Technical Report 1099

Generating Circuit
Tests by Exploiting
Designed Behavior

Mark Harper Shirley

MIT Artificial Intelligence Laboratory

Generating Circuit Tests
by Exploiting Designed Behavior

by

Mark Harper Shirley
S.B., Massachusetts Institute of Technology, 1983
S.M., Massachusetts Institute of Technology, 1983

Submitted to the
Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science

at the

Massachusetts Institute of Technology
December, 1988

Copyright, Massachusetts Institute of Technology, 1988

Signature of Author

Department of Electrical Engineering and Computer Science
December 14, 1988

Certified by

Randall Davis
Associate Professor of Management Science
Thesis Supervisor

Accepted by

Arthur C. Smith, Chairman
Committee on Graduate Students

Generating Circuit Tests by
Exploiting Designed Behavior

Mark Harper Shirley

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science at the
Massachusetts Institute of Technology, September, 1988

Abstract

Generating tests for sequential devices is one of the hardest problems in designing
and manufacturing digital circuits. This task is difficult primarily because internal
components are accessible only indirectly, forcing a test generator to use the surround-
ing components collectively as a probe for detecting faults. This in turn forces the
test generator to reason about complex interactions between the behaviors of these
surrounding components. Current automated solutions are becoming ineffective as
designs grow larger and more complex. Yet, despite the complexity, human experts
remain remarkably successful, in part, because they use knowledge from many sources
and use a variety of reasoning techniques. This thesis exploits several kinds of expert
knowledge about circuits and test generation not used by the current algorithms.

First, many test generation problems can be solved efficiently using operation re-
lations, a novel representation of circuit behavior that connects internal component
operations with directly executable circuit operations. Operation relations can be
computed efficiently for sequential circuits that provide few operations at their inter-
faces by searching traces of simulated circuit behavior.

Second, experts write test programs rather than test vectors because programs are
a more readable and compact representation for tests than vectors are. Test programs
can be constructed automatically by merging test program fragments using expert-
supplied goal-refinement rules and domain-independent planning techniques from Al.
Additional leverage arises from giving the test generator knowledge of the capabilities
of the tester hardware.

I describe two implemented programs based on these ideas, drawing examples from
a simple microprocessor.

Keywords: Artificial Intelligence, Circuit Testing, Test Generation, Knowledge-
based Systems, VLSI.

Thesis Supervisor: Randall Davis
Title: Associate Professor of Management Science

il

Acknowledgments

Many people contributed to this work and to the productive and fun environment
that made it possible.

I owe the greatest debt to my advisor Randall Davis, who propelled me over many
hurdles during my graduate career and who spent patient hours showing me how to
question and how to explain and to Gordon Robinson, whose ideas about testing are
the bones supporting the flesh of this thesis and whose unfailing good humor was
always a delight. Thank you both. I hope I have learned a small fraction of the
lessons you were teaching.

My readers Ramesh Patil and Paul Penfield provided incisive criticism and im-
proved the thesis and its presentation immeasurably.

My friends Rail Valdés-Pérez, Jeff Van Baalen, Reid Simmons, Howie Shrobe,
Paul Resnick, Choon Goh, Walter Hamscher, Hal Haig and Meyer Billmers of the HT
reading group shaped my ideas about AI and were a lively forum for discussion.

Special thanks go to Dan Weld, Brian Williams and Peng Wu and for many hours
talking about anything and everything and for being great companions.

Jeff Siskind, Jerry Roylance, Jean-Pierre Schott and the rest of the crowd at MIT
Al made it a wonderful place to work. Mark Norton, Mark Chilenskas, Mark Swan-
son, Mike Repeta, Pete Williamson, Wade Williams and Gordon Taylor of GenRad
made my work there fun and productive. Yehudah Freundlich opened my mind to
the history and philosophy of science. He knows lots of pretty good jokes too. Glenn
Kramer, Narinder Singh, Dan Carnese, Marty Tenenbaum and Alex Miczo of Schlum-
berger supplied many good ideas and criticisms as did Mel Breuer of USC.

Andy Ressler wrote a simple and efficient implementation of Prolog for the lisp
machine: Andy, the price was definitely right. Olin Shivers helped make learning
about computers in high school fun and was always even more willing to datagrunt
than me.

Finally, I would like to thank my family: Grant, Papa-san, Moma-sama, Hugh,
Mary, Elizabeth, Ann, Emily, Hugh and especially my wife Lora. I love you all.

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology, at GenRad Inc., and at Schlumberger CAS
Palo Alto Research. Support for the AI laboratory’s research on digital hardware

troubleshooting is provided in part by the Digital Equipment Corporation and in
part by the Advanced Research Projects Agency of the Department of Defense under
Office of Naval Research contract N00014-85-K-0124.

vi

Contents

1 Introduction
1.1 Test Generation is a Complex Planning Problem
1.2 Statement of the Thesis
1.3 A Reader’s Guide

1.4 Existing Algorithms vs Human Experts

1.4.1 Testing Theory: The Existing Algorithms
1.4.2 Testing Practice: Human Experts
1.4.3 Observations i

1.5 A Word About Methodology

1.6 Scenarios

................

..................................

............

1.6.1 Scenario I: Exploiting Designed Behavior

1.6.2 Scenario II: Combining Test Program Fragments
1.7 Where This Thesis Fits

1.8 Summary

..........................

.................................

2 Background I: Testing Theory
2.1 What is Circuit Testing?
2.2 Modeling Circuits and Faults

2.2.1 Circuit Models
2.2.2 Faults prevent a circuit from meeting its specification
2.2.3 Physical Faults have Behavioral Effects

......................

..........................

.............

vii

c 00 00 O = =

10
10
11
11
22
33
35

39
39

2.2.4 Faults don’t always cause Errors 47

2.2.5 Errors are in the Eye of the Beholder 49
2.2.6 Fault Models are Closed-World Assumptions 49
2.2.7 Test Quality: Coverage and Resolution 50
2.2.8 Qualityof a Fault Model 51
2.2.9 Summary e 52

2.3 Generating Tests e 53
2.3.1 Representing Tests as Vectors 53
2.3.2 Test Generation Methods 54
2.3.3 The D-Algorithm 56
2.3.4 The Podem Algorithm 64
2.3.5 Test Generation with Hierarchical Circuit Models 65
2.3.6 Test Generation for Sequential Circuits 68

2.4 SUIMIMATY . . . v v o v v e e e e e e e e e e e e e e e e e e 69
3 Background II: Testing Practice 71
3.1 Experts Solve a Broader Problem 73
3.1.1 Detailed Circuit Descriptions are Often Unavailable 73
3.1.2 Experts Write Programs rather than Vectors 74
3.1.3 Testability can be Negotiated 75

3.2 Task Understanding: How One Expert Generates Tests 78
3.2.1 Understand the Circuit 79
3.2.2 Identify the Test Objectives 80
3.2.3 Write The Test Program 81
3.2.4 Debug the Test Program 82
3.25 Summary e e e e e e e 82

3.3 Experts Use a Collectionof Skills 83
3.4 Summary and a Research Agenda 84
4 A Designed-Behavior Test Generator 87

viii

4.1 Introduction i e e e e e e e e 87

4.2 A Test Generation Example 88
4.3 OVErvIEW v v v i e e e e e e e e e e e 89
43.1 TheKeylIdeas. 90
4.3.2 Structure of the Program 93
4.4 The MAC-1 Microprocessor, 95
4.5 Component Tests o o oo 96
4.5.1 Primitive Tests 97
4.5.2 Compound Tests, 97
4.5.3 SUmMmMAary i e e e e e e e e e e e e e e e 100
4.6 Operation Relations 100
4.6.1 Representing Operations and Operation Relations 101
4.6.2 Using Operation Relations 103
4.7 Computing Operation Relationships via Simulation 104
4.7.1 How the Simulator Works 104
4.7.2 Continuing the Example: Extracting Operation Relations . . . 108
4.8 Solving the Embedding Problem 110
4.9 Planning Control and Observe Sequences 112
4.10 Experimental Results 115
4.11 DB-TG: Additional Details 118
4.11.1 Modeling and Simulation 118
4.11.2 Focusing Search Through the Behavior Graphs. 119
4.11.3 Relationships Between Component Operations 121
412 Reviewof DB-TG 122
4.13 Conclusion L e e 124
Analysis 127
5.1 Introduction e 127
5.2 The Designed Behavior Heuristic 129

ix

5.2.1 Search Spaces for Test Generation 129
5.2.2 Completeness e 131
5.2.3 Efficiency: Searching Designed Behavior can be Faster 133
524 Soundnesso e e e 135
5.2.5 Summary: The Designed Behavior Heuristic 135
5.3 Embedding Component Tests 136
5.3.1 Completeness e 136
53.2 Efficiency e 147
533 Soundness 147
5.3.4 Summary: Embedding Component Tests 152
5.4 Operation Relations 152
54.1 Efficiency e 153
54.2 Soundnesso 157
5.4.3 Completeness e e e 158
544 SUmmaryo e e e e e e e e e e e e e e e e 159
5.5 Simulateand Match 159
5.6 An Estimate of Computational Complexity 161
5.7 Summary e e e e e e e e e e e e e e e 162
DB-TG: The Fragmentation Problem 165
6.1 The Fragmentation Problem 165
6.2 Fine Grain Component Tests. 167
6.2.1 Test Specialization: Substitute Test Data in Early 167
6.2.2 A Hierarchy of Component Tests 170
6.3 Parameterized Component Tests 173
6.3.1 Example #1: A Parameterized Adder Test 173
6.3.2 Example #2: Designing a Register Test On-The-Fly 173
6.4 Focussed Application of Gate-Level Test Generation 176
6.4.1 An Example of a Combinational Equivalent 177

6.4.2 Computing Embeddings 181
6.4.3 Reducing the Set of Embeddings 182
6.4.4 Connecting the Embedding to a Gate-Level Test Generator . . 183

6.4.5 Implementation Status and Experimental Results 188
6.4.6 Discussion e 189
6.5 A Synergistic Combination of Test Generation and Design for Testability 189
6.5.1 Wus DFT Advisor 191
6.5.2 A Set of DFT Modifications 192
6.6 Summary e e e e e e e e e e e e e e 194
Generating Tests by Merging Program Fragments 195
7.1 Introduction e 195
7.1.1 The Conventional Aspects of PF-TG 196
7.1.2 Test Programs Have More Explicit Structure Than Vectors . . 196
7.1.3 Exploiting Tester Capabilities 198
7.1.4 Typed Streams: Test Data Has Structure Too 201
7.1.5 Reader’'sGuide 205
72 How PF-TGWorks it i v 205
7.2.1 The Rule Engine and Library 205
7.2.2 Constraints L L 209
7.2.3 The Code Manager and The Test Language 212
7.24 A Detailed Example 218
7.3 Further Details of the Mechanism 224
7.3.1 The Time Manager 224
7.3.2 Protection Constraints 230
7.3.3 TheDebugger, o230
7.3.4 An Example Using More Complex Language Features 233
Td DISCUSSION © o« v v oo et e e 236
7.5 SUmMmMary v v e e e e e e e e e e e e e e 238

xi

8 Related and Future Work

81.1 Podem e e
8.1.2 SCIRTSS o e

8.1.3 An Automatic Programming Approach to Testing
8.1.4 Knowledge Based Test Generation for VLSI Circuits

8.1.5 HITEST[robinson83]
8.1.6 Marlett[marlett86]

DR

8.1.7 Functional Testing of Digital Systems

8.1.8 Functional Testing of Microprocessors
8.2 Related Workin AT

821 Saturnm e
8.2.2 Choosing Models Based on the Cost of Reasoning

8.2.3 Case-Based Reasoning

. e .

...................

824 Bumpers e

8.2.5 Joyce’s Extensions to DART

8.2.6 Automatic Programming

8.2.7 Wu’s DFT Advisor

.....

. .

83 FPFuture Work L
8.3.1 DB-TG: Improving the Implementation
8.3.2 DB-TG: Extending the Representation
8.3.3 DB-TG: Continuing the Empirical Work
8.3.4 DB-TG: Forging a Stronger Link with Design
8.3.5 PF-TG: Improving the Implementation
8.3.6 PF-TG: Extending the Representation
8.3.7 PF-TG: A Test Generation Apprentice

9 Conclusions

A PF-TG Examples

x11

241
241
241
242
242
243
244
245
245
246
246
246
250
250
252
253
253
254
254
256
257
259
259
260
261
262

265

267

Al
A2
A3

A4

An ALU Test o i e e e e e 267
A Register File Test 0 oo 271
The ROM Test e 277
A3.1 Solution #1 e 277
A3.2 Solution #2 e 277
The ROM Test with a BILBO Register 282

Xiii

xiv

Chapter 1
Introduction

Testing is an essential part of designing and manufacturing digital circuits. Without
thorough testing, circuits cannot be relied upon to safely control airplanes, elevators
and cars or to do any of the myriad tasks they do in our modern world. This thesis
is concerned with generating tests to detect physical defects that can cause a circuit
to malfunction.

Sequential VLSI circuits are one of the hardest kinds of circuit to generate tests
for. They are difficult primarily because internal components are accessible only
indirectly, forcing a test generator to use the surrounding components collectively as
a probe for detecting faults. This in turn forces the test generator to reason about
complex interactions between the behaviors of these surrounding components.

Current automated solutions are becoming ineffective as designs grow larger and
more complex. Yet, despite the complexity, human experts remain remarkably suc-
cessful, in part, because they use knowledge from many sources and use a variety of
reasoning techniques. This thesis exploits several kinds of knowledge about circuits
and test generation not used by the current algorithms.

This introduction summarizes the central aspects of test generation to show why
the problem is difficult, then states the fundamental propositions of this thesis.

1.1 Test Generation is a Complex Planning Problem

At its core test generation is a classical planning problem. The goal is to cause
patterns of internal activity that distinguish between a properly manufactured circuit
and one that has physical flaws. The primitive actions available to testers are applying
and observing voltages at the periphery of the circuit. Planning goals are related

2 CHAPTER 1. INTRODUCTION

g B

! \

v b ~ -

N / ~

~q 7 N
'd
{
\a
N

Component

Circuit

Figure 1.1: The embedding problem: given a component test expressed in terms of
the component interface (a), work out how to execute this test using manipulations
of the circuit interface (b). The embedding problem is an instance of conjunctive
planning, since it involves achieving multiple, potentially-interacting goals, i.e., the
actions specified by the component test.

to the primitive actions by the circuit schematic and behavioral descriptions of the
components.

Tests are traditionally created by partitioning the design into components and
generating a test for each component by (i) working out how to test the compo-
nent as if it were alone — the component test problem - and (ii) working out
how to execute that component test within the context of the larger circuit — the
embedding problem. The component test problem has many interesting aspects,
but it can always be solved by recursively dividing the component into smaller and
smaller components until each can be tested exhaustively. The embedding prob-
lem (see figure 1.1) is fundamentally more difficult because it involves achieving a
set of multiple, potentially-interacting goals, i.e., the actions specified by the com-
ponent test. Thus the embedding problem is an instance of conjunctive planning
[fikes71, sussman75, sacerdoti77, stefik80, vere83, chapman85].

The embedding problem is typically solved by using descriptions of component
behavior to incrementally refine the goal of executing a component test into goals of
controlling circuit inputs. Figure 1.2 shows an example of an embedding problem in a
16 function arithmetic logic unit (ALU). One test for component A involves applying
1 to A’s upper input and 0 to the lower input, then observing whether the output is

1.1.

TEST GENERATION IS A COMPLEX PLANNING PROBLEM

s>

c4

Rl

A3

et >

F3

F2

FO

o

Figure 1.2: A gate-level Embedding Problem

4 CHAPTER 1. INTRODUCTION

a 1. The embedding problem involves working out how to execute this component
test by manipulating the circuit inputs (on the left) and observing the circuit outputs
(on the right). One solution is shown: the dark lines and the boolean values beside
them indicate how controlling some of the inputs (S3, B2 and A2) causes the desired
values on A’s inputs, and how controlling other inputs (S0, B1, Al and M) routes A’s
output to a place where it can be observed (F2). For instance, the goal of applying 1
to A’s upper input is solved by applying 0’s to B’s inputs, and the goal of applying 0
to B’s upper input is solved by applying 0 to S3. Since S3 is a circuit input, this last
goal can be achieved directly.

Embedding problems are difficult in general because the methods for controlling
the inputs and observing the output can interfere with each other via the circuit’s
many cross connections. Solving this problem for the ALU, although detailed, is
within the capabilities of existing test generation algorithms. They are well able to
handle this and similar combinational (memory-less) circuits built from thousands
of gates. However, modern circuits, e.g., microprocessor-based systems, are several
orders of magnitude larger and more complex than this ALU. And this is the root of
a difficult problem: many circuits are so complex that the existing algorithms are, at
best, of limited use because they take too long to execute. The algorithms get lost in
the large search space extending over physical space (complex circuit structure) and
time (many clock cycles).

Yet, despite the complexity, human experts can often design high-quality tests.
This research is prompted by this performance gap and the differences in method
that cause it. Studying the problems that people solve and how they solve them
supplies clues for improving the algorithms and closing the gap.

1.2 Statement of the Thesis

Test generation is formally intractable — for combinational circuits the problem is
NP-complete [ibarra75] — yet test generation is commercially important and must
be solved for complex circuits. Testing practitioners use a collection of heuristics
for partitioning the problem and techniques for handling important special cases,
rather than a single, all-purpose method. These specialized techniques outperform
general techniques by taking advantage of the characteristics of particular problem
types. This document introduces and characterizes two new automated techniques
inspired by the methods of the practitioners. In the first technique, test generation
is organized to fit the characteristics of an important class of circuits. The second
technique (suitable for a different class of circuits) applies a conventional planning

1.2. STATEMENT OF THE THESIS 5

method to novel representations of testing goals and primitive actions.

The first technique is based on a new solution to the embedding problem, the key
step in test generation for sequential circuits.

Embedding problems can be solved efficiently using operation relations, a
representation of circuit behavior that connects internal component oper-
ations with directly executable circuit operations. Operation relations can
be computed efficiently for circuits that provide few operations at their
interfaces by searching traces of simulated circuit behavior.

Traditional methods embed tests by repeatedly refining the goal of causing a spe-
cific internal behavior until the problem can be solved by direct action on the circuit
inputs. Often a newly proposed subgoal conflicts with previous subgoals, forcing the
test generator to backtrack and try again. This alternation of search and backtrack
is characteristic of planners in general and test generators in particular.

Goal refinement is inefficient when solutions are infrequent and there is little guid-
ance available to lead the test generator to them quickly. Unfortunately, test genera-
tion for complex, sequential circuits seems to be such a situation: a test generator is
likely to propose and retract many potential solutions before finding one that meets
all of the constraints imposed by the circuit structure and behavior. The difficulty
of finding solutions is compounded by the potentially high cost of ruling out pro-
posed solutions, since the test generator may reason about the circuit far backward
or forward in time before discovering a constraint that causes it to backtrack.

It is, however, possible to avoid this pitfall if the circuit executes a small number
of operations, as does, for instance, a processor with a small instruction set. An
effective planning strategy for circuits in this class is to take the circuit operations
as the planner’s primitive actions and simulate them, looking for patterns of internal
activity that could prove useful during testing.

This simulate and match strategy, in effect, turns goal-refinement planning
on its head. Goal-refinement planning starts with a set of goals (e.g., a method
to test a component) and asks “are these goals achievable?” Simulate and match
instead asks “what is achievable and do any of those things meet our goals?” The
approach focuses search on behavior known to be achievable rather than on potentially
achievable behavior that must be verified via complex reasoning. Focusing on known-
achievable behavior is effective for planning problems with large search spaces and
few solutions caused by highly interacting subgoals, e.g., test generation for sequential
circuits. These ideas are embodied in a test generation program called DB-TG, the
Designed Behavior Test Generator.

6 CHAPTER 1. INTRODUCTION

The second technique is based on the following observation: testing practitioners
write test programs rather than test vectors because programs are a more readable
and compact representation for tests than vectors are.

Test programs can be constructed automatically by merging test pro-
gram fragments using expert-supplied goal-refinement rules and domain-
independent planning techniques from Al. Additional leverage arises from
giving the test generator knowledge of the capabilities of the tester hard-
ware.

While conventional test generation and Al planning techniques are inefficient on
problems with strongly interacting goals, they are effective on problems with weakly
interacting goals. This kind of problem appears to correlate with moderately complex,
sequential circuits that provide good accessibility from the outside. These conven-
tional techniques provide a foundation for exploring ideas about representing tests as
programs, creating tests by selecting and merging program fragments, and describing
the capabilities of the tester (i.e., the agent that will perform the test) to the test
generator. These ideas are embodied in a test generation program called PF-TG, the
Program Fragment Test Generator.

The main contributions of this thesis are two novel methods of generating tests
introduced above. These new methods plus the existing combinational, functional and
special-purpose test generators (e.g., for memories) form a collection of tools that test
engineers can draw from as appropriate. Our larger vision, of which this thesis is a
part, is to build a collection of specialized testing tools that share circuit descriptions
and work together autonomously or partially under human guidance to solve testing
problems. This thesis is a step toward that goal.

1.3 A Reader’s Guide

This thesis is aimed at two distinct audiences: circuit testing researchers and artificial
intelligence researchers. Testing researchers may find this thesis useful as a descrip-
tion of two novel test generation techniques. Each achieves power by exploiting the
characteristics of a class of circuits. Neither is powerful enough to solve the problem
for all circuits. Specialized solutions of this kind are now and are likely to remain the
state-of-the-art.

AT researchers may find this thesis useful for different reasons. At its core test
generation is a classical planning problem that happens to be important in the real

1.3. A READER’S GUIDE 7

world. The problem is formally intractable yet commercially important and must
be handled by industry as best it can. Al researchers, particularly in the planning
and engineering problem solving subfields, can view this thesis as a case study in
identifying solution techniques appropriate for two broad classes of planning problem.

I would have liked to write this document in two colors — red for testing readers
and blue for Al readers — and to have included colored glasses with each copy.! As
it is, ideas from both fields are mixed together indiscriminately. Perhaps this is a
good thing, as each field has something to say to the other. The engineering problem
solving area of AI has developed a collection of methods for representing and reasoning
about engineered systems. Circuit testing is a fertile source of hard problems, and its
researchers have developed some similar ideas in parallel.

The rest of this introduction gives an overview of the thesis. Section 1.4 briefly
contrasts how the algorithms and experts solve embedding problems and asserts that
the algorithms can be made more effective by emulating some characteristics of the
experts. Section 1.5 discusses the informal approach I have taken toward studying the
experts, using their methods as sources of hints rather than as something to emulate
in detail. Section 1.6 contains scenarios for two test generation systems that embody
the main ideas of the thesis. Section 1.7 characterizes the problem we are interested in
solving with respect to the broad space of circuit testing methods. Finally, section 1.8
summarizes the two new methods and contrasts their strengths.

The remainder of the document has roughly the same structure. Chapter 2 reviews
the fundamental concepts and algorithms in the field of circuit testing. Chapter 3
describes how circuit testing and test generation is currently practiced. Together,
these chapters deepen the contrast described in this introduction. The bulk of the
document discusses the Designed Behavior Test Generator. Chapter 4 introduces
the ideas behind this test generator and describes an example in detail. Chapter 5
analyzes its performance to determine the boundaries of its effectiveness and where
its power comes from for problems within those boundaries, and chapter 6 answers
some of the limitations by extending the basic method.

Chapter 7 describes the Program Fragment test generator, and appendix A con-
tains additional examples. Chapter 8 describes how the ideas in this thesis connect to
the literature and suggests future work, and chapter 9 summarizes the contributions
of this thesis.

1The rose colored glasses for AI?

8 CHAPTER 1. INTRODUCTION

1.4 Existing Algorithms vs Human Experts

The need for test generation far outstrips the capabilities of existing algorithmic theory
and is currently met by the application of human intelligence. This section briefly
contrasts the existing algorithms with the methods of the expert practitioners.

1.4.1 Testing Theory: The Existing Algorithms

The classical test generation algorithms [roth66, goel8la, benmehrez83, fujiwara85]
designed for combinational circuits solve the component test problem by using indi-
vidual logic gates as components. Logic gates are simple enough that it is practical
to work out tests by hand or to exercise them exhaustively. The classical algorithms
then solve the embedding problem by propagating signals through the gate-level cir-
cuit model, going forward from component outputs and backward from component
inputs and searching for consistent combinations of signals. These algorithms use
highly optimized search heuristics and constraint propagation techniques, yet run-
times are excessive when applied to other than combinational circuits (up to roughly
10,000 gates) and simple state machines. Long runtimes are a consequence of the
complexity of gate-level models of modern circuits.

Recent research [lai81, genesereth81, davis82a, shirley83b, khorram84, singh85,
krishnamurthy87, chandra87] has identified several ways of increasing efficiency by
using abstract representations of circuit structure and behavior to take larger steps
during test generation. Some test generators have used a hierarchical circuit model
and a strategy for selecting which level of the model to propagate signals through.
Others have used a single, abstract circuit model suitable for a particular circuit type,
e.g., a microprocessor.

The strategy of exploiting abstract representations is the most important, recent
development in test generation. The designed behavior test generator introduced in
this thesis is a step in this line of research: I identify and use a new kind of abstract
representation of circuit behavior called operation relations. This representation is
described in section 1.6.1. '

1.4.2 Testing Practice: Human Experts

The following characteristics of expert test programming stand out:

1.4. EXISTING ALGORITHMS VS HUMAN EXPERTS 9

1. Ezperts understand how circuits work. They know much of what circuit design-
ers know, and their resulting understanding of circuit behavior enables them
to focus on likely solutions to testing problems. For instance, they know what
operations a circuit was designed to perform; they know which components im-
plement which operations; they know the normal patterns of circuit activity;
and they know relationships between the behavior of components that may be
widely separated in the schematic. As we will see, all of these are useful in
generating tests.

2. FEzperts rely heavily on functional descriptions and block diagrams from data-
books. They are often forced to do this because they do not have access to
detailed schematics. Furthermore, the tests they generate must use legal inputs
expected by the designer, so the databook descriptions are applicable.

3. Ezperts rely on past ezperience (i.e., tricks of the trade). They know how to
test commonly occurring components like registers, multiplexors, ROMs, etc,
and they build circuit tests from these component tests rather than start from
primitive gates.

4. Ezxperts write test programs not test vectors. They use a more expressive repre-
sentation for tests than the traditional algorithms do.

5. Ezxperts know the capabilities of the tester and can match them to testing prob-
lems. A circuit tester? has special features for implementing commonly-needed
tests efficiently. Existing test generation algorithms do not (and cannot easily)
use knowledge about these features.

6. Ezperts know when to use the traditional algorithms. The traditional algorithms
are extremely effective at solving certain parts of the problem. The experts know
when and where these algorithms work well and use them judiciously.

7. Ezperts can sometimes negotiate the boundaries of their problem. As testability
becomes an increasingly important design criterion competing with performance
and cost, so test experts become more central members of the teams designing
circuits. Often difficulties in test generation can be averted by changing the de-
sign, i.e., by negotiating with the advocates of other design criterion to simplify
the problem that the test expert has to solve. The experts need test generators
that are created with this design environment in mind.

2A tester is a tool for testing circuits. Testers are generally implemented as digital computers
with special peripherals for interfacing with circuits.

10 CHAPTER 1. INTRODUCTION

1.4.3 Observations

For testing complex sequential circuits, experts are much more successful than any
existing algorithm. How do the experts succeed?

Part of the answer lies in their use of abstract circuit descriptions. The circuit
testing community has begun to explore this direction; this thesis extends this line of
work by describing a novel kind of abstract circuit representation that is particularly
suited to solving embedding problems in sequential circuits.

But abstraction is only part of the answer. Current programs for test generation
are like current programs for playing chess 3: they both succeed by dint of prodigious
search. Yet in both fields, the best human practitioners still outperform the best
programs. The central lesson that comes of comparing the algorithms with the experts
is that the experts know more and search less. Domains of this type are familiar in
AL* and the central question to ask is “what is the knowledge and how can it be
represented?” At its core, this is what this thesis is about: identifying several kinds
of knowledge about test generation than have not been exploited by the algorithms
so far.

This thesis describes two methods of applying expert-supplied how-to-test knowl-
edge. The first method, DB-TG, concentrates on the first and second characteristics
of expert test programming in the list above, i.e., understanding how circuits work
and using block diagram descriptions. The second method, PF-TG, concentrates
on the fourth and fifth characteristics, i.e., writing test programs and knowing the
capabilities of the tester. These ideas are described in the scenarios below.

1.5 A Word About Methodology

Protocol analysis of expert problem-solving behavior has been a major source of the
ideas in this thesis.> My goal, however, is to design effective test generation algo-
rithms, not to duplicate the behavior of human test experts. Consequently, these
protocol analyses were informal and are not emphasized in this thesis.

3Circuits and their designers often do seem like formidable antagonists to a test programmer.

4The chemical analysis domain of Dendral[lindsay80] is the classic example.

5The primary expert I have talked with is Gordon Robinson of GenRad Inc. I have studied Gor-
don’s problem-solving methods on examples of several classes of circuits including a microprocessor,
a processor bit-slice, a digital filter and a communications multiplexor. Short protocols of Mark
Swanson of GenRad, Prof. Melvin Breuer of USC and Dr. Alex Miczo of Schlumberger have also
been very helpful.

1.6. SCENARIOS 11

Instead, my approach has been to draw inspiration from the methods of experts
and to combine their strengths with the strengths of the algorithms in the hope of
eventually surpassing them both. Surpassing human test programming skills in a
computer program is a broad and deep goal. I have by no means accomplished this
task in this thesis, but I believe I have taken several significant steps along the path.

1.6 Scenarios

This section contains scenarios describing DB-TG, the Designed Behavior Test Gen-
erator, and PF-TG, the Program Fragment Test Generator. Scenario I is a shortened
version of an example that appears in chapter 4, consequently there is some over-
lap. The example appears here in sufficient detail to make this chapter a reasonably
complete and self-contained introduction to this thesis.

1.6.1 Scenario I: Exploiting Designed Behavior

DB-TG solves embedding problems: it transforms pre-written component tests ex-
pressed in terms of component I/O into directly executable tests expressed in terms
of circuit I/O. The program inputs are: (i) a schematic at the level of a block di-
agram, (ii) descriptions of each operation the circuit is designed to perform (e.g.,
each instruction), (iii) simulation models of the components and (iv) expert-written
component tests expressed in terms of component operations. The component tests
include descriptions of the faults they are designed to detect. DB-TG outputs: (i) a
test for the circuit consisting of one test per component and (ii) descriptions of the
faults these tests are designed to detect.

This test generator was designed as part of an approach to integrate test generation
and design for testability [shirley87, wu88]. It is intended primarily as a tool for use
early during design to produce tests and to assess a design’s testability. Consequently,
we emphasize using the kinds of high-level circuit descriptions available early during
design. A second consequence is that the circuits DB-TG generates tests for may not
be completely finished, i.e., designers may still be trading off various design criterion.
Therefore, we emphasize quickly identifying and solving testing problems that are
straightforward (for people, not necessarily for existing programs) and not expending
large amounts of time detecting every last fault. In particular, the failure of this
program can be viewed as indicating a testability problem [wu88]. This issue is
considered again at the end of the scenario.

DB-TG follows these steps: (i) lookup a component test from a library (the test is

12 _ CHAPTER 1. INTRODUCTION

in terms of a component operation), (ii) compute relationships between that compo-
nent operation and the circuit operations from the circuit description (these so-called
operation relations are a highly abstract description of the surrounding compo-
nent behavior), (iii) use the relationships to embed the component test. These steps
are the equivalent of propagating from the component backward to circuit inputs or
memory cells and propagating forward to circuit outputs or memory cells. DB-TG
then uses conventional AI planning technology (STRIPS) to plan sequences of circuit
operations for controlling and observing circuit state.

This scenario focuses on: (i) the form of operation relations, (ii) how DB-TG uses
operation relations to embed component tests and (iii) how DB-TG computes oper-
ation relations from schematics and component models. First, I introduce operation
relations with a simple embedding problem.

1.6.1.1 An Easy Embedding Problem

Figure 1.3 shows an easy embedding problem: test the ability of the processor’s ALU
to add numbers. Suppose an expert knows something about testing ALU’s and says
the way to test this ALU is to cause it to add several specific pairs of numbers (A;,
B;) and then to observe the sums to make sure they are correct. Suppose also that
this processor is implemented as a single chip, so we have no direct access to the ALU.
Then the problem is to work out how to manipulate the bus to cause the processor
to send the A’s and B’s to the ALU and to bring the sum back out to the bus for
observation.

You may wish to stop reading and try to solve this problem. Make reasonable
assumptions as needed about the way the circuit works, e.g., assume this proces-
sor provides the usual instructions for performing arithmetic and manipulating the
accumulator.®

We find that testing experts and others familiar with computer architecture can
easily suggest something like the following solution:

1. Load Accumulator with an A using the LOAD instruction.
2. Add a B to that using the SUM instruction.
3. Write the sum to the bus using the STORE instruction.

6This problem really is as simple as it may seem. The point is to ask what kinds of circuit
representations make it simple, and how it might be possible to solve the problem without knowing
detailed structural information like how datapaths connect the accumulator with the ALU.

1.6. SCENARIOS 13

Accumulator Instructions
g \1/ LOAD value - Load accumulator from memory
® STORE value - write accumulator to memory
ADD value ~ increment accumulator by value
SUB value - decrement accumulator by value

CPU

Figure 1.3: Work out how to make the ALU add numbers. Make reasonable assump-
tions about the way the circuit works, e.g., assume the processor provides instructions
like those at the right for performing arithmetic and manipulating the accumulator.

4. Repeat until all pairs of A’s and B’s have been used.

This solution relies on several assumptions, including: (i) that the SUM instruction
actually uses the ALU shown in the figure”, (ii) that the LOAD, STORE and SUM
instructions manipulate the accumulator shown, and (iii) that the LOAD, SUM and
STORE instructions can handle the test data required by the ALU. Before using this
solution, we would have to check that these assumptions were warranted.

This example raises several interesting questions. What A’s and B’s will ade-
quately test the ALU’s ability to add? What descriptions of LOAD and STORE
allow them to be easily recognized as useful for controlling and observing the accu-
mulator? How is SUM identified as the key instruction to use? Associating the SUM
instruction with the goal of making the ALU add is the key to solving this embedding
problem, so we focus on this.

One telling observation is that testing experts can construct solutions without
considering the detailed structure of the circuit. In particular, the routes taken by A
and B from the bus interface to the ALU or the details of the microcode implementing
the SUM instruction were not shown in the figure. Since the omission does not prevent

"While usually warranted, this assumption is questionable for heavily pipelined processors that
can use several physical ALU’s to implement a single “virtual” ALU.

14 CHAPTER 1. INTRODUCTION

an expert from arriving at a candidate solution, those details must not be essential.
There must be some way of describing the circuit that allows candidate solutions like
this to be proposed without a detailed examination of circuit structure.

Asking what such an abstract circuit description might be leads us to the idea
of explicitly representing and manipulating relationships between operations of the
circuit and operations of its components.

1.6.1.2 Operation Relations: Part-Whole Descriptions of Circuit
Behavior

As a component is a part of a circuit, so is its behavior a part of the circuit’s behavior.
Knowing part-whole relationships about behavior is useful, because they provide a
straightforward means of embedding component tests into the circuit.

Two kinds of part-whole relationships are useful for solving embedding problems:
causal connections and parameter relations. In the example above, executing a
SUM instruction causes the ALU to add, therefore we say the CPU’s SUM instruction
and the ALU’s addition operation are causally connected. Parameter relations hold
between the parameters of two causally connected operations. In the example there
is a time during the execution of an addition instruction when the ALU does the real
work. At that time, the two values being summed by the addition instruction are the
same two values being summed by the ALU. In this case the parameters of the addition
instruction and those of the ALU addition operation are related by identity functions.
The term operation relations refers to both the causal connection between two
operations and to relationships between their parameters.

Figure 1.4 shows these relationships between the ALU and the CPU. Each box
contains a frame-like representation of the externally visible effects of an operation.
The upper box describes the processor’s SUM instruction and the lower box describes
the ALU’s ADD operation. The causal relation (c) says that executing a SUM in-
struction will cause the ALU to ADD. In this example, the parameter relations (d)
are identities, i.e., the values of the corresponding variables must be the same.

1.6.1.3 Using Operation Relations to Solve Embedding Problems

Relationships between component and circuit operations exist because the designer
used component behavior to implement circuit behavior in the first place. The rela-
tionships are useful because they provide a direct link from desired actions inside the
circuit to actions executable by the tester hardware (see figure 1.5). Using this direct

1.6. SCENARIOS 15

SUM Before State: Accumulator = ?ac —~——
Inputs: DataBus = ?data -
Outputs: AddrBus = ?addr
After State: Accumulator = Tsum <
Relations: ?sum = ?data + ?ac
(a) The Circuit Operation
(d) Parameter Relations
(c) Causal Relation (identities)
ADD Inputs: Operation = ADD
Addend1 = 7al -
Addend?2 = 732 -- -/
Outputs: Sum = 75 -}
Relations: 7s = 7al + ?a2

(b} The Component Operation

Figure 1.4: One set of operation relations for the ALU example.

link, DB-TG transforms component tests for the ALU (which a tester cannot manip-
ulate directly) into equivalent tests expressed in terms of CPU operations (which the
tester can execute directly).

To do this transformation, DB-TG substitutes component test data into the com-
ponent side of the parameter relations and solves for the parameters of the circuit
operation. For instance, the operation relations in figure 1.4 connect variables men-
tioned in the test data with the parameters of the SUM instruction. Figure 1.6 shows
expert-supplied test data for an ALU addition operation. In this case, the operation
relations happen to be identities so substituting test data in and solving for the pa-
rameters of the SUM instruction is trivial, and figure 1.7 shows the result for one line
of test data.

16 CHAPTER 1. INTRODUCTION

Component Test Operations
(executable only indirectly)

Circuit Operations
(directly executable) 7

Operation Relations Component|

Circuit

Figure 1.5: Operation Relations are a direct link between the goals (i.e., desired compo-
nent operations) and the primitive actions (i.e., directly executable circuit operations).

7A1 7A2 7S

0 0 0

43690 43690 21844
1 65534 65535 |€¢—
1 65535 0

65534 1 65535

65535 1 0

21845 21845 43690
65535 65535 65534

Figure 1.6: Fzpert-supplied test data for an ALU’s addition operation.

SUM Before State: Accumulator = 65534
Inputs: DataBus = 1
Outputs: AddrBus = ?addr
After State: Accumulator = 65535
Relations: 65535 = 1 P16 65534

Figure 1.7: Line 8 of the test data substituted into the SUM instruction.

1.6. SCENARIOS 17

1.6.1.4 Computing Operation Relations via Simulation

DB-TG computes the relationship between a circuit operation (e.g., SUM) and a com-
ponent operation (e.g., ADD) by simulating the circuit operation and then searching
and extracting node values from the simulation trace. DB-TG uses an event-driven,
symbolic simulator. It takes as input a circuit schematic, behavioral models of the
components and descriptions of the instructions. (Figure 1.8 shows a simple micropro-
cessor model that fleshes out the example above. The simulator uses this schematic
and models of these components. Uninteresting components, e.g., latches in the dat-
apaths, are not shown.) The simulator outputs a set of simulation traces, called
behavior graphs, that describe what happens inside the circuit as the instructions
execute.

v
Register
Address File B uPC
Bus []
- | uCODE
1 Y - ROM
Data LI i ! v
Bus IR
ALU /
1
Shift |«
|

Figure 1.8: The MAC-1 Microprocessor (some detail has been suppressed)

Symbolic simulation is the process of propagating variables and algebraic expres-
sions as well as numbers through the circuit. Doing this allows a single simulated
operation to stand for an equivalence class of similar operations. For example, a
LOAD instruction with symbolic data can stand for a LOAD of any specific constant.

18 CHAPTER 1. INTRODUCTION

Using symbolic simulation is important for two reasons: (i) the algebraic expressions
that propagate through the circuit are what turn into operation relations and (i)
simulating equivalence classes of behavior rather than specific behaviors reduces the
number of simulation runs needed and the size of the database that holds the results.

wn

§ > 7data @ 66

] ?data Q 56

?data + 7ac @ 72
ALU/ADD — — = = ———d AC
?data + ?ac @ 68
?ac @ 68
7ac @0

P B R
Legend: [_] Data Source or Sink

add Q 68

O Simulated Component
Operation

PCH—Pp — — — —
! 0Q@0 -~-- Suppressed Detail

Figure 1.9: The Behavior Graph for the SUM instruction. Time and data flow from
left to right.

To test the ALU’s ADD operation, DB-TG searches the simulation trace of each
instruction for simulated ADD operations. Figure 1.9 shows one such ADD operation
generated by simulating the SUM instruction of the microprocessor in figure 1.8.
This microprocessor has an ALU and an accumulator and is a complete version of the
simple example above. A rectangle in simulation trace represents a source or a sink
of values — either a memory element, an input or an output. A circle represents a
component operation, and the dashed lines represent portions of the graph that have
been omitted in order concentrate on the activity shown. Time and data flow from
left to right through the figure. The value of a node is timestamped, e.g., a node value
of data@time indicates that the node changed to data at the simulated time. Node
values persist until they are caused to change by other circuit activity.

The figure shows that the accumulator contains ?ac at time 0, ?data is read from
the databus at time 56 and the sum of ?ac and ?data is written into the accumulator

1.6. SCENARIOS 19

at time 72. Here, the ALU executes an ADD operation at time 68. It receives two
expressions 7ac and ?data as inputs, adding them under the control of its operation
input and outputs the expression (?7data @16 ?ac). The value on the operation input
(add) beginning at time 68 comes from the microprogram ROM and ultimately from
the microprogram counter.

DB-TG extracts the operation relations between the SUM and ADD operations
by examining node values around the ADD operation. In this case, the variable ?ac
appears in the accumulator and at an ALU input, so there is an identity relation-
ship there. ?data and (7data @;¢ ?7ac) are handled similarly. The OP input is not
mentioned in the test data, so its value is not needed to form the operation relations.

1.6.1.5 Finishing the Example

Figure 1.7 shows the result of embedding one line of test data using the operation
relations generated above — executing this SUM instruction will cause the ALU inside
to add this line of test data. Note, however that the accumulator must be loaded
with 65534 before the SUM instruction is executed, and that the accumulator’s value
must be observed afterwards. DB-TG plans sequences of circuit operations for con-
trolling and observing the simulator using a STRIPS planner. DB-TG generates the
operations for this planner by summarizing behavior graphs, and the details of the
planning and summarization processes are described in chapter 4.

The final solution is shown in figure 1.10 (the test data is marked by <). DB-
TG also produces groups of three instructions for each of the 7 other rows of test
data; these groups differ only on the marked lines. DB-TG’s output is the total of
24 instructions plus descriptions of the faults they are designed to detect. Executing

these instructions and checking the outputs will test the addition operation of the
internal ALU.

1.6.1.6 Experimental Results

Figure 1.11 shows the results of running DB-TG over the whole microprocessor,
which is equivalent to roughly 6500 gates. Simulation and test generation takes 6
minutes on a lisp machine, including both the time taken for successfully creating
tests for some components and failing to do so for others. The highlighted components
correspond to 85% of the stuck-at faults in this circuit. Additional techniques for
designing component tests on-the-fly to fit the constraints of the particular circuit
raise this coverage figure to 94%. These techniques take approximately 25 additional

20 CHAPTER 1.
LOAD Before State: Accumulator = Tac
ProgramCounter = 7pc-1
Inputs: DataBus = (LOAD ?addr)
DataBus = 65534 “=
Outputs: AddrBus = 7pc-l
AddrBus = ?addr
After State: Accumulator = 65534
ProgramCounter = 7pc
SUM Before State: Accumulator = 65534
ProgramCounter = 7pc
Inputs: DataBus = (SUM ?addr)
DataBus = 1 <=
Outputs: AddrBus = ?pc
AddrBus = ?addr
After State: Accumulator = 65535
ProgramCounter = 7Tpchisl
STORE Before State: Accumulator = 65535
ProgramCounter = 7Tpc®iel
Inputs: DataBus = (STOD ?addr)
Outputs: AddrBus = ?pchisl
AddrBus = ?addr
DataBus = 65535 <~
After State: Accumulator = ?data
ProgramCounter = ?pc®hi62

INTRODUCTION

Figure 1.10: Program Qutput. This set of three instructions is the embedding for the
test in the first row of figure 1.6.b. The numbers from that row appear in the output on
the lines marked by <, where they must be applied or observed by the tester. DB-TG
also produces groups of three instructions for each of the 7 other rows that differ only
on the marked lines. Ezecuting the total of 2/ instructions forces the ALU to perform

the test.

1.6.

SCENARIOS

r=—+=-=-1 E

I Register i‘=-— ! ro--ee
Address || L Flle AL i
Bus 1 || -~~~ T
- _I | 'uCODE!
i M/----- ROM
Data_—— ,—-' :::L--T--J :
Bus \ S TR T
v ALU £I34aafrTTire o
"':”: i S i

EShift}‘":::::::‘:

1

Tests fully instantiated
= = == Tests partially instantiated

""" No tests instantiated

Figure 1.11: Test generation results for the basic version of DB-TG

21

22 CHAPTER 1. INTRODUCTION

minutes to run.

However, the real benefit lies in interfacing this test generator with an automated
Design For Testability Advisor (e.g., [abadir85, zhu86, wu88]. We have done this
with the system of [wu88], implemented its suggested modifications to the circuit
(e.g., putting a scan path through the pIR and re-run the test generator to achieve
97% fault cover.

There are many points of comparison between DB-TG and other approaches in the
literature. One of the most interesting is comparing DB-TG and test generators that
work from functional circuit descriptions (e.g., [lai83, khorram84, brahme85]). DB-
TG can be viewed as a test generator that derives functional descriptions — behavior
graphs — from structural descriptions — schematics, and consequently achieves the
benefits of both. It benefits from using simple, high-level functional descriptions that
abstract away from the details of how data moves through the circuit. At the same
time, the high-level operations that move and transform data are connected with
a low-level structural model that makes functional sharing apparent. For instance,
arithmetic instructions and addressing calculations are implemented with the same
ALU in the MAC-1, and hence need not be tested separately. This kind of sharing is
represented in behavior graphs and consequently in operation relations.

1.6.2 Scenario II: Combining Test Program Fragments

Where DB-TG is targeted at embedding problems that give rise to highly interacting
subgoals, our second program, the Program Fragment Test Generator (PF-TG), is
targeted at embedding problems that give rise to weakly interacting subgoals. This
second kind of embedding problem is characteristic of sequential circuits that provide
relatively good access to internal components. Conventional planning technology
from AI appears to be sufficient to solve many embedding problems of this type and
provides a foundation for exploring several new ideas about circuit testing. This work
has resulted in five specific claims:

1. Produce Programs not Vectors: Representing tests as programs rather than
vectors makes them more compact and easier for people to understand and
allows convenient access to special-purpose tester features.

2. Merge Test Program Fragments: Test programs can be created by merging
program fragments. Goal decomposition rules and temporal constraints deter-
mine which program fragments are selected and how they fit together.

1.6. SCENARIOS 23

3. Represent The Tester Explicitly: Conventional test generators assume an
impoverished model of the tester’s capabilities. PF-TG uses an explicit and
somewhat richer model, enabling the program to take advantage of special-
purpose tester features.

4. Propagate Typed Streams: PF-TG can propagate tokens that represent
typed streams of values, e.g., a counting-stream. Propagating typed streams
can generate repetitive tests that are more efficient over a wider class of circuits
than can propagating symbolic variables, the method of existing hierarchical
test generators.

5. Use Flexible Goal Structure: The goal/subgoal structure of the test gener-
ator can profitably reflect the problem-solving methods of human test program-
mers as well as the structure of the circuit.

This scenario illustrates claims 1 and 2.

A test program is a sequence of instructions for testing a circuit that is executed
by computer. Programs are a good representation for tests for several reasons. First,
test programs are often more compact than the equivalent vectors. The size reduction
stems from using looping constructs to encode repetitive tests. Second, tests have
structure and test programs make that structure explicit, making them more readable
by people than vectors. Readability is important when a test generator is used by
an expert as a tool to help solve a complex problem: the expert must be able to
understand, augment and modify the program’s output. Third, test languages provide
convenient access to special-purpose tester features, e.g., hardware for generating
memory tests.

1.6.2.1 Structure of the Program

PF-TG generates test programs using these five steps:

1. Problem Decomposition: How-to-test rules decompose the problem of gen-
erating a test into subproblems. Decomposition continues until directly solvable
subproblems are reached (e.g., controlling a circuit input or generating tests for
a small combinational component) yielding a tree of rule invocations. Rules
are stored in the Rule Library and are selected and executed by the Rule
Engine.

2. Fragment Collection and Constraint Posting: In addition to breaking up
test generation problems, rules can put program fragments into the output test

24 CHAPTER 1. INTRODUCTION

program. When the engine executes a rule, it copies any program fragments in
the rule and passes them to the code manager. Rules also contain constraints
controlling how the program fragments fit together. Constraints either control
the execution times of program statements or the allocation of tester or circuit
resources, and they are passed to the Time Manager and to the Resource
Manager respectively.

3. Constraint Satisfaction: The Resource Manager reduces resource constraints
to temporal constraints. These plus the temporal constraints sent directly to
the Time Manager are reduced to a set of linear inequalities in two variables,
where the variables represent execution times. The Time Manager solves these
inequalities for integer values.

4. Code Generation: The Code Manager sorts the program fragments by exe-
cution time and assembles code for the tester.

How-to-test rules decompose testing problems into groups of simpler problems.
PF-TG applies the rules using a backward-chaining rule engine based on Prolog.
Each rule has four components: (i) a pattern describing what goals the rule can solve,
(ii) a set of subgoals to introduce, (iii) a set of program fragments to include in the
test program, and (iv) a set of constraints describing how the program fragments fit
together with each other and with fragments posted by other rules.

The system has rules for solving the following kinds of problems: (i) how to test
a component, (ii) how to control component outputs, (iii) how to move data through
a component, (iv) how to make the tester drive circuit inputs, (v) how to make the
tester observe circuit outputs, (vi) how to make a component inactive, (vii) how to
initialize a component, (viii) how to move a state machine from one state to another,
and (ix) how to take a state machine through a cycle. This scenario shows rule types
(i) - (v). Consider, for example, the rule for testing a parallel datapath, i.e., a group
of wires or components acting like wires that moves information from one part of the
circuit to another (see figure 1.12). This rule breaks up the problem of how to test a
datapath into the problems of selecting test data to send down the datapath, enabling
it and getting the data to and from it.

Many subgoals involve writing test program code. For instance, the subgoal of
enabling the datapath must eventually be solved by writing code to make the tester
drive circuit inputs so they will enable the datapath in turn. The program writes this
code by working out how to enable the datapath — via propagating back to circuit
inputs — and combining the program fragments that appear in rules for controlling
those inputs. As a very simple example, PF-TG would emit the following program

1.6. SCENARIOS 25

To test a parallel datapath:
1. Select a vector stream that has sufficient coverage characteristics.
2. Write a code fragment to enable the datapath.

Write a fragment to generate this vector stream.

- W

Write a fragment to move each vector to the beginning of the
datapath.

5. Write a fragment to pick up values as they reach the end of the
datapath and move them to a place where the tester can observe
them.

6. Write a fragment which observes the values on the primary output
and compares them with expected values.

7. Create constraints to link these program fragments together. For
example the time a vector is generated by fragment #3 must be
the same time it starts to move to the beginning of the datapath

in #4.

Figure 1.12: How to test a parallel datapath.

fragment to make the tester assign the circuit input called in the value 1:

More complex assignments can emit groups of statements or program loops. Depend-
ing on the intervening component types, the rules used at intermediate stages in the
propagation sometimes include program fragments as well.

PF-TG uses three types of constraints to control how program fragments fit to-
gether. Temporal constraints control the execution times of program statements,
e.g., statement A must execute before statement B. Structural constraints control
the structure of the test program, e.g., assignment statement C' must appear within
loop D’s body. Resource constraints control the allocation of scarce resources to
different uses at different times, e.g., circuit node F has a certain value at time 7" and

26 CHAPTER 1. INTRODUCTION

i

cannot have any other.

The times of primitive tester actions are represented by integers. Each statement
in a test program is associated with a temporal variable, and that variable is even-
tually bound to an integer representing the execution time of the statement. PF-TG
controls timing relationships between program statements by controlling the relation-
ships between the associated temporal variables. The relationships are specified by the
how-to-test rules as they are used and are collected and solved by the Time Manager.

The Time Manager handles these relations between pairs of variables: =, #,
<, <, >, >, plus and and or connectives between expressions. For convenience,
PF-TG provides a macro language for expressing more complex relations such as
disjoint-intervals and overlapping-intervals.

PF-TG handles structural constraints similarly, i.e., structural variables are con-
strained using the algebraic relations above and an equation solver assigns integer
values that represent textual order in the final test program.

PF-TG goes over all resource assignments (e.g., node assignments made during
propagation or assignments of tester hardware to subtasks of driving the circuit) and
creates temporal constraints to make sure they do not conflict. Suppose, for example,
that A=1Q@T1, meaning node A is assigned the value 1 at time T1, and A=0@T2. Because
a single physical node cannot have more than one value at a time, PF-TG creates the
temporal constraint (# T1 T2).

1.6.2.2 An Example

The following example shows PF-TG generating a test program for the multiplexor
AMUX in figure 1.13. The circuit is a simple 4 bit wide datapath. The ALU has four
operations, among them a NOOP operation that copies data from IN1 to OUT. The
register file is a single input, dual output memory with 16 cells. The address lines RF-
AA and RF-BA select outputs for OUT-A and OUT-B respectively. RF-CA controls
which register is loaded from the DATA-IN input, which happens on the rising edge
of the clock. An enable input has been omitted from this example. All inputs are
directly controllable, and all outputs are observable. All other nodes are internal to
the circuit and are accessible to the tester only through intermediate components.

In this example, PF-TG generates a portion of a test program that verifies whether
AMUX is working properly. The example is implemented, although a few details have
been changed to clarify the explanation. In particular, the example shows program
code that would result if PF-TG stopped at various times and merged several program

1.6. SCENARIOS

RF-AA D
RF-BA l >
RF-CA I >

h\\h\\h\\

1y

CA BA AA

OUT-A
CLK D—-———-—b cLk
RF

3] DATA-IN ouT-B

B-BUS G
MBR-IN D

MUX-A D——

A-BUS

oP D—

C-BUS

Figure 1.13: A Simple Datapath

28 CHAPTER 1. INTRODUCTION

To test a two-input mux:

Run one DATAPATH test from the mux’s first input (in0)
to its output. Then run another datapath test from the
second input to the output.

Figure 1.14: How to test a two-input multiplexor (simple method).

fragments. The fragments actually remain separate until the end, when they are
merged all at once. Also, the rules and program fragments are rendered in English
and pseudo-Algol to improve readability. The actual rules and program fragments
have a lisp-like syntax.

We start by asking PF-TG to write a test program for AMUX. The rule in fig-
ure 1.14 responds to this request. PF-TG maintains an agenda of independent pro-
gramming tasks. Each task involves writing a section of the test program that exer-
cises a single component or an aspect of a component’s behavior. In this example,
the rule above breaks up the problem of writing a test program for AMUX into two
tasks, each of which involves testing the mux’s ability to pass information from one of
its inputs to its output. These top-level tasks can be solved separately, and PF-TG
works on each of these programming tasks in turn. Both tasks are solved by using
the DATAPATH rule shown earlier. Since the tasks are similar we describe only the
second one, that of writing a datapath test from AMUX’s right input (IN1) to its
output. .

First, PF-TG chooses test data to use, and in this case it chooses the diamond
pattern (see figure 1.15). This pattern will detect stuck-ats and bridge faults in the
datapath. Next, PF-TG works on writing code to enable the datapath. In this case,
the datapath is very simple: it runs through the mux, from its right input to its
output. This datapath is enabled by selecting the right input. Longer datapaths are
handled by a rule that partitions datapaths into smaller parts and then constrains the
parts to be enabled at the same time. Eventually, the problem is reduced to enabling
through single components, which are handled directly. Because the select input of
AMUX is directly controllable by the tester, this rule proposes the program fragment
shown in figure 1.16.a.

This loop repeatedly selects the right input of AMUX, thus enabling the datapath.

1.6. SCENARIOS | 29

vector# 1 2 3 4 5 6 7 8

Wiret 0 1 1 1 1 0 0 O
Wire2z 0 0 1 1 1 1 0 O
Wired 0 0 0 1 1 1 1 O
Wirrd 0 0 0 0 1 1 1 1

Figure 1.15: A diamond pattern for a 4 bit wide datapath. “Diamond” refers to the
shape of the region of 1 bits.

This enabling action can occur an arbitrary number of times, as indicated by the<...>
placeholder for the iteration clause. These placeholders will be filled with code from
other rules.

A temporal variable, TEST-TIME, is associated with the tester-assign statement.
This temporal variable denotes the short interval during which a single test pattern
passes through AMUX. The temporal variable was created by the DATAPATH rule
and passed down to the ENABLE-THROUGH-MUX rule so that the resulting pro-

gram fragments can be synchronized. ®

The next subproblem involves writing code to generate a diamond pattern. A
simple way to do this is to fill an array with the appropriate sequence of test vectors,
then step an index through the array, fetching vectors and putting them on the cir-
cuit inputs. The generate-diamond-stream rule implements this method with the
fragment in figure 1.16.b1.

The next subproblem is the most complex - move vectors from a primary input
to the beginning of the datapath (i.e. the IN1 of AMUX). The path used and the

- resulting code is shown in figure 1.16.b2. The path is found via line justification,

which involves searching backward from the MUX input to any primary input. Since
we’re moving a diamond pattern, the path chosen must be able to transmit parallel
data, and the path shown is the only possible solution.

The code fragment is a combination of three fragments that enable the datapath
to pass through AMUX, ALU and RF (the register file) respectively. The statement
on line 17 of figure 1.16.b2 is from the body of a loop analogous to the one on line 4
of figure 1.16.a except that it selects the mux’s other input. The statement on line 18

8There are several temporal variables not shown in the figure. For example, there are variables
associated with the start and finish times of the loop.

30 CHAPTER 1. INTRODUCTION

RF-AA [
RF-BA [)———

RF-CA D———l
k. [D———

—| 1. FOR <...> DO
B-Bus] 2. BEGIN
~ 3. <...>
MBR-IN 4. MUX-A := 1 *% at TEST-TIME
_ | g NS 5. <...>
MUXA L < 6. END;
or [
(a) Enable the datapath through MUX-A.
RF-AA [O
RF-BA ARRAY DiamondPattern = [... data ...];
FOR index = 0 to 7 DO
RF-CA BEGIN
<...>
MBR-IN := DiamondPattern[index] ** at TIME-1
CLK <,..>
END
Have the tester apply a diamond stream to a circuit input.
B-BUS . FOR <...> DO
MBR-IN BEGIN
<...>
MUX-A MUX-A := 0 ** At TIME-1
OP := ALU-NOOP #*x At TIME-1
CA :=0 ** At TIME-1
<...>
AA ;=0 ** At TEST-TIME
OoP <...>
END;

Move the diamond stream from that input to the AMUX.

(b) Supply a diamond stream to AMUX's left input.

Figure 1.16: PF-TG Scenario

1.6. SCENARIOS 31

is from a loop that enables information to flow across the ALU. The statements one
lines 19 and 21 come from a rule for moving a stream through a register file. This rule
handles the address lines, and presupposes a free running clock and chooses which
register file cell to use.

The next subproblem is to move the diamond stream from AMUX’s output to a
primary output of the circuit. PF-TG’s solution to this problem is analogous to its
solution for moving data in to the MUX’s input and is shown in figure 1.17.cl. Finally,
PF-TG uses the code fragment in figure 1.17.c2 to check the observed outputs against
the expected values. At this point, PF-TG has expanded every subgoal introduced
by the original DATAPATH rule.

So far, we’ve emphasized program fragments at the expense of the constraints that
control how the fragments are put together, but both are equally important. PF-TG
next collects all of the constraints from the rules it has used and solves them. There
are about 30 temporal relations such as the one relating clock initialization time, init,
with the clock’s first use, time-1. The relation is (< init time-1) which says that the
clock must be initialized before its value is used. The TESTER-ASSIGN statement
at time in:t is a small program fragment separate from the loop, and is related to the
loop by the temporal relation. In fact, most program fragments tend to be small and
have many relations to other small fragments.

Finally, there are several resource constraints. For instance, the fragment in fig-
ure 1.16.a assigns MUX-A to 1 at TEST-TIME and the fragment in figure 1.16.b2
assigns MUX-A to 0 at TIME-1. Therefore (# TEST-TIME TIME-1).

One particularly interesting resource is the stack of the computer inside the tester.
Statements in the program fragments that use the stack must obey stack discipline.
In particular, loops in this language allocate their iteration variables on the stack,
hence two loops must appear in the program either one before the other, one inside
the other, or merged to share the same iteration variable. This resource constraint
is converted into temporal and structural constraints on the loop statements. (This
constraint, together with the fact that TEST-TIME or TIME-1 appear inside all of
the loops in the program fragments, is what causes PF-TG to merge all of the loops
together in the final test program.)

Once the constraints have been collected and resource constraints converted into
temporal constraints, an equation solver for systems of linear inequalities produces a
solution assigning each temporal variable to an integer. If no solution is possible, the
system backtracks and chooses different rules. The integers represent the execution
times of the statements associated with the temporal variables; in the case of loops,
they represent the times within a prototypical execution of the loop body.

32 CHAPTER 1. INTRODUCTION

RF-AA [

RF-BA D.----------

RF-CA [D-===-=----q 24. FOR <...> DO
25, BEGIN
26. <...>

aK [D— 27. OP := ALU-NOOP *% At TEST-TIME
28. CA :=0 ** At TEST-TIME
29. <...>
I'_D'I 30. M =0 % At TIME-2

31. <...>
32. END

B-BUS el 1 o

MBRIN [> (c1) Move the MUX outputs to a circuit output.

MUX-A
33. FOR <...> DO
34. BEGIN

r- 35. <...>
OP L >== 36. B-BUS = DiamondPattern[index] *# at TIME-2

37. <...>
38. END

(c2) Have the tester check the output stream
(the DiamondPattern array has already been declared).

(c] Observe and verify the AMUX outputs.

1. **x TEST-PHASE (:COMPONENT SELECT-A)

2. **% Perform a DATAPATH test from INi to OUT
3. BEGIN

4. ARRAY DiamondPattern = [... data ...];
5. FOR index = 0 to 7 DO

6. BEGIN

7. MBR-IN := DiamondPattern[index] *% at TIME-1
8. MUX-A := 0 ** at TIME-1

9. OP := ALU-NOOP ** at TIME-1
10. CA :=0 *% at TIME-1
11. CLK := 0; CLK := 1;

12. AA =0 ** at TEST-TIME
13. OP := ALU-NOOP #*% at TEST-TIME
14. CA :=0 ** at TEST-TIME
15. MUX-A := 1 ** at TEST-TIME
i6. CLK := 0; CIK :=1;

17. AA :=0 ** at TIME-2
18. B-BUS = DiamondPattern[index] ** at TIME-2
i9. CLK := 0; CLK := 1;

20. END

21. END

(d) The finished (merged) test program

Figure 1.17: PF-TG Scenario (continued)

1.7. WHERE THIS THESIS FITS 33

The last step is to merge the program fragments in the order specified by the
temporal variables. The end result is the test program in figure 1.17.d, which verifies
that one path through the mux can transmit parallel data without any faults. Note
that this program is much more readable than the equivalent test vectors in figure 1.18.

1.7 Where This Thesis Fits

This section shows where this thesis fits in the landscape of circuit testing approaches.
Existing approaches fall into four broad categories:

1. Combinational test generation algorithms, as noted, are extremely effec-
tive with combinational circuits but are too slow to be useful with sequential
circuits.

2. In-circuit test techniques solve the embedding problem by physically inserting
probes into the circuit that can observe internal node voltages directly and con-
trol them by overriding the circuit’s internal signals. This technique is extremely
effective when it can be done without damaging the circuit. As circuits have
gotten smaller, however, invasive testing has become more difficult and costly,
and many modern circuits cannot be tested with this method (e.g., chips).

3. Design for testability and built-in test techniques help manage the test gen-
eration problem by accounting for it in the design process. One technique is to
use extra circuitry to improve access to internal components and making it eas-
ier to embed component tests. Applied systematically, this technique can bring
sequential circuits within reach of the existing combinational test generation
algorithms.

Circuits designed with testing in mind are increasingly common, but they
nowhere near the norm yet. Moreover, the circuitry added to facilitate test-
ing reduces performance and raises cost, so designers will sometimes want to
avoid these penalties by using other testing methods that do not impose them.

4. Expert test programming covers the remaining circuits.

The fundamental problem that all of these techniques solve is how to access compo-
nents internal to a circuit from the outside. Techniques 1 and 4 solve this problem by
searching for ways to gain access by using the circuitry surrounding the component.
Techniques 2 and 3 solve the problem by bypassing the surrounding circuitry. In

34

** CLK RF-AA RF-BA RF-CA MBR-IN AMUX OP

*%k

CHAPTER 1. INTRODUCTION

B-BUS

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

HOH OHRHOROHOKFHOROROKROKOMOKOROHRDO

<15 lines

0000
0000
0000
0000
0000

= O - O =

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

suppressed>

0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
1000
1000
1000
1000
1000
1000
1100
1100
1100
1100
1100
1100
1110
1110
1110
1110
1110
1110
1111
1111
1111
1111

0001
0001
0001
0001
0001

OO OO R MMIEMIEOOR, P H OO RKKKMH OO

= o = O

01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01

01
01
01
01
01

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1000
1000
1000
1000
1000
1000
1100
1100
1100
1100
1100
1100
1110
1110
1110
1110
1110
1110

0011
0011
0011
0001
0001

Figure 1.18: These test vectors are equivalent to the test program in figure 1.17.d. In
this tabular representation, the structure of the test is difficult to see.

1.8. SUMMARY 35

technique 2, the tester circumvents the surrounding circuitry by physically inserting
probes into the circuit, while technique 3 depends upon the designer including extra
circuitry whose only purpose is to enable this bypass to occur.

The test generation techniques described in this thesis are targeted at category 4,
i.e., at circuit testing problems that are currently solved by hand. This category is
now and will continue (I believe) to be an important place to concentrate research
effort. Tests for a significant percentage of all circuits are currently generated by
hand (see figures 1.19 and 1.20). While these percentages should decrease in the next
five years as design for testability (DFT) standards are adopted by industry, they
are likely to remain significant because DFT standards often involve performance and
cost penalties. Moreover, testing experts will constantly playing catch up to the latest
design technologies, creating a time lag within which hand-written or human-assisted
tests are needed. Barring the discovery of an effective in-circuit technology for small,
high density circuits, the future of circuit testing will depend on a combination of
advances in DFT and expert test generation.

1.8 Summary

This thesis makes several contributions to the field of circuit testing:

e It introduces operation relations, a representation of circuit behavior that often
makes embedding problems easy.

o It describes a way to compute operation relations for sequential circuits by
symbolic simulation. This method is efficient for circuits that offer a small
number of operations at their interface.

o It introduces the designed behavior heuristic, i.e., test a circuit without going
outside its normal operations, clarifies the issues surrounding this heuristic and
provides empirical evidence that the heuristic is useful.

o It describes an automated method of creating test programs by combining test
program fragments.

o It demonstrates how propagating typed streams of values can produce more
efficient tests and introduces a vocabulary of stream types.

o It extends the goals of test generation to include using the capabilities of the
tester well. To achieve this goal, PF-TG uses an explicit description of tester
capabilities and resource limitations.

36 CHAPTER 1. INTRODUCTION

Expert Test Programming

DFT + Combinational ATG
20%

In-Circuit Test
75%

Figure 1.19: Percentages of boards handled by various testing techniques

OfF The Shelf Tests (e.g. memories)
1%
DFT + Built In Self Test

25%
Designers Functional Tests Only

1%

Expert Test Programming
“75%

Figure 1.20: Percentages of chips handled by various testing techniques

1.8. SUMMARY 37

DB-TG and PF-TG are two novel test generators that extend the range of tech-
niques available to test engineers. DB-TG and PF-TG are complimentary: the first
is effective on complex sequential circuits that display tightly interacting component
behavior. Search in DB-TG is indexed and guided primarily by what is possible for
the circuit to do rather what is desired to test a component. However, the cost of
simulating circuit operations renders DB-TG inefficient for circuits where many oper-
ations are possible. PF-TG uses conventional goal-directed planning techniques, and
is targeted at simpler sequential circuits. In PF-TG, search is indexed and guided
primarily by specific testing goals, i.e., how to test a component, and is not limited
by the number of circuit operations.

PF-TG’s use of conventional planning techniques provides a testbed for experi-
menting with several other aspects of test generation. For instance, PF-TG produces
test programs rather than test vectors to raise the level of the language between the
test generator and the agent that will carry out the test. Using this richer language,
together with using a simple model of the tester capabilities, helps PF-TG to design
more efficient ways to test a circuit.

38

CHAPTER 1.

INTRODUCTION

o D

Combinational Test Generation

Chapter 2
Background I: Testing Theory

Summary: This chapter introduces the basic concepts and algorithms in the
field of circuit testing. Section 2.1 gives an overview and answers fundamental
questions like what is a test and how are they used? Section 2.2 covers the key
issue of modeling circuits and faults for use by a test generation algorithm, and
section 2.3 briefly presents the algorithms that form the core of testing theory.

Unfortunately, the need for test generation far outstrips the capabilities of exist-
ing algorithmic theory. This need is currently met by the application of human
intelligence: for complex, sequential circuits, the experts are much more suc-
cessful than any existing test generation algorithm. Chapter 3 describes how
experts are actually solving problems now.

Chapters 2 and 3 serve two purposes. First, they bring up to speed readers who
are unfamiliar with circuit testing. Second, they highlight differences in how
the algorithms and the experts solve test generation problems. This thesis is
prompted by these differences and the performance gap that results. Studying
the problems people must solve (because the algorithms do not) and how they
solve them supplies clues for improving the algorithms and closing the gap.
Readers with circuit testing backgrounds may want to skip to the end of the
next chapter for a summary of the differences that form the basis for the test
generation methods introduced later in this thesis.

2.1 'What is Circuit Testing?

Testing is a essential part of the process of designing and manufacturing circuits.
Its primary objective is to detect physical faults resulting from the manufacturing
process or from actual use, i.e., to detect discrepancies between a circuit design and
its physical realization. A secondary objective is to locate faults precisely enough that
the circuit can be repaired.

Figure 2.1 shows the basic connections between design, testing (test generation
and application) and manufacturing. The boxes in the figure represent tasks to be

39

40 CHAPTER 2. BACKGROUND I: TESTING THEORY

performed and the items between the boxes represent objects to be created or ma-
nipulated. Each task places constraints upon the others. For instance, the kinds of
faults introduced by the manufacturing task determine what the test generation task
has to accomplish. This thesis is about test generation, but first we briefly describe
the other tasks that bear upon it.

Circuit Design

A circuit designer starts with an informal specification of the behavior desired
and other requirements (e.g., cost) that the circuit must meet. The designer then
decides how to implement this specification by selecting, connecting and modifying
standard components, analyzing and optimizing the circuit’s performance properties
(e.g., speed and power consumption) and using any of the literally dozens of other
methods of transforming the specification into something that can be manufactured
directly. The end result is called a circuit design description, i.e. a description of
the circuit as it should be manufactured. For our purposes, the important aspects of
the design task are its input and output: the specification tells what an instance of
the circuit has to do functionally and the design description tells what an instance of
the circuit has to be physically.

Circuit Manufacturing

Figure 2.2 illustrates the steps of circuit manufacturing. The top portion of the fig-
ure shows the design description. The schematic will be used for test generation. The
masks are like photographic slides. They correspond to the schematic and addition-
ally specify the physical arrangement of materials in the chip. The assembly drawings
also correspond to the schematic and additionally specify the physical arrangement
of chips on a board.

The left-hand column shows the steps of chip manufacturing. First, a photolitho-
graphic process uses the masks, each of which corresponds to a layer of material on
the chip, to successively lay down and etch away material forming complex, over-
lapping patterns on the surface of the chip.! For efficiency, these photographic and
chemical processes are done on large wafers of silicon to form dozens of copies of the
chip simultaneously. After separating the wafer into individual chips, the chips are
put into ceramic or plastic packages to protect them during handling and to simplify
connecting the microscopic chips with the macroscopic world.

The right-hand column shows the steps of board manufacturing. First, wires are
laid down on the board in much the same way materials were patterned onto the

1For more detail, see for example [mead80)].

2.1. WHAT IS CIRCUIT TESTING?

Specification

-

41

Design

v

Design
Description

'

S

Manufacturing

Test Generation

v

Chips + Boards

S

Test Application

-

Working
Circuits

Figure 2.1: This figure shows the basic connecti

ons between design, testing (test gener-

ation and application) and manufacturing. The bozes represent tasks to be performed
and the items between the boxes represent objects to be created or manipulated.

42 CHAPTER 2. BACKGROUND I: TESTING THEORY

chip. Then holes are drilled into the board to hold the chip packages. These holes are
arranged to place the wires coming out of the chip packages next to the appropriate
wires on the board. When the board has been fully populated with chips, they are
all physically and electrically bonded to the board at once in a process called wave
soldering. This process holds the back side of the board close above a vat of molten
metal and passes a wave in the liquid surface under the board. As the wave passes,
some metal sticks to the chip wires and cools there, connecting them to the wires
already on the board. The finished board can then be put into a cabinet with other
boards to form a complete digital system.

If carried out imperfectly, any of these manufacturing steps can introduce faults
into the chip or board that will prevent it from working properly. The different steps
introduce different kinds of faults which must be tested for in different ways.

Test Application

A circuit board or chip is tested by applying stimuli to the circuit and verifying
that its responses are correct (see figure 2.3). Correct responses are evidence that
the circuit is fault-free, and the strength of this evidence depends upon how well the
stimuli were designed. When a response is incorrect, we say a fault has been detected
and we reject the circuit. The way the circuit fails can provide clues to the nature of
the fault or faults inside, and the strength of these clues also depends upon how well
the stimuli were designed.

The major issues in test application are test application speed and accessibility of
internal components. Applying tests quickly is important because many circuits must
be tested. Accessibility, e.g., finding technologies that allow control and observation
of a circuit without damaging it, is important because increasing it generally increases
test application speed and simplifies test generation.

Test Generation

Modern circuits are too complex to be exercised exhaustively, so a relatively small
number of stimuli must be chosen which, if the circuit responds properly to them, will
allow a high degree of confidence that the circuit is fault-free. Test generation is the
process of selecting these stimuli. Test generation takes descriptions of a circuit design
and of its potential faults and produces a set of tests designed to detect whether faults
are present in an instance of the circuit. The major factors involved in doing this are:

1. Accessibility: Where can stimuli be applied to the circuit and where can
responses be observed?

2.1. WHAT IS CIRCUIT TESTING? 43

/=N

Schematic

— Masks Assembly Drawings || __|___

The Design Description

- - - - wte w— . e Gwn e M G G e Gem e um G e e s G S wms e e e G e e -

Manufacturing
% %
I
]
1A
Wafer Fabrication Board Manufacture |'_+l_|_—‘__’-_
' —ll Ty l
12 g
- QO3
AR s . | 008
7 Chip Separation Component Insertion
=m gz 300
A4 ¥
- — Packaging Wave Soldering ##Fﬁ
¥
14
QOO0 Finished Chips Assembled boards g {k
GO
Chip Manufacturing Board Manufacturing

Figure 2.2: The steps of circuit manufacturing

44

CHAPTER 2. BACKGROUND I: TESTING THEORY

Expected Outputs

v

Test Inputs ——} Circuit —'} Outputs —} Comparitor —} Good/Faulty

Figure 2.3: Test Application

. Complexity: In general, the cost of test generation is exponential in the size

of the circuit. Test generation strategies must manage this complexity for large
circuits.

. Models: How are the circuit’s structure, function and potential faults modeled

for the test generation program?

. Algorithms: What algorithms can efficiently derive tests from the circuit and

fault models

. Economics: Circuit testing is fundamentally driven by economic factors, and

cost provides common ground for negotiation between the design, manufactur-
ing and testing tasks. For instance, some test generation problems are most
effectively solved during the design task by making the design simpler or more
amenable to test generation.

Accessibility and complexity are intimately related: limited accessibility increases the
size and complexity of the portions of the circuit that must be tested as black boxes,
i.e., without access to their internals. The larger and more complex these black boxes
are, the more difficult it is for the test generation algorithm to select a small yet
effective stimulus set. The next two sections introduce the fundamental models and
algorithms developed by test generation researchers.

2.2 Modeling Circuits and Faults

Modeling the structure, behavior and faults of circuits is a central theme in test
generation. The nature of the idealizations and abstractions in the models determines
in large measure the cost of generating tests and their effectiveness when applied
to real circuits. The following discussion introduces the notions of circuit models,

2.2. MODELING CIRCUITS AND FAULTS 45

physical faults, behavioral errors and fault models. With this foundation, we can
then examine several test generation techniques.

2.2.1 Circuit Models

A circuit model is an idealized description of a physical circuit in which some aspects
of the physical reality (e.g., physical arrangement) have been ignored in order to make
other aspects (e.g., electrical topology) more apparent. Figure 2.4 shows several kinds
of circuit models for digital computers. Each level in this table is an idealization of the
ones below it, and each describes a circuit using a different vocabulary. For example,
a register transfer circuit model describes a circuit in terms of registers, boxes that
compute arithmetic functions, and so on.

Modeling Level Vocabulary

Instruction Set arithmetic, addressing, conditionals ...

Register Transfer | registers, arithmetic functions, time ...

Logic Gate Level | boolean functions and values, time ...

Switch Level pass transistors, time ...
Circuit Level voltage, resistance, capacitance, time ...
Process Level physical arrangement of material ...

Figure 2.4: Modeling Levels for Digital Computers

In principle, any of these kinds of models can be used for circuit testing and most
of them have been. Choosing the model is important for test generation because it
determines both the vocabulary for describing behavioral interactions between com-
ponents and faults and the vocabulary for describing faults.

Most work on test generation for digital circuits has modeled circuits at the logic
level as networks of boolean gates connected by ideal wires. However, many kinds
of abstract, high-level models have been also used, e.g., register transfer models
[shirley85], ISPS behavioral models [khorram84], petri-nets [lai81] and mixed gate-
level schematics and state transition diagrams [hill77]. One recent line of research
[genesereth81, davis82a, shirley83b, singh86, krishnamurthy87] has focused on using
hierarchical circuit models which describe a circuit at multiple different levels of detail.
Extremely detailed circuit models also exist, e.g., analog models [gray69, spice80] and

46 CHAPTER 2. BACKGROUND I: TESTING THEORY

the models of the physical arrangement of silicon layers in a chip, but these models
have mainly been used to analyze circuit performance rather than to generate tests.

2.2.2 Faults prevent a circuit from meeting its specification

So far, we have been using the term “fault” loosely to refer to a problem with a
circuit. More precisely, a fault is a physical defect in a circuit that prevents it from
meeting its specification, e.g., wire breaks, shorts between two wires, chips inserted
backwards, or resistors with the wrong value. Physical faults can be subdivided into
logic and parametric faults. Logic faults cause a portion of the circuit implementing
one logic function to behave like a different logic function. For example, an inverter
might misbehave and act like a buffer. Parametric faults involve deviations from their
acceptable ranges of circuit parameters as voltage, capacitance and speed. Figure 2.5
shows some of the more common faults that can be introduced into a circuit during
construction and use.

Manufacturing Step | Potential Faults 7 ‘
Chip Fabrication silicon impurities, mask blemishes; over or under etching;
silicon, metal or chip-to-package open-circuit or short-
circuit defects,

Board Fabrication | incorrect interconnections; open-circuit or short-circuit
defects; unintended crosstalk between adjacent wires;
power supply defects; susceptibility to external electri-
cal noise

Construction incorrect IC packages; packages inserted backwards; bent
IC pins; extra (splashed) solder causing bridge faults be-
tween wires and pins; unsoldered joints; thermal damage
to chips

Environment / Use | component degradation due to high humidity, thermal
conditions or electrical noise; component aging faults
(metal migration in IC’s, resistor or capacitor degrada-
tion); planned modifications

Figure 2.5: Common faults introduced during circuit construction and use

A fault is intermittent if it is present during some intervals of time and absent
during others. This is typically caused by unstable physical problems or by envi-

2.2. MODELING CIRCUITS AND FAULTS 47

ronmental conditions. A fault is permanent if it is continuous and unchanging.
Detecting intermittent faults early is important, because intermittent faults often be-
come permanent as physical damage to the circuit is increases. However, no theory of
how to reliably test for intermittent faults exists because they can disappear during
testing. In this thesis, we consider only permanent logic faults.

2.2.3 Physical Faults have Behavioral Effects

A fault effect describes the consequences of a fault in the language of a particular
circuit model. For example, a physical short between the emitter and collector of the
transistor in figure 2.6.a will pull the output voltage down to the ground voltage.

How a fault effect is described depends upon how the circuit is modeled. For
instance, to describe the effect of this short in terms of a logic gate circuit model, we
would say the output of the inverter is stuck at the boolean value 0, i.e., that it cannot
move from 0 no matter what the input is. In this case, the physical description of the
fault is a short and its behavioral description at the gate level — the fault effect — is
a called a stuck-at-0 fault effect. With the shift to the gate modeling level, comes a
shift from voltage to boolean values, and with the disappearance of ground from the
model comes the introduction of a stuck-node.

A related physical fault is a broken wire between IN and the base of the transistor.
In this case the fault effect would be a stuck-at-1 on the inverter output. These two
possibilities, stuck-at-0 and stuck-at-1, cover the possible stuck-at fault effects at the
boolean level and are the most commonly used fault effects in circuit testing.

A fault effect can be caused by many different physical faults, e.g., there are many
physical causes for stuck-at-0 faults, but a fault causes exactly one fault effect (for a
given circuit modeling language). Therefore a fault effect defines an equivalence class
of physical faults — those physical faults that are indistinguishable in their behavioral
effect. Much of the reasoning test generators do that is ostensibly about faults is
actually about fault effects in order to save time by reasoning about equivalence
classes. This shortcut is useful enough that it often gets reflected in the terminology,
for example we will say a stuck-at-0 fault to mean any fault that has a stuck-at-0
fault effect.

2.2.4 Faults don’t always cause Errors

An error is a deviation from correct behavior caused by a fault. A fault may or may
not cause an error depending upon the state of the circuit. The difference between

48 CHAPTER 2. BACKGROUND I: TESTING THEORY

Vee

Collector ouT
IN | IN —[>o-—>‘e ouT
Emitter ! \
/ AN
— — Short stuck-at-0
(a) A physical short in a bipolar (b) The same fault described at the boolean
implementation of an inverter level as a stuck-at-0 fault effect

Figure 2.6: A single physical fault (the short) and its behavioral consequence (the
stuck-at-0 fault effect)

faults and errors can be illustrated by this example from [bennetts82]:

Consider a car carrying a spare tire, which, unknown to the driver, is flat
due to a faulty valve. The driver may drive many miles before the need
arises to change a tire. Until that time, the car has a fault but no error
has occurred.

Figure 2.7 illustrates this relationship between faults and errors using an inverter.
As before, the output of the inverter is grounded, causing a stuck-at-0 fault effect. In
case (a), the input is 1, so the expected output is 0 — the same value that the fault
causes. Therefore, the inverter produces the correct output and there is no error.
Note that the answer is correct even though the mechanism by which it is produced
is wrong.

In case (b), the input is 0 and the expected output is 1. The short causes the
output to be 0, which differs from the expected value. In this case, an error occurs,
hence applying 0 to the input (case b) is one way test for the presence of this short.
Applying 1 to the input does not test for the short.

2.2. MODELING CIRCUITS AND FAULTS 49

(stuck-at-o fault (stuclr-abo fault
1 —[>o-x— 0 0 —Do—x— 0
(2) input = 1, expected output = 0 (b) input = 0, expected output = 1
actual output=0, no error actual output = 0, error

Figure 2.7: Faults don’t always cause misbehavior

2.2.5 Errors are in the Eye of the Beholder

Depending upon conditions in the circuit, a fault may cause an error at the fault
site. This error may subsequently propagate downstream in a chain of errors that
eventually reaches a place (usually one of the circuit’s outputs) where it is visible to
an external observer. However, an error can fail to propagate too. It can be masked,
again depending upon conditions in the circuit.

Figure 2.8 shows a situation where an error does not propagate to the output. The
circuit is a selector whose behavior is to route either the value on D1 or the value on
D2 to OUT depending upon the value of SEL. This selector has a stuck-at-0 fault on
D1 and SEL is set to 0. Suppose we can only observe OUT.

The stuck-at-0 fault on D1 causes a 1 applied to that input to change to 0. Since
the fault causes an error to occur inside the circuit, we have the beginnings of an
effective test for the fault. However, because SEL is 0, the output of the upper AND
gate is also 0. This is the correct value, hence no error occurs there and no error
occurs at the output. An observer outside the circuit would say the circuit behaved
properly, even though an error occurred inside.

The essence of test generation lies in figuring out under what circumstances a fault
will cause an error at a place where the error can be observed. In this case, changing
SEL to 1 would allow the error to propagate from the fault site through the upper
AND gate and the OR gate to the output.

2.2.6 Fault Models are Closed-World Assumptions

We use a set of closed-world assumptions, called a fault model, to make test gen-
eration tractable by limiting the number of faults considered. Most test generation

50 CHAPTER 2. BACKGROUND I: TESTING THEORY

(stuck-at-o fault
D1 7 a3 o -
SEL — ouT
0 ‘ D2
D 1
D2 D2

Figure 2.8: The error at DI is masked and does not propagate to QUT

theory is based on the single stuck line (SSL) fault model, which is comprised of three
assumptions:

1. There is at most a single fault.
2. Any physical fault causes a stuck-at fault effect.

3. Any fault is nonintermittent.

The first assumption rules out multiple faults. The second assumption rules out faults
that do not manifest as a circuit node constantly holding a single boolean value, and
the third assumption rules out faults whose effects change during testing. The only
faults left are the stuck-ats, and we say these faults are included in the model.

2.2.7 Test Quality: Coverage and Resolution

Test quality is measured by how well the test detects and distinguishes between the
faults in a circuit. A fault list is the list of fault effects that can occur in a given
circuit under a given fault model. For example, applying the SSL fault model to a
gate-level circuit with V nodes gives rise to 2N entries in the fault list, since each
node can be stuck at 0 or at 1. If a fault causes an error that will be observed when
a test is executed, then we say the fault is detected by the test. Fault coverage is
the percentage of faults from the list detected by a given test. The higher the fault
coverage, the better the test, and figures above 90-95% are considered good.

In addition to knowing whether a circuit is faulty, we sometimes want to know how
it is faulty — which fault from the list is actually present — so we can repair the circuit.
If two faults produce different outputs when a test is executed, then the test is said
to distinguish or resolve them. A test has good fault resolution if it resolves most

2.2. MODELING CIRCUITS AND FAULTS 51

pairs of faults from each other. This thesis is concerned primarily with production
tests for VLSI circuits where repair is difficult, hence we focus on achieving good
coverage and do not attempt to achieve good resolution.

Fault coverage and resolution are computed by a process called fault simulation
that takes a model of the circuit and a fault list as input and predicts circuit outputs
for each fault and for the good circuit. One way to do this is to simulate multiple copies
of the circuit in parallel. When the program predicts a discrepancy between an output
value of the fault-free circuit and one for a faulty circuit, the fault involved is marked
as detected since an external observer would notice an error. To save work, a fault
simulator usually drops a fault’s simulation context immediately after it predicts the
fault can be detected. The program finishes by reporting the percentage of detected
faults, when and how each fault was detected and which faults were missed.?

2.2.8 Quality of a Fault Model

The quality of a fault model depends upon the cost of using it to generate tests and
upon how well it approximates the real world. We consider these issues in turn.

The cost of using a fault model to generate tests for a circuit is roughly proportional
the size of the fault list. For example, applying the SSL fault model to a gate-level
circuit model produces a fault list that is linear (actually 2/V) in the number of circuit
nodes.

A second fault model, called the bridge fault model, includes shorts between
pairs of circuit nodes. A short can be cause by, for example, an oversized solder joint
that is intended to connect one pin of a chip to a circuit board but also touches an
adjacent pin by mistake. If all N2 possible shorts are considered, then the bridge fault
model subsumes the SSL model because any stuck node is indistinguishable from that
node shorted either to power or to ground. This leads us to an important tradeoff
involving fault models: the more comprehensive a fault model is, the more expensive
it is to use.> Test engineers tend to prefer the less comprehensive SSL model because

2Modern fault simulators are highly optimized programs that share some ideas with AI programs
that reason under multiple contexts, e.g., deKleer’s ATMS [dekleer-ATMS86a).

3Some researchers define the SSL fault model to include stuck terminals, i.e., a wire break dis-
connecting a single component input from the circuit node that drives it. The behavioral effects of
this kind of physical defect differ from those of a stuck-at if the driving node includes a fanout (i.e.,
a single output driving multiple inputs). The bridge fault model does not subsume an SSL model
that includes stuck terminals, but the gist of the comparison between the SSL model and the bridge
fault model still holds.

52 CHAPTER 2. BACKGROUND I: TESTING THEORY

the resulting fault list is only linear in the circuit size.*

In principle, how well a fault model approximates faults in the real world can be
determined by measuring what kinds of faults occur in practice and how often each
kind occurs. For instance, if 95% of the faults that occur in practice were stuck-
ats, then we would say the stuck-at model is a good approximation. Unfortunately,
collecting a statistically significant number of samples is difficult because each fault
must be carefully analyzed and categorized. Moreover, this process must be repeated
often to track the frequent changes in circuit manufacturing methods.

A more practical method of judging a fault model’s quality is to compare it against
a more detailed and physically plausible model. [ferguson87] describes measurements
for a set of physically plausible, fabrication faults in Metal Oxide Semiconductor
(MOS) circuits. Only 45% of the faults corresponded to stuck-at fault effects. The
rest were bridges and transistor defects of various kinds.

Conventional wisdom in the field has it that, while not all faults result in stuck-
ats, tests generated for stuck-at fault effects are good enough. This conclusion has
been called into question by Ferguson’s results. A test that could detect 100% of the
stuck-ats detected less than 90% over all of the physically plausible faults.

These results suggest that test generation algorithms should be flexible in the fault
models they assume. Different technologies will have different kinds and distributions
of physically plausible faults, and factoring the fault model out of the test generator
will help it remain useful as technologies change.

2.2.9 Summary

This section introduced faults, fault effects and errors. Physical faults have behavioral
consequences called fault effects that prevent a circuit from meeting its specification.
Whether a fault actually causes an error and the error propagates to a place where
it can be observed depends upon conditions in the circuit. Setting up the conditions
properly is the goal of test generation.

Modeling is a central theme. The most commonly used type of circuit model for
test generation is a network of boolean gates. This choice has largely been dictated
by the kinds of circuit descriptions produced by existing design tools. Only recently
has the rising cost of generating tests using gate level descriptions caused the use of
gate-level models to be seriously questioned in industry.

4Also, a short can complicate matters by creating a feedback loop to turn a combinational circuit
into a sequential one.

2.3. GENERATING TESTS 53

Fault models are sets of closed-world assumptions. The most commonly used fault
model for test generation is the single stuck line (SSL) fault model, which was devel-
oped for 1960’s board manufacturing technology. Chip manufacturing technology has
changed the kinds of physically plausible faults sufficiently that the SSL fault model
too has recently come under scrutiny. Still, this fault model remains the standard in
industry.

The following two sections introduce test generation and test application tech-
niques that have been developed for digital circuits. They briefly cover how the tests
are generated from the circuit and fault models and how the responses are predicted,
measured and compared.

2.3 Generating Tests

Test generation takes a circuit model and a fault model as input and attempts to
produce a set of exercises that will detect and optionally locate any of the faults
covered by the fault model in an instance of the circuit. Each test specifies signals to
be applied to the circuit’s inputs and values to be observed at its outputs.

2.3.1 Representing Tests as Vectors

Figure 2.9.a shows a test for an AND gate. Each row of the table is called a test
vector and describes two inputs to apply and one output to observe. To apply these
tests, one steps through the rows of the table applying the inputs and looking for the
expected outputs. Observing an output value that is different from one in the table
indicates the presence of a fault. The term “test” is used variously to refer to a single
test vector or to a group of them that share a common purpose, like the ones in the
figure. Since the behavior of a combinational circuit is independent of its past inputs,
each test vector is independent from the rest, and a set of vectors can be applied to
a combinational circuit in any order.

Test vectors can be applied to a circuit automatically using a specialized piece of
hardware called a stored-pattern tester (see figure 2.10). A stored-pattern tester
is a computer with a large memory for holding test vectors and with special-purpose,
parallel I/O electronics for driving circuit inputs and sensing circuit outputs. The
computer first fills the memory with test vectors. Then the vectors are read out from
the memory one-by-one. The electronics that interface the tester to the circuit, called
driver-sensors, convert the input values to appropriate voltages and drive them onto
the circuit inputs. Then they sense voltages on the circuit outputs, convert them into

54 CHAPTER 2. BACKGROUND I: TESTING THEORY

IN1 IN2 OUT IN1 IN2 OUT
0 0 0 1 0 0
IN1 — i 0 0 0 1 0
N2 = ouT o 1 0 1 1 1
1 1 i
(a) exhaustive tests (b) SSL tests
(black box) (model based)

Figure 2.9: Two different tests for an AND gate

boolean values and compare them with the expected outputs specified by the vector.
If there are any discrepancies, the tester raises a flag to the human operator indicating
the presence of a fault.

Vector
Memo
i E Circuit
Driver Crossbar E Under
Sensors 3 Test
\ -

Computer |<—

Figure 2.10: A Stored Pattern Tester
Classical testing theory views tests as vectors and testers as machines for applying

vectors. The present-day reality is considerably more elaborate than this, as we shall
see in chapter 7.

2.3.2 Test Generation Methods

This section describes two fundamentally different strategies for generating tests:
black box test generation and model-based test generation. Black box test gener-

2.3. GENERATING TESTS 55

ation only requires information about the circuit’s interface with the external world,
i.e., its I/O behavior. The model-based approach exploits information about the
circuit internal structure and behavior in order to produce higher-quality tests.

2.3.2.1 Black Box Test Generation

Black box test generation relies solely on descriptions of a circuit’s interface. The
two major forms of black box testing are random testing and exhaustive testing. In
random testing inputs are selected at random from the set of possible circuit inputs.
With this approach tests can be generated extremely cheaply and can be applied to
a circuit as shown in figure 2.11. The pattern generator generates pseudo-random
numbers and applies them simultaneously to the circuit under test and a reference
standard that has been tested using another method, e.g., by hand. Any discrepancy
between the outputs indicates the presence of a fault in the circuit under test.

Circuit
Under
Test
Random Pattern | AALAALARLS

Comparator ————-} Good/Faulty
Generator

l ' Reference !

Standard

lllllllll[l

Figure 2.11: Random Testing

Exhaustive testing is the extreme case of black box test generation where one
guarantees that all input combinations will be applied to the circuit. Therefore, all
hard faults will be detected — a conclusion that does not require expensive analysis.
The tests in figure 2.9.a are exhaustive, since they cover all four input combinations.

The primary disadvantage of both methods is the large number of vectors required
to achieve good fault coverage. Random testing requires applying a large percentage
of the circuit’s possible inputs, and the more systematic approach involves applying
all of them. Exhaustive tests for a combinational circuit with n inputs can require
2" test vectors, one for each input combination. Exhaustive testing is, however, quite
effective for small circuits since few vectors are needed and they are cheap to generate.

56 CHAPTER 2. BACKGROUND I: TESTING THEORY

2.3.2.2 Model-Based Test Generation

Many modern circuits are too complex to test using black box methods. Using a model
of the circuit and its faults, however allows a test generation program to produce high
quality tests with relatively few vectors. The models allow the problem of testing
the whole circuit to be divided into separate problems of testing each element of the
model. For example, a model-based test generator can design one test vector for each
SSL fault in a circuit. For the AND gate in figure 2.9.b, this yields 6 test vectors. Since
a single test vector can usually detect several faults, eliminating redundant vectors
reduces the number of vectors to the 3 shown in the figure. These 3 test vectors detect
SSL faults on the inputs and the output of the AND gate using fewer vectors than the
4 required by an exhaustive test. Since the number of SSL faults rises linearly with
circuit size while the number of exhaustive tests rises exponentially with the number
of inputs, using circuit and fault models for large circuits can save significant effort
and time.

There are two different strategies for model-based test generation: (i) check each
behavior and (ii) check each fault. The strategies partition the test generation problem
in different ways. The first strategy, known as functional testing, partitions the
circuit by what it does. For example, a functional test for a microprocessor involves
tests for each instruction. The second strategy, fault-based testing, designs a test
for each potential fault in a model of the circuit.

A single test generation algorithm can combine the methods of checking behaviors
and checking faults. For example, the test for a microprocessor might be partitioned
by instruction, like a functional test, but the test for each instruction might then be
generated using models of faults in the components used by that instruction.

Most of the recent work on test generation and both of the new methods introduced
by this thesis fall within the model-based test generation framework. What distin-
guishes the different methods from each other is how circuits and faults are modeled
and whether the testing problem is partitioned by function, fault or both. In order to
make the discussion concrete, the next section describes a specific model-based test
generation algorithm.

2.3.3 The D-Algorithm

The D-algorithm [roth66, roth80] is a test generation method for gate level circuits.
This section shows the circuit and fault models traditionally used in test generation
and the methodical and exhaustive search that is the foundation for generating tests.

2.3. GENERATING TESTS 57

The next section describes some of the search control heuristics and other methods
of making test generation more efficient.

The D-algorithm generates tests for all SSL faults in a combinational circuit.
This algorithm, the ancestor of most model-based test generation methods (e.g.,
[goel8la, benmehrez83, kramer83, fujiwara85]), illustrates three central ideas in test
generation: (i) fault hypotheses, (ii) a symbolic vocabulary for signal flow and (iii)
path sensitization.5

2.3.3.1 Hypothesizing faults

The D-algorithm generates one test vector for each potential SSL fault in the circuit.
It does this by repeatedly hypothesizing the existence of a fault (e.g., that a single node
is stuck-at-0) and then generating a vector which distinguishes a circuit containing
that fault from a fault-free circuit. The discussion below assumes that a particular
fault has been hypothesized.

2.3.3.2 A Symbolic Vocabulary for Signal Flow

The D-algorithm uses the extended boolean vocabulary for signal flow originally used
by the D-algorithm. The D-vocabulary combines the fault-present case with the fault-
absent case into single tokens in the following way:

Original Notation good/bad Meaning
1 boolean 1 in either case
0 boolean 0 in either case
1/0 1 if fault-free, 0 if faulty
0/1 0 if fault-free, 1 if faulty
X don’t care

“ O o+

1/0 and 0/1 are called sensitive values because their value is sensitive to the presence
or absence of the fault.® By combining the fault-present and fault-absent cases into a

5This section describes a slightly simplified version of the algorithm. The full version does not
focus so closely on SSL faults. Rather, it has several complex mechanisms enabling it to test faults
inside gate-level components in addition to the SSL faults on the circuit nodes. These mechanisms
add considerable complexity to descriptions of the algorithm and are not of central concern here.

6The D-vocabulary is usually presented using the symbols D for 1/0 and D for 0/1. We use
good/bad notation here to enhance readability.

58 CHAPTER 2. BACKGROUND I: TESTING THEORY

single notation, the D-vocabulary makes reasoning about the propagation and inter-
action of errors in a circuit an analog of the familiar process of propagating boolean
values.

The D-algorithm assigns sensitive values to circuit nodes following detailed rules
dictated by the circuit structure and behavior. The goal of this process is to assign
a sensitive value to one of the circuit outputs. When the real circuit is tested these
sensitive nodes will either be 0 or 1 depending upon whether the fault is present, and
measuring the value of the sensitive output will tell which situation holds.

Some of the rules governing node assignments stem from keeping them consistent
with component behavior. Figure 2.12 shows a complete set of so-called D-rules that
use the D-vocabulary for node assignments around an AND gate. The rules in group
(a) describe the gate’s normal behavior, i.e., its behavior in the absence of any faults
inside the gate or errors on its inputs. The rules in group (b) describe a fault in the
gate causing an error. In this case, the gate inputs are normal, fault-free boolean
values and the output is a sensitive value. An output value of 0/1 indicates a stuck-
at-1 fault while an output value of 1/0 indicates a stuck-at-0. The rules in group (c)
describe how errors propagate through AND gates. The top four rules in group (c)
show single errors propagating through the gate, while the bottom four rules show how
pairs of errors (stemming from the same fault) interact. For instance, the sensitive
values 1/0 and 0/1 on the inputs cancel out causing an insensitive 0 on the output
because one or the other input is 0 in both the good and bad cases.

Within this framework, test generation is a process of choosing rules for the com-
ponents to describe how the components will behave during a test. The rules chosen
must agree where the components touch. For instance, if gate A drives gate B, then
the output value of A’s rule must agree with the input value of B’s rule because
the circuit node shared by both rules can only have a single value. The strategy for
choosing rules to form a test is called path sensitization.

2.3.3.3 Path Sensitization

Path sensitization starts with each circuit node assigned to the don’t care value, then
changes node assignments to one of the other four values as necessary. The method
involves three steps:

1. Fault Sensitization: Choose a way to make the fault cause an error at the
fault site, i.e., choose assignments corresponding to a gate receiving correct
inputs but having a potentially faulty output. If, for example, the hypothesized

2.3. GENERATING TESTS 59

0 ;:D— 0/1
;‘:D— 0/1
1 : :___)- 1/0

(a) Normal Behavior Rules (b) Sensitization Rules

00U

Jod o YAy 1o
ol 1) on) o
gﬁ :D— o éﬁ f:} 0
oD Wl D)o

(c) Error Propagation Rules

Figure 2.12: D-rules for AND gates. A values of the form good/bad describe a circuit
node whose value ts different depending upon the presence of a fault. For instance,
1/0 indicates a node that is 1 if the circuit is good and 0 if it is faulty.

60 CHAPTER 2. BACKGROUND I: TESTING THEORY

fault is stuck-at-0 at a node, then assign the node a value of 1/0, i.e., the node’s
value should be 1 in the good circuit case and 0 otherwise. Then choose one
rule that has 1/0 on the output from group (b) for component driving the node.

2. Error Propagation: Select a path to propagate the error signal from the
fault site to an output. In effect, the path acts as a probe connecting the
fault site to an output, thereby enabling an external observer to measure the
node value inside the circuit. Select sensitive values for the nodes along the
path and behavior rules from group (c) for the components along the path.
Assign values to nodes adjacent to the path according to the rules chosen for
the components in the path. These adjacent node assignments are conditions
enabling the components to propagate the sensitive values from fault site to
output.

3. Line Justification: Select values for the circuit inputs that will cause the
values assigned in steps (1) and (2) to occur. This step uses behavior rules from
groups (a) and (c).

All of these steps involve search. For example, there may be several ways to sensitize
the fault, many ways to propagate the error and many ways to justify line values.
Only some of these ways will be mutually consistent. The search involved in finding
consistent ways of doing these steps is the main cost of running the D-algorithm and
of doing test generation in general. This search is usually organized as constraint
propagation from the fault site outward: forward to the circuit outputs during error
propagation and backward to the circuit inputs during line justification.

2.3.3.4 The D-Algorithm and An Example

Path sensitization as described has a flaw: there can exist testable faults that are
impossible to test using only a single sensitized path. The D-algorithm’s major con-
tribution over previous path sensitization techniques is a method of organizing the
search for multiple sensitive paths so that no possibilities are overlooked. Thus, the
D-algorithm was the first complete test generation algorithm: if a fault can be tested
(given the circuit and fault models), then the D-algorithm can find a test for it.

The D-algorithm, shown in figure 2.13, uses chronological backtracking search
over the space of D-rules with constraint propagation performed after every choice.
AT readers should note that the D-algorithm used a clear though limited version of
constraint propagation in 1966, long before Sussman and Stallman’s EL program.

2.3. GENERATING TESTS 61

1. Fault Selection: Select a fault from the fault list. Here, we take the faults to
be stuck circuit nodes.

2. Fault Sensitization: If the fault selected is stuck-at-1 (stuck-at-0), then at-

tempt to set the node to 0 (1) by selecting inputs for the gate driving the node.
Assign 1/0 (0/1) to the fault site.

3. Constraint Propagation: In step 1, some nodes may be assigned values that
uniquely imply values on other nodes. When a node is assigned a value, put all
gates that use that node either as an input or an output on an active list. During
constraint propagation, remove gates from this list. If the assignments around a
gate are inconsistent with all of its D-rules, then backtrack. If the surrounding
assignments are consistent with exactly one D-rule, then assign new values to
any unassigned nodes as specified by the rule. New assignments will cause gates
to be added to the active list. Continue until the active list is empty.

4. Error Propagation: Drive the error out to an observable node. If any primary
output has a D value, then go to step 4. The D-frontier is the set of gates
which have sensitive values on their inputs but whose outputs are unassigned.
The D-frontier is updated when assignments are made.

Select a gate from the D-frontier and a D-rule consistent with the current node
assignments and which has a sensitive value on the output. Perform constraint
propagation for any new assignments. Repeat until a sensitive value appears on
a primary output.

5. Line Justification: Construct a causal justification for all node assignments
made in the steps above. A node assignment is justified if it is a primary input
or if it is caused by the input assignments of the gate driving it.

Select a node that is not justified. Choose a consistent D-rule for the driving
gate, and make the new assignments. Perform constraint propagation. Repeat
until all nodes are justified.

Figure 2.13: The D-algorithm

62 CHAPTER 2. BACKGROUND I: TESTING THEORY

Figure 2.14 shows a simple example of the D-Algorithm in action. The first step
is fault selection. Here we have chosen a stuck-at-1 fault on the output of gate
A (figure 2.14.a). Fault sensitization assigns A’s upper input to 0 (figure 2.14.b),
although it could just as well have chosen the other input. This assignment will cause
the gate’s output to be 0 if fault-free and 1 if stuck-at-1.

Constraint propagation determines the consequences of the assignments made so
far. Figure 2.14.c shows the first constraint propagation step: a 0 on the inverter’s
output implies a 1 on its input. Figure 2.14.d shows the end result of constraint
propagation.

Error propagation attempts to propagate the error from the fault site to an ob-
servable output. In this case, the only possible path is through 02, and the algorithm
looks for a propagation rule for OR gates that has a sensitive value on the output
and also is consistent with the current node assignments. No such rule can be found,
because the 1 on O2’s output precludes any sensitive value there. The algorithm back-
tracks to the most recent choicepoint, which was the selection of a way to sensitize
the fault in figure 2.14.b.

This time the algorithm sensitizes the fault by assigning the lower input to 0 as
shown in figure 2.14.f. Constraint propagation does not add any new assignments,
and error propagation propagates assigns the output of Ol to 0 (figure 2.14.g). At
this point the values of the remaining nodes are uniquely determined, and constraint
propagation works them out (figure 2.14.h). The final step, line justification, has no
work to do in this example, because all assignments are justified by assignments to the
primary inputs. The test vector for this fault is (IN1=0, IN2=0, IN3=0, OUT=0/1).

These steps are repeated for each SSL fault in the circuit yielding 14 test vectors.
Since single test vectors often may serve to detect more than one fault, there is likely
some redundancy in these 14 vectors. In fact, running a version of the D-algorithm
modified to account for redundancy between test vectors yields 5 test vectors for this
circuit.

Sometimes physical defects cannot be detected, e.g., the stuck-at-0 fault on N’s
output. This fault is untestable, because sensitizing the fault requires setting IN2=1,
which in turn constrains OUT=1. Since 1 is not a sensitive value, no error can now
propagate to the output. The D-algorithm fails is this case by exhausting its search
without finding a solution. Failing here is not a problem, however, because there is no
input combination where the presence of this fault would cause the circuit to produce
a wrong output.

2.3. GENERATING TESTS

63

o OUT

IN3O—v—T

(a) Location of the fault

INlo———

IN2

IN3o———— 1

(b) Sensitize the fault (O=working, 1=faulty)

IN3O—nT
0

(f) Backtrack and sensitize again

o— %
IN1 or
IN2 @ o OUT
1 0
A o/
INSO———— /

(c) Constraint propagation step

(g) Drive the fault out

INlo—— %

IN2

! 0

IN3O———I 1

(d) Constraint propagation step

IN1o——————%
0
IN2 o OUT
0 1 0/1
IN3O—nou—" |
0

(h) Results of Constraint propagation

Figure 2.14: D-Algorithm Ezample

64 CHAPTER 2. BACKGROUND I: TESTING THEORY

2.3.4 The Podem Algorithm

The Podem (Path Oriented Decision Making) algorithm [goel81a] is the first major
successor to the D-algorithm. Podem illustrates in the testing domain two important
ideas that are familiar to Al readers: (i) identification of strong constraints in the
problem domain and (ii) search control heuristics. Podem is also an intellectual an-
cestor of the designed behavior test generator introduced in this thesis: its emphasis
on behavior at the circuit inputs is a theme that we build on later.

Like the D-algorithm, Podem uses the D-vocabulary for describing circuit signals
and D-rules for describing component behavior. The chief difference between Podem
and its predecessor lies in the area of search control, i.e., which rules are used when.
In practice, the D-algorithm’s lack of a global view of circuit behavior often causes it
to assign values to internal circuit nodes that are unachievable. When this occurs, the
algorithm must backtrack and try again, eventually stumbling upon the correct as-
signments. This occurs especially when the values of the internal nodes bear complex
and highly-constraining relationships to each other, e.g., in error correction circuitry.
Podem uses the same kind of backtracking search, but organizes the search in a way
that leads more directly to solutions or exposes conflicts more quickly.

Podem is predicated on the observation that assignments made to circuit inputs
strongly constrain assignments on the internal nodes. Therefore, Podem tries hard
to propagate signals back to the inputs first, before propagating elsewhere inside the
circuit. In particular, Podem performs line justification immediately after making
every internal assignment. If this succeeds in assigning a value to an input, then and
only then does Podem take a constraint propagation step to deduce the consequences
of the new input assignment on the values of internal circuit nodes. The strategy of
pushing to the inputs quickly tends to expose global conflicts early, thereby reducing
wasted effort.

Podem is guided toward good solutions by two fundamental search control heuris-

tics:

1. Conjunctive goals: Try the hardest subproblem first, since this is likely to expose
global conflicts quickly.

2. Disjunctive goals: Try the easiest subproblem first, since only one solution is
needed.

These heuristics are instantiated in several ways in the algorithm. For instance,
during error propagation, the sensitive value closest to a circuit output is pushed

2.3. GENERATING TESTS 65

forward because only one sensitive value need reach an output and the closest is likely
to be the easiest to push there. Another example occurs during line justification.
When using a component behavior rule requires controlling multiple inputs (e.g.,
setting the output of an AND gate to 1 requires that both inputs must be 1), the
backward propagation proceeds first from the hardest input to control. Difficulty
is approximated by distance to a circuit input. Similarly, when using a component
behavior rule requires controlling only a single input (e.g., setting the output of an
AND gate to 0 requires that either input must be 0), the backward propagation
proceeds first from the easiest input to control. A rich line of recent research in test
generation (e.g., [fujiwara85]) concerns refining and augmenting these heuristics and
difficulty measures.

2.3.5 Test Generation with Hierarchical Circuit Models

One recent line of test generation research (e.g., [genesereth81, davis82a, shirley83b,
singh86, krishnamurthy87]) has increased performance by using hierarchical circuit
models. The algorithms are similar to the D-algorithm, i.e., they generally use models
partitioned by structure rather than behavior, and they embed component tests using
path sensitization and line justification. Their advantage comes from using high-level
models to increase performance in two ways:

1. High-level models allow the test generator to take larger propagation steps with
only a small increase in the cost of each step. Taking larger steps reduces the
number of steps to get from an internal component to a circuit input or output.

2. Although there may be a choice of which high-level step to take, the act of taking
a high-level step involves no search (just as taking a low-level step also involves
no search). Taking a single high-level step, thus eliminates wasted search, i.e.,
backtracks, involved in taking the equivalent, multiple low-level steps.”

Hierarchical test generation algorithms can be described as refinements of the D-
algorithm by showing: (i) how line justification and error propagation use high-level
models, (ii) how the test generator shifts between modeling levels, and (iii) what
strategy the test generator uses to control shifting between levels.

"This is a slight oversimplification, as some of these test generators allow search while taking a
high-level step (e.g., [singh85]). However less search is generally required than in low-level propaga-
tion. The purpose of allowing search during a high-level steps is so the user may take advantage of
nondeterminism to simplify writing the high-level circuit model.

66 CHAPTER 2. BACKGROUND I: TESTING THEORY

First, rules for describing component behavior are augmented by high-level rules.
Where D-rules describe boolean values propagating through a logic gate, high-
level rules describe groups of signals representing, for example, integers propagating
through an adder. One implementation [davis82a], represents high-level rules as sets
of demons that activate when the value of one of their inputs changes (see figure 2.15).
Techniques for doing this are detailed in [steele80]. Sensitive values are represented
as pairs of values that are propagated together, one for the good circuit and one for
the faulty circuit. Shifting between modeling levels is implemented with the same
technique (see figure 2.15.d).

These test generators use strict hierarchical models and a simple strategy for
controlling which level to propagate through: propagate at the highest level possible.
This strategy assumes that high-level propagation is always less expensive than low-
level propagation. These algorithms thus do line justification and path sensitization
out from a fault site to the boundaries of the smallest component that contains the
fault. Then they shift the values on the component inputs and outputs up one level
and continue propagating to the boundary of the next containing component. The
algorithms continue propagating and shifting upwards until they reach primary inputs
and outputs.

Hierarchical test generation algorithms represent a significant advance over the
classical algorithms, but they have several drawbacks: (i) they require abstract circuit
models that are not produced or captured by current design tools®, (ii) they have no
model of the tester and (iii) they fall short of capturing the richness of expert test
generation methods. On balance, hierarchical test generators are very promising,
but much work remains before they can be said to work effectively in industry. The
designed behavior test generator introduced in this thesis can be viewed as a step in
this line of research that identifies and uses operation relations, a new kind of abstract
representation for circuit behavior.

8The difficulty of modeling significant circuits at multiple levels of abstraction has been a hurdle
in this line research. There is a chicken-and-egg problem here. These test generators require circuit
descriptions that are not produced by current CAD tools, and the difficulty of creating significant test
cases from scratch makes validating the research ideas difficult. On the other hand, it is difficult to
justify including information a design description (and augmenting the CAD tool to handle it) that is
not going to be used by a proven test generator. This problem is slowly being solved as the algorithms
and the available design descriptions improve together, and efforts in industry to standardize on a
rich circuit description language capable of expressing some of the needed information will accelerate
this process.

2.3. GENERATING TESTS

IN1 IN2

ADDER

ouT

(a) structural model: one box instead

of a complex, gate-level network

67

IN1 IN2 IN1 IN2 IN1 IN2
ouT ouT ouT

(b) Behavioral Model: Each rule is a function
that activates when one of its inputs changes

and computes a new value for its output.

1 2
9
IN1 IN2
INTEGER
ouT BITS
1 0 0 1
3
(c) If IN2=2 and OUT recieves the new value 3, then (d) Shifting between levels is
this rule activates, computes 3-2 and outputs the handled by similar rules.

result at IN1. If the rule cannot compute a unique

output value, then it can guess among the possible

values, enabling the test generator to search as well

as propagate constraints. The other rules are analogous.

Figure 2.15: High-level propagation rules

68 CHAPTER 2. BACKGROUND I: TESTING THEORY

2.3.6 Test Generation for Sequential Circuits

The D-algorithm and its successors can generate tests for combinational circuits, but
they cannot directly handle sequential circuits, i.e., circuits with memory in them.
This section describes a well known way to transform a model of a sequential circuit
into a model of an equivalent, combinational circuit. This equivalent circuit model
can then be used to generate tests for the sequential circuits using a combinational
algorithm. While the transformation shows that test generation for sequential circuits
is possible, testing them can be very expensive, and the form of the transformation
illustrates why.

The D-algorithm is not directly applicable to sequential circuits because it models
a test as occurring at an instant, whereas a test for a sequential circuit may require
an interval of time, e.g., several clock cycles. For instance, to propagate an error from
the fault site to the output, it may be necessary to route the error to a register, move
forward by one clock cycle, and then route the error from the register to an output.
In the process, signals may be routed differently in the two clock cycles. To test a
given fault the D-algorithm can assign each node in a circuit at most one value, but
to test a sequential circuit, each node may need a different value for each clock cycle.
The D-algorithm has no place for these different values.

This problem can be solved by replicating the sequential circuit once for each
clock cycle and connecting the copies to form a chain as in figure 2.16. Each copy
represents the circuit during one clock cycle. A sequential circuit is composed of
registers connected by combinational circuitry, and here, the R’s denote copies of the
registers and the C’s denote copies of the combinational logic. Replacing the registers
with buffers that pass information unchanged from one time step forward to the next
completes the transformation from sequential to combinational circuit. The final step
is to change the D-algorithm slightly to hypothesize a fault identically in all copies of
the circuit, since faults are assumed to be the same at all times.

Test generation for combinational circuits is NP-complete [ibarra75] by a straight-
forward transformation from 3-SAT [garey79]. This means that the cost of test gen-
eration is exponential in circuit size in the worst case. In practice, however, search
control heuristics and regularities in the kinds of circuits that actually are designed
reduces the average cost to O(n®), where n is the number of gates in the circuit
[williams79]. Hence test generation for combinational circuits is regarded as a solved
problem.

Test generation for sequential circuits, on the other hand, is much more difficult.
A “chain” equivalent circuit can require up to 2™ copies, where m is the number of

2.4. SUMMARY 69

Copy #1 Copy #2
RIS cee DRI a AR 2 > oeee
(a) A sequential circuit (b) An equivalent combinational circuit

Each copy represents the circuit at one time

or clock cycle during the execution of a test.

Figure 2.16: The D-algorithm can be applied to a sequential circuit by converting the
sequential circuit into an equivalent combinational one.

bits of state, because every state may have to be visited. This yields a tight upper
bound of O((27)2™*") for the cost of test generation for sequential circuits [breuer76].°

2.4 Summary

This chapter introduced the basic concepts and algorithms in the field of circuit
testing. Modeling circuits and their faults was the first major theme. Models are
important because they establish the framework within which test generation occurs,
i.e., faults are treated as perturbations of the circuit model. The kind of circuit model
impacts the cost of doing test generation, and the kinds of closed-world assumptions
made in the fault model determines how well the tests will detect real faults in the
world.

The D-algorithm is a model-based test generation method that uses a gate-level
model to generate tests for SSL faults. The chief characteristic of this algorithm is
that it methodically and exhaustively searches through the space of circuit behaviors,
making the D-algorithm complete with respect to its models. If a test for a fault
exists, then the D-algorithm will find it.

®Some faults can add an extra bit of state by creating a feedback loop, hence the m+1. This is a
tight upper bound, because circuits can be constructed whose testing requires traversing the entire
state-transition graph.

70 CHAPTER 2. BACKGROUND I: TESTING THEORY

Since the development of the D-algorithm, much work has gone into sophisticated
search control heuristics and careful attention to detail, resulting in a succession of
more powerful algorithms. This work has effectively solved the test generation prob-
lem for quite large combinational circuits (up to 50,000 gates). However, generating
tests for moderately complex sequential circuits still lies far beyond the capabilities
of these algorithms.

Some recent work has applied similar propagation techniques to more abstract
models of circuit structure and behavior. These methods represent an important step
forward, but they do not completely solve the problem.

Two characteristics of classical test generation algorithms stand out:

e They are designed to be completely general, i.e., they can be used to test any
digital circuit.

e They do not explicitly represent circuit behavior as a whole. Instead, they
derive descriptions of global behavior via local propagation through behavioral
descriptions of the components. In effect, they have an myopic view of the
circuit, and succeed at finding tests by being methodical and exhaustive.

These characteristics are related. From a fixed and small set of components, e.g.,
the simple boolean gates, any circuit can be built by composition. From a fixed
and small amount of domain knowledge, e.g., component behavioral descriptions, any
circuit can be tested by local propagation. However, as in many things, there is a
power vs generality tradeoff. The price of generality is high test generation costs as
the algorithms get lost and miss the forest for the trees. As we shall see in the next
chapter, human test experts use a large amount of special-purpose knowledge to focus
their test generation effort. This works particularly well because real world circuits
are not arbitrary but fall into distinct categories and display regularities that can be
exploited.

NN
ddddef
pRygEp
7777777

Tester Hardware Sequential Circuit

Chapter 3
Background II: Testing Practice

Summary: Human test experts perform better than existing test generation
algorithms. This chapter gives an abbreviated description of what test experts
do and contrasts this with the algorithms described in the previous chapter. The
differences suggest a research agenda for improving the algorithms of which this
thesis is a part.

Human test experts perform better than existing test generation algorithms. An
experienced test programmer can write a test program for a circuit board containing
many VLSI chips in a period of weeks to months depending on the complexity and
familiarity of the circuit. Such circuits contain hundreds of thousands of gates and
thousands of bits of stored state. The structure of the resulting test program will
reflect the structure of the circuit, with sections of the program devoted to sections
of the circuit. If the circuit is changed slightly at the last minute to fix a bug, the
test program will only require a small change too.

The classical test generation algorithms described in chapter 2 are far from this
level of performance. They are ineffective on large sequential circuits. The flat se-
quences of test vectors they produce do not have a recognizable structure, making
it difficult for an expert to understand, modify and combine their output with the
output of other tools. Changes to the circuit are not related to changes in the tests
in any meaningful way.

Understanding the differences in how experts and algorithms generate tests yields
clues for improving the algorithms and closing this performance gap. This chapter
gives a brief description of what test experts do and contrasts this with the existing
algorithms. The differences are of two kinds. First, the experts solve a somewhat
broader problem than the algorithms do. The core of the problem is the same -
design circuit inputs to detect internal faults — but the boundaries of the problem are
different. The following differences are central:

71

72

CHAPTER 3. BACKGROUND II: TESTING PRACTICE

¢ Negotiable vs Fixed Goals: The goals for test generation can be established

by negotiation with other factors of circuit design and manufacturing. This can
make the testing problem easier. Test generation algorithms can and should
reflect this possibility, yet current algorithms do not.

Realistic vs Simplistic Tester Models: Tests must be designed to exploit
the capabilities of the machine that will execute them. Test experts understand
and design for the capabilities of complex, modern testers, while current test
generation algorithms design tests only for extremely simple, vector-oriented
testers.

Second, experts generate tests using methods that are quite different from the classical
algorithms. The central differences are:

e Specialized vs General Methods: Experts have developed many special

purpose techniques for testing specific kinds of circuits. The limited scope of
these techniques enables them to be more effective or more efficient than the
existing, general-purpose algorithms.

Task Understanding vs Search: Experts understand the task that a circuit
is designed to perform and the patterns of component activity inside the circuit
that accomplish it. This understanding helps them to focus problem solving
effort on potential tests that are likely to be achievable. Existing algorithms
do not understand the circuit’s task and rely upon search to discover what
behaviors the circuit might possibly perform.

Rich vs Limited Test Representation: Experts write test programs rather
than test vectors. The programs provide convenient access to tester features and
are a more compact and human readable description of how to test a circuit than
are test vectors produced by existing algorithms.

These differences form the starting point for this thesis. That experts use many

specialized methods rather than a single general one suggests that knowledge engi-
neering is an appropriate paradigm for studying circuit testing. That the testing
problem is negotiable with the circuit designer is the basis for asserting that test
generators should be fast, giving up completeness if necessary. That experts have a
global understanding of circuit behavior while the algorithms do not is the impetus
for DB-TG. The representations of circuit behavior DB-TG generates by simulating
circuit operations provide a kind of global perspective and focus search. That test

3.1. EXPERTS SOLVE A BROADER PROBLEM 73

experts understand tester features and programs are more expressive than test vectors
is the basis for PF-TG, which generates tests in a rich test language.

The remainder of this chapter expands on these key differences and gives a broad
outline of how one expert creates tests. The contrast between the algorithms and the
experts suggests an agenda for testing research of which this thesis is a part.

3.1 Experts Solve a Broader Problem

This section describes these three ways in which real-world test generation extends
beyond the scope of the classical algorithms: (i) available circuit descriptions often
lack detail; (ii) experts express many tests as programs rather than as vectors; and
(iii) testability can sometimes be negotiated between designers and test engineers.

3.1.1 Detailed Circuit Descriptions are Often Unavailable

Detailed structural (e.g., gate-level) circuit models are often unavailable to test ex-
perts. Instead, they must rely upon block diagram descriptions of the sort found in
databooks. This situation can occur due to poor communications if the design and
test teams are separated within the same organization and due to product evolution
goals and competitive pressures when the design and testing teams are in different
organizations. For example, chip manufacturers routinely withhold gate-level mod-
els of the components they produce so that the implementation may change with
technology.

Component models may also be unavailable when design and test are integrated:
if test generation is attempted early to gauge a developing design’s testability, then
detailed component implementations may not yet exist. Both loosely coupled and
tightly coupled design and test environments need effective test generation when de-
tailed structural models are not available.

Test experts address this problem in two ways. First, they use functional test
techniques where practical. These techniques use behavioral descriptions that must
be available, or designers could not use the circuit. As commodity components have
become more complex, however, test experts have come to need more detailed in-
formation than designers. Consider, for example, an instruction cache in a modern
microprocessor. A designer using the microprocessor as a component will reason about
the stream of instructions that it executes. He will reason about the cache only in
the most general terms, e.g., what is the hit ratio and will a particular inner loop

74 CHAPTER 3. BACKGROUND II: TESTING PRACTICE

fit? To test most of the microprocessor, a test expert should also reason about the
instruction stream. However, to test the cache, he must reason in detail about cache
behavior. When this detailed information is unavailable, the test expert must resort
to ad hoc approaches.

Test experts also reason by analogy when detailed structural models are unavail-
able. Unfortunately, functional test techniques often yield long tests. The key to
generating short tests for complex circuits is the ability to divide testing problems
based on the structure of the circuit description and to conquer each separately. Test
experts can supply a finely structured description where none has been provided by
assuming that a component whose structure they do not know is implemented like a
component whose structure they do know. They then generate tests for the compo-
nent they know and apply them to the component they do not know.

Generating tests by analogy works well for components whose designs are fairly
well standardized, as similar implementations tend to fail in similar ways. Note,
however, that there is some variability in how even common component types are
implemented. Test experts handle this variability by developing tests that are more
general than necessary for a particular circuit. Over time, experts have built up a how-
to-test lore covering the most common implementation styles of familiar component

types.

3.1.2 Experts Write Programs rather than Vectors

Test experts write test programs rather than test vectors. A test program is a
test expressed in a version of a general-purpose programming language extended with
statements for applying values to circuit inputs and observing values on circuit out-
puts. The pattern of inputs and predicted outputs that occurs when a test program is
executed is equivalent to a set of test vectors. Test programs have several important
advantages over vectors for human test programmers: (i) programs express repetitive
tests compactly; (ii) the languages allow convenient access to tester features; (iii) test
programs are easier to understand, modify and debug.

Consider the simple memory test program in figure 3.2. The Galloping Pattern
Memory Test (GALPAT) tests for leakage between memory cells by writing a pattern
and reading it back while repeatedly checking that reading and writing individual
memory cells does not disturb other cells. Figure 3.1 illustrates how GALPAT tests
a 16-bit memory by walking a 1 through a background pattern of 0’s. To complete
the test, GALPAT also walks a 0 through a background of 1’s.

A tester will execute 1056 memory cycles when it runs this program for a 16 bit

3.1. EXPERTS SOLVE A BROADER PROBLEM 75

1101010, 0111010, 0101110,
001010, > 0/0]0,]0, > 00010, > et
0,0, 0;9 0, 010, 0!2 0, 010, 0JLO 0,

0, 0,0, &!. 0.0, OL‘_ __9& 01010, 0li

Write initial pattern Change pattern Change pattern

read 1, read O, read 1, read O, etc

read 1, read 0, read 1, read O,

read 1,, read O, read 1., read 0,

Figure 3.1: GALPAT tests this memory by walking a 1 through a background pattern
of 0’s. After every change, GALPAT reads back the full pattern to make sure other
cells were not effected.

memory, and each memory cycle corresponds to several vectors (how many depends
upon the details of the tester). A 1024 bit memory requires roughly 4 million cycles.
Clearly the program is a more compact and more readable encoding of this test than
the equivalent vectors would be.!

3.1.3 Testability can be Negotiated

The scope of the test generation problem can be negotiated when design and test
are tightly coupled. This section discusses design for testability and its effect on test
generation.

Section 2.3.6 showed one method of converting a sequential circuit into a combi-
national circuit in order to apply an existing test generation algorithm. This transfor-
mation only provides a way for a combinational test generator to model a sequential

1GALPAT takes time proportional to the square of the memory size. This test lies on a broad
spectrum of memory tests. Some, with names like WALKPAT and MARCHPAT, are simpler,
faster and somewhat less thorough. Others are more complex and more thorough. Still others are
roughly equivalent in fault coverage but work faster by checking only physically plausible read/write
disturbances, i.e., those between adjacent memory cells. Which of these tests an expert will use
depends upon the kinds of faults a particular memory is susceptible to, whether the memory has
been tested before, e.g., by the manufacturer, and to a certain extent upon the expert’s experience
and taste.

76 CHAPTER 3. BACKGROUND II: TESTING PRACTICE

procedure GALPAT (MinAddress, MaxAddress)
begin
GALPAT_WITH_BACKGROUND (MinAddress, MaxAddress, 1);
GALPAT_WITH_BACKGROUND (MinAddress, MaxAddress, 0);
end;

*% Execute GALPAT with a particular background value
procedure GALPAT_WITH_BACKGROUND (MinAddress MaxAddress CellValue)

var BackgroundValue = 1 - CellValue; ** CellValue is either O or 1
begin
for Address = MinAddress to MaxAddress **% Fill the memory with the
do MEMORY_WRITE (Address 0); ** background value
for CellAddress = MinAddress to MaxAddress do ** Gallop the cell-value through
begin ** the memory one cell at a time
MEMORY_WRITE (CellAddress CellValue); ** Write to a cell

READ_PATTERN (CellAddress CellValue MinAddress MaxAddress); ** Disturbed?
MEMORY_WRITE (CellAddress BackgroundValue); ** Erase the cell
end;
end;

** Check that the pattern has not been disturbed
procedure READ_PATTERN (CellAddress CellValue MinAddress MaxAddress)
var BackgroundValue = 1 - CellValue;

begin
for Address = MinAddress to CellAddress-1 do ** Read the cell, Read a
begin ** background cell. Repeat
MEMORY_READ (CellAddress, CellValue); ** for all background cells.
MEMORY_READ (Address, BackgroundValue);
end;
for Address = CellAddress+1 to MaxAddress do
begin

MEMORY_READ (CellAddress, CellValue);
MEMORY_READ (Address, BackgroundValue);
end;
end;

Figure 3.2: The GALPAT memory test from [bennetts82].

3.1. EXPERTS SOLVE A BROADER PROBLEM 7

circuit and does not affect the circuit design at all. A second and more effective
transformation involves changing the original design. Figure 3.3 shows an example of
a design style called scan design. In this style, all state elements in the circuit are
connected to form a large shift register called a scan path. The term “scan” refers to
the ability to read or scan the circuit state by shifting out the contents of the state
registers. Values can also be shifted in to put the circuit into any state.

}1 |_> Scan Output

PDIR1|=>] C1 |=D|R2|=>]| C2 [D]|R3|=>D>

Scan Input —’-l }J

C = Combination Logic

R = Shift Register

Scan Path

Figure 3.3: The Scan Design Style: changing registers to shift registers simplifies
testing by breaking up a sequential circuit into combinational pieces.

This transformation enables a test generator to create tests for a sequential circuit
as if it were combinational. Moreover, since the shift register partitions the com-
binational equivalent circuit into small pieces, the cost of generating tests for the
equivalent circuit is reduced. These advantages of the transformation come at the
cost of several disadvantages: (i) it slows the circuit down because shift registers are
slower than normal registers and (ii) it increases circuit size which can increase man-
ufacturing costs, (iil) it can increase test application times due to shifting in values
via long scan paths, and (iv) it does not help when testing the circuit at the speed it
will run in the field. Tradeoffs between these advantages and disadvantages are the
causes of negotiation betwee'n designers interested in performance and test engineers
needing access to internal components.

The scan design style is an instance of a large set of design styles and techniques
that go under the name of Design for Testability (DFT) [williams83]. The details of
the various DFT techniques are unimportant for our purposes. What is important,
though, is that test generation is not a mathematical problem with fixed inputs and

78 CHAPTER 3. BACKGROUND II: TESTING PRACTICE

outputs. Rather, it is a real-world problem whose parameters can be negotiated
using the tradeoffs above. If a circuit’s complexity makes generating or applying
tests too expensive, then this cost can be traded off against circuit performance and
manufacturing costs using DFT techniques.

Test experts understand DFT and how to use testable structures when they ap-
pear in circuits. Moreover, test experts form an increasingly important part of circuit
design teams and can suggest modifications during early stages of design that will
reduce testing costs later. In industry today, test generation is still strongly sepa-
rated from design, but this separation will lessen in time as the advantages of tight
coupling become widely recognized and inertia is overcome in circuit manufacturing
organizations.

The possibility of design for testability affects the goals of a test generator. When
the design can be changed, we want a test generator that can quickly separate por-
tions of a circuit that are straightforward to test from portions that are more difficult
and time consuming. The time consuming problems can then be simplified by mod-
ifying the design and giving the modified design back to the test generator. DB-TG
was created to work in this kind of design environment. This issue is explored in
section 6.5.

3.2 Task Understanding: How One Expert Generates
Tests

This section describes how one expert generates tests. The method is in the form
of advice from an expert test programmer to a novice.? The method is not detailed
enough to follow by rote: experience and flexibility are essential to apply these steps
in the context of a particular circuit. Consequently, this method cannot now be
implemented directly by computer. The method, however, does suggest a way of
looking at the problem that is quite different from the approaches taken by existing
algorithms, and this perspective strongly influenced the design of DB-TG.

The expert follows four broad steps:

1. Understand the circuit.
2. Identify the test objectives.

3. Write the test program.

2The expert is Gordon Robinson of GenRad Inc.

3.2. TASK UNDERSTANDING: HOW ONE EXPERT GENERATES TESTS 79

4. Debug the test program.

The steps are covered in order.

3.2.1 Understand the Circuit

The first and most important step is to understand the circuit. What is the circuit
designed to do and how does it do it? The expert puts it like this: “I learn the basic
rhythms of the circuit, asking what was the circuit designed to do and can therefore
do naturally? Then I work within those rhythms to generate tests.” Understanding
how the circuit works is crucial because it focuses the expert’s search for ways of
causing desired activity inside the circuit. Understanding consists of four components:
recognizing high-level structure, categorizing the circuit, identifying what can be done
and identifying what must be done.

3.2.1.1 Recognize High-Level Structure

Often the schematics contain little information about the high-level circuit structure
and some analysis is needed to clarify it. For instance analyzing feedback paths
may identify (possibly) independent state machines. This must be done with care,
as such state machines which are topologically one can be considered as several if
one or more crucial feedback lines are ignored. These lines may be activated only
under rare conditions. Identify the internal interfaces between subsystems. Identify
clocks, recognize signal names and naming conventions, look for small, well-known
configurations (e.g., divide-by-N circuits) and notice proximity between components
on the schematic. The expert pieces together a picture of the circuit from such clues.

3.2.1.2 Categorize the Circuit

By recognizing high-level circuit structure, the expert tries to build up a description
in his mind that allows him to categorize the circuit as one of a small set of commonly
occurring circuit types, e.g., a microprocessor board, a peripheral or memory board,
a single processor board, or a microprogrammed peripheral controller. Sometimes the
expert is told what kind of circuit it is, and this step is trivial. Categorizing the circuit
suggests other information about the circuit that will be needed. For instance, if the
circuit is a peripheral, then the expert looks for the range of addresses the circuit
will respond to. Categorization and circuit recognition go hand-in-hand as the expert
returns to the circuit to answer specific questions suggested by the circuit type.

80 CHAPTER 3. BACKGROUND II: TESTING PRACTICE

3.2.1.3 Identify What Can Be Done

Identify the space of possible actions that can be taken to manipulate the circuit
during testing. What is the basic set of actions? What variability is there within these
actions? Where in the circuit can actions be initiated? An expert might consider, for
example, the instructions of a processor to be its basic actions. The instructions have
arguments whose values can be chosen. There is also variability in how instructions
interact with the world, i.e., wait states during memory read cycles. Actions are
initiated at the bus interface when the processor fetches an instruction.

3.2.1.4 Identify What Must Be Done

Certain actions must be taken while testing a circuit for the circuit to work as de-
signed. A circuit is designed to operate in an environment. The environment is
a contract between the circuit designer and the user: if the circuit is placed in its
proper environment, it will behave as advertised. Supplying power to the circuit
is a trivial example. Dynamic memory is a more complex example: the user must
guarantee that the memory will be accessed at least N times per second. The test
expert must understand the circuit’s environment and decide how much of it must be
replicated to test the circuit.

3.2.2 Identify the Test Objectives

After characterizing the space of possible and necessary actions, the expert decides
what testing goals to work on. His central strategy is divide and conquer: partition
the circuit into components and exercise and observe each major piece. Partitioning is
done by function or structure as convenient. Partitioning can be guided by the circuit
category, e.g., experience has shown that breaking up certain kinds of circuits in
certain ways is useful. Often, the expert has a vague test plan associated with a way of
partitioning the circuit. For example, the expert will break up a microprocessor-based
system into the processor and the peripherals. He will then look for a way to disable
the processor allowing access to the peripherals without interference. Alternatively,
he will look for a way to load the processor itself with a program for testing the
peripherals. In the absence of guidance, the expert breaks down the circuit into
familiar components.

3.2. TASK UNDERSTANDING: HOW ONE EXPERT GENERATES TESTS 81

3.2.3 Write The Test Program

The test program is organized around the test objectives, one program section per
objective. The expert usually orders the objectives from easiest to hardest so he can
confirm or expand his understanding of the circuit as he goes along.

3.2.3.1 Component How-to-Test Knowledge

The expert divides the problem of testing the circuit into test objectives that are spe-
cific and familiar. The expert either already knows how to accomplish each objective
assuming accessibility to the portion of the circuit involved or he knows straightfor-
ward ways to work out solutions, again assuming accessibility.

Experts develop and share many special-purpose techniques for testing specific
component types. If, for example, the objective is to exercise a particular data register,
then past experience suggests several patterns of data that are good for that purpose.
The expert also knows the automated test generation techniques and under what
circumstances they are effective. For combinational blocks of circuitry, the expert
usually runs Podem or another test generation algorithm on just that block and uses
the resulting vectors in his test program.

3.2.3.2 Accomplishing Test Objectives

If a test objective involves a component that is not directly accessible, then the expert
must embed his component test using the surrounding components. The expert’s
understanding of circuit behavior is central in focusing his search for an embedding.
Suppose, for example, that a UART?® contains a one character buffer for holding
incoming data while it interrupts and waits for the processor to fetch the character.
If a second character arrives before the processor reads the first, then the UART
signals an overrun condition. If the test objective is to cause the UART to raise
an overrun condition, then one simple solution is to feed two characters into the
serial input while not responding to the interrupt. Once the expert understands how
the circuit works, his internal description of the circuit allows him to quickly solve
problems like this. Only occasionally, does the expert resort to explicit signal tracing
through the structure of the circuit in order to achieve test objectives.

3A Universal Asynchronous Receiver-Transmitter (UART) is a communications circuit that can,
for example, connect a processor to a terminal. The UART translates between bus cycles on the
processor side and characters on a serial line on the terminal side.

82 CHAPTER 3. BACKGROUND II: TESTING PRACTICE

3.2.4 Debug the Test Program

Debugging a test program is much like debugging any kind of program. The expert
runs the program on an instance of the circuit, or does the equivalent using a circuit
simulator, and examines program trace information for problems. Two kinds of bugs
are possible: (i) the test program drives the circuit in an unintended way or predicts
outputs with the wrong value or at the wrong time, and (ii) the test program does not
detect enough faults. The first kind of problem is an error of conception or execution.
Tracking down and fixing this kind of bug in a test program is very similar to fixing
a bug in any other kind of program. The second kind of problem is an error of
omission. The expert can use a fault simulator to identify which areas of the circuit
are insufficiently well tested. The expert usually leaves the existing program alone
and fixes the program by adding new program code to catch the remaining faults.
The expert stops adding tests when the test program meets the fault coverage target.
A small percentage of bugs fall into both categories, e.g., the test program may create
and propagate a fault effect to a circuit output but fail to look for it at the correct
place and time. These bugs are fixed using a combination of the debugging techniques
described above.

3.2.5 Summary

The method has four steps: (i) understand the circuit, (ii) identify the test objec-
tives, (iii) write the test program and (iv) debug the test program. In the first two
steps, the expert gathers information for use later. He asks what tasks does the cir-
cuit perform? What primitive actions can be used to build tests? What restrictions
must he respect beyond those readily apparent from the circuit structure? In the last
two steps, the expert generates tests by embedding component tests that he already
knows. His knowledge of the circuit guides and focuses his search. He uses a combi-
nation of functional and structural test generation techniques. For instance, he does
line justification and path sensitization, although he very rarely considers multiple
sensitive paths. He uses a copy of the circuit or a simulator to check his predictions
about circuit behavior, and he uses a fault simulator to grade the performance of his
test program.

3.3. EXPERTS USE A COLLECTION OF SKILLS 83

3.3 Experts Use a Collection of Skills

While circuit testing is a specific and well-defined problem, solving it efficiently re-
mains something of a black art. The previous sections have touched on many distinct
skills that test experts rely on to do this.

e Classification: Experts can choose how to model the circuit or which technique
to use to solve a particular problem. For instance, experts comfortably switch
between behavioral and structural models.

o Cliche: Experts can solve a small, common testing problem by recognizing the
problem and recalling a solution (e.g., recalling how to test a register).

¢ Explicit Search: Experts know and occasionally resort to doing explicit path
sensitization and line justification, usually when their automated tools fail.

o Algorithms: Test experts understand the capabilities of the existing test gen-
eration algorithms and use them when appropriate, often dividing problems into
pieces that the algorithms can handle.

¢ Reformulation: Experts can change circuit representations (e.g., they can
derive a state transition diagram from the schematic).

e Specialization: Experts can select parts of a general test that are applicable
to a particular circuit. For example, if some component features are disabled in
a particular design, then some portions of the standard component test can be
omitted.

o Tester Hardware: Test experts understand and exploit the capabilities of the
hardware.

e Test Programming: Test experts understand programming concepts like
branching, iteration and subroutine calling and use a programming language
to express complex tests.

Experts also have available the large array of techniques developed in industry
and in the literature. Much of a test expert’s knowledge covers what the techniques
are and when they should be used.

e Test generation techniques distinguished by circuit type:

84 CHAPTER 3. BACKGROUND II: TESTING PRACTICE

— Random Logic [fujiwara85]

— Memories [bennetts82, sarkany87]

— Microprocessors [thatte80, brahme85]

— Programmable Logic Arrays [williams87]

— Systolic Arrays [rawat87]

e Test application techniques:

— In-Circuit
— Edge-Connector
— Memory Emulation [sargent83]

The expert must choose among the techniques available in his test programming shop
those that are best suited to a particular problem.

3.4 Summary and a Research Agenda

The contrasting pairs in figure 3.4 summarize the differences between classical test
generation algorithms and expert test programmers. Each pair suggests one way that
current algorithms might be extended. ’

In this thesis, I have concentrated on the differences marked by =-. These dif-
ferences have been explored in the design of DB-TG and PF-TG: pairs 3 and 4 are
the roots of the designed behavior test generator described in chapter 4, and pairs
4, 8 and 9 are the roots of the program fragment test generator described in chap-
ter ChapFragments.

Some contrasting pairs above are well recognized by the testing community and
are under investigation. For instance, work on hierarchical test generators has gone
some distance in the direction suggested by pairs 1 and 2. Pair 6 suggests the test
generator should know about DFT techniques, and some test generators are built
specifically to work with certain testable design styles, e.g., scan circuits.

Some characteristics of expert test programming are inappropriate for emulation in
a program because the tasks they solve can be accomplished more effectively in other
ways. The most obvious characteristic in this category is learning about the circuit

3.4.

10.

SUMMARY AND A RESEARCH AGENDA 85

. Algorithms use gate level models

Experts use block diagrams

Algorithms use simple behavioral descriptions
Experts use abstract descriptions from the databook

Algorithms rely on optimized search through large search spaces
Experts know more about which solutions are plausible and search less

. Algorithms will generate any test the structure of the circuit will allow them to

Experts learn the natural rhythms of the circuit, i.e., what can and must be
done, and manipulate the circuit within those restrictions.

Algorithms have no model of the tester
Experts know how to use the tester’s capabilities

Algorithms have no model of DFT techniques
Experts understand how to use testable structures

. Algorithms are completely general and work well on combinational but not

sequential circuits

Experts use specialized methods and work well on sensibly designed circuits but
not on spaghetti*

Algorithms produce test vectors
Experts produce test programs

Algorithms produce incomprehensible output®
Experts document their code

Algorithms rely on single built-in methods
Experts use a toolbag of ideas, including the algorithms

Figure 3.4: Contrasting the Algorithms with the Ezxperts. The contrasting pairs marked

by = are emphasized in the design of two novel test generators introduced by this
thesis. '

86 CHAPTER 3. BACKGROUND II: TESTING PRACTICE

from poor circuit descriptions. Much of the difficulty of real-world test programming
today is due to poor documentation. A test engineer must often interpret ambiguous
and incomplete design information and reconstruct complete circuit descriptions from
many sources simply to understand what the circuit does. He must recognize high-
level structure in detailed, low-level schematics.

Recognizing circuit structure and learning about circuit behavior are potentially
interesting areas for Al research, but they involve reconstructing information that the
circuit designer already has. From a practical standpoint, these problems should be
solved by improving communication between the circuit designer and the test engineer,
- e.g., by more comprehensive CAD tools [foyster84]. T have therefore not invested any
effort in these problems.

Chapter 4
A Designed-Behavior Test
Generator

Summary: Embedding component tests is the key step in test generation.
Embedding problems can be solved efficiently using operation relations, a rep-
resentation of circuit behavior that directly connects internal component oper-
ations with directly executable circuit operations. For sequential circuits that
provide few operations at their interfaces, operation relations can be efficiently
computed by searching traces of simulated circuit behavior. This approach is
efficient because the search space is smaller. This approach is sufficient because
circuits can be tested without going outside their normal operations. This chap-
ter is self-contained and repeats some material from scenario I in chapter 1.

4.1 Introduction

Circuits are designed to perform specific tasks: gates compute boolean functions,
registers load and hold values, disk controllers transfer blocks of data and micropro-
cessors execute instructions. Informally, these operations at the circuit interface and
the patterns of internal activity that implement them are what we mean by “a circuit’s
designed behavior.”

By definition, a properly implemented circuit can carry out its designed behavior.
Often a circuit can behave in other ways too, which correspond to input sequences
outside its interface protocols. These incidental behaviors are usually irregular: what
does a disk controller do if presented with a string of random numbers at its inputs?
Whatever happens, it will not be as simple to describe as “transferring a block of
data.” We contrast a circuit’s designed behavior with its incidental behavior. De-
signed behavior is easier to reason about than incidental behavior, because designed
behavior can often be described in simpler, more abstract terms.

87

88 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

Understanding what a circuit is designed to do is one important way in which ex-
pert test programmers differ from existing test generation algorithms. Understanding
enables an expert to focus quickly on candidate solutions for test generation problems
by avoiding patterns of internal activity that cannot be achieved at all.

This chapter describes the Designed Behavior Test Generator (DB-TG), a test
generator that uses representations of designed behavior to handle a class of complex,
sequential circuits. The contributions of this work are:

e The identification of representations for a circuit’s designed behavior at several
levels of abstraction.

o The use of designed behavior to limit the search used in planning circuit tests.

e The construction of techniques for extracting descriptions of designed behavior
from the commonly available descriptions of circuit behavior and structure, e.g.,
interface specifications, simulation models, and schematics.

These representations are the basis of a heuristic and effective solution to the most
difficult subproblem of test generation — embedding known tests for a component into
a larger circuit.

Embedding a component test is the central step of the sample test generation
problem shown next. Human test programmers can solve this problem easily. When
we ask why, we are lead to consider circuit representations that make the problem
straightforward. The remainder of the chapter introduces a test generator based
on these circuit representations, which we describe by stepping through its solution
to the sample problem. Chapter 5 considers the advantages and disadvantages of
these circuit representations for doing test generation and place them among the
armamentarium of techniques available to test engineers. Then, in chapter 6, we
remove a simplifying restriction on information flow within the test generator and
in the process integrate the test generator more closely with classical test generation
techniques.

4.2 A Test Generation Example

Figure 4.1 reprises the simple test generation problem from the scenario in chapter 1.
Testing experts and others familiar with computer architecture easily suggest the
solution shown from the information shown in the figure. In particular, they are able to
associate the SUM instruction with the goal of making the ALU add numbers without

4.3. OVERVIEW 89

seeing detailed datapaths. The sparse information required to solve the problem and
the high-level form of the solution are typical of human test programmers but very
unlike classical test generation algorithms. While we do not presume to know how
human test programmers actually come up with such solutions, we do propose an
automated method which generates the same kinds of answers. After introducing the
ideas behind this method, we walk it through exactly this example, generating the
sequence of instructions above.

Accumulator

es)

& N Instructions
LOAD Ai - Load accumulator from memory
ADD Bi ~ increment accumulator by Bi
STORE sum -~ write sum to memory

CPU

Figure 4.1: Problem: test the ALU’s ability to add pairs of numbers (A;, B;) by ma-
nipulating the BUS interface. The processor is accumulator based and provides (at
least) the usual load and arithmetic instructions. Solution: repeat the three instruc-
tions shown to the right of the figure for each pair (A;, B;). This solution assumes
that (i) the SUM instruction actually uses the ALU shown in the figure, (ii) the
LOAD, STORE and SUM instructions manipulate the accumulator shown, and (iii)
the LOAD, SUM and STORE instructions can handle the test data required by the
ALU.

4.3 Overview

This section describes the test generator’s structure and briefly introduces the key
ideas that lie behind it. Sections 4.5 through 4.9 elaborate on this description while
walking through DB-TG’s solution to the example problem above.

90 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

4.3.1 - The Key Ideas

DB-TG is based on four ideas:

1. Embedding Expert-Supplied Component Tests: Testing experts have de-
veloped clever and effective methods of testing common components. Test gen-
erators should take advantage of them.

2. Operation Relations: Knowing about relationships between circuit opera-
tions (e.g., instructions) and component operations is the key to embedding
component tests. Test generators should obtain and manipulate descriptions of
these operations.

3. Simulate and Match: Operation relations can be obtained by simulating
circuit behavior. The relations applicable to a particular situation can be found
by searching simulation traces.

4. The Designed Behavior Heuristic: Test circuits using only patterns of usage
anticipated by the designer. This means that a test generator can take the
circuit’s normal interface operations as its primitive actions. This in turn limits
what must be simulated.

Each idea is a means of implementing the previous ideas or a justification for them.
Together these ideas give a vertical slice through the test generator. The first idea
has been used in other test generators. Here, we simply put the idea to work again.
The other three ideas are unique to DB-TG and are described next.

4.3.1.1 Operation Relations

As a component is a part of a circuit, so is its behavior a part of the circuit’s behavior.
Knowing part-whole relationships about behavior is useful, because they provide a
straightforward means of embedding component tests into the circuit.

Two kinds of part-whole relationships are useful for solving this problem: causal
connections and parameter relations. In the example above, executing a SUM
instruction causes the ALU to add, therefore we say the processor’s addition instruc-
tion and the ALU’s addition operation are causally connected. Parameter relations
hold between the parameters of two causally connected operations. In the example
there is a simple relationship between the inputs and outputs of the ALU when it is
doing the work of the SUM instruction and the inputs and outputs of the instruction

4.3. OVERVIEW 91

itself. The term operation relations refers to the causal connection between two
operations and any relationships between their parameters.

Operation relations exist because the circuit designer used the component oper-
ations to implement the circuit operations in the first place. The relations are often
simple, especially in datapaths, because a circuit can rely at certain times almost
directly on a single component to do its work. Knowing operation relations is useful,
because they are the basis for a powerful, heuristic approach to solving the hardest
subproblem in circuit testing: embedding a test for a component into the surrounding
circuitry.

We describe operations, operation relations and the embedding process in detail
later. Here, we simply assert that operation relations are a highly abstract form
of circuit description that allow component tests to be embedded without working
through the detailed structure of the surrounding circuitry. Therefore these relations
should be obtained and manipulated explicitly during test generation.

There are several ways to supply operation relations to a test generator depending
upon the type of circuit and the larger design environment the test generator sits
in. For sequential circuits that execute a small number of well-defined operations,
we use simulation working from descriptions of the circuit structure, the component
behavior and the circuit interface. The strategy of computing operation relations via
simulation is based on the following idea about planning, called simulate and match.

4.3.1.2 Simulate and Match

Test generation is fundamentally a planning problem [fikes71, sussman75, sacerdoti77,
stefik80, chapman85]: how can we manipulate the circuit inputs to cause particular
behaviors inside? Tests are usually planned by repeatedly refining the goal of causing
a specific internal behavior until the problem can be solved by direct action on the
circuit inputs. Often a newly proposed subgoal conflicts with previous subgoals,
forcing the test generator to backtrack and try again. This alternation of search and
backtrack is characteristic of planners in general and test generators in particular.

This strategy is inefficient when solutions are infrequent and there is little guidance
available to lead the test generator to them quickly. Unfortunately, test generation for
complex, sequential circuits seems to be such a situation: a test generator is likely to
propose and retract many potential solutions before finding one that meets all of the
constraints imposed by the circuit structure and behavior. The difficulty of finding
solutions is compounded by the potentially high cost of ruling out proposed solutions,
since the test generator may have to reason about the circuit far backward or forward

92 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

in time before discovering a constraint that causes it to backtrack.

It is however possible to avoid this pitfall if the circuit executes a small number
of operations. For circuits in this class, an effective planning strategy is to take the
circuit operations as the planner’s primitive actions and to simulate them, looking for
patterns of internal activity that could prove useful during testing.

This so-called simulate and match strategy turns goal-refinement planning on
its head. Instead of proposing a behavior that tests a component and then asking “is
this behavior achievable in the context of the surrounding circuitry?” this technique
proposes a behavior known to be achievable and asks “is this behavior useful for
testing anything?” The approach is essentially an effort to focus search on behavior
known to be achievable rather than on potentially achievable behavior that must be
verified via complex reasoning. The result can be a sharp reduction in the search
necessary to achieve testing goals.

Identifying known-achievable behavior by simulating it is only practical for prob-
lems that have relatively few primitive actions, i.e., few operations at the circuit
interface. Here, we take the primitive actions to be executing circuit operations (e.g.,
instructions) rather than the more fine-grained actions of controlling and observing
to individual circuit I/O pins used by traditional test generators. This is the subject
of the designed behavior heuristic, the last major idea upon which the test generator
is built.

4.3.1.3 The Designed Behavior Heuristic

Test circuits without going outside the behavior they were designed to per-
form. — Gordon Robinson

This statement is the result of much experience writing test programs. It says
essentially that one need not do anything odd or ill-formed to a circuit in order to
test it. Using this heuristic, a test generator can assemble tests out of standard
circuit operations, albeit with carefully chosen parameters, and need not reason in
detail about controlling each input wire individually. This can reduce the amount of
search necessary to generate tests.

This heuristic is also useful as a problem decomposition strategy. If the circuit
under test is in turn a component in a larger system, then tests that use standard
circuit operations are likely to be achievable in the larger system. Tests that fall
outside the standard operations, i.e., that do not meet the circuit’s communication
protocols with the rest of the system, are extremely unlikely to be achievable.

4.3. OVERVIEW 93

The Designed Behavior Heuristic is an integral part of DB-TG, and in this chapter,
we take its use as a given. In chapter 5, we reexamine this heuristic and consider its
implications in more detail.

4.3.2 Structure of the Program

Figure 4.2 shows the structure of DB-TG. The boxes in the figure represent either
processes or databases and the arrows represent queries and responses. DB-TG follows
the usual divide and conquer approach to test generation: (i) work out how to test
each component as if it were in isolation, then (ii) work out how to execute these
component tests acting only on the circuit inputs and outputs. In more detail, DB-
TG follows these steps to generate tests for a circuit:

1. Pre-load the operation relation database by simulating the behavior of the cir-
cuit on each of its operations and recording what operations the components
execute. The operation relation database describes known-achievable patterns
of activity inside the circuit. (The circuit designer can also add entries to this
database.)

2. The test generation top level steps through the components. For each compo-
nent it looks up the component type in the library and fetches the corresponding
component test, which is a procedure. It then “runs” the test.

3. Component tests capture expert how-to-test knowledge. When run, they try
to work out how to test a component inside the circuit. The most primitive
kind of component test is expressed in terms of a test operation that the com-
ponent must be able to execute and specific test data for the parameters of the
operation. Other component tests are combinations of primitive tests.

4. A primitive component test finds an instance of the test operation in the opera-
tion relation database and extracts the relations between that instance and the
circuit operation that caused it.

5. It then substitutes the test data into these relations and solves for the parameters
of the circuit operation. If successful, this process converts the component test
from one expressed in terms of component operations to one expressed in terms
of directly executable circuit operations.

The test generator works through these steps in order and always passes informa-
tion forward from one step to the next, never backward. If it is impossible to solve

94 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

Test Generation
Top Level

!

Component Test
4 Library

!

Operation Relation

Database
v l l
Circuit Symbolic Humab
Description +— Simulator Designer

Figure 4.2: DB-TG’s structure. The bozes are either processes or databases and the
arrows represent queries.

4.4. THE MAC-1 MICROPROCESSOR 95

for the parameters of the circuit operation, then the test generator backtracks and
searches for other instance of the test operation to use. If it cannot find another, then
it fetches another component test. No information other than failure passes back from
later subproblems to earlier ones. Also, even though the operation relation database
exists at the time the component test is fetched, the database is not consulted.

This limitation on the information flow between steps is a simplification: examin-
ing the operation relation database can help to select component tests that will pass
the later steps or can help to design component tests on-the-fly. This elaboration on
the basic test generator is described in chapter 6.

This broad outline of how the test generator works omits several subtleties that
we get to later. First, we describe how component tests are represented for use by
this test generator. Then we describe more precisely what these operations and the
relationships between them are and how they are used to generate tests. Section 4.7
describes how a test generator can compute these relationships given descriptions of
circuit structure and behavior. We illustrate each idea as we come to it by working
through the problem of testing the ALU’s addition operation.

4.4 The MAC-1 Microprocessor

Throughout the rest of this chapter, we expand on the example of testing a processor’s
ALU. To make the discussion concrete, we introduce a simple but fully functional mi-
croprocessor from [tanenbaum84] (see figure 4.3). This processor, called the MAC-1,
executes a conventional set of instructions, including loading and storing the contents
of its single accumulator, adding and subtracting from the accumulator, and stack
operations. The central portion of the circuit is a 16-bit-wide datapath. The right-
hand portion is a microcode sequencer whose ROM holds 80 lines of microcode and
implements 23 instructions. The address and data busses and their associated signal
lines are the only primary inputs and outputs. All internal nodes are inaccessible and
must be controlled indirectly through intermediate components.

The MAC-1is a fairly simple circuit, yet it illustrates many of the difficult problems
in test generation: (i) it is highly sequential, (ii) it has to be tested from its bus
interface, (iii) no detailed structural model is available, so we cannot use a technique
which requires, for example, a gate-level description® and (iv) the MAC-1 has several

!Tanenbaum’s textbook does not contain a detailed gate-level model; only the block diagram
shown. Although I have constructed a gate-level model in order to measure the test generator’s
performance in the accepted way, the test generator does not use this model.

96 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

v
| R.egister
Address File B uPC
Bus []
- _I ! uCODE
11— M - ROM
Data L= ! i
Bus +
ulR
ALU /
I
Shift |«
|

Figure 4.3: The MAC-1 Microprocessor (some detail has been suppressed)

testability problems.

This circuit is described to the test generator in three parts: (i) a schematic spec-
ifying how components are connected, (ii) behavioral descriptions of the components
for use in the simulator described later, and (iii) one procedure per operation that
interacts with the circuit during simulation to cause an operation to occur.

4.5 Component Tests

DB-TG solves the component test problem by fetching expert how-to-test knowledge
from a library. This library was written by debriefing a test expert (Gordon Robinson)
and contains exercises that the expert makes components perform to test them. The
central issue here is how the expert’s knowledge is represented for use by the test
generator.

DB-TG uses operation relationships to embed component tests, so the test repre-

4.5. COMPONENT TESTS 97

sentation is naturally based on component operations. There are two kinds of com-
ponent tests: primitive tests and compound tests. A primitive test describes how to
exercise a single component operation, for instance a REGISTER/LOAD operation
or an ALU/ADD operation. Compound tests are procedures that assemble primitive
tests in order to exercise a component more fully.

4.5.1 Primitive Tests

Figure 4.4 shows a primitive component test capturing the expert’s method of testing
16-bit carry-chain adders.? This test will be used to test the addition operation of
the MAC-1’s ALU.

A primitive test has three parts: a test operation, test data, and a fault coverage
description. The test operation specifies which component operation will be exer-
cised, and the test data supplies parameters for that operation. Thus a primitive
test is a specification to execute one component operation repeatedly. The number of
repetitions depends on the amount of test data supplied.

How well a test covers faults in a component depends upon the component imple-
mentation. Thus a fault description may have structural preconditions. For instance,
the adder test will cover all stuck-at faults if the adder is implemented as a carry chain
but will not detect all faults in a carry-lookahead implementation. This knowledge,
expressed in English in the figure, is given to the program in a simple rule language.
The test generator reports to the user fault descriptions for every primitive test that
it successfully embeds.

When to use a particular component test is decided by a compound test, described
next.

4.5.2 Compound Tests

Compound tests are collections of primitive tests that, taken together, exercise a
component fully. In the current library there is one compound test per component

2Adding these eight pairs of numbers reveals any stuck-ats in a 16-bit carry-chain adder. To
demonstrate this to yourself, consider the effect of adding these numbers on the single-bit adders
inside a carry chain. Recall that a single-bit adder has three bits of input: two data inputs and one
carry input. These eight pairs exhaustively cover all eight possible input combinations. A test expert
created these pairs by cleverly interleaving exhaustive tests for each of the single-bit adders into a
test for the larger adder that requires no extra additions. The method of interleaving generalizes to
carry chain adders of arbitrary length.

98 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

7A1 7A2 7S

A1 7A2 0 0 0
\1/ \l/ 43690 | 43690 | 21844
1 65534 | 65535

ADDER 1 65535 0
65534 1 65535

\L 65535 1 0
S 21845 | 21845 | 43690
(a) What the test looks like 65535 | 65535 | 65534

(b) Test Data

IF the adder is implemented as a carry chain
ADD(ADDER, ?A1, 7A2, 7S) P y
THEN all SSL faults will be detected
(c) Test Operation (d) Fault Description

Figure 4.4: A primitive test for an ALU’s addition operation. (a) shows what the
behavior being tested would look like to a person. (b), (c) and (d) form the test
generator’s description: (b) is represented as a table datastructure, (c) is represented
as a Prolog program that can find test operations within simulation traces of circuit
behavior (described later), and (d) is canned text that is part the DB-TG’s output.

4.5. COMPONENT TESTS 99

To test an ALU, test each of its operations:

1. Test the-alu-executing-a-noop-operation like a DATAPATH.
2. Test the-alu-executing-an-add-operation like an ADDER.

3. Test the-alu-executing-a-boolean-and-operation like a parallel collec-
tion of AND gates.

4. Test the-alu-executing-a-boolean-not-operation like a parallel collec-
tion of NOT gates.

Figure 4.5: The ALU Compound Test

type. Each compound test is implemented as a Prolog procedure that can either
ask for primitive tests to be embedded into the circuit, call other compound tests
as subroutines. Compound tests can decide at runtime which subroutines to call or
which primitive tests to embed. In principle, they can do arbitrary computation to
make these decisions. In the current implementation, they make simple choices based
on the circuit structure around the component under test.

This very general mechanism is used in several specific ways. One way is to
implement a boolean combination of primitive tests, i.e. “embed primitive tests A and
B”, or “embed A or B.” Another is to express a preference between primitive tests, for
example “Try to embed A. If that fails, then try B.” A third use is to choose among
primitive tests based on local examination of the circuit structure.

Figure 4.5 shows a compound test for the simple type of ALU that appears in the
MAC-1. This ALU implements four functions: NOOP, ADD, AND, and NOT. The
actual compound test is implemented in Prolog but is expressed in English here for
clarity.

This compound test is fairly simple and its structure is a common one for com-
ponents that have multiple operating modes. The test exercises each ALU operation
by treating the ALU as simpler kind of component and referencing a simpler test.
Since the library already contained tests for DATAPATHs and ADDERs, the ALU
test calls them as subroutines by specifying a mapping between the ALU inputs and
outputs and the inputs and outputs of DATAPATH and ADDER.

100 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

4.5.3 Summary

Short and effective tests are known for many common components. This “how-to-test”
knowledge represent the compiled and optimized expertise of the testing field. It is
compiled and optimized in the sense that it is the end result of often subtle reasoning
about the structure and behavior of common components and design styles. Once
someone has worked out and published a clever test, it becomes part of the background
of knowledge that experts can bring to new testing problems. Unlike classical test
generation algorithms, this kind of knowledge can be captured in our component test
representation and brought to bear on testing problems by DB-TG.

Primitive tests, organized around component operations to facilitate embedding,
capture expert testing knowledge in a rigid format similar to a set of test vectors. Yet
much of an expert’s knowledge is less structured, more context dependent or more
procedural in nature than can be expressed with primitive tests alone. Compound
tests are a trap door, a procedural method of expressing the nuances of how-to-test
knowledge.

The component tests of both kinds are the real drivers of this test generator. For
each component the top level simply dispatches to the appropriate component test.
The test “knows” how to exercise the component, but it cannot do so directly because
the component is inaccessible inside the circuit. Instead the test must “rewrite” itself
into an equivalent test expressed in terms of the circuit inputs and outputs. This
process of “rewriting” is the purpose of path sensitization and line justification in a
conventional test generator. DB-TG does this differently using operation relations.

4.6 Operation Relations

As a component is a part of a circuit, so is its behavior a part of the circuit’s behavior
and its operations a part of the circuit’s operations. Two kinds of part-whole relation-
ships have proven useful for solving this problem: causal connections and parameter
relations. In the example above, executing an addition instruction causes the ALU
to add, therefore we say the processor’s addition instruction and the ALU’s addition
operation are causally connected. Parameter relations hold between the parameters
of two causally connected operations.®> In the example there is a time during the
execution of an addition instruction when the ALU does the real work. At that time,

3In general, the parameters of any two operations can be related, either by coincidence or as
consequences of some shared antecedent. However, all of the parameter relationships we will use in
this chapter lie between two operations one of which causes the other.

4.6. OPERATION RELATIONS 101

the two values being summed by the addition instruction are the same two values
being summed by the ALU. We say the parameters of the addition instruction and
those of the ALU addition operation are related, in this case, by identity functions.
We use the term operation relations to refer to both the causal connection between
two operations and any relationships between their parameters.

How might a test generator represent operations and relations in order to reason
about them? We begin with operations, then move to relations between operations.

4.6.1 Representing Operations and Operation Relations

Operations are represented as frames comprised of five slots: (i) the relevant state
of the system before the operation occurs, (ii) the input of the system during the
operation, (iii) the output of the system during the operation, (iv) the relevant state
of the system after the operation, and (v) mathematical relationships between values
occurring in the previous four slots. Here is the MAC-1’s SUM instruction, which
fetches a value from memory, adds it to the accumulator and stores the results back
in the accumulator. We use the notation device/name to refer to an operation, e.g.,

MAC-1/SUM. Variables are preceded by ?’s.

MAC-1/SUM Before State: Accumulator = ?ac
ProgramCounter = 7pc
Inputs: DataBus = (ADD ?addr)
DataBus = 7?data
Outputs: AddrBus = 7pc
AddrBus = ?addr
After State: Accumulator = ?7sum
ProgramCounter = 7pcl
Relations: ?7sum = 7?data @6 7ac
pcl = Tpc Pl

This frame shows input / output activity and state changes during MAC-1/SUM.
In this case, the contents of the Accumulator and the ProgramCounter are relevant
and their values are labeled 7ac and ?pc respectively. At the beginning of the instruc-
tion cycle, the contents of ProgramCounter are written to the address bus (AddrBus =
?pc) and the memory responds with the next instruction (DataBus = (ADD ?addr)).
(ADD 7addr) represents an addition instruction with a variable in the address field.
The MAC-1 then initiates a memory fetch by writing ?addr to the address bus (Ad-
drBus = ?addr) and the memory responds with the data at that location (DataBus =

102 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

?data).* Finally, MAC-1 adds ?data and ?ac and stores the sum in the accumulator.
The after state shows this sum and the incremented contents of the program counter.
If an operation does not involve state changes, then we omit the before and after
states as in the ALU’s addition operation:

ALU/ADD Inputs: OP = ADD
IN-1 = 7inl
IN-2 = 7in2
Outputs: OUT = Toutput
Relations: ?output = 7?inl @16 7in2

This frame says that during an ADD operation the ALU’s control input (OP) sees
a value (ADD) telling it to compute the sum of the values on its two data inputs (?inl
and ?7in2) and put the answer on the output (OUT).

Each of these frames describes the corresponding operation in its most general
form. They describe what can happen in terms of a set of internal constraints: the
relations between the parameters, e.g., 7sum = ?data @6 7ac. Because instances of
components sit inside circuits, instances of component operations also have external
constraints on what can happen. These external constraints correspond to relations
between the parameters of a component operation and the parameters of a circuit op-
eration. Here are the relations between MAC-1/SUM and the instance of ALU/ADD
that actually does the work:

?data = ?inl
?ac = 7in2
?sum = Toutput

This says that the 7in2 parameter of this instance of ALU/ADD is equal to the 7ac
parameter of MAC-1/SUM and so on for the other parameters. These relationships
are enforced by the structure and behavior of the circuit.

This set of operation relations is unusual in that it is particularly simple (making it
a good example). In general, operation relations can involve combinations of boolean
and arithmetic functions, selection, bit-field extraction, concatenation and the like.
While not always this simple, operation relations often involve straightforward for-
mulas that are simpler to reason about than the structure of the circuit. (This issue
is discussed further in chapter 5.)

4The detailed order and timing of bus events is not specified in these descriptions because it is
not needed here. Order and timing is present in and only used by the procedures for driving the
simulator described later.

P

4.6. OPERATION RELATIONS 103

4.6.2 Using Operation Relations

The operation relations between MAC-1/SUM and ALU/ADD can be used to trans-
form component tests for the ALU (which a tester cannot manipulate directly) into
equivalent tests expressed in terms of the MAC-1 Bus (which the tester can control
directly). The operation relations are useful here because they provide a direct link
from desired actions inside the circuit to actions directly executable by the tester
hardware. Figure 4.6 illustrates this link.

Component Test Operations
(executable only indirectly)

Circuit Operations
(directly executable)

Operation Relations Component|

Circuit

Figure 4.6: Operation Relations are a direct link between the goals (i.e., desired compo-
nent operations) and the primitive actions (i.e., directly ezecutable circuit operations).

DB-TG performs this transformation by substituting component test data into
the component side of the operation relations and then solving for the parameters
of the circuit operation. Carrying the example straight through, we would show this
transformation next. However, note that there are other instances of ALU/ADD
that occur during MAC-1/SUM, e.g., one increments the program counter, that have
different parameter relations with the instruction. The key step that people make
when generating tests for this ALU is to associate the SUM instruction with this
particular instance of ALU/ADD, the one that does the work.

In order to focus more closely on the key step of the example, we detour to show
where the program obtains its database of operation relations. When we return to the

104 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

example, we show how the test generator finds this particular instance of ALU/ADD
and how the component tests are transformed.

4.7 Computing Operation Relationships via Simulation

Operation relations can be supplied to a test generator in several ways depending
upon the type of circuit and the design environment the test generator sits in. For
sequential circuits that execute relatively few operations, our solution is to compute
the operation relationships using symbolic simulation of circuit behavior.

Symbolic simulation is the process of propagating variables and algebraic expres-
sions as well as numbers through the circuit. Doing this allows a single simulated
operation to stand for an equivalence class of similar operations. For example, a
LOAD instruction with symbolic data can stand for a LOAD of any specific constant.
Using symbolic simulation is important for two reasons: (i) the algebraic expressions
that propagate through the circuit are what we turn into operation relations and (ii)
simulating equivalence classes of behavior rather than specific behaviors reduces the
number of simulation runs needed and the size of the database that holds the results.
First we describe how the simulator works and then we show how operation relations
are extracted from the results.

4.7.1 How the Simulator Works

DB-TG uses an event-driven simulator that is inspired by a similar program called
MARS [singh83]. It takes as input a circuit schematic, behavioral models of the
components and descriptions of the instructions and produces as output a set of sim-
ulation traces, called behavior graphs, that describe what happens inside the circuit
as the instructions execute. These behavior graphs are an explicit representation of

the circuit’s designed behavior, i.e., the patterns of activity it was designed to carry
out.

Before starting, the simulator initializes all memory cells in the circuit. In order
to simulate the execution of an instruction in the middle of an arbitrary instruction
stream, most of the memory cells are pre-loaded with variables. These variables
correspond to the values that would have been left by a previous instruction (had that
instruction been simulated too). For example, the accumulator is pre-loaded with ?ac
and the stack pointer is pre-loaded with ?sp (the variable names are a debugging aid
and are specified in the circuit description).

4.7. COMPUTING OPERATION RELATIONSHIPS VIA SIMULATION 105

Certain registers are special and are pre-loaded with values that are contained in
the circuit description. The MAC-1 MicroProgram Counter (uPC) is special because
its value defines the instruction cycle. uPC is pre-loaded with a value corresponding
to the beginning of an instruction cycle, which subsequently causes the processor to
execute an instruction when the simulation starts. uPC also finishes each simulation
run with that same value. This register is the only special case in the MAC-1.

As the simulator runs, the circuit model interacts with a program that emulates
the environment in which the circuit sits. For the MAC-1, this program drives the
circuit clock up and down and responds to bus cycles. The circuit description also
contains one of these programs per instruction.

The simulator is event-driven: when the value on a node changes the components
that use that value “wake up,” decide what operation they should perform and recom-
pute their outputs accordingly. Each component assembles an algebraic expression
describing its operation and one or more expressions describing its output values as
functions of its input values. These expressions are then run through a set of algebraic
simplification rules and written to the outputs, thereby waking up other components.

Figure 4.7 shows part of the behavior graph for the MAC-1/SUM operation. The
accumulator contains ?ac at time 0, 7data is read from the databus at time 56 and
the sum of ?7ac and 7data is written into the accumulator at time 72. Here, the
ALU executes an ADD operation at time 68. It receives two expressions ?ac and
?data as inputs, adding them under the control of its operation input and outputs
the expression (?data @6 7ac). The value on the operation input (add) beginning at
time 68 comes from the microprogram ROM and ultimately from the microprogram
counter.

Behavior graphs are actually implemented with two levels: one, describing detailed
propagation, is built by repeatedly composing the component functions to build up
large expressions. A second level results from the structure of the simplified expres-
sions that are propagated through the circuit. Much of the benefit of behavior graphs
lies in the observation that these algebraic expressions are an alternative representa-
tion of dataflow that is often simpler than the circuit structure.

Figure 4.8 illustrates this idea. Consider a circuit that simply moves values from
one end to the other without changing them (at a high level of abstraction, many
communications networks can be viewed this way). The lower line of dots in the figure
corresponds to a value propagating step-by-step through the circuit. The upper level
corresponds to simplified values associated with the circuit nodes. To take a step, say
from node 1 to node 2, the simulator composes the already simplified value on node
1 (labeled a) with the component function connecting node 1 to node 2 (labeled b)

106 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

L)
S
S - - = 7data @ 66
S ?data @ 56
?data + 7ac @ 72
ALU/ADD — = — — ——d AC
?data + ?7ac @ 68
7ac @ 68
7ac QO
AC - — — — —
Legend: [Data Source or Sink
add @ 68 Simulated Component
Operation
uPC —Ppr- — — — —
0@oO -=-=-- Suppressed Detail

Figure 4.7: The Behavior Graph for MAC-1/SUM. Time and data flow from left to
right through the figure. The value of a node is timestamped, e.g., a node value of
data@time indicates that the node changed to that value at the simulated time. Node
values persist until they are caused to change by other circuit activity. Portions of the
graph have been omitted; the full MAC-1/SUM behavior graph contains roughly 500
nodes corresponding to components performing operations or nodes changing value.

4.7. COMPUTING OPERATION RELATIONSHIPS VIA SIMULATION 107

and simplifies the result (labeled c).

@o Simplified Value Level

o o @ & tYe Detailed Propagation Level

1 2

Figure 4.8: Behavior graphs have two levels
A Simplified Link

...... ?data + Tac

bus /

ac alu

?data + 7ac

bus /

?data

?ac

ac alu

Figure 4.9: (Part of) the two levels for the MAC-1/SUM behavior graph

Since in this case a and b are identities, then c is one too. At the level of the
lisp implementation, c is a pointer directly to the circuit input (actually to the value
that was placed there at the start of simulation). The directness of this link is key:
simulation and simplification has “recognized” that this circuit is simply moving a
value around without changing it. Thus, by using the simplified values, little work will
need be done later to propagate back from a component during test generation. Note
that for any circuit the simplified values are never more complex than transcriptions
of the circuit structure (assuming that the rewrite rules never make values more

108 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

complex).

Figure 4.9 instantiates this idea for the ALU example. The lower half of the figure
shows ?data and 7ac propagating through the circuit to the ALU inputs where they
are added and propagated to the accumulator. The upper half of the figure shows the
simplified values; note that the two steps taken by ?data from bus to mux to alu are
simplified to one step.®

4.7.2 Continuing the Example: Extracting Operation Relations

Now we return to the example of testing the ALU addition operation and the perspec-
tive of operation relations. The ALU component test calls the ADDER component
test and specifies a mapping between ALU I/O pins and ADDER I/O pins so that the
ADDER test knows how to embed itself. The ADDER component test is primitive,
containing a test operation and test data. It searches the operation relation database
for an instance of ALU/ADD that can be used to create a test.

The operation relation database shown in figure 4.2 consists of two sections: (i) a
database of frames explicitly describing operations and operation relations like those
shown earlier, and (ii) a database of behavior graphs that implicitly contain operation
relations. When a component test looks for instances of component operations, it
searches the first database. If that fails, it then searches the behavior graphs.

The purpose of the first database is to hold “advice” from the circuit designer,
the test engineer or some other source in the form of useful operation relations. In
some cases, this advice is sufficient for generating tests and symbolic simulation is
unnecessary (the simulator is run on demand, triggered by search queries). If searching
the frame database fails to turn up anything, the DB-TG runs the simulator and uses
the behavior graphs to derive the operation relations.

Causal connections appear in the behavior graphs implicitly: the circuit operation
is causally connected to every component operation that appears in its behavior graph.
Therefore, to find circuit operations that cause the ALU to add numbers, we can search
each behavior graph for instances of ALU/ADD.

Extracting parameter relations from a behavior graph is more involved. (Suppose,
as it searches the behavior graphs, the component test comes across the instance of
ALU/ADD shown in figure 4.7.) There are two interesting cases: (i) relations between

5Several “unessential” components have been omitted from the MAC-1 figure to simplify the
discussion. For example, there are latches on the outputs of the register file. These components are
reflected in the full behavior graph with a correspondingly greater reduction in steps.

4.7. COMPUTING OPERATION RELATIONSHIPS VIA SIMULATION 109

circuit inputs and component inputs, and (ii) relations between circuit outputs and
component outputs.

Parameter relations between circuit inputs and component inputs are the simpli-
fied values appearing on the component inputs, e.g., 7ac and ?data. More precisely,
the simulated values denote functions of the primary inputs, and the parameter rela-
tions result from setting the expressions equal to the component’s internal names for
values on those inputs. For example:

General Case This Ezample
f1(ClircuitInputs) = ComponentInput, ?data = 7inl
fo(Clrcuitinputs) = ComponentInput, ?ac = 7in2

Parameter relations between circuit inputs and component inputs tend to be simple,
because the values are in simplest form (with respect to the rewrite rules).

Parameter relations between component outputs and circuit outputs are more diffi-
cult to extract from the behavior graph. We solve this problem using the unsimplified
versions of each node value, i.e., the lower level of the behavior graph. We need the
unsimplified versions, because they contain complete records of how they were pro-
duced, i.e., what values were combined to produce them and how those values moved
through the circuit.

To compute the relation between a circuit output and a component output, we
first fetch the unsimplified expression describing the circuit output’s value. In this
case, the circuit output in question is the data bus. Next, we find the subexpression
corresponding to the component output, in this case (?data @16 7ac), and substitute in
a variable for this expression. At this point, we have a complex expression describing
the parameter relationship we want. We then pass it through the simplifier. Here is
the result:

General Case This Ezample
fi(ComponentOutputs) = CircuitOutput, Toutput = ?Tsum
f2(ComponentOutputs) = ClircuitOutput,

The output of a particular component operation can be related to values on several
circuit outputs. DB-TG decides what circuit outputs it might be related to by walk-
ing forward through standard dependency records contained in the behavior graph.
Connection via the dependency records is a very weak, necessary condition on the
component output value and the circuit output value being related. Finding the right

110 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

subexpression inside the unsimplified circuit output value is a stronger condition, and
finding the variable after simplification is a sufficient condition.

Computing the relation between a circuit output and a component output is some-
what expensive, so DB-TG does it on demand, i.e., only when a particular instance
of a component operation is identified as potentially useful and the input parameter
relations have already been handled.

4.8 Solving the Embedding Problem

Transforming the operations specified by a primitive component test into circuit op-
erations involves solving a set of simultaneous equations. This process occurs in two
steps: (i) substitute placeholders for the test data into the operation relations and
solve for the parameters of the circuit operation and (ii) repeatedly substitute in lines
from the actual test data. Operation relations can contain combinations of boolean
and arithmetic functions, selection, bit-field extraction, concatenation and other com-
binators that appear in digital circuits, so solving for the circuit operation parameters
can be expensive (but no worse than propagating through circuit structure). Doing
this once with placeholders rather than repeatedly with each line of test data saves
considerable time.®

After substituting in placeholders ADDEND-1, ADDEND-2 and SUM-1 for the

test data, the equation solver solves for circuit operation parameters like so:

General Case This Example
fi(CircuitInputs) = ADDEND-1 ?data = ADDEND-1
f2(CircuitInputs) = ADDEND-2 ?7ac = ADDEND-2

f3(SUM-1) = CircuitOutput, SUM-1 = 7?sum

Values for the circuit inputs are computed by inverting f; and f,. This task is
accomplished by a set of rules extending the Prolog unifier with an equality theory,
i.e., a set of rules describing under what circumstances pairs of algebraic expressions
are equal. The pairs of expressions are the left-hand and right-hand sides of the
parameter relations. To invert f; and f,, these rules take them apart level-by-level,
moving parts of the expression from the right to the left. These functions need not
be one-to-one in general, so the program must make choices about how to do the

6Sometimes, however, general solutions cannot be found for the placeholders where they could be
found for the specific test data. This issue is discussed in section 5.3.1.4.

4.8. SOLVING THE EMBEDDING PROBLEM 111

inversion. Since the functions may share inputs, choices must be made consistently.
This process can be viewed as a kind of line justification through the structure of
these algebraic expressions (this idea is expanded in section 5.4.1).

The value(s) for circuit output(s) is produced directly by substitution, however,
DB-TG must check that the output(s) carries enough information to distinguish be-
tween a working and faulty component. The program currently checks the stronger
condition that the output value be invertible, i.e., that it carry complete information
about the component output(s). It does this check using the expression inversion
mechanism described above.

Here is the result of solving for 7ac, 7data and ?sum and substituting into MAC-
1/SUM. This instance of MAC-1/SUM differs from the generic description of this

operation (page 101) in the slots marked with <, where placeholders for the actual
test data appear.

MAC-1/SUM Before State: Accumulator = ADDEND-2 4
ProgramCounter = 7pc
Inputs: DataBus = (ADD ?addr)
DataBus = ADDEND-1 S
Outputs: AddrBus = 7pc
AddrBus = 7?addr
After State: Accumulator = SUM-1 S
ProgramCounter = 7pcl
Relations: ?7sum = ?data @6 Tac
Tpcl = 7pc Pl

Before continuing with the example, consider what would have happened if the test
generator had found one of the many other instances of ALU/ADD in the behavior
graphs. Most of the other instances increment the program counter. A constant 1
appears at one of the ALU inputs in these instances. Working with the operation re-
lations extracted from these instances, the equation solver fails (i.e., ADDEND-1 = 1
cannot be solved because ADDEND-1 must stand for any possible test data), hence
test generator cannot use these instances and continues searching. Only a few in-
stances of ALU/ADD are general enough to work: one instance that we have been
using as an example is inside MAC-1/SUM and several other instances lie inside in-
structions that do address computations. We continue the example with the one in

MAC-1/SUM.

112 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

4.9 Planning Control and Observe Sequences

At this point, the crucial steps have been taken, but the test generator has not quite
finished designing a complete test. The test generator has ADDEND-2 coming from
the accumulator and SUM-1 going there, but the accumulator is neither directly
controllable nor directly observable. Extra operations must be used to control and
observe it.

The answers are simple for a person: the LOAD instruction can put ADDEND-2
into the accumulator and the STORE instruction can write SUM-1 to the bus where
the tester can observe it. How might a test generator identify these instructions as
the relevant ones and add them to the SUM instruction to complete the test?

In DB-TG this is the task of the State Planner. The State Planner generates
sequences of operations (in this case sequences of instructions) that set up the circuit
state so that the single test operation will start with the right data. A second job of
the State Planner is to move any results left in state registers by the test operation
circuit outputs where they can be observed.

The State Planner is invoked when solving the operation relations results in at
least one assignment to a state register. In this example, two values were assigned
to the accumulator: ADDEND-2 at the start of the test operation and SUM-1 at the
end of the operation. If solving the parameter relations does not assign a value to a
state register, then that register’s value does not affect the test, hence its value need
not be controlled or observed.

The State Planner searches through the space of instruction sequences to find
ones that move data around properly. It does this using simple STRIPS-like planning
technology [fikes71]: the planner is implemented as a bounded depth-first search that
moves forward in time to observe state registers and backward in time to control them.
The interesting issue is how we supply the planner with descriptions of its operators.

One straightforward solution is to give the program another library that describes
the overall effect each operation has on the circuit’s state registers. This library
would describe circuit behavior at the familiar register transfer level. This is what
we do, except that DB-TG itself constructs the library by summarizing the behavior
graphs. Summarization is done in two stages: (i) determining which state registers
are relevant, and (ii) determining the relationships between values in those registers
and values on the circuit I/O pins.

State registers are considered relevant with respect to a particular set of circuit
operations. The program separates the relevant registers from the irrelevant ones in

4.9. PLANNING CONTROL AND OBSERVE SEQUENCES 113

order to reduce the amount of information the state planner must handle.

A state register is considered relevant if two conditions hold. First, some output of
some operation must depend upon the value of the register. If no output ever depends
on the register’s value, then the register can safely be ignored. This can occur when
considering a subset of the circuit operations, e.g., the stack pointer is irrelevant from
the perspective of the simple arithmetic instructions. Second, the register must hold
different values at the beginning and at the end of at least one operation. Note that
this is more restrictive than saying the register’s value must change. This condition
selects registers whose value changes can be observed at the boundaries of the circuit
operations: register changes inside the circuit operations are abstracted away. For
example, this condition abstracts away the registers in the MAC-1’s microengine,
since they return to their instruction-fetch state at the end of every instruction.

Given a processor and its instruction set, these two conditions select the
programmer-accessible registers. Other registers, in particular those in a micro-engine,
are abstracted away. Once the program identifies the relevant registers, determining
the relationships between register values involves collecting the algebraic expressions
appearing on circuit outputs and those in relevant registers at the end of each simu-
lation run.

Figure 4.10 shows an Effects Summary of MAC-1/LOAD. Values that enter the
circuit inputs are at the top of the figure and values that leave the outputs are at
the bottom. The values of state registers before the instruction starts are on the
left and their values after the instruction finishes are on the right. The dashed lines
indicate how values move and are transformed during the instruction. For example,
the program counter’s value is incremented and is also written to an output, while
the stack pointer remains unchanged. It is coincidence that in this instruction no two
values are combined (e.g., added), so none of the dataflow lines join together. The
summaries include just the information in the figure, i.e., the relevant inputs, outputs
and state registers, plus the actual functions that transform the values as they move.

The visual layout of figure 4.10 is intended to give a feel for what this process
is like. Notice that all dataflow is downward and to the right. If the test generator
has left any values in state registers (like SUM-1 in the accumulator) then the state
planner attempts to fit together a sequence of summaries such that a continuous line
is formed from the state register down and right to an output. Similarly, if any values
are required to be in a state register at the start of the test (like ADDEND-1 in the
accumulator), the planner fits together a sequence of summaries that allow the value
to flow down from one of the inputs.” Figure 4.11 illustrates this process.

“Some operations can also create some values internally, hence these values need not come all the

114 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

Circuit inputs

load(?addr) 7data

Output
state

Input
state

?pc ?addr

Circuit outputs

Figure 4.10: Effects Summary for MAC-1/LOAD

Plan to set up Test Plan to observe
circuit state operation circuit state
0 /—M 0
| | | |
v Y A A4
\ N\ AR
o Ny
\ \
eoe \\::\\: 1T~ 1~ 4 see
~ \.._.\ \
\ \
A ¥ T I
[| | |
I \ A /
Time —>

Figure 4.11: State Planning Using Operation Effects Summaries

4.10. EXPERIMENTAL RESULTS 115

The state planner must handle one final detail as it fits summaries together: it must
ensure that the continuous lines running from input to state register and from state
register to output correspond to invertible functions. This requirement guarantees
that the placeholder can be transformed to appropriate values on the inputs and
outputs by “pushing them through” the continuous lines. Requiring an invertible
function on the output lines is more strict than necessary, but will help when the test
generator is extended in chapter 6.8

Figure 4.12 shows the result of state planning for the example of testing the ALU.
In this example, the control and observe sequences are only one instruction long. Both
sequences involved identity functions, so ADDEND-2 and SUM-1 appear unchanged
in the LOAD and STORE instructions (marked by «’s).

This sequence of three instructions is a test for ALU/ADD. We omit the final step
of substituting in the test data (from figure 4.4). Were we to do this, there would be
24 circuit operations. Note that this solution generated by the program is the same
one that is obvious to human test experts but not obvious to classical test generation
methods.

4.10 Experimental Results

The MAC-1 has 16 components (not all of which appear in the simplified block dia-
gram) equivalent to roughly 6500 gates. Each instruction is approximately 50 clock
cycles long® and takes about 10 seconds of real time on a Symbolics 3640 to simu-
late. Test generation for this circuit takes 6 minutes, including both the time taken
for successfully creating tests for some components and failing to do so for others.
Figure 4.13 highlights the components for which the designed-behavior test generator
successfully instantiated library tests.

Fault simulation reveals that the instantiated tests from the component library
cover 85% of the gate-level stuck-at and open faults in the MAC-1. Measuring this
takes a commercial quality fault simulator 30 minutes of cpu time on a SUN-2 com-

way from an input.

8To achieve fault coverage, the output function must map all erroneous component outputs to
values different from the correct value. If the fault model limits the wrong values the component can
possibly put out, then this function need not be invertible. However, an invertible output function
can provide more information about the nature of a component fault.

50 clocks is a long instruction cycle. This is due to the lack of circuitry for extracting opcodes
directly and branching to the appropriate microcode sequence in this sample circuit used for teaching.

116 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

MAC-1/LOAD Before State: Accumulator = ?ac
ProgramCounter = 7pc-1
Inputs: DataBus = (LOAD ?addr)
DataBus = ADDEND-2
Outputs: AddrBus = 7pc-1
AddrBus = ?addr
After State: Accumulator = ADDEND-2
ProgramCounter = 7pc
MAC-1/SUM Before State: Accumulator = ADDEND-2
ProgramCounter = 7pc
Inputs: DataBus = (SUM ?addr)
DataBus = ADDEND-1
Outputs: AddrBus = 7pc
AddrBus = ?addr
After State: Accumulator = SUM-1
ProgramCounter = ?pc®iel
MAC-1/STORE Before State: Accumulator = SUM-1
ProgramCounter = 7pchHisl
Inputs: DataBus = (STOD ?addr)
Outputs: AddrBus = ?pchisl
AddrBus = T?addr
DataBus = SUM-1
After State: Accumulator = ?data
ProgramCounter = 7pc®hi62

Figure 4.12: Final embedding of a test for ALU/ADD

4.10. EXPERIMENTAL RESULTS 117

F—=—*=--1 E

I 1 1 Fm====
— ll?elglster l|=' T
Address :_ e JF' vt uPC v
Bus:}= """ vy TTTTTT
__J 1T | 1uCODE!
- \M:‘ Ll ROM !
Data '::""'"" |
- Ve |l' --l-- :
o NN R
VALU o244 77T
“_‘_”: S

EShift}“':::::::':

1

Tests fully instantiated
= = = = Tests partially instantiated

""" No tests instantiated

Figure 4.13: Test Generation Results

118 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

puter (therefore generating these tests takes substantially less time than fault simu-
lating them). The tests actually catch somewhat more faults than they are designed
for, because exercising components in the datapath partially exercises the sequencer
too.

In a nutshell, the vanilla version of the designed-behavior test generator quickly
instantiates tests for most of the components in the datapath, but it fails on the
components in the microsequencer. This is good enough to be interesting — since the
classical techniques do not work for such circuits — this but not good enough to solve
the problem by itself. After analyzing why DB-TG fails, we will look at augmentations
of its basic test generation strategy that raise coverage figures to 97%.

Note that DB-TG successfully tests the datapath despite the control and feedback
paths between it and the sequencer. It is not the case that DB-TG fails to control some
component(s) and therefore cannot control other components downstream. Something
more interesting is going on, and we cover this issue in depth in chapter 5.

Success with the datapath and failure with the sequencer matches our expert’s
intuition about which parts of this circuit are easy to test and which are hard. The
datapath is easy for people to manipulate, and the program finds it relatively easy too.
The expert says the sequencer is testable with considerably more effort, but should be
modified, if possible, to simplify testing and to reduce the test program’s sensitivity
to changes in the microcode. Thus a test generator’s failure can be useful: as long
as the test generator successfully handles the “easy” problems, then its failure points
out areas of the circuit where design for testability techniques should be applied. For
the origins and further development of this idea, see [wu88§].

4.11 DB-TG: Additional Details

This section gives some additional details of the implementation.

4.11.1 Modeling and Simulation

We use a simple schematic entry system running on the Lisp Machine to enter
and debug circuit descriptions. Figure 4.14 shows the full MAC-1 schematic. The
simulator is tied closely with this graphical system, and we can probe nodes in the
diagram to see their values in a behavior graph, see time histories of single nodes, single
step the simulator seeing all node values and other useful debugging operations.

The simulator model is driven by programs describing how a tester would interact

4.11. DB-TG: ADDITIONAL DETAILS 119

~ Delete ~ Read

~Save

~ Buffers Other _

1]

Jowe]>

C-BYs

>

(T=>

Looking at H<DRW:TITLE 354876728> [Couldn't find simulation object].
Buffer: TARK—4-NEL (modified) (need to reparse)

MAC-1

Figure 4.14: A schematic entry system showing the full model for the MAC-1 proces-
sor.

with the circuit to make it execute its operations. For instance, the program in
figure 4.15 specifies how to drive the MAC-1 to execute a LOAD instruction. This
program is written in simple embedded language that uses multitasking (e.g., if forks
off a process to drive the clock on line 6) and synchronization primitives to interact
with the circuit. The >> function references circuit nodes by name.

4.11.2 Focusing Search Through the Behavior Graphs

DB-TG focuses the process of searching the behavior graphs in two ways: (i) by not
searching portions of the graphs that cannot contain solutions and (ii) by searching
“simple” sets of behavior graphs before more ones.

DB-TG prunes the search space by summarizing features of the behavior graphs
as they are generated and then skipping behavior graphs during test generation that
do not have the appropriate features. The Component Activation Summary lists

120 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

1. (define-stimulation-pattern (LOAD 7ADDR)
2. (:circuit-name ’mac-~1
3. :operation-pattern ’(LOAD
4. ((DATA ?data))
5. ((PC ?pc) (ADDR 7addr))))
6. (with-clock-process-on-node (>> ’mac-1 ’CLOCK)
7. (tight-sequence
8. (mac-1-read-cycle pc (make-LOAD °’?addr))
9. (mac-1-read-cycle ’?addr ’?data)
10. (mac-1-clean-finish))))
;33 A wrapper for read-cycle that specifies which bus nodes it should
;3 look at.
11. (defun MAC-1-READ-CYCLE (address data)
12. (read-cycle (>> ’mac-1 ’rd) (>> ’mac-1 ’addr) address (>> ’mac-1 ’data) data))

;33 The general read-cycle primitive. This function uses
;33 wait-for-node-to-—assume-value to synchronize with the simulator.
13. (defun READ-CYCLE (rd-node addr-node address data-node data)

14. (wait-for-node-to-assume-value rd-node O "Read Cycle A")
15. (pause 5)

16. (observe addr-node address)

17. (assign data-node data)

18. (wait-for-node-to-assume-value rd-node 1 "Read Cycle B")

19. (assign data-node ’Z))

Figure 4.15: This program specifies how to drive the MAC-1 to execute a LOAD
instruction

4.11. DB-TG: ADDITIONAL DETAILS 121

the kinds of component operations that occur within each behavior graph. The pro-
gram constructs a component activation summary immediately after creating each
behavior graph and checks the summary every time it starts to search for a simulated
component operation. If the desired operation type does not appear in a graph’s
~ summary, then the graph need not be searched. For instance, the ALU/ADD oper-
ation appears several times with different arguments in the MAC-1/SUM behavior
graph, but ALU/INVERT does not, therefore ALU/ADD appears in the summary
but ALU/INVERT does not, and the program can skip this behavior graph if it is
looking for simulated instances of ALU/INVERT.

DB-TG also focuses search by first looking for solutions using the circuit’s “simple”
operations, and then trying more and more complex or rare operations. In the MAC-
1, for example, DB-TG first tries to embed tests using the core instructions LOAD,
STORE, ADD, SUBTRACT and JUMP. If unsuccessful, it broadens its search to
include the full instruction set. This strategy focuses search first on simple operations
which are usually sufficient for testing most of a circuit.

Using a smaller set of circuit operations also simplifies the abstract descriptions
(called Effects Summaries) used by the State Planner to construct sequences of circuit
operations. The complexity of these descriptions depends primarily upon the amount
of observable state in the circuit, and the amount of observable state in turn depends
on the set of circuit operations that will be used during testing. For example, the
stack register is not affected by or observable via any of the five instructions in the
core set above, therefore the stack register is not observable state from the perspective
of the core instructions. Only observable state is included in the Effects Summaries
used by the State Planner. Currently, the user tells DB-TG which subsets of the
circuit operations are useful and in which order to try them.

4.11.3 Relationships Between Component Operations

A behavior graph contains relationships between pairs of component operations as well
as between many component operations and one circuit operation. These relationships
between component operations are useful for solving embedding problems involving
sequential components.

When the component under test is sequential, it can be critical that the exact
sequence of test operations is executed in order and with no other operations inter-
posed. That is because a library test for a sequential component carefully manipulates
the component’s internal state, and extra operations inserted in the middle of the se-
quence could render the test invalid. This can even occur when testing a combinational

122 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

component if the library test treats the component as if it were sequential, e.g., one
that accounts for faults that could turn a (working) combinational component into
a (faulty) sequential one. For instance, some open-circuit faults in MOS circuits can
cause state behavior because floating circuit nodes can hold charge for a time. The
library tests for multiplexors and several other components account for this possibility.

This kind of restriction is expressed in DB-TG using a compound component test:
the compound test first finds a simulated instance of an appropriate component op-
eration, extracts the operation relations and instantiates a primitive test containing
the “combinational” test data. The compound test then searches from the simulated
instance forward and backward through the behavior graph to make sure the com-
ponent performs no other operations that might interfere. It must also examine the
component activation summaries to make sure that the circuit operations used to
control and observe circuit state do not interfere either.

Using behavior graphs beyond simply extracting operation relations is reminiscent
of a different view of the designed behavior approach presented in [shirley86]: there
the test generator searchs behavior graphs for patterns of activity that would be use-
ful during testing. These “patterns of activity” were described by predicates in a rich
language involving data and timing relationships and the patterns could potentially
match multiple component operations. This thesis, taking a simpler and more direct
approach, emphasizes of operation relations, which are by far the most important and
useful kind of “pattern of activity” contained in the behavior graphs. Emphasizing
operation relations also calls attention to the fact that part/whole relationships con-
necting circuit and component operations could potentially come from other sources,
e.g., a design synthesis tool, and not just from symbolic simulation.

4.12 Review of DB-TG

DB-TG can be viewed at two levels of detail. The simpler version involves three steps:
(i) the component test problem: solved here by looking up tests in a library supplied
by an expert test programmer; (ii) the operation relation problem: derive relationships
between the component operations mentioned in the test and circuit operations; and
(iii) the embedding problem: transform internal component operations into directly
executable circuit operations using the operation relations. Solving the operation
relation problem is the key step where the test generator derives descriptions of circuit
behavior for later use. The resulting operation relation database captures a “global
view” of circuit behavior that is abstracted away from much of the detailed step-by-
step dataflow and timing contained in circuit descriptions used by conventional test

4.12. REVIEW OF DB-TG 123

generators.

While any source of operation relations is welcome (e.g., hints from the designer),
we rely largely on computing operation relations by simulation. The simulator uses
circuit schematics and component simulation models that can propagate algebraic
expressions. In the process of refining the algorithm to use simulation, we partially
combine the operation relation problem and the embedding problem. This second,
more detailed version of the method takes the following information as input:

1. A Component Test Library: operations and specific test data supplied by a test
expert

2. Component models for symbolic simulation
3. A Circuit Description consisting of

o A block diagram schematic: component types and interconnect

o A circuit interface specification: programs describing how a tester can drive
the circuit to cause operations to occur.

and produces sequences of circuit operations as output. The program follows these
steps (see figure 4.16):

1. Simulate the circuit’s designed behavior: The program simulates the activity
inside the circuit during each of its operations, capturing this activity as a set
of behavior graphs.

2. Summarize the behavior graphs: The program summarizes the behavior graphs
to create a set of abstract descriptions of the input and output of each operation.

3. Embed component tests: For each component in the circuit, the test generator
tries to embed a test fetched from the component test library. Embedding in-
volves (i) searching the behavior graphs for an appropriate instance of a compo-
nent operation, (ii) extracting the relations between that component operation
and the circuit operation that causes it, and (iii) substituting the test data into
the relations solving for the parameters of the circuit operation. If this works,
executing the circuit operation with these parameters will cause the component
operation to occur. The circuit operation is now called the test operation.

4. Control and observe circuit state: Sometimes solving the operation relations
causes values to be assigned to a state register. This means that either the

124 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

Circuit
Operations

Component

Tests

Simulation

Y
Operation
Relation P Matching
Database

Test GIeration

Summarization

State Planning

I . L |

Effects
Summary

Figure 4.16: Information Flow through the Test Generator

value of the register must be preset before the test operation is executed or that
the register’s value must be observed after the test operation has finished. A
simple STRIPS-like planner constructs sequences of operations that control and
observe the circuit state.

4.13 Conclusion

This chapter presented a simple testing problem and argued that a particular kind of
abstract knowledge about circuit behavior — relationships between circuit and com-

4.13. CONCLUSION 125

ponent operations — can help to solve it. This observation formed the foundation of
the DB-TG test generator.

Operation relations were supplied to the program either directly (e.g., by the
designer) or computed from circuit structure and component behavior via symbolic
simulation. Using symbolic simulation is based on an idea about planning called
simulate and match. This particular strategy for computing operation relationships
focuses the test generator on known-achievable behavior rather than on potentially
achievable behavior that must be verified via complex reasoning.

This strategy also embodies the key ideas in the expert test generation method
described in section 3.2. We, as algorithm designers, have identified what can be
done — the circuit operations — and what must be done - stay within the designed
behavior. We have identified the test objectives — embed component tests — and
provided a strategy for doing the embedding. From this perspective, the novel step
is restricting the test generator to what must be done, i.e., to follow established
conventions between the circuit and its environment.

The next chapter discusses the advantages and drawbacks of DB-TG, explores the
ideas underlying the test generator further and analyzes their individual contributions
and relationships.

126 CHAPTER 4. A DESIGNED-BEHAVIOR TEST GENERATOR

Behavior Space (disconnected) Behavior Space (connected)
~ 7

, ~
Partial Constraint Propagation Designed Behavior

Chapter 5
Analysis

Summary: DB-TG is based on four ideas about test generation: (i) the
designed behavior heuristic, (ii) embedding expert-supplied component tests,
(iii) operation relations, and (iv) computing operation relations by simulation
and matching. This chapter explores each of these ideas from the perspective
of its effect on the test generator’s soundness, completeness and efficiency.

DB-TG is a heuristic solution: it is neither guaranteed sound nor complete.
There are situations where it can produce incorrect tests (it warns when this
may have happened), and there are situations where it can fail to find a test.
Sound and complete algorithms exist, but they are unusably slow for complex
sequential circuits. We need an effective, fast, heuristic test generator for these
circuits, i.e., the kind of solution human test experts currently provide. This
chapter argues that DB-TG is such a solution.

5.1 Introduction

DB-TG is based on four ideas about representing testing expertise, representing cir-
cuit behavior and search in problem solving: (i) the designed behavior heuristic, (ii)
embedding pre-written component tests, (iii) operation relations and (iv) simulate
and match. Each idea is judged by its effect on three properties of the test genera-
tor: soundness, completeness and efficiency. A test generator is sound if the tests
it produces are guaranteed to detect the faults they are supposed to detect. When
a test generator is sound, its output can be used without fault simulation or other
forms of independent verification. A test generator is complete if it is guaranteed to
find a test for any fault if a test exists. When a test generator is complete, its failure
indicates that no test exists. Running the program a little longer or modifying the

127

128 CHAPTER 5. ANALYSIS

algorithm in some way would not have turned one up.! A test generator is efficient if
it can generate tests in a timely fashion. An efficient test generator can, for instance,
be used as an analysis tool during design to give feedback on the testability of the
circuit. The tests generated by the program are themselves efficient if they can be
applied to the circuit quickly.

Strong connections between the ideas prevent any linear text presentation from
working completely; perhaps the best solution would be to arrange this chapter as a
matrix covering the four major ideas and the three criterion for judging each idea.
The current organization — a section for each idea with subsections for each property —
reflects a compromise with the result that two important themes arise several times:
(i) mismatches exist between the granularity of component tests and the granular-
ity of the behavior graphs, and (ii) tension exists between needing abstract circuit
descriptions for speed and needing specific predictions of fault effects for accuracy.
These themes reflect tensions between efficiency and completeness on one hand and
between efficiency and soundness on the other.

The central results of the analysis are as follows. The primary advantages of
DB-TG are:

e Focusing on designed (known-achievable) behavior rather than potential behav-
ior reduces the size of the search space.

o Generating tests within a circuit’s designed-behavior yields tests that use the
circuit according to its interface specification. If the circuit were in turn a
component in a larger circuit, these tests would likely be achievable, while it is
extremely unlikely that tests outside the interface specification would be achiev-

able.

e Operation relations are a compact representation of the circuitry surrounding
a component. Embedding tests by propagating signals out through operation
relations rather than through circuit structure recovers the cost of generating
the relations by simulation and algebraic simplification.

The primary disadvantage of DB-TG is:

!Note that soundness and completeness properties are relative to the idealizations made when
modeling the circuit and potential faults. No set of tests, for instance, can account for all possible
ways a circuit might fail. The best we can say is that a set of tests completely covers a particular
class of (hopefully likely) faults.

5.2. THE DESIGNED BEHAVIOR HEURISTIC 129

e When writing the component test library, it is impossible for a testing expert to
anticipate all of the ways standard components can be used in a circuit. Conse-
quently DB-TG sometimes fails to generate tests for components in situations
where a test generator that does not embed pre-written tests could do so or
where the expert could by adapting the library tests to the constraints of the
circuit.

In the final analysis, DB-TG is neither guaranteed sound nor complete, i.e., there
are situations where it can produce incorrect tests (it warns when this may have
happened) and situations where it can fail to find a test. DB-TG should be viewed
as a heuristic solution to an exponential search problem. Sound and complete al-
gorithms currently exist, but to achieve these properties the algorithms must search
exhaustively. This renders them unusably slow on sequential circuits. We need in-
stead an effective, fast, heuristic solution, i.e., the kind of solution human test experts
currently provide. This chapter covers the trade-offs and compromises involved and
shows where giving up exhaustivity causes problems. *

When this analysis is behind us, we will then ask what specific problems did
the test generator have with the MAC-1 processor and why. The answers to these
questions suggest several extensions to the test generator and ways of combining its
strengths with the strengths of the classical test generation methods. These extensions
are developed in chapter 6.

5.2 The Designed Behavior Heuristic

This section considers how the strategy of searching a circuit’s designed behavior
affects the performance of the test generator. We begin analyzing this heuristic by
describing the structure of the search spaces involved in test generation. This leads to
the designed behavior space, a subset of the search space that contains solutions to all
testing problems. We therefore want to search for tests inside the designed behavior
space, and we want to waste as little effort as possible looking outside.

5.2.1 Search Spaces for Test Generation

A test generation algorithm searches through a circuit’s behaviors for one that con-
stitutes a test. The important aspects of test generation search spaces are: (i) how
large is the space; (ii) if the space is a subset of the circuit’s potential behavior, then

130 CHAPTER 5. ANALYSIS

does it contain solutions to all testing problems; and (iii) how much effort does the
test generation algorithm waste on search outside the space?

We call the search space involved the circuit’s behavior space and define it in terms
of the behavior spaces of the components. The behavior space of a combinational
component is simply its truth table, i.e., the sets of values its inputs and outputs
can consistently hold. The behavior space of a sequential component is the set of
sequences of values its inputs and outputs can consistently hold.

The cross product of the component behavior spaces is the circuit’s disconnected
behavior space (see figure 5.1). We refer to the space formed by taking the cross prod-
uct as “disconnected,” because it does not reflect the physical constraints imposed by
connecting the components. Enforcing these constraints rules out possible behaviors.
The connected behavior space — or potential behavior space — is the subset of the dis-
connected behavior space that contains all globally consistent assignments of values
to the circuit nodes.

Behavior Space (disconnected) Behavior Space (connected)
\\ ; ’
)
\\ 7

.
\ 4

Partial Constraint Propagation Designe;d Behavior

Figure 5.1: Search Spaces for Test Generation

Within the circuit’s potential behavior space is its designed behavior space, i.e.,
those node assignments or sequences of node assignments that result from executing
legal circuit operations. The legal operations are always a subset of the possible
inputs. For many circuits, the legal operations are a small subset, so the designed

5.2. THE DESIGNED BEHAVIOR HEURISTIC 131

behavior is a small subset of the behavior space.

Constraint propagation techniques used in test generation are incomplete, i.e., they
cannot detect all inconsistencies immediately as they construct tests. Classical test
generators and DB-TG therefore search somewhat outside of their respective search
spaces and backtrack inside when inconsistencies are noticed later. Although these
constraint propagation techniques could be made complete (because the behaviors
of digital circuits are finitely enumerable), the cost of doing so is prohibitive. It
is cheaper to let the test generator backtrack somewhat while organizing search to
minimize the amount of backtracking done.

5.2.1.1 The Boundary of Designed Behavior

How do we define the boundary of a circuit’s designed-behavior? Clearly the circuit’s
normal operations are included, but are test modes and design-for-testability oper-
ations also included? What about behavior that is likely to change, e.g., behavior
resulting from microcode?

We treat DFT operations and test modes as part of a circuit’s designed behavior
and handle them like the normal operations. An example of using a test mode and
DFT features appears in section 6.5.

Handling behavior that is likely to change is a more subtle issue. Clearly we cannot
define the space of designed behavior to include behavior that is unachievable now,
simply because it might become achievable with the next circuit modification. Yet, at
the same time, we would like DB-TG to produce tests that are relatively insensitive
to planned design changes, e.g., we do not want to run the test generator again for
every microcode change. To solve this problem, we rely on the designer to include
DFT features for parts of the circuit that might change. Since the DFT features and
the normal operations are unlikely to change, tests generated using them are likely to
be insensitive to planned circuit modifications.

5.2.2 Completeness

While a circuit’s designed behavior is smaller, is searching it sufficient to generate
tests? We claim that it is.

Proposition 1 The designed behavior space contains tests for every fault in a circuit.

132 CHAPTER 5. ANALYSIS

This proposition rests on defining faults as perturbations from a specification of
correct behavior rather than as perturbations from a particular implementation. If a
physical defect causes no perturbation from correct behavior, then a user will never
notice it and it should not be considered a fault.

5.2.2.1 Implementation Defects May Not Cause Misbehavior

The distinction between faults as perturbations from correct behavior and faults as
perturbations from an implementation is meaningful only if there are implementation
faults that do not cause misbehavior. Physical defects that do not lie in electrically
active areas certainly fall into this category. However more interesting cases exist if
the implementation is not minimal, i.e., it contains unused functionality.

Circuit implementations are sometimes non-minimal because designers use com-
ponents from component libraries (or from other designs) in order to save time and
fabrication costs. When the component building blocks of the circuit are large units,
e.g., an ALU, designers must sometimes choose a component that offers more func-
tionality than they need. Unused functionality is implemented by unused structure
inside the component, and defects in this unused structure are the defects that should
not be treated as faults.

For example, figure 5.2 shows a plausible implementation for the MAC-1 ALU.
This four function ALU is implemented here by four LS181’s in a carry chain configu-
ration. The combinational circuitry in C converts the 2-bit operation input (OP) into
five control signals for the LS181’s. The NEG output is the same as the high-order
output bit. The ZER output is computed from the outputs (OUT) by a 16-input
NOR gate (not shown in the figure).

There are several ways in which this implementation provides more functionality
than necessary. First, the LS181 provides many more functional modes than the 4
needed by the MAC-1. Second, each LS181 contains unused generate and propagate
circuitry.? Finally, the carry output of the high-order LS181 is unused. Physical
defects that cause misbehavior only in this extra functionality are not faults.

2The generate and propagate inputs and outputs allow multiple LS181’s to be connected together
to form a large ALU. In simple usage, they are redundant with the carry input and output, but do
their jobs more quickly when connecting many LS181’s. However, using them requires adding an
extra component. Here we connected the LS181’s in the simpler carry-chain configuration.

5.2. THE DESIGNED BEHAVIOR HEURISTIC 133

IN1 IN2

OoP

NA

1 Ls18 L5181 LS181 Ls181 |-

—» NEG

—» ZER

ouT

Figure 5.2: An ALU model built out of L5181 components

5.2.2.2 Granularity is Fundamental

This issue of functional granularity is fundamental. As components are chosen from a
library of pre-sized functional units, so component tests are chosen from a library of
pre-sized tests. Granularity of components and tests improves efficiency by limiting
the number of cases that need to be considered during design and test generation, but
it causes difficulties when there is a mismatch between the granularity of a compo-
nent’s functionality and the granularity of its tests. We consider this problem in detail
when it arises in the section on embedding pre-written component tests (page 140).

5.2.3 Efficiency: Searching Designed Behavior can be Faster
5.2.3.1 The Designed Behavior Space is Smaller

An important efficiency advantage of DB-TG is that the space it searches — the de-
signed behavior space — is smaller than the space classical test generators search —
the potential behavior space. If the MAC-1 processor is represented at the gate level,
the ratio between the spaces is roughly 22%, corresponding to the ratio of legal in-

134 CHAPTER 5. ANALYSIS

put sequences to possible input sequences. There is more to this story than ratios
between the sizes of search spaces, because ratios say nothing about how the spaces
are searched or about the frequency and distribution of solutions within the spaces.
In particular, both DB-TG and classical test generators search somewhat outside of
their respective search spaces as they construct tests and backtrack inside when in-
consistencies in the tests are found. But based simply on size of the search space,
DB-TG has substantial advantage.

5.2.3.2 Generating Tests for Structural Defects Can Waste Effort

Classical test generators can waste effort by attempting to generate tests for structural
defects in unused portions of the circuit. For example, a simple implementation of the
D-algorithm would attempt to generate tests for the carry output of the high-order
slice in figure 5.2. After working out how to sensitize a stuck-at fault on this node, it
would discover that the effects of the stuck-at cannot be observed, because the carry
output is not connected to anything and is not a circuit output.

This is an horizon effect caused by the test generator failing to look ahead. It
can be eliminated, in this case, by reordering the steps of the D-algorithm to do
path sensitization first, but for any ordering there exist circuits where the worst-case
behavior occurs.

A better solution is to examine the circuit structure before attempting to generate
the test to see if a test is necessary. One commonly used method is to ignore stuck-ats
on nodes that are not connected to an observable output by tracing forward through
the schematic.

Unfortunately, structural analysis alone cannot always determine when component
features are used by the rest of the circuitry. Circuit behavior must be taken into
account. For instance, recognizing that 28 of the LS181 functional modes are unused
cannot be done purely by structural analysis. This requires considering the behavior of
the circuit. A test generator could recognize the unused modes by attempting to assign
the control input of LS181 to one of them, propagating the control signals backwards
through C (figure 5.2), and failing. In this case the backward propagation would fail
quickly. In general, however, the test generator might need to propagate a long way
before failing. In cases where propagation goes a long way, having an explicit and
complete representation of the circuit’s designed behavior, i.e., the behavior graphs,
allows questions like this to be answered much more quickly. A test generator can
search the behavior graph for examples of the control signals. This second search is
bounded by the number of circuit operations times the length in time of each behavior

5.2. THE DESIGNED BEHAVIOR HEURISTIC 135

graph, rather than by an exponential of the propagation distance.

5.2.3.3 Searching Designed Behavior may not Find Efficient Tests

Searching for tests within a circuit’s normal behavior may be insufficient to find
efficient tests, i.e., tests that can be applied to the circuit quickly. While a test must
exist within the designed behavior for every fault, that test may not be as efficient
as one that lies outside the designed behavior. For instance, it is straightforward to
construct an example where simpler tests exist outside the designed behavior than
inside. Take a circuit with testability features and define its designed behavior so they
are outside. Now tests for the faults in this circuit must exist within the designed
behavior, but they are unlikely to be as simple as tests that use the testability features.

Whether simple tests exist within the designed behavior of real circuits often
enough for the heuristic to be useful is an open question. Answering this question
empirically is an obvious extension to the work in this thesis and is part of our future
work. However, in lieu of a detailed study of hundreds of real circuits, we base our
use of the heuristic on its use by our testing experts [bennetts82, robinson83].

5.2.4 Soundness

We have noted above that DB-TG is potentially unsound. However, this unsoundness
is independent of the designed behavior heuristic, which determines the search space
for tests but not how tests are constructed.

5.2.5 Summary: The Designed Behavior Heuristic

In this section we have seen that the space of a circuit’s designed behavior is a sub-
set of its potential behavior, and the difference in size can be orders of magnitude.
Searching a circuit’s designed behavior rather than its potential behavior makes test
generation more efficient simply by reducing the size of the search space. Searching
the designed behavior does not affect a test generator’s completeness, because the
designed behavior contains tests for all faults. However, it is not clear whether those
tests are efficient. Based on the experience of expert test programmers, we believe
that efficient tests can be found within a circuit’s designed behavior often enough
that searching designed behavior is a useful heuristic. This belief is born out by
the limited experimentation we have done, but should be examined more closely by
experimenting with a larger set of circuits.

136 CHAPTER 5. ANALYSIS

5.3 Embedding Component Tests

This section shows how the strategy of embedding pre-written component tests into
the circuit affects the performance of the test generator. The strategy has several
strong advantages: (i) it allows use of efficient, expert-supplied tests, (ii) it amor-
tizes component test generation costs, and (iii) it allows reasoning about faults in
the aggregate. However, with these advantages come two strong disadvantages: (i)
potential incompleteness, and (ii) potential unsoundness. Fortunately, the worst-case
situations do not usually occur, and the test generator can warn the user when they
might. In this section, I argue that the advantages of embedding pre-written compo-
nent tests outweigh the disadvantages. As before, we consider the strategy’s effect on
completeness, efficiency and soundness in turn.

5.3.1 Completeness

The strategy of embedding component tests selected from a library is the primary
source of incompleteness in DB-TG. The test generator fails to embed a component
test when it cannot find a component operation causally connected to a circuit oper-
ation with parameter relationships that the test generator can solve. To understand
why these failures occur, it is useful to think of component tests and simulated com-
ponent operations as sets of behavior and the process of embedding tests as finding
simulated component operations that are supersets of component tests.

A behavior of a component or a circuit is a set of lines from its truth table. Given
two behaviors B and T, we say behavior B subsumes behavior T if B D T, i.e., if
in the process of executing all of B the circuit also does T. This yields a strategy for
embedding tests: if (i) T is a test; (ii) the test generator knows how to make the circuit
do B, e.g., B corresponds to a simulated component operation in a behavior graph;
and (iii) B subsumes T, then the test generator can perform the test T by executing
behavior B (and ensuring the outputs are observable). For example, suppose T is the
ADDER component test and B is the set of addition instructions with all possible
data. B subsumes T, so T can be performed by executing B.

The behaviors the test generator knows how to execute, e.g., the set of all possible
addition instructions, are often extremely large and involve many truth table lines.
This has two consequences: (i) manipulating behaviors as explicit truth tables is far
too unwieldy, so we represent them more compactly as algebraic expressions; and (ii)
once the test generator has found a behavior that subsumes a test, it pares down the
behavior to barely cover the test. The mechanisms inside the test generator that do

5.3. EMBEDDING COMPONENT TESTS 137

this have already been described, e.g., solving a set of operation relations. We review
them briefly from this new perspective as they arise in the discussion of completeness.

Viewing embedding component tests as finding known-achievable behaviors that
are supersets of the tests gives a framework for understanding how things can fail.
Next we consider the three specific failure modes.

Incompleteness in the test generator stems from several sources:

e Component tests are selected from a limited set.
e Component functionality is sometimes unused and inaccessible from the outside.

e The representation of achievable circuit behavior, i.e., the behavior graphs, is
partitioned into coherent sub-behaviors, and the test generator does not match
component tests across sub-behaviors.

e The test generator saves work by solving the operation relations first for place-
holder values and then later substituting test data in.

We consider each cause in order.

5.3.1.1 The Component Test Library is Incomplete

DB-TG embeds component tests by selecting one from the library and searching the
circuit’s designed behavior space for a way to carry out the test. While the designed
behavior space contains at least one test for every fault, it may not contain the test
selected from the library. Moreover, the library can contain multiple ways to test
each component, but it is not feasible for it to contain all possible ways. Thus the
component test library is incomplete in the sense that it cannot contain all possible
test versions. This incompleteness in the library causes incompleteness in the test
generator.

For instance, the BA address input of the MAC-1 Register File is not used fully
by the microcode: it only uses addresses 0-10 (decimal) rather than the full range of
0-15. (See figures 5.3.a and 5.3.b.) In order to test the address input, DB-TG tries
to embed the NODE component test shown in figure 5.3.c. Unfortunately this test
cannot possibly be embedded; there is no way to set the node’s value to 15 (1111

binary) as required by one line of the test data, since that value is outside the range
0-10.

A second test (shown in figure 5.3.d) can be embedded because all of the test
data falls within the range 0-10 (decimal). However, in another circuit yet another

138 CHAPTER 5. ANALYSIS

0000
0001
0010
4 T4 T4 0011
R 0%
N AlT6 0110
16 B _1.2-.> 0111
1000
LD
=2 1001
il 1010 +—
(3) The MAC-1 Register File (b) Achievable values for BA
(used by the microcode)
Test Operation value(Node, ?data) value(Node, 7data)
?data ?data
Test Data 0000 0101
1111 1010
(c) Test 1 (not achievable) (d) Test 2 (achievable)

Figure 5.3: Subfigures (¢) and (d) show two versions of a NODE test. (c) cannot be
embedded for the B address input of the register file (BA) because its test data does
not match the values achievable on that node. (d) does and can be embedded. This
s a situation where having several versions of a component test in the library helped.
However, it is impractical to store all possible versions.

5.3. EMBEDDING COMPONENT TESTS 139

variation on the node test might be necessary. The component test library cannot
contain all such variations — there are simply too many — so the expert anticipates
several of the most likely ways components are used and includes tests for them.

As a result, the task of writing component tests cannot be completely separated
from embedding concerns. We conjecture that digital circuits are stylized enough in
their design that a small number of variations for each component test will cover most
cases. This conjecture is very likely to be true of datapaths (as experiments with the
MAC-1 indicate), however, whether it is also true of state machines and other complex
circuitry needs to be explored by additional experimentation.

5.3.1.2 TUnused Component Functionality Can Be Inaccessible

Section 5.2 described how component functionality can be unused. Any unused func-
tionality can be inaccessible from the outside, which makes it impossible to embed a
component test designed to exercise that functionality. While this unused function-
ality need not actually be tested, the library may not contain just the right piece of
a component test that uses only accessible functionality.

For instance, the DB-TG fails to embed a test for the ALU’s AND operation.
The design of the circuitry around the ALU and the microcode in particular render
the high-order bits of the ALU’s AND functionality inaccessible. The inaccessible
functionality is not an explicit design decision, but rather an inadvertent byproduct
of explicit design decisions. In one decision, the designer chose to have the ALU/AND
mask instruction fields as the MAC-1 decodes instructions, and these masks happen
to be incompatible with the test data supplied by the test expert, i.e., the 8 bit and
12 bit masks do not match the test data. In another decision, the designer chose not
to give this processor a general-purpose AND instruction. These decisions together
make the AND operation difficult to test.

Figure 5.4 shows in detail why the library test for the AND operation fails. To save
space and time, behaviors are represented in the test generator as compact symbolic
expressions rather than as truth tables. Test operations in the library and the simu-
lated operations in the behavior graphs are both of this form. These representations
contain typed variables that range over the values of circuit nodes. For example, the
simulated operation

AND(ALU1, (:fields (field 12 15 6) (field 0 11 7addr)), 4095)

represents a subset of the ALU’s truth table. The “fields” subexpression describes a
value that is comprised of several bit fields. Each bit field is described by a “field”

140 CHAPTER 5. ANALYSIS

function that takes a low bit position, a high bit position, and a value as arguments.
In this example, the variable 7addr ranges over the possible values on the AddressBus
(0-4095). The values are shown in decimal. This expression represents the portion of
component ALU1’s truth table shown in figure 5.5.

5.3.1.3 The Fragmentation Problem

Even when all of a component’s behavior is achievable, it may not be represented in
the test generator in a form that allows component tests to be embedded. The advan-
tage of representing behaviors with symbolic expressions is that the expressions are
compact. They are compact because they exploit regularity of behavior, i.e., similar
behaviors are represented by similar expressions. However, when achievable behavior
is irregular — like the AND operation in the MAC-1 — this behavioral representation
becomes fragmented, i.e, behavior must be represented with many symbolic expres-
sions, as pieces of the irregular behavior are represented with separate expressions.
The problem of finding achievable behaviors that are supersets of component tests
is exacerbated when the achievable behaviors are fragmented, because fragmentation
makes the individual sets of achievable behavior smaller, thus making the test gener-
ator less likely to find a single achievable behavior that subsumes a given component
test. Note that failure due to fragmentation is a property of the languages used to
describe component tests and achievable circuit behavior as well as of the circuit itself.

For example, the behavior graphs for the MAC-1 contain 6 different examples of
ALU/AND, including the one above, that describe non-overlapping portions of the
ALU’s truth table (and many more that are subsets of one of the 6). These different
examples correspond to different combinations of masks and data.

Contrasting the ALU and the microprogram counter (uPC) highlights this issue.
Using the addition instruction, for instance, the ALU can be made to add different
pairs of numbers in the same way, i.e., the activity inside the circuit differs only in the
numbers. However, the yPC is not like this. There are 80 lines of microcode, and it
is possible to load the yPC with any value in the interval 0-79. However, all of these
values must be loaded in different ways, i.e., by executing different instructions, or
branch instructions with different data. The test generator’s description of the uPC’s
achievable behavior is spread out in small pieces (i.e., loads of constants rather than
variables) all over the behavior graphs rather than as a general operations in a few
places in the behavior graphs.

Unused component functionality and fragmentation of DB-TG’s behavioral repre-
sentation are the primary reasons that DB-TG sometimes cannot embed tests. These

5.3. EMBEDDING COMPONENT TESTS

(a) Sets of ALU Behavior

(b) Test Operation

(c) Test Data

(d) Simulated (Achievable) Behavior Position

Full ALU Behavior

141

= Achievable ALU Behavior
===« ALU/AND Test

AND(ADDER, ?Datal, ?Data2)

Datal Data2
0000000000000000 | 0000000000000000
11111441111311111 | 11131111111184111
1010101010101010 | 0101010101010101
0101010101010101 | 1010101010101010

Data
Mask

Position

Data
Mask

54321098|76643210

11111110

?offset ¢

/
00000000111111111

5432|109876543210

0110 7addr

00001111111111111

!
/

Mask does not match
any test data

Figure 5.4: Why the pre-written ALU/AND tests cannot be embedded: the ALU/AND
operation is used only to extract bit fields by masking. DB-TG fails to embed the

component test because it lies partially outside the ALU behavior achievable within
the constraints of the larger circuit.

142

CHAPTER 5. ANALYSIS

OP | IN1 (data) IN2 (mask) ouT

AND | 0110000000000000 | 0000111111111111 | 0000000000000000
AND | 0110000000000001 | 0000111111111111 | 0000000000000001
AND | 0110000000000010 | 0000111111111111 | 0000000000000010
AND | 0110000000000011 | 0000111111111111 | 0000000000000011
AND | 0110111111111111 | 0000111111111111 | 0000111111111111

Figure 5.5: This portion of the ALU’s truth table corresponds to the :fields expression
on page 139. The values are in binary to make their structure apparent.

problems are important; chapter 6 covers them in detail and describes several ways
of addressing them.

5.3.1.4 Inserting Placeholders Has Pros and Cons

DB-TG’s method of determining whether a simulated operation subsumes a compo-
nent test is a fast, approximate solution: it extracts the operation relations for the
simulated operation, substitutes placeholders for the test data into them and solves
for the parameters of the circuit operation. If the operation relations can be solved,
then the simulated operation must subsume the test operation with the placeholders
(which are arbitrary constants), therefore it must subsume the test operation with
the test data. Once the operation relations have been solved, the placeholders are
replaced with test data to create the actual test.

This method has two strong advantages:

e The cost of solving the operation relations is incurred once for the placeholders
rather than repeatedly for each line of test data.

e Solving for circuit outputs that correspond to the component test data pares
the test down to exactly what needs to be executed at the circuit inputs to
cause the component test to occur inside. The test generator does not waste
time executing long, known-achievable patterns of activity inside the circuit that
happen to subsume a short component test.

However, the method also can cause the test generator to fail to embed a compo-
nent test that is actually achievable. Figure 5.8 illustrates this problem with the B

5.3. EMBEDDING COMPONENT TESTS 143

r-----'-‘

\

’

| R)

Description Description

Circle 1 Circle 1

Circle 2
Circle 3
Circle 4
Circle 5

(a) A regular component behavior (b) An irregular component behavior (the rectangle)
(the description is compact) approximated by multiple, regular behavioral descriptions

(the description is lengthy)

Figure 5.6: The fragmentation problem: this figure illustrates the underlying cause
of the fragmentation problem with an analogy. Here, the behavioral representation
language can only describe circles compactly. When component behavior is regular, as
indicated by the circle in (a), then that behavior can be described succinctly. When
component behavior is irreqular, as indicated by the rectangle in (b), then component
behavior must be described using multiple, disjoint pieces. Fragmentation is a property
of the language used to describe circuit behavior as well as of the circuit behavior itself.

144 CHAPTER 5. ANALYSIS

Abstract
A
LOAD ?7A Library Test
LOAD 0 LOAD 1 o 0o 0 Simulated Operations
Specific

Figure 5.7: An Ezample of Fragmentation: the REGISTER library test cannot be
embedded for the uPC register because it involves a fairly large set of behavior (the
test data is not shown) but no simulated instance of the register loading covers as large
a set. Fragmentation of the representation for uPC’s achievable behavior causes the
test generator to fail here.

address input of the MAC-1’s register file. While this problem does occur in practice,
it turns out to cause few failures in the MAC-1. The limited size of the component test
library, inaccessible component behavior and fragmentation of the behavior graphs are
the primary reasons that DB-TG fails to embed tests.

5.3.1.5 Granularity and Fragmentation Stem From the Design Process

Why is there a radical difference in coverage between the datapath and the sequencer?
The difference is caused by regularity of behavior in the datapath and fragmentation
of behavior in the sequencer. For instance, in the datapath there are several simu-
lated ALU/ADD operations with variables for data, but in the sequencer the uPC
is never loaded with a variable in any of the simulation runs. All examples of uPC
behavior are more specific than the corresponding library test. The same story is
repeated throughout the MAC-1. We conjecture that this unevenness in the amount
of fragmentation over the circuit is a direct result of the design process.

Consider the following account of processor design: a designer starts with a spec-
ification for an abstract machine that includes the programmer accessible registers
and the instruction set. His job is to implement this abstract machine in hardware
while meeting myriad performance, reliability, and cost constraints.

The specification can be viewed as a set of dataflow graphs, one for each instruc-

5.3. EMBEDDING COMPONENT TESTS 145

""""" Achievable behavior:
addresses 0-10 (decimal)

smssssmmmmm Behavior covered by test data:
addresses 5 and 10 (decimal)

7~ \\ Behavior covered b ! test operat/on + placeholders:
addresses 0-15 (decimal)

Figure 5.8: The circular, solid, and dashed regions represent subsets of the behavior of
the B address input of the MAC-1’s register file. The dashed region represents behavior
achievable within the MAC-1, i.e., addresses 0-10 decimal. The solid region represents
component behaviors that the test would actually use, corresponding to test data from
version 2 of the node test shown earlier in figure 5.8. Given a test with placeholders
inserted, the circular region represents behaviors the test might possibly use if the
placeholders are replaced with arbitrary values. The test is achievable since it lies
entirely within the space of achievable behavior, i.e., {5,10} C {0...10}. However
using placeholders causes the test generator to fail because some values that could
potentially replace the placeholders, e.g., {11...15}, are not achievable.

146 CHAPTER 5. ANALYSIS

tion, describing how data is transformed as it moves from register to register. The
designer usually cannot implement these dataflow graphs directly in hardware: with-
out some sharing there would be a wasteful duplication of functionality. So he looks
for ways of merging the graphs together.

To do this, he adds to the graphs components for performing identity transfor-
mations. For example, he might insert a register in one graph to shift some of its
operations later in time, thereby allowing components to be shared with another
graph via time-multiplexing. In another situation, he might introduce identity boxes
into two graphs and implement them using a single multiplexor. By adding these
components to the flow graphs, he is able to fit them all together. When this pro-
cess is complete, the designer collects all the control signals from all the graphs and
creates a finite state machine (FSM) to provide these signals at the right times. The
FSM is implemented using any one of the well-known methods (e.g., with a microcode
engine).

By this account, the way the datapath is designed (incremental refinement and
merging) is very different from the way the controller is designed (stylized implemen-
tation of a state machine). The availability of components which directly implement
large portions of individual processor operations (e.g., ALU chips), plus the fact that
the merging process does not normally change existing components (it just adds new
identity boxes), means that many datapath component operations tend to “very di-
rectly implement” circuit operations. The process of designing a state machine, how-
ever, need yield no such simple part-whole relationships. The behavior of the whole
controller (a state machine) is very different from the behavior of any single controller
component (e.g., a register, ROM, or MUX).

5.3.1.6 Conclusions

DB-TG is incomplete in its ability to find tests. This incompleteness stems from (i)
selecting component tests from a limited set supplied by an expert and (ii) interactions
between the granularity of the component tests and granularity and fragmentation of
the representation of achievable circuit behavior (i.e., the behavior graphs). However,
when embedding pre-written component tests succeeds, it has several very important
efficiency advantages described in the next section. When embedding pre-written
component tests fails, DB-TG can turn to several methods of generating component
tests upon demand, achieving the effect of having a larger library or one designed
specifically for a particular circuit. These extensions are described in chapter 6.

5.3. EMBEDDING COMPONENT TESTS 147

5.3.2 Efficiency

Embedding pre-written component tests has several important efficiency advantages.
First and foremost, the expert-supplied tests are themselves efficient, being the prod-
uct of the intelligence and experience of a human expert. The carry-chain adder test
on page 98, for instance, uses a minimum of test data — no gate level test generation
algorithm could do better, and many do worse. Moreover, this and similar tests are
designed to cover potential faults not considered by classical test generators.® In ad-
dition to tests designed by the expert, the library can also include the best available
tests published in the literature and generated by any means whatsoever.

Embedding pre-written component tests amortizes component test generation
costs. Because a component test will be used in many circuits, it is feasible to invest
more effort designing it than in designing a test that will be used only once. This
extra effort can go toward shortening the test or increasing its coverage.

Finally, embedding pre-written component tests saves time by allowing the test
generator to work with faults in the aggregate. Classical test generators in effect
ask “suppose this node is stuck?”, generate a test for that fault and move on to
the next fault. DB-TG in effect asks “suppose this component operation is faulty?”
and proceeds to embed a test for the operation. For example, when embedding the
ALU/ADD test, the test generator need not explicitly consider all of the possible
ways in which the ADD operation could go wrong. DB-TG simply builds on top of
the work of the expert (who did consider all of the failure modes). Since there are far
fewer component operations than circuit nodes, this approach saves effort. The cost
of considering faults individually is incurred only during the design of the component
test. Not considering them individually when embedding tests saves work each time
the component test is used.

5.3.3 Soundness

Unfortunately, the efficiency advantage gained by working with faults in the aggregate
is at odds with the goal of generating sound tests. The key issue is when can a
component be used to help test itself? The need to use a component in this way
arises in circuits that exhibit a structural configuration known as reconvergent fanout.
Figure 5.9 shows the two prototypical cases. In the first case, there is a feedback path
from the output of F, the component under test, back to one of its inputs. In the
second case, two or more paths from F reconverge on another component.

3For example, bridge faults within each single-bit adder in the carry chain

148 CHAPTER 5. ANALYSIS

Feedback Path

(7
|
— >
S . L—-5
Unanticipated Result

Fault Source

Case 1: A Reconvergent Feedback Path

Sensitized Path

S - i Unanticipated Result
Fault Source -
Other Error Path

Case 2: Interference with a Sensitized Path

Figure 5.9: This figure shows two examples of reconvergent fanout. In these configu-
rations, the component F must be used to help test itself. In case 1, F is used to set up
its own inputs. In case 2, F is used to help observe its own output value. Generating
tests in either situation requires very precise predictions of fault effects.

5.3. EMBEDDING COMPONENT TESTS 149

In both cases component F must be used to help test itself, and herein lies the
problem. How can a test be sound if one of the components used to carry it out is
potentially faulty? In case 1, F must be used to set up its own inputs. For example,
the ALU in the MAC-1 is used to decode instructions, hence any test for the ALU
that involves executing instructions must itself rely on the ALU. How can we be sure
the ALU has decoded the instruction correctly so that the rest of the test proceeds
as planned? In case 2, a potentially wrong signal from F could interfere with the
sensitive path from F to an output. A test generator needs more precise information
to predict how two error values will interact, than it needs to propagate a single error
value.

The need for precise information about fault effects in the event of reconvergence is
at the heart of this problem. When a test generator hypothesizes a specific fault, e.g.,
a node stuck at 0, it has precise information about the effects of that fault, i.e., if the
fault is present then the node’s value will be 0. When a test generator hypothesizes
an abstract fault, e.g., a component is broken, it has only vague information about
the effects of that fault, e.g., if the fault is present then the component output will not
be correct. Since the fault hypothesis does not specify how the component is faulty
this can leave a lot of possible error values. For a test that uses this component to
be sound, the test must be designed to work properly for every one of those wrong
outputs.

DB-TG detects when it has used a component to help test itself by examining the
dependency records on all operation relations it used. In this situation, the test may
be unsound, i.e., it may not work as planned, and must be verified by fault simulation.
We believe that most of the time the test will work as planned, and express this belief
as the reconvergence heuristic, described next.

5.3.3.1 The Reconvergence Heuristic

Our approach to this problem is heuristic and follows the practice of human test
programmers and functional test methodologies: the test generator assumes that the
component under test is working properly whenever it is used to help test itself, i.e.,
to set up its own inputs or to observe its own outputs. This strategy is made explicit
as the reconvergence heuristic.

Proposition 2 For complex, sequential devices, ignoring reconvergent fanout is ez-
tremely unlikely to cause a test program to miss faults.

150 CHAPTER 5. ANALYSIS

This proposition is probabilistic, and as a result the method can occasionally
produce unsound tests. Theoretical analysis of this proposition is difficult due to the
unconstrained nature of the class of circuits it is intended to cover. Experimentation
with real circuits is thus the strongest candidate for a method to corroborate or
discount this proposition. While we have not yet collected a large amount of empirical
evidence, we believe the proposition is likely to be true for several reasons:

e If a component combines the values of multiple input bit positions to create its
output, e.g., a multiplier, then it is unlikely to mask a single bit error that it has
previously caused. This tends to become more unlikely as the component’s word
size increases. (This likelihood does not change for bit-parallel components.)

e The likelihood that a fault will mask its own effects at the planned test output
and also not appear at any other circuit output tends to decrease with increasing
reconvergence and circuit complexity.

¢ In circuits where many components are involved in many operations, the like-
lihood that a fault will remain undetected by every component test tends to
decrease with increasing test program length, and hence with increasing circuit
complexity.

5.3.3.2 An Experiment

The reconvergence heuristic appears to be borne out by the MAC-1 example. Fault
simulation indicates that the tests generated by DB-TG actually do detect all of
the faults they were designed to detect. I determined this by fault simulating the
component tests twice, once with the components outside the circuit and once with
them inside. In both the single component and full circuit simulations the fault
simulator listed when and where each fault was detected at an output. These lists were
then compared to see whether every time a fault was detected with the component
outside the circuit, there was a corresponding detection with the component inside
the circuit.

The details of the experiment are somewhat involved because they are designed
to minimize noise in the results arising from lucky, unplanned routes from faults to
circuit outputs. The comparison was done at the times and circuit outputs where
the test generator expected errors to appear. This involved working out the temporal
mapping between the two simulation runs. The fault simulator also listed the values
of selected internal circuit nodes, e.g., the operation inputs of the ALU, so we could

5.3. EMBEDDING COMPONENT TESTS 151

determine whether the test had progressed as planned. The faults in this circuit fell
into three categories:

1. Internal circuit activity, faulty and not, occurred as planned. These faults were
detected.

2. The fault caused the circuit to deviate far enough from the plan that the com-
ponent test operation never occurred. These faults were detected early due to
the wide deviation. The faults were also detected at the expected times because
the circuit had wandered far from the correct behavior by then.

3. The fault caused the circuit to deviate so far from the plan that the fault sim-
ulator did not model the faulty behavior properly. The simulator detected this
situation, warned the user and aborted the simulation. In all cases, these faults
were detected early, before the simulation run was aborted.

A fourth case is possible: the test might not proceed as planned, with the fault
masking itself and yet causing an error at the proper time and place via an unplanned
route. We observed no such situations in this experiment and believe it to be an
extremely rare occurrence.

5.3.3.3 Soundness can be regained by case splitting

A sound method of using a component to help test itself is to revert to a more specific
(e.g., gate-level) fault model. This method achieves specific predictions of fault effects
by splitting the fault hypothesis (e.g., a component is faulty) into many, very small
cases (e.g., a node inside the component is stuck at 0) and solving each case separately.
Each small case can be solved because it makes a specific prediction about the effect
of the fault that can be relied upon to plan a test.

The techniques involved come from hierarchical test generators and are well un-
derstood [genesereth81, shirley83b, singh86, krishnamurthy87]. We have chosen not
to implement this method in DB-TG because DB-TG is a demonstration system and
these techniques are neither new nor necessary to demonstrate the main ideas.

Even if DB-TG were a production test generator, it is not clear whether modifying
it to achieve soundness by case-splitting would be worth the cost. Splitting fault
hypotheses into many cases is expensive, and, as the experiment above indicates, this
technique would not have improved the coverage of the tests generated for the MAC-1.

152 CHAPTER 5. ANALYSIS

5.3.4 Summary: Embedding Component Tests

The strategy of embedding pre-written component tests into a circuit has several
important advantages: (i) it allows use of efficient, expert-supplied tests, (ii) it amor-
tizes component test generation costs, and (iii) it allows reasoning about faults in the
aggregate. These advantages are accompanied by two disadvantages: (i) potential
incompleteness due to the limited size of the component test library and to functional
granularity of the representations for tests and achievable behavior, and (ii) potential
unsoundness due to the tension between achieving efficiency through abstraction and
achieving soundness through specificity.

The tension between efficiency and soundness is a fundamental one. This tension
arises when embedding component tests because component tests can handle many
faults at once but in doing so prevent precise predictions about the effects of these
faults. Precise predictions are needed for a test generator to soundly and exhaustively
plan for all contingencies that might interfere with a test. This tension will arise again
in connection with operation relations.

Fortunately, for realistic circuits the worst-case situations do not occur often (save
for the functional granularity problem), hence we optimize for the advantages listed
above. In situations where functional granularity causes incompleteness it is possible
to generate library tests upon demand, achieving the effect of having a larger compo-
nent test library. This extension is described in chapter 6. In the situations involving
potential unsoundness, the test generator can warn the user, a fault simulator can
determine whether the test is actually unsound, and the user can then revert to low-
level circuit and fault representations. These extensions have not been implemented;
the ideas are described in section 8.3 under future work.

5.4 Operation Relations

This section considers the utility of representing circuit behavior as relationships be-
tween circuit and component operations. Using operation relations provides an impor-
tant advantage: they are a more compact representation of the circuitry surrounding
a component — its behavioral context — than are structural circuit models. This sim-
plifies the task of embedding component tests. Using operation relations has a related
disadvantage: potential unsoundness. Operation relations are compact because they
abstract away from the details of data movement in both space and time. Abstrac-
tion is inappropriate when detailed descriptions are necessary, as when a component
is used to help test itself. As with the strategy of embedding component tests, test

5.4. OPERATION RELATIONS 153

generated with operation relations can occasionally be unsound. Again we argue that
the advantages outweigh the disadvantages.

5.4.1 Efficiency

Operation relations contribute to the efficiency of the test generator in two ways. First,
causal connections allow the test generator to quickly identify candidate solutions for
the embedding problem. Each candidate solution is an instance of a component
operation appropriate to the component test, so part of the work has already been
done. A candidate solution is turned into a real solution by substituting test data
into the parameter relations and solving them for values on the circuit inputs and
outputs. The bulk of the advantage lies in this second step.

Solving parameter relations is analogous to line justification and path sensitization
in a conventional test generator but with a twist: parameter relations are solved
by propagating through the structure of pre-simplified algebraic expressions rather
than through the structure of the original circuit. Figure 5.10 illustrates this process.
Figures 5.10.a and 5.10.b show two rules for propagating values backwards through an
addition operator in an operation relationship. These rules are completely equivalent
to rules for propagating through components in conventional test generators except
that the vocabulary for values has been expanded to include algebraic expressions.*
Figure 5.10.c shows an example operation relation as produced by the simulator,® and
figure 5.10.d shows the same expression as a network and the results of propagating a
value (VAL) backward using the rule in figure 5.10.b. The test generator never actually
constructs networks like this but instead works directly with the representation of the
operation relation.

The simplicity of the algebraic expressions is the source of the technique’s power.
In the parameter relations identity data transfers are simplified away. Figure 5.11.a
shows an example of this simplification. Signals flowing through this subcircuit are
inverted as they go onto the backplane and re-inverted as they come off. When
propagating through this subcircuit, a test generator must invert the signal twice. In
total, propagating across this subcircuit takes 5 units of work, one for each node and
component along the path.

Figure 5.11.b shows the simulated behavior of this subcircuit. Figure 5.11.c shows
the corresponding parameter relation, which is an equality that takes 1 unit of work to
propagate through. Propagating through the parameter relation is more efficient be-

“DB-TG includes both rules shown in the figure and tries the simpler one first.
SDB-TG canonicalizes to two argument addition operators.

154

- - = -
-~

S e - -

(a) A simple and fast backward

propagation rule.

CHAPTER 5. ANALYSIS

- - -
-

-
N e - -

(b) The most general backward

propagation rule.

(+ ?A (+ ?B ?C)) = Componentinput

(¢c) A parameter relation (7A 7B and 7C are circuit inputs). This relation can be visualized

as the network of two adders below.

7C

(- (- VAL 7B) 7C)

B

(- VAL 7B)

VAL

(d) This network, corresponding to (c), shows how VAL is propagated

backwards using the general rule from (b).

Figure 5.10: Propagating through operation relations is analogous to propagating
through circuit structure.

5.4. OPERATION RELATIONS

Circuit Backplane Component
Input Input

(a) Circuit Structure

?in —> not(?in) —> not(not(7in})

?in
(b) Simulated Behavior
Circuit Component
Input Input

(c) Corresponding Operation Relation

From the Effects Summary

Operation Relations

A U VR S U p——

-
U
DATA D,
BUS 2 N
| -
robey tecen Py
’ i) ‘\ I’ l'
’ . L o ’
’ A} ’
r . +
/ % ALU ;

{e) The bold lines show the simplified

circuit representation DB-ATG uses

to decide how to supply ALU inputs.
(d) Structure of the MAC-1 Datapath.
The bold lines show datapaths used
to supply inputs to the ALU.

Figure 5.11: Parameter Relations are Simplified Paths for Propagation

155

156 CHAPTER 5. ANALYSIS

cause it explicitly represents the fact that the backplane moves data without changing
it.

Parameter relations also abstract away from time. Circuits often store values
temporarily in registers. If the actions of storing and retrieving a value are built into
the circuit behavior such that the test generator cannot affect them, as the inverters
are built into backplane structure, then the test generator need not reason about
them. Memory is just another identity transformation stripped away by the simplifier
during simulation. Figures 5.11.d and 5.11.e show an example of this. Both figures
show the paths used to supply inputs to the ALU in bold. Values in (d) enter from the
DataBus, pass through a register and on into the circuit. This temporary storage of
the value in the register is built into the circuit behavior and cannot be affected. The
operation relations in (e) abstract away from that detail. The operation relations do
represent the temporary storage of one value in the Accumulator. The test generator
must reason about this because it occurs at the boundary of a circuit instruction and
can be affected.

It is possible to construct circuits that will generate identity expressions that
cannot be reduced by a given set of rewrite rules. As a consequence, the simplifier
will not be effective in all cases. For instance, a DFFT circuit that transforms a
time varying signal into the frequency domain and back again implements (ignoring
sampling errors) a very complex wire from one place to another, but DB-TG will not
recognize this. However, most circuits do not move data in such a convoluted way.
For circuits that do, e.g., signal processing circuits, one can augment the simplifier
with rules suitable for the circuit type.

So far we have described the cost of using operation relations. When they come
from an outside source such as a human designer or a silicon compiler, nothing more
need be said. However, when the test generator derives them for itself then the
derivation cost must be considered. The cost of propagating a value through the circuit
during simulation is equivalent to the cost of propagation during test generation.
Simplifying the value at each step does not add to the cost, since maintaining the value
in simplest form would also be done during test generation. However, by simulating
and simplifying in one forward pass, DB-TG builds on simplified partial results at
each step. For instance, the cost of computing operation relations for the components
in a straight path is linear in the number of components (see figure 5.12.a). The cost
of propagation during test generation rises as the square of the number of components
(see figure 5.12.b), unless the test generator caches partial results during propagation,
with the attendant costs and bookkeeping complexity that implies. Getting this
caching right is complex; the bookkeeping required for one simulation pass is much

5.4. OPERATION RELATIONS 157

simpler.

Circuit _.D__D_.D_.D__ Component
Input Input
(a) Computing the relationships in one forward pass during simulation

involves Ofn) work (n is the number of components here).

Circuit _D._.D_D__D— Component
Input Input

(b} Computing the relationships piecemeal during test generation
involves Ofn"2) work. O(n} can be achieved with complex

(and costly) caching and bookkeeping.

Figure 5.12: Computing relationships between circuit inputs and component inputs in
one forward pass saves work over doing it piecemeal during test generation.

5.4.2 Soundness

In this section we consider how using operation relations can go wrong. The efficiency
advantage gained by working with operation relations is unfortunately at odds with
the goal of generating sound tests. As with embedding component tests, the key issue
is when a component can be used to help test itself.

The process of computing operation relations uncovers the simplicity and order
built into a circuit by its designer. However faulty circuits are much more complex
~ to describe and to reason about, and the simple descriptions are no longer correct.
For instance, a component which normally adds integers will compute some complex
boolean function of its inputs when a fault is inserted. In the presence of a fault, the
abstraction shift from boolean operations on bits to arithmetic operations on integers
is not valid. All of the special, timesaving rules we have for reasoning about addition

158 CHAPTER 5. ANALYSIS

operators may no longer be applicable.®

In DB-TG, this problem manifests as a failure of the propagation rules used during
simulation. For instance, when an adder is faulty, the simulation rule that predicts
that the output will be the sum of the inputs is inaccurate. This inaccuracy is further
compounded by simplification rules that combine the output of the faulty adder with
other values. Since the test generator records what rules were used to derive each
expression during simulation, it is a simple matter to know when there is a potential
for inaccuracy. The question is, what are we to do about it?

A sound solution is to revert to the un-simplified versions of all suspect expressions
and to revert to specific circuit and fault models for the potentially faulty component
as was discussed in the section on embedding component tests on page 151. However,
it is often the case that much of the behavior of the circuit depends on much of
the circuit, hence the simplified, abstract representations of circuit behavior are often
inaccurate. This seems to be especially true of complex sequential circuits with global
feedback like the MAC-1. But test experts generate effective tests without investing
much effort reasoning about these inaccuracies.

Soundness requires considering all possible ways a fault might interact with the
plan for a test. Considering all possible interactions is expensive, and the question
of whether doing so is worth the cost is fundamentally an economic one based on
the cost and the quality of tests desired. Here, we again follow the reconvergence
heuristic and the practice of human test experts. DB-TG generates tests using the
operation relations and tells the user which tests use expressions that depend upon
the component under test and hence may be unsound.

5.4.3 Completeness

The use of operation relations does not reduce the test generator’s completeness as
long as all circuit operations are included. If DB-TG is given an incomplete list of
circuit operations (e.g., there are too many and simulation costs would be too high),
the program can still generate tests, although with degraded performance. In the
MAC-1, the program achieves almost the same coverage on the datapath using just
four instructions (LOAD, STORE, ADD and SUBTRACT) as it does with the full
instruction set. This is primarily due to the granularity problem: this ratio changes

6Certain classes of faults do result in simple misbehaviors that can be described abstractly. For
example, stuck-at faults on the inputs or output of an adder can be described as perturbing the
correct value by a power of 2. However, we know of no abstract descriptions for misbehavior in the
general case that remain detailed enough to guarantee soundness.

5.5. SIMULATE AND MATCH 159
with the extensions discussed chapter 6.

5.4.4 Summary

The strength of operations relations is that they are simplified representations of
circuit behavior that allow more efficient and direct solution of testing problems. Their
weakness is that they are simplified representations. It is exactly the assumptions that
make the operation relations simple and effective, namely that the circuit is behaving
as it was designed to behave, that get in the way when considering what might happen
when the circuit is faulty.

However, the utility of operation relations for test generation need not rest on
formal soundness. If tests generated using them are usually valid as verified by fault
simulation, then using operation relations is a good heuristic. Experimental evidence
from the MAC-1 suggests that this is the case: using operation relations produced
tests that detect the faults they are supposed to detect.

5.5 Simulate and Match

This section shows how Simulate and Match aids the performance of the test gen-
erator. Simulate and Match is the idea that operation relations can be obtained
by simulating circuit behavior, and the relations applicable to a particular situation
can be found by searching simulation traces. The previous section considered this
issue from the perspective of using operation relations as a compact representation
of the circuitry surrounding a component. This section views operation relations as
an explicit representation of a circuit’s designed behavior and simulation as a method
of computing them that focuses the test generator very closely on designed behavior
rather than potential behavior. The argument is based the technique’s ability to avoid
proposing inconsistent partial plans as it searches for a test.

Tests are planned by repeatedly refining the goal of causing a specific internal
behavior until the problem can be solved by direct action on the circuit inputs. In
this process, the test generator chooses a way to refine the goal and propagates the
consequences of that choice in order to focus search by constraining later choices.
However, existing constraint propagation techniques are imperfect: they sometimes
cannot immediately detect when a new choice is inconsistent with previous choices or
when a new choice is a dead end that will preclude finding a solution later. Until the
problem is discovered and the test generator backtracks, further choices depending on
the erroneous one represents overhead effort that does not lead directly to a solution.

160 CHAPTER 5. ANALYSIS

When the test generator makes an inconsistent choice, it has wandered outside of
what the circuit can possibly do.

DB-TG expends little effort considering globally inconsistent solutions or solutions
outside a circuit’s designed behavior. The behavior graphs represent the globally
consistent, known-achievable behavior of a circuit. Matching component tests against
the behavior graphs is a search process, and one can view a failed match as wasted
search outside the designed behavior. However, failed matches, i.e., proposed tests
that are globally inconsistent, tend to be identified quickly for two reasons:

1. Simple Expressions: The mechanism for detecting a failed match (i.e., an incon-
sistency) is to extract and solve the operation relations. This tends to terminate
quickly because the expressions are often simple.

2. Query ordering: Component tests that use conjunctive patterns can be expen-
sive to match against the behavior graphs. DB-TG saves work by using query
ordering techniques, e.g., by organizing the match so that inexpensive choices
are made before expensive ones. Having a complete set of behavior graphs
facilitates this.

For instance, one measure of how cheap a choice will be is how many alterna-
tives there are. The pattern for the ALU addition test, for example, involves
matching four items: two data inputs, the operation input and the output. The
program estimates the number of choices for each part of the match, say for
the operation input, by counting each value in the behavior graphs that could
match that part. Variables and complex algebraic expressions count more than
constants, since they are more costly to match against. The program does this
for each part of the match (caching its results for use by subsequent matches).
In the case of the ALU, the operation input has the smallest space of choices,
hence the program matches the operation input before the other inputs and the
output. The information used to do this query ordering is readily available in the
behavior graphs but is only implicit in the structure and component behavior
of the circuit.

Simulate and match is a cost effective technique when the cost of the wasted search
performed by conventional test generation approaches is enough to offset the initial
cost of doing the simulations. Simulate and match is thus appropriate for circuits
which execute a few complex operations.

5.6. AN ESTIMATE OF COMPUTATIONAL COMPLEXITY 161

5.6 An Estimate of Computational Complexity

The cost of generating tests with DB-TG is
O(n x I x L x E® 4 2F)

where:

n =# of nodes (or components)

I = # of circuit operations

L =Average duration of a circuit operation in simulated time
(e.g., clock cycles)

E =Average token size of simulated expressions passing through

the circuit under the assumption that E is independent of
n, I and L.

The cost of running DB-TG is the sum of the costs of three steps: (i) simulation,
(ii) finding simulation operations that are candidates for matching, and (iii) extract-
ing and solving the operation relations. Assuming that each node is active at each
simulated time step, the cost of simulation is O(n x I x L x E®). The cost of find-
ing candidate simulated operations is O(n x I x L), corresponding to the worst case
number of operations in the behavior graphs. The cost of extracting and solving the
parameter relations is O(2F).

Considering just factors that change with circuit size, the cost of running DB-TG
is O(nxIxL). Important here is the assumption that the average size of expressions is
independent of circuit size and the duration of operations. This assumption depends
upon the simplification rules having the right vocabulary, i.e., that they simplify.
This assumption is supported by measurements on the MAC-1. The average size of
the expressions propagated while simulating the MAC-1 instruction set is 6.4 tokens,
where a token is a constant, a variable, an operator or a parenthesis in the printed
representation of the expression. Figure 5.13 shows a histogram of the average sizes
by time (over the whole instruction set).

The expressions are large early in the simulation runs due to an initialization
phenomenon. When a simulation run starts, many state registers are preset with
variables representing their values at circuit power up or from a previous instruction.
The outputs of combinational circuitry downstream of these registers have values that
represent the potential behavior of the combinational circuitry. These complex values
generally do not participate in the rest of the simulation, but are replaced by more
specific values as the circuit fetches an instruction and determines what it is going to

162 CHAPTER 5. ANALYSIS

70.0 1

Average |
Size
N
-
0.0 T T T ™ T T T T v T T 1
0.0 Time Step 60.0

Figure 5.13: Average size of expressions vs time

do. Shortly into the instruction fetch, the average expression size settles down to stay
roughly constant or grows very slowly. Therefore the 2€ and E® terms in the cost can
be approximated as constants.

For purposes of comparison, combinational test generation is NP-Complete, so we
take it to be O(2") in the worst case. In practice, i.e., for realistic circuits, combi-
national test generation is roughly O(n®) [williams79]. Sequential test generation is
much worse. Since it may be necessary to visit each of the 2™ states where m is the
number of bits of memory in the circuit, and the combinational problem associated
with each state may require exponential work, test generation for sequential circuits

is O((21)®™).7

5.7 Summary

DB-TG is based on four ideas: (i) the designed behavior heuristic, i.e., that a circuit
should be tested using its normal operations, (ii) the strategy of embedding expert-
supplied component tests, (iii) that the key to embedding component tests into a

"[breuer76] gives 4™ as an upper limit on the number of states required, because the D-vocabulary
involves 4 non-X values (ie., 0,1, D D), implying O((2")(4m)) work is needed. However, the lower
bound holds, because the brute-force approach of exhaustively fault simulating all input sequences
up to 2™ in length fits under the lower bound.

5.7. SUMMARY 163

circuit is knowing relationships between the circuit operations and the component op-
erations, and (iv) computing operation relations by simulation and matching focuses
the test generator on realizable circuit behavior rather than on potential behavior.
We introduced the notion of behavioral subsumption to explain how operation rela-
tions help embed component tests: the test generator finds a simulated component
operation, i.e., an example of known-achievable circuit behavior, that subsumes the
test and then converts the simulated operation into a test by solving the operation
relations.

Each of these ideas was explored from the perspective of its effect on the test
generator’s soundness, completeness and efficiency. In the final analysis, DB-TG is
neither guaranteed sound nor complete: there are situations where it can produce
incorrect tests (it warns when this may have happened) and where it can fail to find
a test. Sound and complete algorithms exist at the moment, but they are unusably
slow for complex sequential circuits. An effective, fast, heuristic solution is needed
for generating tests for these circuits, i.e., the kind of solution human test experts
currently provide. DB-TG is such a heuristic solution whose primary advantages are:
(i) focusing on designed (known-achievable) behavior rather than potential behavior
reduces the size of the search space; (ii) operation relations are a compact representa-
tion circuitry surrounding a component, reducing the cost of embedding component
tests and (iii) the test generator uses abstract representations (e.g., operation relations
and effects summaries) and computational steps that perform a lot of work at once
(e.g., embedding pre-written tests and solving operation relations with placeholders).

The analysis exposed two fundamental tensions in test generation: abstraction vs.
specificity and regular vs. irregular behavior. The first tension lies between needing
abstract circuit descriptions for speed and needing specific predictions of fault effects
for accuracy. This issue arises with the need to use components to help test themselves
in circuits with feedback or other forms of reconvergent fanout. When embedding com-

“ponent tests at the block diagram level, the hypothesis that a particular component
may be faulty does not always provide enough information to accurately predict fault
effects. Similarly, operation relations are inaccurate when their derivation depends
upon the component under test. For these reasons, DB-TG can occasionally generate
unsound tests.

Relinquishing soundness goes to the heart of what is gained and lost by using ab-
stract descriptions. The strength of abstract representations is that they are simplified
for solving testing problems more directly. Their weakness is that they are simplified
representations, leaving out detail that may occasionally turn out to be important.
Sound alternatives to our methods exist, but they are much more expensive. Given

164 CHAPTER 5. ANALYSIS

the experience of testing experts and the coverage experiment with the MAC-1, it is
not at all clear that they are worth the expense.

The second tension lies between regular and irregular behavior. The test generator
exploits regularity in the behavior of a circuit. It does this by representing behav-
ior with algebraic expressions that can compactly describe large numbers of similar
behaviors, e.g., all of the addition instructions. This compactness stems partly from
removing identity data transfers (in both space and time) from the representation and
partly from using symbolic variables in the expressions to denote sets of similar logic
values. Regularity of behavior saves time by allowing the test generator to propagate
a placeholder value once rather than specific data many times. Compactness of rep-
resentation saves time by shortening the distance values have to propagate. Which
behaviors are similar to each other depends critically upon on the vocabulary of op-
erators in the expressions in a way that we do not fully understand yet, and further
work needs to be done in this area.

Tuning the test generator for regular behavior causes problems when the circuit
behavior is irregular. We have labeled this the granularity problem because the test
generator’s representations for behavior become fragmented, making it more difficult
to match a fixed set of pre-written component tests against achievable circuit behavior.
The granularity problem is the prime source of incompleteness in DB-TG. The next
chapter suggests two distinct approaches for solving the granularity problem. The key
ideas are to reduce the granularity of component tests or to increase the granularity
of the achievable component behavior.

Abstract
Library Test

Simulated Operation

Specific

Chapter 6
DB-TG: The Fragmentation

Problem

Summary: This chapter describes additional methods used by the designed
behavior test generator to overcome the fragmentation problem, which can cause
the methods in chapter to 4 fail. The central insight is that the test generator’s
representations of desired behavior (component tests) and achievable behavior
(circuit simulations) lie on a continuum of representations of greater or lesser
generality. The fragmentation problem can be solved by moving component
tests and simulated operations along this spectrum. One class of method in-
volves making component tests more specific by splitting them into cases, and
a second class involves making simulated operations more general by modifying
the circuit using DFT techniques.

6.1 The Fragmentation Problem

The fragmentation problem arises in two ways. First, unused and inaccessible compo-
- nent functionality can make it impossible to fully execute a library component test.
If DB-TG cannot execute a test fully, then it rejects the test and looks for another in
the library. If no others are present, the test generator fails.

DB-TG has a language for describing achievable circuit behavior, and behavior
graphs are expressed in this language. This language includes sets of simulated oper-
ations and node values expressed as functions of primary circuit inputs. Functions can
be expressed as compositions of simple arithmetic functions, selection, concatenation
and bit-field extraction. Like all languages, some things can be expressed compactly
in the language and other things cannot be. The fragmentation problem also arises
when circuit behavior is not regular in a way that can be expressed compactly in this

165

166 CHAPTER 6. DB-TG: THE FRAGMENTATION PROBLEM

language. In this situation, DB-TG’s description of a circuit’s achievable behavior
must be broken into many small pieces, i.e., it is fragmented. When the pieces are
small enough, every piece associated with a component is insufficient to support full
execution of the component test, again causing DB-TG to reject the test.

Abstract
A
LOAD ?A Library Test
LOAD 1 Simulated Operation
v
Specific

Figure 6.1: The fragmentation problem causes simulated component operations to be
more specific than the component tests, preventing the system from embedding the
tests.

Figure 6.1 illustrates the result of the fragmentation problem: a simulated compo-
nent operation that is more specific than the component test. The layout of this figure
suggests two approaches to solving this problem: (i) make the test more specific, i.e.,
conform to the constraints of the circuit by choosing more specific component tests
that can be embedded using the available simulated operations, or (ii) make the sim-
ulated operation more abstract, i.e., modify the circuit design making it possible to
embed the test. Sections 6.2 through 6.4 introduce three new ways to make component
library tests more specific:

1. Fine Grain Component Tests: Try embedding several simple component
tests instead of a single, complex one. Each simple test demands less accessibility
and is more likely to be achievable. Two techniques are introduced: (i) break
up an existing test into simpler tests and (ii) have the expert supply a range of
progressively simpler tests.

2. Parameterized Library Tests: It is not feasible to provide component tests
for every size of a bit-parallel component like an adder. We therefore capture
expert testing knowledge in programs that can examine a component and the
surrounding circuitry and write a component test on-the-fly. Two techniques
are introduced that differ in the kind of information they gather about the

6.2. FINE GRAIN COMPONENT TESTS 167

surrounding circuitry: (i) gather no information about context, i.e., examine
component structure only (e.g., size) and (ii) examine fully-instantiated (no
variables) operations in the behavior graphs.

3. Focussed Application of Gate-Level ATG: We can combine the strengths of
DB-TG and gate-level test generation to test combinational components whose
gate-level models are available. In this marriage, the DB-TG handles the se-
quential aspects of the circuit and the gate-level test generator handles the
details of the component, augmenting or replacing the component test library.

These techniques provide a counterpoint to the way hierarchical test generators work.
Hierarchical test generators work bottom-up, from gate-level, fine-grained represen-
tations of the circuit to more abstract representations. These three techniques work
top-down and rely on the heuristic that the abstract representations will be sufficient
most of the time and detailed examination of the circuit will be unnecessary. These
techniques raise fault coverage in the MAC-1 from 85% to 94%.

Section 6.5 takes the opposite viewpoint. Wu’s Design-For-Testability Advisor
[wu88] can add test mode operations to a circuit, e.g., to load register values via
a scan path. The additional circuit operations result in more abstract simulated
component operations in the behavior graphs that can be used to embed additional
tests. Running this program on the MAC-1 yields suggested circuit modifications that
enable DB-TG to reach 97% of the stuck-at faults.

6.2 Fine Grain Component Tests

This section describes two techniques for breaking up component tests into smaller
pieces. By splitting up a component test, it may be possible to find separate simulated
operations that subsume separate pieces of the test.

6.2.1 Test Specialization: Substitute Test Data in Early

When embedding a primitive component test, DB-TG enforces the following relation-
ships:

SimulatedOperation D TestOperation O TestData;
where SimulatedOperation is an example of known-achievable behavior appearing in

a behavior graph, TestOperation and TestData; are the operation and data parts of
the test from the component test library, and 2 denotes behavioral subsumption (see

168 CHAPTER 6. DB-TG: THE FRAGMENTATION PROBLEM

section 5.3.1). DB-TG embeds TestOperation once, makes m copies of the solution,
where m is the amount of test data, and substitutes each element of the test data
TestData; into one copy of the solution. Separating the test into TestOperation and
TestData reduces work by having the test generator embed all test data in the same
way: SimulatedOperation must subsume the test operation and every element of the
test data for this method to work.

This optimization can be given up to improve coverage by substituting TestData
into TestOperation before trying to embed TestOperation into SimulatedOperation.
This creates simpler component tests — one for each line of test data — which can
be embedded separately thereby increasing the likelihood of success. Substituting
TestData in early is called specializing the component test.

For instance, the NODE test in figure 6.2.c cannot be used directly to exercise the
BA address input of the MAC-1 Register File (figure 6.2.a) because there is no single,
simulated example of the node holding a value that is general enough. Figure 6.2.b
shows the actual values that BA can be set to. Note that each of these values appears
separately in the behavior graphs.

Since the test data 0101 and 1010 appear among the list of achievable values
in figure 6.2.b, this problem can be solved by substituting the test data into the
test operation to create two new component tests (figure 6.2.d). Each of the new
tests partially exercises the node, and they do together what the original component
test would have done. The test generator can now succeed by embedding these two
component tests into different parts of the behavior graphs.

Specializing a test can affect its fault coverage description, hence some tests are not
candidates for specialization. In the carry chain adder test, for instance, each group of
test data is intended to be a completely separate exercise. Specializing this test does
not affect its coverage. However, in tests for sequential devices, the sequence of test
data is important. It can be critical that a component execute no extra operations
during the test, and specializing such a test could drastically reduce its coverage.
These tests are marked by the expert so the program will not specialize them.

When the current implementation does specialize a test, it embeds as many of the
separate pieces as it can — it does not require that they all are successfully embedded
— on the assumption that a partial test is better than none. This also affects the fault
coverage description. I currently have no good way to describe the fault coverage
of a broken up test that has been partially embedded and instead rely upon fault
simulation to determine the coverage.

6.2. FINE GRAIN COMPONENT TESTS 169

0000
0001
0010
Bodods 0011

A um
e Alt6 0110
16 B —1,:; 0111
1000
CLK LD 1001

T T 1010 ¢

(2) The MAC-1 Register File (b) Addresses 0-10 can be supplied to the BA

address input of the register file. These
addresses appear in separate simulated
operations. Other addresses are not

achievable with the current microcode.

Test Operation value(Node, 7data)

value(Node, 0101)
0101 \ No separate test data
Test Data ——)
1010 specialization value(Node, 1010)
(c) The NODE Test (one version) (d) Two partial NODE tests

Figure 6.2: Embedding partial tests: the test generator cannot embed the NODE test
(c) for the BA input of the register file (a), because none of the simulated operations
of that node (b) are general enough. Subfigure (d) shows the set of partial NODE
tests that come from specializing the NODE test. Together these partial node tests are
equivalent to the original, but DB-TG can embed each one separately.

170 CHAPTER 6. DB-TG: THE FRAGMENTATION PROBLEM

6.2.2 A Hierarchy of Component Tests

The technique of specializing component tests can break up a single component test
into a potentially large set of very specific tests so that they can be embedded sep-
arately. It is not always necessary to break up component tests so finely. A less
extreme solution is to (i) ask the experts for a variety of tests for each component
that exercise pieces of component behavior and exercise components in different ways,
(i1) place these tests into an and/or hierarchy with the tests that demand the most
access at the top, and (iii) have the test generator start at the top of the hierarchy
trying to embed a test and work its way down until it succeeds or runs out of tests.

For example, consider how the expert says to test a multiplexor (figure 6.3). This
test has a complex structure. The expert tests the ability of the MUX to propagate
values from each input to the output, referencing a test for another kind of component
(a DATAPATH) to express this. The MUX test has optional parts: while testing the
path from one input to the output, the expert would like to hold the other inputs
constant to reveal subtle flaws in an MOS implementation that cause feedback and
state behavior in the MUX. If holding the other inputs constant is impossible, however,
the expert will still be satisfied with the rest of the test.

Figure 6.3 shows an and/or tree of component tests that corresponds loosely to the
expert’s test for a two input MUX. Test trees are implemented using primitive and
compound tests (described in section 4.5). Solid boxes represent primitive component
tests, and dashed boxes represent compound component tests that refer to the tests
below them as subroutines. If the lines connecting a test with its subroutines are
not connected by an arc (e.g., in the third row), then subroutines are
tried in left-to-right order and the first than can be successfully embedded is used. If
the lines connecting a test with its subroutines are themselves connected by an arc
(e.g., [MUX-2 FULL-CONTROL|), then all subroutines are tried and all that succeed

are used. Figure 6.5 describes what the primitive and compound tests in this figure
do.

Due to the way the MAC-1 microcode controls the flow of data through the
datapath, the datapath mux in the MAC-1 cannot be controlled arbitrarily. Thus
|MUX-2 FULL-CONTROL| cannot be embedded. However, more specific tests lower
in the hierarchy can be embedded. The starred boxes show the tests that DB-TG
actually uses to exercise this MUX. These tests catch 100% of the stuck-at faults
in a boolean implementation and some of the stuck-open faults in an MOS imple-
mentation. DB-TG does as well as the expert would have by selecting pieces of the
component test from the library. It does better does better here than a gate-level
test generator would have because it applies component test knowledge (e.g., about

6.2. FINE GRAIN COMPONENT TESTS

171

To test a MUX, test the path from each input to the output as a
DATAPATH while holding the other inputs at a constant background
value, (e.g., all 0’s). Repeat this after inverting the background value.
The datapath test must be successfully embedded. However, if the
other inputs cannot be held constant, they can be ignored.

Figure 6.3: A multiplexor component test (in English)

-— =9
MUX-2 TEST
L — .

MUX-2 FULL-CONTROL

>~

MUX-2 DATAPATHS

MUX-2 IN-0

AN

—
MUX-2 IN-1
L"—

AN

MUX-2IN-1 K
NO-BACKGROUND

| MUX-2IN-0 1 MUX-2 IN-0 | MUX-2IN-A 1
BACKGROUND NO-BACKGROUND BACKGROUND
/—C__' /_Z>'<

MUX-2 IN-0 ¥ MUX-2 IN-0 X MUX-2 IN-1 MUX-2 IN-1
BACKGROUND-0 BACKGROUND-1 BACKGROUND-0 BACKGROUND-1

Figure 6.4: This hierarchy of component tests corresponds to the expert-supplied test
in figure 6.3. Solid bozxes hold primitive component tests, and dashed bozes hold com-
pound component tests that refer to the tests below them as subroutines.

172 CHAPTER 6. DB-TG: THE FRAGMENTATION PROBLEM

o [MUX-2 TEST| is the top-level entry. It first tries to instantiate
MUX-2 FULL-CONTROL| Failing that, it calls |MUX-2 DATAPATHS |

e |[MUX-2 FULL-CONTROL | exercises a MUX fully. It can be instantiated if both
inputs are completely controllable and the output is observable. The test data
was generated by a conventional test generator from a gate-level model of a

MUX.

e |[MUX-2 DATAPATHS| calls [MUX-2 IN-0| to test the datapath from IN-0 to the
output and [MUX-2 IN-1] to test the datapath from IN-1 to the output.

o [MUX-2 IN-0] first tries [MUX-2 IN-O BACKGROUND|]. Failing that, it tries
MUX-2 IN-0 NO-BACKGROUND |

¢ |MUX-2 IN-0 BACKGROUND| calls two primitive tests that differ in the back-
ground values they use.

o [MUX-2 IN-0 NO-BACKGROUND |exercises the path from IN-0 to the output and
does not try to control the other input. The test can be instantiated if IN-0 can
be selected, IN-0 is controllable, the output is observable. This test applies a
diamond pattern to the input and observes it at the output.

o |[MUX-2 IN-0 BACKGROUND-0| is identical, except that it sets the other input
to all 0’s.

e [MUX-2 IN-0 BACKGROUND-1|is identical, except that it sets the other input
to all 1’s.

e And so on. The primitive tests in the right half of the tree correspond to those
in the left half, except that they operate on IN-1, the other data input.

Figure 6.5: This figure describes what the component tests in figure 6.3 do.

6.3. PARAMETERIZED COMPONENT TESTS 173

background values) that conventional test generators do not have.

6.3 Parameterized Component Tests

This section describes the technique of storing parameterized tests in the component
test library. Section 6.2.2’s solution of expanding the library to include multiple
versions of tests could conceivably open pandora’s box. How many test versions must
we include for components that are found in many sizes, like adders, or components
that manipulate bit-fields? Consider the ALU/AND operation in the MAC-1: there
are 120 contiguous bitfields! within the 16 bit ALU, and any of them could potentially
be used by the microcode to do masking operations. Must the library include AND
tests for every possible bitfield?

Our solution is to write tests for components like adders and bit-parallel AND
with their size as a parameter. More generally, we capture expert testing knowledge
in programs that can examine the component and the surrounding circuitry and then
write a component test based on what it finds. This technique allows tests to be
created on-the-fly, effectively making the library much larger than could be stored
explicitly.

6.3.1 Example #1: A Parameterized Adder Test

Figure 6.6 shows a program that generates test data for carry chain adders of arbitrary
width. The test generator uses this program to test an adder by first examining the
circuit model to determine the adder’s width, running this program and encapsulating
the result as a newly created component test and embedding the component test as
usual. Sample output from this program for 16-bit adder appears in figure 4.4.b on
page 98.

The important point here is that some component types are implemented in so
regular a way that simple, short programs like this one can express how to test them.
Components such as bit-parallel logic functions, adders, comparators, parity genera-
tors and memories fall into this category. '

6.3.2 Example #2: Designing a Register Test On-The-Fly

1Fields at least two bits wide, e.g., bits 0-11.

174 CHAPTER 6. DB-TG: THE FRAGMENTATION PROBLEM

(defun TEST-DATA-FOR-CARRY-CHAIN-ADDER (size)
(labels ((recur (pattern element size)
(if (< size 0)
0
(+ (recur pattern element (- size 1))
(* (expt 2 size) ; the slow way to shift
(bit pattern (mod (+ size element) 8)))))))
(loop for i from 0 to 7
collect (list (recur #*01110001 i (- size 1))
(recur #*01101010 i (- size 1))
(bit #x00111100 i)))))

Figure 6.6: This function creates a list of 8 test cases for exercising a carry chain adder
that is SIZE bits wide (figure 1.6 shows the output for SIZE=16). This program illus-
trates how succinctly tests for some regular component types can be expressed. Tests
for bit-parallel logic functions, adders, comparators, parity generators and memories
are all roughly this short.

In the previous example, DB-TG examined component structure (i.e., bit width)
to design a test on-the-fly. In this example, DB-TG designs a component test by ex-
amining component behavior achievable in the context of a larger circuit. Figure 6.7.a
shows a simple circuit. The register’s output is directly observable, but its input is
controllable only indirectly through the ROM. The 7 operations of this circuit all
involve applying a specific ROM address, clocking the register to load the contents of
the ROM at that address and observing the register outputs. The circuit operations
give rise to the simulated register LOAD operations in figure 6.7.b. DB-TG cannot
embed the normal register test because there is no sufficiently general simulated op-
eration, e.g., a load with variable instead of constant data. Test specialization does

not work because none of the test data from register tests (figure 6.7.c) matches the
ROM contents.

To solve this problem, we return to one of the basic ideas behind the designed
behavior approach: look at behaviors known to be achievable and ask if they constitute
a test. A simple way to test a register is to see whether each bit position can hold
both 0 and 1. This can be accomplished by selecting a subset of the simulated LOAD
operations that cover the possible bit values. DB-TG has a simple algorithm for
finding near-minimal sets of values that cover possible bit-position values, and in this
case, the program selects the three LOAD operations marked with arrows. Each of

6.3. PARAMETERIZED COMPONENT TESTS 175

l ROM contents
address 00000000 LOAD (register, 00000000)
01100110 LOAD(register, 01100110)
ROM 01101001 LOAD (register, 01101001}
11001001 LOAD(register, 11001001) <«—
11011110 LOAD(register, 11011110) <«—
data 00100110 LOAD (register, 00100110)
l 00100100 LOAD(register, 00100100) <«—
REGISTER
l I I I I | (b) Here are the simulated load operations. The
v marked operations form a covering set. Executing
them and observing the outputs accomplishes
(a) The ROM provides only restricted inputs the goal of the REGISTER test, i.e., seeing each
to the register making it difficult to test bit position hold both 0 and 1.

LOAD(register, 00000000)
LOAD(register, 00000000)
Test Operation LOAD(register, ?data) tgﬁg{:g:::g: (1):(1)(1)1(1)(1)(1);
LOAD(register, 00000000)

LOAD(register, 11011110)
Test Data 00000000 LOAD(register, 11011110)
11111111 LOAD(register, 01101001)
LOAD(register, 01101001)
(c) One version of an 8 bit REGISTER Test (d) This sequence of load operations implements

a more sophisticated test by covering all 0-1,

1-0, 0-0 and 1-1 transitions.

Figure 6.7: Designing a register test on the fly

176 CHAPTER 6. DB-TG: THE FRAGMENTATION PROBLEM

these load operations is then converted into a test operation with no extra data and
separately embedded.

A more sophisticated version of the register test checks the ability of each bit
position to make 0-1, 1-0, 0-0 and 1-1 transitions. DB-TG can also design register
tests like this on-the-fly by finding near-minimal sequences of operations that cover all
transitions on all bit positions. Such a sequence is shown in figure 6.7.d. Similarly, an
even more sophisticated test could be written to construct sequences to detect shorts
between adjacent bits.

The program can do these examples. However, it cannot currently do the similar
example of testing the MAC-1 uIR because the algebraic rules for manipulating bit
field expressions (describing where the yIR outputs go) are insufficiently powerful.?

6.4 Focussed Application of Gate-Level Test Generation

This section shows how to combine the strengths of DB-TG with those of a gate-
level test generator to create tests for combinational components on-the-fly. In this
marriage the gate-level test generator handles the details of exercising the component
and DB-TG handles the sequential aspects of the surrounding circuit.

The method works by putting the component into simple combinational circuits
that, taken together, are equivalent to the sequential circuit in terms of access. There
are several steps: DB-TG first picks a simulated component operation and extends
the operation relations associated with it all the way to circuit inputs and outputs.
The extended operation relations are called an embedding. Since they involve purely
functional relationships between circuit and component I/0, the embedding is effec-
tively a slice of combinational behavior cut from the circuit’s sequential behavior (see
figure 6.8). The next step is to convert the embedding into an equivalent circuit,
called a combinational equivalent, that fits around a gate-level model of the com-
ponent. Finally, the combinational equivalent and the component model are given to

2An expert might test this register in yet another way. Assuming that the ROM must also be
tested and knowing that ROMs are tested by exhaustively reading out their contents, an expert
would realize that testing the ROM would also test the register as a free side-effect. (Depending on
the ROM contents, testing the ROM may not test the regis