DECREMENT 1) (SUBTRACT

:Output-Embedding
(((DECREMENT 2 (SUBTRACT 3))

:L-R-Link IMPLF14ENTATION

:Doc
(,decrements -A by 1.1

(INPUT-PORT-NAME> (DOC-BP> (DECREMENT

(Defrule INCREMENT-OR-DECREMENT
'Increment or Decrement'

:RHS-Node-Types
((DECREMENTER DECREMENT))

:Input-Embedding

(((INCREMENT-OR-DECREMENT 1) (DECREMENTER
:Output-Embedding
(((INCREMENT-OR-DECREMENT 2 (DECREMENTER 2)

:L-R-Link IMPLEMENTATION
:Doc

(,Increments or decrements -A.'
(INPUT-PORT-NAME (DOC-BP> (DECREM ENT ER

(Defrule INCREMENT-OR-DECREMENT

'Increment or Decrement'

:RHS-Node-Tlypes
((COUNTER INCREMENT))

:Input-Embedding
(((INCREMENT-OR-DECREMENT 1) (COUNTER 1)))

:Output-Embedding
(((INCREMENT-OR-DECREMENT 2 COUNTER 2)

:L-R-Link IMPLEMENTATION
:Doc

(,increments or decrements -A.'

(INPUT-PORT-NAME (DOC-BP> (COUNTER

(Defrule DOUBLE

'Double'
:RHS-Node-Types

((COMM-TIMES . COMMUTATIVE-BINARY-FUNCTION))

:Input-Embedding
(((DOUBLE 1) (COMM-TIMES

:Output-Embedding
(((DOUBLE 2 (COMM-TIMES 3))
:L-R-Link IMPLEMENTATION

.Doc
(,multiplies -A y 21

(INPUT-PORT-NAME> (DOC-BP> (DOUBLE

(Defrule CAR-MAP
'Car Map'

:RHS-Node-Types

((MAP-HFAD . AR))
:Input-Embedding
(((CAR-MAP 1) (MAP-HEAD 1)))
:Output-Embedding

(((CAR-MAP 2 (MAP-HEAD 2)

:L-R-Link COMPOSITION

:Doc
(,applies the function CAR to each element of the input series.,))

(Defrule SELECT-TERM
'Select Term'

:RHS-Node-Types
((ACCESS-ARRAY . REF))
:Input-Embedding
(((SELECT-TERM 1) (ACCESS-ARRAY

ARRAY>SEQUENCE)
((SELECT-TERM 2 (ACCESS-ARRAY 2)

:Output-Embedding

(((SELECT-TERM 3 (ACCESS-ARRAY 3))
:L-R-Link IMPLEMENTATION

:Doc
(,selects the element at index -A from the sequence -A.'

(INPUT-PORT-NAME> DOC-BP> (SELECT-TERM 2)

(INPUT-PORT-NAME> (DOC-BP> (SELECT-TERM

(Defrule SELECT-TERM-MAP

'Select-Term Map'
:RHS-Node-Types

((MAP-SEQUENCE-REF SELECT-TERM))

:Input-Embedding

(((SELECT-TERM-MAP (MAP-SEQUENCE-REF 1))
((SELECT-TERM-MAP 2 (MAP-SEQUENCE-REF 2)

:Output-Embedding
(((SELECT-TERM-MAP 3 (MAP-SEQUENCE-REF 3))

:L-R-Link COMPOSITION

:Doc
(,references the sequence -A at each index in the input series -A.'

(INPUT-PORT-NAME> (DOC-BP> (SELECT-TERM-MAP 1)))
(INPUT-PORT-NAME> (DOC-BP> (SELECT-TERM-MAP 2)))

(Defrule FILTERING

'Filtering'
:RHS-Node-Types
((FILTER-PREDICATE . TEST-PREDTCATE))
:Input-Embedding
(((FILTERING 1) (FILTER-PREDICATE

:St-Thrus

(((FILTERING 1) (FILTERING 2)
:L-R-Link COMPOSITION

:Doc

(,repeatedly applies the predicate -A to -A.'

(FUNCTION-TYPE (PREDICATE-INFO (N> FILTER-PREDICATE)))
(INPUT-PORT-NAME> (DOC-BP> (FILTER-PREDICATE

(Defrule FLTER

'Filter'
:RHS-Node-Types

((FILTER-ELTS FILTERING))
:Input-Embedding

(((FILTER 1) (FILTER-ELTS

:Output-Embedding
(((FILTER 2 (FILTER-ELT 2)
:L-R-Link TEMPORAL-ABSTRACTION
:Doc

(,filters the elements of the input series using the predicate -A.'

(FUNCTION-TYPE (PREDICATE-INFO (N> FILTER-ELTS)))))

3

(Defrule ACCUMULATION-DOWN

'Accumulation Down'

:RHS-Node-Types
((ACCUM-F . ANY-BIN-F))

:Input-Embedding
(((ACCUMULATION-DOWN 1) (ACCUM-F 1))

((ACCUMULATION-DOWN 2 (ACCUM-F 2))

:St-Thrus
(((ACCUMULATION-DOWN 2 (ACCUMULATION-DOWN 3M

:L-R-Link COMPOSITION
:Doc

(,repeatedly applies the function -A to the result of its -

previous application and a new value. When the iteration -
terminates, the result of the last application is returned.,

(FUNCTION-TYPE (FUNCTION-INFO (N> ACUM-F)))))

(Defrule ACCUMULATE-DOWN
'Accumulate Down'

:RHS-Node-Types

((ITER-ACCUM ACUMULATION-DOWN))

:Input-Embedding
(((ACCUMULATE-DOWN 1) (ITER-ACCUM 1))

((ACCUMULATE-Dow 2 (ITER-ACcum 2)
:Output-Embedding

(((ACCUMULATE-DOWN 3 (ITER-ACCUM 3))

:L-R-Link TEMPORAL-ABSTRACTION
:Doc

(,accumulates the values of the input series on the way down,
using the function -A.,

(FUNCTION-TYPE (FUNCTION-INFO (N> ITER-ACCUM)))))

(Defrule TRUNCATION
'Truncation'

:RHS-Node-Types
((STOP? TEST-PREDICATE))

:Input-Embedding

(((TRUNCATION 1) (STOP? 1)))
:St-Thrus
(((TRUNCATION 1) TRUNCATION 2)

:L-R-Link COMPOSITION

:Doc
(,repeatedly applies the exit test -A to a value, terminating

the iteration if the test succeeds.,
(FUNCTION-TYPE (PREDICATE-INFO (N> TOP?)))))

(Defrule TRUNCATE
'Truncate'
:RHS-Node-Tlypes

((ITER-TRUNCATION TRUNCATION))
:Input-Embedding

(((TRUNCATE 1) (ITER-TRUNCATION

:Output-Embedding
(((TRUNCATE 2 (ITER-TRUNCATION 2))

:L-R-Link TEMPORAL-ABSTRACTION

:Doc
(,outputs the elements of the input series up to but not

including the one that passes the predicate -A.'

(FUNCTION-TYPE (PREDICATE-INFO (N> ITER-TRUNCATION)))))

(Defrule BINARY-TRUNCATION

'Binary Truncation'
:RHS-Node-Types
((BINARY-STOP? . BINARY-TEST-PREDICATE))
:Input-Embedding
(((BINARY-TRUNCATION 1) (BINARY-STOP? 1))

((BINARY-TRUNCATION 2 (BINARY-STOP? 2)

:St-Thrus
(((BINARY-TRUNCATION 1) (BINARY-TRUNCATION 3))

:L-R-Link COMPOSITION
:Doc

(,repeatedly applies the binary exit test -A to a value,

terminating the iteration if the test succeeds.'

(FUNCTION-TYPE (PREDICATE-INFO (N> BINARY-TRUNCATION)))))

(Defrule BINARY-TRUNCATE

'Binary Truncate'

:RHS-Node-Types
((ITER-BIN-TRUNCATION . BINARY-TRUNCATION))

:Input-Embedding

(((BINARY-TRUNCATE 1) (ITER-BIN-TRUNCATION 1))

((BINARY-TRUNCATE 2 (ITER-BIN-TRUNCATION 2))
:Output-Embedding
(((BINARY-TRUNCATE 3 (ITER-BIN-TRUNCATION 3)))
:L-R-Link TEMPORAL-ABSTRACTION

:Doc

(,outputs the elements of the input series up to but not
including the one that passes the binary predicate -A.'

(FUNCTION-TYPE (PREDICATE-INFO (N> INARY-TRUNCATE)))))

(Defrule SLE

'Sublist Enumeration'
:RHS-Node-Types

((THE-GENERATE GENERATE)

(THE-TRUNCATE TRUNCATE))
:Edge-List

(((THE-GENERATE 2 (THE-TRUNCATE M
:Input-Embedding

(((SLE 1) (THE-GENERATE 1)))
:Output-Embedding

(((SL 2 (THE-TRUNCATE 2M

:L-R-Link COMPOSITION
:Doc

(,enumerates the successive sublists of -A.,
(INPUT-PORT-NAMB> (DOC-BP> (SLE 1)))))

(Defrule LE

'List Enumeration'
:RHS-Node-Types
((THE-SLE . SLE)

(THE-CAR-MAP CAR-MAP))

:Edge-List

(((THE-SLE 2 (THE-CAR-MAP 1)))
:Input-Embedding

(((LE 1) (THE-SLE 1)))
:Output-Embedding
(((LE 2 (THE-CAR-MAP 2))
:L-R-Link COMPOSITION

:Doc

(,enumerates the elements of -A.'
(INPUT-PORT-NAME> (DOC-BP> (LE 1)))))

Figure 416.

(Defrule ITERATIVE-SEARCH
'Iterative Search-
:RHS-Node-Types

((SEARCH-P TEST-PREDICATE))

:Tnput-Embedding
(((ITERATIVE-SEARCH 1) (SEARCH-P 1)))

:St-Thrus
(((ITERATIVE-SEARCH 1) (ITERATIVE-SEARCH 2))

:L-R-Link COMPOSITION
:Doc

(,repeatedly applies the search predicate -A to a value,
terminating if an element is found that satisfies it.,

(FUNCTION-TYPE (PREDICATE-INFO (N> SEARCH-P)))))

Figure 417.

(Defrule EARLIEST

'Earliest'

:RHS-Node-Types

((EARLIEST? . ITERATIVE-SEARCH))
:Input-Ernbedding

(((EARLIEST 1) (EARLIEST? 1)))
:Output-Embedding
(((EARLIEST 2 ARLIEST 2)

:L-R-Link TEMPORAL-ABSTRACTION
:Doc

(,outputs the first element of the input series which passes the
predicate -A.'

(FUNCTION-TYPE (PREDICATE-INFO (N> EARLIEST?)m)

(Defrule SEQUENTIAL-SEARCH
'Sequential Search,
:RHS-Node-Types
((EXIT TEST-PREDICATE)

(SEARCH EARLIEST))
:Input-Embedding

(((SEQUENTIAL-SEARCH 1) SARCH 1)))

:Output-Ernbedding
(((SEQUENTIAL-SEARCH 2 (SEARCH 2)
:L-R-Link COMPOSITION
:Doc

(,finds the first element of -A satisfying the predicate A-
unless -A is satisfied first.,

(INPUT-PORT-NAME> (DOC-BP> (SEQUENTIAL-SEARCH 1)))
(FUNCTION-TYPE (PREDICATE-INFO (N> EARCHM

(FUNCTION-TYPE (PREDICATE-INFO (N> EXIT)))))

(Defrule SEQ-LIST-SEARCH

'Sequential List Search'

:RHS-Node-Types
((LIST-ENUM LE)

(SEQ-SEARCH SEQUENTIAL-SEARCH))
:Edge-List
(((LIST-ENUM 2 . (SEQ-SEARCH 1)))

:Input-Embedding

(((SEQ-LIST-SEARCH 1) (LIST-ENUM 1)))

:Output-Ernbedding
(((SEQ-LIST-SEARCH 2 (SEQ-SEARCH 2))
:L-R-Link COMPOSITION
:Doc

(,sequentially searches the elements of the list -A until either the

list is exhausted or an element is found that satisfies the test -A.'
(INPUT-PORT-NAME> (DOC-BP> (SEQ-LIST-SEARCH 1)))

3

(FUNCTION-TYPE (PREDICATE-INFO (N> SEQ-SEARCH)))))

(Defrule CONS-ACCUMULATE-DOWN
'Cons Accumulate on the way down,
:RHS-Node-Types
((THE-ACCUM ACCUMULATE-DOWN))
:Input-Embedding

(((CONS-ACCUMULATE-DOWN 1) (THE-ACCUM)))
:Output-Embedding

(((CONS-ACCUMULATE-DOWN 2 (THE-ACCUM 3M
:L-R-Link IMPLEMENTATION

:Doc

(,accumulates the elements of the input series -A into a list

using cons.,
(INPUT-PORT-NAME> (DOC-BP> (CONS-ACCUMULATE-DOWN

(Defrule REVERSE-LTST

'Reverse List'

:RHS-Node-Types

((ENUMERATE-LIST LE)

(ACCUM-LIST . CONS-ACCUMULATE-DOWN))
:Edge-List

(((ENUMERATE-LIST 2 . (ACCUM-LIST 1)))
:Input-Embedding

(((REVERSE-LIST 1) (ENUMERATE-LIST 1)))
:Output-Embedding
(((REVERSE-LIST 2 (ACCUM-LIST 2))

:L-R-Link COMPOSITION
:Doc

(,constructs a list containing the elements of -A in rverse.'

(INPUT-PORT-NAME> (DOC-BP> (REVERSE-LIST

(Defrule TRAILING-GENERATION
'Trailing Generation'

:RHS-Node-Types

((TR-GEN-FUNCTION . ANY-GEN-F))

:Input-Embedding

(((TRAILING-GENERATION 1) (TR-GEN-FUNCTION 1)))
:Output-Embedding

(((TRAILINO-GENERATION 3 (TR-GEN-FUNCTION 2)

:St-Thrus
(((TRAILING-GENERATION 1) (TRAILING-GENERATION 2)

:L-R-Link COMPOSITION

:Doc

(,generates the successive previous and current elements of -A
by repeatedly applying the function -A to the result of

the preceding application of that function.'
(INPUT-PORT-NAME> (DOC-BP> (TRAILING-GENERATION 1)))

(FUNCTION-TYPE (FUNCTION-INFO (N> TR-GEN-FUNCTION)))))

(Defrule TRAILING-GENERATE
'Trailing Generate'
:RHS-Node-Types

((ITER-TRAILING-GEN TRAILING-GENERATION))

:Input-Embedding
(((TRAILING-GENERATE 1) (ITER-TRAILING-GEN
:Output-Embedding
(((TRAILING-GENERATE 2 (ITER-TRAILING-GEN 2)

((TRAILING-GENERATE 3 (ITER-TRAILING-GEN 3))

:L-R-Link TEMPORAL-ABSTRACTION

:Doc

(,generates a series of the elements of -A and a series of the

elements immediately preceding each of the elements in that
series.,

(INPUT-PORT-NAME> (DOC-BP> (TRAILING-GENERATE 1)))))

(Defrule TRAILING-PTR-LE

'Trailing Pointer List Enumeration'
:RHS-Node-Types
((TR-GEN TRAILING-GENERATE)

(PREVIOUS-CAR-MAP CAR-MAP)

(CURRENT-CAR-MAP CAR-MAP)

(NULL-TRUNC TRUNCATE))
:Edge-List

(((TR-GEN 3 (CURRENT-CAR-MAP 1))
((TR-GEN 3 (NULL-TRUNC 1))
((TR-GEN 2 (PREVIOUS-CAR-MAP 1)))

:Input-Ernbedding

(((TRAILING-PTR-LE 1) (TR-GEN 1)))
:Output-Embedding

(((TRAILING-PTR-L 2 (PREVIOUS-CAR-MAP 2)

((TRAILING-PTR-LE 3 (CURRENT-CAR-MAP 2)
:L-R-Link COMPOSITION
.Doc

('enumerates the elements of the list -A, along with their
immediately preceding elements.,

(INPUT-PORT-NAME> (DOC-BP> (TRAILING-PTR-LE 1)))))

(Defrule NEW-SEQUENCE
'New Sequence'

:RHS-Node-Types
((MAKE-SEQ MAKE-ARRAY))

:Input-Embedding

(((NEW-SEQUENCE 1) (MAKE-SEQ
:Output-Ernbedding

(((NEW-SEQUENCE 2 (MAKE-SEQ 2)
ARRAY>SEQUENCE))

:L-R-Link IMPLEMENTATION
:Doc

('creates a new sequence of size

(INPUT-PORT-NAME> (DOC-BP> (NEW-SEQUENCE

(Defrule SEQUENCE-SIZE
'Sequence Size'

:RHS-Node-Types

((MEASURE-SEQUENCE . ARRAY-TOTAL-SIZE))
Input -Embeddi ng

(((SEQUENCE-SIZE 1) (MEASURE-SEQUENCE
ARRAY>SEQUENCE))

:Output-Embedding

(((SEQUENCE-SIZE 2 (MEASURE-SEQUENCE 2)

:L-R-Link IMPLEMENTATION

:Doc

(,computes the size of the sequence -A.,
(TNPUT-PORT-NAME> (DOC-BP> (SEQUENCE-SIZE

(Defrule NEW-TERM

'New Term'

:RHS-Node-Types
((THE-CR . COPY-REPLACE-ELT))

:Input-Embedding
(((NEW-TERM 1) (THE-CR 3)

ARRAY>SEQUENCE)

((NEW-TERM 2 (THE-CR 2)

((NEW-TERM 3 (THE-CR 1)))
:Output-Fmbedding

(((NEW-TERM 4 (THE-CR 4)

ARRAY>SEQUENCE))
:L-R-Link IMPLEMENTATION

:Doc

('creates a new sequence with the same elements as the input sequence

-A at the same locations, except that the element -A is at the
index -A.'

(INPUT-PORT-NAME> (DOC-BP> (NEW-TERM
(INPUT-PORT-NAME> (DOC-BP> (NEW-TERM 3)

(INPUT-PORT-NAME> (DOC-BP> (NEW-TERM 2)))

(Defrule SEQUENCE-ACCUMULATION

'Sequence Accumulation'
:RHS-Node-Types
((THE-NT NEW-TERM))

:Input-Embedding

(((SEQUENCE-ACCUMULATION 1) (THE-NT 3)

((SEQUENCE-ACCUMULATION 2 (THE-NT 2)

((SEQUENCE-ACCUMULATIO 3 (THE-NT 1)))
:St-Thrus

(((SEQUENCE-ACCUMULATION 3 (SEQUENCE-ACCUMULATION 4)

:L-R-Link COMPOSITION
.Doc

(,repeatedly inserts an element -A (a new element on each iteration)

in the sequence -A at the location -A (which is a different index on

each iteration). when the iteration terminates, the sequence
resulting from the last insertion is returned.,

(INPUT-PORT-NAME> (DOC-BP> (SEQUENCE-ACCUMULATION
(INPUT-PORT-NAME> (DOC-BP> (SEQUENCE-ACCUMULATION 3))

(INPUT-PORT-NAME> (DOC-BP> (SEQUENCE-ACCUMULATION 2)))

(Defrule SEQUENCE-ACCUMULATE
'Sequence Accumulate'

:RHS-Node-Types

((ARRAY-ACCUM . SEQUENCE-ACC UMU LATION))
:Input-Embedding

(((SEQUENCE-ACCUMULATE 1) (ARRAY-ACCUM 1))

((SEQUENCE-ACCUMULATE 2 (ARRAY-ACCUM 2)
((SEQUENCE-ACCUMULATE 3 (ARRAY-ACCUM 3))

:Output-Embedding

(((SEQUENCE-ACCUMULATE 4 (ARRAY-ACCUM 4)
:L-R-Link TEMPORAL-ABSTRACTION
:Doc

(,accumulates the values of the input series -A into a sequence -A at the
series of indices A-

(INPUT-PORT-NAME> (DOC-BP> (SEQUENCE-ACCUMULATE
(INPUT-PORT-NAME> (DOC-BP> (SEQUENCE-ACCUMULATE 3))

(INPUT-PORT-NAME> (DOC-BP> (SEQUENCE-ACCUMULATE 2))))

(Defrule SEQUENCE-ENUMERATION
'Sequence Enumeration'

:RHS-Node-Types

((GENERATE-INDICES BOUNDED-COUNT)

(COMPUTE-INDEX-LIMIT SEQUENCE-SIZE)

(ACCESS-SEQUENCE SELECT-TERM-MAP))
:Edge-List

(((GENERATE-INDICE 3 (ACCESS-SEQUENCE 2)

((COMPUTE-INDEX-LIMIT 2 (GENERATE-INDICES 2))

:Tnput-Embedding

(((SEQUENCE-ENUMERATION 1) (ACCESS-SEQUENCE 1))

((SEQUENCE-ENUMERATION 1) (COMPUTE-INDEX-LIMIT 1)))

312

: Doc

(,applies the binary predicate -A to -A and -A.'
(FUNCTION-TYPE (FUNCTION-INFO (N> ANY-BIN-PRED)))

�INPUT-PORT-NAME> (DOC-BP> (ANY-BIN-PRED 1)))
(INPUT-PORT-NAME> (DOC-BP> (ANY-BIN-PRED 2)))

(Defrule BINARY-TEST-PREDICATE

'Binary Test Predicate'

:RHS-Node-Types

((TP-BINARY-P BINARY-PREDICATE)
(NULL-CHECK NULL-TEST))

:Edge-List

(((TP-BINARY-P 3 (NULL-CHECK 1)))

:Input-Embedding

(((BINARY-TEST-PREDICATE 1) (TP-BINARY-P 1))
((BINARY-TEST-PREDICATE 2 (TP-BINARY-P 2))

:L-R-Link COMPOSITION
:Doc

('tests -A and -A using the binary predicate -A.'

(INPUT-PORT-NAME> DOC-BP> (BINARY-TEST-PREDICATE 1)))
(INPUT-PORT-NAME> (DOC-BP> (BINARY-TEST-PREDICATE 2M

(FUNCTION-TYPE (FUNCTION-INFO (N> NULL-CHECK)))))

(Defrule SUMMING

'Summing'

:RHS-Node-Types

((THE-TALLY . COMMUTATIVE-BINARY-FUNCTION))
:Input-Embedding

(((SUMMING 1) (THE-TALLY 1))

((SUMMING 2 (THE-TALLY 2)
:St-Thrus

(((SUMMING 2 (SUMMING 3))

:L-R-Link COMPOSITION
:Doc

(,keeps a running total of the numbers -A.,

(INPUT-PORT-NAME> (DOC-BP> (SUMMING 1)))))

(Defrule SUM
.Sum.

:RHS-Node-Types
((TALLYING . SUMMING))

:Input-Embedding

(((SUM 1) TALLYING 1)))

:Output-Embedding
MSUM 2 (TALLYING 3)

:L-R-Link TEMPORAL-ABSTRACTION
-Doc

(,returns the sum of the numbers in the input series -A.,
(INPUT-PORT-NAME> (DOC-BP> (SUM 1)))))

(Defrule MAX
'Maximum'

:RHS-Node-Types
((COMPUTE-MAX . BINARY-TEST-PREDICATE))

:Input-Embedding

(((MAX 1) (COMPUTE-MAX 1))
HMAX 2 (COMPUTE-MAX 2)

:St-Thrus

(((MAX 2 (MAX 3)
((M.AX 1) (MAX 3)

:L-R-Link IMPLEMENTATION

:Doc

('computes the maximum of -A and -A.,
(INPUT-PORT-NAME> (DOC-BP> (MAX 1)))

(INPUT-PORT-NAME> (DOC-BP> (MAX 2)))

(Defrule MIN

'Minimum'
:RHS-Node-Types

((COMPUTE-MIN . BINARY-TEST-PREDICATE))
:Input-Embedding

(((MIN 1) (COMPUTE-MIN 1))
((MIN 2 (COMPUTE-MIN 2)

:St-Thrus

MMIN 2 (MIN 3)
((MIN 1) (MIN 3))

:L-R-Link IMPLEMENTATION
:Doc

(,computes the minimum of -A and -A.'

(INPUT-PORT-NAME> (DOC-BP> (MAX 1)))

(INPUT-PORT-NAME> (DOC-BP> (MAX 2)))

Figure 39.

(Defrule SQUARE-ROOT-OF-SQUARE

'Square-Root of Square,
:RHS-Node-Types

((SQ SQUARE)
(TAKE-ROOT . SQRT))

:Edge-List
(((SQ 2 . (TAKE-ROOT 1)))

:Input-Embedding

(((SQUARE-ROOT-OF-SQUARE 1) (SQ 1)))
:Output-Embedding

:Output-Embedding
(((SEQUENCE-ENUMERATIO 2 (ACCESS-SEQUENCE 3M
:L-R-Link COMPOSITION
:Doc
(,enumerates the elements of the sequence -A.'

(INPUT-PORT-NAME> (DOC-BP> (SEQUENCE-ENUMERATION

(Defrule SEQUENCE-AND-INDEX-ENUMERATION
'Sequence and Index Enumeration'
:RHS-Node-Types
((GENERATE-INDICES BOUNDED-COUNT)

(COMPUTE-INDEX-LIMIT SEQUENCE-SIZE)
(ACCESS-SEQUENCE . SELECT-TERM-RAP))

:Edge-List
(((GENERATE-INDICES 3 (ACCESS-SEQUENCE 2)

((COMPUTE-INDEX-LIMIT 2 (GENERATE-INDICES 2))
:Input-Embedding
(((SEQUENCE-AND-INDEX-ENUMERATION 1) (ACCESS-SEQUENCE 1))

((SEQUENCB-AND-INDEX-ENUMERATION 1) (COMPUTE-INDEX-LTMIT 1)))
:Output-Embedding
(((SEQUENCE-AND-INDEX-ENUMERATION 2 (ACCESS-SEQUENCE 3)

((SEQUENCE-AND-INDEX-ENUMERATION 3 (GENERATE-INDICES 3))
:L-R-Link COMPOSITION
:Doc
(,enumerates the elements of the sequence -A and their indices.,

(INPUT-PORT-NAME>
(DOC-BP> (SEQUENCE-AND-INDEX-ENUMERATION

(Defrule LIST-TO-SEQUENCE
'Transfer List to Sequence'
:RHS-Node-Types
((ENUMERATE-LIST-ELTS LE)

(NEW-BASE NEW-SEQUENCE)
(COUNT-INDICES COUNT)
(ACCUMULATE-SEQUENCE SEQUENCE-ACCUMULATE))

:Edge-List
(((ENUMERATE-LIST-ELTS 2 (ACCUMULATE-SEQUENCE 1))

((NEW-BASE 2 (ACCUMULATE-SEQUENCE 3)
((COUNT-INDICES 2 (ACCUMULATE-SEQUENCE 2))

:Input-Embedding
t((LIST-TO-SEQUENCE 1) (ENUMERATE-LIST-ELTS 1))

((LIST-TO-SEQUENCE 2 (NEW-BASE 1)))
:Output-Embedding
(((LIST-TO-SEQUENCE 3 (ACCUMULATE-SEQUENCE 4)
:L-R-Link COMPOSITION
:Doc
(,transfers the elements in the list -A into a sequence-1-

of size -A, by enumerating the elements of the list -%-
and accumulating them in the sequence at successive indices,-%-
starting with index -A.,

(INPUT-PORT-NAME> (DOC-BP> (LIST-TO-SEQUENCE 1)))
(INPUT-PORT-NAME> (DOC-BP> (LIST-TO-SEQUENCE 2)
(INPUT-PORT-NAME> (DOC-BP> (COUNT-INDICES 1)))))

(Defrule UNARY-PREDICATE
'Unary Predicate,
:RHS-Node-Types
((ANY-PRED . ANY-P))
:Input-Embedding
(((UNARY-PREDICATE 1) (ANY-PRED
:Output-Embedding
(((UNARY-PREDICATE 2 (ANY-PRED 2))
:L-R-Link IMPLEMENTATION
:Doc
(,applies the unary predicate -A to -A.'

(FUNCTION-TYPE (FUNCTION-INFO (N> ANY-PRED)))
(INPUT-PORT-NAME> (DOC-BP> (ANY-PRED

(Defrule TEST-PREDICATE
'Test Predicate'
:RHS-Node-Types
((TP-UNARY-P . UNARY-PREDICATE)

(CHECK-IT NULL-TEST))
:Edge-List
(((TP-UNARY-P 2 (CHECK-IT 1)))
:Input-Embedding
(((TEST-PREDICATE 1) (TP-UNARY-P
:L-R-Link COMPOSITION
:Doc
('tests -A using the unary predicate -A.,

(INPUT-PORT-NAME> (DOC-BP> (TEST-PREDICATE 1)))
(FUNCTION-TYPE (FUNCTION-INFO (N> CHECK-IT)))))

(Defrule BINARY-PREDICATE
'Binary Predicate'
:RHS-Node-Tlypes
((ANY-BIN-PRED . ANY-BINARY-P))
:Input-Embedding
(((BINARY-PREDICATE 1) (ANY-BIN-PRED 1))

((BINARY-PREDICATE 2 (ANY-BIN-PRED 2)
:Output-Embedding
(((BINARY-PREDICATE 3 (ANY-BIN-PRED 3)
:L-R-Link IMPLEMENTATION

3 13

(((SQUARE-ROOT-OF-SQUARE 2 (TAKE-ROOT 2))

:L-R-Link COMPOSITION
:Doc
('computes the square root of the square of -Al

(INPUT-PORT-NAME> (DOC-BP> (SQUARE-ROOT-OF-SQUARE 1)))))

Figures 39, 44.

(Defrule NEGATE-IF-NEGATIVE
'Negate if Negative'
:RHS-Node-Types
((NEGATIVE? . LT)

(CONTROL-NEGATION NULL-TEST)
(THE-NEGATE NEGATE))

:Edge-List
(((NEGATIVE? 3 (CONTROL-NEGATION 1)))
:Input-Embedding
(((NEGATE-IF-NEGATIVE 1) (THE-NEGATE 1))

((NEGATE-IF-NEGATIVE 1) (NEGATIVE? 1)))
:Output-Embedding
(((NEGATE-IF-NEGATIVE 2 (THE-NECATE 2))

:St-Thrus
(((NEGATE-IF-NEGATIVE 1) (NEGATE-IF-NEGATIVE 2))

:L-R-Link COMPOSITION

:Doc
(,negates -A if its negative.'

(INPUT-PORT-NAME> (DOC-BP> (NEGATE-IF-NEGATIVE 1)))))

Figure 39.

(Defrule ABSOLUTE-VALUE
'Absolute Value'
:RHS-Node-Types
((SQRT-OF-SQ . SQUARE-ROCT-OF-SQUARE))
:Input-Embedding
(((ABSOLUTE-VALUE 1) (SQRT-OF-SQ 1)))

:Output-Embedding
(((ABSOLUTE-VALUE 2 (SQRT-OF-SQ 2M
:L-R-Link IMPLEMENTATION
:Doc
(,computes the absolute value of -A by taking the square root of

its square.'
(INPUT-PORT-NAME> DOC-BP> (ABSOLUTE-VALUE

Figure 39.

(Defrule ABSOLUTE-VALUE
'Absolute Value'
:RHS-Node-Types
((NIN . NEGATE-IF-NEGATIVE))
:Input-Embedding
(((ABSOLUTE-VALUE 1) (NIN 1)))
:Output-Embedding

(((ABSOLUTE-VALUE 2 (NIN 2))

:L-R-Link IMPLEMENTATION
:Doc
(,computes the absolute value of -A by negating it if it is

negative.,
(INPUT-PORT-NAME> (DOC-BP> (ABSOLUTE-VALUE 1)))))

Figure 39.

(Defrule EQUALITY-WITHIN-EPSILON
*Equality Within an Epsilon,
:RHS-Node-Types

((DIFF MINUS)
(TAKE-ABS ABSOLUTE-VALUE)
(WITHIN-EPSILON . LTE)
(TEST-EWE NULL-TEST))

:Edge-List
(((DIFF 3 (ABSOLUTE-VALUE 1))

((WITHIN-EPSILON 3 (TEST-EWE 1)))
:Input-Embedding
(((EQUALITY-WITHIN-EPSILON 1) (DIFF 1))

((EQUALITY-WITHIN-EPSILON 2 (DIFF 2))

:L-R-Link COMPOSITION
:Doc

(,determines whether -A and -A are within an epsilon -A of each
other.'

(INPUT-PORT-NAME> (DOC-BP> (EQUALITY-WITHIN-EPSILON 1)))
(INPUT-PORT-NAME> DOC-BP> (EQUALTTY-WITHIN-EPSILON 2M
(INPUT-PORT-NAME> (DOC-BP> (EQUALITY-WITHIN-EPSILON 3))))

3 14

Index of Non-Terminal Node Types

314 (ABSOLUTE-VALUE 1:INTEGER 2:INTEGER)
311 (ACCUMULATE-DOWN 1:SERIES 2:ANY 3:ANY)
309 (ACCUMULATE-UP 1SERTES 2:ANY 3:ANY)
311 (ACCUMULATION-DOWN 1:ANY 2:ANY 3:ANY)

309 (ACCUMULATION-UP 1:ANY 2:ANY 3ANY)
293 (ADVANCE-NODES 1SEQUENCE 2:SEQUENCE 3:QUEUE)

304 (ASSOCIATIVE-LIST-DELETE 1:ANY 2:ASSOCIATIVE-LIST
3:ASSOCIATIVE-LIST)

304 (ASSOCIATIVE-LIST-INSERT 1:ANY 2:ANY 3:ASSOCIATIVE-LIST
4:ASSOCIATIVE-LIST)

304 (ASSOCIATIVE-LIST-LOOKUP 1:ANY 2:ASSOCIATIVE-LIST 3:ANY)

301 (ASSOCIATIVE-SET-ADD 1:ANY 2:ANY 3:ASSOCIATIVE-SET
4:ASSOCIATIVE-SET)

302 (ASSOCIATIVE-SET-LOOKUP 1:ANY 2:ASSOCIATIVE-SET 3:ANY)
302 (ASSOCIATIVE-SET-REMOVE 1:ANY 2:ASSOCIATIVE-SET

3:ASSOCIATIVE-SET)

294 (AVERAGE-LOCAL-BUFFER-SIZE 1:SEQUENCE 2:INTEGER)
313 (BINARY-PREDICATE 1:ANY 2ANY 3:ANY)
313 (BINARY-TEST-PREDICATE 1:ANY 2:ANY)

311 (BINARY-TRUNCATE 1:SERIEs 2:ANY 3:SERIES)
311 (BINARY-TRUNCATION 1:ANY 2:ANY 3:ANY)

297 (BOUNDED-CIS-ENUMERATION 1:CIRCULAR-INDEXED-SEQUENCE

2:INTEGER 3:INTEGER 4:INTEGER
5:SERIES)

310 (BOUNDED-COUNT 1:INTEGER 2:INTEGER 3:SERIES)

301 (BUMP+UPDATE 1:ANY 2:INDEXED-SEQUENCE 3:INDEXED-SEQUENCE)
310 (CAR-MAP 1:SERIES 2:SERIES)
303 (CHAINING-HT-DELETE 1:ANY 2:HASH-TABLE 3:HASH-TABLE)

303 (CHAINING-HT-FILL-COUNT-DELETE 1ANY 2:HASH-TABLE
3:HASH-TABLE)

304 (CHAINING-HT-FILL-COUNT-INSERT 1:ANY 2:ANY 3HASH-TABLE
4:HASH-TABLE)

303 (CHAINING-HT-INSERT 1:ANY 2:ANY 3:HASH-TABLE 4:HASH-TABLE)
302 (CHAINING-HT-LOOKUP 1:ANY 2:HASH-TABLE 3:ANY)

297 (CIRCULAR-INDEXED-SEQUENCE-EMMERATION

1:CIRCULAR-INDEXED-SEQUENCE 2:SERIES)
297 (CIS-ADD 1:ANY 2:CIRCULAR-INDEXED-SEQUENCE

3:CIRCULAR-INDEXED-SEQUENCE)
296 (CIS-DESTRUCTIVE-ENUMERATION 1:CIRCULAR-IIMBXED-SEQUENCE

2:SERIES)

296 (CIS-EMPTY 1:CIRCULAR-INDEXED-SEQUENCE)
298 (CIS-EXTRACT 1:CIRCULAR-INDEXED-SEQUENCE 2:ANY

3:CIRCULAR-INDEXED-SEQUENCE)

296 (CIS-FULL 1:CIRCULAR-INDEXED-SEQUENCE)
291 (CO-EARLIEST-EDS-FINISHED 1:SERIES 2:SERIES 3:SEQUENCE)
291 (CO-ITERATIVE-EDS-FINISHED 1:PRIORITY-QUEUE 2:SEQUENCE 3:ANY)

297 (COMBINATION-FUNCTION 1:INTECER 2:INTEGER 3:INTEGER)

309 (COMMUTATIVE-BINARY-FUNCTION 1:ANY 2:ANY 3:ANY)

312 (CONS-ACCUMULATE-DOWN 1:SERIES 2:LINKED-LIST)
309 (CONS-ACCUMULATE-UP 1:SERIES 2:LINKED-LIST)

309 (CONS-ACCUMIJLATE-UP-FROM-SUBLIST 1:SERIES 2:LINKED-LIST
3: LINKED-LIST)

310 (COUNT 1:INTEGER 2:SERIES)

310 (COUNTING-UP 1:INTEGER 2:INTEGER)
310 (DECREMENT 1:INTEGER 2:INTEGER)
292 (DELIVER-MESSAGE 1:MESSAGE 2:SEQUENCE 3:SEQUENCE)
292 (DELIVER-MESSAGE-ACCUMULATE 1:SERIES 2:SEQUENCE 3SEQUENCE)

292 (DELIVER-MESSAGES 1:QUEUE 2:SEQUENCE 3:SEQUENCE)

294 (DELIVER-MESSAGES-AND-STEP-NODES 1:SEQUENCE 2:QUEUE
3:SEQUENCE 4:QUEUE)

291 (DEQUEUE-AND-PROCESS-GENERATION 1:PRIORITY-QUEUE 2:SEQUENCE

3:PRIORITY-QUEUE 4:SEQUENCE)
294 (DESTRUCTIVE-QUEUE-ENUMERATION 1:QUEUE 2:SERTES)
293 (DO-WORK-ACCUMULATE 1:SERIES 2:INTEGER 3:SEQUENCE 4:QUEUE

5:SEQUENCE 6:QUEUE)

293 (DO-WORK-ACCUMULATION 1:SYNCH-NODE 2:INTEGER 3:SEQUENCE

4:QUEUE 5:SEQUENCE 6:QUEUE)
310 (DOUBLE :INTEGER 2:INTEGER)

311 (EARLIEST 1:SERIES 2:ANY)
308 (EARLIEST-EQUAL-PRIORITY 1:SERIES 2:ANY 3:ANY)

308 (EARLIEST-EQUAL-PRTORITY-HEAD 1:SERIES 2:ANY

3:ORDERED-ASSOCIATIVE-LTST)
308 (EARLIEST-OAL-POSITION 1:SERIES 2:ANY

3:ORDERED-ASSOCIATIVE-LIST)
294 (EARLIEST-SIMULATION-FINISHED 1:SEQUENCE 2:QUEUE 3SEQUENCE)

308 (EMPTY-OR-LOW-PRIORITY-EEAD 1:ORDERED-ASSOCIATIVE-LIST 2:ANY)

298 (ENUM-EVAL-COLLECT 1:LINKED-LIST 2:SEQUENCE

3:EXECUTION-CONTEXT 4:QUEUE 5:LTNKED-LIST

6:SEQUENCE 7:EXECUTION-CONTEXT 8:QUEUE)
293 (ENUM-NODES+CHECK-BUFFERS 1:SEQUENCE)
306 (ENUM-OAL-FRONT 1:ORDERED-ASSOCIATIVE-LIST 2:ANY 3:SERIES)
306 (ENUM-OAL-FRONT-UNSAFE 1:ORDERED-ASSOCIATIVE-LIST 2:ANY

3:SERIES)
292 (ENUMERATE-AND-DELIVER-MESSAGES 1:QUEUE 2:SEQUENCE

3:SEQUENCE)
294 (ENUMERATE-NODES+COMPLTTE-AVERAGE 1:SEQUENCE 2:INTEGER)
308 (EQUAL-PRIORITY-HEAD 1:ORDERED-ASSOCIATIVE-LIST 2:ANY)
308 (EQUAL-PRIORITY-TEST 1:ANY 2:ANY)

314 (EQUALITY-WITHIN-EPSILON 1:INTEGER 2:INTEGER)

299 (EVALUATE-AND-APPLY 1:SYMBOL 2:LINKED-LIST 3:SEQUENCE

4:EXECUTION-CONTEXT 5:QUEUE 6:ANY
7:SEQUENCE 8:BXECUTION-CONTEXT 9:QUEUE)

298 (EVALUATE-ARGUMENTS 1:LINKED-LIST 2:SEQUENCE 3:EXECUTION-CONTEXT
4:QUEUE 5:LINKED-LIST 6:SEQUENCE

7:EXEC'UTION-CONTEXT 8:QUEUE)

298 (EVALUATE-MAP 1:SERIES 2:SEQUENCE 3:EXECUTION-CONTEXT 4
:QUEUE 5:SERIES 6:SEQUENCE 7EXECUTION-CONTEXT
8:QUEUE)

291 (EVENT-DRIVEN-SIMULATION 1:EVENT 2:PRIORITY-QUEUE 3:SEQUENCE
4:SEQUENCE)

293 (EXTRACT-AND-H.ANDLE-FIRST-MESSAC;E 1:SYNCH-NODE 2:INTEGER 3:SEQUENCE

4:QUEUE 5:SEQUENCE 6:QUEUE)
303 (FETCH+DELETE 1:ANY 2:HASH-TABLE 3:HASH-TABLE)

303 (FETCH+INSERT 1:ANY 2:ANY 3:HASH-TABLE 4:HASH-TABLE)
303 (FETCH+LOOKUP 1:ANY 2RASH-TABLE 3:ANY)
301 (FETCH+UPDATE 1:INDEXED-SEQUENCE 2:ANY 3:INDEXED-SEQUENCE)
299 (FETCH-AND-APPLY-OPERATOR 1:SYMBOL 2:LINKED-LIST 3:SEQUENCE

4:EXECUTION-CONTEXT 5:QUEUE G:ANY
7:SEQUENCE 8:EXECUTION-CONTEXT 9:QUEUE)

300 (FETCH-INSTRUCTION 1INTEGER 2:SEQUENCE 3:INSTRUCTION

4:INDEXED-SEQUENCE)
299 (FETCH-OP 1:SYMBOL 2:OPERATOR)
298 (FIFO-DEQUEUE 1FIFo 2:ANY 3:FIFO)

296 (FIFO-DESTRUCTIVE-ENUMERATION 1:FIFO 2:SERIES)

296 (FIFO-EMPTY? 1FIFO)
298 (FIFO-ENQUEUE 1ANY 2:FIFO 3:FIFO)

297 (FIFO-ENUMERATION :FIFO 2:SERIES)

310 (FILTER 1:SERIES 2:SERIES)
310 (FILTERING 1:ANY 2:ANY)

306 (FIND-OAL-TAIL 1ORDERED-ASSOCIATIVE-LIST 2:ANY

3:ORDERED-ASSOCIATIVE-LIST)
306 (FIND-OAL-TAIL-UNSAFE 1:ORDERED-ASSOCIATIVE-LIST 2:ANY

3:ORDERED-ASSOCIATIVE-LIST)
309 (GENERATE 1:ANY 2:SERIES)
291 (GENERATE-EVENT-QUEUES-AND-NODES 1:PRIORITY-QUEUE 2:SEQUENCE

3:SERIES 4SERIES)
294 (GENERATE-CLOBAL-BUFFERS-AND-NODES 1SEQUENCE 2:QUEUE 3:SERIES

4:SERIES)
309 (GENERATION 1:ANY 2:ANY)
293 (CLOBAL-AND-LOCAL-BUFFERS-F24PTY? 1:SEQUENCE 2:QUEUE)

297 (GROW-CIS 1:CIRCULAR-INDEXED-SEQUENCE 2:CIRCULAR-INDEXED-SEQUENCE)

299 (HANDLE-MESSAGE 1MESSAGE 2:SEQUENCE 3:QUEUE 4:SEQUENCE 5:QUEUE)

302 (HASH-DELETE 1ANY 2:HASH-TABLE 3:HASH-TABLE)
302 (HASH-INSERT 1ANY 2:ANY 3:HASH-TABLE 4:HASH-TABLE)

302 (HASH-LOOKUP 1:ANY 2:HASH-TABLE 3:ANY)
310 (INCREMENT 1INTEGER 2:INTEGER)
310 (INCREMENT-OR-DECREMENT 1:INTEGER 2:INTEGER)

301 (INDEXED-SEQUENCE-ACCUMULATION 1:SERTES 2:INDEXED-SEQUENCE

3:INDEXED-SEQUENCE)
301 (INDEXED-SEQUENCE-EXTRACT 1INDEXED-SEQUENCE 2:ANY

3:INDEXED-SEQUENCE)
301 (INDEXED-SEQUENCE-INSERT 1:ANY 2:INDEXED-SEQUENCE

3:INDEXED-SEQUENCE)

297 (INTERMEDIATE-GROW-CIS 1:CIRCULAR-INDEXED-SEQUENCE 2:INTEGER

3:CIRCULAR-INDEXED-SEQUENCE)
305 (INTERMEDIATE-UOAL-DELETE 1:ANY 2:UNORDERED-ASSOCIATIVE-LTST

3:LINKED-LIST 4:UNORDERED-ASSOCIATIVE-LIST)
300 (INTERPRET-INSTRUCTION 1:INSTRUCTION 2:SEQUENCE 3:EXECUTION-CONTEXT

4:QUEUE 5:SEQUENCE 6:EXECUTION-CONTEXT 7QUEUE)
298 (ITERATIVE-EVALUATION 1:ANY 2:SEQUENCE 3:EXECUTION-CONTEXT 4:QUEUE

5:ANY 6:SEQUENCE 7:EXECLTTION-CONTEXT 8:QUEUE)
311 (ITERATIVE-SEARCH 1:ANY 2:ANY)

311 (LE 1:LINKED-LIST 2:SERIES)
309 (LIST-EMPTY 1:LINKED-LIST)

309 (LIST-POP :LINKED-LIST 2:ANY 3:LINKED-LISt)

307 (LIST-PUSH 1:ANY 2:LINKED-LIST 3:LINKED-LIST)

313 (LIST-TO-SEQUENCE 1:LINKED-LIST 2:INTEGER 3:SEQUENCE)

300 (LOAD-ARGUMENTS 1:MESSAGE 2:NODE 3:NODE)

300 (LOAD-ARGUMENTS-INTO-AN 1:MESSAGE 2:ASYNCH-NODE 3:ASYNCH-NODE)
300 (LOAD-ARGUMENTS-INTO-MEMORY 1:MESSAGE 2:ASSOCIATIVE-SET

3:ASSOCIATIVE-SET)

300 (LOAD-ARGUMENTS-INTO-SN 1:MESsAGE 2SYNCH-NODE 3:SYNCH-NODE)

292 (LOCAL-BUFFER-DQ 1:SYNCH-NODE 2:MESSAGE 3:SYNCH-NODE)
292 (LOCAL-BUFFER-EMPTY? 1:SYNCH-NODE)
292 (LOCAL-BUFFER-NONEMPTY? 1:SYNCH-NODE)

292 (LOCAL-BUFFER-NQ 1:MESSAGE 2:SYNCH-NODE 3:SYNCH-NODE)
293 (LOCAL-BUFFERS-ALWAYS-EMPTY? 1:SERIES)

293 (LOCAL-BUFFERS-EMPTY? 1:SEOUENCE)

300 (LOOKUP-AND-EXECUTE-HANDLER 1:MESSAGE 2:SEQUENCE 3:QUEUE 4:INTEGER

5:SYMBOL 6:SEQUENCE 7:QUEUE)
304 (LOOKUP-DESTINATION 1:SEQUENCE 2:MESSAGE 3:ANY)
299 (LOOKUP-HANDLER 1:SYMBOL 2:HANDLER)

299 (LOOKUP-HANDLER-FOR-MESSAGE 1:MESSAGE 2:HANDLER)

292 (LOOKUP-NODE+NQ+UPDATE 1:MESSAGE 2:SEQUENCE 3:SEQUENCE)
313 (MAX 1INTEGER 2:INTEGER 3:INTEGER)

313 (MIN 1:INTEGER 2:INTEGER 3:INTEGER)
314 (NEGATE-IF-NEGATIVE 1:INTEGER 2:INTEGER)

312 (NEW-SEQUENCE 1:INTEGER 2:SEQUENCE)
312 (NEW-TERM 1SEQUENCE 2INTEGER 3:ANY 4:SEQUENCE)

307 (OAL-RETRTEVE-IF-EXISTS 1ANY 2:ORDERED-ASSOCIATIVE-LIST 3:ANY 4:ANY)
307 (OAL-SPLICE-IN 1:SERIES 2:ANY 3:ORDERED-ASSOCIATIVE-LTST

4:ORDERED-ASSOCIATIVE-LIST)

3 5

307 (OAL-SPLICE-OUT 1:SERIES 2:ORDERED-ASSOCIATIVE-LIST
3:ORDERED-ASSOCIATIVE-LIST)

307 (ORDERED-ASSOC-LE 1:ORDERED-ASSOCIATIVE-LIST 2:ANY 3:SERIES)
306 (ORDERED-ASSOC-LIST-DELETE 1:ANY 2:ORDERED-ASSOCIATIVE-LIST

3:ORDERED-ASSOCIATIVE-LIST)
309 (ORDERED-ASSOC-LIST-EXTRACT 1ORDERED-ASSOCIATIVE-LIST 2:ANY

3:ORDERED-ASSOCIATIVE-LIST)
305 (ORDERED-ASSOC-LIST-INSERT 1:ANY 2:ANY

3:ORDERED-ASSOCIATIVE-LIST
4:ORDERED-ASSOCIATIVE-LIST)

306 (ORDERED-ASSOC-LIST-INSERT-SAFE 1:ANY 2:ANY
3:ORDERED-ASSOCIATIVE-LIST
4:ORDERED-ASSOCIATIVE-LIST)

306 (ORDERED-ASSOC-LTST-INSERT-LTNSAFE 1:ANY 2:ANY
3:ORDERED-ASSOCIATIVE-LIST
4:ORDERED-ASSOCIATIVE-LIST)

307 (ORDERED-ASSOC-LIST-LOOKUP 1:ANY 2:ORDERED-ASSOCIATIVE-LIST
3:ANY)

307 (ORDERED-ASSOC-SLE 1:ORDERED-ASSOCIATIVE-LIST 2:ANY
3:SERIES)

293 (POLL-NODES-AND-DO-WORK 1:SEQUENCE 2:SEQUENCE 3:QUEUE)
305 (PQ-EMPTY 1:PRIORITY-QUEUE)
305 (PQ-ENUMERATION 1:PRIORITY-QUEUE 2:ANY)
305 (PQ-EXTRACT 1:PRIORITY-QUEUE 2:ANY 3:PRTORITY-QUEUE)
305 (PQ-INSERT 1:ANY 2:ANY 3:PRIORITY-QUEUE 4:PRIORITY-QUEUE)
291 (PROCESS-EVENT 1:EVENT 2:PRIORITY-QUEUE 3SEQUENCE

4:PRIORITY-QUEUE 5:SEQUENCE)
302 (PROPERTY-LIST-LOOKUP 1:SYMBOL 2:SYMBOL 3:ANY)
295 (QUEUE-EMPTY? 1:QUEUE)
295 (QUEUE-EXTRACT 1:QUEUE 2:ANY 3:QUEUE)
295 (QUEUE-INSERT 1:ANY 2:QUEUE 3QUEUE)
304 (RECORD-AT-DESTINATION 1:ANY 2:MESSAGE 3:SEQUENCE 4:SEQUENCE)
312 (REVERSE-LIST 1:LINKED-LIST 2:LINKED-LIST)
297 (ROOMY-CIS-ADD 1:ANY 2:CIRCULAR-INDEXED-SEQUENCE

3:CIRCULAR-INDEXED-SEQUENCE)
299 (RUNNING-STATUS? 1:EXECUTION-CONTEXT)
299 (RUNNING-TEST 1:SYMBOL)
310 (SELECT-TERM 1:SEQUENCE 2:INTEGER 3:ANY)
310 (SELECT-TERM-MAP 1:SEQUENCE 2:SERIES 3:SERIES)
311 (SEQ-LIST-SEARCH 1:LINKED-LIST 2:ANY)
312 (SEQUENCE-ACCUMULATE 1:SERIES 2:SERIES 3:SEQUENCE 4:SEQUENCE)
312 (SEQUENCE-ACCUMULATION 1:ANY 2:INTEGER 3:SEQUENCE 4:SEQUENCE)
313 (SEQUENCE-AND-INDEX-ENUMERATION 1:SEQUENCE 2:SERIES 3:SERIES)
312 (SEQUENCE-ENUMERATION 1:SEQUENCE 2:SERIES)
312 (SEQUENCE-SIZE 1:SEQUENCE 2:INTEGER)
311 (SEQUENTIAL-SEARCH 1:SERIES 2:ANY)
291 (SEQUENTIAL-SIMULATION-OF-MESSAGE-PASSING-SYSTEM

1:SEQUENCE 2:ANY 3:SEQUENCE)
311 (SLE 1:LINKED-LIST 2:SERIES)
313 (SQUARE-ROOT-OF-SQUARB 1:INTEGER 2:INTEGER)
296 (STACK-EMPTY? 1:STACK)
295 (STACK-ENUMERATION 1:STACK 2:SERIES)
296 (STACK-POP 1:STACK 2:ANY 3:STACK)
296 (STACK-PUSH 1:ANY 2:STACK 3:STACK)
313 (SUM 1:SERIES 2:INTEGER)
313 (SUMMING 1:INTEGER 2:INTEGER 3:INTEGER)
294 (SYNCHRONOUS-SIMULATION 1:SEQUENCE 2:MESSAGE 3:SEQUENCE)
293 (SYNCHRONOUS-SIMULATION-FINISHED? 1:SEQUENCE 2:QUEUE

3:SEQUENCE)
294 (SYNCHRONOUS-SIMULATION-W-GLOBAL-MESSAGE-BUFFER

1:SEQUENCE 2:MESSAGE 3:SEQUENCE)
313 (TEST-PREDICATE 1:ANY)
312 (TRAILING-GENERATE 1:ANY 2:SERIES 3:SERIES)
312 (TRAILING-GENERATION 1:ANY 2:ANY 3:ANY)
312 (TRAILING-PTR-LE 1:LINKED-LIST 2:SERIES 3:SERIES)
311 (TRUNCATE 1:SERIES 2:SERIES)
308 (TRUNCATE-EQUAL-PRIORITY 1:SERIES 2:ANY 3:SERIES)
308 (TRUNCATE-EQUAL-PRIORITY-HEAD 1:SERIES 2:ANY 3:SERIES)
308 (TRUNCATE-OAL-POSITION 1:SERIES' 2:ANY 3:SERIES)
307 (TRUNCATE-OAL-POSITION-UNSAFB 1:SERIES 2:ANY 3:SERIES)
311 (TRUNCATION 1:ANY 2:ANY)
313 (UNARY-PREDICATE 1:ANY 2:ANY)
305 (UNORDERED-ASSOC-LIST-DELETE

1:ANY 2:UNORDERED-ASSOCIATIVE-LIST
3:UNORDERED-ASSOCIATIVE-LTST)

305 (TJNORDERED-ASSOC-LIST-EMPTY? 1:LTNORDERED-ASSOCIATIVE-LIST)
305 (UNORDERED-ASSOC-LIST-INSERT 1:ANY

2:UNORDERED-ASSOCIATIVE-LIST
3:UNORDERED-ASSOCIATIVE-LIST)

305 (UNORDERED-ASSOC-LIST-LOOKUP
1:ANY 2:UNORDERED-ASSOCIATIVE-LTST 3:ANY)

301 (UPDATE+BUMP 1:ANY 2:INDEXED-SEQUENCE 3:INDEXED-SEQUENCE)
301 (UPDATE+FETCH 1:INDEXED-SEQUENCE 2:ANY 3:INDEXED-SEQUENCE)
292 (UPDATE-NODE-TIME 1:ASYNCH-NODE 2:INTEGER 3:ASYNCH-NODE)

3 6

is 0 1 ures

1-1 A hybrid program uderstanding system . 9

1-2 GRASPR's architecture 13

2-1 Synchronous simulation cliche's . 26

2-2 Aggregate data cliche's . 27

2-3 Event-driven simulation cliche's . 30

2-4 Node action simulation cliche's . 32

2-5 General-purpose cliche's . 34

21-6 A message handler for Factorial . 36

2-7 The definition of two Machine Operations . 37

2-8 Design tree for Pisim . 40

2-9 Some of the documentation generated for Pisim 41

2-10 Top-level portion of Pisim code . 43

2-11 A syntactic variation of t1te portion of Pisim shown in Figure 210. 44

2-12 An organizational variation of the top-level portion of Pisim. 45

2-13 Top-level portion of CST. Question marks indicate unfamiliar code 47

2-14 A portion of design tree produced in recognizing CST 49

2-15 A portion of the documentation generated for CST 50

2-16 Buffer qeue 'Implemented as a FIFO, which in turn is implemented as a CIS. 52

2-17 Buffer queue implemented as a stack (LIFO) 53

2-18 Design tree for implementational variation in which the buffer 'is a stack. . . 54

2-19 Portion of CST that averages node queue lengths 55

2-20 Design tree for qeue length averaging computation 55

2-21 Optimization in which averagingis performed while advancing nodes. . . . 56

2-22 Design tree for optimized code, with shared sub-tree 57

2-23 Code containing a redundant CAR computation 58

2-24 Code in which the result of CAR is cached and reused 58

3-1 An example attributed flow graph . 61

3-2 An example flow graph grammar . 64

3-3 An example derivation sequence 66

3-4 An example derivation tree . 67

317

3-5 An example attributed flow graph grammar 68

3-6 An attributed derivation tree . 69

3-7 Testing whether the three input sides form a right triangle. 70

3-8 Attributed flow graph for RIGHTP . 71

3-9 Flow graph grammar encoding cliche's found in RIGHTP 72

3-10 Cliche's recognized in RIGHTP . 74

3-11 These flow graphs should a be seen as euivalent 76

3-12 a) A grammar. b) Its core language. c) Some flow graphs in its expanded

language . 77

3-13 a) A grammar. b A derivation sequence. c A derivation graph representing

the derivation . 78

3-14 (a) A grammar. (b) Two derivations of same flow graph. (c) Two derivation

graphs representing the derivations .. 79

3-15 A grammar representing aggregation, using Spread and Make nodes. 82

3-16 F, is the flow graph in the language of the grammar in Figure 315. The rest

are flow graphs aggregation-equivalent to it 83

3-17 F3and F can be transformed to this flow graph by flattening nested Makes

and Spreads . 85

3-18 Two programs each performing two consecutive Stack Pops. 88

3-19 The flow graph for the programs POP-TWICE and POP-TWICE2 89

3-20 Flow graph with a node whose output port is of type Any 89

3-21 (a) A rule which aggregates port types. (b) The same rule with aggregation

information moved to the embedding relation 91

3-22 (a) An edge connects a Spread and Make. (b) This edge becomes a st-thru

when aggregation information 'is moved to the embedding relation. 92

3-23 Circular Indexed Sequence data structure . 93

3-24 The rule for Circular Idexed Sequence Extract 93

3-25 The grammar of Fgure 315 with aggregation encoded in the embedding

relation . 95

3-26 A reduction sequence using the grammar of Figure 325 96

3-27 The reduction of a sub-flow graph using the rule for D from Figure 325. . . 97

3-28 (a) A flow graph only partially recognizable as the non-terminal S, whose

rule is 'in (b). (c) Result of reduction. (d) Breaking up residual Spreads and

Makes to facilitate partial recognition . 99

3-29 Flow graph parser evolution . 101

3-30 Graph chart parsing . 102

3-31 (a) Adding a complete item to the chart. (b) Adding a partial item to the

chart . 104

3-32 A bottom-up rule invocation strategy affects adding a complete item to chart. 05

3-33 Search strategy as input to parser . 106

318

3-34 Additional monitors . 107

3-35 Saring a snb-derivation . log

3-36 (a) A graph grammar that maximally shares the non-terminal A. (b) Ala

input flow graph containing two redundant instances of A. (c) An alternative

view created by "zipping up" the iput graph

3-37 (a) A flow graph with location pointers. (b) Items created dring parsing. 112

3-38 Simulating the break up of residual Spreads and Makes 114

3-39 Grammar containing a rule with a st-thru . 115

3-40 Constraint on combination imposed by st-thrus 115

3-41 Constrained and unconstrained st-thrus . 117

3-42 Propagating matches of st-thrus . 118

4-1 A recursive function with multiple exits . 124

4-2 Flow graph representing HT-Insert . 125

4-3 Annotated partial order grapti representing the relationships between the

control environments of HT-Insert . 127

4-4 Flow graph grammar rule for Negate-if-Negative, with actual attribute con-

ditions . 129

4-5 Grammar rule for counting-up cliche .. 130

4-6 The plan diagram for a code fragment . 132

4-7 A recursively defined plan . 133

4-8 Data plan for Circular Indexed Sequence . 133

4-9 Plan for extracting an element from a Crcular Indexed Sequence 134

4-10 Implementation overlay showing how FIFO-Dequeue can be implemented by

CIS-Extract . 135

4-11 Rule encoding plan for CIS-Extract . 137

4-12 Rule encoding the CIS-Extract-as-FIFO-Dequeue overlay 138

4-13 Temporal overlay showing the view of Generation as a Generate operation. 139

4-14 Grammar rule encoding the plan for Generation 140

4-15 Temporal overlay relating the plan for Iterative Search and te operation

E arliest . 141

4-16 Grammar rule for Iterative Search cliche .. 14122

4-17 Grammar rule encoding the temporal overlay Iterative-Search-as-Earliest. . 143

4-18 Plan definition for Event-Driven Simulation cliche 144

4-19 Overlay showing the temporal abstraction of the iteration cliche' Dequeue-

and-Process-Generation . 146

4-20 Overlay showing the temporal abstraction of the iteration cliche' Co-Iterative-

ED S-Finished . 147

4-21 Grammar rules for some Event-Driven Simulation cliche's 148

4-22 Grammar rules for cliche's used by Event-Driven Simulation cliche 149

319

"I -- -- 1 I 1-1-1- i

4-23 Plan definition for the Process-Event cliche 151

4-24 Rules for Process-Event cliche .. 152

4-25 Plan definition for the Update-Node-Time cliche 153

4-26 Grammar rule encoding the Update-Node-Time plan 154

4-27 Code that side effects the mutable data structure *Event-Queue*. 156

4-28 Functional version of Insert-Queue . 157

4-29 Version of Insert-Queue-Pure in which recursion is folded up 157

4-30 Flow graph representing Insert-Queue-Pure 158

4-31 Partial ordering relationships between the control environments of Insert-

Queue-Pure's flow graph 159

4-32 Documentation containing a cliche'd-to-user-defined name mapping 162

5-1 Flow graph representing the code in Figures 210 211, and 212 165

5-2 Attribute values for accessor ad constructor attributes annotating the flow

graphs representing the programs in Figures 210 column a), 211 (column

b), and 2-12 (column c) . 166

5-3 Flow graph representing the CST code of Figure 213 170

5-41 a) Average cliche'. b-c) Some cases in which a program can be partially

recognized . 171

5-5 Rules for Extract-Message and Local-Buffer-Dequeue cliche'. 172

5-6 Code containing a partially recognized data structure 172

5-7 Flow graph representation for step . 173

5-8 Some valid variations of Synchronous Simulation algorithm 182

6-1 Two series of extensions resulting in duplicate items 191

6-2 Partitions of the total item set . 193

6-3 Grammar and input graph leading to an illegal, cyclic reduction 199

6-4 The plan for extracting from a Circular-Indexed Sequence 201

6-5 Bushy item tree produced in recognizing CIS-Extract with weak match-

interleaved constraints . 202

6-6 The restriction on legal instances imposed by the precedence relation constraint. 203

6-7 Skinny item tree produced 'in recognizing CIS-Extract with strong match-

interleaved constraints . 204

6-8 Results of running CST example with constraints parse-interleaved versus

m atch-interleaved . 205

6-9 Relationship of the sets of successful, killed, and extendable item sets to the

sets of complete and partial items . 205

6-10 Results of running PISIM example with constraints parse-interleaved versus

m atch-interleaved . 206

6-11 The sapes of item trees aving maximum maximum width 210

320

7-1 Four ways of implementing Stack-Push and Stack-Pop with the Stack imple-

mented as an Indexed-Sequence .236

A-1 Reducing fixed-UCFG recognition to flow graph recognition257

321

0 0

1 10 ra

[1] H. Abelson and G. Sussman. Structure and Interpretation of Computer Programs.

The MIT Press, Cambridge, MA, 1985.

[2] A. Adam and J. Laurent. LAURA, A system to debug student programs. Atificial

Intelligence, 15:75-122, 1980.

[3] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms. Addison-Wesley

Publishing Company, Inc., Reading, MA, 1983.

[4] D. Allemang. Understanding programs as devices. Technical report, Ohio State

University, 1990. PhD thesis.

[5] D. Allemang. Using functional models in automatic debugging. IEEE Expert, pages

13-18, December 1991.

[6] G. Alpern, A. Carle, B. Rosen, P. Sweeney, and K. Zadeck. Graph attribution as a

specification paradigm. In A CM SIGSOFTISIGPLAN Software Engineering Sympo-

sium on Practical Software Development Environments, pages 121-129, Boston, MA,

November 1988.

[7] J. Ambras and V. O'Day. MicroScope: A knowledge-based programming environment.

IEEE Software, 53):50-58,1988.

[8] C. Bamji. Graph-based representations and coupled verification of VLSI schematics

and layouts. Technical Report 547, MIT Research Laboratory of Electronics, October

1989. PhD thesis.

[9] C. Bamji and J. Allen. GRASP: A grammar-based schematic parser. VLSI Memo

89-515, MIT Research Laboratory of Electronics, March 1989. Also in Proc. 26th

Design Automation Conference, pp.448-453.

[10] E. Barton, R. Berwick, ad Ristad E. Computational Complexity and Natural Lan-

guage. The MIT Press, Cambridge, MA, 1987.

[11] K. Bertels. Qualitative reasoning in -novice program analysis. Technical report, Uni-

versiteit Antwerpen, June 1991. PhD thesis.

322

'"Ongm

[12] T. Biggerstaff. Design recovery for maintenance and reuse. IEEE Computer, 22(7):36-

49, July 1989. Also published as MCC Technical Report STP-378-88.

[13] T. Biggerstaff, J. Hoskins, and D. Webster. DESIRE: A system for design recovery.

Technical Report STP-081-89, MCC, April 1989.

[14] R. Boyer and J. Moore. The sharing of structure in theorem-proving programs. In

B. Meltzer and D. Michie, editors, Machine Intelligence , pages 101-116. John Wiley

and Sons, New York, 1972.

[15] D. Brotsky. An algorithm for parsing flow graphs. Technical Report 704, MIT Arti-

ficial Intelligence Lab., March 1984. Master's thesis.

[16] H. Bunke. Attributed programmed graph grammars and their application to schematic

diagram interpretation. IEEE Trans. on Pattern Analysis and Machine Intelligence,

4(6), November 1982.

[17] H. Bunke. Graph grammars as a generative tool in image understanding. In H. El-trig,

M. Nagl, and G. Rozenberg, editors, 2nd Int. Workshop on Graph-Grammars and

Their Application to Computer Science, pages 819. Springer-Verlag, October 1982.

Lecture Notes In Computer Science Series, Vol. 153.

[18] H. Bunke and B. Haller. A parser for context free plex grammars. In M. Nagl,

editor, 5th It. Workshop on Graph-Theoretic Concepts in Computer Science, pages

136-150. Springer-Verlag, June 1989. Lecture Notes In Computer Science Series, Vol.

411.

[19] S. Choi ad W. Scacchi. Extracting and restructuring the design of large systems.

IEEE Software, pages 66-71, January 1990.

[20] L. Cleveland. An environment for understanding programs. Technical Report 12889,

IBM T.J. Watson Research Center, Yorktown Hgts., NY, June 1987.

[21] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,

Cambridge, MA, 1990.

[22] D. Corneil and D. Kirkpatrick. A theoretical analysis of various heuristics for the

graph isomorphism problem. SIAM Journal of Computing, 92):281-297, May 1980.

[23] B. Conrcelle. A representation of graphs by algebraic expressions and its -use for graph

rewriting systems. In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors,

3rd International Workshop on Gaph- Grammars and Their Application to Computer

Science, pages 112-132, 1986. Lecture Notes In Computer Science Series, Vol. 291.

[24] D. S. Cyphers. Automated program description. Working Paper 237, MIT Artificial

Intelligence Lab., August 1982.

323

[25] W. Dally and A Cien. Object-oriented concurrent programming in CST. In The

Third Conference on: Hypercube Concurrent Computers and Applications, Volume I

- Architecture, Software, Computer Systems and General Issues. ACM, January 1988.

[26] W. Dally, A. Chien, S. Fiske, W. Horwat, J. Keene, M. Larivee, R. Lethin, P. Nuth,

S. Willsl P. Carrick, and G. Fyler. The J-Machine: A fine-grain concurrentcompnter.

In Int. Fed. of Info. Processing Societies, 1989.

[27] P,, Della-Vigna ad C. Ghezzi. Context-free graph grammars. Information and Con-

trol, 37(2):207-233, 1978.

[28] A. Demers, T. Reps, ad T. Teitelbaum. Incremental evaluation for attribute gram-

mars with application to syntax-directed editors. In 8th Annual ACM Symp on

Principles of Prog. Langs., pages 105-116, Williamsburg, VA, January 1981.

[29] G. Dueck ad G. Cormack. Modular attribute grammars. The Computer Journal,

33(2):164-172, 1990.

[30] A. Duncan and J. Hutchison. Using attributed grammars to test designs and imple-

mentations. In 5th Int. Conf. on Software Engineering, pages 170-178, San Diego,

CA, March 1981.

[31] J. Earley. An Efficient Context-Free Parsing Algorithm. PhD thesis, Carnegie-Mellon

Univ. Computer Science Dept., 1968.

[32] J. Earley. An efficient context-free parsing algorithm. Comm. of the ACM, 13(2):94-

102� 1970.

[33] H. Ehrig. Tutorial introduction to the algebraic approach of graph grammars. In

H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph-Grammars and Their Appli-

cation to Computer Science, pages 314. Springer-Verlag, December 1986. Lecture

Notes In Computer Science Series, Vol. 291.

[34] H. Ehrig, M. Nagl, and G. Rozenberg, editors. Graph-Grammars and Their Applica-

tion to Computer Science. Spri-nger-Verlag, Haus Ohrbeck, Germany, October 1982.

Lecture Notes In Computer Science Series, Vol. 153.

[35] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors. Graph-Grammars and

Their Application to Computer Science. Springer-Verlag, December 1986. Lecture

Notes In Computer Science Series, Vol. 291.

[36] J. Egelfriet and G Rozenberg. A comparison of boundary graph grammars and

context-free hypergraph grammars. Information and Control, 84:163-206, 1990.

[37] R. Engelmore and T. Morgan, editors. Blackboard Systems. Addison-Wesley, Reading,

MA� 1988.

324

[38] G. Engels, C. Lewerentz, and W. Schafer. Graph grammar egineering: A software

specification method. In H. Ehrig, M. Nagl, and G Rozenberg, editors, Gaph-

Grammars and Their Application to Computer Science, pages 186-201. Springer-

Verlag, December 1986. Lecture Notes In Computer Science Series, Vol. 291.

[39] M.A. Eshera and K. Fu. An image understanding system sing attributed symbolic

representation and inexact graph-matching. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 8(5), September 1986.

[40] R. Farrow. Experience with an attribute grammar-based compiler. In 9th Annual

ACM Symp. on Principles of Prog. Langs., pages 95-107, Albuquerque, NM, January

1982.

[41] R. Farrow, K. Kennedy, and L. Zucconi. Graph grammars and global program data

flow analysis. In Proc. 17th Annual IEEE Symposium on Foundations of Computer

Science, Houston, Texas, 1976.

[42] G. Faust. Semiautomatic translation of COBOL into HIBOL. Technical Report 256,

MIT Lab. of Computer Science, March 1981. Master's tesis.

[43] S. F. Fickas and R. Brooks. Recognition in a program understanding system. In Proc.

6th Int. Joint Conf Atificial Intelligence, pages 266-268, Tokyo, Japan, August 1979.

[44] R. Franck. A class of linearly parsable graph grammars. Acta Informatica, 10:175-201,

1978.

[45] C. Frank. A step towards atomatic documentation. Working Paper 213, MIT Arti-

ficial Intelligence Lab., December 1980.

[46] K. Gallaglier. Using program slicing in software maintenance. Technical Report CS-

90-05, Loyola College in Maryland, 1990.

[47] H. Ganzinger, R. Giegerich, M. Ulrich, ad W. Reinhard. A truly generative

semantics-directed compiler generator. In SIGPLAN 82 Symposium on Compiler

Construction, pages 172-184, 1982.

[48] E. Gm.-ur and H Bunke. 3-D object recognition base on subgraph matching in poly-

nomial time. In R. Mohr, T. Pavlidis, and A. Sanfeliu, editors, Structural Pattern

Analysis, pages 131-147. World Scientific, New Jersey, 1989.

[49] W.E.L. Grimson. The combinatorics of object recognition in cluttered environments

using constrained search. Memo 1019, MIT Artificial Intelligence Lab., February 1988.

[50] W.E.L. Grimson. The effect of indexing on the complexity of object recognition.

Memo 1226, MIT Artificial Intelligence Lab., April 1990.

325

[51] W. Griswold ad D. Notkin. Program restructuring to aid software maintenance.

Technical Report 90-08-05, Univ. of Washington, September 1990.

[52] A. Habel ad H. Kreowski. On context-free graph languages generated by edge re-

placement. In Graph-Grammars and Their Application to Computer Science, pages

143-158, 1983. Lecture Notes In Computer Science Series, Vol. 153.

[53] A. Habel and H. Kreowski. May we itroduce to you: Hyperedge replacement. In

H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph-Grammars and Their Appli-

cation to Computer Science, pages 15-26. Springer-Verlag, December 1986. Lecture

Notes In Computer Science Series, Vol. 291.

[54] M. Harandi and J. Ning. Knowledge-based program analysis. IEEE Software, pages

74-81, January 1990.

[55] J. Hartman. Automatic control understanding for natural programs. Technical Report

Al 91-161, University of Texas at Austin, 1991. PhD thesis.

[56] P. Hausler, M. Pleszkoch, R. Linger, and A. Hevner. Using function abstraction to

understand program behavior. IEEE Software, pages 55-63, January 1990.

[57] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

[58] R. Holt, D. Boehm-Davis, ad A. Schultz. Mental representations of programs for

student and professional programmers. In G. Olson, S. Sheppard, ad E. Soloway, ed-

itors, Empirical Studies of Programmers: Second Workshop. Ablex Publishing Corp.,

Norwood N.J., 1987.

[59] S. Horwitz, T Reps, and D. Binkley. Interprocedural slicing using dependence graphs.

Technical Report 756, Uiv. of Wisconsin at Madison, Computer Sciences Dept.,

March 1988.

[60] G. Huet. Confluent reductions: Abstract properties and applications to term rewriting

systems. Journal of the ACM, 27(4):797-821, October 1980.

[61] G. Huet and D. Oppen. Equations and rewrite rules: a survey. In Formal Languages:

perspectives and open problems. Applied Psycholinguistics, Boston, MA, 1980.

[62] D. Hutchens and V. Basili. System structure analysis: Clustering with data bindings.

IEEE Trans. on Software Engineering, 11(8), August 1985.

[63] V. Jagannathan, R. Dodhiawala, and L.S. Baum, editors. Blackboard Architectures

and Applications. Academic Press, Inc., Boston, MA, 1989.

326

[64] M. Jazayeri, F. Ogden, ad W. Rounds. The intrinsically exponential complexity of

the circularity problem for attribute grammars. Comm. of the A CM, 812), December

1975.

[65] W. L. Johnson. Intention-Based Diagnosis of Novice Programming Errors. Morgan

Kaufman Pblishers, Inc., Los Altos, CA, 1986.

[66] G. E. Kaiser, P. H. Feiler, and S. S. Popovich. Itelligent assistance for software

development and maintenance. IEEE Software, 53), 1988.

[67] L. Karttunen and M. Kay. Structure sharing with binary trees. In Proc. 2rd Annual

Meeting of the ACL, pages 133-136, Chicago, IL, 1985.

[68] U. Kastens, B. Htt, and E. Zimmermann. GAG: A practical compiler generator. In

Lecture Notes in Computer Science Series. Springer-Verlag, 1982.

[69] M. Kaul. Parsing of graphs 'in linear time. In H. Ehrig M Nagl, and G. Rozenberg,

editors, Gaph- Grammars and Their Application to Computer Science, pages 206-218,

Haus Ohrbeck, Germany, October 1982. Springer-Verlag. Lecture Notes In Computer

Science Series, Vol. 153.

[70] M. Kaul. Practical applications of precedence graph grammars. In H. Ehrig, M. Nagl,

and G. Rozenberg, editors, Graph-Grammars and Their Application to Computer

Science, pages 326-342. Spri-nger-Verlag, December 1986. Lecture Notes In Computer

Science Series, Vol. 291.

[71] M. Kay. The MIND system. In R. Rustin, editor, Natural Language Processing.

Prentice-Hall, Englewood-Cliffs, NJ, 1973.

[72] M. Kay. Algorithm schemata and data structures in syntactic processing. In B. Grosz,

K. Sparck-Jones, and B. Webber, editors, Readings in Natural Language Processing,

pages 35-70. Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1986.

[73] K. Kennedy and S. Warren. Automatic generation of efficient ealuators for attribute

grammars. In 3rd Annual ACM Symp. on Principles of Prog. Langs., pages 32-49,

Atlanta, GA, 1976.

[74] K. Kennedy and L. Zucconi. Applications of a graph grammar for program control

flow analysis. In 4th Annual ACM Symp. on Principles of Prog. Langs., pages 72-85,

Santa Monica, CA, 1977.

[75] J. Klop. Term rewriting systems: A tutorial. Bulletin of European Assoc. for Theor.

Computer Science, 32):143-182, 1987.

[76] D. Knuth. The Art of Computer Programming. Addison-Wesley Publishing Company,

Inc., Reading, MA, 1968,1969,1973.

327

[77] D. E. Kuth. Semantics of context-free languages. Mathematical Systems Theory,

2(2):127-145, June 1968.

[78] K. Koskimies. A specification language for one-pass semantic analysis. In IGPLAN

84 Symposium on Compiler Construction, pages 179-189, Montreal, Canada, 1984.

[79] K. Koskimies, K. Raiha, and M. Sa 'akoski. Compiler construction using attribute

grammars. In SIGPLAN 82 Symposium on Compiler Construction, pages 153-159,

1982.

[80] H. Kreowski and G. Rozenberg. Note on node-rewriting graph grammars. Information

Processing Letters, 18:21-24, 1984.

[81] J. Laubsch and M. Eisenstadt. Domain specific debugging aids for novice program-

mers. I Poc. 7th Int. Joint Conf. Artificial Intelligence, pages 964-969, Vancouver,

British Columbia, Canada, August 1981.

[82] J. Laubsch and M. Eisenstadt. Using temporal abstraction to understand recursive

programs involving side effects. In Proc. 2nd National Conf. on Artificial Intelligence,

Pittsburgh, PA, August 1982.

[83] S. Letovsky. Cognitive processes i program comprehension. In G. Olson, S. Sheppard,

and E. Soloway, editors, Empirical Studies of Programmers: Second Workshop. Ablex.

Publishing Corp., Norwood, N.J., 1987.

[84] S. Letovsky. Plan analysis of programs. Research Report 662, Yale University, De-

cember 1988. PhD Tesis.

[85] C.K. Looi. APROPOS2: A program analyser for a Prolog intelligent teaching system.

Research paper 377, Dept. of Al, University of Edinburgh, 1988.

[86] S. Lu and A. Wong. Synthesis of attributed hypergraphs for knowledge representation

of 3-1) objects. In J. Kittler, editor, Lecture Notes in Computer Science Series No.

301, pages 546-556. Springer-Verlag, 1988.

[87] F. J Lukey. Understanding and debugging pograms. Int, Journal of Man-Machine

Studies, 12:189-202, 1980.

[88] R. Lutz. Program debugging by near-miss recognition and symbolic evaluation. Tech-

nical Report CSRP.044, Univ. of Sussex, England, 1984.

[89] R. Ltz. Diagram parsing - A new technique for artificial intelligence. Technical

Report CSRP.054, Univ. of Sussex, England, 1986.

[90] R. Lutz. Chart parsing of flowgraphs. In Proc. 11th Int. Joint Conf. Artificial Intel-

ligence, pages 116-121, Detroit, Michigan, 1989.

328

[91] M.H. MacDougall. Simulating Computer Systems: Techniques and Tools. The MIT

Press, Cambridge, MA, 1987.

[92] M. Main and G. Rozenberg. Edge-label controlled graph grammars. Journal of Com-

putation and Systems Sciences, 40:188-228, 1990.

[93] M. Minsky. Logical versus analogical or symbolic versus connectionist or neat versus

scruffy. Al Magazine, 12(2):34-51, Summer 1991.

[94] T.J. G. Montanari. Separable graphs, planar graphs, and web grammars. Iformation

and Control, 16(3):243-267, March 1970.

[95] W. Murray. Automatic Program Debugging for Intelligent Tutoring Systems. Morgan

Kaufmann Publishers, Inc., San Mateo, CA, 1988.

[96] M. Nagl. Set theoretic approaches to graph grammars. In H. Ehrig, M. Nagl, and

G. Rozenberg, editors, Gaph-Grammars and Their Application to Computer Science,

pages 41-54. Springer-Verlag, December 1986. Lecture Notes In Computer Science

Series, Vol. 291.

[97] M. Nagl A software development environment based on graph technology. In H. Ehrig,

M. Nagl, and G. Rozenberg, editors, Graph-Grammars and Their Application to Com-

puter Science, pages 458-478. Springer-Verlag, December 1986. Lecture Notes In

Computer Science Series, Vol. 291.

[98] M. Nagl, G. Engels, R. Gall, and W. Schafer. Software specification by graph gram-

mars. In H. Ehrig, M. Nagl, and G. Rozenberg, editors, 2nd International Workshop

on Graph-Grammars and Their Application to Computer Science, pages 265-287,

Ha-us Ohrbeck, Germany, October 1982. Springer-Verlag. Lecture Notes In Computer

Science Series, Vol. 153.

[99] H.P. Nii. Blackboard systems. In A. Barr, P. Cohen, and E. A. Feigenbaum, editors,

Handbook of Artificial Intelligence, pages 182. Addison-Wesley Publishing Co., 1989.

V01.1v.

[100] J.Q. Ning. A knowledge-based approach to automatic program analysis. Technical

report, University of Illinois, Urbana-Champaign, 989. PhD thesis.

[101] R. Nord and F. Pfenning. The Ergo attribute system. In A CM SIGSOFTISIGPLAN

Software Engineering Symposium on Practical Software Development Environments,

pages 110-120, Boston, MA, November 1988.

[102] T. Pavlidis. Linear and context-free graph grammars. Journal of the ACM, 9(1):11-

23, January 1972.

329

[103] K. Peng, T. Yamamoto, ad Y. Aoki. A new parsing algorithm for plex grammars.

Pattern Recognition, 23(3-4):393-402, 1990.

[104] F. Pereira. A structure-sharing representation for -unification-based grammar for-

malisms. In Poc. 23rd Annual Meeting of the ACL, pages 137-144, Chicago, IL,

1985.

[105] J. L. Pfaltz and A. Rosenfeld. Web grammars. In Poc. Ist Int. Joint Conf. Artificial

Intelligence, pages 609-619, Washington, D.C., September 1969.

[106] R. Prieto-Diaz and G. Arango, editors. Domain Analys�s and Software Systems Mod-

eling. IEEE Computer Society Press, Los Alamitos, CA, 1991.

[107] K. Raiha. Bibliography on attribute grammars. A CM Sigplan Notices, 15(3):35-44,

March 1980.

[108] R. Read and D. Corneil. The graph isomorphism disease. Journal of Graph Theory,

1:339-3631 1977.

[109] T. Reps and A Demers. Sublinear-space evaluation algorithms for attribute gram-

mars. ACM Trans. on Pogramming Languages and Systems, 93):408-440 Jly 1987.

[110] C. Rich. Inspection methods in programming. Technical Report 604, MIT Artificial

Intelligence Lab., June 1981. PhD thesis.

[111] C. Rich. Knowledge representation languages and predicate calculus: How to have

your cake and eat it too. In Poc. 2nd National Conf. on Artificial Intelligence,

Pittsburgh, PA, August 1982.

[112] C. Rich. Inspection methods in programming: Cches and plans. Memo 1005, MIT

Artificial Itelligence Lab., December 1987.

[113] C Rich, editor. Implemented Knowledge Representation and Reasoning Systems. ACM

Press, New York, NY, Jne 1991. SIGART Bulletin: Special Issue, Volume 2 Number

3.

[114] C. Rich and H. E. Shrobe. Initial report on a lisp programmer's apprentice. Technical

Report 354, MIT Artificial Intelligence Lab., December 1976. Master's thesis.

[115] C. Rich, H. E. Shrobe, and R. C. Waters. An overview of the Programmer's Appren-

tice. In Proc. 6th Int. Joint Conf. Artificial Intelligence, Tokyo, Japan, 1979.

[116] C. Rich ad R C. Waters. The Programmer's Apprentice: A research overview. IEEE

Computer, 21(11):10-25, November 1988. Also published as MIT Al Memo 1004.

[117] C. Rich ad R. C. Waters. The Programmer's Apprentice. Addison-Wesley, Reading,

MA and ACM Press, Baltimore, MD, 1990.

330

[118] C. Rich and L M. Wills. Recognizing a program's design: A graph-parsing approach.

IEEE Software, 7(l):82-89, January 1990. Reprinted in P. H. Winston) editorl Artifi-
cial Intelli ence at MIT: Expanding Frontiers, MIT Press, Cambridge, MA In press.

9 1

[119] A. Rosenfeld and D. Milgram. Web automata and web grammars. In B. Meltzer and

D. Michie, editors, Machine Intelligence 7 pages 307-324. John Wiley and Sons, New

York, 1972.

[120] G. Rozenberg. An introduction to the NLC way of rewriting graphs. In H. Ehrig,

M. Nagl, and G. Rozenberg, editors, Gaph-Grammars and Their Application to Com-

puter Science, pages 55-66. Springer-Verlag, December 1986. Lecture Notes I Com-

puter Science Series, Vol. 291.

[121] G. Rozenberg and E. Welzl. Boundary NLC graph grammars - basic definitions,

normal forms, and complexity. Information and Control, 69:136-167,1986.

[122] G. R. Ruth. Analysis of algorithm implementations. Technical Report 130, MIT

Project Mac, 1974. PhD thesis.

[123] R. Schwanke. An intelligent tool for re-engineering software modularity. In IEEE

Conf. on Software Maintenance - 1991, pages 83-92, 1991.

[124] R. Schwanke, R. Altncher, and M. Platoff. Discovering, visualizing ad controlling

software structure. In Proc. 5th Int. Wrkshp on Software Specs, and Design, pages

147-150, Pittsburgh, PA, 1989.

[125] V. Sembugamoorthy and B. Chandrasekaran. Functional representation of devices and

compilation of diagnostic problem-solving systems. In J. Kolodner and C. Riesbeck,

editors, Experience, Memory, and Reasoning, pages 47-73. Lawrence Erlbaum Assoc.,

Hillsdale, NJ, 1986.

[126] H. E. Shrobe. Common sense reasoning about side effects to complex data structures.

In Poc. 6th It. Joint Conf. Artificial Intelligence, Tokyo, Japan, August 1979.

[127] H. E. Shrobe. Dependency directed reasoning for complex program understanding.

Technical Report 503, MIT Artificial Inteffigence Lab., April 1979. PhD thesis.

[128] E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. IEEE Tans.

on Software Engineering, 10(5):595-609, September 1984. Reprinted in C. Rich and

R.C. Waters, editors, Readings in Artificial Intelligence and Software Engineering,

Morgan Kaufmann, 1986.

[129] D. Soni. Maintenance of large software systems: Treating global interactions. In Poc.

of AAAI Spring Symposium, March 1989.

331

WAMON-1

[130] D. Soni. A study of data structure cliches for software design and maintenance.

Working paper, Siemens Corporation, 1989. in preparation.

[131] L. Tan, Y. Shinoda ad T. Katayama. Coping with changes in a object management

system based on attribute grammars. In 4th A CM SIGSOFT Symposium on Sofware

Development Environments, pages 56-65, Irvine, CA, December 1990.

[132] H. Thompson. Chart parsing and rule schemata in GPSG. In Proc. 19th Annual

Meeting of the ACL, Stanford, CA, 1981.

[133] H. Tompson ad G. Ritchie. Implementing atural language parsers. In T. O'Shea

and M. Eisenstadt, editors, Atificial Intelligence: Tools, Techniques, and Applica-

tions, pages 245-300. Harper and Row, New York, 1984.

[134] G. Tinhofer and G. Schmidt, editors. Graph-Theoretic Concepts in Computer Science.

Springer-Verlag, June 1986. Lecture Notes In Computer Science Series, Vol. 246.

[135] W. Tsai ad K. Fu. Attributed grammars - A tool for combining syntactic ad

statistical approaches to pattern recognition. IEEE Trans. on Systems, Man and

Cybernetics, 10(12), December 1980.

[136] W. Vogler. On hyperedge replacement and BNLC graph grammars. In M. Nagl, editor,

Graph-Theoretic Concepts in Computer Science, pages 78-93. Springer-Verlag, 1989.

Lecture Notes In Computer Science Series.

[137] R. C. Waters. Automatic analysis of the logical structure of programs. Technical

Report 492, MIT Artificial Intelligence Lab., December 1978. PhD thesis.

[138] R. C. Waters. A method for analyzing loop programs. _1EEE Trans. on Software

Engineering, 53):237-247, May 1979.

[139] R. C. Waters. KBEmacs: A step towards te Programmer's Apprentice. Technical

Report 753, MIT Artificial Itelligence Lab., May 1985.

[140] M. Weiser. Program slicing. In 5th Int. Conf. on Software Engineering, pages 439-449,

San Diego, CA, 1981.

[141] M. Weiser. Program sicing. IEEE Trans. on Software Engineering, 10:352-357,1984.

[142] S. Wiedenbeck. Novice/expert differences in programming skills. Int. Journal of

Man-Machine Studies, 23:383-390, 1985.

[143] N. Wilde, R. Huitt ad S Huitt. Dependency analysis tools: Reusable components

for software maintenance. In IEEE Conf. on So ware Maintenance - 989, pages

126-131, Miami, Florida, 1989.

332

z � -.1.11. - N-- - I "'!

[144] L. Wills. Atomated program recognition. Technical Report 904, MIT Artificial

Intelligence Lab., January 1987. Master's thesis.

[145] L. Wills. Atomated program recognition: A feasibility demonstration. Artificial

Intelligence, 45(1-2):113-172, 1990.

[146] S. Wills. Pi: A parallel architecture interface for multi-model execution. Technical

Report 1245, MIT Artificial Intelligence Lab., June 1990. PhD Thesis.

[147] S. Wills ad W. Dally. Pi: A parallel architecture interface. In FRONTIERS 92:

The 4th Symposium on the Frontiers of Massively Parallel Computation, McLean,

VA, October 1992.

[148] P. H. Winston and B. K. P. Horn. LISP. Addison-Wesley Publishing Company,

Reading, MA, 1981.

[149] M. Wiren. Interactive incremental chart parsing. In 4th Conf. of the European Chapter

of the ACL, pages 241-248, Manchester, England, 1989.

[150] K. Wittenburg, L. Weitzman, ad J. Talley. Unification-based grammars ad tabular

parsing for graphical languages. Technical Report ACT-OODS-208-91, MCC, June

1991.

[151] B.P. Zeigler. Theory of Modeling and Simulation. John Wiley and Sons, New York,

1976.

333

