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Abstract

This thesis develops a model for the topological structure of situations. In this
model the topological structure of space is altered b the presence or absence

I y
of boundaries such as those at the edges of ob'ects. This allows the intuitive
meaning of topological concepts such as region connectivity, function continu-
ity, and preservation of topological structure to be modelled using the standard
mathematical defilitions. The thesis shows that these concepts are 'important in
a wide range of artificial 'intelligence problems, ncluding low-level vision, high-
level vsion, natural language semantics, and high-level reasoning.

A formal framework for manipulating space and boundaries is developed,
called cellular topology. Combinatorial methods of representing the topological
structure of digitized space are developed and used to develop formal models of
the changes in space induced by boundaries. The cellular structure imposed on
space restricts the form of representations 'in ways that are useful for artificial
intelligence applications. The cell structure together with descriptions of the
support and error neighborhoods of functions, provides a convenient model for
the scale or resolution of representations used in applications.

Two algorithms were implemented for this thesis: an edge finder and a stereo
matcher. The edge finder takes advantage of the topological structure of images
to dstinguish real features from camera noise. The stereo matcher constrains
possible matches by requiring that they preserve the topological structure of
the 'image. In informal tests, both algorithms show improvements over previous
proposals. The matching algorithm was also used to develop quantitative tests
of edge finder performance. Using these tests, the new edge finder was compared
to one of the better recent algorithms and performed better than it.

Thesis Supervisor: J. Michael Brady
Title: Professor of Information Engineering
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Thesis Supervisor: Harold Abelson
Title: Associate Professor, Electrical Engineering and Computer Science
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Chapter 1: Introduction

1. Introduction

Informal discussion of problems in reasoning, perception, or language un-

derstanding often makes use of topological concepts. These concepts include

connectivity of regions and paths, continuity of functions, and whether two rep-

resentations have the same topology. These same dscussions also refer to entities

called "boundaries" and concepts related to them, such as the "edges" of a re-

gion. These topological concepts are crucial to certain types of reasoning. For

example, connectivity of wires and pipes must be represented in order to solve

problems in qualitative physics. In many other areas of artificial intelligence,

these concepts have shown some promise as descriptive tools but this promise

has not been systematically exploited.

Boundaries are central to any discussion of topological properties, because

the 'intuitive meaning of topological notions changes as the (intuitive) bound-

aries change. For example, as Figure illustrates, a region of space may be

intuitively connected when it is empty, but not connected when it is filled by

two objects. The presence of the object boundaries has changed the topological

structure of space. How boundary locations are chosen depends on the appli-

cation at hand. For example, textured patterns on floor tiles are significant for

determining the location of the floor from stereo image data, but not for planning

motions of objects. Similarly, two wires can be electrically connected without



Figure 1. The cup and the table shown on the left are not, ntuitively, connected.
However, the set of points they occupy, shown on the right, 'is connected when
cons'dered as a subset of empty space.

being physically connected, and vice versa. However, within an application, all

of these topological terms are used consistently.

The under-use of topological concepts derives largely from a hstory of re-

peated problems formalizing them. There exist standard and well-developed

mathematical definitions for "connectedness continuity," and having the

same topology." However, the standard definitions for the other topological

concepts cannot be applied wthout a model of boundaries and there are no

standard mathematical models for them. Previous attempts to provide formal

models for boundaries have not been successful, because the connections between

boundaries and topological concepts have not been clearly understood.

In the thesis, I develop two formal models for boundaries. In both models,

the presence or absence of boundaries changes the topological structure of space.

Given either of these models for boundaries, the informal uses of the other topo-

logical concepts can be successfully modelled using the corresponding definitions

from standard mathematics. Armed with these formal definitions, I show how

10



topological concepts can be used to provide simpler descriptions of data and im-

proved reasoning algorithms in a variety of domains, such as computer vision,

natural language, and naive physics.

Figure 2 shows a sketch map of some major domains within the field of

artificial intelligence.' The stated goal of the field 'is to link research in these

domains together to form a reasoning system that can interpret sensory data,

use this information in manipulating objects, and discuss what it 'is doing in

natural language. Since hard data on human behavior is only available for certain

domains, and sometimes only about the form of the input or the output but not

both, theories of 'individual domains are difficult to test unless the domains are

linked together. In practice, however, research in different domains has tended

to proceed independently, with only weak connections between domains.

In this thesis, I illustrate how descriptions using topological concepts can

provide three types of benefits. First, they can provide simpler descriptions

of observed data and algorithm behavior in each individual domain. Secondly,

the increased clarity can lead to better algorithms. Finally, apparently different

phenomena from different domains can be described in a common language. This

makes commonalities among the domains clearer, reduces the amount of special-

purpose machinery required, and wl eventually make 'it easier to build interfaces

between domains.

The thesis 'involves work of several types. First, the formal mathematical

models of space and boundaries are developed. Secondly, two computer vision

algorithms that make use of topological properties are implemented. The first

algorithm, an edge finder, detects boundaries in digitized (grey-scale) images.

The second algorithm performs stereo matching based on the output of the edge

Different researchers might draw slightly different maps.

- -14p I I I -- - I
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finder. The performance of these algorithms is evaluated and compared to that

Of previous algorithms. We will see that
I by using tpological ro

new algorithm hese
ns can perform more robustly than previous les, , 

algorithms.

Two other examples are discussed in detail. The first example cons'

on types of actions and the meaning of tense and aspect Ists of data

example consists in En sh. The second
Of work in high-level vision and reasoning that is concerned

with representing events in time ad ob ects in space. These examples illustrate
I

how tpological concepts are useful in domains other than vision, as well as how
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the new models of space and boundaries can be used to solve technical problems

encountered by previous researchers. Finally, other examples illustrating smilar

phenomena, such as algorithms for representing region shape, are presented 'in

less detail.

2. Models of topology

Models of topology used by previous researchers fall into two categories:

region-based models and boundary-region models. In region-based models, space

is segmented into a number of regions, each representing the area or volume cov-

ered by an object, event, or other significant part of the scene. The problem

of representing the topology is divided into two parts. Topological features of

each region, such as the number of holes in it, are determined rising the stan-

dard mathematical definition of the topology of a subset of a larger space (the

subspace topology). Topological relationships among re *ons however are rep-

resented using symbolic primitives. The clearest description of this model is by

Davis (1984ab). Similar approaches are also used by Allen 1983 184), Allen

and Hayes 1985), and Pavlidis 1977).

The region-based approach has several weaknesses. First, difficulties arise

in deciding which of two adjacent regions contains the points along their com-

mon boundary. Secondly, regions that touch themselves cannot be represented.

Thirdly, the symbolic region relations are not related to standard mathematical

definitions. Thus, two independent versions of each topological concept are cre-

ated, one for within a region and one for operations that span more than one

region. Fnally, the region relations are poorly developed, particularly for 2D and

3D situations. For example, it may be possible to represent whether two regions

are connected, but not whether they are connected along one face or along two

distinct faces.
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In boundary-region models, boundaries are treated as infinitely thin regions.

As in region-based models, topological properties of non-boundary regions are

computed using the topology that the non-boundary regions inherit as a subset

of space. This implies that non-boundary regions are open, which may or not be

correct. The primary weakness of this model is that boundaries have a number

of special properties, different from other regions, that are accounted for in an ad

hoc manner. First of these 'is that they are removed during topological computa-

tions. Secondly, 'it 'is difficult to assign proDertv values to boundary points in a

systematic way if the regions touching at that boundary have different values for

the property. The simplest resolution of this is not to assign property values to

boundary points. This type of model is proposed by Hayes (1985a) and seems to

be the 'idea underlying many computer vision discussions, such as that in Marr

(1982).

The first of the proposed new models of boundaries is similar to the boundary-

region model, except that the boundary points are deleted from space rather than

being endowed with special properties. Deleting the boundary points accounts

for why they are not there during topological computations. Furthermore, since

they are not part of space, they are not in the domain of property functions and

thus cannot receive values. This model, called the open-edge model, is shown in

Figure 3 (left). The second new model 'is smilar to te open-edge model, except

that new points are added to "close off" the edges of space. You can think

of this as splitting boundary points into multiple copies, although the actual

mathematical construction works differently. I call this the closed-edge model of

boundaries.

Although both the open-edge and closed-edge models of boundaries are drawn

with space between opposing edges, it is 'Important to realize that this is just a



Figure 3 The two proposed models of boundaries: the open-edge model (left)
and the closed-edge model (right).

graphic device. Distances in either new space (with boundaries) should be the

same as they were in the original space (without boundaries).2 The right way

to vsualize these spaces is to think of cutting cloth or paper wth a sharp knife.

The cut edges are right next to one another and touching one another, but they

are no longer connected.

Formal models that look like these pictures are dfficult to construct directly.

Furthermore, it can be difficult to relate these models directly to some of the

representations used in artificial intelligence. Thus, this thesis develops a new

set of representations in which space is represented using space-filling cells, illus-

trated in Figure 4 These representations are based on regular cell complexes, a

type of structure frequently used in algebraic topology (Munkres 1984, Massey

1980). Using these representations, the topology of a bounded region of space

can be completely specified using a finite (and typically concise) description.

2Points on the edges of adjacent regions in the closed-edge model are zero dis-
tance apart.
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Figure 4 A section of space can be represented using a set of space-filling cells.

Furthermore, boundary locations are easy to specify and manipulate.

The thesis develops two combinatorial representations for these cell com-

plexes, called incidence structures and adjacency structures. One of these rep-

resentations, incidence structures, completely represents the topological struc-

ture of an arbitrary regular cell complex. The second representation, adjacency

structures, is closer in form to representations commonly used in computer vision.

However, it is only a complete representation of the topology for a restricted class

of cell complexes. The thesis gives the details of these restrictions and a proof

that they are sufficient for representing topological structure. (A related, but

slightly different discussion for the 2D case 'is given by Grfinbaum and Shephard

(1987).) Representations proposed previously typically specify only pairwise con-

nectivity relations between cells (Poston 1971, Pavlidis 1977, Lee and Rosenfeld

1986). This does not, in general, uniquely specify the topological structure of

the cell complex.

16

Using cellular models, most of the work involved in modelling boundaries and
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defining topological concepts becomes straightforward. The 'interesting mathe-

matical questions center around how to determine whether two cell complexes

are homeomorphic, using only their combinatoric descriptions. Three basic tech-

niques are developed for doing this:

- showing that the complexes have isomorphic. adjacency or 'incidence struc-

tures,

- showing that one complex is a subdivision of another, and

- showing that the two complexes are the same, except that boundaries in one

have been "thickened."

Combinatorial conditions for subdivision and boundary thickening are fully de-

veloped, in this thesis, only for the 2D case. Sequences of applications of these

three techniques are sufficient to handle many of the cases required for practical

reasoning. In particular, they are essential in working out the details of the stereo

matching algorithm.

3. Using cellular representations

Cellular representations form a useful intermediate language for relating ex-

isting representations as shown in Figure 5. For example, they are a convenient

framework for describing computer vision algorithms since they avoid both the

complexities of point-set topology and the complexities of data structures re-

quired by efficient implementations. Previous attempts to relate different rep-

resentations, such as interval-logics and I'-like models, have had difficulties

because they tried to bridge too large a gap at once. Intermediate representa-

tions make it possible to break a difficult transition down into more manageable

pieces.



Figure 5. Cellular representations are useful in relating representations used 'in
different sub-areas of artificial intelligence.

Cellular representations 'impose some restrictions on the form of space and

boundaries. For example, spaces must be locally like in order to have cel-

lular representations. This forbids some of the unpleasant spaces that can be

constructed 'in topology, such as the Cantor set or the long line (see Munkres

1975). However, it does not force space to be globally like IR'. Branching mod-

els of time have been proposed by some previous researchers (McDermott 1982,
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Dowty 1979). The new model allows space or tme to branch, but the branching

cannot be infinitely dense. Boundaries 'in space also cannot be infinitely dense.

The thesis compares these restrictions to those imposed by previous researchers

and argues that the proposed restrictions are neither too tight nor too loose.

In order to describe data from any artificial intelligence domain, I also need

a model of the "scale" or "resolution" of a representation. The model I use has

two components. First, the cellular representations provide a flexible model for

digitizations of space. Functions between cellular spaces can also be digitized.

That is, the values of the function at all points in a cell are summarized into one

value and this value is approximated to the nearest cell. This is illustrated in

Figure 6.

I

I

j I

P

Figure 6 A digitized function maps each cell of the domain to a cell of the range.- I I I . i.6- , � �

The second component required for representing resolution is a description of

the support and error neighborhoods of functions, whether they are digitized or

continuous. The support neighborhood of a function f at a point x is the set of

19



points whose values are used to derive the value of f at x. For example, the tex-

ture periodicity at a point in an image cannot be determined by considering only

the intensity at that point. Rather, a texture analysis algorithm must consider

intensity values from a neighborhood of the point that is large enough to contain

at least two repetitions of the pattern. The error neighborhood of y consists of

all the values f (x) that might be reported as y, given the prevailing noise or

other sources of errors. In particular, in a digitized function, the error neighbor-

hoods are always at least a cell in size. The support and error neighborhoods of

a function are illustrated in Figure 7.

I

error
f (X)

neighborhood

support neighborhood

Figure 7 The support neighborhood of a function f at a point x contains all
points used to derive the value f(x). The error neighborhood of f at )
contains all values that might be reported as f (x).

The thesis illustrates how this model of scale can be used to describe data

from different domains in artificial intelligence. Taking notice of digitization

is particularly 'important in omputervision algorithms, where the input data

20
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is digitized and some features to be detected are small compared to the cell

size. Support regions are also interesting because their shape may be affected

by any boundaries present. For example, if support regions in stereo analysis

cross depth discontinuities, the stereo results for points near discontinuities are

corrupted. The stereo matching algorithm described in this thesis trims support

regions for such points so that they do not cross these boundaries. This is a

pattern that appears across several domains.

4. Using boundaries and topology

This new model of boundaries and topology predicts a number of patterns

that might appear in data and a number of techniques that might be useful in

building algorithms. These include:

- explicit references to boundaries,

- requirements that a region be connected,

- restriction of support regions by boundaries,

- abrupt changes in function values at boundaries,

- clustering of abrupt changes in different functions,

- ocurrence of abrupt changes in function values at the same locations as lack

of material connectivity, and

- use of homeomorphism as a constraint in matching.

If the model of boundaries and topology is correct, these patterns should ap-

pear and these techniques should prove useful in a wide range of problems from

different domains.

Explicit reference to boundaries occurs in a number of different domains.

Most high-level vision programs, for example, compute descriptions of the shape

and arrangement of regions based on the locations of boundaries 'in the 'image.
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Supporting this type of description, a variety of words in natural language refer

to boundaries or to the regions on either sde of a spatial or temporal bound-

ary. These 'include such words as "boundary," "edges," "become �Cunfil and

"touch." These terms show up repeatedly 'in discussions of naive physics as well

as natural language analysis.

In many tasks, a region or interval is required to be connected. Examples of

this occur in naive physics, where lquids or electricity can only flow via connected

paths (Forbus 1984, Hayes 1985ab, de Meer and Brown 1984, Williams 184).

Ob'ects moving through space must also follow connected paths (Lozano-Perez

1981 1985). In reasoning about manipulation of ob'ects, it is important to

know whether two objects are physically connected or not, because that helps

determine whether one ob'ect will move if forces are exerted on the other. Causal

connections are limited to hstories that are connected in both space and time

(Hayes 1985b). Reasoning about events 'in time is often restricted to connected

intervals. Representing the meaning of certain constructions in natural language,

such as perfect aspect, seems to require that certain intervals be connected.

Finally, most high-level vision algorithms require some type of connectivity, either

of regions (Brady and Asada 1984, Connell 1985, Fleck 1985, 1986) or at least of

extended edges.

Connectivity requirements may also occur in less obvious forms, such as

changes in the shape of function support regions near boundaries. For example,

when depth dscontinuities occur in stereo matching or motion analysis, support

regions that cross boundaries generate inaccurate output values. If support re-

gions are required to be connected, more accurate answers can be obtained. This

generalization has been noticed by previous researchers (Grimson and Pavfidis

1985, Ponce and Brady 1985), but has proved difficult to mplement. The algo-
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rithms implemented for this thesis illustrate how support region trimming can

be implemented in both edge finding and stereo matching. Similar discussion

applies to determining texture properties. Textures include not only patterns of

change across space, as in computer vision (Julesz and Bergen 183, Matsuyama,

Miura, and Nagao, 1983, Bovik, Clark, and Geisler 1987, Vilnrotter, Navatia, and

Price 1986, and Laws 1979) but also patterns of change across tme as in natural

language (Taylor 1977, Dowty 1979) and naive physics (Weld 1986).

One immediate consequence of the new definition of boundaries is that con-

tinuous functions can have abrupt changes in value across boundaries, because

the regions to either side of the boundary are no longer connected to one another

(at least locally). Thus, a typical reason for hypothesizing a boundary is to ac-

count for abrupt changes observed in some property. For example, boundaries

are introduced in computer vsion to account for sharp changes in intensity, color,

or texture in a camera image. Natural language and naive physics provide exam-

ples of abrupt changes in function values over time. For example, the sentence

"Michael passed his oral exam" describes a history in which Michael suddenly

changes from not yet having passed his exam to having passed 'it.

The new model of boundaries not only allows sharp changes in function values

to occur, but also predicts that they will tend to cluster at a lmited number

of locations. Suppose we introduce a boundary in space to account for sharp

changes in one property, such as region color. The change in topology caused by

the boundary allows the color function to jump abruptly across that boundary.

In addition, it allows (but does not require) other functions, such as texture, to

jump abruptly across the same boundary. Furthermore, the region to the two

sides of the boundary is no longer connected. Thus, by hypothesizing a boundary

to account for the behavior of one function, the model licenses changes in the
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behavior of other functions relevant to the same reasoning task, as well as related

types of connectivity. This clustering of effects should be observable.

Clustering of abrupt changes in different functions, along wth lack of connec-

tivity, occurs in a number of domains. For example, computer vision researchers

(Gamble and Poggio 1987, Poggio et al. 1988) have been interested in ntegrating

different types of boundaries, such as color and texture, into one set of bound-

aries. This only makes sense if the abrupt changes in different properties occur

at a common set of locations. Similarly, programs for manipulating objects may

deduce boundaries in material connectivity from boundaries in vsual input. Fi-

nally, naive physics programs (Forbus 1984, Hayes 1985ab, de Kleer and Brown

1984 Williams 1984- compare also Erdmann and Lozano-Pe'-rez 1987) that pre-

dict a course of events from its initial state typically stop whenever any property3

changes suddenly and re-evaluate whether other properties are still valid. Again,
1 with

there is a pattern of relatively sparse points of change ("limit points"

multiple properties changing abruptly at each one.

The final use for topology and boundaries 'is requiring correspondences in

matching to be homeomorphisms. In many practical reasoning tasks, two situ-

ations that are to be matched do not have exactly the same size and shape but

share a common topological structure. For example, an action must have a par-

ticular topological shape and temporal ordering to be described using the present

perfect tense, but the length of the interval over which the event occurs is not

restricted. In stereo matching, corresponding regions in the two images must be

similar in shape and must share the same topological structure. However, they

may differ slightly 'in shape due to the changes in viewpoint and digitization. For

similar reasons, a periodic texture tends to match translated versions of itself in
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topology, but not 'in exact shape. All of these cases suggest that matches should

be constrained to be homeomorphisms, i.e. to preserve topological structure.

Using the full power of a homeomorphism constraint on matching requires

clearer understanding of topology and boundaries than has previously been avail-

able. For example, some type of figural continuity requirement has repeatedly

been proposed 'in stereo and motion matching (Mayhew and Frisby 1981, Baker

1982, Grimson 1985, Mutch and Thompson 1985, Koenderink and van Doom

1976, Callahan and Weiss 1985). Chen 1985) even proposes using full topologi-

cal structure, based on psychophysical evidence. However, these ideas have only

been implemented in weak forms, such as checking connectivity along individual

boundaries or via bounds on changes in displacements over an image. Topological

features, such as Euler numbers, are sometimes extracted for object identifica-

tion (Ballard and Brown 1982, Ullman 1984) but purely topological features are

weak and poorly behaved under projection and noise. The stereo algorithm and

the edge finder implemented for this thesis illustrate how topological constraints

can be combined with other constraints to yield effective algorithms. The stereo

matching also illustrates how the full power of a homeomorphism constraint can

be used 'in matching.

5. Overview of the applications explored

In this thesis, I explore applications of topology to problems 'in three domains:

low-level vision, linguistic semantics, and high-level vision and reasoning. I have

implemented two low-level vision algorithms: an edge finder and a stereo matcher,

The performance of these algorithms shows that topological structure can be

useful for performing practical tasks in noisy, real-world conditions. I also discuss

examples from the other two domains 'in detail, re-examining previous research
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in light of the new models of space and boundaries. This section describes these

applications briefly.

The new edge finder, called the Phantom edge -finder, is based on directional

second differences. Its most interesting new feature is its method of noise suppres-

sion, which takes advantage of the topological structure of the second difference

responses. Previous edge finders eliminate noise by smoothing the image (for

example, Canny 1983, 1986, Marr and Hildreth 1980, 1983) or by fitting a rigid

model of a boundary to each pixel in the 'image (for example, Haralick 1980, 1984,

Nalwa and Binford 1986, Sher 1987). The new edge finder uses the observation

that each second difference edge response covers a connected region in the D

image. Thus, evaluation of whether the response at one pixel is due to noise can

be confined to the connected region of same-sign responses containing that pixel.

This idea is originally due to Watt and Morgan 1985; compare also Huttenlocher

1988 and Huertas and Medioni 1986). I have extended their idea to 2D, using

the concept of a set of points being star-convex, and developed the details so as

to make it work on real images. Star-convexity combines metric and topological

constraints in a way that preserves the advantages of both approaches.

I have tested the performance of the noise suppression algorithm in some

detail, comparing the performance of the new edge finder to that of Canny's

(1983, 1986) edge finder. Two features of performance must be evaluated: noise

resistance and acuity. Noise resistance is measured by comparing the results

of the edge finder on two images of the same (real world) scene. Such a pair

of images differ only in having different patterns of random camera noise. By

comparing edge finder outputs for the two images Iit is possible to assess the

stability of the output topology and the amount of fluctuation in output boundary

locations. Using the matcher developed for the stereo implementation, these
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comparisons can be performed automatically.

In the low noise conditions typical of recent camera setups, the Phantom

edge finder exhibits consistently better resistance to noise than Canny's edge

finder. This holds not only for images differing in noise, but also for 'images that

have been translated and thus exhibit differences in digitization. Under high

noise conditions, small amounts of smoothing make a substantial difference in

Phantom's performance. Without smoothing, Phantom's stability is very close

to that of Canny's edge finder with mask size 8. Using smoothing, its performance

is comparable to that of Canny's edge finder wth mask size 12. In all cases, the

amount of fluctuation in boundary locations is small and shows no substantial

difference between the two algorithms.

Even when the edge finders have output of comparable stability, however, a

noticeable derence in output resolution 'is apparent. A second series of tests

attempts to characterize these differences in resolution precisely, using smple

synthetic 'images. The two edge finders show similar ability to resolve closely-

spaced boundaries, comparable to human performance. There 'is, however, a

substantial difference in performance on boundaries with high curvature and on

boundary intersections. The Phantom edge finder resolves boundaries well in

these cases, though at the cost of generating spurious boundaries on staircase-

like patterns of intensities. Canny's edge finder performs poorly on these images,

breaking 'intersections and sharp corners and introducing spurious boundaries.

It also generates spurious responses on ramp-shaped intensity profiles, such as

those produced by smooth shading. These patterns of behavior are confirmed

with finely-textured extracts from natural images.

Topological structure 'is also used to build a new algorithm for matching two

images. This algorithm is given two images and an approximate alignment be-
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tween them. The matcher first adjusts the alignment so as to create a correspon-

dence between the 'images that 'is a homeomorphism, 'i.e. preserves topological

structure, and that preserves the edge finder's dark and lght labels. This adjust-

ment is done using a small set of operations that move boundaries in an image

without changing its topological structure. Proving these operations correct is

an interesting demonstration of the power of the mathematical framework. Af-

ter adjustment, the matcher reports which areas of the images could be made

to match successfully, it evaluates how good the match is about each cell, and

it describes the amount and direction of boundary motion used to achieve the

match.

The 'image matcher can be used for a variety of tasks in low-level vision. It is

used 'in the edge finder evaluations to distinguish stable features from noise and

performs this task very reliably. It is also used 'in the second major implemen-

tation for this thesis: a stereo matching algorithm. Finally, I have experimented

w'th using this matcher for analysis of texture periodicity, motion sequences, and

combination of edge finder results from different scales. In all cases, the results

are very promising.

The implemented stereo algorithm uses a relatively standard control structure

to test the new matching algorithm. The algorithm works from coarse scales to

fine scales, using coarse-scale results to guide fine-scale analysis. At each scale, it

generates a series of candidate translations of one image against the other. The

two 'images are matched at each translation, using the new matching algorithm,

and the best matches are chosen over all candidate translations. The computed

disparity field is used to adjust the relative positions of the two images prior to

computation at the next scale.

The new stereo algorithm shows two improvements 'in performance over pre-
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vious algorithms. First, its measure of matching strength is more robust than

those used by previous stereo algorithms (such as Grimson 1981, 1985, Mayhew

and Frisby 1981, Pollard, Mayhew, and Frisby 1985, Baker 1982, Nishihara 1984,

Medioni and Nevatia 1985, Ayache and Faverjon 1987). This allows the new algo-

rithm to tolerate larger search neighborhoods without becoming confused about

the correct match. In particular, the new algorithm can handle substantial ver-

tical disparities, because it can tolerate the multiplicative increase in the size of

the search space caused by considering the possibility of vertical misalignments.

This ability 'is extremely important, as exact vertical agnment of stereo images

is difficult to achieve in practice and humans are relatively tolerant of vertical

displacements.

The second change is that, in the new stereo algorithm, the computation of

matching strength and disparities is confined to the region for which a correspon-

dence is established. Because of this, the new algorithm can retur a dense depth

field with less smearing of depths across depth discontinuities than in previous

algorithms. The stereo algorithm has been run on a variety of synthetic and

natural images to test its performance and demonstrate these improvements.

Finally, the thesis contains detailed discussion of examples from natural lan-

guage and naive physics. This discussion largely focuses on re-working examples

from previous research so as to show how technical problems can be eliminated,

using cellular representations and the new models of boundaries, and to high-

light features of 'interest to the main points of this thesis. The natural language

examples center around how to represent dfferent classes of actions and how

these representations interact with representations of tense and aspect distinc-

tions in English. My description of this data is based on work by Dowty 1979),

Woisetschlaeger 1976), and Johnson 1981), which is in turn based on a sub-
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stantial body of previous research. I show how the new model of boundaries

solves several technical problems encountered in describing this data, including

how to represent sharp changes in properties over time and how to distinguish

states from actions. I also show how topological connectivity may be useful in

describing the meaning of certain aspect forms and certain temporal connectives.

The final body of data comes from work in high-level vsion and reason-

ing. Researchers 'in this area (e.g. Forbus 1984, ayes 1985ab, Allen 1983,

1984, McDermott 1982, Brady and Asada 1984, Lozano-Pe'rez 1981, 1985) have

encountered technical problems smilar to those in natural language semantics.

However, these phenomena appear not only in 1D temporal situations, but also in

2D and 3D spatial situations. Again, I show that the new models can avoid these

technical problems. I also discuss how topological properties, such as connectiv-

ity, are important in designing reasoning algorithms and I show how cellular

models impose constraints on representations that make them a better match to

data available from real measurements.

6. Roadmap

The rest of this thesis breaks down into four groups of chapters. Chapters 2

and 3 provide a more detailed introduction to the formalism of cellular topology

(Chapter 2 and the domains to which 'it is applied (Chapter 3. These two chap-

ters are crucial to understanding the rest of the thesis and should be accessible

to all readers.

The next five chapters discuss the applications 'in detail. Chapter 4 presents

the edge finder. Chapter presents the 'image matching algorithm and Chapter 6

discusses how to use it in stereo matching. Chapter 7 discusses the natural

language data and Chapter discusses high-level vision and reasoning examples.
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While there are some 'inter-dependencies between these five chapters, they are

designed to be read independently.

Chapters 9 and 10 present the results of testing the edge finder and stereo

implementations. The edge finder testing procedure depends on the matcher

described in Chapter 5. However, both these testing chapters can be read in-

dependently. Some readers may find 'it useful to skim through Chapter 9 while

reading Chapters 4 and 5, and Chapter 10 while reading Chapter 6 These two

chapters consist primarily of pctures and graphs 'illustrating algorithm behavior.

Chapter 11 presents the details of the mathematical development and com-

pares my formalism for representing digitized spaces to previous proposals. This

chapter assumes familiarity wth point-set topology, as well as some knowledge

of algebraic topology. However, the rest of the thesis is comprehensible without

it. Finally, Chapter 12 gives a summary of the main results, draws conclusions,

and suggests plans for future research.
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Chapter 2 Cellular Topology

1. Introduction

In this chapter, I describe the mathematical formalism used in this thesis,

called cellular topology. This formalism is used to define region connectivity and

function continuity, which are needed to implement the edge finding and stereo

matching examples described in Chapter 1. This presentation is informal, stress-

ing how cellular topology can be used in designing algorithms and comparing it

to formalisms used in previous research. The definitions and lemmas used in this

chapter are presented formally in Chapter 11.

As we saw briefly in Chapter 1, topological properties such as connected-

ness are affected by the presence of boundaries. In this chapter, we see how

boundaries change the topology of space and how these changes affect reasoning

algorithms. In addition to changes in connectivity, we see changes in the behav-

ior of continuous functions, changes 'in what types of continuous correspondences

between situations are possible, and changes in the shape of support regions used

in computing function values.

2. Cell complexes and boundaries

In cellular topology, space is represented using regular cell complexes. These

mathematical structures are sets of space-filling cells, such as the ones shown

in Figure 1. Imposing this cell structure on space makes it easy to specify the



33

Figure 1. A set of space-filling cells.

locations of boundaries in space. The cell structure and boundaries determine

the topological structure of the situation being represented.

A cellular representation of a situation consists of two parts: a description

of the cell structure and a specification of boundary locations. The structure of

a cell complex is specified as a list of the N-dimensional cells in the complex,

together with a list of a sets of cells (adjacency sets) that share a common face.

I refer to this description as the adjacency structure of the set of cells. Figure 2

shows the adjacency structure for a small cell complex.

In cellular topology, boundaries are simply a designated collection of adja-

cency sets. For example, Fgure 3 shows how boundaries might be added to a

cellular representation of space to delimit the edges of a cup and the table on

which 'it is stting. Boundaries can be placed either between cells or on cells,

depending on which adjacency sets are chosen. On-cell boundaries are created

by marking single-cell adjacency sets as boundaries. Inter-cell boundaries are

created by using only multi-cell adjacency sets. Cells belonging to boundary



Figure 2 In this cell complex, there are 17 adjacency sets involving only the cells
Al B, C, D, E, and F. The adjacency sets A}, JBI, I C}, I D}, I E}, and F}
are 2-dimensional. The 1 -dimensional adjacency sets are I A, B}, I A, D 1 I B, E 1,
I D E} I I I C} C, F}, I C, E}, and I E, F}. The 0-d'mensional adj acency sets
are Al B7 D� El, I , C, E}, and I 7 El Fl.

adjacency sets are called edge cells.

For the cell complexes used in this thesis, each adjacency set uniquely desig-

nates either a cell or a con-anon face or vertex shared by several cells. Section 

describes the conditions necessary to make this true. Under these conditions,

the adjacency structure of a set of cells fullv sDecifies the topological structure of

the space they fill (see Chapter 11 for details). This is not very exciting, because

most sets of cells used in this thesis are topologically equivalent to rectangular

subsections of the plane and thus do not have interesting topological structure.

The interesting point is that this equivalence allows us to specify precisely how

the topological structure of space is changed when boundaries are added to t.

This means that the topological structure of situations such as the one shown in

Figure 3 is completely specified by the combination of the adjacency structure

and the boundary markings.

I - - - -W-st l "Mr."I I �

- I I I ,
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Chapter 11 develops two models for how adding boundaries changes the un-
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ble

Figure 3 Adding boundaries to space at the edges of a cup and a table.

derlying space. The two models are 'illustrated in Figure 4 In the open-edge

model of boundaries, points corresponding to boundary adjacency sets are sim-

ply deleted from space. The regions to either side of each boundary remain rght

next to one another, but they are no longer connected to one another. Fig-

ure 4 only shows space between the two sides of the boundaries because that is

necessary in order to show the topological structure intelligibly.

The second, closed-edge, model of boundaries is similar, but points are added

to "close" the edges of the new space. The new points on ether side of the

boundary are right next to one another, but dstinct. The formal details of

Le. make them look locally like closed subsets of Rn. Local neighborhoods
near the boundaries are topologically both open and closed in both models.



Figure 4 Left: a cell complex with boundaries indicated by thick lines. Middle:
the open-edge model of these boundaries. Rght: the closed-edge model of these
boundaries.

this construction are gven 'in Chapter 11, Section 6 and are somewhat involved.

This second model can only be constructed if the cell complex meets additional

conditions.

For most practical purposes, these two models of boundaries behave in the

same way. Sce few 2 applications make use of the special features of either

model, there is little reason for choosing between them. The important point to

note 'is that both models of boundaries modify the topological structure of space.

For example, when boundaries are added, regions that used to be connected

to one another are no longer connected. In later sections, we see that these

topological changes have far-reaching consequences.

In this section, I have defined cell structures and how to add boundaries to

them. In this thesis, I am primarily interested in the effects of the topological

changes caused by adding boundaries. As Figure shows, the topological struc-

ture of a situation is independent of the cell structure used to represent it. The

cell structure serves two purposes. First, 'it makes models of space and bound-

aries easier to specify and manipulate. In particular, as we see in Section ,

2 Later chapters discuss the cases that I know of. None of them provide conclu-
sive evidence 'in favor of ether model.

36



the cellular framework constrains the form of space so as to avoid unwanted

pathological cases. Secondly, cell structures provide a formalism for describing

digitized functions, as described in Section 6.

F

Figure 5. The same stuation can be represented using different cellular struc-
tures.

3. Paths and connectedness

The most familiar topological properties are those nvolving path and region

connectedness. In this section, we see how the standard mathematical definitions

for these concepts can be re-phrased in cellular terms. We see how adding bound-

anes affects these properties. Finally, we see how connectedness can be combined

with rough metric information to yeld the notion of a star-convex neighborhood,

which is used repeatedly in the practial applications described in later chapters.

The definition of connectedness in cellular topology is based on the notion of

a connected path. A (connected) path is a finite ordered list of cells such that

adjacent elements in the list share a common non-boundary adjacency set. If A

is the first cell in the list and is the last, the path is said to connect A and B.

Figure 6 shows examples of paths and non-paths.

In standard mathematics a path between two points a and b in a space X is

a continuous map f from a connected interval [p, q] of the real line into X, such

37
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Figure 6 Left to right: a connected path, a set of cells that is not a path because
it is broken by a boundary, a set of cells that is not a path because adjacent
elements do not share a common adjacency set. Boundaries between cells are
indicated by thick lines.

that f (p = a and f (q = b. Such a continuous map cannot cross boundaries in

either the closed-edge or open-edge model, because there is no way to make the

points correspond. The cellular definition of a path cannot refer to individual

points, but only to cells. However, the two definitions are otherwise equivalent.

Specifically, there 'is a cellular path between two cells A and if and only 'if

there is a point-wise path connecting some point (equivalently, any) in A to

some (equivalently, any) point in B.

Using the definition of connected paths, we can now define what it means

for a region to be connected. A region in a cellular representation is any set of

cells. A region X is connected if there is a path connecting every pair of cells

in X that uses only cells in X. The corresponding standard definition requires

that there be a path between any two points in X that uses only points in .3

Thus the cellular definition of region connectedness is equivalent to the standard

definition. Figure 7 shows examples of connected and non-connected regions.

There are a few types of reasoning that can be done using connectivity infor-

3 Path-connectedness and connectedness are equivalent for these spaces, because
they are locally path-connected.



Figure 7 Left to rght: a connected region a region that is not connected because
'it 'is cut by boundaries, a region that 'is not connected because it consists of two
separated pieces.

mation alone. For example, suppose that I pour water into a coffee maker, shown

schematically 'in Figure 8. If the machine 'is functioning properly, the input and

output are connected by a tube and thus the water must eventually come out

the bottom of the machine. If the water does not come out, something must be

blocking the tube so that they are no longer connected.

Figure 8. If water is poured into the top of a coffee maker, it will eventually
flow out the bottom, because there is a tube connecting the water input and the
water output.
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Other types of reasoning, however, require combinations of connectivity and

metric information. In later chapters, we see that the concept of star-convexity

is useful in a number of applications. In standard mathematics, a region is

star-convex about a point x if every point y 'in the region is connected to x by

a straight path that 'is entirely contained in the region. Remember that these

paths cannot cross boundaries, so the presence or absence of boundaries changes

which regions are star-convex. Fgure 9 shows examples of star-convex and non-

star-convex regions.

I

I

Figure 9 Left to right: star-convex region region that is not star-convex because
it crosses boundaries, region that is connected but not star-convex about the
marked point.

In cellular representations, paths are rarely exactly straight. Thus, a cellular

region is considered star-convex about a cell A 'if any cell 'in the region can be

connected to A using an approximately straight path entirely contained in the

region. Which paths are considered approximately straight depends both on the

shape and arrangement of the cells and also on the application at hand. The

algorithms implemented for this thesis use rectangular cell arrangements. They

considers a path between cells A and to be straight 'if it uses the minimal

40
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number of cells of any path connecting A and and, among the paths containing

the minimum number of cells, it uses a inimal number of diagonal moves.

Notice that there may be more than one approximately straight path connecting

given pair of cells. The definition of star-convexity requires that one path of

the appropriate type exist and does not depend on whether it is unique.

The applications described in this thesis use star-convex neighborhoods that

are maximal, relative to some bound r on the radius of the region. What this

means is that each cell in the neighborhood about a cell A must be connected to

A via a path of length at most r. The largest star-convex neighborhood meet-

ing this condition is then used. Figure 10 illustrates the maximal star-convex

neighborhood about several cells. Notice how the shape and size of these neigh-

borhoods depends on the presence of nearby boundaries. Thus, if a computation

uses maximal star-convex neighborhoods, its result changes as the boundary lo-

cations change.

do - %

If t

I I

I % j

%. F. .01

radius bound

Figure 10. The maximum star-convex neighborhoods of several cells. 

4. Continuous functions

Changes 'in the topology of space affect not oly region and path connectiv-



ity, but also the behavior of continuous functions. Continuous functions appear

in two contexts in practical reasoning: assigning property values to locations in

space and matching two stuations 'in space. The two cases behave slightly differ-

ently, because the matching problem requires functions not only to be continuous

but also to have continuous inverses. In this section, I discuss how boundaries

affect the behavior of continuous property functions. The matching problem is

discussed in Section .

Boundaries in space or time are often hypothesized to account for abrupt

changes in property values. Consider a cup sitting on a table, shown in Figure 11.

Light intensity, color, texture, and material properties vary smoothly within the

cup and within the table, but change abruptly at the transition between the two

objects. We can account for this behavior by modelling all of these properties as

continuous functions, but putting a boundar i In space between the cup and the

table.4

Figure 11. A cup sitting on a table is not connected to the table. Furthermore,
many material and visual properties change at the transition between the table
and the cup. These effects can be explained by postulating a boundary separating
the two objects.

One would also want boundaries separating each ob'ect from the air around it.
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Placing a boundary 'in space, such as between a cup and the table it rests

on, allows continuous functions to have arbitrary changes in value across the

boundary. Recall that a function f is continuous if the 'inverse image of any open

set 'is open. Fgure 12 shows a plot of an abrupt change in light 'intensity across

the cup/table boundary and an open interval A 'in the space of intensity values.

In the model wth no boundary, the inverse image of A is not open and thus the

intensity function is not continuous. For both models of boundaries, however,

the inverse image of A is open and the 'Intensity function 'is continuous. Although

the inverse image of A in the closed-edge model looks lke a half-closed region of

IRn it is topologically open. 5

In the same way, continuous functions can change between discrete values

across topological boundaries. Consider a student passing an oral exam. This

event can be represented by a function from time to a space with two discrete

values, as shown in Figure 13. The event dvides tme into twointervals separated

by a boundary. In the first interval, theexam 'is not yet passed, and in the second

interval it has been passed. Since there is no such thing as having "partway

passed" an exam, there is an abrupt jump in value between the two intervals.

Thus, there are two ways to model an abrupt change 'in the values of a prop-

erty across space or time. Either the function is discontinuous or else there is a

boundary 'in space or time. In this thesis, I assume that all functions are con-

tinuous and thus that all abrupt changes indicate the presence of a boundary.

This method of modelling abrupt changes has two consequences: (1) clustering

of abrupt changes in different functions is easy to model and 2) lack of region

connectivity must occur at the locations of abrupt changes in function values.

In Rn, the shape of a region is closely related to whether it 'is open or closed.
However, under more general circumstances, a region can be specified as topo-
logically open or closed, no matter what its shape. See, for example, Munkres
(1975).
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Figure 12. Light intensity for a path across the cup/table boundary. Top: a

model wth no boundary. Bottom left: a model wth the closed-edge model of
boundaries. Bottom right: a model with the open-ed�e model of boundaries.

Adding a boundary to space not only changes the potential behavior of the

function that caused it to be hypothesized, but also the behavior of other func-

tions. The change 'in topology that allows the values of one function to change

abruptly also licenses abrupt changes in other functions. Thus, a cluster of ap-

parent discontinuities in many functions can be explained by postulating only one

boundary. For example, 'in Figure 11, many types of properties change abruptly

across the cup/table boundary, including color, texture, and material structure.
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Figure 13. The process of passing an oral exam can be modelled using a function
from time to a space containing two discrete values.

If discontinuous behavior were a property of individual fnctions, a separate

explanation would be needed for each function involved in such a cluster.

The second consequence of the topological boundary model is that lack of

region connectivity must occur where there are abrupt changes in property values.

Suppose, for example, that we hypothesize a boundary between the cup and the

table 'in Figure 11 to explain the change in material between the two objects.

According to the definition of connectivity developed in Section 3 the cup is

not materially connected to the table. That is, if you lift the cup, the table

should not move wth it. This prediction is lmited to functions and types of

connectivity that are relevant to the same task, such as material properties and

material connectivity or visual boundaries and vsual region connectivity. In

this thesis, we will see that both clustering and coincidence of connectivity and

changes in function behavior occur in a variety of domains.

5. Same topology

i 0111-1 I III I I I I 1 � -
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Function continuity appears 'in a second form in practical reasoning: con-
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structing matches between two situations 'in space. Matching examples differ

from the property functions discussed in the previous section in that matching

correspondences must not only be continuous but must also have continuous

inverses. Thus, the behavior of these functions is more tightly constained.

In later chapters, we will see a number of applications in which two stuations

must be matched 'in a way that preserves topological structure. For example,

topological structure can be used to dstinguish the two whole chain links in

Figure 14 from the damaged chain lnk. As we will see in Chapters and 6 two

views of the same patch of surface from different perspective typically have the

same topological structure. As shown 'in Figure 15, this can be used to constrain

the process of matching 'images from two viewpoints,

Figure 14. Two whole chain lks and a damaged chain link.

Intuitively, two representations have the same topolo 'cal structure if one

can be deformed smoothly into the other. So, for example, the two situations

shown in Figure 16 have the same topological structure. This is defined formally

in terms of continuous functions. That is, two spaces (with boundaries) have

the same topological structure 6 if there is a bijective function from X onto Y

that is continuous and has a continuous 'inverse. Figure 16 shows a continuous

correspondence between a cup and a ring.

6 That is are homeomorphic.
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Figure 15 A D situation, as seen from the left eye and frova the nght eye.

I
I

I

Figure 16. A cup and a ring, seen in 2D projection, have the same topological
structure because they can be matched using a correspondence that is continuous
in both directions.

Locations of boundaries play a crucial role 'in determining what correspon-

dences are continuous. A continuous function cannot map a connected set onto

a set that is not connected. Thus, a correspondence that 'is continuous in both

directions can only associate a patch of space that does not contain a boundary

with another patch of space that also contains no boundaries. For example, the

two situations shown in Figure 17 do not have the same topological structure.

In the model presented here, boundaries are not actually part of space, but,



Figure 17. Two stuations that do not have the same topological structure.

intuitively, continuous correspondences must match boundaries wth boundaries.

This model of matching in terms of continuous functions is a standard mathe-

matical approach, but one that may seem unfamiliar to researchers in other fields.

In low-level vision, for example, the matching problem has typically been stated

as a problem of matching discrete features, such as short sections of boundary.

In high-level reasoning, topological structure is typically approached via topolog-

ical properties such as the presence or absence of holes. Because the continuous

function approach is more general, 'it can lead to more powerful constraints on

algorithm behavior, as we will see in later chapters. It also extends well to cases

in which we may only be able to construct a continuous correspondence between

subsets of the two situations and in which additional considerations may limit

the choice of correspondences.

6. Dgitized functions

The ad'acency structure and boundary markings represent the topological

structure of a situation exactly, even though this topological structure may rep-

resent only a limited resolution view of the situation. Representing functions,

whether properties or correspondences, is typically not exact. In manipulating

functions used in practical reasoning applications, we must consider effects of

both digitization and measurement error.
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Consider the process of representing a camera 'image for computer vsion

analysis. Because a computer can only store finite amounts of 'information, we

cannot store the exact 'intensity value at each point in the image. Rather, only

a finite number of intensity values are stored, each one representing an average

over a small patch of the 'image. Each intensity value is represented wth only

finitely many bts of precision. We can model this as a mapping between two

cellular representations, as shown in Fgure 18. The real intensity function maps

points in the image onto exact intensity values. The approximation maps cells 'in

the image onto intensity cells. Such approximations are not peculiar to computer

vision, but occur 'in any application that 'involves interpreting measurements of

real situations.

I

I

10

9

8

7

6

image intensities

Figure 18 A digitized image.

It is important to realize that digitized functions are not maps between spaces

of discrete values, but rather approximations to continuous functions. Suppose

that we labelled the image with two discrete values, dark and light, as shown in

Figure 1. Whenever a dark cell is adjacent to a light cell in the image, there
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must be a boundary in the mage, because a continuous function on a connected

region cannot jump between two discrete values. Adjacent cells in the image can,

however bear different ntensity values without there being a boundary in the

image, because intensities form a connected space.

I

0 light

& dark
I

� ' I I

Figure 19. Labelling an image with discrete values.

Except in rare cases, such as functions with discrete values, topological analy-

sis of the raw digitized values does not provide sufficient information for practical

applications. Consider first the relationship between the dgitized function F and

the continuous function f that 'it approximates. Each digitized value has two as-

sociated neighborhoods.- a support neighborhood and an error neighborhood.

The support neighborhood at a point x contains all the points whose values

(from the function f) were used to derive the dgitized value F(x). The support

neighborhood for each cell must include at least all the points 'in the cell and often

points from other cells. Types of support regions are discussed in Section 7.

The error neighborhood at a point x consists of the points 'in the range that

might be represented by the digitized value F(x). Since the value F(x) 'is reported
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only to the nearest cell, the error neighborhood must clearly include all points

in the cell F(x), including the boundaries it shares with adjacent cells. Error

neighborhoods are typically somewhat larger than this, due to various sources of

noise present in real measurements.

In designing algorithms that operate on digitized functions it is important

to be aware of the error neighborhoods associated with the values of these func-

tions. This is particularly important when comparing the values at two cells.

Following Poston 1971) I refer to two values as indistinguishable if their error

neighborhoods overlap. Indistinguishable values could represent measurements

of the same underlying value.

Using error neighborhoods, 'it is possible to deduce the presence of boundaries

even when function values form one connected region. Two cells that are adja-

cent, but not separated by a boundary, overlap along their common face, edge, or

vertex. The underlying values for each common point must belong to the error

neighborhoods of the digitized values for both cells. Thus, the values at the two

cells must be indistinguishable. If a digitized function assigns distinguishable

values to two adjacent cells, they must be separated by a boundary.

Algorithms using digitized functions may also be able to take advantage of

constraints on the class of continuous functions under consideration. For exam-

ple, it may be possible to assume that the underlying function satisfies certain

bounds on slopes, second differences, or derivatives of various orders. Depend-

ing on the application, these constraints may be formulated so as to respect the

topological structure. For example, bounds on slopes might apply only to differ-

ences taken along connected paths. If so, a topological boundary would license

apparent violations of these constraints, just a 'it lcenses apparent violations of

continuity.
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Although constraints on slopes or differences may be formulated as constraints

on the underlying function, they often 'imply similar constraints on digitized

approximations to that function.7 For example, the smoothing and sampling

procedures commonly used in computer vision do not increase the magnitude of

finite differences. Thus if a difference of the sampled function exceeds a given

bound, the underlying infinite-resolution function must also contain a dfference

that exceeds the bound. Thus, the presence of boundaries can be inferred from

apparent violations of the constraints, even when only digitized approximations

to function values are available.

7. Support regions

In the previous section, we saw that cellular approximations to continuous

functions may combine information from many points to yield a digitized value

for each cell. In most domains, combining information from wide support regions

is essential to producing well-behaved approximations. In this section, we see how

pathological situations can be created by poor choices of support functions. We

also see how wide support can be used for other interesting purposes, such as

describing textured patterns, and how support regions can be modified by the

presence of boundaries.

It is well-known in computer vision that undesirable behavior can happen if

a function is digitized without adequate amounts of smoothing. Because these

problems may not be familiar to researchers from other domains I review them

briefly in this section. Consider the striped pattern shown in Figure 20. The

top two sampling options in this figure show ways of sampling this pattern with

sufficient smoothing. If the sample points are sufficiently dense, the stripes can

be resolved, otherwise the pattern looks uniformly grey.

7 Depending on the support function used in creating the digitization.



Figure 20. A striped pattern and several ways of sampling it.
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The second two options in Figure 20 show sampling with non-existent or

inadequate smoothing. Two pathological effects can occur. Frst, the samples

can miss the dark stripes entirelv. resulting in a representation of the pattern

as entirely white. Secondly, the samples can pick out some of the stripes, but

not all of them, resulting in a representation of the pattern with stripes, but at

the wrong density. I refer to the first effect as drop-out and the second effect as

aliasing. In both cases, the representation can change completely if the sample

locations are translated relative to the pattern. This istability is a problem for
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most applications.

Thus, wde support regions are needed for producing well-behaved digitized

representations. Wde support regions can also be used to capture texture prop-

erties that are only defined for extended regions of space. Consider the striped

pattern from Figure 20. In order to decide that a given cell is in a region of

striped texture, it is necessary to examine a neighborhood of that cell that 'is big

enough to contain several stripes. In later chapters, we see other examples of

properties that can be defined at every cell, but require wide support regions.

In many applications, the shape of support regions can be changed by the

presence of boundaries. Consider the textured situation shown 'in Figure 21 In

order to describe the texture about each cell reliably, the support region about

each cell should be adjusted so that it does not cross sharp changes in texture. If

the texture boundaries can be identified, these adjusted support regions can be

computed as the maximal star-convex neighborhood about each cell, as described

in Section 3.

I
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Figure 21. Left: A situation containing several types of texture. Right: Support
regions about several points, restricted so as not to cross texture boundaries.
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This section has described severalimportant points about support regions for

functions. I illustrated these effects wth 2D patterns, because they are easy to

draw. However, the same effects occur in, spaces of other dmensions and 'in a wide
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variety of application domains. Wde support neighborhoods are required for

describing patterns of events over time and textures in camera images, analyzing

3D patterns of material structure, route planning, and matching images.

8. When are adjacency structures sufficient?

The adjacency structures and boundary markings used 'in previous sections

can only represent a lited class of regular cell complexes. Although a more

general representation is available, 'it represents cell complexes in a less useful

form. Furthermore, this restricted class of complexes seems to include all those

required by practical reasoning algorithms. Chapter 11 gves the details of these

restrictions and the proof that they are sufficient. In this section, I summarize

these results.

There are two ways to view space-filling cells. In previous sections I have

described them as composed of cells, all of the same dimension, touching in

various patterns. This description is close in form to those used in most computer

algorithms and in mathematical work on tilings. Alternatively, the common faces,

edges, and vertices can also be seen as cells, but of lower dimension. This is the

picture typically presented in topological descriptions of regular cell complexes.

Figure 22 shows some cells of dfferent dimensions in this second description of

cell complexes.

The topology of a regular cell complex can be completely specified by a list

of cells 'in it and a face relation among the cells. The face relation specifies when

a lower-dimensional cell A is a face of a higher-dimensional cell B, i.e. when A

forms part of the boundary of B. For example, in Figure 22 B is a face of A

and C is a face of both A and B. By convention, every cell 'is also considered a

face of itself. I refer to this representation as the incidence structure of the cell
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Figure 22. Faces, edges, and vertices can be viewed as cells of lower dimension.
A is a 2-dimensional cell 'is a 1 -dimensional cell and C is a 0-dimensional cell.

complex. The proof that this representation fully specifies the topology of the

cell complex is given in Chapter 11, Section 2.

The incidence structure representation is somewhat more general than the

adjacency structure representation used in the previous sections. The two rep-

resentations are interchangeable when each adjacency set corresponds to exactly

one cell 'in the incidence structure representation. As detailed in Chapter 11,

Section 3 this is true if the cell complexes meet three conditions, all of which

seem reasonable for practical reasoning applications.

The first condition required for adjacency set representations is that there

must be some fixed dimension N such that e ach cell in the complex is a face

of some N-cell. That 'is, each cell must either be 'an N-cell 'itself or it must

be a lower-dimensional face of an N-cell. This forces space to have a consistent

dimension, without any sections of different dimensionality. It also prevents space

from having an nfinite range of cell dimensions. Neither one of these situations

would be desirable in practical reasoning.

The second condition on the form of cell complexes is that every (N-1)-cell



must be a face of at least two N-cells. Intuitively, this means that space has

no edges. The representation can still be used for finite cell complexes, which

may have edges, so long as they are part of a larger complex without edges. So,

for example, Fgure 23 shows a cellular representation for a bounded 2D region.

The cells being represented are shaded. The unshaded cells are border cells,

which share edges and vertices with the shaded cells. Since the adjacency sets

corresponding to these edges and vertices contain border cells, these cells must

be mentioned in an adjacency structure description of the region although they

themselves are not part of the region being described.

I

Figure 23. In order to specify the topology of a cellular region using adjacency
sets, border cells must be added around the boundaries of the region.

The final condition that a cell complex must satisfy in order for adjacency

structures and incidence structures to be equivalent is that the intersection of

any set of cells must be exactly one cell or empty. Tis prohibits two cells from

touching along two disconnected faces or two faces of different dimension It

also prevents gratuitous sub-division of the common face of several N-cells. The

forbidden possibilities are iustrated in Fgure 24. Note that the first condition

is not a restriction on the form of regions, but only on the form of the digiti-
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Figure 25. Two regions that touch along multiple faces can be modelled by using
several cells to represent each region.

Adjacency structures are more convenient for practical reasoning than inci-

dence structures. The analyses used in previous sections make a sharp distinc-

tion between cells of maximal dimension and cells of lower dimension. Dgitized

functions, for example, are maps between cells of maximal dmension. Lower-

dimensional cells are only used as locations in which to place boundaries. Ad-

jacency structures make this distinction explicit, whereas incidence structures

treat all cells alike. Because of this, adjacency structures more closely match the
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zation used to represent them. Regions that touch along multiple faces can be

represented by breaking them up into several cells, as shown in Figure 25.

I

Figure 24. In an N-space structure, the intersection of any set of cells must be
exactly one cell or empty. Thus, two cells cannot touch along two disconnected
faces, as shown on the left. Nor can the common face of two cells be split into
several cells, as shown on the rght.
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data structures used in practical reasoning algorithms.

Adjacency structures also restrict the form of representations in ways that

eliminate pathological cases that would case dfficulties in practical reasoning.

For example, spaces represented using adjacency structures must have a consis-

tent dimension and cannot include stray pieces of lower dimension. Adjacency

structures can only describe situations that end abruptly as if they were pieces

of some larger situation wth no edges. This fits nicely with the intuitive belief

that the universe does not have edges.

9. Restrictions on the form of representations

Whether represented by incidence structures or adjacency structures, regular

cell complexes impose restrictions on the form of space, boundaries in space,

and the cells used in dgitizing space. Boundaries induced by label contrasts,

such as those used in this thesis, also have restrictions on their form. However,

these restrictions primarily eliminate pathological cases that are not desirable

in practical reasoning. Furthermore, we see that cellular topology allows more

flexibility than previous representations.

The most basic restriction imposed by the cellular representations is that

space must look locally like I'. This is because each cell used in building

regular cell complexes is an n-ball of some dimension and the conditions for

using adjacency structures require that the maximum dimension of space be

consistent. This prevents a number of unpleasant pathologies found 'in topology

textbooks, such as the long line. It also forbids space or time from looking like

the rational numbers or the hyperreals. Although these two possibilities have

been proposed for practical reasoning (see van Benthem 1983, Weld 1988), their

topological structure has many undesirable roperties. For example, intervals in
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either of these spaces are not connected.

The cells used to represent space are not restricted n shape, arrangement, or

dimensionality. Previous formalisms have been confined to regular cell arrange-

ments (e.g. Pavlidis 1977) or low dimensions. Many representations handle only

rectangular arrays. It is not materially easier to define the topological structure

of these restricted classes of cell complexes and non-regular cell arrangements

are occasionally useful. For example, biological systems, such as the human

retina, do not have perfectly regular cell arrangements. Non-regular tessellations

are useful in creating compact variable-resolution representations for situations

(Brooks Lozano-Perez 1985, Rom and Peleg 1988, Funt 1980). Also, we see in

Chapter 4 that it is convenient to be able to use non-regular cell shapes for prov-

ing algorithms correct, even when these algorithms only manipulate regular cell

arrangements.

A ellular representation also cannot use more than finitely many cells to

represent a bounded region of N-space. It is possible to create cellular repre-

sentations in which infinitely many cells touch at a point or along a face, but

these representations cannot have the topology of I'V or an N-manifold. Be-

cause boundaries are placed on or between cells, this restriction also makes it

impossible to represent infinitely dense sets of boundaries directly. Cellular rep-

resentations can branch, as shown 'in Figure 26. In later chapters we will see a few

applications 'in which researchers have proposed such models for time. However,

the branches must occur at cell boundaries and thus infinitely dense branches

cannot be directly represented.

A second, and closely-related, limitation of cellular representations is that

digitized functions cannot distinguish functions that approach a limiting value

asymptotically, without ever reaching it, from functions that actually reach the
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Figure 26 A branching time line.

limiting value. When the dfferences from the limit value become small enough,

the values must be represented using the same cell in the value space as the limit

value. Since it cannot distinguish the two cases, an algorithm using digitized

data must treat the asymptotic function as though it actually reached the limit

point.

We can cast this observationinto a second form which is more directly relevant

to practical applications:

If a property is changing in value with a slope of constant sign and it is moving

towards a limiting value, the property either becomes ndistinguishable from

the limiting value after some finite amount of time or else the slope becomes

indistinguishable from zero after some finite amount of time.

Suppose, for example, that you are shovelling snow out of a driveway.8 After

some finite period of time, it must either be the case that you have removed

all but negligibly much of the snow, or else your rate of shovelling has become

negligible. This generalization will prove useful 'in explaining data from both

linguistic semantics and high-level reasoning.

In the applications discussed in this thesis, boundaries are always induced

8 Of finite extent!



by contrasts in cell labelling. Because of this, they always satisfy the subset

condition. This condition states that an adjacency set must be in the boundaries

if any subset of it is in the boundaries. For example, if the edge between two

cells belongs to the boundaries, 'its endpoints are also part of the boundaries.

Similarly, if an entire cell belongs to the boundaries, so do all of the edges and

vertices that it touches.

Aside from the subset condition, boundaries can be any collection of ad-

jacency sets. Boundaries can intersect one another and a boundary can end

abruptly in the middle of a region. Figure 27 shows examples of real situations

in which boundaries end abruptly. In the applications presented in this thesis,

it 'is typically best to place boundaries between cells. However, it is occasionally

helpful to place boundaries on cells and even to create boundaries more than one

cell wide. The formalism allows all of these options.

Figure 27. Boundaries can end abruptly in the middle of regions. Left: a bent
finger. Right: a torus seen in 2D projection.

Thus cellular topology imposes a number of restrictions on the form of rep-

resentations for situations. However, these restrictions seem to eliminate only

pathological situations that are of little use in practical reasoning. Later chap-

ters discuss how some of these restrictions apply to various application domains

and confirm that they are not prohibiting useful types of representations.

-
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10. Chapter summary

In this chapter, I have presented the basic machinery needed to represent

space for visual analysis and other practical reasoning tasks. This representa-

tion of space, called cellular topology, is based on regular cell complexes. The

topological structure of these cell complexes can be fully specified using smple,

combinatorial representations. We have also seen how boundaries can be added

to these representations and how this changes the topological structure of space.

Although these representations impose some conditions on the form of space and

how situations can be represented, the forbidden possibilities involve pathological

cases that are not useful in practical applications.

In practical applications, functions cannot be represented in full detail, but

must be approximated using only firlitely many values wth only finite preci-

sion. The cellular representation provides a good framework for analyzing these

digitized functions. We have also seen how the relationship between digitized

functions and underlying continuous functions can be important in producing

robust reasoning algorithms.

Topological changes due to boundaries affect practical reasoning algorithms

in a number of ways. The regions to either side of a boundary are not connected.

Continuous functions can have abrupt changes in value across boundaries. Con-

tinuous matches between two situations must match boundary locations. Finally,

the presence of boundaries can affect the shape of support regions used in com-

puting function values.

As I said at the beginning, the presentation 'in this chapter is informal. Formal

details and proofs missing from this discussion are to be found in Chapter 11.

Some readers may wish to look at Chapter 11 before continuing. Chapter 11 also
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compares my representation of cell structures to previous proposed methods of

specifying the topology of a digitized space.
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Chapter 3 Domain Examples

1. Introduction

In Chapter 2 we saw a number of ways in which topological structure induced

by the presence of boundaries, could affect reasoning algorithms. In this chapter,

I introduce the application domains considered in this thesis and briefly describe

how topological phenomena appear in each domain. In Chapters 48 I consider

each of these domains in more detail.

In this thesis, I consider examples from three domains: low-level vision,

natural language semantics, and high-level vision and practical reasoning. I

have grouped high-level vsion and practical reasoning together because they are

closely related and consider similar examples. Because the mplementation for

this thesis is in low-level vision, the discussion of this area is more extensive.

Three algorithms have been implemented- an edge finder, an image matching

algorithm, and a stereo analysis program using the image matcher.

These domains illustrate a number of ways in which topological structure

can affect reasoning algorithms. We see that algorithms may require connecti'v-

ity of regions, including function support regions, and may require correspon-

dences used in matching two representations to be continuous. These topological

constraints are often combined with other types of constraints, yielding mixed

topological and metric properties such as star-convexity. We see evidence that

lack of material connectivity and sharp changes in functions tend to cluster at a

restricted set of locationsIindicating the presence of boundaries.
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In addition to the topological phenomena, we also see a number of other

examples important to the thesis. We also see how digitized representations are

used in several domains and how the digitization occasionally affects algorithms

and representations. We see examples of functions that require wide support

regions. Finally, we see a number of places where previous researchers have run

into technical problems modelling boundaries.

2. The edge finder

In Chapter 2 we saw that abrupt changes in function values indicate the

presence of boundaries 'in space. The goal of edge finding is to detect locations

of sharp change 'in real input data, typically arrays of light intensities delivered

by a video camera and digitizer. The difficult problem in designing edge finding

algorithms is to make them detect the wide variety of boundaries present in nat-

ural images without being sensitive to camera noise. The algorithm implemented

for this thesis takes advantage of the connectivity of edge finder response regions

to separate real features from noise.

The Phantom edge finder finds boundaries 'in an i'mag e by locating regions

of the 'image in which directional second derences are significantly different

from zero. Regions of significant response are then labelled as darker or lighter

than neighboring regions, depending on the sign of the response.' Boundaries

are placed where dark and light regions meet. Figure shows these response

signs and boundary locations. The boundaries and dark/light labelling form the

input to later visual processing, such as stereo analysis, motion analysis, texture

description, and shape description.

These response signs are produced by combining responses from drectional
differences in several directions. See Chapter 4 for details.
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cells). Bottom left: second dffer-Figure 1. Top: a digitized image 300 by 300 1
ence response sign. Positive and negative responses are shown in black and white.
Responses not significantly different from zero are displayed using a checkerboard
pattern. Bottom right: boundaries induced by transitions between dark and lght
regions. Cells on or to the dark sde of boundaries are shown in black.

The main challenge 'in doing this type of edge finding 'is suppressing effects of

camera noise. These images are taken with a video camera attached to a digitizer

that converts the camera output into arrays of 'integers. This system blurs the

image slightly and 'introduces low-amplitude random noise. Figure 2 shows the

edge finder's dark/light labels for the same 'image with no noise suppression.

As you can see, the camera noise generates spurious dark and light markings,

particularly in regions of uniform intensity. The noise suppression algorithm



Figure 2 Second dfference response sgn for the image 'in Figure 1, but wth no
noise suppression.

removes these spurious responses, producing the clean output shown 'in Figure .

In the past, responses due to noise have often been identified on the basis of

their amplitude. This 'is not a robust method for distinguishing noise responses,

because some responses to real features have low amplitudes. Notice, however,

that one can roughly 'identify the noise responses using only the response sign

information shown in Fgure 2 Noise generates responses with only small con-

nected regions of the same sign, whereas real responses typically generate wide

response regions. Thus both response amplitude and response region shape

provide useful information about which responses are due to camera noise.

The Phantom edge finder combines both shape and amplitude information

into one operation that sums response amplitudes over a neighborhood of each

cell. The neighborhood about each cell x is the maximal star-convex neighbor-

hood, defined 'in Chapter 2 wthin which the second difference response does not

change sgn. If this sum is too low, the response at x 'is classified as due to noise.

Because this operation does not cross the boundaries defined by sgn changes,

the evaluation of each response region is not corrupted by the presence of nearby

-- -- amoll I "I'll ---
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response regions. This test is able to robustly distinguish real responses from

those due to camera noise.

The edge finder is interesting for several reasons. The main noise suppres-

sion algorithm shows a smple, but 'Important, use for connectivity 'in low-level

visual processing. In Chapter 4 we see that connectivity can also be used in

distinguishing step edge and roof edge responses. The edge finder provides an

example of a digitized function whose range has an unusual structure, as well as

many examples of strange boundary shapes. Finally, the edge finder shows how

we can extract a clean topological structure for an 'image out of real intensity

data, despite camera noise and scene irregularities.

3. Image matching

The second major algorithm implemented for this thesis matches two images

in ways that preserve their topological structure. This matcher can be used in

a number of different application domains. I present the matcher first in the

context of testing edge finder output for stability under noise (in Chapter 5),

because this application uses the matcher in a straightforward way. I then show

how this matcher can be used in stereo analysis (in Chapter 6. This application

is more interesting, but 'it requires a non-trivial control structure 'in addition to

the basic matcher. In this section, I give an overview of the edge finder testing

domain and the matcher algorithm. Stereo analysis is summarized in the next

section.

Chapter presents a number of tests of the performance of the new'edge

finder. Among these is a test for stability under noise introduced by the camera

and digitizer system. The basic idea behind this test is simple. Two pictures

of the same scene are taken with the same camera position, but a few minutes
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apart. Thus, the two pictures represent the same image, but corrupted wth

different samplings of random noise. The edge finder is run on both 'images and

the results compared. Any differences between the two results reflect instability

under noise. Most previous experiments have compared output on one 'image to

some 4� correct" output (see Chapter 9 for further discussion), but this does not

change the character of the comparison problem.

The difficulty in doing such a test is how to compare the two edge finder

outputs in a meaningful way. Noise causes two types of changes to the edge

finder output: changes in boundary topology and changes 'in boundary location.

In later chapters, we see that many hgh-level programs, from stereo to object

recogni 'tion make use of image topology. The two types of changes in edge

finder output affect these programs differently, and thus they should be reported

separately. Previous studies of edge finder performance (Haralick 1982, Nalwa

and Binford 1986, Sher 1987a, Pratt 1978, Fram and Deutsch 1975) attempted

to separate these two effects, but their heuristic methods seem only applicable

to images with sparse boundaries and/or small amounts of boundary motion.

Using the new model of image topology developed in previous chapters, we can

produce a more general and principled algorithm for matching two edge finder

outputs.

The image matcher separates the matching problem into three phases: ad-

justment, computation of match strength, and analysis of boundary motion In

the first phase, the algorithm adjusts one image so as to make it as similar as

poss'ble to the other, without changingits topology. A successful match between

the two images requires not only that the boundary locations match, but also

that the edge finder's dark/light labels match. Chapter describes the set of

operations used to adjust boundaries and labels and proves them correct, using



techniques developed in Chapter 1 1.

Requiring that dark/light labels match sim lifies the adjustment process.

Consider the situation shown 'in Fgure 3 Without label information, the ad-

justment process would have to explore two candidate matches for each boundary,

one to either side of it. If labels are required to match in the two images, however,

the boundary must be adjusted so as to reduce the region of label conflict. In

fact, the adjustment process can be thought of as a method of getting as many

cells as possible to have matching labels. The raw match map is produced by

comparing labels in the original and ad usted images. Figure 4 shows a match

between two images before and after adjustment.

Ira I

14,

Figure 4 Top: two noisy edge finder responses. Bottom: the match between
them, before (left) and after (right) adjustment. Matching cells are shown in
white and non-matching cells shown in black.
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conflict conflict

Figure 3 Boundaries are adjusted so as to reduce the regions of conflicting labels.
Top to bottom: the two images, dentifying label conflicts, moving boundaries,
and final (identical) boundaries and labels.

Adjustment eliminates effects of boundary motion and thus the match map

after adjustment reflects only topological msmatches between the two 'images.

Notice, however, that even non-matching regions contain many matching cells

at this point. Good and bad matches are distinguished by how much the non-

matching cells break up the image. In a region of good match, extended con-

nected regions are marked as matching. In a region of poor match, only very

small connected match regions occur. Therefore, the area of a connected star-
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convex) neighborhood about each cell 'is used as a measure of the goodness of the

match about that cell. A clean match map can then be produced by re-classifying

cells wth low strengths as non-matching. Figure shows the clean match map

for the image match in Figure 4 As you can see from the example, regions where

the edge finder response reflects camera noise are now classified as non-matching,

whereas regions where the response reflects primarily the scene are classified as

matching.

I

Figure 5. The match map from Figure 4 before (left) and after (right) low-
strength responses have been removed.

After adjustment, the adjusted and non-adjusted versions of the image are

compared, to identify which cells have had their labels changed. Because of way

boundary adjustment is done, there is a characteristic pattern to the locations of

these adjusted cells. As shown in Figure 6 a connected region of adjusted cells

lies drectly to one side of each boundary that was moved during adjustment.

The wdth of this band of cells reflects the amount that the boundary has been

moved. The final stages of matching analyze these adjustment regions to extract

information about boundary motion.

For edge finder testing, we do not expect any net movement of boundaries

in any one direction, over an extended section of the image. Rather, boundary
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Figure 6 A boundary that was moved during adjustment has a connected region
of adjusted cells to one sde of it. Top to bottom: the two images moving
boundary in one image, the region of adjusted ells.

locations typically move back and forth, as noise varies. The total amount of

fluctuation in boundary locations can be measured by comparing the number of

adjusted cells to the total number of edge cells (cells next to boundaries). For

other applications, such as stereo analysis, this fluctuation should be suppressed

and any net motion in some direction extracted. This involves extracting hor-

izontal and vertical components of the boundary motion at each edge cell, and

then smoothing these measurements to suppress fluctuations due to noise.

From the standpoint of this thesis, there are two interesting aspects to the

image matching algorithm. First, boundary adjustment is required to preserve

image topology. This is a direct test of the hypothesis that topological structure

is useful in building practical algorithms. Furthermore, the process of proving

adjustment operations correct illustrates the usefulness of the mathematical ma-

chinery developed in Chapters 2 and 11.
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The second interesting feature is that both the matching strength and the

boundary motion computations are restricted to connected regions. Strengths

are measured using the area of a star-convex neighborhood about each cell. The

horizontal and vertical components of boundary motion are calculated by mea-

suring the length of connected straight paths through the adjustment region.

Finally, these two components are smoothed by averaging values over the star-

convex neighborhood of each cell. This restriction to connected regions allows

these computations to use wide support regions while not crossing boundaries

between matching and non-matching regions.

4. Stereo matching

The image matching algorithm presented 'in the previous section handles only

one aignment of the two images. In order to do tasks such as stereo matching,

a control structure must be built that can search a variety of alignments for
'ble matches. Th's section sketches the implemented stereo control structure

possi 1 1

described fully 'in Chapter 6 Because stereo matching 'involves a change in

viewpoint, in addition to the effects of camera noise, it provides a stiffer test of

the matcher's capabilities than edge finder testing.

The 'Input to a stereo matching algorithm consists of two images of the same

scene, taken at the same time from slightly different viewpoints, as shown in

Figure 72 In human vision, the images would come from the two eyes. In

computer vision, they come from two cameras positioned in a manner roughly

similar to human eyes. In both cases, the viewpoints are sufficiently similar that

most 3D points that are visible to one eye are also vsible to the other. A stereo

matching algorithm must reconstruct a correspondence relating points in the two

2 Appendix A explains how to view such a pair of 'Images so as to see apparent
depth.



images that are projections of the same 3D point. From this correspondence and

the relative positions of the cameras, the 3D locations of surfaces 'in the scene

can be computed.

Figure 7 A stereo pair contains tw0images.of the same scene taken from slightly
different viewpoints. This figure shows the edge finder output for such a pair of
images.

Stereo correspondences are typically presented in the form of disparity values

for each pixel in the 'images. This representation assumes that some reference

alignment of the 'images has been selected (e.g. matching cells with the same

coordinates in two images). The dsparity at a pixel is then a vector representing

the derence between the corresponding location in the other 'image as given

by the alignment and the true corresponding location as provided by the stereo

matcher. This is illustrated in Figure .

Fully accurate models of stereo geometry and optical distortions for a camera

system are quite complex. Camera modelling 'is tangential to the main point of

this thesis. Therefore, I use a simplified model of the viewing geometry. For the

images I use, the errors caused by deviations from this model are small enough

not to cause problems in matching. 3

Figure 9 shows the positions of two cameras in a standard stereo arrangement.

The cameras lie in approximately the same horizontal plane, so we can consider

' This algorithm 'is more tolerant of errors than previous stereo matchers.
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Figure 8. Left: stereo disparities for the images 'in Figure 7 Darker regions in
this figure have larger disparities and correspond to surfaces that are closer to

0the cameras. Right: match map showing (in white) which regions of the stereo
images were successfully matched.

them in 2D projection, from above. The cameras are pointed at a common

3D location, probably representing some ob'ect of interest in the scene. The

vergence, i.e. the difference between the directions in which the two cameras

4point, changes as a human or a (hypothetical) computer system looks around

the world, so as to keep both cameras pointed at whatever is currently of interest.

i vergence

Figure 9 A stereo arrangement.

4 Details of how this is defined are not relevant to the following discussion.
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In an actual camera system, the vergence is small relative to the dstance be-

tween the cameras and the ob'ect. Thus I suppose the 'image planes of the two

cameras lie in a common plane and treat the deviations from this as an unmod-

elled source of error. Disparities are then 2D vectors in this plane. The vertical

disparity, i.e. the component of disparity perpendicular to the lne oining the

two 'image centers Iis ideally zero for all points 'in the images. The horizontal

disparity, i.e. the component parallel to that lne, is (roughly) 'inversely propor-

tional to the depth, i.e. the distance between the 3D object and a line passing

through the two cameras. For convenience, researchers often arrange for the scan

lines of the images to be parallel to the lne connecting the image centers, so that

horizontal disparities are then parallel to the scanning direction.

There are three sources of error in this model.- msalignment of the two

4cameras, simplifications made in the model, and distortions introduced by the

camera system particularly when wide-angle lenses are used). The model sim-

plification seems to create only small errors. Camera dstortions change only

5slowly over time and can be handled by normalizing the 'images por to stereo

analysis, using a pre-computed calibration. Cmera misalignment causes larger

inaccuracies, which change as cameras are moved to new vergences or so as to

point in new viewing directions. The stereo system must be able to supply the

information required to adjust camera positions and u date camera calibrations.

Because vertical disparities should be zero in an ideal camera system, the

stereo algorithm uses vertical disparities to estimate the required adjustments

to camera position. From computed vertical dsparities, the algorithm estimates

two camera adjustment parameters: vertical translation and rotation about the

5 In a camera system, they might not change measurably. In a human, they
would.
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center of the image. 6 These parameters are used to adjust the positions of the

images so as to achieve a better match. Determining errors in camera calibration

would require observation of disparities over extended periods of time, in order

to detect any trends that persist systematically across diverse scenes, and has

not been implemented.

The stereo matcher 'implemented for this thesis uses a coarse-to-fine control

strategy. The edge finder supplies boundary locations and dark/light labels at

a variety of scales. Matching results for coarser scales are computed first and

they are used to adjust camera positions smulated 'in software) and plan the

set of alignments to be searched at the next finer scale. This implementation

differs from previous implementations 'in having a wide search area at each scale,

relative to coarse-scale positions, and in considering the possibility of vertical

displacements 'in addition to horizontal ones. Although the larger search areas

require more computation tme, they are required in order to match human

capabilities.

Stereo matching at each scale 'Involves a search over a range of alignments of

the two images. At each alignment, the image matcher described in the previous

section is used to determine which parts of the 'image match and how well. It also

supplies estimates of the disparity of individual patches of the 'image, relative to

the alignment. When matching has been done for all alignments in the search

area, the best candidate match is chosen for each image location. The decision

among alternative matches is based on their matching strengths, as well as how

close they are to coarser-scale results. The coarser scale context is required in

order to handle regions with translational symmetries at the finer scale, such as

striped regions and regions of uniform color. Finally, a modified version of the

6 More sophisticated models of camera misalignment could be used. Again, this
is tangential to this thesis.
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edge finder's noise suppression algorithm is used to remove outliers and fill small

holes in the output disparities.

A slight modification of the stereo control structure could be used for the anal-

ysis of motion sequences. Motion sequences involve a wider space of possibilities

than stereo analysis, because vertical disparities are not as tightly constrained.

A full discussion of control strategies for motion analysis would 'Involve 'issues

of what objects the reasoner was interested in, because it may only be possible

to track the motion of certain parts of the visual field at fine scales. Neverthe-

less the same techniques developed for stereo analysis should be applicable and

Chapter 10 presents a brief example showing how they might be used.

There are two ways in which the topological matcher 'is important 'in building

the stereo algorithm. First, the larger search areas at each scale place more de-

mands on the robustness of the matching algorithm. Previous stereo algorithms

have used constraints smilar to the requirement that dark/light labels match.

They have also used "disparity gradient" or "local constancy" conditions, similar

to those imposed by the search through alignments in my algorithm. However,

the new stereo algorithm also requires that the correspondence preserve topolog-

ical structure. This type of constraint has previously been used only rarely (e.g.

Grimson 1985, Mayhew and Frisby 1980, 1981, Chen 1985) and implemented

in weaker forms. Wthout the additional constraint provided by the continuity

requirement, previous algorithms find it difficult to disambiguate large numbers

of candidate matches.

Secondly, computation of strength and disparities at each alignment is con-

fined to connected regions of matching cells. This prevents most support regions

from crossing sharp changes 'in depth or overlapping occluded regions, without

restricting the size or shape of support regions. Because of this, support regions



i

81

can be made as large as is necessary to achieve good accuracy 'in computed dis-

pari'ties and to consider enough context for good assessments of match strength.

Furthermore, cells near the edge of a region can gather support from large sup-

port neighborhoods, despite the fact that these neighborhoods cannot be centered

about them. Previous algorithms have been forced to trade the benefits of wde

support neighborhoods off against the problems of smearing and contamination

across sharp changes 'in depth.

Thus, the stereo matching algorithm shows how the topological ideas de-

veloped in this thesis can be used 'in solving practical problems. Furthermore,

the 'images being matched can be quite complicated, with large amounts of fine

texture. Most dscussions of topological properties, both in mathematics and

computer vision, consider only examples with simple structure. One is tempted

to think of topology in terms of Euler-number classifications of surfaces or to

reduce it to connectedness for more complicated problems. Stereo matching and

edge finder testing 'illustrate how one can use the full topological structure of

even very complicated images.

5. Linguistic Semantics

The next group of data that I consider in this thesis comes from linguistic

semantics. The goal in this field is to formulate rules for describing the meaning

of sentences. Since a full description of sentence meaning would require solutions

to much of Artificial Intelligence, researchers n linguistic semantics are partic-

ularly concerned with classifying those aspects of meaning that are important

in determining whether a string of English words is an acceptable English sen-

tence. Not only does this data suggest interesting uses for topological properties

in semantics but cellular models of time avoid technical problems encountered
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by previous researchers.

The data that I describe in most detail involves models for the temporal struc-

ture of different types of stuations,7verb tense and aspect, and temporal adverbs

and connectives. I represent tme using a cellular model shown in Fgure 0.

Situations in time will be modelled by associating descriptions of properties with

cells in tme and descriptions of processes with (connected) intervals of tme.

Figure 10. A cellular model of time consists of an ordered set of 1-cells, each one
oined to the next at a common endpoint, as shown 'in the upper drawing. The

underlying space is just lke the real number line (center). The lower drawing
shows an alternative graphic representation for this set of cells.

The stuations described by natural language verb phrases seem to fall into a

limited number of classes: states, activities, state changes, and accomplishments.

For example, Sentence describes a state, Sentence 2 describes an activity, Sen-

tence 3 describes a state change, and Sentence 4 describes an accomplishment.

(1) Sussman was in the machine room.

(2) The aide shredded incriminating documents.

(3) Bonnie passed her area exam.

(4) Eric made a fresh pot of coffee.

7I use the term "situation" to cover both actions such as "running," and states,
such as being green." I am using this term in an 'informal sense and do
not intend it to imply any particular theory of how actions and states are
represented.
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States are descriptions of the world at a moment in time, activities describe on-

going patterns of change, state changes describe abrupt changes in the world, and

accomplishments describe an activity brought to an edge by an abrupt change.

I refer to activities, state changes, and accomplishments as actions. Figure 1

shows the models for the temporal structure of these four classes.

states 0

activities 04**O

actions state changes O

accomplishments #*)t 
O

Figure 11. The topological patterns of different types of situations.

The four classes of situations can be distinguished linguistically, because cer-

tain constructions place restrictions on the class of the verb phrase (or other

constituent) used in them. For example, state descriptions can be verified from

a description of the world at only one moment of time, 8 whereas verifying that

an action has occured requires examining the world at two or more moments

of tme. Since the present tense in English refers to only a moment of time,

this means that only states can appear in the present tense. Thus, Sentence 

is acceptable, whereas Sentence 6 is not acceptable unless re-interpreted as a

(state-like) description of the aide's habits.

(5) Sussman is in the machine room.

8 Represented as a cell in these models.
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(6) #The ade shreds incriminating documents.9

Conversely, only actions can appear in the progressive aspect, as illustrated

by Sentences 78:

(7) #Sussman is being in the machine room.

(8) The aide is shredding 'Incriminating documents.

This can be explained by observing that rogressives of actions behave as if they

were states. In the model for rogressives described in Chapter 7 the progressive

of a state would mean the same thing as the original state and it would thus be

redundant.

The three types of actions can be dstinguished by smilar types of tests.

For example, only activities can occur with prepositional phrases using "for" to

measure an amount of tme, as illustrated by Sentences 911:

(9) The aide shredded incriminating documents for several minutes.

(10) #Bonnie passed her area exam for several minutes.

(11) #Eric made a fresh pot of coffee for several minutes.10

State changes are distinguished from the other two classes because they cannot

occur in constructions of the form "stop X-ing," as illustrated by Sentences 12-14:

(12) The aide stopped shredding incrim inating documents.

(13) #Bonnie stopped passing her area exam.

9 I use the hash mark (#) to indicate that a sentence is unacceptable and a
question mark (?) to mark sentences of dubious quality. When sentences
are so bad as to be ungrammatical, an asterisk would be more traditional.
However, in the data I present, clear cases of ungrammaticality are rare. It is
more typical that a sentence could be acceptable, but would have to describe
a bizarre situation or be embedded 'in a bizarre context. I am using the hash
mark to indicate this looser type of unacceptabi'lity.

1ODowty 1979) finds this type of sentence acceptable. I do not.
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(14) Eric stopped making a fresh pot of coffee.

Chapter 7 discusses other tests which dstinguish different classes of stuations

and how they can be explained in terms of the cellular models.

This pattern of topolo 'cal classes and various types of internal structure for

actions 'is roughly paralleled by English noun classes. Consider Sentences 15-18:

(15 I picked up a pencil.

(16) #I picked up some pencil."

(17) #I pcked up a sand.

(18 I picked up some sand.

Nouns can be divided into two classes: count nouns and mass nouns. Count

nouns, such as pencil," describe objects. Mass nouns, such as "sand," describe

types of stuff. These two types of nouns can be given representations analogous

to those for accomplishments and activities, respectively.

In Chapter 7 we see several ways in which the new model of space and

boundaries can help in analyzing this linguistic data and in which the linguistic

data provides evidence for the new model. There are two important points. First,

cellular topology predicts a relationship between boundary locations and region

connectivity. The linguistic data provides suggestive examples supporting this

prediction. Secondly, cellular models avoid technical problems encountered by

previous analyses (e.g. Allen 1984, Dowty 1979), due to a combination of the

new model of boundaries and the use of digitized functions.

Connectivity, in the sense of cellular topology, seen-is to be useful in explaining

the meaning of the perfect aspect in English. Consider Sentences 19-20:

(19) John has been in the ktchen for two hours.

"This can be acceptable, but only if "some" is stressed.
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(20) Hal has fed the panther.

These sentences, in the perfect aspect, assert that a state was true or that an

action occured over some interval 'in the past. In addition, they also assert

that some state has persisted from the end of the state or action through to

the present. The perfect leaves the details of the persisting state vague. So,

depending on the context, Sentence 19 can either 'imply that the panther is no

longer hungry or that Hal has experience feeding panthers. We can model this in

cellular topology by requiring that no boundary relevant to the current context

intervene between the state or action and the present moment, i.e. that the

present moment is connected to the end of the state or action.

There is also suggestive evidence from certain English language constructions

that boundaries due to different actions tend to coincide. For example, the

connective "until" indicates that one- state or actitivity occured over an interval

ending at some specified boundary, as in Sentence 21:

(21) The panther stared hungrily at me until Hal fed him.

Forms with "until" do not actually assert that the first situation stops when the

state change occurs, but they strongly imply it.

Chapter 7 presents these two examples in more detail, along with other exam-

ples 'Involving the progressive aspect and the connective "when." These examples

provide evidence that the behavior of dfferent types of situations 'is consistent

with the topological details of the models I have given them, particularly the

boundaries used in representing accomplishments and state changes. While this

evidence is fragile, it is a useful addition to evidence from other sources.

The new model of space and boundaries also avoids several technical problems

encountered by previous researchers. First, cellular topology allows the distinc-
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tion between states and actions to be expressed in terms consistent with real

measurements, by distinguishing intervals containing only one cell from longer

intervals. In previous models, this distinction was expressed as a distinction be-

tween points and intervals. This is difficult to connect with real measurements

because data is not available at ndividual points 'in time.

Secondly, cellular topology provides a problem-free model for state changes,

as in Sentence 22:

(22) Bonnie passed her area exam.

This sentence expresses a change over time between two discrete property values.

Previous researchers have encountered two problems modelling such sentences as

functions from IR to a property space. First, it 'is unclear which of the two values

to assign to the point exactly at the transition. Secondly, state changes occur

over a n-inimal-sized 'interval surrounding the change. In models based on IR,

there may exist no such inimal interval. Cellular topology provides solutions

to both these problems.

Finally, digitized functions can provide an explanation for why certain verb

phrases become temporally bounded when they contain a spatial bounded drect

ob'ect. Consider Sentence 23:

(23) John drank a glass of water.

This sentence describes an accomplishment, although the verb drink" describes

an activity. The drect object "a glass of water"' 'is a count noun describing

a bounded amount of water. Because it is bounded in space, the action of

progressively consuming it must be bounded in tme. This line of reasoning,

proposed by Tenny 1987), works in cellular topology,12 but it does not work if

12 Chapter 2 Section 9 presented this briefly.
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standard real functions are used.

The linguistic data provides an interesting extension of the domains in which

cellular topology can be applied. Analyses used by authors in this domain can not

only be re-written wthin cellular topology, but technical problems can be elimi-

nated. There 'is suggestive evidence that connectivity and topological boundaries

are useful in modelling this data. Furthermore, this data is closely related to the

data considered in hgh-level reasoning, which I describe in the next section.

6. Reasoning and hgh-level vision

The final group of examples come from reasoning and high-level vision. In

these areas, researchers try to emulate the human ability to identify and describe

'tuations, predict what wll happen to ob .ects 'n them, and plan actions for

changing a stuation. This research is somewhat removed from any source of

concrete data, either vsual or linguistic. However, the phenomena that this work

attempts to explain are more varied and more 'Intuitively appealing. Ideally, it

should provide the link between low-level vision, motor control, and low-level

language processing. This section provides a summary of the relevant parts of

this work and 'it 'is discussed in more detail in Chapter .

Reasoning examples of 'interest to this thesis can be divided into four types

of problems: modelling physical objects, modelling changes over tme, route

planning, and recognizing objects. Suppose, for example, that we are training a

robot to make coffee. We might first describe the shape of the coffee maker, the

sink, the water container, and the coffee pot. The robot must be able to recognize

all of these items visually 'in order to orient itself and start work. Route planning

would be used to determine how the robot must move its arms in order to put

the pot in the machine, fill the container with water, and pour the water into the
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machine. Models of changes over time would be used to describe how the water

is heated and to predict that coffee will flow into the pot for a time and then

eventually stop. There are many other things 'Involved in making coffee, but I

'der primarily these four aspects of the problem.

Models of physical ob'ects are essential to reasoning about practical problems.

and topological properties of these models are considered important by many

researchers. For example, in the coffee making example, water can flow through

the coffee maker precisely because the waterinput for the machine is connected

to the coffee output by an open tube. If you pull on one end of an electrical

wire the other end will move because the entire wire is physically connected.

Current can flow between the two ends of the we because it is also electrically

connected.

Other types of reasoning, such as route planning, require metric information

in addition to topological 'information. Consider the bowl shown in Figure 12.

The bowl is connected, so water and objects cannot pass through it. The interior

of the bowl is connected to the outside of the bowl, so water and objects can

move into and out of the bowl. However, since the paths out of an upright bowl

all involve motion against the force of gravity, water will not move out of the bowl

spontaneously. The first two deductions depend only on topological properties

of the bowl. The third deduction requires metric information. However, because

the metric information is augmenting a topological description of the bowl, rather

than standing alone, it need not be very precise. The reasoning depends on the

presence of a concavity, but not on the details of its shape.

Topological properties are also important in recognizing objects and situa-

tions. Most algorithms for analyzing the shape of ob'ects use connectivity, in the

form of routines that parse 'image boundaries into extended connected segments.



Figure 12. Things can move out of a bowl, because it 'is topologically open, but
they do not do so spontaneously, because of gravity.

Ob'ects are often described as assemblies of sub-regions, each of which must be

connected and sometimes convex. Topological properties are important in recog-

'tion because 3D objects must be identified from their 2D projections. Dstances
change as an ob ect is viewed from even slightly different directions. Topolo 'cal

i 91

and convexity features are stable over larger ranges of viewing positions.

The clustering of sharp changes in different functions, together with lack of

connectivity, is a well-known phenomenon in high-level reasoning. Consider a cup

sitting on a table, as shown 'in Figure 13. The cup is not connected to the table.

Furthermore, all manner of properties, from color to temperature to material

composition, change abruptly at this boundary. Because of this clustering, it

is possible to make intelligent guesses about material discontinuities relevant to

manipulation on the basis of intensity or texture dscontinuities discovered during

visual processing. When abrupt changes in two properties, such as intensity and

color, are observed in sinular locations, they can be coalesced into one common

boundary. Postulating a common boundary not only reduces the complexity of

the representation.

90
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Figure 13. A cup sitting on a table.

When reasoning about changes in properties, we must consider the structure

of time as well as the structure of space. Since we have few intuitions about

temporal connectivity, evidence about boundaries in time comes almost entirely

from the behavior of properties across time. Consider the process of freezing

water in an ice-cube tray. As long as the temperature of the water remains

above the freezing point, the temperature changes steadily, at a rate determined

by the temperature of the freezer. When the water reaches the freezing point,

however, its temperature stops falling (more or less), but more and more of the

water changes to ice. When all of the water is ice, 'its temperature starts to fall

again. Thus, as shown 'in Fgure 14, we have three periods of time during which

the rate of change of temperature vanes smoothly and the water is in a constant

set of phases. These periods are separated by boundaries at which a new phase

appears or disappears and the rate of temperature change is abruptly altered.

An number of implemented reasoning algorithms (Forbus 1984, de Meer and

Brown 1984, Williams 1984, Kuipers 1984, 1986) are concerned with describing

and predicting these patterns of change over time. During periods of smooth

change, these qualitative physics algorithms use only rough models about rates
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Figure 14. Freezing water involves three regions of smooth change over time,

separated by boundaries at which something changes abruptly.

of change to predict property values. These predictions are used primarily to

hypothesize what types of abrupt changes can take place and in what order.

Estimates of metric information, such as how long the water will take to freeze,

may also be provided. However, precise metric information is not essential. This

type of algorithm has been used for reasoning about changes in temperature and

phase, fluid flows, behavior of circuits, and motion of objects.

In addition to these new uses for boundaries and topological structure, high-

level reasoning provides more examples of phenomena already seen in low-level

vision or natural language. In Chapter 8, we see that researchers in high-level

reasoning have had formal problems modelling sharp changes in properties across

time, similar to those found by researchers in linguistic semantics. In reasoning,

however, these problems occur in representations of 2D and 3D space, as well

as in representations of time. Cellular models constrain space so as to avoid

infinitely dense boundaries and phenomena such as Zeno's paradox. However,

cellular models can represent the full variety of boundaries and regions needed

for reasoning, including regions that touch themselves and boundaries that end

92
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abruptly.

In reviewing research on reasoning, we also see more examples of properties

with wide support. Wde support regions are needed in producing coarse-scale

models of situations, analyzing spatial texture, and analyzing textured patterns

of events over time. Researchers in this area and in natural language semantics

typically take it for granted that such support regions are trimmed so as not to

cross relevant boundaries. However, there is more tendency to propose point-

sampling models that can cause the aliasing and drop-out problems described in

Chapter 2.

In Chapter 8 I also compare cellular models of phenomena to point-based

models. Some previous researchers have advocated models in which one can

refer to certain ndividual points, such as the exact boiling point of water, the

top of the arc through which a thrown object moves, or the surface of an object.

Although these methods can be accomodated. within cellular topology, using the

closed-edge model of boundaries, I argue that these "points" are not exact in real

situations, even for such seemingly precise examples as phase equilibria. Thus,

it may make more sense to allow for measurement error and refer to the cells
ad'acent to boundaries rather than the points nght at the boundary 'itself.

J 1

7. Conclusions

In this chapter, we have seen a wde range of application domains 'in which

topological structure is useful. We have seen connectivity requirements appear in

many places, including noise suppression in edge finding, building support regions

for evaluating image matches, parsing object shapes into parts for identification,

analyzing flows of fluid, planning motion of objects, determining the effects of

forces on objects, and in describing sequences of actions across time. We have
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seen how homeomorphism can be used as a powerful constraint on matching two

images, a task required by a number of low-level vision applications.

We have also seen some evidence from all domains that multiple functions

tend to have sharp changes in value at the same locations. We have also seen that

there is often a lack of connectivity at these same locations. This is evidence for

the proposed model, in which all of these effects would be caused by a boundary

in space (or time), and against a model that treated them as discontinuities 'in

individual functions and 'isolated quirks in the definition of connectedness. The

implemented edge finder also shows how these locations can be detected in real

sensory input.

Digitized functions are commonly used in computer vision and occasionally

in high-level reasoning. In Section 5, we saw how they may also be useful in

explaining phenomena in natural language semantics. In all domains, we have

seen examples of functions requiring wide support. These functions include those

used in noise suppression, evaluating stereo matches, and descriptions of textured

patterns in space and time. I have also briefly ndicated a number of places 'in

which previous researchers have had technical problems modelling boundaries.

In Chapters 48, we return to all of these examples in more detail.



Chapter 4 The Edge Finder

1. Introduction

The first step in analyzing visual 'input is to detect locations of sharp changes

in light intensity that might indicate the presence of boundaries in the scene.

The edge finder 'implemented for this thesis uses a relatively standard approach,

based on analyzing second directional differences of the 'image intensities. The

main new feature of this algorithm 'is that it uses the topological structure of

the responses in determining which responses represent real features and which

are due to camera noise. The edge finder is named "Phantom" after Watt and

Morgan's 1984) MIRAGE algorithm, to which it is closely related.'

I divide the problem of detecting boundaries into two sub-problems. First,

the algorithm detects regions of the image in which directional second differences

are significantly different from zero. The pattern of second differences is then

analyzed to determine where boundaries should be hypothesized to account for

the observed second difference responses. This decomposition of the problem

dates back to Marr and Hildreth 1980). It allows one to separate the problem

of suppressing effects of camera noise from the problem of classifying the wide

variety of boundary shapes that occur in images of natural scenes.

Both steps in edge finding incorporate algorithms to suppress effects of cam-

era noise. The current implementation contains only one noise suppression algo-

rithm, which is used at three points during the edge finding process. As we saw in

1 An earlier version of this edge finder is described in Fleck 1988.
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Chapter 3 responses to real features are dstinguished from those due to camera

noise based on the sum of second difference responses over a maximal star-convex

neighborhood of each cell. This constitutes the main use of topological structure

in the edge finder.

Sections 23 present the algorithm for describing second dfference responses.

Since the noise suppression algorithm does not interact with the rest of the edge

finding process, 'it is presented separately, 'in Section 4 Sections 57 discuss

how the clean responses are classified and boundary locations hypothesized and

Section discusses problems of combining information from derent scales. In

Section 9 I present results of the edge finder on a range of images and Section 0

compares the Phantom edge finder to previous edge finding. algorithms.

2. Taki'ng dfferences

The Phantom edge finder finds boundaries in an 'image by locating regions of

the image in which directional second differences are significantly different from

zero. This 'is done by taking differences 'in several directions independently and

then combining results over a directions. This produces a four-way classification

,of cells in the image, which is used in determining where to place boundaries. In

this section, we see the details of this process, ignoring issues of image noise.

As we saw 'in Chapter 2 boundaries in space license abrupt changes in the

behavior of continuous functions. These changes in behavior may involve changes

in value that could not be achieved by any continuous function or, more often,

changes in value that would require some other constraint to be violated, such as

bounds on function differences or derivatives. In detecting boundaries from 'image
intensities we assume a bound on second differences of intensity.2 Therefore

I 1

2 Strictly speaking, these differences must be normalized by the distance between
the points used to determine the derence, before any bound is applied. In



any second derences larger than this bound must indicate the presence of a

boundary.

Boundaries in images can be classified on the basis of the shape of the inten-

sities in a straight D path across the boundary. Figure shows several common

intensity shapes and their second differences. In all of these patterns intensity

varies continuously. Because images are represented only to finite resolution and

the space of ntensities is connected, we can never observe a pattern of intensities

in a digitized image that could not represent a continuous function. However,

in the patterns representing boundaries, the second difference is significantly

different from zero.

SMOMM"M

Figure 1. Common patterns of intensity values along straight ID paths in an
image. Left to right: no change, smooth variation 'in lighting, step edge, roof
edge, thin bar. The top row shows the image intensities, the middle row shows
their first differences, and the bottom row shows their second differences. The
righthand three cases indicate the presence of boundaries, whereas the lefthand
two cases do not.

We are more accustomed to thinking of abrupt changes in properties in terms

the applications discussed below, all differences are taken using a consistent
spacing, so this point can be finessed.
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of hgh first differences. For example, if I place a white cup in front of a dark

background, first differences taken across this object boundary will be very hgh.

However, in analyzing camera images, high first dfferences are not reliable evi-

dence of a boundary. Smooth variations in light intensity and smooth shading

can create high first dfferences even within a region whose physical properties

(material, surface color, and so forth) are homogeneous. Imposing a bound on

first differences would cause spurious boundaries to be reported in regions with

variations in shading. Such markings would be intuitively unreasonable and un-

stable under changes in viewpoint and lghting.

Analysis of 'image intensities is not unusual 'in having usable bounds on sec-

ond differences but not on first dfferences. This pattern occurs also 'in reasoning

about changes in physical properties over time, because processes of change, such

as boiling water or moving objects, often create high first differences (see Chap-

ter for discussion). When a textured surface is seen at an angle, perspective

distortion causes the size of regions composing the texture to change rapidly

across the visual field. In all of these cases, hgh second differences or changes

in first difference sign reliably indicate the presence of a boundary and high first

differences do not.

In analyzing camera images, or other real input, we do not have access to

the underlying function values, but only to dgitized versions of these values.

Intensity values are smoothed before sampling, to avoid the aliasing effects dis-

3cussed in Chapter 2 The second difference values depend on the amount of

smoothing and the density at which the image has been sampled. However, the

Gaussian-like smoothing used in most computer vision systems consistently de-

3 More or less. I have occasionally seen aliasing in video camera images, so
apparently the smoothing is not exactly the right shape to accomplish this
goal or perhaps some of it is applied after, rather than before, smoothing.
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creases differences taken between any two points 'in the 'image. Thus, any high

difference detected 'in an image must reflect a high difference in the underlying

continuous intensities. The converse, naturally, does not hold.

The second differences used in my edge finder are taken along a straight five-

cell path. Intensities at the cells along the path are added together, weighted

by the values [- 1, 0 2 0 - ].' All other things being equal, differences should

be computed using cells as close together as possible, to provide the most de-

tailed representation. However, the narrowest second difference, using three-cell

paths wth weights 1 2 -11, detects artifacts due to the interlacing used in

most video cameras. The dfferences are taken along straight paths, because the

processes responsible for high first differences in images produce differences that

are constant along straight paths, at least locally.

Readers familiar with recent research in computer vision may notice that I

have been very cautious in making assertions about the real world. It is currently

the fashion for theoretical analyses of computer vision algorithms to build very

precise models of reality. Unfortunately, these more specific models are typically

unverifiable or, in some cases, incorrect. For example, it 'is often stated that phys-

ical properties change dscontinuously across boundaries. First of all, not even

the physicists have any solid evidence about the dfferential structure of space

and an algorithm whose input is dgitized can hardly depend on structure finer

than its digitization. Secondly, at a macroscopic level, most physical processes

change in a way that seems continuous, 'if viewed at a high enough resolution.

4The usual definition of the second difference is the negative of this mask. I
have 'inverted the mask so that lighter regions of the 'image produce positive
values, because that seems intuitively more natural.



3. Combining results from dfferent drections

In the previous section, we have considered only how 'Individual drectional

differences indicate the presence of boundaries. Drectional dfferences, however,

can be taken 'in number of directions about each cell 'in a 2D 'image, although

digitization limits this to a finite set of distinct directions. In this section, we see

how to summarize the pattern of differences about each cell into a single label

for that cell.

The basic idea behind Phantom's method of summarizing second differences

is that differences between cells can be described well by grouping them into four

classes. Consider the four cells shown in Fgure 2 The first type of cell, which is

labelled zero has no sgnificant second difference response. If there were no noise,

significant" would be determined by the bound on second differences. However,

in practice, the bound 'is concealed by the stricter requirement that 'it must be

poss'ble to distinguish the second difference response from the effects of camera

noise.

A
I - - - �&- 4 A - - -

Figure 2 The four types of cells. Left to right- no significant second dfferences,
positive second dfferences, negative second differences, a uxture of positive and
negative second differences.

The other three types of cells have sgnificant second difference responses. In

the first two cases directional dfferences crossing the boundary have significant
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amplitude. All of them have the same sign and the largest amplitude occurs when

the difference 'is taken perpendicular to the boundary. Derences that do not

cross the boundary may have either Sign, but they have much lower amplitude.

In these cases, the pattern of second differences can be reasonably summarized

by giving the sign and amplitude of the strongest response. Cells of this type are

labelled dark or light, as appropriate.

In the final example, the cell has both sgnificant positive and significant

negative second differences. These cells are saddles. Specifically, in order to

distinguish this case from dark and light cells, the edge finder considers the am-

plitudes of the strongest positive and negative responses, across all directions. If

the weaker response is at least 6 of the stronger, the cell is considered a saddle.10

Cells labelled as saddles are considered to lie in the middle of the boundaries,

when boundaries are finally generated. Identifying such cells is crucial to insuring

connected boundaries when multiple regions touch at a common vertex.

Thus all four types of situations can be distinguished by finding the maximum

amplitude positive and negative second difference responses, over all directions.

Figures 3 and 4 shows an 'image, directional differences in one direction, and

the drectional dfferences combined over all directions.' As you can see, the

directional difference only responds well to boundaries that are perpendicular

to the direction in which the derence is taken. Boundaries parallel to the

direction of the difference are not detected at all and the locations of boundaries

at other angles are dstorted. The combined result, however, detects boundaries

of all orientations correctly, because the highest amplitude responses come from

differences perpendicular to the boundaries.

In the current implementation, differences are taken 'in four directions: hor-

5 These outputs have also received the noise suppression described in Section 3.
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Figure 3 A digitized image 330 by 420 cells).

izontal, vertical, and two diagonal directions. The algorithm has been tested

with other sets of directions and 'it makes little difference to the output. Perfor-

mance is improved slightly as more drections are used. Output also seems to

be changed only- slightly when the differences are taken using triples of cells that

deviate slightly from straight lines.

This method of classifying cells performs well on two types of situations that

cause problems for most edge finders: sharp comers and vertices at which several

regions meet. Good examples of this problem are shown in Chapter 9 Section 6,

where Phantom's performance is compared in detail against that of Canny's

(1983, 1986) edge finder. Similar problems occur for many other edge finders.

These problems occur because these edge finders make stronger assumptions

about the pattern of directional difference responses over different directions.

When the responses do not fit this pattern, the edge finder typically fails.



Figure 4 Left: Sign of directional dfference in one direction (diagonally down
and to the right) for the image 'in Figure 3 Right: sign of directional difference
combined over all directions. Positive responses are shown in white, negative
responses in black, and zero responses 'in a checkerboard pattern.

Consider first the Marr-Hildreth edge finder (Marr and Hildreth 1980, Hil-

dreth 1983). This edgefinder uses the sign of either the Difference of Gaussians

or the Laplacian of a Gaussian to classify cells as dark or light. In either case,

ignoring 'issues of smoothing and noise suppression, the effect 'is similar to tak-

ing second differences in a number of directions, evenly sampling the space of

directions, and adding them together. This works properly on straight bound-

aries, because positive and negative responses are approximately balanced at the

boundary. Near sharp comers, however, the sum is skewed because cells inside

the corner have too many responses of the correct sign and cells outside the cor-

ner have too few, as shown in Figure 5. As Berzins 1984) shows, the boundary

shape is deformed near the corner. Furthermore since the outside response is

weak, the boundary shape tends to be corrupted by camera noise. Ulupinar
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and Medion' 1988) and Chen and Medioni 1987) dcuss other types of bias

in the locations produced by this type of edge finder. However, their method of

reducing them has not been extensively tested.

S6.

r

Figure 5. Cells inside sharp corners have high amplitude directional difference
responses from too many cells and cells outside the comers have responses from
too few directions.

Canny's edge finder has problems on corners for a different set of reasons.

His edge finder detects local maxima of the first difference. He assumes that the

first differences about each cell approximate a linear transformation. Therefore,

he takes drectional dfferences in only two directions and uses these to compute

gradient direction and magnitude. Unfortunately, this approximation fails near

sharp corners, such as the one shown in Figure 5, and region intersections, as 'in

the lefthand picture 'in Figure 4.

The problem here is that differences only behave like derivatives in the limit.

It is plausible to assume that the intensities underlying a of these stuations are

continuous, since the image has been smoothed by the camera system. Thus, we

are guaranteed that first differences about each point in the image approximate 6 a

linear transformation within some neighborhood of the point. This is the Taylor

series approximation from standard Calculus. However, there is no guarantee

6 For any desired goodness of fit.

--------- -- -- ---- ----
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that this neighborhood is even one cell wde. Thus, finite dfferences taken one

or two cells apart may fail to approximate a lnear transformation.

Because its assumptions are not satisfied, Canny's edge finder displays a num-

ber of undesirable behaviors near sharp corners and region intersections. The

exact behavior depends on details of the image, 'including the angle between the

boundaries and the two drections in which differences are taken. It may deform

the boundary shape, break the boundaries, and/or create spurious boundaries.

Phantom avoids these problems by making weaker assumptions about the pat-

tern of second difference responses near boundaries. Detailed examples of the

behavior of both edge finders are presented in Chapter 9.

04. Noise suppression

The algorithm described in the previous two sections does not consider effects

of image noise. If this algorithm were run by itself, wth no noise suppression the

results on the example image would look as shown in Figure 6. Even images that

do not look nois have considerable high-frequency fluctuation in intensity values.

This section describes a new algorithm, based on star-convex neighborhoods, that

removes these effects of noise and produces clean outputs, like those shown in

Figure 4.

The traditional method of eliminating camera noise consists of two parts:

smoothing and thresholding. Fst, the 'image is smoothed prior to edge finding.

Since camera noise is largely concentrated in the high frequencies, this tends to

reduce the amount of noise relative to the amount of response to real features. An

edge detection process is then run and its responses are thresholded to eliminate

responses due to the remaining noise. However, available methods of measuring

response strength have not been very sensitive and thus excessive amounts of



Figure 6 A directional difference (left) and the combination of differences from
all directions (right), with no 'noise suppression.

smoothing are required in order to eliminate noise. Therefore, previous edge

finder have had difficulty detecting fine texture and fine details of boundary

shape.

The Phantom edge finder uses a new method of distinguishing real responses

from noise that takes advantage of both the response amplitude at each cell and

the shape of the response region. For low-noise 'images such as those produced

by modern camera systems, this method can distinguish real features from noise

without any image smoothing. Under higher noise conditions, smoothing be-

comes desirable, but less smoothing 'is required to achieve stable output than in

previous algorithms. By reducing the amount of smoothing, the Phantom edge

finder can detect more fine detail than has previously been possible.

Second difference responses due to random camera noise have two properties

that are useful in distinguishing them from responses representing real features
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of the scene. First, responses due to noise have low amplitude at all cells. Sec-

ondly, noise responses vary 'in sgn, forming only small regions of the same sign.

Real scene features typically generate responses that have higher amplitude than

effects of noise. Furthermore, camera systems blur the image before introducing

noise, so that real boundar'les are blurred but noise is not. Thus even when

real responses have amplitudes similar to that of noise, they typically generate

responses that are both longer and broader than those due to noise. This is

illustrated 'in Figure 7.

I f IIWR

to

Figure 7 Responses to real features are generally longer and wider than re-
sponses due to camera noise.

Amplitude and shape 'information can be combined by summing amplitude

over the response region. This technique was proposed by Watt and Morgan

(1984) and has also been used by Huertas and Medioni 1986) and, in curva-

ture analysis, by Huttenlocher 1988). In the 1D cases considered by these au-

thors, the strength of the response region containing each cell can be assessed

by summing responses over the largest connected re 'on about that cell in which

responses have a consistent non-zero sign. This is illustrated 'in Figure .

There are three problems involved in extending this approach to 2D 'images.

First, some bound must be placed on the radius of the region used 'in summing,

because connected response regions can extend for substantial distances across

the image. Secondly, even within a restricted radius, connectivity 'is too weak
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Figure 8. To measure the strength of a second difference response region in D
responses are summed over each connected region of same-sign responses.

a requirement on the region shape. Full connected regions are expensive to

compute. Furthermore, they provide poor discrimination between noise and real

responses, because noise can generate quite large connected regions. Finally,

noise not only creates spurious response regions where the response should be

zero, but also breaks up real response regions.

Phantom defines sensible regions for summing responses using the maximal

star-convex neighborhoods defined 'in Chapter 2 These neighborhoods are re-

stricted in radius (currently at most 3 cells from the starting cell) and are not

7allowed to contain cells whose sign does not match that of the starting cell. As

Figure 9 illustrates, since these neighborhoods cannot cross regions of opposite

sign, they are confined to one response region. The star-convexity requirement

prevents large neighborhoods from being generated in twisty response patterns

typical of noise. At each cell in the image, the sum of responses over the star-

convex neighborhood of that cell gives a robust evaluation of whether the response

at that cell is due to noise or to a real response.

The examples shown in Figure 9 only contain dark and light cells. As we

saw in Section 3 cells can also be labelled saddle or zero. Two steps are taken

7 Cells labelled saddle can belong to neighborhoods of ether sign.
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Figure 9 The star-convex neighborhoods about cells are restricted in radius
(left), cannot cross into neighboring response regions middle) and do not follow
twisted response regions due to noise right).

to handle these cells. First, two sums are computed for each of these cells, one

treating them as if they were light and one treating them as 'if they were dark.8

Secondly, the star-convex neighborhood about each ce119 is allowed to contain

cells labelled zero or saddle, as 'Illustrated in Figure 10.

Figure 10. The star-convex about a cell can cross cells labelled zero. Left: the
star-convex neighborhood of a dark cell. Right: the star-convex neighborhood of
a zero cell if it 'is treated as f it were labelled dark.

The evaluation at each cell is used to re-label cells as zero if they reflect only

the effects of camera noise. If the cell has the label dark or light but an evaluation

8 One could consider that two computations are also done for the light and dark
cells, but one of the computations 'is guaranteed to return zero.

9 No matter which of the four labels it bears.
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below the noise threshold, it is relabelled as zero. Cells labelled as saddles are

treated as being labelled both light and dark. Either or both of these labels

can be removed if the corresponding sum is below the noise threshold. The noise

threshold must be adjusted for the camera setup 'in use. For the images presented

in this thesis, the noise threshold is set at 60, based on the results of evaluations

presented in Chapter 9.

The cell evaluations are also used to fill small gaps in response regions. If a

cell is labelled zero but one of 'its sums 'is above the noise threshold, the cell is

re-labelled dark, light, or saddle, as appropriate. This allows small gaps 'in re-

sponse regions to be filled with an appropriate label. When the second dfference

response happens to be zero in the middle of a zero crossing's this process labels

it as a saddle. As described 'in Section 7 these saddles allow boundaries with the

correct topology to be generated 'in these cases.

Noise suppression is done at three points in the Phantom edge finder algo-

rithms. It is used first to clean up drectional dfferences taken in each individual

direction. Weak responses to real features are easier to detect in the 'individual

directional responses than in the combined response. The same algorithm is used

a second time to clean up the result combined from all directions. In each case,

noise suppression is done twice. The main reason for the second pass is to fill in

holes in response regions created where the first pass suppressed responses with

the wrong sign. As we will see 'in Section 6 noise suppression is also used in

identifying response regions not due to step edges.

As you can see by comparing Figures 4 and 6 this method of suppressing

"This is not as unusual as it may seem. Responses are only represented to 
bits of precision. Blurred edges often have low amplitude near zero crossings
and can easily generate zero responses, particularly after one round of noise
suppression.
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noise 'is quite effective even in the absence of smoothing. Smoothing is only used

for a few images presented in this thesis, taken wth particularly noisy camera

setups." Even in these cases, less smoothing 'is required to achieve stable output

than with previous edge finders. This technique was designed to work on noise

roughly resembling Gaussian noise. Other techniques would need to be employed

for camera systems with very different noise characteristics. For example, Horn

and Woodham 1978) present techniques for de-striping images.

A final point to note 'is that the noise in many camera sys tems is pimarily high

frequency. As described in Section 8, Phantom is run not only on the original

image, but also on coarser-scale versions of the image. Although the current

implementation uses the same noise threshold for all scales, it should probably

be adjusted for each scale independently. Since the sub-sampled images have

much less noise than the finest scale, it is important not to test algorithms on

sub-sampled images.

5. Induci'ng boundaries

The algorithms described in Sections 24 produce clean maps of significant

second difference responses in an intensity image. The fnal step 'in edge finding

is to hypothesize boundary locations that mght explain these observed response

patterns. In this section, I discuss how boundaries are hypothesized for responses

due to step edges. In the next section, I show how to identify responses that

cannot be accounted for in this way.

Most boundaries in camera images can be roughly approximated as step edges.

The simplest type of step edge is shown 'in Figure 11. This type of boundary

generates a characteristic pattern of second dfference responses, 'in which a dark

"These cases are all explicitly marked.



response region touches a light response region, occasionally wth some saddle

cells on the boundary. The boundary is located where light and dark cells touch

and where there are saddle cells. This is illustrated 'in Figure 12. For consistency

with traditional terminology, I refer to these locations as zero-crossings.
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Figure 11. A step edge and its second difference. Top: intensity profile. Bottom:
2D response regions.

In natural images, step edges may have slightly different intensity profiles

and/or variations in 2D shape, as 'illustrated in Figure 13. For these variant

intensity profiles, there is no generally accepted definition of where the boundary

should be placed. Cellular topology tells us that there should be some boundary

in such a response pattern, but does not provide any direct guidance as to where

it is. The simplest option seems to be to treat these responses 'ust like the

step edges and hypothesize boundaries at zero-crossings. Then we can deduce

boundaries from the second dfference responses using the following rule.-

- Place an adjacency set in the boundaries whenever 'it contains either a cell

labelled saddle or both a cell labelled dark and a cell labelled light.
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Figure 12. The labelling of the cells shown on the left induces the boundaries
shown on right. Boundaries are placed on adjacency sets containing both a dark
(d) cell and a light (1) cell. These adjacency sets correspond to the boundaries of
cells. Adjacency sets containing a cell labelled saddle (s) are also placed in the
boundaries. In particular, each single-cell adjacency set containing a saddle cell
is placed in the boundaries. These adjacency sets correspond to whole cells.

Figure 14 shows an example of boundaries found by this method. Since most

boundaries fall between cells, this figure shows both boundary cells and cells to

the dark sdes of boundaries to insure connected boundaries.12

One way to represent these boundary assignment rules 'is to model the set

of labels as the cellular space shown in Figure 15. If cell labels (after nse

suppression) are assumed to have little or no measurement error the rules follow

directly from this representation. Snce the saddle label is a boundary cell, any

cell mapping onto it must also be a boundary cell. Snce there 'is a boundary

12 Exact display of boundary output requires enlarging the image by a factor
of two in each dimension, so that locations between cells can be represented.
Chapter 9 Section 6 shows such enlargements for small details of images. How-
ever, they become unwieldy for larger images. The dark cell representation is
inspired by the discussion given by Pearson and Robinson 1985). They point
out that 'if boundaries are drawn darker than the background, boundaries in
the line drawing are perceived as being at edges of the dark lines. Thus, if
boundaries are represented by dark lines on a light background, they should
be drawn slightly to the dark side ofthe boundary.
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variations in intensity profile.

Figure 14. Significant second difference responses, boundaries placed at zero
crossings.
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Figure 13. Variations
Bottom: variations in

in step edge shape. Top:
2D shape of boundary.
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to the other would have to pass through the label zero. If measurement error is

assumed to be small enough, we can assume that such a transition would always

generate at least one cell labelled zero in the path. Thus, a direction transition

between light and dark also indicates the presence of a boundary.

if

Figure 15. A cellular representation of the value space consisting of the four cell
labels.

For most situations found in natural images, these rules provide boundary

locations that are stable, that are ntuitively acceptable, and that can be used

successfully in most computer vision applications. There are two sources of cri-

teria for evaluating theories of boundary placement. First, to the extent that

we want to emulate human performance, we can make use of human intuitions

about boundary placement. This is helpful for general guidance, but it is difficult

to obtain precise psychophysical data in this area. Secondly, we can consider the

requirements of applications using the boundaries. The stability evaluations pro-

vided in Chapter 9 are a first step towards developing such criteria. It is popular

in computer vision to develop theories of boundary placement by considering
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what types of 3D objects might have created the image. However, this approach

does not solve the problem, but simply pushes 'it back one step, since there 'is no

generally definition of where the edge of a 3D ob'ect is.

6. identifying other types of responses

Marking boundaries at zero-crossings accounts for many of the stuations

found 'in natural images. However, there are two configurations in which this

method performs poorly. On staircase-like intensity patterns, the algorithm may

generate spurious "phantom" zero-crossings. In pictures of scenes with large

amounts of smooth shading, it 'is also possible to get regions of sgnificant second

difference responses that are not well explained in terms of -zero crossings. This

section discusses these two cases and how they might be handled.

Under one set of conditions, the zero-crossing rules gven in Section cause

the Phantom edge finder to hypothesize 'Intuitively unacceptable boundaries. In

staircase patterns, the dark response region from one boundary may touch the

light response region from another boundary. This is illustrated in Figure 16 and

real edge finder examples are shown in Chapter 9 Section 6. The rules for deduc-

ing the presence of boundaries mark this label transition as a boundary. These

spurious responses only happen when the regions in the staircase are relatively

narrow, less than about 10-12 cells in width.

I do not know of any robust way to 'Identify and remove extraneous boundaries

in staircase patterns using only one scale of analysis. In theory the sign of

the 'intensity change should not agree wth the dark/light labelling at such a

phantom boundary (Clark 1986, Ulupinar and Medioni 1988, Chen and Medioni

1987). However, I have not been able to convert tis observation 'into a robust

algorithm. The problems lie 'in distinguishing these spurious boundaries from
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gap between responses

Figure 16. Zero-crossings of second derences need not correspond to step-edge
boundaries. Top to bottom: two staircase intensity profiles, their second der-
ences, and their dark/light labelling. For the narrower staircase, zero-crossings
are not only created between the steps but also in the mddle of them.

real boundaries that have low contrast. Watt and Morgan 1983) suggest that

humans may also have problems correctly interpreting fine staircase patterns. -

Since the Phantom edge finder produces multi-scale output, as described in

Section 8, it may be possible to eliminate many phantom boundaries by com-

paring edge finder output at different scales. In order for this to succeed, the

phantom boundaries must occur at a scale that 'is not the finest representation of

the image and the staircase pattern must be correctly represented at some finer

scale. Chapter 5, Section discusses befly how edge finder output from der-

ent scales can be compared, to determine where the representation has changed

between the two scales. Suppose this matching process can be modified so that

fine and coarse scale representations match even when a phantom boundary ap-

pears only at the coarse scale. For example, we might fill in zero regions in both
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represents ions, so that both scales have phantom boundaries. Staircase phan-

tom boundaries could then be 'identified as boundaries present only at the coarse

scale, but 'in regions where the two scales match exactly.

A second type of problem wth the zero-crossing method 'is that there are

occasional second difference responses that do not fit the step edge pattern. Fig-

ure 17 shows two images containing such responses. 13 In some cases the response

region is smply not connected to a zero crossing. In other cases, the region 'is

connected to a zero-crossing, but it is too wide or has the wrong amplitude pro-

file to be entirely due to a step edge at that zero-crossing. Previous proposals

for parsing algorithms, such as Watt and Morgan's 1984) MIRAGE algorithm,

have considered only the first type of example. Both types of examples seem to

be relatively rare in natural images. I have implemented an algorithm to identify

such regions, but it 'is unclear where to hypothesize boundaries to explain them.

Phantom identifies responses not due to zero-crossings by estimating how

much of the second difference response mght be due to the observed zero cross-

ings. This is done using an algorithm that examines straight paths through

response regions. The path is required to start at a zero crossing and it is termi-

nated when a zero-crossing boundary is reached, as shown in Fgure 18. The first

three elements of the path are assumed to belong to the zero-crossing response

and are used to estimate the height of the response pattern. If the average of

these first three values 'is h the zero-crossing response for the next four cells 'is

assumed to have the pattern h, h h h 14 All response up to these levels is2 , T'

marked as belonging to the zero-crossing response.

13 The image containing the hand was smoothed using a Gaussian with cr 1 cell
before edge finding, due to high noise conditions.

14 This model was produced by informal experimentation based on the second
difference of an ideal step edge with Gaussian smoothing.



. 0Figure 17. Top: two 'images containing examples of second difference responses
not due to step edges. Bottom: significant second difference responses for the
two images. The image of the room corner has very low contrast and has been
displayed with enhanced contrast. The image of the hand has been smoothed
prior to edge finding, because it was taken with a noisy camera system.

The marking algorithm is repeated for horizontal, vertical, and two types of

diagonal orientations (both opposite directions are considered for each orienta-

tion). At each cell, the algorithm accumulates the maximum response amplitude

that could be due to a zero-crossing, over all path directions. These responses are

subtracted from the original response amplitudes, to yield a map of response am-

plitudes not due to zero-crossings. The noise suppression algorithm (two passes)

is used to clean up these response regions, yielding the clean map shown in Fig-

ure 19. As you can see, it does a relatively good job of identifying the problem
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Figure 18. Responses due to zero-crossing boundaries are identified by examining
straight paths through the response regions. Each path must start with an edge
cell, i.e. a cell next to a zero crossing. It continues until another zero-crossing
boundary 'is reached.

regions.

Having identified response regions not due to zero-crossings, the algorithm

should hypothesize boundaries to account for them. Unfortunately, it is un-

clear where these boundaries should be placed. The traditional suggestion is

that boundaries should be placed at the point of maximum response amplitude.

However, notice that these response regions often continue the line of one side

of a zero-crossing response. In many cases, the intuitively best location for the

boundary would be along one side of the response region. Such a placement

would insure that boundaries remain connected when they shift between zero-

crossing and non-zero-crossing response patterns, but it requires a method for

determining which side of the response region to place the boundary on. A

final option would be to treat all cells in non-zero-crossing response regions as

boundary cells. Designing a robust method of hypothesizing boundaries for these

I
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Figure 19. Top: zero-crossing boundaries for the images in Fgure 17. Bottom:
zero-crossing boundaries, together with response regions not due to zero-crossings
(shown as black regions).

response regions requires examination of more examples than I have been. able

to gather.

7. The form of boundaries

Cellular topology allows a wide variety of boundary shapes, because 'it im-

poses few restrictions on boundary shape and because it allows both inter-cell

and on-cell boundaries (including thick boundaries). The Phantom edge finder

takes advantage of this flexibility to produce stable representations for the full

variety of natural boundary shapes. Previous representations have imposed more

�
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restrictions on the form of boundaries. For example, they may allow only inter-

cell or only on-cell boundaries or prohibit boundaries from ending abruptly. In

this section, we see that these restrictions cause problems 'in handling real input.

The most common restriction on the form of boundaries is a requirement

that they occur ether between cells or on cells, but not both. Most current

edge finders (e.g. Canny 1983, 1986, Sher 1987, Heurtas and Medioni 1986)

seem to use on-ceH boundaries. A few algorithms, including Geman and Geman

(1984) and Blake 1983), use inter-cell boundaries. Both of these choices create

problems.

The main problem with on-cell boundaries is that they use up cells that could

otherwise be used to represent regions. This can be a problem in fine texture,

where regions occasionally narrow to only one cell in width. A second problem

is that many edge finder algorithms, particularly those based on first or second

differences, most naturally locate boundaries between cells. Placing boundaries

on cells requires introducing a small bias into the edge locations (as the MIT

implementation of Canny seems to do) or using complicated tests to insure that

the best on-cell approximation is chosen (see Huertas and Medioni 1986).

Inter-cell boundaries, on the other hand, isrepresent the boundary topology

when a boundary location falls in the middle of a cell. If the boundary is close

to the middle of the cell, the edge finder may not be able to make a stable

decision as to which side of the boundary to place the boundary on. This happens

particularly often when the boundary is low contrast or blurred and thus has low

response amplitude near the boundary. In such a situation, choosing either site,

or even both sites, leads to incorrect boundary topology, as shown in Figure 20.

In such situations, the Phantom edge finder treats the disputed cells as belonging

entirely to the boundary. Although this makes the boundary thicker, it insures
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Figure 20. When a boundary falls midway between two sites, a connected bound-
ary cannot be insured using only 'inter-cell boundaries. If only one site is chosen
(left), but the choicei's unstable, the boundary is broken. If both sites are chosen
(middle), an extraneous region is formed. With on-cell boundaries (right), the
correct topology can be 'insured.

the correct topological structure.

Occasional use of boundary cells is helpful in other situations. For example,

they can be used to represent blurred boundaries. They are essential in for-

malizing the boundary motion operations used in Chapter 5. Finally, they are

useful in representing situations in which many regions touch at a point. Such

situations may be difficult to represent using only 'Inter-cell boundaries, if the

regions are a poor match to the digitization. For example, 'in a hexagonal cell ar-

rangement, only three cells touch at each vertex. Thus, a checkerboard in which

four cells touch at one point cannot be represented directly using oly inter-cell

boundaries, as shown in Figure 21. Stable representations for such situations can

be achieved by using small numbers of on-cell boundaries near the intersection

point. Chapter 9 Section 6 shows many examples of boundary cells in Phantom's

output.

I
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Figure 21. In a hexagonal cell arrangement, only three cells touch at each vertex.
Therefore, a situation in which four cells touch can only be represented using
boundary cells.

A second restriction sometimes 'imposed on the form of boundaries is that

boundaries cannot end abruptly in the middle of a region. The algorithms pro-

posed by Geman and Geman 1984) and Blake 1983) strongly discourage such

boundaries and they are forbidden by region-based segmentation algorithms.

However, we saw in Chapter 2 that such boundaries can occur 'in 2D views

of scenes. In some cases, they represent slits in the 3D object that terminate

abruptly in the iddle of a 3D region. However, as oenderink and van Doorn

(1982) show, such boundaries can be produced in an image even when the D

object represented by the 'image is smooth and has no internal boundaries. Thus,

such a restriction would make it impossible to correctly represent the boundaries

in many natural scenes.

8. Multi-scale output and reconstruction

The output magnitudes and labels after direction combination provide repre-

sentations of the image at multiple scales of resolution. This multi-scale represen-

tation is used 'in later applications, such as stereo matching. By reconstructing

the image from the edge finder output, we can see that very little important
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information has been lost during this processing. When only the sign bits of the

edge finder output are used, the image is still recognizable, but smooth shading

information 'is lost. Removing sgn information entirely makes the image difficult

to interpret.

The Phantom edge finder is run not only on the oginal 'image, but also on

smoothed and sampled versions of the image. Thus, 'it analyzes each image at

a range of resolutions. Each sampled version of the 'image is only one quarter

the area of the next finer version. Thus the entire multi-scale computation takes

only 4 times as long as the computation for the single finest scale.153

Multi-scale results for two images are shown in Figures 22-23. The first

image preserves the same structure at coarser scales, except for loss of detail.

The second image contains blurry boundaries that appear only at coarser scales

and thus it exhibits qualitative changes in representation between scales. In

Chapter 5, we will see how these two cases rmght be distinguished by matching

results of adjacent scales. In this section, I will discuss ways of displaying multi-

scale output.

The informatio n present in such a multi-scale representation can best be ap-

preciated by reconstructing the original image from 'it. There are quite a number

of ways 'in which reconstructed images can be produced, suitable for different

types of applications. These reconstructions are useful for display purposes and

also for assessing what types of information would be lost if certain parts of the

representation were not used. Figures 24-25 show four ways of displaying the

information in the edge finder output.

Figure 24 (top) shows a representation in which coarse-scale labels are used

to fill in areas with no significant fine-scale response. This filling process starts

15 Because the 'image sizes form a geometric series.
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Figure 22. Two images 330 by 420 cells and 288 by 227 cells).

at the coarsest scale and proceeds to finer scales. At each step, the coarser-scale

labels are expanded and smoothed, and then used to fill in regions labelled zero

at the next finer scale. This technique results 'in a vivid binary cartoon of the

image. My experience has been that individual people are easily recognized from

this type of representation. For comparison, it often requires some thought even

to identify human faces in dark edge displays, such as those shown in Figure 24

(bottom).

Figure 25 shows two grey-scale images reconstructed from the edge finder

output. The top version uses only the dark/light labelling at all scales. The bot-

tom version also takes account of the magnitude of edge finder responses at each

cell. In both cases, reconstruction proceeds from coarse to fine scales. At each

step, the reconstruction based on coarser scales is interpolated (by expanding

and then smoothing) and combined wth the edge finder results from the next

finer scale. This yields a finer-scale reconstruction of the 'image. This process is



Figure 23. Multi-scale edge finder results for the two images in Figure 22.1 I I - I I
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Figure 24. Two ways of displaying multi-scale edge finder output. Top: fine scale
results with fill-in from coarser scales. Bottom: fine-scale boundaries.
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Figure 25. Two ways of displaying multi-scale edge finder output. Top: recon-
struction from sign bits. Bottom: reconstruction using magnitude information.
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repeated until the finest scale is reached.

The algorithm for combining results at each step must accomplish two things:

fill in areas of zero response at the finer scale and average the two results. When-

ever the finer scale had no significant edge finder response, the coarse-scale re-

sponse is used to fill 'in the fine-scale image. The two images are then averaged

to produce the final reconstruction. In this averaging, the coarser-scale image 'is

weighted by the number of coarser scales it represents and the fine-scale 'image is

weighted twice as heavily as each coarser scale. This sharpens boundaries slightly

and makes and fine-scale texture more vsible.

As you can see from Figure 25, the reconstruction using magnitude infor-

mation preserves almost all useful 'information in the 'image. It differs from the

original in two ways. First, information about the overall 'intensity of the image

is lost. Thus, if the image had been lighter or darker overall, the reconstruction

would have been the same. Secondly, some slopes 'in intensity may be lost. This

does not affect all of the shading on curved objects, because shading often gener-

ates some second difference response, particularly at coarser scales. However, an

even gradient across the image, such as might be caused by changes 'in lighting,

might disappear entirely.

The reconstruction using only sgn labels clearly loses more 'Information. Rel-

ative contrast of regions is no longer visible except in extreme cases and smooth

shading 'is lost. However, when the image has significant changes in structure

across scales, this representation conveys much more information about the im-

age than a fine-scale cartoon does. The matching applications described later

in this thesis all use multi-scale sign information, without taking magnitude in-

formation into account. Thus, this reconstruction conveys a good sense of the

information available to these algorithms.
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9. More examples of algorithm performance

Figures 26-31 show more examples of Phantom's output on scenes containing

both natural and manmade objects. Further examples are presented in Chap-

ters 9 and 10. These 'images, and those presented earlier in the chapter, were

chosen to represent a range of scenes wth approximately constant camera noise

characteristics, so that the edge finder could be run wth a constant noise thresh-

old. For other camera systems, it may be necessary to adjust the noise threshold,

smooth the image slightly before running the edge finder, and/or add de-striping

algorithms. However, the edge finder has been tested on a large number of im-

ages over the past year and a half and the examples presented are typical of its

performance.

The examples presented in this thesis were generated by a LISP 'Implemen-

tation running on a Symbolics LISP machine. The main liability of this current

implementation 'is that it runs very slowly, 47 minutes per 100 by 100 block

of image, depending on the image contents. The pmary problem is the star-

convex sum operation and its spe6d could be improved in several ways. First,

for historical reasons, the current implementation uses a large set of paths 'in

growing star-convex regions. A previous implementation at Oxford used fewer

paths without any substantial difference in performance. Secondly, the current

implementation was designed for easy experimentation, often sacrificing speed to

modularity. Finally, this algorithm 'is 'ideally sUited to parallel implementation

and would speed up greatly on appropriate parallel hardware.

There has been some recent 'interest (Hildreth 1983, Huertas and Medioni

1986, Young 1986, Nalwa and Binford 1986) 'in sub-pixel localization of bound-

aries. I have implemented a simpleinterpolation algorithm for Phantom's bound-

aries. This algorithm uses smoothing to interpolate response values and the



Figure 26. An image of some parts 540 by 425 cells) and an image of a Puma
robot 450 by 420 cells).
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Figure 27. Images of a house 450 by 420 cells), a building 250 by 350 cells),
and some zebras 250 by 350).
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Figure 28. Phantom output on the parts 'image.
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Figure 29. Phantom output on the robot image.
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Figure 30. Phantom output on the house image.
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Figure 31. Phantom output on the building and zebra images.
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boundary adjustment algorithm described in Chapter to move boundary loca-

tions to reflect those 'Interpolated responses. Figure 32 shows an example of its

output. Clearly this process can be repeated to enlarge the image to arbitrary

size. I have not, however, been able to study how much of this reconstructed
16 Clearly this depends on the contrast of the ntensities across

precision 'is stable. I

the boundary. High-constrast boundaries can probably be localized to high pre-

cision but low-contrast boundaries may be moved 23 cells by varying camera

noise.

- -0 I

i

Figure 32. Left to right: an 'Image, edge finder output, expanded version of
output (made by repeating each value over a 2 by 2 block) 7interpolated output.

The boundary adjustment algorithm described in Chapter can also be used

for two other operations on edge finder output. First, the Phantom edge finder

sometimes produces boundaries that are thicker than topologically necessary, re-

flecting uncertainty in the boundary locations. The boundary thinning algorithm

described in that Chapter can be used to reduce these boundaries to minimal

size, if this 'is desirable for some application. Secondly, the matching algorithm

described in Chapter can be used to compare edge finder output from dif-

ferent scales, determining which coarse-scale boundaries represent new features

16Stability is the only well-defined criterion for success. Except for the rare
special case of perfect step edges, psychophysical judgements of the "correct"
location of boundaries only provide this location to wthin perhaps one or two
cells. Although more precise definitions exist, they are ad hoc.
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and which are simply blurred variants of the fine-scale representation cf. Canny

19831 1986). Examples of this are presented in Chapter 5, Section .

Finally, boundaries could be detected in properties other than light intensit y

Generally accepted theories of visual processing suggest that sharp changes must

also be detected in color, depth (as from stereo), motion fields, and surface

texture properties (such as periodicity). It seems likely that techniques developed

for intensity edge finders could be adapted to these other applications. For

example, Figure 33 shows boundaries detected by the Phantom edge finder noise

threshold 240) 'in a map of stereo disparities.

i

i
i
I
I I

Figure 33. Detecting boundaries 'in a stereo depth map. Left to ri.ght: stereo
disparities, match map, boundaries, boundaries and non-matching regions. The
match map shows which cells have been assigned a stereo match (in white) and
which have not been assigned a stereo match (in black). Cells not assigned a
match may represent either errors in matching or surfaces vsible to only one
eye.

These other types of properties are, however, somewhat more difficult to

handle than grey-scale intensities. The space of values for some properties is

more complicated. For example, texture orientation may require a circular space

of values and color a spherical one. Stereo depth data is only a partial function,

because no depths are available for occluded regions of the image. Finally, edge

finding algorithms in these other domains must operate on the results of analysis

algorithms that are, themselves, still experimental. Because of these factors,

- - -- -- - --- ------� --� � � b --- � z

139



140

there has been no systematic study of how to extend edge finder algorithms to

these other types of properties.

10. Comparison to previous algorithms

The Phantom edge finder dffers from previous edge finders in two ways. First,

it uses a more flexible model of boundaries than previous algorithms. As we will

see in Chapter 9 this enables it to perform reliably on sharp comers, region

intersections, and dense texture. These types of features cause problems for

previous edge finders. Secondly, it uses a more reliable method of distinguishing

real responses from those due to camera noise. In this section, I survey previous

algorithms for edge finding and discuss how they differ from the method used by

Phantom.

There have been three recent approaches to edge finding: boundary mod-

elling, surface modelling, and edge operator. 17 In the boundary modelling ap-

proach, used by Sher 1987), Hoff and Ahuja 1987) (stereo depth data), Hueckel

(1971, 1973), and Nalwa and Binford 1986), models are developed for all desired

boundary shapes. These models are then fit to patches of the image. Statisti-

cal considerations are used to determine how good a fit is required in order to

hypothesize a boundary, given an estimate of the camera noise. The problem

with this approach 'is developing a sufficiently flexible set of models for bound-

aries. Models have typically limited to 'Isolated, straight boundaries and with a

small variety of intensity profiles across the boundary. These algorithms perform

poorly at region intersections, at sharp comers, and in dense texture, where none

of the set of models is a good fit to the image. The proposal of Leclerc 1985 is

17 For earlier approaches to the problem, see the surveys in Davis 1975), Pratt
(1978), Ballard and Brown 1982), adding also the algorithms describe in Bin-
ford 1981) and Persoon 1976).
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more general, but has not been tested on real images.

In the surface modelling approach, represented by Haralick 1980, 1984) Har-

alick, Watson, and Laffey 1983), and Parvin and Medioni 1987), the image

intensities 'in each patch of the 'image are modelled. The model for each surface

patch is then analyzed to detect the presence of boundaries, e.g. by looking

for zero-crossings of the second-differences of the model. The weakness in this

approach is, again, the set of models. Surface models in current use can only

provide good approximations for patches of image in which the intensities vary

smoothly or in which there are only restricted types of boundaries (typically,

again, isolated straight step edges). Thus, these approaches also fail on 'intersec-

tions, sharp comers, and dense texture. Brooks 1978) discusses how some earlier

edge operators can be vewed in terms of surface modelling. The segmentation

algorithm of Besl and Jain 1988), the regularization proposal of Torre and Pog-

gio 1986), and the corner detector of Noble 1987) represent similar approaches

to image description.

In the edge operator approach, some operation (such as taking second dif-

ferences) 'is applied to the image to yeld a map of "edge responses." Some

test is then applied to dstinguish significant responses from those due to cam-

era noise and boundaries are hypothesized to account for significant boundaries.

The Phantom edge finder falls into this class of algorithms. Other recent ex-

amples 'include Marr and Hildreth 1980), Hildreth 1983) Canny 1983 186),

Pearson and Robinson 1985), Grimson and Pavlidis 1985) (stereo depth data),

Watt and Morgan 1985), Huertas and Medioni 1986), Young 1986), Gennert

(1986), Boie, Cox and Rehak 1986), Deriche 1987), Spacek 1985), Argyle

(1971), Macleod 1972), Nevatia and Babu 1980), Huttenlocher 1988) (cur-

vature data), and Lee, Pavlidis, and Huang 1988). These algorithms can be
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described in terms of two independent problems: what operator to use and how

to distinguish real responses from noise.

Quite a variety of operator shapes have been proposed, most of them close

variants of one another. Consider the ID case first. There are two basic shapes

of edge operators: first difference and second dfference's Boundaries are hy-

pothesized at maxima of first difference responses and at zero-crossings (and

occasionally isolated maxima) of second derence responses. On a perfect step

edge, the two types of operators behave similarly. First difference operators have

the problem of producing spurious responses on ramps, formed by blurred bound-

aries and smooth shading. They are also unable to detect isolated maxima of the

second difference, known as creases or roof edges. Second difference operators,

on the other hand, produce spurious boundaries in staircase patterns. These

problem behaviors are shown in Chapter 9 Section 6.

Many of the edge finders lsted above use second difference operators, as the

Phantom edge finder does. Those using first derence, or smilar, operators

include Canny 1983, 1986), Argyle 1971), Macleod 1972), Spacek 1985), De-

riche 1987), Nevatia and Babu 1980), and Gennert (1986). Gabor filters (cf

Young 1986) and Difference of Gaussian operators (Marr and Hildreth 1980)

are similar in shape to the second difference. Residual operators (Grimson and

Pavlidis 1985, Lee, Pavlidis, and Huang 1988, Huang, Lee, and Pavlidis 1987)

also seem similar in shape to second differences. The details, however, depend

on the type of approximation used and have not been explored in detail. Boie,

Cox, and Rehak 1986) use a combination of first and second difference type

operators.

There are three methods of extending these operators to 2D.- drectional,

18 Either type may, of course, be combined with smoothing. See below.



oriented, and isotropic, shown in Fgure 34. In the drectional method, the D

operator is applied along straight paths through the 2D image. This is the

method used by the Phantom edge finder. Oriented operators are formed by

taking directional responses from a set of parallel paths and averaging them.

This favors extended straight boundaries. Isotropic operators are created by

averaging responses from directional dfferences taken about a common point,

but in derent directions. Isotropic and oriented operators both distort the

shape of boundaries that are not straight.

4

V

Figure 34. Left to right: directional, oriented, and isotropic methods of taking
differences.

When directional or oriented edge operators are used, the results from differ-

ent directions must be combined. The Phantom edge finder is unique in having a

robust method for combining directional responses. Nevatia and Babu 1980) use

a similar method for combining oented first difference operator responses, but

it 'is unclear that their later thinning and linking algorithms are robust. Canny

(1983, 1986) assumes that the directional first dfferences approximate a linear

transformation and summarizes them into a gradient direction and magnitude

on this basis. As we saw 'in Section 3 this assumption is not valid near sharp

corners and intersections, at which Canny's edge finder performs poorly. Gennert

(1986) accepts a directional response at a cell only 'if it is an extremum over all
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directions and larger than the response in the perpendicular direction. This has

not been thoroughly tested, but it also seems liable to make errors at comers

and intersections.

The other main variation in edge operator algorithms is in how they eliminate

the effects of camera noise-19 The most popular method of eliminating noise is to

smooth the image before applying the operator and then remove responses wth

low amplitude. The problem with this technique is that smoothing reduces the

resolution of the edge finder output. Because of this, recent work has attempted

to reduce the amount of smoothing required by better methods of distinguishing

real responses from noise 'in the output of the edge operator. Methods using

edge linking (Nevatia and Babu 1980, Persoon 1976) have been proposed, but it

is unclear how well they work.

Matching representations from different scales is occasionally suggested as a

method of identifying spurious edge finder responses (Marr and Hildreth 1980,

Hildreth 1983, Schunck 1987, Bergholm 1987). Other researchers have suggested

evaluating responses based on a sum or product of responses from different scales

(Watt and Morgan 1985, Rosenfeld 1970, Schunck 1987). While preservation

over multiple scales or occurrence at a sufficiently coarse scale may be useful

as a measure of the importance of a boundary, neither criterion seems helpful in

identifying spurious boundaries. First, many legitimate features in images appear

only at the finest scale, because they are simply too small to be detected at any

other scale. Secondly, in 'images with qualitatively different representations at

different scales, such as the cleaning cloth image discussed in Section and

19Pearson and Robinson 1985) seem to achieve good results with only inor
amounts of noise suppression. However, since my re-implementation of their
algorithm is sensitive to camera noise, their low-resolution images may have
been produced by some type of sub-sampling. Since camera noise 'is primarily
high-frequency, sub-sampled 'images contain far less noise.
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Chapter 5, Section 5, many legitimate features last only one or two scales.

Two methods for distinguishing real response from camera no'se have recently

been proposed, both using image topology 'in addition to response amplitudes.

Blake 1983) and Geman and Geman 1984) use iterative procedures to assem-

ble responses into extended boundaries. Although interesting, these techniques

have not yet been developed 'Into robust algorithms. Furthermore, they make

excessively strong assumptions about the form of boundaries (see Section 7 As

discussed 'in Section 4 algorithms similar to Phantom's have also been proposed

by Watt and Morgan 1985), Huertas and Medioni 1986), and Huttenlocher

(1988) (curvature data). However, these researchers dcuss only the 1D case

and, thus far, Phantom's algorithm is the only robust 2D version of this 'idea.

Lee, Pavlidis, and Huang 1988; also Huang, Lee and Pavlidis 1987) propose

another 2D version, but the details are unclear and it has not been extensively

tested.

11. Conclusions

In this chapter, we have seen how boundaries can be detected robustly in

digitized camera images. More detailed evaluation of its output and a detailed

comparison to Canny's 1983, 1986) edge finder 'is provided in Chapter 9 The

new algorithm produces boundaries at higher resolution than previous algorithms

without sensitivity to camera noise. It also performs more reliably on sharp cor-

ners, regions intersections, and dense texture. If later algorithms use topological

properties based on these boundaries, as this thesis claims, this ability to detect

stable boundary locations from real sensory input is extremely 'important.

Use of topological structure is also 'important 'in the edge finder algorithm

itself. First, connectedness, in the form of star-convexity, is used in assessing
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response strength. This constraint prevents evaluation of one response region

from being corrupted by nearby responses. The resulting evaluations are able

to distinguish real responses from camera noise more robustly than previous

proposed methods. Connectedness was also used in the algorithm for deciding

which response regions were associated with zero-crossings and which were not.

Finally, intensities are an important example of a digitized function. We have

seen two examples of how the digitization interacts with the process of finding

boundaries. First, we saw that edge finder results can be produced at a range of

scales, by changing the digitization. Secondly, we saw that the set of directional

differences about a cell may not approximate a linear transformation, unlike the

directional derivatives about a point. Although this means that techniques from

calculus cannot be used directly on digitized functions, we saw that patterns

of finite differences can still be analyzed, by looking at maximum amplitude

responses.



Chapter 5: Image matching

1. Introduction

As we saw in Chapter 3 both stereo analysis and edge -finder evaluation

require an algorithm for matching two edge finder outputs. For each image, the

edge finder specifies both a labelling of cells 'in the image as dark, light, zero,

or boundary and a set of boundaries 'Induced by this labelling. The matching

algorithm should preserve both the topological structure of the 'images and the

dark/light labels. In this chapter, we see how this matching is done for a fixed

alignment of the two images. In Chapter 6 I show how a stereo analysis algorithm

can be built using this matcher and, in Chapter 9 I show how the matcher can

be used in edge finder evaluation. Examples illustrating potential uses in other

domains, such as texture analysis, are also discussed briefly in these chapters.

As we saw in Chapter 3 matching images is divided into three phases: adjust-

ment, computation of match strength, and analysis of boundary motion. This

decomposition of the matching problem allows two difficult problems to be tack-

led separately. Consider the situation shown in Figure 1. If we decide to adjust

boundary A to match boundary B, boundary A must be moved through the

shaded region and cells in this region must have their labels altered. However 7

there are many ways that individual points in A could be paired with individual

points in B. The adjustment phase of matching builds matches between extended

sections of boundaries, making arbitrary decisions about the point-wise pairing.

The analysis phase then solves the aperture problem, i.e. it determines which



148

point-wise pairing is appropriate. This can be done by analyzing the shape of

the adjustment region, without considering the details of how the adjustment

was done.

I

I

Figure 1. Two ways of adjusting the same boundary.

The two halves of the matching algorithm have very different requirements.

Adjustment must consider the detailed topological structure in order to decide

how boundaries can be moved. This is made tractable by the fact that each

adjustment operation considers only a small section of the image. On the other

hand, solving the aperture problem, which the analysis phase must do, requires

examining a large enough area of the image to extract a reliable direction of

motion. Such a support region would not be tractable if topological detail had

to be considered at the same time.

The matcher 'illustrates two important uses of image topology. First, sections

of image can only be matched 'if they have the same topolo 'cal structure. Using

such a requirement for practical applications such as stereo analysis or edge

finder testing is a direct test of the main claim of this thesis, that topological

structure i's useful. Enforcing this requirement during boundary adjustment also

provides a good example of how to use the mathematical machinery developed in

Chapter 11. Finally, algorithms in the analysis phase of matching use the same
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star-convex sum operation that the edge finder used, but for different purposes.

Thus, they illustrate some of the variety of applications for which connectivity

requirements are useful.

Section 2 presents the basic operations used to adjust boundary locations.

Section 3 discusses how they are used to build an adjustment algorithm. Section 4

explains the computation of matching strength and Section presents details of

how boundary motion is estimated. Sections 6 and 7 review previous proposed

matching algorithms.

2. How to ad'ust boundaries

The key to understanding the boundary adjustment algorithm is that the

details of the correspondence between the two 'images are going to be thrown

away before the analysis phase. Boundary adjustment operations must guarantee

that:

- regions through which boundaries are moved consist of exactly those cells

whose labels are altered during adjustment, and

- there exists a correspondence between the oginal and the adjusted 'image

that preserves topological structure.

However, so long as both of these conditions can be guaranteed, the adjustment

algorithm need not reconstruct the correspondence explicitly. This is very useful,

because cell labellings are easy to handle explicitly in a computer program and

correspondences are not.

Since we only care about the existence of a correspondence, not the corre-

spondence itself, development of adjustment algorithms involves discussion of

when two images are homeomorphic, i.e. have the same topological structure.

Chapter 11 develops three techniques for showing that the spaces represented
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by two cell structures are homeomorphic.1 Recall the adjacency and incidence

structures discussed in Chapter 2 The first technique for proving spaces home-

omorphic says that if the cells in two cell structures can be paired so that the

adjacency/incidence structure and the boundary markings are preserved, then

the spaces represented by these cell structures are homeomorphic. Thus, for

judging homeomorphism, we only need to pay attention to the incidence or ad-

jacency structure and the boundary markings. I call this technique redrawing,

because it implies that we are free to redraw a cell complex with cells of differ-

ent shapes and positions, without altering its topological structure. This is very

convenient because it means that proofs can be written using pictures of cell

complexes, rather than detailed analytic descriptions of the underlying spaces.

The other two techniques are not so tvial. The second technique, called

subdivision says that a cell can be split 'into two cells sharing a common non-

boundary) edge, without changing the topological structure of the underlying

space. This is illustrated in Figure 2 This technique alone can be used to relate

two images if they contain no boundaries. Suppose that the 'initial alignment

between the two images was not b"ective, because a cell in image X was a-

sociated with more than one cell in image Y. We can split the cell into X as

many times as it takes to create exactly one cell corresponding to each of the

cells in Y. Smilarly, if the initial alignment is b"ective, but does not preserve

adjacency/incidence structure, 'it can be made bijective by subdividing cells in

both images. In the applications presented in this thesis, alignments are always

integer translations of rectangular arrays, so they always preserve topological

structure. However, in more general applications, it may be necessary to do this

1 For technical details of these operations, see Chapter 11, Sections 56. The
following discussion 'is consistent with these technical details, but does not
presuppose that the reader is familiar with them.
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type of subdivision in order to create a correspondence that preserves the cell

structure.

4

p

Figure 2 Subdivision of a cell in a cell complex.

In most applications, a small number of alignments can be pre-compiled and

used repeatedly. For example, humans are only able to fuse a lmited range of

stereo disparities without eye movement. The alignments 'in this range, known as

Panum's area might be pre-compiled. Thus, we can assume that the two 'images

X and Y have been subdivided in advance and that the initial alignment preserves

cell structure. What boundary adjustment must do is make the two 'images

have not only the same cell structure but also the same boundary labelling.

Where this can be achieved redrawing implies that the two images must represent

homeomorphic spaces. Thus, we have converted a problem of proving two images

homeomorphic into one of moving boundaries in one image wthout changing 'Its

topological structure.

In order to develop operations for moving boundaries, we need a third tech-

nique for proving homeomorphism, called boundary thickening. This technique

allows a vertex or an edge that is marked as a boundary to be replaced by a whole



boundary cell. Remember that 'in either the closed-edge or open-edge model of

boundaries, points in boundary cells are deleted from space. Thus, the cell com-

plexes before and after thickening have underlying spaces that look exactly the

same, as shown 'in Fgure I More precisely, they might have different points or

different shapes, but they must have the same topological structure. The formal

details of this operation are slightly difficult and are given in Chapter 11. How-

ever, a pictorial understanding of boundary thickening is sufficient for reading

the rest of this chapter.

I \-V\
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Figure 3 Thickening a boundary in a cell complex. The top pictures show a
vertex being thickened. The bottom pictures show an edge being thickened.
From left to rght: before thickening, after thickening, and closed-edge model of
underlying space.

Figure 4 shows the final boundary adjustment operations used 'in the matcher.

These operations relate a cell structure 'in which some cell x is a boundary cell

to a similar cell structure in which x is not a boundary cell. The patterns

described by these operations can be applied in rotated or reflected form. To

avoid explicitly testing these possibilities, they are compacted into one boundary
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test in the current implementation. This test is described in Appendix B.

Each of the four adjustment operations specifies a topological equivalence be-

tween two cell structures. Thus, each operation can be applied in either direction.

In one direction, the operation thickens a boundary and, in the other direction, it

thins a boundary. In either case, each operation changes the boundary marking

2of only one cell. Because each operation makes such a small change to the cell

structure I it 'is not difficult to prove that it preserves the topological structure of

the underlying space. However, larger adjustments can be produced by repeated

application of the operations.

Using the three techniques gven above-redrawing, subdivision, and bound-

ary thickening-we can develop simple proofs that the boundary adjustment

operations preserve the topological structure. Each proof is a sequence of local

cell structures, starting with the input to the operation and ending with its out-

put, in which consecutive structures can be related via one of the three basic
These proofs are given in F 5-8. Because each of the basic

operations. igures

operations preserves the topological structure, so must their composition.

This set of adjustment operations cannot relate an arbitrary pair of repre-

sentations with the same topological structure. There are three limitations that

seem to hold, though I do not have a formal characterization of them, still less

any proof that they are a full description of the limitations. Fst, the operations

cannot relate an infinite cell complex to a finite one. For example, a region con-

sisting of the real number lne and a single-cell region that is a subset of the real

line are homeomorphic in the open-edge model of boundaries. However, these

2 It is tempting to confuse the effect of these operations with that of boundary
thickening. Boundary thickening adds a new cell in the middle of a boundary,
whereas the adjustment operations re-label an existing non-boundary cell as a
boundary cell.
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il. ;II;. -!is. either boundary or not, but constant dring operation

Figure 4. The four boundary adjustment operations.
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Figure 5. A proof that one of the adjustment operations preserves the topological
structure of the image.

two regions cannot be related via any finite sequence of operations. Among other

reasons, the same operations work for the closed-edge model, 'in which these two

sets are not homeomorphic.

Secondly, I do not believe that the adjustment operations can relate arbitrar

J y

mirror-reversed representations, even finite ones. Consider two scenes containing

handed objects, such as granny knots. If the matcher 'is given an alignment of

the two scenes in which one knot 'is lefthanded and the other knot is righthanded,

I do not believe it can successfully match the two knots. Such a match would

i i I - - - I- ----
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require changing the orientations of cells in the region representing one knot,

relative to that of cells in the other knot. I do not believe that the current set of

adjustment operations can do this.

Finally, the adjustment operations cannot change 'Inclusion relationships.

That is, they cannot remove one region from 'Inside another region, as illustrated
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As a conclusion to thi's section, I should em lphasize one point about these
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Figure 9 The adjustment operations cannot change inclusion relationships.
Thus, they cannot successfully match the image on the left to the image on the
right, although they are homeomorphic. Intuitively, these 'images have different
structure.

adjustment operations. The operations are specified in terms of changes to the

combinatorial cell configurations. The correspondence whose existence is guar-

anteed, however, relates the underlying, infinite-resolution spaces represented by

these complexes. Thus, when I say that the matcher preserves topological struc-

ture, I mean that in the usual mathematical sense, not in some sense peculiar to

digitized spaces. It is typical in computer vision algorithms to use approxima-

tions to mathematical concepts, e.g. smoothness or differentiability. Although

there may be noise in the boundaries that are input to the matcher the transfor-

Nations performed by the adjustment phase of the matcher are mathematically

exact.

3. Using adjustment operations

This section explains how boundary adjustment operations are used by the

topological 'image matcher. In image matching, cell labels must be ad usted as

boundary locations are changed. Furthermore, unrestricted application of the

adjustment operations could scramble the contents of an 'image in undesirable

ways. The actual matching algorithm restricts the application of these operations

so as to allow only minor adjustments to region shapes.
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Requiring two images to have the same topological structure, using the model

of boundaries developed in Chapters 2 and 11, 'is a very weak condition on the

images. It does not, for example, constrain the order of regions to be the same,,

as shown in Figure 10. The four image adjustment operations cannot be used to

relate any pair of images that have the same topological structure, as we saw in

Section 2 However, they can scamble patterns of 2D regions 'in ways that are

not desirable in image matching. The image matcher applies the operations only

in limited ways, so as to make only small adjustments to the 'images.

x

w

x 0

p

Figure 10. These two images have the same topological structure.

Boundary adjustment is applied to an image in two phases. The input to

adjustment is a pair of images, one of which is to be modified so as to match the

other (target image) as well as possible. The first phase, thickening, 'identifies

all cells whose labels are not the same in the two images and moves as many

of these cells as possible into the boundaries. The second phase, thinning, then

moves as many cells as possible out of the boundaries. A cell is moved out of the

boundaries only 'if it can be re-assigned the label of the corresponding cell in the

target 'image. As Figure 11 'ustrates, this process of thickening boundaries and

then thinning them has the effect of moving boundary locations. The details of

this process are described 'in Appendix B.
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This pattern of applying adjustment operations restricts the ways in which
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Figure 11 A boundary location can be moved by thickening the boundary with
cells from one sde and then moving these cells out the other side.

boundaries can be moved. Boundaries are only moved through regions in which

labels conflict in the original 'images. Cells whose labels agree in the original

images are not altered. This means that two regions can only be matched if

they overlap in the original alignment. Furthermore a boundary can only be

matched to one of the boundaries nearest to it in the original alignment and it

cannot "hop over" any intervening boundaries.

Both the thinning and the thickening phase involve multiple passes through

the 'image. Since the adjustment operations are local, they can be done at many

image locations in parallel. However, each pass can only thicken or thin each

boundary by one cell. Since most applications 'involve larger boundary motions,

multiple passes are needed. In the current implementation, three passes are used

in each phase, so each boundary can be moved approximately three cells in any

direction.' This amount of motion seems sufficient for all of the applications I

have considered, though t could be increased without great consequence.

LiMI'ting the number of adjustment passes restricts changes i4 region shape

3 Due to details of the algorithms, described in Appendix B, slightly more move-
ment may be possible in some cases. The actual bound varies between 3 and
6 cells, depending on the details of image geometry.
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to those that are plausible for the current application. More generally, the mini-

mum number of operations required to transform one image into another can be

used as a measure of how different two topologically equivalent representations

are.4 This distance function measures roughly, the amount of work required

to determine that the two representations are equivalent. The algorithms de-

scribed in this thesis can only prove two representations topologically equivalent

when this requires very little work, that is when the representations are also very

similar in metric and cell structure. As Fgure 12 illustrates, 'it 'is difficult for

people to determine whether two situations are topologically equivalent if their

metric structure is very different. I doubt that the general problem of proving

topological equivalence for cellular representations 'is omputationally tractable.

Figure 12. If the metric structure of two stuations is very different, it is difficult
to determine whether they have the same topological structure.

After both phases of adjustment are finished, the adjusted image is compared

to the target image. A cell is marked as matching if it has the same label in the

adjusted and target images and as non-matching otherwise. Because boundaries

in edge finder output are induced by label transitions, all boundary ismatches

must involve label conflicts. Thus Iit is not necessary to flag boundary mis

The details of this dstance function depend, of course, on the details of the
operations provided.
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matches explicitly. Figure 13 shows match results for two images used in edge

finder testing (see Chapter 9. These images represent the same scene, but have

different samplings of random noise. The match results correctly 'identify which

regions of the images have been corrupted by the noise.

Figure 13. Top: Noisy edge finder output for two images used 'in edge finder
testing. These images reflect the same scene, but with different samplings of
random noise. Bottom- the match between the two images before (left) and
after (right)adjustment Matching cells are shown in white and non-matching
cells in black.

Cells that match after adjustment are further classified into those whose label

was changed during adjustment and those whose label was not altered. This is

done by comparing the adjusted 'image to the original image from which it was

derived. This information is used 'in the analysis phase to determine the amount

of boundary motion. Thus, the output of adjustment is a three-way classification

of cells 'Into matching, adjusted, and non-matching. I refer to this as the raw
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match map.

The adjustment process described above does not treat the two images sym-

metrically. When the 'images contain matching boundaries, the two outputs from

the two directions differ primarily in that the final boundaries le to opposite

s'des of the adjustment regions. However, f a boundary in one image does not

correspond to any boundary in the other 'image, the two. outputs differ more sub-

stantially. Consider two 'images, one blank and the other containing a dot, as 'in

Figure 14. When the 'image containing the dot is adjusted, the mismatch can be

reduced to a single point. When the other 'image is adjusted, however, the m-

match covers the full area of the dot, because no adjustment is possible. In order

to handle such cases properly, the matcher does adjustmentin both directions,

in parallel. The two raw match maps are then reconciled by re-classifying a cell

as non-matching 'in one image if it is non-matching in the other. In cases such

as the missing dot, this combined match map contains a non-matching region

covering the entire area of the dot.

4. Computing match strength

As we saw in Section 3 the adjustment phase produces the raw match map,

indicating which cells match after adjustment and which cells had their labels

changed during adjustment. The second phase of matching assigns strengths to

the match at each cell. We see n this section that these strengths can be used to

remove those matches that cannot be distinguished from random noise, yielding

a more meaningful clean match map. Section then discusses how the analysis

algorithms extract information about boundary motion from the clean match

map.

Consider the image match shown in Fgure 13. As we saw in Chapter 3 the
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Figure 14. If there 'is a dot in one 'image and nothing in the. other (top), then a
mismatch the size of the dot is generated in one drection of match and only a
single point mismatch is generated in the other direction, (bottom).

size of a connected match area is a good indication of how good the match is. In

particular, regions where two different random noise patterns are matched have

only very small connected match regions. This difference in connectivity is used

to calculate matching strength. For edge finder testing, matching strength is

used only for pruning responses due to noise. For other applications, such as the

stereo analysis algorithm described in Chapter 6 these strengths are also used

to choose among competing matches.

Matching strength is computed using the star-convex sum operation described

in Chapter 2 Recall that this operation builds the largest neighborhood of a cell

X up to some maximum radius r in which every cell can be joined to x by a

connected, straight path consisting entirely of cells 'in the neighborhood. Since

the paths must be connected, star-convex neighborhoods cannot cross bound-

aries. In the case of the matching strength computation, all non-matching cells

are interpreted as boundaries. Thus, the star-convex neighborhoods are required

."Ww""Mm"m ummommomm"
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to contain only cells marked a matching.

The star-convex sum operation 'implemented for the edge finder uses a maxi-

mum radius of 3 cells. For computing matching strength, a larger support neigh-

borhood is desirable. For this implementation, I have cascaded two iterations of

star-convex sum using radius 3 cells. Another option would have been to build

another version of star-convex sum using a wder radius.5 In the input to the

first layer of star-convex sum all matching cells are given the value 1. The final

output values are divided by 10, yielding strengths 'in the range [0, 240].

Star-convexity was used, rather than connectedness, for two reasons. First,

it can be computed more efficiently, because it requires searching only straight

paths, rather than all paths, out from the cell of interest. Secondly, it reduces

the amount of "leaking" through small gaps in the boundaries. Finally, because

the shape of the neighborhoods adapts to the boundaries present, cells near the

edges of match regions and in thin match regions can gather as much support as

possible without contamination from the nearby non-matching regions.

Once matching strengths have been computed, the algorithm removes re-

sponses indistinguishable from noise. This is done using the same noise sup-

pression algorithm built for the edge finder, except that no gap filling is done.6

Specifically a (third) iteration of star-convex sum is done. If the result of this

sum falls below a set threshold (currently 3000), the cell is considered to be noise

and is re-classified as non-matching. This is repeated twice, as in the edge finder.

Figure 15 shows the over-threshold matching strengths and the clean match map

computed for the image match from Fgure 13. In Figure 13, many cells in the

5 This is easy in theory, but difficult in practice, because the star-convex sum
6operation is hand-coded, for efficiency.

In retrospect, I think that it was probably a bad decision not to use gap filling
after noise suppression, to eliminate tiny topological flaws.



noisy regions were classified as matching. As you can see, in the clean match

map, these regions are entirely classified as non-matching.

Figure 15. Left: The matching strength computed for the match in Figure 13.
Right: The clean match map obtained by pruning matches with low strength.

The same matching procedure can also be used for other matching tasks. For

example, Figure 16 shows a clean match map for two alignments of a stereo pair.

In stereo analysis, the two images must be matched at a range of alignments

and the best matches chosen over all alignments. Chapter 6 describes 'in detail

the control structure needed to handle this. As we see in Chapter 6 the same

control structure used for stereo matching may also be useful in motion analysis,

because the two problems are very similar.

Figure 17 shows a match of a textured pattern against itself. At the align-

ments at or near the period of the texture, many cells match in the clean match

map. At other alignments, few cells are 'Identified as matching. As in stereo

analysis, additional machinery would be required to extract an estimate of the

period for each cell from such a sequence of matches. This i's a topic for future

research.

Finally, Fgure 18 shows the results of matching outputs from different scales

of the edge finder. At each scale, the program has 'identified those cells that rep-

---
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Figure 16. Top: Edge finder output for two 'images in a stereo pair. Bottom:
matching them at an alignment appropriate for the man's shirt and nearly ap-
propriate for the rest of the man. From left to right: the match before adjustment,
the raw match map (after adjustment), and the clean match map. In all cases,
matching cells are shown in white.

Figure 17 A match of a textured pattern against itself at a range of displace-
ments, moving the image horizontally against 'itself. Top to bottom.- image,
match before adjustment, raw match map (after adjustment), and clean match
map. In all cases, matching cells are shown in white.

resent edge information that is topologically different from that at the next finer

scale. As you can see, the second finest scale shows much the same regions as
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the finest scale, but in less accurate form, but the third scale shows a totally dis-
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Figure 18 A match between edge finder outputs at different scales. Each row
shows the match between consecutive scales of representation. Left to right:
fine-scale output, coarse-scale output (expanded to the same size as the fine-
scale output, and clean match map.

5. Measuring boundary motion

The -final stage of analysis in the matcher computes descriptions of how bound-

aries were moved during adjustment. These descriptions 'Include both estimates

of the overall motion of patches of the image and also estimates of the local

fluctuation in boundary locations. In this section, I describe how both types of

measurements are computed, using the clean match map.

How boundary motions should be described depends on the application. In

the edge finder evaluations presented 'in Chapter 9 there is no overall motion

169

tinct set of edges. The matcher correctly identifies the third scale as representing

primarily new information and the second scale as largely redundant.



7 See Chapter 9 for more detailed discussion of this measure.I
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of the images relative to one another. Thus, boundary adjustment only cor-

rects for fluctuations in boundary locations caused by camera noise (and in one

test, changes in digitization). In stereo matching, on the other hand, one of the

images may be shifted relative to the other. As we will see in Chapter 6 the

amount and drection of this motion must be assessed. However, local fluctua-

tions in boundary locations are not interesting to this application and should be

suppressed.

The amount of fluctuation in boundary locations, required by edge finder

testing, can be assessed very easily. It is measured by counting the number of

cells marked in the clean match map as matching and as having had their labels

altered during adjustment. This figure depends both on the amount of motion

of each boundary and the total amount of boundaries in the 'image. Therefore,

the numbers reported 'in Chapter 9 are normalized by the number of edge cells

in the image (divided by two).7

The more difficult task is to determine overall motion of a patch of 'image from

the clean match map. One dfference between overall motion and local fluctuation

is that overall motion is a signed (vector) quantity and total fluctuation 'is an

unsigned (vector magnitude) quantity. Thus, calculating overall motion requires

determining the direction of motion at each cell, in addition to its magnitude.

As we saw in Chapter 3 adjustment regions in the clean match map have a

special form. Each boundary that has been moved has a connected adjustment

region to one side of it, as shown in Figure 19. This 'is a consequence of the method

of applying adjustment operations that was described in Section 3 When motion

is perpendicular to the boundary, the width of the adjustment region indicates

the amount of motion the boundary has undergone. The drection of the motion
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is indicated by the sde of the boundary to which the adjustment region lies. If

the boundary may have moved in other directions, the parsing problem is more

complicated.

I

I

I

I

I

I

amount of movement

Figure 19. Adjustment regions lie to one s'de of boundaries and ndicate how
much the boundary has been moved.

The current implementation makes the assumption that the horizontal and

vertical components of motion can be measured separately. That is, the wdth

of the adjustment region is computed for a horizontal and a vertical search path,

starting from each edge cell, yielding measurements of the two components of

motion at that cell. This is a dubious heuristic for computing the motion . tified

primarily by the observation that the errors introduced in this method tend to

cancel out in later smoothing. Since this computation was not central to this

thesis, more sophisticated methods such as those described by Hildreth 1984)

were not explored.

Figure 20 shows a picture of the computation for horizontal motion, starting
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Figure 20. The amount of motion in a direction is computed by measuring the
length of a straight path through the adjustment region (cells marked a). Each
path starts at a edge cell and stops when a non-adjusted cell 'is encountered.

Once the two components of motion have been estimated for each edge cell,

these measurements are interpolated to non-edge ells and smoothed to cancel

out effects of local fluctuations in boundary locations (e.g. due to camera noise).

Both interpolation and smoothing are smple applications of star-convex sum. To

interpolate motion values, all edge cells are marked with their computed motion

and other cells are given the value 0. Star-convex sum is then run on the result.

For each cell, this sum must be normalized by the total number of edge cells

in the star-convex neighborhood, which can also be computed using star-convex

a

172

at some edge cell x. The computation is done in two halves, one of which moves

left and one of which moves right. The figure shows the computation for the

leftward pass. The algorithm first verifies that x 'is an edge cell and that there

is a boundary between x and the cell to its right. It then proceeds leftward,

counting cells until it reaches ether a boundary or a cell that 'is not marked as

having been ad usted. The cell x is included in this count. The count reflects

the amount of leftward motion of the boundary to the right of x. The computed

horizontal motion at x 'is the sum of the leftward and rightward computations,

though it 'is rare for more than one of them to retur a non-zero result.
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SUM. If there are no edge cells 'in the neighborhood, some default value must

be provided. For the current stereo system, thi's value is 0.8 Each boundary

is flanked by two sets of edge cells, but only the edge cells in the adjustment

region return non-zero motion measurements. Thus, the average motion over

all edge cells in some region must be multiplied by 2 Smoothing is done in

a similar manner, using two applications of star-convex sum to average motion

measurements.

It is 'important to note that the spreading and smoothing steps in this motion

calculation are confined to cells marked as matching in the clean match map.

That is, the non-matching cells are considered boundaries that the star-convex

sum operation cannot cross. This prevents values in matched regions from being

corrupted by values from non-matched regions. In stereo and motion analysis,

this reduces smoothing across depth dscontinuities, because typically only one

of the surfaces meeting at a discontinuity matches at any given alignment.

In some contexts, such as stereo, humans can judge relative motion of two

images to extremely high precision. There are several ways in which a matcher

of this sort could achieve sub-pixel accuracy in boundary motion measurements.

First, the measurement of motion at edge cells could use sub-pixel edge locations,

if they are available from the edge finder. All that is required is to indicate, for

each cell, how much of the cell is dark and how much is light. The matching

algorithm would use the whole cell locations and proceed as described above.

However, the motion measurement would count these cells using the appropriate

8 By itself, this would cause stereo values to drift to zero in regions of uniform
color. However, as described in Chapter 6 the stereo matcher biases matching
strengths so as to prefer matches similar to those obtained at coarser scales.
This causes disparities computed in regions of uniform color to tend towards
the coarse scale disparities and the default value is only important at very
coarse scales.
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fractions. This idea has not be incorporated into the current implementation.

Secondly, sub-pixel dsparities could be computed due to the smoothing of

motion measurements, because errors due to quantization and noise in boundary

locations tend to cancel out. There 'is, of course, a tradeoff between the precision

of the calculated dsparities and the precision with which changes 'in disparities

can be localized 'in space. A final possibility 'is that, 'if the same scene can be

viewed for an extended period of time, small eye movements (always happening

in human vision) would cause boundaries to move relative to the digitization If

it is possible to match stereo outputs obtained from these different views, the

temporal averaging would 'increase the precision of discriminations. The current

implementation reports boundary motion to the nearest tenth of a cell,' but I

do not have detailed data on errors in these measured disparities.

6. Other approaches to atching

The 'image matcher implemented for this thesis compares images on the basis

of edge finder output. Previous image matchers can be classified by the types

of features they match. There are four types of features commonly used: raw

intensity values, easily identified points, extended boundary segments, and edge

finder output. In this section I survey these four approaches to matching, concen-

trating on the first three types. In Section 7 I provide a more detailed dscussion

of recent algorithms based on edge finder output. Barnard and Fischler 1982)

also provide a survey of some of the earlier techniques used in stereo matching.

The features used in matching have a large influence on the types of matching

strategies employed. For example, algorithms using features such as boundary

locations return disparity values at a large number of points. However, the large

9 All calculations are done using integer arithmetic and this is implemented using
an integer multiplier.
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number of features to be considered forces them to use relatively smple matching

strategies. Algorithms using easily 'identified points or extended bundary seg-

ments can use more elaborate strategies for disambiguating candidate matches,

because they have fewer features to consider per image. However they also

return disparity values at only a sparse set of points.

A number of previous algorithms (e.g. Quam 1984, Mori, Kidode, and Asada

1973, Levine, 'Handley, and Yagi 1973, and Barnard 1986) have matched im-

ages directly, without going through an edge finder. The basic idea behind these

intensity-based stereo systems is to match cells wth similar intensities. Sim-

ple correlation of intensities over neighborhoods has been used, e.g. by Gllett

(1988). Baker 1982; Baker and Binford 1981) uses smilarity of 'intensity values

in interpolating disparities between matched boundaries. A typical problem with

intensity correlation is that intensity values may differ in the two views, due to

the change in viewing angle or varying adjustments of the cameras. In order to

cope with this problem, Gennert 1986) adds a smoothly varying multiplier term,

which 'is reconstructed along with the match. Scott's 1986) intensity-based mo-

tion algorithm calculates the reliability of each component of the motion estimate

at each point and uses these reliabilities to influence reconstruction of the motion

field. Another variant on this theme 'is due to Kass (1983ab), who suggests using

smoothed derivatives of the 'image intensities, at a range of scales, as matching

features.

Intensity-based matching has slightly more information at its disposal than

boundary-based matching, because edge finders discard information about

smooth slopes in intensity. Also, although contrast magnitude information is

available from most edge finders, it is often ignored 'in boundary-based match-

ing. A good way to get a feeling for what information is being lost 'is to look at
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the examples of reconstruction from sign bits presented in Chapter 4 Section .

Because edge finder output is available at multiple scales, some types of inten-
'ty differences and some types of ntensity slopes are preserved even in sign

si -bit

representations. It is unclear whether the additional 'information offered by full

grey-scale information is a help or a hndrance in stereo matching. Random-

dot stereograms can be fused even when there are large differences in contrast,

however Billthoff and Mallot 1987) present psychophysical data suggesting that

intensity values can play a role in matching.

There are a few examples of intensity-based algorithms that use frequency-

space techniques rather than drect spatial analysis. Several researchers (Bajcsy

19721 1973, Matsuyama, Miura, Nagao 1983) have used Fourier transform tech-

niques to analyze texture periodicity. Yeshurun and Schwartz 1987) propose an

analytic algorithm for stereo matching of grey-scale images. This technique jux-

taposes two patches, one from each stereo image, so as to create one 'image. The

algorithm then looks for stereo disparity using a technique, known as cepstral

filtering, originally developed for detecting echos in auditory signals. Both tech-

niques transform spatial periodicity into features in the frequency domain and

then transform the results back into the spatial domain. It is unclear whether

this is an improvement over direct spatial matching.

There are also a few techniques that re-cast the matching problem as one

of matching image sequences or textured 'images against templates describing

idealized features. We have seen this approach used in edge finder design It

has not been used in stereo analysis, but 'it has been used in texture and motion

analysis. For example, Bolles, Baker, and Marimont 1987) analyze motion by

detecting the 3D surfaces traced out by image boundaries across tme. Heeger

(1987) uses spatio-temporal Gabor filters that are tuned to an ideal edge moving
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through tme. Bovik, Clark, and Geisler 1987) use spatial Gabor filters in a

similar way to detect a subclass of periodic textures.10 Zucker 1985) and Kass

and Witkin 1985, 1987) use smilar techniques to detect texture orientation.

The second basic type of matching algorithm looks for features in the image

that can be easily identified in the other image. These features might 'Include

simple configurations such as corners, spots, or more complex patterns of local

texture. The features can be identified ether in the grey-scale 'image directly or

in the output of an edge finder. Researchers in stereo and motion analysis who

have used this tvi)e of approach include Barnard and Thompson 1980), Law-

ton 1983), Moravec 1977, 1981), Nevatia 1976), Hannah 1980) and Gennery

(1977).11 There are two difficulties with this approach. First, it has proved dif-

ficult to define features that can be eliably detected. Secondly, under the best

of conditions, relatively few locations in the images are matched. This results in

a very sparse disparity field that must be filled in by unspecified means.

The third group of stereo algorithms uses edge finder output, but the bound-

aries are parsed into extended linear segments and these segments are then

matched. This approach is used by Medioni and Nevatia 1985) and Ayache

and Faverion 1987). The linear segments matched by these systems are rela-

tively sparse, though not as sparse as easily identified features. However, the

sparseness aows more sophisticated matching strategies to be used than is fea-

sible for matchers using raw edge finder output. Furthermore, this technique

imposes a limited type of figural continuity. However, because boundaries must

be described using sets of lne segments, curved boundaries are poorly repre-

sented. Boyer and Kak 1988) carry this approach one step further and match

1OThey can only detect textures that are not only periodic, but where the texture
matches itself on the half-period, but wth opposite phase.

"These researchers all treat motion and stereo processing as instances of the
same problem.
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extremely sparse high-level descriptions of regions in the two images.

Finally, there are quite a variety of algorithms that match images on the

basis of raw edge finder output. These algorithms make use of the location

and contrast sign of all points on boundaries, and sometimes also orientation

and contrast magnitude information. They produce relatively dense disparity

measurements, except in extended regions of uniform 'intensity. My matcher is

most closely related to this class of algorithms and a detailed comparison of this

class of algorithms is done in the Section 7.

7. Other matchers using edge finder output

Recent algorithms from a number of domains match edge finder outputs.

Applications for this type of matching include stereo matching, motion analy-

sis, analysis of texture periodicity and orientation, evaluating edge finders, and

matching edge finder outputs from different scales. The techniques used in dif-

ferent domains are very smilar. By definition, boundary locations are used in all

such matchers. Shape information, such 'as boundary orientation, is occasionally

used, but connectivity or topological information is rarely exploited. The con-

trast sign across boundaries i.e. which side of the boundary has darker intensity

values Iis widely considered a reliable feature that must be matched. Although

contrast amplitude is occasionally used, it is unclear that it is reliable. In this

section, I review previous proposals for matching edge finder output.

The most heavily studied edge finder matching problem is stereo matching.

Boundary-based stereo matchers have been proposed by Mayhew and Frisby

(1981), Pollard, Mayhew, and Frisby 1985), Grimson (1981ab, 1985), Marr

and Poggio 1976, 1979), Hoff and Ahuja 1987), Prazdny 1985), Ohta and

Kanade 1983, 1985). Drumheller and Poggio 1986), Baker 1982) and Baker
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and Binford 1981). Nishihara's 1984) algorithm matches dark/light labels,
without explicit boundary information, but is st'll similar. Medion' and Nevatia

1 1

(1985) and Ayache and Faverion 1987) parse boundaries into extended lnear

segments and match these segments between two stereo images.

Boundary-based matching approaches to motion analysis seem to be less

common. The only one that seems parallel to the stereo matching examples

is described by Little, BU-1thoff, and Poggio 1987). Spacek 1985) also matches

contours, but constrains the matching process by identifying and matching high

curvature points along boundaries. Short-range motion algorithms, such as the

ones described by Hildreth 1984) and Buxton and Buxton 1984), are interesting

from the point of view of estimating the drection of boundary motion. However,

they need not solve the matching problem, because they deal with only small

boundary motions.

Boundary-based matching in other domains has been explored more spo-

radically. Although the idea of comparing edge finder output across scales has

been around since at least Marr and Hildreth 1980), no researcher has properly

addressed the question of how it should be done. Since Witkin's 1983) scale-

space proposal, it has become very popular to track features across scales (e.g.

Bergholm 1987, Ponce and Brady 1986, Asada and Brady 1984, Canny 1983,

1986). However, as Witkin and others (particularly Canny) have noted, features

can change drastically between scales. Thus, it is necessary to distinguish which

coarse-scale features are blurred versions of finer-scale features and which coarse-

scale features represent new information. Witkin's original proposal for matching

features assumes certain constraints on the transition between representations at

different scales. For example, he assumes that new features cannot appear out of

nowhere at coarser scales. While this is true for the 1D features he considers it



180

is not true for real image features.12 So far, Canny's feature synthesis proposal

still seems to be the only algorithm that matches real image features.

Edge finder evaluation algorithms are all but non-existent. Recent researchers

who have attempted quantitative evaluations include Sher (1987ab), Pratt

(1978), Nalwa and Binford 1986), and Haralick 1982). All of these researchers

state that they want to separate boundary motion from real missing or extrane-

ous boundaries. All of the evaluations, however, are done for smple, synthetic

images and the matching techniques described seem inadequate for handling com-

plex natural images. For example, Nalwa and Binford, as well as Sher, assume

that boundaries move less than a cell from the correct location. This 'is not

adequate for handling natural 'images.

Boundary-based analysis of texture periodicity and orientation is roughly in

the same state. Vilnrotter 1981; also Vilnrotter, Navatia, and Price 1986) de-

scribes the only boundary-based periodicity algorithm that I know of. Although

'it 'is not expressed this way, her algorithm 'is equivalent to matching the im-

age against 'itself, as I did in the texture example in Section 4 As far as I

know, matching techniques have never been used to analyze texture orientation,

although from a mathematical point of view it is similar to periodicity. For exam-

ple, if the example from Section 4 is matched against itself at displacements along

its dominant orientation, the match pattern is as shown in Figure 21. Whereas

a periodic pattern matches against itself only at dscrete locations, an oriented

pattern matches against itself for an extended connected set of locations, along

some straight path.

The basic 'information available in boundary-based matching is the set of

boundary locations. Edge finders may be able to provide these locations to sb-

12In particular, adding noise suppression to a feature detection algorithm, as is
commonly done in edge finders, aows new features to emerge at coarse scales.
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Figure 21. Matching an oriented pattern against itself at a range of displace-
ments. Top to bottom: image, match before adjustment, raw match map (after
adjustment, and clean match map. In this series, the 'image was moved down
and to the right, in a direction approximating the orientation of the stripes.
Notice that most of the image matches at all dsplacements.

pixel resolution and this information could be used to compute disparities to

higher precision. However, sub-pixel edge finders are still at the experimental

stage and are rarely incorporated into matching algorithms. In stereo analysis,

'if vertical dsparities are assumed not to exist, the matching problem can be

made one-dimensional. In this case, representing sub-pixel boundary locations

is not technically difficult. If vertical displacements are possible, however, direct

representation of sub-pixel information requires expanding the size of the image.

Depending on the details of the matching algorithm, it may be possible to use

partial representations of the information, such as the cell fraction descriptions

suggested in Section 5. Note also that for 'inter-scale matching, and perhaps for

texture analysis, sub-pixel boundary locations are not useful.

Many boundary-based matchers use boundary orientation nformation 'in ad-

dition to boundary locations Oentations provide information about the shape

of the boundary near the cell of interest or, in some cases (e.g. the edge finder

181
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described in Canny 1983, 1986) limited sub-pixel information. In my system,

this 'information is made largely redundant by the use of figural continuity infor-

mation. It 'is unclear to me whether orientation 'information is reliable for most

matching tasks. Typically a wide allowance ±30 degrees in Grimson's algo-

rithm) is made for errors in orientation. When a boundary has fine-scale shape,

such as serrations, boundary orientations may be extremely sensitive to changes

in scale (in stereo, motion, or 'Inter-scale matching) or scene irregularities (in

texture analysis).

My matcher makes extensive use of the image topology in deciding whether

two sections of image can be matched. This information has only rarely been

exploited by previous matching algorithms and then only n the weaker form

of boundary connectedness. The only proposal using full homeomorphism of

regions 'is Chen 1985). He proposes using topological structure to explain the

results of some psychophysical experiments on motion perception. However, his

experiments are confined to simple, 'isolated shapes. It is unclear how to translate

his proposal 'into an implementable algorithm.

Use of boundary connectivity information in matching has been proposed by

Mayhew and Frisby 1980, 1981), Baker 1982), Baker and Binford 1981), Ohta

and Kanade 1983,1985), Mohan, Medioni, and Nevatia 1987). The first three

proposals are confined to requirements that adjacent boundary cells on differ-

ent horizontal lines be matched to adjacent boundary cells in the other 'image.

The proposal of Mohan, Medioni, and Nevatia 1987) seems confined to individ-

ual straight boundary segments. In addition, stereo matching algorithms that

match extended boundary segments (Ayache and Faverjon 1987, Medioni and

Nevatia 1985) use boundary connectedness implicitly, but they match only rela-

tively sparse segments and handle non-straight boundaries poorly. The proposal
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closest to the one described in this thesis is due to Grimson 1985). He extends

Mayhew and Frisby's 'Idea to a requirement that every match belong to a con-

nected boundary of sufficient length (perhaps with one or two gaps) all of whose

points match at a similar disparity.

A major weakness in all of these formulations is the restriction to a single

connected boundary. Consider an image whose texture consists of many small

dots. If the dots are too small, no single boundary will meet minimum length

requirements. If the dots are larger, all dot-to-dot matches will be accepted.

In an areal formulation, such as mine, a potential boundary match can collect

support from other nearby boundaries, even if they are not connected to 'it (as in

dot-like textures). Furthermore, my matcher can split boundaries 13 when they

cross depth boundaries. When objects are covered with fine texture, as in some

of the stereo pairs presented in Chapter 10, intensity boundaries often run across

depth boundaries.

Boundary-based matchers typically also use information about the sign of the

contrast across each boundary, i.e. an 'indication of which side of each boundary

has higher intensity values. This information can be expressed in many forms. In

Grimson's (1981ab, 1985) algorithms, it is expressed as a sign in the boundary

description, a technique that is only stable because boundaries near horizontal

are not used. Alternatively, boundary orientation and contrast sign may be

combined into a signed orientation with a 360 degree range. In my matcher and

in Nishihara's 1984), contrast sign is encoded using cell labelling. Contrast sign

seems to be reliably preserved between images in most matching applications.

Occasional exceptions occur, e.g. at occlusion boundaries in stereo analysis, but

they seem to be rare 'in practice. In one form or another, almost all image
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matching algorithms require that contrast sgn be preserved.

Contrast sign information seems to be very important in human visual per-

ception. For example, random-dot stereograms with reversed contrast cannot

be fused. In higher-level processing, Cavanagh 1987) shows that shadows such

as those on faces are only parsed correctly if they have lower intensity than the

surrounding regions. Pearson and Robinson's 1985) work on low bit-rate image

coding of sign language also suggests that contrast sign is essential to produc-

ing output acceptable to naive observers. The effect of sign 'Information can be

appreciated by comparing edge and cartoon output from my edge finder, shown

in Chapters 4 and Chapter 9 While untextured objects with simple shapes can

be recognized from unsigned boundary locations, it is difficult to parse complex

scenes, textured regions, or objects wth complex shape wthout sign informa-.

tion. Human faces, in particular, look extremely poor when represented with

unsigned boundary maps.

Contrast magnitude, on the other hand, 'is typically ignored in stereo match-

ing other visual analysis tasks. Although most edge finders can measure the

magnitude of the intensity change across boundaries and humans can clearly es-

timate this magnitude, only a few matching algorithms use this information to

evaluate boundary matches. Researchers using this information include Canny

(1983, 1986) (inter-scale matching) and Pollard, Mayhew, and Frisby 1985)

(stereo matching). What evidence is available suggests that this information is

less 'important to human perception than contrast sign information. For exam-

ple, random-dot stereograms with different contrast magnitudes, but the same

sign, can be fused without problems. Furthermore, ob'ects and scenes can easily

be recognized from black and white versions of images (such as those produced

by my edge finder).
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Algorithms matching images on the basis of edge finder output invariably

place boundaries where there are step-edge-like responses, e.g. at peak responses

of a first difference operator or zero-crossing of second difference operator. How-

ever, other types of edge information can be detected and there is some evidence

that they should be used in matching. For example, Mayhew and Frisby 1981)

present psychophysical data suggesting that humans must be using information

in addition to step-edge boundaries when matching stereo 'images. They suggest

that this additional information may consist of locations of peaks and troughs

in the second derences. Watt and Morgan 1983) make a similar suggestion,

based on psychophysical experiments on human perception of edge blur.

The Phantom edge finder detects both zero-crossing and roof edge responses,

but my matcher uses only zero-crossing boundaries are used in my matcher im-

plementation. There are at least two ways that roof edge information could be

incorporated. The stereo matcher could be extended to use roof edge informa-

tion directly. Alternatively, the matching program could use locations of all label

transitions, not just zero-crossings, as boundaries. This would allow responses of

both types to be used together in matching. Classification of responses into roof

edges vs. zero-crossings would then be postponed until after stereo fusion. This

solution might be able to account for Mayhew and Frisby's 1981) data, though

additional experimentation would be required to test this.

8. Conclusions

This chapter has shown how to build a matcher that preserves topological

structure. The matcher is interesting for several reasons. It 'illustrates sev-

eral ways in which topological structure can be useful in solving an important

practical problem. It also exercises the mathematical machinery developed in
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Chapter 11 more thoroughly than the other applications presented in the thesis.

Finally, 'it is interesting as a possible solution to problems that are both central

to visual analysis and difficult for existing computer algorithms to handle. The

acid test of its performance comes in Chapters 6 9 and 10, when the matcher 'is

applied to analysis of stereo images and to edge finder evaluation. I summarize

the other points in this section.

The matching algorithm developed 'in this chapter directly tests one cen-

tral hypothesis of this thesis, that topological structure is important 'in solving

practical reasoning problems. Equivalence of topological structure is the main

constraint on the matching process. If the only requirements were that labels be

preserved and the correspondence not deviate much from the oginal alignment,

considerable scrambling of images would be possible. Using this constraint, the

algorithm makes a sharp and intuitively reasonable dstinction between matches

and non-matches. This is illustrated by the results presented in this chapter and

later chapters. In particular, the results of edge finder testing presented in Chap-

ter 9 show convincingly that the algorithm consistently 'ects matches between

two random noise patterns, but not between two copies of the same signal, even

when slightly corrupted by noise.

The analysis phase of the stereo computation also contains several algorithms

that use connectivity. Two of these algorithms measure the size of a connected

neighborhood. The matching strength computation measures the area of star-

convex match neighborhoods, whereas measurement of boundary motion mea-

sures the length of a connected path through an adjustment region. Further-

more motion measurements are interpolated and smoothed by algorithms that

are constrained not to cross boundaries. Thus, in addition to the use of the

full topological structure in the adjustment phase, the matcher also offers more
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examples of uses of connectivity smilar to those in the edge finder described 'in

Chapter 4.

The development of boundary adjustment operations, unlike most other ap-

plications presented in this thesis, fully exercises the mathematical machinery

developed in Chapter 11. Although the idea of using boundary topology has

been proposed before (particularly 'in stereo matching), previous researchers have

not been able to provide a sufficiently clear or powerful formulation to make full

use of the idea. To attack matching in the way that I dd requires a large in-

vestment in mathematical machinery and development of techniques for building

algorithms. This investment would never have made sense without the additional

context of problems from other domains requiring similar machinery.



Chapter 6 Stereo analysis

1. Introduction

As we saw 'in Chapter 3 the task n stereo matching is to establish a corre-

spondence between two images of the same scene taken from slightly different

viewpoints. In this chapter, I present a new stereo matching algorithm based on

the image matcher discussed in Chapter 5. We have seen how this matcher can

compare two images at one fixed agnment. This chapter describes the control

structure needed to search a series of alignments to locate good matches.

Stereo matching is a good domain for testing the image matcher, because it 'is

a well-studied problem and the correct answer to each matching task 'is relatively

clear. Some evaluation problems still ase. For example, what people see in a

synthetic stereogram rarely corresponds exactly to the input depth specifications.

However, since stereograms produce vivid subjective perceptions, the desired out-

put 'is much clearer to human observers thanin tasks such as inter-scale matching.

Furthermore, substantial psychophysical data about human stereo perception is

available. This data is useful in making design decisions for computer algorithms.

This chapter begins with an overview of the control structure used in the

stereo algorithm. This control structure consists of two parts. First, camera

positions are adjusted and the algorithm chooses the set of alignments at which

to search for matches. This i's described in Section 3 and compared to previous

algorithms in Section 4. After atching is done at each alignment, the results
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from different alignments must be combined. This process is described in Sec-

tion 5. Sections 6 and 7 discuss types of matching constraints used in previous

stereo algorithms and analyze how they are related to the constraints used in my

implementation.

As I mentioned 'in Chapter 3 the new stereo matcher offers two advantages

over previous algorithms. First, the topological continuity constraint makes its

match evaluations more robust. This aows it to disambiguate larger numbers of

candidate matches without becoming confused. Secondly, the matcher requires

support neighborhoods for strength and dsparity to be connected sets of cells

at a similar disparity. This prevents results for cells near depth boundaries from

being contaminated by values on the other side of the boundary. Chapter 0

presents detailed results of the stereo algorithm's performance on both natural

and synthetic 'images. It also shows an example of how an adaptation of the

algorithm might be used for motion analysis.

2. Overall control structure

This section provides an outline of the stereo algorithm as a whole and a brief

description of its main components. I describe both the control structure of the

implemented off-line stereo matcher and also a control structure that would be

more plausible for real-time or biological processing. I also sketch the form of the

input and output to each stage of the stereo algorithm. Later chapters discuss

each step in more detail.

The, input to the stereo analysis is the result of Phantom edge finder applied

to both images in the stereo pair. Two points about this edge finder output are

relevant to stereo matching. First, 'in these outputs, the effects of camera noise

have been suppressed. In a few previous stereo algorithms, described by Gn'mson
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(1981ab, 1985) and Gllett 1988), noise is not adequately suppressed in regions

of uniform 'intensity. This makes 'it difficult to distinguish regions wth rivalrous

fine texture from regions with matching uniform intensities.

Secondly, many previous algorithms eliminate boundaries that are close to

horizontal before doing matching. The reason for this decision is that such bound-

aries cannot contribute useful 'Information in assessing disparity. This is true for

horizontal disparity, but not for vertical dsparity. In fact, these boundaries are

the most useful type for constraining vertical disparity. Thus, when both types

of disparity may be present, it is essential to use boundaries of all orientations,

as the implementation described in this thesis does.

The stereo matcher uses a coarse-to-fine control structure. As we saw in

Chapter 4 the edge finder produces edge maps at a range of scales Stereo analysis

at each scale is given the output of the edge finder at that scale, together with

the disparity and match maps computed at the next coarser scale. In order to

avoid dependence on choice of the coarsest scale, all scales available from the

edge finder were used. Since the coarsest scale is smaller than 10 cells in one or

both dimensions I it typically provides no successful matches, but little time is

wasted in analyzing it.

There are three steps of processing at each scale:

- adjusting the relative positions of the images and choosing a set of alignments,

- matching images at each alignment, and

- choosing the best disparities over all alignments.

The details of the second step were discussed in Chapter 5. This chapter concen-

trates on the first and third steps. A diagram of this control structure 'is shown

in Figure .
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(1) adjust relative positions of iages

I (2) choose set of alignments
I

coarse-scale disparities NNSOV

i

(3) match images at each alignment .
.A

(4) choose best disparities over all alignments

I I

.C.-rme-scale edge finder results

fme-scale dispaxities

Figure 1. The control structure for the 'implemented stereo algorithm.

The 'implemented control structure was designed to operate efficiently for

off-line processing of stereo images. In real-time stereo matching, the control

structure shown in Figure 2 would be more appropriate and a better match to

what is known about human stereo processing. These two control structures

are able to fuse slightly different types of stereo pairs. Although the dfferences

may be significant in detailed comparisons to human performance they are small

enough not to be of interest to my main goal, testing the matcher.

The on-line control structure has the dsadvantage that it re-matches each

alignment many tmes 'if eye position is varied slowly and Panum's area' is large.

Since the current implementation runs relatively slowly, this would be a serious

1 The range of disparities that can be fused without eye movement.
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problem. Furthermore, implementing the on-line control structure elegantly re-

quires a good model of deciding how to explore the image via eye movements

(both foveation and vergence). These issues are beyond the scope of this thesis.

I

P (1) decide which region of image to look at
(2) estim ate its disparity
(3) adjust position of eyes
1 I

cuxrent disparity map

(4) match images at each of a fixed range of alig=ents
(5) choose best disparities over a.U alignments
(6) merge new disparities with current disparity map

%.I I'D
N./Vedge finder output

new current disparity map

Figure 2 A control structure for on-line stereo processin9

The first step in analyzing a given scale is to adjust the relative positions

of the images. The goal of position adjustment is to bring the two 'images as

close as possible to exact vertical alignment. Three adjustment parameters are

computed from the coarse-scale disparities: a vertical translation, a horizontal

translation, and a rotation about the 'image centers. After these calculations

are done, the edge finder output for the two images is shifted (both horizontally

and vertically) and rotated. Although this is done in software, the 'intent is to
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simulate the effects of corrective eye movements.

All alignments explored by this stereo matcher are translations.2 Choice of

alignments is based on the assumption that the correct fine-scale disparity for

each patch of surface is smilar to the disparity computed at the coarser scale.

Thus, the algorithm searches only a limited range of disparities about each coarse-

scale value. The search area was chosen to reflect roughly human capabilities,

as discussed in Sections 3 and 4 and 'is somewhat larger than that considered

by most stereo implementations. In particular, the new matcher can hypothesize

substantial vertical dsparities, which most previous algorithms cannot do.

Once the set of alignments has been chosen, the stereo algorithm then matches

the two edge finder outputs at each alignment. As we saw in Chapter , the

matching algorithm produces three outputs. First, it specifies which cells of

the 'image match at this alignment. For each matching cell, it also supplies a

number representing the strength of the match about that cell. Finally, for each

matching cell, it estimates the amount of boundary motion, both vertically and

horizontally, at this alignment.

The final stage of matching combines the results from different alignments

into one match map and one dsparity map. At each cell, the disparity value

with the highest strength is chosen. This decision is biased in favor of disparities

similar to those computed at the next coarser scale. This allows the algorithm to

take advantage of the wder context available at coarser scales in deciding among

multiple possibilities. This is particularly important in regions of uniform color

where many alignments may all match perfectly. The resulting map is then

processed to remove outliers and fill small gaps using a modification of the noise

2These alignments are all relative to the adjusted image positions. The combi-
nation of an alignment and the effects of image adjustment can also contain a
rotational component.
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suppression algorithm used in the edge finder.

3. Adjusting image position and choosing the set of alignments

The first step 'in stereo analysis at each scale is to adjust the position of the

two images so as to bring them into a vertical correspondence and then choose the

set of alignments to be explored at the current scale. The adjustment in position

is made on the basis of the vertical disparities computed at the next coarser scale.

The set of alignments chosen also depends on the coarse-scale results, but uses

both the horizontal and vertical components of disparity. This section describes

the details of both algorithms. In general outline, these algorithms are similar to

those used in previous stereo algorithms, particularly those of Grimson (1981ab,

1985).

The software adjustment of image positions used in my implementation is

intended to mimic the effects of adjusting camera positions 'in a real-time system.

For the images available at MIT, I have been able to use an extremely simple

model of distortions due to errors in camera position. This model assumes that

alignment errors can be expressed as a translation of one image relative to the

other, plus a rotation of one image (equivalently: both images) about the center

of the image. Since modelling camera geometry was not my main interest in

building this algorithm, I have not explored more sophisticated models of these

distortions.

I have also assumed that optical distortion is small enough to ignore. Since

my algorithm 'is tolerant of small errors in image alignment, this assumption is

satisfied for the images I have been using. Noticable optical distortion seems to be

significant primarily for systems using very wide-angle lenses. If my algorithm

were used 'in such a s stem it would be necessary to estimate the distortiony 7 1
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beforehand and correct the 'images so as to eliminate its effects.

At each scale, three adjustment parameters are estimated: mean horizontal

disparity, mean vertical disparity, and average rotation about the image center.

This estimation is based on the dsparity values at all cells that were successfully

matched at the next coarser scale. In order to eliminate estimates based on

excessively small numbers of cells, the current implementation requires that at

least 25% of the image be matched in order to compute a non-zero correction to

the 'image alignment. The coarse-scale disparities, on which estimation is based,

are stored internally to the nearest tenth of a cell, although I have not been able

to assess their precision in detail.

The two mean disparity parameters are simply the averages of each compo-

nent of disparity at all cells that matched successfully at the next coarser scale.

Rotation is estimated using only the vertical component of dsparity, because

the vertical component of disparity depends only on the the relative positions of

the cameras,3whereas the horizontal component also depends on surface depth.

Rotation 'is estimated as the average, over all cells in the 'image, of

(V MV)

Y

where V is the vertical component of disparity at the cell, MV 'is the mean

vertical disparity, and Y is the signed) location of this cell relative to the image

center. This is a relatively unsophisticated method of estimation, but seems

adequate for the purposes of the current implementation.

Once mean disparities and rotation have been calculated, each image is ro-

tated and translated by half this amount, so that the two images are aligned

vertically. The effects of thi's translation and rotation are then subtracted from

3 To a first approximation. Although vertical parallax is possible, its effects will
be quite small for most standard stereo viewing conditions.
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the vertical and horizontal disparities inherited from the coarser scale, yielding

a set of disparities relative to the new image positions. It is these net disparities

that are used in the rest of the stereo computation. Although only vertical dis-

parities are used in estimating rotation, horizontal dsparities are also corrected

for any effects of rotation.

Before calculating the set of alignments to be searched, the program imposes

bounds on the net vertical and horizontal disparities. Net vertical disparities are

due to four factors: vertical parallax, inaccuracies in the translation plus rotation

model, inaccuracies 'in the estimates of translation and rotation, and inaccuracies

in the coarse-scale disparities. All of these factors should produce only small net

disparities. Thus, the current implementation limits vertical disparities to ±2

cells. That is, cells with net disparities beyond this limit are assigned a net

disparity of 2 or 2 cells, as appropriate. Since the vertical search radius (see

below) is ±2 cells, the program can explore alignments that move the image at

most 4 cells vertically from the adjusted 'image position.

Net disparities in the horizontal direction reflect differences in surface depth

and can be quite large. These disparities are bounded primarily in order to limit

the running time of the program. The bound depends on the scale of calculation:

net dsparities of ±60 cells are allowed at the finest scale and bounds for coarser-

scales are adjusted proportionately. For example, the dsparity bound at the

third finest scale would be ±15 cells. Since the horizontal search radius (see

below) is ±10 cells, the largest alignment that could be considered at the finest

scale is ±70 cells. Remember that this is the maximum displacement from the

mean horizontal disparity. The maximum calculated disparity (mean plus net

disparity) could be much higher.

The bound on horizontal disparities was imposed as a placeholder, rather than
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as a final solution. When an image is complicated and contains wde ranges of

disparities, it would seem reasonable to employ more sophisticated search strate-

gies than searching every candidate presented by a coarser-scale match. These

'iterations would be particularly important for eventual real-time s sterns

that must control not only stereo vergence but also which part of the scene is

covered by a high-resolution fovea. One possibility would be to stop search in

a given region when a good enough match has been found. This could be most

easily done within the real-time control structure sketched in Section 2 rather

than using the implemented control structure. A final answer to how stereo ex-

ploration is controlled may have to incorporate information about the reasoner's

interests, which is beyond the scope of this thesis.

At each scale of analysis, certain cells are not assigned a net disparity, because

they did not match at the next coarser scale. At the coarsest scale of analysis,

this is true for all cells in the image. These cells are assigned a net disparity of

zero. This default value determines the set of alignments considered for these

points, as well as the bias used 'in the final selection of the best dsparities.

The adjusted images and the net disparities form the input to the later stages

of stereo analysis at this scale. This later processing also requires a set of align-

ments to explore. The alignments used in the current 'implementation translate

the 'image by an 'Integral number of pixels. The range of alignments considered

is computed by taking the range of disparities suggested by the next coarser

scale and extending this by a search radius of ±10 cells horizontally and ±2 cells

vertically.

As an optimization in the current implementation, not all cells in the image

are consi'dered for matching at each disparity. A cell 'is only considered for match-

ing at a gven alignment if the net disparity computed from the next coarser scale
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differs from that alignment by at most ±10 cells horizontally and ±2 cells ver-

tically. Because there may be errors in the location of depth discontinuities, the

program considers not only cells meeting this criterion, but also any cells within

±8 pixels of them. As we see in Section 5, each scale computes two separate

disparity maps, one from the perspective of each eye. A cell is considered for

matching at a given alignment if either of these coarse-scale estimates satisfies

the above conditions. In a parallel implementation, there may be no advantage

to this type of optimization, because it may take just as long to process part of

an image as to process the whole image.4

4. Comparative dcussion of search space limitations

Imposing sensible restrictions on the search area at each scale involves a

tradeoff between speed of computation and robustness. If the search area is

small, then stereograms containing high-frequency patterns cannot be fused at

large disparities. Furthermore, the program 'is sensitive to errors in coarse-scale

edge finder output and disparities. Stereograms with extremely large disparities

can only be fused to the extent that they contain clear coarse-scale cues as to

the correct dsparity. On the other hand, the larger the search area, the slower

the stereo algorithm runs. The current implementation was run wth relatively

large search areas, both in order to match estimates of human performance and

also to test the robustness of the matching evaluations.

There has been extensive discussion of how large a range of disparities humans

can fuse, but the psychophysical data is not definitive. There are two difficulties

with determining search areas. Frst, if the search areas are proportional to the

scale of analysis, experiments must be designed so that it is clear which range of

4 Even in the current serial implementation, there are fixed costs associated with
processing an alignment. These limit the effects of this type of optimization.
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scales is responding. Secondly, the total range of disparities that can be fused is

very large. The search area explored for each cell at each scale corresponds not

to this total range of disparities, but to the range of disparities that can be fused

without eye movement (Panum's area).

The psychophysical data are summarized by Poggio and Poggio 1984). Mea-

sured values for Panum's area seem to be approximately ±10 minutes of arc in

both the horizontal and vertical dmensions Snce the measurements in question

are for foveal vision, where the center-to-center distance between adjacent cells

is about 0.5 mnutes of arc (Yellott, Wandell, and Cornsweet 1984, p. 273), this

translates into about ±20 cells. It is unclear, however, what scale of analysis this

reflects.

Two experiments seem to shed more light on the problem. First, Nielsen

and Poggio 1983) report two figures for vertical dsparities. They report that

an entire image can be fused if it is shifted by no more than 65 minutes of arc

(13 cells). Secondly, a portion of the 'image can be shifted by no more than

3.5 minutes of arc 7 cells) relative to the rest of the image. The first case is

improved if viewing time 'is long enough to permit eye movements, whereas the

second case remains dfficult even with eye movements. These numbers were

obtained from judgements of relative depth. Nielsen and Poggio also attempted

a form discrimination task, but found that form discrimination was extremely

poor.

Nielsen and Poggio's results suggest two things. Frst, the difficulties in form

discrimination suggest that their vertical disparity measurements do not reflect

fusion at the finest scale, but at softie coarser scale. Secondly, the derences

between whole image disparity and dsparity of part of the image, suggest that

vertical eye movements are used to correct the relative positions of the two images
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as a whole. This is also supported by some observations in Duwaer and van

den Brink 1981). Horizontal eye movements, by contrast, are used to search

a wide area of dsplacements bnging successive parts of the image into fusion

individually. It was this observation that motivated the bounds on vertical net

disparities used in my algorithm.

The second interesting experiment was reported by Mowforth, Mayhew, and

Frisby 1981). They presented sub'ects with random-dot stereograms that had

been high-pass filtered, at a range of disparities and tracked the subjects' eye

movements. They found that stereograms, filtered at 375 cycles/degree could

initiate smooth eye movements resulting in fusion for (horizontal) disparities as

high as ±6 mnutes of arc, and that stereograms, filtered at 70 cycles/degree

could initiate fusion for disparities as high as ±28 inutes. Higher frequencies

do not initiate movements resulting in successful fusion. Since small features

become reliably visible to my edge detector when they are about 2 cells wide,

this would translate 'into a search radius of about ±13 cells horizontally, at each

scale. Notice that ±6 minutes of arc translates into over ±100 pixels of disparity.

However, the entire stimulus was at this disparity, so this experiment cannot be

used to test whether the bound on net horizontal dsparities imposed by my

program is reasonable.

Previous stereo algorithms have used a large range of constraints on search

areas. The matching algorithm proposed by Marr and Poggio 1979) and im-

plemented by Grinison (1981ab) uses relatively small search areas. For a Marr-

Hildreth operator with w = 4 cells,5 this stereo algorithm searches a horizontal

range of ± 4 cells at each scale. It appears to have had a limited ability to deal

with vertical disparities in a multi-scale fashion, but the published reports claim
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that it handled vertical disparities at most ±3 at the finest scale. The same

numbers seem to hold also for Grimson's more recent algorithm (Grimson 1985).

Small search neighborhoods are crucial for these'algorl'thms, because they have

only limited ability to dsambiguate rval matches at each scale.

Pollard, Mayhew, and Frisby 1985) assume the 'images are perfectly reg-

istered vertically and search ±30 cells horizontally, in a single-scale algorithm,

using a Marr-Hildreth operator with w = 4 cells. The early algorithms described

by Mayhew and Frisby 1980, 1981) were- not developed in enough detail for

search issues to be explored. The algorithm described by Drumheller and oggio

(1986), also used by Gillett 1988), searches a range of ±20 cells at only one

scale with Canny edges using a = .5 cells.' This 'is approximately equivalent to

a range of 13.3 cells for my algorithm, because of the difference in edge finder

scales.

Nishihara's 1984) correlation-based stereo algorithm uses a multi-scale al-

gorithm to lmit search. The correlation operation can find disparities within a

±2 cell range, both vertically and horizontally. An extremely limited amount of

search is done at the coarsest scale and search at subsequent levels is only used

near discontinuities. This system only produced disparities to relatively coarse

resolution. Baker 1982; also Baker and Binford 1981) describes a multi-scale

algorithm for matching edges. This algorithm assumes no vertical dsparities It

appears to use coarse-to-fine matching to restrict search areas at each scale, but

the details are unclear.

Search area limitations are less critical for stereo algorithms using sparse

features. Medioni and Nevatia 1985), and Ayache and Faverjon 1987), have

implemented stereo algorithms that match extended linear edge segments. Al-

6The constant for Canny's edge finder was supplied by Walter Gillett, personal
communication.



202

though'the details of their search areas are not specified precisely, they leave the

impression that they are large. Barnard and Thompson 1980), Hannah 1980),

Gennery 1977), and Moravec 1977, 1981) detect sparse local features that are

easy to identify 'in the other image. Gennery and Moravec use a multi-scale

matching strategy to identify points with both vertical and horizontal disparities,

apparently using small search windows at each scale. Barnard and Thompson

use a single scale algorithm and, as far as I can determine, search areas of ±15

cells in both the horizontal and vertical dmensions.

Compared to these previous systems, my stereo implementation uses rela-

tively large search areas. Allowing for differences in edge finder resolution, the

horizontal search area of ±10 cells is moderately large for any type of algorithm.

Among algorithms that use multi-scale analysis, where small coarse-scale sug-

gestions can translate into large fine-scale displacements, it is even larger. More

importantly, my algorithm searches for vertical displacements as well as hori-

zontal ones. The only previous algorithms that have done this have either used

sparse features or coarse-resolution images. These vertical displacements cause

a multiplicative increase in the search space and place correspondingly larger

amounts of pressure on the evaluation of candidate matches.

The implemented matching algorithm can successfully handle large vertical

displacements. Chapter 10 presents successfully fused 'images that have vertical

disparities up to 16 cells and rotations up to degrees. These images can also be

fused by human observers, although some of them take noticably more effort than

simpler stereograms. The exact amount of deviation that can be tolerated in an

image depends on the scale at which reliable features appear, which depends on

the size and contrast of regions in the scene.



203

5. Building the flnal disparity map

The last stage in stereo matching combines results from different alignments,

by choosing the disparity at each cell which has the highest strength. A variant

of the edge finder's noise suppression code is run over the resulting disparity map,

to prune outliers and fill small gaps. This process is very similar to the directional

combination step in the edge finder. Most of this computation 'is straightforward.

Thus, this section deals almost entirely with niceties and special cases.

At each alignment, there are actually two sets of match results, because the

matching process described 'in Chapter is asymmetrical. One set of match re-

sults describes disparities from the perspective of the left image and one describes

them from the perspective of the right 'image. The implemented stereo algorithm

does two parallel computations, one starting from each of the two images. Infor-

mation is passed between them at two points: once when the raw match maps

are reconciled and once when suggestions from both 'images are used to deter-

mine the search area about each cell. Otherwise, they proceed independently.

Because of the communication and the inherent similarity of the two tasks, the

two computations typically return similar answers, but they are not garanteed

to be dentical.

Reconciling the two final disparity maps may be desirable, but it 'is not clear

how to accomplish it. Certain stereograms, such as the one illustrated in Fgure 3,

require a correspondence that 'is not bijective. People can fuse such examples and

they can be handled by the current algorithm, 7 because it reconstructs two half-

correspondences. Each half-correspondence must be a function for the algorithm

to run properly, but it need not be b"ective. When two patches in one image

7 Chapter 10 shows this example and a smilar example from a natural stere-
ogram in more detail.
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must be matched to one patch in the other image, one side of the computation

can succeed in finding all of the matches, even though the other side of the

computation cannot. Any algorithm for reconciling two correspondences must

be able to handle such examples.

jo 4

Figure 3 Panum's limiting case: stereo pair and computed dsparities.

It is often proposed that two disparity maps from two halves of a stereo

computation be fused into one connnon disparity map. It is unclear how to do

this when there may be occlusion, so that certain surface patches are visible ift

one image, but not in the other. Such regions are subjectively visible 'in the field

of iew and are often perceived as having depth, perhaps extrapolated from the

surface that they continue. Thus, these regions must be preserved in any fused

stereo map. However 7 if it is to preserve the occluded regions from both 'images,

a common coordinate system cannot be a flat piece of 2D space. Rather, 'it must

be dstorted and the distortions depend on the scene being vewed. Perhaps this

could be handle using multiple dsparity values at each 2D point, but no robust

method for doing this has yet been proposed.

Another important point in combining disparity values 'is that the disparities

computed by the matcher are relative to the alignment from which the matcher

started. The alignment itself introduces disparities wich must be added to

the computed disparities, yielding disparities relative to a global reference align-

ment between the two images. Since all alignments used by my implementation
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are translations, this computation is straightforward. Because images can be

matched even from slightly incorrect alignments, the computed dsparity range

may be sliLhtlv larger than the search area for alignments.

Strength measurements are altered before combination, in order to bias the

matcher in favor of disparities similar to those computed at the next coarser scale.

Specifically, for each candidate match, the algorithm computes the dstance d

between the coarser-scale disparity and the disparity computed for the fine-scale

match.8 The matching strength 'is reduced by 2d units of strength. The strength

bias has little effect where there is one match that is clearly better than the rest.

It exists primarily to make the stereo algorithm behave reasonably in regions

of uniform color or 'in other stuations (e.g. stripes) where several equally good

matches are possible. The bias allows the program to use the wider context

of coarse-scale matching to 'influence a choice among fine scale alternatives of

similar quality.

Previous algorithms have used constraints similar to the strength bias. For

example, Grimson (1981ab, 1985) requires matches at fine scales to dffer from

the coarse-scale value by no more than the matcher's search radius. In hs al-

gorithm, this search radius 'is ±4 cells horizontally- This form of the constraint

becomes weaker as search neighborhoods are made larger. This 'is articularly a

problem near depth discontinuities, where cells may generate candidate matches

using suggestions from either surface. The bias formulation seems more help-

ful because 'it can help disambiguate good matches, rather than 'tist eliminating

implausible ones.

Notice that my algorithm handles interpolating of disparity values in a differ-

ent way from some previous algorithms, such as Grimson's (1981a). The matcher

8 These distances are computed using a lookup table to avoid the square root
calculation.
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interpolates and smooths values separately for each alignment. The best dispar-

ity value at each cell is chosen using these dense maps. In Grimson's algorithm,

the order of operations is reversed: the final disparity for each edge cell is chosen

before disparities are interpolated and smoothed. Grinison's approach requires

less computation, because interpolation and smoothing are done only once for

the whole dsparity map, rather than once for each alignment. However, it makes

it more difficult to prevent interpolation and smoothing from crossing occluded

regions or sharp changes in depth.

The final step in combination is to suppress noise in the final disparity maps.

This noise suppression algorithm is adapted from that used by the edge finder.

About each cell x, the maximal star-convex neighborhood (up to 3 cells in radius)

is built using only cells whose disparity is within 1.5 cells of x's disparity. If the

sum of the matching strengths 'in this neighborhood is below 3000, the cell is

reclassified as not matching. At each dsparity, sun-is are also computed for non-

matching cells and they are assigned that disparity if their sum is above 3000 As

in the edge finder, this process is repeated twice. This noise suppression cannot

fix extended patches of incorrect match, but can only prune outliers and fill small

gaps.

6. Dsparity gradient constraints

A number of proposed stereo matching algorithms use disparity gradient con-

straints.9 These constraints place bounds on the rate of change of disparity

across the field of view without taking image structure's into account. We see

This term has become traditional. However "slope" would be more appropri-
ate than "gradient." The term "gradient" is typically used for a differential
quantity and the disparity differences are taken between points that are sub-
stantial distances apart.

10I.e. locations of boundaries and image topology.



that disparity gradient constraints can also be expressed as requirements that

disparities be nearly constant over a neighborhood of every cell, at every scale

of analysis. The new stereo algorithm implemented for this thesis uses both this

local constancy constraint and also the constraint that the stereo correspondence

preserve topological structure, i.e. be continuous in both directions. These two

types of constraints are independent and most previous stereo algorithms use

only the first type of constraint.

The disparity gradient can be defined as follows. Suppose that C is a putative

correspondence between two images, mapping the points a and b in one image

onto C(a) and C(b) in the other. Suppose further that we align the two image

planes so that a and C(a) are at the same place and directions (e.g. up, right)

are preserved. Then the disparity gradient between the two pairs of points is the

distance between b and C(b), divided by the distance between a and the point

halfway between b and C(b), as shown in Fgure 4.
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Figure 4 To compute the disparity gradient between two pairs of points (a, C(a))
and (b, C(b)), first line up the images so that a and C(a) are at the same point
and directions are preserved. Then, let m be the point halfway between b and
C(b). The disparity gradient is d(b, C(b) = db divided by d(a, m = Rb.

207
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The form in which I have defined the disparity gradient constraint differs

slightly from that given by Burt and Julesz (1980ab). First, I have extended

the statement to cover possible vertical dsparities. I have also specified one

particular way of aligning the two 'images in order to compute the disparity

gradient. Burt and Julesz do not pin down exactly how this should be done.

Finally, translating the 'images so that a and C(a) are at the same position makes

the construction easier to understand without changing the computed gradients.

Burt and Julesz (1980ab) 'introduced the disparity gradient in order to ac-

count for certain psychophysical data. Their stimuli were stereograms, consisting

of pairs of dots at varying spacings. When a match between two pairs of dots

would exceed a disparity gradient of 1, human observers were not able to fuse

both dots simultaneously. Thus, Burt and Julesz claim that human stereo fusion

algorithms impose a bound of on dsparity gradients.

A difficulty with direct application of this disparity gradient constraint is

that it predicts difficulties with stereograms containing sharp changes in depth

between two surfaces. Sharp changes in depth do not, 'in general, cause problems

for human observers and they are subjectively reconstructed as sharp. However,

strict 'Interpretation of the disparity gradient constraint would imply that either

such stereograms should be 'impossible to fuse, or else some type of blurring

across the boundary should take place. It is not clear to me that any existing

proposals successfully account for both sharp depth boundaries and the data that

Burt and Julesz present. More extensive psychophysical experiments would be

needed in order to clarify what happens in human processing.

An effect close to that of the disparity gradient bound can be achieved by local

constancy constraints used in my stereo algorith, as well as many others (such

as Grimson 1981a b 1985, Marr and Poggio 1979, Drumheller and Pog 1986).1 1 "gi
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These constraints specify that cells in a specified neighborhood of each cell x must

have disparities within a bound d of the disparity at x. Section 7 discusses varying

ways of defining neighborhoods. Suppose for the moment that the neighborhood

specified for each cell x is a crcle of radius r about x. Suppose further that

this constraint holds about every cell 'in the 'image. Then, the disparity gradient

between any two cells 'in the image is at most d ± d. This could be construed as dr r

with some allowance for measurement errors. Thus, local constancy constraints

and disparity gradient constraints can have much the same effect, for appropriate

choices of r and d.

Most stereo algorithms impose some type of disparity gradient bound or local

constancy condition. The main effect of these constraints is to prevent surfaces

with steep slants relative to the viewer) from being reconstructed. In my algo-

rithm, this type of constraint is imposed by the requirement that each cell have a

matching strength larger than the noise threshold. In order to accumulate enough

support to exceed this threshold, a cell must belong to a large enough patch of

image that matches at a single alignment. Since each alignment is a translation,

this means that disparities must be close to constant in the neighborhood.

Disparity gradient bounds and local constancy requirements can be used 'in a

number of ways. In my algorithm, the local constancy requirement implicit in the

search through alignments is used to limit the region from wh.ich a cell can collect

matching strength. This matching strength is used both to prune unacceptable

matches and to rank acceptable ones. A number of other algorithms (Pollard,

Mayhew, and Frisby 1985, Ayache and Faverjon 1987 Prazdny 1985, Hoff and

Ah 'a 1987) use these constraints in a similar way. In the algorithms described

by Marr and Poggio 1979) and Grimson (1981ab, 1985), strengths are computed

in a smilar manner, but they are only for pruning unacceptable matches, not for
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ranking acceptable ones. The final noise suppression step in my algorithm also

uses strengths in this way.

There are two other wa s in which disparity gradient bounds can be used.

In the algorithms proposed by Medioni and Nevatia 1985) and Marr and Pog-

gio 1976), an 'iterative optimization scheme is used to minimize the disparity

gradients. The ori 'nal Burt and Julesz formulation, followed by Drumheller

and Poggio 1986), requires that all pairs of dsparities in the image satisfy the

disparity gradient bound. Thus, when a conflicting pair exists, one of the two

matches must be removed. In Drumheller and Poggio's algorithm, this decision

is made on the basis of matching strength. These strengths represent the number

of matches at a similar disparity in a neighborhood of the cell.

In my model of topology, satisfaction of disparity gradient constraints 'is in-

dependent of whether the stereo correspondence is continuous. This illustrates

an important point about the new model of boundaries proposed in this thesis.

Since the presence or absence of boundaries changes the topological structure

without changing distances, constraining the metric behavior of a function is not

sufficient to guarantee that it is continuous. If space had no boundaries, a bound

on the disparity gradient of less than 2 would imply that the stereo correspon-

dence was continuous. But this implication does not hold when boundaries are

present. This separation of metric from topological structure is unproblematic

w'thin standard mathematics. However since it is an option that is rarely used

in practice I will discuss it in detail.

Suppose that the two images involved in a stereo correspondence C have no

boundaries and suppose that the disparity gradient bound is b < 2 Consider

the situation shown in Figure 4 The disparity gradient constraint requires that

dB :5 b(RB). But m is the midpoint of [b, C(b)], so RB dB + s by the triangle2



inequality. Thus b(RB) < b dB + bs, so dB < dB + bs which implies that7 2

dB 2b' But s < dB + s, again by the triangle inequality. Thus s < 2bq +,S.2-7-

If = this reduces to < 3s, which Pollard, Mayhew, and Frisby 1985)

mention for the special case of points on the same epipolar line. Furthermore,

for any b < 2 this relationship implies that s = d(C(a), C(b)) must go to zero

as - d(a, b) does, which shows that the correspondence C is continuous. This

fact was originally proved by Tnvedi and Lloyd 1985), but their proof is more

complicated.

This construction, however, does not take the boundaries into account. If

boundaries are added, according to either the open-edge or closed-edge models,

a continuous correspondence must match boundary locations. As Figure shows,

a correspondence satisfying a disparity gradient bound of can still fail to match

boundary locations. Thus, using the new model of image boundaries, disparity

gradient bounds and continuity conditions are totally independent.

I I I

le'

I

Figure 5. A translation of one image onto another has a disparity gradient that
is uniformly zero. Thus, it satisfies any bound on dsparity gradients. However,
it does not preserve the topological structure of these two images, because it does
not match boundaries with boundaries. I
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T. Support neighborhood shape

One crucial issue in implementing disparity gradient and local translation

constraints is what shape support neighborhoods they are computed over. Dif-

ferences in support neighborhood shape determine whether sharp changes in

depth can be reconstructed and what forms they can take. In this section, I

survey neighborhood shapes used by previous researchers and compare them to

the star-convex neighborhoods used 'in my implementation.

Three types of support neighborhoods have been proposed:

- fixed-shape neighborhoods,

- ragged neighborhoods, and

- adaptive neighborhoods.

By "fixed-shape" neighborhoods, I mean that the shape of the support neighbor-

hood about a point x is the same for every point x. By "ragged" neighborhoods,

I mean computations using neighborhoods of fixed shape, but ignoring some of

the points. Such a neighborhood ight, for example, contain all nearby points at

a similar depth. By adaptive" neighborhoods, I mean ones in which the sze of

the neighborhood or its location relative to the point of interest can change, de-

pending on local context, but with more constraint than the set of selected points

used in ragged neighborhoods. These three options are illustrated in Figure 6.

Fixed-shape neighborhoods are the smplest formulation, used by Marr and

Poggio 1979) and Grimson (1981ab, 1985). In these algorithms, information is

integrated over a fixed-shape neighborhood of each cell, typically a circular or

square one centered on the cell. Alternatively, depending on how the constraints

are used, each neighborhood of this form may be required to satisfy a disparity

gradient or local constancy requirement. The problem with fixed-shape formu-
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Figure 6 Left to right: fixed-shape neighborhoods, ragged neighborhoods, adap-
tive neighborhoods.

lations is that they cannot handle sharp changes 'in disparit such as those at

object edges. Depending on the details of the algorithm, cells near sharp changes

are either assigned no disparity or else assigned a disparity that is an average of

the disparities assigned to the two surfaces. Neither output 'is appropriate. Burt

and Julesz's (1980ab) global formulation of the disparity gradient is approx-

imately equivalent to imposing the constraint over fixed-shape neighborhoods

about every cell in the 'image and/or at multiple scales.

Some researchers (Grimson 1981ab, 1985, Ponce and Brady 1985, Hildreth

1983) using fixed-shape algorithms have suggested a multi-stage method of coping

w'th smearing of disparities across depth boundaries. They propose first comput-

ing the smeared disparities, then detecting sharp changes in the smeared output,

and then recomputing the disparities using (effectively) adaptive neighborhoods.

This seems to be shutting the barn door after the horse is gone. Recent research

(Grimson and Pavlidis 1985, Marroquin 1984) has attempted to find better solu-

tions, by earlier detection of sharp changes in disparities. However, there is still

no robust implementation wich avoids smearing.

Ragged neighborhoods, used by Pollard, Mayhew, and Frisby 1985), and

Drumheller and Poggio'(1986), are one solution to this problem with smearing. In

213



--------- I -- , ...... �1 1 --

-ml

214

these algorithms, fixed-shape neighborhoods are used, but 'Information from only

certain points is integrated to produce the final evaluation. In Drumheller and

Poggio's algorithm, the selected points are those within some error neighborhood

of the same disparity. The algorithm proposed by Pollard, Mayhew, and Fsby

chooses those points whose disparities satisfy a dsparity gradient bound of 1 In

either case, the total amount of positive support is used to evaluate the match and

negative evidence, such as nearby points at different disparities, 'is not considered.

This allows points near depth discontinuities to receive acceptable evaluations,

because they are no longer penalized by the presence of points near them but on

the other surface.

The problem with ragged neighborhoods is that noise that happens to lie near

a surface of similar value is given a hgh rating. This 'is illustrated in Fgure 7.

Such noise values might reflect poor matches found for cells that should correctly

be marked as belonging to occluded regions, i.e. regions that are visible in only

one of the images. Furthermore, using ragged neighborhoods undermines the

power of disparity gradient or locally constant dsparity constraints. Ragged

neighborhoods of the form used by Pollard, Mayhew, and Frisby allow arbitrarily

jagged surfaces, so long as enough nearby jags. end up at similar disparities.

Adaptive neighborhoods are similar to ragged neighborhoods, but the set

of points used for support is restricted so as to be connected or, in the case

of my algorithm, star-convex. Several stereo-matching algorithms use adaptive

neighborhoods, 'Including my algorithm, Grinison's 1985), and the algorithm

proposed by Ayache and Faverjon 1987) that matches linear segments. Like

ragged neighborhoods, adaptive neighborhoods do not cross sharp changes in

disparity. However, adaptive neighborhoods force reconstructed surfaces to be

more cohesive and they avoid the problem of picking up nearby noise.
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Figure 7. Ragged neighborhoods can cause noise to be given a high rating.

Because my stereo algorithm uses adaptive neighborhoods, it can reconstruct

sharp changes in dsparity values where appropriate. Fgure shows disparity

values from one of the examples described 'in Chapter 10. Although there may

be some slight curving of values near the dscontinuity, there is a sharp change

in disparity between the two surfaces, without 'Intermediate values.

In implementing adaptive neighborhood algorithms, it is important to make

sufficient allowance for errors in measuring disparities. If this is not done, these

errors can cause large pieces of a support neighborhood to become disconnected

from the cell of interest and the support from them lost. Allowance for noise

is not so critical for ragged or fixed-shape neighborhoods, because they are not

dependent on neighborhood connectivity. There seems to be some tendency for

adaptive neighborhood algorithms to take explicit notice of the potential for

errors and for other types of algorithms (e.g. Pollard, Mayhew, and Frisby 1985

and Drumheller and Poggio 1986) to require closer agreement with dsparity

gradient constraints than the precision of boundary locations warrants.

Substantially the same discussion presented here for stereo applies also to



P.,x 1 65 " $I " 0 it 71 72 73 74 75 76 " 7$ " " St 69 $3 04

36 -tS* -111 -tit -111 -it$ -115 -115 -11$ -115 -U -12 -16 -16 -21 2 -$ -6 -S -6
37 -100 -110 -tit -lit -111 -111 -112 -114 -114 -U -5 -15 -16 -16 3 -4 -5 -* �* -7
39 -1" -16 -16 -110 -110 -111 -111 -lit -lit'* -6 -4 -4 -15 I - -3 -4 -6 -6 -5
" _t" -100 _I" IN _11# -110 -11# -lit -111 -13 6 -3 -3 -3 -3 s * I -9 4 -5
+6 -'N -104 -104 -IN -I" -I" -13 -13 -13 -13 1 0 0 2 5 -3 -3 -3 -2
4 -% -1#1 -104 -1* -W -97 -12 -U U 6 4 3 7 7 6 0 0 1
42 -94 -W -44 -19 -12 It I 7 I S 0 1 5 3 S
43 -13 -13 6 7 7 1 S 8 7 5 6 6
44 I 0 9 8 I 9 6 6 4
49 s f 9 9 I 0 7 7 7
46 7 0 S 8 6 S 7 6 6 6
47 -93 7
40 -44 6
49 -96 -W -W -16 --ft -16 19 7 a 6 0 I S #
St -W -W to 7 s # # 4 6

7 to 7 $ t 9 9 6
sa -16 -46 -46 -0 -15 4 5 s -S I 0 0 $ $ 7
$3 -W -M -$4 -46 -44 -01 -41 -15 -15 -6 -4 -* 0 9 9 I 9 4
54 -" -" -" -* -" -* -14 -14 -14 -4 -2 0 9 0 10 9 S 0
a -0 -94 -44 _" -IS 0 -16 -5 -S -2 I 7 6 3 4 4 5
56 -IS -11 0 -11 -6 -4 -t I 7 S 3 3 4 4

-IS 9 0 -S 4 S I S 3 3 4 4

Figure 8. Top: a stereo pair, edge finder output, and reconstructed depth map.
Bottom: a slice across the raised square and numerical depth measurements for
a portion of the image crossing the edge of the square.

other domains. Wide support neighborhoods are essential in motion analysis

and texture analysis, including not only the periodicity and orientation exam-

ples presented earlier, but also other types of texture descriptions. In these do-

mains, all currently available algorithms (e.g. Hildreth 1984, Hom and Schunck

1981, Heeger 1987) use fixed-shape neighborhoods and thus smear orcontaminate

results across sharp property changes. Scott 1986) proposes a method for de-

tecting dscontinuities 'in the blurred motion field resulting from his (fixed-shape

neighborhood) algorithm, but it has not yet been extensively tested.

I believe that adaptive neighborhood algorithms, such as the ones used here

for stereo analysis, might also be useful in these other domains. For example, in

Chapter 5, Sections and 7 we saw a brief example of how texture periodicity

might be detected using a matching scheme. Figure 9 illustrates how a sharp
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change 'in periodicity would generate sharp changes 'in matching results. Hope-

fully, this sharp change would be preserved in periodicity estimates computed

from the match results.
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Figure 9 An 'image with a sharp change in periodicity generates sharp changes
in the matching results. The image shown represents edge finder output for three
cloth patterns and it was translated against itself vertically.

8. Ordering and uniqueness constraints

Stereo algorithms often impose an ordering constraint on stereo correspon-

dences. This constraint states that a stereo correspondence must preserve the

left-to-right ordering of points in the two 'images. In this section, we see some of

the evidence for such a constraint and how 'it might be applied. It has often been

observed that the disparity gradient constraint implies the ordering constraint."

However, we see that this is only strictly true when fixed-shape support neigh-

borhoods are used and when no allowance is made for measurement error.

"For the traditional statement of the ordering constraint, involving only pairs
of points on the same epipolar line, the proof is trivial.
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Human observers seem not to be able to fuse stereo pairs if this would involve

violations of the ordering constraint. If an order-preserving correspondence is

possible, this is chosen, whether 'it reflects physical reality or not. For example,

Krol and van de Grind (1 980) report a series of experiments 'in which pairs of thin

objects, such as nails, were systematically mis-fused 'in situations where this was

the only order-preserving match, as illustrated 'in Figure 10. Two nails are seen,

but they both lie at an apparent depth halfway between the two hysically correct

positions. If the only available correspondence would violate the constraint (e.g.

because the objects are too distinct to support a mis-match 'interpretation), one

or another of the regions involved 'is seen as doubled.

ail

apparent nails

nail

Figure 10. The Phvsical layout for Krol and van de Grind's double nail illusion.
Human observers do not see nails at the physically correct locations, but rather
at an intermediate depth. This suggests that human stereo matching tends to
preserve the relative order of regions in the images.

Thus there are two phenomena to consider: the bias towards order-preserving

correspondences and the inability to fuse violations of the ordering constraint. A

bias towards order-preserving correspondences, such as would be needed to ex-

plain the Krol and van de Grind data, is easy to account for using most models

of stereo matching. For example, consider fusing two thin nails using my algo-
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rithm. Thin regions persist to quite coarse scales if they have sufficient contrast.

At a coarse enough scale, the two nails are closer together than the wdth of the

support neighborhoods used in the matching strength computation. When this is

true, the alignment generating the physically 'incorrect fsion generates matches

with higher strength than either of the alignments representing the physically

correct fusions. Thus, the physically incorrect fusion would be chosen at this

coarser scale and this would bias finer scales towards a smilar interpretation.

Additional machinery, however, is probably required to account for the inabil-

ity of humans to fuse violations of the ordering constraint when these represent

the only possible matches. An important point to note about this constraint 'is

that 'it is a constraint on what can be fused at one fixation. For example, suppose

I attempt to duplicate Krol and van de Grind's conditions with two objects that

are not very similar to one another such as two bent paperclips. My impression

from informal experimentation 'is that one of the ob'ects 'is fused and the other

doubled and that I have voluntary control of which object is fused. This seems

to agree with some of the observations 'in Krol and van de Grind's paper as well.

Recent stereo algorithms proposed by Drumheller and Poggio 1986) and

Baker 1982; also Baker and Binford 1981) have imposed ordering constraints

directly during stereo matching. When two candidate matches would violate the

ordering constraint, the weaker match i's eliminated. Snce their systems use few

other methods of constraining candidate matches, the ordering constraint appar-

ently helps prune many unacceptable matches. Many of the incorrect matches

generated by my system seem to represent violations of the ordering constraint,

performance might be 'improved by explicitly enforcing it.

However, the formulations used by Baker and by Drumheller and Poggio

will deadlock or become unstable when confronted wth two matches of similar
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strength. Such examples occur when textures contain repeats of similar elements.

For example, Chapter 10, Section 4 shows an example of a natural 'image that

contains two very similar patches, one of which is occluded in the other image.

This example generates two matches that violate the ordering constraint because

they violate uniqueness. However, the two matches have similar evaluations and

both appear good to informal inspection.

Matches of similar strength could be handled 'in two ways. Since the con-

straint on human processing seems to be imposed at a single fixation, one might

bias strengths in favor of the match closest to the fixation point. Alternatively,

the algorithm might keep both matches when they are of comparable strength,

despite the ordering violation. This would also prevent the algorithm from sup-

pressing correct matches at coarser scales, where they are not always easy to

distinguish from 'incorrect matches.

I did not use an ordering constraint in the final implementation of my stereo

matcher. Since my primary interest was 'in testing the power of the topologi-

cal matching constraints, an additional matching constraint would have made it

harder to interpret the experimental results. Furthermore, my control structure

folds together the processes of searching Panum's area and moving eyes over a

range of fixations, as an optimization. Since individual fixations are not distin-

guished, 'implementing a constraint tied to single fixations would be dfficult.

The dsparity gradient constraint, in the form originally proposed by Burt

and Julesz, implies the ordering constraint. This result is widely cited and easy

to prove. Unfortunately, 'it only holds if fixed-shape neighborhoods are used in

enforcing the constraint. Adaptive neighborhood or ragged neighborhood formu-

lations of disparity gradient constraints do not enforce the ordering constraint,

though they may tend to reduce the number of places at which it is violated
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locally. In particular, neither my implementation nor that of Pollard, Mayhew,

and Frisby 1985) enforces the ordering constraint.

In imposing dsparity gradient or ordering constraints, it is important to make

appropriate allowances for errors in the computed disparities. If disparities are

required to meet such requirements exactly, as in many stereo algorithms, points

may be unnecessarily deprived of legitimate support due to 'image noise. This is

particularly true when fixed-shape or adaptive support neighborhoods are used.

For example, the current MIT implementation of the Drumheller and Poggio

(1986) algorithm makes no allowance for measurement errors in imposing its

ordering constraint. To 'udge from the results reported by Gillett 1988), this

algorithm frequently assigns no match to thin strips of cells in regions of smoothly

changing disparity, presumably because they are suppressed by matches from

nearby points. To avoid this, matches should be suppressed only if they are in

violation of the ordering constraint by more than the prevailing measurement

errors.

An often-cited corollary of an ordering constraint is that it forces the stereo

correspondence to be b"ective. This result will not hold for cells near one another

'if allowance is made for measurement errors. Furthermore, there is some question

as to whether the ordering constraint is imposed on each half-correspondence

separately or on some type of unified correspondence? For human perception,

the correct answer depends on exactly how humans perceive examples such as

12Panum's limiting case. Previous authors seem to disagree as to whether such

examples involve one fixation or more than one fixation and I have seen no

definitive psychophysical evidence on this question.
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9. Conclusions

In this chapter, we have seen how to build a stereo matching algorithm using

the image matcher described 'in Chapter 5. The new stereo algorithm has been

implemented and results from this implementation are presented and dscussed

in Chapter 10 A control structure similar to that used in stereo matching could

also be used for motion analysis. Chapter 10 presents a brief example illustrating

how this might be done.

The results presented in Chapter 10 show that the new stereo algorithm can

match both natural and synthetic images robustly. There are two 'important

improvements over previous proposals. Fst, where there are abrupt changes in

disparities, the algorithm reconstructs disparities near the boundaries without

blurring. This 'is because the adaptive support neighborhoods, 'implemented via

a star-convexity requirement, do not cross abrupt changes in depth.

Secondly, the requirement that topological structure be preserved in matching

allows a more robust evaluation of whether two patches of image match and, if

so, how well. This aows the algorithm to search larger numbers of alignments

for matches, without becoming confused. In particular, the new algorithm can

handle vertical displacements between stereo images, which previous algorithms

of similar type have not been able to do. It has successfully fused images wth

vertical disparities of up to 16 cells and rotation of up to degrees.

The current stereo implementation is quite slow, taking multiple days to run

test images such as those shown in Chapter 10. This is due to a number of

factors. First, it is a parallel algorithm running on a serial machine. Secondly,

the mplementation was made modular, so that'even such items as the method

of 'Inducing boundaries from edge finder labels could be altered during exper-

imentation. Finally, the star-convex sum operation is quite slow. I am still
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experimenting with different ways to code this operation, including both varying

the paths used and varying the way in which the computation is done. Since

star-convex sum accounts for a major portion of the work in both the edge finder

and the stereo computations, optimizing its speed is an important issue for the

. line of research proposed in this thesis.



Chapter 7 Natural Language Semantics

1. Introduction

In the previous three chapters, we have seen how boundaries and topological

properties can be useful 'in low-level visual processing. Similar phenomena occur

also in other domains. For example, 'in visual analysis, we added boundaries

to 2D space to model sharp changes 'in intensity. In a smilar way, we can add

boundaries to 3D space in order to model sharp changes in material and we can

add boundaries to time in order to model sharp changes in what events are taking

place. In this chapter and the next one, we see how topological properties re-

appear in domains other than vsion. This chapter discusses data from natural

language semantics. Data from high-level reasoning domains will be dscussed in

Chapter .

In Chapter 3 we saw that sentences in English can be dvided into those that

describe states and those that describe actions. Actions can be further subdivided

into activities, accomplishments, and state changes. Which class of situation a

sentence describes is important 'in determining what types of verb forms (tense

and aspect) it can appear in, what types of temporal adverbs can occur in it,

and how it can be related to other sentences using temporal connectives such as

"when" and "until." The differences between dfferent classes of situations can

be characterized in terms of differences in topological structure. We also saw

that nouns seem to fall into similar classes.
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There are several reasons for presenting this linguistic data. The linguistic

phenomena are closely related to phenomena we will see later 'in the context of

high-level reasoning. Thus, the linguistic data provides additional context and

support for the analyses used in high-level reasoning. Describing the lnguistic

data using cellular topology allows lnguistic semantics to share a common for-

malism with other areas of artificial intelligence and it widens the coverage of

cellular topology. As I mentioned 'in Chapter 3 topological connectedness may be

useful in explaining the meaning of several constructions. Furthermore, the new

analysis avoids several technical problems encountered by previous researchers.

Sections 25 discuss the classification of situations (states and actions), models

for situations of different classes, syntactic and semantic tests for establishing

class, and how the class distinctions interact with tense and aspect distinctions

in English. We see that topological connectedness may be useful in explaining

the meaning of the perfect and progressive aspects. Section 6 dscusses a similar

classification for nouns and noun phrases.

In Sections 711 I discuss certain representational issues in detail. These

include constraints on the form of time and intervals over which actions occur

(Section 7 use of textures, scale, and support neighborhoods (Section 8), meth-

ods of modelling the dstinction between states and actions Section 9 methods

of modelling abrupt state changes (Section 10), and the relationship between

spatial boundedness of drect objects and temporal boundedness of verb phrases

(Section 11). Finally, Section 12 discusses the meanings of two temporal con-

nectives and how they interact with the topological models of different classes of

situations.
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2. Classes of stuations

A four-way classification of stuations has been used for some time in linguis-

tic semantics. This classification, due originally to Vendler 1967, chapter 4,

distinguishes four types of situations:

Activities: run, swim, drive a car

Accomplishments: build a house, do a problem set

States: be green, like mathematics, own a car

State changes.-I reach the finish line, find a free terminal

Similar classifications have been used by Ryle 1949), Taylor 1977), Dowty

(1979, chapter 2, Mourelatos 1981), and Allen 1984).2 Apparently the general

idea can be traced back to Aristotle. I use the term "actions" as a cover term

for activities, accomplishments, and state changes.

As Dowty 1979) discusses, this traditional classification subsumes several

types of distinctions. These include differences in temporal structure, agentive-

ness or lack of it, and a dstinction between predicates describing static situations

and those describing situations in which something changes over tme. Conflat-

ing these distinctions makes it difficult to establish a consistent set of defining

properties for the four classes. Because of this I use the four traditional classes

of situations only to refer to differences in temporal structure. Appendix C dis-

cusses two other types of distinctions, which I consider orthogonal to the issues

discussed here.

I am avoiding the traditional term achievement" because it is too easily con-
fused with "accomplishment."

2 Allen's work seems to fall somewhere between linguistic semantics and the
types of practical reasoning discussed in Chapter .
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model tme using a cell complex whose underly' the real number

line JR.3 This is illustrated in Figure 1. Tme is distinguished from the other

spaces we have seen in this thesis: there is an order defined on 'it. This order 'is

essential to distinguishing the past from the future, both for linguistic semantics

and for the practical reasoning that we will see in Chapter .

to* 9 0 0

Figure 1. Time 'is represented as a cell complex whose underlying space is a
(top). Two graphic representations of this cell complex are shown middle and
bottom).

Using this cellular model of time, I model the temporal structure of the four

types of situations as shown in Figure 2 A state describes the properties of

the world at a single cell in time. State changes describe an abrupt change

in properties, with associated boundary in tme, between two cells. Activities

describe the contents of a connected interval of time containing at least two cells.

Accomplishments describe the contents of a connected interval of time containing

at least two cells (like an activity), together with a state change at the end of

this 'interval and perhaps at the beginning of the 'interval as well.

A state or activity description mentions only a small 'Interval of time, but it

can also be used to describe longer intervals if each sub-interval of appropriate

size fits the description. So, for example, a description of "falling" might specify

3 This assumption can be relaxed to allow limited types of branching time. See
Section 7 1



Figure 2 Cellular topology models for the four types of situations. States de-
scribe the contents of a single cell and actions describe the contents of an 'interval.
These models specify the connected intervals over which situations occur, the lo-
cations of boundaries between these intervals, and whether each 'Interval consists
of only one cell, one or more cells, or at least two cells.

a change in height between two cells. This could be applied not only to a two-cell

interval, but also to a longer interval in which every adjacent pair of cells displays

a change in height. This is 'illustrated in Figure 3.

Figure 3 States and activities describe short intervals of time. They can also
describe longer intervals in which each sub-'nterval of appropriate size meets the
description.

It 'is also possible to provide pointwise versions of these situation models,

using the closed-edge model of boundaries. These are shown in Figure 4 They

differ from the cellwise models in representing state changes as consisting of two

points, rather than two cells. Because a reasoner must understand the world via
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finite-precision measurements, I use the cellwise models. Howeverl the discussion

in this chapter can easily be modified to use the ointwise models.

states

activities

actions state changes

V
accomplishments go�

Figure 4 Point-wise alternative models of situations. These are similar to the
models shown 'in Figure 3 but use sngle points in place of single cells. These
models require the closed-edge model of boundaries.

These models refer both to topological properties and to the cell structure

of space. However, the reference to cell structure is confined to dstinguishing

single cells from intervals containing more than one cell. The models of activities,

for example, does not specify how many cells must belong to its interval. I

do not make any claims about how these models should be represented in a

language understanding system. One might, for example, use an abstract interval

representation such as that described by Allen 1983, 1984). In this thesis, I am

concerned only with the temporal models underlying whatever representations

are used.

The models of states and activities are vague as to whether their interval

ends in a boundary. In building up a model of events from an English language

description, other considerations often force such a boundary to be constructed.

For example, in Sentence 1, the direct object forces4 the "eating" activity to end

after a finite period of time. By itself, eating" does not specify such a boundary.

4For details see Section 11.
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(1) The leopard ate a voung zebra.

Thus, the four types of stuations can be used to describe not only bare

verbs, such as "eating," but also verb phrases, such as "eat a young zebra," and

perhaps other types of constituents. For describing the meaning of more complex

linguistic constituents, a four-way taxonomy of situation types 'is unlikely to be

sufficient. I assume that they can be extended to a more flexible description

language as the data becomes better understood. The first step in understanding

the data well enough to design such a language is to build concrete models for

the meaning of particular examples.

There are a number of standard tests for which of the four classes a verb or

verb phrase belongs to. The most compact summary is given by Dowty 1979,

pp. 55-60 and p. 184). Most authors use similar sets of tests. A revised list of

tests is summarized in the following table:

Test

For an hour

In an hour

Take an hour

At 300

Stop

Finish

Almost

Present

Progressive

Perfect/Past

X-iong =:�. has X-ed

State

ok

bad

bad

ok

ok

bad

one

ok

bad

no end

n/a

Activity

ok

bad

bad

bad

ok

bad

one

bad

ok

end?

Achievement

bad

ok

State Change

bad

ok

ok ok

sometimes

ok

ok

two

bad

ok

end

ok

bad

bad

one

bad

sometimes

end

no or n/ayes no
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These tests distinguish the four types of situations from one another. I have left

out some of Dowty's tests that seemed dfficult to apply or that gave unclear

results.

In the next several sections, we see these tests 'in detail and I show how one

might explain the differences in behavior in terms of the cellular topology models

of stuations. Section 3 discusses those differences in behavior that do not involve

tense and aspect distinctions. The meaning of different tenses, and differences 'in

behavior related to them, are dscussed in Section 4 Finally, Section,5 discusses

the meaning of different aspects.

Sorting out examples of different situation classes is complicated because

a phrase that normally describes a situation of one class can sometimes be

interpreted as describing some other type of situation. I refer to these re-

interpretations as coercions, on analogy wth the term from programming lan-

guage design. Coercions frequently have some change in meaning associated with

them, such as interpreting an action as being repeated multiple times, but re-

quire no overt morphological change. Appendix D describes some common types

of coercions in detail.

3. Miscellaneous tests for verb class

In this section, I describe a number of tests for which type of situation a verb

phrase describes. These tests 'Include restrictions on the types of adverbs that

can modify verb phrases of dfferent types, as well as restrictions on what types

of verb phrases can be combined with "stop" and "finish." The behavior of each

type of situation n these tests can be accounted for using the cellular models of

situation types. In Sections 45, we see other differences in behavior, nvolving

tense and aspect distinctions.
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Various temporal adverbs place constraints on the types of situations they can

modify. For example, prepositional phrases headed by "for" expect the stuation

to fill up the specified 'Interval of time. Thus, situations that impose their own

natural endpoints are unacceptable, as are instantaneous state changes:

(2) Your cat was in the kitchen for twenty minutes.

(3) The aide shredded incriminating documents for hours.

(4) #Eric made a fresh pot of coffee for ten minutes.

(5) #Bonnie passed her area exam for a few hours.

Conversely, prepositional phrases headed by "in" require that the action impose

its own endpoint and thus states and activities are unacceptable:

(6) #Your cat was in the kitchen in twenty minutes.

(7) #The aide shredded incriminating documents in hours.

(8) Eric made a fresh pot of coffee 'in ten minutes.

(9) Bonnie passed her area exam in a few hours.

Sentences 67 can be made acceptable if the verb phrase can be construed as

referring to the start of the state or activity (so-called "inceptive" readings) .6

The construction "take an hour to V behaves similarly.

Prepositional phrases indicating very short amounts of time are unacceptable

with activities or accomplishments, if the action could not plausibly unfold in

that short an amount of time. The details vary with the action being discussed.

However, states and state changes seem to be acceptable, no matter how short

an amount of time the phrase picks out:

5 As mentioned in Chapter 3 I mark sentences with a hash mark (#) to indicate
that they are unacceptable, wthout making any claims as to whether the
problems are best regarded as syntactic, semantic, or pragmatic.

6 See Appendix D for further dscussion of this tvT)e of reinterpretation.
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(10) Your cat was in the kitchen at 300.

(11) The aide shredded incriminating documents at 300.

(12) ?Eric made a fresh pot of coffee at 300.

(13) The Simpsons built a house at 300.

(14) Bonnie passed her area exam at 300.

Again, activities may be acceptable if they can be coerced into an inceptive

reading. Since the length of time depends so much on the context, this test is

difficult to apply. I have added 'it to the standard Est because it 'is useful in

illustrating how these types of situations differ.

Words like "start" and "stop" are used to refer to the endpoints of an action

or state that happens over a non-trivial period of time. State changes cannot

occur as the complement of any of these words, as 'Illustrated in Sentences 15-18:

(15) Your cat stopped being in the kitchen.

(16) The aide stopped shredding incriminating documents.

(17) Eric stopped making a fresh pot of coffee.

(18) Bonnie stopped passing her area exam.

The unacceptability of state changes in such constructions may be due to the fact

that they last for only trivial amounts of time, the fact that they occur only with

difficulty in the progressive (see Section 5), and/or the fact that this construction

is used to create references to state changes and would thus be redundant applied

to a word that already refers to a state change.

When the word "stop" is used with an accomplishment, as 'in Sentence 17 it

indicates that the action was interrupted prior to reaching its natural endpoint.

The word "finish" is used when the action halts due to reaching its natural

endpoint. This restricts 'Its complement to being an accomplishment:
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(19) Your cat finished being 'in the kitchen.

(20) The aide finished shredding ncriminating documents.

(21) Eric finished making a fresh pot of coffee.

(22) #Bonnie finished passing her area exam.

Sentences 19-20 can become acceptable if some natural endpoint to the situation

can be imagined, e.g. if the aide stopped because his shift ended. Sentences like

22 and 18 can become acceptable 'if the state change is viewed as lasting for some

non-trivial amount of time or as being iterated many times.

Dowty notes another interesting test for achievements: they lead to two read-

ings in sentences containing the adverb "almost." Consider Sentences 23-26.-

(23) Your cat was almost in the ktchen.

(24) The ade almost shredded incriminating documents.

(25) Eric almost made a fresh pot of coffee.

(26) Bonnie almost passed her area exam.

Unlike the other sentences, Sentence 25 has two readings. Eric might not have

started the action at all or he ight have started the action but never finished

it.

4. Te nse

In Section 3 we saw that the type of a situation described by a verb phrase can

affect what types of modifiers can be added to it. Situations of dfferent classes

also interact differently with tense and aspect distinctions. In this section, I

describe how to model the meaning of tense distinctions in English. We see that

the present tense is confined to descriptions of states.

A sentence in English can appear in three different tense forms: past, present,

and future. These are illustrated by Sentences 27-29:



(27) Bruce loved mathematics.

(28) Bruce loves mathematics.

(29) Bruce will love mathematics.

The meaning of different tenses in English can be described in terms of the

temporal relationship between a reference interval during which the action or

state takes place and the moment of speech. A sentencein the past tense describes

a situation 'in which the reference 'Interval lies entirely before the moment of

speech, it is entirely after the moment of speech 'in a future tense sentence,

and it les entirely in the moment of speech in a present tense sentence. These

possibilities are illustrated in Figure .

past 0 0 0 0 0 C)

reference speech

present 0

speech = reference

future 0 Ob to )

speech reference

Figure 5. The relationship between the reference interval and the moment of
speech in a past tense sentence (top), a present tense sentence (middle), and a
future tense sentence (bottom).

The interesting feature of this model of the English tense system, proposed by

Wol'setschlaeger 1976) is that the moment of speech is conceived of as very small.

He models it as a single point. Within cellular topology, it is more appropriate

to use a single cell. Thus, the model of time 'is as shown in Figure 6 This

places a severe constraint on what can occur 'in the present tense. Because the
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reference interval must lie entirely within the moment of speech, it contains at

most a single ell. Snce the situation must occur during the reference interval

only states can occur in the present tense, because only states occur over a single

point.

PI 
New 0

the moment of speech

Figure 6 The model of tme used in the English tense system.

The prediction that only states occur in the present tense seems to be born

out by the data. Consider Sentences 30-37:

(30) Your cat was in the kitchen.

(31) Your cat will be in the kitchen.

(32) The aide shredded 'incriminating documents.

(33) The aide will shred incriminating documents.

(34) Eric made a fresh pot of coffee.

(35) Eric wll make a fresh pot of coffee.

(36) Bonnie passed her area exam.

(37) Bonnie will pass her area exam.

Sentences 30-31 describe a state, Sentences 32-33 describe an activity, Sen-

tences 34-35 describe an accomplishment, and Sentences 36-37 describe a state

change. All four types of situations occur in both past and future tense forms.

In the present tense, however, sentences describing actions are unacceptable,

as illustrated by Sentences 38-41:
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(38) Your cat is in the kitchen.

(39) The aide shreds icriminating documents.

(40) Eric makes a fresh pot of coffee.

(41) Bonnie passes her area exam.

More exactly, these sentences are unacceptable as descriptions of on-going events.

They are acceptable only if they are given a habitual reading. Such a reading

can be forced by adding appropriate adverbs, as in Sentence 42.

(42) Eric makes a fresh pot of coffee every day.

As I describe briefly 'in Appendix D, Woisetschlaeger 1976) argues that habitual

readings describe the structure of the world at a particular time, rather than

what is happening in the world during that time. These structual descriptions

are states.

States also differ from actions in the implications of a past tense form. A past

tense sentence describing a state, such as Sentence 43 1is neutral as to whether

the state continues into the present.

(43) Shimon was in Cambridge last month.

In this case, the reference 'interval is still located entirely before the present

moment. However, saying that the contents of the reference interval match the

description of some state does not imply that it is the maximal interval that

matches it.

The models for accomplishments and state changes, however, specifies a nat-

ural end to the action. If the contents of an interval match such a model, then

the action must have come to an end during that 'Interval. Thus, past tense sen-

tences describing accomplishments and state changes imply that the entire action

occured before the present moment. This is illustrated by Sentences 44-45:



the state the moment of speech

0 * 0 0 9 410 0 0 0

the action the moment of speech

Figure 7. The past tense form of a state description (top) does not imply that
the state has ended before the present moment, because t does not specify a
boundary at which the state must end. The past tense form of an accomplishment
(bottom) ends in a boundary. Thus, the accomplishment cannot continue into
the present.

(44) Mike made a pot of tea.

(45) George turned the light on.

Sentence 44 implies that the whole action of making the tea precedes the current

moment including at least some period in the past when the finished pot of tea

existed. Similarly, Sentence 45 'Implies that there was a period of tme before the

moment of speech when the light was on.

Activities are more problematic. If the sentence describes an activity, the

reference interval must contain a recognizable sample of the activity. The model

of activities suggests that past tense sentences describing activities, like those

describing states, should be able to continue into the present. There does seem

to be a contrast between activities and accomplishments. So, for example, en-

tence 46 seems acceptable, whereas Sentence 47 is clearly bad.

(46) Eric lectured all morning and, for all I know, he may still be lecturing.

(47) #Mike made a pot of tea and, for all I know, he is still making it.

I -- --- . -.-- 1-- ----- -1-1910111 I
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However, there seems to be some implication that an activity must have ended if
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it 'is described using a past tense form. Sentence 48, for example, seems to imply

that Anita has stopped running.

(48) Anita ran along the river.

In this section, we have seen how to model the meaning of tense distinctions

in English, using cellular topology. We have also seen how the model for d'f-

ferent. types of situations can be used to predict which tense forms are possible

and what they mean. In the next section, we see how this system can be ex-

tended to perfect and progressive aspect forms. This model for English tenses is

put together from the discussion in Dowty 1979), W61'setschlaeger 1976), and

Johnson 1981). It seems to be consistent wth their analyses, but I have had to

do some extrapolation to produce a ufied description. Comrie 1985) gives a

good pre-theoretical description of tense phenomena across different languages.

5. Aspect

Sentences 'in English vary not only in tense, but also 'in aspect. English has

four different aspect forms for each tense. For example, Sentence 49 has un-

marked aspect, Sentence 50 is progressive, Sentence 51 is perfect, and Sentence 52

is both perfect and progressive. 7

(49) Dan wrote hs thesis.

(50) Dan was writing his thesis.

(51) Dan had written his thesis.

(52) Dan had been writing his thesis.

7 More precisely, the two aspects are composed to form Sentence 52. The pro-
gressive aspect is applied first, i.e. more tightly bound to the verb. The other
poss'ble order of composition is forbidden as a side-effect of a general constraint
that rogressives cannot be formed from states, described later in this section.
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In this section, we see how to describe the meaning of perfect and progressive

forms. We also see that these constructions provide further tests for distinguish-

ing different classes of situations. We also see a potential use for topological

connectivity in describing the meaning of perfect forms.

The progressive aspect creates descriptions of states from descriptions of ac-

tions. This state is true of cells belonging to an 'interval over which the action

occurs. Compare Sentences 53 and 54:

(53) David read Koenderink's new book yesterday afternoon.

(54) David was reading Koendennk's new book yesterday afternoon.

The verb phrase "read Koenderink's new book" in Sentence 53 refers to the entire

action of reading the book. Thus, Sentence 53 implies that David finished the

whole book during the period specified by the phrase "yesterday afternoon." The

verb phrase "was reading Koenderink's new book," however, refers to only some

cell or cells during the period over which the action "read Koenderink's new

book" occured. Thus, Sentence 54, states that David read some of the book,

but perhaps not the whole thing, during "yesterday afternoon." This description

of the progressive has been proposed, with slight variations, by Taylor 1977),

Dowty 1979), Woisetschlaeger 1976), and Bennett and Partee 1978).

Because progressive forms describe states, they can occur in the present tense

and can take adverbials that refer to very short intervals of time. Thus, Sen-

tences 55-56 are acceptable, even though Sentences 57-58 are not.

(55) David 'is reading Koenderink's new book.

(56) David was reading Koenderink's new book at 300.

(57) #David reads Koendennk's new book.

(58) #David read Koenderink's new book at 300.
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Conversely, rogressives cannot be made from states, because such a form would

mean exactly the same thing as the oginal state. So, for example, Sentences 59

and 60 are unacceptable.

(59) Bruce is loving mathematics.

(60) Ian is being by the coffee machine.

Progressives can not, however, refer to any cell in the middle of a situation.

The progressive can only be used to describe a cell that belongs to a connected

interval of at least two cells during the situation. Figure shows which parts

of a situation the progressive form can refer to, for each of the four types of

situations. This restriction forces rogressives of accomplishments to refer only

to cells within the period before the final state change. For example, Sentence 61

is not acceptable if Mitch has finished writing the book, even recently.

(61) Mitch is writing a book.

Such a restriction 'is needed 'in my model, as 'in Johnson's 1981) model of ac-

complishments, because the model of an accomplishment includes some points

after the state change. Other authors e.g. Allen 1984) have proposed models of

achievements that only 'include points in the main activity part of the achieve-

ment. These systems, however, have difficulty modelling state changes.

This restriction on progressive forms prohibits rogressives of sharp changes.

So, for example, Sentence 62 is not acceptable.

(62) Bonnie 'is passing her area exam.

(63) King Hamelbar was dying.

In some cases, as in Sentence 63, the state change can be interpreted as taking an

extended amount of tme, as illustrated 'in Figure 9 In these cases, a progressive



states 0. .. O

activities OW voo

state changes

accomplishments `%:oo

Figure S. Progressive forms can only refer to cells in a situation that belong to
a connected interval of non-trivial length. The shaded cells indicate the parts of
each type of situation that the progressive can refer to.

form is possible. The stuation described by Sentence 62 is one for which such

a re-interpretation does not seem plausible, on pragmatic grounds. Appendix D

describes other examples of re-interpretations, including conditions under which

Progressives can be made from verb phrases that normally describe states.

0 oil

Figure 9 A representation for the action in Sentence 63. The shaded cells can
be referred to using a progressive form.

The progressive form can be used even if the action has not yet occured as

in Sentence 64 or even if it may not ever occur, as in Sentence 65.

(64) Dan is making a pot of decaf coffee.

(65) Pierre Curie was crossing the street when he was killed.
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To use the progressive form, it is sufficient that the speaker have some reason
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for vewing the on-going activity as a partial instance of this action. As Dowty

(1979) and Wol'setschlaeger 1976) point out, this is similar to descriptions of

partial objects. For example, I can refer to several pages of typescript as "Part

of my thesis," even if the thesis does not yet exist (and might never exist, for all

I know).

Sentences 66-69 'illustrate perfect aspect forms of verb phrases, for the four

types of situations.

(66) Toma's has been in hs office.

(67) Anita has run.

(68) Eric has made a fresh pot of coffee.

(69) Bonnie has passed her area exam.

Like the progressive aspect, the perfect aspect makes descriptions of states from

descriptions of various types of situations. However, the perfect picks out cells

in an interval 'immediately after the action, rather than cells during the action,

as shown in Figure 10. Thus, the perfect relates the situation to the moment of

speech only indirectly.

The perfect also occurs in future and past tense forms, as in Sentences 70-72.

(70) James has tumed the light on.

(71) James had turned the light on.

(72) James will have turned the light on.

Figure 11 shows the relationship between the state or action, the reference 'in-

terval, and the moment of speech for these three forms. Perfect forms can also

be made from rogressives, as illustrated by Sentence 73. (Progressives of per-

fects are forbidden by the general restriction against creating rogressives from

states.)
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Figure 10. The cells that can be referred to by the perfect aspect are shaded.
These cells must occur after the situation described by the verb. Furthermore,
no boundary relevant to the current context can intervene between the end of
the stuation and the cell that the perfect refers to.

(73) Dan has been playing Go for four hours.

The meaning of the perfect form, however, cannot be accounted for solely

in terms of the temporal relationship between the action or state, the reference

interval, and the moment of speech. There is an additional requirement, tradi-

tionally expressed (Comrie 1976) by saying that the action must be "relevant" to

whatever is happening at the moment of speech. Following Johnson 1981) and

Woisetschlaeger 1976) I reformulate the constraint as a requirement that some

result of the action or the state persist until the moment of speech. This persis-

tence seems to involve both a requirement that the two are causally connected
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Figure 11. The perfect form specifies a relationship between the situation and
the reference 'interval. Snce the tense of the sentence constraints the temporal
ordering of the reference interval and the moment of speech, the perfect indirectly
imposes constraints on the relationship between the stuation and the moment
of speech.

and also a requirement that the intervals of time be connected.

Consider Sentences 74-78.-

(74) Your cat has been in the kitchen.

(75) Eric has been making a fresh pot of coffee.

(76) Anita has run for two hours.

(77) William has lost his term paper.

(78) James has turned the light on.
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The cell described by the perfect form is required to be connected to the end of the



246

situation described by the verb.8 According to cellular topology, this means that

no boundary relevant to the properties under consideration can intervene between

the situation and the cell. What properties are under consideration depends on

the context in which the sentences is used, and thus the exact interpretation of

perfect forms 'is very sensitive to the context.

State changes and accomplishments specify a dstinctive result state that

holds for the last cell in the action. This state may persist for some time and

the perfect form is usually 'interpreted to refer to a cell during this period of

persistence. Thus, Sentence 78 would typically imply that the lght is still on.

Other 'interpretations, however, are possible. If, for example, James is a young

child, Sentence 78 might imply that James has learned to turn on lights by himself

and make no committment as to the current state of the light.

For states and activities, one possible interpretation of perfect forms is that

the state or activity continues through to the cell to which the perfect refers. So,

for example, Sentence 74 could imply that the cat is still in the kitchen. However,

'it could also be used if the cat is no longer 'in the kitchen but its former presence

in the kitchen had created some effect that has persisted up to the present. For

example, it may have left tongue prints in the butter.

Persistence of consequences is very important to practical reasoning algo-

rithms, such as those described in Chapter (see, in particular, McDermott

1982). Suppose that I am thinking about getting coffee and someone tells me

Sentence 79.

(79) Eric made a fresh pot of coffee.

(80) Eric has made a fresh pot of coffee.

8 In the case of perfect progressive forms, this is the situation described by the
progressive form.
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This does not guaranteed that any coffee 'is left, because it might have been

consumed already. However, if the speaker knows my intentions and tells me

Sentence 80, he indicates not only that the coffee was made, but also that some

of it is still around.

For accomplishments, the perfect and the progressive forms pck out disjoint

sets of cells. Cells described by the progressive must precede the state change

and cells described by the progressive must follow it. Thus Sentence 81 and

Sentence 82 cannot both be acceptable statements, if uttered at the same tme,

unless they refer to different actions.

(81) Eric is making a fresh pot of coffee.

(82) Eric has made a fresh pot of coffee.

Sentences 83 and 84, however, can refer to the same action, though different

subsections of it.

(83) The aide is shredding incriminating documents.

(84) The aide has shredded incriminating documents.

This is another test for distinguishing accomplishments from activities.9

The line of analysis that I present is common to a number of recent authors.

Most of the phenomena described in this section are not specific to English, but

occur also in other languages (see, for example, Johnson 1981, Anderson 1982,

Li, Thompson, and Thompson 1982). The idea of using a reference time in

explaining perfect forms dates back to Reichenbach 1947, pp. 287-298), though

the details of his analysis have been modified by later researchers. In addition

to the authors specifically cted in this section, Comrie 1976, 1985) provides a

This test is traditionally stated, e.g. by Dowtv 1979), in the following form:
Sentence 83 entails Sentence 84, but Sentence 81 does not entail Sentence 82.
However, the entailment for activities is only true 'if the activity has gone on
long enough that a recognizable section of it has already occured.
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clear overview of tense and aspect phenomena 'in a variety of languages and Bruce

(1972) uses Reichenbach's representation to model tense and aspect dstinctions

for a reasoning program.

6. Classes of nouns

Nouns and noun phrases in English exhibit patterns of behavior similar to

those of verbs and verb phrases. They appear in two difference classes, distin-

guished by their syntactic behavior. The derences seem parallel to the dis-

tinction between states and activities on the one hand and accomplishments and

state changes on the other.

English nouns and noun phrases come 'in two basic types:

Objects: pear, mouse, hammock, computer

Stuffs: sand, rice, metal, wine

Nouns that typically refer to objects are known as count nouns and those that

typically refer to types of stuff are known as mass nouns.

Count nouns can be distinguished from mass nouns by a number of syntactic

tests. First, mass nouns can occur with the definite article, but not with the

indefinite article:

the the pencil the wine

a a pencil #a. wine

plural pencils #wines

The noun phrase "a wine" can be made acceptable, but only if it is construed

as referring to a type of a wine. Furthermore, count nouns can occur in plural

forms and mass nouns cannot. Again, if a mass noun is re-interpreted as the

name of a kind, plural forms like "wines" become acceptable.
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-Mass nouns, but not count nouns, can appear with the determiner "some"

(the unstressed version) or "more." They can also appear with measure phrases,

such as "a cup of X." This 'is shown in the following table:

some #some pencil some wine some pencils

more #more pencil more wine more pencils

measure #a cup of pencil a cup of wine a cup of pencils

In these constructions, plurals of count nouns behave like mass nouns. Thus, one

could consider that the plural makes stuffs out of ob'ects. This analysis seems to

be consistent with Carlson's (1977ab) analysis of both plurals and mass terms

as names of kinds. Measures, such as "a cup of X," have the opposite effect: they

make count noun phrases out of mass nouns.

I model nouns as describing the contents of connected sets of cells in 2D or D

space, time, or abstract spaces.10 Count nouns describe sets of cells partially"

12or totally surrounded by topological boundaries. Mass nouns describe sets of

cells without making any claims about boundaries. Thus, mass nouns are similar

to states and activities, whereas count nouns are similar to accomplishments and

state changes. This point has been noticed by a number of previous researchers,

including Langacker 1987), Tenny 1987), Mourelatos 1981), and Bach 1986).

The use of topological boundaries proposed here 'is a formalization of Langacker's

"bounding" and Tenny's 'delimiting"

In English, nouns are only classified 'into two groups. Other languages make

finer grammatical distinctions among nouns. Depending on the class of the noun,

10For detailed dscussion of abstract spaces, see Jackendoff 1983).
"I do not rule out objects such as ifinitely long wires.
12 Certain count nouns such as "edges," are confined to representing an area of

minimal size next to a boundary, like state changes across time. This parallel,
while interesting, seems not to be linguistically relevant.
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different classifiers may have to be attached to numerals, determiners, or verbs

occuring with the noun. Many types of features can be used to establish noun

classes, including approximate shape, animacy, arrangement, and material qual-

ities (such as rigidity). (See Allan 1977) for a survey of noun classification

systems.) Some of these classifications of objects may be analogous to the clas-

sification of actions presented in this section. Classification of actions, however,

is limited by the fact that ID shape differences are not very interesting.

T. Modelling time and 'intervals

In previous sections, I have used as a model for time and I have repre-

sented actions using bounded, connected 'intervals of time. Furthermore, cellular

topology constrains how tme can be divided up 'Into intervals. In this section,

I re-examine these representational choices, show how branching models of time

can be accomodated, and discuss why the constraints on the form of intervals

make sense.

As we saw in Section 2 I model time using a cellular representation of Rn.

Some researchers in linguistic semantics, e.g. Dowty 1979), have advocated

models 'in which time branches towards the future, as shown in Figure 12. Similar

proposals also appear 'in some models of high-level planning (McDermott 1982).

These models allow alternative possible sequences of events to be modelled in

one representation of time. One ight also want to use models of time that split

and merge, to represent worlds that dffer in some sequence of events, but then

come to be the same again (at least as far as the reasoner is concerned). In this

thesis, I am not going to take a stand on whether this is a useful idea or not. At

the moment, there seem to be no compelling arguments for or against it.

Branching time models can be created in cellular topology, so long as the
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Figure 12. Time mght branch (top) or split and merge (middle). In either case,
infinitely many branches could join at a single point in a cellular model, but the
branch points cannot be 'Infinitely dense in tme (bottom).

branch points are not infinitely dense in time, as shown in Figure 12. One way

to produce ifinitely dense branch points would be to model uncertainty in the

length of an event by many branches in the time line. For such cases, however, 'it

may be more effective to construct only one model for each qualitatively different

sequence of events. The length of an interval could be modelled as a property

associated with 'it, and lack of precision in length modelled just like lack of

precision in a numerical property value. In cellular models, it is possible for

infinitely many branches to join at a branch point, though it is unclear whether

a reasoner should ever create such a model.

Many researchers in natural language semantics and hgh-level reasoning seem

to agree that actions must be represented as descriptions of contents of intervals,

rather than descriptions of properties of points. The exact status of "intervals" in

the formal theory varies from researcher to researcher. Some researchers model
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them as primitives in so-called "interval logics" (e.g. Allen 1984) and some

researchers define them as subsets of the real line (e.g. Taylor 1977, Bennett and

Partee 1978). Certain researchers in reasoning (e.g. McDermott 1982, Shoham

1987ab) define them as pairs of points in the real line.

I define an interval in a cellular model of time is a set of cells wth no gaps.

That is, it must be connected as a subset of empty tme." Depending on the

context, I also use the word to refer to the underlying space that is the union of

these (closed) cells. Thus, when no topological boundaries are present, intervals

are closed intervals of the real line whose endpoints happen to fall at cell bound-

aries. Thus, adjacent 'intervals overlap at their common boundary point. When

topological boundaries are present, adjacent intervals do not overlap, using either

of the two models of boundaries described in Chapter 2.

Interval-based models make two claims about the representation of situations.

First, verbs and verb phrases describe the contents of an interval as a whole, not

the state of the world at each point in it. For example, Sentence 85 describes a

situationin which the world changes over time according to some specific pattern.

(85) John repaired his car's brakes.

Thus, in order to decide whether Sentence 85 is an acceptable description of a

course of events, one must examine the state of the world at many moments 'in
time not 'ust one.

I J

The second claim made by interval-based models 'is that situations occur

without interruptions. As many authors have observed, there are many apparent

counter-examples to this. For example, the activities implied by Sentence 5

can occur in two disconnected stretches of tme. John mght have first taken

13 Itmaynot be connected in the actual model of time, because state changes
may impose boundaries that 'interrupt its connectivity.
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the brakes apart in subinterval A, then eaten lunch in subinterval BI then put

the brakes back together in subinterval C However, even when the action 'is

fragmented, the speaker must still assume responsibility14 for an nterval time

without gaps, because he 'is making a claim not only about the pieces of action,

but also about the non-relevance of what happens during any gaps 'in the action.

Since eating lunch is not relevant to the action, it forms an acceptable gap.

action with gap #0 3
4W j 46 la

A: take apart C: reassemble

acceptable filling 3% a

A: take apart B: lunch C: reassemble

unacceptable filling IC ft
L as

A: take apart B2: drive C: reassemble

Bl: reassemble B3: take apart

Figure 13. Acceptable and unacceptable gaps in actions.

Suppose, however, that instead of eating lunch during B, John put the brakes

back together during B1, drove the car around during B2, and took them back

apart during B3, as 'illustrated in Figure 14. Sentence 85 could then be applied

to the union of A and B1, or to the union of B3 and C, but it would seem odd

applied to the union of A, B, and C, because John has actually fixed his brakes

twice during that time. The rationale behind this may be that the speaker is

making a claim about the causal structure of the sequence of events, in addition

to the claim about their temporal structure. Since causation 'is typically viewed

as flowing along connected paths in both space and tme, verifying a causally

connected sequence of events requires examining a moments in a connected

14The phrase is borrowed from Wol'setschaeger's analysis of the perfect aspect.
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stretch of time.

As we saw in Chapter 2 cellular topology places constraints on the form of

intervals of time used in modelling situations. Cellular models whose underlying

space is homeomorphic to the real number line can only divide any bounded

region of time into finitely many cells. Thus, if intervals are defined as sets of cells,

an interval cannot contain 'Isolated points. Furthermore since boundaries can

only be placed between cells, only a finite number of sharp changes in properties

are permitted 'in any bounded region of time. This makes it impossible to describe

situations such as a property true only on the rational numbers or only on the

Cantor set. Such situations are not required in modelling the meaning of natural

language sentences.15

In the models of situations presented in this chapter, I have assumed that

each description specifies only a bounded 'interval during which the action or

state occurs. I think that this is a reasonable model of the meaning of verb

phrases. However, models of situations described by verb phrases must also

include intervals that are unbounded, as in Sentence 86.

(86) The universe has always existed.

These sentences could be represented using a description of a bounded interval

of time, together with a quantifier implying that every bounded interval in some

range (in this case, prior to the present moment) fits this description.

8. Texture, scale, and support neighborhoods

The models presented in previous sections abstract away from the internal

detail in actions. We have seen that this abstraction 'is useful in explaining

15At least, not sentences wthout overt quantifiers. It may be possible to imply
these types of stuations using explicit quantification, but I doubt that concrete
models are appropriate in these cases.
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how the linguistic data works. However, previous researchers in lnguistics and

philosophy (e.g. Dowty 1979, Taylor 1977, Kamp 1979) have been dsturbed

about how this abstraction could be done. Examples that cause problems occur

in several forms: gaps, multiple resolutions, and textured activities. However,

these examples are exactly like phenomena that occur also in computer vision.

Although we do not fully understand how to solve these problems in computer

vision, the insights from this field may be helpful in understanding how sequences

of events could be parsed into the correct form for linguistic analysis.

First, as we saw in Section 7 gaps can occur during the course of an action.

If the gaps do not affect the flow of the action and are small enough, they are

often ignored by speakers. Gap filling, of one sort or another, must be done at

all levels of vsual analysis. Edge finders must attempt to reconstruct connected

stretches of boundary. Shape analysis programs must reconstruct regions whose

boundaries have been broken up by attachments or cut-outs. Ob'ect recognition

programs must be able to identify and ignore regions due to specular reflections

or surface markings.

Secondly, a given sequence of events can be described 'in multiple ways, par-

ticularly at dfferent levels of resolution. For example, the single action described

by Sentence 87 could also be described by the several sentences given 'in 88.

(87) Phil made breakfast.

(88) Phil took two eggs out of the fridge. Then he found the frying pan,

This, again, is familiar from vision. Only under artificial conditions (such as

industrial environments) 'is there a single preferred scale of representation for any

situation. For example, the output of the edge finder and the stereo algorithm

described 'in Chapters 46 comes at a variety of different resolutions, depending

on how finely the image is sampled.
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Finally, activities described by natural language sentences often involve inter-

nal texture. For example, the action of "walking" involves a periodic pattern of

movements of the legs. As Taylor 1977) points out, smilar examples also occur

in representing the meaning of mass nouns describing the material composition

of different types of stuff. For example, "sand" consists of a texture of small

roundish bits of mineral and "fruitcake" contains small pieces of dried fruit em-

bedded in a background of cake. The crucial observation made bv Taylor is that

a point (or cell in my formalism) belongs to a region of "walking" or fruitcake"

if it is part of an interval that displays the required texture. This interval to

which the point must belong 'is exactly like the support regions used in the stereo

and texture algorithms.

Interestingly, researchers analyzing the linguistic data seem to have had less

trouble with one point than researchers in computer vision. Because of the

quantifier-logic approach used in linguistic semantics, researchers such as Taylor

allow properties such as "walking" to be true at a point 'if it belongs to any

interval that displays the required pattern. With rare exceptions (such as Tich'

1985), they do not assume that this interval must be centered about the point of

interest. Thus, the formulations made by linguistic researchers are a close match

to the way I formulated the requirements for stereo and texture support regions

in Chapter 5. The formulations typically used in computer vision involving

centered support regions, may be an artifact of the practical problems involved

in designing algorithms to compute non-centered ones.

9. Modelling the state/action distinction

The models of stuations provided by cellular topology avoid certain technical

problems that previous researchers have encountered. The next three sections
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discuss the details of these problems. This section discusses how to model the

distinction between states and actions. Section 10 discusses how to model sharp

state changes and Section 11 discusses how to account for the fact that spa-

tial boundedness of direct ob'ects can imply temporal boundedness of the verb

phrases containing them.

The distinction between states and actions is linguistically important. As

we saw in Sections 45, the constraints on different tense and aspect forms af-

fect states and actions differently. State changes and achievements are easy to

distinguish from states, because they contain a dstinctive boundary. Activi-

ties, however, closely resemble states semantically. The method I have ued in

previous sections for distinguishing states from actions can be stated as follows:

Cellwise proposal:

A state is a description that can be verified for 'Individual cells.

An action is a description that can only be verified for intervals containing

at least two dstinct cells.

Two other types of proposal have been put forth recently, the pointwise proposa'l

and the interval axiom proposal. The pointwise proposal is similar to my cellwise

proposal and is also capable of accounting for the relevant lingwstic data. The

interval axiom proposal, on the other hand, seems to be inadequate.

The second option, suggested by Taylor 1977), Dowty 1979), and Tenny

(1987), can be stated as follows:

Pointwise proposal:

A state is a description that is true of individual points.

An action is a description that is only true of intervals.

Dowty and Taylor find it necessary to stipulate that the interval over which an
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action holds must be larger than a single point, because they allow isolated points

to be intervals. Since intervals in cellular topology are sets of cells, they cannot

consist of 'ust a single point. Thus, I need not state this condition explicitly.

Both the pointwise proposal and the ellwise proposal express a common idea.

Verifying that an action has occured requires at least two dstinct measurements.

For example, to verify that a rock 'is alling, we must observe some change in the

height of the rock over time. In either case, data from two distinct moments

of time must be considered. Many actions, such as "fixing the car's brakes,"

require more extended sets of observations I use the cellwise proposal, because

the pointwise proposal 'is unusable for practical purposes. Real measurements,

machine or biological, can only pin down the state of the world over a period

of time that has finite width. They cannot sample its state at infirlitely small

points.

In the interval axiom proposal, states are distinguished from actions by ax-

ion-is describing relationships between truth over 'intervals of different sizes. For

example, Allen 1984) proposes:

Interval axiom proposal for distinguishing states from actions:

Both states and actions are descriptions of intervals.

If a state is true of an interval7it is true of all of its subintervals.

If an action is true of an interval, it may not be true of all of its subinter-

vals.

Shoham (1987b) assumes a sirm'lar approach to classifying situations and counter-

examples to this axiom as an argument for a finer classification. This may work

for reasoning, but not for explaining the linguistic data.

The difficulty with the 'Interval axiom proposal is that it mis-classifies verbs

such as "falling" and "standing" as states, because they meet the sub-interval
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conditions. The standard syntactic tests for situation type, however, classify

these verbs as activities. For example, as Sentences 89-90 illustrate, they can

occur in the progressive. Similarly, simple present tense forms of these verbs

have habitual meaning, as in Sentences 91-92.

(89) The shuttle was falling towards the earth.

(90) Marvin was standing in the playroom.

(91) #The shuttle falls towards the earth.

(92) #Marvin stands in the playroom.

The cellwise and pointwise proposals correctly classify these verbs as describ-

ing activities. It may seem strange that static stuations such as "standing"

should be described as activities. However, consider what it takes to verify that

Sentence 90 is true. It is not true if Marvin merely passes through a standing

position 'in the course of some gymnastic maneuver, without stopping. In order

to be standing, he must remain in a standing position for some non-negligible

(though perhaps short) length of time (Dowty 1979, pp. 176-177). Similarly, as

someone once pointed out at an AI lab lunch, the traffic police wll not consider

that you have stopped at a stop sign just because the velocity of the car passes

through zero. Coming up to the sign, reversing abruptly, then switching into

forward abruptly and driving past the sign is not legal. A legal stop requires a

noticable stretch of zero velocity.16

Interval axiom proposals have also been used to dstinguish states and activ-
ities on the one hand from accomplishments and state changes, on the other.

I I

This can be stated as follows:

Interval axiom proposal for distinguishing states and activities from

16No matter what the usually do 'in Boston.y I
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0accomplishments and state changes

If a state or activity 'is true of two 'intervals, 'it is true of their union.

If an accomplishment or state change is true of two intervals, it is not

necessarily true of their union.

Tenny 1987) attributes this statement of the distinction to Hinrichs. It also

appears in discussions of the count/mass distinction for nouns (see Bach 1986

and op. cit.). This categorization clearly holds for states, because they refer to

only single cells at a time. For textured activities, such as "waltzing," it need

not hold, because there might be a mis-match in the pattern if the two 'Intervals

touch without overlapping.

The second clause of this second interval axiom proposal is often formulated

as requiring that the union of two accomplishments or state changes cannot be

an accomplishment or state change. This is too strong, both for the spatial and

temporal domains. As someone once pointed out, there exist tables that link to-

gether into larger tables. Similarly, certain accomplishments can be concatenated

into larger accomplishments of the same type, as 'illustrated by Sentence 92.17

(93) The robot travelled an even number of miles.

10. Representing sharp changes

A second problem in modelling actions is how to model abrupt changes 'in

properties, such as those that occur in accomplishments and state changes. For

example, in Sentence 94, we have a period of time in which Bonnie has not yet

passed her exam, followed immediately by a period of time 'in which Bonnie has

passed her exam.

17 This example is due to Shoham (1987ab), but he uses it in a different context.



(94) Bonnie passed her area exam.

In cellular topology, we can model this situation by putting a boundary in time.

Depending on which of the two models of boundaries 'is used, we get one of the

two situations shown in Figure 14.

*

Figure 14. An abrupt change 'is modelled in cellular topology by adding a bound-
ary to time, between two cells (top). This corresponds to two possible infinite-
resolution models iddle and bottom), depending on which model of boundaries
is used.

If time is modelled using the real numbers, there are four ways in which

this situation could be modelled, shown in Figure 15. The point at the common

boundary of the two periods could be assigned to the first period, or to the second

period, or to both, or to neither. There are difficulties with all four methods of

modelling this situation. The option in which the two periods overlap claims that

there is a moment at which Bonnie has both passed and not passed her exam,

which is a contradiction. If the point belongs to neither period, then there is a

moment at which Bonnie has neither passed her exam nor not passed her exam.

The two asymmetrical options avoid problems with property values at ind'-

vidual points. However, there is no principled reason for choosing between them.

It is possible to invent ad hoe rules for doing this assignment for intervals of time,

e.g. always assign the point to the preceding interval. However, we will see in

261
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Figure 15. There are four ways of modelling an abrupt change in a. The common
boundary point can ether be assigned to one of the two intervals, both, or neither.

Chapter that the asymmetrical solutions extend poorly to 2D and 3D spatial

examples.

A second problem wth these models is that, to account for the lnguistic data,

state changes should occur over the minimal interval of time that contains at least

one point from each of the two periods (Dowty 1979). If any 'interval containing

a stretch of one state and then a stretch of the other state were considered an

instance of the state change, then Sentence 95 should be acceptable.

(95) #Bonnie passed her area exam from 300 to 5:00.

Also the constraint that state changes occupy intervals of minimal size was used

in Section to explain why rogressives forms of many state changes are not

acceptable. Both of these arguments hold not only for state changes, but also

for accomplishments, which end in state changes.

There are two ways to construct inimal intervals for state changes in cellular

topology. First, the mnimal interval could be defined to be an 'interval consisting

of exactly two cells, one on each side of the state change, as in the models used



throughout this chapter. Secondly, 'if the closed-edge model of boundaries is used,

the minimal interval could be taken to contain the adjacent endpoints of these

two cells. (This cannot be done with the open-edge model of boundaries.) These

options are 'illustrated in Figure 16. Full point-wise models of different types of

situations were shown in Figure 3.

-.Now

two cells

two points

Figure 16. Two ways of finding a "minimal" interval for a state change 'in cellular
topology.

Neither method of modelling state changes is available if time is modelled as

IR, without cell structure. Under any of the four models, one of the two 'intervals

is open-ended at the state change. Thus, no matter what interval about the state

change 'is chosen, there is always a smaller interval that still includes points from

both periods. Wthout the cell structure, there 'is no natural definition of a finite

"minimal" size for an interval.

A final weakness of models based on segmenting the real lne is that they

do not explain why otherwise continuous functions should have sharp changes in

value at these locations. As we saw 'in Chapter 2 because boundaries in cellular

topology change the topological structure of space, continuous functions are al-

lowed to have abrupt changes in value across boundaries. If events are modelled

263
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by segmenting IR wthout changing its topology, it is unclear how to explain the

abrupt changes in property values. Function continuity has not received much

attention in the linguistic literature, but it is vital to the algorithms for reasoning

about events over time that I discuss in Chapter .

I think that many researchers in this area are aware of these problems 'in

modelling state changes, though they are not often clearly expressed. Particu-

larly clear discussions of the problem with property values have been provided

by Kamp 1979)18 and Hamblin 1972). Perhaps to avoid the minimal interval

problem, Allen 1984) represents state changes as occuring over an interval abut-

ting the boundary from one side. However, he specifies no principled way for

deciding which side of the boundary to choose. Nor is it clear how to account for

the distinction between activities and accomplishments or other aspects of the

meaning and syntactic behavior of verbs using such a model.

11. Cornbining verbs and objects

As we have seen in previous sections, the class of a verb phrase is determined

not only by the verb but also by any direct object or other arguments 19 associated

with it. So, for example, Sentence 96 describes an activity, whereas Sentence 97

describes an accomplishment.

(96) Eve ate fruit.

(97) Eve ate an apple.

According to Tenny's 1987) analysis, this change occurs because the verb "eat"

implies a progressive change in the object described by its direct object. Since

the mass noun in Sentence 96 places no limits on the amount of stuff it represents,

18 Intellectually clear, but difficult to read.
19 Perhaps only of restricted syntactic types, see Tenny 1987).
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the action described by that sentence could continue indefinitely. However, since

the object in Sentence 97 represents only a bounded amount of stuff, 'it must all

be consumed in a bounded amount of time.

Tenny's analysis only works if a process changing the value of a property must

reach a finite limit point in fnitely much time. This is not true for standard

models of tme and processes. For example, Eve might have eaten smaller and

smaller bits of the apple as time went on, so that the apple was never completely

consumed.20 However, as we saw in Chapter 2 this type of undesirable behavior

cannot occur with digitized models. After the amount of apple gets small enough,

a reasoner working from real measurements will be unable to distinguish it from

zero. When that happens, the reasoner must treat the apple as completely gone.

Alternatively, if Eve's rate of eating slows down enough, the reasoner wn not be

able to dstinguish it from not eating. In that case, the reasoner must treat her

as having stopped. One of these two things must happen after a finite period of

time.

Thus, using cellular models, we can provide an accurate explanation for how

boundedness of direct objects can imply boundedness of the action carried out

on them. This explanation does not depend on explicitly using full digitized

representations of actions or ob'ects in analyzing natural language. It is sufficient

to limit the reasoning system to situations that can in principle be given such

a digitized model. The consequence of this limitation, that bounded objects can

imply bounded actions, could be manipulated as an axiom about behavior of

actions over 'Intervals. Examples similar to this occur in high-level reasoning, as

we will see in Chapter .

This type of pattern only appears when the verb and the direct object have
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appropriate types of meaning. The direct object must be not only a count noun,

but one representing a bounded object. For example, Sentence 98 seems plausible

if one magines a cable of infinite length:

(98) We reeled 'in the cable for two hours.

The verb must describe some pattern of progressive hange to the drect object.

Verbs that describe a bounded temporal pattern, regardless of the direct object,

do not exhibit these contrasts. For example, Sentences 99 and 100 both describe

accomplishments:

(99) The miner struck oil.

(100) The mner struck a rock.

Nouns describing patterns of events over time can also cause changes in verb

class. For example, Sentence 101 describes an activity, whereas Sentence 102

desen'bes'an accomplishment:

(101) We sang for three hours.

(102) We sang Handel's Messiah in ten minutes.

Tenny 1987) 'interprets these examples as instances of progressive change 'in the

direct object, but I do not find her discussion convincing.

In combination with verbs, plurals behave smilarly to mass nouns. So, for

example, Sentence 103 describes an accomplishment whereas Sentence 104 de-

scribes an activity:

(103) Ian compiled a program.

(104) Ian compiled programs.

Plurals can also be used to create activities out of verbs that do not normally

describe activities (and often cannot take mass noun arguments), as in Sen-

tences 105-106:
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(105) Phil killed roaches for twenty minutes.

(106) Markus did problem sets all term.

Such a pattern of iterated copies of an accomplishment or a state change has no

natural endpoint and thus behaves as an activity.

12. Action connectivity and models of temporal connectives

In previous sections, I have only discussed single, 'isolated descriptions of

actions and states. However, it is also possible to express temporal relationships

between pairs of actions, using connectives such as when",-

(107) The ade shredded documents when I was in the room.

In extended discourse, the order of descriptions also determines a default 'inter-

pretation for their temporal relationship. In this section, I sketch a few examples

of these ways of specifying temporal relationships between situations. My ac-

count of the meaning of temporal connectives, and discourse sequence 'is based

largely on Heinamaki 1978), Dowty 1986), and Hinrichs 1986).

The model of actions presented in previous sections described actions as oc-

curing over a connected interval, flanked by boundaries. So far, we have discussed

connectivity only for one isolated action. If this is really a correct representation

of the topology of an action, we would expect that when temporal relationships

are specified between two actions, the composite description should preserve the

topology of each action. That is, either the two actions should not overlap or

they should place boundaries 'in the same locations within the overlap region.

Such a restriction on relationships between actions should be most vsible for

accomplishments and state changes. As mentioned in Section 4 tensed sentences

describing activities do imply that the activity ends at boundaries. However,
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since the activity itself does not specify what these boundaries are, it can use

boundaries suggested by the context, even when these boundaries do not reflect

the starting and stopping points of the activity. In fact, sentences describing

activities do not usually occur 'in the simple aspect. If they are not transformed

into an accomplishment by a measure phrase or other means, they typically occur

in the progressive.

Unlike actions, states do not 'impose any boundaries. Thus they cannot in-

terrupt the connectivity of any actions they mght overlap. Furthermore, since

states can be verified for arbitrarily small intervals (or points), they can be freely

interrupted by boundaries. Therefore, there should be a difference in behavior

between the overlaps of two actions, which are heavily constrained, and overlaps

between states and actions, or states and states, which are relatively uncon-

strained.

These two patterns of behavior can be illustrated by the behavior of the

temporal connective "when". This word seems to have two readings:

when X, Y

causal: X directly causes Y.

overlapping: X and Y both occur over some common 'Interval.

These two readings are iustrated by Sentences 108-109:

(108) When his new car blew up, Mitch complained to the dealer.

(109) David was in the ktchen when I was making dinner.

The restrictions on these two types of readings are somewhat different, so I

consider them separately.

The causal reading of "when" requires that the situation described by X

directly cause the stuation described by Y. This type of reading can occur no
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matter what type of stuations are described by X and Y. Sentences 110-115

illustrate the variety of cases that can occur:

(110) When Susie was in school, her mother went back to work.

(111) When Phil finished his thesis, we were all very happy.

(112) When John waltzed, Mary waltzed too.

(113) Martin broke his arm when he crashed his bicycle.

(114) When Curtis pushed the button, the lights went off.

(115) The light was only on when the motor was running.

The required causal connection 'in these sentences restricts the types of tem-

poral relationships that are possible. The situation described by X must occur

over an interval that starts before, or simultanteously with, an interval over which

Y occurs. Thus, Sentence 115 allows the light to go on either simultaneously with

the start of the motor's running or, more likely, slightly afterwards. If there is

a delay, no boundary can intervene, 'i.e. the beginning of one situation must be

connected to the eginning of the other, as 'in the perfect aspect. Furthermore,

when both of the situations in the causal reading are accomplishments or state

changes and they overlap in time, the boundaries they specify seem to agree.

Thus, Sentence 114 has two readings: the lights might have gone off at exactly

the same time as the button pushing, or else this might have occured after a

slight delay.

The overlapping reading of "when�' specifies a temporal relationship between

the two stuations. There are three cases, depending on whether the stuations

are states or actions, as shown in Figure 17. If X and Y are both states, occurring

over a common interval only forces some overlap between the maximal 'intervals

over which they occur. There is a strong implication that this is a maximal



Figure 17. In the overlapping reading of "when," the boundaries imposed by
actions must agree in the overlap region. When one or both of the two situations
is a state, the constraints are much weaker.

If either X or Y is an action and the other stuation is a state, then the

state must last for an entire period over which the action takes place. This is

illustrated by Sentences 117-120

(117) John broke hs leg when he was at camp.

(118) When John was at camp, he broke his leg.
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interval over which X 'is true. As Sentence 116 'Illustrates, it may be possible to

cancel this implication.

(116) When I was making dinner, John was in the kitchen for a few minutes,

but then left.

However, I find such examples difficult to construct, contrary to the assertions

of Heina-ma-ki 1978) and Wol'setschlaeger 1976). Hnrichs 1986) seems to share

my impression that the overlap must contain the entire interval in which X is

true.

an accomplishment

and a state change

an accomplishment
and a state

016,64

0
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(119) Bobbie built the model airplane when he was living at home.

(120) When Bobbie built the model arplane, he was living at home.

If the action is an activity, the overlap must include some period over which the

activity happened, but not necessarily a maximal one. For example, Sentence 121

could be used to describe a stuation 'in which I was 'in the room before the

shredding started, but left before it ended.

(121) The aide shredded documents when I was in the room.

Overlapping readings are difficult to get when both X and Y describe actions.

In fact, Heinamaki claims they do not exist. The problem may be due to the

difficulties involved in making the boundaries imposed by X and Y agree exactly.

The boundaries of two actions are unlikely to agree exactly unless the two actions

have a tight causal relationship. However, sentences such as Sentence 122 can be

taken to describe actions that only coincide accidently.

(122) When Curtis pushed the button, the lights went off.

In such cases, the two actions must occur at exactly the same time.

Previous authors, such as Heinamaki 1978), Woisetschlaeger 1976), and Hin-

richs 1986) gve a slightly dfferent analysi's "When." Rather than dividing read-

ings into causal and non-causal readings, they divide them into overlapping and

sequential readings. They then propose the generalization that sequential read-

ings occur exactly when both situations are actions. There are three problems

with this approach. First, 'it misses the generalization that sequential readings

are only possible when causality is involved. Secondly, it has trouble explaining

sentences that have two actions and still overlap in time. Hinrichs, who notices

such cases, addresses them by weakening "when" to allow actions to have any

temporal relationship whatsoever, as ong as they are close n time. Finally, such
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analyses have trouble accounting for examples in which one of the two stuations

is a state but the reading is still sequential, as in Sentence 111.

In extended dscourse, each sentence 'is 'Interpreted by default as describing a

situation that occurs after the situation described by previous sentences. How-

ever, in these examples, we also have a difference between states and actions.

Compare Examples 123 and 124:

(123) John walked into Patrick's office. He umped onto Patrick's desk and

stared down at him.

(124) John walked into Patrick's office. The fire extinguisher was sitting next

to the table.

As Example 124 shows, the action described by one sentence is typically taken to

occur after the actions described by previous sentences. However, as Example 123

shows, states are typically taken to overlap previous actions, unless there is some

explicit 'indication to the contrary.

These facts, and others, are described by Dowty 1986) and Hinrichs 1986).

They claim that the basic pnciple in 'Interpreting sequences of sentences is that

the reference interval for each sentence is taken to follow the reference 'interval

for the previous sentence, wthout overlapping. As 'Illustrated 'in Fgure 18, the

consequences of this restriction are different, depending on the types of situations

involved.

Because their models contain natural endpoints, sentences describing accom-

plishments and state changes are taken to describe maximal intervals over which

the action occurs. Thus, two of these actions cannot overlap unless their reference

intervals do. As we saw in Section 4 however sentences describing states do not

imply that their reference interval is the maximal interval over which the state
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Figure 18. The restrictions on the interpretation of sequential sentences depend
on the types of stuations involved. States (and perhaps activities) are free to
extend beyond their reference interval, whereas actions do not.

holds. Thus, the state described by a sentence is free to extend beyond the ref-

erence interval specified for that sentence. For activities, the facts are less clear.

Because activities occur so often in the progressive I have trouble generating

natural-sounding examples containing activities in the unmarked aspect.

As we saw in Chapter 2 cellular topology makes it easy to represent many

abrupt changes at a common location, because one boundary can license them

all. A good source of coinciding boundaries is the temporal connective until,"

whose meaning is described by Heinamaki 1978). Consider Sentences 125-128:

(125) Gerry kept playing with the switch until he broke it.

(126) The lecturer droned on until everyone was asleep.

(127) Until they shredded the incriminating documents, they were afraid of

being caught.

(128) John kept baiting Gerry until he jumped up and down with annoyance.

The construction "until X Y' specifies that Y occurs over an interval that ends

at a state change specified by X. The details of how to define the boundary for
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44 until" depend on the type of situation described by clause X. If X 'is an accom-

plishment, this bound is the final state change that ends the accomplishment. If

X is a state or activity, the state change is taken to be the start of the state or

activity.

In either case, the "until" construction seems to indicate a causal connection

between the stuations described by X and Y. This favors a default assumption

that the situation described by Y ends at the boundary. This 'is consistent
'th the topological models, in which the boundary would license change

wi s in

any properties of similar types, not just the one that caused the boundary to be

hypothesized. However, there is no requirement that the properties must change.

For example, Sentence 126 might be taken to imply that the droning continued

indefinitely.

Finally, words describing an absence of change, such as "keep" or 'stay"

can be used specifically to 'indicate that a state or activity persists despite the

presence of a boundary at which 'it might naturally end. This 'is illustrated by

Sentences 129-130:

(129) When the fire alarm rang, the lecturer 'ust kept talking.

(130) When I pushed the button, the light just stayed green.

(131) David stayed in bed all day.

The adverb stiff' can be used to indicate a smilar persistence:

(132) After the bomb exploded, two pllars were still standing.

Such descriptions are traditionally described as involving some type of resistance

to change." This phrase implies some type of deliberate activity that is not

necessarily present. A better description might be that such words are used to

indicate a lack of change when change mght be expected.
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In this section, we have seen examples of how temporal relationships between

sentences can be specified. As 'in describing tenses and aspects, the topologi-

cal boundaries and connectivity of the situation models seem to be useful. In

particular, when descriptions of two situations are combined, boundaries are not

inserted into the middle of the connected 'Interval over which an action occurs.

Rather, two actions either do not overlap in time or else their boundaries coin-

cide. Certain constructions imply a property change at a specified boundary and

other constructions specify explicitly that the property does not change even at

a boundary that should be relevant.

13. Conclusions

In this chapter, we have seen that linguistic data on verb and noun classes,

tense, and aspect can be described using cellular topology. In general, the de-

scription follows the lnes of those used by previous researchers. However, cellular

topology makes it possible to avoid technical problems faced by previous analyses.

The data on tense, aspect, and temporal connectives also provides some sugges-

tive examples of how connectivity and the boundary co-incidence prediction of

cellular topology might be used in this domain.

The topological models of situations can be tested by considering cases where

intervals are closely related in time. We saw that modelling both the perfect and

the progressive aspects required connectivity. Connectivity is particularly appar-

ent for the perfect, which expresses persistence of the end-state of a situation.

Consideration of the meaning of sentences in dscourse and the temporal con-

nectives "when" and until" provides suggestive evidence that combination of

two actions preserves their topological structure, 'i.e. locations of boundaries and

interval connectivity. While this evidence is fragile, it is a useful addition to
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evidence from other sources.

We have also seen that the new model of space and boundaries solves several

technical problems encountered by previous researchers. Using cellular topology,

the distinction between states and actions can be expressed in terms consistent

with real measurements. Digitized functions can provide an explanation for why

certain verb phrases become temporally bounded when they contain a spatial

bounded direct object. Finally, we have seen that cellular topology can provide

models of sharp state changes without questions as to the values at boundary

points and without difficulties in defirnng the mnimal interval surrounding a

state change.



Chapter 8: High-level Vision and Reasoning

1. Introduction

In this chapter, I survey applications of topology to reasoning about phys-

ical objects. As we saw in Chapter 3 practical reasoning involves a number

of dfferent problems, including modelling physical objects, modelling changes

over time, route planning, and recognizing objects. This research is traditionally

split between high-level vision, abstract planning, and robot motion planning.

However, the representational problems I discuss are not specific to any of these

approaches.

Reasoning about the behavior of physical objects provides examples of the

same points we have seen in previous chapters, but from a slightly different per-

spective. We have sharper intuitions about problems in this area, particularly

about connectivity, than we do about natural language semantics or computer

vision. Researchin natural language and computer vision concentrates on how to

generate representations, whereas research in high-level reasoning concentrates

on how to use these representations to plan actions. This allows reasoning re-

search to consider a wider range of examples, particularly those involving D

objects, but at the cost of missing some of the problems and complexities of real

input data.

Sections 2 and 3 discuss how topological structure affects high-level vision

and reasoning algorithms. Section 2 dscusses how connectivity and the topolog-

ical structure of re 'ons 'is used in these algorithms. Section 3 discusses how the
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presence of boundaries affects the behavior of continuous functions. For both

properties of objects in space and properties of events over tme, we see the co-

occurence of boundaries wth lack of region connectivity predicted by cellular

topology. We also see abrupt changes 'in many functions at a common loca-

tion, which cellular topology can represent more easily than models postulating

discontinuities in individual functions.

In Section 4 I discuss previous models of boundaries used in high-level rea-

soning. The proposed models are similar to those used by researchers in linguistic

semantics, discussed in Chapter 7 Again, we see that the previous models of

boundaries all have technical problems, which the new models of boundaries

avoid. The arguments are somewhat different, however, because practical rea-

soning considers 2D and 3D examples, in addition to the ID examples available

in linguistic analyses of tense and aspect.

Finally, Sections and 6 discuss ways 'in which cellular models limit the

resolution of representations. As we saw in Chapter 2 cellular topology limits

the form of space and boundaries, particularly when functions are digitized.

Section explores how these limitations affect practical reasoning algorithms.

Section 6 discusses how properties wth wide support neighborhoods might be

used in practical reasoning and how support regions 'Interact wth digitization.

2. Topology 'in physicM systems

Reasoning about physical objects offers the most intuitively compelling ex-

amples of how topological properties are useful. The situations presented in

high-level reasoning typically have smpler structure than those used in com-

puter vision. Furthermore, in this domain I it is sometimes possible to make

useful deductions based only on topological information. Although most ap-
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plications also require metric information, these examples help illustrate what

topological structure can do in isolation.

Naive physics (Forbus 1984, de Meer and Brown 1984, Williams 1984, Kuipers

19841 1986, Hayes 1985ab) makes extensive use of connectivity for analyzing

flows. Flows can be used to describe the movement of fluids, the movement of

electrical current and the transmission of forces through ob'ects. Connectivity

information is essential to analyzing any type of flow. Suppose, for example, that

we open the faucet on a sink, as shown 'in Figure 1. Because the pipe 'is now

open from the water source to the faucet, water flows out of the faucet, into the

sink. Whether water flows out the drain depends on whether the drain is open,

i.e. whether the inside of the drain ppe is connected to the inside of the sink.

wal

r

I
o

drain

Figure 1 A sink.

The sink example 'Illustrates both the usefulness of connectivity 'information

and its limitations. Water can, in pnciple, flow through any connected path.



1 Or similar things, such as moving objects.
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However its movement is also sub'ect to the force of gravity. So, the shape of the

cross-section of the drain pipe 'is irrelevant. to deciding whether water can flow

through it. If, however, the drain pipe goes upward from the snk, water will

only flow through it until it reaches the level of the water in the sink. Similarly,

if the drain pipe goes downwards, we can deduce that water will only flow out

the top of the sink if the drain pipe is blocked. Thus this task requires both

topological information and rough metric 'information.

Flows can also be used to analyze force transmission and electrical circuits.

Electrical current, like water, only flows through connected paths. Since gravity

does not affect current, it can flow along a connected path in any drection, given

appropriate voltage differences. In analyzing object motion, metric information

plays a larger role, because it is necessary to specify the direction of applied forces.

For example, 'if one pulls on the end of a desk, the rest of the desk will also move

because it is one connected object. In addition a wastebasket under the desk may

also move wth the desk. This second effect, however, involves pushing, which is

transmitted by mere contact, rather than pulling, which requires connectivity.

One of the crucial ideas in practical reasoning is that connectedness can be

used to limit causality. This idea was introduced to Artificial Intelligence research

by Pat Hayes (1985b), though 'it is also essential to work in other fields, such as

Thermodynamics (Levine 1983). The essential idea 'is to isolate what types of

flowsi could 'Influence the reasoning task at hand and surround the system with

barriers through which this type of flow cannot pass. In Thermodynamics, for

example, the system being analyzed 'is surrounded by barriers that are unable

to move and/or unable to transmit heat. For force transmission I it is often

sufficient to surround the objects with sufficient quantities of empty space. Fluid
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flows can be contained by 'impermeable barriers and, wth care, by barriers open

only vertically. This approach can be extended so as to allow influences to pass

through the barrier, but 'in a controlled manner.

Connectivity 'is also used in reasoning about object motions and in recognizing
ob'ects. Analyzing ob'ect motions has been explored both by researchers in naive

J J

physics (e.g. Forbus 1984) and in robot motion planning (e.g. Lozano-Pe'rez 1985,

1981). Like flows, objects can only move through connected regions of empty

space. The shape of objects, however, can adapt only 'in limited ways during the

motion.' Thus, these problems cannot always be solved using connectivity alone.

Figure 2 shows two examples of object motion planning problems that re-

quire only topological structure. The lefthand example can be analyzed using

only connectivity relationships. Because the 'Inside and the outside of the closed

box are not connected, it is impossible for the bug to move from the inside

to the outside. It requires more sophisticated topological techniques, however,

to determine that the two rings in the righthand example cannot be unlinked.3

However, neitherinference depends on the shape of the objects, but only on their

topological structure.

The two examples 'in Fgure 3 require metric structure 'in addition to topolog-

ical structure. We know from topolo 'cal considerations that the bug can only

leave the box through the top opening. In order to decide whether 'it will fit

through, however, we must also compare the relative sizes of the bug and the

opening. Planning motions around obstacles can also be done by transforming

the problem into configuration space representations (Lozano-Pe'rez 1985, 1981,

So far research has been primarily concerned with perfectly rgid objects.
Eventually, however, it will be necessary to consider objects that can deform, as
most real-world objects can, and flexible ob'ects, such as ropes and branches.

3 I Suspect people may learn to understand such examples by experimentation,
rather than by deductive reasoning. 



Figure 2 Some object motion planning examples can be solved using only topo-
logical information. In the lefthand example, it is sufficient to note that the inside
of the box 'is not connected to the outside 'in order to infer that the bug is trapped.
The righthand example requires more sophisticated topological analysis.

Lozano-Pe'rez Mason Taylor 1984, Donald 1984, 1987ab, Erdmann 1984, 1986,

Mason 1984). In these representations, each position or arrangement of the ob-

ject 'is represented by a point. Information about the object's shape is used

to compute which points in the new space would 'Involve collisions between the

ob'ect and the obstacles. Figure 4 shows a configuration space for this simple

problem.4 Using these transformed obstacles, path planning can be reduced back

to connectivity checking.

Representations proposed for describing and recognizing object shape also

use both metric and topological information. Particularly explicit examples of

this occur in local symmetry representations (Brady and Asada 1984, Fleck 1985,

1986, Connell 1985, compare also Blum 1973, Blum and Nagel 1978). In these

representations, regions are required to have connected boundaries5 and the

boundaries must satisfy approximate metric conditions. For example, patches

of boundary opposite one another in an elongated region must be approximately

reflections of one another, as shown in Fgure 5. Patches of boundary in a round

4 For ease of presentation, I have approximated the bug as a crcle, to avoid
building a third dimension for rotation. Configuration space for real problems
typically have higher dimensionality.

5 Sometimes by dint of filling gaps with vrtual boundaries.
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Figure 4 The configuration space for one of the motion planning problems in
Figure 3 (with the bug approximated as a circle).

region must be approximately rotationally symmetric about the region's center,

i.e. tangent to a circle about the center. In both cases, the connectivity require-

ment on the boundaries allows substantial errors in the metric conditions to be

tolerated.
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All shape representations in current use take advantage of both metric and

4:lr

Figure 3 These two motion planning examples require metric information 'in
addition to topological properties.
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Figure 5. Representing regions using local symmetries: reflectional (left) and
rotational (right).

topological constraints. In a few cases, such as the Hough transform (Ballard

1981 Davis 1982), topological information 'is reduced to the simple question of

which points lie on boundaries. In many other algorithms (e.g. Brooks 1981),

however, boundary connectivity is used to build intuitively plausible regions.

This topological condition 'is often buried in routines that parse boundaries 'into

extended segments, rather than being stated explicitly. It is also used implic-

itly in representations of boundary or surface shape (Asada and Brady 1986,

Huttenlocher 1988, Brady et. al. 1985, Ponce and Brady 1987, Richards and

Hoffman 1985). Descriptions of certain texture properties, such as region size,

width or orientation involve rudimentary shape processing. This processing 'is

often confined to connected regions (Voorhees and Poggio 1987, jell and Dyer

1985).

Purely topological shape descriptions are occasionally T)roposed (Ballard and

Brown 1982, Ullman 1984). These might include descriptions of region or curve

284
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connectivity, curve intersections and dentification of topological features such

as holes homology groups, or homotopy groups. 6 As we have seen, however,

only limited types of practical reasoning can be done with purely topological in-

formation. Topological features are expensive to compute, 7difficult to combine
with metric nformation, an ' For these rea-

l d poorly behaved under projection.

sons, it seems best to use representations that combine metric and topological

constraints.

Koenderink and van Doorn 1976) (see also Callahan and Weiss 1985) propose

another interesting use for topological structure. A 3D object mght potentially

be viewed from any position around it. These positions form a sphere. Koen-

derink and van Doorn propose dividing these sphere at singularities of the views.

These singularities are, informally, viewing positions at which contours appear or

disappear or change shape abruptly. The singularities divide the sphere of views

into regions within which the projection of the object has a constant topological

structure. This proposal formalizes the idea, first expressed by Minsky 1975),

that the possible views of a 3D object could be represented compactly by collaps-

ing ones that dffer only by deformations and not structural change. Huttenlocher

and Uman (Ullman 1986, Huttenlocher 1988, Huttenlocher and Ullman 187,

1988) seem to suggest a similar 'Idea. Although their algorithms make no explicit

use of topological structure, it is preserved in all of their examples.

3. Properties and boundaries

In Sections 2 we have seen examples of how to use the topological structure

6 For the later two types of descriptions see Munkres 1984).
7 Consider mazes.
8 For example, a 3D object with no topological holes can project onto a 2D shape

with holes. A convex object, however, can only project onto a convex region,
under either orthographic or perspective projection.



Figure 6 Freezing water.
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of physical space. As we saw 'in Chapter 2 this same topological structure de-

termines how continuous functions can behave. High-level reasoning algorithms

must consider both the structure of situations in space and also the structure of

processes across time. In both cases, continuous functions dsplay the pattern

of changes 'in behavior at boundaries that we have seen in previous chapters.

High-level reasoning, however, offers a greater range of properties than other

domains.

High level reasoning must handle two types of models: models of situations

in space and models of events over tme. For example, suppose that we want to

describe the process of freezing water in an icecube tray. This process is really a

four-dimensional object, since it involves a 3D situation changing over tme (cf.

Hayes 1985ab). In human and machine reasoning, this 4D situation is described

via a D temporal model, together with one or more 3D spatial models (shown

here in 2D projection). Figure 6 shows a simple model of the course of events over

time and a picture of each qualitatively dfferent spatial situation that occurs.

cooling phase change cooling
time

water ice and water ice
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Both spatial and temporal models involve roperties and changes in proper-

ties. We saw in previous chapters that the topological model of boundaries makes

it easy to represent changes in many properties at a common set of locations.

Furthermore, it predicts that these changes should occur at locations where adja-

cent regions are not connected. The boundaries that are relevant depend on the

task at hand. So, for example, two pieces of wire can be electrically connected,

but not physically connected, or vice versa. Thus, the empirical predictions are

restricted to similar properties and related types of connectivity.

For spatial properties, the co-occurence predicted y the topological boundary

model is very important, because the properties 'important to high-level reason-

ing cannot be observed directly. For example, to understand the freezing process

shown in Fgure 6 we need to understand the material connectivity of the situa-

tion together with material properties of the ob'ects. For example to infer that

water will not flow through the tray, we need to know that the tray is materially

connected and made of a plastic impermeable to water. We need to know that

the plastic 'is solid throughout the range of temperatures involved in the freezing

process (perhaps F to OF) in order to predict that the pot will have a stable

shape while the ice is freezing. If the tray were enclosed on the top, we would

have to consider both its brittleness and its elasticity 'in order to decide whether

it might break due to the expanding ice.

Material properties and material connectivity, however, can only be measured

by trying actions and seeing whether they fail. When this is not feasible, they

must be predicted from properties that can be passively observed and boundaries

in these properties. Direct visual observation may yield measurements of color,

light intensity, and shinyness, which help in predicting material composition.

Boundaries in these properties not onlyyield predictions about material connec-
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tivity boundaries, but also predictions about derived visual properties such as

shape, depth (from stereo or motion), and texture. These derived properties are

also useful in predicting material properties. For example, we can assume that

objects in a kitchen that look like icecube trays are made of a material that can

withstand the changes in temperature required in normal use.

In spatial situations, both material and observable properties tend to have

abrupt changes at a common set of locations. Consider, for example, the bound-

ary between the 'ice and the icecube tray 'in the last frame of the freezing sequence.

At this boundary, we probablY9 have changes 'in visual color, light ntensity, and

visual texture (e.g. shinyness). At the same place, we have a change in mate-

rial, subsuming changes in melting point, brittleness, heat capacity, molecular

structure, density, and opacity. Finally, the ice is not materially connected to

the icecube tray. Identifying and classifying these common boundaries has been

a sub'ect of recent interest in computer vision (e.g. Poggio et al. 1988). The

greatest difficulties come from the fact that different observable properties (e.g.

texture vs. color) may display different boundariesio and common boundaries

may be located at slightly different locations, due to measurement errors.

One interesting use of boundary fusion 'is to increase the accuracy with which

certain types of changes can be localized. In the human visual system, sharp

changes in intensity can be located wth higher accuracy than changes in color,

particularly changes 'in the blue-yellow color channel. If boundaries obtained

from intensities can be fused with those obtained from color perception, one can

obtain better localization of the color changes." Such a gain 'in resolution is

most important to high-level reasoning when the property with lower resolution

9 Depending on the 'ice cube tray.
"Remember that properties are allowed to change abruptly across boundaries,

but are not required to do so.
'My understanding of this point owes much to conversations with David Forsyth.
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is important for infering a material property of interest.

In analysis of processes over tme, we see similar patterns of boundaries at

which many properties change abruptly. This is the basis of recent theories of

qualitative reasoning (Forbus 1984, de Kleer and Brown 1984, Williams 1984,

Kuipers 1984, 1986, compare also Erdmann and Lozano-Pe'rez 1987). In these

theories a course of events over time 'is represented by dividing time into 'inter-

vals over which the world has a constant qualitative state, separated by points

at which this state changes abruptly. Qualitative states are relatively simple

descriptions that abstract away from numerical details not reqwred by the rea-

soning task. For example, in order to predict that water will eventually freeze as

it is cooled we only need to know that the temperature 'is dropping steadily. 12

It is not necessary to specify the rate of temperature change, unless we want to

predict how long 'it will take.

In qualitative reasoning, the process of freezing water Might be divided into

three intervals. In the first interval, the temperature of the water drops, as it 'is

cooled. In the second interval, the temperature remains constant as the water

changes phase. In the third 'interval, the temperature of the ice drops. At the

boundaries be tween intervals the type of process changes (between heating and

phase transitions), the phase composition of the water changes, and the slope of

temperature changes. The abstraction of "phases" of water actually conceals sev-

eral co-occurring changes, including molecular arangement, hardness, constancy

of shape, density, and opacity.

Thus, we have seen that changes in multiple properties occur at common

locations, both in arrangements of objects in space and in patterns of events

over time. In spatial representations, lack of material connectivity often occurs at

12 In cellular topology. For a potential source of problems 'in standard models

based on IR, see the discussion about asymptotic function values in Section .
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these same boundaries. (For temporal models, we have no direct evidence about

interval connectivity.) This is consistent with the predictions of the topological

boundary model and would be difficult to account for if discontinuities were

features of individual property functions. Identifying these common boundaries

is useful because it simplifies the representation. This, 'in turn, simplifies the

task of reasoning about the situation.

4. Modelling boundaries

The model of boundaries presented in Chapter 2 is not standard. Although it

has long been recognized that something must be done about modelling bound-

previous approaches have led to technical problems. In'this chapter, we see

previous ways in which the modelling problem has been approached and what

problems previous researchers have gotten 'Into.

Traditionally, modelling boundaries has been posed as a problem of segment-

ing a fixed underlying space, typically UV, 'Into regions. Sup-pose, for example,

that we are representing a cup stting on a table, as 'illustrated in Figure 7 The

problem as traditionally posed would be to divide up 3 into subsets represent-

ing the cup, the table, and the background. These regions should cover all of IR 3

and be disjoint. "Boundaries" would then be places at which two regions touch.

There 'is a widespread belief that boundaries are in fact caused by" regions.

Researchers in vision often feel more comfortable explaining boundaries in images

as due to "ob'ects" in the real world (e.g. Marr 1982). Researchers in practical

reasoning (e.g. Forbus 1984, Wlliams 1984) seem to feel more comfortable if

discontinuous behavior can be explained in terms of "operating states," �Cpro-

cesses or C4 events." Situations are often described in terms of the placement of

objects (as in Davis 1984ab). As a consequence of the belief that regions induce
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Figure 7 A cup on a table.

boundaries, researchers often state that boundaries and regions are "dual" to

one another (e.g. Blake 1983, Ballard and Brown 1982, Besl and Jain 1988).

However, although regions are extremely useful 'in explaining how people reason

about the world, it is technically easier to explain regions 'in terms of boundaries,

rather than the reverse.

In Chapter 7 (Section 10), we saw some technical problems that can occur

in linguistic models of events across time. We saw that if IR 'is segmented with-

out changing its topological structure, problems arise in assigning ownership of

boundary points and in accounting for the behavior of continuous functions. In

high-level reasoning, the same types of temporal examples occur, together with

2D and 3D spatial examples. In this section, I concentrate on the spatial ex-

amples, because they exhibit additional types of technical problems that cannot

occur in 1D representations.

The first problem with the region-based approach is that it predicts that two

parts of the same region cannot touch one another across a boundary, which is

false. Figure shows a number of counter-examples to this. For example, a

rope can be twisted so as to touch itself and a split rng touches itself along an



extended border. Solid ob'ects such as these do not merge on contact. Thus,

a split ring is distinct from a normal ring, both in terms of perceived structure

and in terms of its use in practical tasks. As we saw in Chapter 4 such internal

boundaries can end abruptly in the mddle of a region, both in 3D objects and

in 2D projection.

I

Figure 8. Examples of ob'ects that touch themselves: a rope, split ring, and a
bent finger.

The second problem with region-based models is that it is dfficult to model

regions that are connected to one another, such as an arm and the hand at-

tached to 'it. If we define topological properties for each region separately, then

the hand and arm cannot be connected. If we define topological properties using

the union of the two objects, the hand and arm are connected, but so are the

cup and table 'in Figure 7 The region-based model cannot represent the dif-

ference between these two situations except by postulating an abstract relation

connected" relating pairs of regions.

Abstract connectivity relations are often used in high-level reasoning. How-

ever, these relations are poorly developed, ad hoe, and 'involve creating two par-

allel theories of topology, one for within regions and one for relating pairs of

regions. Furthermore, as we saw in Section 3 lack of connectivity often occurs
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at the same locations as abrupt changes 'in property values. This co-occurence

is predicted by the topological model of boundaries. Segmentation models, how-

ever, provide no model for why sharp changes in property values should occur at

boundaries (spatial or temporal), nor for how these changes might be related to

the abstract relation "connected."

A final difficulty wth the segmentation approach is that it is unclear which

of two adjacent regions contains the points along their common boundary. As

Figure 9 'illustrates, if space is modelled using IR', there are three options: the

boundary points belong to both regions the boundary points belong to neither

region, or the boundary points belong to exactly one of the two regions. All

three of these options cause problems 'in practical reasoning, as as detailed by

Hayes (1985a), van Benthem 1983), Allen and Hayes 1985), Pavlidis 1977), and

McDermott 1982). Much of the following discussion is a cleaned-up collation of

the arguments presented by these researchers.

boundary points

4

one-point overlap

Figure 9. The two regions in the top picture share a common boundary. The
bottom pictures show different ways of dividing these points between the two
regions: overlap, gap, and two asymmetrical options.
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Asymmetrical solutions assign each point to exactly one region, but at the

cost of requiring a rule for deciding which region to assign each point to. No one

has yet come up with a well-motivated rle for point assignment I in any domain.

One option (Pavlidis 1977, McDermott 1982) is to base the assignment on the

directions in some fixed coordinate system. For example, intervals in time might

contain their earlier endpoint but not their later endpoint. Similarl regions in

2D might contain boundary points on their left and top sdes. This approach

is technically unproblematic, though totally unmotivated, for intervals 'in time.

For regions in space, however, it causes the points assigned to a region to change

as the region is rotated.

The other option for assigning boundary points to one region is to develop

some classification of regions and assign boundary points to certain classes of

regions and not others. Hayes (1985a), for example, proposes that solid objects

contain their boundary points whereas regions of empty space do not. Pavli'dis

(1977) proposes classifying regions in binary images on the basis of color (dark

vs. light). The problem wth this type of solution is ensuring that regions of the

same type do not accidently come into contact. For example, the solid/empty

proposal is no t able to resolve the assignment when two solid objects touch one

another. Classification based on color does not work if regions come in more

than two colors. In 2D and higher dmensions, regions that touch themselves

also cause problems for this approach.

The second option' 'is to assign boundary points to both regions. This requires

altering the definition of terms such as "overlap" so as to exclude overlap along

boundaries (Davis 1984b). Unfortunately, boundaries are often created to sep-

arate two regions that bear conflicting values for some property. For example,

the table in Figure 6 might be brown and the cup sitting on it red. If boundary



points belong to both regions, they must bear two inconsistent values for some

property function. Finally, this option produces connectivity paradoxes, as no-

ticed by Pavlidis 1977). For example, in Figure 10, the two light areas would

be connected to one another, as would the two dark areas, creating two regions

that pass "through" one another.

Figure 10. Are the two dark areas connected? How about the two light areas?

The third option is to assign the boundary points to neither region. The

problem wth this approach is that the new "boundary points" have a number

of special properties that are dfficult to explain. Property functions, such as

color do not assign any value to these points. 13 In discussions of temporal logic,

this is sometimes called a "truth gap." Furthermore, these boundary regions do

not behave like either solid objects or empty space. Intuitively, there is not any

empty space in a boundary region so you cannot put stuff there. But boundary

regions cannot be moved independently as one can move real ob'ects and their

shape changes as objects around them are moved.

My open-edge model of boundaries is very similar to this third option. How-

ever, rather than endowing the boundary points with special properties, they are

deleted from space. This deletion accounts for their special properties. Functions

13 If they had a value for such a property, this could be used to assign them to
one of the two regions.
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cannot assign values to points that do not exist, nor can a real ob'ect occupy

non-existent points of space. Furthermore, deleting these points accounts auto-

matically for the changes 'in topological structure caused by boundaries.

Some researchers have attempted to avoid the problems associated with seg-

menting I' by using models of space that are not locally like a. These include

Z' (Shoham 1987), Q (van Benthem 1983), and the hyperreals (Weld 1988).

None of these models has a pleasant topological structure for connectivity or

continuity reasoning. For example no subset of Z' wth more than one point is

connected and all functions from Z' to any other space are continuous. The other

two models do not handle region connectivity any better and are complicated to

use.

5. Digitization

Cellular topology limits the form of regions and boundaries within any given

cellular model. When digitized functions are used, they further restrict the types

of stuations that can be given distinct representations. Current high-level rea-

soning systems sometimes forbid these possibilities and sometimes allow them.

In this section, I argue that the forbidden possibilities reflect unrealistic expec-

tations about input available from either practical or scientific measurement.

Re-structuring analysis using only finite-resolution representations could allow

reasoning systems to handle real measurements more robustly and prevents cer-

tain technical problems encountered by researchers 'in this area.

Consider the problem of modelling slopes of temperatures, such as those

encountered in the freezing water example of Section 3. Qualitative physics

algorithms only distinguish slopes on the basis of their sign. Thus, the slopes

might be modelled in cellular topology using the three-element space of values



shown in Figure 1 1 (top). 14 This representation is similar to the second-difference

labels used 'in the edge finder described 'in Chapter 4 In fact, we could use

techniques similar to those 'in the edge finder to parse real measurements of

temperature into these types of labels. That is, a combination of amplitude

and duration of connected regions would be used to decide which regions have

significant positive or negative slopes and which are indistinguishable from zero,

given prevailing measurement errors.

*00 0 It

decreasing zero increasing

'140 Ok / I Ah.,
1% _jP % --- -- 

decreasing zero increasing

Figure 11. Top: the cellular representation of temperature slopes. Bottom: the
traditional naive physics representation of temperature derivatives.

Reasoning systems handling numerical 'input data or numerical simulation

typically make allowance for errors in the numbers (e.g. Simmons 1983, 1986,

1988, Connell 1985, 1987, Donald 1984, 1987ab, Lozano-Pe'rez, Mason, Tay-

lor 1984, Mason 1984, Brooks 1981, McDermott and Davis 1984, Davis 1986,

Erdmann 1984, 1986). Qualitative reasoning systems, however, often use rep-

resentations in which the value zero (or, equivalently, equality of certain types)

is represented exactly. So, for example, the temperature slopes in the freezing

example would be represented as shown 'in Figure 11 bottom). Although this

14 In many qualitative physics applications some other property changes abruptly
when the slope changes sign. In such cases, boundaries must be added to
the space of slope labels, between.decreasing and zero and between zero and
increasing.
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model looks appealingly precise, it is impractical for dealing with real measure-

ments. There 'is no way we can observe a value precisely, even zero.

There are two reasons why exact values cannot be observed. Fst, all real

measurements involve error. Laboratory conditions can reduce the magnitude of

the errors but not their existence. Secondly, physical systems only satisfy the-

oretical models up to some limited precision. For example, 'ice-water mixtures

are very close to the freezing point, but ndividual patches of the mixture may

deviate from it slightly. For the boiling water example often used in qualitative

physics (e.g. Forbus 1984, Kuipers 1984), this lack of homogeneity is substan-

tial and causes the macroscopic bubbling one observes in boiling water (Levine

1983).15 The spurious precision of theoretical analyses n qualitative physics may

be due to recognizing the eistence of measurement error, but not model error.

The constraints of cellular topology not only make it impossible to create

overly exact representations, but they also forbid certain possibilities that cause

problems for practical reasoning algorithms. As we saw in Chapter 3 there are

two distinct phenomena: infinitel dense boundaries and asymptotic function

values. Figure 12 examples, of these phenomena in reasoning problems. Cellular

models cannot represent infinitely dense boundaries because they cannot divide

16a bounded region of into more than finitely many cells. Digitized func-

tions cannot represent asymptotic function values, because the values eventually

become indistinguishable fom the lmiting value.

These two types of 'infinite lmits are closely related and neither one could ever

occur (at least observably in practical applications. First, when the differences

from the limit value become small enough, they become 'indistinguishable from

15My understanding of these examples was improved substantially by discussions
with George Fleck.

16 Le. wthout changing its topological structure.
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Figure 12. Top: Infinitely dense boundaries might occur with a bouncing ball,
where the height of bounces decays. Bottom: Asymptotic function values might
occur with a person walking slower and slower towards a wall.

zero, for any specification of measurement errors. Secondly, after some point,

they also become indistinguishable from the errors in the model 'itself To take

an extreme case 7 a model of the rubber ball 'in Figure 12 as a solid region with

some specified elasticity is no longer valid when the bounce height approaches

one angstrom. Thus, we may as well assume, as cellular topology forces us to,

that decaying oscillations effectivelylT stop after some finite number of repetitions

and that asymptotic processes effectively reach their limit point after some finite

period of tme.

Infinite limits not only cannot be observed, but allowing them would cause

17 The adverbial form of "'Indistinguishable."
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problems for practical reasoning algorithms. Forbus 1984) prohibits asymptotic

function values under the guise of a rule that forces a process moving towards

a limit point to reach 'it 'in finite time. Without such a rule, even the simplest

qualitative reasoning situations would generate alternative possibilities involving

asymptotic values, none of which occur to naive humans. I suspect that such an

assumption is made implicitly 'in other reasoning systems. Forbus 1987) is also

forced to add an axiom specifically forcing decaying oscillations to reach their

limits (Forbus 1987). McDermott 1982) also forbids the oscillation examples, on

intuitive grounds. Interestingly, Shoham 1987) finds technical reasons, wthin

his theory of causation, to forbid infinite oscillations that move backwards 'in

time, but not similar oscillations that move forwards in time.

The lmitation of cellular topology to finite resolution also affects qualitative

reasoning about small perturbations. In reasoning about equilibria, a useful way

to explain why the system holds a constant state is to suppose that the system

was perturbed slightly and show that it must then return to its initial state.

Forbus 1984) refers to this as "stutter." In infinite-resolution models, these

perturbations must be ifinitesimal 'in size. In cellular topology, the same types

of explanations could be reconstructed using perturbations that are finite, but

smaller than the prevailing errors.

The lmitation of cellular representations to fnite resolution also applies to

representations of regions in space. Reg-'ions in cellular topology are represented

by sets of cells. Thus, they must be the same dmension as the ambient space and

cannot have any sections of lower dimension. These restrictions are often imposed

by specific axioms Davis 1984b, Ballard and Brown 1982). Some researchers,

such as Hayes (1985a), do allow these types of regions. Infinitely thin regions,

however, are just as unobservable as infinite limits in function values. Again,
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practical examples can be represented in a satisfactory way using sets of cells

that are thin, but not infinitely thin.

Although a single cellular model can only represent a situation to finite res-

olut'on t is possible to reconstruct the forbidden examples using explicit quan

tification. Thus, a reasoner based on cellular models could, in principle, learn

calculus. However, these examples would remain more difficult to manipulate

in reasoning. This seems to match human abilities. People can easily handle

the finite-resolution situations found 'in practical situations, without any explicit

teaching. However, they must be explicitly taught to manipulate infinite lmit

situations, facility with these examples is only acquired after years of training,

and most people never learn to handle these examples successfully.

6. Support neighborhoods, scale, and texture

As we saw in the computer vision examples, the resolution of a representa-

tion is determined not only by its digitization (if any), but also by the support

neighborhoods used to compute it. Wde support neighborhoods are required

to avoid aliasing and drop-out in digitized functions. They are also required

for representing texture and for limiting resolution, whether the function 'is dig-

itized or not. In previous chapters, we have seen how these phenomena appear

in linguistic semantics and low-level computer vision. In this section, I describe

similar examples from high-level vision and reasoning.

The need for representations of the same situation at multiple resolutions is

well-understood 'in practical reasoning. In fact, such representations seem to be

taken for granted 'in fields such as Chemistry, from which many examples are

taken. For example, to understand the water freezing example fully, we would

need to consider both a macroscopic representation of the process in terms of
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phase changes and also a molecular description of how the solid structure forms.

Current vision systems often produce multi-scale output. Although reasoning

with representations at multiple scales 'is often discussed, 'implemented systems

that actually do this, such as Pati'l. 1981), are rare.

One recent line of research 'in practical reasoning has involved detecting repet-

itive patterns of events. Weld 1986) describes an algorithm whereby repetitions

of similar events can be detected in reasoning about molecular genetics. When a

repetition is detected the pattern of events 'is summarized as a single continuous

process. Any overall change between successive cycles is described as if it were

a continuous slope 'in the values. The techniques of limit analysis developed for

continuous processes (Forbus 1984, de Kleer and Brown 1984, Williams 1984,

Kuipers 1984, 1986) can then be applied to reason about the effects of repeating

the cycle many times. This type of summarization is essential in this domain

because a process may be repeated far too many tmes for explicitly generating

the pattern to be practical. Furthermore, it allows the system to reason about

the effect of multiple repetitions, even when the exact number of repetitions is

not known.

Practical reasoning contains many examples of periodic patterns, as well as

structures with dstinctive, but non-periodic patterns. In motion planning, for

example, it would be useful to describe gears as periodic, to avoid repeating

motion planning computations for each tooth individually (Faltings 1987). The

surface texture of ob'ects in contact (available from both visual and tactile 'input)

affects the friction between them. Recognizing different types of plants requires

identifying periodic patterns of leaf or leaflet arrangements. Reasoning about the

molecular structures of materials requires the ability to deal with both periodic

structures, such as crystals, and non-periodic structures, such as liquids.
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A number of researchers in computer vision have attempted to extract descrip-

tions of textured patterns from digitized images. There are a number of texture

features that might be useful for later reasoning. ViInrotter, Nevatia , and Price

(1986), Matsuyama, Miura, and Nagao 1983), Ba'csy 1972, 1973) Bovik, Clark

and Geisler 1987), Zucker 1985), and Kass and Witkin 1987) concentrate on

detecting periodicity in textures. Periodicity includes both repetitions occuring

at discrete intervals and also continuous match of a texture against itself, often

called orientation in computer vsion. Other researchers (e.g. Voorhees 187

and Voorhees and Poggio 1987, implementing the theory described by Julesz and

Bergen 1983) have attempted to divide a texture into minimal units, called tex-

tons and describe the shape of these individual regions. Kjell and Dyer 1985)

determine region width using inter-boundary dstances, without segmentation.

Laws 1979) analyzes textures by convolving the 'image with a range of filters.

As we saw in Chapter 5, analysis of texture properties, such as periodicity,

creates properties whose support neighborhoods are much larger than single cells.

As we saw 'in Chapters 46, many visual sources of 'input to reasoning, such as

depth from stereo, also require wde support. Because the input to high-level

reasoning typically involves such blurred measurements of properties, theoretical

work in qualitative reasoning should use finite resolution differences, rather than

the derivatives nowin use (Forbus 1984, de Kleer and Brown 1984, Williams 1984,

Kuipers 1984, 1986). Like other infinite-resolution representations, derivatives

are not observable from real measurements, whether sensory or scientific.

A more important reason for using functions with wide-support neighbor-

hoods is to avoid artifacts when these functions are sampled. Data used in

high-level reasoning may be sampled for several reasons. First, it may come

from sensors, such as those used in computer vision, that can only be packed
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to a finite density. Secondly, data may come from measurements taken at in-

tervals over time as in laboratory measurements or testing done while cooking

food. Finally, representations may be sampled so that high-level reasoning algo-

rithms can manipulate them more easily, as in the motion planning algorithms

described by Lozano-Pe'rez 1985), Brooks and Lozano-Pe'rez 1985), and Donald

(1984, 1987a).

Researchers in hgh-level reasoning often consider the possibility that data

may be sampled. However, they often assume that this wll be done by sampling

individual points without blurring (e.g. Shoham 1987a, Forbus 1986). As we saw

in Chapter 2 sampling wthout adequate blurring results in both aliasing and

drop-out. In high-level reasoning, real gaps in data are sometimes inevitable and

reasoning algorithms must be able to handle them. For example, food cooking

in an oven must be taken out of the oven to be sampled and thus samples must

be taken only rarely, to avoid disturbing the cooking process. However, it is

important not to confuse these cases with situations where wide-support neigh-

borhoods can be used. For example, 'if a dial or a moving ball is under continuous

observation, it is reasonable to assume that the data can be adequately blurred

before any sampling is done. When adequate blurring can be done, reasoning

algorithms need not consider the possibility of sampling artifacts.

T. Conclusions

In this chapter, we have seen several things of importance to this thesis.

First, we saw that connectivity and other topological properties are important 'in

high-level vision and reasoning. These properties can occasionally be used alone,

but they are more often combined wth metric constraints, as in reasoning about

ob'ect motion or fluid flow. We have also seen that abrupt changes in property
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values are important 'in practical reasoning, both for describing objects in space

and events 'in time. When these abrupt changes occur, they follow the pattern

predicted by the new model of boundaries. That is, multiple functions tend to

have abrupt changes at a common set of locations and material connectivity

tends to fail at these same locations.

In Sections 46, we saw that the cellular models presented in Chapter 2 can

avoid technical problems faced by previous researchers. Frst, we saw that the

new model of boundaries avoids problems with representing internal boundaries,

representing connected objects, and assigning boundary points that occur 'in

previous models. e saw that cellular models and dgitized functions constrain

representations so that they cannot represent infinite limit behavior or infinitely

thin regions. We saw that these constraints help avoid technical problems and

allow the representation to better match data available from real measurements.

Finally, we saw that functions wth wide support, such as texture descriptions

and blurred sampling, may be useful in high-level reasoning, though they have

not been extensively used by previous researchers.
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Chapter 9 Testing the edge finder

1. Introductl'on

In this chapter, I describe a series of experiments that test the performance

of the Phantom edge finder against the edge finder described by Canny 1983,

1986). There are two groups of tests. The first group evaluates the stability of

edge finder output in the presence of camera noise and changes 'in digitization.

The second group evaluates the resolution of the two edge finders, i.e. the extent

to which each edge finder can handle fine detail. The results of these two tests

show that the new edge finder is better at both suppressing the effects of camera

noise and detecting fine detail.

The evaluations of edge finder performance presented in this chapter use an

approach that. is not standard in computer vision. Previous evaluations of com-

puter vision algorithms have been based on determining the correctness of a

programs output, whereas my evaluations are based on measuring its stability.

Section 2 discusses how these two approaches differ and why the stability ap-

proach allows more realistic evaluations to be done with only incomplete models

of reality and of later vision tasks.

Sections 35 dcuss the details of the stability tests performed for this thesis.

Section 3 shows examples of how the matcher from Chapter can distinguish

stable features from noise and discusses procedures used in doing the evaluations.

Section 4 presents the results from the main test for stability in the presence of
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camera noise. Section discusses the results of two smaller tests one using

images with noise of higher amplitude and one using changes in digitization.

Section 6 presents examples of qualitative differences 'in edge finder output.

Although these differences could also be cast as differences in stability and mea-

sured quantitatively, such tests are beyond the scope of this thesis. These exam-

ples show several ways in which Canny's edge finder creates undesirable output,

including rounding or breaking sharp comers, breaking boundaries near inter-

sections and producing spurious responses on ramps. We see that the Phantom

edge finder avoids these problems, although 'it creates phantom boundaries on

staircase patterns.

2. Stabili ty vs. correctness

The edge finder evaluations presented in this chapter are based on determin-

ing the stability of the edge finder's output under various types of changes to the

input. Previous edge finder evaluations have been based on measuring the cor-

rectness of the output, rather than its stability. In this section, we see how these

two approaches differ and how the correctness paradigm has limited previous

attempts to evaluate early vision algorithms.

Evaluating the stability of edge finder output uses the matcher described in

Chapter 5. Stability must be measured with respect to some type of change in

input. In most of the tests presented here, I am concerned with stability in the

presence of camera noise. Ideally, if the edge finder is stable 'in the presence of

camera noise, it should produce the same output on two pictures of the same

scene that differ only in having dfferent samples of random noise added by the

camera system. The tests presented 'in Sections 35 determine the extent to which

this 'is true.



I

308

Stability in the presence of camera noise is a mimal requirement for a low-

level vision algorithm. For many tasks, stability under other types of changes

is also required. A plot test, described in Section 5, assesses the stability of

the two edge finders under changes in digitization. This is done by comparing

their output on two images of a photograph that has been translated relative

to the camera. Similar tests could be done using other types of changes in the

input, such as tilting the scene relative to the camera, or by assessing the extent

to which boundaries from two different properties, such as stereo and texture,

line up.' The results of the stereo algorithm, shown in Chapter 10, provide an

informal measure of stability under changes 'in vewpoint.

The experiments presented here provide quantitative evaluations of edge

finder performance on natural 'images containing an extensive number and variety

of boundaries. Previous quantitative evaluations have been confined to simple

synthetic 'images. This increase in coverage 'is due to two factors. First, the im-

age matcher described in Chapter makes it possible to compare two edge finder

outputs robustly. Secondly, previous experiments have been dependent on defini-

tions of the "correct" output for each image used, because they have attempted

to measure the correctness of edge finder output, rather than its stability. (I only

know of one previous evaluation based on stability, Nishihara's 1984) evaluation

of the output of his stereo matching algorithm.)

If there were a generally accepted notion of what constitutes correct edge

finder output, then it would make sense to compare the output of real edge find-

ers against an idealized output. This is the approach used by previous researchers

such as Haralick 1982), Sher (1987ab), Pratt 1978), and Fram and Deutsch

(1975). Unfortunately, generally accepted models for correct output only exist for

Similarly, one might assess the agreement between surfaces estimated by stereo
vision and surfaces estimated by tactile sensing.
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extremely lmited types of boundaries, chiefly minor variations on straight step

edges. It is unclear how to generalize these definitions. It is frequently asserted

(as in Marr 1982) that boundaries in images should be the projections of bound-
aries of ob'ects in the real world. However this does not simplify the problem of

J I

definition, because there is no generally accepted definition of what constitutes

an object in 3D or, given an object, what its boundaries are. Introspective and

psychophysical data provides constraints on boundary locations, but not with

sufficient precision to decide between two relatively good algorithms.

Furthermore, even if we dd have a definition of the correct output for each

type of boundary present in natural images, it would still be necessary to obtain

these correct answers for images used in evaluations. If the.images are synthe-

sized, it is difficult to ensure that they are accurate simulations of real camera

images. If the images are not synthesized, 'it 'is unclear how one would determine

the correct answers. Doing this by hand would be tedious and error-prone for

images of any complexity. Since mechanical procedures for finding boundaries

are exactly the object of study, using one edge finder to check the results of

another edge finder creates a circularity.

The correctness approach makes the evaluation problem more difficult than

it has to be. In order to obtain meaningful evaluations within this paradigm, it is

necessary to have a complete model of reality and of all applications to which edge

finder output will be put. The model of reality 'is required in order to generate

realistic test images and the model of applications 'is needed to determine the

correct output for each test image. Since current research does not seem close to

building either type of model, this type of evaluation cannot be done.

The stability approach that I use has two advantages. Fst, it allows natural

images to be used in evaluations, because no definition of the "correct" answer is
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required. This aows evaluations to be done under realistic conditions without

having to build detailed models of the real world and the camera system. Because

of the new 'image matching algorithm, evaluations can be almost completely

mechanized. This allows evaluations to be done on large images with fine detail,

illustrating a large variety of boundary shapes.

Secondly, stability evaluations can be done wth only partial understanding

of the requirements of later processing. For example, we know that applications

such as stereo matching require that edge finder output be stable under small

changes 'in viewpoint. The results of tests for this type of stability would still be

valid even if we later learn that other applications require an additional type of

stability, such as stability under changes in lighting. This incremental property of

stability evaluations 'is essential, because our knowledge of how visual processing

should be done is still very limited.

3. Procedures

This section discusses the procedures used for doing the stability tests. The

results of these tests are described in Sections 4 and 5. In this section, I discuss

how the amount of change in an image and the number of boundaries in an

image were measured. We see examples illustrating how the matching procedure

separates responses due to noise from those due to stable features of the scene.

Finally, I describe how the output of Canny's edge finder was converted into the

format used by the matching algorithm, so as to make comparative evaluation

possible.

The details of the image matching process were discussed in Chapter 5. Given

a pair of 'images and an initial alignment between them, this matcher produces a

map of which parts of the image can be matched without topological changes. In
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edge finder evaluation, images should match where the edge finder has detected

real features of the scene and they should not match where the edge finder output

reflects camera noise or is heavily corrupted by camera noise. Figure shows

matching results for a small image, one of the translation examples discussed

in Section 5. The matcher correctly marks regions of noisy responses as .non-

matching. Although two 'images never match perfectly, the difference between

adequate and 'Inadequate noise suppression is clearly indicated by the percentage

of the image that is successfully matched.

Stability evaluations uses two 'images, reflecting views of the same scene with

some small change between them, such as having different samples of random

camera noise. In these tests, one of the images is viewed as the primary 'image

and the other as a secondary image, used only for comparison'. Matching results

are computed using both images, yielding two numbers: the number of cells not

matched successfully and the number of cells whose labels had to be altered in

order to yield a successful match. Both of these numbers are stated as percentages

of the total number of cells in each image. In addition, the total number of

successfully matched edges is computed, using only the primary image.

Two pre-tests were run to make sure it was reasonable to use only two images

for matching and only one image for computing the edge percentages. These

pre-tests used a five-image sequence, containing the high-noise pair described in

Section 5, together with three more images of the same sene. In the first pre-

test all five successive pairs2 of images were matched. The percentages of the

image that matched with and without adjustment, were computed for one edge

finder threshold 90), as described below. The numbers for each pair differed at

most ±0.6% from the mean taken over all five pairs. The percentage of edge cells



Figure 1. Top to bottom: Two images, edge finder output without adequate noise
suppression, edge finder results with adequate noise suppression, and matching
results. The lefthand match map shows the result of matching the noisy out-
puts and the righthand map shows results for the clean outputs. In both cases,
matching cells are shown in white and non-matching cells in black.
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was computed for each image, also according to the details given below. This

was done for each of sx edge finder thresholds (1, 30, 60, 90, 120, 150). For

each threshold, the individual numbers differed at most ±0.5% from the mean

for that threshold.

The first number computed in the stability evaluation is the percentage of

the image that dd not match successfully. 3 For my edge finder, this number

can be computed straightforwardly from the clean match map produced by the

image matcher. Canny's edge finder, however, produces results in a different

format and it 'is necessary to convert his results into a format that the image

matcher can use, before the match percentage can be computed. The difficulties

come from the fact that Canny's edge finder produces on-cell, rather than inter-

cell, boundaries and it does not produce dark/light labels explicitly, but rather

encodes sign information in boundary orientations.

Dark/light labels for Canny's edge finder are reconstructed in two stages.

Suppose that x is a cell next to a boundary cell y. The algorithm computes the

orientation of x relative to y. This orientation is compared to the boundary ori-

entation reported by the edge finder and x is labelled dark or light accordingly.

This computation is done for all such pairs of cells. Because the relative orienta-

tion of two cells is quantized to 45 degrees and boundaries may be closely packed,

occasional errors occur. These errors typically result in a cell being assigned both

the label light and the label dark. Such cells are re-set to have no label. When all

cells next to boundaries have been labelled, the labels are propagated five cells

outwards, so as to create labelled regions of wdth similar to those produced by

my edge finder. The results of this process are illustrated in Figure 2.

3 It would be equivalent to use the percentage that did match successfully. How-
ever, the non-matching number is more convenient for graphing, because it 'is
small for the cases of most interest, when noise suppression has been done more
or less successfully.



Figure 2 Dark/light labels (right) can be reconstructed from the boundaries
produced by Canny's edge finder (left), using boundary orientation information
provided by this edge finder.

Label reconstruction allows match maps and match percentages to be com-

puted for both edge finders. The other two numbers used in evaluation are the

number of successfully matched edges in the image, stated as a percentage of the

image, and the average amount of boundary motion. Recall that an edge cell is

a cell adjacent to a boundary, but not actually 'in the boundary. Each boundary

is surrounded by two sets of edge cells, one to each side. Thus, the number of

edge cells in an image is a rough measure of the total length of the boundaries

in that image., Furthermore, this measure does not discriminate unfairly against

either my edge finder, which places boundaries between cells, and Canny's edge

finder, which places them on cells.

In order for edge counts to be as useful as possible, two niceties must be taken

care of First, edge cells are not computed on the raw edge finder output, but

rather on a copy of this output enlarged by a factor of 2 in each dimension. If

this were not done, thin regions and regions of high curvature would be assigned

unfairly low edge counts, because a cell can border a boundary on two sides.

Secondly, edges are only counted wthin regions that matched successfully. Thi's

is done by relabelling non-matching cells as "zero" prior to 'identifying edge

314
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cells. This means that edge counts reflect the number of useful edges and do not

include edges due to inadequately suppressed noise.

For Canny's edge finder, there are two distinct ways to compute the number

of edge cells. In addition to those boundaries actually reported by the edge

finder, other boundaries may be induced when the labels from two boundaries

bump 'Into one another during the process of spreading dark/light labels. These

staircase phantoms, discussed further in Section 6 only sometimes represent real

scene boundaries. As we see 'in Section 6 my edge finder consistently marks

spurious boundaries in such cases, which tends to 'increase the total number of

edges it reports. In order to assess the effect of this dfference, edge counts

for Canny's edge finder were computed both with (filled) and without (unfilled)

these phantom boundaries. For comparative purposes, these represent over- and

under-estimates of some hypothetical objective edge count.

The amount of boundary motion is estimated from the total number of cells

whose labels were adjusted so as to produce a successful match. This number is

divided by the total number of edge cells (as described in the previous section),

to yeld an estimate of the number of cells moved per unit of boundary. Because

each boundary 'is surrounded by two edge cells, you mght think that this figure

would be twice too large. However, remember that the edge cells were computed

on an expanded version of the image. This contributes an additional, inverse,

factor of two. Thus, the ratio of the number of adjusted cells to the number of

edges does roughly measure the amount of boundary motion.

Again there are a few niceties involved 'in com-Putin boundary motion. First,

I 9

staircase phantom boundaries move in roughly the same manner as the real

boundaries generating them. Thus, they also produce cells whose labels must

be adjusted in the matching process. For this reason, it is essential to use the
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filled edge cell counts when computing boundary motion for Canny's edge finder.

Secondly, label transitions 'in the interior of large regions also produce cells whose

labels must be altered during boundary adjustment. This was not taken 'into

account in the current evaluations and thus the estimated of boundary motion

reported below 'is hgh. Because the test 'images contain large amounts of dense

texture, the effects of this over-estimation should be small.

Thus, evaluation of my edge finder yelds three numbers for each pair of out-

puts matched: the percentage matched, the percentage of edges, and the amount

of boundary motion. For Canny's edge finder, four numbers are computed, be-

cause two alternative edge percentages are given. The match percentages measure

the extent to which the topology of the edge finder output 'is stable. The amount

of boundary motion measures the extent to which boundary locations are sta-

ble, in regions of stable topology. Both of these evaluations can be 'improved by

restrictive settings of edge finder noise thresholds, at the cost of reducing the

number of boundaries detected. The percentage of edges is used to assess how

much useful information is lost as stability 'is 'increased.

There are a few more points that I should note about the implementation of

Canny used in these tests. I used the current MIT implementation of Canny's

edge finder for the Symbolics LISP Machine. This code is similar to that used in

Canny's original 'implementation, except that it has been adjusted for changes in

Symbolics software and edge finding is done at only one scale. That is, the feature

synthesis algorithm has been removed. The MIT implementation also estimates

the amount of noise 'in each image and ad usts noise thresholds accordingly. I

have disabled this estimator because t is unreliable and it would have made

constructing controlled experiments more difficult.

The MIT implementation of Canny's edge finder uses two parameters for noise
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thresholding: a low threshold and a high threshold. These thresholds are by the

hysteresis algorithm described in Canny 1983, 1986). In the following tests, the

higher threshold was set consistently to twice the low threshold. Based on both

the default setting used at MIT and my own experience wth the edge finder, this

is a good setting for this parameter. Thus, the single noise parameter mentioned

in the following sections will be the low noise threshold. The experiments used

a range of settings for this threshold.

4. The main noise test

The first and largest stability test measures the stability of both edge finders

under moderate amounts of camera noise. This test used four large 'images

containing dense texture. Evaluations were run for both the Phantom edge finder

and Canny's edge finder, using for a range of parameter settings in each case.

We see that Canny's edge finder produces a worse tradeoff between stability and

number of edges, particularly for the smaller mask sizes.

The images for these tests were taken wth a Panasonic WV-CD50 CCD

camera and a. framegrabber blt at the AI lab. This system adds only low-

amplitude noise to the dgitized image. To a first approximation, the noise could

be described as Gaussian, with a = 3 intensity uits. The images are also blurred

slightly, apparently before the noise is added. This blur could be modelled as

convolution with a Gaussian of a = cell. Detailed measurements of the noise

and blur are not available.

Figures 3 and 4 show the four images used in this test. Each image is 454

by 576 cells. The system supplies 8-bit intensity values and the camera aperture

was adjusted so that the images cover most of this range. The ranges of intensity

values in the test images vary between 209 and 243 intensity units. One scene
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was made up of real objects. The other three were created using black-and-white

photographs, so as to pack large numbers and types of boundaries into each

image. The backdrop 'in all cases was a wooden table surface. Two images of

each scene were taken, a minute or so apart.

Figures 56 show the results of the Phantom edge finder for these four images

and Figures 712 show the results of Canny's edge finder for three different mask

sizes. These images were created using noise threshold settings that represent

good tradeoffs between stability and number of edges detected. For Canny's edge

finder, boundary cells are shown. For the Phantom edge finder, edge cells on the

dark sides of boundaries are shown, in addition to boundary cells, because many

boundaries contain no boundary cells. 4 Intuitively, the Phantom edge finder

seems to be detecting boundaries to higher resolution with less noise. The point

of this test is to obtain quantitative assessments of how noisy these outputs are.

The tests described in Section 6 assess the amount of resolution delivered.

The evaluations described in Section 3 were done for a range of parameter

settings of each edge finder. For the Phantom edge finder, noise threshold settings

of 5 30, 60, 90, 120, and 150 were used. A seventh run with threshold 15 was

later added to fill out a sparse section of the curves. Canny's edge finder was

run with mask szes 4 8, and 12, corresponding to Gaussian smoothing with

C = 0.5, 1, and 1.5 cells respectively. The default mask sze setting for the MIT

implementation is 8, with occasional applications using mask sze 12. For each

mask size, the edge finder was run with low noise threshold settings of 0, 0,

4 This heuristic 'is used in order to create boundary displays that are the same
size as the original image. It has the bug that the boundaries on two sides of
thin dark regions may be coalesced. However, fully detailed boundary maps,
such as those used in Section 6 require expanding the image by a factor of
two.

5 A setting of causes the entire image to be labelled as boundary cells, due to
details of the implementation.



Figure I Two of the 'images used in the main stability test.-- 2- -- - i� I 1.1mi.
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Figure 4 Two of the images used in the main stability test.
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Figure 5. Phantom edge finder results for the two images in Figure 3 using noise
threshold 60.
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Figure 6 Phantom edge finder results for the two 'images in Figure 4 using noise
threshold 60.
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Figure 7 Canny edge finder results for the 'images in Figure 3 mask size 4 low
noise threshold 150.
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Figure 8. Canny edge finder results for the 'images in Figure 4 mask size 4 low
noise threshold 150.
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Figure 9 Canny edge finder results for the 'images in Figure 3 mask size 8, low
noise threshold 100.
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Figure 10. Canny edge finder results for the images 'in Fgure 4 mask size low
noise threshold 100.
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Figure 11. Canny edge finder results for the 'images in Fgure 3 mask sze 12,
low noise threshold 50.
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Figure 12. Canny edge finder results for the images in Figure 4 mask size 121low nse threshold 50.
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1005 150, 200, 250, arid 300. The results presented are averages over all four

images. The results for dividual images follow the same qualitative pattern,

with variations in exact values due to dfferences in scene content.

Figures 13-14 show graphs of the percentage of the image not matched and

the percentage edges for the Phantom edge finder. As the noise threshold is

increased, the stability increases steeply and then levels off, whereas the number

of edges starts out level and then drops. The exact height of these curves depends

on the contents of the scene. For example, if the scene contains large regions of

uniform color or low-amplitude boundaries, only small percentages of the image

match at low noise thresholds. If, on the other hand, most of the scene consists

of high-contrast texture, the non-matching percentages are all low. Thus, the

important properties of these curves are their shape and the changes in their

height as parameters are varied.
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Figure 14. The matching percentages and the edge percentages from Figure 13,
plotted against one another. Settings near the bend of the curve represent good
compromises between stability and returning as many boundaries as possible.
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Figure 13. Top: percentage of the Phantom edge finder's output not matched
(i.e. contaminated by noise), plotted as a function of the edge finder's noise
threshold. Bottom: a similar plot of the number of sccessfully matched edges,
normalized for the image size. Both of these graphs represent averages over the
four images shown in Figures 3 and 4 -
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For comparative purposes, 'it is most useful to plot non-matching percentage

against edge percentage, as shown 'in the last graph in Fgure 14. This format

makes explicit the tradeoff between stability and number of edges detected. It

also allows results from different edge finders to be plotted in a common co-

ordinate system. The noise threshold settings are not explicitly shown in this

type of graph. However since the points form well-behaved curves, the mapping

between data points and thresholds can easily be deduced. Notice that the evalu-

ation results for Phantom form an L-shaped curve. Noise threshold settings near

the bend 'in this curve (about 30-60) represent good tradeoffs between stability

and number of boundaries. These settings also seem the best when outputs are

inspected vsually.

Figures 15-16 show graphs comparing the evaluations of Phantom and

Canny's edge finder. Notice that the curves for Canny's edge finder at mask

sizes 4 and lie entirely below the curve for the Phantom edge finder. This 'is

true no matter which method is used for counting edge cells in Canny's output.

This 'indicates that, for any desired degree of stability, Phantom is returning

more boundaries than Canny's edge finder. If Canny's edge finder is run wth

mask size 12, the curves are closer, although Phantom is still performing better.

The difference is most pronounced near the bends in the curves, where the best

tradeoffs between stability and number of boundaries occur.

The amount of boundary motion was computed for all of these parameter

settings. The average amount of motion ranged between 017 and 025 cells for

the Phantom edge finder. For Canny's edge finder, it was 016 to 026. The

amount of motion was lower for hgher noise thresholds and (for Canny's edge

finder) larger mask sizes. Since the total range of variation 'is so small, however,

it 'is unclear how reliable these differences are.
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Figure 15. Performance of Canny's edge finder (mask szes 4 and 8) compared
with that of the Phantom edge finder, on the main noise test (average of the
four images). These graphs show matching percentages plotted against edge
percentages. Values that are igher and to the left represent better compromises
between stability and returning as manv boundaries as possible.
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Figure 16. The same comparison as in Figure 15, but with mask sze 12 of
Canny's edge finder.

Thus, these tests show that the Phantom edge finder produces a better trade-

off between the number of boundaries reported and the stability of this output.

Canny's edge finder performs noticably less well when mask size 4 is used. Per-

formance is better with mask size and approaches that of the Phantom edge

finder for mask size 12. The average amount of boundary motion is small and is

approximately the same for the two edge finders. These results are for moderate

amounts camera noise such as one might expect from modem vdeo camera

setups.

5. Other noise tests

In addition to the main noise evaluation described in Section 4 two shorter

tests were run to see how the results changed under slightly dfferent conditions.
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One test repeats the same evaluation on an 'image with higher levels of camera

noise. The other test uses pairs of 'images in which the scene has been translated

relative to the camera, so that the scene 'is digitized in derent wys. Results

from the translation examples are smilar to those from! the main noise test,

though the amount of boundary motion is higher. In the hgh noise case, Phan-

tom performs similarly to Canny's edge finder with mask size 8. With smoothing,

Phantom performs similar to Canny's edge finder with mask size 12.

The high noise test used one pair of 454 by 576 images, similar to those

described in Section 4 This image, however, was taken with a camera and

digitizer that introduce higher-amplitude noise than the ones used for the main

test. The constrast range in this picture was also low, only 161 intensity units.

One of this pair of images is shown in Fgure 17 and Figures 18-19 show edge

finder output for this image. As in Section 4 these results represent good settings

for the noise thresholds, somewhat higher than the best settings for the images

used in the main noise test. The Phantom edge finder was run through two

evaluations, once on the raw images and once after smoothing the images with

a Gaussian of a = cell.

The evaluations for Canny's edge finder were run for mask sizes and 12 and

low noise thresholds of 50, 100, 150, 200'1 250, and 300. The Phantom edge

finder was run with thresholds 1, 30, 60, 90, 120, and 150 for both the smoothed

and unsmoothed cases. To fill in sparse sections of the graph, it was also run

with threshold 75 in the unsmoothed case and threshold 45 in the smoothed

case. Figure 20 shows the results of these stability evaluations. On this 'image,

Phantom exhibits performance smilar to that of Canny's edge finder wth mask

size 8. With smoothing, its performance is similar to that of Canny's edge finder

with mask size 12. Note that the scale 'is dfferent for these two graphs, because



Figure 17. The 'image used in the hgh noise test.
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two of the data points for the unsmoothed version of Phantom lie quite far out.

For the high noise image, boundary motions for the two edge finders are quite

similar. With the exception of one measurement, boundary motions computed

for the two Phantom evaluations fall in the range of 043 to 059. The odd

measurement is 033, but it comes. from the unsmoothed Phantom evaluation

with threshold setting and is probably corrupted by noise. Boundary motions

computed for Canny's edge finder vary between 048 and 057. These numbers

are noticably higher than those for the lower noise images, but, again, there seems

to be no significant dfference in performance between the two edge finders.

The second short test used two pairs of 'images in which the scene was trans-

lated relative to the camera. These images were created by placing a black-and-

white photograph on a background of white paper. The photograph was moved

by hand in a diagonal direction with respect to the camera digitization), using



Figure 18. Edge finder results for the high noise image from Figure 17. Top:
Phantom edge finder output (threshold 90). Bottom: finder with pre-smoothing
(threshold 60).
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Figure 19. Edge finder results for the high noise 'image from Figure 17. Top:
Canny's edge -finder with mask size (threshold 150). Bottom: Canny's edge
finder with mask size 12 (threshold 100).
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Figure 20. Performance of Phantom edge finder and Canny's edge finder on the
high noise image from Figure 17. These graphs show the percentages matched
against the edge percentages, as 'in Figures 15 and 16. The upper graph shows
the results for Phantom without pre-smoothing and the lower graph shows results
with pre-smoothing. Also, the scale used for matching percentages is different
for the two graphs, because the results for the unsmoothed version of Phantom
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a paper edge as a guide. Although the paper did not move, the only boundaries

visible in the paper background lie parallel to the direction of translation. The

images were aligned by hand (using easily identified features in edge finder out-

put) and corresponding 224 by 288 sections extracted. Evaluation was then done

on these pairs of 'images in the same way as in Section 4. One of each pair of

images is shown in Figures 21-22, together with edge finder results.

Figure 21. Top: The two 'images used in the translation experiment. Bottom:
Phantom edge finder output (threshold 60).

Evaluations for the translated images were run for three Canny mask sizes,

4, 8, and 12, and low noise thresholds 0, 50, 100, 150, 200, 250, and 300. The

Phantom edge finder was evaluated with thresholds 30, 45, 0, 90, 120, and

150. The evaluation results are shown in Figures 23-24. These evaluations show

roughly the same pattern as those presented 'in Section 4 The datapoints are



Figure 22. Canny edge finder output for the translation images. Top to bottom:
mask size 4 mask sze 8, and mask size 12. Noise threshold 100 was used for all
these 'images.

somewhat more noisy, probably because less image area was used. The best

threshold settings for Canny's edge finder are also slightly different. Boundary

motion estimates for Phantom are between 024 and 031, and between 029 and

0.36 for Canny's edge finder. This is slightly hgher than the motions computed

for the non-translated images in Section 4 but not dramatically so.

---- ------
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Figure 23. Plots of matching percentage vs. edge percentage for the two transla-
tion images in Figure 21. These plots compare the performance of Canny's edge
finder (mask sizes 4 and 8) against that of the Phantom edge finder.
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Figure 24. The same graph as in Fgure 23- but using mask size 12 of Canny's
edge finder.

The results for the translation and high noise conditions follow roughly the

same pattern. as those presented in Section 4 In the translation condition, the

Phantom edge finder still performs slightly better than Canny's edge finder.

In the high noise case, the Phantom edge finder loses its stability advantage,

performing only as well as Canny's edge finder. Intuitively, however, there is

still a difference in resolution. In the high noise example, small amounts of pre-

smoothing improve Phantom's performance noticably. In both tests, computed

boundary motions were predictably hgher than those found in Section 4 but

again show lttle difference between the two edge finders.

6. Acuity tests

342

In the examples shown in previous sections, there seemed to be a difference in
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resolution between Canny's edge finder and the Phantom edge finder, even where

the two edge finders had similar stability evaluations. In this section, we see

that this difference in resolution does not primarily involve differences in ability

to detect small regions, but rather differences in ability to parse regions with

high boundary curvature and boundary intersections. We also see several other

qualitative differences in behavior between the two algorithms. The Phantom

edge finder generates spurious boundaries in staircase patterns. Canny's edge

finder generates spurious responses on ramps and, at small mask sizes, picks up

differences between interlaced scan lines.

The examples in this section are of two types: synthetic images and natural

images. Each synthetic pattern was generated at a range of contrasts 128, 103,

781 52, and 26 intensity units difference between the darkest and the lightest

values). Each 'image in the series was blurred with a Gaussian of a = cell and

Gaussian noise of = 3 intensity units was added. This 'is a rough simulation of

the effect of the camera setups used 'in taking the natural images. For each image,

Canny's edge finder is run with mask sizes 4 (threshold 150), 8 (threshold 100),

and 12 (threshold 50). The Phantom edge finder is run with noise threshold

60. The noise thresholds were chosen on the basis of the resu.1ts presented 'in

Section 4 Edge finder output is dsplayed using boundary maps that are twice

the size of the original 'images, so that fine detail of the boundaries can be seen.

Images are also shown at twice normal size.

The Phantom edge finder and Canny's edge finder show similar ability to

detect thin regions, such as the thin-bar patterns shown in Figure 25. Both

edge finders can detect regions as small as two cells wde, although these regions

are beginning to be difficult for mask size 12 of Canny's edge finder. Neither

edge finder can reliably detect regions one cell wide in the presence of even the
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moderate amount of blur and noise used in these experiments. Thus, they both

have approximately the same separation acuity as humans (Marr, Poggio, and

Hildreth 1980).

The real differences 'in resolution between the two edge finders 'involve bound-

aries with high curvature and boundary 'intersections. As we saw in Chapter 4,

the gradient drection used by Canny's edge finder is not well-defined in these

cases. I consider the high curvature problem first. On high-curvature boundaries,

Canny's edge finder exhibits three failure modes: smoothing corners, breaking

corners, and adding spurious boundaries. Figures 26-27 show corners of varying

sharpness, illustrating all three types of failures. The results for the hghest con-

trast example 'in Fgure 26 are also shown enlarged, so that the small breaks are

easier to see.6 In dense texture strange patterns of extraneous boundaries often

occur, as shown in Figure 29.

Canny's edge finder also exhibits problems when boundaries intersect. Fig-

ures 29-30 show two patterns in which multiple regions meet at a common point.

As you can see, the Phantom edge finder produces appropriate patterns of bound-

aries in these cases, whereas Canny's edge finder mangles the pattern near the

intersections. Both high curvature and boundary intersections occur frequently

in 'natural images. The difference in performance on these types of configura-

tions accounts for the differences in apparent resolution between the two edge

finders. Figures 31-33 show examples of sharp comers and boundary intersections

in natural images.

The leaf image in Figure 30 illustrates another problem that occurs when

Canny's edge finder is used wthout adequate smoothing. Our camera, like most

cameras used 'in computer vision, uses 'interlaced frames. At mask size 4 Canny's

6Particularly after the repeated xeroxing to which this document may be
sub'ected.



Figure 25. Performance of the Phantom edge finder and Canny's edge finder on
a 50 by 50 image of thin bars (two cells wde). Both edge finders can resolve
these bars, though Canny's edge finder becomes unreliable when mask size 12 'is
used. In this figure, and in the other figures in this section, images are enlarged
by a factor of two (in each dimension) relative to the other images shown in this
thesis.
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Figure 26. Canny's edge finder smooths the sharp corners in this 48 b 48 image.y
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Figure 30. Another 'image 48 by 48) containing complicated boundary intersec-
tions. Canny's edge finder breaks the boundaries near the' intersections.

350



I

I as - nny, mask size 

1�

^3

I

4 -ponny, mask siz 12,

%. 

camny, malsk size 

k 6

47

a
-- -- X-- ff ------ % 

canny, mask-size 12
jitt, %

17'ek I
1 4o A-iCO

.0-M %
of

A

Figure 31. Two natural images containing sharp corners and boundary intersec-
tions (108 by 88 cells and 64 by 64 cells). Canny's edge finder smoothes sharp
corners, breaks boundaries, and generates spurious boundaries near sharp comers
and boundary intersections.

351



--anny, mask size 

.0

a

v

0

-- %-N's

anny. mask size 12

I

I

I

anny. mask size 4-

--- 111%.W

I

I :!!t
.r

Figure 32. Performance of the two edge finders on fine texture from two real
images 84 by 84 cells and 100 by 100 cells). Canny's edge finder is unable to
resolve these fine regions correctly.

352



Iphantom, threshold 9

n
%=Mm

:annv. mask size 4
- -- I - I I

canny, mask site 12
-- . A. I I

i
IF---

w

hantom., thresho Id 6 

Soo
- 31,0

&KAUQ 1 a
aDEWCES 3 wor WC

I -- Moll

OftFly. VOOF% 0 1 LV W-

CDo

� go Num, w

�fbWAN Dho
04

I --- M b I

cannv. mask size 12,

l0b

mq�&P=Lel 0 sC> settle- - Ig MD
I ---- O b I

canny, mask e_4
W#

Aal P 0
1 M*

uo
9x 1 *60

MO
- 284

c

L

353

canny. mask ize 8

P�ll

iI

m I
I

Figure 33. Top: an extract from an 'image of a fork (50 by 50 cells) showing
how Canny's edge finder breaks boundaries at sharp comers. This image has
been enlarged by a factor of 2 'in each dmensions relative to the other images in
this section. Bottom: another 'image 144 by 64 cells) containing fine texture.
The Phantom edge finderresolves the boundaries of the lettering correctly and
Canny's edge finder does not.
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edge finder responds to dfferences between scan lnes that are adjacent and thus

come from different halves of the interlace pattern. The Phantom edge finder

avoids this problem by using slightly wde second differences, [- 1, 0 2 0, 11

rather than 1 2 1]. This type of problem would not occur in human visual

processing.

Canny's edge finder can also produce similar patterns of multiple responses

even when interlace effects are not 'involved. This is 'Illustrated 'in Figure 34. In an

extended region of hgh first difference, Canny's edge finder marks all local max-

ima as boundaries. These local maxima can be created by even low-amplitude

noise. Canny's non-maximum suppression algorithm depends on having enough

smoothing to eliminate these spurious maxima. In fact, frank multiple responses

are only common for mask size 4 and rarely occur in natural 'images analyzed

with mask sizes and 12. However, many spurious contours on smoothly shaded

objects, such as the eye and cup shown 'in Figure 35, probably result from this

weakness in the algorithm.

All of the above examples illustrate stuations 'in which the Phantom edge

finder produces appropriate results and Canny's edge finder does not. The Phan-

tom edge finder does, however, exhibit one failure mode of its own: it produces

spurious boundaries on staircase patterns. The mechanism behind this was ex-

plained in Chapter 4 Figure 36-37 show examples of these spurious responses

in synthetic 'images with staircase intensity profiles. As these figures show, the

spurious responses occur only when the staircase region is relatively small. Fur-

thermore, as discussed in Chapter 4 it may be possible to detect and eliminate

these responses when they occur at coarser scales, using information from finer

scales. However, I do not know of any robust method for eliminating these phan-

tom boundaries 'if they occur at the finest scale of analysis. The cup image 'in
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Figure 36. Results of the Phantom edge finder on two images with staircase
intensity patterns, with stripes of two different widths (8 and 20 cells). Both edge
finders were run on the 'image with contrast 128 intensity units. Left to right.-
the image at contrast 256, the 'image at contrast 128, the Phantom edge finder's
response regions, the Phantom edge finder's boundaries, Canny's boundaries
(mask size 8). In the image with more closely spaced boundaries, the Phantom
edge finder produces spurious boundaries are generated in the middle of each
stripe.

Figure 35 shows naturally occuring examples of these configurations.

In this section, we have seen a number of qualitative differences in behavior

between the Phantom edge finder and Canny's edge finder. The apparent higher

resolution of the Phantom edge finder is due to more accurate responses on

high-curvature regions and regions where boundaries intersect. Canny's edge

finder also shows problems with multiple responses on ramps, such as those due

to smooth shading, and interlaced images (only for mask size 4). Although it

performs better in general, the Phantom edge finder consistently marks spurious

boundaries in narrow staircase patterns.
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Figure 37. Performance of the Phantom edge finder and Canny's edge finder on
a plaid pattern (black, white, and grey squares). As in the staircase patterns
in Fgure 36, the Phantom edge finder generates spurious boundaries. Canny's
edge finder does not generate any spurious boundaries, but it breaks boundaries
near the intersections.
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T. Conclusions

The experiments presented in this chapter illustrate a number of differences

in behavior between the Phantom edge finder and Canny's edge finder. These

include both differences n stability and differences 'in qualitative behavior. The

stability tests also illustrate ob'ective methods by which noise thresholds can be

chosen for the two programs. Although still incomplete, these results are more

extensive than those presented in previous edge finder evaluations.

The first global conclusion that can be drawn from these experiments 'is that

mask size 4 is a poor choice for Canny's edge finder. It performs poorly in the

stability tests, produces frequent multiple responses due to smooth shading, and

responds to differences between camera 'Interlace frames. These problems with

mask size 4 should come as no surprise: informal observations have led previous

researchers to use mask sze or 12 for this edge finder. Nevertheless, we now

have empirical confirmation of these problems. When confronted with differences

in resolution between Canny's edge finder and other algorithms, it is tempting

to suggest using a smaller mask size. These results make it clear that mask sizes

below are too sensitive to noise to be viable alternatives.

Secondly, we can conclude that the Phantom edge finder performs, on the

whole, better than Canny's edge finder. It detects boundaries at hgher resolution

than Canny's edge finder. Although 'it may lose blurred edges as a consequence,

these edges can always be recovered from coarser scales of the edge finder. When

camera noise of moderate amplitude is present, Phantom's output 'is more stable

than Canny's, for any of the three mask sizes tested. When higher-amplitude

noise is present, the two perform similarly. The sngle most effective technique

for analyzing the high noise image was a combination of Phantom's algorithm

with Gaussian smoothing. This suggests that Gaussian smoothing, advocated
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by many previous researchers, is not a bad idea, but smply over-used.
Finally, the stability evaluations presented'n Sections 35 provid

1 e an objective

method of setting edge finder noise thresholds. Since the plots of stability vs.

number of edges are roughly L-shaped, good choices for noise thresholds must

lie in the bend of the curve. For the Phantom edge finder, the bend is relatively

sharp and so the range of choices is quite small. For Canny's edge finder, the

bends are more gradual. The requirements of particular applications may effect

the exact setting of the threshold. However, these evaluations provide a good

basis for making the decision.

These evaluations are related in three ways to the topological ideas presented

in this thesis. First they show that the noise suppression algorithm based on star-

convex neighborhoods reliably suppresses the effects of camera noise performing

better than the Gaussian smoothing used in Canny's edge finder. Secondly, the

new edge finder takes account of the differences between the behavior of deriva-

tives in infinite resolution spaces and differences in dgitized spaces. This helps

the edge finder perform more reliably on comers and region intersections. Finally,

the topological matcher made it possible to conduct quantitative evaluations of

edge finder performance on images of real scenes, which has not been possible

before.
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Chapter 10: Stereo testing

1. Introduction

In this chapter, I wll present some tests of the new stereo matching algo-

rithm, on both synthetic and natural stereo pairs. These examples illustrate

that the new algorithm can tolerate 'its large search area without becoming con-

fused. They show that 'it can successfully match 'images with substantial vertical

displacements and rotation, recovering plausible horizontal disparities. They also

show that the new algorithm can reconstruct sharp depth discontinuities without

blurring depth values across the discontinuity.

Section will discuss general procedures used in all of the stereo tests and

the method of displaying stereo results. Section 2 discusses the synthetic stereo

examples and Section 3 dscusses the natural stereograms. Section 4 presents

a brief example showing how the same matching technique might be applied in

analyzing motion sequences.

2. Procedures

The new stereo algorithm runs quite slowly, due to a combination of the slow-

ness of star-convex sum and the wde search neighborhoods considered. Each of

the examples presented here took from a couple days to a week to run , depending

on the size of the image and the range of disparities present in it. Thus, careful

choice of examples was essential in order to achieve as much coverage as possible.

The examples were deliberately chosen to be difficult to match.
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The images used are described in detail 'in Sections 3 and 4 Most of the

images have some vertical dsparity (up to 16 cells). Horizontal disparities occur

with both signs and wh magnitudes up to 35 cells. Several of the natural

images are rotated. Although the angular rotations are small (up to degrees),

they create significant additional vertical displacements near the edges of the

images. As described 'in Chapter 6 the algorithm 'initially assumes that the

images are correctly aligned and adjusts the alignment as it computes the stereo

correspondence. Except for the motion example discussed in Section 4 the

search parameters and ad ustment algorithm are as described 'in Chapter 6 As

in most other examples in this thesis, the edge finder was run with noise threshold

60.

Most of the images presented could not be run to the finest scale ossible,

due to time constraints. Thus, as indicated in the individual image descriptions,

the results presented are from sub-sampled versions of the 'images. As noted in

Chapter 4 the effects of camera noise are less for sub-sampled 'images. However,

since the edge finder's noise suppression algorithm is quite robust, I do not think

that this significantly affects the stereo results.

Figure shows the output for a synthetic stereogram, discussed more fully in

Section 3 Anticipating that many readers will see only xeroxed versions of these

results I have designed the display format to make as much use of binary images

as possible. All of the stereo pairs are presented 'in the same format and I will

explain some details of it here. In the interests of space, I have only presented

the stereo results from the point of vew of one of the two images. Except for

two images, for which both sets of results are shown, results for the other half

of the computations were similar. Results are presented for the finest scale to

which each computation was run.
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ing results for a stereogram 'th a change in contrast. TheFigure 1. Match' wi
top row shows the stereogram, edge finder results, and a cartoon derived from
the edge finder results for the lefthand image. The middle row show computed
disparities, match maps, and edges. The bottom row show which regions of the
lefthand 'image matched at various disparity ranges. (Non-matching parts of
the image are shown in a checkerboard pattern.) The computed ad .ustment to
alignment was (-1.7, 2.0) cells of translation and a rotation- of. 0.9 degrees.

The stereo pairs are presented for crossed-eye viewing. In the top row of

Figure 1 I have shown both the original images and the cartoon version of the

edge finder output for the finest scale at which stereo matching was done. The

final item 'in this row is a binary cartoon created by filling gaps 'in the finest scale

cartoon (left 'image) with values from coarser scales. This process was described

in Chapter 4 Section 8. For this image, it has little effect, because the finest scale

responses are rarely zero. The images presented in Figure 11 show the difference

more clearly.

The second and third rows show the matching results. Three dsparity fields

are shown: horizontal, corrected horizontal, and vertical. Remember that image

rotation can be estimated using the vertical disparities. The corrected horizontal
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disparities are the horizontal disparities corrected for the effects of this estimated

rotation. The displays are lnear, but the 'Intensity range reflects only the maini

disparity responses. Outliers beyond this range are normalized to the edges of

the range. These outliers represent only small numbers of points, as you can see

from the range dsplays discussed below. All of these results are from the point

of vew of the lefthand image.

The match map shows which cells (in the lefthand 'image) were assigned stereo

disparities. Cells marked in black did not receive any acceptable stereo match.

The edge map shows edges computed from the corrected horizontal disparities

using the Phantom edge finder (noise threshold 240). Boundary cells and cells to

the dark sides of boundaries are shown 'in black, as are non-matching cells from

the match map. These edge finder results are experimental and are primarily

presented to give the reader another source of information about the computed

disparities. More experimentation would be needed to design a robust adaptation

of the edge finder to this domain.

The third row of the output dsplay shows which parts of the left 'image

had disparities within specified ranges. The disparity ranges are specified in cells

(measured in the finest scale version of the image that was matched) and are given

above each image. Regions of the image wthin the range are shown in cartoon

form, using the filled-in binary cartoon (last item from the top row). Areas

outside the range are shown in a checkerboard pattern. The disparity ranges

were adjusted by hand, to produce as 'Informative a dsplay as possible. Finally,

the computed adjustments to the image alignment are given. The translation is

reported as a vector, horizontal component first.
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3. Synthetic images

The stereo algorithm was run on five random-dot stereograms, illustrating

a variety of conditions. The 'images include a stereogram with large difference

in contrast one wth a large vertical offset, an example of Panum's lmiting

case, an example with steep gradients in dsparity, and a sparse stereogram.

All stereograms were created as binary images with 'intensity values and 25.

They were then blurred with an approximation to a Gaussian of a = cell and

Gaussian noise of = 3 intensity units was added. This procedure simulates the

effects of camera noise and is the same as that used n Chapter 9.

The stereogram presented in Figure is a 50% random dot stereogram show-

ing a raised square. The image is 100 cells square and the dots are 2 cells on

a side. The square has a horizontal disparity of 10 cells and the whole image

(square and background) has a vertical disparity of 2 cells. The contrast of the

righthand image was reduced to half that of the lefthand image.

As you ight expect, the stereo matcher performs well on this image. There

are some rms-matches, particularly near the occluded region and a strip along

the top of the square has disparities consistently slightly high (by perhaps 2

cells). Fgure 2 shows some intensity values near the edge of the square and a

vertical slice though the dsparity map. As you can see, the stereo algorithm has

correctly reconstructed a sharp change in dsparity between the square and the

background.

Disparity values for this image, and the other synthetic images, fluctuate

1-1.5 cells from the correct dsparity. This probably reflects errors 'in the bound-

ary motion calculation, rather than incorrect matches. Although the algorithm

computes the correct adjustment to the vertical agnment of the images, it in-

correctly reconstructs a slight 0.9 degree) rotation. Thi's error may be due to
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Figure 2 Disparity values for part of the image in Figure and a vertical slice
through the middle of the same image. The reconstructed dispa 'ty values change
abruptly at the boundary between the square and the background, in agreement
with the subjective judgements of human observers.

the errors in disparity values and/or to the rather primitive estimation technique.

Despite such small errors, the reconstructed rotations for an of these images were

close enough to enable successful match.

The second synthetic stereogram is shown in Figures 34. This stereogram

was created by averaging two 50% random-dot stereograms, one with 2 by 2 dots

and one with 16 by 16 dots. The stereogram 'is 200 cells square and depicts a

raised square wth a disparity of 4 cells. The whole images (both square and

background) have been shifted 16 pixels vertically, relative to one another. This

stereogram may take some effort to fse. Since the top and bottom of the image

are rivalrous. , fusion 'is easier to obtain if the center of the image is fixated. Again,

the stereo matcher matches this 'image with few eors.

The third and fourth synthetic stereograms are shown in Figure 5. They are

both 200 cells square, but were only run to the second finest scale (100 cells

square). The top stereogram shows a set of ramps with a peak-to-peak spacing

of 100 cells and peak dsparities of ±10 cells (i.e. ± cells at this scale). It is a
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Figure 3 A stereogram with a large vertical displacement.

10% random-dot stereogram wth dots 2 cells on a sde. The bottom stereogram

shows a raised square, but using only sparse (5%) dots. Each dot is 4 cells on a

side. The square has a horizontal disparity of 20 cells (i.e. 10 at this scale) and a

vertical disparity, relative to the background, of 4 cells (i.e. 2 cells at this scale).

Both of the stereograms in Fgure were slightly more difficult to fuse and

caused more errors. The tops and bottoms of the ramps were often smoothed or

unmatched. There is a large patch of incorrect dsparity in the sparse image. As

you can see, this area has few boundaries. Thus, the disparities in this area are

largely inherited from coarser scales, at which the problem arose. The shape of

the square in the sparse stereogram is only poorly recovered, but this also seems

to be true for human perception.

The final stereogram shows an example of Panum's limiting case. The right-

hand image 'is a normal 5% random-dot stereogram, 100 cells square, with dots

i M W

367



match es

I % - I

�,j - A NO.,% -Iq�
I

r %t I
I - Ad %Kk

L --,k � 1 A6 I

Figure 4 Matching results for the stereogram in Figure I Computed adjustment
to alignment was (-0.4, 16.0) cells of translation and a rotation of 0.2 degrees.
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Figure 5. Matching results for two synthetic stereograms. Top: A stereogram of
representing ramp-like surfaces. The computed translation was 0.7, 0.4) cells
and the computed rotation was 0.1 degrees. In addition to the usual matching
results, a vertical slice through the reconstructed disparities is shown. Bottom: A
sparse stereogram. The computed translation was (-1.4, -0.8) and the computed
rotation was 0.5 degrees.
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2 cells on a side. The lefthand image was created by dsplacing the righthand

image horizontally by 4 cells and super-'imposing 'it on itself Humans interpret

this stereogram as representing parts of two parallel flat surfaces. The stereo

algorithm recovers many of the correspondences for this interpretation, although

it does generate a number of intermediate values between the two surfaces.
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Figure 6 Matching results for a stereogram of Panum's limiting case. This
stereogram depicts two parallel planes. Each dot 'in the righthand image must
be matched to two dots in the lefthand image. The computed translation was
(-2.4 03) cells and the computed rotation was 03 degrees.

For stereograms such as this, where a patch of one image might match two

distinct patches of the other image, results from the two halves of the stereo

computation are not guaranteed to be the same. Figure shows the results from

the perspective of the righthand 'image. They are more similar to the lefthand

results than one mght expect. The algorithm has managed to recover many of

the same depth differences, despite having to split dots 'into two halves in creating

the depth boundaries.
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Figure 7 Results for the stereogram in Figure 6 seen from the perspective of
the righthand image.

4. Natural 'images

The stereo algorithm was also run on five natural stereograms. Because of

time limitations it was not possible to run these examples to the finest scale. In

all cases the 'images were sub-sampled to the area of the original image. In

one case (noted below) this was repeated twice. Note that calibration data was

available for some of these 'images and other researchers have used versions of

these 'images which have been adjusted to remove alignment problems. In such

cases, I have used the original camera images, without normalization.

The first image in the set, an image of buildings from the air, is shown in

Figure 8. It has very little vertical displacement or rotation. Although the

new algorithm makes some scattered errors, it successfully detects the height

difference between the buildings and the background. In comparing these results

to those of previous algorithms, remember that the new algorithm must consider

the whole (large) vertical and horizontal search area even though this image

happens to have only small displacements.

Ift I I �� --, ���
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The next two examples, shown in Figure 9 show two vsion researchers in
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Figure 8. Matching results for an 'image of buildings from the air. The computed
translation was (-1.3 06) cells and the computed rotation was 03 degrees.

front of a textured background. In the original images, the two people were

roughly the same sze. In the top pair, a portion of the 'images was extracted

for computations and sub-sampled once. In the second pair, the images were

sub-sampled twice. These stereo pairs were taken from a camera system that

was not precisely calibrated and there is a noticable rotation between the two

images in each pair. In both cases, the researcher has been successfully separated

from the background.

The fourth stereo pair Figures 10-11) shows a teddy bear, a newspaper,

and a metal part on a wooden table. The change in depth between the objects

2 In this example, and in the other examples in this section, sections with the
same coordinates were extracted from both images. Thus, any overall transla-
tion between the two images was preserved in the cropped versions.
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Figure 9. Matching results for two stereograms of people in front of a textured
background. For the top pair, the computed translation was (-6.2, 02) cells
and the computed rotation was 38 degrees. For the bottom pair the computed
translation was 2.9, -0-1) cells and the computed rotation was -5.0 degrees.
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and the background 's less than it was for the researcher 'images, because the

objects are lying drectly on the table. Thus, although the algorithm separates

the newspaper neatly from the background, there is a region at the edges of the

bear where intermediate depth values are produced. It is not clear whether these

values are correct or reflect blurring. In this image, the dsparity differences

between the objects and the background are small relative to the amount of

rotation. Thus, the objects are much easier to identify in the corrected disparity

map than in the uncorrected map.

i

Jqht outaut-, tPut left unified
04 aT..

Figure 1 0. A stereogram of a teddy bear, a newspaper, and a metal part on a
wooden table.

The final natural stereogram, in Figure 12 shows a vew down a laboratory

corridor. This 'Image although sub-sampled, still has a significant vertical dis-

placement, large horizontal disparities, and substantial occlusion. However, the

matcher still succeeds in fusing much of the image. The major errors involve the

strip along the lefthand side of the left 'image. This region is off the edge of the

-- - ------- -- ----- . .I . I - '' ., , w I
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Figure 11. Matching results for the stereogram in Figure 10. The computed
translation was (-2-3, 2.1) cells and the computed rotation was 41 degrees.
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right 'image, but the matcher mistakenly assigns dsparity values to it. In fact,

this region is matched to the same part of the 'image as the strip immediately to

its right, which it closely resembles.

Clearly, this duplicate match cannot be correct. This would be a good sit-

uation in which to apply ordering constraints, as discussed in Chapter 6 Such

constraints, however, can only determine that one of the two matches is 'incor-

rect. Some additional information is needed to distinguish between them. For

this image, 'it is unclear how to decide which match is correct, since the two

strips of 'image are so similar. Figure 13 shows the results of the computation

from the perspective of the rght image. Although this computation has assigned

much of the strip to the correct disparity, some points have been gven the other

candidate disparity. Thus, the match evaluations have not been able to robustly

assign a higher evaluation to the correct match.

5 A mot'on example

Because motion analysis and stereo matching are such similar tasks, I ran a

modified version of the stereo algorithm on two successive frames of a motion

sequence, shown in Figure 14. This sequence shows a hand holding a cup and

rotating it. The hand holding the cup is moving non-rigidly, with the arm still

and the fingers following the motion of the cup. The frames shown were sub-

3sampled to the area of the original image. Although this was not a fast motion4

and the image has been sub-sampled, displacements are still as large as 7 cells

for some parts of the cup, 'i.e. larger than the wdth of many texture regions in

this image.

3 The original image was smoothed slightly, since it was taken under high noise
conditions. However, this probably matters lttle to the results presented,
because of the sub-sampling.
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Figure 13. Matching results for the stereo pair 'in Fgure 12, computed from the
perspective of the right 'image.

In motion matching, the method of adjusting image alignments used 'in stereo

analysis is no longer applicable. Although this technique could be used to correct

for the effects of camera motion, different objects in the scene may be moving

independently, both vertically and horizontally. A full motion analysl'salgorithm

would probably need to make the adjustments only for a limited part of the

image, determined on the basis of the reasoner's current interest. This seems to

be how people handle the problem of independently moving ob'ects.

The stereo algorithm was adapted 'in two ways for the motion experiment.

First, image adjustment was eliminated. Coarse-scale suggestions were accepted
ithout prun' to avoid excessive computation

w ing or other alteration. However,

time a smaller search area was specified. Since motion analysis has no favored
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Figure 14. Matching results for two frames from a motion sequence, computed
using a modified version of the stereo matcher. The motion 'Involved rotation of
the cup about a vertical axis. Although the motion is almost entirely horizontal,
the matcher was not informed of this. The horizontal slice through the horizontal
disparity field shows that the reconstructed motions are plausible.

direction of motion, the analysis at each scale considered both horizontal and

vertical dsplacements up to ±2 cells from coarser-scale estimates. Although

the motion in this image happens to be horizontal, the program had no biases

favoring this direction.

As you can see from Figure 14, the algorithm performs successfully on the

motion images. It has correctly reconstructed no motion for the background and

some motion for all of the cup. The computed motion increases smoothly towards

the center of the cup, which is consistent wth a rotation about the center of the

cup. This is most visible in the horizontal slice, shown in the second row of the

figure. This slice was taken about of the way from the top of the image and3

cuts across the middle of the cup avoiding the unmatched patch 'in the middle
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of the handle.

6. Conclusions

In this chapter, we have seen that the new stereo algorithm can successfully

match both synthetic and natural stereograms, as well as successive frames from

a motion sequence. It can successfully handle stereo pairs with large vertical

disparities (up to 16 cells) and rotation (up to degrees) wthout becoming

confused. It can reconstruct disparities when the stereo correspondence cannot

be one-to-one and when the image features are sparse. Where there are sharp

changes in disparity, the algorithm correctly reconstructs the changes as sharp.

These results confirm the two expected benefits of using topolo 'cal structure

in the 'image matcher. First, the constraint that matches preserve topological

structure, together wth the strength assessments based on star-convex sum, re-

sults in robust evaluations of matching strength. Secondly, because strength as-

sessments and boundary motion computations are confined to regions that match

at approximately the same disparity, results for cells near depth dscontinuities

are not contaminated by values from cells on the other side of the discontinuity.
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Chapter 11: The main mathematical proofs

In this chapter, I provide formal definitions for all mathematical concepts

used in the rest of the thesis, as well as formal proofs for facts required in dis-

cussion or algorithm analysis. The main theorem proved in this chapter is that a

structure-preserving mapping between the adjacency structures of two cell com-

plexes determines a homeomorphism between their underlying spaces. This result

allows me to show that two cell complexes are homeomorphic by comparing their

adjacency structures, which 'is typically simpler than. building homeomorphisms

directly.

Section 1 gves some basic defintions and lemmas. Sections 2 and 3 develop

the two combinatorial representations for cell complexes and prove that they fully

represent the topological structure of the underlying spaces. Section 4 defines

the open-edge model of boundaries and discusses the definitions of path and

region connectivity. Sections 4 and develop methods for proving that two cell

complexes are homeomorphic. Section also defines the closed-edge model of

boundaries. Finally, Section 7 compares my representations to those proposed

by previous researchers.

1. Notation and preliminary definitions

Notational conventions vary somewhat. Some of my conventions, largely

borrowed from Munkres 1984), are as follows.-

B is the closed unit m-ball.

O Int is the topological 'Interior of X.
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* X is the topological closure of X.

* The boundary of X, Bd X, 'is X - Int X.

* S' 'is the unit n-sphere.

The starting point for my discussion of space-filling cells is regular cell com-

plexes. These complexes offer the advantage of being well understood, well be-

haved topologically, and not substantially more general than the cases I consider.

The following definition is paraphrased from Munkres 1984:214,216):

Definition: A regular cell complex is a Hausdorff 1 space X and a collection

of disjoint open cells e whose union 'is X such that:

(1) For each open m-cell e of the collection, there exists a homeomorphism

fa : B -- X that carries Int B onto e and Bd B onto the union of

finitely many open cells, each of dimension less than m, and

(2) A set A is closed in X if An Fa 'is closed in for each a.

The following useful facts and definitions relating to regular cell complexes

are taken from Munkres 1984:214-221) and Massey(1980:76-104).-

(a) F. = fa (B m).

(b) Bd ea = f(Bd Bm).

(c) For any n-cell e, Bd e is the union of closures of (n-l)-cells.

(d) e is a face of e8 if e C F3 e is a proper face of e8 if e C T# and e e#.

(e) If en is an n-ceH and e,+2 is an (n+2)-cell such that el is a face of en+2 , then

n+1 n+1there are exactly two (n+i)-cells e such that en is a face of en+' and e

is a face of en+2.

A space is Hausdorff 'if for each pair of distinct of distinct points x and y, there
exists an (open) neighborhood Ux of x and an (open) neighborhood Uy of y
such that Ux and Uy are disjoint.
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(f) The dimension of a regular cell complex 'is the largest dimension of any of

its cells. If no largest dmension exists, the complex 's said to have infinite

dimension.

(g) The n-skeleton of X, written Xn, is the regular cell complex consisting of all

cells of X whose dimension is less than or equal to n.

For later proofs, I need a few more simple facts:

Lemma :

(i) Every n-cell en has at least one face of each dmension less than or equal

to n.

(ii) All proper faces of an n-cell have dimension strictly less than n.

(iii) The face relationship is a partial order (i.e. reflexive and transitive).

(iv) The face relationship is anti-symmetric, i.e. if e, is a face of e3 and e3 'is

a face of e,, then e. = e.

If e n -cell and e, is an r-dimensional face of en, then there is a

sequence of cells en = en I n-1 er = er such that e has dimension i for

r < i < n and e' is a face of e 1 for r < i < n.

Proof:

(i), (ii), and (v): use property (c) and induction.

(iii) follows directly from the definition of face.

(iv) follows from (ii).

EOP

2. Incidence structures

Although metric structure e.g. cell shape, cell area, inter-cell dstances) may

be required for some algorithms, the metric nformation available in practical

applications rarely has the precision needed to deduce the topological structure.
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I therefore develop a representation for cell complexes that is independent of

their metric structure. This representation is useful for manipulating topological

properties, such as connectedness.

I first describe a combinatorial representation that handles all regular cell

complexes and then develop a second one that 'is more convenient 'in form but

handles only a restricted class of complexes. The first representation 'is defined

as follows:

Definition.- The incidence structure of a regular cell complex X consists of

a list of all cells in X together with an ncidence relation Face on this set of

cells such that Face(x, y) if and only if x is a face of y.

The 'incidence structure of a regular cell complex specifies that complex up

to homeomorphism. The proof consists of several pieces. First:

Lemma 2 The dimensions of all cells in a regular cell complex can be

deduced from its 'incidence structure.

Proof: The proof is by induction on the dimensions of the cells. By Lemma

1, parts (i) and (ii), the zero-d'mensional cells are exactly those cells e such

that f e, I Face(e#, e,) e,, I 'is empty.

Suppose that we have identified all the cells of dimension less than n, where

n > . By the same two parts of Lemma 1, the n-dimensional cells must be

exactly those cells e such that f e I Face(eg, e,)} - f e,} contains only cells

of dmension less than n and at least one cell of dimension (n - ). This

criterion can be used to 'Identify all n-cells because a cells of dimension less

than n have already beenidentified. EOP

The construction of a homeomorphism between two regular cell complexes

depends crucially on the following prop6rty of n-cells:



Figure 1. A pcture of the functions involved in the proof of Lemma 3.
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Lemma 3 A homeomorphism between the boundaries of two n-cells can be

extended to a homeomorphism between the two n-cells.

Proof: Let X and Y be two n-cells and let f : BdX --+ BdY be a homeomor-

phism. The crucial point to note is that X and Y are both homeomorphic

to B) by the definition of a regular cell complex. 'is homeomorphic to

the cone Cn formed as a quotient space from Sn [0, 1] by 'identifying all
points X 1} to a s'ngle point. So, let hX : X --+ Cn

1 and hy : y -- Cn
be homeomorphisms. f 'induces a homeomorph'sm Bd Cn

1 --+ Bd Cn

namely f = hy o f o h-1. See Figure 1. can be extended to a homeo-

morphism g' : Cn --+ Cn by defining g((x, i) = f (x, 0), i). g' then 'induces a

homeomorphism g - h-1 o go hx from X to Y. EOP

cn

0 ) �

fI

hyhx

9

x f

These pieces can now be assembled 'into a proof of the final result:

s n-I [0� 1]

a quotient aP ArN
.le
X---
I
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Theorem Let X and Y be regular cell complexes and let EaceX and Facey

be the incidence relations on their cells. Suppose further that f is a b"ection

from the cells of X onto the cells of Y that preserves the 'Incidence structure,

i.e. such that Faceyff f (e,3)) holds if and only if Facex(e, e) holds, for

any cells and . Then there 'is a homeomorphism between X and Y that

maps every cell onto f

Proof: Because f preserves the incidence structure and this determines cell

dimensions (Lemma 2, f (e,,) and must have the same dimension, for each

. Xncell e.. For each dimension n > I construct a homeomorphism, n 

yn. The construction is by induction on n and n is equal to Fn-1 on the

(n-l)-skeleton of X. If X and Y have finite dimension r, , is the required

homeomorphism from X to Y. If X and Y have infinite dimension, we can

define F,, X -.-+ Y such that F,,,,c, (x = , (x) whenever X E e for some

r-cell e. Since the topology of a regular cell complex is coherent with its

n-skeletons, f,, must be a homeomorphism (see Munkres 1984-.10,220-221).

Constructing 'is trivial, since each 0-cell has only one point. If x}

then Fo(x) 'is the point y such that y = f (ect).

Suppose the homeomorphism Fn-1 has been constructed, for some n, and

that Fn-1 maps each cell of Xn-1 onto ftec,). Because f preserves the

inc'dence structure, Fn-1 must map the boundary of each n-cell e onto the

boundary of f (e,,,). By Lemma 3 Fn-1 can be extended to a homeomorphism'

of all of e onto f (e,,). Since the n-cells are all disjoint, this extension can

be done independently for all n-cells, yielding a function geO : ecr f (ea),

for each n-cell e, which agrees with Fn-1 on the boundary of e, Fn-1

and the geo can be pasted together into one bijective function n, since they

agree in value where their domains intersect. Since a function on a regular
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cell complex is continuous if its restriction to each closed cell is continuous

(Munkres 1984:215) and F,, is a homeomorphism on n-1, F,, must be a

homeomorphism. Furthermore, n maps each cell e,,, of X onto f (e,). EOP

Although the 'incidence structure of a regular cell complex determines it up to

homeomorphism, not all incidence structures determine regular cell complexes.

If the incidence structure is legitimate, the cell complex can be reconstructed

from it inductively, by attaching n-cells to 'its (n-l)-skeleton, for each n. If the

complex has ifinite dimension, 'it can be constructed as the coherent union of its

n-skeletons, for all n > , as in Munkres (1984:2,12.0-221). Two conditions must

be satisfied in order for such a construction to succeed:

(1) The procedure described 'in Lemma 2 must assign exactly one dimension to

each cell (e.g. the face relation cannot have any ordering loops), and

(2) If is an m-cell, the subset of the newly-constructed (m-l)-skeleton that

is supposed to form the boundary of e, i.e. those cells designated in the

incidence structure as proper faces of e, must be homeomorphic to an (m-

l)-sphere.

I do not know- of a succinct way to express the second condition combinatorially.

Luckily, n this thesis I only need to use 2D cell complexes. For these com-

plexes, the conditions have a simple orm.-

Fact 1: The following conditions define when a D incidence structure de-

termines a regular cell complex:

(1 A O-cell has no proper faces.

(2 A 1-cell has exactly two proper faces.

(3) The proper faces of a 2-cell consist of a number of 1-cells, call them

f el ... e } together with the same number of O-cells, I vi ---v, }, such that (i) for
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all i, 0 < i < r, vi is a face of ei and ei+1, (ii) v, is a face of e, and el, and

(iii) there are no other face relationships.

Unfortunately, the possibilities rapidly get more complicated in higher dimen-

Sions.

3. Adjacency structures

In the 'Incidence structure of a regular cell complex, cells of different dimen-

sions are treated similarly. In practical applications, however, representations of

space are often viewed as a set of space-filling cells of some unform dimension,

together with a description of how they are connected to one another. For exam-

ple, in computer vision, the domain of a function is the set of pixels in an image,

not the set of pixels and pixel faces. The goal in designing the adjacency structure

representation 'is for the combinatorial representation to re-flect this distinction

between cells and connections regions and boundaries).

I first define the adjacency structure for an arbitrary regular cell complex

and then establish conditions under which the full 'incidence structure can be

reconstructed from it. The main definition is:

Definition: If X is a regular cell complex, the n-adjacency map is the map
: Icells of X} -+ sets of n-cells. of X} such that Ad'

Adin Jn(e,,,) is the set

of all n-cells of X of which e is a face. The n-adjacency structure of X is

the image of Adj. and an element of the n-adjacency structure is called an

n-adjacency set.

When the intended dimension n is clear from context or does not matter, I drop

the prefix or subscript "n" from this family of terms. In this thesis, I always

consider spaces that are the union of N-cells for some fixed dimension N and
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use the N-adjacency structure. Examples of these structures were presented in

Chapter 2.

An 'immediate consequence of the definitions 'is the following:

Fact 2 For any n, if e is a face of eo, then Adj,,,(e#) Ad',,(e,,).

Proof: Because the face relationship is transitive (Lemma 1, part iii). EOP

This suggests how the two representations are related. When the converse holds

as well, the two representations are equivalent. Specifically:

Lemma 4 If Ad' is the n-adjacency map of a regular cell complex and e,,,

is a face of e3 whenever Adin(eO) C Adin(e,,,), then the incidence structure

of the complex can be deduced from 'its adjacency structure.

Proof: We are gven that e 'is a face of eo if and only if Adin(e,3) C Adjn(e,,)-

This, together with Lemma 1 (v) implies that Adin is one-to-one and thus it

maps the set of cells bijectively onto the adjacency structure. So the adjacency

sets are effectively a list of the cells in the complex. Furthermore, inclusion

relationships among them determine which cells are faces of one another and

so specify.the incidence relation. EOP

Directly checking the condition in Lemma 4 may be difficult. The following

lemma specifies a more practical set of conditions:

Lemma : If X is a regular cell complex and Adj is its N-adjacency map

and

(1) X is the union of a set of closed N-cells,

(2) Each (N-1)-cell is a face of at least two N-cells, and

(3) The intersection of any set of closed N-cells 'is exactly one closed cel or

empty,



then, for any two cells and e in X, Adj(e,,,,) C Adj(eo) implies that e8 is a

face of e.

Proof: For any cell e, define MAdi(e,,) to be the cell such that MAdj(e,,,)

neiEAdj 'i, which exists because of conditions (1) and 3). In an arbitrary

regular cell complex, MAdj(e,) can be different from e. Fgure 2 shows an

example of a 1-cell B that belongs to only one 2-cell A in a D complex. In

this example, MAdj(B) is A, rather than D, because A is the only 2-cell to

which belongs. The proof of Lemma largely consists of showing that the

three conditions force MAdj(e,,,,) to be

B

Figure 2 In this complex, MAdj(C = C but MAdj(B = A. Thus, in an
arbitrary regular cell complex, MAdj(e,,) is not necessarily ,

First, note the following useful facts:

(i) e is a face of MAdj(e,,,,).

(fi) Adj(e,,,,) .- Ad'(e,8) implies that MAd eo) is a face of MAdj(e,,).

(iii) Every cel e of dimension n, n < N - , is a face of at least two ells

of dimension n + 1.

390

Property (i) holds because e. Z7, for all ei E Adj(e,,) and thus e C
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niEAdj(,,,) 7. - Property (i') holds because

MAdj(e# = n 7t n ei = MAdi(e,,,)
ejEAdj(e,3) eiEAdj(e,,)

Property (iii) holds for all cells of dimension less than N - b Conditiony

(1), Lemma 1(v), and Property (e) of regular cell complexes. Condition 2)

stipulates it drectly for (N-1)-cells.

Now Iif we can show that MAdj(e,, = ece for any cell ea, the conclusion of

the lemma follows, by Property (ii). The proof that MAdj(e,, = e is by

reverse induction on the dimension of e.

Base:

If e, is an N-cell, then Adj(e,, = e,,}. Thus, the definition of MAdj directly

implies that MAdj(e,, = e,

Inductive step.-

Suppose that MAd'(e,, = e for a cells e of dimension larger than some

n, 0 < n < N. Let e be an n-cell.

The cell e. is the face of two distinct (n+l)-cells e and e, by Property

(iii). If e is a face of e3 then Adj(e,3) C Adj(e,,) by Fact 2 which implies

that MAdj(e,,) is a face of MAdj(e,8) by Property (ii). Similarly, MAdj(e,,,,)

is a face of MAdj(e-,) But, by the inductive hypothesis, MAdj(e,3 = e and

MAdj(e., = e, Thus, MAdj(e,) 'is a face of both e and ey,

But, by Property 0),1 e. is a face of MAdj(e,,). Thus, we have the face

relationships shown in Figure 3 By Lemma 1 (ii), either MAdj(e,,) is an

n-cell or an (n+l)-cell. Continuing to use the implications of Lemma 1 (ii),

if MAdj(e,,) is an (n+l)-cell, it must be equal to both eg and e,, which is

impossible. Thus, it must be an n-cell and equal to e,



eo e-Y (n+l)-ceRs
tot

MAdi (e,,)

e. n-cells

Figure 3. The n-cell e is a face of MAdj(e,,,,), which in turn must be a face of
both the (n+l)-cell and e3 and the (n+l)-cell ey.

EOP

Since the regular cell complexes meeting the conditions of Lemma are useful

in my applications, I define a name for them:

Definition: An N-space structure is a regular cell complex such that

(1) It 'is the union of a set of closed N-cells,

(2) Each (N-1)-cell is a face of at least two N-cells, and

(3) The 'intersection of any set of closed N-cells is exactly one closed cel or

empty.

Unless there is some explicit statement to the contrary, adjacency maps for N-

space structures are always N-adjaceney maps.

We can summarize most 'Important consequence of Theorem 1, Lemma 4 and

Lemma as:

Theorem 2 If X and Y are N-space structures and 'if there is a b"ection

between the N-cells of X and the N-cells of Y that preserves the adjacency

relation, then X and Y are homeomorphic.

392
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Finally, notice that the same constructions can also be used to specify regular

cell complexes that are subsections of N-space structures. Such a partial N-space

,structure is specified by (1) a list of N-cells in 'it, 2) a list of all N-cells that share

an adjacency set with the N-cells in list (1), and 3) a list of an adjacency sets

from the N-space structure that contain cells 'in list (1). I refer to the union of

the closed N-cells. in list (1) as the region represented by the partial structure and

union of the closed N-cells in lst 2) as the border of the structure. Representing

the topology of the underlying space of the region requires naming all N-cells in

the border in addition to the N-cells actually in the region. Specifically, we have:

Corollary Suppose that X and Y are partial N-space structures and

f is a bijection between the N-cells 'in both the region and the border of

X and the N-cells in both the region and border of Y. If f preserves the

(partial) adjacency relation, then the regions represented by X and Y are

homeomorphic.

To see why this 'is true, first note that the conclusions of Lemma 4 and

Lemma hold for the partial structure because they hold for the full structure.

Secondly, if f preserves the partial adjacency relations given in the specifications

of X and Y, then it induces a map between partial incidence structures that

preserves the incidence relation. Finally, 'if the adjacency set of a cell is lsted in

(3), then the adjacency sets for all of its faces must be in list 3) also. Thus, list

(3) defines a regular cell complex. Therefore, the construction in Theorem will

succeed.

4. Boundaries and connectivity

In the previous sections we built a formal model for space or subsets of space.

In Chapter 2 I argued that we must be able to add topolo 'cal boundaries to
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space in order to represent locations of sharp changes in properties or lack of

material connectivity. In this section, I specify how to add such boundaries to

cell complexes and to their combinatorial representations, using an "open-edge"

model of boundaries. This definition 'is then used to formalize the notions of

region connectivity and structure-preserving functions.

Boundaries are added to combinatorial representations of cell complexes as

follows:

Deflnition A regular cell complex with boundaries is a regular cell complex

together wit ih a list of cells called the boundaries of the complex.

If the cell complex is an N-space structure, its boundaries can be specified as a

list of adjacency sets, since these are in one-to-one correspondence wth the cells.

I refer to either type of list as "the boundaries" of a structure. In the discussion

that follows, I largely limit myself to N-space structures, though analogs of some

definitions and lemmas may hold for more general cell complexes.

I
Reasoning about cell complexes pimarily uses this combinatorial definition of

boundaries. However, in order to relate combinatorial definitions of concepts such

as "connectedness" or continuity" to the standard mathematical definitions we

need a model of how the underlying space is changed when boundaries are added.

In this section, I use the "open-edge" model of boundaries, defined as follows:

Definiftion: If X 'is a regular cell complex and is a set of cells of X

designated as boundaries, the open edge model of X wth boundaries is the

set of points in X that do not belong to any boundary cell, with the topology

it inherits as a subspace of X.

In other words, we delete the boundary cells from space, as shown in Figure 4.

I use the open-edge model in thi's section, because it is easy to construct for

arbitrary regular cell complexes. For the types of cell complexes used 'in prac-



tical reasoning, other models are possible. These alternatives are discussed 'in

Section 6.

i

4

p

II

10

I

Figure 4 In the open-edge model, when a cell 'is added to the lst of boundaries,
all points in it are deleted from the underlying space.

Now that we know what boundaries are, we can define connectivity of paths

and regions:

Definition.- Two N-cells in an N-space structure with boundaries are adjacent

if they belong to a common adjacency set.

Definition: Two adjacent N-cells in an N-space structure with boundaries

are connected if they belong to a common non-boundary adjacency set.

Definition: A connected path in an N-space structure with boundaries is a

finite ordered list of N-cells Al,-, A, , such that Ai and Ai+l are connected,

for < i < r. The path is also said to connect Al and AR.

Definition: A set of N-cells X 'in an N-space structure with boundaries is

connected if there 'is a path connecting every pair of cells in X all of whose

elements belong to X.

For the open-edge model of boundaries, these combinatorial definitions of

connectivity are equivalent to the standard topological definitions. Specifically:

395
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Lemma 6 Two N-cells Al and A, in an N-space structure are connected by

some combinatorial path Al,..., A, I 'if and only if any pair of points a, E Al

and ar E can be connected by a path in the underlying space.

Proof: Building a path 'in the underlying space given an N-cell path 'is trivial.

If a path in the underlying space is given, note that it can only intesect finitely

many N-cel.ls, because 'it is compact. These N-cells form the N-cell path and

their ordering can be deduced from their 'intersections with the given path.

EOP

Lemma 7: If a set of N-cells in an N-space structure is connected combina-

torially, the union of the closures of these cells 'is connected in the underlying

topological space.

Proof: These spaces are locally path connected, so path-connectedness and

connectedness are equivalent. EOP

In practical reasoning, boundaries in an N-space structure must be deduced

from sharp changes in the value of some function, e.g. 'image intensity or edge

finder labels. This information typically comes in the form of a test for whether

a pair of adjacent cells "contrast." An algorithm must be given a way to convert

these pairwise contrasts into a set of boundaries for the structure. I do this as

follows..

Deflnition: An adjacency set belongs to the boundaries induced by a

pairwise contrast relation R exactly 'if there exist two cells A and in such

that R(A, B) holds.

Boundaries induced by a pairwise contrast relation have restricted form.

Specifically:

Definition: An N-space structure with boundaries 'is said to satisfy the
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Subset Condition 'if an adjacency set belongs to the boundaries whenever any

of its subsets does.

Fact 3 The boundaries induced by any pairwise contrast relation satisfy the

Subset condition.

This method of constructing boundaries from pairwise contrasts avoids connec-

tivity paradoxes found in previous models, such as those discussed 'in Chapter .

In addition to pairwise boundaries, practical reasoning algorithm can some-

times deduce that certain entire cells belong in the boundaries. Uses for boundary

cells were discussed in Chapters 2 and 4 If a cell X 'is specified as a boundary

cell, I treat X as contrasting with itself. If a cell constrasts with itself, all ad-

jacency sets containing that cell must belong to the boundaries induced by that

contrast relation.

In the open-edge model of boundaries, the Subset Condition imposes 'interest-

ing restrictions on the form of the underlying space when boundaries are present.

First, note that the Subset Condition implies that if a cell is in the boundaries,

so are its faces. Thus, the set of points belonging to boundary cells is closed and

so the sub-space remaining after they have been removed 'is an open subset of

empty space. If the oginal cell complex is an N-manifold, then the open-edge

model of that complex wth any set of boundaries mst also be an N-manifold.

5. Structure-preserving functions and subdivision

For reasoning about topological structure, a combinatorial definition of home-

omorphismis. also required. This concept is somewhat difficult to express in terms

of the cell structure. The natural definition for a cell structure 'is:

Definition: A function from the N-cells of one N-space structure onto the

N-cells of another 'is structure- reserving if (1) it is bi.ective, 2) it preservesP J
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the adjacency structure, and 3) it preserves the labelling of adjacency sets

as boundaries or not boundaries.

Using the results of Section 3 we can show the following:

Lemma 8: If there is a structure-preserving function between the N-cells of

one N-space structure and the N-cells of another N-space structure, then the

underlying spaces of the two structures are homeomorphic.

Proof: Use the construction from Theorem 2 to construct a homeomorphism

f between the two complexes assuming there are no boundaries. f maps each

cell onto the corresponding cell. Thus, 'if the construction of the open-edge

boundary model deletes a point x in one cell complex, it must delete f (x in

the other complex, and vice versa. EOP

The problem with structure-preserving functions 'is that tey only exist when

the two spaces have the same cell structure, in addition to being homeomorphic.

However, I do not believe that the general problem of determining whether two

spaces are homeomorpic 'is omputationally tractable. Certainly people cannot

determine easily whether two regions are homeomorphic, unless their shapes are

similar. Therefore, I develop classes of modifications to the cell structure that

are guaranteed to preserve the topology of the underlying space. It may not be

possible to relate all homeomorphic cell structures using these techniques, but

they cover a range of cases that are useful in designing practical algorithms.

The simplest way two cell complexes can be related 'is if one is a subdivision

of the other:

Definition A regular cell complex X is a subdivision of another regular cell

complex Y 'if every cell of X is contained in a cell of Y and every cell of Y is

the union of finitely many cells of X.
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This definition is adapted from the definition of subdivision for simplicial com-

plexes given by Munkres 1984, p. 83). It forces the two cell complexes to share

the same underlying points. Furthermore, the finiteness condition forces them

also to share the same topological structure. Thus, 'if we can find a structure-

preserving map between subdivisions of two cell complexes, that is enough to

establish that the two complexes are homeomorphic.

The corresponding combinatorial notion is that of a subdivision mapping

between two cell complexes:

Definition: If Y is an N-space structure and X 'is a subdivision of Y then

thesubdivision mapping is the map Sub from the N-cells of X onto the N-cells

of Y such that Sub(A) contains A for every N-cell A in X.

Suppose that we are given a map Sub from the N-cells of an N-space structure

X onto the N-cells of another N-space structure Y. We would like to be able to

determine whether Sub could be a subdivision mapping between these structures

(or structures homeomorphic to them) by examining its combinatorial properties.

Sub induces a mapping SubAdj from the adjacency sets of X onto the adjacency

sets of Y. What we need to verify is that the underlying space corresponding to

SubAdj-'(A) is homeomorphic to an r-ball, for each r-cell A in Y. Since each

cell can be subdivided nto at most finitely many cells, the legitimacy of any

subdivision can be checked by using the following fact and induction:

Fact 4 An open r-ball 'is homeomorphic to two open r-balls together with

an open (r-l)-ball that is their common face, for any r > .

The definitions of subdivision that I have 'ust given were for cell complexes

'th no boundaries. When boundaries are added the boundaries in the cell

complex and its subdivision must correspond in order for their underlying spaces

to be homeomorphic. Specifically:
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Definitl'on: A subdivision mapping Sub from the N-cells of an N-space struc-

ture X to the N-cells of an N-space structure Y preserves the boundaries 'if

an adjacency set Ai is marked as a boundary in X if and only if f (Ai)}

is marked as a boundary in Y.

If a subdivision relationship preserves the boundaries, then it induces a homeo-

morphism of the underlying spaces produced by the open-edge model of bound-

aries. Thus, we can now prove two complexes to be homeomorphic if we can find

subdivisions of them that preserve the boundaries and that can be related to one

another via a structure-preserving mapping.

6. Thickeni'ng boundaries and closing them

Many pairs of complexes representing homeomorphic spaces can be related

via common subdivisions. However, there are pairs of homeomorphic cell com-

plexes that cannot be related by subdivision alone. An example of one type is

illustrated 'in Figure 5. Since certain algorithms in this thesis must be able to

relate such pairs of complexes, we need an additional technique for establishing

homeomorphism, which I call the thick boundary property.

The thick boundary property is defined as follows-.

Deflni'ti'on: If X is an N-space structure and 1Z is an adjacency set of X,

then CLOSURE(IZ) 'is the set of all adjacency sets of which 1Z is a subset.

Deflniti'on: An N-space structure X satisfies the thick boundary property if,

for any boundary adjacency set 1Z 'in X, the following modifications to the

adjacency structure yield a legitimate N-space structure with an underlying

space (in the open-edge model of boundaries) homeomorphic to that of X:

(1) Add a new N-cell C.

(2) Remove all adjacency sets in CLOSURE(IZ).



I ---- ----

0

1 I--

'A

1

I

-1 In - --dl -jl� -- fl--r
I I

;1-1;

11-11

- - - - - I

10

47%4 79 ' 7q -t

- i P4 iF4 7 qL- --..e L ---U--

Figure 5. A 2)D cell complex with one vertex deleted and a similar cell complex
with one edge deleted are homeomorphic under the open-edge model, but they
cannot be related va boundary-preserving subdivision alone.

(3) For each adjacency set in X, if is a subset of any element of

CLOSURE(R), add S U f C1 as a boundary adjacency set.

In other words, if the structure satisfies the thick boundary condition a cell can

be added "in the middle" of a boundary that did not formerly have any thickness.

This construction is 'Illustrated in Figure 6.
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0 1

Figure 6 Thickening a boundary 'in an N-space structure.
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N-space structures do not, in general, satisfy the thick boundary condition.

For example, a 2-space structure can have three 2-cells joined along a single

edge. If this edge is replaced by a '2-cell, the resulting adjacency structure will
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not represent any 2D regular cell complex. I do not know of any convenient

combinatorial way to decide when a structure satisfies this condition. It requires,

at least, a solution to the problem of determining when a ell complex is a sphere,

posed at the end of Section 2.

As in Section 2 I content myself with describing when the condition holds

for 2D cell complexes. These conditions are as follows:

Lemma 9 A 2-space structure satisfies the Thick Boundary Condition 'if

(1) Its boundary assignment satisfies the Subset Condition,

(2) The 1-cells meeting at any fixed O-cell can be arranged into a finite

list (El I... I E.) in which Ei and Ei+1 belong to a common 2-cell for every

i and El and E, also belong to a common 2-cell, and

(3) Each 1-cell is a face of exactly two 2-cells.

Proof: The details of the construction depend on the dimension of the bound-

ary cell 1Z that is to be thickened. If R 'is a O-cell, the construction is as shown

in Fgure 7 First, pick a point on each 1-cell of which is a face and put

a new O-cell there, subdividing the 1-cell. For each 2-cell S of which is a

face, subdivide with a 1-cell oining the two marked points. By condition

(2), these new O-cells and 1-cells must form a circle. The new 2-cell C is the

union of all the wedge-shaped 2-cells inside this circle. The homeomorphism

from the old underlying space to the new one pulls the points in C out 'into

the area just outside the boundary of C.

Suppose now that 1Z 'is a 1-cell. By the Subset Condition, we know that

the endpoints of 1Z are also in the boundaries. To construct C, first thicken

the boundaries at the two endpoints of R, adding new cells D and E. The

situation is then as shown 'in Fgure 8. Just as in the O-cell case, we can

slice off sections of the 2-cells of which 1Z is a face. Since there are only two



Figure 7 Thickening the boundary at a O-cell. Left to right- the boundaries
dividing the adjoining regions, the new boundary cell, and the mapping from the
old space to the new one.
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such 2-cells, the two cut-off pieces can be merged to form a new cell F. The

desired cell C is then the union of Di E, and F.

Figure 8. Thickening the boundary at a 1-cell.
thickening the endpoints, dividing the adjoining
boundary cell, and the new boundary cell.

Left. to right: the boundaries,
regions, tree pieces of the new

Thickening the boundary around a 2-cell requires only that its O-cell and -

cell faces can be thickened. C is then the union of original 2-cell and these

new cells.

EOP

The boundary thickening construction also provides a second model for
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boundaries, the closed-edge model, if the cell complex and boundary assignment

satisfy the Thick Boundary Condition. In order to add boundaries 'in this model,

one first thickens all boundary cells. Then as in the open-edge model, delete

all boundary cells, but then add back in all faces of non-boundary cells. This

is illustrated in Figure 9 The resulting space is just like the open-cell model,

except for these extra boundary points. In fact, all of the dscussion in these

last three sections works as well for the closed-edge model as for the open-edge

one. The only exception 'is that one-cell regions are no longer homeomorphic to

cellular representations of a' in the closed-edge model.

I
0

4

Figure 9 Constructing the closed-edge model of boundaries.

In practical reasoning, it is often useful to be able to thicken boundaries

repeatedly. Thus, the following property may be useful:

Fact 5: The construction in Lemma 9 applied to a complex satisfying the

Thick Boundary Condition, yields a complex that also satisfies the Thick

Boundary Condition.

In particular, complexes for which the closed-edge model of boundaries can be

constructed will satisfy the Thick Boundary Property, using the closed-edge

model of boundaries rather than the open-edge one.

The combination of subdivision and boundary thickening is sufficient to han-
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dle the practical examples in this thesis. However, it does not relate all pairs of

cell complexes with homeomorphic spaces. For example, 'in the open-edge model,

a region consisting of one N-cell surrounded by boundaries is homeomorphic to

an N-ball, and thus homeomorphic to a,, which might be represented by an

infinite cell complex. However, subdivision only allows a cell to be divided into

finitely many pieces. Thus, the one-cell region and IR' cannot be proved home-

omorphic by the techniques I have described. I do not, however, know of any

practical applications that require this ability.

7. Comparisons to previous work

In this section, I briefly review previous methods of representing the topology

of dgitized spaces. We see that pairwise representations are inadequate to com-

pletely specify the topological structure of a space. I also mention other work

related to representing cell complexes.

Adjacency structures are similar 'in form to the pairwise connectivity relations

used by some researchers, e.g. Pavilidis 1977), Lee and Rosenfeld 1986), and

Poston (1971- based on work by Zeeman 1962). In Poston's case, the representa-

tion is not only pairwise, but also "fuzzy." He also introduces a more structured

notion of a "local matroid structure but it unclear that even this pins down

the topological structure. Standard, non-fuzzy pairwise representations describe

the topology of a set of N-cells by specifying which pairs of N-cells share a com-

mon face. There are two variants, one in which only pairs of N-cells. sharing an

(N-1)-face are included and one that 'Includes pairs of cells sharing a face of any

dimension.

Adjacency structures fully specify the topology of a set of cells, whereas pair-

wise connectivity relations do not. The first problem with pairwise representa-
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tions 'is that they do not uniquely specify the dimensionality of the cell complex.

For example, the two cell complexes in Fgure 10 have the same pairwise struc-

ture.

1

4

I

A A

B

c

D

Figure 10. Two cell complexes of different dimensionality can have the same
pairwise connectivity structure.

Pairwise connectivity relations are also inadequate even within one dimension.

For example, consider the cell complex shown in Figure 1 1 (left). This cell

complex consists of four 2-cells arranged in a square. If only cells sharing a -

face are considered connected, then this cell complex has the same connectivity

structure as the ring shown in Figure 11 (middle). If cells sharing any face

are considered connected then it has the same connectivity structure as the

tetrahedral cell arrangement shown 'in Figure 11 (right). This 'indeterminacy in

structure makes it difficult to reason about the topology of these sets of cells.

Cellular topology, on the other hand, can represent each of these three cell

complexes uniquely. For example, Fgure 12 shows the same sets of cells as in

Figure 11 (left) and Figure 11 (middle), with appropriate border cells added.

In each case, the cell complex formed by A, B, C, and D can be reconstructed

exactly from the adjacency sets involving them, using the constructions given

earlier in this chapter. As you can easily verify, these structures are different for



Figure 11. The set of cells on the left has the same pairwise connectivity structure
as the set of cells 'in the middle or the set of cells on the right, depending on which
definition of pairwise connectivity is used.

the two cell complexes. The same holds for the tetrahedral complex, but drawing

it and its border cells is beyond my ability.

Figure 12. The two 2D complexes from Fgure 11, wth border cells added.
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Adjacency structures are, to the best of my knowledge, original. Incidence

structures seem a relatively obvious idea, given the standard development of

regular cell complexes. I have not, however, seen a previous, explicit proof of

their sufficiency. Grunbaum and Shephard 1987) establish a number of related

results for tilings of the plane. Their discussion was useful in formulating my

proofs, even though they take advantage of the metric structure of the plane and

A B

c D
NW
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I se only topological properties. Baumgart's 1972) "winged edge polyhedron"

representation is also similar to incidence structures, but he supplies no proof of

its sufficiency, even for the 3D cases he considers.

8. Conclusions

In this chapter, I have developed all the formal machinery needed to analyze

the examples presented in the rest of the thesis. I have modelled space using a

slightly restricted class of regular cell complexes, called N-space structures. Two

models for adding boundaries to space were presented. The open-edge model can

be defined for all cell complexes and closed-edge model for a more restricted class

of spaces. Definitions were presented for path and region connectivity that are

equivalent to the standard definitions. The Subset Condition, useful in assigning

boundaries in practical reasoning, was defined.

I have also developed methods of determining when two cell complexes have

homeomorphic underlying spaces. For ether model of boundaries, subdivision

and structure-preserving mappings preserve the topological structure of the un-

derlying space. When additional conditions on cell structure are met, a boundary

thickening operation also preserved the topological structure. Though they do

not cover all cases of homeomorphic cell structures, these techniques are sufficient

for analyzing the algorithms presented in this thesis.



Chapter 12: Re-cap, conclusions, and future work

1. Introducti'on

In this chapter, I summarize the results presented in this thesis. Three types

of results were presented. First, I developed a mathematical framework, called

cellular topology, that makes it possible to manipulate topological structure using

finite descriptions and that makes it easier to handle digitized functions. Sec-

ondly, I presented uses for topological concepts 'in a wide range of domains and

showed also how the cell structure 'is useful in reasoning. Finally, I showed how

these ideas translate 'into algorithms that can robustly process digitized camera

images. I presented output from these programs and detailed testing of the edge

finder implementation.

Section 2 summarizes the mathematical formalism briefly and re-caps the

mathematical results from Chapters 2 and 11. Section 3 outlines the uses for

topology that we have seen and Section 4 summarizes the uses for cell structure

and digitized functions. Section re-caps the main experimental results pre-

sented in this thesis. Fnally, 'in Section 6 I discuss possibilities for future work

extending this research.

2. Mathemat'cal groundwork

The main hypothesis of this thesis is that boundaries change the topological

structure of space. Exploring this hypothesis requires a concrete model of what
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changes they 'induce. The framework of cellular topology was developed to sim-

plify manipulation of space and boundaries. It also provides useful assistance 'in

managing digitized functions such as those found in computer vision.

Cellular topology models space using regular cell complexes, a standard con-

struct from topology. In Chapter 11 I developed two combinatorial represen-

tations for these complexes: incidence structures and adjacency structures. I

proved that incidence structures fully represent the topological structure of a

regular cell complex. Adjacency structures, closer to the form of representations

used in practical reasoning, also fully specify topological structure under specific

conditions, typically satisfied in practical applications. These representations

are useful in relating data structures used 'in applications to the mathematical

structure of the underlying space.

Using the cellular models of space, I then developed models of how the topo-

logical structure of space is changed when boundaries are added. The cellular

models make this task easier, because they prevent pathological situations, such

as Cantor sets, from developing and because they provide finite representations

for continuous, spaces. Two models of boundaries were developed, the open-edge

model and the closed-edge model. There are only small practical differences be-

tween the two models. The open-edge model can be constructed under more

general conditions, but the closed-edge model seems more appropriate for mod-

elling certain phenomena, such as state changes in lnguistic semantics.

In Chapter 11 I also developed techniques for proving that two cellular repre-

sentations with boundaries) are homeomorphic. These techniques were used in

Chapter to develop operations for moving boundary locations without chang-

ing the topological structure that they induce. These operations are crucial to

building the image matcher, which is central to the implementations in this the-
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sis. The operations cannot relate any two homeomorphic. spaces, but they seem

to cover the full range of case required by low-level vision algorithms.

Cellular topology avoids technical problems encountered by previous or-

mal'srns used in Artificial Intelligence research. Unlike previous pairwise repre-

sentations, it fully represents the topological structure of situations. The bound-

ary models avoid problems assigning function values to boundary points, as dis-

cussed in Chapters 7 and 8. Cellular topology also constrains the form of space

and boundaries 'in ways that are useful 'in practical reasoning, wthout forbidding

useful possibilities.

Finally, the cell structure provides a finite-resolution notion of minimal-sized

moments. This 'is clearly useful in computer vision algorithms, which must deal

directly with digitized data. Moreover, we saw that this notion was useful in

modelling data for linguistic semantics and for hgh-level reasoning. Cellular

representations for these areas allow them to use data from real sources of in-

put, whether sensory data or experimental measurements. Paradoxes irv olving

minimal-sized 'intervals about state changes, encountered by previous linguis-

tic proposals, can be resolved using cells or alternatively, using points and the

closed-edge model of boundaries. Digitized functions also rule out certain in-

finite limit situations that cause problems for formal analysis of both practical

reasoning algorithms and data from linguistic semantics.

3. Uses for topology

At the beginning of this thesis, I asserted that topological structure is useful

for a wide range of reasoning. We have seen that this is true, although the

form of the examples varies from domain to domain. Examples were presented

from three areas.- low-level vision, natural language semantics, and high-level
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vision and reasoning. These areas cover much of the current research in Artificial

Intelligence, except for low-level control of manipulation and low-level language

parsing (speech and syntactic analysis).

The most intuitively appealing uses for topological structure come from high-

level vision and reasoning. There we saw that topological structure 'is useful in

reasoning about flows (electrical, fluid, causal, and applied forces) and material

connectivity. It is also widely used, together with metric information, in repre-

senting the shape of objects. Boundaries are crucial to the analysis of changes

over time. In both time and space, we find that cellular topology correctly pre-

dicts the correlation between boundary locations and connectivity. It also pro-

v'des succinct descriptions for situations 'in which many properties have abrupt

changes at a common location, as is often the case in practical applications.

Data from linguistic semantics provides useful parallels to the data from high-

level reasoning. We saw that topological boundaries are useful 'in modelling

state changes and 'in distinguishing activities from achievements. The behavior

of temporal connectives also provides support for the claim of cellular topology

that boundaries hypothesized to account for sharp changes in property values

should also 'Interrupt region connectivity. We also saw that connectivity provides

a formal explanation for the meaning of perfect aspect verb forms in English and

makes it easier to explain the conditions under which the progressive aspect

can be used. Finally, topological structure was crucial to the operation of the

low-level vision algorithms.

Another phenomenon that we saw in all domains was that properties must

often be computed using wide support neighborhoods. This is reqwred in order

to avoid aliasing and other artifacts in sampled data. It is also necessary, even

assuming perfect data, for analysis of textured patterns and stereo matching.
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Textured patterns occur across all domains, including textured events over time

(linguistic and high-level reasoning), 2D texture 'in images (computer v'sion),

and 3D texture of materials (high-level reasoning). We saw that these support

regions must often be restricted so that they do not cross certain boundaries.

This type of restriction, formalized using topological connectivity, is used in the

stereo matcher to avoid blurring of disparity values.

4. Experimental results

Two implementations were built for this thesis: an edge finder and a stereo

matching algorithm. The stereo algorithm is built around an image matcher

that has other applications. In this thesis, it was also used to match images in

testing the stability of edge finder output. I also presented preliminary examples

indicating that the matcher may also be useful for analysis of motion sequences

and for detecting texture periodicity and orientation.

Both the edge finder and the 'image matcher take advantage of the topolog-

ical structure of images. The edge finder uses the topology induced by second

difference responses to decide which responses represent real features and which

are due to camera noise. Evaluation of the response at each cell is confined to a

star-convex (and, a fortiori, connected) neighborhood about that cell, containing

only responses of the same sign. This prevents evaluation of the response from

being corrupted by other, nearby, responses.

The image matcher takes advantage of the full topological structure of an
image induced b boundaries marked b the edge finder, to constrain matching.

I Y y

Matching is done by adjusting the boundaries 'in one image so that they are as

close as possible to those in the other image, wthout changing the topological

structure they induce. This adjustment makes matching insensitive to small
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changes in boundary location caused by camera noise changes in viewpoint,

and the like. The matcher also uses the star-convex neighborhood algorithm

developed for the edge finder to evaluate match strengths and suppress noise 'in

the output disparity fields.

The edge finder implementation was extensively tested and its performance

compared, in Chapter 9 to that of Canny's 1983, 1986) edge finder. The new

edge finder produced results that were more stable under camera noise and had

higher resolution, particular near sharp corners and region intersections. There

are two novel aspects to the testing procedure. Frst, the tests were based on

stability, rather than accuracy. This made it possible to assess edge finder per-

formance on natural image data, rather than simple synthetic images. Secondly,

the 'image matcher made it possible to process large amounts of image data

automatically and robustly. Thus, the evaluations are based on substantially

larger amounts of data and substantially more realistic conditions than previous

comparative evaluations.

The stereo 'Implementation was tested on a range of natural and synthetic

stereograms. Because the implementation is slow, it was not possible to conduct

quantitative tests, like those done for the edge finder. Nevertheless, I established

that the matcher produces two improvements on past performance. First, its

more robust measure of match strength allows 'it to tolerate larger search neigh-

borhoods wthout becoming confused. In particular, it can successfully match

images with vertical disparities (up to 16 cells) and rotation (up to degrees),

which has not previously been possible. Secondly, match assessments and dis-

parity computations are confined to connected neighborhoods, which keeps them

from crossing sharp changes 'in disparity. This prevents blurring of values ear

these boundaries.



415

5. Future work

There are several obvious directions in which this work could be extended.

The existing 'Implementations could be made to run faster. Implementations

could be built for other types of vision analysis, such as texture, and for the other

domains considered. Fnally, the mathematical development could be extended,

both to fill 'in gaps in the current theorems and to explore other types of structure.

In this section, I discuss each of these ideas briefly.

. The existing edge finder and stereo implementations are very slow. In the case

of the stereo matcher, some of the blame rests on its large search neighborhoods.

However, the main bottleneck is the speed of the star-convex sum operation,

used extensively thoughout the algorithms. This operation is very local, and

thus parallel, and not particularly complicated. Thus, there is considerable hope

for improvement.

I intend to explore several approaches to making this operation faster. First,

I hope to 'implement the algorithm on some type of specialized image processing

hardware. Secondly, it may be possible to build a faster sen'al implementation,

perhaps by scanning through the image and using moving averages. Fnally,

preliminary results suggest that the current algorithms uses more paths than are

necessary to achieve good results. Making the algorithms faster will allow me to

build more ambitious applications and do more extensive testing of existing ones

(such as the stereo matcher).

If the basic operations can be made faster, it will be possible to explore

more types of vision applications in more detail. I am particularly interested in

analyzing ob'ect motion and image texture. Motion of 3D objects is important,

because 'it could potentially allow a computer vision system to build 3D models

of objects using only visual input. It 'is easiest to 'interpret motion data when
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the motions are under computer control, e.g. the object is held in a robot arm.

Judging from human performance, it should also be possible to obtain useful

information even when te motion is not under computer control.

A second area of interest to me is analysis of periodicity and orientation 'in

textures. I have preliminary results suggesting that the matcher can be used

to determine in which regions a textured 'image matches itself at a specified

alignment of the images. I hope to build a control structure to search a range

of image translations and analyze the results to determine texture periodicity,

orientation, and perhaps region width. It might also be possible to extend this to

other symmetries of the plane, such as reflections and rotations, and to relate it to

work on local symmetry representations of shape. Fnally, it has been suggested

to me that this technique mght be useful in analyzing textured data from the

physical sciences.

Another set of possibilities involve building applications, or at least more

detailed analyses, 'in high-level vision and non-vision domains. For example, 'it

might be possible to use the topological matching framework to convert the 'Ideas

of Koenderink and van Doorn 1982) 'into usable algorithms. It might also be

possible to build more robust versions of the accretion/deletion detector of Mutch

and Thompson 1985) for motion and stereo analysis. It may also be possible

to use techniques based on the Phantom edge finder to analyze input data 'into

a form suitable for qualitative physics reasoning, along the lnes suggested by

Forbus 1986).

A final source of future work is extending the mathematical development.

Recall that several lemmas, involving boundary thickening and deciding when a

proposed cell boundary was a sphere, were only stated and proved for the D

case. One problem for future research is either to extend these proof to higher
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dimensions or to show that they are, in some provable way, itractable. The for-

mal development could also be extended to include metric or metric/topological

properties. One open question, for example, is whether the space of approxi-

mately straight paths about each cell, out to some fixed radius, can be given

some nice structure and if so what that structure 'is. Such structure might be

useful in relating cellular topology to standard theories of dfferential geometry.



10Appendix A: ewing stereo pairs

The stereo pairs shown 'in this thesis have been arranged for crossed-eye view-

ing. In this appendix, I explain how to learn how to view such pairs of images so

as to see depth. Alternatively, stereo vewers can be used, if available. However,

depths will appear 'Inverted 'if a viewer is used. That 'is, a depressed square wll

appear in place of a raised one. For some 'images, where the inverted depths

conflict with other cues (e.g. a person appearing concave), this may seem bizarre

and may affect the fusion.

Figure shows a simple random-dot stereogram. If you fuse it successfully,

you will see a square raised above a background, both textured with random dot

patterns. The square is half the width of the stereogram, in the mddle. In order

to see this, you need to cross your eyes, so as to put your left eye's view of the

image marked "left" on top of your right eye's view of the 'image marked "right,

as shown in Figure 2.

A good way to learn to fuse these images is to hold a pencil partway between

your eyes and the images. Look at the pencil, so it looks clear. Behind it, the

images wll have moved towards the right alignment for fusion, but they wll look

blurry. The first step in learning to fuse the images 'is to get the middle copies of

the two images to lie exactly on top of one another, by moving the pencil forward

or backwards. Keep focused on the pencil while you do this.

The second step 'in fusing the two 'images is to get them in focus, without

moving them. In other words, you want your eyes to point in the right directions



Figure 1. A simple random-dot stereogram.

Figure 2 What you want to see.
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texture 'in the images while making sure the pencil does not separate into two

pencils. Relax. Keep thinking alternately about the pencil and the 'image you

are trying to bring into focus (the middle of the three apparent images in our

field of vew). Relax.

Fusing crossed-eye stereograms takes some practice. I heard one vsion re-

searcher, whose aonymity I will protect, refer to the process as "breaking one's

eyes." For some of us, that is about how 'it feels for the first few attempts. Your

visual system has spent decades learning how to make sure that vergence and

focus work together, and it takes some effort to undo the effects of that practice.

If you feel frustrated or your vsual system feels "broken," break off, take a couple

aspirin, and try again the next day. It took me several days of trying before I

succeeded in fusing such stereograms.
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Appendix B: Implementing boundary adjustment operations

Chapter 5, Section 2 described a set of operations for adjusting boundary

locations. In the current implementation, the four adjustment operations are

not implemented directly. Implementing these operations directly, for all possible

rotations and reflections, would be painful to implement and would run slowly.

Instead, all these possibilities are collected into one boundary test, which can be

implemented more easily. This appendix describes this test briefly, for those who

may be interested in reproducing my implementation. It also gives details of how

boundary adjustment operations are applied 'in the matcher.

The boundary test determines whether some non-boundary cell x in the i-

age can be changed into a boundary cell wthout affecting the topology. Both

thickening and thinning relate an 'input configuration to an output configuration'.

In thickening, -the input configuration must pass the boundary test. In thinning,

the output configuration may involve changes to the boundary structure 'Induced

by changes in labels, as discussed 'in Section 3 of Chapter 5. This new output

cell structure must pass the boundary test.

In order to determine whether the configuration about some cell x meets

the conditions for one of the adjustment operations, the boundary test considers

which edges and vertices of x are marked as boundaries. These edges and ver-

tices form some number of line segments and isolated vertices. If x is entirely

surrounded by boundaries, they form a circle. Snce the boundaries are 'Induced

by label contrasts, an edge of x can only be a boundary 'if its vertices are also
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boundaries (see Chapter 11, Section 4). The boundary test counts the total

number of "ends" in these boundaries.

Specifically, each vertex of a cell is counted as:

0 ends 'if it is not a boundary,

0 ends if both edges leading 'into it are boundaries,

1 end if one edge leading 'Into 'it 'is a boundary, and

2 ends if it is a boundary, but neither edge leading into it is a boundary.

A cel x passes the boundary test if and only if the total count of ends (over all four

vertices) is exactly 2 Proving that this test is equivalent to the operations given

above is simply a matter of enumerating all possible configurations of boundaries

for a square cell. There are not many distinct ones.

As described in Chapter 5, boundary adjustment consists of two phases:

thickening and thinning. The thickening phase of boundary adjustment is a

straightfoward application of the adjustment operations. The thinning phase is

slightly more 'Interesting, because the matcher must assign new, non-boundary

labels to cells. When the matcher assigns a new label to a cell x , it must re-

calculate the boundaries about that cell, taking into account any label contrasts

introduced by x's new label. This calculation 'is done using exactly the same

rules as the edge finder used for assigning the original boundaries. Only after

the boundaries have been re-calculated can the algorithm check that the output

configuration matches one of the four adjustment operations. Thus, the thinning

operates by hypothesizing 'Its desired labelling for x and then retracting the new

label if it would change the topological structure.

The thinning phase also re-labels cells in the interior of regions of uiform

color. Remember that cells in the middle of uniform-color regions may bear the

label zero in addition to dark- and light. Thus, even if the boundaries in an
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image match, cell labels may still disagree near transitions to and from zero.

This additional case in the re-labelling algorithm cleans up these msmatches.

As in re-labellings near boundaries, boundaries must be re-calculated after the

new label 'is assigned. A cell x 'is re-labelled only if 'it is not next to a boundary

in either the input or the output configuration. The cell structure is not changed

at all 'in this type of re-labelling.

Since each boundary adjustment operation examines only a 3 by 3 neighbor-

hood of the cell of interest, the operations can be applied in parallel. However,

only one cell in four can be examined on each parallel application. Thus, each

pass consists of four parallel operations, one considering cells with coordinates

(2n, 2m), the second considering cells ().n + 1, 2m), and so forth. This order

of application reduces the possibilities for "runs," 'in which a region many cells

wide is moved into or out of a boundary because it is aligned with the scanning

direction. This 'is important even in a serial 'implementation. Using this order of

application, the maximum amount of thickening or thinning generated by three

passes varies between three and sx cells, depending on the orientation of the

boundary.



Appendix C: Other verbal properties

Chapter 7 presents a classification of situations 'in time based on their tem-

poral structure. In addition, English makes at least two other distinctions 'in

s'tuation type that seem to be related more to questions of causality than to

temporal structure. One distinguishes agentive from non-agentive verbs and the

other distinguishes actions 'in which there is change over time from those not

involving change over tme. As Dowty 1979) noticed, there 'is a tendency to

conflate these distinctions with distinctions 'in temporal structure, because there

is some statistical correlation. Such a conflation, however, makes the data diffi-

cult to understand.

The first additional distinction that Dowty draws is between situations caused

or controlled by an animate agent (agentive situations) and those that are not

(non-agentive situations). For example, Sentence is agentive, whereas Sen-

tences 23 are not.

(1) Ken walked to Tech Square.

(2) The rock rolled down the hillside.

(3) Brian noticed the poster on the playroom wall.

In Sentence 2 the subject of the sentence is not (except in certain science fiction

novels) capable of exercising voluntary control over the action. In Sentence 3,

although the subject 'is animate, the action in question 'is not under voluntary

control.
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Dowty lists a number of tests relatively well-knownin linguistics) for whether

a verb phrase is agentive or not. For example, only agentive verb phrases can

occur in constructions of the form "persuade so-and-so to do X," as illustrated

by Sentences 46:

(4 I persuaded Ken to walk to Tech Square.

(5) I persuaded the rock to roll down the hillside.

(6) I persuaded Brian to notice the poster on the playroom wall.

This distinction is important not only for lnguistic semantics, but also for causal

reasoning (as in Allen 1984) in which it 'is often important to sort out what agent

is respons'ble for some course of events.

Dowty also draws a second dstinction between actions like the one described

in Sentence 7 which describes a static situation, and actions in which the world

varies over time, as in Sentence -

(7) Marvin stood 'in the playroom.

(8) Marvin ate lunch in the playroom.

Some combination of this distinction and agentiveness seems to be required to

explain certain "do" constructions. Consider, for example, Sentences 912:

(9) What Marvin did was roll down the hill.

(10) What Marvin did was lie in the grass.

(11) ?What the rock dd was roll down the hill.

(12) What the rock did was lie in the grass.

This Pseudo-cleft construction is best with an animate subject. It seems to be at

least marginally acceptable with an nanimate sub'ect when the situation 'is not

static, but it 'is totally bad 'if the situation is static and the subject is inanimate.
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I should underscore the fact that this static/non-static distinction is different

from the state/action distinction presented n the Chapter 7 Sentences like

Sentence 7 do not pass the tests for states given in that chapter. For example,

they can occur in the progressive, as in Sentence 13:

(13) Marvin was standing in the playroom.

Thus, there seem to be two dfferent dstinctions 'Involved. If they are conflated,

it 'is very difficult to account for some of the data.

Both of these dstinctions are tangential to the issues discussed in this thesis I

have brought them up for several reasons. First, readers already familiar with the

four-way verb classification in lnguistics may have been surprised not to see some

of these properties incorporated into the tests for dfferent verb classes. Secondly,

'it 'is easy to make the mistake of 'incorporate either agentiveness or staticness into

the definition of the state/action distinction, because the properties do tend to

co-occur statistically. Fnally, making these other distinctions explicit may help

clarify the stuation for readers attempting to extend this research, particularly

those who may have little or no background in lnguistics.



Appendix D: Coercion in natural language data

One potential source of confusion 'in analyzing verb class data is the free-

dom with which verbs that normally represent one type of situation can be re-

interpreted as representing another type of situation. A simple metaphor for

understanding these phenomena 'is that there are a number of coercion rules, like

type coercions in programming languages, that specify how to change one type of

situation into another. These are typically brought into play when the standard

interpretation cannot result in a well-formed semantic structure. For example,

when verbs representing actions appear in the simple present tense, they are

regularly interpreted as refering to states describing habitual properties of the

subject, because states can occur in the smple present and actions cannot.

Alternatively, one can think of coercions, as part of a more general pattern of

operations that change a constituent of one type into a constituent 'of another

type. For example, the result of adding a measure phrase to an activity is an

accomplishment. Coercions are similar to this type of combination, except that

there is no overt marking in the sentence to indicate that coercion rules have.

been applied. An advantage to grouping these two types of processes together

is that some semantic changes that have no overt marking in English, such as

inceptive uses of state or iterative uses of actions, are marked by special forms

in other languages. In this appendix, I discuss some of the more common types

of coercions and I also mention several interesting cases of how constituents

combine. I



428

I start by describing the rules for noun (and related constituents), because

the phenomena are simpler for them than for verbs.' We saw n Section 6 that

the determiner "a" can only occur with count nouns (those refering to objects)

and that only count nouns can occur 'in the plural. When a noun that usually

refers to a stuff occurs in one of these forms, it must somehow be coerced into a

reference to an object. There are at least two standard ways of doing this, which

are best illustrated by example, as 'in Sentences 12:

(1) There were three wnes at the wne tasting.

(2) Steve came back from the bar with six beers.

In Sentence the mass noun "wine" is re-interpreted as refering to a knd of

wine. In Sentence 2 on the other hand, "beer" is re-interpreted as refering to

some fixed (but unspecified) quantity of beer.

These two tactics for coercing descriptions of stuffs 'Into descriptions of objects

can also be done overtly, as in Sentences 3-4.-

(3) There were three kinds of wne at the wine tasting.

(4) Steve came back from the bar with s mugs of beer.

Sentence 3 'is almost equivalent in meaning to Sentence 1. Sentence 4 contains

an overt measure phrase and, unlike Sentence 2 makes explicit what quantity of

beer is intended. Sentence 4 would typically be used when the intended quantity

can be infered from context.

In a smilar way, count nouns can be re-interpreted as refering to stuffs when

they occur in syntactic contexts where a mass noun 'is ordinarily required. For

example:

These facts have been relatively well known for some time. See, for exam-
ple, Bach 1986) and Allan 1980), for summaries of recent research on the
semantics of noun classes.
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(5) After tasting it, I added more missionary to the stew.

Given a suitable context, almost any object can be imagined as broken down

into the stuff that it is made of. I don't know of any way to re-express this

shift 'in meaning with an overt marker. Plural marking also seems to convert

count nouns 'into descriptions of stuffs (see Carlson 1977ab), but with a slightly

different meaning. For example, Sentence 6 is more likely to be used when the

missionaries are added whole, whereas Sentence suggests that they are ground

up:

(6) After tasting it, I added more missionaries to the stew.

A pattern of data similar to these changes in noun class occurs also with verbs

and verb phrases, but the possibilities are more complicated. Some common

changes are:

- iteratives,

- habituals

- states re-interpreted as activities, and

- nceptives (overt or implied).

In the rest of this appendix, I discuss each of these types of changes in meaning

in turn.

In Chapter 7 Section 11, we saw that verbs describing accomplishments or

state changes change into descriptions of activities when they have a plural or
mass noun direct ob'ect. In these cases the action is interpreted as 'Iterated over

J I

time. Under certain contexts, non-activities can be interpreted as iterated over

time even when no overt plural 'is present. For example, in Sentence 7 the bare

verb describes an accomplishment that happens instantaneously and thus could

not normally take the progressive. An iterative reading is however, possible.
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(7) Patrick was noticing the new couch for weeks after it appeared.

Another construction that seems to be distinct from 'teration, but may be

confused with it, involves habitual readings of verb phrases. Consider Sentences 

and 9 given by Woisetschlaeger (1 97 6:

(8) Sam drives a truck for the ABC Company.

(9) Sam is driving a truck for the ABC Company.

Sentence 9 makes an empirical observation about what Sam is up to at the

moment. Sentence 8, on the other hand, makes a claim about Sam's station in

life. While empirical observations may have led us to conclude Sentence 8, the

sentence 'itself describes a theory of how the world works, not an observation. In

fact, Sentence can reasonably be uttered if Sam is not, at this moment, driving,

or even f Sam is newly hired and has not yet been out on the road.

To account for such sentences, Woisetschlaeger 1976) and oldsmith and

Wol'setschlaeger 1976) postulate a distinction between "structural" vs. "phe-

nomenal" readings of sentences. Phenomenal readings describe what 'is happen-

ing in the world and are the default types of readings under most conditions.

Structural readings describe stuations that are habitual or typical. Sentences

given structural readings behave like states, perhaps because they describe prop-

ertie' of the world or of objects in it. Thus, a smple way to force a structural

reading in English is to put the sentence 'in the simple present, as in Sentence ,

because actions cannot occur 'in the smple present. Conversely, a phenomenal

reading can be forced by putting the sentence in the progressive, as in Sentence 9,

because states cannot occur 'in the progressive. Carlson (1977ab) uses a similar

analysis in his discussion of the meaning of bare plurals.

Most verbs in English refer primarily to phenomenal stuations and only have
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structural readings when that is forced by the context. There are, however,

exceptions. For example, the verb "own" describes a situation that is structural,

perhaps because it is created entirely by human convention. This is 'Illustrated

by Sentences 10:

(10) Margaret owns two acoustic guitars.

(11) Margaret is owning two acoustic guitars.

This verb is one of a restricted group of verbs that are traditionally classed as

descriptions of states. Other examples 'include "love,,Q "have," "know and

"believe." Most states 'involve the verb "to be," together with a noun, adjective,

or prepositional phrase.

There are also tvDes of situations where a structural reading is more common

than a phenomenal one. For example, the location of large statues, mountains,

rivers, and other such objects 'is typically vewed as a structural property of

the world. Thus, to paraphrase an example from Dowty 1979), Sentence 12 is

a relatively neutral description of geography, whereas Sentence 13 describes a

flood:

(12) The Thames flows through the center of London.

(13) The Thames 'is flowing through the center of London.

The progressive forces a phenomenal reading of the sentence and thus creates a

presupposition that the stuation described is prone to change.

Under appropriate conditions, even the verb "to be" can be forced into a

phenomenal reading. For example, Sentence 14 can be acceptable in theatrical

contexts:

(14) Jody is being a plant.

2Though this word is acquiring a secondary sense which it is phenomenal.
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Perhaps this reading represents a re-interpretation of "be a plant" as an activity.

Alternatively, perhaps "to be" is like "stand," in that it describes an activity but

one that is structural with most arguments. This would account for the fact that

"to be" can behave more like an activity than a state with certain adjectives, as

in Sentences 15-16:

(15) Willie is being noisy.

(16) Willie is noisy.

Not only is Sentence 15 good, despite being in the progressive, but these two

sentences seem to dsplay a difference in meaning parallel to Sentences 89.

When a verb or verb phrase describes a situation that can persist over a

prolonged 'interval, i.e. anything but a state change, verbs such as "stop" and

4C start" can be used to create new constituents that refer to the state change at

which the action or state stops or starts. This 'is illustrated by Sentences 17-18:

(17) Norman stopped being a student.

(18) Anita started running along the river.

Occasionally, such an interpretation 'is possible without overt modification to the

verb phrase, as in Sentence 19:

(19) Mike played squash at 300.

(20) Suddenly, the cat was on the tablet.

The adverb "suddenly" requires a change of state and would thus not make sense

applied directly to a state. The prepositional phrase "at 300" requires a state

or activity that can hold over a very short 'Interval of time and thus would not

normally make sense modifying an accomplishment that takes a prolonged period

of tme. Thus, in both cases, the situation is coerced into a state change. In such

casesIit is the start of the state or action that 'is referred to.
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In this appendix, we have seen a number of patterns of co'ercions and rules

for combination of constituents. Without a clear understanding of these rules,

linguistic data on temporal and spatial structures become obscured by apparent

counterexamples.
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