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Abstract

A modelling study of hippocampal pyramidal neurons is described. This study is based
on simulations using HIPPO, a program which simulates the somatic electrical activity of
these cells. HIPPO is based on a) descriptions of eleven non-linear conductances that have
been either reported for this class of cell in the literature or postulated in the present study,
and b) an approximation of the electrotonic structure of the cell that is derived in this
thesis, based on data for the linear properties of these cells. HIPPO is used a) to integrate
empirical data from a variety of sources on the electrical characteristics of this type of
cell, b) to investigate the functional significance of the various elements that underly the
electrical behavior, and ¢) to provide a tool for the electrophysiologist to supplement direct
observation of these cells and provide a method of testing speculations regarding parameters
that are not accessible.
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Abstract

A modelling study of hippocampal pyramidal neurons is described. This
study is based on simulations using HIPPO, a program which simulates the
somatic electrical activity of these cells. HIPPO is based on a) descriptions
of eleven non-linear conductances that have been either reported for this
class of cell in the literature or postulated in the present study, and b) an
approximation of the electrotonic structure of the cell that is derived in this
thesis, based on data for the linear properties of these cells.

HIPPO is used a) to integrate empirical data from a variety of sources
on the electrical characteristics of this type of cell, b) to investigate the
functional significance of the various elements that underly the electrical
behavior, and c) to provide a tool for the electrophysiologist to supplement
direct observation of these cells and provide a method of testing speculations
regarding parameters that are not accessible.

The novel results of this thesis include:

e Simulation of a wide range of electrical behavior of hippocampal pyra-
midal cells by using descriptions of ionic conductances (channels) whose
kinetic properties are developed from both limited voltage-clamp and
current-clamp data and from the theory of single-barrier gating mech-
anisms. This result suggests that the single-barrier gating mechanism
of the Hodgkin-Huxley model for ionic channels is empirically valid for
a wide variety of currents in excitable cells.

¢ An estimation of the linear parameters of hippocampal pyramidal cells
that suggest that the membrane resistivity, and thus the membrane
time constant, is non-homogeneous.

e An estimation of dendritic membrane resistivity (R,,) and cytoplas-
mic resistivity (R;) that is higher than generally considered, and the
conclusion that the cell is more electrically compact than previously
thought. This compactness implies that distal and proximal dendritic
input have similar efficacies in generating a somatic response.

¢ A method for estimating the dimensions of the equivalent cable ap-
proximation to the dendritic tree based solely on histological data.




Descriptions of three putative Na%t currents (Ing—trigy INa—rep, and
INa—tail) that quantitatively reproduce the behavior generally ascribed
to Nat currents in hippocampal pyramidal cells.

Descriptions of two Ca?* currents (I, and Ig,s) and a system for
regulating Ca?t inside the cell that qualitatively reproduces the data
for Ca®*-only behavior in hippocampal pyramidal cells.

Descriptions of six KT currents (a delayed rectifier K * current - Ipg,
a transient K+ current — I4, a Ca?t-mediated K+ current — I¢, a
Ca?t-mediated slow K+ current — I4gp, a muscarinic K+ current -
Iy, and an anomalous rectifier K+ current — Ig) that are consistent
with the available data on these currents and that reproduce either
quantitatively or qualitatively the behavior associated to each current
during the electrical response of hippocampal pyramidal cells.

Simulations demonstrating possible computational and/or pathologic
roles for the model currents.

The design of an interactive program that simulates hippocampal pyra-
midal cells with a variety of models of electrotonic structure and the
inclusion of Hodgkin-Huxley-like non-linear conductances at various
points in the cell.
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Errata

The author apologizes for the following errors, and would greatly appreciate notification of any further errors that are
discovered by the reader.

Chapter 3, p. 47-48: In Equation 3.5, the right hand side in inverted, and in Equation 3.6 the denominator, L, should
be a coefficient of the numerator. However, the final equation on the top of p. 48 is correct.

In several places caculation of somatic area is underestimated by a factor of 3. This changes some results quantitatively
but not qualititatively. Some of these effects are as follows:

Chapter 3: The soma radius of the soma/short-cable geometry derived from the Brown et. al. data is incorrect: the
correct radius is 42 um (instead of 73 um). However, this “reversed-engineered” value is still inconsistent with the actual
cell geometry, as illustrated in Figure 3.6.

The estimated specific resistivity of the soma membrane in the model is incorrect; instead of 850Qcm? it should be
2500Q¢m?2. Note, however, that this higher value is still significantly lower than the & 40K Qcm? resistivity estimated for
the dendritic cable, thus preserving the conclusions based on an inhomogeneous membrane resistivity.

The somatic (linear) resistance is correct, but the somatic capacitance is underestimated by a factor of 3. This means
that the (resting) time constant of the soma should be 3 times longer, which in turn slightly effects some of the channel
parameters (particularly those estimated on the basis of single spike waveforms). Values of channel ggens, where given, are
overestimated by a factor of 3, independent of the error accrued by the change in somatic 7 and capacitance. We have not
attempted to refit channel parameters to the corrected model since the old parameters (as listed in the TR) work well and
further tweaking is beyond the scope (and validity) of this project.

Chapter 6: The Ca** system also has some (related) errors, and many of the parameters for this system are being
" revised. However, the basic behavior of the model’s Ca** system is valid. In particular, the prediction of the co-localization
of the Ic channels and Catt channels along with the random distribution of the I4zp channels, with the result these two
Cat*-dependent Kt channels see quite different changes in [Ca**];,, still stands.

Chapters 5-7: Channel parameters listed in the tables should be double checked for the correct sign, specxﬁcally so that
they are consistent with the figures for the particles’ (V) and inf(V') (which are correct).

There are some bugs in the HIPPO listing. Because of these (which will not be fixed) and since our simulation work is
now entirely done with the SURF-HIPPO system (see below), it is recommended that the HIPPO code not be used.

Update

Our simulation work has been transferred to another program, the SURF-HIPPO Neuron Circuit Simulator (based in
part on the SURF circuit simulator, written by Don Webber, VLSI CAD Group at the University of California at Berkeley).
This code is much more efficient and modular than the code listed in this TR. The numerical technique is adapted from
that of Hines (”Efficient computation of branched nerve equations”, Int. J. Bio-Medical Computing (15), 1984, p69-76),
with adaptive time steps. SURF-HIPPO allows ready construction of multiple cells, complicated dendritic trees in 3-space
with distributed non-linearities, and synaptic contacts between cells. Stationary and moving two dimensional light input (for
retinal simulations) is also provided. SURF-HIPPO is written in Common LISP and *LISP (which uses relaxation techniques
to solve the matrix). One version, complete with extensive user interface (menus, 3-D graphics of dendritic trees, automatic
plotting) runs in the Symbolics LISP Machine environment, another (currently without the extensive user interface) runs
in the Sun environment. A Connection Machine (CM2) version is presently being debugged. SURF-HIPPO is not ”public
domain” in the sense that it is not supported (since it is under development), but inquires are welcome.

An expanded version of Chapter 4 of this TR appears in:

Borg-Graham, L., Modelling the non-linear conductances of ezcttable membranes. In Cellular and molecular neurobiology: a
practical approach, H. Wheal and J. Chad, eds., pp. 247-275, Oxford University Press/IRL Press, 1991.
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Chapte’r' 1

INTRODUCTION

1.1 Modelling Neurons of the Central Nervous
System

Understanding the brain is a multi-level task, incorporating perspectives
from molecular biology to cognitive science and psychology. At some point in
this hierarchy the single cell is encountered, and the view that all information
processing in the brain derives from mechanisms on this level is generally
accepted; i.e. it is correct to speak of a neuron processing signals, rather
than the neuropil being the basic functional unit for computation.

The actual role of individual neurons in information processing is open
to speculation. In some systems good arguments have been advanced in
support of the handling of certain tasks by specific cells. In most structures
in the central nervous system (CNS), however, the role of the single cell
is not well defined. Typically, descriptions of information processing in the
CNS refer to anatomical structures consisting of (at least) thousands of cells,
and fail to assign roles to single cells.

Thus, an investigation into information processing on the level of the
single neuron is important. Over the past decade quantitative data on CNS
neurons has grown considerably, and interpretation of this data is now ap-
propriate in order to establish the role of the neuron as it receives the multi-
tudinous signals from the neural mesh. Utilization of systematic models is a
method of addressing this problem. One of the models that is an appropriate
vehicle for this task is named HIPPO
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1.2 The HIPPO Model of Hippocampal Pyrami-
dal Cells

This thesis describes the development and application of the computer model,
HIPPO. This model simulates the somatic electrical behavior of a stereo-
typical cortical integrating neuron, the mammalian hippocampal pyramidal
cell (HPC). The development of HIPPO includes an estimation of the elec-
trical structure for this cell, development of the numerical technique used in
the model algorithm, integration of electrophysiological data into the model
(particularly that describing the non-linear conductances reported for the
HPC), and implementation of the model on a Symbolics 3600 LISP machine.
The application of HIPPO includes an integration of sparse and conflicting
data obtained from a variety of electrophysiological protocols. Applying
HIPPO includes also testing of speculations regarding characteristics not
accessible to in vivo or in vitro measurement.

As set forth this report, modelling a non-linear system as complex as
the hippocampal pyramidal cell is problematic at best. The situation is
complicated by both the numerous interdependencies of the mechanisms
underlying electrical behavior in these neurons!, and by the approximations
and assumptions (e.g. the Hodgkin-Huxley model, ref. Chapter 4) that are
required due to the present state of the data.

In light of these difficulties, this model is presented with the understand-
ing that many of the putative mechanisms described could easily be incorrect
in their details, but given the constraints imposed on the development of the
model parameters (as defined throughout this Thesis), these descriptions are
reasonable in that they are based on first principles and that they generate
the desired behavior. At best, the descriptions will in some way reflect what
is actually going on in these cells; at worst, the descriptions and the result-
ing behavior of the model will generate testable predictions and suggestions
for postulating more accurate mechanisms.

In fact, these interdependencies provide important and implicit constraints on the
derivation of parameters, which in turn causes the selection of parameters to be less
arbitrary than otherwise would be the case. These constraints are manifest in the cross-
checking of overall model behavior, required whenever a subset of the model parameters
is altered. This point will be reiterated several times in later chapters when strategies for
developing various elements are reviewed.
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1.3 Organization of Thesis

In this chapter Sections 1.4 through 1.7 will introduce the hippocampal
pyramidal neuron and describe the motivations for modelling this cell. Some
comments on the applied aspects of the program are also presented.

Chapter 2 contains a discussion of the strategy used herein in develop-
ing HIPPO and the basic structure of the model, outlining the geometry
of the model and the type of circuit that it simulates. The development of
"HIPPO involves careful examination of the literature on hippocampal cells
(and other neurons, as required) in conjunction with consultation with elec-
trophysiologists. The techniques used by the electrophysiologist to measure
the various components of the electrical behavior of a neuron are reviewed
since these techniques guide the construction of the model from available
data and the evaluation of any inconsistencies in that data. This chapter
closes with a brief discussion of the network elements, in particular the elec-
trochemical potentials that drive the electrical excitability of these neurons.

Chapter 3 covers the evaluation of the linear characteristics of the HPC.
This analysis forms a basis for building the model of the pyramidal neuron,
particularly since many of the non-linear parameters must be estimated from
incomplete data. Estimating the characteristics of non-linearities in the cell
is fruitless without a solid linear description to build on. Several approaches
to this problem , as well as a critical review of the published data on the
linear structure of the HPC, are presented. Finally, the linear parameters
used for the present version of HIPPO are discussed.

The non-linear conductances in the model are all based on some varia-
tion of the classic Hodgkin and Huxley model ([21], [20], [22], [23]) of the
Nat and Kt conductances in the squid axon. This approach represents a
major assumption in the HIPPO model, particularly since many of the non-
linear conductances in HPC have not been conclusively demonstrated as
being Hodgkin-Huxley-like conductances. However, in light of the paucity
of data for these cells, this approach is a reasonable one, and in fact has
been successful in reproducing many qualitative and quantitative aspects of
HPC electrical behavior. Since the Hodgkin-Huxley model is of such basic
importance to the HIPPO description, this model and the application of
this model to putative HPC conductances are described in Chapter 4. In
addition, the implications of the single-barrier gating interpretation of the
Hodgkin-Huxley model are discussed in detail.

In the next three chapters the development of descriptions of the various
non-linear currents is described, along with the simulated behavior of these
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currents. In these chapters the behavior of the model is compared typi-
cally with data from cells obtained under conditions similar to those being
simulated.

In Chapter 5, the three proposed Na't currents, Ing—trig, INg—rep, and
INa—tail, are presented and the HIPPO simulation of Nat-only HPC behav-
ior is shown. ‘

In Chapter 6, the HIPPO description of the two Ca?* currents, I¢, and
Icas, are presented with simulations of Ca?*-only HPC behavior, as well as
the HIPPO description of the dynamics of intracellular Ca?* and the factors
that determine the concentration of Ca?t underneath the cell membrane.
This latter component is important since two K+ currents (Ic and I4pp)
are presumably mediated by the concentration of intracellular Ca?*, and
the magnitude of [Ca®t]spen.1 (vef. Chapter 6) can significantly change the
reversal potential for Ca?t ( E¢,).

In Chapter 7 the six K+ currents in the model are presented. These
currents, Ipr, Ia, Ic, Iaup, Im, and Ig, display a wide range of activa-
tion/inactivation characteristics and thus modulate the HPC response in
many different ways. The parameters used in the model for these currents
are presented here, as well as various simulations demonstrating their be-
havior.

In Chapter 8 and Chapter 9 some selected simulations are presented of
voltage clamp protocols and current clamp protocols, respectively. These
simulations augment the ones that are presented in earlier chapters, and
demonstrate the overall behavior of the model and how the model reproduces
various data taken from cells. In contrast to the results presented in earlier
chapters, the simulations discussed here represent speculative behavior of
the HPC, given the HIPPO description of its electrical characteristics.

In Chapter 10 implications of the results obtained by the model are
discussed, and the validity of both these results and the approach used in
constructing HIPPQO. Guidelines are also proposed regarding the application
of HIPPO. In the final chapter, Chapter 11, some of the future applications
of HIPPO are presented.

In Appendix A a sample simulation session is described, showing the
interactive nature of the menu-driven HIPPO and the presentation of simu-
lation results. Appendix B contains a description of the predictor-corrector
algorithm used by HIPPO to solve the network equations. In Appendix C
the structure of the HIPPO code will be described. Appendix D contains
the software listing for HIPPO.
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1.4 Hippocampal Pyramidal Neurons As A Stereo-
typical Cortical Integrating Neuron

The hippocampus is a part of the cerebral cortex. This structure carries
and (presumably) processes signals projecting to and leaving from various
regions of the neocortex. The hippocampus forms along the free medial edge
of the temporal lobe of each cerebral hemisphere, extending from the several
layers of neocortex, forming its characteristic spiral, which in turn consists
of a single layer of pyramidal cells. Historically, the striking anatomy and
connectivity of the hippocampus has made it one of the more studied areas of
cortex. Although the classical role of the hippocampus as a major player in
the so-called “limbic system” is now being re-evaluated, there is substantial
evidence of various functional roles of this structure, including a putative
role in mediating long-term memory.

The pyramidal neuron is the basic efferent cell of the cerebral cortex,
integrating afferents from both intracortical and extracortical structures.
The connectivity of a single pyramidal cell is typically very large, with hun-
dreds to thousands of afferent connections. This input tends to be quite
segregated, with distinct tracts originating from various structures making
synapses with specific regions of the pyramidal cell’s extensive dendritic tree.
The pyramidal cell, as one of the major cell types in the cortex, is an impor-
tant determinant of cortical function on the cellular level. The hippocampal
pyramidal cell is representative of this class of neurons, and for these reasons
and those set forth below, it is a cell of choice for investigations of central
neuron characteristics.

The large body of knowledge for the hippocampus has been enhanced in
recent years by the brain slice technique used for obtaining stable in vitro
electrophysiological measurements with various micro-electrode techniques.
In the slice technique, approximately 500 pum thick transverse slices of freshly
excised hippocampus (typically rat or guinea pig) are maintained for sev-
eral hours in small chambers filled with an appropriate oxygenated solution.
Once set up in this manner, intracellular recordings from microelectrodes can
be obtained for several hours. A related technique, which also has been de-
veloped recently, is the combination of patch clamp recording methods with
pyramidal cells cultured from embryonic neurons. This technique, while
clearly moving one more step away from the physiological environment, al-
lows for higher quality measurements due to the improved electrical nad
mechanical characteristics of the patch electrode over the micro-electrode.
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The hippocampal pyramidal cell has therefore been chosen as the target
cell for the present study. To build this model, an attempt was made to
evaluate a large sample of the literature, which is quite extensive. As an
initial modelling study, this effort was successful in quantifying much of the
behavior of this representative cell in the CNS, and in establishing the basic
aspects of somatic HPC function. These results may be extended to other
cells in the CNS, especially when more data on these cells becomes available.

1.5 Application of HIPPO

An important aspect for the application of the HIPPO model as a research
tool is its flexibility. The structure of HIPPO allows straightforward testing
of the sensitivity of the model to changes in various parameters. In particu-
lar, estimating a parameter which is based on low-confidence experimental
data can require testing of values over a wide range. One cost of this flexibil-
ity is in the execution time of a given simulation protocol. For this reason,
versions of HIPPO were developed which had a relatively fixed structure
and simulation protocol but executed considerably faster. In some cases
the use of these quick “customized” HIPPOs was effective in developing an
intuitive sense of the behavior of the model, and presumably that of the
cell. For example, voltage-clamp simulations of isopotential structures in-
volve considerably less computation than that of voltage-clamp simulations
of non-isopotential structures or current-clamp simulations in general. Yet,
to a first approximation, much of the data in the literature can be effectively
simulated with the simplified voltage-clamp protocol. Once initial estimates
of simulation parameters have been tested on the simplified HIPPO, then
the more general HIPPO can be used to examine more realistic structures.

1.6 The User Interface

A substantial effort was invested in the user interface of HIPPO. Input to the
model is done via a menu hierarchy (ref. Appendix A) that allows efficient
manipulation of relevant parameters and a subsequently rapid set-up for a
given simulation. A limited degree of automated simulation execution is also
provided. Output of HIPPO is both graphical and numerical. Manipulation
of the output is straightforward and non-displayed parameters are easily
accessible. The user interface design has a net result of being able to use
HIPPO in an interactive, self-documenting fashion.

18




1.7 Previous Work

Much of the program design philosophy and the approaches used in esti-
mating model parameters were inspired by an earlier model constructed by
Prof. Christof Koch and Prof. Paul Adams for the bullfrog sympathetic

ganglion cell [2].
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Chapter 2

MODELLING STRATEGY
AND THE ELEMENTS OF
HIPPO

2.1 Introduction

The goal of the HIPPO model is to give a reasonable description of a non-
linear time-varying multi-variable system. To achieve this, development of
the model was accomplished in stages of increasing complexity along sev-
eral degrees of freedom, including the geometry of the model cell and its
non-linear, time-varying properties. Since many of the network components
are non-linear, superposition does not hold in general. The resulting inter-
dependence of the parameters was a considerable problem in constructing
a valid description, especially since any change in a single parameter often
meant that much of the model behavior had to be checked. Careful evalu-
ation of experimental results was essential in order to prevent generation of
false-positive solutions. This chapter will discuss the general development
of the model, the structure of the modelled system and its elements.

2.2 Determining the Validity of the Model Re-
sults

A key consideration in the interpretation of the HIPPO results is in deter-
mining the validity of a given version of the model. There is no clear-cut
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unique solution set for the model parameters. For example, many (non-
physiological) descriptions of the kinetics will yield reasonable behavior.

The basic approach considers an evaluation of as many parameters as
possible under orthogonal or nearly orthogonal simulation protocols, mim-
icking the electrophysiologist’s technique. Particular attention is paid to
when experimental results reflect the overlapping of several kinetic mecha-
nisms, particularly when superposition does not hold (when superposition
does hold, then it may be exploited to extract the relevant parameters from
the total response). Whenever several non-linear elements contribute to the
model response the model is used iteratively to test different hypotheses for
the parameters in question.

Most of the HPC currents are present over a limited range of membrane
voltages. In the simplest case, involving a determination of the kinetics
of a system with two currents X1 and X2, when the activation ranges for
X1 and X2 are non-overlapping, then the voltage clamp protocol will have
no problem quantifying each current. In practice, however, there are few
currents that experience an exclusive range of activation, and therefore the
situation is more complicated !.

While more than one current may be activated at a given voltage range,
different components may be distinguished if they have significantly different
time courses. For example, [4 and Ipg are activated over the same range.
Since I activates and inactivates much faster than Ipgr over part of this
range, however, the two currents can be distinguished by their distinct time
courses in voltage clamp protocols (Segal and Barker, 1980).

Another technique to separate different currents is to exploit the phar-
mocological sensitivity of some currents. For example, Nat currents are
generally believed to be blocked by the puffer fish toxin, tetradotoxin (TTX),
and that channels for other ions are largely unaffected by TTX. Thus, in
voltage clamp preparations TTX is commonly used to unmask currents that
might otherwise be swamped by larger Nat currents. with similar kinet-
ics. Other examples of selective blocking of currents include the use of
tetra-ethylammonium (TEA) to block some potassium currents (e.g. Ipr),
4-aminopyridine (4-AP) to block I4, and various Ca?* blockers (e.g. Mn™)
or Ca?t -chelators to inhibit Ca?t currents , and calcium-mediated currents
(Ic and I4gp) (ref. Table 7.1).

!The main exception is I, which is the only current activated at fairly hyperpolarized
potentials (Chapter 7). The leak current is superimposed on the @ current, but that may
be readily distinguished from the Ig.
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Figure 2.1: Typical geometry of HIPPO compartmental model simulation,
including soma sphere joined in series to several dendritic cylindrical seg-
ments and current injection into soma. Each compartment is isopotential.
One of the outputs of the simulation is the time course of each compartment
voltage.

2.3 Geometry Of Model

HIPPO simulates hippocampal pyramidal neurons with a compartmental
model that incorporates several isopotential compartments connected to-
gether with resistors. The simplest morphology is a single compartmental,
isopotential spherical model of the entire cell, i.e. no dendritic structure or
axonal process. This structure can be extended with the addition of as many
as five processes, which can be configured as four dendrites and one single
compartment axon. Four of the processes are represented by an arbitrary
number of lumped cylindrical segments, with each segment having its own
set of linear and non-linear electrical parameters. The fifth process, when
included, is represented by a single isopotential cylindrical compartment.
Most simulations were run with a single dendrite and no axon, as illustrated
in Figure 2.1.

The physical and electrical parameters for each of the compartments -
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soma sphere and process cylinders - can be set uniquely for each compart-
ment. For example, the soma can be set up with at most eleven non-linear
currents, a particular membrane resistivity and capacitance, and a particu-
lar radius. A single dendrite might be added with ten segments, with eight
configured as linear cables using the same linear parameters but distinct
dimensions. The remaining two segments could have two non-linear con-
ductances in addition to their linear properties, and one of the all-linear
segments could have a synapse. In the present report only the linear den-
drite case will be examined. In Chapter 3 a detailed analysis and subsequent
method for approximating the hippocampal pyramidal cell geometry will be
presented.

2.4 HIPPO Solves A Non-Linear, Time-Varying
Electrical Network

In this modelling study the HPC is analyzed as an electrical circuit. In-
puts to this circuit include stimuli provided by intracellular electrodes or
by synaptic-like conductance changes, and circuit outputs include voltages
at various parts of the cell, specific membrane currents, the concentration
of Ca?t in different compartments related to the circuit, and various state
variables associated with the non-linear conductances. In a general sense,
HIPPO is a program for simulating a particular class of electrical networks.
HIPPO is configured to handle a limited set of topologies with a specific
class of network elements, as well as linear resistors and capacitors, volt-
age sources, and current sources. The special class of elements are non-
linear voltage-dependent and time-dependent conductances that represent
the behavior of ion-specific channels in the cell membrane. The electrotonic
structure of neurons (as determined by the morphometrics and linear com-
ponents of the cell) is extraordinarily important to their function, and much
of the effort in the development of HIPPO was in the characterization of
this structure as well as that of the non-linear elements.

Figure 2.2 illustrates a typical network configuration for simulation. In
this particular topology the network is stimulated by a current source that
injects a current pulse into the soma. This source is the system input in
this particular simulation. The outputs include the voltages of each of the
compartments, the currents through each of the branches of the network, and
the state variables that describe the behavior of the non-linear conductances.
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Figure 2.2: Network schematic for typical simulation protocol, similar to
that shown in Figure 2.1. Voltage for each compartment is measured relative
to the outside of the cell. Determining the characteristics of the circuit
elements from (a) the voltage response to current source stimulus (current
clamp), (b) the current response to voltage source stimulus (voltage clamp),
and (c) estimation of parameters derived from basic principles is the focus
of this research.
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2.5 Elements of the Model

The basic task of HIPPO is the determination of the circuit elements. Char-
acterization of some of these components is straightforward, e.g. the mem-
brane capacitance, while most of the others are subject to considerable spec-
ulation. Because of a lack of data, some elements cannot be determined with
a high degree of certainty. For these parameters, if the behavior of the cell
is strongly effected, sets of simulations were conducted over the presumed
‘'range of the parameter, resulting in a range of cell responses peculiar to
changes in that parameter.

HIPPO incorporates 11 non-linear, time-varying conductances in the
soma, including those that underly three putative sodium currents, (Ing—trig,
INg—tait, and INg—rep), a delayed-rectifier potassium current (Ipgr), a cal-
cium current (Ig,), a slow calcium current (I¢qs), a calcium-mediated potas-
sium current (I¢), an after-hyperpolarization potassium current (Iagp), a
muscarine-inhibited potassium current (Ipr), a transient potassium current
(I4), and an anomalous rectifier potassium current (Ig).

All the compartments include the leakage current (/1) and the capaci-
tance current ([gqp) as explicit components of the network model. In ad-
dition, the soma compartment includes a non-specific shunt conductance as
may be introduced by the microelectrode.

All the parameters for the model, including the kinetics of the non-linear
conductances and the linear characteristics of hippocampal pyramidal cells,
were derived either from the literature or from consultation with Prof. Paul
Adams 2, Dr. Johan Storm 3 and Prof. Christof Koch 4.

2.6 Reversal Potentials and Ionic Current Through
Membrane Conductances

The origin of the membrane potentials will now be reviewed, as these el-
ements are fundamental to the interpretation of the model. The reversal
potentials for each conductance derive from two salient features, (1) a con-
centration gradient across a membrane for ionic species X and, (2) selective
permeability in that conductance for X relative to any other ionic species in

2Department of Neurobiology and Behavior, State University of New York at Stony
Brook.

5Tbid.

*Department of Biology, California Institute of Technology.
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the intra- and extra-cellular medium. The concentration gradient sets up a
thermodynamic potential that drives ions of X down the gradient, and across
the membrane, in order to balance the concentrations. If, however, the mo-
bility across the membrane of any of the other species in the mediums is not
the same as X, movement of X will then set up a charge imbalance across
the membrane. This imbalance will create a potential difference across the
membrane that will oppose movement of X down the concentration gradi-
ent. At equilibrium, there will be no net flow of X across the membrane,
and the electrical potential will be equal and opposite to the thermodynamic
potential caused by the concentration gradient. The relationship between
concentration gradient and electrical potential is described by the Nernst
equation,

by = L, P

X F [X ]in

where Ex is the potential due to ionic species X (referenced to the inside of
the cell), R is the gas constant, T is the temperature in degrees Kelvin, zx
is the valence of X, [X],u: is the concentration of X outside the membrane,
and [X];n is the concentration of X inside the membrane.

Note that if the membrane is permeable to other charge carriers in the
medium, then space-charge neutrality will be maintained as counterions are
dragged across the membrane with X. The concentration gradient of X will
then be eliminated with no concomitment establishment of an ionic potential
due to a charge imbalance from the movement of X.

The flow of ions through membrane channels has been the subject of
much theoretical work, and at present there is no consensus as to the mech-
anisms involved (Hille, 1985). However, measurements of the intrinsic con-
ductance of ion channels over a narrow range of membrane potentials ® show
that to a first approximation this intrinsic conductance is linear (indepen-
dent of the voltage):

IX = gX(Vmembrane - EX)

where Ix is the ionic current, Vi,embrane 18 the voltage applied across the
membrane, and ¢gx is the conductance of X through the membrane channels.

5Typically in the physiological range of membrane potentials, and several millivolts
away from the reversal potential of a given channel, where non-linearity of the intrinsic
conductance is pronounced most.
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An important assumption in the HIPPO model is that the flow of one
ionic species across the membrane is independent of the flow of any other
species; the different currents are linearly independent. This allows the dif-
ferent current paths to be represented as distinct independent conductances
in parallel with each other, each driven by the appropriate ionic potential,
as was illustrated in Figure 2.

In fact, it has been demonstrated that so-called “selective” channels are
not absolutely selective for a given ion. Most channels are instead prefer-
entially selective for one ion or another, and have a lower (perhaps much
lower but non-zero) permeability for other species. The result is a reversal
potential for a given channel that may be expressed by the Nernst-Goldman
equation, including the appropriate ions and their relative permeabilities.
For example, the reported reversal potentials for the (assumed) K+ chan-
nels typically vary between -90 and -70 millivolts, whereas Fg, assuming
standard values for the concentration of K+ inside and outside the mem-
brane, is about -98 millivolts. Likewise, data on I¢,s, which is advertised
as a Cla?t current, indicates that its reversal potential is around 0 millivolts
(see Chapter 6). Finally, the resting potential in the model is assumed to
be set by a non-voltage-dependent channel with a reversal potential of -70
millivolts, which implies that either there is a mixture of perfectly selective
channels that contribute to give the observed “leak” channel, or there is a
single channel that is permeable, to varying degrees, to more than one ion.

2.6.1 Sodium Potential - Ey,

In the HIPPO simulations, the sodium potential was not found to be a very
critical parameter, probably since most of the activity of the cell occurs
around potentials that are very hyperpolarized to the sodium potential.
Changing this potential mainly affected the amplitude and rate of rise of
the action potential. [Nat);, is assumed to be 12 mM, and [Nat],,; is
assumed to be 145 mM. At physiological temperature this corresponds to a
potential of +63 mV.

2.6.2 Potassium Potential - Ex

The potassium potential is the most sensitive ionic potential in the model.
Much of the reproduced activity takes place within 10 to 20 millivolts from
rest. In addition, there is evidence that the potassium concentration ad-
jacent to the outside membrane is substantially different than the rest of
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the extracellular medium, which in turn will change Ex transiently dur-
ing electrical activity. Further, the intracellular potassium concentration is
not measured readily. In the model presented here, however, the concen-
tration of K+ inside and outside the cell is assumed constant. [K7T];, is
set at 155mM, and [K1],,; is set at 4mM. At 37°C, this corresponds to a
potassium potential of —85 mV.

As shall be discussed in Chapter 7, raising the reversal potential of Ipg
to -73 mV was necessary, in order to obtain certain features of the voltage
‘response as mediated by this current. Different so-called K+ conductances
may, in fact, have slightly different reversal potentials, reflecting, as men-
tioned above, a non-ideal selectivity of a given channel. For example, the
higher reversal potential of Ipr implies that this channel allows the passage
of either a small proportion of Ca?t or Nat as well as K.

2.6.3 Calcium Potential - F¢,

The calcium potential was calculated from the constant extracellular C'a?*
concentration (4.0 mM) and the concentration of Ca®t directly underneath
the membrane regions where the Ca?* channels are assumed to be grouped,
[Ca*Fshenn1. At test, [Ca?F)spen1 was equal to 50 nM, resulting in a Eg, of
128 mV. In Chapter 6, the dynamics of the Ca?t system and the behavior
of E¢, are presented in detail.
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Chapter 3

HPC ELECTROTONIC
STRUCTURE AND
DETERMINATION OF
LINEAR PARAMETERS

3.1 Introduction

This chapter describes an estimation of the electrotonic structure of the
hippocampal pyramidal cell model. The parameters for this structure are
derived from the literature and from theoretical considerations that are de-
veloped herein. First, the basis for this development and the role it plays in
the modelling effort will be described. Next, the parameters for the electro-
tonic structure will be defined and described, including the membrane capac-
itance, the cytoplasmic resistivity, and the factors underlying the membrane
resistivity. The next section will begin by describing the problem of mod-
elling the geometry of the cell. Two methods for estimating the dimensions
will be presented, the first by extrapolating data used in other modelling
studies, and the second based on a histological data-based technique that I
have developed.

The electrical parameters of the cell will be estimated next based on
reported data. When combined with the results of the previous section,
some reports may be used to derive morphometric data, but not electrical
parameters, and other reports may be employed for only some electrical
measurements.
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In order to develop a model structure that is consistent with the available
(valid) data, the next section in this chapter derives the frequency response
for the general structure. Next, DTFT techniques are used with the derived
frequency response to examine various model structures so that the desired
linear temporal response may be obtained. Several suggestions on how some
parameters may be better estimated using the phase and magnitude of the
frequency response are discussed, and the accuracy of the compartmental
model used in the actual simulations is verified by comparison with the
previously derived response of the continuous structure. Finally, the pa-
rameters of the structure used in this study are presented, along with a
discussion of some of the possible functional implications of the values for
these parameters.

3.2 The Importance of the Electrotonic Struc-
ture

In order to develop descriptions of non-linear elements in the pyramidal cell
using the small amount of available data, building on an accurate charac-
terization of the electrotonic structure of the cell is necessary. The term
“electrotonic” refers to the cable-like characteristics of the cell as defined
by the linear properties of the cell membrane , cytoplasm, and the intricate
geometry of the dendritic tree.

Starting with a valid electrotonic structure is important for a few rea-
sons. First, in the absence of complete voltage clamp data, the estimates
for many of the non-linear parameters must be evaluated by current clamp
simulations. In this case, subtleties in the resulting voltage records are ana-
lyzed to determine the accuracy of a given estimation. If the linear response
of the model cell is different than that of the real cell, determining whether
differences between simulated and actual responses are due to errors in the
estimation of the non-linear parameters or to errors in the linear parameters
may be impossible.

For example, one method used to derive the Nat currents in the hip-
pocampal pyramidal cell involves running voltage clamp simulations on the
linear model (no non-linear conductances) using an actual Na*-only spike
record as the clamp voltage. In this protocol, as will be reviewed in Chapter
5, the clamp supplies the current necessary to cancel the linear currents (leak
current, soma-dendrite current, and soma capacitance current) elicited by
the spike waveform. Presumably, then, the clamp current must reflect those
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currents that are mediated by Nat channels during a Na*-only spike. The
time course of the clamp current therefore provides clues as to the non-linear
processes that may underly the Na* currents (ref. Figure 5.2). For example,
does the waveform indicate that more than one HH-like conductance is op-
erating, and what are the magnitudes of the putative components? Models
with different linear response will give different clamp currents under these
conditions, so it is necessary that attention is focused on a model whose
linear response most closely follows a real cell.

Another motivation to carefully develop the linear structure of the model
came about when various references for this structure were consulted, in-
cluding reports of measurements of cells and reports of other hippocampal
pyramidal simulations. As will be reviewed later, many aspects of these
reports were inconsistent, and required reviewing the assumptions inherent
in these analyses and integration of the valid aspects of the reported data
to obtain a more consistent description of the relevant parameters.

3.3 Building the Linear Description

Several papers on the measurement of the linear properties of hippocam-
pal neurons were consulted to obtain the model parameters, including other
modelling studies ([48], [44]), measurements of the linear properties of hip-
pocampal neurons ([7], [52]), and references for analytical approaches to ap-
proximations of the neuron geometry ([26]). Typically these papers derive
parameters via analysis of the assumed linear response to a hyperpolariz-
ing current step. The analysis is based often on the calculated response of
the soma/short-cable structure. Several methods are available to estimate a
given parameter, and more than one is often used to estimate better a given
parameter (e.g. [7]) .

In examining the published data, however, some problems arose when
the derived parameters were checked either using the model or by running
simple calculations. These inconsistencies will be addressed in this chapter.

3.4 HPC Linear Parameters

The linear parameters of the model include:
¢ Steady state input resistance as seen from the soma — R;, (2)
e Specific resistivity of the soma membrane — R, —soma (K cm?)
e Specific resistivity of the dendrite membrane — R,,—gena (KQ cm?)
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¢ Cytoplasmic resistivity — R; (KQcm)

o Specific membrane capacitance (assumed homogeneous)— Cy, (uf /cm?)

¢ Radius of the soma — @5omq (m)

¢ Radius of the dendritic cable — a (pm)

o Length of the dendritic cable — ! (um)

o Length constant of the dendritic cable — A (um)

e Electrotonic length of the dendritic cable — L (dimensionless)

e Dendrite/Soma conductance ratio — p (dimensionless)

e Terminating admittance of the dendritic cable, normalized to that of
a semi-infinite cable — B (dimensionless)

Some of these parameters are derived from the others, including A and
L:

Other parameters that are sometimes used for convenience include
e Cytoplasmic resistivity per unit length — r, (KQcm™1)
where

T
Pg = —=
7 ra?

o (Typically dendritic) membrane time constant — 7 or 7 (milliseconds)
where

To = Rm—dendcm

Many investigators refer to a homogeneous membrane resistivity, R,
that is constant over both the soma and dendrites. This and each of the
other parameters will be discussed in this chapter. The specific membrane
capacitance, the cytoplasmic resistivity, the leak conductance, the electrode
shunt conductance, and the leak reversal potential will now be discussed.

3.4.1 Specific Membrane Capacitance

The generally accepted value for Cy, is 1 pf/em?. This value is comparable
to the specific capacitance of .8 uf/em? for a pure lipid bilayer ([19]). In
some cells, however, a different value for C,,, has been reported. For example,

32




the apparent membrane capacity for crustacean muscle fibers is 15 to 40
wf/em? ([19]). If the true capacity per unit area is 1 uf/cm?, this indicates
that the membranes of these cells is quite contorted.

The capacitance of any given compartment was then calculated based on
this value multiplied by the total surface area of the compartment that faced
the extracellular medium. This calculation was based on several assump-
tions about the structure of the cell and the structure of the membrane. For
example, ideal geometries were assumed when calculating the absolute value
for the capacitance for any of the compartments in the HIPPO model — a
sphere for the soma compartment and right cylinders for the dendritic and
axonal compartments. In fact, the cell membrane is much more convoluted
than this description implies, and the net result would be an underestima-
tion of the cell capacitance. On the other hand, the value of 1 uf/cm?
assumes a smooth membrane, without any small-scale variations. A more
realistic calculation of membrane capacitance would take into account the
inhomogeneity of the membrane and the variation of the membrane thick-
ness. These factors would tend to reduce the capacitance per unit area.

In summary, the model cell incorporates a value of 1 uf/cm? for Cp,. In
addition, C,, is assumed to be constant over the entire cell (i.e. C,y, is the
same for both the soma and the dendrites). Some investigators have pro-
posed larger values for C,,, for example ranging from about 2 to 4 uf/cm?
([52]). These values were derived from estimating the membrane time con-
stant under assumptions that are probably not valid (e.g. homogeneous time
constant over the entire cell, terminating impedance of dendrites = 0). The
errors incurred under the various assumptions that have been used in other
studies will be examined later, particularly when the estimation of R,, is
discussed. These errors have likely contributed to an overestimation of C,,
in some of these reports.

3.4.2 Cytoplasmic Resistance

The resistivity of the intracellular medium, the cytoplasm, is calculated
with the assumption that the interior of the cell is homogeneous. This is
clearly an assumption since the cell is packed with a myriad of cytostructural
elements, organelles and inclusions. To a first approximation, however, the
inhomogeneity of the cytoplasm is ignored.

Shelton [44] presents the following argument as to the size of R;. He
proposes that the lower limit of R; is set by the conductivity of pure physio-
logical saline solution, corresponding to a value of 50 to 60  ¢cm. Measure-
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ments of the resistivity of extracellular brain tissue are cited in the range
of 50 - 600 Q c¢m, and measurements of the resistivities of axoplasm and
somatic cytoplasm in other cells are quoted as being in the range of 20 -
160 Q c¢m and 70 - 390 £ ¢m, respectively. Shelton proposes that the resis-
tivity of the medium in which a microelectrode is immersed contributes to
the effective electrode resistance due to the convergence resistance near the
electrode tip. Since the microelectrode bridge circuit must be compensated
to account for the electrode resistance, the compensation required as the
~ electrode tip moves from outside to inside the cell will give an indication
of the difference in the extra- and inter-cellular resistivities. Measurements
along these lines indicate that the difference between these resistivities for
the cerebellum and the Purkinje cell are less than 50 Q em. Assuming that
the cerebellar extracellular resistivity is 200 Q ¢m, Shelton then uses this
result to suggests that R; is near 250 Q cm.

This value of R; is significantly higher than what is used usually in the
reports analyzing the linear characteristics of the pyramidal cell. Typical
values in these reports are in the range of 50 - 75 Q e¢m. Most studies do
not indicate the rationale for these values, other than the supposed analogy
to the resistivity of a Ringer’s-type solution. An investigation of the signifi-
cance of R; was therefore of interest, in particular to see if large differences
in this parameter could significantly affect the derivation of the other linear
parameters.

The most obvious parameter that is a strong function of R; is the den-
dritic length constant, A, and thus the electrotonic length of a dendritic
segment, L. A is determined by R;, Rpy—dend, and a by the following rela-

tion:
Ry, _genqa
A= ——————
v 2R;

(Note that X expresses the length over which the voltage from a constant
point source attenuates by a factor of 1/e down an infinite dendritic cable.)

For a fixed value of R, —gdend and a, a four-fold increase in R; (e.g. from
65 to 260 £ cm) will correspond to a halving of A. The manner in which R;
affects the input impedance of the cable is discussed later. »

One of the assumptions of the compartmental model is that within each
compartment the intracellular resistance can be neglected, so that the com-
partment is isopotential. The cytoplasmic resistivity is only considered in
the electrical communication between dendritic compartments, where the
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connecting resistor is calculated from the dimensions of the compartments
and the cytoplasmic resistivity according to the formula —

Ri X lcompa'rtment
a2
where lcompartment is the length of the dendrite segment.

In summary, the model incorporates an R; of either 200 or 250 Q2 cm
for most of the analyses. In some cases, R; was set to 75 Q cm in order to
evaluate data from other reports of intracellular measurements or modelling
studies, but results presented in later chapters are obtained using the higher
values of R;.

Rcoupling =

3.4.3 Leak Conductance, Electrode Shunt Conductance, And
Leak Reversal Potential

R, the specific membrane resistivity, is defined as a linear, time-independent
conductance. The intrinsic leak conductance of the cell, Rj.qx, and the elec-
trode shunt conductance, Rspyunt, combine to form R,, when the impedance
of the membrane is evaluated. Rjqi includes the conductance of the lipid
bilayer, and an ion-specific channel or channels whose conductance is or are
voltage and time independent. Rgpun: is the non-specific leak arising from
the impalement of the cell with a microelectrode. Since Rjeq1 is a selective
conductance, it is modeled in series with a voltage source representing the
leak reversal potential, Ejeqr. Rshunt, however, is non-selective, and there-
fore is modeled without a series voltage source.

Accurate determination of R, is difficult, particularly because of the
cable properties of the pyramidal cell and, as will be demonstrated, the non-
homogeneity of R,,. In this section some estimates of Rspyns are presented as
well as a background for the measurement of the intrinsic Rjeqr and estimates
of Ejeqr. The estimates of R, (actually of Ry—some and Ry,—geng) will be
presented later in this chapter.

The conductance of the lipid bilayer sets an upper bound for the Rjeqx
of 108 - 10° Q cm? [19]. Since estimates of R,, typically are in the range of
500 to 10* Q cm?, ion channels or the electrode leak appears to account for
the majority of the total membrane leak. _

Various estimates of the leak introduced by an electrode have been made,
ranging from 50 to 200 MQ [44]. We can roughly estimate the magnitude
of the leak introduced by the single electrode used in the single electrode
clamp (SEC) protocol from the amount of constant "repair” hyperpolarizing
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current that must be supplied to the soma in order to maintain a resting
potential of -60 to -70 mv !} . Typical values for this current range from 0.5
to 1.5 nA (Storm, personal communication). If the normal resting potential
is assumed to be -70 mv, and sufficient repair current is supplied to restore
this membrane voltage, then the previous range of repair current magnitudes
implies electrode leaks in the range of 140 to 47 MQ, respectively.

Estimates of pyramidal cell input impedance vary over an order of mag-
nitude. This range is more than can be explained simply by the difference
in the surface area and electrotonic structure of the measured cells. The
integrity of the electrode seal is variable, and could conceivably account for
a large part of the input conductance.

For many cells R,, is estimated by measuring the time constant of the
cell in response to small steps of injected current with the cell at resting
potential. In this case, either the cell membrane is assumed to be equipo-
tential (in which case the response should consist of a single exponential and
the single time constant is measured), or an infinite cable structure is as-
sumed with a homogeneous membrane, and the largest time constant of the
response is interpreted as the true membrane time constant. This formula
shall be referred to later when some of the published estimates of R,, are
examined.

Typical values for the time constants measured under these conditions
for various cells (including non-neuronal cells) range from 104 s to 1 second.
This range corresponds to R,,’s of 0.30 to 106Q cm?, assuming that C,, can
range from 1 - 30 uf/cm?. Thus the number of channels that are open and
contribute to the maintenance of the resting potential varys considerably
between different cell types.

The stability of the resting potential may be investigated by perturbing
the membrane voltage in the presence of active conductances. These simu-
lations can test the validity of any calculated FE,.s, since it is likely that the
membrane voltage would be stable in the neighborhood of the actual F,.s,
and that the spike threshold would be distinct (e.g. greater than 10mv depo-
larized from rest). This stability of F,.s is observed for non-spontaneously
firing cells, and is advantageous since this behavior is directly related to the
ability of the cell to reject noise (at a low level of perturbation) and the
integrative ability of the cell. In the latter case, a firing threshold near F,¢s¢

1This repair current is often only transiently required, however, as if over time
the leak introduced by the micro-electrode is sealed automatically (Storm, personal
communication)
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Figure 3.1: Typical hippocampal pyramidal cell. The main regions include
the soma, the basal dendrites, the apical dendrites, the axonal hillock, and
the axon.

would cause the cell to fire for a larger set of inputs than if the threshold
was more depolarized. Modulation of the firing threshold is a possible phys-
iological mechanism for changing the computational function of a single cell.
On the other hand, threshold modulation may be a factor is some patholog-
ical states, such as epilepsy where the threshold is abnormally low leading
to hyperexcitability (e.g. seizures), or in states where the threshold is too
high, causing hypoexcitability (e.g. paralysis at the extreme).

In most reports, Erest is assumed to be about -70 mv. Since the evidence
for hippocampal pyramidal cells indicate that there is little current due to
non-linear channels at rest (the exception being a small I, discussed in
Chapter 6), I have assumed that the reversal potential for the leak conduc-
tance, Eleak, is equal to -70 mV.

3.5 Modelling the Cell Geometry

The shape of the hippocampal pyramidal neuron is quite complex, as Figure
3.1 illustrates.

The basic regions of the pyramidal neuron are the cell body, or soma,
the basal dendrites, the apical dendrites, the axonal hillock, and the axon.
Synaptic input to the cell is received at all its regions, but is primarily
received on the dendritic trees. In the standard view of the HPC, the den-
dritic membrane is primarily linear while the somatic, axon hillock and axon
membranes are active, that is contains non-linear voltage and time depen-
dent conductances. Although recent studies show that there are non-linear
conductances located on the dendrites, in the present model purely linear
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dendrites are assumed.

3.5.1 Assumption of Linear Dendrites

Defining the dendrites to be linear is an important assumption for the model.
There is extensive evidence of various Nat, Ca?t, and CI~ channels in the
dendrites ([53], [34], [31], [50], [5]), but the exclusion of dendritic non-linear
conductances was considered reasonable as a first approximation since the

- present work is focused on the action of somatic currents. I assume that the

behavior of the somatic non-linear conductances are relatively insensitive
to regions of non-linear dendritic membrane, at least when considering cell
response to somatic input. In Chapter 9, simulations of somatic response to
dendritic input will be presented, in which the assumption of linear dendrites
is a more restrictive one in terms of interpreting the model results.

The primary function of the dendrites is to collect and integrate synaptic
input from other neurons. That input is conducted to the soma where an
action potential is initiated if the soma membrane is excited above the local
threshold. As far as the model is concerned, though, the contribution of the
dendrites is simply that of a linear load on the soma.

3.5.2 Approaches to the Representation of HPC Structure

The possible options for representing the structure of the pyramidal cell in
simulations are worthy of review. At one extreme, the entire geometry of
the cell and its dendritic tree may be modeled in detail, with the dendritic
tree reduced to a set of branching cylinders, perhaps including the tapering
of each cylinder and the dendritic spines. The appropriate linear cable equa-
tions may then be employed to examine the steady-state input conductance
of the entire tree ([52]), assuming linear dendrites. If the transient response
is of interest, or if non-linear dendritic conductances are to be included,
representing the cable segments with compartmental approximations and
solving the network numerically is necessary ([44]).

Histological technique can supply the data necessary for this sort of rep-
resentation, but the attempts to model dendritic trees at least approximate
the tapering segments as right cylinders. The hippocampal pyramidal cell
has been modeled in this fashion ([52]). In this study, the dendritic tree was
dissected into a branching structure of right cylinders, without spines. Sev-
eral cells were analyzed, with the dendritic trees modeled with 300 - 1,000
cylinders per cell. Using the equation for the input conductance of a short
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cable and moving proximally from each distal termination, the steady-state
input conductance of the entire tree was derived as a function of membrane
resistivity and cytoplasmic resistivity. A study of a Purkinje neuron ([44])
represented the cell with 1089 coupled compartments. In this case the dy-
namic behavior of the linear cell was derived numerically in order to estimate
its linear properties.

The next level of approximation in reducing the dendritic tree consists
of collapsing branched structures into equivalent cylinders, according to the
technique developed by Rall [26] (described shortly). The complexity of the
resulting representation (i.e. how much will the tree be collapsed into larger
cables), depends on the morphological characteristics of the dendrites and
the accuracy desired by the modeller. In this model, several versions of
such a geometry were used, as illustrated in Figure 3.2. For investigating
somatic properties the dendritic tree was sufficiently represented as a single
short cable, as shown in Figure 3.2. On the other hand, as was mentioned
at the beginning of the chapter, the parameters of this approximation, the
dimensions of the soma and the cable and their linear electrical properties,
were critical to the response of the model, and their careful estimation is
important.

At the other end of the spectrum, in representing pyramidal cell geome-
try, is an isopotential sphere representing the entire cell. For most modelling
studies of cells with a significant dendrite tree this approach is too simplified
for two reasons. First, the linear response of the sphere will consist of a sim-
ple exponential, precluding the role of the dendrites as relatively isolated
stores of charge that contribute to restoring the soma voltage after short
perturbations. Second, the majority of voltage-dependent ion channels are
believed to be localized at the soma, and that the dendrites are either linear,
or incorporate localized, lower density, non-linear conductances. Modelling
the cell as an isopotential sphere prevents considering such a distribution of
non-linear and linear membrane.

In summary, modelling with a detailed description of the dendritic tree is
necessary if one is interested in evaluated the complex information processing
that apparently occurs at the level of distinct regions of the tree. If, however,
one is interested only in somatic properties, as a first approximation the
tree may be collapsed so that its approximate load as that of a single short
cable may be evaluated. A next step in the analysis of somatic properties
may use a slightly more complicated approximation to the tree structure,
as shown in Figure 3.2, and has been used by Traub and Llinas([48])(see

39




i

100 microns

Figure 3.2: Different model geometries used to approximate hippocampal
pyramidal cell in present study, drawn approximately to scale. The simple
soma/short-cable structure on the right was used for the majority of the
analyses.
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also Figure 3.2). In these versions, the contribution of non-linear dendritic
membrane may be considered, where the non-linear membrane is localized
in some isolated section of a dendritic branch. The simulations of Traub and
Llinas have provided some interesting results in this area, but their model
parameters may not have been derived carefully enough to warrant any more
than qualitative interpretations of the behavior of their model.

After the Rall method of reducing dendritic trees has been introduced,
several methods for estimating the model geometry will be presented.

3.6 The Rall Reduction Of The Dendritic Tree
To Equivalent Cylinders

Rall has shown that under certain conditions a set of dendritic branches
emerging from the distal end of a dendritic segment may be collapsed into
a single cable whose input impedance (as seen from the parent segment)
is identical to that of the original set. The conditions for the reduction
of each set of branches into a single cable are twofold: 1) the terminating
impedance of each branch must be the same, and 2) the electrotonic length
of each branch must be equal. The electrotonic length of the new equivalent
branch is the same as the original branches, and its diameter, raised to the
3/2 power, is equal to the sum of the original diameters, each as well raised
to the 3/2 power. The terminating impedance of the equivalent branch is
equal to the terminating impedance of each of the original branches.

If the diameter of the equivalent branch or segment is equal to that
of the more proximal parent segment, then the two cables connected in
series are equivalent to a single longer cable. As long as the appropriate
conditions hold, the entire dendritic tree can be represented by a single cable
by applying the reduction algorithm repeatedly, starting from the distal
branches and continuing proximally to the soma.

The constraints for the Rall reduction are rather severe, and several types
of neurons have been analyzed to see if the above conditions are applicable.
Remarkably enough, some neurons seem to follow the so-called “3/2 rule”
(e.g. in lateral geniculate nucleus [44]), and the suggestion has been made
that the Rall reduction is quantitatively valid for them (although it is not
always clear if the authors of these studies of fully aware of the complete set
of constraints in the reduction algorithm [Rall, personal communication]).

For hippocampal pyramidal cells, the reviews have been mixed, with
quantitative studies based on detailed histological data suggesting that the
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Rall constraints are not met at all well ([52]). Despite this, the reduction
as described is still considered a good first approximation to the pyramidal
trees, and some studies have suggested that in terms of the dendritic input
impedance the Rall approximation is in good qualitative agreement with
the actual tree structure (Brown et al). Later in this chapter the responses
of a soma/single-dendritic-cable and a soma/double-dendritic-cable will be
compared to show qualitatively that the Rall reduction is a useful one even
when the electrotonic lengths of the daughter branches are not identical.

3.7 Approximation Of The Soma As An Isopo-
tential Sphere

The so-called “soma” of the hippocampal pyramidal cell is not a sphere;
it is more of tapered cylinder with rounded ends. Further, the transition
between soma and dendrite is not well-defined, especially for the apical pro-
cesses. The soma region is assumed to be well-defined, however, in the
model approximation. This region is also assumed to be isopotential. This
assumption allows the use of a sphere instead of a cylinder to represent the
soma, as long as the surface area of the soma is conserved. The isopoten-
tial approximation assumes that voltage gradients are minimal, despite the
finite cytoplasmic resistivity. It can be shown ([26], Ch. 3) that the spread
of current from a single intra-somatic point source introduces a very small
voltage gradient in the soma.

The dimensions of the soma were evaluated from the model soma used
in Traub and Llinas’s model, and from estimating the dimensions from mi-
crographs. The soma used in the Traub and Llinas model was a cylinder,
so the surface area of this soma was used to set the radius of the spherical
soma in the present model at 17.5 pm. This value is consistent with the size
of the soma region seen in micrographs.

3.8 Estimating the Dimensions of the Model Den-
drites

Traub and Llinas’ paper provided the default dimensions of the dendritic

cable of the model as well. In their model the dendritic tree was represented

by a two short cable basal dendrites and a short cable apical dendrite that
terminated into two short cable apical branches (Figure 3.2). The HIPPO
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model topology was initially configured the same way, using Traub and
Llinas’ dimensions. In their paper, however, the effect of dendritic input
and localized regions of non-linear membrane in the dendritic tree were
investigated, necessitating the described geometry. Since at the present time
the description of soma currents is being investigated, this tree structure was
collapsed into a single cable using a variant on the Rall method.

Traub and Llinas used a homogeneous R,, = 3.0 KQcm?, and set R; =
75§ cm.

3.8.1 Deriving the Dimensions of a Single Cable That is the
Approximate Equivalent of Two Cables

The first step in this approximation was collapsing the basal branches and
apical branches into a single basal and apical cable. This step was straight-
forward since both the basal branches and the apical branches were the same
electrotonic length as their partners, and further in that the diameter of the
apical shaft satisfied the 3/2 rule with its daughter branches.

The second step was to combine the equivalent apical cable (ac) with
the equivalent basal cable (bc). This was not straightforward since the
equivalent apical and basal cables were not the same electrotonic length
(Lge = 0.8,Lp. = 0.6). The approach used was to calculate a according to
the 3/2 rule, and then calculate [ so that that the single cable would have
the same steady-state input impedance as the original two cables in parallel.

First, the diameter of the single ”equivalent” cable (sc¢) was derived from
the 3/2 rule:

Qse = (CL3£2 + ab30/2)2/3 (31)

a

where a, is the radius of the appropriate cable, yielding a (= as) =
4.3um. The next step was to derive the length of the single cable, starting
with the formula for the parallel input impedance of the original cables:

Zoe(s =0) - Zp(s =0)
Zae(8 = 0) 4+ Zpe(s = 0)

From the equation for the input impedance of a short cable (Equation
3.20, derived later, with s = 0 since we are interested in the steady state

impedance, and Gsme = 0 and C = 0, since we are interested in the
impedance of the isolated cable), Equation 3.2 becomes

Zs(s=0)= (3.2)
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tanh L, = tanh L, + tanh Ly, (3.3)
"'a.,scAsc Ta,acAac Ta,beAbe
Now since
T = Ri
a,s¢ = 71'(12
, i
a,ac Wagc
R;
Tajbe = )
Wabc
aR
Ase = T
sc 2R,
aqc R
A — ac+itm
ac 2R,
apc R,
A =
be 9 Ri
l
Lye = —
sc Ao

and if a is derived from Equation 3.1, then from Equation 3.3 we obtain
Kl a%z tanh(ZL,.) + ai’({ 2 tanh(Lp.)

tanh(—=) =
e ALl

2R;
K—\/}Z-n:

By expanding the tanh term on the left side of Equation 3.4, and by
making the substitution (from Equation 3.1) of

Va = (@ + "

the length, [, of the single cable is found to be

(3.4)

where
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I = (a3£2 + ag'cﬂ)l/?’ I 1+ a; tanh(L,.) + a2 tanh(Ly.)
- 2K 1 — a; tanh(Lg.) — a tanh(Lp,)

where

1
__———1_’_(&&:. 3/2

Qac

1

0y = —————=

1+ (%:: 3/2
This procedure gave ! = 850um, and from this L was calculated as
L = 0.69. To check this reduction, the transient response to a current step
of this configuration was then compared with the response of the original
geometry of Traub and Llinas (Figure 3.4). The responses were nearly iden-

tical, validating the approximation between these two geometries.

Important inconsistencies arise, however, when the linear response of
the Traub and Llinas model is compared with that of actual cells. These
will be examined once the data derived from intracellular measurements has
been presented. At this point, this model will be used only to establish a
reasonable set of dimensions for the HIPPO model.

3.8.2 A New Method of Estimating ! and a For the Equiv-
alent Cylinder Approximation From Histological Data

In order to check the validity of the dimensions used in Traub and Llinas’
model, a method was derived for estimating ! and @ from purely histological
data, that is, without relying on estimates of electrical properties. The
parameters used for this estimation include:

o Average length of the dendritic tree — I, (pm)

o Average radius of the dendrite branches — a4, (um)

¢ Radii of the 7 proximal dendrites where they attach to the soma — a;
(pm)

The radius of the equivalent short cable of the entire tree, a, is then set
by the a;’s under the assumption that the radius of each proximal segment
is the same as the radius of the equivalent cylinder approximation for the
portion of the tree distal to that segment. Thus -
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Figure 3.3: Comparison of cell geometry approximation used by Traub and
Llinas and single cable approximation used in the model. Structures are not
drawn to scale.
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Figure 3.4: Comparison of response to current step of geometry used by
Traub and Llinas and single cable approximation used in the model.

o= ()™

The length of the equivalent cable for the entire tree, [, is a function
of the average length of the dendritic tree, l;,, the average diameter of the
dendrite branches at about the midpoint of the tree, a,,, and the estimated
a. Here an assumption is made that the tree can be represented by a number
of identical cables with radius a,, and length [;,. As previously mentioned,
the Rall method requires that electrotonic length be conserved in the equiv-
alent cylinder. The L for the cable representing the entire tree is therefore
estimated as

ﬂava—ggng
2R;
L= — (3.5)

Note that the numerator of the right hand side of Equation 3.5 is the
space constant for the ”average” cable.
Since [ is equal to

(3.6)




Equations 3.5 and 3.6 can be combined to get

a

l=lav (I_—

This estimate for [ is function only of the dimensions of the tree. The
significance of this estimate this is that [ may be derived purely from histo-
logical measurements and does not depend on an assumed value for R,,_gend
or R;. The estimate of L, on the other hand, does depend on the estimated
values of Ry,_gdeng and R;. Further, aq, is not the same thing as the average
diameter of the proximal branches. a,, must be used as defined since the
main part of the electrotonic length of the dendritic tree is determined by
the finer and more numerous distal processes. Thus the diameter of these
branches must be considered in estimating L (or /).

Typical values for a,, for the hippocampal pyramidal cell are in neigh-
borhood of 0.5 - 1.0 um. At the soma there is typically either one or two
apical branches, with a diameter ranging from 3 - 10 pm (e.g. Johnston and
Brown, 1983). There are usually several proximal basal branches, with a
typical diameter of about 1 gm. A reasonable value for {,, could range from
~ 300 - 500 um. For example, if there are two apical dendrites originating
at the soma with diameters of 3.0 yum and 4.0 gm, and there are six basal
branches at the soma, each with a diameter of 1.0 um, with the above ranges
for a,y and Iy, the estimated value for @ is 3.6 pm and the estimated range
for 1 is 570 - 1300 pm.

As a second example, let us assume that there are two apical dendrites
have diameters of 3.0 pm and 10.0 ym, and the six basal branches stay the
same as before with diameters of 1.0 um. Using the same ranges for a,, and
lav, the estimated value for a now is 6.8 ym, and the estimated range for [
is 780 - 1800 pm.

These values can be compared with the dimensions of the equivalent
cylinder derived from the Traub and Llinas model. The value for « in this
report was 4.3 um, the length of the equivalent cylinders for the basal branch
and the apical branch were 555 yum and 820 pum, respectively, and the length
of the single equivalent cable that was derived in this paper was 850 um.
These numbers compare well with the figures above. In fact the authors
comment that their estimate for / of their model’s apical cylinder was “pos-
sibly somewhat small”. How the dimensions of this model were derived is
not known, but presumably an analysis similar to the one just presented
was employed.
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To summarize, the dimensions of the Traub and Llinas model are in good
agreement with the previous estimate. These results will be used both in
the next section to test the validity of another report which implies a set of
dimensions, and later in this chapter when the final dimensions of the model
will be determined. Another estimation of the model cell dimensions, this
time based on reported parameters of CA1 cells derived from intracellular
electrical measurements, will now be presented.

3.9 Evaluating Reported Linear Parameters De-
rived from Intracellular Measurements

The report used as a basis for this analysis is that by Brown et. al. ([7]).
In this paper essentially three parameters were derived from the linear re-
sponses of hippocampal pyramidal cells. These parameters included R,,,
which was assumed to be homogeneous over the entire cell, L and p. C,,
was taken to be 1.0uf/cm?, and R; was assumed to be 75Q cm. Analysis of
the response of the cell to a current step applied to the soma was based on
the assumption that the cell could be approximated by the soma/short-cable
model with a homogeneous membrane time constant. According to Rall (),
this step response can be represented by a linear combination of exponential
terms:

Vf -V = Z C; exp(—t/n)

1=0,00

where V' is the response at the soma relative to rest, Vy is the steady-
state soma voltage, 7o is the membrane time constant (7o = R,,Cp,), and
the remaining 7;’s are shorter time constants due to charge redistribution
down the dendrite cable. Standard exponential peeling techniques were used
to evaluate the longer 79, whose coefficient, Cy was assumed to be much
larger than the remaining C;’s. R,, was then derived from the measured 7o.
Three methods were used to derive L and p, all of which were dependent
on the soma/short-cable approximation and, as before, the assumption of
homogeneous R,,. This study estimated R,, as 19KQ cm?, p as 1.2, and L
as 0.95. R;, averaged about 39MQ 2.

To evaluate these results, I constructed a model geometry that was con-
sistent with the above values for R;,, p, 70, Rm, Cm, R;, and L. The

?Means of measurements from CA1 cells.
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parameters that we need to derive for the geometry are the radius of the
SOMa, @somq, the radius of the dendrite, a, and the length of the dendrite, I.

The first step is to derive asomqe. The conductance of the soma is calcu-
lated from p and R;,. Since

_ Gldendrite
Gsoma
and
1
Gendrite + Gsoma = "RT—
in
then

1 1
Gsoma = E:(m)

This gives Gsome = 11.81S. The radius of the soma is then calculated
from Gsome and R,;:

3Rm Gsoma

Qsoma = ar

This results in asomq = 73 pm. Now the formula for R;, is a function of
l and a, given by:

Rin = (T; tanh(L) + G’m> - (3.7)
where
L=1x “21}22’? (3.8)
A= &"5“;‘:—,”” (3.9)
re = ?%2' (3.10)

Equation 3.7 is derived later (Equation 3.20, with s = 0). Estimates for
! and a were obtained by calculating R;,, L, and p, using initial estimates
for [ and ¢ with Equations 3.7- 3.10, and then adjusting / and a until the
desired values for R;,, L, and p were obtained. This procedure resulted in
estimates for [ = 1800um and a = 3um.
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Figure 3.5: Typical response to current step ([7]) (top) and response to
current step of model based on Brown et. al. parameters (bottom), where
p =12, L =095 R, = IIMQ, ayoma = 73um, a = 3.0um, and [ =
1800um.

The step response of the geometry just derived and a typical step re-
sponse from the Brown et. al. paper is seen in Figure 3.5. These responses
are in good agreement. On the other hand, note Figure 3.6, where the result-
ing geometry and the geometry derived in the previous section are compared.
The most striking feature of the geometry derived from the Brown et. al.
data is the estimated soma radius of 73 um. This result is inconsistent with
the dimensions derived earlier, where the a,,me Was estimated to be on the
order of 10 to 20um. The dendrite radius of 3.0 um and a dendrite length
of 1800 um of the Brown et. al. geometry is consistent with the previously
derived dimensions, but these values are in the extreme of the previously
proposed ranges for a and .
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HIPPOCAMPAL PYRAMIDAL CELL

BROWN ET AL GEOMETRY

HIPPO GEOMETRY

—

100 microns

Figure 3.6: Comparison of soma/short-cable geometries derived from data
of Brown et. al. and that estimated in this chapter with camera lucida
reconstruction of guinea pig hippocampal pyramidal cell ([52])
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Figure 3.7: Normalized response to current step of Brown et. al. geometry
and Traub and Llinas model.

3.10 Comparison of Linear Response of Traub
and Llinas—Derived Model and Brown et.
al.—Derived Model

While the geometry implied by the Brown et. al. report is incorrect based
on my earlier analysis, the step response is assumed to be valid since this
was measured directly from cells. On the other hand, while the geometry
of the Traub and Llinas-derived model is a good approximation, as I have
shown with my estimate based on purely histological data, the step response
of this structure does not match that reported by Brown et. al. , as shown in
Figure 3.7. All these reports refer to pyramidal cells, though not necessarily
to the same subfield (i.e. CA1, CA3). '

The first difference is the 1y for the two models; 7o for the Traub and
Llinas model is about 5 milliseconds (consistent with their value of R,,,
5 KQcm?), and 7o reported by Brown et. al. is about 19 milliseconds.
The second difference is between the value of p for the Traub and Llinas
model ( approximately 20) compared to values of p that have been reported
from intracellular measurements by Brown et. al. and others (p = .5 to
2). Comparing the directly measured value of p from the Traub and Llinas
model with the estimated p of Brown et. al. is valid since in the latter
case p was estimated assuming models a soma/short-cable structures with
homogeneous R,,.
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As has been mentioned earlier, these disparities were reconciled by intro-
ducing a distinct Ry,—soma and Ry, —gend. Investigating the effect of varying
R; was also useful. Before deriving a structure which was consistent with
the reported data, though, deriving the analytical response of the general
soma/short-cable structure (with non-homogeneous R,,) is necessary so that
the full implications of varying each free parameter may be analyzed.

'3.11 Derivation of the Frequency Response of Soma/Short-
Cable Structure with Non-homogeneous Mem-
brane Resistivity

So far I have presented evidence that supports using a spherical isopotential
soma attached to a short dendritic cable, with each section having a distinct
membrane resistivity, in order to represent the hippocampal pyramidal cell.
This representation, as diagrammed in Figure 3.8, is completely specified by
the parameters Rm—somas Rm—dend9 Ri7 C’m.> Qsomas @y Ba and /.

Different investigators have considered the effect of the extreme values
of B: B = 1 (infinite cable termination) and B = 0 (open circuit/sealed
end termination). Assuming that the distal dendrite processes end rather
abruptly is common, though, and therefore the sealed end assumption is
used, as is done in the present analysis.

To investigate the effect of these parameters on the linear transient and
steady-state response of the cell, as measured from the soma, I derived the
frequency response of this circuit as follows.

We start with the equation for the linear RC cable.

PV, o
axz =" T oT
where V' = the membrane voltage at some point, X; X = the distance along
the cable from the soma, &, normalized by A; T = the normalized time, ¢/7;
and 7 = Ry _dendCom.-
The Laplace transform of the second-order partial differential equation
is taken then to yield the second-order ordinary differential equation

d2v

g%z = (v

where V = the Laplace transform of V.
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Figure 3.8: Circuit topology of a soma/short-cable structure. The structure
is not drawn to scale.
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The solution to this equation is
V = AeVet1X | BemVetlX (3.11)

where A and B are constants that depend on the boundary conditions.
Now the Laplace transform of the axial current, I,, is equal to the change
in V with X times r,, where

"= ra?
Thus
. =14V
° = TndX (3.12)

_ Note the inclusion of A since X is the normalized distance. Solving for
% in Equation 3.12 (using Equation 3.11), we obtain

fo= TYEEL(4e/FFIX  pemV/rFIX)

The boundary conditions are set at X = 0 (at the soma), and X = L

(at the end of the cable). At the soma, the axial current I, is equal to the
sum of the soma currents —

~ A ~ -

Ia(X = 0) = Istimulus - ‘/somaGsoma - Sv;omacl
iET

= T(A—B)

where C’ is the capacitance of the soma normalized by the dendrite time
constant —

Cm

4
Tdendrite3 Wa’goma

¢ =

(3.13)

At the end of the cable since the terminating admittance = 0 then I, = 0,
thus

IL(X=1L) = 0

- - Vrs;' l(Ae\/s+1L _ Be—\/s-f-lL)
a
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SO

AeVsHL = RBe-Vstil (3.14)
B = Ae?vstil (3.15)
Now since
‘?soma. = V(X:'O)
= A+ B
then
Vsoma = /1(1 + e’ 8+1L) (3.16)

Solving for Iotimutus —

A ~

Istimulus = A(l + 62 3+1L)(Gsoma + SC,) + A—':—:;;l(62' sH1L _ 1) (317)

Now we can find A and B from Equations 3.15 and 3.17 —

A

A _ Tstimulus . (3 18)
BériEAl (e2VoHL — 1) 4 (1 4 e2VoHLY Gy + sC7)
B jstimulusez sk (3.19)

%(emﬁwm — 1) + (1 + e2V5HLY (G yppmq + sC7)
And finally from Equations 3.16, 3.18, and 3.19 we obtain

V _ jstimulus(l + 62' s+1L)
soma 3%{—1(62‘ fs+1L _ 1) + (1 + 62‘/S+IL)(Gsoma + SCI)

which gives the expression for the input impedance as seen from the soma,
Zsoma(3) -
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S

Vs
Zsoma(s) e

1, stimulus

Il

LT (e2/5FTL — 1) 4 (14 e2VAFIL)(Gomg + 5C7)

In more compact form this is

-1
Zoomals) = (Vj*; L {anh(VETIL) + (Goome + sC')) (3.20)

This expression for Zsomq(s) was not amenable to attempts to perform
an inverse transformation. However, when

Rm—-soma. = Rm-—dend

that is for the case of a homogeneous membrane time constant, the expres-
sion for Zsoma(s) simplifies somewhat and the inverse transform for this case
has been derived. This is a rather complicated expression involving an infi-
nite series, each term of which involves a product of exponential terms and
a finite summation of the product of other exponential terms with parabolic
cylinder functions ([27]).

Since an analytical expression for the inverse transform of the soma
response could not be obtained, the response was analyzed in two ways
— examining the frequency response directly and using DTFT techniques
to estimate the temporal response (impulse response and step response).
In order to evaluate the frequency response, the magnitude and phase of
Zsoma(8 = jTw) were derived (note that the factor of 7 is required because
the Laplace transform was taken with respect to normalized time). So, from
Equation 3.20 -

NiTES (1 — AVFTIL

-1
Zsoma(jw) = I: Y 1 n e2mL> + (Gsoma + jOJC)] (3.21)

The first step in this derivation was expressing the square root of (jrw+
1) in rectangular form -
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Letting

n=\/l+m
2

V=

\[-1+¢ﬂ‘(‘r?)7
2

the exponential terms may then be expanded -

e~ 2WViTwt+ll  _ e—2L(n+ju)
e~ 2I(cos(2Lv) — jsin(2Lv))

Equation 3.21 can be rearranged to give the real and imaginary parts
of the frequency response —

a+tjf

6+ v

al+ By | .(-ay+B6)
212 e

Z(jw) =

and thus
o [e2
1Z(jw)l = \/;:.,-2
Phase(Z(jw)) = atan (:a%’—y-_%-__-'ﬁ>
where

o = raA\[1 4 €725 cos(2Lv))
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B = —rade” 2 sin(2Lv)
6 = N+ AGomate” 24 [—n cos(2Lv) —v sin(2Lv) 474 AG somq c05(2Lv) +7,ATwC sin(2Lv))

v = v4r ATwC e~ sin(2Lv)—v cos(2Lv) +7,ATwC cos(2Lv) = 1o AG soma sin(2Lv)]

These formulas were used to see how varying some specific parameters
while keeping the remainder constant changed the frequency response. In
particular, these results were used in investigating how parameters that are
derived from the transient response are affected when the directly measured
parameters are kept fixed and some other derived parameter is varied .

To summarize the results so far, I have proposed that the following
parameters are either known with a fair degree of assurance, or may be
estimated: Cy,, R;, @soma, Rin, To, B, and a limited range for a¢ and [ of
the equivalent dendritic cable. On the other hand, I have shown that the

- reported values for R, are inconsistent with the other data available for

these cells, and in fact the soma and the dendrites may be approximated as
having distinct membrane resistivities.

The problem of estimating the geometry of the model is therefore deter-
mined by the following constraints — estimate for the soma radius, estimate
for the range of cable diameters, estimate for the cable length, input re-
sistance, observed time constant, estimate of membrane capacitance, and
the estimate of cytoplasmic resistivity. The free parameters then include
R, —somas Rm—dend,and a. The results of this estimation will be presented
in the next section.

3.12 Simulating the Step Response of the Brown
et. al. Geometry with Alternative Models

Once the frequency response of the general soma/short-cable model was
derived, I attempted to find different values for the membrane resistivities
and the cytoplasmic resistivity that would yield step responses similar to
that of the model derived from the Brown et. al. parameters.

The constraints included asome = 17pum, R;, which was set at 200  cm,
10 = 19ms. R, = 39MQ, and C,, = 1.0uf/cm?. R, _geng Was then set at
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either 30, 40, or 50 k2 cm, and @, was set at either 5, 6, or 7 um. For a given
combination of R,,_genqg and a both R,,_s;ome and [ were then varied until
all the above constraints were met. For this analysis the electrode shunt
resistance was not specified, thus Ryomq reflected both the leak conductance
of the soma and the electrode shunt resistance.

The step response and the frequency response of the resulting struc-
ture were then compared with that derived from the Brown and Perkel
model. The parameters were adjusted under these constraints to derive sev-
eral structures whose time response was consistent with the data. The com-
plete parameters for these structure are listed in Table 3.1. The responses of
these structures were clustered into three groups, each group characterized
by a common value for a. The responses for structures B, C, and D were
almost identical to each other, as were the responses of structures E and
F. Therefore, the analysis suggests that the diameter of the dendrite cable
was the most sensitive parameter in determining the linear response of the
soma-cable structure.

For the majority of the simulations, including all those presented in this
thesis, version “C” of the model structures was chosen as representative of
the family of model structures. In this case the value for R,,_geng of 40
KQ cm? is a similar to the value for R, —gena (approximately 40 KQ cm?)
estimated by Shelton for Purkinje cells, and is much higher than the values
of R,, that are quoted consistently in reports on hippocampal pyramidal
cells. Also, this model has an R; of 200 Q cm, which is also in line with
the value of R; estimated by Shelton, as described earlier. The value of a
(6.0pm) and ! (1200pm) is consistent with the values estimated earlier in
the chapter (Section 3.8.2).

The step responses for structures A, C, and F and that derived from the
Brown et. al. data are shown in Figure 3.9. An expanded view of these
response is shown in Figure 3.10. In this figure the effect of the smaller
soma time constant in the model structures is seen as the response of these
structures initially decay much faster than the reference structure. However,
as shown in Figure 3.11, all four responses eventually settle into a single
exponential decay with the same time constant of 19 ms. The magnitude of
the frequency responses for the same structures are shown in Figure 3.13,
and the phase of the frequency responses for these structures are shown in
Figure 3.12.

There are several interesting features of these simulations. The first is
that the values of p and L vary greatly for the different structures — between
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| Model || a(um) | Rmn_dend (KQcm?) | Rooma @ cm?) [{(pm) [A(pm) [ L | p ]
A 5.0 50 720 1350 2500 | 0.54 | 0.43
B 6.0 30 1100 1200 2121 | 057 1.2
C 6.0 40 850 1200 2450 | 0.49 | 0.69
D 6.0 50 750 1200 2738 | 0.44 | 0.50
E 7.0 40 870 1050 2646 | 0.40 | 0.74
F 7.0 50 760 1050 2958 1 0.35 | 0.53

Table 3.1: Parameters of model structures derived to match the 7o (19 ms)
and R;, (39MQ) of the Brown et. al. data, with B; = 200Qcm , @some =

17 pm, and C,, = 1.0puf/cm?.  The values listed for structure “C” were
chosen for the model.

Voitage (Normalized) —:—_’ Reference
.1.0 A

~

Time (Seconds] (< 1.
200.0

Mg
8

50.0

Figure 3.9: Normalized response to injection of somatic current step for
Brown et. al. structure , and representative alternative structures (A, C,
and F, ref. Table 3.1) consistent with histological measurements.
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Figure 3.10: Expanded view of Figure 3.9, showing difference in the initial
part of the somatic current step responses.
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Figure 3.11: Semi-log plot of Figure 3.9, showing the rapid approach to a
single exponential decay (7o = 19 ms) for all the structures.
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Figure 3.12: Phase of frequency response for Brown et. al. structure , and

representative alternative structures (A, C, and F, ref. Table 3.1) consistent
with histological measurements.
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Figure 3.13: Normalized magnitude of frequency response for for Brown et.
al. structure , and representative alternative structures (A, C, and F, ref.

Table 3.1) consistent with histological measurements.
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1.2 and .43 for p and between .35 and .57 for L. This shows that the methods
typically used for estimating p and L are not reliable unless the cell has a
homogeneous membrane time constant. '

The most distinctive difference in the characteristics of the structures
with a non-homogeneous membrane time constant and the structure based
on the Brown et. al. data is in the phase of the frequency response. For all
the structures with non-homogeneous R,, the phase deviates from that of
the structure with homogeneous R,, at a frequency of about 100Hz. This
difference does not manifest itself strongly on the temporal responses, how-
ever, because of the attenuated response above 100Hz.

The characteristics of the phase response for the simulated cell structures
suggest that evaluation of the linear parameters discussed in this chapter
may be better served by analyzing the frequency response of the cells un-
der protocols that ensure a linear response. Since the interesting part of
the phase response occurs at frequencies where the cell impedance is rela-
tively small, spectral estimation using averaging techniques or white-noise
approaches may be applicable.

The values for Rsomqe and Rgendrite differ by about two orders of magni-
tude in all the derived structures. If the contribution of an electrode shunt
is considered, this difference is reduced, but by only a factor of about two
since the typical soma resistance (including the electrode shunt resistance)
is around 70 M and the electrode shunt resistance is about 100 MQ as
estimated earlier.

In summary, there are many versions of the soma/short-cable model
that can give the same 79 and R;, with differences in the distribution of R,,
between soma and dendrite, and realistic variations in a. Examination of
the frequency response indicates that this measurement may provide a way
to better estimate the electrotonic parameters of these cells, particularly
under the assumption of non-homogeneous membrane resistivity. While the
magnitude of the frequency responses for the various structures are rather
similar, the phase of the frequency responses differ markedly, and this metric
may be usefully exploited in order to better estimate the linear parameters
of the soma/short-cable model.
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Figure 3.14: Step response of Soma-Cable Structure a) Inverse FFT of Ana-
lytic Solution b) Model with 1 segment c) Model with 2 segments d) Model
with 3 segments e) Model with 4 segments f) Model with 5 segments

3.13 Discrete (Lumped) Approximation To Den-
dritic Cables and Comparison Of HIPPO
Results To Analytical Solution Of Linear
Cable - Dependence Of Segment Dimensions

Once the response to a current step of the soma/short-cable structure was
derived from the inverse DFT of the analytical frequency response, the com-
partmental approximation of the cable was evaluated by comparing the
model’s response in current clamp simulations to the estimated response
of the continuous cable. In Figure 3.14 the response of the model with dif-
ferent numbers of compartments is compared to the estimated response. As
can be seen in the figure, the response of the model with 5 segments is in
very good agreement with the estimated response.
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3.14 Summary of Results from the Determina-
tion of Electronic Structure

To recapitulate, the HIPPO model electrotonic parameters are as follows:
® Qsoma = 17pm
o ¢ =06.0um
e [ =1200pm
L4 Rshunt = 100 MQ
¢ R soma = 850 cm?
® Ri—dend = 40 K cm?

e R; =200Qcm

o Cpy = 1.0uf /cm?

[ B = 0

o A =2450 pm

o [ = .49

e p=.69

o 7o = 19 milliseconds

o R;, = 39MQ

o Eloor = —70 millivolts

3.15 1Is It Important to Capture Dendritic Mor-
phometric Characteristics?

The results described here tend to confirm that the actual geometry of the
dendritic tree may not in itself be critical to somatic response. For example,
the Rall reduction is reasonably accurate even if the constraints specified
in this algorithm are not met exactly. What is very important, however,
is the various parameters that characterize the tree (or its equivalent single
cable) as a whole, that is as a lumped element (cable). This result has been
reported elsewhere ([51]). Specifically, the equivalent cylinder approxima-
tion works well even when the constraints on subsequent cable diameters
and conservation of electrotonic length are not met exactly. The parameters
characterizing that cylinder are important to the electrical load as seen by
the soma, however, and can have a large effect on the processing of infor-
mation that occurs there.

As shown, the assumption of a homogeneous membrane time constant
allows the construction of a soma/short-cable approximation of the pyrami-
dal cell whose linear response closely matches that of the real cell. On the
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other hand, this construction is inconsistent with histological measurements,
and a structure with a non-homogeneous membrane time constant can be
proposed which successfully addresses these problems.

Although the two constructions yield models with distinct frequency re-
sponses, the significant differences occur at frequencies that are substantially
attenuated in both structures, so that the step responses are rather similar.
Why, then, is it important to revise the earlier model with the homogeneous
membrane time constant? As shown, although the somatic responses of
the two models are similar, the values of p and L are very different. This
is important when considering the role of the dendritic tree in integrating
synaptic input. In particular, the smaller L that has been suggested in the
present study indicates that the dendritic tree is more electrically compact
that previously thought. In functional terms, this means that there is less
distinction, from the point of view of the soma, between distal and proxi-
mal dendritic input. This could enhance the computational flexibility of the
dendritic tree since a fundamental limit such as linear attenuation of EPSPs
and (possibly) IPSPs will be reduced by the smaller L, and selective en-
abling/disabling of various sections of the tree could be accomplished more
effectively by non-linear mechanisms (e.g. other synapses).

The effect of the lower p that is indicated in the present study is to
reduce the burden on the somatic conductances imposed by the dendritic
load, for example during the spike depolarization and repolarization.
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Chapter 4

APPLYING THE
HODGKIN-HUXLEY (HH)
MODEL OF IONIC
CHANNELS TO
PUTATIVE
HIPPOCAMPAL
CURRENTS

4.1 Introduction

An extension of the Hodgkin-Huxley (HH) model of ionic channels in the
squid axon ([21].[20].[22].[23]) is the foundation for the description of the
hippocampal pyramidal cell ion channels that are used in the model. This
comes about in two ways. First, many of the currents that have been de-
scribed in the literature have been fitted to HH-like models to start with.
Second, when this model has been used either to augment sparse voltage
clamp data on a particular current or to propose currents whose existence
is defended purely on phenomenological grounds. these currents have been
constructed using HH-like mechanisms. Examining the HH model in detail
is therefore important in order to establish some of the key assumptions in
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the HIPPO model.

4.2 Background of the HH Model

In the early 1950’s Hodgkin and Huxley postulated that the electrical ac-
tivity of the squid axon was due to two time-dependent non-linear conduc-
tances, one of which was specific to Nat ions and another which was specific
to Kt ions. This result was based of data obtained with the newly-developed
voltage clamp method for measuring electrical properties of non-linear mem-
branes. Using the voltage clamp protocol and various manipulations, includ-
ing replacement of the NaC'l in the external medium with choline chloride
to eliminate the Nat current, Hodgkin and Huxley measured the time-
constants and the steady state values for the two conductances as a function
of the membrane voltage.

Noting the sigmoidal characteristic of the activation of the Na*t channel
as the membrane was depolarized, and the fact that the channel inactivated
a short time after it was activated, a model for the Nat channel was derived
that included four "gating” particles (three so-called m activation particles
and one h inactivation particle). These particles can be thought of as distinct
regions of the channel protein, each of which can be in one of two stable
conformations or states, conducting (open) or non-conducting (closed). For
a given channel to conduct, all of its gating particles must be in the open
state. The macroscopic conductance of the Na* channel, g\ ,. was expressed
as

g,?\'a = NI3h§A\V<I

where 0 < m,h < 1 and gn, is the maximum conductance for the ensemble
of Na%t channels in the membrane. Hodgkin and Huxley determined that
the transition between states is governed by first order kinetics, and the rate
constants for this transition are functions of voltage, as will be described
later. The likelihood of whether a given particle will be open or closed is
therefore also a function of voltage.

The sigmoidal activation characteristic under voltage clamp arises from
the third power of the m gating particle. This number was determined
by Hodgkin and Huxley by fitting powers of exponential relaxations to the
observed kinetics. In a similar manner, the macroscopic conductance of the
K7 channel in the squid axon was described as being determined by four




gating particles, n. The macroscopic conductance of the Kt channel was
expressed as -

4 -
gK = N gK

where g is the absolute conductance for the ensemble of Kt channels in
the membrane.

The transient behavior of the Na* channel during excitation of the neu-
ron, through its activation and subsequent inactivation, was explained by
the voltage dependencies of m and h, and the different voltage-dependent
functions for the time constants of m and h. The steady state value of m
is a monotonically increasing function of the membrane voltage, while the
steady state value of h is a monotonically decreasing function of the mem-
brane voltage. In addition, the time constant for m is smaller than the time
constant for h at a given voltage. The result is that on depolarization m
will adapt to its (more open) steady state value quickly while i will lag be-
hind in its (more open) hyperpolarized steady state. The channel will begin
to conduct with the increase of m. In a short time, however, A will relax
to its (more closed) steady-state value at the new (depolarized) membrane
voltage. Even though the three m “particles” are in the open state, the
subsequent closing of the single h “particle” will shut the channel down and
turn off the Na™ current .

Once Hodgkin and Huxley had a description of these two non-linear
conductances and the linear parameters of the cell, they were able to nu-
merically reconstruct the action potential in the squid axon. In the model
of the hippocampal pyramidal neuron, several distinct currents. mediated
by different ions, are described using variants on the HH model theme.

4.3 Extension of the HH Description to Pyrami-
dal Hippocampal Cells

The Hodgkin and Huxley model approach can be extended! to describe
some of the currents found in other electrically non-linear cells. Analysis
of other currents is undertaken here under the assumption that they are
based on mechanisms which undergo first-order kinetic transformations be-
tween conducting states and non-conducting states. By both qualitative and
quantitative analysis, plausible mechanisms underlying non-linear currents

!The notion that this report “extends” on the HH model is discussed in Section 4.8.

72




may be deduced. These descriptions are typically based initially on voltage
clamp data. As will be explained shortly. this protocol can measure the
time constants and steady state values for the kinetic events controlling the
conductances behind these currents, assuming that. indeed. such a kinetic
description is valid.

4.3.1 The Voltage-Dependent First-Order Kinetics of HH-
like Conductances

To recapitulate, in the HH model each current in the electrically-active cell
is assumed to correspond to a specific tvpe of ionic channel, which in turn
is comprised of a protein conglomeration that traverses the membrane. In
each channel ions travel through a luminal trans-membrane aqueous phase,
driven by the driving potential for the channel. As reviewed in Chapter
2. this driving potential is a function of the membrane voltage and the
trans-membrane concentration gradient of the carrier for that conductance,
according to the Nernst equation or the Nernst-Goldman equation.

The transitions of the particles between states are governed by first-
order kinetics. Each state or conformation corresponds to a free-energy
well, with a single high-energy rate-determining barrier between the two
states. Movement of the gating particles between states is assumed to be
accompanied by a movement of charge, causing the state-transition kinetics
to be dependent on the membrane voltage. These gating particles are regions
of the protein that (a) can reversibly mediate the conductivity of the channel.
possibly via steric factors, and (b) have a sufficient dipole moment and
freedom of movement so that they may act as voltage-sensors. changing the
conformation of the protein or protein group as a function of the electric field
across the channel. The magnitude of the voltage dependenceis derived from
the Boltzmann equation which specifies the probabilities of state occupancies
according to the free energies of the states.

In practice, voltage clamp protocols, in which the membrane relaxation
currents are measured as the cell membrane is “clamped” at different poten-
tials with a microelectrode, are used to measure the kinetics of the various
currents. This technique assumes that the kinetics of different currents can
be measured independently. either because different currents are activated
over non-overlapping membrane voltages, because the time courses are dis-
tinct, or because the currents have distinct pharmocological sensitivities.
Implicit in this approach is the assumption that different currents interact
only through the membrane voltage. In fact. in the case of currents which
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are dependent on the movement of Ca™™ into the cell simple voltage-clamp
measurements may give misleading results. Whatever independence exists
between the different currents is exploited by the electrophysiologist as he
devises protocols for intracellular measurements.

The macroscopic conductance of given type of channel is determined by
the proportion of channels in the open state, the conductance of a single
channel, and the total number of channels of that type in the membrane.
For example, if the conductance of some channel Y is controlled by a single
gating particle, and the proportion of open gating particles is z, then the
macroscopic conductance of that channel type is expressed by

gy =T - g)"

where gy is the actual conductance for the channel current Iy. and gy is
the maximum conductance for that current. The factor r is equivalent to
the probability that the gating particle for a single channel will be in the
open state. As will be shown, r is both a function of the membrane voltage
and of time.

The macroscopic voltage- and time-dependence of the channel conduc-
tance arises from the first-order kinetics that the gating particles obey in
their transition between their open and closed states.

v, 3
closed (1 —2) = open ()

Here 2 represents the fraction of channels in the open state, and 1 — z
represents the fraction of channels in the closed state. «a and 3 are the
forward and backward rate constants for the reaction. respectively. This
relationship vields the simple differential equation relating the derivative of
x(t), &(t). with the steady state value of r. r~.. and the time constant for
the reaction, 7, -

T — 2(1)

where r,, and 7, can be expressed in terms of the rate constants a and 3 -

a
T =
T a4+
1
Ty = :
a+ 3
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Figure 4.1: Energy diagram for gating particle states with no applied mem-
brane voltage. The stable open and closed states correspond to the low-
energy wells. The high-energy transition state is the rate-limiting step. ~.
which is the relative position of the transition state within the membrane.
can be between 0 and 1.

As will be discussed later in the sections on the various non-linear cur-
rents in the model, in the literature current kinetics are occasionallv de-
termined empirically in terms of an "a - 3" type formulation. For most
currents, however. the voltage dependence of . and 7, is the figure that is
reported. '

The energy profile for a gating particle in the single barrier model is
shown in Figure 4.1.

As mentioned earlier, the rate constants for the transitions from one side
of the reaction coordinate to the other is given by the Boltzmann equation.
which is a function of the difference between the energy of the rate-limiting
step and the initial state. The expression for the forward rate constant in
the absence of an applied voltage. ay. is -

ag = C'e”? (4.1)

where AG is the free-energy difference between the closed state and the
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Figure 4.2: Energy diagram with applied voltage A1™ across the membrane.

transition state. R is the gas constant, T is the absolute temperature, and
(' is a constant.

The voltage-dependence of the kinetics arises from the distortion of the
above energy diagram when a voltage is applied across the membrane, as
shown in Figure 4.2. The applied voltage changes the difference in free
energy between the stable states and the transition state. The effect of the
voltage is reflected in the expression for the rate constants as follows -

a = age®"A¢ (4.2)
3 = 3pe2(1-)AL (4.3)
where
AVFE
A = RT (4.4)

z is the effective valence of the gating particle, and + is the position of the

transition state within the membrane, normalized to the membrane thick-

ness. Al is equal to V' — 11, where 17 is the membrane voltage and V% is
2
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Figure 4.3: The steady-state (2. ) curve for the hypothetical gating particle
K. 1% = =20mV.

"L‘ >
. o~

Il

the membrane voltage at which a equals ap and .3 equals 3y ([26]). F is
Faraday's constant. Normally. ag and 3y are taken as equal. This can be
reconciled with the different energies of the stable states as shown in Figure
4.2 by adjusting V%.

Since the backward and forward rate constants are functions of the mem-
brane voltage. the values for the time constant and the mean steady-state
(from now on referred to as the steady-state curve) are also functions of volt-
age. The resulting expression for steady-state curve is a sigmoidal function

N S
T 14 emae
This type of characteristic is shown in Figure 1.3.

Tx (4.5)

The expression for the time constant is a skewed bell-shaped function of
the voltage -

T 1.6
"= a0+ Jpe o3¢ (1.6)
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Figure 4.4: The time constant (7,) curve for the gating particle r. with
70 = 0 and 0.3milliseconds. z = K. ";2, = -20mV. 5 =0.3.

An example of such a function for the time constant is shown in Figure
4.4. As referred to earlier. including an additional assumption of a linear
rate-limiting mechanism on the gating particle transition was useful. For
example, drag on the gating portion of the protein as it changes conformation
will place an upper limit on the rate constants of the gating transitions. As
the rate constants defined by the Boltzmann equation increase exponentially
with voltage. an assumption was made that at some point other intrinsic
aspects of the channel protein would prevent an arbitrarily fast transition.
For the simulations this factor was, as a first approximation, taken as a
specific constant minimum value for the time constant, 7. for each of the
current’s gating particles. This is illustrated in Figure 4.4.

4.3.2 Activation and Inactivation Gating Particles

There are two tvpes of gating particles: activation gating particles (activa-
tion variable) and inactivation gating particles (inactivation variable). The
steady state curve for an activation particle increases with depolarization:
the steady state curve for an inactivation particle decreases with depolar-
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ization. This characteristic is determined by the sign of z — positive for
an activation particle and negative for an inactivation particle. The activa-
tion and inactivation particles therefore have opposite effects on the channel
conductance with depolarization — the activation particle opens on depolar-
ization and the inactivation particle closes on depolarization.

4.3.3 Transient and Persistent Channels

The type of gating particles in a channel determine whether it is a transient
channel or a persistent channel. A persistent channel has only activation
particles; this type of channel will stay open upon prolonged depolarization.
A transient channel, on the other hand, is only open for a limited time upon
depolarization; a typical scenario is that upon depolarization the (typically
faster) activation particles relax to their open state and thus, along with the
already open (because of the lower holding potential) inactivation particles,
the channel conducts. After some delay the slower inactivation particles
relax to their closed position at the depolarized level, and thus close the
channel.

4.3.4 Activation/De-inactivation and Inactivation/Deactivation

Recall that for a given channel to conduct, «ll of its gating particles must be
in the open position, regardless of whether they are classified as activation
or inactivation particles. When describing the change of the conductance
state of a channel, then, some clarification of nomenclature is useful. When
a channel goes into the conducting state because of the movement of an
activation particle into its open position (state), then the process is called
activation. When a channel goes into the conducting state because of the
movement of an inactivation particle into its open position, then the process
is called de-inactivation. When a channel goes into the non-conducting state
because of the movement of an inactivation particle into its closed position,
then the process is called inactivation. And finally. when a channel goes into
the non-conducting state because of the movement of an activation particle
into its closed position, then the process is called deactivation.
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4.4 Fitting the HH Parameters to Putative Cur-
rent Kinetics

Fitting the HH model to the behavior of a given current began under the
assumption that the channel responsible for the current had only one or two
tyvpes of gating particles - either there was a single activation particle or there
was an activation particle with an inactivation particle. The number of any
given particle in a single channel was constrained to be at the most four,
but in practice the inclusion of more than four duplicate gating particles
had little effect on the overall kinetics of a channel.

The first step in formulating the expression for a given current was
to determine its activation/deactivation and/or inactivation/de-inactivation
properties. By examining voltage clamp and/or current clamp records, the
relevant questions were as follows:

1. Does the conductance in question increase on depolarization, indepen-
dent of factors such as ('a®** entry? If so, then the conductance is
likely controlled by at least one activation particle.

2. Is the conductance transient, i.e. is the conductance removed after
activation without repolarization? If so, then the conductance is likelv
mediated by at least one inactivation particle.

3. Is there any relationship between the activation of ('¢®* and the pres-
ence of the current in question? If so. the possibility that such a
relationship may mimic or mask voltage-dependent activation or inac-
tivation must be considered.

Once the basic type of particles that govern the channel were determined,
it remained to estimate the parameters for each particle. For each gating
particle (for each current) the free parameters included:

e 171 - the voltage at which a and ;3 are equal
2

e 7 - a measure of the symmetry of the svstem (0 <5 < 1)

o z - the effective valence of the gating particle (tvpically = ranged from
3 to 30)

® g - the forward rate constant when 1" =1,
2
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o g - the backward rate constant when V =V

2

¢ 7p - the minimum time constant of the gating particle (typically 7o
ranged from 0.5 milliseconds to 4.0 milliseconds)

The first step in fitting the parameters was to adjust the steadyv-state
activation and inactivation curves according to the available data. For some
currents there was more or less complete voltage clamp measurements of
these curves, while for others only the steady-state conductance as a function
of voltage was available (ref. Na%t currents, Chapter x). Note that in
the latter case, if the current in question is transient then the steady-state
conductance will be a measure of the product of the some power of an
activation variable and some power of an inactivation variable (the window
current). As referred toearlier, ag was taken as equal to 3y in the estimations
of current kinetics. with no loss of generality.

Adjusting the steady-state curve for a gating particle is straightforward.
V1 is simply the voltage where the steady-state curve is equal to 0.3, as
implied in Equation 4.5 and shown in Figure 4.3. Once V1 is estimated, z
is then adjusted to set the steepness of the steadyv-state cu?ve as required.

Unless good measurements on the time constant for a current were avail-
able, manipulating the remaining parameters to vield different functions of
the time constant was often a tricky procedure. The data for each current
gave different clues as to the form of this function, and for some currents
it was not possible to derive a unique function until the current was re-
evaluated in light of modified description of another current. In a few cases,
however, a particular function for a particular variable turned out to be not
critical (e.g. the y gating particle for Ipg. whose time constant only had to
be greater than some value, irregarless of voltage).

4.4.1 Effect of Gating Particle Valence

Observing how the variation in the free parameters affects the steady-state
and time constant curves is instructive since this process was integral to the
development of the conductance mechanisms. Figures 4.5 and 4.6 illustrate
how the different values of z change the steepness of the steady-state curve
and the sharpness of the time constant curve.
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Figure 4.5: Effect of the valence. z. of the gating particle. «. on the r.,

curve. Note that this is an activation gating particle. ¥V, = —20mV.
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Figure 4.6: Effect of the valence. z. of the gating particle. . on the 7, curve.
Vé = —20m}1". The time scale is arbitrary since it is linearly scaled by ay.
To is set to 0. and = is set to 0.5.
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Figure 4.7: Effect of the relative position. 5. of the transition state within
the membrane for the gating particle, . on the 7, curve. z = 16 and
Vi = —20mV". The time scale is arbitrary. as in Figure x. 79 is set to 0.

2

4.4.2 Effect of Gating Particle Symmetry

Figure 4.7 illustrates how the symmetry of the svstem. as specified by ~.
affects the curve for the time constant for = = 16. Extreme values of 4 (i.e.
close to 1 or 0) cause the time constant to change abruptly at some voltage
so, to a first approximation. as a function of voltage the time constant
is either large or relatively small. This sort of characteristic was used to
advantage in constructing some of the current kinetics. For example, as will
be outlined in Chapter 5. the inactivation time constant for one of the Na*
currents. Ix,_c,. needed such a precipitous characteristic in order that it
reproduce repetitive Na*-only spikes.

4.4.3 Effect of the Number of Gating Particles in a Given
Channel

More than one gating particle in a single channel causes a delay in the net
effect of that particle type when the membrane voltage changes. This delay
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increases with the number of particles in the channel. Increasing the order
(the number per channel) of the particle also makes the (effective) steady-
state curve steeper and more depolarized (hyperpolarized) for activation
(inactivation) particles.

Another important effect of the number of gating particles is how tle
resulting steady-state characteristic changes. Specifically, the activation or
inactivation curves measured with the voltage-clamp protocol do notindicate
the voltage-dependent steady-state characteristics of each particle. Rather,
the resulting curves reflect the behavior of the ensemble of particles, a point
that is not often made clear in the literature. If a channel is assumed to
be governed by N activation particles, for example. then the steady-state
curve for a single activation particle is found by taking the Nth root of the
(overall) steady-state activation characteristic.

In the following chapters the voltage-dependent steady-state curves for
both the individual gating particles for each current will be illustrated. In
addition, the apparent steady-state curve of the appropriate ensemble of gat-
ing particles will be illustrated (depending on the number of gating particles
assigned to a given conductance), as might be measured by the voltage-
clamp protocols.

4.5 Procedure for Fitting HH Parameters

The parameters governing the kinetics of each current in the model were
determined according to the data for a given current. At one extreme,
non-ambiguous voltage clamp data that was almost complete specified most
the relevant parameters — for example the steady-state activation curves
for Ig and Iy;. At the other extreme, for example for the putative Na*t
currents. only meager voltage clamp data was available, augmented by ex-
tensive, though much more ambiguous, current clamp data. In these cases
the steady-state activation curve or activation and inactivation curves as
appropriate, had to be estimated and then checked with steady-state volt-
age clamp simulations. The functions for the time constants would then be
estimated, consistent with the z and V1 parameters that had been set by
the steady-state characteristics. Simulaztions would then be used to check
the resulting kinetics and, if necessary, the functions would be modified (e.g.
changing ~ or ag) to yield better behavior. For all the currents specific time
constant data was either incomplete or non-existent. These functions were
iteratively derived by running current clamp simulations of certain proto-
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cols for which I had data to compare the model behavior with. Note that
these parameters amount to verifiable predictions of the model, assuming
that experimental protocols may be devised that record the time and voltage
dependence of different currents in isolation.

In Chapters 5, 6 and 7 the parameters for the model currents will be
presented, along with the resulting curves for the steady-state and time
constant functions.

4.6 Temperature Dependence of the Gating Ki-
netics

Temperature dependence of the kinetics described here has several elements,
all of which ultimately derive from the temperature term in the Boltzmann
distribution (eqns. 4.1 and 4.1). However, some of these relationships are
handled explicitly while others are estimated.

Consider the expression for the forward and backward rate constants, a
and 7 (ref. eqns. 4.2 and 4.3). Each expression evaluates to the maximum of
two expressions, a product of two terms and (in the current approximation)
a voltage-independent rate-limiting term. The product is formed by a base
reaction rate term that ultimately derives from a Boltzmann distribution,
although the factors in this expression are not specified. The second, voltage-
dependent term in the product is also a Boltzmann distribution, however,
as has been shown, each term in this distribution is specified. Therefore,
the temperature dependence of the base rate is undefined while this depen-
dence for the voltage-dependent term is explicit. Likewise, the temperature
dependence (if any) of the rate-limiting term is undefined.

The base rate term and the rate-limiting term the temperature depen-
dence was therefore assumed to be similar to that generally observed for
biologic reactions, where a Q1o of 3 is tvpical 2. This factor is used to derive
a coefficient for the rate constants as follows:

Ig=T
Q]O—factor = Q]()jo

where T is the temperature and Ty is the temperature at which agpgse
is determined. Q19— jfactor is then multiplied with the both the base rate

2This factor is dependent on different currents, as appropriate. The Q1o for Iy is set
to 5, based on Halliwell and Adams, 1982 [16], and the Q1o for the Na? currents was also
set to 5 in order to improve the performance of the model.
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term and the rate-limiting term as a first approximation to the effect of
temperature of these terms.

Note that the temperature dependence that derives from the voltage-
dependent term is (by definition) voltage-dependent. The effect of the tem-
perature on this term disappears when the membrane voltage is equal to
V1 for a given gating particle. and the effect on the voltage-dependent term
increases as the membrane voltage moves away from V% . However for most
gating particles of the model this effect is smaller than the Q10— f4ctor. due
to the small value of z.

Another temperature dependence arises from the coefficient of the expo-
nential term of the Boltzmann expression. To a first approximation this is
typically taken to be a constant (as is done in this model). However, review-
ing the significance of this term is instructive. This term is the “pacemaker”
for the reaction, as it denotes the effective state transition frequency, whereas
the exponential term (as explained before) relates the probability of reach-
ing a given state after a transition. According to Eyring Rate Theory ([19])
this pacemaker term is proportional to the temperature (derived from the
frequency of molecular vibrations = kT /h, where k and h are Boltzmann’s
constant and Plank’s constant, respectively).

This term contributes a linear temperature dependence of the rate con-
stants, whereas the previous temperature-related terms were exponential
functions of temperature. Considering that temperature is in degrees Kelvin,
the linear contribution will be negligible on the rate constants when tem-
perature ranges over ten degrees, e.g. between 298° K (25° (') and 308° K
(35° C). The present assumption of a constant coefficient for the exponential
terms in eq. 4.5 and eq. 4.6 is therefore justified.

4.7 Adequacy of the HH Model for Describing
the Kinetics of Putative Hippocampal Chan-
nels?

The HH model of ion channels is clearly a simple one. First, assuming that
channels can be described in terms of having discrete regions that can modu-
late channel conductance through the steric interaction of discrete, voltage-
dependent conformational states, there are likely to be more than two stable
states for any such “particle” (as opposed to just the open and closed HH
states). Such multi-state models and other interpretations of gating have
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been considered by other investigators ([9],[4].[3], [8]). For each additional
stable state there will also be an additional transition state. A different
transition state could become the rate-determining step over some range of
membrane voltage, resulting in a non-sigmoidal voltage dependence of the
rate constants over the entire voltage range. In addition, a gating particle
could possibly influence channel conductance in a more graded fashion. In
this case, different conformational states would not necessarily act as binary
enabling/disabling mechanisms.

In fact, experimental data for many currents indicate that the sim-
ple thermodynamic description of the HH model is not sufficient for the
gating mechanisms that govern those currents. For example, some cur-
rents have shown minimal or no voltage-dependence for either their acti-
vation/inactivation time constants nor their steady state values. In many
of these cases whether this reflects the true kinetic nature of the currents,
whether this is artifactual from the inherent limitations of the equipment,
or whether there is contamination from other currents that has not been
accounted for is not clear. In some cases, different measurement protocols
can shed light on these questions. In other cases, simulations can help test
speculations as to the true nature of the currents. Another explanation is
that there is a distinct linear rate-limiting mechanism that alters the func-
tion for the time constant as would be expected from the HH model. Such
a mechanism is considered in the present simulations, as will be described
later. .

Another complicating factor is one that reflects actual physiological mech-
anisms, yet is not explicitly described in the HH model. This factor is the
effect of the concentration of various ions in the vicinity of the membrane.
There will be an observable effect of different concentrations of the predom-
inant ions (Nat, K+, Ca®**, and (1) on the reversal potential for these
species, as expressed in the Nernst equation, given that a given ion undergoes
large changes in its local concentration because of sequestering. saturation
of buffering mechanisms, or active transport. The model described here as-
sumes only passive transport of the charge carriers across the membrane; for
example, maintenance of the Na™ and At concentration gradients in light
of the flux of these ions during electrical activity is assumed to occur over a
long time scale. In addition, there are many cases where the local concen-
tration of some ion is a regulator of some active process - e.g. C'a®* in the
activation of the actin-myosin system and as a mediator in the conductance
of certain channels. As will be described later, such coupling is indicated
in some of the hippocampal pyramidal cell non-linear currents, the notable
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example being the C'a?*t -activated K+ current, I. In this case there is
evidence that the conductance underlying this current is dependent on the
concentration of Ca?t underneath the membrane, as may be supplied by
the C'a®*t currents (e.g. Ic, and Ic,s).

On the other hand, in support of the HH approach, there is evidence that
the HH description is valid for at least some ion channels. For example, the
movement of charge that occurs when the postulated gating particles change
state (the so-called "gating current”) has been detected for some channels
([19]). The primary structure of certain channels, e.g. some Na* channels
and acetylcholine receptors, have been sequenced, and speculations on the
tertiary structure have been made on the basis of this data. There are
indications in these sequences of segments with polar residues that traverse
the membrane in such a way so that they maybe able to sense the membrane
voltage, i.e. properties expected of putative “gating particles”.

On a more empirical level, simulations of non-linear membrane using HH-
like descriptions for the ion channels have been successful in reproducing the
electrical activity of several electrically-active cells. In the present work, it
was remarkable how well HH models were able to reproduce the behavior of
- several channels.

4.8 The Concept of an “Extension” of the HH
Model

The descriptions for the HIPPO non-linear conductances are based on exten-
sions of the HH model. This is because the HIPPO descriptions explicitly
consider the implications of the single-barrier gating model proposed by
Hodgkin and Huxley, especially with regard to the relationship between the
parameters that define this model and the resulting voltage-dependent time
constants for the gating particles. In other studies that draw on the HH
mode] the relation between the steady-state characteristics of the gating
particles and their temporal characteristics is purely empirical. and is not
derived from the single-barrier model.
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Chapter 5

ESTIMATING Na™
CURRENTS

5.1 Introduction

This chapter describes the derivation of the kinetics for three proposed Na™
currents in the hippocampal pyramidal cell. T shall begin with the back-
ground for this problem, and then I shall present the data that was used
to derive the model parameters. After the motivation for using three Na*
currents is discussed, the strategv I used to estimate the relevant parameters
will be presented.

The parameters for the Na™t currents will then be presented. Some of
these parameters will be compared with the analogous parameters of the
squid axon Nat channel and the In, of the rabbit node of Ranvier, since
these latter two currents are among the few Ne«* channels for which the
kinetics have been measured under voltage clamp.

5.2 Background for Evaluating Iy,

One of the first applications of the model has been the estimation of the Na*
currents in hippocampal pyramidal cells, including those which underlie the
depolarizing phase of the action potential. The fast Na* conductance nec-
essary for the spike corresponds to the classical Vat current described by
Hodgkin and Huxley. To initiate the action potential, this current rapidly
turns on when the membrane voltage passes the firing threshold for the
cell. Almost as rapidly, the fast Na™ turns itself off as the cell depolarizes,
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contributing substantially to the repolarization of the action potential.

A quantitative description of the N« currents is vital because these cur-
rents are the progenitors of the action potential and therefore are some of the
basic determinants of neuronal function. Also the activation/inactivation
properties of the Nat currents set the stage for the entrance of the numer-
ous outward currents.

There is little voltage clamp data for Na™t currents since these currents
are typically large and fast, exceeding the current sourcing ability and the
temporal response of the single-electrode clamp circuit used to make the
measurements. Since the data is not complete, it was necessary to look
to sources of data other than that from hippocampal preparations. These
included estimations of the kinetics of a fast Na™ current in rabbit node of
Ranvier ([10]) and in the bullfrog (Koch and Adams. bullfrog sympathetic
ganglion simulations. personal communication. In addition parameters used
in other neuron simulations were consulted ([48]. hippocampal simulations).

In the HIPPO model. this problem has been approached several ways, in-
cluding using the descriptions just mentioned. I also tried using I, kinetics
based on measurements from rabbit node of Ranvier. with some modifica-
. tions. In particular, the time constants for the m and the h variables were
scaled by two, in addition to the appropriate temperature compensation
(¢10 = 3, Adams, personal communication)?.

Attempts to derive the original source for the kinetics used by Traub,
et al, were unsuccessful. My impression is that the kinetics used in this
model are simply the ones derived by Hodgkin and Huxlev for squid axon,
modified slightly to yield acceptable empirical results for the simulation of
some protocols. Initially I tried such an approach.

Specifically, I have attempted to derive channel kinetics that are consis-
tent with current clamp records of Nat-only spikes (Storm. personal com-
munication). the steady-state N« dependent current-voltage characteristic
([12], Storm ibid), and current clamp records of normal action potentials
obtained under various conditions. under the assumption that any channels
that conduct Nat may be described by the HH-like kinetics described ear-
lier, and further that each channel may have one or two types of gating
particles. The task was therefore to try to fit the hehavior of this class of
voltage-dependent channels to the data. I began by considering the Na™-
only spike.

'From scaling of time constants for Ix, in bullfrog myelinated nerve and bullfrog
sympathetic ganglion soma.
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In particular, it was desired to describe the fast Na™T so that the cell had
the capacity for a stable resting potential that in turn could be perturbed
enough to result in an action potential. This implied that at the resting
potential the inactivation variable (%) was turned on and that the activation
variable (m) was well turned off. In addition, the time constant for the m
variable had to be substantially less than the time constant for the h variable
throughout most of the depolarized range of the membrane potential above
rest. This insured that once threshold was reached, the m variable would
have a chance to fully activate and allow Na to enter the cell before the
h variable caught up with the depolarization and subsequently go into the
closed state, thus shutting off the conductance.

Although a useful description was found empirically. it will be important
to compare this description to actual measurements of the fast Na current
kinetics whenever they hecome available.

5.3 Deriving Na™ Conductance Kinetics

5.3.1 Implications of Va*-only Spike

Current clamp records taken using hippocampal slices which had been treated
with agents that blocked all potassium and calcium currents enables one to
look at the behavior of the Va1 currents and. presumably, the leak con-
ductance in isolation. Such protocols assume that 1) all non-linear currents
other than Na* currents are blocked, and 2) such treatment leaves the leak
conductance unchanged. Figure 5.1 shows a record of a Na*-only spike
under such conditions.

This spike gives several clues about the Na™* currents in this cell. First,
the spike threshold is quite sharp. Also the subthreshold response shows
very little activation of inward current. This behavior of the spike thresh-
old implies that the activation curve for the Na™ current underlying the
initiation is steep, with the curve centered around -35 millivolts.

The second feature is the biphasic repolarization of the spike. The tra-
jectory of the spike repolarization under the specified conditions is due to
two factors - the inactivation of the Na* current(s) and the linear leak of
the membrane. Initially, the spike repolarizes rapidly. Assuming that the
major portion of the spike is due to a Na™ current similar to the classical
fast Na* current described in squid axon, this initial repolarization is con-
sistent with the rapid inactivation of the channel with depolarization. At
depolarized membrane potentials, the time constant for inactivation is on
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Figure 5.1: Na*-only Spike and Subthreshold Response - Current clamp
protocol with cesium chloride electrode, TEA. 4AP. and Mn** added to
block the calcium and potassium currents. Resting potential is -65 mv.
Stimulus current is top trace. From Storm (unpublished data).
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the order of a few milliseconds. However. approximately 7 milliseconds after
the spike peak the repolarization slows drasticallyv. This slow phase of the
repolarization, which commences when the membrane voltage is about -20
millivolts, lasts approximately 60 milliseconds. Since this decay is too slow
to be accounted for by the time constant of the cell, we propose that the
long tail is due to an non-linear (V%) inward current.

We can determine whether a Nat tail current is likely to be present
during a spike that is repolarized by outward currents. The action poten-
tial is repolarized by AT currents, in addition to the leak conductance and
the inactivation of the Na* currents. If any VaT tail current has been
activated during the fast spike, then it must be canceled by a slow residual
component of the outward currents, since no long lasting depolarized tail is
observed. During a normal action potential there is therefore either a com-
pletely activated slow component of the fast NaT current that is canceled
by a slow At current(s). or there is a separate slow Na™t current that has
not had a chance to be activated during the short spike, or there is some
middle ground where a incompletely-activated inward current is canceled by
a residual outward current.

The time course of the actual spike was used as the clamp voltage in a
voltage clamp simulation using the linear cell in order to estimate the current
during a Nat-only spike. As was described in Chapter 3. the resulting
simulated clamp current revealed the total current that must be supplied
by non-linear conductances during the spike. Incidentally. this protocol was
an example of the power of the simulation technique. since controlling an
actual microelectrode voltage clamp with such a fast time-varying signal is
not always possible.

The result of the voltage clamp simulation is shown in Figure 5.2 The
time course of the clamp current implied that the non-linear mechanisms
underlying the spike had at least two distinct components. an early, large
component which quickly deactivated/inactivated. and a later small compo-
nent which deactivated/inactivated slowly. remaining for approximately 100
milliseconds.

The fast component was assumed analogous to the classical fast Na™
current of the squid axon as described by Hodgkin and Huxley.

For the repolarizing tail I considered two possible mechanisms: an abrupt
slowing of inactivation of the fast Na™ current underlying the spike. or the
action of another kind of .Va* channel. For the present this first possibility
has been discounted for two reasons. First, I have not been able to derive a
function for the voltage-dependent time constant for inactivation for the fast
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Figure 5.2: ('lamp current during voltage clamp simulation using time course
of Nat-only spike (Figure 5.1) as command voltage




Na* that was consistent with the single-barrier gating assumptions and that
had the necessary sharp increase at the appropriate voltage. Second, in light
of the present assumptions regarding the behavior of the At currents, it was
determined that the mechanism for the slow tail would only be significantly
activated during a long (e.g. non-repolarized) spike. thereby removing the
requirement of an outward current that would cancel out the slow tail current
after the normal spike.

In considering the possibility of a distinct tail current, the important
characteristics of this current was that it had to have a high threshold and a
slow onset, consistent with the lack of a long after-depolarization in normal
spikes. For example, if this current had a threshold of approximately -10
millivolts with a slow activation time constant, i.e. 4 milliseconds. then
during a normal spike this current will not have time to activate fully. On
the other hand, during the slower repolarization that occurs without non-
linear outward currents, this tail current will have time during the peak of
the spike to activate more, and thereby contribute to a long repolarization.
1 called this current In,—s4:. I attempted to adapt the activation data for
In,p (discussed next) to account for the action of the so-called Ing—tqi.
but this has been unsuccessful to date. This is primarily because the low
threshold of the activation curve for Iy, p has thwarted attempts at deriving
a function for the time constant of activation that is consistent with the
single-barrier model and which in turn reproduces the Na™-only spike.

5.3.2 Implications of Vat-only Repetitive Firing

Repetitive firing elicited in cells in which all currents except Na™t have been
blocked offer additional clues as to the nature of the Na™ currents in hip-
pocampal pyramidal cells. Figure 5.3 illustrates such a record. The key
features of these voltage traces are 1) higher threshold of spikes following
initial spike (i.e. higher threshold of the secondary spikes). 2) reduced am-
plitude of repetitive spikes. 3) reduction of spike amplitude with increasing
stimulus, 1) repetitive firing elicited only in a narrow range of membrane
voltages. ‘

5.3.3 Implications of Tetrodotoxin Sensitive Steady State
Current-Voltage Characteristic

Figure 5.4 shows a steady-state current-voltage characteristic from hip-
pocampal pyramidal cells that demonstrates a tetrodotoxin (TTX) sensitive
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Figure 5.3: Na*-only Repetitive Spiking - Current clamp protocol under
same conditions as Figure 5.1. Current stimuli is bottom trace. From Storm
{unpublished data).
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STEADY STATE MEMBRANE CURRENT A

1.0

|-0.4

Figure 5.4: Inward Rectification by Na*. Curve derived from steady-state
activation of a persistent Na™* current. Iv,p ([12]).

inward-rectification ([12]). Assuming that a sensitivity to TTX means that
NVat currents underlie this rectification, the characteristic can be accounted
for by either the “window current” of a transient NVa* current. by a per-
sistent (non-inactivating) Na* current (Ix,p). or by some combination of
these types of channels. )

5.3.4 The Role of Window Currents

Window current is due to any overlap in the voltage-dependent steady state
curves of the activation and inactivation variables, thereby making a nor-
mally transient current contribute a persistent component over some range
of membrane voltage. Since any overlap in the activation and inactivation
curves will be limited. rectification due to a window current alone would dis-
appear at depolarized membrane voltages. The steady-state current-voltage
characteristic would then continue the linear characteristic established prior
to the onset of rectification. The data for this cell. however. would not nec-
essarily demonstrate a depolarized removal of rectification since the steady-
state current-voltage curve was only measured to -35 millivolts.

Important aspects of this characteristic include the lack of inward recti-
fication around.the .V a*-only spike threshold. which implies that the m and
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h curves for the current activated at the threshold do not overlap at that
threshold.

5.3.5 Adding Together All of the Evidence

Taked all together, the data presented so far implies several characteristics
of any TTX-sensitive (presumably .Vat-carried) currents. These may be
summarized as follows:

1. Nat mediated repetitive firing in cells depolarized from the resting
potential implies that the inactivation curve for the current underlying
the higher threshold spikes is non-zero at the depolarized level.

2. Thelack of inward-rectification at the lower spike threshold contradicts
the earlier conclusion that the activation curve for the fast Na* current
is steep at the lower threshold.

3. A steep activation curve at the lower threshold taken with the non-
zero inactivation at depolarized membrane potentials would result in
an appreciable window current. This window current in turn would
contribute to inward rectification starting at the lower spike threshold
of -55 millivolts. This is inconsistent with the data.

To explain these phenomena. I suggest that there is an additional fast
Nat channel whose threshold for firing is depolarized from that of the orig-
inal fast Na* channel, and whose activation and inactivation kinetics are
such that it might mediate Nat-only repetitive firing. In the absence of
repolarization from any non-linear outward currents. simulations indicated
that there must be a finite overlap of the activation and inactivation curves
of any HH-like Na™ channel that can mediate repetitive firing. This over-
lap will result in a finite window current., and thus a steady state inward
rectification. I was able to adjust this rectification to qualitatively repro-
duce the onset of the observed rectification discussed earlier. Because it
mediates repetitive NaT-only spikes. I named the high threshold current
Ing—rep. Since I deduced that the original fast Na™ current had a sensi-
tive, low threshold for initiating the action potential, I called this current
]Na—trig-

The steady-state Nat mediated rectification also constrains the behavior
of the Iny_tqi. In particular, if this current contributed any window current
then such a window current could only activate above -30 millivolts, in order
to be consistent with the steady-state I\ characteristic.
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The implications of a sharp threshold for the Nat -only spike, and a
small subthreshold response implies steep and/or activation characteristics
for the current underlying the initiation of the spike. Oun the other hand,
presumed modulation of the spike threshold by outward (A*) currents (see
Chapter 7) which in turn do not greatly effect the slope or amplitude of
the action potential implies that around threshold Nat activation is not
instantaneous, in other words a small outward conductance would be able
to counter the sub-threshold inward rectification of the N« current suffi-
ciently to raise the firing threshold. Note that the faster the Na™t current
activated around threshold, the larger the outward current would have to be -
to suppress the initiation of the spike. Since threshold is only about 30 mil-
livolts above Fg, the small driving force for an outward A" current means
that a large conductance is required. However, a large k't conductance that
is enabled immediately prior to the spike would allow a large outward cur-
rent on the upstroke of the spike, due to the increasing driving force that the
Kt ions see. An alternative explanation is that the threshold-modulating
K current shuts off prior to or during the upstroke of the spike, and thus
a KT conductance of sufficient size to transiently counteract a quickly ac-
tivating .Va™t current would not then serve to attenuate the spike itself. A
final alternative is that the size of the spike current is large enough that a
sub-threshold activated outward conductance would not attenuate the spike
noticeably.

5.4 Strategy for Determining N«* Current Ki-
netics

Once it was determined that three Nat currents might model the observed
behavior. the following strategy used to derive their kinetics:

1. Estimate the absolute Nat conductance for the fast Nat currents
(INqg—trig and Inqa—;ep) by running voltage clamp simulations using
the Na*-only spike as the command voltage.

2. A reasonable set of equations governing the kinetics (backward and
forward rate constants for the activation gating particle m and inac-
tivation gating particle h) for the three putative N¢™ currents was
determined. The free parameters for each function include the free
energy changes between the stable states and the transition state, the
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location of the transition state within the membrane, and the effec-
tive valence of the gating particle. Voltage-dependent functions of the
time-constants and steady-state values of the gating particles are then
derived from the appropriate rate functions.

3. Run (current clamp) simulations of the NaT-only single and repetitive
spike protocols.

4. Compare the simulations with the data.

5. Adjust the appropriate rate-constant functions and repeat the simu-
lations.

6. Once a good match between the current clamp simulations and the
data was reached, the steady state current-voltage characteristic of
the cell with all three Na™ currents activated was derived to measure
the inward-rectification generated by the estimated currents.

-~

. This characteristic was compared with that of one from the model
with the derived Na* currents replaced by the reported persistent
Nat current.

8. If needed. return to step 5. in order to obtain a good fit to all the
available data.

This process eventually converged to yield a model description that was
in good qualitative agreement with the data pertaining to .Va™-only behav-
ior. The derived Na* currents were then tested by running simulations in
which various A currents were added, once they were derived. This led to
a modification of some of the parameters of the N« currents. while preserv-
ing the Na™-only behavior, which provided a rigorous set of constraints on
the parameter adjustment. The entire process was and is one of adding one
piece of information at a time to the model. and then running simulations
to find out how the new data affects the model’s behavior.

5.5 Results

5.5.1 Simulation of N«t-Mediated Inward-Rectification and
Spikes

Figure 5.5 compares the steady-state current-voltage characteristic of the
mode] with 1) the reported Ix,p. and 2) the In,_irig- INa—tait- INg=rep Cur-
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Figure 5.5: Current-voltage characteristics of model showing inward-
rectification mediated by Ixop and by In,_trig. Inqopaite and In,_pep. cur-
rents.

rents. The model currents cause an onset of inward rectification that is in
qualitative agreement with the published data. However. since this steady-
state inward current is mainly due to the transient Ix,_,., window current.
the rectification only occurs over a limited range of membrane voltages. This
is not necessarily inconsistent with the characteristic of Ix,p because of the
limited range over which this current was measured. as explained earlier.
Possibly the so-called persistent Na™ current is actually a transient current
which would demonstrate removal of inward-rectification at more depolar-
ized membrane potentials. Given more data. the derived characteristics of
the so-called Ix,_rep might be adjusted to better match the steady-state
current-voltage relationship of the model.

Figure 5.6 illustrates a simulation of the Vet -only single spike. The
model’s behavior is in good agreement with the data. in particular in regards
to the sharp threshold of the spike. the time course of the depolarizing phase.
the initial fast repolarization. and the slower late repolarization. Also in the
figure are the three model Na™ currents that underlie the Na*-only spike.
In this figure the initial activation of Jx, ;5. the subsequent recruitment
of the higher threshold Ix,-,¢,. and the slow time course of Ix,_;,; after
the first two currents have inactivated can be seen.
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Figure 5.6: Current clamp simulation of .Va*-only single spike. Spike stim-
ulus - 0.7% nA. Top - Simulation of spike compared with record taken from

data. Bottom - Jx,_¢rig. INa—tait. INa—re, currents during spike.
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Figure 5.7 illustrates a simulation of Na*t-only repetitive firing under
different constant current inputs. At the bottom of the figure are the Na*t
currents underlying the marked spike train. After the first spike, the initia-
tion of later spikes is mediated completely by Ing—rep.

5.6 Parameters of the Three Putative Na* Con-
ductances

The parameters for the three proposed hippocampal Na™* currents will now
be presented in detail. Some of these parameters will then be compared
with the analogous parameters of the squid axon Na* channel and the In,
of the rabbit node of Ranvier.

All parameters were set assuming a temperature of 24°C. It was neces-
sary to use a high value for the ¢19 (= 5) for these currents since simulations
of action potential repolarization at the higher temperature used for inter-
preting most of the Kt current data (32°C) indicated that significantly
faster activation/inactivation was required. Figure 5.8 shows the resulting
effect of different temperatures on the Na*-only spike. The striking effect of
temperature in these simulations suggest that measuring the temperature
dependence of Nat-only spikes in HPC may provide a good test for the
mode] description of the NaT currents.

5.7 Parameters of I\,

Iny—trig is based on the classical Iy, of the squid axon. Important differ-
ences were required, however, so that Ix,_¢;, would have a sharp threshold
with very little subthreshold activation. Also, it was necessary to adjust
some parameters to obtain the desired characteristics during normal repet-
itive firing.

5.7.1 Results

First. the valence of both the m and h particles is large (z,, = 20. z,,, = 30).
which makes them steep functions of voltage. Likewise, the m,. and h..
curves for Iv,_¢;;y do not overlap as they do in the squid axon I\, (ref.
Figure 5.15).
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Figure 5.8: Current clamp simulations of Na*-only single spike at different
temperatures. ¢;o for the three Va™ current kinetics is set to 5. g;¢ for the
absolute conductances is set to 1.5 . With increasing temperature the spike

threshold drops. the depolarizing slope is steeper. and the repolarization
(due to inactivation/deactivation) is faster.
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The position on the voltage axis, as determined by Vi and

= ,m,Na—trig
V%,h,Na—m‘g* were set to make the firing threshold equal to about -55 milli-
volts. This threshold was made slightly higher than indicated by the data
in order to allow subthreshold activation of I4 (ref. Chapter 7).

Setting the order of the inactivation particle / and the the 7, vo—irig
magnitudes involved compromising between formulations that met a) the
observed width (about 1.7 milliseconds at 0 millivolts) and b) the observed
height (about 15 millivolts) of Na*-only spike. The formula I have used
includes two h particles and setting 77 v, _4,;, = 2.0 milliseconds so that the
current would not inactivate too quickly at the top of the spike. When a sin-
gle h particle was used it was necessary to adjust 7/ n,_;,;, = 1.5 milliseconds
to maintain the width of the spike; however, this formula made the peak am-
plitude too high.

The curve for 7, va—1rig was symmetrical (7, xa—trig = 0.5). but when
normal repetitive firing was simulated using the A't currents. it was nec-
essary to make the curve for 75, x,_¢rig skewed to the right (depolarized)
(1h.Na=trig = 0.2) so that removal of inactivation was fast enough near rest
to allow for rapid firing.

The value for g, xgotrig (= 40mS/cm?) was set in order to obtain an
initial slope of the action potential of approximately 130 volts per second
(measured from threshold to 0 millivolts). This value was dependent on
Gdens,Na—rep as well . since Tyg_rep Is activated within a few tenths of a
millisecond after the beginning of the spike and therefore Ix,_,¢, contributes
substantially to the upstroke of the action potential (see Figure 5.6).

The equation for In,—qq is -

—_— 2 .
I‘\’a-trig = GNa—trig MNa—trig ’?,\'g_fr,'g (V= Exg+)

where
INa—trig = 0.53 1S

— _ 2
dens Na~trig = 10.0 HIS/( m

Table 5.1 lists the parameters for the Ix,_;;, gating variables. These
are the rate functions for the activation variable, m, of Ing—triq -

(l'+47)0.5~20-F>

Qm Na—trig = 0.3 e}(p( »T
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I Gating Variable || z | ~ ao | Vi(mV) | 7o (ms)
m (activation) 20 10.53] 0.3 -47.0 0.5

h (inactivation) -30 1 0.2 | 0.003 -54.0 2.0
Table 5.1: Parameters of Ixa-riy Gating Variables
S5 Vaiue
1.0_

e ————

T M-inf (Na-trig)
=== Meinf (Na-tri,

H-inf-effective (Na-trig)

Vol
B00 400 a0 TUEER™V
Figure 5.9: Steady-state curves (my and h.)
and effective curves as would he measured by vo

for MNa—trig and h.\'a—trig
Itage-clamp experiments.

-47-170.5-20- F
3m.4\'a—!ri~7 =0.3 PX])(( ! ) >

RT )
These are the rate functions for the inactivation variable. h. of Ina_trig

Qh Na—trig = 0.01 9Xp<(‘ +61)0.7.--30-F

)
(=61 -10.3.--30-F
-3h.A\'a—trig = 0.01 exp( RT )
Figures 5.9 and 5.10 show t}
values and the time constants for

1e voltage dependence on the steady-state
the nix,_y,;, and hxa_trig variables.
5.8 Parameters of I,

—1ep
The kinetics of Ing_rep, like Ixu—irig. is similar to the squid axon Iy, kinet-
ics. In order that [y

a-rep be able to generate repetitive Na — only spikes,
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Figure 5.10: Time constant curves (7, and 1) for mxyqa—trig and Ayg—trig.

however, it was necessary to adjust the parameters for this conductance very
carefully. Experimentation revealed that a key requirement for getting high
threshold Na — only repetitive spikes was that the m,, and h., curves for
Inq—rep overlap. In addition, the curve for i, had to be very steep and the
curve for 7, had to be sharp on the hyvperpolarized side. These characteris-
tics were needed so that during the repolarization after a spike. removal of
inactivation would occur while my,_e, was large enough to allow enough
current for another spike. On the other hand. h could not be so fast that
there was Na — only repetitive firing without tonic stimulation.

5.8.1 Results

Experimentation with the order of m and h resulted in the assignment of
two m and three A particles to the Ix,_,., conductance. The high order of h
accentuated the steepness of the hy curve so that when the cell repolarized
slowly (with a tonic current stimulus) the removal of inactivation would
occur abruptly enough to allow repetitive firing. A single m particle did
not provide enough positive feedback on the initiation of secondary spikes
to get the observed magnitudes (e.g. between -20 and 5 millivolts). Three
m particles did not allow the channel to retain sufficient activation after the
initial spike to initiate subsequent spikes.

The value for G, ,,5 va—rep, had various effects. In particular. the value
for Gyens Na—rep modulated the role of Ix,_¢;, during the initial slope of the
action potential. As introduced previously. both the value of Gy, vyorep
and Gyens va-trig determined this slope.
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A second consequence of y,,,5 ng—rcp, Was that it had to be large enough
to support regenerative firing when JIx,_¢¢, was inactivated because of the
depolarized membrane. On the other hand, Gy.,5 vu—re, could not be too
large since this would give a significant depolarizing hump after the initial
spike when the tonic stimulus is too small for repetitive firing - such a hump
is not observed experimentally (Figure 5.3).

On a more subtle level, the relationship hetween stimulus magnitude and
the second spike during N a™-only repetitive firing is such that initially (from
below threshold to just above threshold for the tonic stimulus) the greater
the stimulus the sooner the second spike. However, past a certain point the
greater the stimulus the later the second spike occurs, until the stimulus is
too large to promote Na%t-only repetitive firing. During my simulations I
found that this behavior was dependent on y,,s Na—rep = if Gaens, Va—rep Was
too large. then there was no range of stimulus strengths in which a larger
stimulus caused the second spike to occur earlier.

In practice the most critical test of §,.,.5 v4_r, Was the latter relation
between Gy, .o Nu—re, and the timing of the second spike during Na*-only
repetitive firing. Once the desired relationship was achieved the other char-
acteristics were matched primarily by the adjustment of other relevant pa-
rameters.

The overlap for the m,. and . curves resulted in the steady state Na¥
mediated inward rectification discussed earlier.

In summary. the parameters for In,_,.., were among the most sensitive
of the model, and a substantial amount of effort was needed to derive them.

The equation for Ing—rc, is -

— 7 2 3 .
I,’\’a—rep = g,\'a—rrpmj\'a—7-61)11,\'(1—7'rp(" = Ex,+)

where
g;’\'a—‘rcp =0.50 IIS

Gaens Na—rep = 32.0 mS/cm?

Table 5.2 lists the parameters for the Iv,_.., gating variables. These
are the rate functions for the activation variable. m. of Ix,_,¢, -

(V +31)0.5-6- F)
RT

Qi Na—rep = 0.67 exp (
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-Gating Variable | z | % ao | Vi (mV) | o (ms) ]

m (activation) 6 | 0.5 | 0.67 -34.0 5.0
h (inactivation) || -30 | 0.17 | 0.0023 -42.5 3.0

Table 5.2: Parameters of Ix,_,., Gating Variables

SS value

EX- S
"

! ——— M-Inf (Na-rep)
, === M-inf-affective (Na-rep)
s e M-inf (Na-rep)
== MH-inf-affective (Na-rep)

10.5

Voltage (mV)
-30.0 -20.0 -10.0

3

Figure 5.11: Steady-state curves (my and hy) for mas—rep and hxo_;ep
and effective curves as would be measured by voltage-clamp experiments.

-34-1)0.5-6-F
3m Na—rep = 0~67€xp<( 3 0.5+ 6 )

RT

These are the rate functions for the inactivation variable. A, of Ix,—rep -

QR Nag—rep = 0.0023 PXp(

(V' +42.50.83- 30 - F)
RT

,‘3}1,.1\"0,-—7'6}) = 0'0023 exp (( RT

Figures 5.11 and 5.12 show the voltage dependence on the steady-state
values and the time constants for the my,_rep and hng_rep variables.

—42.5-1)0.17-30 - F)

5.9 Parameters of I\,

The key features that I defined for the proposed Ing-t.i include signifi-
cant activation only when there are prolonged spikes, e.g. when there is no
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Figure 5.12: Time constant curves (7, and 74) for myx,—rcp and hvg_rep.

repolarization due to non-linear outward currents. Also. this current was de-
rived to be a transient current. with no contribution to steady state inward
rectification.

5.9.1 Results

The steady state curve for m was adjusted so that activation commenced
only for very depolarized levels (Figure 5.13.). On the other hand. the time
constant for m was derived so that once m was open it was slow to relax to
the closed state as the membrane repolarized (Figure 5.1..)

Determining the parameters for 7,, Nu—tqi and Gy, s \a—1,5; Was done to-
gether. since both of these factors determined the slow repolarization inward
current.

The curves for A were not so critical - the main requirement was that
at rest h was fully open so that I\ ,_s,; could be turned on with the spike.
However. h,. had to be 0 at levels depolarized from rest so that there would
be no window current component from Ix,_¢q;1. The curve for 74 Ay _qi Was
set so that on one hand h did not change much during spiking. leaving the
m variable in control of this current. and. on the other hand. fast enough so
that Ix,_¢q; would not have an apparent persistent characteristic because
of a sluggish inactivation.

There was no need for the delaved state transition characteristics of more
than one m or h particle for Iy ,—s.;: therefore the order of each was set to
one.

Given that in general the requirements for Iv,_s,;; were not as rigid
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I Gating Variable H z [ 5 I ap V% (mV) | 79 (ms) ‘
m (activation) | 8 | 0.95| 0.025 -5.0 5.0
h (inactivation) || -6 | 0.2 | 0.0017 -47.0 3.0

Table 5.3: Parameters of Ix,_s,; Gating Variables

as other currents, i.e. Ixg—rep. the derived parameters were not the only
set that would demonstrate the desired behavior. For example, h could
be faster, as long as either 7, was likewise decreased and/or Gn,_s,;; Was
increased to compensate for the resulting increase in inactivation of Ing—tqi
during the spike.

The equation for Ing—tqi 1S -

INo—tail = TNa—taitMNa—taithNa—tait(V = Eng+)

where

INa-tait = 0.013 45

= _ o 2
9dens,Na—tail = 1.0 mS/crn

Table 5.3 lists the parameters for the In,_s,; gating variables. These
are the rate functions for the activation variable, m, of Ixg—tqi1 -

(V+5)0.95-8- F)

Gyp Na—tail = 0.025 exp< T

-5-1)0.05-8 - F
ﬁm,_‘\’g_zal‘[ = 0025€Xp<( 5-17)0.05-8 )

RT

These are the rate functions for the inactivation variable, i, of Inq_t.1

V 4 47)0.8- =6 - F
uhp\rq_,ai,:0.0017exp<( +47) )

RT

47 -1¥02.--6- F
,3}1"\'{,_{0,’1 = 0.0017 E‘X])(( 17 )0 6 >

RT
Figures 5.13 and 5.14 show the voltage dependence on the steady-state
values and the time constants for the my,_se;; and hxg_¢q; variables.
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Figure 5.13: Steady-state curves (m.. and h ) for mxy—iait and Axa—tai.
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Figure 5.14: Time constant curves (7, and 74) for mva—tai and A va—rtail-
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Figure 5.15: Steady-state curves (my. and hy ) for squid axon Iy, and the
hippocampal Ixg_¢rig and Ing—rep.

5.10 Comparison of I\, i, and Iy,_,, Kinetics
With Those of Squid Axon I\, and Rabbit
Node of Ranvier I\,

Comparing the characteristics of the squid axon Iy, kinetics with that of
INa_trig and In,—p(p is interesting. Figures 5.15 and 5.16 illustrate the m
and h steadyv-state and time constant curves for these three currents. The
salient differences include the substantial overlap (giving a large window
current) in the squid m,. and h.. curves and the much lower valence of the

respective squid /v, gating particles implied by these curves. as compared
to the HIPPO curves.

5.11 Discussion of Functional Roles of the Pro-
posed Nat Currents

Once we have constructed the three model currents that successfully repro-
duce the data. it is important to ask what roles these currents might play
in the pyramidal cell. Cousider Ix,_¢.;,. The characteristics of this current
allow for a sharp firing threshold from resting potential. The advantage of
this is that the neuron is more tuned to a specific input firing level: there
is a higher noise margin in regards to the firing efficacy of a given pattern
of synaptic input. In addition. the lack of a window current for In,—rig
means that at rest or at subthreshold membrane potentials there will be
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Figure 5.16: Time constant curves (7, and 7,) for squid axon Iy, and the
hippocampal In,—trig and Ing—_rep.

little "wasted™ N« current. This is metabolically favorable as the cell does
not have to remove the buildup of Na* resulting from such a background
current. Likewise, any constant inward current at rest would have to be
halanced by an outward (presumably A'*) current in order to maintain the
resting potential. Again, this loss adds to the energy requirements of the
cell at “rest”™.

Given these characteristics of Ixq—¢,i5. a regenerative. higher threshold
Na?t current is necessary in order to mediate the higher threshold spikes
that are observed under various conditions. including bursting on top of a
(presumably) ("a** depolarizing hump. and repetitive N«at-only firing.

What could be the advantage of this second .Na™ current? Such a higher
threshold Na* current on top of a sharp, lower threshold Vet current
could relax the requirements of the repolarization mechanism during a train
of spikes in response to some tonic depolarization. An Ix,_,.p-type cur-
rent could mediate later action potentials without the requirement that the
cell repolarize to below the threshold of an Ix,_¢-;y-type current - all that
is needed is that the cell repolarize to somewhere helow the threshold of
Ixa—rep. Simulation of repetitive firing (Figure 5.17) shows how Ix,_,cp
could furnish the major portion of depolarizing current for spikes after the
first spike of a train.

Allowing the cell to fire again from a higher threshold reduces the amount
of outward current needed to sustain multiple spikes. which in turn impose
less of burden on the cell’s machinery for maintaining the A+ concentration
gradient . In addition, the overlap of the activation and inactivation curves of
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Ing—rep results in an ill-defined threshold for repetitive firing, allowing for a
greater flexibility in modulating the frequency of firing by other mechanisms,
e.g. distinct actions of the various At currents.

On the other hand. when this current is blocked, there is a degenerate
response to large tonic stimuli, as will be demonstrated in Chapter 9 (ref.
Figure 9.9). As will be discussed later, whether this dependence of repetitive
firing on Ix,—,cp is physiological or pathological is not obvious.

What about the proposed In,_iqi7 As constructed, this current con-
tributes to a small after-depolarization during a normal spike that must be
countered by an outward current. In our simulations, this is accomplished by
Ipg. For now the function this slowly-inactivating N'at current might have
is not clear. Perhaps this current may be inhibited in certain circumstances,
allowing it to play a role in mediating repetitive firing. Such speculation
awaits further evidence of such a In,_s.; in actual cells. An important
related question is whether or not the In,_s,; (if it exists) is either physi-
ologically modulated by factors that do not affect the other currents, or is
its role in shaping the response of the cell a constant one?

In Chapter 9 the effect of Ix,_:,5 on repetitive firing will be compared
with that of other currents.
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Chapter 6

ESTIMATING Ca™™T
CURRENTS AND
ACCUMULATION OF ca?t
IN THE CELL

6.1 Introduction

This chapter describes the two calcium (C'a®*t) currents that have been de-
scribed for the HPC', I, and I¢, s, and possible mechanisms that establish
the concentration of free ('a?* in various regions underneath the cell mem-
brane.

For the current version of the model the goals set for the characteri-
zation of the C'a?t phenomena were quantitatively relatively modest and
based partly on heuristics. In summary, the desired behavior of the system
included :

o Generation of C'a®**-only spikes that were qualitatively similar to ac-
tual C'a®*-only spikes.

e Voltage and time-dependent changes in [C'«**] underneath the mem-
brane —[C'a*T|gpen1 and [C'a®F]spen.2 50 as to mediate two k' currents
(Ic and Ispp).

o Response to voltage clamp protocols in qualitative agreement with the
available data.
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The effect of the change in [Ca?T ] ey on Ec, was also considered,
assuming that E¢, is determined by the concentration gradient across the
membrane in the vicinity of the I, channels.

6.2 Calcium Current - I,

Many workers have reported C'a?* currents in HPC ([6]. [13]. [15]. [18]. [28],
[33], [38], [40]. [41], [53], [55]). The fast C'a®* current in the model, I¢,,
which underlies C'a®*-only spikes has kinetics similar to that of Ing—¢rig,
except that the curves for the gating variables are less steep and the time
constants are about one order of magnitude slower. These kinetics were
originally based on those used by Traub and Llinas [49], [48] in their hip-
pocampal and motorneuron models.

In deriving the kinetics of I, I attempted to reproduce current clamp
records from cells in which both Nat currents and Ipr were blocked with
TTX and TEA, respectively ([41]). In these cells slow C'a**-mediated
"spikes” were elicited by long depolarizing current steps. Spike threshold
was dependent on the holding potential prior to the current stimulus. Para-
doxically, the higher the holding potential the lower the threshold. At the
extreme , a holding potential of -70 millivolts resulted in elimination of a
regenerative response after the stimulus (though some inward current was
activated during the stimulus). On the other hand. a holding potential of
-40 millivolts resulted in a firing threshold for the ("a?* spike of about -30
millivolts. This behavior is contrary to what might be expected from a cur-
rent with activation/inactivation properties similar to a fast Na* current, in
which case a lower holding potential would cause the inactivation to be more
completely removed, thereby lowering the firing threshold. Segal and Barker
proposed that the observed behavior of the C'a?* spike was due to the action
of the transient Kt current I4 (Chapter 7.); when the cell was held at the
lower potential, the inactivation of I4 was removed so that the subsequent
depolarization allowed the activation I3 to counter the activation of Ir,.
Holding the cell at the higher potential inactivated I4. thereby allowing the
later depolarizing current pulse to elicit the ('a®** spike. The formulation
for the kinetics of I, was therefore tied somewhat to the description of I4
in the model. ,

Another action of I¢, that I attempted to reproduce was its apparent

“role in the slow depolarizing hump that is observed in some cells which
exhibit burst firing ([48]), as I mentioned in the previous chapter in the dis-
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cussion of In,_rep, function during repetitive and burst firing. At this point
the model does not exhibit such behavior. In fact, such a hump between -60
and -40 millivolts is inconsistent with the apparent I, (slow) activation at
approximately -40 millivolts. The supposed ('a®*-mediated hump is possi-
bly due to I¢, channels in the dendrites. rather than somatic I¢,. In the
dendrite current input local or distal to the site of the I, channels could
activate the channels without raising the soma voltage beyond 10 millivolts
or so above rest. Once activated, the dendritic C'a** conductances could
supply enough long-lasting inward current to cause the somatic hump in
question. In future studies with HIPPO, such conductances will be placed
on the dendrites to test this hypothesis (ref. Chapter 11).

Another requirement for the kinetics of I, was that this current not be
significantly activated during the normal action potential. This is based on
the assumption that the effect of ("'a®* blockers on the shape of the action
potential is due mainly to the subsequent inhibition of I~ and Iigyp. This
was accomplished by including two activation particles. s, in order to force
a delay in activation with depolarization, and likewise adjusting the curves
for s.. and 7, so that during the regular spike s would change little, while
during the sustained depolarization required to elicit the ('a?T spike s would
have enough time to move to the open position.

In addition, it was necessary to set the order of s to three so that sub-
threshold activation of s during regular spikes did not allow significant (in
terms of membrane depolarization) I¢,.

An important characteristic of C'a** spikes is the abruptly-biphasic repo-
larization (see [41]). The initial decay after the peak of the spike is relatively
slow. presumably due to residual I,. until the membrane potential reaches
about -10 millivolts. The membrane then rapidly repolarizes to the resting
(or holding) potential, as if I, was suddenly turned off.

Since this knee occurs well depolarized from the spike threshold (between
-40 and -30 millivolts), it cannot be due to complete de-activation of the
activation gating particle (s) that underlies the threshold.

Also, I was not able to adjust either the number of nor the kinetics of
the inactivation particle (u') so that a delayed yet abrupt inactivation could
account for the knee. However. by adjusting the steepness of the s.. curve so
that the effective steady state activation (in the hyvperpolarizing direction)
began to drop off around -5 millivolts. the start of de-activation as the
C'a**-only spike repolarized to this level contributed a moderate knee in the
simulated spike. With the present version of I, simulated C'a®* spikes
(Figure 6.1 have an analogous repolarization knee, but this is not as steep
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[ Gating Variable | z | 7 | a0 | V;(mV) |7 (ms) |
s (activation) 4 105 0.10 -24.0 2.0
w (inactivation) || -12 | 0.2 | 0.001 | -35.0 5.0

Table 6.1: Parameters of I¢, Gating Variables

and does not occur quite as depolarized from the spike threshold as some of
the reported Ca’*-only spikes.

In these simulations inactivation of the w variables contribute to the
repolarization knee. Future versions of the I, description may include
either more than one inactivation or activation gating variables, or may use
a gating variable with a more complicated state domain (e.g. more than two
stable states). Also to be considered is the possibility that in these reports
un-blocked outward currents also are involved, particularly because different
data suggest that the repolarizing phase of C'a®*-only spikes is quite long
and without the described knee (Storm, personal communication).

With present description of Ic-ale and C'a®*t accumulation underneath
the membrane the amount of C'a®* that flows across the membrane during
regular action potentials changes E¢, by at most 20 millivolts (see Iig-
ure 6.8. The C'«®** influx during the pure C'a®* spike. however. is enough
to change Ec, so that at the peak of the spike E¢, drops to about 10 mil-
livolts (ref. Figure 6.8). The reduction of E¢, during C'a**-only spikes is
a contributor to the reduction of I . and in fact is the limiting factor as
to the magnitude of the ('a®*-only spike. These results suggest that mea-
surement of Ec, ! during C'a**-only spikes can help validate the description
of C'a®* -accumulation underneath the membrane described here or suggest
alternative descriptions.

The equation for I, is -

- 2 .4 I
Ig, = 9caSca u’ca("‘ - Ec,)

where

ECG = .64 [IS

'For example by using hybrid clamp protocol in which the reversal potential for the
spike current is measured at different points of a C'a®*-only spike by switching from current
p p g
clamp to voltage clamp.
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Figure 6.1: C'urrent clamp simulation of (‘a®* spike. Non-linear currents
include I¢q Iygp.and 134.
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Figure 6.2: Steady-state curves (z, and w. ) for s¢, and wc, and effective
curves as would be measured by voltage-clamp experiments.

Table 6.1 lists the parameters for the I, gating variables. These are
the rate functions for the activation variable, s, of I, -
(V+200.5-4- F)
RT

ascq = 0.1 exp(

24 -10.5-4-F
Jeca = 0.1exp(( 24 ‘R)IC') > )

These are the rate functions for the inactivation variable. w. of I, -
(V4+33)0.2--12- F)

RT
-35-1)0.8.--12. F)

RT

Figure 6.2 and Figure 6.3 show the voltage dependence on the steady-
state values and the time constants for the r¢ 4 and yc 4 variables.

e = 0.001 exp(

3w.ca = 0.001 e,\'p((

6.3 Slow Calcium Current - Iq,g

Ic.s is a slow, non-inactivating current (e.g. [28]). While it has been re-
ported that this current is a true ('a** current. careful examination of the
data for I, s suggests that the reversal potential for this current is around
0 millivolts. implying that I¢,s is a mixed carrier current.
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Figure 6.3: Time constant curves (75 and 7,.) for s¢, and we,.
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Table 6.2: Parameters of I¢,s Gating Variables

The small conductance of this current (0.08 uS). combined with the slow
onset of its activation variable r (7, is reported to range from 30 to 100 mil-
liseconds) suggest that I, s has only a small functional role during repetitive

firing. At this stage of the model. such a role has not been demonstrated.
The equation for I¢,s is -

Icus = Geastoas(V — Ecys)
where

Ec,s = Omillivolts
Jeas = 0.0845

Table 6.2 lists the parameters for the [,y gating variables.
These are the rate functions for the activation variable. ». of I, -

(V4+30)0.5-25- F
nycas = 4.0exp RT

-30-1)0.5-25-
.51.,@5:4.Oexp(( 30 R)g,) 25 F)
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Figure 6.4: Steady-state curve (r for r¢,s.

Figure 6.4 show the voltage dependence on the steady-state value for
the x¢,¢ variable.

6.4 Mechanisms Regulating [Ca®*] i1 and [Ca?*|shen 2

To recapitulate. there were three reasons to consider the accumulation of
('a®t underneath the membrane as a result of the influx of C'a?*t currents:

1. Activation of Iy p is presumed to be dependent on the influx of Ir,.
2. Activation of I¢ is presumed to be dependent on the influx of I¢,.

3. The very low resting value of [C'a®*];, (typically assumed to be about
50nM) and the low resting value of [C'a**],,; (on the order of a few
mM ) implies that the influx of Ca®?* from /¢, can significantly change
the ratio of the extra-cellular and intra-cellular [C'a**] . changing Ec¢,.
resulting in negative feedback via reduction of the driving force for the
C'a®* currents.

For the activation of Iyyp and I~ , the observed C'a?* dependence is
assumed to involve some mechanism between free intracellular C'a®t and
the individual channels * The simple relationship that is used in the present
model assumes that activation of both Iy p and I is (partially) depen-
dent on ('a** -binding gating particles in these two types of channels. The

2Many versions of this mechanism have been proposed ([19]). In this study a fairly
simple mechanism is employed.

126




binding of C'a®* to the gating particles is reversible and the behavior of the
particles obey first order kinetics (Chapter 7).

The time course of I and 4y p set some constraints on the kinetics of
Ca?t accumulation underneath the soma membrane. As shall be discussed
in detail in Chapter 7, ('a**t-mediated activation and inactivation of J¢- must
be sudden and complete, in accordance with the sudden onset of I and the
apparent removal of I prior to subsequent spikes in a spike train. Given
the sigmoidal relationship between the C'a®t -dependent gating particles
and the log of the concentration of Ca?* (ref. Chapter 7, Figure X). this
means that the [C'«®*] that mediates I must rise and then fall quickly
with every spike. On the other hand, C'«*t-mediated activation of I4yp
is gradual. getting stronger with each spike in a train, and then gradually
decaying over one second or longer.

In order to accommodate these two patterns of Ca?*-mediated behavior,
a two-region shell, single core model was developed. In this model both I,
and I channels communicate with a distinct part of a shell underneath
the soma surface. shell.1. I yp channels, on the other hand, communicate
directly with the remainder of the soma shell, shell.2. C'a®t flows between
the two shell regions and between each shell region and the soma core by
simple diffusion.

The physical relationship between the different soma shell regions, the
relevant channels, and the soma core is illustrated in Figure 6.5. Figure 6.6
shows a view of the soma membrane surface illustrating the proposed seg-
regation of C'a** channels and I and Iygp channels. Figure 6.7 shows the
compartmental model based on this arrangement which is used to determine
the concentration of ('a®** in the shell regions.

The mode] therefore includes a shell of thickness dgj¢;; on the intracellular
face of the membrane. A portion of this shell is assigned to shell.l and the
remainder is assigned to shell.2. The concentration of free Ca®* in shell.l,
[Ca**)shenn1s is a function of the two Ca*t currents, Ir, and I¢,s and
movement of ('a®*t between shell.1 and shell.2 and between shell.1 and the
core. Likewise, the concentration of free ('a®* in shell.2 is determined by
the flow of C'a®t between shell.l and shell.2 and between shell.2 and the
core. The concentration of ('a®** in the core is assumed to be a constant
since the volume of the core is much larger than the volume of the two shells.

The movement of Ca®t between the three compartments can be de-
scribed as follows. Let X. X,.and X3 equal the amount of C'a®* (nanomoles)
in shell.1 (compartment 1), shell.2 (compartment 2). and the core (compart-
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Figure 6.5: Diagram of localization of Iy Ieys. Ie. and 14y p channels in
distinct regions of the soma membrane. as postulated by the model. This
scheme assumes that the Icy . Icas. and I channels are all in close proxim-
ity (i.e. shell.l). such that the immediate change in [C'a®*] in the vicinity
of the ("a®* current channels when these channels conduct is sensed by the
I¢- channels. Likewise. the T4 p channels are assumed to reside in a rela-
tively distant area of the soma membrane. such that the rise in local [Ca®]
around these channels is delayed from the onset of the ('q2+ currents.
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seen looking onto the surface of the soma. The effective area for diffusion
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model A;; was lumped with Dj; to vield an effective diffusion constant for
the entire flow between the regions (see text). The empirical adjustment of
this metric to give the desired kinetics is then equivalent to adjusting this
length (i.e. the amount of communicating surface area). Also. the dotted
line does not represent a distinct physical barrier but rather a boundary for
approximating the continuous diffusion case with compartments.
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Figure 6.7: 3-compartment model of ('a?* influx and accumulation, based
on structure suggested in Figures 6.5 and 6.6. Parameters of this model are
given in the text.




ment 3), respectively. In the same manner let V4, 15, and V3 be the volumes
(ml) and Cy, C3. and C3 be the concentrations of C'a** (mM) in the three
compartments. Let Jyz, Ji3 and Jo3 be the flux of C'e®t (nanomoles per
second per square cm) between shell.1 and shell .2, shell.1 and the core,
and shell.2 and the core, respectively. and let D;; be the diffusion constant
(cm per second ) for the flux J;;. The area for C'a** diffusion between any
two compartments ¢ and j is given by A;; (square cm).

The change in the amount of C'a** in each of the compartments is as
follows:

y _ ) Ico + Icas
X1 = —JipAn - JizAiz - 5 10°F
X2 = JipAiz — Ja3Ays

X3 = Jizdiz + JazAys

where F' is Faraday’s constant and the currents are in nano-amps. The
two C'a®t currents contribute only to the change in the amount of C'a?* in
shell.1. There is a factor of 2 in the ('a®* current term since each C'a®* ion
carries two charges, and there is a minus sign preceding this term, since the
inward currents are defined as negative.

The flux of Ca*t from compartment ¢ to compartment j is given by
Fick's law, as follows:

Jij = Dij(Ci = C5)

Since the concentration in compartment 7, (', is given by X;/17, then,
incorporating Fick’s law, the time derivative of the concentration of each
compartment is as follows:

) X,
1 I ‘a I ‘aS
= 1 (—A12D12(C'1 = () = Ai3Dy3(Ch = C3) = __C_‘__j_’_Q__S_)

2 x 103F

-

1

¢, = ==
1
= E(AMDI?(C'I - (y) = A3 Dos(Cy — CB))
V3
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= %(‘413D13(C1 — ('3) 4+ A3 Dy3(Cy - Ca))

The volume of the shell is determined by dg;,.y and the surface area of
the soma. shell.l is set to cover 0.1% of the soma surface, with shell.2
comprising the remainder of the surface. If A equals the surface area of the
soma (square cm). the areas for C'a®*t flow between each shell region and
the core are given by:

I

Az 0.0014
Az = 0.9994

The volume of each shell region is given by:

I,] = A]Sdshell
Vo = Agsdspen

The volume of the core is set equal to the soma volume, since dgpey is
much smaller than the soma radius.

D13 and Dj3 are equal, since each shell region is assumed has the same
proximity to the core. Let

Di3= D33 = Dy

D15 can be considered as equal to the previous two diffusion constants
without any loss of generality since the value for Ay, may be adjusted to
allow the shells to equilibrate much faster with each other than with the
(low concentration) of the core. This area is the effective diffusion area for
C'a*t between the (intertwined) regions of the shell. For convenience, let us
define

shosh = 412012

The previous expressions can now be used to give the following equations

for Cy, (5. and Cs:

3 1 Dy Ica + Icas
G o= dnen [_ 0.001.4 (1~ €)= Dereor(Cr = o)+ e S 05 F
: 1 hesh }

Y o= | Sh=sh e oy L Dy (Cy —
Cy don [0.999/1((1 Cy) heer(C2 = (3)

~ ' Ds —cr v
(3 = —‘%—‘[Axs(cl — )+ Ays(Cy — ('3)]

132




Now we assume that

Vs
Do >> 1second
$0

Cg ~ 0
and (73 is set to a constant 50 nM. At each time step [("a®¥]sheny and
[Ca*t]hen.2 are calculated by integrating the above differential equations.

The relevant parameters were adjusted so that, given the previously
estimated kinetics for I, during single and repetitive firing the concentra-
tions of C'a®* in the two sub-membrane compartments had the time courses
and relative magnitudes discussed earlier in this section. An additional con-
straint was that [Ca®*];per.1 could not change so much during either normal
action potentials or, especially, ('a®* -only spikes so that E¢, would be re-
duced too quickly, wiping out the C'a’* driving force before the spike was
complete.

The following parameters satisfied the reported constraints:

ds},eu = 0.25[111]
DYy = 2.0 x 107 (cm® /millisecond)
Dgp—er = 4.0 x 10'7(cm/millisecond)

The remaining parameters needed to calculate the concentration of intra-
cellular C'a?* derive directly from the previously presented soma dimensions
and the C'a®* current kinetics.

This description is somewhat similar to that used in other modelling
studies ([48]. [2]). in particular the idea that local accumulation of ('a?*
in a limited space underneath the membrane can mediate other processes.
and that the kinetics of the ('a®** in this region is governed by first-order
mechanisms.

Figures 6.8 shows how the concentration of ('a®* changes in the two
shell regions during a single action potential. Figures 9.19, 9.23, and 9.24
show how the concentration of Ca®t changes in the two shell regions during
a train of action potentials. Again in Chapter 7 the relationship between
these concentrations and the activation of I and Iigp will be defined in
more detail.
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Figure 6.8: Top - Simulation of normal action potential. Top Middle - [,
during spike. Bottom Middle - ([C'a®*shein during spike. Bottom - E,
during spike.

6.5 Calculation of E,

As mentioned earlier Ec, was calculated at each time step from the Nernst
equation. using the current [Ca®*| 4.1 and the fixed [Ca®*],.; as the rel-
evant concentrations for the Ec, equation. The change in [C'a“]sheu,] and
E¢, during a single action potential is illustrated in Figure 6.8. [Ca® ) hn
and Ec, during a Ca?*-only spike is shown in Figure 6.9. During the C'a?+-
only spike the subsequent fall of E¢, contributes to the reduction of I,
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6.6 Discussion

The C'a?T system parameters described here are highly speculative but are
based on valid physical mechanisms. The net result is that the model suc-
cessfully reproduces a wide variety of C'a®*-related behavior. Many of the
parameters were developed in parallel with the development other parame-
ters (e.g. Kt current parameters, in particular those defining I and Iyyp).
and this interdependence constrains the overall problem.

For example, including the two shell regions may appear somewhat arti-
ficial; yet given the nature of I, ® (as determined by ('a**-only spikes and
other relatively independent evidence) the characteristics of these compart-
ments are constrained by (a) the dimensions of the soma; (b) the amount
of I, entering the cell during C'a*t-only spikes. which in turn effects Ec,.
providing negative feedback; (c¢) the amount of I, entering the cell during
regular action potentials; and (d) the a prior C'a®**-mediated characteristics
of Ic and Iayp.

In sum, modification of any one parameter typically resulted in a widespread
effect due to the numerous feedback loops in the system, and these loops
helped to constrain the overall modelling problem. (learly alternative mech-
anisms may be suggested for the model features described here (e.g. more
complicated kinetics for the C'a®**t-mediated gating particles of I or Ligp).
but at the very least such alternatives would have to be as physically plau-
sible as those suggested here and would also be subject to the same con-
straints, since these constraints are inherent in the syvstem heing modelled.

°In the results presented here the contribution of /¢~ to model behavior is minimal.
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Chapter 7

ESTIMATING i+
CURRENTS

7.1 Introduction

This chapter presents the six A'* currents in the model - Ipg, I4. Ic,
Lsgp. Ing. and Ig. We begin by reviewing the strategy for evaluating the
K%t currents data, and the guidelines that constrain the development of
the model descriptions. Next. the classical “Delayed Rectifier” K+ current,
Ipr, and the so-called “A” '+ current, [ 4. are described. Following this, a
brief description of the C'a?*-mediated w gating particles incorporated in the
model description of I~ and Ty p is presented, followed by the discussion of
these two C'a**-mediated A+ currents. The chapter closes with descriptions
of two more At currents, Iy; and Ig. In this chapter the action of each of the
K™ currents on specific features of the single spike and/or repetitive spikes
will be demonstrated. primarily with comparisons between simulations and
data.

7.2 Review of Strategy for Evaluating 't Cur-
rents

As described in Chapter 2, forming a plan for building the model was not

trivial, given that the quality of data for the currents varied greatly and that

the action of some currents was mainly seen in concert with other currents,
thereby complicating the parameter estimation for a (presumably) unique
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conductance.

The data for K+ currents ranges from complete to marginal, in terms of
the voltage-dependence of each current’s kinetics, the absolute magnitude
of each conductance, and the relationship of a given current with other
factors (in particular intracellular C'a®*). In addition, for some currents
(e.g. T4 and I¢), although a plethora of data may be available much of it
is inconsistent with each other. It was very difficult to sort through this
body of information and decide what data could be applied, which should
be discounted, and what assumptions should be used to fill in the gaps.
Often consultation with Drs. Adams and Storm provided some insight for
this problem.

In order to make progress a set of references had to be chosen as a “gold
standard”, particularly when data from different reports were inconsistent.
The primary standard that I used was the data from Storm, 1986. Using
this data as a first reference had the advantage that I could both examine
the original data of Dr. Storm’s and, when necessary, obtain insights from
him as to the implications of the data. In this chapter and others many of
the comparisons between simulation and experimental data are done using
data from this report.

In summary, the data for Ipg, I4. Iy, and I is more complete than
that for I and I4gp. For Ipgr and I4. estimations of steady state acti-
vation/inactivation parameters from voltage clamp are available, although
the associated time constant data is not as complete. Also, there is strong
evidence as to these currents’ specific roles from various current clamp pro-
tocols. On the other hand, much of the data used to evaluate these currents
are taken under conditions in which several other currents are simultane-
ously active, making it difficult to separate each contribution. For In; and
I the situation is similar in that there is good data on steady state activa-
tion (the evidence shows that these currents do not inactivate) from voltage
clamp studies, with sparse estimates on the time constant parameters. How-
ever, evaluating the behavior of Iy and I is somewhat easier than doing so
for Ipp and 14 since these currents are activated in relative isolation with
respect to the other currents.

In the case of Ir- and Isyp, little voltage clamp data is available for
either their steady state or temporal properties of any presumed activa-
tion/inactivation parameters. In addition, describing these currents is com-
plicated by the fact that they are presumably mediated by intracellular
Ca®*. Little quantitative data is available on this interaction for either cur-
rent, and there is at present no consensus among workers in this field as to
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the mechanisms involved. As introduced in the previous chapter and which
shall be expanded upon later, I have made the simple assumption (like that
used by other workers, e.g. [48]) that I and [4yp are dependent on a
power of the concentration of (‘a®T either directly beneath the membrane
or in a secondary “compartment™. This is a highly speculative model. as
discussed in the previous chapter. The parameters of this description are
based primarily on heuristics, specifically the simulation of the fAHP and
the AHP that is observed in HPC. Making the situation more difficult is the
fact that there are no protocols to date in which I or I4gp are activated
without the concomitment presence of other currents, thereby inextricably
tying the behavior of any set of estimated parameters for these currents to
those of other currents.

In light of the above situation. I developed the present description of the
Kt currents in the following way !:

1. Begin with the data on Iy and Ig. with estimates on the time con-
stants derived from the data and the HH single barrier model. For I
its parameters did not affect the later development since this current
is only activated at potentials lower than that generally considered in
the simulations.

2. Develop an estimation of Ipg based on the available voltage clamp
data and the simulation of data on action potentials in which Ipp is
presumably the only repolarizing current.

3. Develop an estimation of I 4 based on the available voltage clamp data
and simulation of action potentials in which presumably the only At
currents are Ipg and I 4.

4. Re-evaluate the description of Iy with simulations that reflect the
contribution of Iy; to the action of Ipp and 14.

5. To a first approximation. the actions of I~ and I,y p are independent
of one another. I is transient over a time span of a few milliseconds
during the spike, and the evidence indicates that this a large current.
On the other hand. I 4 p activates more slowly, is small, and may last
from 0.5 to several seconds. However. since both these currents are

'For each I'* current, as with the Na® and ("a®* currents. building the description of
the current began with estimating the number and tvpe of activation and/or inactivation
and/or C'a®*-mediated activation variables governing the conductance.
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dependent on C'a*t entry, their estimation was tied to the description
of Ic, and the mechanisms regulating [Ca?F .01 and [Ca*Fhen.s-
Therefore, while the behavior of the I or I 47p descriptions could be
evaluated independently, whenever the ('a?* mechanisms were modi-
fied to alter one of the current’s action, the effect of the modification
on the other current had to be checked.

6. As the descriptions for I and Iggp evolved, the impact of a given
version on the behavior of the other currents had to be continually
re-evaluated. At times, this feedback resulted in modifications of one
of the other currents. In these cases modifications were made which
stayed within the envelope of parameters that had been already estab-
lished. For example, modification of some aspect of I might indicate
that the parameters of Iy,_i; had to be changed. However, this
change could not alter the aspects of In,_¢,;, that had been fixed by
earlier simulations (e.g. the threshold of I\, _;.i,).

As described in Chapter 5, the estimation of the At currents involved
many iterations, many of which caused re-evaluation of either the Na™
currents’ or ('a®t system parameters. The linear parameters of the model,
however, were kept constant, since these parameters were established based
on data from cells in which all non-linear currents had been inhibited.

As mentioned earlier, certain agents are assumed to mediate selective
blocking of specific currents, in accordance with the generally accepted con-
clusions in the literature. These agents and their actions are summarized in
Table 7.1. Any blocking agent used experimentally probably does not act
with perfect selectivity, particularly given the wide variety of mechanisms
that have proposed for their action (e.g. receptors-site mediated, blockage
of the channel lumen, secondary block of C'a®*-dependent K+ channels via
block of C'e®** channels). However, as a first approximation, perfect selec-
tivity is often assumed when evaluating the data (for example application
of 4-AP blocks only I4. leaving the remaining currents untouched).

7.3 Delayed Rectifier Potassium Current - Ipp

The delayed-rectifier potassium current is similar to the classical delayed
rectifier for the squid axon as described by Hodgkin and Huxley. The pa-
rameters for this current were initially taken from [12]. who identified Ipr
in voltage clamp studies as a large. slowly-activating (~ 100 milliseconds),
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Current || NA TEA 4-AP ACH Ba Musc Ca**-
blk
Ipr ++ +7(1) | 47 (1)
T4 +(2) |-(3) ++
I ++ (4) +4 (4)
Lygp | ++ -(4) ++ (4)
(2,4)
In ++ (1) | ++ () |- (1)
o | ++ () )

Table 7.1: Typical chemical agents used to block specific currents, as re-
ported by different investigators. (+) indicates reduction, (++) indicates
blocking, (-) indicates no effect. NA = Norepinephrine. TEA = Tetra-ethyl
ammonium, 4-AP = 4-Aminopyridine, Ach = Acetylcholine, Ba = Barium,
Musc = Muscarine, Ca?*-blk = C'a?*-blockers (e.g. Cadmium, EGTA). (1)
- [16]. (2) - [39]. (4) - [30]. (3) - [43]

very-slowly inactivating (~ 3 seconds), TEA-sensitive k't current. How-
ever, the voltage clamp was only taken to -35 millivolts, so it is possible
that only the beginning of the Ipg characteristics were measured. In par-
ticular, I propose that the time constant for activation, 7.. drops to about
1-2 milliseconds at membrane potentials greater than -20 millivolts.

My description of this current is based on the data of [42]. specifically
the reported steady-state activation/inactivation curves. In the model Ipg
is constructed so that it may function as a major repolarizing component
during the action potential. Such a role is indicated by current clamp ex-
periments in which the spike is quickly repolarized by a TEA-sensitive com-
ponent in the presence of C'a®** blockers. These blockers, which disable the
C'a*t currents. presumably also disable any C'a*-mediated A+ currents, in
particular Io. In summary, the main actions that I determined Ipg served
included:

e Repolarize the action potential fully when all other A't currents have
been blocked

¢ Reduce in the presence of other repolarizing currents so that no extra
hyperpolarization is observed
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e Mediate the medium after-hyperpolarization (mAHP). independent of
any other Kt currents

¢ Repolarize the cell sufficiently during tonic stimulation so that repet-
itive firing at the threshold of Jx,—¢riy could occur

¢ Activate independently of the width of spike since the mAHP is unaf-
fected by the slower repolarization with 4-AP or C'«?* blockers

As will be discussed shortly, there is evidence that I plays a major role
in spike repolarization under certain conditions, and in fact it has been sug-
gested that this current is the major repolarizing current in bullfrog sympa-
thetic neurons. Since action potentials are quickly repolarized in hippocam-
pal pyramidal neurons under conditions that would eliminate /. however,
it was thought that the characteristics of Ipr would allow it to reprise it
classical role when I has been disabled.

7.3.1 Results

This effort was successful in simulating the TEA-sensitive repolarization of
the action potential, as shown in Figure 7.1. In addition, this formulation
of Ipgr kinetics was able to simulate the voltage clamp results as reported
by [42].

Three activation particles (x) were used in the formula for the Ipg con-
ductance so that activation of this current would he delayved after the initial
rise of the action potential. A single inactivation particle (y) was used since
it has been reported that this current does indeed inactivate ([42]). However,
the time constant for y is quite slow over most of the physiological range
of membrane voltages (ref. Figure 7.3, so that during the action potential
and afterwards. the demise of Ippg is primarily due to removal of activation
rather than inactivation. Removal of Ipg by inactivation after the spike is
consistent with the mechanism of Ipg in the squid axon as described in [21],
[20]. [22]. [23].

The valences and the ‘%,J‘.D}? and 1'1_.y.DR for » and y was determined
by the 2. and y.. curves reported by [12]. In the case of the » particle the
third power of v, ¢, was matched to the [42] data.

The curve for 7, pp was skewed to the left (5, pr = 0.9) so that Ipgr
would remain activated after the spike long enough to cause the mAHP, and
so that 7, pr was consistent with the reported values of approximately 180
milliseconds, V' < -30 millivolts, approximately 6 milliseconds otherwise.
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l Gating Variable I z L'y [ ag V% (mV) | 70 (ms) I
z (activation) | 12| 0.95 | 0.008 -28.0 0.5
y (inactivation) || -9 | 0.8 | 0.0004 | -45.0 6.0

Table 7.2: Parameters of Ipgr Gating Variables

The curve for 7, pr was skewed to the left (4, pr = 0.2) in order to approx-
imate the reported approximate value of 4 seconds for y (between -50 and
-30 millivolts, [42]).

On the other hand, in order that activation be independent of the width
of the spike, as described above, it was necessary to set the base rate for
7r,pR to 0.5 milliseconds. Later in this chapter and Chapter 10 the role of
Ipgr in concert with 14 and I¢ will be demonstrated, including examination
of Ipgr’s role in mediating the mAHP.

Another parameter that was important to set in regards to Ipp was its
reversal potential. The standard value of -85 mV for Ej caused Ipp to
be too strong near threshold, specifically, on repolarization of the spike the
Ipr wiped out the ADP seen in the data. To reconcile this problem without
significantly altering the time course and strength of Ipr during the initial
stage of the spike repolarization and the later mAHP, it was necessary to
set a reversal potential for this current distinct from the general Ex. Epgr
was set to -73 millivolts, which proved successful in obtaining the desired
behavior. This was felt to be a reasonable adjustment, since (as mentioned
in Chapter 2) a given channel is not necessarily perfectly selective for one
species of ion — an Eppr of -73 mV implies that Ippg is slightly contaminated
with an occasional NaT or ('a®T ion hitching along with the predominantly
K+ flow.

All Ipr parameters were determined at 30°C.

The equation for Ippg is -

Ipr = gprR2DRYDR(V = EDR)

where
yDR = 07 /IS

Epr = -73mV
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Figure 7.1: A. Action potential with ("a?* blockers and 4-AP in external
medium. B. Current clamp simulation of (A.). . Main currents in simula-
tion. including Ipg. Ixazivige Ixvocrpoand Ingoigi.
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Figure 7.2: Steady-state curves (r» and y~. ) for rpr and ypgr and effective
curves as would be measured by voltage-clamp experiments.

Table 7.2 lists the parameters for the Ipg gating variables. These are
the rate functions for the activation variable. xr. of Ipp -

(\'+28)0.95-12-F)

RT

(~'28-—V)0.05-12-F)
RT

These are the rate functions for the inactivation variable. y. of Ipg -

ar.pr = 0.008 exp<

JI.DR = 0.008 exp(

RT
-45-1)0.2--9- F)
RT

Figure 7.2 and Figure 7.3 show the voltage dependence on the steadv-
state values and the time constants for the rpr and ypgr variables.

T4+45)0.8- -9
()H‘DR:O'OOO-texP(“ +43)0 ]-‘)

Jy.pr = 0.0004 exp((

7.4 A-Current Potassium Current - [

I4is a transient A't current whose classical role. first defined for molluscan
neurons. is to modulate excitability. In particular. this current is selectively
blocked by 4-AP. and the convulsant action of this drug is attributed to its
inhibition of 1.
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Figure 7.3: Time constant curves (7, and 7,) for zpr and ypr.

Several workers have reported an I4 in HPC. However. the data obtained
by voltage clamp differs somewhat in different reports. and the functional
effect of I4 (inferred from current clamp stimulation with and without 4-AP
or other I -agonists) varies considerably. In general, Iy has been reported
to modulate the width of the action potential and influences the excitability
of the cell. References which report voltage-clamp measurements of this
current include Segal and Barker, 1984 [42]. Halliwell et al. 1986 [17]. Zbicx
and Weight. 1985 [54]. Gustafsson et al, 1982 [14], and Segal et al. 1984 [43].
In addition. the action of I4 on spike repolarization is reported in Storm.
1986b [47]. Some of these reports will now be summarized.

Segal et al measured I4 in cultured rat hippocampal cells (subfield not
specified). Making their measurements at 21- 24°C, they report that [, is
half-inactivated at rest (-70 mV'), has a V7, for activation at about -20 to -30
mV. and (apparently) is described by ba? kinetics, where b is inactivation
and a is activation. The maximum conductance for [4 was estimated to
be greater than .5 uS. The time constant of decay at (24°C) is about 24
ms. independent of voltage. The time constant to peak was within 10 ms.
Application of 4-AP lowered spike threshold from -44 to -50 mV'. but this
procedure did not broaden the spike. 2.

Interestingly, the current clamp record shown in this report demon-
strated spikes with a) a high threshold (-50 to -44 millivolts. as compared
to typical thresholds of about -55 millivolts) and b) small amplitudes. peak-
ing at about +5 millivolts. as compared to typical action potential peaks of

2This is contrary to the data of [47] although it is possible that in the [43] report they
did not look at the spike carefully enough.
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approximately +20 millivolts. There are several implications of this data.
First, the lowering in threshold with 4-AP implies that for a spike-producing
stimulus that is not too large, over a voltage range of about 5 millivolts and
for almost 10 ms there is little inactivation of the threshold Na%t current.
If this “trigger” current is the spike initiation current here. then this means
that at either threshold the steady state inactivation is practically complete.
For no inactivation to take place during the approach to the higher threshold
spike, this means that the time constant for inactivation of the N«* current
in this range must be greater than 20 ms. Likewise, the fact that 4-AP does
not change the amplitude of the spike, but (probably) changes (slightly)
the width of the spike implies that either a) in the control I4 transiently
activates and is gone during the upstroke of the spike, only to reactivate
during repolarization in order to contribute to the repolarization, or b) I4
is present during the entire spike, but the slower onset to the threshold as
mediated by 14 allows stronger activation of the Nat current, which in turn
cancels out the effect of 74 during the upstroke and peak of the spike. The
first possibility is not likely because removal of inactivation for I4 cannot
take place during repolarization since steady state inactivation is complete
at -50mv.

Halliwell et al. investigated C'Al cells in slices of rat and guinea pig
hippocampus, measuring, at 28°C. the effects of dendrodotoxin (DTX) and
4-AP. They report an 14 which is sensitive to both these agents, has a
very fast onset and an activation curve that starts near -60m\. The DTX-
sensitive component was .5nA at a -40m\ clamp voltage (v-holding = -
76mV). Inactivation starts at about -60 mV, and was linear to -100 mV.
The time constant for decay of the DTX-sensitive component was 20 ms at
-40 mV, and seemed to slow at lower potentials: a faster decayving outward
component which was resistant to 4AP or DTX (perhaps I¢) decays within
about 10 ms.

Gustafsson et al measured guinea pig C'A3 pyvramidal cells from slice at
33°C or 26° C. This report shows activation and inactivation characteristics
similar to that reported for the cultured cells in Segal et al, 1984, with a
peak current at -30 mV of 5 nA. A faster decaying outward component of
similar size remained after application of JAP. and this component may in
fact have two components; two tinie constants of the faster component were
measured - about 10ms and about lIsec ( 26° C'). This might partially reflect
contribution of I .

Zbicx and Weight also measured guinea pig ("A3 pyramidal cells from
slice, this time at either 32°C or 33° C. These workers report a decay time
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constant = 200 - 400 mS. The activation to peak was within 10 mS, indepen-
dent of voltage. Peak current at -35 mV was 4 nA. Threshold for activation
of I4 was -55 to -50 mV. Tt appeared that above about -40 mV inactivation
had two components, a fast one with a time constant of about 100 mS and
~ (after about 100 mS) a slow one of about 380 mS. Lack of {-AP-sensitive
tail current below -54 mV suggests that this current deactivates very rapidly
upon hyperpolarization.

Finally. Storm reports that I 4 mediates a rapid onset, pre-spike transient
(several hundred milliseconds) outward rectification that delays onset of
repetitive firing for a narrow range of tonic stimulus strengths. This I4 does
not, however, alter the frequency of firing once the spike train starts. This
data implies that under the reported protocol I inactivates during the IR
(initial ramp). These experiments were done with Mn, which presumably
will block the C'a?* currents or the Ca?t-mediated currents. Also. [47],
reports that 4-AP broadens the repolarization of single spikes, but does not
effect the fAHP or the mAHP. Under some protocols addition of 4-AP (or
Cd) caused a second (almost twice as broad) spike to be fired spontaneously
within 10 milliseconds of the first spike. The second spike was also about
5-10 millivolts smaller and lacked a fAHP under either 4-AP or ("d. Pre-
hyperpolarizations (-80mV for 900ms) enhanced the effect of 4-AP on spike
repolarization; pre-depolarizations (-38mV for 900 ms) reduced effect by
about half that of the hyperpolarizing protocol, implying that inactivation
is not complete at -58mv. In the current study the records from this report
[47]. are the primary ones used to compare the simulations with actual data.

A related report describes the putative role of 14 at the post-synaptic
terminal. Application of 4-AP has been described as enhancing synaptic
transmission [43]. Irregular firing subsequent to the IR reported by [16]
may therefore be partially due to enhancement of spontaneous EPSPs from
inhibition of synaptic I4.

To summarize. the so-called I4 has been reported by different investiga-
tors to:

1. Delay onset of spike
2. Raise spike threshold

3. Mediate transient "initial ramp” (strong outward rectification) prior
to initial spike in response to tonic stimulus without strong role during
later spikes (particularly frequency of later spikes)
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4. Selectively modulate repolarization of single spike without effecting
mAHP or sAHP and have a minimal effect on spike amplitude

The data includes fairly complete measurement of the steady state acti-
vation and inactivation curves, but there is not complete data on the voltage
dependence of the appropriate time constants. Current clamp data showing
the previously mentioned effects of 14 are available, however. Therefore in
order to simulate this current 1 began with the reported steadv-state curves
and then derived functions for the time constants that were consistent with
the voltage clamp data and that reproduced the current clamp results.

One of the key features of this current that had to be matched in the
simulations was the fact that during the spike the appearance of the I 4 was
exquisitely timed to influence just the main part of the repolarizing phase.
As previously mentioned, experiments in which spikes were elicited with
and without 4-AP showed that blockage of I4 did not influence the ADP or
mAHP ([47]). thus indicating that the /4 was fully deactivated/inactivated
within a few milliseconds of its onset.

7.4.1 Results

The results for the derived kinetics are shown in Figure 7.9, which includes
the reported steady state curves for the activation variable » and the inac-
tivation variable y.

The channel was configured with three activation gating particles () to
obtain a delay in activation with depolarization. The effect of I4 is seen
only 1 to 2 milliseconds after the peak of the spike. Raising the power of 2
was necessary to obtain the required delay consistent with the position of
T curve on the voltage axis, as reported by [42].

On the other hand, given the y.. curve in the same report. no delay was
necessary for the inactivation of 74, and only one y variable was used in the
channel formulation.

Figure 7.4 illustrates the contribution of Iy on the repolarization of the
single action potential in the presence of ('a*t blockers (which will inhibit
the contribution of I¢ on the repolarization) and without these blockers.
The experimental data was taken by measuring the response with and with-
out 4-AP.

Figures 7.5, 7.6, and 7.7 illustrate the data from [46] and simulations
of this data which demonstrate the role of I4 in mediating the IR prior
to repetitive firing. In the simulations the IR is very sensitive to stimulus
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[ Gating Variable ” z l 4 l ag Vi (mV) l 7o (ms) l

r (activation) |/ 3.5 08| 0.2 -52.0 1.0
y (inactivation) || -7 | 0.4 | 0.0015 -72.0 24.0

Table 7.3: Parameters of I3 Gating Variables

strength, and that beyond a narrow range this response is quite diminished.
This characteristic is consistent with data taken under similar conditions
(Storm, personal communication).

The reported action of 14 related to the increased excitability of the cell
with the addition of 4-AP is shown <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>