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Abstract

Generating tests for sequential devices is one of the hardest problems 'in designing
and manufacturing digital circuits. This task 'is dfficult primarily because internal
components are accessible only 'Indirectly, forcing a test generator to use the surround-
ing components collectively as a probe for detecting faults. This 'in turn forces the
test generator to reason about complex interactions between the behaviors of these
surrounding components. Current automated solutions are becoming ineffective as
designs grow larger and more complex. Yet, despite the complexity, human experts

remain remarkably successful, in part, because they use knowledge from many sources

and use a variety of reasoning techniques. This thesis exploits several kinds of expert

knowledge about crcuits and test generation not used by the current algorithms.

First many test generation problems can be solved efficiently using operation re-

rations a novel representation of circuit behavior that connects 'Internal component

operations with directly executable circuit operations. Operation relations can be

computed efficiently for sequential crcuits that provide few operations at their inter-

faces by searching traces of smulated crcuit behavior.

Second, experts write test programs rather than test vectors because programs are

a more readable and compact representation for tests than vectors are. Test programs

can be constructed automatically by merging test program fragments using expert-

supplied goal-refinement rules and domain-independent planning techniques from Al.

Additional leverage arises from giving the test generator knowledge of the capabilities

of the tester hardware.

I describe two implemented programs based on these 'Ideas, drawing examples from

a simple microprocessor.

Keywords: Artificial Intelligence, Circuit Testing, Test Generation, Knowledge-

based Systems, VLSI.
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a er

n ro uc ion

Testing is an essential part of designing and manufacturing digital rcuits. Without
thorough testing, circuits cannot be relied upon to safely control airplanes, elevators
and cars or to do any of the myriad tasks they do in our modern world. This thesis
is concerned with generating tests to detect physical defects that can cause a circuit
to malfunction.

Sequential VLSI circuits are one of the hardest knds of crcuit to generate tests
for. They are dfficult primarily because internal components are accessible only
indirectly, forcing a test generator to use the surrounding components collectively as
a probe for detecting faults. This in turn forces the test generator to reason about
complex 'Interactions between the behaviors of these surrounding components.

Current automated solutions are becoming ineffective as designs grow larger and
more complex. Yet, despite the complexity, human experts remain remarkably suc-
cessful, in part, because they use knowledge from many sources and use a variety of
reasoning techniques. This thesis exploits several kinds of knowledge about circuits
and test generation not used by the current algorithms.

This introduction summarizes the central aspects of test generation to show why
the problem is dfficult, then states the fundamental propositions of this thesis.

1.1 Test Generation 'is a Complex Planning Problem

At its core test generation is a classical planning problem. The goal 'is to cause
patterns of internal activity that distinguish between a properly manufactured circuit
and one that has physical flaws. The primitive actions available to testers are applying
and observing voltages at the periphery of the circuit. Planning goals are related

1
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CHAPTER 1. INTRODUCTION2

I b
I

N.

Figure L The embedding problem: given a component test expressed in terms of
the component interface (a), work out how to execute this test uing manipulations
of the circuit interface (b). The embedding problem is an instance of conjunctive
planning, since it involves achieving multiple, potentially-interacting goals, i.e., the
actions specified by the component test.

to the primitive actions by the crcuit schematic and behavioral descriptions of the
components.

Tests are traditionally created by partitioning the design into components and
generating a test for each component by (i) working out how to test the compo-
nent as if it were alone - the component test problem - and ii) working out
how to execute that component test within the context of the larger circuit - the
embedding problem. The component test problem has many interesting aspects,
but it can always be solved by recursively dividing the component into smaller and
smaller components until each can be tested exhaustively. The embedding prob-
lem (see figure 1.1) is fundamentally more difficult because it 'involves achieving a
set of multiple, potentially-interacting goals, i.e., the actions specified by the com-
ponent test. Thus the embedding problem is an instance of conjunctive planning
[fikes7l, sussman75, sacerdoti77, stefik8O, vere83, chapman85].

The embedding problem is typically solved by using descriptions of component
behavior to incrementally refine the goal of executing a component test into goals of
controlling circuit inputs. Fgure 12 shows an example of an embedding problem in a
16 function arithmetic logic unit (ALU). One test for component A involves applying
I to A's upper input and to the lower input, then observing whether the output is
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Figure 12 A gate-level Ebedding Problem



CHAPTER . INTRODUCTION4

a 1. The embedding problem 'involves working out how to execute this component
test by manipulating the circuit inputs (on the left) and observing the circuit outputs
(on the rght). One solution is shown: the dark lines and the boolean values beside
them indicate how controlling some of the inputs (S3, B2 and A2) causes the desired
values on A's inputs, and how controlling other inputs (SO, B1, Al and M) routes A's
output to a place where it can be observed (F2). For 'Instance, the goal of applying I
to A's upper input 'is solved by applying O's to B's inputs, and te goal of applying 
to B's upper input 'is solved by applying to S3. Since S3 is a circuit input, this last
goal can be achieved directly.

Embedding problems are difficult 'in general because the methods for controlling
the inputs and observing the output can 'Interfere with each other via the circuit's
many cross connections. Solving this problem for the ALU, although detailed, is
within the capabilities of existing test generation algorithms. They are well able to
handle this and smilar combinational (memory-less) circuits built from thousands
of gates. However, modern circuits, e.g., microprocessor-based systems, are several
orders of magnitude larger and more complex than this ALU. And this 'is the root of
a difficult problem: many circuits are so complex that the existing algorithms are, at
best, of limited use because they take too long to execute. The algorithms get lost 'in
the large search space extending over physical space (complex crcuit structure) and
time (many clock cycles).

Yet, despite the complexity, human experts can often design high-quality tests.
This research 'is prompted by this. performance gap and the differences in method
that cause 'It. Studying the problems that people solve and how they solve them
supplies clues for 'improving the algorithms and closing the gap.

1.2 Statement of the Thesis

Test generation is formally ntractable - for combinational circuits the problem is
NP-complete [ibarra75 - yet test generation 'is commercially important and must
be solved for complex circuits. Testing practitioners use a collection of heuristics
for partitioning the problem and techniques for handling important special cases,
rather than a single, all-purpose method. These specialized techniques outperform
general techniques by taking advantage of the characteristics of particular problem
types. This document introduces and characterizes two new automated techniques
inspired by the methods of the practitioners. In the first technique, test generation
is organized to fit the characteristics of an important class of crcuits. The second
technique (suitable for a derent class of circuits) applies a conventional planning
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method to novel representations of testing goals and primitive actions.

The first technique is based on a new solution to the embedding problem, the key
step 'in test generation for sequential crcuits.

Embedding problems can be solved efficiently using operation relations, a
representation of circuit behavior that connects internal component oper-
ations with directly executable circuit operations. Operation relations can
be computed efficiently for circuits that provzde few operations at their
interfaces by searching traces of simulated circuit behavior.

Traditional methods embed tests by repeatedly refining the goal of causing a spe-
cific internal behavior until the problem can be solved by drect action on the circuit
inputs. Often a newly proposed subgoal conflicts with previous subgoals, forcing the
test generator to backtrack and try again. This alternation of search and backtrack
is characteristic of planners 'in general and test generators in particular.

Goal refinement is 'Inefficient when solutions are infrequent and there is lttle guid-
ance available to lead the test generator to them quickly. Unfortunately, test genera-
tion for complex, sequential circuits seems to be such a situation: a test generator is
likely to propose and retract many potential solutions before finding one that meets
all of the constraints imposed by the circuit structure and behavior. The dfficulty
of finding solutions 'is compounded by the potentially hgh cost of ruling out pro-
posed solutions, Since the test generator may reason about the crcuit far backward
or forward in tme before discovering a constraint that causes it to backtrack.

It 'is, however, possible to avoid this pitfall if the circuit executes a small number
of operations, as does, for instance, a processor with a small 'Instruction set. An
effective planning strategy for circuits 'in thi's class is to take the circuit operations
as the planner's primitive actions and smulate them, looking for patterns of 'Internal
activity that could prove useful during testing.

This simulate and match strategy, in effect, turns goal-refinement planning
on its head. Goal-refinement planning starts with a set of goals (e.g., a method
to test a component) and asks "are these goals achievable?" Simulate and match
instead asks "what 'is achievable and do any of those things meet our goals?" The
approach focuses search on behavior known to be achievable rather than on potentially
achievable behavior that must be verified via complex reasoning. Focusing on known-
achievable behavior is effective for planning problems wth large search spaces and
few solutions caused by highly 'Interacting subgoals, e.g., test generation for sequential
circuits. These ideas are embodied in a test generation program called DB-TG, the
Designed Behavior Test Generator.
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The second technique is based on the following observation: testing practitioners
write test programs rather than test vectors because programs are a more readable
and compact representation for tests than vectors are.

Test programs can be constructed automatically by merging test pro-
gram fragments using expert-supplied goal-refinement rules and domain-
independent planning techniques from AL Additional leverage arises from
giving the test generator knowledge of the capabilities of the tester hard-
ware.

While conventional test generation and Al planning techniques are inefficient on
problems with strongly interacting goals, they are effective on problems with weakly
interacting goals. This kind of problem appears to correlate wth moderately complex,
sequential circuits that provide good accessibility from the outside. These conven-
tional techniques provide a foundation for exploring ideas about representing tests as
programs, creating tests by selecting and merging program fragments, and describing
the capabilities of the tester (i.e., the agent that will perform the test) to the test
generator. These ideas are embodied in a test generation program called PF-TG, the
Program Fragment Test Generator.

The main contributions of this thesis are two novel methods of generating tests
introduced above. These new methods plus the existing combinational, functional and
special-purpose test generators (e.g., for memories) form a collection of tools that test
engineers can draw from as appropriate. Our larger vision, of which this thesis 'is a
part, is to build a collection of specialized testing tools that share crcuit descriptions
and work together autonomously or partially under human guidance to solve testing
problems. This thesis 'is a step toward that goal.

1.3 A Reader's Guide

This thesis is aimed at two distinct audiences: crcuit testing researchers and artificial
intelligence researchers. Testing researchers may find this thesis useful as a descrip-
tion of two novel test generation techniques. Each achieves power by exploiting the
characteristics of a class of circuits. Neither 'is powerful enough to solve the problem
for all circuits. Specialized solutions of this kind are now and are likely to remain the
state-of-the-art.

Al researchers may find this thesis useful for different reasons. At its core test
generation is a classical planning problem that happens to be important in the real



world. The problem is formally intractable yet commercially important and must
be handled by industry as best it can. AI researchers, particularly 'in the planning
and engineering problem solving subfields, can vew this thesis as a case study in
identifying solution techniques appropriate for two broad classes of planning problem.

I would have liked to write this document 'in two colors - red for testing readers
and blue for Al readers - and to have 'Included colored glasses wth each copy.' As
it is, ideas from both fields are mxed together indiscriminately. Perhaps this 'is a
good thing, as each field has something to say to the other. The engineering problem
solving area of Al has developed a collection of methods for representing and reasoning
about engineered systems. Circuit testing is a fertile source of hard problems, and its
researchers have developed some smilar ideas in parallel.

The rest of this introduction gives an overview of the thesis. Section 14 briefly
contrasts how the algorithms and experts solve embedding problems and asserts that
the algorithms can be made more effective by emulating some characteristics of the
experts. Section 1.5 discusses the 'Informal approach I have taken toward studying the
experts, using their methods as sources of hints rather than as something to emulate
in detail. Section 16 contains scenarios for two test generation systems that embody
the main ideas of the thesis. Section 17 characterizes the problem we are 'Interested in
solving with respect to the broad space of crcuit testing methods. Fnally, section 1.8
summarizes the two new methods and contrasts their strengths.

The remainder of the document has roughly the same structure. Chapter 2 reviews
the fundamental concepts and algorithms 'in the field of circuit testing. Chapter 3
describes how circuit testing and test generation is currently practiced. Together,
these chapters deepen the contrast described 'in this ntroduction. The bulk of the
document discusses the Designed Behavior Test Generator. Chapter 4 'Introduces
the ideas behind this test generator and describes an example in detail. Chapter 
analyzes its performance to determine the boundaries of its effectiveness and where
its power comes from for problems within those boundaries, and chapter 6 answers
some of the limitations by extending the basic method.

Chapter 7 describes the Program Fragment test generator, and appendix A con-
tains additional examples. Chapter describes how the ideas in this thesis connect to
the literature and suggests future work, and chapter 9 summarizes the contributions
of this thesis.

'The rose colored glasses for Al?

1.3. A READER'S GUIDE 7
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1.4 Existing Algorithms vs Human Experts

The need for test generation far outstrips the capabilities of existing algorithmic theory
and is currently met by the application of human 'Intelligence. This section briefly
contrasts the existing algorithms with the methods of the expert practitioners.

1.4.1 Testing Theory: The Existing Algorithms

The classical test generation algorithms [roth66, goel8la, benmehrez83, fujiwara85]
designed for combinational crcuits solve the component test problem by using indi-
vidual logic gates as components. Logic gates are simple enough that it 'is practical
to work out tests by hand or to exercise them exhaustively. The classical algorithms
then solve the embedding problem by propagating signals through the gate-level cir-
cuit model, going forward from component outputs and backward from component
inputs and searching for consistent combinations of signals. These algorithms use
highly optimized search heuristics and constraint propagation techniques, yet run-
times are excessive when applied to other than combinational circuits (up to roughly
10,000 gates) and simple state machines. Long runtimes are a consequence of the
complexity of gate-level models of modern circuits.

Recent research [lai8l, genesereth8l, davis82a, shirley83b, khorram84, singh85,
krishnamurthy87, chandra87] has 'Identified several ways of increasing efficiency by
using abstract representations of circuit structure and behavior to take larger steps
during test generation. Some test generators have used a hierarchical crcuit model
and a strategy for selecting which level of the model to propagate sgnals through.
Others have used a sngle, abstract circuit model suitable for a particular crcuit type,
e.g., a microprocessor.

The strategy of exploiting abstract representations is the most important, recent
development in test generation. The designed behavior test generator 'Introduced in
this thesis is a step in this line of research: I identify and use a new knd of abstract
representation of circuit behavior called operation relations. This representation is
described 'in section 16.1.

1.4.2 Testing Practice: Human Experts

The following characteristics of expert test programming stand out:
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1. Experts understand how circuits work. They know much of what circuit design-
ers know, and their resulting understanding of circuit behavior enables them
to focus on likely solutions to testing problems. For instance, they know what
operations a circuit was designed to perform; they know which components im-
plement which operations; they know the normal patterns of circuit activity;
and they know relationships between the behavior of components that may be
widely separated 'in the schematic. As we wll see, all of these are useful in
generating tests.

2. Experts rely heavily on functional descriptions and block diagrams from data-
books. They are often forced to do this because they do not have access to
detailed schematics. Furthermore, the tests they generate must use legal inputs
expected by the designer, so the databook descriptions are applicable.

Experts rely on past experience (i.e., tricks of the trade). They know how to
test commonly occurring components like registers, multiplexors, RMs, etc,
and they build circuit tests from these component tests rather than start from
primitive gates.

4. Experts write test programs not test vectors. They use a more expressive repre-
sentation for tests than the traditional algorithms do.

5. Experts know the capabilities of the tester and can match them to testing prob-
lems. A circuit tester' has special features for implementing commonly-needed
tests efficiently. Existing test generation algorithms do not (and cannot easily)
use knowledge about these features.

6. Experts know when to use the traditional algorithms. The traditional algorithms
are extremely effective at solving certain parts of the problem. The experts know
when and where these algorithms work well and use them judiciously.

7. Experts can sometimes negotiate the boundaries of their problem. As testability
becomes an increasingly 'Important design criterion competing with performance
and cost, so test experts become more central members of the teams designing
circuits. Often difficulties in test generation can be averted by changing the de-
sign, i.e., by negotiating wth the advocates of other design criterion to simplify
the problem that the test expert has to solve. The experts need test generators
that are created with this design environment 'in mind.

'A tester is a tool for testing circuits. Testers are generally implemented as digital computers
with special peripherals for interfacing with circuits.
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1.4.3 Observations

For testing complex sequential circuits, experts are much more successful than any
existing algorithm. How do the experts succeed?

Part of the answer lies in their use of abstract crcuit descriptions. The circuit
testing community has begun to explore this direction; this thesis extends this line of
work by describing a novel knd of abstract circuit representation that 'is particularly
suited to solving embedding problems 'in sequential circuits.

But abstraction is only part of the answer. Current programs for test generation
are- like current programs for playing chess 3: they both succeed by dnt of prodigious
search. Yet in both fields, the best human practitioners still outperform the best
programs. The central lesson that comes of comparing the algorithms with the experts
is that the experts know more and search less. omains of this type are familiar 'in
Al 4 and the central question to ask 'is "what is the knowledge and how can it be
represented?" At its core, this is what this thesis 'is about: dentifying several kinds
of knowledge about test generation than have not been exploited by the algorithms
so far.

This thesis describes two methods of applying expert-supplied how-to-test knowl-
edge. The first method, DB-TG, concentrates on the first and second characteristics
of expert test programming in the list above i.e., understanding how circuits work
and using block diagram descriptions. The second method, PF-TG, concentrates
on the fourth and fifth characteristics, i.e., wr'ting test programs and knowing the
capabilities of the tester. These ideas are described in the scenarios below.

1.5 ANVord About Methodology

Protocol analysis of expert problem-solving behavior has been a major source of the
ideas in this thesis. 5 My goal, however is to design effective test generation algo-
rithms, not to duplicate the behavior of human test experts. Consequently, these
protocol analyses were informal and are not emphasized in this thesis.

'Circuits and their designers often do seem like formidable antagonists to a test programmer.
4The chemical analysis domain of Dendral[lindsay80] is the classic example.
5The primary expert I have talked with is Gordon Robinson of GenRad Inc I have studied Gor-

don's problem-solving methods on examples of several classes of circuits including a microprocessor,
a processor bit-slice, a digital filter and a communications multiplexor. Short protocols of Mark
Swanson of GenRad, Prof Melvin Breuer of USC and Dr. Alex Miczo of Schlumberger have also
been very helpful.



------ - -- --- -- 4 "I 

1. 6. SCENARIOS 11

Instead, my approach has been to draw 'inspiration from the methods of experts
and to combine their strengths with the strengths of the algorithms 'in the hope of
eventually surpassing them both. Surpassing human test programming skills 'in a
computer program is a broad and deep goal. I have by no means accomplished this
task 'in this thesis, but I believe I have taken several sgnificant steps along the path.

1.6 Scenarios

This section contains scenarios describing DB-TC, the Designed Behavior Test Gen-
erator, and PF-TG, the Program Fragment Test Generator. Scenario I 'is a shortened
version of an example that appears 'in chapter 4 consequently there is some over-
lap. The example appears here in sufficient detail to make this chapter a reasonably
complete and self-contained ntroduction to this thesis.

1.6.1 Scenario Exploiting Designed Behavior

DB-TG solves embedding problems: it transforms pre-written component tests ex-
pressed in terms of component 1/0 'Into directly executable tests expressed in terms
of circuit 1/0. The program inputs are: (i a schematic at the level of a block di-
agram, (ii) descriptions of each operation the circuit is designed to perform (e.g.,
each instruction), (iii smulation models of the components and (iv) expert-written
component tests expressed in terms of component operations. The component tests
include descriptions of the faults they are designed to detect. DI3-TG outputs: 10 a
test for the circuit consisting of one test per component and ii) descriptions of the
faults these tests are designed to detect.

This test generator was designed as part of an approach to integrate test generation
and design for testability [shirley87, wu88]. It 'is intended primarily as a tool for use
early during design to produce tests and to assess a design's testability. Consequently,
we emphasize using the knds of hgh-level circuit descriptions available early during
design. A second consequence is that the crcuits DB-TG generates tests for may not
be completely finished, 'i.e., designers may still be trading off various design criterion.
Therefore, we emphasize quickly 'Identifying and solving testing problems that are
straightforward (for people, not necessarily for existing programs) and not expending
large amounts of time detecting every last fault. In particular, the failure of this
program can be viewed as indicating a testability problem [wu88]. This issue 'is
cons'dered again at the end of the scenario.

DB-TG follows these steps: (i) lookup a component test from a library (the test 'is
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in terms of a component operation), (ii) compute relationships between that compo-

nent operation and the crcuit operations from the circuit description (these so-called

operation relations are a highly abstract description of the surrounding compo-

nent behavior), (iii) use the relationships to embed the component test. These steps

are the equivalent of propagating from the component backward to crcuit 'Inputs or

memory cells and propagating forward to circuit outputs or memory cells. DB-TG

then uses conventional AI planning technology (STRIPS) to plan sequences of circuit

operations for controlling and observing circuit state.

This scenario focuses on: (i) the form of operation relations, (ii) how DB-TG uses

operation relations to embed component tests and (iii) how DB-TG computes oper-

ation relations from schematics and- component models. Frst, I 'Introduce operation

relations wth a simple embedding problem.

1.6.1.1 An Easy Embedding Problem

Figure 13 shows an easy embedding problem: test the ability of the processor's ALU

to add numbers. Suppose an expert knows something about testing ALU's and says

the way to test this ALU is to cause it to add several specific pairs of numbers (Ai,

Bj) and then to observe the sums to make sure they are correct. Suppose also that

this processor is implemented as a single chip, so we have no drect access to the ALU.

Then the problem 'is to work out how to manipulate the bus to cause the processor
to send the A's and B's to the ALU and to bring the sum back out to the bus for

observation.

You may wish to stop reading and try to solve this problem. Make reasonable

assumptions as needed about the way the circuit works, e.g., assume this proces-

sor provides the usual instructions for performing arithmetic and manipulating the

accumulator. 6

We find that testing experts and others familiar with computer architecture can

easily suggest something like the following solution:

1. Load Accumulator with an A using the LOAD instruction.

2. Add a to that using the SUM instruction.

3 Wte the sum to the bus using the STORE 'Instruction.

6This problem really is as simple as it may seem. The point is to ask what kinds of circuit
representations make it simple, and how it might be possible to solve the problem without knowing
detailed structural information like how datapaths connect the accumulator with the ALU.
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Instructions

LOAD value - Load accumulator from memory

STORE value - wte accumulator to memory

ADD value - increment accumulator by value

SUB value - decrement accumulator by value

0

Figure 13: Work out how to make the ALU add numbers. Make reasonable assump-
tions about the way the circuit works, e.g., assume the processor provides istructions
like those at the right for performing arithmetic and manipulating the accumulator,

4. Repeat until all pairs of A's and B's have been used.

This solution relies on several assumptions, ncluding: (i) that the SUM instruction
actually uses the ALU shown 'in the figure 7 1 (ii) that the LOAD, STORE and SUM
instructions manipulate the accumulator shown, and (iii) that the LOAD, SUM and
STORE 'instructions can handle the test data required by the ALU. Before using this
solution, we would have to check that these assumptions were warranted.

This example raises several interesting questions. What A's and B's wll ade-
quately test the ALU's ability to add? What descriptions of LOAD and STORE
allow them to be easily recognized as useful for controlling and observing the accu-
mulator? How is SUM identified as the key instruction to use? Associating the SUM
instruction with the goal of making the ALU add is the key to solving this embedding
problem, so we focus on this.

One telling observation is that testing experts can construct solutions without
considering the detailed structure of the circuit. In particular, the routes taken by A
and from the bus 'Interface to the ALU or the details of the microcode 'implementing
the SUM instruction were not shown 'in the figure. Since the omission does not prevent

7While usually warranted, this assumption is questionable for heavily pipelined processors that
can use several physical ALU's to implement a single "virtual" ALU.
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an expert from arriving at a candidate solution, those details must not be essential.
There must be some way of describing the crcuit that allows candidate solutions like
this to be proposed without a detailed examination of circuit structure.

Asking what such an abstract crcuit description might be leads us to the 'Idea
of explicitly representing and manipulating relationships between operations of the
circuit and operations of its components.

1.6.1.2 Operation Relations: Part-Whole Descriptions of Circuit
Behavior

As a component 'is a part of a crcuit, so 'is 'Its behavior a part of the crcuit's behavior.
Knowing part-whole relationships about behavior is useful, because they provide a
straightforward means of embedding component tests into the circuit.

Two kinds of part-whole relationships are useful for solving embedding problems:
causal connections and parameter relations. In the example above, executing a
SUM instruction causes the ALU to add, therefore we say the CPU's SUM instruction
and the ALU's addition operation are causally connected. Parameter relations hold
between the parameters of two causally connected operations. In the example there
is a time during the execution of an addition 'Instruction when the ALU does the real
work. At that time, the two values being summed by the addition nstruction are the
same two values being summed by the ALU. In this case the parameters of the addition
instruction and those of the ALU addition operation are related by identity functions.
The term operation relations refers to both the causal connection between two
operations and to relationships between their parameters.

Figure 14 shows these relationships between the ALU and the CPU. Each box
contains a frame-like representation of the externally vsible effects of an operation.
The upper box describes the processor's SUM instruction and the lower box describes
the ALU's ADD operation. The causal relation (c) says that executing a SUM 'in-
struction wll cause the ALU to ADD. In this example, the parameter relations (d)
are identities, i.e., the values of the corresponding variables must be the same.

1.6.1.3 Using Operation Relations to Solve Embedding Problems

Relationships between component and circuit operations exist because the designer
used component behavior to implement circuit behavior in the first place. The rela-
tionships are useful because they provide a direct link from desired actions inside the
circuit to actions executable by the tester hardware (see figure 1.5). Using this direct



sum Before State: Accumulator ?ac

Inputs: DataBus ?data

Outputs: AddrBus 7addr

After State: Accumulator ?sum

Relations: ?sum 7data + ?ac

(a) The Circuit Operation

(c) Causal Relation

ADD Inputs: Operation ADD

Addendl 7al

Addend2 7a2

Outputs: Sum ?s

Relations: ?s ?a + 7a2
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(d) Parameter Relations
(identities)

(b) The Component Operation

Figure 14: One set of operation relations for the ALU example.

link DB-TG transforms component tests for the ALU (which a tester cannot manip-
ulate directly) into equivalent tests expressed in terms of CPU operations which the
tester can execute directly).

To do this transformation, DB-TG substitutes component test data into the com-
ponent side of the parameter relations and solves for the parameters of the circuit
operation. For 'Instance, the operation relations in figure 14 connect variables men-
tioned in the test data with the parameters of the SUM 'Instruction. Figure 16 shows
expert-supplied test data for an ALU addition operation. In this case, the operation
relations happen to be identities so substituting test data in and solving for the pa-
rameters of the SUM 'Instruction 'is trivial, and figure 17 shows the result for one lne
of test data.



?Al ?A2 ?s

0 0 0

43690 43690 21844

1 65534 65535 -

1 65535 0

65534 1 65535

65535 1 0

21845 21845 43690

65535 65535 65534

sum Before State: Accumulator = 65534
Inputs: DataBus I
Outputs: AddrBus ?addr
After State: Accumulator 65535
Relations: 65535 1 ED16 65534
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Component Test Operations

Circuit Operations

(directly executable)

Operation Relations

Figure 1.5: Operation Relations are a direct link between the goals (i.e., desired compo-
nent operations) and the primitive actions (i.e., directly executable circuit operations).

Figure 16: Expert-supplied test data for an AL Us addition operation.

Figure 17: Line 3 of the test data substituted into the SUM instruction.
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1.6.1.4 Computing Operation Relations via Smulation

DB-TG computes the relationship between a circuit operation (e.g., SUM) and a com-
ponent operation (e.g., ADD) by smulating the circuit operation and then searching
and extracting node values from the simulation trace. DB-TG uses an event-driven,
symbolic simulator. It takes as input a crcuit schematic, behavioral models of the
components and descriptions of the instructions. (Figure 1 .8 shows a simple micropro-
cessor model that fleshes out the example above. The simulator uses this schematic
and models of these components. Uninteresting components, e.g., latches in the dat-
apaths, are not shown.) The smulator outputs a set of simulation traces, called
behavior graphs, that describe what happens inside the crcuit as the instructions
execute.

Data
Bus

Figure 1.8: The MAC-I Microprocessor (some detail has been suppressed)

Symbolic simulation is the process of propagating variables and algebraic expres-
sions as well as numbers through the circuit. Doing this allows a sngle simulated
operation to stand for an equivalence class of similar operations. For example, a
LOAD instruction with symbolic data can stand for a LOAD of any specific constant.

Addr
Bus
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Using symbolic smulation 'is important for two reasons: (i) the algebraic expressions
that propagate through the circuit are what turn into operation relations and (ii)
simulating equivalence classes of behavior rather than specific behaviors reduces the
number of smulation runs needed and the size of the database that holds the results.

?data 66

7 
D 0

7data + 7ac

I - - -

+ ?ac 68

Data Source or Sink

Simulated Component
Operation

---- Suppressed Detail

Figure 19: The Behavior Graph for the SUM instruction. Time and data flow from
left to right,

To test the ALU's ADD operation, DB-TG searches the simulation trace of each
instruction for simulated ADD operations. Figure 19 shows one such ADD operation
generated by smulating the SUM nstruction of the microprocessor in figure, 1.8.
This microprocessor has an ALU and an accumulator and is a complete version of the
simple example above. A rectangle in smulation trace represents a source or a sink
of values - either a memory element, an input or an output. A circle represents a
component operation, and the dashed lines represent portions of the graph that have
been omitted in order concentrate on the activity shown. Time and data flow from
left to right through the figure. The value of a node is timestamped, e.g., a node value
of dataLatime 'Indicates that the node changed to data at the simulated time. Node
values persist until they are caused to change by other circuit activity.

The figure shows that the accumulator contains ?ac at time ?data is read from
the databus at time 56 and the sum of ?ac and ?data is written into the accumulator
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at time 72. Here, the ALU executes an ADD operation at time 68. It receives two
expressions ?ac and ?data as inputs, adding them under the control of its operation
input and outputs the expression (?data 16 ?ac). The value on the operation 'input
(add) beginning at tme 68 comes from the icroprogram ROM and ultimately from
the microprogram counter.

DB-TG extracts the operation relations between the SUM and ADD operations
by examining node values around the ADD operation. In this case, the variable ?ac
appears in the accumulator and at an ALU input, so there is an 'Identity relation-
ship there. ?data and (?data (D16 ?ac) are handled smilarly. The OP 'input is not
mentioned in the test data, so its value is not needed to form the operation relations.

1.6-1.5 Finishing the Example

Figure 17 shows the result of embedding one lne of test data using the operation
relations generated above - executing this SUM nstruction will cause the ALU nside
to add this line of test data. Note, however that the accumulator must be loaded
with 65534 before the SUM instruction 'is executed, and that the accumulator's value
must be observed afterwards. DB-TG plans sequences of circuit operations for con-
trolling and observing the simulator using a STRIPS planner. DB-TG generates the
operations for this planner by summarizing behavior graphs, and the details of the
planning and summarization processes are described in chapter 4.

The final solution is shown 'in figure 1.10 (the test data is marked by �<=). DB-
TG also produces groups of three instructions for each of the 7 other rows of test
data; these groups differ only on the marked lines. DB-TG's output i's the total of
24 instructions plus descriptions of the faults they are designed to detect. Executing
these 'Instructions and checking the outputs will test the addition operation of the
internal ALU.

1.6.1.6 Experimental Results

Figure 1.11 shows the results of running DB-TG over the whole microprocessor,
which is equivalent to roughly 6500 gates. Simulation and test generation takes 6
minutes on a lisp machine including both the time taken for successfully creating
tests for some components and failing to do so for others. The highlighted components
correspond to 85% of the stuck-at faults 'in this circuit. Additional techniques for
designing component tests on-the-fly to fit the constraints of the particular circuit
raise this coverage figure to 94%. These techniques take approximately 25 additional



LOAD B efore, S t at e: Accumulator ?ac
ProgramCounter ?pc-1

Inputs: DataBus (LOAD ?.addr)
DataBus 65534

Outputs: AddrBus ?pc-1
AddrBus ?.addr

After State: Accumulator 65534
ProgramCounter ?PC

sum Before State: Accumulator 65534
ProgramCounter ?PC

Inputs: DataBus (SUM ?addr)
DataBus 1

Outputs: AddrBus ?.PC
AddrBus ?.addr

After State: Accumulator 65535
ProgramCounter ?PC�(D161

STORE Before State: Accumulator 65535
ProgramCounter ?PCED161

Inputs: DataBus (STOD ?addr)
Outputs: AddrBus ?PCED161

AddrBus ? addr
DataBus 65535 4__

After State: Accumulator ?data
ProgramCounter ?PCED162

Figure 1.10: Program Output. This set of three instructions is the embeddingfor the

test in the first row of figure 1 6 b. The numbers from that row appear in the output on

the lines marked by -�=, where they must be applied or observed by the tester. DB- TG

also produces groups of three instructions for each of the 7 other rows that di r only

on the marked lines. Executing the total of 24 instructions forces the AL U to perform

the test.
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Figure 1.11: Test generation results for the basic version of-DB-TG
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minutes to run.

However, the real benefit lies in interfacing this test generator with an automated

Design For Testability Advisor (e.g., [abadir85, zhu86, wu88]. We have done this

with the system of [wu88], implemented 'Its suggested modifications to the circuit

(e.g., putting a scan path through the y1R and re-run the test generator to achieve

97% fault cover.

There are many points of comparison between DB-TG and other approaches in the

literature. One of the most interesting is comparing DB-TG and test generators that

work from functional crcuit descriptions (e.g., [lai83, khorram84, brahme85]). DB-

TG can be viewed as a test generator that derives functional descriptions - behavior

graphs - from structural descriptions - schematics, and consequently achieves the

benefits of both. It benefits from using simple, high-level functional descriptions that

abstract away from the details of how data moves through the circuit. At the same

time, the high-level operations that move and transform data are connected with

a low-level structural model that makes functional sharing apparent. For 'instance,

arithmetic 'Instructions and addressing calculations are implemented with the same

ALU in the MAC-1, and hence need not be tested separately. This knd of sharing is

represented in behavior graphs and consequently in operation relations.

1.6.2 Scenario I Combining Test Program Fragments

Where DB-TG is targeted at embedding problems that give rse to hghly interacting

subgoals, our second program, the Program Fragment Test Generator (PF-TG) is

targeted at embedding problems that gve rise to weakly interacting subgoals. This

second kind of embedding problem 'is characteristic of sequential crcuits that provide

relatively good access to 'Internal components. Conventional planning technology

from AI appears to be sufficient to solve many embedding problems of this type and

provides a foundation for exploring several new 'ideas about crcuit testing. This work
has resulted 'in five specific claims:

1. Produce Programs not Vectors: Representing tests as programs rather than

vectors makes them more compact and easier for people to understand and

allows convenient access to special-purpose tester features.

2. Merge Test Program Fragments: Test programs can be created by merging

program fragments. Goal decomposition rules and temporal constraints deter-

mine which program fragments are selected and how they fit together.
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3. Represent The Tester Explicitly: Conventional test generators assume an
impoverished model of the tester's capabilities. PF-TG uses an explicit and
somewhat richer model, enabling the program to take advantage of special-
purpose tester features.

4. Propagate Typed Streams: PF-TG can propagate tokens that represent
typed streams of values, e.g., a counting-stream. Propagating typed streams
can generate repetitive tests that are more efficient over a wder class of circuits
than can propagating symbolic variables, the method of existing herarchical
test generators.

5. Use Flexible Goal Structure.- The goal/subgoal structure of the test gener-
ator can profitably reflect the problem-solving methods of human test program-
mers as well as the structure of the circuit.

This scenario illustrates claims and 2.

A test program 'is a sequence of instructions for testing a crcuit that is executed
by computer. Programs are a good representation for tests for several reasons. First,
test programs are often more compact than the equivalent vectors. The size reduction
stems from using looping constructs to encode repetitive tests. Second, tests have
structure and test programs make that structure explicit, making them more readable
by people than vectors. Readability 'is important when a test generator is used by
an expert as a tool to help solve a complex problem: the expert must be able to
understand, augment and modify the program's output. Third, test languages provide
convenient access to special-purpose tester features, e.g., hardware for generating
memory tests.

1.6.2.1 Structure of the Program

PF-TG generates test programs using these five steps:

1. Problem Decomposition: How-to-test rules decompose the problem of gen-
erating a test into subproblems. Decomposition continues until directly solvable
subproblems are reached (e.g., controlling a crcuit input or generating tests for
a small combinational component) yelding a tree of rule 'invocations. Rules
are stored 'in the Rule Library and are selected and executed by the Rule
Engine.

2. Fragment Collection and Constraint Posting: In addition to breaking up
test generation problems, rules can put program fragments 'into the output test
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program. When the engine executes a rule, it copies any program fragments 'in
the rule and passes them to the code manager. Rules also contain constraints
controlling how the program fragments fit together. Constraints either control
the execution times of program statements or the allocation of tester or circuit
resources, and they are passed to the Tme Manager and to the Resource
Manager respectively.

3. Constraint Satisfaction: The Resource Manager reduces resource constraints
to temporal constraints. These plus the temporal constraints sent drectly to
the Time Manager are reduced to a set of linear inequalities 'in two variables,
where the variables represent execution times. The Tme Manager solves these
inequalities for 'Integer values.

4. Code Generation: The Code Manager sorts the program fragments by exe-
cution time and assembles code for the tester.

How-to-test rules decompose testing problems into groups of simpler problems.
PF-TG applies the rules using a backward-chaining rule engine based on Prolog.
Each rule has four components: (i a pattern describing what goals the rule can solve,
(ii) a set of subgoals to introduce, (iii) a set of program fragments to include in the
test program, and (iv) a set of constraints describing how the program fragments fit
together with each other and wth fragments posted by other rules.

The system has rules for solving the following kinds of problems: (i) how to test
a component, (ii) how to control component outputs, (iii) how to move data through
a component, (iv) how to make the tester drive circuit inputs, (v) how to make the
tester observe circuit outputs, (vi) how to make a component inactive, (vii) how to
initialize a component, (viii) how to move a state machine from one state to another,
and (ix) how to take a state machine through a cycle. This scenario shows rule types
(i - (v). Consider, for example, the rule for testing a parallel datapath, 'i.e., a group
of wires or components acting lke wires that moves information from one part of the
circuit to another (see figure 112). This rule breaks up the problem of how to test a
datapath 'into the problems of selecting test data to send down the datapath, enabling
it and getting the data to and from it.

Many subgoals 'Involve writing test program code. For 'instance, the subgoal of
enabling the datapath must eventually be solved by writing code to make the tester
drive circuit inputs so they will enable the datapath in turn. The program writes this
code by working out how to enable the datapath - via propagating back to crcuit
inputs - and combining the program fragments that appear in rules for controlling
those 'inputs. As a very simple example, PF-TG would emit the following program
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To test a parallel datapath:

1. Select a vector stream that has sufficient coverage characteristics.

2. Write a code fragment to enable the datapath.

3. Write a fragment to generate this vector stream.

4. Write a fragment to move each vector to the beginning of the
datapath.

5. Write a fragment to pick up values as they reach the end of the
datapath and move them to a place where the tester can observe
them.

6. Write a fragment which observes the values on the primary output
and compares them with expected values.

7. Create constraints to lnk these program fragments together. For
example the time a vector is generated by fragment 3 must be
the same time 'it starts to move to the beginning of the datapath
in 4.

I

Figure 112: How to test a parallel datapath.

fragment to make the tester assign the circuit input called in the value :

in -.= ;

More complex assignments can emit groups of statements or program loops. Depend-
ing on the ntervening component types, the rules used at intermediate stages in the
propagation sometimes include program fragments as well.

PF-TG uses three types of constraints to control how program fragments fit to-
gether. Temporal constraints control the execution times of program statements,
e.g., statement A must execute before statement B. Structural constraints control
the structure of the test program, e.g., assignment statement C must appear within
loop D's body. Resource constraints control the allocation of scarce resources to
different uses at different times e.g., circuit node E has a certain value at tme T and
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cannot have any other.

The times of primitive tester actions are represented by integers. Each statement
in a test program is associated wth a temporal variable, and that variable 'is even-
tually bound to an 'integer representing the execution time of the statement. PF-TG
controls timing relationships between program statements by controlling the relation-
ships between the associated temporal variables. The relationships are specified by the
how-to-test rules as they are used and are collected and solved by the Tme Manager.

The Time Manager handles these relations between pairs of variables: = :A,
:!� > , plus and and or connectives between expressions. For convenience,

PF-TG provides a macro language for expressing more complex relations such as
disjoint-intervals and overlapping-intervals.

PF-TG handles structural constraints similarly, 'i.e., structural variables are con-
strained using the algebraic relations above and an equation solver assigns integer
values that represent textual order in the final test program.

PF-TG goes over all resource assignments (e.g., node assignments made during
propagation or assignments of tester hardware to subtasks of driving the circuit) and
creates temporal constraints to make sure they do not conflict. Suppose, for example,
that A=1QT1 meaning node A is assigned the value I at time T1 and A=OQT2. Because
a single physical node cannot have more than one value at a time, PF-TG creates the
temporal constraint (� TI T2).

1.6.2.2 An Example

The following example shows PF-TG generating a test program for the multiplexor
AMUX in figure 1.13. The circuit is a smple 4 bit wde datapath. The ALU has four
operations, among them a NOOP operation that copies data from INI to OUT. The
register file is a sngle input, dual output memory with 16 cells. The address lines RF-
AA and RF-BA select outputs for OUT-A and OUT-B respectively. RF-CA controls
which register 'is loaded from the DATA-IN input, which happens on the rising edge
of the clock. An enable input has been omitted from thi's example. All nputs are
directly controllable, and all outputs are observable. All other nodes are internal to
the circuit and are accessible to the tester only through intermediate components.

In this example, PF-TG generates a portion of a test program that verifies whether
AMUX is working properly. The examples implemented, although a few details have
been changed to clarify the explanation. In particular, the example shows program
code that would result if PF-TG stopped at various times and merged several program
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RF-AA

RF-BA

RF-CA

CLK

B-BUS

MBR-IN

MUX-A

OP

C-BUS

Figure 113 A Simple Datapath
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To test a two-input mux:

Run one DATAPATH test from the mux's first input (inO)
to its output. Then run another datapath test from the
second input to the output.

Figure 114: How to test a two-input multiplexor (simple method).

fragments. The fragments actually remain separate until the end, when they are
merged all at once. Also, the rules and program fragments are rendered 'in English
and pseudo-Algol to improve readability. The actual rules and program fragments
have a lisp-like syntax.

We start by asking PF-TG to write a test program for AMUX. The rule in fig-
ure 114 responds to this request. PF-TG maintains an agenda of independent pro-
gramming, tasks. Each task 'Involves writing a section of the test program that exer-
cises a single component or an aspect of a component's behavior. In this example,
the rule above breaks up the problem of writing a test program for AMUX into two
tasks, each of which 'involves testing the mux's ability to pass information from one of
its inputs to its output. These top-level tasks can be solved separately, and PF-TG
works on each of these programming tasks in turn. Both tasks are solved by using
the DATAPATH rule shown earlier. Since the tasks are smilar we describe only the
second one, that of writing a datapath test from AMUX's rght 'Input (INI) to its
output.

First, PF-TG chooses test data to use, and in thi's case it chooses the diamond
pattern (see figure 1.15). This pattern will detect stuck-ats and bridge faults in the
datapath. Next, PF-TG works on writing code to enable the datapath. In this case,
the datapath 'is very simple: it runs through the mux, from its right input to 'Its
output. This datapath is enabled by selecting the rght input. Longer datapaths are
handled by a rule that partitions datapaths into smaller parts and then constrains the
parts to be enabled at the same time. Eventually, the problem 'is reduced to enabling
through single components, which are handled directly. Because the select input of
AMUX is directly controllable by the tester, this rule proposes the program fragment
shown in figure 1.16.a.

This loop repeatedly selects the rght 'input of AMUX, thus enabling the datapath.
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vector# 1 2 3 4 6 7 

Wire I 0 1 i I I 0 0 0

Wire 2 0 0 i I I I 0 0

Wire 3 0 0 0 1 1 1 1 0

Wire 4 0 0 0 0 1 1 1 1

Figure 1.15 A diamond pattern for a 4 bit wide datapath. `Diamond'� refers to the

shape of the region of bits.

This enabling action can occur an arbitrary number of times, as indicated by the < ... >

placeholder for the 'Iteration clause. These placeholders will be filled wth code from

other rules.

A temporal variable, TEST-TIME, is associated with the tester-assign statement.

This temporal variable denotes the short interval during which a single test pattern

passes through AMUX. The temporal variable was created by the DATAPATH rule

and passed down to the ENABLE-THROUGH-MUX rule so that the resulting pro-

gram fragments can be synchronized. 

The next subproblem involves writing code to generate a diamond pattern. A

simple way to do this is to fill an array with the appropriate sequence of test vectors,

then step an index through the array, fetching vectors and putting them on the cir-

cuit inputs. The generate-diamond-stream rule 'Implements this method with the

fragment in figure 1.16.bl.

The next subproblem is the most complex - move vectors from a primary input

to the beginning of the datapath (i.e. the INI of AMUX). The path used and the

resulting code 'is shown 'in figure 116.b2. The path is found via line justification

which involves searching backward from the MUX 'Input to any primary input. Since

we)re moving a diamond pattern, the path chosen mst be able to transmit parallel

data, and the path shown is the only possible solution.

The code fragment is a combination of three fragments that enable the datapath

to pass through AMUX, ALU and RF (the register file) respectively. The statement

on line 17 of figure 1.16.b2 i's from the body of a loop analogous to the one on line 4

of figure 1.16.a except that it selects the mux's other 'Input. The statement on line 8

'There are several temporal variables not shown in the figure. For example, there are variables
associated with the start and finish times of the loop.
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RF-AA

RF-BA

RF-CA

CLK

B-BUS

MBR-IN

MUX-A

OP

I FOR < ... > DO
2. BEGIN

1 3. <...>
4. MUX-A = I ** at TEST-TIME
S. < ... >
6. END;

(a) Enable the datapath through MUX-A.

RF-AA

RF-BA

RF-CA

CLK

B-BUS

MBR-IN ,

MUX-A

OP

7. ARRAY DiamondPattern data ...
8. FOR index = to 7 DO
9. BEGIN
10. < ... >
II. MBR-IN = DiamondPattern[index] ** at TIME-I
12. < ... >
13. END

(bl) Have the tester apply a diamond stream to a circuit input.

14. FOR < ... > DO
is. BEGIN
16. < ... >
17. MUX-A = At TIME-I
18. OP ALU-NOOP At TIME-I
19. CA 0 At TIME-I
20. <... >
21. AA = At TEST-TIME
22.
23. END;

(U) Move the diamond stream from that input to the AMUX

(b) Supply a diamond stream to AMUX's left input.

Figure 1.16: P-TG Scenario
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is from a loop that enables information to flow across the ALU. The statements one
lines 19 and 21 come from a rule for moving a stream through a register file. This rule
handles the address lines, and presupposes a free running clock and chooses which
register file cell to use.

The next subproblem 'is to move the diamond stream from AMUX's output to a
primary output of the crcuit. PF-TG's solution to this problem is analogous to its
solution for moving data in to the MUX's input andis shownin figure 1.17.cl. Finally,
PF-TG uses the code fragment in figure 1.17.c2 to check the observed outputs against
the expected values. At this point, PF-TG has expanded every subgoal 'Introduced
by the original DATAPATH rule.

So far we've emphasized program fragments at the expense of the constraints that
control how the fragments are put together, but both are equally important. PF-TG
next collects all of the constraints from the rules 'it has used and solves them. There
are about 30 temporal relations such as the one relating clock initialization time, init,
with the clock's first use, time-1. The relation is (< init time-1) which says that the
clock must be initialized before 'Its value 'is used. The TESTER-ASSIGN statement
at time init is a small program fragment separate from the loop, and is related to the
loop by the temporal relation. In fact, most program fragments tend to be small and
have many relations to other small fragments.

Finally, there are several resource constraints. For instance, the fragment in fig-
ure 1.16.a assigns MUX-A to at TEST-TIME and the fragment in figure 1.16.b2
assigns MUX-A to at TIME-1. Therefore (� TEST-TIME TIME-1).

One particularly interesting resource is the stack of the computer inside the tester.
Statements in the program fragments that use the stack must obey stack discipline.
In particular, loops 'in this language allocate their iteration variables on the stack,
hence two loops must appear 'in the program either one before the other, one inside
the other, or merged to share the same iteration variable. This resource constraint
is converted into temporal and structural constraints on the loop statements. (This
constraint, together with the fact that TEST-TIME or TIME-1 appear inside all of
the loops in the program fragments, is what causes PF-TG to merge all of the loops
together 'in the final test program.)

- Once the constraints have been collected and resource constraints converted into
temporal constraints, an equation solver for systems of linear inequalities produces a
solution assigning each temporal variable to an 'integer. If no solution is possible the
system backtracks and chooses different rules. The integers represent the execution
times of the statements associated with the temporal variables; in the case of loops,
they represent the times within a prototypical execution of the loop body.
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RF-AA

RF-BA

RF-CA

CLK

B-BUS

MBR-IN

MUX-A

OP

24. FOR < ... > DO
25. BEGIN
26. <.. >
27. OP ALU-NOOP At TEST-TIME
28. CA 0 At TEST-TIME
29. < ... >
30. AA = At TIME-2
31.
32. END

(cl) Move the MUX outputs to a circuit output.

33. FOR < ... > DO
34. BEGIN
36. <... >
36. B-BUS = DiamondPattern[index] ** at TIME-2
37. <...>
38. END

1'r9) 142ma thm tacfar --hmeL-
f '-,Zj "dVV WC teziuer CHMKrne ourpur sream

(the DiamondPattern aay has already been declared).

(c) Observe and verify the AMUX outputs.

1. TEST-PHASE (:COMPONENT SELECT-A)
2. Perform a DATAPATH test from INI to OUT
3. BEGIN
4. ARRAY DiamondPattern ... data ...
5. FOR index = to DO
6. BEGIN
7. MBR-IN DiamondPattern(index) at TIME-1
8. MUX-A 0 at TIME-1
9. OP ALU-NOOP at TIME-1
10. CA 0 at TIME-1
11. CLK 0; CLK : 
12. AA 0 at TEST-TIME
13. OP ALU-NOOP at TEST-TIME
14. CA 0 at TEST-TIME
15. MUX-A = I at TEST-TIME
16. CLK 0; CLK : 
17. AA 0 ** at TIME-2
18. B-BUS = DiamondPattern[indexl ** at TIME-2
19. CLK = CLK = 
20. END
21. END

(d) The finished (merged) test program

Figure 117: P-TG Scenario (continued)
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The last step is to merge the program fragments in the order specified by the
temporal variables. The end result 'is the test program in figure 1.17.d, which verifies
that one path through the mux can transmit parallel data without any faults. Note
that this program is much more readable than the equivalent test vectors in figure 1. 18.

1.7 'VVhere This Thesis Fits

This section shows where this thesis fits in the landscape of circuit testing approaches.
Existing approaches fall 'Into four broad categories,.

1. Combinational test generation algorithms, as noted, are extremely effec-
tive with combinational circuits but are too slow to be useful with sequential
circuits.

2. In-circuit test techniques solve the embedding problem by physically inserting
probes into the circuit that can observe internal node voltages drectly and con-
trol them by overriding the circuit's internal signals. This technique is extremely
effective when it can be done without damaging the circuit. As crcuits have
gotten smaller, however, invasive testing has become more difficult and costly,
and many modern circuits cannot be tested with this method (e.g., chips).

3. Design for testability and built-in test techniques help manage the test gen-
eration problem by accounting for it in the design process. One technique is to
use extra circuitry to improve access to internal components and making it eas-
ier to embed component tests. Applied systematically, this technique can bring
sequential circuits within reach of the existing combinational test generation
algorithms.

Circuits designed with testing in mind are increasingly common, but they
nowhere near the norm yet. Moreover, the circuitry added to facilitate test-
ing reduces performance and raises cost so designers will sometimes want to
avoid these penalties by using other testing methods that do not impose them.

4. Expert test programming covers the remaining circuits.

The fundamental problem that all of these techniques solve is how to access compo-
nents internal to a circuit from the outside. Techniques and 4 solve this problem by
searching for ways to gain access by using the circuitry surrounding the component.
Techniques 2 and 3 solve the problem by bypassing the surrounding circuitry. In
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CLK RF-AA RF-BA RF-CA MBR-IN AMUX OP B-BUS
------------------------------------------

0 0000 0000 0000 0000 0 0i 0000
I 0000 0000 0000 0000 0 01 0000
0 0000 0000 0000 0000 i 0i 0000
i 0000 0000 0000 0000 1 01 0000
0 0000 0000 0000 0000 1 01 0000
1 0000 0000 0000 0000 1 01 0000
0 0000 0000 0000 1000 0 01 0000
I 0000 0000 0000 1000 0 01 0000
0 0000 0000 0000 i000 i 0i 0000
i 0000 0000 0000 i000 I 01 0000
0 0000 0000 0000 i000 1 0i 1000
1 0000 0000 0000 i000 1 01 1000
0 0000 0000 0000 1100 0 01 1000
1 0000 0000 0000 ii00 0 0i 1000
0 0000 0000 0000 ii00 I 01 i000
1 0000 0000 0000 1100 1 01 1000
0 0000 0000 0000 1100 I 01 1100
1 0000 0000 0000 1i00 i 01 1100
0 0000 0000 0000 1110 0 01 1100
1 0000 0000 0000 1110 0 01 1100
0 0000 0000 0000 1110 1 0i 1100
i 0000 0000 0000 ii10 1 01 i100
0 0000 0000 0000 1110 1 01 1110
1 0000 0000 0000 1110 i 0i MO
0 0000 0000 0000 iiii 0 01 1110
1 0000 0000 0000 lill 0 01 11io
0 0000 0000 0000 1111 I 01 1110
1 0000 0000 0000 1111 1 01 11io

<16 lines suppressed>

i 0000 0000 0000 0001 0 01 00ii
0 0000 0000 0000 0001 1 01 00ii
1 0000 0000 0000 000i I 01 0011
0 0000 0000 0000 0001 I 0i 0001
1 0000 0000 0000 000i i 01 0001

Figure 1.18: These test vectors are equivalent to the test program in figure 1.17.d In
thi8 tabular representation, the structure of the test is difficult to see.
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technique 2 the tester circumvents the surrounding circuitry by physically inserting
probes 'Into the circuit, while technique 3 depends upon the designer 'Including extra
circuitry whose only purpose is to enable this bypass to occur.

The test generation techniques described in this thesis are targeted at category 4,
Ie., at circuit testing problems that are currently solved by hand. This category is
now and will continue (I believe) to be an important place to concentrate research
effort. Tests for a significant percentage of all circuits are currently generated by
hand (see figures 119 and 120). While these percentages should decrease in the next
five years as design for testability (DFT) standards are adopted by industry, they
are likely to remain significant because DFT standards often 'Involve performance and
cost penalties. Moreover, testing experts will constantly playing catch up to the latest
design technologies, creating a tme lag within which hand-written or human-assisted
tests are needed. Barring the discovery of an eective in-circuit technology for small,
high density crcuits, the future of circuit testing will depend on a combination of
advances in DFT and expert test generation.

1.8 Summary

This thesis makes several contributions to the field of circuit testing:

e It introduces operation relations, a representation of circuit behavior that often
makes embedding problems easy.

0 It describes a way to compute operation relations for sequential crcuits by
symbolic simulation. This method is efficient for crcuits that offer a small
number of operations at their interface.

0 It introduces the designed behavior heuristic, i.e., test a circuit without going
outside its normal operations, clarifies the issues surrounding this heuristic and
provides empirical evidence that the heuristic 'is useful.

9 It describes an automated method of creating test programs by combining test
program fragments.

0 It demonstrates how propagating typed streams of values can produce more
efficient tests and introduces a vocabulary of stream types.

0 It extends the goals of test generation to include using the capabilities of the
tester well. To achieve this goal, PF-TG uses an explicit description of tester
capabilities and resource limitations.



CHAPTER 1. INTRODUCTION

Expert Test Programming
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I In-Circuit Test
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Figure 119: Percentages of boards handled by various testint7 techniques

IOff The Shelf Tests (e.g. memories)

,ilt In Self Test
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36

Designers 

1%

Exp ert T

Figure 120: Percentages of chips handled by various testing techniques
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DB-TG and PF-TG are two novel test generators that extend the range of tech-
niques available to test engineers. DB-TG and PF-TG are complimentary: the first
is effective on complex sequential crcuits that display tightly interacting component
behavior. Search in DB-TG is 'Indexed and guided primarily by what 'is possible for
the circuit to do rather what is desired to test a component. However, the cost of
simulating crcuit operations renders DB-TG nefficient for circuits where many oper-
ations are possible. PF-TG uses conventional goal-directed planning techniques, and
is targeted at simpler sequential crcuits. In PF-TG, search is indexed and guided
primarily by specific testing goals, i.e., how to test a component, and is not lmited
by the number of circuit operations.

PF-TG's use of conventional planning techniques provides a testbed for experi-
menting with several other aspects of test generation. For instance, PF-TG produces
test programs rather than test vectors to raise the level of the language between the
test generator and the agent that will carry out the test. Using this richer language,
together wth using a simple model of the tester capabilities, helps PF-TG to design
more efficient ways to test a crcuit.
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Combinational Test Generation

a er

ac roun s in eor
Summary: This chapter introduces the basic concepts and algorithms in the
field of circuit testing. Section 21 gives an overview and answers fundamental
questions like what 'is a test and how are they used? Section 22 covers the key
issue of modeling crcuits and faults for use by a test generation algorithm, and
section 23 briefly presents the algorithms that form the core of testing theory.

Unfortunately, the need for test generation far outstrips the capabilities of eist-
ing algorithmic theory. This need is currently met by the application of human
intelligence: for complex, sequential circuits, the experts are much more suc-
cessful than any existing test generation algorithm. Chapter 3 describes how
experts are actually solving problems now.

Chapters 2 and 3 serve two purposes. First, they bring up to speed readers.who
are unfamiliar with circuit testing. Second, they hghlight differences in how
the algorithms and the experts solve test generation problems. This thesis is
prompted by these differences and the performance gap that results. Studying
the problems people must solve (because the algorithms do not) and how they
solve them supplies clues for improving the algorithms and closing the gap.
Readers with crcuit testing backgrounds may want to skip to the end of the
next chapter for a summary of the differences that form the basis for the test
generation methods introduced later 'in this thesis.

2.1 hat 'is Circuit Testing?

Testing 'is a essential part of the process of designing and manufacturing circuits.
Its primary objective 'is to detect physical faults resulting from the manufacturing
process or from actual use, 'i.e., to detect discrepancies between a crcuit design and
its physical realization. A secondary objective is to locate faults precisely enough that
the circuit can be repaired.

Figure 21 shows the basic connections between design, testing (test generation
and application) and manufacturing. The boxes 'in the figure represent tasks to be
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performed and the items between the boxes represent objects to be created or ma-
nipulated. Each task places constraints upon the others. For nstance, the kinds of
faults introduced by the manufacturing task determine what the test generation task
has to accomplish. This thesis is about test generation, but first we briefly describe
the other tasks that bear upon it.

Circuit Design

A circuit designer starts wth an 'Informal specification of the behavior desired
and other requirements (e.g., cost) that the crcuit must meet. The designer then
decides how to implement this specification by selecting, onnecting and modifying
standard components analvzin and optimizing the circuit's performance properties
(e.g., speed and power consumption) and using any of the lterally dozens of other
methods of transforming the specification 'Into something that can be manufactured
directly. The end result is called a circuit design description, 'i.e. a description of
the circuit as 'it should be manufactured. For our purposes, the 'Important aspects of
the design task are its input and output: the specification tells what an 'Instance of
the circuit has to do functionally and the design description tells what an 'Instance of
the circuit has to be physically.

Circuit Manufacturing

Figure 22 illustrates the steps of circuit manufacturing. The top portion of the fig-
ure shows the design description. The schematic wll be used for test generation. The
masks are like photographic slides. They correspond to the schematic and addition-
ally specify the physical arrangement of materials in the chip. The assembly drawings
also correspond to the schematic and additionally specify the physical arrangement
of chips on a board.

The left-hand column shows the steps of chip manufacturing. First, a photolitho-
graphic process uses the masks, each of which corresponds to a layer of material on
the chip, to successively lay down and etch away material forming complex, over-
lapping patterns on the surface of the chip.' For efficiency, these photographic and
chemical processes are done on large wafers of slicon to form dozens of copies of the
chip simultaneously. After separating the wafer 'Into ndividual chips, the chips are
put into ceramic or plastic packages to protect them during handling and to simplify
connecting the microscopic chips wth the macroscopic world.

The rght-hand column shows the steps of board manufacturing. First, wires are
laid down on the board in much the same way materials were patterned onto the

'For more detail, see for example [mead8O].
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Figure 21: This figure shows the basic connections between design, testing (test gener-

ation and application) and manufacturing. The boxes represent tasks to be performed

and the items between the boxes represent objects to be created or manyulated.
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chip. Then holes are drilled into the board to hold the chip packages. These holes are
arranged to place the wires coming out of the chip packages next to the appropriate
wires on the board. When the board has been fully populated with chips, they are
all physically and electrically bonded to the board at once in a process called wave
soldering. This process holds the back side of the board close above a vat of molten
metal and passes a wave in the liquid surface under the board. As the wave passes,
some metal sticks to the chip wires and cools there, connecting them to the wires
already on the board. The finished board can then be put 'Into a cabinet with other
boards to form a complete digital system.

If carried out 'Imperfectly, any of these manufacturing steps can introduce faults
into the chip or board that will prevent it from working properly. The different steps
introduce different kinds of faults which must be tested for in different ways.

Test Application

A crcuit board or chip is tested by applying stimuli to the circuit and verifying
that its responses are correct (see figure 23). Correct responses are evidence that
the circuit is fault-free, and the strength of this evidence depends upon how well the
stimuli were designed. When a response is 'incorrect, we say a fault has been detected
and we reject the circuit. The way the circuit fails can provide clues to the nature of
the fault or faults 'Inside, and the strength of these clues also depends upon how well
the stimuli were designed.

The major issues in test application are test application speed and accessibility of
internal components. Applying tests quickly is important because many circuits must
be tested. Accessibility, e.g., finding technologies that allow control and observation
of a circuit without damaging it, 'is 'Important because 'increasing it generally 'increases
test application speed and simplifies test generation.

Test Generation

Modern circuits are too complex to be exercised exhaustively, so a relatively small
number of stimuli must be chosen which, if the circuit responds properly to them, will
allow a high degree of confidence that the crcuit is fault-free. Test generation is the
process of selecting these stimuli. Test generation takes descriptions of a crcuit design
and of its potential faults and produces a set of tests designed to detect whether faults
are present in an instance of the circuit. The major factors involved in doing this are:

1. Accessibility: Where can stimuli be applied to the circuit and where can
responses be observed?
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Expected Outputs

Test Inputs Circuit Outputs Comparitor Good/Faulty

Figure 23: Test Application

2. Complexity: In general, the cost of test generation is exponential in the size

of the crcuit. Test generation strategies must manage this complexity for large

circuits.

3. Models: How are the circuit's structure, function and potential faults modeled

for the test generation program?

4. Algorithms: What algorithms can efficiently derive tests from the circuit and

fault models

5. Economics: Circuit testing is fundamentally driven by economic factors, and

cost provides common ground for negotiation between the design, manufactur-

ing and testing tasks. For instance, some test generation problems are most

effectively solved during the design task by making the design simpler or more

amenable to test generation.

Accessibility and complexity are 'Intimately related: limited accessibility 'increases the

size and complexity of the portions of the crcuit that must be tested as black boxes,

i.e., without access to their internals. The larger and more complex these black boxes

are, the more difficult it is for the test generation algorithm to select a small yet

effective stimulus set. The next two sections introduce the fundamental models and

algorithms developed by test generation researchers.

2.2 Modeling Crcuits and Faults

Modeling the structure, behavior and faults of crcuits is a central theme 'in test

generation. The nature of the idealizations and abstractions in the models determines

in large measure the cost of generating tests and their effectiveness when applied

to real circuits. The following discussion introduces the notions of circuit models,



Modeling Level Vocabulary

Instruction Set arithmetic, addressing, conditionals ...

Register Transfer registers, arithmetic functions, time ...
Logic Cate Level boolean functions and values, time

Switch Level pass transistors, time ...
Circuit Level voltage, resistance, capacitance, time

Process Level physical arrangement of material
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physical faults, behavioral errors and fault models. Wth this foundation, we can
then examine several test generation techniques.

2.2.1 Crcuit Models

A circuit model 'is an idealized description of a physical circuit in which some aspects
of the physical reality (e.g., physical arrangement) have been 'ignored in order to make
other aspects (e.g., electrical topology) more apparent. Fgure 24 shows several kinds
of circuit models for dgital computers. Each level in this table 'is an dealization of the
ones below it, and each describes a circuit using a different vocabulary. For example,
a register transfer crcuit model describes a circuit in terms of registers, boxes that
compute arithmetic functions, and so on.

Figure 24: Modeling Levels for Digital Computers

In principle, any of these kinds of models can be used for circuit testing and most
of them have been. Choosing the model 'is 'important for test generation because it
determines both the vocabulary for describing behavioral interactions between com-
ponents and faults and the vocabulary for describing faults.

Most work on test generation for digital circuits has modeled circuits at the-logic
level as networks of boolean gates connected by ideal wires. However, many kinds
of abstract high-level models have been also used, e.g., register transfer models
[shirley85], ISPS behavioral models [khorram84], petri-nets [lai8l] and ixed gate-
level schematics and state transition diagrams [hiII77]. One recent line of research
[genesereth8l, davis82a, shirley83b, singh86, krishnamurthy871 has focused on using
hierarchical circuit models which describe a circuit at multiple different levels of detail.
Extremely detailed circuit models also exist, e.g., analog models [gray69, spice8O] and



Manufacturing Step Potential Faults
Chip Fabrication silicon ipurities mask blemishes; over or under etching;

silicon, metal or chip-to-package open-circuit or short-
circuit defects 

Board Fabrication incorrect interconnections- open-circuit or short-circuit
defects; unintended crosstalk between adjacent wires;
power supply defects; susceptibility to external electri-
cal noise

Construction incorrect IC packages- packages inserted backwards; bent
IC pins; extra (splashed) solder causing bridge faults be-
tween wires and pins; unsoldered joints; thermal damage
to chips

Environment Use component degradation due to high humidity, thermal
conditions or electrical noise; component aging faults
(metal migration in IC's, resistor or capacitor degrada-
tion)- planned modifications
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the models of the physical arrangement of silicon layers in a chip, but these models
have mainly been used to analyze crcuit performance rather than to generate tests.

2.2.2 Faults prevent a circuit from meeting its specification

So far, we have been using the term "fault" loosely to refer to a problem wth a
circuit. More precisely, a fault 'is a physical defect in a crcuit that prevents it from
meeting 'Its specification, e.g., wire breaks, shorts between two wires, chips 'Inserted
backwards, or resistors with the wrong value. Physical faults can be subdivided 'Into
logic and parametric faults. Logic faults cause a portion of the circuit implementing
one logic function to behave like a different logic function. For example, an 'Inverter
might misbehave and act like a buffer. Parametric faults 'Involve deviations from their
acceptable ranges of circuit parameters as voltage, capacitance and speed. Fgure 25

common faults that can be introduced into a crcuit duringshows some of the more
construction and use.

Figure 25: Common faults introduced during crcuit construction and use

A fault is intermittent if it is present during some intervals of time and absent
during others. This is typically caused by unstable physical problems or by envi-
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ronmental conditions. A fault 'is permanent 'if it is continuous and unchanging.
Detecting ntermittent faults early is important, because 'intermittent faults often be-
come permanent as physical damage to the crcuit is ncreases. However, no theory of
how to reliably test for ntermittent faults exists because they can disappear during
testing. In this thesis, we consider only permanent logic faults.

2.2.3 Physical Faults have Behavioral Effects

A fault effect describes the consequences of a fault in the language of a particular
circuit model. For example, a physical short between the emitter and collector of the
transistor 'in figure 2.6.a will pull the output voltage down to the ground voltage.

How a fault effect is described depends upon how the circuit 'is modeled. For
instance, to describe the effect of this short in terms of a logic gate circuit model, we
would say the output of the inverteris stuck at the boolean value 0, i.e., that 'it cannot
move from no matter what the input is. In this case, the physical description of the
fault 'is a short and its behavioral description at the gate level - the fault effect - is
a called a stuck-at-0 fault effect. Wth the shift to the gate modeling level, comes a
shift from voltage to boolean values, and wth the disappearance of ground from the
model comes the introduction of a stuck-node.

A related physical fault is a broken wire between IN and the base of the transistor.
In this case the fault effect would be a stuck-at-I on the inverter output. These two
possibilities, stuck-at-0 and stuck-at-1, cover the possible stuck-at fault effects at the
boolean level and are the most commonly used fault effects in circuit testing.

A fault effect can be caused by many different physical faults, e.g., there are many
physical causes for stuck-at-0 faults, but a fault causes exactly one fault effect (for a
given circuit modeling language). Therefore a fault effect defines an equivalence class
of physical faults - those physical faults that are indistinguishable in their behavioral
effect. Much of the reasoning test generators do that is ostensibly about faults is
actually about fault effects in order to save time by reasoning about equivalence
classes. This shortcut is useful enough that it often gets reflected in the terminology,
for example we will say a stuck-at-0 fault to mean any fault that has a stuck-at-0
fault effect.

2.2.4 Faults don't always cause Errors

An error is a deviation from correct behavior caused by a fault. A fault may or may
not cause an error depending upon the state of the circuit. The difference between
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INI
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IN %.-*, 0 U T

ll�l
N

stuck-at-0

(a) A physical short in a bipolar (b) The same fault described at the boolean

implementation of an inverter level as a stuck-at-0 fault effect

Figure 26: A single physical fault (the short) and its behavioral consequence (the
stuck-at-0 fault effect)

faults and errors can be 'illustrated by this example from [bennetts82]:

Consider a car carrying a spare tire, which, unknown to the driver, 'is flat
due to a faulty valve. The driver may drive many Mil les before the need
arises to change a tre. Until that tme, the car has a fault but no error
has occurred.

Figure 27 'Illustrates this relationship between faults and errors using an inverter.
As before, the output of the 'inverter 'is grounded, causing a stuck-at-0 fault effect. In
case (a), the input 'is 1, so the expected output 'is - the same value that the fault
causes. Therefore, the 'Inverter produces the correct output and there is no error.
Note that the answer is correct even though the mechanism by which it is produced
is wrong.

In case (b), the input 'is and the expected output is 1. The short causes the
output to be 0, which differs from the expected value. In this case, an error occurs,
hence applying to the input (case b) is one way test for the presence of this short.
Applying I to the input does not test for the short.
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stuck-at-0 fault stuck-at-0 fault

0 0 0

(a) input = 1, expected output = (b) input = expected output = I
actual output=O, no error actual output = 0, error

Figure 27: Faults don't always cause misbehavior

2.2.5 Errors are 'in the Eye of the Beholder

Depending upon conditions 'in the circuit, a fault may cause an error at the fault
site. This error may subsequently propagate downstream in a chain of errors that
eventually reaches a place (usually one of the crcuit's outputs) where 'it is vsible to
an external observer. However, an error can fail to propagate too. It can be masked,
again depending upon conditions in the crcuit.

Figure 28 shows a situation where an error does not propagate to the output. The
circuit is a selector whose behavior is to route either the value on DI or the value on
D2 to OUT depending upon the value of SEL. This selector has a stuck-at-0 fault on
DI and SEL is set to 0. Suppose we can only observe OUT.

The stuck-at-0 fault on DI causes a I applied to that 'Input to change to 0. Since
the fault causes an error to occur inside the crcuit, we have the beginnings of an
effective test for the fault. However because SEL is 0, the output of the upper AND
gate 'is also 0. This is the correct value, hence no error occurs there and no error
occurs at the output. An observer outside the crcuit would say the circuit behaved
properly, even though an error occurred inside.

The essence of test generation lies in figuring out under what circumstances a fault
will cause an error at a place where the error can be observed. In this case, changing
SEL to would allow the error to propagate from the fault ste through the upper
AND gate and the OR gate to the output.

2.2.6 Fault Models are Closed-World Assumptions

We use a set of closed-world assumptions, called a fault model, to make test gen-
eration tractable by limiting the number of faults considered. Most test generation



50 CHAPTER 2 BACKGROUND I TESTING THEORY

Dl

SEL

D2

OUT

Figure 28: The error at DI is masked and does not propagate to OUT

theory is based on the single stuck line (S SL) fault model, which 'is comprised of three
assumptions:

1. There is at most a single fault.

2. Any physical fault causes a stuck-at fault effect.

3. Any fault is nonintermittent.

The first assumption rules out multiple faults. The second assumption rules out faults
that do not manifest as a circuit node constantly holding a sngle boolean value, and
the third assumption rules out faults whose effects change during testing. The only
faults left are the stuck-ats, and we say these faults are 'Included in the model.

2.2.7 Test Quality: Coverage and Resolution

Test quality is measured by how well the test detects and dstinguishes between the
faults in a circuit. A fault list 'is the list of fault effects that can occur in a given
circuit under a gen fault model. For example, applying the SSL fault model to a
gate-level circuit with N nodes gives rise to 2N entries 'in the fault list, since each
node can be stuck at or at 1. If a fault causes an error that will be observed when
a test is executed, then we say the fault is detected by the test. Fault coverage is
the percentage of faults from the list detected by a gven test. The higher the fault
coverage, the better the test, and figures above 90-95% are considered good.

in addition to knowing whether a circuit is faulty, we sometimes want to know how
it is faulty - which fault from the list i's actually present - so we can repair the circuit.
If two faults produce different outputs when a test is executed, then the test 'is said
to distinguish or resolve them. A test has good fault resolution if it resolves most
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pairs of faults from each other. This thesis is concerned primarily wth production
tests for VLSI crcuits where repair is difficult, hence we focus on achieving good
coverage and do not attempt to achieve good resolution.

Fault coverage and resolution are computed by a process called fault simulation
that takes a model of the circuit and a fault lst as 'Input and predicts circuit outputs
for each fault and for'the good circuit. One way to do this 'is to simulate multiple copies
of the circuit in parallel. When the program predicts a discrepancy between an output
value of the fault-free crcuit and one for a faulty circuit, the fault 'Involved is marked
as detected since an external observer would notice an error. To save work, a fault
simulator usually drops a fault's simulation context immediately after it predicts the
fault can be detected. The program finishes by reporting the percentage of detected
faults, when and how each fault was detected and which faults were missed.'

2.2.8 Quality of a Fault Model

The quality of a fault model depends upon the cost of using 'it to generate tests and
upon how well t approximates the real world. We consider these issues in turn.

The cost of using a fault model to generate tests for a crcuit is roughly proportional
the size of the fault lst. For example, applying the SSL fault model to a gate-level
circuit model produces a fault lst that is linear (actually 2N) in the number of crcuit
nodes.

A second fault model, called the bridge fault model, includes shorts between
pairs of circuit nodes. A short can be cause by, for example, an oversized solder oint
that is intended to connect one pn of a chip to a circuit board but also touches an
adjacent pin by mistake. If all N 2 possible shorts are considered, then the bridge fault
model subsumes the SSL model because any stuck node is indistinguishable from that
node shorted ether to power or to ground. This leads us to an 'important tradeoff
involving fault models: the more comprehensive a fault model is, the more expensive
it is to use.' Test engineers tend to prefer the less comprehensive SSL model because

'Modern fault simulators are highly optimized programs that share some ideas with Al rograms
that reason under multiple contexts, e.g., deKleer's ATMS [dekleer-ATMS86a].

'Some researchers define the SSL fault model to include stuck terminals, i.e., a wire break dis-
connecting a single component input from the circuit node that drives it. The behavioral effects of
this kind of physical defect differ from those of a stuck-at if the driving node includes a fanout (i.e.,
a single output driving multiple inputs). The bridge fault model does not subsume an SSL model
that includes stuck terminals, but the gist of the comparison between the SSL model and the bridge
fault model still holds.
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the resulting fault list is only lnear 'in the crcuit sze.4

In principle, how well a fault model approximates faults 'n the real world can be
determined by measuring what kinds of faults occur 'in practice and how often each
kind occurs. For instance if 95% of the faults that occur in practice were stuck
ats, then we would say the stuck-at model is a good approximation. Unfortunately,
collecting a statistically significant number of samples is difficult because each fault
must be carefully analyzed and categorized. Moreover, this process must be repeated
often to track the frequent changes 'in crcuit manufacturing methods.

A more practical method of judging a fault model's quality 'is to compare it against
a more detailed and physically plausible model. [ferguson87] describes measurements
for a set of physically plausible, fabrication faults in Metal Oxide Semiconductor
(MOS) rcuits. Only 45% of the faults corresponded to stuck-at fault effects. The
rest were bridges and transistor defects of various knds.

Conventional wsdom in the field has it that, while not all faults result in stuck-
ats, tests generated for stuck-at fault effects are good enough. This conclusion has
been called into question by Ferguson's results. A test that could detect 100% of the
stuck-ats detected less than 90% over all of the physically plausible faults.

These results suggest that test generation algorithms should be flexible 'in the fault
models they assume. Different technologies will have dfferent kinds and distributions
of physically plausible faults, and factoring the fault model out of the test generator
will help 'it remain useful as technologies change.

2.2.9 Summary

This section introduced faults, fault effects and errors. Physical faults have behavioral
consequences called fault effects that prevent a circuit from meeting its specification.
Whether a fault actually causes an error and the error propagates to a place where
it can be observed depends upon conditions in the circuit. Setting up the conditions
properly is the goal of test generation.

Modeling is a central theme. The most commonly used type of circuit model for
test generation 'is a network of boolean gates. This choice has largely been dictated
by the kinds of circuit descriptions produced by existing design tools. Only recently
has the rsing cost of generating tests using gate level descriptions caused the use of
gate-level models to be seriously questioned in industry.

'Also, a short can complicate matters by creating a feedback loop to turn a combinational circuit
into a sequential one.
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Fault models are sets of closed-world assumptions. The most commonly used fault
model for test generation 'is the single stuck line (SSL) fault model, which was devel-
oped for 1960's board manufacturing technology. Chip manufacturing technology has
changed the kinds of physically plausible faults sufficiently that the SSL fault model
too has recently come under scrutiny. Still, this fault model remains the standard in
industry.

The following two sections 'Introduce test generation and test application tech-
niques that have been developed for dgital crcuits. They briefly cover how the tests
are generated from the rcuit and fault models and how the responses are predicted,
measured and compared.

2.3 Generating Tests

Test generation takes a circuit model and a fault model as input and attempts to
produce a set of exercises that will detect and optionally locate any of the faults
covered by the fault model in an instance of the crcuit. Each test specifies sgnals to
be applied to the circuit's nputs and values to be observed at 'Its outputs.

2.3.1 Representing Tests as Vectors

Figure 2.9.a shows a test for an AND gate. Each row of the table is called a test
vector and describes two 'Inputs to apply and one output to observe. To apply these
tests, one steps through the rows of the table applying the 'Inputs and looking for the
expected outputs. Observing an output value that is dfferent from one in the table
indicates the presence of a fault. The term "test" is used variously to refer to a single
test vector or to a group of them that share a common purpose, like the ones in the
figure. Since the behavior of a combinational circuit 'is independent of its past inputs,
each test vector is independent from the rest, and a set of vectors can be applied to
a combinational circuit in any order.

Test vectors can be applied to a circuit automatically using a specialized piece of
hardware called a stored-pattern tester (see figure 210). A stored-pattern tester
is a computer with a large memory for holding test vectors and with special-purpose,
parallel 1/0 electronics for driving circuit inputs and sensing circuit outputs. The
computer first fills the memory with test vectors. Then the vectors are read out from
the memory one-by-one. The electronics that interface the tester to the circuit, called
driver-sensors, convert the input values to appropriate voltages and drive them onto
the crcuit inputs. Then they sense voltages on the crcuit outputs, convert them into
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(a) exhaustive tests
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Figure 29: Two different tests for an AND gate

boolean values and compare them with the expected outputs specified by the vector.
If there are any discrepancies, the tester raises a flag to the human operator ndicating
the presence of a fault.

Figure 210 A Stored Pattern Tester

Classical testing theory views tests as vectors and testers as machines for applying
vectors. The present-day reality is considerably more elaborate than this, as we shall
see in chapter 7.

2.3.2 Test Generation Methods

This section describes two fundamentally different strategies for generating tests:
black box test generation and model-based test generation. Black box test gener-

IN1
OUT

IN2
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ation only requires 'Information about the crcuit's interface with the external world,

i.e. its 1/0 behavior. The model -based approach exploits information about the

circuit internal structure and behavior 'in order to produce higher-quality tests.

2.3.2.1 Black Box Test Generation

Black box test generation relies solely on descriptions of a crcuit's interface. The
two major forms of black box testing are random testing and exhaustive testing In

random testing inputs are selected at random from the set of possible circuit 'Inputs.

With this approach tests can be generated extremely cheaply and can be applied to

a circuit as shown 'in figure 211. The pattern generator generates pseudo-random

numbers and applies them smultaneously to the circuit under test and a reference

standard that has been tested using another method, e.g., by hand. Any discrepancy

between the outputs ndicates the presence of a fault in the crcuit under test.

I

-GoodlFaulty

Figure 21 1: Random Testing

Exhaustive testing is the extreme case of black box test generation where one
guarantees that all input combinations will be applied to the circuit. Therefore, all
hard faults will be detected - a conclusion that does not require expensive analysis.
The tests in figure 2.9.a are exhaustive, since they cover all four input combinations.

The primary disadvantage of both methods is the large number of vectors required
to achieve good fault coverage. Random testing requires applying a large percentage
of the circuit's possible inputs, and the more systematic approach involves applying
all of them. Exhaustive tests for a combinational circuit wth n inputs can require
2n test vectors one for each input combination. Exhaustive testing 'is, however, quite
effective for small circuits since few vectors are needed and tey are cheap to generate.
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2.3.2.2 Model-Based Test Generation

Many modern Circuits are too complex to test using black box methods. Using a model
of the circuit and its faults, however allows a test generation program to produce hgh
quality tests with relatively few vectors. The models allow the problem of testing
the whole circuit to be divided into separate problems of testing each element of the
model. For example, a model-based test generator can design one test vector for each
SSL fault 'in a circuit. For the AND gatein figure 2.9.b, this yields 6 test vectors. Since
a single test vector can usually detect several faults, eliminating redundant vectors
reduces the number of vectors to the 3 shown 'in the figure. These 3 test vectors detect
SSL faults on the inputs and the output of the AND gate using fewer vectors than the
4 required by an exhaustive test. Since the number of SSL faults rses linearly with
circuit sze while the number of exhaustive tests rises exponentially with the number
of inputs, using crcuit and fault models for large circuits can save significant effort
and time.

There are two different strategies for model-based test generation: i check each
behavior and ii) check each fault. The strategies partition the test generation problem
in different ways. The first strategy, known as functional testing, partitions the
circuit by what it does. For example, a functional test for a microprocessor involves
tests for each instruction. The second strategy, fault-based testing, designs a test
for each potential fault in a model of the circuit.

A sngle test generation algorithm can combine the methods of checking behaviors
and checking faults. For example, the test for a microprocessor might be partitioned
by instruction, like a functional test, but the test for each instruction might then be
generated using models of faults 'in the components used by that 'Instruction.

Most of the recent work on test generation and both of the new methods 'Introduced
by this thesis fall wthin the model-based test generation framework. What distin-
guishes the dfferent methods from each other 'is how circuits and faults are modeled
and whether the testing problem 'is partitioned by function, fault or both. In order to
make the discussion concrete, the next section describes a specific model-based test
generation algorithm.

2.3.3 The DAlgorithm

The Dalgorithm [roth66, roth8O] 'is a test generation method for gate level crcuits.
This section shows the circuit and fault models traditionally used in test generation
and the methodical and exhaustive search that is the foundation for generating tests.
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The next section describes some of the search control heuristics and other methods
of making test generation more efficient.

The Dalgorl'thm generates tests for all SSL faults in a combinational rcuit.
This algorithm, the ancestor of most model-based test generation methods (e.g.,
[goel8la, benmehrez83, kramer83, fujiwara85]), illustrates three central ideas in test
generation: (i) fault hypotheses, (ii) a symbolic vocabulary for signal flow and iii)
path sensitization. 15

2.3.3.1 Hypothesizing faults

The Dalgorithm generates one test vector for each potential SSL fault 'in the circuit.
It does this by repeatedly hypothesizing the existence of a fault (e.g., that a single node
is stuck-at-0) and then generating a vector which distinguishes a circuit containing
that fault from a fault-free rcuit. The discussion below assumes that a particular
fault has been hypothesized.

2.3.3.2 A Symbolic Vocabulary for Sgnal Flow

The Dalgorithm. uses the extended boolean vocabulary for signal flow originally used
by the Dalgorithm. The D-vocabulary combines the fault-present case with the fault-
absent case 'Into single tokens in the following way:

Original Notation good1bad Meaning
1 1 boolean I 'in either case
0 0 boolean in ether case
D 1/0 I if fault-free, if faulty
D 0/1 0 if fault-free, I 'if faulty
x x don't care

1/0 and 0/1 are called sensitive values because their value is sensitive to the presence
or absence of the fault.' By combining the fault-present and fault-absent cases 'Into a

5This section describes a slightly simplified version of the algorithm. The full version does not
focus so closely on SSL faults. Rather, it has several complex mechanisms enabling it to test faults
inside gate-level components in addition to the SSL faults on the circuit nodes. These mechanisms
add considerable complexity to descriptions of the algorithm and are not of central concern here.

'The D-vocabulary is usually presented using the symbols D for 1/0 and D for 0/1. We use
good/bad notation here to enhance readability.
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single notation, the D-vocabulary makes reasoning about the propagation and inter-
action of errors 'in a circuit an analog of the familiar process of propagating boolean
values.

The Dalgorithm assigns sensitive values to circuit nodes following detailed rules
dictated by the crcuit structure and behavior. The goal of this process is to assign
a sensitive value to one of the circuit outputs. When the real circuit is tested these
sensitive nodes will either be or depending upon whether the fault is present, and
measuring the value of the sensitive output will tell which stuation holds.

Some of the rules governing node assignments stem from keeping them consistent
with component behavior. Figure 212 shows a complete set of so-called D-rules that
use the D-vocabulary for node assignments around an AND gate. The rules in group
(a) describe the gate's normal behavior, i.e., its behavior in the absence of any faults
inside the gate or errors on its inputs. The rules 'in group (b) describe a fault n the
gate causing an error. In this case, the gate inputs are normal, fault-free boolean
values and the output is a sensitive value. An output value of 0/1 indicates a stuck-
at-1 fault while an output value of 1/0 indicates a stuck-at-0. The rules 'in group (c)
describe how errors propagate through AND gates. The top four rules 'in group (c)
show single errors propagating through the gate, while the bottom four rules show how
pairs of errors stemming from the same fault) interact. For instance, the sensitive
values 1/0 and 0/1 on the inputs cancel out causing an insensitive on the output
because one or the other 'Input is 'in both the good and bad cases.

Within this framework, test generation is a process of choosing rules for the com-
ponents to describe how the components will behave during a test. The rules chosen
must agree where the components touch. For instance, 'if gate A drives gate B, then
the output value of A's rule must agree with the input value of B's rule because
the circuit node shared by both rules can only have 'a single value. The strategy for
choosing rules to form a test is called path sensitization.

2.3.3.3 Path Sensitization

Path sensitization starts with each circuit node assigned to the don't care value, then
changes node assignments to one of the other four values as necessary. The method
involves three steps:

1. Fault Sensitization: Choose a way to make the fault cause an error at the
fault site, i.e., choose assignments corresponding to a gate receiving correct,
inputs but having a potentially faulty output. If, for example, the hypothesized
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(c) Effor Propagation Rules

Figure 212-: D-rules for AND gates. A values of the form good/bad describe a circuit

node whose value is different depending upon the presence of a fault. For instance,

1/0 indicates a node that is I if the circuit is good and if it is faulty.
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fault is stuck-at-0 at a node, then assign the node a value of 1/0, i.e., the node's
value should be in the good circuit case and otherwise. Then choose one
rule that has 10 on the output from group (b) for component driving the node.

2. Error Propagation: Select a path to propagate the error signal from the
fault site to an output. In effect, the path acts as a probe connecting the
fault ste to an output, thereby enabling an external observer to measure the
node value 'Inside the circuit. Select sensitive values for the nodes along the
path and behavior rules from group (c) for the components along the path.
Assign values to nodes ad'acent to the path according to the rules chosen for
the components in the path. These adjacent node assignments are conditions
enabling the components to propagate the sensitive values from fault ste to
output.

3. Lne Justification: Select values for the circuit 'Inputs that will cause the
values assigned in steps (1) and 2) to occur. This step uses behavior rules from
groups (a) and (c).

All of these steps involve search. For example, there may be several ways to sensitize
the fault, many ways to propagate the error and many ways to justify line values.
Only some of these ways will be mutually consistent. The search involved in finding
consistent ways of doing these steps is the main cost of running the Dalgorithm and
of doing test generation 'in general. This search is usually organized as constraint
propagation from the fault site outward: forward to the circuit outputs during error
propagation and backward to the circuit inputs during lne justification.

2.3.3.4 The DAlgorithm and An Example

Path sensitization as described has a flaw: there can exist testable faults that are
impossible to test using only a sngle sensitized path. The Dalgorithm's major con-
tribution over previous path sensitization techniques 'is a method of organizing the
search for multiple sensitive paths so that no possibilities are overlooked. Thus, the
D-algorithm was the first complete test generation algorithm: if a fault can be tested
(given the circuit and fault models), then the Dalgorithm. can find a test for it.

The Dalgorithm, shown in figure 213, uses chronological backtracking search
over the space of D-rules with constraint propagation performed after every choice.
AI readers should note that the Dalgorithm used a clear though lmited version of
constraint propagation 'in 1966, long before Sussman and Stallman's EL program.
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1. Fault Selection: Select a fault from the fault list. Here, we take the faults to
be stuck circuit nodes.

2. Fault Sensitization: If the fault selected 'is stuck-at-I (stuck-at-0), then at-
tempt to set the node to 0 (1) by selecting inputs for the gate driving the node.
Assign 1/0 (0/1) to the fault ste.

3. Constraint Propagation: In step 1, some nodes may be assigned values that
uniquely imply values on other nodes. When a node 'is assigned a value, put all
gates that use that node either as an input or an output on an active list. During
constraint propagation, remove gates from this lst. If the assignments around a
gate are 'Inconsistent with all of 'Its D-rules, then backtrack. If the surrounding
assignments are consistent with exactly one D-rule, then assign new values to
any unassigned nodes as specified by the rule. New assignments will cause gates
to be added to the active list. Continue until the active list is empty.

4. Error Propagation.- Drive the error out to an observable node. If any primary
output has a D value, then go to step 4 The D-frontier is the set of gates
which have sensitive values on their inputs but whose outputs are unassigned.
The D-frontier 'is updated when assignments are made.

Select a gate from the D-frontier and a D-rule consistent with the current node
assignments and which has a sensitive value on the output. Perform constraint
propagation for any new assignments. Repeat until a sensitive value appears on

,primar output.

5. Line Justification: Construct a causal 'ustification for all node assignments
made in the steps above. A node assignment 'is justified if it is a primary input
or if 'it 'is caused by the input assignments of the gate driving it.

Select a node that is not justified. Choose a consistent D-rule for the driving
gate, and make the new assignments. Perform constraint propagation. Repeat
until all nodes are justified.

Figure 213: The Dalgorithm
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Figure 214 shows a simple example of the DAlgorithm in action. The first step
is fault selection. Here we have chosen a stuck-at-1 fault on the output of gate
A (figure 2.14.a). Fault sensitization assigns A's upper input to (figure 2.14.b),
although 'it could just as well have chosen the other 'Input. This assignment will cause
the gate's output to be 'if fault-free and I if stuck-at-1.

Constraint propagation determines the consequences of the assignments made so
far. Figure 2.14.c shows the first constraint propagation step: a on the inverter's
output implies a I on its 'Input. Figure 2.14.d shows the end result of constraint
propagation.

Error propagation attempts to propagate the error from the fault site to an ob-
servable output. In this case, the only possible path 'is through 02, and the algorithm
looks for a propagation rule for OR gates that has a sensitive value on the output
and also 'is consistent with the current node assignments. No such rule can be found,
because the on 02's output precludes any sensitive value there. The algorithm back-
tracks to the most recent choicepoint, which was the selection of a way to sensitize
the fault in figure 2.14.b.

T'his time the algorithm sensitizes the fault by assigning the lower 'input to as
shown in figure 2.14.f. Constraint propagation does not add any new assignments,
and error propagation propagates assigns the output of 01 to (figure 2.14.g) At
this point the values of the remaining nodes are uniquely determined, and constraint
propagation works them out (figure 2.141). The final step, line 'ustification, has no
work to do 'in this example, because all assignments are justified by assignments to the
primary inputs. The test vector for this fault 'is (IN1=0, N2=01 IN3-0, OUT=0/1).

These steps are repeated for each SSL fault n the crcuit yielding 14 test vectors.
Since single test vectors often may serve to detect more than one fault, there is likely
some redundancy in these 14 vectors. In fact, running a version of the Dalgorithm
modified to account for redundancy between test vectors yields test vectors for this
circul't.

Sometimes physical defects cannot be detected, e.g., the stuck-at-0 fault on N's
output. This fault 'is untestable, because sensitizing the fault requires setting IN2=1,
which in turn constrains OUT=1. Snce is not a sensitive value, no error can now
propagate to the output. The Dalgorl'thm fails is this case by exhausting its search
without finding a solution. Failing here 'is not a problem, however, because there is no
input combination where the presence of this fault would cause the circuit to produce
a wrong output.
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Figure 214: DAlgorithm Example
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2.3.4 The Podem Algorithm

The Podem (Path Oriented Decision Making) algorithm [goel8la] is the first major
successor to the Dalgorithm. Podem illustrates 'in the testing domain two 'Important
ideas that are familiar to Al readers: ( identification of strong constraints in the
problem domain and ii) search control heuristics. Podem is also an intellectual an-
cestor of the designed behavior test generator introduced 'in this thesis: its emphasis
on behavior at the crcuit inputs is a theme that we build on later.

Like the Dalgorl'thm, Podem uses the D-vocabulary for describing circuit signals
and D-rules for describing component behavior. The chief dfference between Podem
and its predecessor lies in the area of search control, i.e., which rules are used when.
In practice, the Dalgorithm's lack of a global vew of circuit behavior often causes 'it
to assign values to internal circuit nodes that are unachievable. When this occurs, the
algorithm must backtrack and try again, eventually stumbling upon the correct as-
signments. This occurs especially when the values of the internal nodes bear complex
and highly-constraining relationships to each other, e.g., in error correction circuitry.
Podem uses the same nd of backtracking search, but organizes the search 'in a way
that leads more directly to solutions or exposes conflicts more quickly.

Podem is predicated on the observation that assignments made to circuit 'inputs
strongly constrain assignments on the internal nodes. Therefore, Podem tries hard
to propagate signals back to the inputs first, before propagating elsewhere inside the
circuit. In particular, Podem performs lne justification immediately after making
every internal assignment. If this succeeds 'in assigning a value to an input, then and
only then does Podem take a constraint propagation step to deduce the consequences
of the new input assignment on the values of internal crcuit nodes. The strategy of
pushing to the inputs quickly tends to expose global conflicts early, thereby reducing
wasted effort.

Podem 'is guided toward good solutions by two fundamental search control heuris-
tics:

1. Conjunctive goals: Try the hardest subproblem first, since this is likely to expose
global conflicts quickly.

2. Disjunctive goals: Try the easiest subproblem first, since only one solution is
needed.

These heuristics are instantiated in several ways 'in the algorithm. For instance,
during error propagation, the sensitive value closest to a circuit output 'is pushed
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forward because only one sensitive value need reach an output and the closest is likely
to be the easiest to push there. Another example occurs during lne justification.
When using a component behavior rule requires controlling multiple 'Inputs (e.g.,
setting the output of an AND gate to requires that both inputs must be 1), the
backward propagation proceeds first from the hardest input to control. Difficulty
is approximated by dstance to a crcuit 'Input. Similarly, when using a component
behavior rule requires controlling only a single 'Input (e.g., setting the output of an
AND gate to requires that either 'Input must be 0), the backward propagation
proceeds first from the easiest input to control. A rich line of recent research in test
generation (e.g., [fujiwara85]) concerns refining and augmenting these heuristics and
difficulty measures.

2.3.5 Test Generation wth Herarchical Crcuit Models

One recent lne of test generation research (e.g., [genesereth8l, davisKa, shirley83b,
singh86, krishnamurthy87]) has increased performance by using hierarchical circuit
models. The algorithms are similar to the D-algorl'thm, i.e., they generally use models
partitioned by structure rather than behavior, and they embed component tests using
path sensitization and line justification. Their advantage comes from using high-level
models to increase performance in two ways:

1. Hgh-level models allow the test generator to take larger propagation steps with
only a small 'increase 'in the cost of each step. Taking larger steps reduces the
number of steps to get from an internal component to a circuit 'input or output.

2. Although there may be a choice of which high-level step to take, the act of taking
a high-level step involves no search (just as taking a low-level step also involves
no search). Taking a single high-level step, thus eliminates wasted search, 'i.e.,
backtracks involved in taking the equivalent, multiple low-level steps. 7

Hierarchical test generation algorithms can be described as refinements of the D-
algorithm by showing: (i) how line justification and error propagation use high-level
models, (ii) how the test generator shifts between modeling levels, and iii) what
strategy the test generator uses to control shifting between levels.

7This is a slight oversimplification, as some of these test generators allow search while taking a
high-level step (e.g., [singh85]). However less search is generally required than in low-level propaga-
tion. The purpose of allowing search during a high-level steps is so the user may take advantage of
nondeterminism to simplify writing the high-level circuit model.
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First, rules for describing component behavior are augmented by high-level rules.

Where D-rules describe boolean values propagating through a logic gate, high-

level rules describe groups of sgnals representing, for example, 'Integers propagating

through an adder. One implementation [davis82a], represents hgh-level rules as sets

of demons that activate when the value of one of their inputs changes (see figure 215).

Techniques for doing this are detailed 'in [steele8O]. Sensitive values are represented

as pairs of values that are propagated together, one for the good crcuit and one for

the faulty circuit. Shifting between modeling levels 'is 'implemented with the same

technique (see figure 2.15.d).

These test generators use strict herarchical models and a simple strategy for

controlling which level to propagate through: propagate at the highest level possible.

This strategy assumes that high-level propagation 'is always less expensive than low-

level propagation. These algorithms thus do lne justification and path sensitization

out from a fault site to the boundaries of the smallest component that contains the

fault. Then they shift the values on the component inputs and outputs up one level

and continue propagating to the boundary of the next containing component. The

algorithms continue propagating and shifting upwards until they reach primary inputs

and outputs.

Hierarchical test generation algorithms represent a significant advance over the

classical algorithms, but they have several drawbacks: ( they require abstract crcuit

models that are not produced or captured by current design tools 8, (ii) they have no

model of the tester and (iii) they fall short of capturing the richness of expert test

generation methods. On balance, hierarchical test generators are very promising,

but much work remains before they can be said to work effectively in industry. The

designed behavior test generator 'Introduced in this thesis can be viewed as a step in

this lne of research that identifies and uses operation relations, a new kind of abstract

representation for circuit behavior.

'The difficulty of modeling significant circuits at multiple levels of abstraction has been a hurdle
in this line research. There is a chicken-and-egg problem here. These test generators require circuit
descriptions that are not produced by current CAD tools, and the difficulty of creating significant test
cases from scratch makes validating the research ideas difficult. On the other hand, it is difficult to
justify including information a design description (and augmenting the CAD tool to handle it) that is
not going to be used by a proven test generator. This problem is slowly being solved as the algorithms
and the available design descriptions improve together, and efforts in industry to standardize on a
rich circuit description language capable of expressing some of the needed information will accelerate
this process.
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(a) structural model: one box instead

of a complex, gate-level network

(b) Behavioral Modek Each rule is a function

that activates when one of its inputs changes

and computes a new value for its output.
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(c) ff IN2=2 and OUT recleves the new value 3 then

this rule activates, computes 32 and outputs the

result at IN1. ff the rule cannot compute a unique

output value, then it can guess among the possible

values, enabling the test generator to search as well

as propagate constraints. The other rules are analogous.

(d) Shifting between levels is

handled by similar rules.

Figure 2.15. High-level propa ation rules
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2.3.6 Test Generation for Sequential Crcuits

The Dalgorithm and its successors can generate tests for combinational crcuits, but
they cannot directly handle sequential circuits, i.e., circuits wth memory in them.
This section describes a well known way to transform a model of a sequential crcuit
into a model of an equivalent, combinational circuit. This equivalent circuit model
can then be used to generate tests for the sequential circuits using a combinational
algorithm. While the transformation shows that test generation for sequential crcuits
is possible, testing them can be very expensive, and the form of the transformation
illustrates why.

.The Dalgorithm is not directly applicable to sequential circuits because it models
a test as occurring at an instant, whereas a test for a sequential circuit may require
an interval of time, e.g., several clock cycles. For instance, to propagate an error from
the fault site to the output, 'it may be necessary to route the error to a register, move
forward by one clock cycle, and then route the error from the register to an output.
In the process, signals may be routed differently in the two clock cycles. To test a
given fault the Dalgorithm can assign each node 'in a crcuit at most one value but
to test a sequential circuit, each node may need a dfferent value for each clock cycle.
The Dalgorithm has no place for these different values.

This problem can be solved by replicating the sequential crcuit once- for each
clock cycle and connecting the copies to form a chain as in figure 216. Each copy
represents the circuit during one clock cycle. A sequential circuit is composed of
registers connected by combinational circuitry, and here, the R's denote copies of the
registers and the C's denote copies of the combinational logic. Replacing the registers
with buffers that pass nformation unchanged from one time step forward to the next
completes the transformation from sequential to combinational circuit. The final step
is to change the Dalgorithm slightly to hypothesize a fault identically in all copies of
the circuit snce faults are assumed to be the same at all times.

Test generation for combinational crcuits 'is NP-complete [ibarra75] by a straight-
forward transformation from 3-SAT [garey79]. This means that the cost of test gen-
eration i's exponential in circuit size in the worst case. In practice, however, search
control heuristics and regularities 'in the kinds of crcuits that actually are designed
reduces the average cost to O(n 3), where n is the number of gates in the circuit
[williams79]. Hence test generation for combinational crcuits is regarded as a solved
problem.

Test generation for sequential crcuits, on the other hand, 'is much more dfficult.
A �Cchain" equivalent circuit can require up to 2 copies, where m is the number of
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CODV #1 Copy 2
-A- -,A,

0 a a k 0 0 0

(a) A sequential circuit (b) An equivalent combinational circuit

Each copy represents the circuit at one time

or clock cycle dunng the execution of a test.

Figure 216: The Dalgorithm can be applied to a sequential circuit by converting the

sequential circuit into an equivalent combinational one.

bits of state, because every state may have to be visited. This yields a tght upper

bound of 0(2')"+') for the cost of test generation for sequential crcuits [breuer76].9

2.4 S ummary

This chapter introduced the basic concepts and algorithms in the field of rcuit

testing. Modeling circuits and their faults was the first major theme. Models are

important because they establish the framework wthin which test generation occurs,

i.e., faults are treated as perturbations of the crcuit model. The knd of circuit model

impacts the cost of doing test generation, and the kinds of closed-world assumptions

made in the fault model determines how well the tests will detect real faults in the

world.

The Dalgorithm 'is a model-based test generation method that uses a gate-level

model to generate tests for SSL faults. The chief characteristic of this algorithm is

that it methodically and exhaustively searches through the space of circuit behaviors,

making the Dalgorithm complete with respect to its models. If a test for a fault

exists, then the Dalgorithm will find it.

9 Some faults can add an extra bit of state by creating a feedback loop, hence the + 1. This is a
tight upper bound, because circuits can be constructed whose testing requires traversing the entire
state-transition graph.
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Since the development of the Dalgorithm, much work has gone into sophisticated
search control heuristics and careful attention to detail, resulting in a succession of
more powerful algorithms. This work has effectively solved the test generation prob-
lem for quite large combinational circuits (up to 50,000 gates). However, generating
tests for moderately complex sequential circuits still lies far beyond the capabilities
of these algorithms.

Some recent work has applied similar propagation techniques to more abstract
models of crcuit structure and behavior. These methods represent an important step
forward, but they do not completely solve the problem.

Two characteristics of classical test generation algorithms stand out:

* They are designed to be completely general, i.e., they can be used to test any
digital circuit.

* They do not explicitly represent circuit behavior as a whole. Instead, they
derive descriptions of global behavior via local propagation through behavioral
descriptions of the components. In effect, they have an myopic view of the
circuit, and succeed at finding tests by being methodical and exhaustive.

These characteristics are related. From a fixed and small set of components, e.g.,
the simple boolean gates, any circuit can be built by composition. From a fixed
and small amount of domain knowledge, e.g., component behavioral descriptions, any
circuit can be tested by local propagation. However, as in many things, there 'is a
power vs generality tradeoff. The price of generality 'is high test generation costs as
the algorithms get lost and miss the forest for the trees. As we shall see 'in the next
chapter, human test experts use a large amount of special-purpose knowledge to focus
their test generation effort. This works particularly well because real world circuits
are not arbitrary but fall 'Into distinct categories and display regularities that can be
exploited.
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Summary: Human test experts perform better than eisting test generation
algorithms. This chapter gives an abbreviated description of what test experts
do and contrasts this with the algorithms described in the previous chapter. The
differences suggest a research agenda for improving the algorithms of which this
thesis 'is a part.

Human test experts perform better than existing test generation algorithms An
experienced test programmer can write a test program for a circuit board containing
many VLSI chips in a period of weeks to months depending on the complexity and
familiarity of the crcuit. Such circuits contain hundreds of thousands of gates and
thousands of bts of stored state. The structure of the resulting test program wll
reflect the structure of the circuit, with sections of the program devoted to sections
of the crcuit. If the circuit 'is changed slightly at the last mnute to fix a bug, the
test program will only require a small change too.

The classical test generation algorithms described in chapter 2 are far from this
level of performance. They are 'Ineffective on large sequential circuits. The flat se-
quences of test vectors they produce do not have a recognizable structure, making
it difficult for an expert to understand, modify and combine their output with the
output of other tools. Changes to the circuit are not related to changes 'in the tests
in any meaningful way.

Understanding the differences 'in how experts and algorithms generate tests yelds
clues for improving the algorithms and closing this performance gap. This chapter

9ives a brief description of what test experts do and contrasts this with the existing
algorithms. The differences are of two kinds. Frst, the experts solve a somewhat
broader problem than the algorithms do. The core of the problem is the same -
design circuit inputs to detect internal faults - but the boundaries of the problem are
different. The following differences are central:

71
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0 Negotiable vs Fixed Goals: The goals for test generation can be established
by negotiation wth other factors of circuit design and manufacturing. This can
make the testing problem easier. Test generation algorithms can and should
reflect this possibility, yet current algorithms do not.

0 Realistic vs Smplistic Tester Models: Tests must be designed to exploit
the capabilities of the machine that will execute them. Test experts understand
and design for the capabilities of complex, modern testers, while current test
generation algorithms design tests only for extremely simple, vector-oriented
testers.

Second, experts generate tests using methods that are quite different from the classical
algorithms. The central dfferences are:

* Specialized vs General Methods: Experts have developed many special
purpose techniques for testing specific kinds of circuits. The lmited scope of
these techniques enables them to be more effective or more efficient than the
existing, general-purpose algorithms.

0 Task Understanding vs Search: Experts understand the task that a circuit
is designed to perform and the patterns of component activity 'Inside the circuit
that accomplish it. This understanding helps them to focus problem solving
effort on potential tests that are likely to be achievable. Existing algorithms
do not understand the crcuit's task and rely upon search to discover what
behaviors the circuit might possibly perform.

0 Rich vs Limited Test Representation: Experts write test programs rather
than test vectors. The programs provide convenient access to tester features and
are a more compact and human readable description of how to test a crcuit than
are test vectors produced by existing algorithms.

These differences form the starting point for this thesis. That experts use many
specialized methods rather than a single general one suggests that knowledge engi-
neering is an appropriate paradigm for studying crcuit testing. That the testing
problem 'is negotiable with the circuit designer 'is the basis for asserting that test
generators should be fast, gving up completeness if necessary. That experts have a
global understanding of circuit behavior while the algorithms do not is the impetus
for DB-TG. The representations of circuit behavior DB-TG generates by simulating
circuit operations provide a kind of global perspective and focus search. That test
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experts understand tester features and programs are more expressive than test vectors
is the basis for PF-TG, which generates tests 'in a rch test language.

The remainder of this chapter expands on these key differences and gives a broad
outline of how one expert creates tests. The contrast between the algorithms and the
experts suggests an agenda for testing research of which this thesis is a part.

3.1 Experts Solve a Broader Problem

This section describes these three ways in which real-world test generation extends
beyond the scope of the classical algorithms: (i) available circuit descriptions often
lack detail; (ii) experts express many tests as programs rather than as vectors; -and
(iii) testability can sometimes be negotiated between designers and test engineers.

3.1.1 Detailed Circuit Descriptions are Often Unavailable

Detailed structural (e.g., gate-level) crcuit models are often unavailable to test ex-
perts. Instead, they must rely upon block diagram descriptions of the sort found in
databooks. This stuation can occur due to poor communications if the design and
test teams are separated within the same organization and due to product evolution
goals and competitive pressures when the design and testing teams are in different
organizations. For example, chip manufacturers routinely withhold gate-level mod-
els of the components they produce so that the implementation may change wth
technology.

Component models may also be unavailable when design and test are 'Integrated:
if test generation is attempted early to gauge a developing design's testability, then
detailed component implementations may not yet exist. Both loosely coupled and
tightly coupled design and test environments need effective test generation when de-
tailed structural models are not available.

Test experts address this problem n two ways. Frst, they use functional test
techniques where practical. These techniques use behavioral descriptions that must
be available, or designers could not use the circuit. As commodity components have
become more complex, however, test experts have come to need more detailed in-
formation than designers. Consider, for example, an instruction cache in a modern
microprocessor. A designer using the microprocessor as a component will reason about
the stream of instructions that it executes. He wll reason about the cache only in
the most general terms, e.g., what is the hit ratio and will a particular inner loop
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fit? To test most of the microprocessor, a test expert should also reason about the
instruction stream. However, to test the cache, he must reason 'in detail about cache
behavior. When this detailed 'Information 'is unavailable, the test expert must resort
to ad hoc approaches.

Test experts also reason by analogy when detailed structural models are unavail-
able. Unfortunately, functional test techniques often yield long tests. The key to
generating short tests for complex circuits 'is the ability to dvide testing problems
based on the structure of the rcuit description and to conquer each separately. Test
experts can supply a finely structured description where none has been provided by
assuming that a component whose structure they do not know is 'Implemented like a
component whose structure they do know. They then generate tests for the compo-
nent they know and apply them to the component they do not know.

Generating tests by analogy works well for components whose designs are fairly
well standardized, as similar 'Implementations tend to fail in smilar ways. Note,
however that there 'is some variability 'in how even common component types are
implemented. Test experts handle this variability by developing tests that are more
general than necessary for a particular crcuit. Over time, experts have built up a how-
to-test lore covering the most common 'implementation styles of familiar component
types.

3.1.2 Experts Write Programs rather than Vectors

Test experts write test programs rather than test vectors. A test program is a
test expressed in a version of a general-purpose programming language extended with
statements for applying values to circuit inputs and observing values on circuit out-
puts. The pattern of inputs and predicted outputs that occurs when a test program 'is
executed is equivalent to a set of test vectors. Test programs have several important
advantages over vectors for human test programmers. ( programs express repetitive
tests compactly; ii) the languages allow convenient access to tester features; (iii) test
programs are easier to understand, modify and debug.

Consider the smple memory test program 'in figure 32. The Galloping Pattern
Memory Test (GALPAT) tests for leakage between memory cells by writing a pattern
and reading it back while repeatedly checking that reading and writing 'Individual
memory cells does not disturb other cells. Fgure 31 illustrates how GALPAT tests
a 16-bit memory by walking a through a background pattern of O's. To complete
the test, GALPAT also walks a through a background of I's.

A tester will execute 1056 memory cycles when t runs this program for a 16 bit
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Figure 31: GALPAT tests this memory by walking a I through a background pattern

of O's. After every change, GALPAT reads back the full pattern to make sure other

cells were not effected.

memory, and each memory cycle corresponds to several vectors (how many depends

upon the details of the tester). A 1024 bit memory requires roughly 4 mllion cycles.

Clearly the program is a more compact and more readable encoding of this test than
the equivalent vectors would be.1

3.1.3 Testability can be Negotiated

The scope of the test generation problem can be negotiated when design and test

are tightly coupled. This section discusses design for testability and 'Its effect on test

generation.

Section 23.6 showed one method of converting a sequential crcuit into a combi-

national circuit in order to apply an existing test generation algorithm. This transfor-

mation only provides a way for a combinational test generator to model a sequential

'GALPAT takes time proportional to the square of the memory size. This test lies on a broad
spectrum of memory tests. Some, with names like WALKPAT and MARCHPAT, are simpler,
faster and somewhat less thorough. Others are more complex and more thorough. Still others are
roughly equivalent in fault coverage but work faster by checking only physically plausible read/write
disturbances, i.e., those between adjacent memory cells. Which of these tests an expert will use
depends upon the kinds of faults a particular memory is susceptible to, whether the memory has
been tested before, e.g., by the manufacturer, and to a certain extent upon the expert's experience
and taste.
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procedure GALPAT (MinAddress, MaxAddress)

begin

GALPAT-WITH-BACKGROUND (MinAddress, MaxAddress, 1);

GALPAT-WITH-BACKGROUND (MinAddress, MaxAddress, 0);

end;

** Execute GALPAT with a particular background value

procedure GALPAT-WITH-BACKGROUND (MinAddress MaxAddress CellValue)

var BackgroundValue = i - CellValue; CellValue is either or i

begin

for Address = MinAddress to MaxAddress Fill the memory with the

do MEMORY-WRITE (Address - background value

for CellAddress = MinAddress to MaxAddress do Gallop the cell-value through

begin the memory one cell at a time

MEMORY-WRITE (CellAddress CellValue); Write to a cell

READ-PATTERN (CellAddress CellValue MinAddress MaxAddress)- ** Disturbed?

MEMORY-WRITE (CellAddress BackgroundValue); ** Erase the cell

end-

end-,

** Check that the pattern has not been disturbed

procedure READ-PATTERN (CellAddress CellValue MinAddress MaxAddress)

var BackgroundValue = i - CellValue;

begin

for Address = MinAddress to CellAddress-1 do Read the cell, Read a

begin background cell. Repeat

MEMORY-READ (CellAddress, CellValue); for all background cells.

MEMORY-READ (Address, BackgroundValue);

end-

for Address = CellAddress+l to MaxAddress do

begin

MEMORY-READ (CellAddress, CellValue);

MEMORY-READ (Address, BackgroundValue);

end;

end;

Figure 32: The GALPAT memory test from [bennetts82].
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circuit and does not affect the circuit design at all. A second and more effective
transformation involves changing the original design. Fgure 33 shows an example of
a design style called scan design. In this style, all state elements in the crcuit are
connected to form a large shift register called a scan path. The term "scan" refers to
the ability to read or scan the crcuit state by shifting out the contents of the state
registers. Values can also be shifted in to put the circuit into any state.

Scan Path

$can Input

Scan Output

C = Combination Logic

R = Shift Register

Figure 33: The Scan Design Style: changing registers to shift registers implifies

testing by breaking up a sequential circuit into combinational pieces.

This transformation enables a test generator to create tests for a sequential crcuit

as if it were combinational. Moreover, snce the shift register partitions the com-

binational equivalent circuit 'Into small pieces, the cost of generating tests for the

equivalent circuit 'is reduced. These advantages of the transformation come at the

cost of several disadvantages: (i) it slows the crcuit down because shift registers are

slower than normal registers and (ii) 'it increases circuit size which can increase man-

ufacturing costs, (iii) 'it can 'increase test application times due to shifting in values

via long scan paths, and (iv) 'it does not help when testing the circuit at the speed it

will run in the field. Tradeoffs between these advantages and disadvantages are the

causes of negotiation between designers 'Interested in performance and test engineers
needing access to internal co*mponents.

The scan design style is an 'Instance of a large set of design styles and techniques

that go under the name of Design for Testability (DFT) [williams83]. The details of

the various DFT techniques are unimportant for our purposes. What 'is 'important,

though, is that test generation is not a mathematical problem with fixed inputs and
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outputs. Rather, it is a real-world problem whose parameters can be negotiated
using the tradeoffs above. If a crcuit's complexity makes generating or applying
tests too expensive, then this cost can be traded off against circuit performance and
manufacturing costs using DFT techniques.

Test experts understand DFT and how to use testable structures when they ap-
pear in crcuits. Moreover, test experts form an increasingly important part of crcuit
design teams and can suggest modifications during early stages of design that will
reduce testing costs later. In 'Industry today, test generation 'is still strongly sepa-
rated from design, but this separation will lessen 'in time as the advantages of tght
coupling become widely recognized and inertia 'is overcome in circuit manufacturing
organizations.

The possibility of design for testability affects the goals of a test generator. When
the design can be changed, we want a test generator that can quickly separate por-
tions of a circuit that are straightforward to test from portions that are more difficult
and time consuming. The tme consuming problems can then be simplified by mod-
ifying the design and giving the modified design back to the test generator. DB-TG
was created to work in this kind of design environment. This issue is explored in
section 65.

3.2 Task Understanding: How One Expert Generates
Tests

This section describes how one expert generates tests. The method 'is 'in the form
of advice from an expert test programmer to a novice. 2 The method is not detailed
enough to follow by rote: experience and flexibility are essential to apply these steps
in the context of a particular circuit. Consequently, this method cannot now be
implemented directly by computer. The method, however, does suggest a way of
looking at the problem that is quite different from the approaches taken by existing
algorithms, and this perspective strongly influenced the design of DB-TG.

The expert follows four broad steps:

1. Understand the circuit.

2. Identify the test objectives.

3 Wte the test program.

2The expert is Gordon Robinson of GenRad Inc.
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4. Debug the test program.

The steps are covered in order.

3.2.1 Understand the Crcuit

The first and most important step 'is to understand the circuit. What is the crcuit
designed to do and how does 'it do it? The expert puts 'it like this: "I learn the basic
rhythms of the circuit, asking what was the circuit designed to do and can therefore
do naturally? Then I work wthin those rhythms to generate tests." Understanding
how the circuit works 'is crucial because it focuses the expert's search for ways of
causing desired activity inside the circuit. Understanding consists of four components:
recognizing high-level structure, categorizing the circuit, dentifying what can be done
and identifying what must be done.

3.2.1.1 Recognize High-Level Structure

Often the schematics contain little information about the hgh-level circuit structure
and some analysis is needed to clarify it. For nstance analyzing feedback paths
may identify (possibly) independent state machines. This must be done with care,
as such state machines which are topologically one can be considered as several if
one or more crucial feedback lines are ignored. These lines may be activated only
under rare conditions. Identify the 'Internal 'Interfaces between subsystems. Identify
clocks, recognize signal names and naming conventions, look for small, well-known
configurations (e.g., divide-by-N circuits) and notice proximity between components
on the schematic. The expert pieces together a picture of the crcuit from such clues.

3.2-1.2 Categorize the Circuit

By recognizing high-level circuit structure, the expert tries to build up a description
in his mind that allows him to categorize the crcuit as one of a small set of commonly
occurring circuit types, e.g., a icroprocessor board, a peripheral or memory board,
a single processor board, or a microprogrammed peripheral controller. Sometimes the
expert is told what kind of circuit 'it is, and this step 'is trivial. Categorizing the crcuit
suggests other information about the circuit that will be needed. For instance, if the
circuit is a peripheral, then the expert looks for the range of addresses the circuit
will respond to. Categorization and Circuit recognition go hand-in-hand as the expert
returns to the circuit to answer specific questions suggested by the circuit type.
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3.2.1.3 Identify What Can Be Done

Identify the space of possible actions that can be taken to manipulate the crcuit
during testing. What is the basic set of actions.? What variability 'is there within these
actions.? Where in the circuit can actions be initiated? An expert might consider, for
example, the instructions of a processor to be its basic actions. The instructions have
arguments whose values can be chosen. There 'is also variability in how 'Instructions
interact with the world I i.e., wait states during memory read cycles. Actions are
initiated at the bus interface when the processor fetches an nstruction.

3.2.1.4 Identify What Must Be Done

Certain actions must be taken while testing a circuit for the circuit to work as de-
signed. A crcuit is designed to operate in an environment. The environment is
a contract between the circuit designer and the user: 'if the circuit 'is placed in 'Its
proper environment, 'it will behave as advertised. Supplying power to the crcuit
is a trivial example. Dynamic memory is a more complex example: the user must
guarantee that the memory wll be accessed at least N times per second. The test
expert must understand the crcuit's environment and decide how much of it must be
replicated to test the crcuit.

3.2.2 Identify the Test Ob'ectives

After characterizing the space of possible and necessary actions, the expert decides
what testing goals to work on. His central strategy is divide and conquen partition
the circuit into components and exercise and observe each major piece. Partitioning is
done by function or structure as convenient. Partitioning can be guided by the crcuit
category, e.g., experience has shown that breaking up certain kinds of crcuits in
certain ways is useful. Often, the expert has a vague test plan associated with a way of
partitioning the circuit. For example, the expert wll break up a microprocessor-based
system 'Into the processor and the peripherals. He will then look for a way to dsable
the processor allowing access to the peripherals without 'Interference. Alternatively,
he will look for a way to load the processor itself with a program for testing the
peripherals. In the absence of guidance, the expert breaks down the circuit 'into
familiar components.



3.2. TASK UNDERSTANDING: HOW ONE EXPERT GENERATES TESTS 

3.2.3 Wte The Test Program

The test program is organized around the test objectives, one program section per
objective. The expert usually orders the objectives from easiest to hardest so he can
confirm or expand his understanding of the circuit as he goes along.

3.2.3.1 Component How-to-Test Knowledge

The expert divides the problem of testing the circuit into test objectives that are spe-
cific and familiar. The expert either already knows how to accomplish each ob'ective
assuming accessibility to the portion of the crcuit 'Involved or he knows straightfor-
ward ways to work out solutions, again assuming accessibility.

Experts develop and share many special-purpose techniques for testing specific
component types. If, for example, the objective is to exercise a particular data register,
then past experience suggests several patterns of data that are good for that purpose.
The expert also knows the automated test generation techniques and under what
circumstances they are effective. For combinational blocks of circuitry, the expert
usually runs Podem or another test generation algorithm on just that block and uses
the resulting vectors in hs test program.

3.2.3.2 Accomplishing Test Ob'ectives

If a test ob.ectiveinvolves a component that is not directly accessible, then the expert
must embed his component test using the surrounding components. The expert's
understanding of circuit behavior 'is central 'in focusing his search for an embedding.
Suppose, for example, that a UARV contains a one character buffer for holding
incoming data while 'it interrupts and waits for the processor to fetch the character.
If a second character arrives before the processor reads the first, then the UART
signals an overrun condition. If the test objective is to cause the UART to raise
an overrun condition, then one simple solution is to feed two characters into the
serial 'Input while not responding to the interrupt. Once the expert understands how
the circuit works, his 'Internal description of the circuit allows hm to quickly solve
problems like this. Only occasionally, does the expert resort to explicit signal tracing
through the structure of the circuit in order to achieve test objectives.

'A Universal Asynchronous Receiver-Transmitter (UART) is a communications circuit that can,
for example, connect a processor to a terminal. The UART translates between bus cycles on the
processor side and characters on a serial line on the terminal side.
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3.2.4 Debug the Test Program

Debugging a test program is much like debugging any kind of program. The expert
runs the program on an instance of the circuit, or does the equivalent using a circuit
simulator, and examines program trace information for problems. Two kinds of bugs
are possible: (i) the test program drives the crcuit in an unintended way or predicts
outputs with the wrong value or at the wrong time, and (ii) the test program does not
detect enough faults. The first kind of problem is an error of conception or execution.
Tracking down and fixing this kind of bug in a test program is very similar to fixing
a bug 'in any other kind of program. The second kind of problem 'is an error of
omission. The expert can use a fault simulator to 'Identify which areas of the crcuit
are insufficiently well tested. The expert usually leaves the existing program alone
and fixes the program by adding new program code to catch the remaining faults.
The expert stops adding tests when the test program meets the fault coverage target.
A small percentage of bugs fall into both categories, e.g., the test program may create
and propagate a fault effect to a crcuit output but fail to look for it at the correct
place and tme. These bugs are fixed using a combination of the debugging techniques
described above.

3.2.5 Summary

The method has four steps: (i) understand the crcuit, (ii) identify the test objec-
tives, (iii) write the test program and (iv) debug the test program. In the first two
steps, the expert gathers nformation for use later. He asks what tasks does the cir-
cuit perform.? What primitive actions can be used to build tests? What restrictions
must he respect beyond those readily apparent from the circuit structure? In the last
two steps, the expert generates tests by embedding component tests that he already
knows. His knowledge of the crcuit guides and focuses his search. He use's a combi-
nation of functional and structural test generation techniques. For instance, he does
line justification and path sensitization, although he very rarely considers multiple

'tive paths. He uses a copy of the crcu't or a simulator to check his predictions
about circuit behavior , and he uses a fault simulator to grade the performance of hs
test program.
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3.3 Experts Use a Collection of Skills

While circuit testing is a specific and well-defined problem, solving it efficiently re-
mains something of a black art. The previous sections have touched on many distinct
skills that test experts rely on to do this.

9 Classification: Experts can choose how to model the circuit or which technique
to use to solve a particular problem. For 'instance, experts comfortably switch
between behavioral and structural models.

0 Cliche-, Experts can solve a small, common testing problem by recognizing the
problem and recalling a solution (e.g., recalling how to test a register)-

* Explicit Search: Experts know and occasionally resort to doing explicit path
sensitization and line justification, usually when their automated tools fail.

0 Algorithms: Test experts understand the capabilities of the existing test gen-
eration algorithms and use them when appropriate, often dviding problems into
pieces that the algorithms can handle.

0 Reformulation-, Experts can change crcuit representations (e.g., they can
derive a state transition diagram from the schematic).

* Specialization-. Experts can select parts of a general test that are applicable
to a particular circuit. For example, f some component features are disabled 'in
a particular design, then some portions of the standard component test can be
omitted.

0 Tester Hardware: Test experts understand and exploit the capabilities of the
hardware.

0 Test Programming.- Test experts understand programming concepts like
branching, iteration and subroutine calling and use a programming language
to express complex tests..

Experts also have available the large array of techniques developed in industry
and in the literature. Much of a test expert's knowledge covers what the techniques
are and when they should be used.

* Test generation techniques distinguished by circuit type:
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- Random Logic [fujiwara85]

- Memories [bennetts82, sarkany87]

- Microprocessors [thatte8O, brahme85]

- Programmable Logic Arrays [williams87]

- Systolic Arrays [rawat87]

Test application techniques:

- In-Circuit

- Edge-Connector

- Memory Emulation [sargent83]

The expert must choose among the techniques available in hs test programming shop
those that are best suited to a particular problem.

3.4 Summary and a Research Agenda

The contrasting pairs in figure 34 summarize the differences between classical test
generation algorithms and expert test programmers. Each pair suggests one way that
current algorithms might be extended.

In this thesis I have concentrated on the differences marked by =:�-. These dif-
ferences have been explored 'in the design of DB-TG and PF-TG: pairs 3 and 4 are
the roots of the designed behavior test generator described in chapter 4 and pairs
4, 8 and 9 are the roots of the program fragment test generator described in chap-
ter ChapFragments.

Some contrasting pairs above are well recognized by the testing community and
are under nvestigation. For instance, work on herarchical test generators has gone
some distance in the drection suggested by pairs and 2 Pair 6 suggests the test
generator should know about DFT techniques, and some test generators are built
specifically to work with certain testable design styles, e.g., scan circuits.

Some characteristics of expert test programming are inappropriate for emulation 'in
a program because the tasks they solve can be accomplished more effectively in other
ways. The most obvious characteristic 'in this category is learning about the crcuit
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1. Algorithms use gate level models
Experts use block diagrams

2. Algorithms use simple behavioral descriptions
Experts use abstract descriptions from the databook

3. Algorithms rely on optimized search through large search spaces
Experts know more about which solutions are plausible and search less

4. Algorithms will generate any test the structure of the circuit wll allow them to
Experts learn the natural rhythms of the crcuit, i.e., what can and must be
done, and manipulate the crcuit within those restrictions.

5. Algorithms have no model of the tester
Experts know how to use the tester's capabilities

6. Algorithms have no model of DFT techniques
Experts understand how to use testable structures

7. Algorithms are completely general and work well on combinational but not
sequential crcuits
Experts use specialized methods and work well on sensibly designed circuits but
not on spaghetti4

8. Algorithms produce test vectors

Experts produce test programs

9. Algorithms produce incomprehensible output'

Experts document their code

10. Algorithms rely on single built-in methods

Experts use a toolbag of ideas, 'Including the algorithms

Figure 34: Contrasting the Algorithms with the Experts. The contrasting pair's arked

by * are emphasized in the design of two novel test generators introduced by this

thesis.
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from poor circuit descriptions. Much of the difficulty of real-world test programming
today is due to poor documentation. A test engineer must often interpret ambiguous
and incomplete design information and reconstruct complete circuit descriptions from
many sources simply to understand what the circuit does. He must recognize high-
level structure in detailed, low-level schematics.

Recognizing crcuit structure and learning about crcuit behavior are potentially
interesting areas for Al research, but they 'involve reconstructing 'Information tat the
circuit designer already has. From a practical standpoint, these problems should be
solved by improving communication between the crcuit designer and the test engineer
e.g., by more comprehensive CAD tools [foyster84] I have therefore not 'Invested any
effort 'in these problems.
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Summary: Embedding component tests is the key step 'in test generation.
Embedding problems can be solved efficiently using operation relations a rep-
resentation of circuit behavior that directly connects internal component oper-
ations with drectly executable ccuit operations. For sequential circuits that
provide few operations at their 'Interfaces, operation relations can be efficiently
computed by searching traces of simulated crcuit behavior. This approach is
efficient because the search space 'is smaller. This approach is sufficient because
circuits can be tested without going outside their normal oerations. This chap-
ter is self-contained and repeats some material from scenario I in chapter .

4.1 Introduction

Circuits are designed to perform specific tasks: gates compute boolean functions,
registers load and hold values, disk controllers transfer blocks of data and micropro-
cessors execute instructions. Informally, these operations at the crcuit interface and
the patterns of internal activity that 'Implement them are what we mean by "a circuit's
designed behavior."

By definition a properly implemented circuit can carry out 'its designed behavior.
Often a circuit can behave in other ways too, which correspond to input sequences
outside its interface protocols. These incidental behaviors are usually irregular: what
does a disk controller do if presented with a string of random numbers at its 'Inputs?
Whatever happens, it wll not be as simple to describe as "transferring a block of
data." We contrast a circuit's designed behavior wth its incidental behavior. De-
signed behavior is easier to reason about than incidental behavior, because designed
behavior can often be described in smpler, more abstract terms.

87
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Understanding what a ircuit 'is designed to do is one 'important way in which ex-
pert test programmers dffer from existing test generation algorithms. Understanding
enables an expert to focus quickly on candidate solutions for test generation problems
by avoiding patterns of internal activity that cannot be achieved at all.

This chapter describes the Designed Behavior Test Generator (DB-TG) a test
generator that uses representations of designed behavior to handle a class of complex,
sequential circuits. The contributions of this work are.-

* The identification of representations for a circuit's designed behavior at several
levels of abstraction.

9 The use of designed behavior to limit the search used in planning circuit tests.

0 The construction of techniques for extracting descriptions of designed behavior
from the commonly available descriptions of circuit behavior and structure e.g.,
interface specifications, simulation models and schematics.

These representations are the basis of a heuristic and effective solution to the most
difficult subproblem of test generation - embedding known tests for a component into
a larger circuit.

Embedding a component test i's the central step of the sample test generation
problem shown next. Human test programmers can solve this problem easily. When
we ask why, we are lead to consider crcuit representations that make the problem
straightforward. The remainder of the chapter introduces a test generator based
on these circuit representations, which we describe by stepping through its solution
to the sample problem. Chapter considers the advantages and disadvantages of
,these crcuit representations for doing test generation and place them among the
armamentarium of techniques available to test engineers. Then, in chapter 6 we
remove a simplifying restriction on 'Information flow within the test generator and
in the process 'integrate the test generator more closely with classical test generation
techniques.

4.2 A Test Generation Example

Figure 41 reprises the simple test generation roblem from the scenario in chapter .
Testing experts and others familiar wth computer architecture easily suggest the
solution shown from the nformation shown in the figure. In particular, they are able to
associate the SUM nstruction wth the goal of making the ALU add numbers without
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seeing detailed datapaths. The sparse information required to solve the problem and
the high-level form of the solution are typical of human test programmers but very
unlike classical test generation algorithms. While we do not presume to know how
human test programmers actually come up wth such solutions, we do propose an
automated method which generates the same kinds of answers. After introducing the
ideas behind this method, we walk it through exactly this example, generating the
sequence of instructions above.

- Load accumulator from memory

- increment accumulator by Bi

- wte sum to memory

Figure 41-. Problem: test the AL Us ability to add pairs of numbers (Ai, B) by ma-
nipulating the BUS interface. The processor is accumulator based and provides (at
least) the usual load and arithmetic instructions. Solution: repeat the three instruc-
tions shown to the right of the figure for each pair (Ai, B). This solution assumes
that (i) the SUM instruction actually uses the ALU shown in the figure, (ii) the
LOAD, STORE and SUM instructions manipulate the accumulator shown, and (iii)
the LOAD, SUM and STORE instructions can handle the test data required by the
ALU.

4.3 Overview

This section describes the test generator's structure and briefly introduces the key
ideas that lie behind it. Sections 45 through 49 elaborate on this description while
walking through DB-TG's solution to the example problem above.

rj LI F I

I ACCumuiator I
co
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b" ma

Instructions

LOAD Ai

ADD Bi

STORE sum
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4.3.1 The Key Ideas

DB-TG is based on four ideas:

1. Embedding Expert-Supplied Component Tests: Testing experts have de-
veloped clever and effective methods of testing common components. Test gen-
erators should take advantage of them.

2. Operation Relations: Knowing about relationships between crcuit opera-
tions (e.g., 'Instructions) and component operations is the key to embedding
component tests. Test generators should obtain and manipulate descriptions of
these operations.

3. Simulate and Match: Operation relations can be obtained by simulating
circuit behavior. The relations applicable to a particular situation can be found
by searching simulation traces.

4. The Designed Behavior Heuristic: Test rcuits using only patterns of usage
anticipated by the designer. This means that a test generator can take the
circuit's normal interface operations as its primitive actions. This 'in turn limits
what must be simulated.

Each idea is a means of 'Implementing the previous 'Ideas or a justification for them.
Together these 'ideas give a vertical slice through the test generator. The first idea
has been used in other test generators. Here, we simply put the idea to work again.
The other three ideas are unique to DB-TG and are described next.

4.3.1.1 Operation Relations

As a component is a part of a crcuit, so is 'Its behavior a part of the crcuit's behavior.
Knowing part-whole relationships about behavior 'is useful, because they provide a
straightforward means of embedding component tests into the circuit.

Two kinds of part-whole relationships are useful for solving this problem: cau sal
connections and parameter relations. In the example above, executing a SUM
instruction causes the ALU to add, therefore we say the processor's addition 'Instruc-
tion and the ALU's addition operation are causally connected. Parameter relations
hold between the parameters of two causally connected operations. In the example
there is a simple relationship between the 'inputs and outputs of the ALU when it 'is
doing the work of the SUM instruction and the inputs and outputs of the instruction
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itself. The term operation relations refers to the-causal connection between two
operations and any relationships between their parameters.

Operation relations exist because the circuit designer used the component oper-
ations to implement the crcuit operations in the first place. The relations are often
simple, especially in datapaths, because a circuit can rely at certain times almost
directly on a single component to do its work. Knowing operation relations is useful
because they are the basis for a powerful, heuristic approach to solving the hardest
subproblem 'in circuit testing: embedding a test for a component into the surrounding
circuitry.

We describe operations, operation relations and the embedding process in detail
later. Here, we smply assert that operation relations are a hghly abstract form
of circuit description that allow component tests to be embedded without working
through the detailed structure of the surrounding circuitry. Therefore these relations
should be obtained and manipulated explicitly during test generation.

There are several ways to supply operation relations to a test generator depending
upon the type of circuit and the larger design environment the test generator sits
in. For sequential circuits that execute a small number of well-defined operations,
we use simulation working from descriptions of the circuit structure, the component
behavior and the circuit 'Interface. The strategy of computing operation relations via
simulation is based on the following 'Idea about planning, called smulate and match.

4.3.1.2 Simulate and Match

Test generation 'is fundamentally a planning problem [fikes7l, sussman75, sacerdot1'77,
stefik8O chapman85]: how can we manipulate the circuit inputs to cause particular
behaviors inside? Tests are usually planned by repeatedly refining the goal of causing
a specific internal behavior until the problem can be solved by direct action on the

't inputs. Often a newly proposed subgoal conflicts wth previous subgoals,
forcing the test generator to backtrack and try again. This alternation of search and
backtrack is characteristic of planners in general and test generators in particular.

This strategy is nefficient when solutions are infrequent and there is little guidance
available to lead the test generator to them quickly. Unfortunately, test generation for
complex, sequential circuits seems to be such a stuation: a test generator is likely to
propose and retract many potential solutions before finding one that meets all of the
constraints 'imposed by the circuit structure and behavior. The difficulty of finding
solutions is compounded by the potentially hgh cost of ruling out -pro-posed solutions,
since the test generator may have to reason about the circuit far backward or forward
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in tme before discovering a constraint that causes it to backtrack.

It 'is however possible to avoid this pitfall if the circuit executes a small number

of operations. For crcuits in this class, an effective planning strategy is to take the

't operations as the planner's primitive actions and to simulate them looking for

patterns of 'Internal activity that could prove useful during testing.

This so-called simulate and match strategy turns goal-refinement planning on

its head. Instead of proposing a behavior that tests a component and then asking "is

this behavior achievable 'in the context of the surrounding circuitry?" this technique

proposes a behavior known to be achievable and asks "is this behavior useful for

testing anything?" The approach is essentially an effort to focus search on behavior

known to be achievable rather than on potentially achievable behavior that must be

verified via complex reasoning. The result can be a sharp reduction in the search
necessary to achieve testing goals.

Identifying known-achievable behavior by smulating 'it 'is only practical for prob-

lems that have relatively few primitive actions, i.e., few operations at the crcuit

interface. Here we take the primitive actions to be executing circuit operations (e.g.,

instructions) rather than the more fine-grained actions of controlling and observing

to individual crcuit 1/0 pins used by traditional test generators. This is the sub'ect

of the designed behavior heuristic, the last ma or idea upon which the test generator
is built.

4.3.1.3 The Designed Behavior Heuristic

Test circuits without going outside the behavior they were designed to per-

form. - Gordon Robinson

This statement is the result of much experience writing test programs. It says

essentially that one need not do anything odd or ill-formed to a circuit 'in order to

test it. Using this heuristic, a test generator can assemble tests out of standard
circuit operations, albeit wth carefully chosen parameters, and need not reason in

detail about controlling each input wire individually. This can reduce the amount of

search necessary to generate tests.

This heuristic 'is also useful as a problem decomposition strategy. If the circuit

under test is in turn a component in a larger system, then tests that use standard

circuit operations are likely to be achievable 'in the larger system. Tests that fall

outside the standard operations, i.e., that do not meet the crcuit's communication

protocols with the rest of the system, are extremely unlikely to be achievable.
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The Designed Behavior Heuristic is an integral part of DB-TG, and in this chapter,
we take its use as a gven. In chapter 5, we reexamine this heuristic and consider its
implications in more detail.

4.3.2 Structure of the Program

Figure 42 shows the structure of DB-TG. The boxes in the figure represent ether
processes or databases and the arrows represent queries and responses. DB-TG follows
the usual divide and conquer approach to test generation: (i) work out how to test
each component as if it were in isolation, then (ii) work out how to execute these
component tests acting only on the circuit 'Inputs and outputs. In more detail, DB-
TG follows these steps to generate tests for a circuit-.

1. Pre-load the operation relation database by simulating the behavior of the cir-
cuit on each of its operations and recording what operations the components
execute. The operation relation database describes known-achievable patterns
of activity inside the circuit. (The crcuit designer can also add entries to this
database.)

2. The test generation top level steps through the components. For each compo-
nent 'it looks up the component type in the lbrary and fetches the corresponding
component test, which 'is a procedure. It then "runs" the test.

3. Component tests capture expert how-to-test knowledge. When run, they try
to work out how to test a component 'Inside the crcuit. The most primitive
kind of component test is expressed in terms of a test operation that the com-
ponent must be able to execute and specific test data for the parameters of the
operation. Other component tests are combinations of primitive tests.

4. A primitive component test finds an instance of the test operation in the opera-
tion relation database and extracts the relations between that 'Instance and the
circuit operation that caused t.

5. It then substitutes the test data into these relations and solves for the parameters
of the circuit operation. If successful, this process converts the component test
from one expressed in terms of component operations to one expressed in terms
of directly executable circuit operations.

The test generator works through these steps in order and always passes informa-
tion forward from one step to the next, never backward. If it is impossible to solve
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Figure 42: DB-TGs structure. The boxes are either processes or databases and the
arrows represent queries.
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for the parameters of the crcuit operation, then the test generator backtracks and
searches for other 'instance of the test operation to use. if t cannot find another, then
it fetches another component test. No information other than failure passes back from
later subproblems to earlier ones. Also, even though the operation relation database
exists at the time the component test is fetched, the database is not consulted.

This limitation on the 'Information flow between steps 'is a smplification: examin-
ing the operation relation database can help to select component tests that wll pass
the later steps or can help to design component tests on-the-fly. This elaboration on
the basic test generator is described in hapter 6.

This broad outline of how the test generator works omits several subtleties that
we get to later. Frst, we describe how component tests are represented for use by
this test generator. Then we describe more precisely what these operations and the
relationships between them are and how they are used to generate tests. Section 47
describes how a test generator can compute these relationships given descriptions of
circuit structure and behavior. We illustrate each idea as we come to it by working
through the problem of testing the ALU's addition operation.

4.4 The MAC-1 Microprocessor

Throughout the rest of this chapter, we expand on the example of testing a processor's
ALU. To make the discussion concrete, we introduce a smple but fully functional mi-
croprocessor from [tanenbaum841 (see figure 43). This processor, called the MAGI,
executes a conventional set of instructions, including loading and storing the contents
of its single accumulator, adding and subtracting from the accumulator, and stack
operations. The central portion of the crcuit is a 16-bit-wide datapath. The right-
hand portion is a microcode sequencer whose ROM holds 80 lnes of microcode and
implements 23 'Instructions. The address and data busses and their associated signal
lines are the only primary inputs and outputs. All 'Internal nodes are 'inaccessible and
must be controlled 'indirectly through ntermediate components.

The MAG I 'is a fairly simple crcuit, yet 'it 'Illustrates many of the difficult problems
in test generation: (i) it 'is highly sequential, (ii) it has to be tested from its bus
interface, (iii) no detailed structural model 'is available, so we cannot use a technique
which requires, for example, a gate-level description and (iv) the MAC-1 has several

'Tanenbaum's textbook does not contain a detailed gate-level model; only the block diagram
shown. Although I have constructed a gate-level model in order to measure the test generator's
performance in the accepted way, the test generator does not use this model.
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FI'gure 43: The MAC-1 Microprocessor (some detail has been suppressed)

testability problems.

This circuit is described to the test generator in three parts: (i) a schematic spec-
ifying how components are connected, (ii) behavioral descriptions of the components
for use in the smulator described later, and (iii) one procedure per operation that
interacts wth the circuit during smulation to cause an operation to occur.

4.5 Component Tests

DB-TG solves the component test problem by fetching expert how-to-test knowledge
from a library. This lbrary was written by debriefing a test expert (Gordon Robinson)
and contains exercises that the expert makes components perform to test them. The
central issue here is how the expert's knowledge is represented for use by the test
generator.

DB-TG uses operation relationships to embed component tests, so the test repre-
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sentation is naturally based on component operations. There are two knds of com-
ponent tests: primitive tests and compound tests. A primitive test describes how to
exercise a single component operation, for instance a REGISTER/LOAD operation

. .t.or an ALU/ADD operation. Compound tests are procedures that assemble prints ive
tests in order to exercise a component more fully.

4.5.1 Primitive Tests

Figure 44 shows a primitive component test capturing the expert's method of testing
16-bit carry-chain adders.' This test wll be used to test the addition operation f
the MAC-I's ALU.

A primitive test has three parts: a test operation, test data, and a fault coverage
description. The test operation specifies which component operation wll be exer-
cised, and the test data supplies parameters for that operation. Thus a primitive
test is a specification to execute one component operation repeatedly. The number of
repetitions depends on the amount of test data supplied.

How well a test covers faults 'in a component depends upon the component imple-
mentation. Thus a fault description may have structural preconditions. For instance,
the adder test will cover all stuck-at faults 'if the adder is implemented as a carry chain
but will not detect all faults 'in a carry-lookahead implementation. This knowledge,
expressed 'in English in the figure, is given to the program 'in a simple rule language.
The test generator reports to the user fault descriptions for every primitive test that
it successfully embeds.

When to use a particular component test 'is decided by a compound test, described
next.

4.5.2 Compound Tests

Compound tests are collections of primitive tests that, taken together, exercise a
component fully. In the current lbrary there is one compound test per component

2Adding these eight pairs of numbers reveals any stuck-ats in a 16-bit carry-chain adder. To
demonstrate this to yourself, consider the effect of adding these numbers on the single-bit adders
inside a carry chain. Recall that a single-bit adder has three bits of input: two data inputs and one
carry input. These eight pairs exhaustively cover all eight possible input combinations. A test expert
created these pairs by cleverly interleaving exhaustive tests for each of the single-bit adders into a
test for the larger adder that requires no extra additions. The method of interleaving generalizes to
carry chain adders of arbitrary length.
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?Al ?A2

(a) What the test looks like

(b) Test Data

IF the adder is implemented as a carry chain

THEN all SSL faults will be detected

(d) Fault Descfiption

ADD( ADDER, ?Al, ?A2. ?S )

(c) Test Operation

Figure 44: A primitive test for an AL Us addition operation. (a) shows what the
behavior being tested would look like to a person, (b), (c) and (d) form the test
generator's description: (b) is represented as a table datastructure, (c) is represented
as a Prolog program that can find test operations within simulation traces of circuit
behavior (described later), and (d) is canned text that is part the DB-TG's output.
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To test an ALU, test each of its operations.-

1. Test the-alu-executing-a-noop-operation like a DATAPATH.

2. Test the-alu-executing-an-add-operation like an ADDER.

3. Test the-alu-executing-a-boolean-and-operation like a parallel collec-
tion of AND gates.

4. Test the-alu-executing-a-boolean-not-operation like a parallel collec-
tion of NOT gates.

Figure 4: The ALU Compound Test

type. Each compound test is 'Implemented as a Prolog procedure that can either
ask for primitive tests to be embedded into the circuit, call other compound tests
as subroutines. Compound tests can decide at runtime which subroutines to call or
which primitive tests to embed. In principle, they can do arbitrary computation to
make these decisions. In the current 'Implementation, they make simple choices based
on the crcuit structure around the component under test.

This very general mechanism 'is used in several specific ways. One way is to
implement a boolean combination of primitive tests, 'i.e. "embed primitive tests A and
B" or "embed A or B. Another is to express a preference between primitive tests, for
example 'Try to embed A. If that fails, then try B." A third use is to choose among
primitive tests based on local examination of the circuit structure.

Figure 45 shows a compound test for the simple type of ALU that appears in the
MAG 1. This ALU 'Implements four functions: NOOP, ADD, AND, and NOT. The
actual compound test is mplemented in Prolog but 'is expressed in English here for
clarity.

This compound test is fairly smple and its structure 'is a common one for com-
ponents that have multiple operating modes. The test exercises each ALU operation
by treating the ALU as smpler knd of component and referencing a simpler test.
Since the library already contained tests for DATAPATHs and ADDERs, the ALU
test calls them as subroutines by specifying a mapping between the ALU inputs and
outputs and the 'inputs and outputs of DATAPATH and ADDER.
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4.5.3 Summary

Short and effective tests are known for many common components. This "how-to-test"
knowledge represent the compiled and optimized expertise of the testing field. It 'is
compiled and optimized in the sense that 'it 'is the end result of often subtle reasoning
about the structure and behavior of common components and design styles. Once
someone has worked out and published a clever test, it becomes part'of the background
of knowledge that experts can bring to new testing problems. Unlike classical test
generation algorithms, this kind of knowledge can be captured 'in our component test
representation and brought to bear on testing problems by DB-TG.

Primitive tests, organized around component operations to facilitate embedding,
capture expert testing knowledge in a rgid format smilar to a set of test vectors. Yet
much of an expert's knowledge is less structured, more context dependent or more
procedural 'in nature than can be expressed with primitive tests alone. Compound
tests are a trap door, a procedural method of expressing the nuances of how-to-test
knowledge.

The component tests of both kinds are the real drivers of this test generator. For
each component the top level smply dispatches to the appropriate component test.
The test "knows" how to exercise the component, but it cannot do so drectly because
the component 'is inaccessible inside the circuit. Instead the test must "rewrite" itself
into an equivalent test expressed n terms of the circuit inputs and outputs. This
process of rewriting" 'is the purpose of path sensitization and line justification in a
conventional test generator. DB-TG does this dfferently using operation relations.

4.6 Operation Relations

As a component 'is a part of a crcuit so is its behavior a part of the circuit's behavior
and its operations a part of the crcuit's operations. Two kinds of part-whole relation-
ships have proven useful for solving this problem: causal connections and parameter
relations. In the example above, executing an addition instruction causes the ALU
to add, therefore we say the processor's addition instruction and the ALU's addition
operation are causally connected. Parameter relations hold between the parameters
of two causally connected operations.' In the example there is a time during the
execution of an addition instruction when the ALU does the real work. At that time,

'In general, the parameters of any two operations can be related, either by coincidence or as
consequences of some shared antecedent. However, all of the parameter relationships we will use in
this chapter lie between two operations one of wich causes the other.
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the two values being summed by the addition nstruction are the same two values
being summed by the ALU. We say the parameters of the addition instruction and
those of the ALU addition operation are related, in this case, by identity functions.
We use the term operation relations to refer to both the causal connection between
two operations and any relationships between their parameters.

How might a test generator represent operations and relations in order to reason
about them? We begin with operations, then move to relations between operations.

4.6.1 Representing Operations and Operation Relations

Operations are represented as frames comprised of five slots: (i) the relevant state
of the system before the operation occurs, (ii) the input of the system during the
operation, (iii) the output of the system during the operation, (iv) the relevant state
of the system after the operation, and (v) mathematical relationships between values
occurring in the previous four slots. Here is the MAC-I's SUM instruction, which
fetches a value from memory, adds it to the accumulator and stores the results back
in the accumulator. We use the notation device/name to refer to an operation, e.g.,
MAC-1/SUM. Variables are preceded by s.

MAC-1/SUM Before State: Accumulator ?ac
ProgramCounter ?pc

Inputs: DataBus (ADD ?addr)
DataBus Mata

Outputs: AddrBus ?pc
AddrBus ?addr

After State: Accumulator ?Sum
ProgramCounter ?pcl

Relations: ?.Sum Mata ED16 ?ac
?Pcl ?Pc (D16

I

i

This frame showsinput / output activity and state changes during MAC-1/SUM.
In this case, the contents of the Accumulator and the ProgramCounter are relevant
and their values are labeled ?ac and ?pc respectively. At the beginning of the instruc-
tion cycle, the contents of ProgramCounter are written to the address bus (AddrBus =
?pc) and the memory responds with the next nstruction (DataBus = (ADD ?addr)).
(ADD ?addr) represents an addition instruction with a variable in the address field.
The MAC-1 then initiates a memory fetch by writing ?addr to the address bus Ad-
drBus = ?addr) and the memory responds with the data at that location (DataBus =



?data).4 Finally, MAC-1 adds ata and ?ac and stores the sum in the accumulator.
The after state shows this sum and the incremented contents of the program counter.
If an operation does not involve state changes, then we orr�t the before and after
states as 'in the ALU's addition operation:

ALU/ADD Inputs.- OP ADD
IN-1 ?inl
IN-2 ?in2

Outputs: OUT ?output
Relations: ?output ?I'nl D16 ?in2

This frame says that during an ADD operation the ALU's control input (OP) sees
a value (ADD) telling it to compute the sum of the values on its two data inputs (?inl
and ?in2) and put the answer on the output (OUT).

Each of'these frames describes the corresponding operation in its most general
form. They describe what can happen 'in terms of a set of internal constraints: the
relations between the parameters, e.g., ?sum = ata (D16 ?ac. Because 'Instances of
components sit inside circuits, instances of component operations also have external
constraints on what can happen. These external constraints correspond to relations
between the parameters of a component operation and the parameters of a circuit op-
eration. Here are the relations between MAC-1/SUM and the 'Instance of ALU/ADD
that actually does the work:

Mata ?.'nl
?ac ?in2

?sum ?Output

This says that the n2 parameter of this instance of ALU/ADD 'is equal to the ?ac
parameter of MAC-1/SUM and so on for the other parameters. These relationships
are enforced by the structure and behavior of the circuit.

This set of operation relations is unusual 'in that it is particularly smple (making it
a good example). In general, operation relations can involve combinations of boolean
and arithmetic functions, election, bit-field extraction, concatenation and the like.
While ot always this simple, operation relations often involve straightforward for-
mulas that are simpler to reason about than the structure of the circuit. (This issue
is discussed further in chapter 5.)

4The detailed order and timing of bus events is not specified in these descriptions because it is
not needed here. Order and timing is present in and only used by the procedures for driving the
simulator described later.
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4.6.2 Using Operation Relations

The operation relations between MAGI/SUM and ALU/ADD can be used to trans-
form component tests for the ALU which a tester cannot manipulate drectly) into
equivalent tests expressed in terms of the MAGI Bus (which the tester can control
directly). The operation relations are useful here because they provide a direct link
from desired actions inside the circuit to actions directly executable by the tester
hardware. Figure 46 illustrates this link.

Component Test Operations

(executable only indirectly)

Circuit Operations

(directly executable)

Operation Relations

. I

Figure 46: Operation Relations are a direct link between the goals (i.e., desired compo-
nent operations) and the primitive actions (i.e., directly executable circuit operations).

DB-TG performs this transformation by substituting component test data 'Into
the component side of the operation relations and then solving for the parameters
of the circuit operation. Carrying the example straight through, we would show this
transformation next. However, note that there are other 'Instances of ALU/ADD
that occur during MAGI/SUM, e.g., one increments the program counter, that have
different parameter relations wth the instruction. The key step that people make
when generating tests for this ALU 'is to associate the SUM instruction wth this
particular instance of ALU/ADD, the one that does the work.

In order to focus more closely on the key step of the example, we detour to show
where the program obtains its database of operation relations. When we return to the
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example, we show how the test generator finds this particular 'Instance of ALU/ADD
and how the component tests are transformed.

4.7 Computing Operation Relationships via Simulation

Operation relations can be supplied to a test generator 'in several ways depending
upon the tvT)e of crcuit and the design environment the test generator sits 'In. For
sequential crcuits that execute relatively few operations, our solution is to compute
the operation relationships using symbolic smulation of crcuit behavior.

Symbolic smulation 'is the process of propagating variables and algebraic expres-
sions as well as numbers through the crcuit. Doing thi's allows a single simulated
operation to stand for an equivalence class of similar operations. For example, a
LOAD nstruction with symbolic data can stand for a LOAD of any specific constant.
Using symbolic simulation i's 'important for two reasons: (i) the algebraic expressions
that propagate through the circuit are what we turn into operation relations and (ii)
simulating equivalence classes of behavior rather than specific behaviors reduces the
number of simulation runs needed and the sze of the database that holds the results.
First we describe how the simulator works and then we show how operation relations
are extracted from the results.

4.7.1 How the Simulator Works

DB-TG uses an event-driven simulator that is 'Inspired by a similar program called
MARS [singh83]. It takes as 'Input a crcuit schematic, behavioral models of the
components and descriptions of the 'instructions and produces as output a set of sim-
ulation traces, called behavior graphs, that describe what happens 'inside the crcuit
as the instructions execute. These behavior graphs are an explicit representation of
the circuit's designed behavior i.e., the patterns of activity 'it was designed to carry
out.

Before starting, the simulator initializes all memory cells in the rcuit. In order
to simulate the execution of an instruction in the iddle of an arbitrary instruction
stream, most of the memory cells are pre-loaded with variables. These variables
correspond to the values that would have been left by a previous instruction (had that
instruction been smulated too). For example, the accumulator is pre-loaded with ?ac
and the stack pointer is pre-loaded wth ?sp (the variable names are a debugging aid
and are specified in the circuit description).
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Certain registers are special and are pre-loaded with values that are contained in
the circuit description. The MAC-1 MicroProgram Counter (uPC) is special because
'its value defines the instruction cycle. uPC 'is pre-loaded with a value corresponding
to the beginning of an instruction cycle which subsequently causes the processor to
execute an instruction when the simulation starts. uPC also finishes each simulation-
run with that same value. This register is the only special case 'in the MAC-1.

As the smulator runs, the crcuit model 'Interacts with a program that emulates
the environment in which the crcuit sits. For the MAC-1, this program drives the
circuit clock up and down and responds to bus cycles. The circuit description also
contains one of these programs per instruction.

The simulator 'is event-driven: when the value on a node changes the components
that use that value "wake up," decide what operation they should perform and recom-
pute their outputs accordingly. Each component assembles an algebraic expression
describing its operation and one or more expressions describing 'its output values as
functions of 'Its 'Input values. These expressions are then run through a set of algebraic
simplification rules and written to the outputs, thereby waking up other components.

Figure 47 shows part of the behavior graph for the MAC-1/SUM operation. The
accumulator contains ?ac at time 0, ?data is read from the databus at tme 56 and
the sum of ?ac and ?data 'is written into the accumulator at time 72. Here, the
ALU executes an ADD operation at tme 68. It receives two expressions ?ac and
?data as 'Inputs, adding them under the control of its operation 'Input and outputs
the expression (?data E16 ?ac). The value on the operation 'Input (add) beginning at
time 68 comes from the microprogram ROM and ultimately from the microprogram
counter.

Behavior graphs are actually 'implemented wth two levels: one, describing detailed
propagation, is built by repeatedly composing the component functions to build up
large expressions. A second level results from the structure of the simplified expres-
sions that are propagated through the rcuit. Much of the benefit of behavior graphs
lies n the observation that these algebraic expressions are an alternative representa-
tion of dataflow that is often simpler than the circuit structure.

Figure 48 illustrates this idea. Consider a crcuit that smply moves values from
one end to the other wthout changing them (at a high level of abstraction, many
communications networks can be viewed this way). The lower lne of dots in the figure
corresponds to a value propagating step-by-step through the crcuit. The upper level
corresponds to simplified values associated with the circuit nodes. To take a step, say
from node to node 2 the smulator composes the already simplified value on node
I (labeled a) with the component function connecting node to node 2 (labeled b)
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?data 66

56

D 0

7data + 7ac

I - - -

+ 7a 68

Data Source or Sink

Simulated Component
Operation

---. Suppressed Detail

Figure 47: The Behavior Graph for MAC-11SUM. Time and data flow from left to
right throu h the flaure. The value of a node is timestamped, e.g., a node value of
data �time indicates that the node changed to that value at the simulated time. Node
values persist until they are caused to change by other circuit activity. Portions of the
graph have been omitted; the full MA C-11SUM behavior graph contains roughly 500
nodes corresponding to components performing operations or nodes changing value.
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and smplifies the result (labeled c).

Simplified Value Level

Detailed Propagation Level
1 2

Figure 48: Behavior graphs have two levels

A Simplified Link

Mata + 7ac
?data O'

bus a

alu Shift ac
7ac

ac ald

Mata + 7ac
7data W 1

bus MUX

ald Shift ac
?ac

ac alu

Figure 49: (Part of) the two levels for the MA C-11SUM behavior graph

Since in this case a and b are identities, then c is one too. At the level of the

lisp implementation, c 'is a pointer directly to the circuit 'Input (actually to the value

that was placed there at the start of simulation). The directness of this link is key:

simulation and simplification has "recognized" that this circuit 'is simply moving a

value around without changing it. Thus, by using the smplified values, little work will

need be done later to propagate back from a component during test generation. Note

that for any circuit the smplified values are never more complex than transcriptions

of the circuit structure assuming that the rewrite rules never make values more
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complex).

Figure 49 instantiates this idea for the ALU example. The lower half of the figure

shows ata and ?ac propagating through the crcuit to the ALU inputs where they

are added and propagated to the accumulator. The upper half of the figure shows the

simplified values; note that the two steps taken by ?data from bus to mux to alu are

simplified to one step.5

4.7.2 Continuing the ExampIe: Extracting Operation Relations

Now we return to the example of testing the ALU addition operation and the perspec-

tive of operation relations. The ALU component test calls the ADDER component

test and specifies a mapping between ALU I/O pins and ADDER 1/0 pins so that the

ADDER test knows how to embed itself. The ADDER component test is primitive

containing a test operation and test data. It searches the operation relation database

for an instance of ALU/ADD that can be used to create a test.

The operation relation database shown 'in figure 42 consists of two sections: (i a

database of frames explicitly describing operations and operation relations like those

shown earlier, and (ii a database of behavior graphs that implicitly contain operation

relations. When a component test looks for instances of component operations, it

searches the first database. If that failsI it then searches the behavior graphs.

The purpose of the first database is to hold "advice" from the circuit designer,

the test engineer or some other source in the form of useful operation relations. In

some cases, this advice is sufficient for generating tests and symbolic simulation is

unnecessary (the simulator is run on demand, triggered by search queries). If searching

the frame database fails to turn up anything, the DB-TG runs the smulator and uses

the behavior graphs to derive the operation relations.

Causal connections appear in the behavior graphs mplicitly: the circuit operation

is causally connected to every component operation that appears 'in its behavior graph.

Therefore, to find circuit operations that cause the ALU to add numbers, we can search

each behavior graph for 'Instances of ALU/ADD.

Extracting parameter relations from a behavior graph is more 'involved. (Suppose,

as it searches the behavior graphs, the component test comes across the instance of

ALU/ADD shown in figure 47.) There are two interesting cases: (i) relations between

'Several "unessential" components have been omitted from the MAC-1 figure to simplify the
discussion. For example, there are latches on the outputs of the register file. These components are
reflected in the full behavior graph with a correspondingly greater reduction in steps.
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circuit inputs and component inputs, and (i) relations between circuit outputs and
component outputs.

Parameter relations between circuit inputs and component inputs are the simpli'_
fied values appearing on the component 'Inputs, e.g., ?ac and ?data. More precisely,
the smulated values denote functions of the primary inputs, and the parameter rela-
tions result from setting the expressions equal to the component's internal names for
values on those inputs. For example:

General Case This Example
fj(CircuitInputs = ComponentInput, ?data ?inl
f2(Circuiffnputs = ComponentInp&2 ?ac ?in2

Parameter relations between circuit inputs and component inputs tend to be simple,
because the values are in smplest form (with respect to the rewrite rules).

Parameter relations between component outputs and circuit outputs are more diffi-
cult to extract from the behavior graph. We solve this problem using the unsimplified
versions of each node value, i.e., the lower level of the behavior graph. We need the
unsimplified versions, because they contain complete records of how they were pro-
duced, i.e., what values were combined to produce them and how those values moved
through the circuit.

To compute the relation between a crcuit output and a component output, we
first fetch the unsimplified expression describing the crcuit output's value. In this
case, the circuit output 'in question is the data bus. Next, we find the subexpression
corresponding to the component output, 'in this case (?data (D16 ?ac), and substitute in
a variable for this expression. At this point, we have a complex expression describing
the parameter relationship we want. We then pass it through the simplifier. Here 'is
the result:

General Ca8e This Example
fl(Componentoutputs = CircuitOutputj ?output ?sum
f2(ComponentOutput8 = CircuitOUtPUt2

The output of a particular component operation can be related to values on several
circuit outputs. DB-TG decides what circuit outputs it mght be related to by walk-
ing forward through standard dependency records contained in the behavior graph.
Connection va the dependency records is a very weak, necessary condition on the
component output value and the crcuit output value being related. Finding the right
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subexpression nside the unsimplified circuit output value is a stronger condition, and
finding the variable after smplification is a sufficient condition.

Computing the relation between a circuit output and a component output is some-
what expensive, so DB-TG does it on demand, i.e., only when a particular instance
of a component operation is identified as potentially useful and the input parameter
relations have already been handled.

4.8 Solving the Embedding Problem

Transforming the operations specified by a primitive component test into circuit op-
erations 'Involves solving a set of simultaneous equations. This process occurs in two
steps: (i) substitute placeholders for the test data into the operation relations and
solve for the parameters of the rcuit operation and (ii) repeatedly substitute in lines
from the actual test data. Operation relations can contain combinations of boolean
and arithmetic functions, selection, bit-field extraction, concatenation and other com-
binators that appear in digital circuits, so solving for the crcuit operation parameters
can be expensive (but no worse than propagating through crcuit structure). Doing
this once with placeholders rather than repeatedly wth each line of test data saves
considerable time. 6

After substituting in placeholders ADDEND-1, ADDEND-2 and SUM-1 for the
test data, the equation solver solves for crcuit operation parameters like so:

General Case This Example
fi(CircuitInputs) = A3DEND-1 Mata ADDEND-1
f2(CircuitInputs) = ADDEND-2 ?ac ADDEND-2

f3(SUM-1) = CircuitOutpu� SUM-1 ?.sum

Values for the crcuit 'Inputs are computed by 'Inverting f and This task 'is
accomplished by a set of rules extending the Prolog unifier with an equality theory,
i.e., a set of rules describing under what circumstances pairs of algebraic expressions
are equal. The pairs of expressions are the left-hand and rght-hand sdes of the
parameter relations. To invert f and f2, these rules take them apart level-by-level,
moving parts of the expression from the rght to the left. These functions need not
be one-to-one in general, so the program must make choices about how to do the

'Sometimes, however, general solutions cannot be found for the placeholders where they could be
found for the specific test data. This issue is discussed in section 53-1-4.
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inversion. Since the functions may share inputs, choices must be made consistently.
This process can be viewed as a kind of line justification through the structure of
these algebraic expressions this 'Idea is expanded in section 54.1).

The value(s) for circuit output(s) is produced drectly by substitution, however,
DB-TG must check that the output(s) carries enough information to distinguish be-
tween a working and faulty component. The program currently checks the stronger
condition that the output value be 'Invertible i.e., that 'it carry complete information
about the component output(s). It does this check using the expression inversion
mechanism described above.

Here is the result of solving for ?ac, ?data and ?.sum and substituting into MAG
I/SUM. This instance of MAC-1/SUM ders from the generic description of this
operation (page 101) in the slots marked wth where placeholders for the actual
test data appear.

MAC-1/SUM Before State: Accumulator ADDEND-2
Program.Counter ?PC

inputs: DataBus (ADD ?addr)
DataBus ADDEND-1

Outputs: AddrBus ?PC
AddrBus ?addr

After State: Accumulator SUM-1
ProgramCounter ?pcl

Relations: ?sum Mata (D16 ?ac
?pcI ?PC (D16 1

Before continuing with the example, consider what would have happened 'if the test
generator had found one of the many other 'Instances of ALU/ADD 'in the behavior
graphs. Most of the other instances 'increment the program counter. A constant I
appears at one of the ALU inputs 'in these instances. Working with the operation re-
lations extracted from these 'Instances, the equation solver fails (i.e., ADDEND-1 = 
cannot be solved because ADDEND-1 must stand for any possible test data), hence
test generator cannot use these instances and continues searching. Only a few in-
stances of ALU/ADD are general enough to work: one instance that we have been
using as an example is 'Inside MAGI/SUM and several other instances lie inside in-
structions that do address computations. We continue the example with the one 'in
MAC-1/SUM.
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4.9 Planning Control and Observe Sequences

At this point, the crucial steps have been taken, but the test generator has not quite
finished designing a complete test. The test generator has ADDEND-2 coming from
the accumulator and SUM-1 going there, but the accumulator 'is neither directly
controllable nor drectly observable. Extra operations must be used to control and
observe it.

The answers are smple for a person: the LOAD instruction can put ADDEND-2
into the accumulator and the STORE instruction can write SUM-1 to the bus where
the tester can observe it. How mght a test generator identify these instructions as
the relevant ones and add them to the SUM instruction to complete the test?

In DB-TG this 'is the task of the State Planner. The State Planner generates
sequences of operations (in this case sequences of instructions) that set up the crcuit
state so that the single test operation will start with the rght data. A second ob of
the State Planner 'is to move any results left 'in state registers by the test operation
circult outputs where they can be observed.

The State Planner is 'Invoked when solving the operation relations results 'in at
least one assignment to a state register. In this example, two values were assigned
to the accumulator: ADDEND-2 at the start of the test operation and SUM-1 at the
end of the operation. If solving the parameter relations does not assign a value to a
state register, then that register's value does not affect the test, hence its value need
not be controlled or observed.

The State Planner searches through the space of nstruction sequences to find
ones that move data around properly. It does this using simple STRIPS-like planning
technology [fikes7l]: the planner is implemented as a bounded depth-first search that
moves forward in time to observe state registers and backward in tme to control them.
The interesting issue is how we supply the planner with descriptions of its operators.

One straightforward solution is to gve the program another library that describes
the overall effect each operation has on the crcuit's state registers. This library
would describe circuit behavior at the familiar register transfer level. This 'is what
we do, except that DB-TG itself constructs the library by summarizing the behavior
graphs. Summarization is done 'in two stages: (i) determining which state registers
are relevant, and (ii) determining the relationships between values in those registers
and values on the circuit 1/0 pins.

State registers are considered relevant wth respect to a particular set of circuit
operations. The program separates the relevant registers from the irrelevant ones in



order to reduce the amount of 'nformation the state planner must handle.

A state register is considered relevant 'if two conditions hold. First, some output of
some operation must depend upon the value of the register. If no output ever depends
on the register's value, then the register can safely be 'ignored. This can occur when
considering a subset of the circuit operations, e.g., the stack pointer is 'Irrelevant from
the perspective of the simple arithmetic instructions. Second, the register must hold
different values at the beginning and at the end of at least one operation. Note that
this is more restrictive than saying the register's value must change. This condition
selects registers whose value changes can be observed at the boundaries of the rcuit
operations: register changes inside the crcuit operations are abstracted away. For
example, this condition abstracts away the registers in the MAC-1's microengine
since they return to their 'instruction-fetch state at the end of every instruction.

Given a processor and its instruction set, these two conditions select the
programmer-accessible registers. Other registers 7in particular those n a micro I

are abstracted away. Once the program identifies the relevant registers, determining

the relationships between register values involves collecting the algebraic expressions

appearing on circuit outputs and those in relevant registers at the end of each simu-

lation run.

Figure 410 shows an Effects Summary of MAC-1/LOAD. Values that enter the

circuit 'Inputs are at the top of the figure and values that leave the outputs are at

the bottom. The values of state registers before the 'Instruction starts are on the

left and their values after the instruction finishes are on the rght. The dashed lines

indicate how values move and are transformed during the instruction. For example,

the program counter's value 'is incremented and is also written to an output, while

the stack pointer remains unchanged. It 'is coincidence that 'in this 'Instruction no two

values are combined (e.g., added), so none of the dataflow lnes join together. The

summaries include 'ust the information in the figure, i.e., te relevant inputs, outputs

and state registers, plus the actual functions that transform the values as they move.

The visual layout of figure 410 'is intended to give a feel for what this process

is like. Notice that all dataflow is downward and to the rght. If the test generator

has left any values 'in state registers (like SUM-1 n the accumulator) then the state

planner attempts to fit together a sequence of summaries such that a continuous line
is formed from the state register down and right to an output. Similarly, if any values

are required to be in a state register at the start of the test (like ADDEND-1 in the

accumulator), the planner fits together a sequence of summaries that allow the value

to flow down from one of the inputs.' Figure 411 illustrates this process.

'Some operations can also create some values internally, hence these values need not come all the
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The state planner must handle one final detail as it fits summaries together: 'it must
ensure that the continuous lines running from 'Input to state register and from state
register to output correspond to invertible functions. Tis requirement guarantees
that the placeholder can be transformed to appropriate values on the inputs and
outputs by "pushing them through" the continuous lines. Requiring an invertible
function on the output lines 'is more strict than necessary, but will help when the test
generator is extended in chapter V

Figure 412 shows the result of state planning for the example of testing the ALU.I
In this example, the control and observe sequences are only one instruction long. Both
sequences involved identity functions, so ADDEND-2 and SUM-1 appear unchanged
in the LOAD and STORE instructions (marked by s)-

This sequence of three instructions 'is a test for ALU/ADD. We oit the final step
of substituting in the test data (from figure 44). Were we to do this, there would be
24 circuit operations. Note that this solution generated by the program is the same
one that is obvious to human test experts but not obvious to classical test generation
methods.

4.10 Experimental Results

The MAC-1 has 16 components (not all of which appear in the simplified block dia-
gram) equivalent to roughly 6500 gates. Each instruction is approximately 50 clock
cycles long 9 and takes about 10 seconds of real time on a Symbolics 3640 to simu-
late. Test generation for this circuit takes 6 mnutes, including both the time taken
for successfully creating tests for some components and failing to do so for others.
Figure 413 highlights the components for which the designed-behavior test generator
successfully 'Instantiated lbrary tests.

Fault simulation reveals that the 'Instantiated tests from the component library
cover 85% of the gate-level stuck-at and open faults in the MAC-1. Measuring this
takes a commercial quality fault simulator 30 mnutes of cpu time on a SUN-2 com-

way from an input.
8To achieve fault coverage, the output function must map all erroneous component outputs to

values different from the correct value. If the fault model limits the wrong values the component can
possibly put out, then this function need not be invertible. However, an invertible output function
can provide more information about the nature of a component fault.

'50 clocks is a long instruction cycle. This is due to the lack of circuitry for extracting opcodes
directly and branching to the appropriate microcode sequence in this sample circuit used for teaching.



MAC-1/LOAD Before State: Accumulator ?ac
ProgramCounter ?pc- 1

Inputs: DataBus, (LOAD ?addr)
DataBus ADDEND-2

Outputs: AddrBus ?pc-1
AddrBus ? addr

After State.- Accumulator ADDEND-2
ProgramCounter ?pc

MAC-1/SUM Before State: Accumulator ADDEND-2
ProgramCounter ?pc

Inputs: DataBus (SUM ?addr)
DataBus ADDEND-1

outputs.. AddrBus ?. p c
AddrBus ?addr

After State: Accumulator SUM-1
ProgramCounter ?PCED161

MAC-1/STORE Before State: Accumulator SUM-1
ProgramCounter ?PCED161

Inputs: DataBus (STOD ?addr)
Outputs: AddrBus ?PCG)161

AddrBus ? addr
DataBus, SUM-1

After State: Accumulator ?data
ProgramCounter '?PCG)162

Figure 412: Final embedding of a test for AL UIADD
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puter (therefore generating these tests takes substantially less time than fault simu-
lating them). The tests actually catch somewhat more faults than they are designed
for, because exercising components in the datapath partially exercises the sequencer
too.

In a nutshell, the vanilla version of the designed-behavior test generator quickly
instantiates tests for most of the components in the datapath, but 'it fails on the
components in the microsequencer. This 'is good enough to be nteresting - since the
classical techniques do not work for such circuits - this but not good enough to solve
the problem by itself. After analyzing why DB-TG fails, we will look at augmentations
of its basic test generation strategy that raise coverage figures to 97%.

Note that DB-TG successfully tests the datapath despite the control and feedback
paths betweenit and the sequencer. It 'is not the case that DB-TG fails to control some
components and therefore cannot control other components downstream. Something
more nteresting is going on, and we cover this issue in depth 'in chapter .

Success with the datapath and failure wth the sequencer matches our expert's
intuition about which parts of this circuit are easy to test and which are hard. The
datapath is easy for people to manipulate, and the program finds 'it relatively easy too.
The expert says the sequencer 'is testable with considerably more effort, but should be
modified, if possible, to simplify testing and to reduce the test program's sensitivity
to changes in the microcode. Thus a test generator's failure can be useful: as long
as the test generator successfully handles the "easy" problems, then 'its failure points
out areas of the circuit where design for testability techniques should be applied. For
the origins and further development of this idea, see [wu88].

0
4.11 DB-TG- Additional Details

This section gives some additional details of the implementation.

4.11.1 Modeling and Smulation

We use a smple schematic entry system running on the Lisp Machine to enter
and debug crcuit descriptions. Figure 414 shows the full MAC-1 schematic. The
simulator is tied closely with this graphical system, and we can probe nodes in the
diagram to see their values n a behavior graph, see time histories of single nodes, single
step the simulator seeing all node values and other useful debugging operations.

The simulator model is driven by programs describing how a tester would interact
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MAC- 1 I

Ruffer: HRRK-4-HEN (modified) (need to rp&.-So)

Figure 414 A schematic entry system showing the full model for the MAC-1 proces-
8or.

with the circuit to make 'it execute 'its operations. For 'Instance, the program in
figure 415 specifies how to drive the MAC-I to execute a LOAD 'Instruction. This
program is written '111 simple embedded language that uses multitasking (e.g., if forks
off a process to drive the clock on line 6 and synchronization primitives to 'Interact
with the circuit. The >> function references crcuit nodes by name.

4.11.2 Focusing Search Through the Behavior Graphs

DB-TG focuses the process of searching the behavior graphs in two ways: (i) by not
searching portions of the graphs that cannot contain solutions and (ii) by searching
simple" sets of behavior graphs before more ones.

DB-TG prunes the search space by summarizing features of the behavior graphs
as they are generated and then skipping behavior graphs during test generation that
do not have the appropriate features. The Component Activation Summary lists



120 CHAPTER 4 A DESIGNED-BEHAVIOR TEST GENERATOR

I (def ine-stimulation-pattern (LOAD ?ADDR)

2. (:circuit-name mac-1

3. operat ion-pattern I (LOAD

4. MATA ?data))

S. ((PC ?c) (ADDR ?addr))))

6. (with-clock-process-on-node (>> mac-1 'CLOCK)

7. (tight-sequence

8. (mac-l-read-cycle pc (make-LOAD ?addr))

9. (mac-l-read-cycle addr '?.data)

10. (mac-l-clean-finish))))

A wrapper for read-cycle that specifies which bus nodes it should

look at.

11. (defun MAC-1-READ-CYCLE (address data)

i2. (read-cycle >> mac-1 rd) >> mac-1 laddr) address >> mac-1 'data) data))

The general read-cycle primitive. This function uses

wait-for-node-to-assume--value to synchronize with the simulator.

i3. (defun READ-CYCLE (rd-node addr-node address data-node data)

i4. (wait-for-node-to-assume-valne rd-node 0 "Read Cycle All)

is. (pause )

16. (observe addr-node address)

17. (assign data-node data)

18. (wait-for-node-to-assume-value rd-node i "Read Cycle )

i9. (assign data-node Z))

Figure 415: This program specifies how to drive the MAC-1 to execute a LOAD

instruction
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the kinds of component operations that occur within each behavior graph. The pro-
gram constructs a component activation summary immediately after creating each
behavior graph and checks the summary every time it starts to search for a smulated
component operation. If the desired operation type does not appear in a graph's
summary, then the graph need not be searched. For instance, the ALU/ADD oper-
ation appears several times with different arguments in the MAGI/SUM behavior
Iraph, but ALU/INVERT does not, therefore ALU/ADD appears in the summar

9 y
but ALU/INVERT does not, and the program can skip this behavior graph if it is
looking for simulated instances of ALU/INVERT.

DB-TG also focuses search by first looking for solutions using the circuit's simple"
operations, and then trying more and more complex or rare operations. In the MAC-
1, for example, DB-TG first tries to embed tests using the core instructions LOAD,
STORE, ADD, SUBTRACT and JUMP. If unsuccessful, it broadens its search to
include the full instruction set. This strategy focuses search first on smple operations
which are usually sufficient for testing most of a crcuit.

Using a smaller set of circuit operations also simplifies the abstract descriptions
(called Effects Summaries) used by the State Planner to construct sequences of circuit
operations. The omplexity of these descriptions depends primarily upon the amount
of observable state in the crcuit, and the amount of observable state 'in turn depends
on the set of circuit operations that will be used during testing. For example, the
stack register is not affected by or observable via any of the five instructions in the
core set above, therefore the stack register is not observable state from the perspective
of the core instructions. Only observable state is 'Included 'in the Effects Summaries
used by the State Planner. Currently, the user tells DB-TG which subsets of the
circuit operations are useful and 'in which order to try them.

4.11.3 Relationships Between Component Operations

A behavior graph contains relationships between pairs of component operations as well
as between many component operations and one circuit operation. These relationships
between component operations are useful for solving embedding problems involving
sequential components.

When the component under test 'is sequential, it can be critical that the exact
sequence of test operations is executed in order and with no other operations inter-
posed. That is because a lbrary test for a sequential component carefully manipulates
the component's internal state, and extra operations inserted 'in the middle of the se-
quence could render the test invalid. This can even occur when testing a combinational
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component if the library test treats the component as 'if it were sequential, e.g., one
that accounts for faults that could turn a (working) combinational component 'Into
a (faulty) sequential one. For instance, some open-circul't faults 'in MOS circuits can
cause state behavior because floating crcuit nodes can hold charge for a time. The
library tests for multiplexors and several other components account for this possibility.

This kind of restriction is expressed in DB-TC using a compound component test:
the compound test first finds a smulated instance of an appropriate component op-
eration extracts the operation relations and instantiates a primitive test containing
the combinational" test data. The compound test then searches from the simulated
instance forward and backward through the behavior graph to make sure the com-
ponent performs no other operations that mght interfere. It must also examine the
component activation summaries to make sure that the crcuit operations used to
control and observe crcuit state do not interfere either.

Using behavior graphs beyond simply extracting operation relations is reminiscent
of a different view of the designed behavior approach presented in [shirley86]: there
the test generator searchs behavior graphs for patterns of activity that would be use-
ful during testing. These "patterns of activity" were described by predicates 'in a rich
language involving data and timing relationships and the patterns could potentially
match multiple component operations. This thesis, taking a simpler and more drect
approach, emphasizes of operation relations, which are by far the most 'important and
useful kind of "pattern of activity" contained in the behavior graphs. Emphasizing
operation relations also calls attention to the fact that part/whole relationships con-
necting circuit and component operations could potentially come from other sources,
e.g., a design synthesis tool, and not just from symbolic smulation.

4.12 Review of DB-TG

DB-TG can be viewed at two levels of detail. The smpler versioninvolves three steps:
(i) the component test problem: solved here by looking up tests 'in a library supplied
by an expert test programmer- (ii) the operation relation problem: derive relationships
between the component operations mentioned in the test and circuit operations; and
(iii) the embedding problem: transform nternal component operations into drectly
executable crcuit operations using the operation relations. Solving the operation
relation problem is the key step where the test generator derives descriptions of circuit
behavior for later use. The resulting operation relation database captures a "global
view" of crcuit behavior that is abstracted away from much of the detailed step-by-
step dataflow and tming contained 'in crcuit descriptions used by conventional test
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generators.

While any source of operation relations 'is welcome (e.g., hnts from the designer),

we rely largely on computing operation relations by simulation. The smulator uses

circuit schematics and component smulation models that can propagate algebraic

expressions. In the process of refining the algorithm to use simulation, we partially

combine the operation relation problem and the embedding problem. This second,

more detailed version of the method takes the following information as input:

1. A Component Test Lbrary: operations and specific test data supplied by a test

expert

2. Component models for symbolic simulation

3 A Circuit Description consisting of

* A block diagram schematic: component types and interconnect

* A circuit interface specification: programs describing how a tester can drive

the crcuit to cause operations to occur.

and produces sequences of circuit operations as output. The program follows these

steps (see figure 416):

1. Simulate the crcuit's designed behavior: The program simulates the activity

inside the circuit during each of its operations, apturing this activity as a set

of behavior graphs.

2. Summarize the behavior graphs: The program summarizes the behavior graphs

to create a set of abstract descriptions of the input and output of each operation.

3. Embed component tests: For each component in the crcuit, the test generator

tries to embed a test fetched from the component test library. Embedding 'in-

volves (i) searching the behavior graphs for an appropriate 'Instance of a compo-

nent operation, (ii) extracting the relations between that component operation

and the circuit operation that causes it, and (iii) substituting the test data into

the relations solving for the parameters of the circuit operation. If this works,

executing the circuit operation with these parameters will cause the component
operation to occur. The circuit operation 'is now called the test operation.

4. Control and observe circuit state: Sometimes solving the operation relations

causes values to be assigned to a state register. This means that ether the
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Figure 416: Information Flow through the Test Generator

value of the register must be preset before the test operation is executed or that
the register's value must be observed after the test operation has finished. A
simple STRIPS-like planner constructs sequences of operations that control and
observe the circuit state.

4.13 Conclusion

This chapter presented a smple testing problem and argued tat a particular kind of
abstract knowledge about circuit behavior - relationships between circuit and com-
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ponent operations - can help to solve it. This observation formed the foundation of
the DB-TG test generator.

Operation relations were supplied to the program either drectly (e.g., by the
designer) or computed from crcuit structure and component behavior via symbolic
simulation. Using symbolic simulation 'is based on an idea about planning called
simulate and match. This particular strategy for computing operation relationships
focuses the test generator on known-achievable behavior rather than on potentially
achievable behavior that must be verified via complex reasoning.

This strategy also embodies the key ideas in the expert test generation method
described in section 32. We, as algorithm designers, have 'Identified what can be
done - the circuit operations - and what must be done - stay wthin the designed
behavior. We have identified the test objectives - embed component tests - and

'ded a strategy for doing the embedding. From this perspective, the novel step
is restricting the test generator to what must be done, i.e., to follow established
conventions between the crcuit and its environment.

The next chapter discusses the advantages and drawbacks of DB-TG, explores the
ideas underlying the test generator further and analyzes their 'Individual contributions
and relationships.
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Summary: DB-TG is based on four ideas about test generation: (i) the
designed behavior heuristic, (ii) embedding expert-supplied component tests,
(iii) operation relations, and (iv) computing operation relations by smulation
and mtching. This chapter explores each of these ideas from the perspective
of 'Its effect on the test generator's soundness, completeness and eciency.

DB-TG is a heuristic solution: it 'is neither guaranteed sound nor complete.
There are situations where it can produce 'incorrect tests (it warns when this
may have happened), and there are situations where 'it can fail to find a test.
Sound and complete algorithms eist, but they are unusably slow for complex
sequential crcuits. We need an effective, fast, heuristic test generator for these
circuits, i.e., the kind of solution human test experts currently provide. This
chapter argues that DB-TG is such a solution.

5.1 Introduction

DB-TG 'is based on four 'Ideas about representing testing expertise representing cir-
it behavior and search n problem solving: () the designed behavior heuristic, )

embedding pre-written component tests, (iii) operation relations and (iv) simulate
and match. Each idea is 'udged by its effect on three properties of the test genera-
tor: soundness, completeness and efficiency. A test generator is sound if the tests
it produces are guaranteed to detect the faults they are supposed to detect. When
a test generator is sound, its output can be used without fault simulation or other
forms of independent verification. A test generator is complete if it is guaranteed to
find a test for any fault 'if a test exists. When a test generator is complete, its failure
indicates that no test exists. Running the program a little longer or modifying the
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algorithm in some way would not have turned one up.' A test generator is efficient if

it can generate tests in a timely fashion. An efficient test generator can, for instance,

be used as an analysis tool during design to give feedback on the testability of the

circuit. The tests generated by the program are themselves efficient if they can be

applied to the circuit quickly.

Strong connections between the ideas prevent any lnear text presentation from

working completely; perhaps the best solution would be to arrange this chapter as a

matrix covering the four major ideas and the three criterion for judging each 'Idea.

The current organization - a section for each 'Idea with subsections for each property -

reflects a compromise with the result that two important themes arise several times:

(i) mismatches exist between the granularity of component tests and the granular-

ity of the behavior graphs, and (ii) tension exists between needing abstract circuit

descriptions for speed and needing specific predictions of fault effects for accuracy.

These themes reflect tensions between efficiency and completeness on one hand and

between efficiency and soundness on the other.

The central results of the analysis are as follows. The primary advantages of

DB-TG are:

* Focusing on designed (known-achievable) behavior rather than potential behav-

ior reduces the size of the search space.

0 Generating tests wthin a circuit's designed-behavior yields tests that use the

circuit according to its interface specification. If the circuit were in turn a

component in a larger circuit, these tests would likely be achievable, while it is

extremely unlikely that tests outside the 'Interface specification would be achiev-

able.

e Operation relations are a compact representation of the circuitry surrounding

a component. Embedding tests by propagating sgnals out through operation

relations rather than through circuit structure recovers the cost of generating

the relations by simulation and algebraic simplification.

The primary disadvantage of DB-TC 'Is'.

'Note that soundness and completeness properties are relative to the idealizations made when
modeling the circuit and potential faults. No set of tests, for instance, can account for all possible
ways a circuit might fail. The best we can say is that a set of tests completely covers a particular
class of (hopefully likely) faults.
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When writing the component test library, it is mpossible for a testing expert to
anticipate all of the ways standard components can be used 'in a ircuit. Conse-
quently DB-TG sometimes fails to generate tests for components 'in situations
where a test generator that does not embed pre-written tests could do so or
where the expert could by adapting the library tests to the constraints of the
circuit.

In the final analysis, DB-TG 'is neither guaranteed sound nor complete, i.e., there
are s'tuations where it can produce incorrect tests ( warns when this may have
happened) and situations where it can fail to find a test. DB-TC should be vewed
as a heuristic solution to an exponential search problem. Sound and complete al-

'thms currently exist, but to achieve these properties the algorithms must search
exhaustively. This renders them unusably slow on sequential crcuits. We need in-
stead an effective fast heuristic solution i.e., the knd of solution human test experts
currently provide. This chapter covers the trade-offs and compromises involved and
shows where giving up exhaustivity causes problems.

When this analysis 'is behind us, we wll then ask what specific problems dd
the test generator have with the MAC-1 processor and why. The answers to these
questions suggest several extensions to the test generator and ways of combining 'Its
strengths wth the strengths of the classical test generation methods. These extensions
are developed in chapter 6.

5.2 The Designed Behavior Heuristic

This section considers how the strategy of searching a circuit's designed behavior
affects the performance of the test generator. We begin analyzing this heuristic by
describing the structure of the search spaces involved in test generation. This leads to
the designed behavior space, a subset of the search space that contains solutions to all
testing problems. We therefore want to search for tests inside the designed behavior
space, and we want to waste as little effort as possible looking outside.

5.2.1 Search Spaces for Test Generation

A test generation algorithm searches through a circuit's behaviors for one that con-
stitutes a test. The important aspects of test generation search spaces are: (i) how
large is the space; ii) if the space is a subset of the circuit's potential behavior, then
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does it contain solutions to all testing problems- and (iii) how much effort does the
test generation algorithm waste on search outside the space.?

We call the search space involved the circuit's behaviorspace and define it in terms
of the behavior spaces of the components. The behavior space of a combinational
component 'is simply 'its truth table, i.e., the sets of values its inputs and outputs
can consistently hold. The behavior space of a sequential component is the set of
sequences of values its 'inputs and outputs can consistently hold.

The cross product of the component behavior spaces is the circuit's disconnected
behaviorspace (see figure 51). We refer to the space formed by taking the cross prod-
uct as "disconnected," because it does not reflect the physical constraints imposed by
connecting the components. Enforcing these constraints rules out possible behaviors.
The connected behavior space - or potential behavior space - is the subset of the dis-
connected behavior space that contains all globally consistent assignments of values
to the circuit nodes.

vcted)

I

Figure 5.1.- Search Spaces for Test Generation

Within the circuit's potential behavior space is 'Its designed behavior space, i.e.,
those node assignments or sequences of node assignments that result from executing
legal circuit operations. The legal operations are always a subset of the possible
inputs. For many crcuits, the legal operations are a -small subset, so the designed
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behavior 'is a small subset of the behavior space.

Constraint propagation techniques used in test generation are incomplete, i.e., they
cannot detect all inconsistencies 'Immediately as they construct tests. Classical test
generators and DB-TG therefore search somewhat outside of their respective search
spaces and backtrack 'Inside when nconsistencies are noticed later. Although these
constraint propagation techniques could be made complete (because the behaviors
of digital circuits are finitely enumerable), the cost of doing so is prohibitive. It
is cheaper to let the test generator backtrack somewhat while organizing search to
minimize the amount of backtracking done.

5.2.1.1 The Boundary of Designed Behavior

How do we define the boundary of a circuit's designed-behavior? Clearly the circuit's
normal operations are included, but are test modes and design-for-testabi'lity oper-
ations also 'Included? What about behavior that 'is likely to change, e.g., behavior
resulting from microcode?

We treat DFT operations and test modes as part of a circuit's designed behavior
and handle them like the normal operations. An example of using a test mode and
DFT features appears in section 65.

Handling behavior that is likely to change is a more subtle 'issue. Clearly we cannot
define the space of designed behavior to 'Include behavior that is unachievable now,
simply because it might become achievable with the next circuit modification. Yet, at
the same time, we would like DB-TG to produce tests that are relatively 'insensitive
to planned design changes, e.g., we do not want to run the test generator again for
every microcode change. To solve this problem, we rely on the designer to 'Include
DFT features for parts of the circuit that mght change. Since the DFT features and
the normal operations are unlikely to change, tests generated using them are likely to
be 'Insensitive to planned circuit modifications.

5.2.2 Completeness

While a circuit's designed behavior is smaller, is searching it sufficient to generate
tests? We claim that it 'IS.

Proposition The designed behavior space contains tests for every fault in a circuit.
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This proposition rests on defining faults as perturbations from a specification of
correct behavior rather than as perturbations from a particular implementation. If a
physical defect causes no perturbation from correct behavior, then a user will never
notice it and it should not be considered a fault.

5.2.2.1 Implementation Defects May Not Cause Misbehavior

The distinction between faults as perturbations from correct behavior and faults as
perturbations from an 'implementation is meaningful only 'if there are implementation
faults that do not cause misbehavior. Physical defects that do not lie in electrically
active areas certainly fall 'Into this cateaorv. However more 'Interesting cases exist 'if
the implementation 'is not minimal, i.e., 'it contains unused functionality.

Circuit implementations are sometimes non-minimal because designers use com-
ponents from component libraries (or from other designs) 'in order to save time and
fabrication costs. When the component building blocks of the circuit are large units,
e.g., an ALU, designers must sometimes choose a component that offers more func-
tionality than they need. Unused functionality is 'Implemented by unused structure
inside the component, and defects in this unused structure are the defects that should
not be treated as faults.

For example, figure 52 shows a plausible implementation for the MAC-1 ALU.
This four function ALU 'is implemented here by four LS181's 'in a carry chain configu-
ration. The combinational circuitry 'in C converts the 2-bit operation input (OP) into
five control sgnals for the LS181's. The NEG output 'is the same as the high-order
output bt. The ZER output is computed from the outputs (OUT) by a 16-input
NOR gate (not shown in the figure).

There are several ways in which this implementation provides more functionality
than necessary. First, the LS181 provides many more functional modes than the 4
needed by the MAC-1. Second, each LS181 contains unused generate and propagate
circuitry. Finally, the carry output of the hgh -order LS181 is unused. Physical
defects that cause misbehavior only 'in this extra functionality are not faults.

2The generate and propagate inputs and outputs allow multiple LS181's to be connected together
to form a large ALU. In simple usage, they are redundant with the carry input and output, but do
their jobs more quickly when connecting many LS181's. However, using them requires adding an
extra component. Here we connected the LS181's in the simpler carry-chain configuration.
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Figure 52: An ALU model built out of LS181 components

5.2.2.2 Granularity is Fundamental

This issue of functional granularity is fundamental. As components are chosen from a
library of pre-sized functional units, so component tests are chosen from a library of
pre-sized tests. Granularity of components and tests improves efficiency by lmiting
the number of cases that need to be considered during design and test generation, but
it causes difficulties when there is a mismatch between the granularity of a compo-
nent's functionality and the granularity of its tests. We consider this problem 'in detail
when 'it arises 'in the section on embedding pre-written component tests (page 140).

5.2.3 Efficiency: Searching Designed Behavior can be Faster

5.2.3.1 The Designed Behavior Space is Smaller

An important efficiency advantage of DB-TG 'is that the space 'it searches - the de-
signed behavior space - is smaller than the space classical test generators search -
the potential behavior space. If the MAC-1 processor i's represented at the gate level,

200the ratio between the spaces is roughly 2 , corresponding to the ratio of legal 'in
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put sequences to possible input sequences. There is more to this story than ratios
between the szes of search spaces, because ratios say nothing about how the spaces
are searched or about the frequency and dstribution of solutions within the spaces.
In particular, both DB-TG and classical test generators search somewhat outside of
their respective search spaces as they construct tests and backtrack inside when in-
consistencies in the tests are found. But based smply on sze of the search space,
DB-TG has substantial advantage.

5.2.3.2 Generating Tests for Structural Defects Can Waste Effort

Classical test generators can waste effort by attempting to generate tests for structural
defects in unused portions of the crcuit. For example, a simple implementation of the
D-algorithm. would attempt to generate tests for the carry output of the high-order
slice 'in figure 52. After working out how to sensitize a stuck-at fault on this node, it
would discover that the effects of the stuck-at cannot be observed, because the carry
output 'is not connected to anything and is not a ircuit output.

This is an horizon effect caused by the test generator failing to look ahead. It
can be eliminated, in this case, by reordering the steps of the Dalgorl'thm to do
path sensitization first, but for any ordering there exist crcuits where the worst-case
behavior occurs.

A better solution is to examine the circuit structure before attempting to generate
the test to see if a test is necessary. One commonly used method is to 'ignore stuck-ats
on nodes that are not connected to an observable output by tracing forward through
the schematic.

Unfortunately, structural analysis alone cannot always determine when component
features are used by the rest of the circuitry. Crcuit behavior must be taken into
account. For instance, recognizing that 28 of the LS181 functional modes are unused
cannot be done purely by structural analysis. This requires considering the behavior of
the circuit. A test generator could recognize the unused modes by attempting to assign
the control 'Input of LS181 to one of them, propagating the control sgnals backwards
through C (figure 52), and failing. In this case the backward propagation would fail
quickly. In general, however, the test generator might need to propagate a long way
before failing. In cases where propagation goes a long way, having an explicit and
complete representation of the circuit's designed behavior i.e., the behavior graphs,
allows questions like this to be answered much more quickly. A test generator can
search the behavior graph for examples of the control signals. This second search is
bounded by the number of circuit operations tmes the length in time of each behavior
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graph, rather than by an exponential of the propagation dstance.

5.2.3.3 Searching Designed Behavior may not Fnd Efficient Tests

Searching for tests within a crcuit's normal behavior may be insufficient to find
efficient tests, i.e., tests that can be applied to the crcuit quickly. While a test must
exist within the designed behavior for every fault, that test may not be as efficient
as one that lies outside the designed behavior. For instance, it 'is straightforward to
construct an example where simpler tests exist outside the designed behavior than
inside. Take a circuit wth testability features and define its designed behavior so they
are outside. Now tests for the faults in this crcuit must exist within the designed
behavior, but they are unlikely to be as smple as tests that use the testability features.

Whether smple tests exist within the designed behavior of real circuits often
enough for the heuristic to be useful is an open question. Answering this question
empirically is an obvious extension to the work 'in this thesis and 'is part of our future
work. However, in lieu of a detailed study of hundreds of real circuits, we base our
use of the heuristic on its use by our testing experts [bennetts82, robinson83].

5.2.4 Soundness

We have noted above that DB-TG is potentially unsound. However, this unsoundness
is independent of the designed behavior heuristic, hich determines the search space
for tests but not how tests are constructed.

5.2.5 Summary-, The Designed Behavior Heuristic

In this section we have seen that the space of a circuit's designed behavior 'is a sub-
set of its potential behavior, and the difference in size can e orders of magnitude.
Searching a crcuit's designed behavior rather than its potential behavior makes test
generation more efficient simply by reducing the size of the search space. Searching
the designed behavior does not affect a test generator's completeness, because the
designed behavior contains tests for all faults. However, it is not clear whether those
tests are efficient. Based on the experience of expert test programmers, we believe
that efficient tests can be found within a crcuit's designed behavior often enough
that searching designed behavior 'is a useful heuristic. This belief is born out by
the limited experimentation we have done, but should be examined more closely by
experimenting with a larger set of crcuits.
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5.3 Embedding Component Tests

This section shows how the strategy of embedding pre-written component tests into
the crcuit affects the performance of the test generator. The strategy has several
strong advantages- (i) it allows use of ecient, expert-supplied tests, (ii) it amor-
tizes component test generation costs, and (iii) it allows reasoning about faults 'in
the aggregate. However, with these advantages come two strong disadvantages.- (0
potential incompleteness, and ii) potential unsoundness. Fortunately, the worst-case
situations do not usually occur, and the test generator can warn the user when they
might. In thi's section I argue that the advantages of embedding pre-written compo-
nent tests outweigh the dsadvantages. As before, we consider the strategy's effect on
completeness, efficiency and soundness in turn.

5.3.1 Completeness

The strategy of embedding component tests selected from a lbrary is the primary
source of 'incompleteness 'in DB-TG. The test generator fails to embed a component
test when it cannot find a component operation causally connected to a crcuit oper-
ation with parameter relationships that the test generator can solve. To understand
why these failures occur, it is useful to think of component tests and smulated com-
ponent operations as 8ets of behavior and the process of embedding tests as finding
simulated component operations that are supersets of component tests.

A behavior of a component or a crcuit is a set of lnes from its truth table. Given
two behaviors and T we say behavior subsumes behavior T if T i.e., 'if
in the process of executing all of the crcuit also does T. This yields a strategy for
embedding tests: 'if (i) T 'is a test; (ii) the test generator knows how to make the crcuit
do B, e.g., corresponds to a simulated component operation in a behavior graph;
and (iii) B subsumes T, then the test generator can perform the test T by executing
behavior (and ensuring the outputs are observable). For example, suppose T 'is the
ADDER component test and is the set of addition instructions wth all possible
data. subsumes T, so T can be performed by executing B.

The behaviors the test generator knows how to execute, e.g., the set of all possible
addition 'Instructions, are often extremely large and 'Involve many truth table lines.
This has two consequences: 0) manipulating behaviors as explicit truth tables is far
too unwieldy, so we represent them more compactly as algebraic expressions; and (ii)
once the test generator has found a behavior that subsumes a test, it pares down the
behavior to barely cover the test. The mechanisms inside the test generator that do
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this have already been described, e.g., solving a set of operation relations. We review
them briefly from this new perspective as they arise 'in the discussion of completeness.

Viewing embedding component tests as finding known-achievable behaviors that
are supersets of the tests gives a framework for understanding how things can fail.
Next we consider the three specific failure modes.

Incompleteness in the test generator stems from several sources:

e Component tests are selected from a limited set.

0 Component functionalityis sometimes unused and inaccessible from the outside.

The representation of achievable circuit behavior i.e., the behavior graphs, is
partitioned into coherent sub-behaviors, and the test generator does not match
component tests across sub-behaviors.

0 The test generator saves work by solving the operation relations first for place-
holder values and then later substituting test data 'in.

We consider each cause in order.

5.3.1.1 The Component Test Library is Incomplete

DB-TG embeds component tests by selecting one from the library and searching the
circuit's designed behavior space for a way to carry out the test. While the designed
behavior space contains at least one test for every fault, it may not contain the test
selected from the library. Moreover, the library can contain multiple ways to test
each component, but 'it is not feasible for 'it to contain all possible ways. Thus the
component test library 'is 'incomplete 'in the sense that 'it cannot contain all possible
test versions. This incompleteness 'in the library causes incompleteness in the test
generator.

For 'Instance, the BA address input of the MAC-1 Register Fle 'is not used fully
by the microcode: it only uses addresses 0-10 decimal) rather than the full range of
0-15. (See figures 5.3.a and 5.3.b.) In order to test the address input, DB-TG tries
to embed the NODE component test shown in figure 5.3.c. Unfortunately this test
cannot possibly be embedded; there is no way to set the node's value to 15 (1111
binary) as required by one lne of the test data, since that value 'is outside the range
0-10.

A second test (shown in figure 53.d) can be embedded because all of the test
data falls wthin the range 0-10 (decimal). However, 'in another circuit yet another
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Figure 53: Subfigures (c) and (d) show two versions of a NODE test. cannot be
embedded for the address input of the register file (BA) because its test data does
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is a situation where having several versions of a component test in the library helped.
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variation on the node test might be necessary. The component test library cannot
contain all such variations - there are smply too many - so the expert anticipates
several of the most likely ways components are used and 'Includes tests for them.

As a result, the task of writing component tests cannot be completely separated
from embedding concerns. We conjecture that dgital circuits are stylized enough in
their design that a small number of variations for each component test will cover most
cases. This conjecture is very likely to be true of datapaths (as experiments with the
MAG indicate), however, whether it is also true of state machines and other complex
circuitry needs to be explored by additional experimentation.

5.3.1.2 Unused Component Functionality Can Be Inaccessible

Section 52 described how component functionality can be unused. Any unused func-
tionality can be 'inaccessible from the outside, which makes it impossible to embed a
component test designed to exercise that functionality. While this unused function-
ality need not actually be tested, the lbrary may not contain just the rght pece of
a component test that uses only accessible functionality.

For 'instance, the DB-TG fails to embed a test for the ALU's AND operation.
The design of the circuitr around the ALU and the microcode in particular render
the high-order bits of the ALU's AND functionality inaccessible. The inaccessible
functionality 'is not an explicit design decision, but rather an 'Inadvertent byproduct
of explicit design decisions. In one decision, the designer chose to have the ALU/AND
mask instruction fields as the MAC-1 decodes instructions, and these masks happen
to be incompatible wth the test data supplied by the test expert, 'i.e., the bt and
12 bit masks do not match the test data. In another decision, the designer chose not
to give this processor a general-purpose AND 'Instruction. These decisions together
make the AND operation dfficult to test.

Figure 54 shows in detail why the lbrary test for the AND operation fails. To save
space and tme, behaviors are represented in the test generator as compact symbolic
expressions rather than as truth tables. Test operations 'in the library and the simu-
lated operations in the behavior graphs are both of this form. These representations
contain typed variables that range over the values of crcuit nodes. For example, the
simulated operation

AND( ALU1, (:fields (field 12 1 6 (field 11 ?addr)), 4095)

represents a subset of the ALU's truth table. The ":fields" subexpression describes a

value that 'is comprised of several bit fields. Each bt field is described by a "field"
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function that takes a low bit position, a high bit position, and a value as arguments.
In thi's example, the variable ?addr ranges over the possible values on the AddressBus
(0-4095). The values are shown in decimal. This expression represents the portion of
component ALU1's truth table shown 'in figure 5.5.

5.3.1.3 The Fragmentation Problem

Even when all of a component's behavior is achievable, 'it may not be represented in
the test generator in a form that allows component tests to be embedded. The advan-
tage of representing behaviors wth symbolic expressions 'is that the expressions are
compact. They are compact because they exploit regularity of behavior, i.e., smilar
behaviors are represented by similar expressions. However, when achievable behavior
is irregular - like the AND operation in the MAC-1 - this behavioral representation
becomes fragmented, i.e, behavior must be represented wth many symbolic expres-
sions, as pieces of the 'irregular behavior are represented wth separate expressions.
The problem of finding achievable behaviors that are supersets of component tests
is exacerbated when the achievable behaviors are fragmented, because fragmentation
makes the 'Individual sets of achievable behavior smaller, thus making the test gener-
ator less likely to find a single achievable behavior that subsumes a given component
test. Note that failure due to fragmentation is a property of the languages used to
describe component tests and achievable crcuit behavior as well as of the crcuit 'Itself.

For example, the behavior graphs for the MAC-1 contain 6 different examples of
ALU/AND, including the one above, that describe non-overlapping portions of the
ALU's truth table (and many more that are subsets of one of the 6 These different
examples correspond to different combinations of masks an. d data.

Contrasting the ALU and the microprogram counter (uPC) hghlights this issue.
Using the addition instruction, for instance, the ALU can be made to add different
pairs of numbers in the same way, i.e., the activity inside the circuit dffers only 'in the
numbers. However, the yPC is not like this. There are 80 lnes of microcode, and 'it
is possible to load the yP C wth any value 'in the interval 079. However, all of these
values must be loaded 'in different ways, i.e., by executing different instructions, or
branch instructions with different data. The test generator's description of the YPC's
achievable behavior is spread out in small pieces (i.e., loads of constants rather than
variables) all over the behavior graphs rather than as a general operations in a few
places in the behavior graphs.

Unused component functionality and fragmentation of DB-TG's behavioral repre-
sentation are the primary reasons that DB-TG sometimes cannot embed tests. These
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Figure 54: Why the pre-written ALU/ANDtCSt8 cannot be embedded: the AL UIAND
operation is used only to extract bit fields by masking. DB-TG fails to embed the
component test because it lies partially outside the ALU behavior achievable within
the constraints of the larger circuit.
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Figure 5.5: This portion of the ALUs truth table correspond's to the fields expression
on page 139. The values are in binary to make their structure apparent.

problems are important- chapter 6 covers them 'in detail and describes several ways
of addressing them.

5.3.1.4 Inserting Placeholders Has Pros and Cons

DB-TG's method of determining whether a smulated operation subsumes a compo-
nent test 'is a fast, approximate solution: it extracts the operation relations for the
simulated operation, substitutes placeholders for the test data 'Into them and solves
for the parameters of the circuit operation. If the operation relations can be solved,
then the simulated operation must subsume the test operation with the placeholders
(which are arbitrary constants), therefore it must subsume the test operation with
the test data. Once the operation relations have been solved, the placeholders are
replaced with test data to create the actual test.

This method has two strong advantages:

* The cost of solving the operation relations 'is 'incurred once for the placeholders
rather than repeatedly for each lne of test data.

0 Solving for crcuit outputs that correspond to the component test data pares
the test down to exactly what needs to be executed at the circuit 'Inputs to
cause the component test to occur inside. The test generator does not waste
time executing long, known-achievable patterns of activity inside the circuit that
happen to subsume a short component test.

However, the method also can cause the test generator to fail to embed a compo-
nent test that is actually achievable. Fgure 5.8 illustrates this problem wth the 
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Figure 56: The fragmentation problem: this figure illustrates the underlying cause

of the fragmentation problem with an analogy. Here, the behavioral representation

language can only describe circles compactly. When component behavior is regular, as

indicated by the circle in (a), then that behavior can be described succinctly. When

component behavior is irregular, as indicated by the rectangle in (b), then component

behavior must be described using multiple, disjoint pieces. Fragmentation is a property

of the language used to describe circuit behavior as well as of the circuit behavior itself.
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Figure 57: An Example of Fragmentation: the REGISTER library test cannot be
embedded for the uPC register because it involves a fairly large set of behavior (the
test data is not shown) but no simulated instance of the register loading covers as larne
a 8et. Fagmentation of the representation for uPCs achievable behavior causes the
te8tgeneratortofail here.

address input of the MAC-1's register file. While this problem does occur in practice,
it turns out to cause few failures in the MAC-1. The lmited size of the component test
library, inaccessible component behavior and fragmentation of the behavior graphs are
the primary reasons that DB-TG fails to embed tests.

5.3.1.5 Granularity and Fragmentation Stem From the Design Process

Why 'is there a radical difference in coverage between the datapath and the sequencer?
The difference is caused by regularity of behavior 'in the datapath and fragmentation
of behavior in the sequencer. For instance, in the datapath there are several simu-
lated ALU/ADD operations wth variables for data, but in the sequencer the PPC
is never loaded with a variable in any of the simulation runs. All examples of YPC
behavior are more specific than the corresponding brary test. The same story is
repeated throughout the MAC-1. We conjecture that this unevenness in the amount
of fragmentation over the circuit is a direct result of the design process.

Consider the following account of processor design: a designer starts with a spec-
ification for an abstract machine that includes the programmer accessible registers
and the nstruction set. Hs ob 'is to implement this abstract machine in hardware
while meeting myriad performance, reliability, and cost constraints.

The specification can be vewed as a set of dataflow graphs, one for each instruc-
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- - - - - - - Achievable behavior.-
addresses 0-10 (decimal)

Behavior covered by test data:
addresses 5 afid 10 (decimal)

0000��� Behavior covered by test operation placeholders:
addresses 0-15 (decimal)

Figure 5-8: The circular, so-lid, and dashed regions represent subsets of the behavior of
the address input of the MAC-Is registerfile. The dashed region represents behavior
achievable within the MAC-1, i.e., addresses 0-10 decimal. The solid regzon represents
component behaviors that the test would actually ue, corresponding to test data from
version 2 of the node test shown earlier in figure 53. Given a test with placeholder8
inserted, the circular region represents behaviors the test might possibly ue if the
placeholders are replaced with arbitrary values. The test i achievable since it lies
entirely within the pace of achievable behavior, i.e., 5 10} C 0 - - - 10}. However
using placeholder8 causes the test generator to fail because some values that could
potentially replace the placeholders, e.g., II . .151, are not achievable.
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tion, describing how data is transformed as 'it moves from register to register. The

designer usually cannot implement these dataflow graphs directly in hardware: with-

out some sharing there would be a wasteful duplication of functionality. So he looks

for ways of merging the graphs together.

To do this, he adds to the graphs components for performing 'Identity transfor-

mations. For example, he might insert a register in one graph to shift some of its

operations later in time, thereby allowing components to be shared with another

graph via time-multi-plexing. In another situation, he might introduce dentity boxes

into two graphs and implement them using a single multiplexor. By adding these

components to the flow graphs, he is able to fit them all together. When this pr o-

cess is complete, the designer collects all the control sgnals from all the graphs and

creates a finite state machine (FSM) to provide these signals at the right times. The

FSM 'is 'Implemented using any one of the well-known methods (e.g., with a microcode

engine).

By this account, the way the datapath is designed (incremental refinement and

merging) is very different from the way the controller 'is designed stylized implemen-

tation of a state machine). The availability of components which directly implement

large portions of individual processor operations (e.g., ALU chips), plus the fact that

the merging process does not normally change existing components (it just adds new

identity boxes), means that many datapath component operations tend to "very di-

rectly implement" crcuit operations. The process of designing a state machine, how-

ever, need yeld no such simple part-whole relationships. The behavior of the whole

controller (a state machine) is very different from the behavior of any single controller

component (e.g., a register, ROM, or MUX).

5.3.1.6 Conclusions

DB-TC is incomplete 'in its ability to find tests. This incompleteness stems from (i)

selecting component tests from a limited set supplied by an expert and (ii) interactions

between the granularity of the component tests and granularity and fragmentation of

the representation of achievable circuit behavior (i.e., the behavior graphs). However,

when embedding pre-written component tests succeeds, 'it has several very 'important

efficiency advantages described in the next section. When embedding pre-written

component tests fails, DB-TG can turn to several methods of generating component

tests upon demand, achieving the effect of having a larger lbrary or one designed

specifically for a particular circuit. These extensions are described in chapter 6.



5.3.2 Efficiency

Embedding pre-written component tests has several important efficiency advantages.
First and foremost, the expert-supplied tests are themselves efficient, being the prod-
uct of the intelligence and experience of a human expert. The carry-chain adder test
on page 98, for 'Instance, uses a minimum of test data - no gate level test generation
algorithm could do better, and many do worse. Moreover, this and similar tests are
designed to cover potential faults not considered by classical test generators.' In ad-
dition to tests designed by the expert, the library can also include th e best available
tests published in the literature and generated by any means whatsoever.

Embedding pre-written component tests amortizes component test generation
costs. Because a component test will be used 'in many circuits it is feasible to invest
more effort designing it than in designing a test that will be used only once. This
extra effort can go toward shortening the test or increasing 'Its coverage.

Finally, embedding pre-written component tests saves time by allowing the test
generator to work with faults 'in the aggregate. Classical test generators 'in effect
ask "suppose this node is stuck?", generate a test for that fault and move on to
the next fault. DB-TG in effect asks "suppose this component operation is faulty?"
and proceeds to embed a test for the operation. For example, when embedding the
ALU/ADD test, the test generator need not explicitly consider all of the possible
ways in which the ADD operation could go wrong. DB-TG simply builds on top of
the work of the expert (who did consider all of the failure modes). Since there are far
fewer component operations than circuit nodes, this approach saves effort. The cost
of considering faults individually 'is 'incurred only during the design of the component
test. Not considering them ndividually when embedding tests saves work each time
the component test is used.

5.3.3 Soundness

Unfortunately, the efficiency advantage gained by working with faults in the aggregate
is at odds wth the goal of generating sound tests. The key 'issue is when can a
component be used to help test itself? The need to use a component in this way
ari ses in circuits that exhibit a structural configuration known as reconvergent fanout.
Figure 59 shows the two prototypical cases. In the first case, there is a feedback path
from the output of F, the component under test, back to one of 'Its 'inputs. In the
second case, two or more paths from F reconverge on another component.

3For example, bridge faults within each single-bit adder in the carry chain
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Feedback Path

F
Unanticipated Result

Fault Source

Case 1 A Reconvergent Feedback Path

Sensitized Path

F C
Unanticipated Result

Fault Source
Other Error Path

Case 2: Interference with a Sensitized Path

Figure 59: This figure shows two examples of reconvergent fanout. -In these configu-
rations, the component F must be used to help test itself. In case 1, F is used to set up
its own inputs. In case 2 F is ed to help observe its own output value. Generating
tests in either situation requires very precise predictions of fault effects.
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In both cases component F must be used to help test itself, and herein lies the
problem. How can a test be sound if one of the components used to carry 'it out 'is
potentially faulty? In case 1, F must be used to set up its own inputs. For example,
the ALU in the MAC-1 'is used to decode instructions, hence any test for the ALU
that involves executing 'Instructions must 'Itself rely on the ALU. How can we be sure
the ALU has decoded the instruction correctly so that the rest of the test proceeds
as planned? In case 2 a potentially wrong sgnal from F could interfere wth the
sensitive path from F to an output. A test generator needs more precise 'information
to predict how two error values will interact, than it needs to propagate a single error
value.

The need for precise nformation about fault effects in the event of reconvergence is
at the heart of this problem. When a test generator hypothesizes a specific fault, e.g.,
a node stuck at it has precise information about the effects of that fault, i.e., 'if the
fault is present then the node's value will be 0. When a test generator hypothesizes
an abstract fault, e.g., a component is broken, 'it has only vague information about
the effects of that fault, e.g., if the fault is present then the component output will not
be correct. Snce the fault hypothesis does not specify how the component 'is faulty
this can leave a lot of possible error values. For a test that uses this component to
be sound, the test must be designed to work properly for every one of those wrong
outputs.

DB-TG detects when it has used a component to help test itself by examining the
dependency records on all operation relations it used. In this situation, the test may
be unsound, i.e.I it may not work as planned, and must be verified by fault smulation.
We believe that most of the time the test wll work as planned, and express this belief
as the reconvergence heuristic, described next.

5.3.3.1 The Reconvergence Heuristic

Our approach to this problem 'is heuristic and follows the practice of human test
programmers and functional test methodologies: the test generator assumes that the
component under test is working properly whenever it i used to help test itself, i.e.,
to set up its own 'inputs or to observe 'Its own outputs. This strategy 'is made explicit
as the reconvergence heuristic.

Proposition 2 For complex, sequential devices, ignoring reconvergent fanout is ex-
tremely unlikely to cause a test program to iss faults.
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This proposition 'is probabilistic, and as a result the method can occasionally
produce unsound tests. Theoretical analysi's of this proposition 'is difficult due to the
unconstrained nature of the class of crcuits it is intended to cover. Experimentation
with real circuits is thus the strongest candidate for a method to corroborate or
discount this proposition. While we have not yet collected a large amount of empirical
evidence, we believe the proposition 'is likely to be true for several reasons:

* If a component combines the values of multiple input bit positions to create its
output, e.g., a multiplier, then it 'is unlikely to mask a sngle bit error that 'it has
previously caused. This tends to become more unlikely as the component's word
size 'increases. (This likelihood does not change for bit-parallel components.)

9 The lkelihood that a fault wll mask 'Its own effects at the planned test output
and also not appear at any other circuit output tends to decrease with 'increasing
reconvergence and crcuit complexity.

* In circuits where many components are involved in many operations, the like-
lihood that a fault wll remain undetected by every component test tends to
decrease with increasing test program length, and hence with 'increasing circuit
complexity.

5.3.3.2 An Experiment

The reconvergence heuristic appears to be borne out by the MAC-1 example. Fault
simulation 'indicates that the tests generated by DB-TG actually do detect all of
the faults they were designed to detect. I determined this by fault simulating the
component tests twice, once with the components outside the crcuit and once with
them inside. In both the single component and full circuit simulations the fault
simulator listed when and where each fault was detected at an output. These lists were
then compared to see whether every time a fault was detected with the component
outside the circuit, there was a corresponding detection with the component inside
the circuit.

The details of the experiment are somewhat involved because they are designed
to minimize noise n the results arising from lucky, unplanned routes from faults to
circuit outputs. The comparison was done at the times and crcuit outputs where
the test generator expected errors to appear. This 'Involved working out the temporal
mapping between the two simulation runs. The fault smulator also listed the values
of selected internal circuit nodes, e.g., the operation inputs of the ALU, so we could
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determine whether the test had progressed as planned. The faults in this circuit fell
into three categories:

1. Internal circuit activity, faulty and not, occurred as planned. These faults were
detected.

2. The fault caused the crcuit to deviate far enough from the plan that the com-
ponent test operation never occurred. These faults were detected early due to
the wide deviation. The faults were also detected at the expected times because
the circuit had wandered far from the correct behavior by then.

3. The fault caused the circuit to deviate so far from the plan that the fault sim-
ulator did not model the faulty behavior properly. The simulator detected this
situation, warned the user and aborted the simulation. In all cases, these faults
were detected early, before the simulation run was aborted.

A fourth case is possible: the test might not proceed as planned, with the fault
masking itself and yet causing an error at the proper time and place via an unplanned
route. We observed no such stuations in this experiment and believe 'it to be an
extremely rare occurrence.

5.3.3.3 Soundness can be regained by case splitting

A sound method of using'a component to help test itself is to revert to a more specific
(e.g., gate-level) fault model. This method achieves specific predictions of fault effects
by splitting the fault hypothesis (e.g., a component is faulty) into many, very small
cases (e.g., a node inside the component 'is stuck at 0) and solving each case separately.
Each small case can be solved because it makes a specific prediction about the effect
of the fault that can be relied upon to plan a test.

The techniques involved come from hierarchical test generators and are well un-
derstood [genesereth8l, shirley83b, singh86, krishnamurthy87]. We have chosen not
to 'Implement this method n DB-TG because DB-TG i's a demonstration system and
these techniques are neither new nor necessary to demonstrate the main 'ideas.

Even 'if DB-TG were a production test generator, it is not clear whether modifying
'it to achieve soundness by case-splitting would be worth the cost. Splitting fault
hypotheses into many cases is expensive, and, as the experiment above 'Indicates, this
technique would not have improved the coverage of the tests generated for the MAC-1.
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5.3.4 Summary: Embedding Component Tests

The strategy of embedding pre-written component tests into a circuit has several
important advantages: (i) it allows use of ecient, expert-supplied tests, (ii) 'it amor-
tizes component test generation costs, and (iii) 'it allows reasoning about faults in the
aggregate. These advantages are accompanied by two dsadvantages: (i) potential
incompleteness due to the lmited size of the component test library and to functional
granularity of the representations for tests and achievable behavior, and (h) potential
unsoundness due to the tension between achieving efficiency through abstraction and
achieving soundness through specificity.

The tension between efficiency and soundness 'is a fundamental one. This tension
arises when embedding component tests because component tests can handle many
faults at once but in doing so prevent precise predictions about the effects of these
faults. Precise predictions are needed for a test generator to soundly and exhaustively
plan for all contingencies that might 'interfere with a test. This tension will arise again
in connection wth operation relations.

Fortunately, for realistic circuits the worst-case stuations do not occur often (save
for the functional granularity problem), hence we optimize for the advantages listed
above. In situations where functional granularity causes incompleteness it is possible
to generate library tests upon demand, achieving the effect of having a larger compo-
nent test library. This extension is described 'in chapter 6 In the situations nvolving
potential unsoundness, the test generator can warn the user, a fault simulator can
determine whether the test is actually unsound, and the user can then revert to low-
level crcuit and fault representations. These extensions have not been 'implemented;
the ideas are described 'in section 83 under future work.

5.4 Operation Relations

This section considers the utility of representing crcuit behavior as relationships be-
tween circuit and component operations. Using operation relations provides an impor-
tant advantage: they are a more compact representation of the crcuitry surrounding
a component - its behavioral context - than are structural circuit models. This sim-
plifies the task of embedding component tests. Using operation relations has a related
disadvantage: potential unsoundness. Operation relations are compact because they
abstract away from the details of data movement in both space and tme. Abstrac-
tion is inappropriate when detailed descriptions are necessary, as when a component
is used to help test 'Itself. As with the strategy of embedding component tests, test
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generated with operation relations can occasionally be unsound. Again we argue that
the advantages outweigh the dsadvantages.

5.4.1 Efficiency

Operation relations contribute to the efficiency of the test generator 'in two ways. First,
causal connections allow the test generator to quickly identify candidate solutions for
the embedding problem. Each candidate solution is an instance of a component
operation appropriate to the component test, so part of the work has already been
done. A candidate solution 'is turned 'Into a real solution by substituting test data
into the parameter relations and solving them for values on the circuit inputs and
outputs. The bulk of the advantage lies in this second step.

Solving parameter relations is analogous to line justification and path sensitization
in a conventional test generator but wth a twist: parameter relations are solved
by propagating through the structure of pre-simplified algebraic expressions rather
than through the structure of the original crcuit. Figure 5.10 'Illustrates this process.
Figures 5.10.a and 5.10.b show two rules for propagating values backwards through an
addition operator in an operation relationship. These rules are completely equivalent
to rules for propagating through components in conventional test generators except
that the vocabulary for values has been expanded to include algebraic expressions. 4
Figure 5.10.c shows an example operation relation as produced by the simulator, 5 and
figure 5.10-d shows the same expression as a network and the results of propagating a
value (VAL) backward using the rulein figure 5.10.b. The test generator never actually
constructs networks like this but instead works directly with the representation of the
operation relation.

The smplicity of the algebraic expressions is the source of the technique's power.
In the parameter relations identity data transfers are smplified away. Figure 5.11.a
shows an example of this smplification. Signals flowing through this subcircuit are
inverted as they go onto the backplane and re-inverted as they come o. When
propagating through this subcircul't, a test generator must invert the signal twice. In
total, propagating across this subcircuit takes units of work, one for each node and
component along the path.

Figure 5.11.b shows the simulated behavior of this subcircul't. Figure 5.11.c shows
the corresponding parameter relation, which is an equality that takes I uit of work to
propagate through. Propagating through the parameter relation is more efficient be-

4DB-TG includes both rules shown in the figure and tries the simpler one first.
'DB-TG canonicalizes to two argument addition operators.
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cause it explicitly represents the fact that the backplane moves data without changing

it.

Parameter relations also abstract away from time. Circuits often store values

temporarily 'in registers. If the actions of storing and retrieving a value are built into

the circuit behavior such that the test generator cannot affect them, as the inverters

are built into backplane structure, then the test generator need not reason about

them. Memory 'is just another identity transformation stripped away by the smplifier

during simulation. Figures 5.11.d and 5.11.e show an example of this. Both figures

show the paths used to supply 'Inputs to the ALU 'in bold. Values in (d) enter from the

DataBus, pass through a register and on 'Into the crcuit. This temporary storage of

the value 'in the register is built into the circuit behavior and cannot be affected. The

operation relations in (e) abstract away from that detail. The operation relations do

represent the temporary storage of one value in the Accumulator. The test generator

must reason about this because it occurs at the boundary of a circuit instruction and

can be affected.

It is possible to construct circuits that will generate identity expressions that

cannot be reduced by a given set of rewrite rules. As a consequence, the simplifier

will not be effective in all cases. For 'Instance, a DFFT circuit that transforms a

time varying signal into the frequency domain and back again implements (ignoring

sampling errors) a very complex wire from one place to another, but DB-TG will not

recognize this. However, most circuits do not move data in such a convoluted way.

For crcuits that do, e.g., signal processing circuits, one can augment the simplifier

with rules suitable for the crcuit type.

So far we have described the cost of using operation relations. When they come

from an outside source such as a human designer or a silicon compiler, nothing more

need be said. However, when the test generator derives them for itself then the

derivation cost must be considered. The cost of propagating a value through the circuit

during simulation is equivalent to the cost of propagation during test generation.

Simplifying the value at each step does not add to the cost, since maintaining the value

in simplest form would also be done during test generation. However, by simulating

and simplifying in one forward pass, DB-TG builds on simplified partial results at

each step. For instance, the cost of computing operation relations for the components

in a straight path 'is linear in the number of components (see figure 5.12.a). The cost

of propagation during test generation rises as the square of the number of components

(see figure 5.12.b), unless the test generator caches partial results during propagation,

with the attendant costs and bookkeeping complexity that implies. Getting this

caching right 'is complex; the bookkeeping required for one smulation pass is much
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simpler.
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involves 0n2) work. O) can be achieved with complex

(and costly) caching and bookkeeping.

Figure 512: omputing relationships between circuit inputs and component inputs in
one forward pass saves work over doing it piecemeal durin test generation.

5.4.2 Soundness

In this section we consider how using operation relations can go wrong. The eciency
advantage gained by working with operation relations is unfortunately at odds with
the goal of generating sound tests. As with embedding component tests, the key issue
is when a component can be used to help test itself.

The process of computing operation relations uncovers the simplicity and order
built into a circuit by 'Its designer. However faulty circuits are much more complex
to describe and to reason about, and the simple descriptions are no longer correct.
For instance, a component which normally adds integers wll compute some complex
boolean function of its inputs when a fault 'is 'Inserted. In the presence of a fault, the
abstraction shift from boolean operations on bits to arithmetic operations on integers
is not valid. All of the special, timesaving rules we have for reasoning about addition
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operators may no longer be applicable. 6

In DB-TG, this problem manifests as a failure of the propagation rules used during

simulation. For instance, when an adder 'is faulty, the smulation rule that predicts

that the output will be the sum of the 'Inputs is 'inaccurate. This inaccuracy is further

compounded by smplification rules that combine the output of the faulty adder with

other values. Since the test generator records what rules were used to derive each

expression during si mutation, it 'is a simple matter to know when there is a potential

for inaccuracy. The question 'is, what are we to do about it?

A sound solution 'is to revert to the un-simplified versions of all suspect expressions

and to revert to specific circuit and fault models for the potentially faulty component

as was discussed 'in the section on embedding component tests on page 15 1. However,

it is often the case that much of the behavior of the circuit depends on much of

the circuit, hence the simplified, abstract representations of circuit behavior are often

inaccurate. This seems to be especially true of complex sequential circuits with global

feedback like the MAC-1. But test experts generate effective tests without investing

much effort reasoning about these inaccuracies.

Soundness requires considering all possible ways a fault might interact with the

plan for a test. Considering all possible interactions is expensive, and the question

of whether doing so is worth the cost is fundamentally an economic one based on

the cost and the quality of tests desired. Here, we again follow the reconvergence

heuristic and the practice of human test experts. DB-TG generates tests using the

operation relations and tells the user which tests use expressions that depend upon

the component under test and hence may be unsound.

5.4.3 Completeness

The use of operation relations does not reduce the test generator's completeness as

long as all circuit operations are included. If DB-TG is given an incomplete lst of
't operations (e.g., there are too many and simulat' ts, would be too high),

circul 1 ion cos

the program can still generate tests, although wth degraded performance. In the

MAC-1 the program achieves almost the same coverage on the datapath using just

four instructions (LOAD, STORE, ADD and SUBTRACT) as it does wth the full

instruction set. This 'is primarily due to the granularity problem: this ratio changes

'Certain classes of faults do result in simple misbehaviors that can be described abstractly. For
example, stuck-at faults on the inputs or output of an adder can be described as perturbing the
correct value by a power of 2 However, we know of no abstract descriptions for misbehavior in the
general case that remain detailed enough to guarantee soundness.
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with the extensions discussed chapter 6.

5.4.4 Summary

The strength of operations relations 'is that they are implified representations of
circuit behavior that allow more efficient and drect solution of testing problems. Their
weakness is that they are simplified representations. It is exactly the assumptions that
make the operation relations smple and effective, namely that the crcuit is behaving
as it was designed to behave, that get in the way when considering what might happen
when the crcuit 'is faulty.

However, the utility of operation relations for test generation need not rest on
formal soundness. If tests generated using them are usually valid as verified by fault
simulation, then using operation relations is a good heuristic. Experimental evidence
from the MAC-1 suggests that this is the case: using operation relations produced
tests that detect the faults they are supposed to detect.

5.5 Simulate and Match

This section shows how Simulate and Match aids the performance of the test gen-
erator. Smulate and Match 'is the 'Idea that operation relations can be obtained
by simulating circuit behavior, and the relations applicable to a particular situation
can be found by searching smulation traces. The previous section considered this
issue from the perspective of using operation relations as a compact representation
of the crcuitry surrounding a component. This section views operation relations as
an explicit representation of a crcuit's designed behavior and simulation as a method
of computing them that focuses the test generator very closely on designed behavior
rather than potential behavior. The argument is based the technique's ability to avoid
proposing inconsistent partial plans as it searches for a' test.

Tests are planned by repeatedly refining the goal of causing a specific internal
behavior until the problem can be solved by direct action on the circuit inputs. In
this process, the test generator chooses a way to refine the goal and propagates the
consequences of that choice in order to focus search by constraining later choices.
However, existing constraint propagation techniques are imperfect: they sometimes
cannot 'Immediately detect when a new choice is inconsistent wth previous choices or
when a new choice 'is a dead end that will preclude finding a solution later. Until the
problem 'is discovered and the test generator backtracks, further choices depending on
the erroneous one represents overhead effort that does not lead drectly to a solution.
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When the test generator makes an inconsistent choice, 'it has wandered outside of
what the crcuit can possibly do.

DB-TG expends little effort considering globally inconsistent solutions or solutions
outside a circuit's designed behavior. The behavior graphs represent the globally
consistent, known-achievable behavior of a circuit. Matching component tests against
the behavior graphs is a search process, and one can view a failed match as wasted
search outside the designed behavior. However, failed matches I i.e., proposed tests
that are globally inconsistent, tend to be 'identified quickly for two reasons:

1. Simple Expressions: The mechanism for detecting a failed match (i.e., an 'incon-
sistency) is to extract and solve the operation relations. This tends to terminate
quickly because the expressions are often simple.

2. Query ordering: Component tests that use conjunctive patterns can be expen-
sive to match against the behavior graphs. DB-TG saves work by using query
ordering techniques, e.g., by organizing the match so that inexpensive choices
are made before expensive ones. Having a complete set of behavior graphs
facilitates this.

For instance, one measure of how cheap a choice will be 'is how many alterna-
tives there are. The pattern for the ALU addition test, for example, involves
matching four items: two data 'Inputs, the operation input and the output. The
program estimates the number of choices for each part of the match, say for
the operation input, by counting each value in the behavior gra-Phs that could
match that part. Variables and complex algebraic expressions count more than
constants, since they are more costly to match against. The program does this
for each part of the match (caching its results for use by subsequent matches).
In the case of the ALU, the operation input has the smallest space of choices,
hence the program matches the operation input before the other inputs and the
output. The information used to do this query ordering is readily available in the
behavior graphs but 'is only implicit in the structure and component behavior
of the circuit.

Simulate and match is a cost effective technique when the cost of the wasted search
performed by conventional test generation approaches 'is enough to offset the initial
cost of doing the smulations. Smulate and match is thus appropriate for crcuits
which execute a few complex operations.
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5.6 An Estimate of Computational Complexity

The cost of generating tests with DB-T is

O(n x I x L x E+ 2E)

where:

n of nodes (or components)
I of rcuit operations
L =Average duration of a crcuit operation in smulated time

(e.g., clock cycles)
E =Average token size of smulated expressions passing through

the circuit under the assumption that E is independent of
n I and L.

The cost of running DB-TG 'is the sum of the costs of three steps: ( simulation,
(ii) finding simulation operations that are candidates for matching, and (iii) extract-
ing and solving the operation relations. Assuming that each node is active at each
simulated time step, the cost of simulation is O(n x I x L x E). The cost of find-
ling candidate simulated operations is O(n x I x L), corresponding to the worst case
number of operations in the behavior graphs. The cost of extracting and solving the
parameter relations is 02E).

Considering just factors that change with crcuit size, the cost of running DB-TG

is O(n x I x L). Important here is the assumption that the average size of expressions is

independent of crcuit size and the duration of operations. This assumption depends

upon the simplification rules having the right vocabulary, i.e., that they simplify.

This assumption is supported by measurements on the MAC-1. The average sze of

the expressions propagated while smulating the MAC-1 instruction set is 64 tokens,

where a token is a constant, a variable, an operator or a parenthesis 'in the printed

representation of the expression. Figure 513 shows a hstogram of the average sizes

by time (over the whole 'Instruction set) 

The expressions are large early 'in the simulation runs due to an nitialization

phenomenon. When a simulation run starts, many state registers are preset wth

variables representing their values at circuit power up or from a previous nstruction.

The outputs of combinational crcuitry downstream of these registers have values that

represent the potential behavior of the combinational circuitry. These complex values

generally do not participate in the rest of the simulation, but are replaced by more

specific values as the circuit fetches an instruction and determines what it is going to
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0.0 Time Step 60.0

Figure 513: Average size of expressions vs time

do. Shortly into the 'Instruction fetch, the average expression size settles down to stay

roughly constant or grows very slowly. Therefore the 2E and E 3 terms in the cost can

be approximated as constants.

For purposes of comparison, combinational test generation 'is NP-Complete, so we

take 'it to be 02') in the worst case. In practice, 'i.e., for realistic circuits, combi-

national test generation is roughly 0(n') [williams79]. Sequential test generation is

much worse. Snce it may be necessary to vsit each of the 2 states where m is the

number of bits of memory in the circuit, and the combinational problem associated

with each state may require exponential work, test generation for sequential circuits
is 0 ((2 n),2m)).7

5.7 S ummary

DB-TG is based on four ideas: (i) the designed behavior heuristic, i.e., that a circuit

should be tested using its normal operations, (ii) the strategy of embedding expert-

supplied component tests, iii) that the key to embedding component tests into a

7[breuer76] gives 4m as an upper limit on the number of states required, because the D-vocabulary
involves 4 non-X values (i.e., 0, 1) D D ) implying 0(2') (4m)) work is needed. However, the lower
bound holds, because the brute-force approach of exhaustively fault simulating all input sequences
up to 2 in length fits under the lower bound.
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circuit is knowing relationships between the circuit operations and the component op-

erations, and (iv) computing operation relations by simulation and matching focuses

the test generator on realizable circuit behavior rather than on potential behavior.

We introduced the notion of behavioral subsumption to explain how operation rela-

tions help embed component tests: the test generator finds a simulated component

operation, 'i.e., an example of known-achievable circuit behavior, that subsumes the

test and then converts the simulated operation into a test by solving the operation

relations.

Each of these ideas was explored from the perspective of its effect on the test

generator's soundness, completeness and efficiency. In the final analysis, DB-TG is

neither guaranteed sound nor complete. there are situations where 'it can produce

incorrect tests (it warns when this may have happened) and where 'it can fail to find

a test. Sound and complete algorithms exist at the moment, but they are unusably

slow for complex sequential circuits. An effective, fast, heuristic solution is needed

for generating tests for these circuits, i.e., the kind of solution human test experts

currently provide. DB-TG is such a heuristic solution whose primary advantages are:

(i) focusing on designed (known-achievable) behavior rather than potential behavior

reduces the size of the search space; (ii) operation relations are a compact representa-

tion circuitry surrounding a component reducing the cost of embedding component

tests and (iii) the test generator uses abstract representations (e.g., operation relations

and effects summaries) and computational steps that perform a lot of work at once

(e.g., embedding pre-written tests and solving operation relations wth placeholders).

The analysis exposed two fundamental tensions 'in test generation: abstraction vs.

speci'ficity and regular vs. irregular behavior. The first tension lies between needing

abstract circuit descriptions for speed and needing specific predictions of fault effects

for accuracy. This issue arises with the need to use components to help test themselves

in circuits with feedback or other forms of reconvergent fanout. When embedding com-

ponent tests at the block diagram level, the hypothesis that a particular component

may be faulty does not always provide enough information to accurately predict fault

effects. Similarly, operation relations are inaccurate when their derivation depends

upon the component under test. For these reasons, DB-TG can ocasionally generate

unsound tests.
41

Relinquishing soundness goes to the heart of what is gained and lost by using ab-

stract descriptions. The strength of abstract representations 'is that they aresimplified

for solving testing problems more directly. Their weakness 'is that they are simpl Iified

representations, leaving out detail that may occasionally turn out to be iportant.

Sound alternatives to our methods exist, but they are much more expensive. Given
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the experience of testing experts and the coverage experiment with the MAC-1, 'it 'is
not at all clear that they are worth the expense.

The second tension lies between regular and irregular behavior. The test generator
exploits regularity 'in the behavior of a circuit. It does this by representing behav-
ior with algebraic expressions that can compactly describe large numbers of smilar
behaviors, e.g., all of the addition 'instructions. This compactness stems partly from
removing identity data transfers (in both space and time) from the representation and
partly from using symbolic variables 'in the expressions to denote sets of similar logic
values. Regularity of behavior saves time by allowing the test generator to propagate
a placeholder value once rather than specific data many times. Compactness of rep-
resentation saves time by shortening the distance values have to propagate. Which
behaviors are similar to each other depends critically upon on the vocabulary of op-
erators in the expressions in a way that we do not fully understand yet, and further
work needs to be done in this area.

Tuning the test generator for regular behavior causes problems when the crcuit
behavior is 'irregular. We have labeled this the granularity problem because the test
generator's representations for behavior become fragmented, making 'it more dfficult
to match a fixed set of pre-written component tests against achievable circuit behavior.
The granularity problem is the prime source of 'incompleteness in DB-TG. The next
chapter suggests two dstinct approaches for solving the granularity problem. The key
ideas are to reduce the granularity of component tests or to 'increase the granularity
of the achievable component behavior.
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Summary: This chapter describes additional methods used by the designed
behavior test generator to overcome the fragmentation problem, which can cause
the methods 'in chapter to 4 fail. The central insight is that the test generator's
representations of desired behavior (component tests) and achievable behavior
(circuit smulations) lie on a continuum of representations of greater or lesser
generality. The fragmentation problem can be solved by moving component
tests and simulated operations along this spectrum. One class of method in-
volves making component tests more specific by splitting them into cases, and
a second class involves making simulated operations more general by modifying
the circuit using DFT techniques.

6.1 The Fragmentation Problem

The fragmentation problem arises in two ways. Frst, unused and inaccessible compo-

nent functionality can make 'it impossible to fully execute a library component test.
If DB-TG cannot execute a test fully, then 'it rejects the test and looks for another in
the library. If no others are present, the test generator fails.

DB-TG has a language for describing achievable circuit behavior, and behavior
graphs are expressed 'in this language. This language 'Includes sets of simulated oper-
ations and node values expressed as functions of primary circuit inputs. Functions can
be expressed as compositions of simple arithmetic functions, selection, concatenation
and bit-field extraction. Like all languages, some things can be expressed compactly
in the language and other things cannot be. The fragmentation problem also arises
when circuit behavior is not regular in a way that can be expressed compactly in this

165
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language. In this stuation, DB-TG's description of a crcuit's achievable behavior
must be broken into many small pieces i.e., it is fragmented. When the pieces are
small enough, every piece associated with a component 'is insufficient to support full
execution of the component test, again causing DB-TG to reject the test.

Abstract
A

I
i

I

k

LOAD 7A Library Test

LOAD I Simulated Operation

Specific

Figure 61-. The fragmentation problem causes simulated component operations to be

more specific than the component tests, preventing the system from embedding the

tests.

Figure 61 illustrates the result of the fragmentation problem: a simulated compo-

nent operation that is more specific than the component test. The layout of this figure

suggests two approaches to solving this problem: (i) make the test more specific, 'i.e.,
conform to the constraints of the rcuit by choosing more specific component tests

that can be embedded using the available simulated operations, or (ii) make the sim-

ulated operation more abstract, 'i.e., modify the circuit design making it possible to

embed the test. Sections 62 through 64 introduce three new ways to make component

library tests more specific:

1. Fine Grain Component Tests: Try embedding several simple component

tests 'Instead of a sngle, complex one. Each simple test demands less accessibility

and is more likely to be achievable. Two techniques are introduced: (i) break

up an existing test into smpler tests and (ii) have the expert supply a range of

progressively simpler tests.

2. Parameterized Library Tests: It 'is not feasible to provide component tests

for every size of a bit-parallel component like an adder. We therefore capture

expert testing knowledge in programs that can examine a component and the

surrounding circuitry and write a component test on-the-fly. Two techniques

are introduced that differ in the kind of information they gather about the
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I examinesurrounding crcuitry: (i) gather no information about context, i.e.,
component structure only (e.g., size) and (ii) examine fully-instantiated (no

variables) operations in the behavior graphs.

3. Focussed Application of Gate-Level ATG.- We can combine the strengths of

DB-TG and gate-level test generation to test combinational components whose

gate-level models are available. In this marriage, the DB-TG handles the se-

quential aspects of the circuit and the gate-level test generator handles the

details of the component, augmenting or replacing the component test library.

These techniques provide a counterpoint to the way herarchical test generators work.

Hierarchical test generators work bottom-up, from gate-level, fine-grained represen-

tations of the rcuit to more abstract representations. These three techniques work

top-down and rely on the heuristic that the abstract representations will be sufficient

most of the time and detailed examination of the circuit will be unnecessary. These

techniques raise fault coverage in the MAGI from 85% to 94%.

Section 65 takes the opposite viewpoint. Wu's Design-For-Testability Advisor

[wu88] can add test mode operations to a crcuit, e.g., to load register values via

a scan path. The additional crcuit operations result 'in more abstract simulated

component operations in the behavior graphs that can be used to embed additional

tests. Running this program on the MAG I yields suggested circuit modifications that

enable DB-TG to reach 97% of the stuck-at faults.

6.2 Fine Grain Component Tests

This section describes two techniques for breaking up component tests 'Into smaller

pieces. By splitting up a component test, 'it may be possible to find separate smulated

operations that subsume separate pieces of the test.

6.2.1 Test Specialization-, Substitute Test Data 'in Early

When embedding a primitive component test, DB-TG enforces the following relation-
ships:

SimulatedOperation D TestOperation D TestDatai

where SimulatedOperation i's an example of known-achievable behavior appearing in

a behavior graph, TestOperation and TestDatai are the operation and data parts of

the test from the component test library, and denotes behavioral subsumption (see
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section 53.1). DB-TG embeds TestOperation once, makes m copies of the solution,
where m is the amount of test data, and substitutes each element of the test data
TestDatai 'Into one copy of the solution. Separating the test into TestOperation and
TestData reduces work by having the test generator embed all test data in the same
way: SimulatedOperation must subsume the test operation and every element of the
test data for this method to work.

This optimization can be given up to improve coverage by substituting TestData
into TestOperation before trying to embed TestOperation into Simulated0peration.
This creates simpler component tests - one for each line of test data - which can
be embedded separately thereby increasing the likelihood of success. Substituting
TestData in early is called specializing the component test.

For instance, the NODE test 'in figure 6.2.c cannot be used drectly to exercise the
BA address input of the MAC-1 Register Fle (figure 6.2.a) because there 'is no single,
simulated example of the node holding a value that 'is general enough. Figure 6.2.b
shows the actual values that BA can be set to. Note that each of these values appears
separately in the behavior graphs.

Since the test data 0101 and 1010 appear among the lst of achievable values
in figure 6.2.b, this problem can be solved by substituting the test data into the
test operation to create two new component tests (figure 6.2.d). Each of the new
tests partially exercises the node, and they do together what the original component
test would have done. The test generator can now succeed by embedding these two
component tests 'Into different parts of the behavior graphs.

Specializing a test can affect its fault coverage description, hence some tests are not
candidates for specialization. In the carry chain adder test, for instance, each group of
test data is intended to be a completely separate exercise. Specializing this test does
not affect 'Its coverage. However, in tests for sequential devices, the sequence of test
data is important. It can be critical that a component execute no extra operations
during the test, and specializing such a test could drastically reduce its coverage.
These tests are marked by the expert so the program will not specialize them.

When the current 'Implementation does specialize a test, it embeds as many of the
separate pieces as 'it can - 'it does not require that they all are successfully embedded
- on the assumption that a partial test is better than none. This also affects the fault
coverage description. I currently have no good way to describe the fault coverage
of a broken up test that has been partially embedded and instead rely upon fault
simulation to determine the coverage.
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0000

0001

nni ()
VV.LV

0011

0100

MI 4
0110
0111
1000
looi
1010 4

(a) The MAC-1 Register File (b) Addresses 0-10 can be supplied to the BA

address input of the register file. These

addresses appear in separate simulated

operations. Other addresses are not

achievable with the current microcode.

Test Operation value( Node, ata)

0101 value( Node, 0101) No separate test data

Test Data 1010 specialization value( Node, 1010)

(c) The NODE Test (one version (d) Two partial NODE tests

Figure 62: Embedding partial tests.- the test generator cannot embed the NODE test

(c) for the BA input of the register file (a), because none of the simulated operations

of that node (b) are general enough, Subfigure (d) shows the et of partial NODE

tests that come from specializing the NODE test. Together these partial node tests are

equivalent to the original, but DB-TG can embed each one separately.
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6.2.2 A Hierarchy of Component Tests

The technique of specializing component tests can break up a sngle component test
into a potentially large set of very specific tests so that they can be embedded sep-
arately. It is not always necessary to break up component tests so finely. A less
extreme solution is to (i) ask the experts for a variety of tests for each component
that exercise pieces of component behavior and exercise components in ifferent ways,
(ii) place these tests 'Into an and/or herarchy wth the tests that demand the most
access at the top, and (iii) have the test generator start at the top of the herarchy
trying to embed a test and work its way down until 'it succeeds or runs out of tests.

For example, consider how the expert says to test a multiplexor (figure 63). This
test has a complex structure. The expert tests the ability of the MUX to propagate
values from each 'input to the output, referencing a test for another kind of component
(a DATAPATH) to express this. The MUX test has optional parts: while testing the
path from one input to the output, the expert would like to hold the other inputs
constant to reveal subtle flaws in an MOS implementation that cause feedback and
state behavior in the MUX. If holding the other inputs constant is impossible, however,
the expert will still be satisfied with the rest of the test.

Figure 63 shows an and/or tree of component tests that corresponds loosely to the
expert's test for a two input MUX. Test trees are implemented using primitive and
compound tests described in section 45). Solid boxes represent primitive component
tests, and dashed boxes represent compound component tests that refer to the tests
below them as subroutines. If the lines connecting a test with its subroutines are
not connected by an arc (e.g., mUX-2 IN-O�in the third row), then subroutines are
tried in left-to-right order and the first than can be successfully embedded 'is used. If
the lines connecting a test wth 'Its subroutines are themselves connected by an arc
(e.g., MUX-2 FULL-CONTR ), then all subroutines are tried and all that succeed

are used. Figure 65 describes what the prir'tive and compound tests 'in this figure

do.

Due to the way the MAGI microcode controls the flow of data through the

datapath, the datapath mux 'in the MAC-1 cannot be controlled arbitrarily. Thus

I mu 2 FULL-CONTR cannot be embedded. However, more specific tests lower

in the hierarchy can be embedded. The starred boxes show the tests that DB-TG
actually uses to exercise this MUX. These tests catch 100% of the stuck-at faults

in a boolean implementation and some of the stuck-open faults in an MOS 'imple-

mentation. DB-TG does as well as the expert would have by selecting pieces of the

component test from the lbrary. It does better does better here than a gate-level

test generator would have because it applies component test knowledge (e.g., about
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To test a MUX, test the path from each 'Input to the output as a
DATAPATH while holding the other inputs at a constant background
value, (e.g., all O's). Repeat this after inverting the background value.
The datapath test must be successfully embedded. However, if the
other inputs cannot be held constant, they can be 'ignored.

Figure 63 A multiplexor component test (in English)

r� � � "I
UX-2 TEST

L�- -- I

Figure 64: This hierarchy of component tests corresponds to the expert-supplied test
in figure 63. Solid boxes hold primitive component tests, and dashed boxes hold com-
pound component tests that refer to the tests below them as subroutines.



mux-2 TEST is the top-level entry. It frst tries to instantiate
MUX-2 FULL-CONTROL I - 2 DATAPATH

J. Failing that, 't calls I MUX

MUX-2 FULL-CONTROL I exercises a MUX fully. It can be instantiated if both
inputs are completely controllable and the output is observable. The test data
was generated by a conventional test generator from a gate-level model of a
MUX.

-2 DATAPATHS 1 MUX-2 IN-0 -0 to the
MUX I call J to test the datapath from IN

output andEux- 2 IN- to test the datapath from IN 1 to the output.

0 MUX-2 IN-0 first tries mux-2 IN-0 BACKGROUND]. Failing that, it tries
MUX-2 IN-0 NO-BACKGROUNDJ

mux-2 IN-0 BACKGROU calls two primitive tests that der 'in the back-
ground values they use.

I mux-2 IN-ONO-BACKGROUND] exercises the path from IN-0 to the output and
does not try to control the other input. The test can be instantiated if IN-0 can
be selected, IN-0 is controllable, the output is observable. This test applies a
diamond pattern to the input and observes it at the output.

1 MUX-2 IN-0 BACKGROUND is identical, except that it sets the other 'input
t o all O's.

mux-2 IN-0 BACKGROU is 'Identical, except that it sets the other input
to all s.

e And so on. The primitive tests in the rght half of the tree correspond to those
in the left half except that they operate on IN-1, the other data input.
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Figure 65: This figure describes what the component tests in figure 63 do.



'Fields at least two bits wide, e.g., bits 011.
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background values) that conventional test generators do not have.

6.3 Parameterized Component Tests

This section describes the technique of storing parameterized tests in the component
test library. Section 6.2.2's solution of expanding the library to 'Include multiple
versions of tests could conceivably open pandora's box. How many test versions must
we include for components that are found in many sizes, like adders, or components
that manipulate bit-fields? Consider the ALU/AND operation in the MAC-1: there
are 120 contiguous bitfieldsi wthin the 16 bt ALU and any of them could potentially
be used by the microcode to do masking operations. Must the library include AND
tests for every possible bitfield?

Our solution is to write tests for components like adders and bit-parallel AND
with their size as a parameter. More generally, we capture expert testing knowledge
in programs that can examine the component and the surrounding circuitry and then
write a component test based on what it finds. This technique allows tests to be
created on-the-fly, effectively making the lbrary much larger than could be stored
explicitly.

6.3.1 Example #1 A Parameterized Adder Test

Figure 66 shows a program that generates test data for carry chain adders of arbitrary
w'dth. The test generator uses this program to test an adder by first examining the
circuit model to determine the adder's width, running this program and encapsulating
the result as a newly created component test and embedding the component test as
usual. Sample output from this program for 16-bit adder appears in figure 4.4.b on
page 98.

The 'Important point here 'is that some component types are 'implemented in so
regular a way that simple, short programs like this one can express how to test them.
Components such as bit-parallel logic functions, adders, comparators, parity genera-
tors and memories fall 'Into this category.

6.3.2 Example 2: Designing a Register Test On-The-Fly
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(defun TEST-DATA-FOR-CARRY-CHAIN-ADDER (size)
(labels recur (pattern element sze)

(if < size )
0
(+ (recur pattern element (- sze 

(expt 2 size) ; the slow way to shift
(bit pattern (mod size element) 8)))))))

(loop for i from to 7
collect (list (recur 001110001 i size 1))

(recur 001101010 i size 
(bit 000111100 )))))

Figure 66: This function creates a list of 8 test cases for exercising a carry chain adder

that is SIZE bits wide (figure 1. 6 shows the output for SIZE=16). This program illus-

trates how succinctly tests for some regular component types can be expressed. Tests

for bit-parallel logic functions, adders, comparators, parity generators and memories

are all roughly this short.

In the previous example, DB-TG examined component structure (i.e., bit wdth)

to design a test on-the-fly. In this example, DB-TG designs a component test by ex-

amining component behavior achievable 'in the context of a larger crcuit. Figure 6.7.a

shows a smple crcuit. The register's output is directly observable, but its 'Input is

controllable only 'Indirectly through the ROM. The 7 operations of this circuit all

involve applying a specific ROM address, clocking the register to load the contents of

the ROM at that address and observing the register outputs. The circuit operations

give rse to the simulated register LOAD operations in figure 6.7.b. DB-TG cannot

embed the normal register test because there 'is no sufficiently general simulated op-

eration, e.g., a load with variable 'Instead of constant data. Test specialization does

not work because none of the test data from register tests (figure 6.7.c) matches the

ROM contents.

To solve this problem, we return to one of the basic 'ideas behind the designed

behavior approach: look at behaviors known to be achievable and ask if they constitute

a test. A smple way to test a register is to see whether each bt position can hold

both and 1. This can be accomplished by selecting a subset of the simulated LOAD

operations that cover the possible bit values. DB-TG has a simple algorithm for

finding near-minimal sets of values that cover possible bit-position values, and in this

case, the program selects the three LOAD operations marked wth arrows. Each of
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ROM contents

00000000

01100110

01101001

11001001

11011110

00100110

00100100

LOAD(register, 00000000)
LOAD(register, ilOO110)
LOAD(register, 01101001)
LOAD(register, 11001001)
LOAD(register, 11011110)
LOAD(register, 00100liO)
LOAD(register, 00100100)

.4

.4

II I jj_(Dj "ere are the simulated load operations. The

marked operations form a covering set. Executing

them and observing the outputs accomplishes

the goal of the REGISTER test, ie., seeing each

bit position hold both and .

(a) The ROM provides only restricted inputs

to the register making it difficult to test

LOAD(register, 00000000)
LOAD(register, 00000000)
LOAD(regilster, 11011110)
LOAD(register, 01101001)
LOAD(register, 00000000)
LOAD(register, 11011110)
LOAD(register, 11011110)
LOAD(register, 01101001)
LOAD(register, 0110iO01)

This sequence of load operations implements

a more sophisticated test by covering all 0-1,

1-0, 0-0 and 1-1 transitions.

LOAD(register, ?data)

00000000

11111111

Test Operation

Test Da ta

(c) One version of an bit REGISTER Test

Figure 67: Designing a register test on the fly
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these load operations is then converted into a test operation with no extra data and
separately embedded.

A more sophisticated version of the register test checks the ability of each bit
position to make 0-1, 1-0, 0-0 and 1-1 transitions. DB-TG can also design register
tests like this on-the-fly by finding near-r'nimal sequences of operations that cover all
transitions on all bt positions. Such a sequence 'is shown 'in figure 6.7-d. Similarly, an
even more sophisticated test could be written to construct sequences to detect shorts
between adjacent bits.

The program can do these examples. However, it cannot currently do the smilar
example of testing the MAC-1 yIR because the algebraic rules for manipulating bit

2field expressions describing where the yIR outputs go) are insufficiently powerful.

a
6.4 Focussed Application of Gate-Level Test Generation

This section shows how to combine the strengths of DB-TG wth those of a gate-
level test generator to create tests for combinational components on-the-fly. In this
marriage the gate-level test generator handles the details of exercising the component
and DB-TG handles the sequential aspects of the surrounding circuit.

The method works by putting the component into simple combinational crcuits
that, taken together, are equivalent to the sequential circuit in terms of access. There
are several steps: DB-TG first picks a simulated component operation and extends
the operation relations associated with it all the way to crcuit 'Inputs and outputs.
The extended operation relations are called an embedding Snce they 'Involve purely
functional relationships between crcuit and component 1/0, the embedding is eec-
tively a slice of combinational behavior cut from the circuit's sequential behavior (see
figure 68). The next step 'is to convert the embedding 'Into an equivalent crcuit,
called a combinational equivalent, that fits around a gate-level model of the com-
ponent. Finally, the combinational equivalent and the component model are given to

'An expert might test this register in yet another way. Assuming that the ROM must also be
tested and knowing that RMs are tested by exhaustively reading out their contents, an expert
would realize that testing the ROM would also test the register as a free side-effect. (Depending on
the ROM contents, testing the ROM may not test the register exhaustively, but it would test the
register as well as possible and as well as is necessary to ensure it will work properly in the field.)
Hence the expert would "test" the register by testing something else. The process of combining goals
during problem solving is well understood in the Al and testing literatures. However, the details of
doing this with DB-TG's representations have not yet been worked out. In particular, we need a
kind of qualitative fault simulation, discussed under future work in section 83.5.
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the gate-level test generator to produce tests for component faults.

Section 64.1 shows an example of an embedding and the combinational equiva-
lent it gives rise to. Section 64.2 describes how embeddings are produced. Sequen-
tial crcuits of only moderate complexity can give rse to very many embeddings.
Section 64.3 describes several ways to avoid redundant embeddings and to simplify
non-redundant embeddings further.

The problem of nterfacing an embedding with a gate-level component model raises
the question of when should a test generator shift between levels of abstraction during
signal propagation.? This 'is a standard question (here labeled the level-shift problem)
that implementors of hierarchical test generators must answer, although the answer
takes an unusual turn in our application. Section 64.4 covers this issue.

6.4.1 An Example of a Combinational Equivalent

DB-TG derives combinational embeddings from 'Its operation relations and effects
summaries. For instance, figures 6.10.a and 610.b show the operation relations be-
tween ALU/AND and MAGI/JUMP, and figure 6.10.c shows the Effects Summary
for MAC-1/STORE. Figure 611 shows a combinational embedding derived from this
information.

The MAC-1/JUMP 'instruction branches to an address contained directly in the
instruction, and the ALU is used to mask out the opcode before storing that ad-
dress in the program counter. The operation relations shown are those between
the jump 'instruction and the 'Instance of ALU/AND that does the masking. The
YIELDS expression describes a word made up of separate bit fields; figure 6.10.b
shows this :FIELDS expression in a more familiar notation. Each field in the expres-
sion 'is represented as (FIELD low high data), where low and high describe a range
of bits. (NBITS 12 ?ADDR) says that the variable ?ADDR can hold 12 bit values.
The :FIELDS expression shown here describes the jump instruction itself before the
opcode is masked out.

The JUMP instruction puts the output of the ALU 'in the program counter, shown
in 610-b by the parameter relation ?OUT = PCI. If a STORE 'Instruction follows
the JUMP, then this value wll be written to the address bus as shown by the effects
summary in figure 6.10.c. 3

Figure 611 shows a crcuit that is equivalent from the perspective of one ALU

'In fact, any instruction can follow the JUMP with the same effect. DB-TG does not realize this,
though and 'ust uses the first method it can find for observing the value of the PC.
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Time No- i

Inputs

State

Elements

Outputs

2 3 4 5 6

An Embedding

Figure 68: An embedding: the figure shows a circuit at six points in time. Each
column corresponds to the state of the circuit between one operation and the next.
The circuit inputs are at the top of the figure, replicated once for each tme, and the
circuit outputs appear similarly at the bottom, The circuit state registers appear in
columns between the inputs and outputs, again once per time. The lines represent data
being operated on as it flows through the circuit. The bold line shows an embedding
surrounding the operation where the third state register loads a value at time 3.

1

Figure 6.9- The same embedding: the component under test (a state element) is in
bold. All other state elements are treated as noops. Again, the lines represent data
being operated on. This combinational "circuit" is a pzece of the sequential circuit
above and offers a subset of its access to the component.
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UYThe YIELDS expression (b) represents a word composed

of a 4-bit field and a 12-bit field. In this case the 6 is the

JUMP opcode and the word i's the JUMP instruction itself.

?IN-1 = (:FIELDS (FIELD 12 1 6 (FIELD 0 11 (NBITS 12 ?ADDR)))

?IN-2 = 4095

?OUT= ?PC1

(b) Operation Relations between ALUIAND and MAC-11JUMP

Circuit inputs

?PC I

Output

state

, ?aC

?PC ?addr ?ac

Circuit outputs

(c) The Effects Summary for MAC-115TORE. Here, the PC

gets written to the address bus.

Sl%.O-

PC wtten to

address bus

Figure 610: An Embedding: the operation relations (b) extend from the ALU back to a
primary input (the address bus) and forward to a state register (the program counter).
These relations are extended using the effects summary (c) to a primary output (the
address bus) to form an embedding for the AL UIADD operation. The combinational
equivalent is shown in figure 6 .



operation, to the MAC-1 executing a JUMP followed by a LOAD. In this case the
network surrounding the ALU 'is very simple, just some wires and constants on some
of the inputs. After 'Inserting a gate-level model of the ALU, this equivalent circuit 'is
given to a combinational test generator to generate tests for the ALU without having
to deal with the complexity and sequentiality of the processor that surrounds it. If any
undetected stuck-at faults remain 'in the ALU after test generation, then DB-TG finds
another set of operation relations, constructs another equivalent circuit, and runs the
gate-level test generator again on the remaining faults. As there can be many sets of
operation to choose from, DB-TG uses several heuristics to limit the choice. These
heuristics are described later.

0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

IN-1 IN-2

ALU OP 0

OUT ZER NEG

0 0 0 0

Figure 611: This figure shows a combinational equivalent surrounding the ALU In
this case, the equivalent is a set of assignments to the some of the ALUs inputs (which
constrain some outputs in turn) and has no internal structure of its own. The ALUs
NEG and ZER outputs are not included in the equivalent, so they are not observable.

The purpose of computing embeddings and combinational equivalents 'is to put the
component into smple, equivalent, combinational crcuits that provide the same con-
trollability and observability that the sequential circuit provides. Having a complete
set of combinational embeddings would allow us to reduce the problem of testing a
component in a sequential circuit to the problem of repeatedly testing that component
in each of a set of combinational crcuits. However, we do not actually take the ea
this far because Iin the worst case, the cost of doing so is greater than conventional
test generation applied to sequential crcuits.

Instead, we use embeddings and combinational equivalents as another method of
custom designing component tests when the pre-written tests do not fit. For this
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purpose the combinational equivalents act as descriptions of the controllability and
observability of a component in a sequential circuit 'in a form that a conventional
gate-level test generator can use. The next section describes: (i) how embeddings
and combinational equivalents are derived, (ii) how embeddings can sometimes be
simplified beyond the operation relations they come from, further reducing the cost
of running the combinational test generator, and (iii) how redundant embeddings can
be bypassed.

6.4.2 Computing Embeddings

An embedding is roughly equivalent to an operation relation. The dfference 'is that an
embedding goes from component inputs all the way to circuit inputs and component
outputs to circuit outputs, whereas an operation relation, by definition, stops at circuit
state registers.

Embeddings are computed by using a circuit's effects summaries and the State
Planner to extend operation relations all the way to circuit inputs and outputs. The
process first extracts the operation relations for each simulated component operation.
If the operation relations connect some component inputs to some state registers, then
it uses the State Planner to work out how to control the registers and substitutes the
transformation functions composed by the planner into the operation relations. This
gives a single set of functions connecting circuit inputs to component 'Inputs. It then
uses the State Planner smilarly if the relations connect some component outputs to
some registers. The end result is a set of functions relating circuit inputs to component
inputs and component outputs to circuit outputs.

When running the planner, the process limits the length of the operation sequences
it is allowed to generate. This limit becomes a property of the embedding, e.g., a first
order embedding must involve control and observe sequences one crcuit operation
long. Also, when the State Planner can generate several ways to control a set of
registers and several ways to observe them, the process takes the cross product. For
instance, if OP is the crcuit operation we are starting from, A and are two sequences
for controlling the registers, and C and D are two sequences for observing them, then
we generate embeddings corresponding to the sequences A-OP-C, AOP-D, BOP-C
and BOP-D.
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6.4.3 Reducing the Set of Embeddings

This section describes techniques for reducing the set of embeddings, that are consid-
ered. The method for generating embeddings described above can produce very many
embeddings. For example, there are 109 simulated ALU operations wthin the core
group of MAC-1 instructions (load, store, add, subtract and jump); these gve rise to
2725 first order embeddings. Some way to reduce the set of embeddings examined by
the program is necessary.

To reduce this large set of embeddings, we first apply two control heuristics: ()
restrict the set of circuit operations under consideration, which in turn restricts the
set of state registers and (ii) restrict the kinds of operation relationships and effects
summaries allowed to only those using dentity or bit-parallel relations. These heuris-
tics are currently under human control, since we do not yet have enough experience
with their effect on the tradeoff between test generation cost and coverage. When we
restrict the set of circuit instructions under consideration to the core group of MAC-1
instructions (i.e., LOAD STORE ADD, SUBTRACT), the program determines that
there are only two relevant state registers: the program counter and the accumulator.
When we tell the program to look only for first order embeddings generated from
operation relations using bit-parallel functions, 'it finds 9 embeddings.

Next, the program removes embeddings. that provide less controllability, observ-
ability, or both than another embedding. The program identifies redundant embed-
dings using a method based on behavioral subsumption. The expressions on the 'input
side of the embedding represent the set of values that can be achieved on the com-
ponent 'Inputs and the expressions on the output side represent the set of values that
can be observed at a crcuit output. For instance, an identity relation between the
circuit input and the component input means that all values are achievable, i.e., all
possible bit patterns on that 'Input. The following fields expression represents the set
of values wth a in the low order bt, i.e., all 16 bt odd numbers if the bit patterns
are interpreted as integers.

?ComponentInput = (-.FIELDS (FIELD 0 0 1) (FIELD 15 ?CircuitInput))

The 'Inputs sde of each embedding represents a set of achievable values. We
would like the program to compute a inimal covering set, However, this problem
requires exponential tme with a subset comparison counting as one time step. The
complexity 'is actually worse, since we cannot do subset comparisons 'in unit time.
Therefore the program computes a near-minimal covering set. The program can
compare embeddings that fall into several categories and remove redundant ones.
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If a pair of expressions denote the same set, we want
to remove one. So anything subsumes itself.

subsumes(?a, ?a).

;;; Variables subsume constants.
subsumes(?a, ?b) :- variable(?a), constant(?b).

If two addends of one expression share no variables and they subsume
the addends of another expression, then the first expression subsumes
the second. This rule catches the case of the addition instruction
allowing higher controllability of ALUIADD than incrementing the PC
does.

subsumes([+ ?a ?bl, [ ?d ?el) -.- independent(?a, ?b),
sub sume s (? a, ? d) ,
subsumes(?b, ?e).

Figure 612: Three rules for identifying redundant embeddings

The categories are (i) compositions of addition operators (A ... A), (ii) compositions
of bit-parallel functions (B ... B), iii) composition of addition operations and bit-
parallel operators where the A's come first (A ... A, B ... B), and (iv) the previous
cases with selection operators (i.e., IF statements) 'Interspersed.

We have 'Implemented these subsumption categories written in a set of about 20
Prolog rules. Figure 612 shows several of the rules together with comments describing
their purpose. These categories and rules are clearly not complete, but they are suffi-
cient for a large class of datapath crcuits described in terms of bit-parallel operations
(e.g., AND, OR and NOT), addition and selection. For the ALU/AND example 'in
the MAC-1, they determine that 6 of the nine first order embeddings are redundant,
reducing the list of embeddings the program has to consider in detail to 3.

6.4.4 Connecting the Embedding to a Gate-Level Test Generator

The key problem when connecting an embedding to a gate-level component model 'is
that they are usually at dfferent levels of abstraction A gate-level component model
describes how boolean values propagate whereas the algebraic expressions comprising
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our embeddings describe how integers propagate.' This is an instance of a clas-
sic problem that all hierarchical test generators [genesereth8l, shirley83b, singh86,
krishnamurthy87] encounter: when and how are values propagated between abstrac-
tion levels? For instance, when are bits combined into 'integers and vice versa? We
label this the level-shift problem and describe a novel approach to 'It. We describe
the problem in terms of a gate-level component and a higher-level embedding, but
the ideas generalize to higher-level component models.

6.4.4.1 The Level-Shift Problem

There are two competing goals to be considered when solving the level-shift problem.
First, propagation should occur at as high a level of abstraction as possible (e.g.,
propagate one integer rather than many bits) in order to save work. This is the lesson
of the herarchical test generators. Second, assuming the gate-level test generator
can backtrack to the most recent relevant choice I it should have independent control
over bit-level component inputs and outputs so 'it has maximum freedom to find
effective tests. We want the choices of bit-level assignments to be 'Independent because
backtracking 'is likely. Recall that we invoke the gate-level test generator only in
'tuations where there 's lmited controllability and observabil'ty, i.e., when DB-TG

could not embed any pre-written component tests.

The problem lies in the conflict between these goals: propagation efficiency is
improved at hgher levels because the test generator takes larger steps, but each step
is a larger choice that may be wrong. When it is only partially wrong, it cannot be
partially retracted, reducing backtracking eciency.

The Saturn test generator [singh86] i's an example of the standard solution to the
level-shift problem. This program changes levels at component boundaries. Given a
fault hypothesis inside the component, Saturn designs a test for it and propagates
signals forward and backward to the component boundary. Once all propagation
settles down, all assignments necessary for detecting the fault have been made to
the component input and output wres, but the values of some of these wires may
remain unspecified. In order to abstract upward from a collection of bits to an integer,
these unassigned wires must have values. Saturn chooses these values randomly and
propagates constraints within the component to make sure the random choices are
locally consistent. Then it converts the bits into an 'Integer and continues propagating
at the hgher level.5

'There is no in-principle restriction of embeddings to integers rather than other objects, e.g.,
ethernet packets. Our examples, however, all deal with integers.

5A collection of bits, some of which are unassigned, could correspond to many different integers.
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This solution implicitly assumes that most values will be achievable at the higher
level most of the tme. This heuristic has not been made explicit in the lterature.
While we agree wth the heuristic in general and DB-TG uses it, the heuristic does not
hold in situations of limited controllability, and the very situations we are considering
here.

Unachievable Choice (the cause of the failure)
I

lInlim I
UlIGUIlLfullavic: value i

I

I

2
1 1

MULT
I?

Ae

.01
1.00

Arbitrary .Choices

03

Gate Level Model

The Embedding The Component

Figure 613: This figure illustrates the standard solution to the level shift problem
and how it can get into trouble.

Figure 613 'Illustrates the problem with the standard solution. Saturn's task 'is to
generate a test for a fault 'Inside C1, which is modeled at te gate level. Suppose also
that the upper input of the multiplier MULT) has previously been assigned the value
2. The program wll run into difficulty assigning blame for a propagation failure.

Saturn sensitizes a fault inside C1 and propagates forward and backward to the
component boundary. Suppose, due to choices made 'in sensitization and line justi-

If the vocabulary of node values at the higher level includes integers but not sets of integers, then
abstraction upward cannot occur unless the unassigned bits are given values. Typically, these values
are chosen randomly. An alternative to choosing values for the unassigned bits is to enlarge the
higher-level vocabulary to include integer sets. This can improve efficiency in some cases but
increases the complexity of the algorithm and is of dubious benefit in general.
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fication, the low-order 'input bit is assigned the value 1. (This choice will eventually

cause the test generator to fail and backtrack, since the MULT output must be an

even number. The problem is that the guilt of this choice may be obscured by other

choices.) Suppose also that line justification fails to specify values for rest of the 'Input

bits. In order to shift upward one level of abstraction and continue test generation,

Saturn chooses values for those inputs arbitrarily. In this case, it chooses for al of

them. Once it has fully specified Cl's inputs, it abstracts the input string of bts 'Into

the integer I and propagates t backwards through the mltiplier. At this point, the

test generator fails.

Which choice 'is responsible for the failure: the low-order bt or one of the high-

order bits? The program cannot assign blame appropriately because 'it has combined

seven choices made at a low level - six of which were arbitrary and necessary only to

shift levels - 'Into one choice at a higher level.

Hierarchical test generators like Saturn backtrack and retry the arbitrary choices

made to shift levels. In this case, the program would have to work through 2 sets of

choices for the high-order bits before t would succeed by trying a new value for the

low-order bit.

We know that the real problem lay in choosing I for te low-order bt, since this

made the number odd. The program, however, cannot assign blame appropriately

because it has combined seven choices made at a low level into one choice at a higher

level. The program must backtrack 'Inside C and try other tests with no guidance

about what went wrong. In particular, since the random choices for unassigned bits

could have been the problem, the test generator must go back and try all possible

random choices to ensure completeness. This 'is clearly unacceptable.

The problem of credit assignment would not have occurred had the program re-

mained at the bit level. We suggest that, contrary to the lesson of hierarchical test

generators, it is sometimes better to stay at a lower level of abstraction when lmited

controllability or observability is likely to cause backtracking. Our approach is an

attempt to have our cake and eat it too, 'i.e., to have the propagation eciency of

high-level representations wth the subgoal 'Independence of low-level ones.

6.4.4.2 Controllability and Observability Preserving Transforms

Our approach 'is to apply a set of transformations to the embedding that simplify

its structure while preserving 'Its controllability and observability properties. The

test generator runs with the smplified embedding, efficiently searching through the

component's limited space of controllability. When it is finished, the values assigned
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to the component inputs are known to be achievable and observable. These values are
then propagated through the original embedding to determine values for the crcuit
inputs and outputs.

Because we are using a gyate-level test generator, wanting independent subgoals
means that we want bit-parallel embeddings. DB-TG has a set of rewrite rules for
transforming bit-mixing embeddings (e.g., ones using addition or multiplication) into
bit-parallel embeddings. Figure 614 shows 3 examples. When not otherwise specified,
these rules apply to 16-bit values. The first rule converts addition of a variable and a
constant into a new variable. The sum of a variable and a constant covers the entire
16-bit range of values because modulus arithmetic allows the sum to wrap around
and take on values less than the constant. ?b 'is a completely new variable that
does not appear elsewhere 'in the original or any other expression. This has been the
most useful transformation 'in the examples we have run because a common way the
ALU 'is used with limited controllability 'Involves incrementing or decrementing the
program counter or stack pointer. Rule 2 holds as long as ?a and ?b are independent
variables, and again ?c is a new variable. Rule 3 captures the idea that doubling
a number 'in base two shifts the number bit to the left. There is a similar rule for
multiplication by a power of 2 These rules have also been very useful because the
microcode uses addition in several places to perform shifting actions. 6

1. ( ?a constant) �-4 ?b
2. ( a ?b) �-+ ? c if ?a and 9b are independent variables
3. ( ?a ?a) fields (field ?a) (field 0 0))

Figure 614: Three transformation rules that simplify the function while preserving

controllability and observability.

DB-TG currently uses roughly 10 of these transformations to simplify embeddings.

They are applied as soon as the embeddings are generated, because they make it easier
to identify and remove redundant embeddings. Fgure 615 shows the set of first-order

'There are rules for transforming bit-mixing embeddings into bit-parallel embeddings in the

current implementation. These rules are widely applicable, however, it is not clear how close we are

to having rules that cover a large enough class of circuits. Note that a ussing rule wll not cause

the gate-level test generator to fail, it just reduces backtracking efficiency.

Solving this problem in a completely general way - not using a rewrite system - depends the

ability to determine whether two functions are equivalent. This subproblem is decidable for finite

domain functions (as are these) but can be quite expensive. The rewrite system is an approximate

solution that executes quickly.



embeddings involving ALU/AND after the transformations have been applied and
redundant embeddings removed.
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Figure 615: The set 2 of first-order embeddings involving ALUIAND a er the
transformations have been applied and redundant embeddings removed.

6.4.5 Implementation Status and Experimental Results

DB-TG currently computes and smplifies embeddings designed for gate-level com-
binational test generators. We have performed experiments on the MAC-1 ALU
using two programs: (i a commercial quality test generator supplied by GenRad
Inc (the 'Implementation of Podem in HITEST) and (ii) a lisp implementation of the
D-algorithm that uses testability metrics to guide search plus a fault simulator to
identify accidental detections. In both cases, we converted the embeddings into com-
binational equivalents by hand. This process should be straightforward to automate
as it involves only assembly of gate-level models from a library.

Thi's technique improves coverage of ALU faults by 67% (from 89.5% of ALU
faults detected by the simple version of DB-TG to 96.2%). This technique achieves
higher coverage because 'it can exercise the ALU/AND whereas the simple version of
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DB-TG cannot. The final coverage of 96.2% of ALU faults is the maximum possible
given the redundancy 'in the ALU model.

0
6.4.6 Discussion

Using a gate-level test generator to design component tests on-the-fly within the
constraints of a sequential circuit continues the line of development begun with pa-
rameterized tests. This strategy 'is an 'instance of trying to match the tool to the
problem: gate-level, combinational test generators like Podem are extremely effective
at what they do. If they are applied in a focussed way on appropriate pieces of the
problem, they can be an effective tool for helping to test sequential crcuits too.

This section also covered the level-shift problem - a classic problem encountered in
all hierarchical test generator - and 'Identified a difficulty wth the standard solution.
The essence of the difficulty 'is that abstracting upwards to 'increase propagation effi-
ciency can reduce backtracking efficiency. Backtracking efficiency is 'Important 'in our
application of generating component testsunder conditions of limited controllability
and observability. We increased backtracking efficiency wth two strategies: 0) con-
tinue propagation at a low level where subgoals are more independent so that blame
for failure can be assigned appropriately and (ii) transform the circuit representation
to help keep subgoals independent. For our gate-level application, the most effec-
tive transformations were those that converted bit-rrlixing functions 'Into bit-parallel
functions.

If gate-level component models are not available, DB-TG can use ether models for
similar components when available or parameterized tests. Parameterized tests are
likely to be more effective because they can be designed by testing experts to cover
the likely component implementation styles. Control of these heuristics and methods
is currently left to the user, because we are still experimenting to determine their
relative merits.

6.5 A Synergistic Combination of Test Generation and
Design for Testability

Test generation and design for testability should be equal partners 'in solving circuit
testing problems. With several colleagues, this author has proposed an automated
methodology for crcuit testing [shirley87] that attempts to strike a balance between
these two approaches - to apply each in its proper place. DB-TG 'is the test generation
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portion of this methodology- the DFT portion 'is described 'in detail in [wu88]. This
section briefly describes (i) the central 'Ideas in the methodology, (i') the 'deas beh'nd
Wu's DFT advisor, (iii) one of several sets of DFT modifications to the MAC-1 sug-
gested by Wu's program, and (iv) DB-TG's performance on the circuit after making
the DFT modifications.

The 'idea of separating the easy testing problems from the hard and attacking
ust the hard ones with DFT techniques is not new to us.- this basic approach has
been used for years by experienced designers and reported on in the lterature (e.g.,
[daniels85]). Our contribution lies 'in refining the methodology and in automating
portions of it.

Designers usually know how to test most of their crcuit 'in straightforward ways
using only the operations 'it was designed to perform. Thus, DFT techniques are
unnecessary here. The remainder of the circuit, often control circuitry, 'is much more
difficult to handle due to limited accessibility. DFT techniques, greatly increased test
generation effort or both are required to ensure testability here.

Following this lead, DB-TG is designed to generate tests quickly for the parts of
sequential circuits that test engineers would find straightforward - this itself represents
an advance over the state-of-the-art - and to give up quickly on the rest, deferring to
DFT techniques. Subsequently, Wu's DFT advisor suggests circuit modifications to
increase testability, while attempting to inimize the extra circuitry needed. 7

Clearly, it would be preferable if DB-TG could generate easy-to-apply hgh cov-
erage tests for 100% of the circuit, and for it to do so without the designer having to
take testability into account. In the past, however, this goal has been attained only
for small crcuits. Moreover, there 'is much theoretical justification for saying that 'it
will never be attained for large sequential circuits. Combinational test generation for
gate level crcuits is NP-complete, and testing sequential circuits is even more diffi-
cult. Our methodology avoids the worst cases by bounding the search done during
test generation to embedding pre-written component tests or the limited classes of
parameterized tests.

We suggest that there 'is a point of diminishing returns, beyond which effort spent
on test generation yields a lower return than effort spent on making the circuit more
testable. Rather than expend large amounts of effort searching for 'increasingly subtle
ways to test the existing Circuit, we have designed DB-TG to stop and report its

'While the ideas in DB-TG and Wu's DFT Advisor fit together nicely, neither program depends
on the other. From our perspective, the DFT systems of [abadir85, zhu86] would suffice, and the
DFT Advisor should be able to work with another test generator capable of handling (many problems
involving) sequential circuits too.
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failures to a DFT advisor.

6.5.1 Wu's DFT Advisor

When DB-TG fails, we send descriptions of that failure to Wu's DFT advisor. Cur-
rently, these descriptions are lists of the component operations and circuit nodes that
DB-TG could not test. The DFT advisor uses these failure descriptions to focus on
circuit modifications which improve testability. The key 'Idea in Wu's system is this:
detailed descriptions of a test generator's failure provide goal-oriented and fine-grained
indexes 'Into a database of DFT suggestions.

The advisor suggests modifications by first running a smple, test generator on the
components that DB-TG could not test. This test generator uses a high-level circuit
model (e.g., it propagates sgnals through multi-bit paths) but does not take time 'Into
account. For example, one way this test generator might fail involves being unable
to control the value of a register. One of the modifications 'indexed by this failure is
4C put a scan path through the register." In effect, Wu's DFT program helps the test
generator by modifying the circuit just enough to get it past the dfficult spots. After
a designer has reviewed and approved the advisor's suggestions, the circuit description
is changed and the test generator run again. This cycle continues until the testing
goals are met.

DB-TG and Wu's test generator use different circuit representations and comple-
ment each other as a result. DB-TG goes to great lengths to avoid working with the
detailed structure of the circuit. Therefore its failure messages often contain insuf-
ficient detail to propose useful structural changes. Wu's test generator is much less
powerful than DB-TG for sequential circuits, but, because it propagates through the
circuit structureIit produces failure descriptions that can be closely indexed to useful
structural changes. DB-TG's chief role 'is therefore to focus the DFT Advisor on the
really hard test generation problems.

Combining ATG and DFT techniques yields several benefits. First, 'it focuses the
cost of extra hardware to support testing only on the most difficult testing problems.
The key here lies 'in having an effective test generator: we do not pay for testability
if the test generator can find a solution without changing the circuit. Contrast this
with the scan design style which incurs cost uniformly over a circuit, because is tuned
to exploit the limited capabilities of purely combinational test generators.

Second, not requiring pure ATG solutions to the small number of very hard prob-
lems can reduce test generation time by a disproportionately large amount. More-
over, the resulting tests tend to be simple and direct, thus they can be applied quickly.
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These first two benefits result in a reduction of the total cost of the test-related aspects
of design.

Third, this combination of factors makes the test generation problem more pre-
dictable and manageable in the face of design changes, improving the designer's ability
to trade off testing costs against, for example, performance and area costs. Testing
should be one factor among many that designers can balance, no more nor no less
important a priori than the rest.

6.5.2 A Set of DFT Modifications

When run with the pre-written component test library, DB-TG successfully embeds
tests for most of the datapath but fails to do so for the sequencer. As we have not
yet automated the links in either drection between DB-TG and the DFT Advisor, we
transfer the lst of failing operations by hand to the advisor. Among other possibilities,
the Advisor suggests that we: (i) put a scan path through the /,JR, which adds shift-'in
and shift-out operations to this register, and ii) provide two new pins which determine
whether the circuit is 'in test-mode and control yIR shifting. We modified the crcuit
model accordingly.

Figure 616 shows the consequences for ATG. With the DFT modifications, DB-
TG was able to achieve 97% coverage over stuck-at faults. This figure has been
normalized to remove defects 'in the unused portions of the ALU and the register file.
The raw coverage figure from fault smulation is 94%.

The new operations for loading and observing arbitrary values in the PIR plus the
single-shot mode allow the test generator to properly embed its library tests for the
components in the sequencer. In effect, the test generator is able to build very simple
microcode sequences and execute them by shifting them, one at a time, into the PIR.

Of the remaining undetected faults, most are ALU faults that are detectable but
are not caught due to the granularity problem with the ALU/AND operation. Given
complete control over the microinstruction register, the test generator should be able
to build microcode sequences that fully exercise the ALU/AND operation, for exam-
ple, by 'implementing a general AND 'Instruction. The program cannot do this at the
moment, because the sequences required are on the order of 10 microinstructions long,
and the simple STRIPS planning technology used by the state planner to construct
operation sequences is not up to it. Section 83 suggests one promising way to improve
the state planner for the purpose of attacking this sort of complex sequence planning
problem.
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Figure 616: Test generation results after adding DFT modifications: 9711o of the

detectable stuck-at and open circuit faults.
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6.6 S ummary

This chapter also described several extensions to DB-TG that address the fragmen-
tation problem, the primary reason that DB-TG is incomplete. The first extension
involved selecting tests that require only limited access to the component. These tests
were organized in a subsumption hierarchy to facilitate trying them 'in order.

The second extension was to store parameterized versions of the expert-supplied
tests. One way to do this involved asking the expert to describe a general pattern
describing data that can be used to test a component type and then writing a program
that reproduced the pattern upon demand (e.g., the carry-chain adder test). Another
way to do this 'Involved breaking up the problem of testing the component into multiple
subgoals and writing a special-purpose program to search for ways of achieving these
subgoals 'Independently (e.g., the register test.)

The third extension 'Involved combining the strengths of DB-TG and gate-level
ATG to effectively test combinational components whose gate-level models are avail-
able. In this marriage the DB-TG handles the sequential aspects of the circuit and
the gate-level test generator and handles the details of the component, augmenting
or replacing the component test library.

Combining DB-TG and gate-level ATG exposed an important difficulty encoun-
tered by hierarchical test generators called the level-shift problem. The essence of the
problem is that aggregating values, e.g., bts into 'Integers, 'is sometimes a di'sadvan-
tage because it takes test generation goals that were independent (e.g., controlling
individual bits) and ties them together (e.g., controlling the integer). When goals
are expected to interfere, it is sometimes more efficient to continue using the lower
level circuit representation. This extension also used a set of domain-specific problem
transformations that preserve the essential properties needed for test generation (i.e.,
controllability and observability), but rendered test generation subgoals 'Independent.

Finally, test generation 'is a problem whose specification is often negotiable: often
the best way to solve a testing problem is to change the circuit rather than search a
very long time for a solution or generate a solution that is expensive to use. DB-TG
can quickly separate testing problems that would be straightforward for an expert test
programmer from testing problems what would be dfficult and expensive to solve.
The dfficult problems can then be attacked by a design for testability advisor that
suggested changes to make the circuit easier to test. Intelligently combining test
generation and design for testability can reduce testing costs.
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Summary: Experts write test programs rather than test vectors because
programs are a more readable and compact representation for tests than vec-
tors. Test programs can be constructed automatically by merging test program
fragments using expert-supplied goal-refinement rules and domain-independent
planning techniques from Al. Gving the test generator knowledge of the capa-
bilities of the tester provides additional leverage.

7.1 Introduction

Whereas DB-TG was targeted at embedding problems that give rise to highly interact-
ing subgoals, our second program, the Program Fragment Test Generator (PF-TG),
is targeted at embedding problems that give rse to weakly interacting subgoals. This
second kind of embedding problem is characteristic of sequential circuits that provide
relatively good access to internal components. Conventional planning technology ap-
pears to be sufficient to solve many embedding problems of this type and provides a
base for exploring several new ideas about circuit testing. This work has resulted in
the four claims shown 'in figure 71. There 'is a fair amount of mechanism needed to
implement these ideas, and this section presents the 'Ideas without diving into details.
Section 72 describes the mechanisms needed to work through a detailed example, and
section 73 describes the implementation 'in further detail.

195
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7.1.1 The Conventional Aspects of PF-TG

PF-TG is novelin some ways and conventionalin others. This section briefly describes
the conventional parts. At the coarsest level of detail, PF-TG solves embedding
problems in the usual way: it starts wth a component test and propagates backward
and forward from the component to circuit inputs and outputs to create an embedding.
However, PF-TG is unusual 'in the representation it uses for component tests (test
programs), in the kinds of propagation rules it uses (those that contain program
fragments), in some of the signal tokens that are propagated (those that represent
streams) and in how it fits pieces of a solution together (via late commitment and
temporal constraint posting).

PF-TG can be likened to a conventional test generator in the following way: as
the DAlgorithm combines D-Rules to propagate values from the component to cir-
cuit inputs and outputs, so PF-TG combines test program fragments. When the
D-Algorithm finishes, all node assignments are consistent and the values assigned to
circult inputs and outputs constitute a test vector. When PF-TG finishes, all the
program fragments fit together to form a test program.

PF-TG has three intellectual ancestors: Joyce's extensions to DART [joyce83],
HITEST [robinson83] and the test generator described in [shirley85]. How PF-TG
compares wit these ancestors 'is explored 'in chapter .

7.1.2 Test Programs Have More Explicit Structure Than Vectors

A test program is a sequence of computer-executable instructions for testing a cir-
cuit. Test programs are equivalent to sets of test vectors in one sense: both specify
sequences of input/output pairs. Programs, however, may have more structure than
the equivalent vectors, including, for instance, looping constructs and conditional
statements.

This structure makes programs a good representation for tests for several reasons.
First, test programs are often more compact than the equivalent vectors, because
looping constructs can efficiently encode repetitive tests.

Second, test programs are more readable. (Recall the comparison between a test
program and the equivalent vectors 'in section 16.2.) Explicit structure makes the test
programs easier to understand, to augment, and to modify. Making the test genera-
tor's output more readable makes it more accountable. Accountability is important 'in
turn, because circuit testing is still something of an art: fully automated techniques
do not yet exist for testing the most complex circuits. Tools will solve some portions
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1. Produce Programs not Vectors: Representing tests as pro-
grams rather than vectors makes them more compact and easier
for people to understand and allows convenient access to special-
purpose tester features.

2. Merge Test Program Fragments: Test programs can be cre-
ated by merging program fragments. Goal decomposition rules
and temporal constraints determine which program fragments are
selected and how they fit together.

'tly: Conventional test gener-
3. Represent The Tester Explici 1

ators assume an impoverished model of the tester's capabilities.
PF-TG uses an explicit and somewhat richer model, enabling the
program to take advantage of special-purpose tester features.

4. Propagate Typed Streams: PF-TG can propagate tokens
that represent typed streams of values, e.g., a counting-strearn.
Propagating typed streams can generate repetitive tests that are
more efficient over a wider class of crcuits than can propagat-
ing symbolic variables, the method of existing hierarchical test
generators.

Figure 71: P- TG illustrates four new ideas about test generation.

of the problem and human experts will solve others for the foreseeable future. While
tools like fault simulators can grade test programs and vctors equally well, they do
little to help the test expert modify tests to increase fault coverage. Therefore, in an
environment where the expert modifies and combines the tests generated by hs tools,
the expert must understand what the tools are doing.

Test engineers currently write tests 'in variants of conventional programming lan-
guages (e.g., Basic and Pascal). PF-TG uses a simple block-structured language based
loosely on the Design Waveform Language (DWL) used in the HITEST test generator
Irobinson83].

Test programming languages also provide convenient access to special-purpose
tester features, e.g., hardware for generating memory tests or streams of counting
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numbers. Test vectors - lists of circuit 'Inputs and outputs - are insufficient for this
purpose because part of what must be controlled 'is the tester 'Itself. Programs are
a convenient output format for a test generator that exploits tester capabilities as
described next.

1

7.1.3 Exploiting Tester Capabilities

Classical test generators have extremely lmited models of tester capabilities. They
assume a machine that can only step through a table of inputs and outputs and
raise a flag when one of the measured outputs differs from the table entry. This
model is simple, general and has aided the development of test generation algorithms,
but 'it is a far cry from the machines programmed by test engineers today. Modern
testers have numerous special features that are 'Included to handle common testing
'tuations efficiently. PF-TG has a description of these features and uses them where

appropriate.

PF-TG assumes a tester architecture lke the one shown 'in figure 7.2.a. This
tester is driven by programs written 'in a hgh-level test language and running on a
general-purpose computer. PF-TG also assumes that:

1. There 'is a single clock. The clock is either generated by the tester or by the
circuit. In the second case, the tester must synchronize to the circuit clock.

2. The tester has a vector memory for holding test patterns declared as arrays in
the test language.

3. The tester has several special-purpose pattern generators (e.g., for memory tests)
that create streams of values on-the-fly. These streams can be applied to the
circuit or compared with circuit outputs.

4. The tester has a limited number of driver-sensors (e.g., 26) that are connected
to the circuit via a crossbar switch.

This architecture describes a class of testers, and particular instances may have only
a subset of these features. Some features may be implemented directly 'in hardware,
while others may be implemented 'in the software that drives the tester,' but from
PF-TG's perspective, both kinds of features are the same.

'Some testers are so complex that sophisticated software interfaces are required to fully utilize
their capabilities, e.g., to handle detailed formatting and resource constraints. Thus, the combination
of tester hardware and software is the real target of test generators.
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0

0

0

(a) PF- TG assumes the tester i's a general-purpose processor with a vector memory,
a (possibly epty set of special-purpose stream generators, and a crossbar
switch between e dfiver-sensors and the circuit.

RULE 1: To supply a counting stream to ?node
use this code fragment:

InitializeCounter(Geni, ?low, ?high, 1);
ConnectStreamGenerator(Geni, ?node);

< ... >
StartCounter (Geni)

RULE 2 To supply a counting stream to ?node
use this code fragment:

FOR value FROM ?low TO ?high DO
BEGIN

?node = value;
END

(b) These rules describe two different ways.for a tester to generate a ounting
stream. The rules are pseudo-code equivalents to the real rules in PF TG's,adable) rule language. The Apses here shorthand for are. Is

mporal constraint that allows an aKi;��ry gap between the parts of the
first fragment.

Figure 72: The tester odel and two rules for using it.
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Figure 7.2.b. shows two sample rules, one of which involves a tester feature. If PF-
TG discovers that it needs to generate a counting stream, 'it considers using these rules.
Rule I solves the problem using a binary counter called Genl. The first statement in
the code fragment initializes Gen I tells t the range of -values to count through and
the length of each step 'in clock cycles (I in this case). The second statement is an
instruction to the crossbar to connect the output of Genl with a particular crcuit
input, and the third statement starts the counter.

Rule 2 solves the same problem using a FOR loop that assigns the value of the
iteration variable to the circuit 'Input. By expressing the method in simple test pro-
gramming language constructs, this rule passes the problem off to the test language

'ler, which can generate the counting stream by: (i) executing the loop at run-
time in the uniprocessor or (ii) converting the loop into vectors at compile time and
applying them to the crcuit va the vector memory. 2

These solutions have different characteristics. Rule I produces a solution that is
space efficient and fast because these circuit inputs are generated in hardware as the
test is being applied. Rule 2 produces a solution that can be executed by a simple
tester with no stream generators. Executing the loop directly 'in the tester's processor
is relatively slow. In this case, the test can usually be executed more quickly by
unrolling the loop into a sequence of vectors, unless the vectors do not fit in vector
memory. PF-TG prefers rule where applicable.

This tester model, while more accurate than the model used by conventional test
generators, is still a simplification of a real tester. For instance, the stream generators
in this model are connected to the pins via the crossbar switch which, due to fairly
long setup times, cannot be changed on every time step. Instead stream generators
are assigned to groups of pins for the duration of major pieces of the test program. In
some real test generators, the situation is more complex: the value for sngle pins can
be selected from either vector memory or a stream generator at each tme step. This
choice is controlled by the value coming from the vector memory (e.g. one value from
the memory means apply a , another means apply and a third means use the value
from the stream generator). This capability allows streams of values to be embedded
into complex input patterns. The point of this section 'is not that the particular tester
model used by PF-TG is a complete and accurate representation of an existing tester.
It is not. Rather, we are llustrating with a model that is more sophisticated than
those used traditionally that a test generator can benefit from knowing the capabilities

'In principle, the compiler could also deduce the goal of applying a counting stream from the code
and allocate a stream generator to this problem like Rule 1. However, this is a difficult problem,
and existing compilers do not do this.
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of the agent that will carry out the test.

7.1.4 Typed Streams.: Test Data Has Structure Too

PF-TG propagates tokens representing typed streams of data to handle groups of
similar goals during test generation. Many tests 'Involve repeating a pattern of activity
with changing data, and increasing efficiency by exploiting repetition is an important
goal in test generator design. Classical test generators propagate tokens representing
single (usually boolean) values, therefore they must solve an embedding problem
repeatedly as the data changes or use complex caching schemes to exploit this kind of
repetition. Herarchical test generators and DB-TG improve on this by propagating
symbolic variables, i.e., tokens representing unspecified values. A solution created in
this way represents a group of similar embeddings that can be used repeatedly by
substituting 'in the changing data.

Figure 73 shows an example where propagating a variable yields an awkward
solution. Suppose the task is to test the ROM by cycling through its inputs and
observing its outputs. The symbolic variable approach starts by putting a variable
V at node A and propagating backwards. The test generator would have a rule for
propagating back through a counter that says: "to set the output to V, clear the
counter, then clock it V tmes." This yields a plan for controlling A that takes V
clock cycles. Repeatedly instantiating this plan with values 1 2 3...n for V yields a
test that takes 2 3...n = n 2+ n)/2 clock cycles.

Initializing the counter each time 'is unnecessary. An expert can easily see that the
counter provides a simple way to cycle through the ROM inputs: nitialize the counter
once, then let it count. PF-TG finds this solution by taking these steps: (i) the ROM
component test says to apply an exhaustive stream of values to A, i.e., a stream that
contains all 256 possible values, (ii) propagating backwards, the counter is asked if it
can output an exhaustive stream, (iii) it can because it can generate a countingstream
which is a kind of exhaustive stream, (iv) to do this, the test generator must initialize
the counter and then refrain from initializing it for a period of time. Figure 73 shows
this solution.3

The key to this solution is the language for expressing the problem and the so-
lution. We want to apply a set of values to A that have the property that they are

3MOSt of the syntax of this program should be self explanatory. Assignment statements (indicated
by = tell the tester to set the circuit input on the left-hand side to the value on the right, and
observation statements (indicated by = tell the tester to compare the value of the output on the left
with the expected value on the right.
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CLR I

in 

-OUT

ARRAY ROMOUTPUTS = ... contents of the ROM ...
CLR 0
CLK 0- CLK 1-
CLR 1
CLK 0; CLK I$-
FOR INDEX12 FROM TO 25 DO

BEGIN
OUTPUT = ROMOUTPUTS[il-
CLK = ; CLK = 

END

Figure 73: Here is an example where propagating a variable yields an awkward solu-

tion. The circuit i a Portion of the MA C-1. The goal is to test the ROM by running

through the possible inputs at A. Propagating a symbolic value back from A yields thi's
solution: clear Counter, then count up to the value of A. is olution takes time pro-

portional to the value of A, and using it repeatedly for the different values of A takes
0(n2) time, where n is the maximum value of A. Repeatedly initializing the counter

makes this unnecessarily slow. PF- TG finds a solution that initializes the counter

only once by propagating a typed stream back from A. This solution takes 0(n) time.
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exhaustive. There are two ideas here: the first is the idea of a stream, i.e. a set of
values that are applied in order over tme, and the second 'is the idea of characteriz-
ing the desired stream by a property, e.g., exhaustiveness. Classical algorithms (e.g.,
the Dalgorithm) cannot solve the problem above as efficiently because they do not
group desired values together as a set. Test generators that propagate variables (e.g.,
Saturn[singh85]) can tell you how to apply any one of a set of values interchangeably,
but this yelds a less efficient solution for the problem above because the method
for applying one value 'is not combined wth the method for applying the rest of the
values.

PF-TG currently uses a vocabulary of four properties and twelve stream types
some of which are shown 'in figure 74. Properties and stream types have parameters
describing, for 'Instance, the values that a counting stream counts from and to. The
parameter Width in the figure refers to the width of a circuit node in bts. For example,
an ArithmeticCountingStream counts from Low to High with values Width bits wde.
A GreyCountingStream is similar except that the count proceeds in grey code order.
A PseudoRandomStream stream 'is a sequence of pseudorandom numbers typically
generated by a linear feedback shift register. A ClockStream is simply a single bit
rising and falling for Length cycles.' Figure 74 describes the four remaining stream
types which are used to test n-bit nodes and bit-parallel components.

Rules for testing a component generally say to supply a stream wth certain prop-
erties to a component input and observe the component's responses. Rules for prop-
agating through components or for controlling the tester generally say that they can
supply certain kinds of streams. If one of the available streams has the desired prop-
erty, then the test generator can succeed. For instance, a stream wth the (Exhaustive
4) property must contain all possible values on a 4-bit node (in any order), i.e., the
values 0-15 decimal: an (ArithmeticCountingStream 4 15) , for example, has this
property. The PairwiseExhaustive property holds if, for any two bit positions, the
stream has all four 00,01,10,11 pairwise combinations. DiamondStreams and LogPair-
wiseStreams have this property, as does any stream that has the exhaustive property.
The BitwiseExhaustive property holds 'if each bit gets set to both and 1, and Ze-
roOne and Checkerboard streams have this property among others. Finally, a stream
has the CoveringSet pro' erty if it contains at least the values in SetOfValues.

'ClockStream assumes a 0% duty cycle. I have not needed a more general definition for the
current set of examples, but it is easy to add a parameter for the duty cycle.



I 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1
1 1

(c) (ZeroOneStream 8 cvers SA-0 and
SA-1 faults in each bit position.

I 0 1 0 1 0 0 

2 0 0 1 0 0
1 1

(d) (CheckerboardStream 8) covers stuck
bits and bdges between adjacent
bit positions.-

1 0 0 0 0 0 0 0 0

2 0 0 1 0 0 
3 0 0 1 0 0 1 
4 0 0 0 0 1 1 
5 1 1 1 1 1 1 1 1

1 1

(f ) m 8) covers stuck
s etween all bit positions

I 00000000

2 10000000
3 11000000
4 11100000
5 11110000
6 111000
7 111100
8 110

10 01111111
11 00111111
12 00011111
13 00001111
14 00000111
15 00000011
16 00000001
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(Ex h a u st i ve Width 

(PairwiseExhaustive Width)

(BitwiseExhaustive Width)

(CoveringSet SetOfValues )

(a) Prop erdes

(ArithmeticCountingStream Width Low High)

(GreyCountingStream Width Low High 

(PseudoRandomStream Width Length)

(ClockStream Width Length)

(ZeroOneStream Width)

(CheckerboardStream Width 

(DiamondStream Width)

(LogPairwiseStream Width)

(b) Stream Types

(e) ndStream covers stuck bits,
and all otber faults between

pa of bit positions.

Figure 74-. Stream properties (a) and types (b) currently in P-TG. An Arithmetic-
CountingStream counts from Low to High with values Width bits wide. A Grey-
CountingStream is similar except that the count proceeds in grey code order. A Pseu-
doRandomStream stream is a sequence of pseudorandom numbers. A CockStream is
simply a single bit rising and falling for Length cycles. Figures (c) through (f) show
the definitions of the less familier streams.
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7.1.5 Reader's Guide

The previous section described the new ideas exhibited in PF-TG. Section 72 de-
scribes how the test generator works by stepping through a smple example 'in detail.
Unfortunately, to follow the example, we must first introduce some of the test genera-
tor's implementation. Most 'important are three languages for specifying how-to-test
rules, constraints on timing and test program fragments. Section 72.4 contains the
example, and section 73 describes the implementation in further detail.

7.2 How PF-TG 'Works

Figure 75 shows the system modules and how they communicate. These modules
run as coroutines, but they can be viewed as performing the tasks in figure 76 'in
sequence. This section describes the modules sufficiently to work through a detailed
example 'in section 72.4. We concentrate here on the rule engine and the languages
for describing constraints and subgoal expansions and test program fragments. After
the example, section 73 describes how constraints are solved during test generation.

7.2.1 The Rule Engine and Library

The first step, decomposing the test programming problem, is handled by a backward-
chaining rule-based system. The system has rules for solving the following knds of
problems: (i) how to test a component, (ii) how to control component outputs, (iii)
how to move data through a component, (iv) how to make the tester drive circuit
inputs, (V) how to make the tester observe circuit outputs, vi') how to make a com-
ponent inactive, (vi') how to initialize a component, (viii) how to move a state machine
from one state to another, and (ix) how to take a state machine through a cycle.

The rule engine and rule language underlying PF-TG is Prolog [sterling86], chosen
primarily for its simplicity and availability. Figure 77 shows a sample propagation
rule in Prolog that specifies two ways to control the output of a multiplexor. Each
rule handles exactly one goal and lsts all ways of decomposing 'it into subgoals. Rules
start with def ine-predicate followed by the name of the goal they handle and a list
of clauses. This rule handles mux-2-control-scalar goals, which are for controlling
the output of a two 'input multiplexor. scalar 'Indicates that the value of the output
will be scalar, i.e., a single value rather than a stream. Each clause specifies one
way to solve the goal. The first clause (lines 24) says "To make out be ?value at
?time set the select input (sel) to at ?time and set inO to ?value at ?time." The
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1. Problem Decomposition: How-to-test rules decompose the problem
of generatin a test into subproblems. Decomposition continues until
directly solvable subproblems are reached (e.g., controlling a circuit input
or generating tests for a small combinational component) yelding a tree
of rule 'invocations. Rules are stored 'in the Rule Lbrary and are
selected and executed by the Rule Engine.

2. Fragment Collection and Constraint Posting: In addition to break-
ing up test generation problems, rules can put program fragments 'Into
the output test program. When the engine executes a rule, it copies any
program fragments in the rule and passes them to the code manager.
Rules also contain constraints controlling how the program fragments
fit together. Constraints either control the execution tmes of program
statements or the allocation of tester or circuit resources, and they are
passed to the Time Manager and to the Resource Manager respec-
tively.

3. Constraint Satisfaction: The Resource Manager reduces resource con-
straints to temporal constraints. These plus te temporal constraints
sent directly to the Tme Manager are reduced to a set of lnear inequal-
ities in two variables, where the variables represent execution times. The
Time Manager solves these 'inequalities for 'Integer values.

The rule language contains constructs for protecting resource assign-
ments made by one subgoal from interference by another subgoal. Pro-
tection constraints are maintained by the Debugger.

4. Code Generation: The Code Manager sorts the program fragments
by execution time and assembles code for the tester.

Figure 76. P- TG performs these steps
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1. (define-predicate mux-2-control-scalar
2. ((mux-2-control-scalar ?component out ?.value ?time)

INO INI 3. (control-port-scalar ?component sel 0 ?time)
S OUT 4. (control-port-scalar ?component inO ?value ?time))

S. ((mux-2-control-scalar ?component out ?value ?time)
6. (control-port-scalar ?component sel I ?time)
7. (control-port-scalar ?component ini ?value ?time)))

Figure 77: A rule for controlling a MUXs output

first element of the clause (line 2 specifies the goal to be solved and the remaining

elements (lines 23) specify subgoals to work on to solve the main goal. As 'in Prolog,

the rule engine tries clauses and subgoals in the order they appear 'in the text. The

second clause (lines 57) specifies a similar method using ini. Symbols prefixed with

"?" indicate variables. The line numbers smplify the explanation and are not a part

of the rule.5

The particular version of Prolog used 6 has several characteristics that turned out

to be important: (i) convenient access to the underlying implementation language

(Lisp), (ii) efficient facilities for caching and retrieving solutions to previously solved

subproblems, (iii) powerful trace and debugging facilities for examining how goals

were solved, and (iv) a freeze goal mechanism. The nterface between Prolog and Lisp

simplified program development by allowing rules written 'in Prolog to interface cleanly

with the other program modules (e.g., the temporal constraint manager) which were

more conveniently 'Implemented directly in Lsp. The caching facilities quicken test

generation by recalling solutions to repeated subproblems, e.g., controlling a node.

Currently, the user, not the system, decades which goals are cached. The debugging

facilities aded program development. Finally the freeze goal mechanism, which is

an escape from Prolog's strict depth-first search for deferring goals until sufficient

information 'is available for solving them, smplified some rules. For instance, to move
a value through a register file, one must load a register and then read it later. Using
this facility, the rule that implements this defers the choice of which address to use

until late in the problem where constraints to help choose that address might be
available.

'Controlling the output of a multiplexor is an extremely simple task, and this Prolog notation
is somewhat clumsy here. PG-TG provides a truth table notation to sim plify expressing rules like
this. For more complex tasks, especially those involving temporal constraints, the Prolog notation
quite reasonable.

6PF-TG is written in a variant of LM-PROLOG [kahn831 written by Andrew Ressler and modified
heavily for this use.
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7.2.2 Constraints

PF-TG 'is a constraint posting test generator. Constraint posting is the process of
defining an object, a test in this case, by incrementally specifying partial descriptions
it must satisfy. For instance, PF-TG constrains the execution tmes of test program
statements until the order in which they should occur becomes clear. The advantage
of constraint posting is that choices can be deferred until reasoned decisions can be
made. A temporal constraint in one rule can say, for instance, that a component must
be initialized before it is used, yet leave for other rules the choice of exactly when
these events occur. The reduction in arbitrary choices can increase search efficiency.
This is a familiar idea 'in the Al Planning literature.

PF-TG uses three types of constraints to control how program fragments fit to-
gether. Temporal constraints control the execution times of program statements,
e.g., statement A must execute before statement B. Structural constraints control
the structure of the test program, e.g., assignment statement C must appear within
loop D's body. Resource constraints control the allocation of scarce resources to
different uses at different times, e.g., circuit node E has a certain value at time T and
cannot have any other.

7.2.2.1 Temporal Constraints

Each planned event in the circuit or statement in the test program is associated with
a temporal variable; PF-TC controls when these events and statements occur by
constraining the temporal variables A Tme Manager [allen-cacm, joyce83, shirley85,
valdes86, dean87] records and satisfies the constraints by finding a consistent set of
integer variable assignments. The 'integers represent the clock cycle during which the
event or statement will occur when the test 'is executed.'

The Time Manager handles t<-offset = �4 < !� > �!, and t-offset
constraints between pairs of variables plus and and or connectives between ex-
pressions. For convenience, it also provides a macro language for expressing more
complex relations such as disjoint-intervals and overlapping-intervals. The
(t=-of f set a b c) constraint stands for b = a c. This constraint is used 'in the
example below. The other constraints are explained in section 73.1

7Modeling time at the level of granularity of clock cycles restricts the program to circuits with a
single, continuously running clock. PF-TG has a second rule set that models time at a finer level
of granularity, thus allowing asynchronous control of every circuit input. This document describes
only the first rule set, which produces much simpler constraints if it is applicable to the circuit under
test.
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7.2.2.2 Structural Constraints

The time manager also handles precedence constraints on the structure of the test
program. Some program statements do not take time to execute, but the order 'in
which they appear in the program is important. For 'Instance, variable declarations
do not generally 'involve execution time but 7in some languages, they must appear
before all executable code lying in the same begin-end block. Structural constraints
control the textual order in which statements appear in the final test program.

Structural constraints are implemented using the same mechanisms used by tem-
poral constraints. Each variable has two values: one along a temporal timeline and
another along a structural timeline. We refer to a "temporal variable" when we are
are interested in 'its temporal value and similarly wth a "structural variable."

The "timeline" for structural constraints 'is separate from the temporal timeline,
but the two are related because test programs execute in structural order: a state-
ment that executes before another must have appeared earlier in the program, and
a statement that appears earlier cannot execute later. 8 If t< 'is temporal precedence
and s< is structural precedence, then

At < *. As < and As < :�- At < 

7.2.2.3 Resource Constraints

The Resource Manager detects resource assignments that might potentially conflict
(e.g., distinct values assigned to a single node during propagation) and creates tem-
poral constraints to make sure they do not. There are two kinds of resources: node
resources involving activity inside the crcuit and tester resources involving activity
in the tester.

Node Resources

Circuit nodes are resources because they can only have one value at a time.
Suppose, for example, that the rule engine assigns node A the value at time T1
(A=1 CDT1) to achieve one goal and A=OL&T2 to achieve another goal. Since �_-I,
the times must be different, i.e., (�_ T1 T2). In the general case, either the node
values are the same or the times are different. The time manager enforces this by first
trying to prove that the two values are equal using a simple equality theory (i.e., a

'Temporal order implies structural order except for loops and conditionals, which are handled
specially. Loop bodies also execute in structural order.
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set of Prolog rules for proving algebraic expressions equal). If this proof fails, then it
asserts a constraint between the times.

Enforcing resource constraints wth temporal disjunctions can be expensive, since
'it can yeld nn - ) disjunctions for n assignments to the same node. However,
for moderately sequential crcuits, there are usually few assignments to a single node
within a sngle test generation problem. For the examples in this chapter, the average
number of assignments per node 'is roughly 1.5 and the maximum number 'is .

Two mechanisms tend to keep this number down. The first is partitioning the
problem into independent subproblems called test phases.' If two time� belong to
different test phases, then they effectively lie on derent timelines and no temporal
disjunction 'is needed to keep them apart. The second mechanism is stream propaga-
tion: resource constraints are not needed nor are they enforced between the individual
elements of the stream.

Tester Resources

PF-TG manages the following tester resources: (i) the special-purpose stream gen-
erators, (ii) the execution stack of the main processor and (iii) the driver-sensors A
special-purpose stream generator i's allocated to tasks during non-overlapping inter-
vals. The execution stack is used by program statements that create variable binding
environments: let, loop and multi-stream. Proper use of the stack resource requires
that binding environments be nested that is every bnding statement that starts dur-
ing the execution of binding statement A must also finish during binding statement
A. Thus every pair of binding statements (A, B) must stand in this relationship:

(or (disjoint-intervals A )
(interval-contains A B) 'O
(interval-contains B A))

By special dispensation, the code generator can merge two loops 'if they 'Involve the
same number of iterations. Consequently, pairs of loop and multi-stream statements
stand in this relationship 'Instead of the previous one: I

9Test phases are similar to reference intervals [allen-cacm] except there is no hierarchy of them.
"The interval-contains constraint means one interval must be completely within the other,

i.e., their start times are distinct and their finish times, distinct. The start and finish times are
distinct because two statements cannot manipulate the tack at the same time, and we model binding
statements as pushing a new binding onto the stack before doing anything else and popping the
binding as their final action.
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(or (equal-intervals loop-a loop-b)

(disjoint-intervals loop-a loop-b)

(interval-contains loop-a loop-b)

(interval-contains loop-b loop-a))

Finally, there are a limited number of driver-sensors, each of which can be allocated

to only one pn circuit input or output) wthin a test phase. A driver-sensor is the

electronics package that alternately creates the voltages for controlling a circuit node

and measures the voltage on the node. A pin 'is a wire that makes physical contact

with the circuit. Pins are cheaper than driver-sensors, and there are often more of

them. PF-TG assumes they are connected via a few-to-many crossbar switch. The

driver-sensor resource is 'Implemented by incrementing a counter every time a signal

propagating to an 'input or output is handled by a normal control or observe test

language statement (as opposed to one of the stream generators). If this counter hits

a pre-specified maximum, that signal propagation fails and the rule engine backtracks,

decrementing the counter as appropriate.

7.2.3 The Code Manager and The Test Language

The code manager has three jobs. First, it prepares code fragments given to it by

the rule engine for 'Inclusion in the final test program. A code fragment can imply

additional subgoals and constraints that are sent to the rule engine and to the time

manager respectively. For instance, writing a program statement that assigns a value

to an 'Internal circuit node is shorthand for the goal of propagating that value back to

primary inputs: this goal can ether be explicit as a subgoal in a rule or implicit as an

assignment statement 'in a rule's program fragment. Second, when the rule engine and

time manager quiesce, the code manager uses the total order on temporal variables to

merge all fragments together to produce a program in PF-TG's test language. Finally,
the code manager converts the test program into the language of the target tester.

7.2.3.1 The Test Programming Language

PF-TG's language for expressing test program fragments 'is a smple procedural lan-

guage with two novel aspects: (i) it contains unexecuted, advisory declarations for

controlling how the code manager combines program fragments and (ii) the language

features partially overlap those of the rule language and provide an alternative and

more convenient notation for specifying certain kinds of goal expansions and temporal

constraints. This section focuses on the novel aspects of the language.
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A test program fragment must specify two things:

1. The fragment must specify what to do. Fragments say what the combination of
tester software and hardware must do to solve a particular testing goal (usually
part of a larger problem).

2. The fragment must specify what not to do. Since fragments can interfere with
each other when merged, fragments must tell PF-TG how they can be merged
without being broken. These restrictions are expressed as temporal, structural
and resource constraints.

To see the importance of specifying what not to do, consider the following example.
Suppose that fragment A loads register R 'in one statement and reads it in the next,
and fragment assigns R a different value. If B is merged 'in between the statements
in A then A is unlikely to work as expected. Between the load and the read the
register's contents must be protected: the language includes statements for expressing
this.

PF-TG's test programming language has a 1'sp-like syntax and includes constructs
for controlling and observing circuit nodes, 'Iteration, conditional branching several
other advisory statements. Figure 78 contains a full lst of these statements. In the
text, I introduce statements as needed to describe the ideas behind the language.

Figure 710 shows a sample code fragment extracted from the rule for testing
adders. The declarer ragment statement 'in the rule language sends a program frag-
ment to the code manager for inclusion in the final test program. The multi-stream
iteration construct accepts a set of (variable stream) pairs and executes 'its body wth
the variables bound to successive stream elements. The streams are stepped in parallel
and must be the same length.

The equal-instants advisory declaration specifies that the statements n its body
must be executed smultaneously. The first control statement says to assign node
?inl the value inl-data; the remaining statements are analogous. All prolog vari-
ables appearing 'in a program fragment are bound to crcuit nodes or constants by the
rule engine before it passes the fragment to the code manager. For instance, ?ini is
bound to a circuit node earlier in the complete version of this rule.

7.2.3.2 Processing a Code Pragment: Implied Constraints and Goals

The code manager breaks up code fragments into individual statements, creates tem-
poral variables to represent their execution times, and constrains these variables ac-



Staiement Description

Manipulating Nodes
(CONTROL-SCALAR node value time) Assign a single value to a node and justify it.
(CONTROL-STREAM node value time) Assign and justify a stream.
(OBSERVE-SCALAR node value time) Sensitize a path from a node to an output.
(OBSERVE-STREAM node value time) Sensitize a path for a stream.

Iteration
(LOOP (variable from to) &body body) Repeat the body. All subgoals caused by body

finish before the next iteration.
(MULTI-STREAM stream-decls &body body) Declare streams to be used in the body.

Temporal Declarations
(GROUP &body body) Textually like a BEGIN-END block but places no

time constraints on the inferior statements.
(BLOCK &body body) Inferior statements must execute during the block,

but no constraints between inferiors.
(LOOSE-SEQUENCE &body body) Inferior statements execute in sequence but with

arbitrary gaps (allowing statements from other
fragments to come between).

(TIGHT-SEQUENCE body body) Inferiors execute in sequence with no gaps.
(EQUAL-INSTANTS &body body) Inferiors have the same execution-time.

Other Declarations
(TEST-PHASE declarations &body body) The body 'is an independent subproblem.
(LET declarations &body body) Bind some variables for use in the body.
(DECLARATIONS code) An escape for including arbitrary code in the final

test program. Used mainly to declare arrays.
(WITH-SYNCH &body body) All streams within the body are synchronized.

Resource Protection
(PROTECT nodes &body body) Protect the nodes while body executes.
(PROTECT-EXPLICIT nodes &body body) Only lexically visible statements within body can

effect the nodes while the body is executing.

Sequencing
(IF condition then else) A conditional branch. Each branch must be a test-

phase.

Syntactic Sugar (macros)
(CONTROL node value time) Expands into control-stream if inside a multi-

stream, else expands into control-scalar.
(OBSERVE node value time) The same thing for observe-stream and observe-

scalar.
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Figure 78: All of the statements in P- TGs test programmina lanauage.
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(declare-fragment
(multi-stream (Unl-data ADDEND-STREAM-16-1)

Un2-data ADDEND-STREAM-16-2)
(out-data SUM-STREAM-W)

(equal-instants
(control ?inl inl-data)
(control ?in2 in2-data)
(control ?op ALU-ADD)
(observe ?out out-data))))

Figure 79 A sample test program fragment (Part of an adder test).

(declare-stream ADDEND-STREAM-16-1 :value 43690 1 65634 6SS36 21845 6SS35))
(declare-stream ADDEND-STREAM-16-2 :value 43690 6S34 6SS35 1 1 2184S 65535))
(declare-stream SUM-STREAM-16 :value 21844 6536 0'6553S 43660 6634))

Figure 710: Stream declarations for the fragment above.

cording to the statement types and where they appeared in the original fragment.

This network of constraints determines how the fragments combine to form the final

test program.

Figure 711 shows the temporal variables and constraints associated with vari-

ous statement types. Statements that execute once and over a sngle clock cycle

(e.g., controlling a circuit node) are associated with a single temporal variable called

execution-time. Statements that group other statements together, like begin-end

blocks in Pascal, execute over an 'Interval of time and are associated wth two temporal

variables called start and f inish.

Iteration statements are associated with two 'Intervals: one interval from the start

of the first iteration to the end of the last 'Iteration, and a second interval that spans

one prototypical execution of the loop body.

Stream statements are a special kind of loop that apply (or observe) a stream of

values to a node. Stream statements are associated with five variables: the four vari-

ables corresponding to a loop (the actions associated with one value must be repeated

with each element of the stream) and a fifth one, execution-time, corresponding

to a prototypical tme wthin the loop. For streams that control a node, the stream

must set up the node value before and hold t past execution-time. For streams

that observe a node, the node value 'is sampled at execution-time.
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Statements that Execute at an Istant

CONTROL-SCALAR

OBSERVE-SCALAR

DECLARATIONS

Statements that Execute over an Interval

BLOCK

LOOSE-SEQUENCE

TIGHT-SEQUENCE

TEST-PHASE

The Iteration Construct

LOOP

MULTI-STREAM

Implicit Iteration Constructs

START-OUTER

START-INNER
CONTROL-STREAM

OBSERVE-STREAM
EXECUTION-TIME

Figure 711: Temporal variables and constraints associated with various tatement
types in P-TGs test programming language.
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After breaking up the fragment 'into individual statements and creating and con-
straining temporal variables according to the statement types, the time manager con-
strains the variables according to the textual structure of the fragment and the se-
mantics of any advisory statements. In establishing constraints between statements,
textual order is shorthand for temporal order and textual inclusion is shorthand for
temporal 'Inclusion. For 'instance, if a loose-sequence statement surrounds several
statements, then the loose-sequence's start time must come before the first time
of any contained statement and its end time must come after the last time of any
contained statement.

Most of the statements that execute over an interval are advisory, e.g.,
loose-sequence, tight-sequence and test-phase. loose-sequence constrains its

inferior statements to 'execute 'in order but allows arbitrary intervals before after

and between the statements (see figure 712). tight-sequence, on the other hand,

forces the execution times or intervals of theinferior statements to meet. test-phase
is an implicit loose-sequence and has other advisory purposes declaring isolatable

subproblems), and block puts no constraints on its inferiors.

LOOSE-SEQUENCE

Figure 712: loose-sequence allows arbitrary intervals between inferior statements
(e.g., A, and C), while tight-sequence does not.

This shorthand notation for expressing temporal constraints based on the structure
of the test program code has turned out to be quite convenient, and many component
tests and propagation rules can be written wth no explicit temporal constraints.

This concludes the description of the basic mechanismsin PF-TG. The next section
shows how these mechanisms work together to solve test generation problems by
stepping through a simple example n detail.
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7.2.4 A Detailed Example

Figure 713 shows a very smple digital filter 'Implemented by a delay line and an
adder. Figures 714 through 720 work through the task of embedding a test for the
adder.

In

ci

, Out

Figure 713: A simple digital filter
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;;; The CARRY-CHAIN-ADDER-TEST component test
1. (define-predicate CARRY-CHAIN-ADDER-TEST
2. ((carry-chain-adder-test ?adder)
3. (component-port ?adder inl ?inl)
4. (component-port ?adder in2 ?in2)
S. (component-port ?adder out ?out)
6. (declare-f ragment
7. (test-phase (:COMPONENT ?adder :FACILITY PLUS)
8. (multi-stream ((inl-data ADDEND-STREAM-16-1)
9. (in2-data ADDEND-STREAM-16-2)
10. (out-data SUM-STREAM-16))
11. (equal-instants
12. (control ?inl inl-data)
13. (control ?in2 in2-data)
14. (observe ?out out-data)))))))

Figure 714: The ADDER component test.

1 Start: type (generate-test ADDER) at the Prolog interpreter. The system looks
up what type of component ADDER is and runs the appropriate how-to-test rule:
carry-chain-adder-test.

2 carry-chain-adder-test first looks up the node names of 'Its 'Inputs and outputs
using three component-port subgoals (lines 35). This binds ?inl, ?in2 and ?out
to Tap-1, Tap-3 and Out respectively. The rule then declares a program fragment
containing the basic structure of the test. The test-phase form documents this
fragment and produces a comment in the final test program. The multi-stream
form declares three streams to step in parallel.

The system creates temporal variables for the statements in this fragment and posts
constraints corresponding to the statement types and nesting structure. A temporal
variable, here called test-time, is created to represent the execution tme of the
three statements inside the equal-instants declaration (lines 12-14). The times and
constraints in figure 7.19.c, line come from the multi-stream statement. Temporal
constraint 2 comes from the nesting structure of the loop and the equal-'instants
statement. Structural constraints and 2 arise smilarly (figure 7.19.d).

Processing the fragment spawns three subgoals: one to set
Tap- = inl-data test-time, another to set Tap-3 = in2-data test-time,
and a third to observe out-data = out-data test-time. The system starts with
the first subgoal.

Figure 715 A Detailed Example
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;;; The propagation rule for controlling DELAY-LINE output taps
1. (define-propagation-rule DELAY-LINE control-stream
2. ((delay-line-control-stream ?component tap-1 ?value ?output-time)
3. (new-time ?input-time)
4. (t=-offset ?inpnt-time ?output-time 
S. (control-port-stream ?component in ?value ?input-time))
6. ((delay-line-control-stream ?component tap-2 ?value ?output-time)
7. (new-time ?input-time)
8. (t=-offset ?input-time ?output-time 2)
9. (control-port-stream ?component in ?value ?input-time))
io. ((delay-line-control-stream ?component tap-3 ?value ?output-time)
11. (new-time ?input-time)
12. (t=-offset ?input-time ?output-time 3)
13. (control-port-stream ?component in ?value ?input-time)))

Figure 716: The DELA Y-LINE propagation rule.

3 The system responds to the Tap- = inl-data Q test-tiMe goal by recording the
time and value then looking up the componIent that drives this node (DelayL'ne in
the schematic. Since the value 'Involved is a stream and the goal involves control, the
system calls the DELAY-LINE control-stream goal, passing it the component, the
port being controlled (Tap-1), the value and the time.

4 The DELAY-LINE propagation rule has three clauses, one for each output tap- these
clauses are identical except for the constants in the t=-offset subgoals. The first
clause (lines 25) responds to the goal of controlling Tap-1. (The other clauses cannot
respond because the third element of the goal - the port name - does not match).
The first clause binds ?input-time to the new temporal variable time-1 and con-
strains time-1 + = test-time. It then spawns the subgoal of controllingits 'input
port. The system responds to this goal by looking up the node driving this port,
recording the value (ini-data) and time (time-1) of the assignment and looking for
a component to drive this node.

5 The tester-control-stream rule, part of the tester model, responds to this goal.
It declares a fragment that contains one assignment statement.- In -.= ini-data to
occur at time-1 (see fragment in figure 719 - ini-data 'is replaced wth the array
reference during code generation).

6 The goal of controlling Tap-2 'is handled similarly. DelayLine is again the compo-
nent that drives the node, so the system calls DELAY-LINE control-stream with the
appropriate arguments. The third clause (lines 10-13) responds this time, creates the
new temporal variable time-2, and constrains it to occur 3 clock cycles earlier than

i -port-stream subgoal to control the t.
test-time. As beforeI t uses a control inpu

Figure 717 A Detailed Example (continued)
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7 When the system responds this time, 'it notices that the node In has been as-
signed a new value (in2-data) that 'is distinct from a previously assigned value
(inl-data) so it posts a temporal constraint to keep the assignment tmes distinct
too: time-1 : time-2. Again, the system passes the goal of controlling the circuit
input to the tester model which responds wth another program fragment (fragment
2 in figure 7.19.a).

8The system responds to the goal of observing the adder's output by recording the value
and time and passing the problem to the tester model. The tester-observe-stream
rule responds by declaring a program fragment that observes the stream of values
(fragment 4 in figure 7.19.a).

9At this point, all subgoals have been solved. The Time Manager collects and
solves all temporal and structural constraints. All of the constraints are explained

i -
above except those connecting time-1 and tizie-2 to the loop, e., temporal con
straints 5 and 6 and structural constraints 3 and 4 These constraints are gen-
erated by tester-control-stream by special dispensation. In the general case,
tester-control-stream creates a new loop to supply an input stream, and the new
loop 'is related to other loops in the test because they a use the program stack 'in the
tester's main processor. In this example, sharing the program stack places sufficient
constraint on the new loop that it must be merged with the multi-strearri loop in
the original fragment (figure 714). This situation is common, can be recognized early
to optimize away the cost of using the stack resource: the system passes the origi-
nal loop times along during propagation as annotations to the stream variables (e.g.,
inl-data). Using this information, tester-control-streara posts the temporal and
structural constraints shown.

10 One solution for the constraints 'is shown in figure 7.19.f. temporal values for each
variables appear to the left of the commas and structural values appear to the right.
They are used together in dictionary order to provide a total order on the statements in
the program. The Code Manager sorts the program statements together and produces
the solution of figure 720.

11 This description is simplified in two ways: it suggests that the constraints are solved
after the rule engine 'is finished, while this is actually interleaved with rule firing. This
description also ignores the times associated wth the test-phase statement (these
times bracket the whole solution) and the structural variables associated with the
array declarations.

Figure 718 A Detailed Example (continued)



1. IN : = ADDEND-STREAM-i6-1 (INDEX] Q TIME-1

2. IN := ADDEND-STREAM-16-2[INDEXI TIME-2

4. OUT - SUM-STREAM-16[INDEXI 0 TES T- TIME

(a) Program Fragments

1. ARRAY ADDEND-STREAM-16-1 = [0, 43690, 1, 1 65534 6536, 21845 65361;

2. ARRAY ADDEND-STREAM-16-2 - [0, 43690, 65534, 65535, 1, 1, 21845 65351;

3. ARRAY SUM-STREAM-16 = [0, 21844, 65636, 0, 65636, 0 43690 65341;

(b) Declarations

1. LOOP-1 <= LOOP-2 <= LOOP-3 <= LOP-4

2. LOOP-2 <- TEST-TIME <- LOOP-3

3. TIME-1 + = TEST-TIME

4. TIME-2 3 - TEST-TINE

5. LOOP-2 <= TIME-1 <= LOOP-3

6. LOOP-2 <- TIME-2 <- LOOP-3

(c) Temporal Constraints

1. LOOP-1 < LOOP-2 < LOOP-3 < LOOP-4

2. LOOP-2 < TEST-TIME < LOOP-3

3. LOOP-2 < TIME-1 < LOOP-3

4. LOOP-2 < TIME-2 < LOOP-3

(d) Structural Constraints

LOOP-1 - 0,0 TIME-2 - 02

LOOP-2 = i TIME-1 = 22

LOOP-3 - 33 TEST-TIME - 32

LOOP-4 = 34

(f) One Solution (format is TemporalOrder, StructuralOrder)

1. TIME-1 * TIME-2

(e) Resource Constraints
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3. FOR INDEX FROM TO DO
BEGIN

END

0 LOOP-1
0 LOOP-2
0 TES T- TIME
O LOOP-3
0 LOOP-4

1%

Figure 719: All pieces of the -solution. The solution itself appears in figure 720.
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BEGIN
** TEST-PHASE (:COMPONENT ADDER :FACILITY PLUS)
CLK = CLK = 
** DECLARE-STREAMS (ADDEND-STREAM-16-1 ADDEND-STREAM-A-2
BEGIN

SUM-STREAM-16)

ARRAY ADDEND-STREAM-16-1 = [0, 43690, 1, 1, 65534, 6SS3S, 2184S, 6S351;
ARRAY ADDEND-STREAM-16-2 = [0, 43690, 6SS34, 6SS3S, 1 1, 2184S, 6SS3s];
ARRAY SUM-STREAM-16 = [0, 21844, 6553S, 0 6535j, 0, 43690, 6SS341;
FOR INDEX1 FROM TO DO

BEGIN
IN ADDEND-STREAM-16-2[INDEX11
CLK 0; CLK = CLK = ; CLK = 
IN ADDEND-STREAM-16-1[INDEX11
CLK 0; CLK = 
OUT SUM-STREAM-16[INDEX11
CLK 0; CLK = 

END
END

END

Figure 720: The solution as a program: the adder test embedded in the digital filter
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7.3 Further Details of the Mechanism

This section covers the time manager mplementation, protection constraints and the
debugger.

7.3.1 The Time Manager

The Time Manager maintains and incrementall solves temporal and structural con-
straints. It handles t<-of f set <, constraints, plus conjunctive
constraints (e.g., a is before b and b is before c) and disjunctive constraints (e.g.,
either a occurs before b or b occurs before a). The algorithm is both sound (all so-
lutions satisfy the posted constraints) and complete in one sense (all ways to choose
the dsjuncts are eventually tried), however 'it is not complete 'in the sense of enumer-
ating all solutions. This distinction is 'Important and is discussed in the section 73.3
describing the debugger.

The Time Manager is 'incremental. As the Rule Engine creates a test program,
it posts constraints connecting sets of temporal and structural variables. The Time
Manager maintains a consistent set of variable assignments, and when the rule engine
changes the constraints, the Tme Manager updates the assignments. If it cannot
do so because the constraints are unsatisfiable, then it forces the Rule Engine to
backtrack.

The Time Manager accepts three knds of messages from the other modules: (0
requests for the creation of a new temporal variables, ii) specifications of new con-
straints on the values of existing variables, (iii) finish messages requesting 'Integer
values for the temporal variables. The Tme Manager responds to these messages by
updating its database and ensuring that the new database is globally consistent. If
the database 'is consistent the time manager accepts the message and returns success
to the sending module. If the database 'is no longer consistent, the time manager
rejects the message and restores the database to its previous state. The Time Man-
ager therefore maintains the following invariant: the database 'is consistent between
messages.

Most messages come from the Rule Engine and are generated directly by subgoal
statements in the rules. If the Time Manager accepts the message, then the subgoal
succeeds and the rule engine continues. If it rejects the message, the subgoal fails and
the Rule Engine backtracks. The other modules send messages to the Time Manager
in response to messages sent to them from the Rule Engine. In the event of failure,
these modules pass the failure back to the Rule Engine.
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7.3.1.1 List of Messages

The time manager accepts seven primitive messages and a large and extensible set of
messages defined 'in terms of the primitives A NEW-TIME message causes the time
manager to create and return a new temporal variable. This message always succeeds.
A (new-time ?time) subgoal causes the rule engine to send this message and binds
?time to the new temporal variable.

The TEMPORAL-OFFSET message, e.g., (t<-of f set ?timel ?t'me2 ?offset)
constrains the values of two temporal variables such that ?time2 > timel ?offset.
?of f set must be an integer. This message succeeds if the new constraint is consistent
with the constraints previously gven to the time manager.

The AND message allows the time manager to accept a set of messages at once
and process them serially. The OR message allows the time manager to accept dis-

a ive con
junctions, 'i.e., set of alternat' straints only one of which need be enforced.
All other constraints are defined 'in terms of AND, OR and t<-offset. See, for
instance, the definition of (� ?a ?b) in figure 721. Using these three primitives, the
Time Manager provides a vocabulary for describing relations between 'Intervals, e.g.,
t-disj oint-intervals and t-overlapping-intervals, and between points and in-
tervals e.g., t-point -outside-interval.

The VALUE message accepts a temporal variable and returns 'Its current integer
assignment. The (temporal-value ?variable ?value) subgoal sends this message.
The LISTVARS message returns a list of all temporal variables so that other modules
need not maintain their own.

The DEALLOCATE-VARIABLE message
and the DEALLOCATE-CONSTRAINT message remove variables and constraints
respectively from the temporal database. These messages are called internally when
the rule engine backtracks and do not appear explicitly 'in any rules. Deallocating
constraints is described wth the time manager implementation below.

7.3.1.2 Time Manager Implementation

This section gives a brief description of the time manager implementation. The al-
gorithm was selected for good average-case performance in medium-sized problems
(i.e., up to 100 temporal variables) for systems of constraints that are not tightly con-
nected. The most important goal was to reduce the cost of adding a new constraint
and checking whether the augmented set of constraints was still consistent. Reducing
this cost makes it practical to run the time manager 'incrementally as the rule engine
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Constraint
(t<-of f set ?a ?b '?.o)
(> ?a ?b)
(< ?a ?b)
(= ?a '?b)
(> ?a ?b)
(< ?a ?b)
(:� ?a ?b)
(interval (?a ?b))

(disjoint-intervals
(?a ?b) (?c ?d))

Definition
?b > ?a + ?o
(t<-off set ?a ?b 0)
(t <-off set ?b ?a )
(and ?.a ?b) (:5 ?a ?b))
(t<-of f set ?a ?b 1)
(t<-of f set ?b ?a )
(or > ?a ?.b) < ?a ?b))
(:5 ?. a ? b)

(and (interval (?a ?b))
(interval (?c ?d))
(or < ?b ?c) < ?d ?.a)))

Figure 721: Definitions of representative temporal constraints in terms of AND, OR
and t <-off set
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expands goals, using Tme Manager failures to prune inconsistent branches of the
search tree.

To meet these goals, I chose an algorithm wth particularly simple procedures for
adding and removing constraints. The algorithm does not have the best known com-
plexity measure for solving a single set of constraints, but it does have low overhead
when changing constraints. Low overhead is important here because the constraints
are changed repeatedly by the rule engine as 'it searches for paths through the cir-
cuit. Moreover, further tuning of the algorithm 'is currently unwarranted. On the
examples shown 'in this chapter, less than 20% of PF-TG's tme is spent 'in the time
manager (almost 80% is spent 'in the rule engine with negligible time spent in the
code manager).

Time management 'is in essence a simple linear programming problem:
(t <-off set xi xj aij) constraints are lnear inequalities 'in two variables:

x - xi aij

where xi, xj E TemporalVar'ables and aj E Integers. Sets of t<-of f set constraints
are solvable 'in numerous ways; the time manager uses a simple graph traversal al-
gorithm. Nodes in the graph represent temporal variables and are associated with
an integer "time" along the timeline. Directed arcs represent t<-of f set temporal
constraints and have an 'Integer weight corresponding to the aij term 'in the 'inequality
above. Conjunctions of t<-of f set constraints are simply represented as sets of arcs.
We discuss disjunctions later.

Next I describe how the time managers primitive messages are implemented by
updating the graph representation. In this discussion, I refer to temporal variables
and nodes interchangeably and temporal constraints and arcs 'Interchangeably. Before
each message arrives, the graph representing the previously specified constraints is
satisfiable and that the set of integers assigned to the graph nodes constitutes a
solution. This is the situation between messages to the time manager.

There are four primitive operations: adding and deleting a node (a temporal
variable) and adding and deleting a weighted arc (a constraint). Adding a new node
is trivial. Snce 'it 'is new it must be unconstrained so ge it the value 0. This

1 7

operation happens 'in constant time.

Deleting a node is trivial 'if it is unconnected and not allowed f 'it is connected.
Thus modules that use the time manager must obey a stack convention for allocating
nodes and arcs i.e., they must allocate a node before connecting it and remove the
arcs before removing the node. The rule engine obeys this convention since it uses
depth-first search.



Deleting an arc is also trivial. The variable assignments re already consistent and
removing a constraint cannot make them inconsistent, so the time manager simply
removes the arc from the graph and leaves the node values as they are.

Adding a new arc 'is the difficult case, since the set of constraints may become
inconsistent or the variable assignments may have to be changed. A set of constraints
is inconsistent if it mplies that a variableis greater than itself, i.e. if therels a positive
weight cycle in the graph. After adding a new arc, the time manager searches for a
positive weight cycle 'Involving the new arc. It does this using depth-first search from
the head of the new arc, while, at the same time, updating the variable assignments.
Figure 722 shows the update procedure.

1. A is the set of arcs.
2. If arc (ij) E A then aj is the weight of that arc.
3. The operator pushes a new value onto the front of a lst

and nil is the empty list

To add a new arc (ab) with weight w
1. A <-- A U (ab)
2. update(b, value(a)-+w, nil)

1. PROCEDURE update (node, newvalue, stack)
2. IF nodeE stack THEN restore old values and fail; /* found a cycle
3. IF value(node < new-value THEN update outgoing arcs
4. FOREACH (node next) e DO
5. update (next, value(node) + anodenext i node.stack);

Figure 722: The procedure for adding an arc

Depth-first search takes (A) time in the worst case if arcs are marked so they
are traversed at most once. The update procedure above behaves smilarly with the
partial solution acting as the mark: when value(node > new-value, the program need
not search beyond the node. If this condition never occurs, the worst case time for
the procedure above 'is 02 A). In practice, however, the update algorithm runs quite
quickly: the average number of arc traversals per new arc is 25 for the examples in this
chapter and in appendix A. This 'Indicates that, for these examples, the constraints
are sparse.11

"Implementing the update algorithm using best-first search can potentially reduce arc traversals,

228 MERGING PROGRAM FRAGMENTS
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The time manager handles a new dsjunctive constraint using several steps. First,
it reduces the new dsjunct to conjunctive normal form and adds it to the set of
disjuncts that must be enforced. Dsjuncts are maintained 'in the order they were
presented to the time manager. The time manager then makes a choice from each
of these dsjuncts in order, starting from the first disjunct and backtracking when it
makes a choice that 'is 'Inconsistent wth earlier choices.

Maintaining a partial solution (i.e., the consistent node assignments) is 'Important
to holding down the cost of making these choices. The key idea 'is this heuristic: first
try choices that are already satisfied in the current partial solution. Using the partial
solution, choices can be checked for consistency in time proportional to the number
of conjuncts in the choice. Adding a set of arcs for a choice (a conjunction) that is
already satisfied in the partial solution requires no propagation.

The time manager maintains a current choice for each dsjunct, which is always
reflected in the current partial solution. When a new dis'unct is added, it is useful to
think of the time manager making a choice for each disjunct in order. The program,
however, has already made consistent choices for all but the new disjunct. Thus old
disjuncts can be skipped, since by the heuristic above, the program would simply
make the same choices again. If a new choice can be made that 'is already satisfied,
then the program marks that as the new dsjunct's current choice, adds the new arcs
to the graph (to make sure the choice continues to be reflected in the partial solution)
and returns success. If none of the new choices 'is already satisfied, then they are tried
one at a tme to see if any are consistent. If one is, the program marks the current
choice, adds the arcs and returns success. If none are, then the program backtracks
to the most recent dsjunct and tries another choice for it. If it cannot find another
consistent choice for that disjunct, then the program continues backtracking. The
program returns failure rejecting the new dsjunct) 'if 'it backtracks past the first
choice.

Backtracking occurs when the set of disjunctive choices 'is inconsistent or when
all sets of disjunctive choices have been tried. The time manager detects when the
choices have been exhausted by checking choices against a list of nogoods, i.e., groups
of choices that have previously been found inconsistent. The search for consistent
choices uses a simple version of selective backtracking, but t does not use resolution
to deduce smaller nogood sets. All nogoods involving an OR constraint are removed

12if the rule engine retracts the constraint.

but appears to be unnecessary for these examples. I tried implementing a best-first version of
this algorithm and discovered that the overhead of maintaining the best-first queue outweighs the
advantages.

12This method can potentially yield an exponential number of nogoods. Consider, for example,
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7.3.2 Protection Constraints

PF-TG's test programming and rule languages contain declarations for locking circuit
nodes to prevent them from being modified during an interval of time. For example,
to load and hold a value 'in a re gister that has an enable input, first enable the register,
then load the value, disable the register and protect the disable node until the value
is used. Figure 723 shows the full rule for controlling the output of a register, and
lines 716 'Implement this method. The key step 'is line 15, which protects ?load-node
during the interval (isable-time ?output-time).

The Resource Manager cooperates wth the Debugger (described in the next sec-
tion) to handle protection constraints. Each protection interval is associated with a
set of nodes and whenever one of those nodes is assigned a value the time is con-
strained to lie outside the protection interval. The protect test language statement
provides a convenient syntax for declaring a protection interval (the duration of the
protect statement) and a set of nodes to be protected.

The protect-explicit test language statement 'is similar. It protects a set of
nodes for the duration of 'Its body, except against statements that are contained
lexically wthin the body. This statement allows two fragments to be merged while
ensuring that one has exclusive control of a portion of the circuit. This feature is
critical for preserving the functionality of complex component tests (e.g., the register
file test of figure 725) while allowing program fragments that solve subgoals of the
component test to be merged in.

7.3.3 The Debugger

This section describes the simulator and debugger that PF-TG uses to avoid pro-
tection violations 'Involving unplanned sde effects of the test. First, I describe what
the debugger does and how it does 'It. Then I argue that the features in the test
programming language that make this debugging step necessary are worth the cost.

7.3.3.1 What the debugger does

The set of node=valueC4ime assignments chosen by the rule engine and the total
order on the times chosen by the time manager forms a skeletal solution for a test. If

constraints that try to uniquely assign 9 values to 10 variables. The smallest nogood generated by
the program in this case is 9 and there are lots of them. Space for the nogoods has not been a
problem in practice.



- - w

2317.3. FURTHER DETAILS OF THE MECHANISM

(define-propagation-rule REGISTER-L control-scalar
One clause for loading right before the output is needed

1. ((register-l-control-scalar ?register out ?value ?output-time)
2. (component-port ?register LOAD ?load-node)
3. (new-time ?input-time)
4. (t=-offset ?input-time ?output-time 
S. (control-port-scalar ?register LOAD I ?input-time)
6. (control-port-scalar ?register IN ?value ?input-time))

Another clause for loading and holding until the value is needed
7. ((register-l-control-scalar ?register out ?value ?output-time)
8. (component-port ?register LOAD ?load-node)
9. (new-time ?input-time)
10. (new-time isable-time)
ii. (t=-offset ?input-time isable-time )
12. (t< ?input-time ?output-time)
13. (control-port-scalar ?register LOAD I ?input-time)
14. (control-port-scalar ?register LOAD isable-time)
is. (handle-protection-constraints ?load-node (isable-time ?output-time))
16. (control-port-scalar ?register IN ?value ?input-time)))

Figure 723: Here is the library rule for controlling the output of an enabled register.

The first clause implements a method that needs no protection because the value is

used soon as it is loaded. The second clause uses protection to load and hold a

value: first enable the register (line 10', then load the value (line 16), disable the

register (line 14) and protect the disable node until the value is ued (line 15). Note

that the order of subgoals in the text determines when the rule engine will work on

them. These sub9oals are orderedfollowing the heuristic that control inputs are more

difficult to control and should be handled first.



MERGING PROGRAM FRAGMENTS232

PF-TG reaches this stage, all node assignments in the skeletal solution are justified
back to primary 'Inputs and observations out to primary outputs, and all conflicts
between pairs of node assignments have been avoided. However the solution may
still be wrong because one or more protection 'Interval constraints has not been met.
These constraints come only from protect and protect-explicit constructs in test
program fragments.

To check these constraints, an event-driven smulator "fleshes out the solution"
using the total order on time variables and the persistence assumption 13 to predict
values for all circuit nodes. The smulator starts with unassigned node values at the
earliest tme 'in the skeletal solution and stops at the latest. As the simulator moves
forward, it checks the simulation against the protection intervals. If a protection 'inter-
val has been violated, then 'it tries to patch the test by adding a temporal constraint
to prevent the violation, calls the time manager to update the temporal variables, and
starts the smulation over. If no bugs are found, then PF-TG calls the code generator
to produce the final test program.

The debugging actions are limited (in the current system) to moving the time of the
conflicting node or resource assignment out of the protection interval. The debugger
does this by dentifying the set of skeletal node assignments that cause the offending
assignment and moving them as a rigid group ether forward or backward (using
a disjunctive constraint) so that the offending assignment is outside the protection
interval. Currently, the debugger stops after 'it has found the first'bug and passes the
appropriate disjunctive constraint to the time manager. The next time the simulator
is called to check the test, it saves work by resimulating only the portions of the test
that have changed.

The debugging process always terminates. At each stage, a new temporal con-
straint. 'is added that reorders a pair of times in the skeletal solution. This constraint
is never retracted unless the test generator backs up into the rule engine to change the
skeletal solution. The skeletal solution 'is finite, so there is a finite number of orderings
of its variables. Therefore only a finite number of debugging steps can occur before a
solution is found or the temporal constraints become unsatisfiable. 14

The debugging process is not complete. In particular, the debugger cannot remove
a node assignment that violates a protection interval, although by failing it can force

"The persistence assumption says that a node value persists until it is explicitly changed.
"There are clearly cases where debugging can take many iterations to terminate. However, in

practice, few debugging steps seem to be necessary. Either the skeletal solution is almost right and
one or two steps suffice to fix it, or it is very wrong and either never gets simulated or fails after a
small number of debugging steps. This area merits further study.
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the rule engine to backtrack and try again.

7.3.3.2 Why this seems to be effective

This heuristic debugging solution 'is not needed often, because PF-TG's propagation
rules (and the rule engine) take positive action to prevent unwanted events. For
example, the rule for loading and holding a register protects the register contents by
explicitly setting the enable nput to "disable" for the duration of the hold 'Interval.
This puts the disabling node assignment 'into the skeletal solution so that 'it will be
ustified back to primary nputs and definitely protected.

However, protection constraints resulting from protect and protect-explicit
language constructs are not enforced when they associate protection 'Intervals with
nodes and times not 'involved in signal propagation. These nodes and times are not in
the skeletal solution and are not handled by the normal conflict resolution mechanism.

These constructs are so useful, however, that they have been 'included 'in the
language. They are useful because they allow the rule writer to say "prevent these
nodes from being touched, but I will not give you a way to actively do this." Hence
these constructs should be viewed as a filter on the possible solutions.

7.3.4 An Example Using More Complex Language Features

This example illustrates using a protection constraint to control how PF-TG embeds
a complex component test. One method for testing the address lnes of a register
file appears in figure 724. Figure 725 shows this method expressed in PF-TG's test
language. Lines I and 2 document the test. The protect-explicit form creates a
protection constraint that prevents the test generator from manipulating the register
file except as specified explicitly by statements 'in the component test. Without this
protection, the test generator could, for instance, try to propagate signals through
the file, thereby changing its contents and breaking the test. The loose-sequence
form says that its three subforms (lines 59, 10-13 and 14-18) must be executed in
sequence, but that time delays and other statements may be inserted between them.
The loop on lines 69 'Initializes all cells to 1111, the all-ones-value for a 4-bit register
file. Lnes 12 and 13 write 0000 'Into address 1111, and the loop on lines 15-18 read
back the contents of four cells. Symbols starting wth ?. are variables whose values are
set by the rule that contains this fragment; their values are suggested by their names,
e.g., ?data-in references the data input. address-stuck-at-stream contains the
values 1110 1017 1011, 0111 as specified by the method.
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To detect stuck at faults 'in the address lines:
1. Initialize all cells to I I 
2. Select working address A = 1111
3. Write 0000 into A
4. Read contents of addresses 1110, 11011 10111 0111

To interpret the results: The output should be 1111. Reading
0000 from any of the four addresses 'indicates: (a) an address
line stuck-at-1, i.e., data 0000 went to the correct 1111 address,
or (b) an address line stuck-at-0, i.e., data 0000 went to the
wrong location.

To merge this method with others: initialization must happen
before writting 0000 which must happen before reading the four
cells. Other test program code can be placed between these
steps as long as they do not disturb the register file.

Figure 724: How to test the address lines of a 4-bit, 16-cell register file (from
[bennetts82])

1. (test-phase (:component ?rf

2. :comment "Detect address line stuck-ats")

3. (protect-explicit (:protected (?rf))

4. (loose-sequence

S. (comment "Fill the register file with ones''

6. (loop address (iota i)

7. (equal-instants

8. (control ata-in ?all-ones-value)

9. (control ?ca address))))

io. (comment "Write a at one address"

ii. (equal-instants

12. (control a \#b1111)

13. (control ?data-in \#bOOOO)))

14. (comment "Read other addresses to see if they were affected''

is. (loop address ADDRESS-STUCK-AT-STREAM))

16. (equal-instants

17. (control ?address-line address)

18. (observe ?data-output Mata-in-all-ones)MM

Figure 725: The register file test expressed in P- TGs test programming lanouage.
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RF-BA I

RF-CA I

CLK,

B-BUS
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MUX-A

OP

C-BUS

Figure 726 A simple datapath
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Figure 726 shows a simple datapath containing a register file (RF), and figure 727
shows a test program for the register file produced by PF-TC. The structure of the
test program reflects the structure of the component test: The first loop fills the
register file with a background pattern of 1111's (lines 613). Then the program
writes 0000 to one cell lnes 16-10) and reads four other cells to see whether they
were affected (lines 25-30). Each of these steps has, however, been rewritten to reflect
that fact that the file 'is 'Inside the datapath and therefore not drectly accessible.
For example, PF-TG replaced lines 11-13 in the component test with lines 17-19 'in
the test program. These program lnes have the same effect on the register file but
reference only primary inputs and outputs and can be carried out directly by the
tester. A more complete test for this register file 'is shown in appendix A.

0
7.4 Discussion

H/Wat is the knowledge embedded in P-TG and where is it? In the current system,
all of the testing knowledge is embedded in the rules. Some of these rules implement
line justification by describing how to achieve a sngle value or a stream of values on
the output of a component. Other rules 'implement path sensitization in an analogous
fashion. Still other rules contain program fragments describing how to drive the tester.
PF-TG also has access to a schematic. Snce the propagation rules are centered on
individual components, the schematic is needed to match the names in one rule with
the names another. Finally, some simple programming knowledge is embedded 'in the
code generator for merging loops.

What knowledge and mechanisms are critical to solving the problem? Most 'im-
portant is the way rules specify how to break up the top-level goal 'Into subproblems.
The knowledge of good ways to decompose test programming problems comes par-
tially from experienced test programmers (e.g., the register file test is composed of a
subproblem to check the address lines and another to check the memory cells) and
partially from propagation through the circuit structure. Posting temporal constraints
allows PF-TG to commit very late to the order events happen 'in the test and the ac-
tual delays (in clock cycles) between them. Avoiding premature choices often reduces
backtracking.

What kinds of circuits is this technique good for? Planning tests va goal decom-
position and temporal constraint posting appears to work best for circuits where this
yields independent or weakly-interacting subgoals. This appears to translate into
datapath-like circuits, but subgoal 'Independence depends upon how the circuit 'is
modeled.
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What kinds of circuits is this technique not good or? Goal decomposition and
temporal constraint posting do not work well in stuations where either (i) subgoals
have strong interactions or (ii) where the ordering decisions strongly dctate the kinds
of 'interactions between events. By contrast, the Designed Behavior Test Generator is
most effective in precisely this situation, at least, it is when the crcuit also provides
few operations at 'Its 'Interface.

PF-TG is 'incomplete 'in two senses. First, PF-TG bounds the amount of work it
will do to solve a problem. It currently does this by detecting and lmiting cycles in
the lne justification and path sensitization parts of the program. For example, if the
sensitive path loops through the same components twice, then the program cuts off
propagation and backtracks. The number of cycles allowed before propagation is cut
off is a parameter to the program.

Second, PF-TG does not necessarily search the full space within the above cutoff:
while it does consider all orderings of events in the skeletal solution, it does not

consider all orderings of all sde effects that may conflict wth a protection interval.

This is a consequence of the debugger not trying all possible ways of fixing a skeletal

plan.

7.5 Summary

This chapter introduced the Program Fragment Test Generator to illustrate several

new ideas about test generation. These 'Ideas are:

* Generate test programs rather than test vectors.

* This can be done by merging test program fragments.

0 Represent the capabilities of the tester explicitly.

0 Propagate Typed Streams.

The strategy of generating programs rather than vectors is used for three reasons.

First, programs are often more compact than vectors, because looping constructs can

efficiently encode repetitive tests. Second, programs are much more readable than

vectors. Readability promotes accountability, and accountability 'is important 'in an

environment where no single tool can solve the entire problem as 'is the case for testing

complex sequential circuits. Third, modern tester architectures offer many special-

purpose features, and test programming languages are a convenient and accepted way

to access these features.
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1. TEST-PHASE (:COMPONENT RF)

2. Detect address line stuck-ats

3. BEGIN

4. ** Fill the register file with ones

S. BEGIN

6. FOR ADDRESS FROM TO IS DO

7. BEGIN

8. MBR-IN 65535

9. MUX-A 0

10. OP = ALU-NOOP

RF-CA = ADDRESS

12. CLK = C = ;

i3. END

14. END

15. ** Write a at one address

16. RF-CA 16

17. MBR-IN 0

18. MUX-A 0

19. OP ALU-NOOP

20. CLK 0; CLK = ;

21. Read other addresses to see if they were affected

22. DECLARE-STREAMS (ADDRESS-STUCK-AT-STREAM)

23. BEGIN

24. ARRAY ADDRESS-STUCK-AT-STREAM = Ei4, 13, 11, 7-

25. FOR INDEX10 FROM TO 3 DO

26. BEGIN

27. RF-BA ADDRESS-STUCK-AT-STREAM[INDEX101

28. B-BUS 65535

29. CLK = CLK = ;

30. END

3i. END

32. END

Figure 727: A tester can directly execute this test for the address line's of the register
file in figure 26. (Line numbers have been added to aid the discussion and are not
part of the test.) Note that the looping structure of this test reflects the expert-supplied
method (figure 24) but the test generator has replaced statements that reference
internal nodes with other statements that manipulate the circuitry surrounding the
register file that have the desired effect.
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PF-TG, the Program Fragment Test Generator, produces programs by combining
program fragments in much the same way that a conventional test generator combines
component behaviors or D-cubes. Test program fragments are selected and combined
using both expert-supplied component tests and conventional sgnal propagation tech-
niques. PF-TG rewrites component tests written in terms of component I/O pns 'into
equivalent tests written in terms of circuit I/O pns. The resulting test programs re-
flect the sequence and looping structure of the original methods, but references to
internal crcuit nodes are replaced with equivalent statements for controlling tester
driver-sensor pins or other tester features.

Explicitly representing the capabilities of the tester allows the test generator to
recognize when special features are useful and to generate test program statements to
apply them.

One of the key 'Ideas in this chapter is choosing representations that are rich
and expressive so that the structure of the test can be more easily identified and
exploited. For example, we chose programs rather than vectors to make the structure
more apparent to the test engineer. The sequences of test data used by experts
have structure too, and this structure can be used to 'Identify efficient methods of
generating or observing it. To exploit this structure, PF-TG represents test data
as typed streams. One task is to identify a useful vocabulary of stream types (e.g.,

I I and this chapter has provided
counting streams) and properties (e.g., exhaust'v'ty),
a start on this vocabulary.
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Summary: The problem of generating tests for digital circuits has been
addressed at length in the testing literature. This chapter describes several
approaches that have influenced this work or are otherwise connected to 'it in
interesting ways. Test generation has also been addressed 'in Al as a part of
problem of circuit diagnosis; some of the central issues arising in testing have
also been addressed in the robot planning literature. Fnally, the capabilities
and especially the limitations of this thesis suggest several opportunities for
continuing work.

8.1 Related 'Work 'in Testi 0ng

8.1.1 Podem

While the Podem algorithm (described in section 23.4, page 64) was not a strong
initial influence on this thesis we have since realized that some of the strengths
of Podem and DB-TC come from the same source: focusing search on achievable
circuit behavior. Podem generates tests by searching the space of boolean assignments
to circuit 'Inputs. Snce all 'Input assignments are achievable by definition, Podem
focuses closely on achievable circuit behavior and expends little time considering
unachievable behaviors. However, Podem's potentially exhaustive search at a low
level makes the algorithmineffective for complex sequential circuits. 2 DB-TC handles
sequential crcuits by searching a much higher-level space of "assignments," i.e., the
operations that are valid at the interface.

'Podem does expend some time searching outside achievable behavior as it decides what 'input
assignment to make next. This shows up as time spent backtracking from failures caused by circuit
structure, i.e., not by previously made choices. In DB-TG's case, thi's time shows up as failed matches
between component tests and simulated operations.

'In fairness to Podern's author, the algorithm was not designed to handle sequential circuits.
However, one can easily apply it to them where it fails for the reason described above.
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8.1.2 SCIRTSS

SCIRTSS (A Sequential CIRcuit Test Search System) [hi'1177] uses a two-part circuit
representation: datapaths are represented as networks of boolean gates and control
circuitry is represented as state transition graphs. The algorithm uses different prop-
agation methods for these two distinct representations. Interaction between the two
propagation methods increases search efficiency, especially since propagating through
the state transition diagram is an effective mechanism for controlling rcuit state.

Using component representations appropriate for 'its role within a larger system is a
powerful idea. However, SCIRTSS'i'mplementation of this idea has several drawbacks.
First, role classification must be done by hand because we do not have programs
capable of automatically recognizing component roles. For example, are the YPC and
yIR registers in the MAC-1 data registers or part of a state machine? DB-TG can

'de a reasonable answer to this question by searching the behavior graphs to see
whether the registers are ever loaded wth smple variables. However, more work must
be done.

Second, it 'is not clear whether the roles of data and control are exhaustive. Perhaps
additional or more finely-grained classifications and associated propagation methods
would help.

Third, functional classification 'is static in SCIRTSS, i.e., a component's classifica-
tion does not change dur ing test generation. Clearly a component's role can change
depending on what operation the circuit is performing. Consider, for example, the
MAC-1 with DFT modifications. During normal circuit operations, the yIR functions
as part of a state machine. During the test mode operations, the PIR functions as a
register for scanning data in and out. SCIRTSS does not account for this knd of role
change and presumably would require two models - one for the normal mode and one
for the test mode - and changes to the algorithm to prevent redundant effort.

8.1.3 An Automatic Programming Approach to Testing

PF-TG is an extension of work described in preliminary form in [shirley85]. The
earlier system propagated stream values and generated test programs as output by
solving temporal constraints to combine program fragments. PF-TG extended this by
using a larger vocabulary of stream types, solving temporal constraints 'incrementally
rather than all at once when propagation finished, and handling a broader range of
protection constraints. Solving temporal constraints incrementally 'increases speed
roughly an order of magnitude on the examples in this thesis. PF-TG also gains
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roughly another. factor of speed increase over the earlier system because 'Its rule
language is compiled Prolog rather than a homebrew interpreted language.

8.1.4 Knowledge Based Test Generation for VLSI Circuits

Brahme and Abraham[brahme87] describe a test generator that uses a hierarchical
circuit model and shifts to the most abstract component descriptions available. Like
SCIRTSS, this system uses separate representations and propagation heuristics for
datapaths and control circuitry. Like PF-TG, it can search first for a path from a
component input (output) to a circuit 'Input (output), then work out the details of
how to propagate signals across the path. In Brahme's system, this path serves to
guide for propagation, taking the place of the controllability and observability metrics
in other systems (e.g., Saturn[singh85]). PF-TG, on the other hand, finds groups of
paths and uses them as abstract plans for controlling and observing the component
under test. These abstract plans are then sorted to find the plans with the smallest
number of subgoal conflicts (as estimated by path crossings).

Brahme's system apparently generates and solves temporal constraints on its prop-
agation subgoals, as does PF-TG. The paper does not describe the types and repre-
sentations of these temporal constraints nor how they are solved.

The system does, however, use an interesting heuristic: when testing datapath
components, it defers propagating through the controller. By collecting all of the
pertinent subgoals first, the system limits ts search for ways to make the controller
supply the set of needed signals. In general, I believe this 'is a useful heuristic, but
the system might propose and work out the details of an unachievable pattern of
movement through the datapath, then discover that the plan is unachievable only at
the last mnute when it examines the controller. Thus, this heuristic assumes that
most patterns of movement in the datapath will be achievable. Whether this is so 'in
general is not at all clear.

Perhaps this system could benefit from the notion of designed behavior to help
propose patterns of data movement that are known or likely to be achievable. If the
pattern is known, it should be straightforward to store the appropriate control actions
with the pattern and to bypass propagating back through the controller. Alternatively
- to reduce storage or precomputation costs - pieces of common patterns of activity
could be stored. In this case, the test generator would need to propagate through the
controller to verify a solution made up of a combination of known patterns of activity.



CHAPTER 8. RELATED AND FUTURE WORK244

8.1.5 HITEST[robinson83]

The HITEST System and the ideas of Gordon Robinson, one of its architects, were
an important influence on the design of both DBTG and PF-TG. HITEST is a semi-
automatic test generator for sequential crcuits: the system handles the combinational
bits of the crcuit with a gate-level test generator and leaves it up to the test expert
to specify how to handle the sequential bits. HITEST encorporates (i a gate-level
test generator, (ii) a fault simulator, (iii a knowledge base of how-to-test rules called
test frames and program fragments called waveforms and (I'v a mechanism for
using the frames and waveforms. The gate-level test generator is a variant on Podem,
and the fault simulator predicts circuit behavior and serendipitously detected faults
during test generation. The most interesting parts of the system are the test frames
and the waveforms.

Waveforms and test frames together express pre-written plans for accomplishing
testing goals. For example, 'if the test programmer deems it 'Important to be able to
reset a particular counter wthin a crcuit, he wll give HITEST waveforms and test
frames for doing that. HITEST combines these plans together with results from the
gate-level test generator to form a complete test.

Test frames are written in a smple frame language and are primarily used to
associate goals wth subgoals. Waveforms are written 'in a test programming language
and define specific patterns of activity at the crcuit inputs that will cause something
interesting to occur nside the circuit, e.g., load a particular register. Waveforms also
contain points where the HITEST system can insert other waveforms or can 'insert
data values generated by its gate-level test generator.

The subgoal mechanism in HITEST has several 'Important restrictions. Frst, the
system does not search through the space of subgoal expansions. If an expansion
fails, the system abandons the goal, takes a new look at the predicted Circuit state,
finds another goal and continues. There 'is no facility for automatically patching plans
that fail 'in minor ways. As a consequence, designing and tuning waveforms and test
frames for a particular circuit 'is a dfficult task and one that is deliberately left to the
user. Second, HITEST was designed for situations where its testing goals would be
independent. This design decision is reflected in several ways. For instance, waveforms
MUSt3 be written in terms of crcuit inputs. Thus, it 'is awkward to cause HITEST to
combine several waveforms together to propagate a sgnal into or out of the circuit.

'Gordon Robinson points out that it is possible to violate this restrictions but nly experts who

are extremely skilled with HITEST succeed. They do so by cleverly partitioning the problem in

advance so that all propagation subgoals are independent.
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In PF-TG, this is straightforward. HITEST can concatenate two waveforms but it
cannot merge them together by interleaving their statements as can PF-TG.

HITEST uses two powerfulideas. Frst, HITEST allows the expert and the system
to share the work of generating tests, each concentrating on the 'obs they do best.
In the case of HITEST, the system handles the details of, gate level test generation
and fault simulation while the expert describes to the system how to manipulate the
sequential parts of the circuit. For simple sequential crcuits, HITEST's gate-level test
generator and heuristics for capturing faults 'in registers can do most of the work. Lack
of search in HITEST's subgoal mechanism forces the expert to do most of the work
(in advance) for complex sequential crcuits. Second (and expressed partially wth the
benefit of hindsight), HITEST waveforms are a way of describing known-achievable
circuit behaviors to the system. In HITEST a known-achievable behavior 'is tied to
a single testing goal, i.e., the goal that wll 'Invoke 'It. In DB-TG, known-achievable
behaviors are searched to find many ways they can be used to test the circuit.

8.1.6 Marlett[marlett861

Marlett marlett86] describes a test generation algorithm for sequential circuits that
uses (roughly) gate-level models, attempts to detect conflicts as soon as possible,
backtracks to the most recent relevant choice, uses a variation on the reconvergence
heuristic, and relies partially on human guidance. Thi's test generator appears to be
quite effective on small, complex sequential crcuits. However, 'it 'is not clear how well
it works on larger sequential circuits such as the MAC-1.

8.1.7 Functional Testing of Dgital Systems

Lai [lai8l, W83] describes a functional test generator that uses a manually created
circuit representation. The representation 'is quite abstract, and in environments
where it 'is available from the design or where 'it can be written by the test engineer
Lai's approach appears to be quite effective.

It is difficult to compare the performance of Lai's method wth DB-TG because the
performance measures are different. Lai reports 98.5% coverage of stuck-at faults 'in
an ISPS model of a microprocessor. One can imagine how stuck-ats could have been
mapped onto ISPS statement, e.g., assignment statements could modify one bit of the
value being assigned and conditional branches could be stuck taking one branch, but
these papers do not say.



DB-TG achieved 97% coverage of the stuck-at faults in a gate-level circuit model4,
which is the standard in the literature. The 97% figure is a percentage of the detectable
faults in the circuit, as I removed stuck-ats in the ALU that areimpossible to detect (as
determined by an exhaustive gate-level test generator). These stuck-ats are associated

'th unused ALU functionality.

Lai's method ignores reconvergent fanout in the physical signal paths. Its coverage
figures provide additional evidence that reconvergent fanout 'is not significant for
complex sequential circuits.

8.1.8 Functional Testing of Microprocessors

In [brahme85], Brahme and Abraham describe a method that is tuned for testing
microprocessors and is as a consequence quite effective. This is an example of a
specialized testing method that gains its power by tackling a limited problem do-
main wth techniques designed specifically for that domain. This method 'is currently
limited to microprocessors, while neither DB-TG nor PF-TG is limited to a specific
circuit type this closely. Whether Brahme's method 'is suitable for circuit can be
determined by where the circuit sits along an axis of circuit type. The axis that char-
acterizes the suitability of DB-TG and PF-TG appears to be only loosely related to
circult type. Whether DB-TG and PF-TG are suitable depends on the complexity of
subgoal 'Interactions during test generation.

8.2 Related NVork 'in AI

8.2.1 Saturn [singh85, singh86]

The Saturn test generator is a particularly clean and comprehensive example of the hi-
erarchical test generation methods described in section 23.5. First I describe Saturn's
key features, then I focus on several points of comparison with DB-TG.

Saturn is smilar to the Dalgorithm: it uses a circuit model partitioned into
components and embeds component tests using D-drive, 'ustification and 'implication
steps. Saturn makes three contributions to the state-of-the-art:

I. Saturn uses a uniform and expressive language for describing circuit structure
and behavior at multiple levels of abstraction.

4except for the register file and microcode ROM wich used functional models.
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2. Saturn uses an effective strategy for switching between models during test gen-
eration.

3. Singh carefully identifies several ways that using high-level models can reduce
search during test generation.

Saturn can ether hypothesize specific faults, e.g., stuck-ats, or embed pre-written
component tests.' Saturn also uses heuristics to select the most promising choices in
the search space and caches tests and solutions to subgoals, two useful features that
have been explored in the testing lterature.

The top-level goal behind Saturn and DB-TG 'is the same: reduce search. Saturn
does this by using the abstract levels of a hierarchical circuit description whenever
possible. DB-TG does this by focusing on the behavior the circuit will actually execute
during normal operations rather than on other behavior. These two techniques are
complementary, and a herarchical version of DB-TG could be built and would be a
useful extension.

Beyond this goal, there are numerous differences between the two methods. Some
of these differences are good ideas that I dd not encorporate into DB-TG because
they are orthogonal to the notion of designed behavior, e.g., the meta-level reasoning
features of MRS [russeII85] that 'implement search heuristics and level shifting 'in
Saturn. The dfferences lsted below are more substantive.

Saturn requires that all abstract circuit descriptions be provided as part of the
circuit model. The abstract descriptions used by DB-TG, i.e., operation relations
and effects summaries, are generated automatically from the schematic and behav-
ioral descriptions of the components. DB-TG combines low-level component behavior
into higher-level descriptions for itself, using 'Its smplification rules to dentify useful
abstractions.

Note that DB-TG does not try to solve the problem of recognizing high-level
structure in a low-level circuit model 'in its full generality. The program tackles instead
the more restricted task of recognizing structure 'in specific examples of a circuit's
designed behavior. When 'it is successful, 'i.e., the simplification rules actually simplify,
the operation relations reflect the high-level structure. When t 'is not successful, the
operation relations are more complex, but no more complex than the structure of the
circuit.

Saturn's crcuit model 'is a strict hierarchy, while operation relations can cut across
module boundaries and connect internal crcuit nodes directly wth circuit 'Inputs and
outputs.
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Saturn suffers from the level-shift problem described in section 64.4. When shift-
ing up one level, for example, Saturn guesses the values of unspecified bits when
converting a set of bits 'Into an integer. These guesses can easily be wrong and lead to
unnecessary backtracking. Assuming Saturn were to use dependency drected back-
tracking, Saturn's strategy for shifting between levels could benefit from estimates of
the likelihood of backtracking. A more sophisticated strategy would be to stay at a
lower level to increase subgoal 'Independence when backtracking is likely.

One key difference between Saturn and DB-TG lies in the area of handling recon-
vergence. Singh did not consider this issue in detail 'in his thesis, but Saturn could,
with trivial changes, handle reconvergence soundly. It could do this by only using be-
havioral rules that do not depend upon the fault hypothesis. The hierarchical model,
in effect, allows Saturn to "zoom in" on the crcuit around the fault site to predict in
detail how signals flow in the presence of a fault.5

Figure 8.1 shows an example. The circuit contains a four-bit carry-chain adder,

a multiplier and other components that allow the adder's outputs to feed back into

itself. The task is to generate a test for SO. Saturn cannot use the normal behavior

rule for SO because it is the component under test, 'i.e., it 'is potentially faulty. Saturn

also cannot use the normal behavior rule for ADDER because it depends upon SO to

work correctly. Saturn is, however, free to use the normal behavior rules for S1, S2,

S3 and MULT because they do not contain the component under test. Note that the
multiplier has substructure whose rules could also be used, but Saturn will use the

higher-level MULT rule instead.

Reconvergence causes additional difficulty with embedding component tests. In

the example, SO is 'Implemented by several boolean gates, which Saturn would test

by embedding a pre-written component test for SO. This strategy is unlikely to work:

consider what happens as Saturn tries to embed one vector from the component test.
If reconvergence causes propagation out from SO to wrap back to SO, what behavior

rule can Saturn use for SO? It cannot use the normal behavior rule because the
component 'is potentially faulty, and the remaining possibilities are problematic:

1. Use the test vector itself. If the values being propagated do not match the test

vector exactly, then the vector cannot be used. Thus this method is unlikely to

work.

2. Replace SO wth 'its substructure and propagate through that. This does not

'This aspect of the algorithm appeared in [genesereth8l], which used hierarchical models in
general, and in [shirley83b], which used hierarchical models for the specific purpose of avoiding
potentially interfering fault effects.
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Figure 8.1: Saturn could handle reconvergence soundly, at the cost of dropping to the
gate level around the fault site,
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work because Saturn cannot use rules for SO's substructure when SO (or any of
SO's substructure) is potentially faulty.

Guaranteeing soundness in the face of reconvergence forces Saturn to propose faults
at a level where very specific predictions can be made about misbehavior, e.g., the
gate level. At this low level, option 1 works because there are so few behaviors
that either the test vector matches exactly or there 'is not solution and propagation
must fail. Note that these problems only occur 'in the presence of reconvergence, and
even then Saturn gains somewhat by using abstract descriptions in areas of the circuit
away from the fault.

Saturn's strategy relinquishes abstraction to guarantee soundness. DB-TG could
also use this strategy (as suggested in section 53.3), however I have proposed a differ-
ent approach in this thesis. Using abstract descriptions is unlikely to yield unsound
tests, therefore we can save effort by using abstract descriptions and fault simulating
the resulting tests. Saturn could use this strategy too.

8.2.2 Choosing Models Based on the Cost of Reasoning

Kramer [kramer84, kramer85] describes a system that solves line justification problems
in sequential circuits. This system chooses among multiple models of circuit behavior
by minimizing the expected cost of solving the problem over the different models.
This idea could be used to decide between propagating through operation relations or
propagating through circuit structure, based on the complexity of these models and
an estimate of the likelihood of reconvergent fanout causing a problem.

8.2.3 Case-Based Reasoning

DB-TG has several themes in common wth the Case-Based Reasoning (CBR) litera-
ture and in particular Derivational Analogy [carboneII85]. CBR is a method of solving
problems by transferring past experience to new problem situations. This process is
illustrated in figure 82. Given a problem to solve, CBR selects a similar problem from
a library of previously solved problems and solutions. If the new and old problems
are exactly the same, then the old solution can be used without change. If, however,
the new and old problems are somewhat derent, 'i.e., there is a partial mapping
between them, then the old solution must be modified to solve the new problem. This
approach is useful when the work needed to modify the old solution is less than the
work of solving the new problem from scratch.
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Figure 82: Cased-Based Reasoning

DB-TG can be vewed as a case-based problem solver 'in the following way: (i)
DB-TG's set of behavior graphs 'is the library of previously solved problems; 1i) be-
havioral subsumption is DB-TG's similarity metric i.e., if a smulated pattern of
activity subsumes a desired pattern of activity, then the simulated pattern 'is con-
sidered smilar- and iii) solving for parameters of a crcuit operation is DB-TG's
method of modifying the old "solution". Thus DB-TG can be viewed as a case-based
problem solver that creates its own lbrary of solutions by simulating circuit behavior.
The library comes from smulation rather than past problem-solving behavior because
test generation happens infrequently per circuit and detailed solutions 'Involving one
circuit are unlikely to be helpful on the next.

Derivational Analogy (DA) is a particular case-based reasoning method that sug-
gests some useful extensions to DB-TG. In DA, the lbrary describes how solutions
were derived as well as the solutions themselves. DA then gauges similarity by com-
paring the first few steps of an agent trying to solve the problem against the first few
steps of the stored derivation. If these match, then DA modifies the old derivation by
��replaying" as much of it as is appropriate in the new context and then reinvoking
the problem solver to finish the solution.

One of the proposed extensions to DB-TG resembles this strategy. DB-TG can in-
its performance when run again after circuit modifications by tak'ng advantage

of the previousl generated test. It can do this by using the previous test or pieces
of the test as "virtual circuit operations," simulating their effects and searching for
ways to embed component tests. In effect, DB-TG could mine earlier versions of a
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test program for good 'ideas and for the things it did rght serendipitously. This may
help reduce the cost of updating a test program due to ECO's or other nds of design
changes. 6

8.2.4 Bumpers[miller85]

D. Miller [miller85] describes a planner called Bumpers that solves robot navigation
tasks by searching totally ordered plans. Miller's argument begins wth a strong and
appropriate criticism of least-commitment planning:

The whole least-commitment philosophy is designed for domains where
interactions dictate ordering decisions - not the other way around. When
insufficient commitment is made during the planning process, either in
plan choice or in plan ordering, the planner can spend a considerable
amount of time exploring unprofitable or 'Infeasible plan avenues - plan
possi 'bil'ties that would be obviously unwise if only it had made and stuck
to an earlier decision.

Domains that 'Involve efficiency constraints, loops and continuous resources
can have plan interactions that are dependent on how the pieces of the plan
are ordered. Least commitment planners are designed to make ordering
decisions only when adverse interactions are detected. They therefore have
difficulty in the domains described above because no nteractions appear
until an ordering 'is enforced and the planners will not enforce an ordering
until an interaction appears.

- miller85], p.16

in response to this criticism, Bumpers explores the space of total orderings of plan
actions. The planner does this by enumerating plan prefixes and using temporal,
spatial and resource-based constraints to prune inconsistent orderings. Predicting the
consequences of a plan prefix in order to check constraints 'is smulation, since the
prefix is a total order. Bumpers also has heuristics for controlling how the space is
searched. It can use, for example, estimates of total plan efficiency, e.g-, how long the
plan will take to execute, to decide which plan prefixes to expand further.

'The idea is somewhat more involved than this. In particular, a very simple way to reuse old
work is to annotate tests with the components they depend on. If none of those components have
changed, nor have the circuit operations used by the old test, then that test can be reused directly.
After handling as much of the circuit as possible with this simple technique, DB-TG would then try
to mine the remaining old tests by simulation and matching.
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Bumpers and DB-TG were developed independently, but they share some under-
lying ideas. Both systems search known-achievable behavior. In the circuit testing
domain, much of the 'Interesting activity occurs wthin single primitive actions, i.e.,
circuit operations. Hence DB-TG searches simulations of single crcuit operations.
Since the nteractions between circuit operations are fairly limited, DB-TG uses con-
ventional goal-directed planning technology to search sequences of operations and
does so using abstract descriptions and as something of a last resort. In Miller's
formalization of the robot planning domain, most of the interesting activity occurs
in the interaction between primitive actions, hence Bumpers searches smulations of
sequences of actions.

8.2.5 Joyce's Extensions to DARTUoyce83]

R. Joyce describes several extensions to DART [genesereth84] that use temporal least-
comrru'tment to improve search efficiency when generating tests for simple sequential

its. The design of Joyce's system was an mportant influence on the des'gn of
PF-TG. Both systems have a backward chaining rule engine (Joyce used MRS rather
than Prolog) and a separate tme manager. However, PF-TG's Time Manager and
rule engine run as co-routines while they execute serially in Joyce's system. PF-
TG runs the time manager concurrently wth the rule engine so that it can detect
conflicts earlier and cause the system to backtrack. Both systems handle disjunctive
constraints, but PF-TG takes advantage maintaining a partial solution to heuristically
pick disjuncts that are likely to be satisfiable (i.e., dsjuncts that are already true in
the partial solution). In practice, this 'increases the efficiency of handling disjuncts,
which both systems rely on heavily to represent resource constraints.

8.2.6 Automatic Programming

Of the large automatic programming literature, PF-TG most closely resembles
Barstow's PECOS system [Barstow79] 'in its use of a lbrary of refinement rules.
However, PF-TG is much simpler than PECOS. Its simplicity reflects fundamen-
tal differences between the symbolic programming domain of PECOS (e.g., sorting
and graph algorithms) and test programming. For example, Barstow's refinement
rules map between general programs, from the abstract to the slightly more detailed.
PF-TG's rules map between testing goals expressed 'in a fairly lmited vocabulary to
solutions expressed as code fragments and constraints. This strategy wll works well
if broadly useful pieces of test programs can be written to be almost independent,
which appears to be possible for the simple sequential circuits that PF-TG is targeted
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at. PF-TG relies on an equation solver to fit pieces of solutions together because of
the primacy of timing relationships in testing.

8.2.7 Wu's DFT Advisor[wu88]

The relationship between Wu's DFT Advisor and DB-TG 'is described 'in detail in
section 65. There are also relationships between the DFT Advisor and the program
fragment test generator. Both systems can propagate streams of values, for example,
although PF-TG has a somewhat richer vocabulary of stream types and properties.

I it assumes that circuits behave as
The DFT Advisor does not reason about tme, i.e.,
if they combinational, even if they are in fact sequential. In the context of redesign for
testability, the test generator can handle many situations despite this simplification
because the tming of the circuit is going to be changed anyway. However, augmenting
the DFT Advisor's test generator to reason about time as does PF-TG would be a
useful enhancement.

In 'Its turn, the DFT Advisor has a capability that may be useful to add to PF-
TG: the DFT Advisor can in some cases recognize when several components can work
together to achieve a testing goal. One example given in [wu88] 'Involves testing the
ROM 'in the MAG I by exhaustively enumerating its addresses and checking each data
value as it emerges. Driving the ROM's data input 'is a collection of three components:
a multiplexor, an incrementer and a register holding the yPC. The DFT Advisor can
recognize that these three components can be used together as a counter to enumerate
the ROM addresses.

The DFT Advisor recognizes that groups of low-level components form high-level
components. It does this when called for and guided by specific testing goals rather
than trying to solve the problem in the general case. Recognizing groups of compo-
nents rather than being told (e.g., by a hierarchical circuit model) is useful because it
can identify unanticipated uses of components. Whether this technique is worth its
cost depends on how often unanticipated uses can be found.

8.3 Future 'Work

The capabilities and especially the limitations of the ideas in this thesis suggest several
opportunities for continuing work.
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Figure 83: The multiplexor, incrementer and yPC register together form a counter.
The DFT Advisor can recognize this without being told and use them together to gen-
erate a counting-stream to help test the ROM. -
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8.3.1 DB-TG: Improving the Implementation

Careful ndexing can speed up DB-TG's search for operation relations. DB-TG al-
ready uses one 'indexing technique for this purpose: the component activation sum-
mary lists the kinds of component operations that occur within each behavior graph.
If an operation type does not appear 'in the summary for a graph, then the gra' h need
not be searched. The ALU/INVERT operation, for instance, does not appear n the
component activation summary for the MAC-1/SUM nstruction, therefore DB-TG
can skip searching the MAC-1/SUM behavior graph for simulated instances of the
ALU/INVERT operation.

This 'idea can be extended 'in several ways. For 'Instance, the component activation
summary could be reindexed by component operation type rather than by behavior
graph, implemented as a discrimination net with behavior graphs in the buckets. This
indexing trick would move work from the equation solver to a cheaper dscrimination
mechanism.

The component activation summary could also be extended to include the types of
the operation parameters. For instance, 'Instead of mapping all ALU/ADD operations
together like so:

(ALUADD ?c 1F-+ALU/ADD

DB-TG could map them to a larger set of buckets which would dscriminate more
during lookup. For 'Instance,

(ALUADD ?c 1F-+(ALU/ADD controllable-value constant-value)

The key problem here is 'identifying a set of properties of operation arguments (e.g.,
controllable and constant) that discriminates well and lets the program avoid unnec-
essar search wthout being too expensive to check.

A second technique can reduce the space needed to store behavior graphs. Rather
than record everything that occurs during a simulation run in the behavior graphs,
DB-TG could record only what happens to certain landmark components, e.g., regi-s-
ters. Then to generate a test, DB-TG would use conventional techniques to propagate
signals from the component under test out to landmarks. The assignments to land-
marks could then be used as a search key for the behavior graphs. One interesting
issue this raises 'is which components would make useful landmarks. A criterion based
solely on component type would probably not perform as well as one based on a
component's role in the crcuit. In the MAC-1, for example, the accumulator, the
program counter and the microinstruction register would be useful landmarks, but
the latches in the datapath would not. All of these components are registers, but
they play different roles in the microprocessor.



8.3. FUTURE WORK 257

8.3.2 DB-TG. Extending the Representation

One goal for extending DB-TG's representation of tests and circuit behavior is to
take more advantage of repetitive behavior and tests. Many tests 'Involve repeating a
sequence of steps: working wth these sequences as aggregates is a powerful technique
for speeding up test generation. Sometimes sequences are regular 'in a way that
can be captured nicely by our test representations. For instance, the two level test
representation in DB-TG consisting of a Component Test Operation and Component
Test Data nicely captures repetition where a single operation is executed repeatedly
with changing data. PF-TG's stream vocabulary gves 'it a somewhat more powerful
method for exploiting repetition without reinitializing the circuit as often. DB-TG
uses the smpler test representation because 'it can not take advantage of the more
powerful one currently. The difficulty lies with its representation of circuit behavior,
i.e., the behavior graphs.

DB-TG's behavioral representation is less successful at describing repetitive be-
havior. Within the behavior graphs, a signal 'is represented as a data value and a

i
time. A data value is represented by an algebraic expression that can contain vari-

I the values of
ables. This captures repetition only in the operat'on/data sense, i.e.,
variables within an expression can change, but the expression remains the same. The
timestamps are real numbers representing the beginning of the smulated 'Interval of
time when the crcuit node held the value denoted by the data value. In order to
describe repetitive behavior, DB-TG mst create behavior graphs that contain many
data/time pairs one for each repetition. Spreading out the description into many
timestamped values makes matching the behavior against repetitive component tests
difficult.

There are three problems that must be solved: (i) representing repetitive circuit be-
havior, (ii) generating descriptions of repetitive crcuit behavior from schematics and
component behavior and iii) matching repetitive circuit behavior against component
tests. The literature contains suggestions for several representations for streams of
signals that mght be adapted and extended for use in DB-TG. In [breuer79], Breuer
proposes an interesting representation for bit-level streams based on regular expres-
sions. CRITTER [kelly82] uses an algebraic signal representation that has variables
in the timing fields.

A second change, orthogonal to representing sgnals as streams, involves represent-
ing cyclic behaviors explicitly by cycles in the behavior graphs. Weld's ideas about
aggregation [weld86] could potentially be adapted for use here. Weld's simulator,
working in the domain of Molecular Biology, recognizes cycles by comparing the cur-
rent state of the simulator against the simulator history. When a pair of states are
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found that are similar 'in a particular way, then the simulator recognizes a cycle. If
the two states have identical state variables, for 'instance, then there is clearly a cycle.
If all but one of the state variables are identical and that one 'is different in one of a
small set of ways, e.g., 'it has been incremented, then the simulator also dentifies a
cycle. Complex digital circuits have a lot of state that would have to be compared,
however a person may be able to focus its comparison by telling the program which
state variables pertain to important cycles.

A third kind of repetition involves smilar behaviors spread out over space rather
than time. Fgure 84 shows an example. The task is to check whether this com-
munications multiplexor can transmit a character from the bus on the left out to a
terminal on the rght. The behavior needed to transmit a character from the bus to
Terminal I is very similar to the behavior needed to transmit a character to Terminal
2. Current test generators and DB-TG do not take advantage of this smilarity. They
would either solve the problem 4 times or, if they cache subproblem solutions, would
reuse some pieces of the solutions. Human experts appear to know this similarity of
behavior is a characteristic of this kind of crcuit and set out to exploit it from the
start. If so, then this similarity is built into their circuit representation and they do
not have to discover 'it by remembering subproblems. One intriguing idea is the pos-
sibility of using explanation based generalization techniques [mitcheI186] to 'Identify
similarities between behavior graphs. When a similarity is found, the behavior graphs
could be combined to form a more general behavior graph which would then be used
for test generation.

-, Terminal-I

P. Terminal-2

B. Terminal-3

-, Terminal-4

Figure 84: Here is an embedding problem that involves similar behaviors spread out
over space rather than time. The behavior of transmitting a character from the bus to
Terminal is very similar to the behavior of transmitting a character to Terminal 2.
This similarity is easily exploited by human test experts, but current test generators
and DB- TG do not take advantage of it.

Another extension involves mulating and searching the effects of sequences of
circuit operations rather than of individual operations. For instance, I have exper-
imented with considering the MAC-I/LOAD/SUM/STORE sequence to be a single



8.3. FUTURE WORK 259

44 compound" circuit operation and having DB-TG search the corresponding behavior
graphs, to find a way to embed the ALU/ADD operation without using the State
Planner. By searching the behavior graph for a compound operation, DB-TG could
match and successfully embed component tests that could not be matched within a
single circuit operation. It would likely be too expensive to smulate many compound
circuit operations, but this method offers a promising way for a human test program-
mer to guide DB-TG by supplying good operation sequences to try. One nteresting
extreme case of an nteresting operation sequence 'is a previously written test program,
which may no longer work due to design changes. Following this idea, DB-TG may
be able to mine a test program for useful operation sequences.

0 08.3.3 DB-TG. Continuing the Empirical Work

Two of the heuristics used in DB-TG - the designed behavior heuristic and the recon-
vergence heuristic - should be tested further on a wide spectrum of circuits. These
heuristics are currently based on ( our test experts' experience, (ii) the partial suc-
cess of functional testing techniques and (iii) a small amount of empirical evidence
in this thesis. Complex circuits are dfficult to model, so experimenting with a large
set of them requires both the ability to import circuit descriptions in an industry
standard format such as VDIF or VHDL and a suitable symbolic smulator.

8.3.4 DB-TG: Forging a Stronger Lnk with Design

One of the most interesting drections for extending DB-TG is to look for ways of
extracting operation relations or smilar abstract relationships between components
from the design process, thereby bypassing the current simulation stage. Both the
design synthesis and design verification tasks are potential sources of operation rela-
tions.

Consider a hypothetical synthesis tool that designs circuits by () breaking up
the desired circuit behavior into pieces, (ii) selecting (perhaps modifying) landmark
components to directly implement important pieces of the circuit behavior and i)
implementing the rest of the circuit around those landmarks. For instance, think of
the ALU and the register filein the MAC I datapath as landmark components and the
rest of the datapath as glue for connecting them together. This is a plausible approach
that manages the complexity of design by first selecting landmark components from
a limited vocabulary, then fits them together.

In a design process like this, relationships between the operations of landmark
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components and operations of the circuit (or containing module) are known earlv. and
it 'is the purpose of the glue circuitry to implement those relationships. Other than for
design verification, there 'is no point 'in having the test generator propagate through
that glue crcuitry or having it reconstruct the operation relations va smulation.

Design verification is another potential source of operation relations. Some systems
(e.g., [kelly82, barrow83, weise86]) effectively compute symbolic simulations of circuit
behavior in order to compare them against crcuit specifications. Given such a system,
'it may be a small amount of extra work to construct operation relations from the
output of such a verification system., If so, then the test generator could share work
with the design verification system

8.3.5 PF-TG. Improving the Implementation

PF-TG could stand improvements to make writing propagation rules easier. Writing
propagation rules for PF-TG is difficult for two reasons: (i) rules for some components
can be overly verbose and (ii) the propagation rules mix descriptions of component
behavior wth how-to-test knowledge. The first problem can be addressed by adding
syntactic sugar to the language. For example, the behavior of some components
can be described most easily using truth tables, consequently, truth tables should be
provided 'in the language or as macros.

The second problem occurs in the parts of propagation rules that specify protec-
tion 'Intervals and temporal least-commitment. These concepts involve how-to-test
knowledge rather than intrinsic properties of the circuit, hence these rules cannot be
generated from component structure and behavior without some additional knowl-
edge. The rules used by PF-TG were straightforward to write by hand. However,
determining how to generate this sort of propagation rule automatically is an open
problem.

The amount of work involved in describing complex crcuits has been a significant
barrier to experimental test generators that use nonstandard circuit descriptions. This
problem can be addressed by importing circuit descriptions from one of the industry
standard formats. One promising approach for doing this is described by Kramer in
[kramer84]. This approach has not yet been tried on a full-featured circuit description
language and would be an interesting development pro'ect.

A second improvement involves a technique called Qualitative Fault Smulation.
Often a test generated for one component wll also fully or partially test another

7Some of these systems are hierarchical, so creating operation relations would involve collecting
and composing functions output by the verifier.
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component. A test generator can exploit this fact to save effort 'if it costs less to
recognize serendipitous tests than it does to generate new tests. Doing this can also
yield shorter tests, since each test vector detects more faults on average.

One well-known technique is to simulate each vector as 'it 'is created and to remove
all detected faults from the fault lst. Another technique is to actively try to generate
tests that exercise more than one component at a time. This 'is done by, for example,
the LASAR algorithm [bowden75, breuer761. A third technique is a hybrid of the first
two: smulate each vector 8 then generate a test for another fault by adding to the
test for the first fault. This technique is used by PODEM-X [goel8lb].

These three techniques are applicable to PF-TG if the fault simulation step is
modified so that 'it can determine how well streams of values cover faults 'in a com-
ponent. One would have to develop a language for describing how a component has
been partially tested and then determine how the streams 'in PF-TG's vocabulary
partially cover the components in PF-TG's library. Consider the task of testing the
ROM in the MAC-1 plus testability modifications. One way to test the ROM is to
shift an address into the pIR and load that into the yPC (DB-TG uses this method).
Then capture the ROM output 'in the yIR and shift back out to the tester. As the
ROM is tested, the pPC is fully exercised (note that each bit 'is exercised) and the
pIR i's exercised except for 'Its outputs that go over to control the datapath. A trivial
language for describing how a component has been partially tested 'is the fault list. A
more nteresting language would allow more abstract descriptions, which need not be
completely accurate as long as they are conservative.

8.3.6 PF-TG, Extending the Representation

PF-TG could use more comprehensive descriptions of tester capabilities and restric-
tions. Pin Formatting, for example, 'is one important area of human expertise that
has not been addressed well by test generators. Modern testers provide facilities for
accurately controlling the timing of edges, i.e., voltage changes, as they apply test
vectors. For instance, a handwritten test program might set up a timing phase sgnal
like the one in figure 8.5 before applying a sequence of test vectors. This signal is
described in terms of three parameters: the cycle time, 'i.e., the amount of time per
test vector el i.e., the delay from the beginning of a cycle until test data is applied
to the circuit inputs, and e2, the delay until the test data is optionally) removed
from the circuit inputs. Figure 8.5 also shows two pin formats. The first format 'is

81n some test generators, simulation is unnecessary as the node assignments produced during test
generation are sufficient.
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called surround by complement where a value D from the test vector is applied to the
circuit surrounded by its inverse D . The second format, Return to Zero, surrounds
the data with logical O's. Similar features are provided to control when to sample
voltages coming out of the crcuit.

I cycle

e2

el

filing Phase Signal

Surround by Complement

Return to Zero

Figure 8.5 A cycle description and two pin formats

In some cases experts can use the Surround by Complement pn format to effec-
tively double the speed of a tester. Pn formats can also be used to test whether a
circuit meets its timing specifications by bringing the edge delays el and e2 closer
together or reducing the delay before the tester samples the circuit outputs. These
tasks are commonly performed by test experts, but are beyond the scope of traditional
test generators.

8.3.7 PF-TGI A Test Generation Apprentice

An important disadvantage of PF-TG relative to an expert and DB-TG is PF-TG's
lack of a global understanding of circuit behavior. However, PF-TG is good at fitting
together test program code. One interesting idea is to use PF-TG as the basis of a test
generation apprentice somewhat along the lnes of HITEST and the decision steering
ideas of [marlett86]. PF-TG could be used as an interactive system that accepts
abstract plans for testing a component in the form of a collection of datapaths to
use. DB-TG would then combine 'Its data movement plans for the components along
the paths to produce a test program. In this view, the human would be doing the
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key parts of the test generation task, i.e., selecting groups of paths that are likely to
work. PF-TG would do the limited search necessary to put together the pieces or to
determine that the plan would not work.
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nc usions
This thesis makes several contributions to the field of circuit testing:

* It 'Introduces operation relations, a representation of crcuit behavior that often
makes embedding problems easy.

0 It describes a way to compute operation relations by symbolic simulation. This
method 'is efficient for crcuits that offer a small number of operations at their
interface.

0 It introduces the designed behavior heuristic, 'i.e., test a circuit wthout going
outside its normal operations, elucidates the issues surrounding this heuristic
and provides empirical evidence that the heuristic 'is useful.

* It describes an automated method of creating test programs by combining test
program fragments.

* It demonstrates how propagating typed streams of values can produce more
efficient tests and 'Introduces a vocabulary of stream types.

0 It extends the goals of test generation to 'Include using the capabilities of the
tester well. To achieve this goal, PF-TG uses an explicit description of tester
capabilities and resource lmitations.

DB-TG and PF-TG are two novel test generators that extend the range of tech-
niques available to test engineers. DB-TG and PF-TG are complimentary-. the first
is effective on complex sequential circuits that display tightly interacting component
behavior. Search in DB-TG is indexed and guided primarily by what 'is possible for
the crcuit to do rather what is desired to test a component. However, the cost of
simulating circuit operations renders DB-TG nefficient for circuits where many oper-
ations are possible. PF-TG uses conventional goal-directed planning techniques and
is targeted at simpler sequential crcuits. In PF-TG, search 'is indexed and guided
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primarily by specific testing goals, 'i.e., how to test a component, and is not lmited
by the number of crcuit operations.

PF-TG's use of conventional planning techniques provides a testbed for experi-
menting with several other aspects of test generation. For instance, PF-TG produces
test programs rather than test vectors to raise the level of the language between the
test generator and the agent that wll carry out the test. Using this richer language,
together wth using a simple model of the tester capabilities, helps PF-TG to design
more efficient ways to test a circuit.

These new methods plus the existing combinational, functional and special-
purpose test generators (e.g., for memories) form a collection of tools that test en-
gineers can draw upon as appropriate. Our larger goal, of which this thesis is a
part, 'is to build a collectionof specialized testing tools that share circuit descriptions
and work together autonomously or partially under human guidance to solve testing
problems.
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This appendix contains four sample tests generated by PF-TG. The ALU test 'in
section A.1 forces PF-TG to manage circuit nodes as resources, since the ALU is
used twice 'in the test: once to help set up one of its 'Inputs and again to actually
perform the test. The register file test 'in section A.2 'is considerably more complex
and uses a protection constraint to prevent PF-TG from breaking the component test
as it embeds it. The ROM test in section A.3 illustrates typed streams by solving
a problem once by propagating a scalar quantity and again using a stream. Finally,
another ROM test in section AA shows how PF-TG can generate tests involving DFT
components like a BILBO register.

A.1 An ALU Test

Figure A. I shows the usual method of testing an ALU's addition operation by applying
pairs of addends and observing the outputs. Lines 36 bind Prolog variables to the
circuit nodes around the ALU into (e.g., ?op is the ALU's operation control input).
Lines 816 contain the test program fragment, and the data for the three streams is
declared elsewhere. Lnes 13-16 form the core of this component test. They apply
three streams to the ALU 'inputs and observe one stream coming out of its output.
The with-synch declaration forces the loop portions of the streams to step together.
The equal-instants declaration forces the three streams deliver their values and the
one stream to observe the output simultaneously within each repetition).

Figure A.2 shows a version of the MAGI data'ath, and figure A.3 shows an
embedding found by PF-TG. This test program begins with several lines of comments
to the test engineer, then there are three array declarations containing the expert-
supplied streams. The bulk of this fragment 'is a FOR loop that steps through the
arrays, writing values from the addend-streams to the circuit and checking that values
in the sum-stream come back out. Activity 'in the loop body occurs over three clock
cycles: (i) load one input through AMUX and ALU into the register file RF at address
0; (ii) read the value from RF and apply it to the ALU via the B-BUS, apply the

267
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1. (define-predicate SIMPLE-ALU-PLUS-TEST
2. ((simple-alu-plus-test ?alu)
3. (component-port ?alu ini ?inl)
4. (component-port ?alu in2 ?in2)
S. (component-port ?alu out ?out)
6. (component-port ?alu op ?op)
7. (declare-fragment
8. (test-phase (-.component ?alu .-facility plus
9. :comment "test the ALU's ability to add"
10. ..Mnemonics (ALU-ADD 0))
11. (with-synch
12. (equal-instants
13. (control-stream ?inl (STREAM ADDEND-STREAM-16-1))
14. (control-stream ?in2 (STREAM ADDEND-STREAM-16-2))
is. (control-stream ?op (REPEAT ALU-ADD))
16. (observe-stream ?out (STREAM SUM-STREAM-16))))))))

Figure A. : A component test for the AL Us addition operation.- version I

other value from MBR-IN through AMUX, and load the sum into RF at address ;

and (iii) read the value from RF and check 'it via B-BUS. The fragment repeats these

steps times, once for each group of data in the streams.' Note that the ALUs

operation input (OP) is handled differently from the data nputs, because a single

value (ALU-ADD) is being applied repeatedly rather than a stream of values. The

assignment OP = ALU-ADD cannot be moved out of the loop because the operation

input is changed in order to apply addend-stream-16-2.

'ALU-NOOP and ALU-ADD are mnemonic constants that I have used here to enhance readabil-
ity. They are declared when used in the rules, and PF-TG collects the declarations used within a
single problem, i.e., test-phase, and includes them at the beginning ofthat test phase.
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RF-AA I

RF-BA I

RF-CA I

CLK

B-BUS

MBR-IN

MUX-A

OP

C-BUS

Figure A.2: A simple datapath
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** TEST-PHASE (:COMPONENT ALU :FACILITY PLUS)

BEGIN

VAR ALU-ADD = , ALU-NOOP = 2;

** test the ALU's ability to add

CLK = CLK = i;

** DECLARE-STREAMS (ADDEND-STREAM-16-1 ADDEND-STREAM-i6-2 S-STREAk-16)

BEGIN

ARRAY ADDEND-STREAM-16-1 = [0, 43690, 1, 1, 6534, 65535, 2184S, 656351;

ARRAY ADDEND-STREAM-i6-2 = [0, 43690, 6634, 6535, i, 1, 2i845 6351;

ARRAY SUM-STREAM-16 = [0, 21844, 6SS3S, Ot 65S35, Ot 43690, 65341;

FOR INDEX11333 FROM TO 7 DO

BEGIN

RF-CA 0

MBR-IN ADDEND-STREAM-16-2[INDEX113331

MUX-A 0

OP ALU-NOOP

CLK 0; CLK = 

MBR-IN ADDEND-STREAM-16-11

MUX-A 0

RF-BA 0

RF-CA 0

OP ALU-ADD

CLK 0; CLK = i;

B-BUS = SUM-STREAM-16EINDEM3331

RF-BA = 

CLK = CLK = 

END

END

END

Figure A.3-. The embedding for the ALU addition test
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A.2 A Register File Test

This section contains a complete version of the register file test shown n chapter 7
(page 233). Figure A.2 shows the circuit, and figures A4 and A.5 show the complete
component test. Lines 36 fetch global names from the circuit nodes surrounding
the register file (?rf). Lines 8-10 create several "constants" whose value depends
on the bit-width of the data input. Lne 7 creates two temporal variables that
will be exceptions to the no-implicit-assignments statement on lne 15. That
is, manipulations of the register file at these two times will be allowed, even if the
statements doingit are not lexically contained wthin the no-implicit-assignments
statement. The exceptions are needed because this test uses several subroutines (e.g.
write-at-1111-read-back) that manipulatethe register file but whose internal state-
ments are not contained.

The main body of the test is a loose sequence of three test phases. The first test
phase fills the register file with ones, writes zeros into one cell and reads back several
other cells looking for stuck-at faults in the addressing logic. This phase was shown in
chapter 7 The second test phase checks for bridge faults 'Instead. It does almost the
same thing, but writes zeros to a different location and reads back different cells. The
final test phase writes and reads a checkerboard pattern (an alternating 0-1 pattern)
using each register. Figures A.6, A7 and A.8 show this component test embedded for
the register file.
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1. (define-predicate RGISTER-FILE-TEST
2. ((register-file-test ?rf)
3. (component-port ?rf data-in ?data-in)
4. (component-port ?rf out-a ?out-a)
S. (component-port ?rf aa ?aa)
6. (component-port ?rf ca ?ca)
7. (rf-create-ok-times ?ok-timesl ?ok-times2)
8. (node-all-ones-value ata-in ?all-ones-value)
9. (node-checkerboard-value ata-in checkerboards)
10. (node-checkerboard-value ?data-in I checkerboardi)
ii. (declare-fragment
12. (loose-sequence
13. (test-phase (:component ?rf
14. .comment "Detect address line stuck-ats")
is. (no-implicit-assignments (:protected (?rf) :ok-times ?ok-timesl)
16. (tight-sequence
17. (comment "Fill the register file with ones"
18. (multi-stream ((address (iota S)))
19. (equal-instants
20. (control ata-in ?all-ones-value)
21. (control ?ca address))))
22. (bounded-subgoal
23. (rf-observe-cells-i ?rf ?ok-timesi :START -.FINISH)))))
24. (test-phase (:component ?rf
25. .comment "Detect address line bridges assuming wired-AND aults)")
26. (no-implicit-assignments (:protected Orf) :ok-times ?ok-times2)
27. (tight-sequence
28. (comment "Fill the register file with ones"
29. (multi-stream address (iota IM
30. (equal-instants
31. (control ata-in ?all-ones-value)
32. (control ?ca address))))
33. (bounded-subgoal
34. (rf-observe-cells-2 ?rf ?ok-times2 :START :FINI'SH)))))
35. (test-phase (:component ?rf
36. :comment "Check that each register cell can hold a checkerboard")
37. (multi-stream ((address (iota 15M
38. (tight-sequence
39. (equal-instants
40. (control ?ca address) (control ?data-in checkerboards))
41. (equal-instants
42. (control ?aa address) (observe ?out-a ?checkerboardO)))
43. (tight-sequence
44. (equal-instants
45. (control ?ca address) (control ata-in ?checkerboardl))
46. (equal-instants (control ?aa address) (observe ?out-a checkerboardi)))))))))

Figure A.4: The full component test for the register file: part I
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47. (declare-stream ADDRESS-STUCK-AT-STREAM :value '(#blliO #bliOi #bi0ii #bO111))
48. (declare-stream ADDRESS-BRIDGING-STREAM -.value 1(#b1OOO #bO100 #bOO1O #bOO01))

49. (define-predicate WRITE-AT-1111-READ-BACK
so. Uwrite-at-illl-read-back ?rf (?write-time ?observation-time) ?s ?f)
51. (node-all-ones-value ?a ?address)
52. (write-read-back ?rf ?address ADDRESS-STUCK-AT-STREAM (?wtime ?otime) ?s ?fM

53. (define-predicate WRITE-AT-0000-READ-BACK
54. ((write-at-0000-read-back ?rf (?write-time ?observation-time) ?s ?)
65. (write-read-back ?rf 0 ADDRESS-BRIDGING-STREAM (?wtime ?otime) ?s ?f)))

56. (define-predicate WRITE-READ-BACK
57. ((write-read-back ?rf ?a-addr ?read-stream (?wtime ?otime) ?s ?)
58. (component-port ?rf a a)
59. (component-port ?rf data-in ?data-in)
60. (node-all-ones-value ?data-in Mata-in-all-ones)
6i. (or (and (component-port ?rf aa ?address-line)
62. (component-port ?rf out-a ?data-output))
63. (and (component-port ?rf ba ?address-line)
64. (component-port ?rf out-b ?data-output)))
65. (declare-bounded-fragment
66. ?s 
67. (tight-sequence
68. (comment "Write a at one address"
69. (equal-instants
70. (control ?a a-addr ?time)
71. (control ?data-in ?wtime)))
72. (comment "Read other addresses to see if they were affected"
73. (multi-stream ((address ?read-stream))
74. (equal-instants
7S. (control ?address-line address ?otime)
76. (observe ?data-output Mata-in-all-ones ?otimeM)M)

Figure A.5: The component test for the register file: part 2
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TEST-PHASE (:COMPONENT RF)

Detect address line stuck-ats.

BEGIN

** Fill the register file with ones

BEGIN

FOR ADDRESS FROM TO DO

BEGIN

MBR-IN = 663S MUX-A = OP ALU-NOOP RF-CA ADDRESS

CLK = ; CLK = 

END

END

** Write a at one address

RF-CA = MBR-IN = MUX-A .-= OP = ALU-NOOP

CLK = ; CLK -.= 

Read other addresses to see if they were affected

DECLARE-STREAMS (ADDRESS-STUCK-AT-STREAM)

BEGIN

ARRAY ADDRESS-STUCK-AT-STREAM = 14, 13, 11, 7-

FOR INDEXiO FROM TO 3 DO

BEGIN

RF-BA = ADDRESS-STUCK-AT-STREAMEINDEX101 B-BUS 6SS35

CLK = - CLK = 

END

END

END

Figure A.6: The RF Test Embedding: Part 1. This portion of the test detects stuck

ats on the register file address nputs. I have moved node assignments that occur at

the same time onto the same line to save pace.
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TEST-PHASE (:COMPONENT RF)

Detect address line bridges (assuming wired-AND faults)

BEGIN

** Fill the register file with ones

BEGIN
FOR ADDRESS FROM TO 1 DO

BEGIN

MBR-IN = 6S35 MUX-A = OP = ALU-NOOP RF-CA ADDRESS

CLK = ; CK = ;

END

END

** Write a at one address

RF-CA -.= MBR-IN 0 MUX-A = OP -.= ALU-NOOP

CLK = ; CLK = i$

Read other addresses to see if they were affected

DECLARE-STREAMS (ADDRESS-BRIDGING-STREAM)

BEGIN

ARRAY ADDRESS-BRIDGING-STREA = [8 4 2 i;

FOR INDEXii FROM TO 3 DO

BEGIN

RF-BA -.= ADDRESS-BRIDGINa-STREAM[INDEXiiI B-BUS 65535

CLK = ; CLK = 

END

END

END

Figure A.7: The RF Test Embedding.- Part 2 This portion of the test detects bridge
faults on the register file address inputs.



---

APPENDIX A. P- TG EXAMPLES276

** TEST-PHASE (:COMPONENT RF)
** Check that each register cell
BEGIN

CLK = ; CLK = i;
FOR ADDRESS FROM TO DO

BEGIN

can hold a checkerboard

RF-CA = ADDRESS MBR-IN 43690 MUX-A 0 OP = ALU-NOOP
CLK = ; CLK = i;
RF-AA = ADDRESS
CLK = CLK = ;
B-BUS 43690 RF-BA = RF-CA 0 OP ALU-NOOP MUX-A i
CLK = - CLK = i;
RF-CA ADDRESS MBR-IN 21845 MUX-A 0 OP = ALU-NOOP
CLK = ; CK = i$
RF-AA = ADDRESS
CLK = ; CLK = 
B-BUS MO RF-BA = R-CA = OP = ALU-NOOP MUX-A i
CLK = CLK = -

END
END

Figure A.8: The RF Test Embedding: Part 3 This portion of the test applie a
checkerboard pattern to each register. That is, it checks that 1010101010101010 and
0101010101010101 can be loaded and read from each register.
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A.3 The ROM Test

This example contrasts propagating a scalar value with propagating a stream. The
circuit 'in figure A.9 'is part of the MAC-1 microsequencer. The task is to test the
ROM by reading the contents of all address locations.

CLR

ill

OUT

Figure A.9. A portion of the MAC-1 microsequencer

A.3.1 Solution 1

Propagating a scalar value backwards from A yelds this solution: clear the counter,
then count up to the value of A. This solution takes time proportional to the value
of A and using it repeatedly for a range of different values of A from to n takes
0(n') time. Repeatedly ntializing the counter makes this solution unnecessarily
slow. Rules for this example are in figure A.10 and the solution is 'in figure A.11.

A.3.2 Solution 2

PF-TG finds a solution that nitializes the counter only once by propagating a typed
stream back from A. The component test in figure A.12 creates a subgoal to supply
an exhaustive stream to the ROM address input. The propagation rule 'in figure A. 13
responds to the supply subgoal by generating a counting stream which exhaustively
covers the addresses. The component test also sets up another subgoal to observe
the data coming out of the ROM and forces the input and output streams to move
concurrently. This solution takes 0(n) time to run on a tester.
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1. (define-predicate ROM-TEST

2. ((rom-test ?rom)

3. (component-port ?rom addr ?addr)

4. (component-port ?rom data ?data)

S. (declare-f ragment

6. (test-phase (:component ?rom

7. :comment "This version uses scalar assignments")

8. (loop (value 2SS)

9. (equal-instants

10. (control ?addr VALUE)

11. (observe ?data (ROM VALUE))))))))

Part of the rule for controlling a counter's output.

12. (define-propagation-rule COUNTER control-stream

13. ((counter-control-stream ?counter out (REPEAT ?value ?synch) ?output-time)

14. (component-port ?counter clr ?clr)

is. (extract-synch-loop-times ?synch ?loop-s ?body-s ?body-f ?loop-f)

16. (declare-bounded-fragment

17. ?body-s ?body-f

18. (tight-sequence

19. (control ?clr CLEAR)

20. (control ?clr COUNT)

21. (protect (?clr)

22. (multi-stream ((count (iota i ?value)))))

23. (bounded-subgoal

24. (t= ?output-time :start))))))

Figure A.10: The first rule describes one way to test a ROM. This method counts
through the addresses and asks for each address to be supplied as a8calar. The second

rule shows a third of the real rule for controlling a counter's output. Thi8part supplies

a8calarvaluethatisbeingaskedforrepeatedly. Thepartthatsuppliesastreamappears

in figure A. 13, and the final part which supplies a single calar is not shown.
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1. TEST-PHASE (:COMPONENT ROM)

2. This version uses scalar assignments

3. BEGIN

4. FOR VALUE FROM TO 25 DO

S. BEGIN

6. CLK 0; CLK 1;

7. CLR CLEAR

8. CLK 0; CLK 1;

9. CLR COUNT

10. CLK 0; CK 1;

11. FOR COUNT FROM TO VALUE DO

12. BEGIN

13. CLK = CLK = ;

14. END

is. CLK 0; CLK = ;

16. OUT (ROM VALUE)

17. CLK 0; CLK = 1;

i8. END

i9. END

Figure A.11: An inefficient solution to the ROM test. Note that thi's solution has one
loop nested inside another. The outer loop steps through the ROM addresses. The
body of this loop clears the counter on line 7, lets it count up to the address (value)
on lines 914 and observes the output at line 16. did not give P-TG the contents
of this ROM, so the value observed ((ROM VALUE)) is an uevaluatedfunction.

(define-predicate ROM-TEST

((rom-test ?rom)

(component-port ?rom addr ?addr)

(component-port ?rom data ?data)

(node-width ?addr ?addr-width)

(declare-fragment

(test-phase (:component ?rom

:comment "exhaustively check the contents of each address")

(with-synch nil

(equal-instants

(control-stream ?addr (stream (EXHAUSTIVE ?addr-width)))

(observe-stream ?data (stream ROM-CONTENTS-STREAM))))))))

Figure A.12 A ROM component test using streams
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This is the part of a more complex rule that is relevant to this example.

It says that a num bit wide counting stream exhaustively covers all

patterns of ?num. bits.

(define-predicate COMPATIBLE-STREAM-PROPERTY

((compatible-stream-property (EXHAUSTIVE um) (COUNTING-STREAM um))))

... This is the backward propagation rule for a COUNTER (for generating streams).

(define-propagation-rule COUNTER control-stream

((counter-control-stream ?counter out (?stream ?stream-property ?synch) ?output-time)

(component-port ?counter out ?out)

(node-width ?out ?out-width)

(compatible-stream-property ?stream-property (COUNTING-STREAM ?out-width))

(extract-synch-loop-times ?synch ?loop-s ?body-s ?body-f 1loop'f)

(new-time ?clr-time)

(new-time ?start-counting)

(t=-offset ?clr-time ?start-counting )

(t< ?start-counting ?loop-s)

(t=-offset ?body-s ?body-f 1) ;Constrain the loop body = clock cycle

(t=-offset ?loop-s ?loop-I 266)

(control-port-scalar ?counter CLR CLEAR ?clr-time) ;CLEAR and COUNT are mnemonics

(control-port-scalar ?counter CLR COUNT ?start-counting)))

Figure A.13: Component rules for the ROM example. The first rule is a simplified
version of the rule that relates stream properties to stream types. In this case, it says
that a counting stream that is n-bits wide exhaustively cover's all values on an n-bit
node. The Propa ation rule first clears the counter, and then lets it count.
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1 .

2 

3 

4 

.

6 

7 .

8 .

9 

10.

ii.

12.

13.

14.

is.

16.

17.

TEST-PHASE (:COMPONENT ROM)

exhaustively check the contents of each address
BEGIN

CLR CLEAR

CLK 0; CK 1;

CLR COUNT

CLK 0; CK 1;

** DECLARE-STREAMS (ROM-CONTENTS-STREAM)

BEGIN

ARRAY ROM-CONTENTS-STREAM

FOR INDEX8 FROM TO 2S DO

BEGIN

OUT ROM-CONTENTS-STREAM[INDEX83

CLK 0; CLK

END

END

END

Figure A.14: An efficient ROM test. This version clears the counter in line 4 and
then lets it count, observing the ROM outputs on line 1,
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A.4 The ROM Test wth a BILBO Register

This example is smilar to the last except that the normal register has been replaced
by a BILBO register, i.e. a linear feedback shift register that can generate a sngle
signature value summarizing a long stream of values. The signature has the property
that sngle bit errors n the value stream wll yeld a "wrong" signature with high
probability. Using a BILBO register, long streams of values can be compressed 'Inside
the circuit and the summary checked easily by the tester. The propagation rule for
the BILBO register 'is 'in figure A.15 and resulting solution is in figure A.16.

I

1. (define-propagation-rule BILBO-REGISTER observe-stream

2. ((bilbo-register-observe-stream ?bilbo IN (?stream ?stream-property ?synch) ?ontpnt-time',

3. (extract-synch-loop-times ?synch ?loop-s ?body-s ?body-f ?loop-f)

4. (compute-bilbo-signature ?stream ?stream-property signature)

S. (new-time ?clr-time)

6. (new-time ?start-recording)

7. (new-time ?observe-signature)

8. (t=-offset ?c1r-time ?start-recording )

9. (t=-offset ?start-recording ?loop-s 1)

10. (t=-offset ?body-s ?body-f 1) ;Constrain the loop body to clock cycle

ii. (t=-offset ?loop-f ?observe-signature 1)

12. (control-port-scalar ?bilbo CLR CLEAR ?clr-time)

13. (control-port-scalar ?bilbo CLR RECORD ?start-recording)

14. (observe-port-scalar ?bilbo OUT ?signature ?observe-signature)

is.

Figure A.15: This rule describes how to observe a stream of values using a BILBO
register. The compute-bilbo-signature subgoal on line 4 tries to pre-compute the
value of the signature. In this case, because I did not give P-TG the contents of the
ROM, this sub9oal returns an function rather than an actual value.
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1. TEST-PHASE (:COMPONENT ROM)

2. exhaustively check the contents of each address

3. BEGIN

4. CLR1 CLEAR

S. CLR2 CLEAR

6. CLK 0; CLK 1;

7. CLR1 COUNT

8. CLR2 RECORD

9. CLK 0; CLK i)

10. WAIT 27;

11. OUT (SIGNATURE (ROM VALUE))

12. END

Figure A.16 A solution for the ROM test using a BILBO register: this test program
uses the counter to apply an exhaustive stream to the ROM address input and observes
the data output stream using the BILBO register. Lines 485 initialize the clock and the
BILBO register and start them going. Line 10 is equivalent lines 11-14 in figure A. 1.
That was an explicit loop that did nothing but drive the clock, and wait is a shorthand
way of doing the same thing. The output value in line 1 1 is an unevaluated function
of the ROM contents. PF-TG would replace this function with the actual signature if
it the ROM contents were available.
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