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Abstract

This thesis develops a model for the topological structure of situations. In this
model, the topological structure of space is altered by the presence or absence
of boundaries, such as those at the edges of objects. This allows the intuitive
meaning of topological concepts such as region connectivity, function continu-
ity, and preservation of topological structure to be modelled using the standard
mathematical definitions. The thesis shows that these concepts are important in
a wide range of artificial intelligence problems, including low-level vision, high-
level vision, natural language semantics, and high-level reasoning.

A formal framework for manipulating space and boundaries is developed,
called cellular topology. Combinatorial methods of representing the topological
structure of digitized space are developed and used to develop formal models of
the changes in space induced by boundaries. The cellular structure imposed on
space restricts the form of representations in ways that are useful for artificial
intelligence applications. The cell structure, together with descriptions of the
support and error neighborhoods of functions, provides a convenient model for
the scale or resolution of representations used in applications.

Two algorithms were implemented for this thesis: an edge finder and a stereo
matcher. The edge finder takes advantage of the topological structure of images
to distinguish real features from camera noise. The stereo matcher constrains
possible matches by requiring that they preserve the topological structure of
the image. In informal tests, both algorithms show improvements over previous
proposals. The matching algorithm was also used to develop quantitative tests
of edge finder performance. Using these tests, the new edge finder was compared
to one of the better recent algorithms and performed better than it.
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Department of Engineering Science, Oxford University

Thesis Supervisor: Harold Abelson _
Title: Associate Professor, Electrical Engineering and Computer Science







Acknowledgements

Although the main work of this thesis has been concentrated in the last
few years, the ancestors of the ideas in it date back substantially further. So
many people have aided me in developing them that there is no possibility of
acknowledging all of you separately. Even if your name doesn’t appear explicitly,
I probably do remember.

I would like to thank my advisor Mike Brady for his advice, inspiration, and
help of all kinds through the past several years. The rest of my committee—
Hal Abelson, Ellen Hildreth, and Rod Brooks—not only survived having a thesis
dumped on them half-completed, but bounced back to give me large amounts of
helpful advice, particularly with the presentation of a thesis that has threatened
at every turn to degenerate into a chaotic mass of unconnected ideas.

The artificial intelligence and computer vision ends of this thesis have been
greatly enriched by conversations with other members of the three labs I have
worked in during the past several years: the MIT Artifical Intelligence Labora-
tory, the Robotics Research Group at Oxford, and the robotics group at AT&T
Bell Laboratories. People who stand out particularly include: Mike Brady, Mike
Brown, David Chapman, Dave Clements, Jon Connell, Bruce Donald, Ken For-
bus, David Forsyth, Eric Grimson, Jim Little, Alison Noble, and Rich Zippel.

This thesis has also benefited from my experiences dealing with people from
outside my own field. The students and faculty of the Yale linguistics department
and the linguistics group at AT&T Bell Laboratories gave me a basic grounding
in linguistics that even six years in another field hasn’t entirely erased. The
community of the Science Center at Smith College, particularly my father, George
Fleck, helped me understand how mathematicians and physical scientists see the
world. David Anick showed me how real topologists build mathematical models.
There is an elegance to that work that it may take us some time to emulate in
finite resolution mathematics. Finally, repeated questions from Tomés Lozano-
Pérez forced me to think longer and harder about methods of testing computer
vision algorithms.

Aside from the intellectual contributions, I have also received large amounts
of the psychological aid, comfort, and support that is a prerequisite to getting
“serious” work accomplished. Over the years, both Mike Brady (my official
advisor) and Mitch Marcus (my official mentor) have fished me out of all kinds
of trouble. More recently, Jon Connell, Lenore Cowen, Davi Geiger, and Carol
Mariens have helped keep me sane through the final struggles of finishing this
thesis. Finally, my parents, my sister, and David have been there so much that
no specific comment could do any of them justice.

This report describes research that was done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology and at the Department
of Engineering Science of the University of Oxford. Support for the Artificial
Intelligence Laboratory’s artificial intelligence research is provided in part by the
Advanced Research Projects Agency of the Department of Defense under Office
of Naval Research contract N00014-85-1{-0124. The author was also supported
by the Fannie and John Hertz Foundation and by the AT&T Bell Laboratories
Graduate Research Program for Women.

The photographs used in this thesis come from the on-line collections at MIT
and Oxford. The stereo image shown in Chapter 10, Figure 8 was obtained




from the University of British Columbia. The other stereo images were taken by
David Braunegg and Walter Gillett at MIT. Also, the image shown in Chapter 3,
Figure 1 and the room corner image in Chapter 4, Figure 17 were extracted from
David Braunegg’s stereo pairs. The grey-scale image of parts shown in Chapter 4,
Figure 26 was taken by Ellen Hildreth. An extract from this image appears in
Chapter 9, Figure 33. The cleaning cloth image shown in Chapter 4, Figure 22
was taken by John Canny. The image of cloth textures used to create Chapter 5,
Figure 9 was taken by Harry Voorhees. The picture of a vision researcher shown
in Chapter 4, Figure 3 was the work of Harry Voorhees and Walter Gillett.
An extract from this image appears in Chapter 9, Figure 35. The rest of the
images were taken by me, in some cases working with David Forsyth or Jonathan
Connell.




Table of Contents

Chapter 1: Introduction ...........oiiiiiiiiiiiiriiiii it iiieiiiannnnns 9
Chapter 2: Cellular Topology ... ..vviiiiiiii i it it iennannennns 32
Chapter 3: Domain Examples ........ .ot iiiiiiiienn. 65
Chapter 4: The Edge Finder ........ .. i 95
Chapter 5: Image Matching ...........ooiiiiiiiii it 147
Chapter 6: Stereo Analysis ........ouiiiiiiiiiiiiiiiiiiiireeianneneeennns 188
Chapter 7: Natural Language Semantics .........ccoviriviineennnnernnanens 224
Chapter 8: High-level Vision and Reasoning ............coiviiiiiinin... 277
Chapter 9: Testing the Edge Finder ........c.oiiiiiiiiiiiiiiiiiiiinnnnn, 306
Chapter 10: Stereo Testing ............oooviiiiiiiiiiiiiiiii i, 361
Chapter 11: The Main Mathematical Proofs ....................coiiii.t. 381
Chapter 12: Re-Cap, Conclusions, and Future Work ....................... 409
Appendix A: Viewing Stereo Pairs .........ccoviiiiiiiiiiiiiiiiiiininn.., 418
Appendix B: Implementing Boundary Adjustment Operations ............. 421
Appendix C: Other Verbal Properties .........cccoiiiiiiiiiiiiiiinnnn... 424
Appendix D: Coercion in Natural Language Data ......................... 427

Bibliography . ...couiii i e e 434







Chapter 1: Introduction

1. Introduction

Informal discussion of problems in reasoning, perception, or language un-
derstanding often makes use of topological concepts. These concepts include
connectivity of regions and paths, continuity of functions, and whether two rep-
resentations have the same topology. These same discussions also refer to entities
called “boundaries” and concepts related to them, such as the “edges” of a re-
gion. These topological concepts are crucial to certain types of reasoning. For
example, connectivity of wires and pipes must be represented in order to solve
problems in qualitative physics. In many other areas of artificial intelligence,
these concepts have shown some promise as descriptive tools but this promise

has not been systematically exploited.

Boundaries are central to any discussion of topological properties, because
the intuitive meaning of topological notions changes as the (intuitive) bound-
aries change. For example, as Figure 1 illustrates, a region of space may be
intuitively connected when it is empty, but not connected when it is filled by
two objects. The presence of the object boundaries has changed the topological
structure of space. How boundary locations are chosen depends on the appli-
cation at hand. For example, textured patterns on floor tiles are significant for
determining the location of the floor from stereo image data, but not for planning

motions of objects. Similarly, two wires can be electrically connected without
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Figure 1. The cup and the table shown on the left are not, intuitively, connected.
However, the set of points they occupy, shown on the right, is connected when
considered as a subset of empty space.

being physically connected, and vice versa. However, within an application, all

of these topological terms are used consistently.

The under-use of topological concepts derives largely from a history of re-
peated problems formalizing them. There exist standard and well-developed

mathematical definitions for “connectedness,” “

continuity,” and “having the
same topology.” However, the standard definitions for the other topological
concepts cannot be applied without a model of boundaries and there are no
standard mathematical models for them. Previous attempts to provide formal

models for boundaries have not been successful, because the connections between

boundaries and topological concepts have not been clearly understood.

In the thesis, I develop two formal models for boundaries. In both models,
the presence or absence of boundaries changes the topological structure of space.
Given either of these models for boundaries, the informal uses of the other topo-
logical concepts can be successfully modelled using the corresponding definitions

from standard mathematics. Armed with these formal definitions, I show how
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topological concepts can be used to provide simpler descriptions of data and im-
proved reasoning algorithms in a variety of domains, such as computer vision,

natural language, and naive physics.

Figure 2 shows a sketch map of some major domains within the field of
artificial intelligence.! The stated goal of the field is to link research in these
domains together to form a reasoning system that can interpret sensory data,
use this information in manipulating objects, and discuss what it is doing in
natural language. Since hard data on human behavior is only available for certain
domains, and sometimes only about the form of the input or the output but not
both, theories of individual domains are difficult to test unless the domains are
linked together. In practice, however, research in different domains has tended

to proceed independently, with only weak connections between domains.

In this thesis, I illustrate how descriptions using topological concepts can
provide three types of benefits. First, they can provide simpler descriptions
of observed data and algorithm behavior in each individual domain. Secondly,
the increased clarity can lead to better algorithms. Finally, apparently different
phenomena from different domains can be described in a common language. This
makes commonalities among the domains clearer, reduces the amount of special-
purpose machinery required, and will eventually make it easier to build interfaces

between domains.

The thesis involves work of several types. First, the formal mathematical
models of space and boundaries are developed. Secondly, two computer vision
algorithms that make use of topological properties are implemented. The first
algorithm, an edge finder, detects boundaries in digitized (grey-scale) images.

The second algorithm performs stereo matching based on the output of the edge

! Different researchers might draw slightly different maps.
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the new models of space and boundaries can be used to solve technical problems
encountered by previous researchers. Finally, other examples illustrating similar
phenomena, such as algorithms for representing region shape, are presented in

less detail.

2. Models of topology

Models of topology used by previous researchers fall into two categories:
region-based models and boundary-region models. In region-based models, space
is segmented into a number of regions, each representing the area or volume cov-
ered by an object, event, or other significant part of the scene. The problem
of representing the topology is divided into two parts. Topological features of
each region, such as the number of holes in it, are determined using the stan-
dard mathematical definition of the topology of a subset of a larger space (the
subspace topology). Topological relationships among regions, however, are rep-
resented using symbolic primitives. The clearest description of this model is by
Davis (1984a,b). Similar approaches are also used by Allen (1983, 1984), Allen
and Hayes (1985), and Pavlidis (1977).

The region-based approach has several weaknesses. First, difficulties arise
in deciding which of two adjacent regions contains the points along their com-
mon boundary. Secondly, regions that touch themselves cannot be represented.
Thirdly, the symbolic region relations are not related to standard mathematical
definitions. Thus, two independent versions of each topological concept are cre-
ated, one for within a region and one for operations that span more than one
region. Finally, the region relations are poorly developed, particularly for 2D and
3D situations. For example, it may be possible to represent whether two regions
are connected, but not whether they are connected along one face or along two

distinct faces.
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In boundary-region models, boundaries are treated as infinitely thin regions.
As in region-based models, topological properties of non-boundary regions are
computed using the topology that the non-boundary regions inherit as a subset
of space. This implies that non-boundary regions are open, which may or not be
correct. The primary weakness of this model is that boundaries have a number
of special properties, different from other regions, that are accounted for in an ad
hoc manner. First of these is that they are removed during topological computa-
tions. Secondly, it is difficult to assign property values to boundary points in a
systematic way if the regions touching at that boundary have different values for
the property. The simplest resolution of this is not to assign property values to
boundary points. This type of model is proposed by Hayes (1985a) and seems to

be the idea underlying many computer vision discussions, such as that in Marr

(1982).

The first of the proposed new models of boundaries is similar to the boundary-
region model, except that the boundary points are deleted from space rather than
being endowed with special properties. Deleting the boundary points accounts
for why they are not there during topological computations. Furthermore, since
they are not part of space, they are not in the domain of property functions and
thus cannot receive values. This model, called the open-edge model, is shown in
Figure 3 (left). The second new model is similar to the open-edge model, except
that new points are added to “close off” the edges of space. You can think
of this as splitting boundary points into multiple copies, although the actual
mathematical construction works differently. I call this the closed-edge model of

boundaries.

Although both the open-edge and closed-edge models of boundaries are drawn

with space between opposing edges, it is important to realize that this is just a
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Figure 3. The two proposed models of boundaries: the open-edge model (left)
and the closed-edge model (right).

graphic device. Distances in either new space (with boundaries) should be the
same as they were in the original space (without boundaries).? The right way
to visualize these spaces is to think of cutting cloth or paper with a sharp knife.
The cut edges are right next to one another and touching one another, but they

are no longer connected.

Formal models that look like these pictures are difficult to construct directly.
Furthermore, it can be difficult to relate these models directly to some of the
representations used in artificial intelligence. Thus, this thesis develops a new
set of representations in which space is represented using space-filling cells, illus-
trated in Figure 4. These representations are based on regular cell complezes, a
type of structure frequently used in algebraic topology (Munkres 1984, Massey
1980). Using these representations, the topology of a bounded region of space

can be completely specified using a finite (and typically concise) description.

2 Points on the edges of adjacent regions in the closed-edge model are zero dis-
tance apart. ~
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Figure 4. A section of space can be represented using a set of space-filling cells.

Furthermore, boundary locations are easy to specify and manipulate.

The thesis develops two combinatorial representations for these cell com-
plexes, called incidence structures and adjacency structures. One of these rep-
resentations, incidence structures, completely represents the topological struc-
ture of an arbitrary regular cell complex. The second representation, adjacency
structures, is closer in form to representations commonly used in computer vision.
However, it is only a complete representation of the topology for a restricted class
of cell complexes. The thesis gives the details of these restrictions and a proof
that they are sufficient for representing topological structure. (A related, but
slightly different discussion for the 2D case is given by Griitnbaum and Shephard
(1987).) Representations proposed previously typically specify only pairwise con-
nectivity relations between cells (Poston 1971, Pavlidis 1977, Lee and Rosenfeld
1986). This does not, in general, uniquely specify the topological structure of

the cell complex.

Using cellular models, most of the work involved in modelling boundaries and
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defining topological concepts becomes straightforward. The interesting mathe-
matical questions center around how to determine whether two cell complexes
are homeomorphic, using only their combinatoric descriptions. Three basic tech-

niques are developed for doing this:

— showing that the complexes have isomorphic adjacency or incidence struc-

tures,
- showing that one complex is a subdivision of another, and

- showing that the two complexes are the same, except that boundaries in one

have been “thickened.”

Combinatorial conditions for subdivision and boundary thickening are fully de-
veloped, in this thesis, only for the 2D case. Sequences of applications of these
three techniques are sufficient to handle many of the cases required for practical
reasoning. In particular, they are essential in working out the details of the stereo

matching algorithm.
3. Using cellular representations

Cellular representations form a useful intermediate language for relating ex-
isting representations, as shown in Figure 5. For example, they are a convenient
framework for describing computer vision algorithms since they avoid both the
complexities of point-set topology and the complexities of data structures re-
quired by efficient implementations. Previous attempts to relate different rep-
resentations, such as interval-logics and IR"-like models, have had difficulties
because they tried to bridge too large a gap at once. Intermediate representa-
tions make it possible to break a difficult transition down into more manageable

pieces.




18

“The squares touch.”

!

IR"-like models &~ incidence and s point logics

adjacency structures interval logics
continuous function computer vision naive physics
reasoning algorithms natural language

Figure 5. Cellular representations are useful in relating representations used in
different sub-areas of artificial intelligence.

Cellular representations impose some restrictions on fhe form of space and
boundaries. For example, spaces must be locally like IR® in order to have cel-
lular representations. This forbids some of the unpleasant spaces that can be
constructed in topology, such as the Cantor set or the long line (see Munkres
1975). However, it does not force space to be globally like IR”. Branching mod-

els of time have been proposed by some previous researchers (McDermott 1982,
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Dowty 1979). The new model allows space or time to branch, but the branching
cannot be infinitely dense. Boundaries in space also cannot be infinitely dense.
The thesis compares these restrictions to those imposed by previous researchers

and argues that the proposed restrictions are neither too tight nor too loose.

In order to describe data from any artificial intelligence domain, I also need
a model of the “scale” or “resolution” of a representation. The model I use has
two components. First, the cellular representations provide a flexible model for
digitizations of space. Functions between cellular spaces can also be digitized.
That is, the values of the function at all points in a cell are summarized into one
value and this value is approximated to the nearest cell. This is illustrated in

Figure 6.

¥

- - -

Figure 6. A digitized function maps each cell of the domain to a cell of the range.

The second component required for representing resolution is a description of
the support and error neighborhoods of functions, whether they are digitized or

continuous. The support neighborhood of a function f at a point z is the set of
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points whose values are used to derive the value of f at z. For example, the tex-
ture periodicity at a point in an image cannot be determined by considering only
the intensity at that point. Rather, a texture analysis algorithm must consider
intensity values from a neighborhood of the point that is large enough to contain
at least two repetitions of the pattern. The error neighborhood of y consists of
all the values f(z) that might be reported as y, given the prevailing noise or
other sources of errors. In particular, in a digitized function, the error neighbor-
hoods are always at least a cell in size. The support and error neighborhoods of

a function are illustrated in Figure 7.

- .o -

\ flz error
{m.:J k4 (2) neighborhood

(

support neighborhood '

Figure 7. The support neighborhood of a function f at a point z contains all
points used to derive the value f(z). The error neighborhood of f at f(z)
contains all values that might be reported as f(z).

The thesis illustrates how this model of scale can be used to describe data
from different domains in artificial intelligence. Taking notice of digitization

is particularly important in computer, vision algorithms, where the input data
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is digitized and some features to be detected are small compared to the cell
size. Support regions are also interesting because their shape may be affected
by any boundaries present. For example, if support regions in stereo analysis
cross depth discontinuities, the stereo results for points near discontinuities are
corrupted. The stereo matching algorithm described in this thesis trims support
regions for such points so that they do not cross these boundaries. This is a

pattern that appears across several domains.
4. Using boundaries and topology

This new model of boundaries and topology predicts a number of patterns
that might appear in data and a number of techniques that might be useful in

building algorithms. These include:

— explicit references to boundaries,

— requirements that a region be connected,

— restriction of support regions by boundaries,

— abrupt changes in function values at boundaries,

— clustering of abrupt changes in different functions,

— ocurrence of abrupt changes in function values at the same locations as lack
of material connectivity, and

- use of homeomorphism as a constraint in matching,.

If the model of boundaries and topology is correct, these patterns should ap-
pear and these techniques should prove useful in a wide range of problems from

different domains.

Explicit reference to boundaries occurs in a number of different domains.
Most high-level vision programs, for example, compute descriptions of the shape

and arrangement of regions based on the locations of boundaries in the image.
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Supporting this type of description, a variety of words in natural language refer

to boundaries or to the regions on either side of a spatial or temporal bound-

b3 ”» «

ary. These include such words as “boundary,” “edges,” “become,” “until,” and
“touch.” These terms show up repeatedly in discussions of naive physics as well

as natural language analysis.

In many tasks, a region or interval is required to be connected. Examples of
this occur in naive physics, where liquids or electricity can only flow via connected
paths (Forbus 1984, Hayes 1985a,b, de Kleer and Brown 1984, Williams 1984).
Objects moving through space must also follow connected paths (Lozano-Pérez
1981, 1985). In reasoning about manipulation of objects, it is important to
know whether two objects are physically connected or not, because that helps
determine whether one object will move if forces are exerted on the other. Causal
connections are limited to histories that are connected in both space and time
(Hayes 1985b). Reasoning about events in time is often restricted to connected
intervals. Representing the meaning of certain constructions in natural language,
such as perfect aspect, seems to require that certain intervals be connected.
Finally, most high-level vision algorithms require some type of connectivity, either
of regions (Brady and Asada 1984, Connell 1985, Fleck 1985, 1986) or at least of

extended edges.

Connectivity requirements may also occur in less obvious forms, such as
changes in the shape of function support regions near boundaries. For example,
when depth discontinuities occur in stereo matching or motion analysis, support
regions that cross boundaries generate inaccurate output values. If support re-
gions are required to be connected, more accurate answers can be obtained. This
generalization has been noticed by previous researchers (Grimson and Pavlidis

1985, Ponce and Brady 1985), but has proved difficult to implement. The algo-
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rithms implemented for this thesis illustrate how support region trimming can
be implemented in both edge finding and stereo matching. Similar discussion
applies to determining texture properties. Textures include not only patterns of
change across space, as in computer vision (Julesz and Bergen 1983, Matsuyama,
Miura, and Nagao 1983, Bovik, Clark, and Geisler 1987, Vilnrotter, Navatia, and
Price 1986, and Laws 1979) but also patterns of change across time, as in natural

language (Taylor 1977, Dowty 1979) and naive physics (Weld 1986).

One immediate consequence of the new definition of boundaries is that con-
tinuous functions can have abrupt changes in value across boundaries, because
the regions to either side of the boundary are no longer connected to one another
(at least locally). Thus, a typical reason for hypothesizing a boundary is to ac-
count for abrupt changes observed in some property. For example, boundaries
are introduced in computer vision to account for sharp changes in intensity, color,
or texture in a camera image. Natural language and naive physics provide exam-
ples of abrupt changes in function values over time. For example, the sentence
“Michael passed his oral exam” describes a history in which Michael suddenly

changes from not yet having passed his exam to having passed it.

The new model of boundaries not only allows sharp changes in function values
to occur, but also predicts that they will tend to cluster at a limited number
of locations. Suppose we introduce a boundary in space to account for sharp
changes in one property, such as region color. The change in topology caused by
the boundary allows the color function to jump abruptly across that boundary.
In addition, it allows (but does not require) other functions, such as texture, to
jump abruptly across the same boundary. Furthermore, the region to the two
sides of the boundary is no longer connected. Thus, by hypothesizing a boundary

to account for the behavior of one function, the model licenses changes in the
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behavior of other functions relevant to the same reasoning task, as well as related

types of connectivity. This clustering of effects should be observable.

Clustering of abrupt changes in different functions, along with lack of connec-
tivity, occurs in a number of domains. For example, computer vision researchers
(Gamble and Poggio 1987, Poggio et al. 1988) have been interested in integrating
different types of boundaries, such as color and texture, into one set of bound-
aries. This only makes sense if the abrupt changes in different properties occur
at a common set of locations. Similarly, programs for manipulating objects may
deduce boundaries in material connectivity from boundaries in visual input. Fi-
nally, naive physics programs (Forbus 1984, Hayes 1985a,b, de Kleer and Brown
1984, Williams 1984; compare also Erdmann and Lozano-Pérez 1987) that pre-
dict a course of events from its initial state typically stop whenever any property?
changes suddenly and re-evaluate whether other properties are still valid. Again,
there is a pattern of relatively sparse points of change (“limit points”), with

multiple properties changing abruptly at each one.

The final use for topology and boundaries is requiring correspondences in
matching to be homeomorphisms. In many practical reasoning tasks, two situ-
ations that are to be matched do not have exactly the same size and shape but
share a common topological structure. For example, an action must have a par-
ticular topological shape and temporal ordering to be described using the present
perfect tense, but the length of the interval over which the event occurs is not
restricted. In stereo matching, corresponding regions in the two images must be
similar in shape and must share the same topological structure. However, they
may differ slightly in shape due to the changes in viewpoint and digitization. For

similar reasons, a periodic texture tends to match translated versions of itself in

3 Including whether some process is active or not.
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topology, but not in exact shape. All of these cases suggest that matches should

be constrained to be homeomorphisms, i.e. to preserve topological structure.

Using the full power of a homeomorphism constraint on matching requires
clearer understanding of topology and boundaries than has previously been avail-
able. For example, some type of figural continuity requirement has repeatedly
been proposed in stereo and motion matching (Mayhew and Frisby 1981, Baker
1982, Grimson 1985, Mutch and Thompson 1985, Koenderink and van Doorn
1976, Callahan and Weiss 1985). Chen (1985) even proposes using full topologi-
cal structure, based on psychophysical evidence. However, these ideas have only
been implemented in weak forms, such as checking connectivity along individual
boundaries or via bounds on changes in displacements over an image. Topological
features, such as Euler numbers, are sometimes extracted for object identifica-
tion (Ballard and Brown 1982, Ullman 1984) but purely topological features are
weak and poorly behaved under projection and noise. The stereo algorithm and
the edge finder implemented for this thesis illustrate how topological constraints
can be combined with other constraints to yield effective algorithms. The stereo
matching also illustrates how the full power of a homeomorphism constraint can

be used in matching.
5. Overview of the applications explored

In this thesis, I explore applications of topology to problems in three domains:
low-level vision, linguistic semantics, and high-level vision and reasoning. I have
implemented two low-level vision algorithms: an edge finder and a stereo matcher.
The performance of these algorithms shows that topological structure can be
useful for performing practical tasks in noisy, real-world conditions. I also discuss

examples from the other two domains in detail, re-examining previous research
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in light of the new models of space and boundaries. This section describes these

applications briefly.

The new edge finder, called the Phantom edge finder, is based on directional
second differences. Its most interesting new feature is its method of noise suppres-
sion, which takes advantage of the topological structure of the second difference
responses. Previous edge finders eliminate noise by smoothing the image (for
example, Canny 1983, 1986, Marr and Hildreth 1980, 1983) or by fitting a rigid
model of a boundary to each pixel in the image (for example, Haralick 1980, 1984,
Nalwa and Binford 1986, Sher 1987). The new edge finder uses the observation
that each second difference edge response covers a connected region in the 2D
image. Thus, evaluation of whether the response at one pixel is due to noise can
be confined to the connected region of same-sign responses containing that pixel.
This idea is originally due to Watt and Morgan (1985; compare also Huttenlocher
1988 and Huertas and Medioni 1986). I have extended their idea to 2D, using
the concept of a set of points being star-convez, and developed the details so as
to make it work on real images. Star-convexity combines metric and topological

constraints in a way that preserves the advantages of both approaches.

I have tested the performance of the noise suppression algorithm in some
detail, comparing the performance of the new edge finder to that of Canny’s
(1983, 1986) edge finder. Two features of performance must be evaluated: noise
resistance and acuity. Noise resistance is measured by comparing the results
of the edge finder on two images of the same (real world) scene. Such a pair
of images differ only in having different patterns of random camera noise. By
comparing edge finder outputs for the two images, it is possible to assess the
stability of the output topology and the amount of fluctuation in output boundary

locations. Using the matcher developed for the stereo implementation, these
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comparisons can be performed automatically.

In the low noise conditions typical of recent camera setups, the Phantom
edge finder exhibits consistently better resistence to noise than Canny’s edge
finder. This holds not only for images differing in noise, but also for images that
have been translated and thus exhibit differences in digitization. Under high
noise conditions, small amounts of smoothing make a substantial difference in
Phantom’s performance. Without smoothing, Phantom’s stability is very close
to that of Canny’s edge finder with mask size 8. Using smoothing, its performance
is comparable to that of Canny’s edge finder with mask size 12. In all cases, the
amount of fluctuation in boundary locations is small and shows no substantial

difference between the two algorithms.

Even when the edge finders have output of comparable stability, however, a
noticeable difference in output resolution is apparent. A second series of tests
attempts to characterize these differences in resolution precisely, using simple
synthetic images. The two edge finders show similar ability to resolve closely-
spaced boundaries, comparable to human performance. There is, however, a
substantial difference in performance on boundaries with high curvature and on
boundary intersections. The Phantom edge finder resolves boundaries well in
these cases, though at the cost of generating spurious boundaries on staircase-
like patterns of intensities. Canny’s edge finder performs‘poorly on these images,
breaking intersections and sharp corners and introducing spurious boundaries.
It also generates spurious responses on ramp-shaped intensity profiles, such as
those produced by smooth shading. These patterns of behavior are confirmed

with finely-textured extracts from natural images.

Topological structure is also used to build a new algorithm for matching two

images. This algorithm is given two images and an approximate alignment be-
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tween them. The matcher first adjusts the alignment so as to create a correspon-
dence between. the images that is a homeomorphism, i.e. preserves topological
structure, and that preserves the edge finder’s dark and light labels. This adjust-
ment is done using a small set of operations that move boundaries in an image
without changing its topological structure. Proving these operations correct is
an interesting demonstration of the power of the mathematical framework. Af-
ter adjustment, the matcher reports which areas of the images could be made
to match successfully, it evaluates how good the match is about each cell, and
it describes the amount and direction of boundary motion used to achieve the

match.

The image matcher can be used for a variety of tasks in low-level vision. It is
used in the edge finder evaluations to distinguish stable features from noise and
performs this task very reliably. It is also used in the second major implemen-
tation for this thesis: a stereo matching algorithm. Finally, I have experimented
with using this matcher for analysis of texture periodicity, motion sequences, and
combination of edge finder results from different scales. In all cases, the results

are very promising,.

The implemented stereo algorithm uses a relatively standard control structure
to test the new matching algorithm. The algorithm works from coarse scales to
fine scales, using coarse-scale results to guide fine-scale analysis. At each scale, it
generates a series of candidate translations of one image against the other. The
two images are matched at each translation, using the new matching algorithm,
and the best matches are chosen over all candidate translations. The computed
disparity field is used to adjust the relative positions of the two images prior to

computation at the next scale.

The new stereo algorithm shows two improvements in performance over pre-
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vious algorithms. First, its measure of matching strength is more robust than
those used by previous stereo algorithms (such as Grimson 1981, 1985, Mayhew
and Frisby 1981, Pollard, Mayhew, and Frisby 1985, Baker 1982, Nishihara 1984,
Medioni and Nevatia 1985, Ayache and Faverjon 1987). This allows the new algo-
rithm to tolerate larger search neighborhoods without becoming confused about
the correct match. In particular, the new algorithm can handle substantial ver-
tical disparities, because it can tolerate the multiplicative increase in the size of
the search space caused by considering the possibility of vertical misalignments.
This ability is extremely important, as exact vertical alignment of stereo images
is difficult to achieve in practice and humans are relatively tolerant of vertical

displacements.

The second change is that, in the new stereo algorithm, the computation of
matching strength and disparities is confined to the region for which a correspon-
dence is established. Because of this, the new algorithm can return a dense depth
field with less smearing of depths across depth discontinuities than in previous
algorithms. The stereo algorithm has been run on a variety of synthetic and

natural images to test its performance and demonstrate these improvements.

Finally, the thesis contains detailed discussion of examples from natural lan-
guage and naive physics. This discussion largely focuses on re-working examples
from previous research so as to show how technical problems can be eliminated,
using cellular representations and the new models of boundaries, and to high-
light features of interest to the main points of this thesis. The natural language
examples center around how to represent different classes of actions and how
these representations interact with representations of tense and aspect distinc-
tions in English. My description of this data is based on work by Dowty (1979),
Woisetschlaeger (1976), and Johnson (1981), which is in turn based on a sub-
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stantial body of previous research. I show how the new model of boundaries
solves several technical problems encountered in describing this data, including
how to represent sharp changes in properties over time and how to distinguish
states from actions. I also show how topological connectivity may be useful in

describing the meaning of certain aspect forms and certain temporal connectives.

The final body of data comes from work in high-level vision and reason-
ing. Researchers in this area (e.g. Forbus 1984, Hayes 1985a,b, Allen 1983,
1984, McDermott 1982, Brady and Asada 1984, Lozano-Pérez 1981, 1985) have
encountered technical problems similar to those in natural language semantics.
However, these phenomena appear not only in 1D temporal situations, but also in
2D and 3D spatial situations. Again, I show that the new models can avoid these
technical problems. I also discuss how topological properties, such as connectiv-
ity, are important in designing reasoning algorithms and I show how cellular
models impose constraints on representations that make them a better match to

data available from real measurements.

6. Roadmap

The rest of this thesis breaks down into four groups of chapters. Chapters 2
and 3 provide a more detailed introduction to the formalism of cellular topology
(Chapter 2) and the domains to which it is applied (Chapter 3). These two chap-
ters are crucial to understanding the rest of the thesis and should be accessible

to all readers.

The next five chapters discuss the applications in detail. Chapter 4 presents
the edge finder. Chapter 5 presents the image matching algorithm and Chapter 6
discusses how to use it in stereo matching. Chapter 7 discusses the natural

language data and Chapter 8 discusses high-level vision and reasoning examples.




31

While there are some inter-dependencies between these five chapters, they are

designed to be read independently.

Chapters 9 and 10 present the results of testing the edge finder and stereo
implementations. The edge finder testing procedure depends on the matcher
described in Chapter 5. However, both these testing chapters can be read in-
dependently. Some readers may find it useful to skim through Chapter 9 while
reading Chapters 4 and 5, and Chapter 10 while reading Chapter 6. These two

chapters consist primarily of pictures and graphs illustrating algorithm behavior.

Chapter 11 presents the details of the mathematical development and com-
pares my formalism for representing digitized spaces to previous proposals. This
chapter assumes familiarity with point-set topology, as well as some knowledge
of algebraic topology. However, the rest of the thesis is comprehensible without
it. Finally, Chapter 12 gives a summary of the main results, draws conclusions,

and suggests plans for future research.
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Chapter 2: Cellular Topology

1. Introduction

In this chapter, I describe the mathematical formalism used in this thesis,
called cellular topology. This formalism is used to define region connectivity and
function continuity, which are needed to implement the edge finding and stereo
matching examples described in Chapter 1. This presentation is informal, stress-
ing how cellular topology can be used in designing algorithms and comparing it
to formalisms used in previous research. The definitions and lemmas used in this

chapter are presented formally in Chapter 11.

As we saw briefly in Chapter 1, topological properties such as connected-
ness are affected by the presence of boundaries. In this chapter, we see how
boundaries change the topology of space and how these changes affect reasoning
algorithms. In addition to changes in connectivity, we see changes in the behav-
ior of continuous functions, changes in what types of continuous correspondences
between situations are possible, and changes in the shape of support regions used

in computing function values.
2. Cell complexes and boundaries

In cellular topology, space is represented using regular cell complexes. These
mathematical structures are sets of space-filling cells, such as the ones shown

in Figure 1. Imposing this cell structure on space makes it easy to specify the
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Figure 1. A set of space-filling cells.

locations of boundaries in space. The cell structure and boundaries determine

the topological structure of the situation being represented.

A cellular representation of a situation consists of two parts: a description
of the cell structure and a specification of boundary locations. The structure of
a cell complex is specified as a list of the N-dimensional cells in the complex,
together with a list of all sets of cells (adjacency sets) that share a common face.
I refer to this description as the adjacency structure of the set of cells. Figure 2

shows the adjacency structure for a small cell complex.

In cellular topology, boundaries are simply a designated collection of adja-
cency sets. For example, Figure 3 shows how boundaries might be added to a
cellular representation of space to delimit the edges of a cup and the table on
which it is sitting. Boundaries can be placed either between cells or on cells,
depending on which adjacency sets are chosen. On-cell boundaries are created
by marking single-cell adjacency sets as boundaries. Inter-cell boundaries are

created by using only multi-cell adjacency sets. Cells belonging to boundary
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Figure 2. In this cell complex, there are 17 adjacency sets involving only the cells
A, B, C, D, E, and F. The adjacency sets {A}, {B}, {C}, {D}, {E}, and {F}
are 2-dimensional. The 1-dimensional adjacency sets are {4, B}, {A, D}, {B, E},
{D,E}, {B,C}, {C,F}, {C,E}, and {E, F}. The 0-dimensional adjacency sets
are {A,B,D,E}, {B,C,FE}, and {C,E, F}.

adjacency sets are called edge cells.

For the cell complexes used in this thesis, each adjacency set uniquely desig-
nates either a cell or a common face or vertex shared by several cells. Section 8
describes the conditions necessary to make this true. Under these conditions,
the adjacency structure of a set of cells fully specifies the topological structure of
the space they fill (see Chapter 11 for details). This is not very exciting, because
most sets of cells used in this thesis are topologically equivalent to rectangular
sub-sections of the plane and thus do not have interesting topological structure.
The interesting point is that this equivalence allows us to specify precisely how
the topological structure of space 13 chénged when boundaries are added to it.
This means that the topological structure of situations such as the one shown in
Figure 3 is completely specified by the combination of the adjacency structure

and the boundary markings.

Chapter 11 develops two models for how adding boundaries changes the un-
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Figure 3. Adding boundaries to space at the edges of a cup and a table.

derlying space. The two models are illustrated in Figure 4. In the open-edge
model of boundaries, points corresponding to boundary adjacency sets are sim-
ply deleted from space. The regions to either side of each boundary remain right
next to one another, but they are no longer connected to one another. Fig-
ure 4 only shows space between the two sides of the boundaries because that is

necessary in order to show the topological structure intelligibly.

The second, closed-edge, model of boundaries is similar, but points are added
to “close”! the edges of the new space. The new points on either side of the

boundary are right next to one another, but distinct. The formal details of

1 T.e. make them look locally like closed subsets of IR®. Local neighborhoods
near the boundaries are topologically both open and closed in both models.
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Figure 4. Left: a cell complex with boundaries indicated by thick lines. Middle:
the open-edge model of these boundaries. Right: the closed-edge model of these
boundaries.

this construction are given in Chapter 11, Section 6 and are somewhat involved.
This second model can only be constructed if the cell complex meets additional

conditions.

For most practical purposes, these two models of boundaries behave in the
same way. Since few? applications make use of the special features of either
model, there is little reason for choosing between them. The important point to
note is that both models of boundaries modify the topological structure of space.
For example, when boundaries are added, regions that used to be connected
to one another are no longer connected. In later sections, we see that these

topological changes have far-reaching consequences.

In this section, I have defined cell structures and how to add boundaries to
them. In this thesis, I am primarily interested in the effects of the topological
changes caused by adding boundaries. As Figure 5 shows, the topological struc-
ture of a situation is independent of the cell structure used to represent it. The
cell structure serves two purposes. First, it makes models of space and bound-

aries easier to specify and manipulate. In particular, as we see in Section 9,

? Later chapters discuss the cases that I know of. None of them provide conclu-
sive evidence in favor of either model.
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the cellular framework constrains the form of space so as to avoid unwanted
pathological cases. Secondly, cell structures provide a formalism for describing

digitized functions, as described in Section 6.

Figure 5. The same situation can be represented using different cellular struc-
tures.

3. Paths and connectedness

The most familiar topological properties are those involving path and region
connectedness. In this section, we see how the standard mathematical definitions
for these concepts can be re-phrased in cellular terms. We see how adding bound-
aries affects these properties. Finally, we see how connectedness can be combined
with rough metric information to yield the notion of a star-convez neighborhood,

which is used repeatedly in the practial applications described in later chapters.

The definition of connectedness in cellular topology is based on the notion of
a connected path. A (connected) path is a finite ordered list of cells such that
adjacent elements in the list share a common non-boundary adjacency set. If A
is the first cell in the list and B is the last, the path is said to connect A and B.

Figure 6 shows examples of paths and non-paths.

In standard mathematics, a path between two points a and b in a space X is

a continuous map f from a connected interval [p, g] of the real line into X, such
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Figure 6. Left to right: a connected path, a set of cells that is not a path because
it is broken by a boundary, a set of cells that is not a path because adjacent
elements do not share a common adjacency set. Boundaries between cells are
indicated by thick lines.

that f(p) = a and f(q) = b. Such a continuous map cannot cross boundaries, in
either the closed-edge or open-edge model, because there is no way to make the
points correspond. The cellular definition of a path cannot refer to individual
points, but only to cells. However, the two definitions are otherwise equivalent.
Specifically, there is a cellular path between two cells A and B if and only if
there is a point-wise path connecting some point (equivalently, any) in 4 to

some (equivalently, any) point in B.

Using the definition of connected paths, we can now define what it means
for a region to be connected. A region in a cellular representation is any set of
cells. A region X is connected if there is a path connecting every pair of cells
in X that uses only cells in X. The corresponding standard definition requires
that there be a path between any two points in X that uses only points in X .3
Thus, the cellular definition of region connectedness is equivalent to the standard

definition. Figure 7 shows examples of connected and non-connected regions.

There are a few types of reasoning that can be done using connectivity infor-

3 Path-connectedness and connectedness are equivalent for these spaces, because
they are locally path-connected.
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Figure 7. Left toright: a connected region, a region that is not connected because
it is cut by boundaries, a region that is not connected because it consists of two
separated pieces.

mation alone. For example, suppose that I pour water into a coffee maker, shown
schematically in Figure 8. If the machine is functioning properly, the input and
output are connected by a tube and thus the water must eventually come out
the bottom of the machine. If the water does not come out, something must be

blocking the tube so that they are no longer connected.

Figure 8. If water is poured into the top of a coffee maker, it will eventually
flow out the bottom, because there is a tube connecting the water input and the
water output. '
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Other types of reasoning, however, require combinations of connectivity and
metric information. In later chapters, we see that the concept of star-convezity
is useful in a number of applications. In standard mathematics, a region is
star-conver about a point z if every point y in the region is connected to z by
a straight path that is entirely contained in the region. Remember that these
paths cannot cross boundaries, so the presence or absence of boundaries changes
which regions are star-convex. Figure 9 shows examples of star-convex and non-

star-convex regions.

Figure 9. Left to right: star-convex region, region that is not star-convex because
it crosses boundaries, region that is connected but not star-convex about the
marked point.

In cellular representations, paths are rarely exactly straight. Thus, a cellular
region is considered star-convex about a cell A if any cell in the region can be
connected to A using an approzimately straight path entirely contained in the
region. Which paths are considered approximately straight depends both on the
shape and arrangement of the cells and also on the application at hand. The
algorithms implemented for this thesis use rectangular cell arrangements. They

considers a path between cells A and B to be straight if it uses the minimal
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number of cells of any path connecting 4 and B and, among the paths containing
the minimum number of cells, it uses a minimal number of diagonal moves.
Notice that there may be more than one approximately straight path connecting
a given pair of cells. The definition of star-convexity requires that one path of

the appropriate type exist and does not depend on whether it is unique.

The applications described in this thesis use star-convex neighborhoods that
are mazimal, relative to some bound r on the radius of the region. What this
means is that each cell in the neighborhood about a cell A must be connected to
A via a path of length at most r. The largest star-convex neighborhood meet-
ing this condition is then used. Figure 10 illustrates the maximal star-convex
neighborhood about several cells. Notice how the shape and size of these neigh-
borhoods depends on the presence of nearby boundaries. Thus, if a computation
uses maximal star-convex neighborhoods, its result changes as the boundary lo-

cations change.

radius bound

Figure 10. The maximum star-convex neighborhoods of several cells.

4. Continuous functions

Changes in the topology of space affect not only region and path connectiv-
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ity, but also the behavior of continuous functions. Continuous functions appear
in two contexts in practical reasoning: assigning property values to locations in
space and matching two situations in space. The two cases behave slightly differ-
ently, because the matching problem requires functions not only to be continuous
but also to have continuous inverses. In this section, I discuss how boundaries
affect the behavior of continuous property functions. The matching problem is

discussed in Section 5.

Boundaries in space or time are often hypothesized to account for abrupt
changes in property values. Consider a cup sitting on a table, shown in Figure 11.
Light intensity, color, texture, and material properties vary smoothly within the
cup and within the table, but change abruptly at the transition between the two
objects. We can account for this behavior by modelling all of these properties as

continuous functions, but putting a boundary in space between the cup and the

table.

%

NN

Figure 11. A cup sitting on a table is not connected to the table. Furthermore,
many material and visual properties change at the transition between the table
and the cup. These effects can be explained by postulating a boundary separating
the two objects.

* One would also want boundaries separating each object from the air around it.
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Placing a boundary in space, such as between a cup and the table it rests
on, allows continuous functions to have arbitrary changes in value across the
boundary. Recall that a function f is continuous if the inverse image of any open
set is open. Figure 12 shows a plot of an abrupt change in light intensity across
the cup/table boundary and an open interval A in the space of intensity values.
In the model with no boundary, the inverse image of A is not open and thus the
intensity function is not continuous. For both models of boundaries, however,
the inverse image of A is open and the intensity function is continuous. Although
the inverse image of A in the closed-edge model looks like a half-closed region of
IR", it is topologically open.’

In the same way, continuous functions can change between discrete values
across topological boundaries. Consider a student passing an oral exam. This
event can be represented by a function from time to a space with two discrete
values, as shown in Figure 13. The event divides time into two intervals separated
by a boundary. In the first interval, the exam is not yet passed, and in the second
interval it has been passed. Since there is no such thing as having “partway

passed” an exam, there is an abrupt jump in value between the two intervals.

Thus, there are two ways to model an abrupt change in the values of a prop-
erty across space or time. Either the function is discontinuous or else there is a
boundary in space or time. In this thesis, I assume that all functions are con-
tinuous and thus that all abrupt changes indicate the presence of a boundary.
This method of modelling abrupt changes has two consequences: (1) clustering
of abrupt changes in different functions is easy to model and (2) lack of region

connectivity must occur at the locations of abrupt changes in function values.

5 In R™, the shape of a region is closely related to whether it is open or closed.
However, under more general circumstances, a region can be specified as topo-

logically open or closed, no matter what its shape. See, for example, Munkres
(1975).
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Figure 12. Light intensity for a path across the cup/table boundary. Top: a
model with no boundary. Bottom left: a model with the closed-edge model of
boundaries. Bottom right: a model with the open-edge model of boundaries.

Adding a boundary to space not only changes the potential behavior of the
function that caused it to be hypothesized, but also the behavior of other func-
tions. The change in topology that allows the values of one function to change
abruptly also licenses abrupt changes in other functions. Thus, a cluster of ap-
parent discontinuities in many functions can be explained by postulating only one
boundary. For example, in Figure 11, many types of properties change abruptly

across the cup/table boundary, including color, texture, and material structure.
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Figure 13. The process of passing an oral exam can be modelled using a function
from time to a space containing two discrete values.

If discontinuous behavior were a property of individual functions, a separate

explanation would be needed for each function involved in such a cluster.

The second consequence of the topological boundary model is that lack of
region connectivity must occur where there are abrupt changes in property values.
Suppose, for example, that we hypothesize a boundary between the cup and the
table in Figure 11 to explain the change in material between the two objects.
According to the definition of connectivity developed in Section 3, the cup is
not materially connected to the table. That is, if you lift the cup, the table
should not move with it. This prediction is limited to functions and types of
connectivity that are relevant to the same task, such as material properties and
material connectivity or visual boundaries and visual region connectivity. In
this thesis, we will see that both clustering and coincidence of connectivity and

changes in function behavior occur in a variety of domains.
5. Same topology

Function continuity appears in a second form in practical reasoning: con-
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structing matches between two situations in space. Matching examples differ
from the property functions discussed in the previous section in that matching
correspondences must not only be continuous but must also have continuous

inverses. Thus, the behavior of these functions is more tightly constained.

In later chapters, we will see a number of applications in which two situations
must be matched in a way that preserves topological structure. For example,
topological structure can be used to distinguish the two whole chain links in
Figure 14 from the damaged chain link. As we will see in Chapters 5 and 6, two
views of the same patch of surface from different perspective typically have the
same topological structure. As shown in Figure 15, this can be used to constrain

the process of matching images from two viewpoints,

@ O

Figure 14. Two whole chain links and a damaged chain link.

Intuitively, two representations have the same topological structure if one
can be deformed smoothly into the other. So, for example, the two situations
shown in Figure 16 have the same topological structure. This is defined formally
in terms of continuous functions. That is, two spaces (with boundaries) have
the same topological structure® if there is a bijective function from X onto Y
that is continuous and has a continuous inverse. Figure 16 shows a continuous

correspondence between a cup and a ring,.

6 That is, are homeomorphic.
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left eye right eye

Figure 15. A 3D situation, as seen from the left eye and from the right eye.

Figure 16. A cup and a ring, seen in 2D projection, have the same topological
structure, because they can be matched using a correspondence that is continuous
in both directions.

Locations of boundaries play a crucial role in determining what correspon-
dences are continuous. A continuous function cannot map a connected set onto
a set that is not connected. Thus, a correspondence that is continuous in both
directions can only associate a patch of space that does not contain a boundary

‘with another patch of space that also contains no boundaries. For example, the
two situations shown in Figure 17 do not have the same topological structure.

In the model presented here, boundaries are not actually part of space, but,
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Figure 17. Two situations that do not have the same topological structure.

intuitively, continuous correspondences must match boundaries with boundaries.

This model of matching in terms of continuous functions is a standard mathe-
matical approach, but one that may seem unfamiliar to researchers in other fields.
In low-level vision, for example, the matching problem has typically been stated
as a problem of matching discrete features, such as short sections of boundary.
In high-level reasoning, topological structure is typically approached via topolog-
ical properties such as the presence or absence of holes. Because the continuous
function approach is more general, it can lead to more powerful constraints on
algorithm behavior, as we will see in later chapters. It also extends well to cases
in which we may only be able to construct a continuous correspondence between
subsets of the two situations and in which additional considerations may limit

the choice of correspondences.
6. Digitized functions

The adjacency structure and boundary markings represent the topological
structure of a situation exactly, even though this topological structure may rep-
resent only a limited resolution view of the situation. Representing functions,
whether properties or correspondences, is typically not exact. In manipulating
functions used in practical reasoning applications, we must consider effects of

both digitization and measurement error.
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Consider the process of representing a camera image for computer vision
analysis. Because a computer can only store finite amounts of information, we
cannot store the exact intensity value at each point in the image. Rather, only
a finite number of intensity values are stored, each one representing an average
over a small patch of the image. Each intensity value is represented with only
finitely many bits of precision. We can model this as a mapping between two
cellular representations, as shown in Figure 18. The real intensity function maps
points in the image onto exact intensity values. The approximation maps cells in
the image onto intensity cells. Such approximations are not peculiar to computer
vision, but occur in any application that involves interpreting measurements of

real situations.
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Figure 18. A digitized image.

It is important to realize that digitized functions are not maps between spaces
of discrete values, but rather approximations to continuous functions. Suppose
that we labelled the image with two discrete values, dark and light, as shown in

Figure 19. Whenever a dark cell is adjacent to a light cell in the image, there
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must be a boundary in the image, because a continuous function on a connected
region cannot jump between two discrete values. Adjacent cells in the image can,
however, bear different intensity values without there being a boundary in the

image, because intensities form a connected space.
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Figure 19. Labelling an image with discrete values.

Except in rare cases, such as functions with discrete values, topological analy-
sis of the raw digitized values does not provide sufficient information for practical
applications. Consider first the relationship between the digitized function F and
the continuous function f that it approximates. Each digitized value has two as-
sociated neighborhoods: a support neighborhood and an error neighborilood.
The support neighborhood at a point z contains all the points whose values
(from the function f) were used to derive the digitized value F(z). The support
neighborhood for each cell must include at least all the points in the cell and often

points from other cells. Types of support regions are discussed in Section 7.

The error neighborhood at a point = consists of the points in the range that

might be represented by the digitized value F(z). Since the value F(z) is reported
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only to the nearest cell, the error neighborhood must clearly include all points
in the cell F(z), including the boundaries it shares with adjacent cells. Error
neighborhoods are typically somewhat larger than this, due to various sources of

noise present in real measurements.

In designing algorithms that operate on digitized functions, it is important
to be aware of the error neighborhoods associated with the values of these func-
tions. This is particularly important when comparing the values at two cells.
Following Poston (1971), I refer to two values as indistinguishable if their error
neighborhoods overlap. Indistinguishable values could represent measurements

of the same underlying value.

Using error neighborhoods, it is possible to deduce the presence of boundaries
even when function values form one connected region. Two cells that are adja-
cent, but not separated by a boundary, overlap along their common face, edge, or
vertex. The underlying values for each common point must belong to the error
neighborhoods of the digitized values for both cells. Thus, the values at the two
cells must be indistinguishable. If a digitized function assigns distinguishable

values to two adjacent cells, they must be separated by a boundary.

Algorithms using digitized functions may also be able to take advantage of
constraints on the class of continuous functions under consideration. For exam-
ple, it may be possible to assume that the underlying function satisfies certain
bounds on slopes, second differences, or derivatives of various orders. Depend-
ing on the application, these constraints may be formulated so as to respect the
topological structure. For example, bounds on slopes might apply only to differ-
ences taken along connected paths. If so, a topological boundary would license
apparent violations of these constraints, just as it licenses apparent violations of

continuity.
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Although constraints on slopes or differences may be formulated as constraints
on the underlying function, they often imply similar constraints on digitized

approximations to that function.’

For example, the smoothing and sampling
procedures commonly used in computer vision do not increase the magnitude of
finite differences. Thus, if a difference of the sampled function exceeds a given
bound, the underlying infinite-resolution function must also contain a difference
that exceeds the bound. Thus, the presence of boundaries can be inferred from

apparent violations of the constraints, even when only digitized approximations

to function values are available.

7. Support regions

In the previous section, we saw that cellular approximations to continuous
functions may combine information from many points to yield a digitized value
for each cell. In most domains, combining information from wide support regions
is essential to producing well-behaved approximations. In this section, we see how
pathological situations can be created by poor choices of support functions. We
also see how wide support can be used for other interesting purposes, such as
describing textured patterns, and how support regions can be modified by the

presence of boundaries.

It is well-known in computer vision that undesirable behavior can happen if
a function is digitized without adequate amounts of smoothing. Because these
problems may not be familiar to researchers from other domains, I review them
briefly in this section. Consider the striped pattern shown in Figure 20. The
top two sampling options in this figure show ways of sampling this pattern with
sufficient smoothing. If the sample points are sufficiently dense, the stripes can

be resolved, otherwise the pattern looks uniformly grey.

" Depending on the support function used in creating the digitization.
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Figure 20. A striped pattern and several ways of sampling it.

The second two options in Figure 20 show sampling with non-existent or
inadequate smoothing. Two pathological effects can occur. First, the samples
can miss the dark stripes entirely, resulting in a representation of the pattern
as entirely white. Secondly, the samples can pick out some of the stripes, but
not all of them, resulting in a representation of the pattern with stripes, but at
the wrong density. I refer to the first effect as drop-out and the second effect as
aliasing. In both cases, the representation can change completely if the sample

locations are translated relative to the pattern. This instability is a problem for
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most applications.

Thus, wide support regions are needed for producing well-behaved digitized
representations. Wide support regions can also be used to capture texture prop-
erties that are only defined for extended regions of space. Consider the striped
pattern from Figure 20. In order to decide that a given cell is in a region of
striped texture, it is necessary to examine a neighborhood of that cell that is big
enough to contain several stripes. In later chapters, we see other examples of

properties that can be defined at every cell, but require wide support regions.

In many applications, the shape of support regions can be changed by the
presence of boundaries. Consider the textured situation shown in Figure 21. In
order to describe the texture about each cell reliably, the support region about
each cell should be adjusted so that it does not cross sharp changes in texture. If
the texture boundaries can be identified, these adjusted support regions can be
computed as the maximal star-convex neighborhood about each cell, as described

in Section 3.
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Figure 21. Left: A situation containing several types of texture. Right: Support
regions about several points, restricted so as not to cross texture boundaries.

This section has described several important points about support regions for
functions. I illustrated these effects with 2D patterns, because they are easy to

draw. However, the same effects occur in spaces of other dimensions and in a wide
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variety of application domains. Wide support neighborhoods are required for
describing patterns of events over time and textures in camera images, analyzing

3D patterns of material structure, route planning, and matching images.

8. When are adjacency structures sufficient?

The adjacency structures and boundary markings used in previous sections
can only represent a limited class of regular cell complexes. Although a more
general representation is available, it represents cell complexes in a less useful
form. Furthermore, this restricted class of complexes seems to include all those
required by practical reasoning algorithms. Chapter 11 gives the details of these
restrictions and the proof that they are sufficient. In this section, I summarize

these results.

There are two ways to view space-filling cells. In previous sections, I have
described them as composed of cells, all of the same dimension, touching in
various patterns. This description is close in form to those used in most computer
algorithms and in mathematical work on tilings. Alternatively, the common faces,
edges, and vertices can also be seen as cells, but of lower dimension. This is the
picture typically presented in topological descriptions of regular cell complexes.
Figure 22 shows some cells of different dimensions in this second description of

cell complexes.

The topology of a regular cell complex can be completely specified by a list
of cells in it and a face relation among the cells. The face relation specifies when
a lower-dimensional cell A is a face of a higher-dimensional cell B, i.e. when 4
forms part of the boundary of B. For example, in Figure 22, B is a face of A
and C is a face of both A and B. By convention, every cell is also considered a

face of itself. I refer to this representation as the incidence structure of the cell
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Figure 22. Faces, edges, and vertices can be viewed as cells of lower dimension.
A is a 2-dimensional cell, B is a 1-dimensional cell, and C is a 0-dimensional cell.

complex. The proof that this representation fully specifies the topology of the

cell complex is given in Chapter 11, Section 2.

The incidence structure representation is somewhat more general than the
adjacency structure representation used in the previous sections. The two rep-
resentations are interchangeable when each adjacency set corresponds to exactly
one cell in the incidence structure representation. As detailed in Chapter 11,
Section 3, this is true if the cell complexes meet three conditions, all of which

seem reasonable for practical reasoning applications.

The first condition required for adjacency set representations is that there
must be some fixed dimension N, such that each cell in the complex is a face
of some N-cell. That is, each cell mﬁst either be an N-cell itself or it must
be a lower-dimensional face of an N-cell. This forces space to have a consistent
dimension, without any sections of different dimensionality. It also prevents space
from having an infinite range of cell dimensions. Neither one of these situations

would be desirable in practical reasoning.

The second condition on the form of cell complexes is that every (N-1)-cell




57

must be a face of at least two N-cells. Intuitively, this means that space has
no edges. The representation can still be used for finite cell complexes, which
may have edges, so long as they are part of a larger complex without edges. So,
for example, Figure 23 shows a cellular representation for a bounded 2D region.
The cells being represented are shaded. The unshaded cells are border cells,
which share edges and vertices with the shaded cells. Since the adjacency sets
corresponding to these edges and vertices contain border cells, these cells must
be mentioned in an adjacency structure description of the region, although they

themselves are not part of the region being described.
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Figure 23. In order to specify the topology of a cellular region using adjacency
sets, border cells must be added around the boundaries of the region.

The final condition that a cell complex must satisfy in order for adjacency
structures and incidence structures to be equivalent is that the intersection of
any set of cells must be exactly one cell or empty. This prohibits two cells from
touching along two disconnected faces or two faces of different dimension. It
also prevents gratuitous sub-division of the common face of several N-cells. The
forbidden possibilities are illustrated in Figure 24. Note that the first condition

is not a restriction on the form of regions, but only on the form of the digiti-
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zation used to represent them. Regions that touch along multiple faces can be

represented by breaking them up into several cells, as shown in Figure 25.

Figure 24. In an N-space structure, the intersection of any set of cells must be
exactly one cell or empty. Thus, two cells cannot touch along two disconnected
faces, as shown on the left. Nor can the common face of two cells be split into
several cells, as shown on the right.

C

Figure 25. Two regions that touch along multiple faces can be modelled by using
several cells to represent each region.

Adjacency structures are more convenient for practical reasoning than inci-
dence structures. The analyses used in previous sections make a sharp distinc-
tion between cells of maximal dimension and cells of lower dimension. Digitized
functions, for example, are maps between cells of maximal dimension. Lower-
dimensional cells are only used as locations in which to place boundaries. Ad-
jacency structures make this distinction explicit, whereas incidence structures

treat all cells alike. Because of this, adjacency structures more closely match the
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data structures used in practical reasoning algorithms.

Adjacency structures also restrict the form of representations in ways that
eliminate pathological cases that would case difficulties in practical reasoning.
For example, spaces represented using adjacency structures must have a consis-
tent dimension and cannot include stray pieces of lower dimension. Adjacency
structures can only describe situations that end abruptly as if they were pieces
of some larger situation with no edges. This fits nicely with the intuitive belief

that the universe does not have edges.
9. Restrictions on the form of representations

Whether represented by incidence structures or adjacencjf structures, regular
cell complexes impose restrictions on the form of space, boundaries in space,
and the cells used in digitizing space. Boundaries induced by label contrasts,
such as those used in this thesis, also have restrictions on their form. However,
these restrictions primarily eliminate pathological cases that are not desirable
in practical reasoning. Furthermore, we see that cellular topology allows more

flexibility than previous representations.

The most basic restriction imposed by the cellular representations is that
space must look locally like IR*. This is because each cell used in building
regular cell complexes is an n-ball of some dimension and the conditions for
using adjacency structures require that the maximum dimension of space be
consistent. This prevents a number of unpleasant pathologies found in topology
textbooks, such as the long line. It also forbids space or time from looking like
the rational numbers or the hyperreals. Although these two possibilities have
been proposed for practical reasoning (see van Benthem 1983, Weld 1988), their

topological structure has many undesirable properties. For example, intervals in




60

either of these spaces are not connected.

The cells used to represent space are not restricted in shape, arrangement, or
dimensionality. Previous formalisms have been confined to regular cell arrange-
ments (e.g. Pavlidis 1977) or low dimensions. Many representations handle only
rectangular arrays. It is not materially easier to define the topological structure
of these restricted classes of cell complexes and non-regular cell arrangements
are occasionally useful. For example, biological systems, such as the human
retina, do not have perfectly regular cell arrangements. Non-regular tessellations
are useful in creating compact variable-resolution representations for situations
(Brooks Lozano-Pérez 1985, Rom and Peleg 1988, Funt 1980). Also, we see in
Chapter 4 that it is convenient to be able to use non-regular cell shapes for prov-
ing algorithms correct, even when these algorithms only manipulate regular cell

arrangements.

A cellular representation also cannot use more than finitely many cells to
represent a bounded region of N-space. It is possible to create cellular repre-
sentations in which infinitely many cells touch at a point or along a face, but
these representations cannot have the topology of IRY or an N-manifold. Be-
cause boundaries are placed on or between cells, this restriction also makes it
impossible to represent infinitely dense sets of boundaries directly. Cellular rep-
resentations can branch, as shown in Figure 26. In later chapters we will see a few
applications in which researchers have proposed such models for time. However,
the branches must occur at cell boundaries and thus infinitely dense branches

cannot be directly represented.

A second, and closely-related, limitation of cellular representations is that
digitized functions cannot distinguish functions that approach a limiting value

asymptotically, without ever reaching it, from functions that actually reach the
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Figure 26. A branching time line.

limiting value. When the differences from the limit value become small enough,
the values must be represented using the same cell in the value space as the limit
value. Since it cannot distinguish the two cases, an algorithm using digitized
data must treat the asymptotic function as though it actually reached the limit

point.

We can cast this observation into a second form which is more directly relevant

to practical applications:

If a property is changing in value with a slope of constant sign and it is moving
towards a limiting value, the property either becomes indistinguishable from
the limiting value after some finite amount of time or else the slope becomes

indistinguishable from zero after some finite amount of time.

Suppose, for example, that you are shovelling snow out of a driveway.® After
some finite period of time, it must either be the case that you have removed
all but negligibly much of the snow, or else your rate of shovelling has become
negligible. This generalization will prove useful in explaining data from both

linguistic semantics and high-level reasoning,.

In the applications discussed in this thesis, boundaries are always induced

8 Of finite extent!
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by contrasts in cell labelling. Because of this, they always satisfy the subset
condition. This condition states that an adjacency set must be in the boundaries
if any subset of it is in the boundaries. For example, if the edge between two
cells belongs to the boundaries, its endpoints are also part of the boundaries.
Similarly, if an entire cell belongs to the boundaries, so do all of the edges and

vertices that it touches.

Aside from the subset condition, boundaries can be any collection of ad-
jacency sets. Boundaries can intersect one another and a boundary can end
abruptly in the middle of a region. Figure 27 shows examples of real situations
in which boundaries end abruptly. In the applications presented in this thesis,
it is typically best to place boundaries between cells. However, it is occasionally
helpful to place boundaries on cells and even to create boundaries more than one

cell wide. The formalism allows all of these options.

Figure 27. Boundaries can end abruptly in the middle of regions. Left: a bent
finger. Right: a torus seen in 2D projection.

Thus cellular topology imposes a number of restrictions on the form of rep-
resentations for situations. However, these restrictions seem to eliminate only
pathological situations that are of little use in practical reasoning. Later chap-
ters discuss how some of these restrictions apply to various application domains

and confirm that they are not prohibiting useful types of representations.
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10. Chapter summary

In this chapter, I have presented the basic machinery needed to represent
space for visual analysis and other practical reasoning tasks. This representa-
tion of space, called cellular topology, is based on regular cell complexes. The
topological structure of these cell complexes can be fully specified using simple,
combinatorial representations. We have also seen how boundaries can be added
to these representations and how this changes the topological structure of space.
Although these representations impose some conditions on the form of space and
how situations can be represented, the forbidden possibilities involve pathological

cases that are not useful in practical applications.

In practical applications, functions cannot be represented in full detail, but
must be approximated using only finitely many values with only finite preci-
sion. The cellular representation provides a good framework for analyzing these
digitized functions. We have also seen how the relationship between digitized
functions and underlying continuous functions can be important in producing

robust reasoning algorithms.

Topological changes due to boundaries affect practical reasoning algorithms
in a number of ways. The regions to either side of a boundary are not connected.
Continuous functions can have abrupt changes in value across boundaries. Con-
tinuous matches between two situations must match boundary locations. Finally,
the presence of boundaries can affect the shape of support regions used in com-

puting function values.

As I said at the beginning, the presentation in this chapter is informal. Formal
details and proofs missing from this discussion are to be found in Chapter 11.

Some readers may wish to look at Chapter 11 before continuing. Chapter 11 also
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compares my representation of cell structures to previous proposed methods of

specifying the topology of a digitized space.
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Chapter 3: Domain Examples

1. Introduction

In Chapter 2, we saw a number of ways in which topological structure, induced
by the presence of boundaries, could affect reasoning algorithms. In this chapter,
I introduce the application domains considered in this thesis and briefly describe
how topological phenomena appear in each domain. In Chapters 4-8, I consider

each of these domains in more detail.

In this thesis, I consider examples from three domains: low-level vision,
natural language semantics, and high-level vision and practical reasoning. I
have grouped high-level vision and practical reasoning together because they are
closely related and consider similar examples. Because the implementation for
this thesis is in low-level vision, the discussion of this area is more extensive.
Three algorithms have been implemented: an edge finder, an image matching

algorithm, and a stereo analysis program using the image matcher.

These domains illustrate a number of ways in which topological structure
can affect reasoning algorithms. We see that algorithms may require connectiv-
ity of regions, including function support regions, and may require correspon-
dences used in matching two representations to be continuous. These topological
constraints are often combined with other types of constraints, yielding mixed
topological and metric properties such as star-convexity. We see evidence that
lack of material connectivity and sharp changes in functions tend to cluster at a

restricted set of locations, indicating the presence of boundaries.




66

In addition to the topological phenomena, we also see a number of other
examples important to the thesis. We also see how digitized representations are
used in several domains and how the digitization occasionally affects algorithms
and representations. We see examples of functions that require wide support
regions. Finally, we see a number of places where previous researchers have run

into technical problems modelling boundaries.

2. The edge finder

In Chapter 2, we saw that abrupt changes in function values indicate the
presence of boundaries in space. The goal of edge finding is to detect locations
of sharp change in real input data, typically arrays of light intensities delivered
by a video camera and digitizer. The difficult problem in designing edge finding
algorithms is to make them detect the wide variety of boundaries present in nat-
ural images without being sensitive to camera noise. The algorithm implemented
for this thesis takes advantage of the connectivity of edge finder response regions

to separate real features from noise.

The Phantom edge finder finds boundaries in an image by locating regions
of the image in which directional second differences are significantly different
from zero. Regions of significant response are then labelled as darker or lighter
than neighboring regions, depending on the sign of the response.! Boundaries
are placed where dark and light regions meet. Figure 1 shows these response
signs and boundary locations. The boundaries and dark/light labelling form the
input to later visual processing, such as stereo analysis, motion analysis, texture

description, and shape description.

1 These response signs are produced by combining responses from directional
differences in several directions. See Chapter 4 for details.
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Figure 1. Top: a digitized image (300 by 300 cells). Bottom left: second differ-
ence response sign. Positive and negative responses are shown in black and white.
Responses not significantly different from zero are displayed using a checkerboard
pattern. Bottom right: boundaries induced by transitions between dark and light
regions. Cells on or to the dark side of boundaries are shown in black.

The main challenge in doing this type of edge finding is suppressing effects of
camera noise. These images are taken with a video camera attached to a digitizer
that con\}erts the camera output into arrays of integers. This system blurs the
image slightly and introduces low-amplitude random noise. Figure 2 shows the
edge finder’s dark/light labels for the same image with no noise suppression.
As you can see, the camera noise generates spurious dark and light markings,

particularly in regions of uniform intensity. The noise suppression algorithm
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Figure 2. Second difference response sign for the image in Figure 1, but with no
noise suppression.

removes these spurious responses, producing the clean output shown in Figure 1.

In the past, responses due to noise have often been identified on the basis of
their amplitude. This is not a robust method for distinguishing noise responses,
because some responses to real features have low amplitudes. Notice, however,
that one can roughly identify the noise responses using only the response sign
information shown in Figure 2. Noise generates responses with only small con-
nected regions of the same sign, whereas real responses typically generate wide
response regions. Thus, both response amplitude and response region shape

provide useful information about which responses are due to camera noise.

The Phantom edge finder combines both shape and amplitude information
into one operation that sums response amplitudes over a neighborhood of each
cell. The neighborhood about each cell = is the maximal star-convex neighbor-
hood, defined in Chapter 2, within which the second difference response does not
change sign. If this sum is too low, the response at z is classified as due to noise.
Because this operation does not cross the boundaries defined by sign changes,

the evaluation of each response region is not corrupted by the presence of nearby
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response regions. This test is able to robustly distinguish real responses from

those due to camera noise.

The edge finder is interesting for several reasons. The main noise suppres-
sion algorithm shows a simple, but important, use for connectivity in low-level
visual processing. In Chapter 4, we see that connectivity can also be used in
distinguishing step edge and roof edge responses. The edge finder provides an
example of a digitized function whose range has an unusual structure, as well as
many examples of strange boundary shapes. Finally, the edge finder shows how
we can extract a clean topological structure for an image out of real intensity

data, despite camera noise and scene irregularities.
3. Image matching

The second major algorithm implemented for this thesis matches two images
in ways that preserve their topological structure. This matcher can be used in
a number of different application domains. I present the matcher first in the
context of testing edge finder output for stability under noise (in Chapter 5),
because this application uses the matcher in a straightforward way. I then show
how this matcher can be used in stereo analysis (in Chapter 6). This application
is more interesting, but it requires a non-trivial control structure in addition to
the basic matcher. In this section, I give an overview of the edge finder testing
domain and the matcher algorithm. Stereo analysis is summarized in the next

section.

Chapter 8 presents a number of tests of the performance of the new edge
finder. Among these is a test for stability under noise introduced by the camera
and digitizer system. The basic idea behind this test is simple. Two pictures

of the same scene are taken with the same camera position, but a few minutes




70

apart. Thus, the two pictures represent the same image, but corrupted with
different samplings of random noise. The edge finder is run on both images and
the results compared. Any differences between the two results reflect instability
under noise. Most previous experiments have compared output on one image to
some “correct” output (see Chapter 9 for further discussion), but this does not

change the character of the comparison problem.

The difficulty in doing such a test is how to compare the two edge finder
outputs in a meaningful way. Noise causes two types of changes to the edge
finder output: changes in boundary topology and changes in boundary location.
In later chapters, we see that many high-level programs, from stereo to object
recognition, make use of image topology. The two types of changes in edge
finder output affect these programs differently, and thus they should be reported
separately. Previous studies of edge finder performance (Haralick 1982, Nalwa
and Binford 1986, Sher 1987a, Pratt 1978, Fram and Deutsch 1975) attempted
to separate these two effects, but their heuristic methods seem only applicable
to images with sparse boundaries and/or small amounts of boundary motion.
Using the new model of image topology developed in previous chapters, we can
produce a more general and principled algorithm for matching two edge finder

outputs.

The image matcher separates the matching problem into three phases: ad-
justment, computation of match strength, and analysis of boundary motion. In
the first phase, the algorithm adjusts one image so as to make it as similar as
possible to the other, without changing its topology. A successful match between
the two images requires not only that the boundary locations match, but also
that the edge finder’s dark/light labels match. Chapter 5 describes the set of

operations used to adjust boundaries and labels and proves them correct, using
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techniques developed in Chapter 11.

Requiring that dark/light labels match simplifies the adjustment process.
Consider the situation shown in Figure 3. Without label information, the ad-
justment process would have to explore two candidate matches for each boundary,
one to either side of it. If labels are required to match in the two images, however,
the boundary must be adjusted so as to reduce the region of label conflict. In
fact, the adjustment process can be thought of as a method of getting as many
cells as possible to have matching labels. The raw match map is produced by
comparing labels in the original and adjusted images. Figure 4 shows a match

between two images before and after adjustment.

Figure 4. Top: two noisy edge finder responses. Bottom: the match between
them, before (left) and after (right) adjustment. Matching cells are shown in
white and non-matching cells shown in black.
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Figure 3. Boundaries are adjusted so as to reduce the regions of conflicting labels.
Top to bottom: the two images, identifying label conflicts, moving boundaries,
and final (identical) boundaries and labels.

Adjustment eliminates effects of boundary motion and thus the match map
after adjustment reflects only topological mismatches between the two images.
Notice, however, that even non-matching regions contain many matching cells
at this point. Good and bad matches are distinguished by how much the non-
matching cells break up the image. In a region of good match, extended con-
nected regions are marked as matching. In a region of poor match, only very

small connected match regions occur. Therefore, the area of a connected (star-
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convex) neighborhood about each cell is used as a measure of the goodness of the
match about that cell. A clean match map can then be produced by re-classifying
cells with low strengths as non-matching. Figure 5 shows the clean match map
for the image match in Figure 4. As you can see from the example, regions where
the edge finder response reflects camera noise are now classified as non-matching,
whereas regions where the response reflects primarily the scene are classified as

matching.

Figure 5. The match map from Figure 4 before (left) and after (right) low-
strength responses have been removed.

After adjustment, the adjusted and non-adjusted versions of the image are
compared, to identify which cells have had their labels changed. Because of way
boundary adjustment is done, there is a characteristic pattern to the locations of
these adjusted cells. As shown in Figure 6, a connected region of adjusted cells
lies directly to one side of each boundary that was moved during adjustment.
The width of this band of cells reflects the amount that the boundary has been
moved. The final stages of matching analyze these adjustment regions to extract

information about boundary motion.

For edge finder testing, we do not expect any net movement of boundaries

in any one direction, over an extended section of the image. Rather, boundary
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Figure 6. A boundary that was moved during adjustment has a connected region
of adjusted cells to one side of it. Top to bottom: the two images, moving
boundary in one image, the region of adjusted cells.

locations typically move back and forth, as noise varies. The total amount of
fluctuation in boundary locations can be measured by comparing the number of
adjusted cells to the total number of edge cells (cells next to boundaries). For
other applications, such as stereo analysis, this fluctuation should be suppressed
and any net motion in some direction extracted. This involves extracting hor-
izontal and vertical components of the boundary motion at each edge cell, and

then smoothing these measurements to suppress fluctuations due to noise.

From the standpoint of this thesis, there are two interesting aspects to the
image matching algorithm. First, boundary adjustment is required to preserve
image topology. This is a direct test of the hypothesis that topological structure
is useful in building practical algorithms. Furthermore, the process of proving
adjustment operations correct illustrates the usefulness of the mathematical ma-

chinery developed in Chapters 2 and 11.
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The second interesting feature is that both the matching strength and the
boundary motion computations are restricted to connected regions. Strengths
are measured using the area of a star-convex neighborhood about each cell. The
horizontal and vertical components of boundary motion are calculated by mea-
suring the length of connected straight paths through the adjustment region.
Finally", these two components are smoothed by averaging values over the star-
convex neighborhood of each cell. This restriction to connected regions allows
these computations to use wide support regions while not crossing boundaries

between matching and non-matching regions.
4. Stereo matching

The image matching algorithm presented in the previous section handles only
one alignment of the two images. In order to do tasks such as stereo matching,
a control structure must be built that can search a variety of alignments for
possible matches. This section sketches the implemented stereo control structure,
described fully in Chapter 6. Because stereo matching involves a change in
viewpoint, in addition to the effects of camera noise, it provides a stiffer test of

the matcher’s capabilities than edge finder testing.

The input to a stereo matching algorithm consists of two images of the same
scene, taken at the same time from slightly different viewpoints, as shown in
Figure 7.2 In human vision, the images would come from the two eyes. In
computer vision, they come from two cameras positioned in a manner roughly
similar to human eyes. In both cases, the viewpoints are sufficiently similar that
most 3D points that are visible to one eye are also visible to the other. A stereo

matching algorithm must reconstruct a correspondence relating points in the two

2 Appendix A explains how to view such a pair of images so as to see apparent
depth.
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images that are projections of the same 3D point. From this correspondence and
the relative positions of the cameras, the 3D locations of surfaces in the scene

can be computed.

Figure 7. A stereo pair contains two images of the same scene, taken from slightly
different viewpoints. This figure shows the edge finder output for such a pair of
images.

Stereo correspondences are typically presented in the form of disparity values
for each pixel in the images. This representation assumes that some reference
alignment of the images has been selected (e.g. matching cells with the same
coordinates in two images). The disparity at a pixel is then a vector representing
the difference between the corresponding location in the other image as given
by the alignment and the true corresponding location as provided by the stereo

matcher. This is illustrated in Figure 8.

Fully accurate models of stereo geometry and optical distortions for a camera
system are quite complex. Camera modelling is tangential to the main point of
this thesis. Therefore, I use a simplified model of the viewing geometry. For the
images I use, the errors caused by deviations from this model are small enough

not to cause problems in matching.3

Figure 9 shows the positions of two cameras in a standard stereo arrangement.

The cameras lie in approximately the same horizontal plane, so we can consider

3 This algorithm is more tolerant of errors than previous stereo matchers.
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Figure 8. Left: stereo disparities for the images in Figure 7. Darker regions in
this figure have larger disparities and correspond to 3D surfaces that are closer to
the cameras. Right: match map showing (in white) which regions of the stereo
images were successfully matched.

them in 2D projection, from above. The cameras are pointed at a common
3D location, probably representing some object of interest in the scene. The
vergence, i.e. the difference between the directions in which the two cameras
point,* changes as a human or a (hypothetical) computer system looks around

the world, so as to keep both cameras pointed at whatever is currently of interest.

f"f\ vergence
|

N
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left image right image

Figure 9. A stereo arrangement.

4 Details of how this is defined are not relevant to the following discussion.
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In an actual camera system, the vergence is small relative to the distance be-
tween the cameras and the object. Thus, I suppose the image planes of the two
cameras lie in a common plane and treat the deviations from this as an unmod-
elled source of error. Disparities are then 2D vectors in this plane. The vertical
disparity, i.e. the component of disparity perpendicular to the line joining the
two image centers, is ideally zero for all points in the images. The horizontal
disparity, i.e. the component parallel to that line, is (roughly) inversely propor-
tional to the depth, i.e. the distance between the 3D object and a line passing
through the two cameras. For convenience, researchers often arrange for the scan
lines of the images to be parallel to the line connecting the image centers, so that

horizontal disparities are then parallel to the scanning direction.

There are three sources of error in this model: mis-alignment of the two
cameras, simplifications made in the model, and distortions introduced by the
camera system (particularly when wide-angle lenses are used). The model sim-
plification seems to create only small errors. Camera distortions change only
slowly over time® and can be handled by normalizing the images prior to stereo
analysis, using a pre-computed calibration. Camera mis-alignment causes larger
inaccuracies, which change as cameras are moved to new vergences or so as to
point in new viewing directions. The stereo system must be able to supply the

information required to adjust camera positions and update camera calibrations.

Because vertical disparities should be zero in an ideal camera system, the
stereo algorithm uses vertical disparities to estimate the required adjustments
to camera position. From computed vertical disparities, the algorithm estimates

two camera adjustment parameters: vertical translation and rotation about the

> In a camera system, they might not change measurably. In a human, they
would.
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center of the image.5 These parameters are used to adjust the positions of the
images so as to achieve a better match. Determining errors in camera calibration
would require observation of disparities over extended periods of time, in order
to detect any trends that persist systematically across diverse scenes, and has

not been implemented.

The stereo matcher implemented for this thesis uses a coarse-to-fine control
strategy. The edge finder supplies boundary locations and dark/light labels at
a variety of scales. Matching results for coarser scales are computed first and
they are used to adjust camera positions (simulated in software) and plan the
set of alignments to be searched at the next finer scale. This implementation
differs from previous implementations in having a wide search area at each scale,
relative to coarse-scale positions, and in considering the possibility of vertical
displacements in addition to horizontal ones. Although the larger search areas
require more computation time, they are required in order to match human

capabilities.

Stereo matching at each scale involves a search over a range of alignments of
the two images. At each alignment, the image matcher described in the previoﬁs
section is used to determine which parts of the image match and how well. It also
supplies estimates of the disparity of individual patches of the image, relative to
the alignment. When matching has been done for all alignments in the search
area, the best candidate match is chosen for each image location. The decision
among alternative matches is based on their matching strengths, as well as how
close they are to coarser-scale results. The coarser scale context is required in
order to handle regions with translational symmetries at the finer scale, such as

striped regions and regions of uniform color. Finally, a modified version of the

6 More sophisticated models of camera misalignment could be used. Again, this
is tangential to this thesis.
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edge finder’s noise suppression algorithm is used to remove outliers and fill small
g p

holes in the output disparities.

A slight modification of the stereo control structure could be used for the anal-
ysis of motion sequences. Motion sequences involve a wider space of possibilities
than stereo analysis, because vertical disparities are not as tightly constrained.
A full discussion of control strategies for motion analysis would involve issues
of what objects the reasoner was interested in, because it may only be possible
to track the motion of certain parts of the visual field at fine scales. Neverthe-
less, the same techniques developed for stereo analysis should be applicable and

Chapter 10 presents a brief example showing how they might be used.

There are two ways in which the topological matcher is important in building
the stereo algorithm. First, the larger search areas at each scale place more de-
mands on the robustness of the matching algorithm. Previous stereo algorithms
have used constraints similar to the requirement that dark/light labels match.
They have also used “disparity gradient” or “local constancy” conditions, similar
to those imposed by the search through alignments in my algorithm. However,
the new stereo algorithm also requires that the correspondence preserve topolog-
ical structure. This type of constraint has previously been used only rarely (e.g.
Grimson 1985, Mayhew and Frisby 1980, 1981, Chen 1985) and implemented
in weaker forms. Without the additional constraint provided by the continuity
requirement, previous algorithms find it difficult to disambiguate large numbers

of candidate matches.

Secondly, computation of strength and disparities at each alignment is con-
fined to connected regions of matching cells. This prevents most support regions
from crossing sharp changes in depth or overlapping occluded regions, without

restricting the size or shape of support regions. Because of this, support regions
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can be made as large as is necessary to achieve good accuracy in computed dis-
parities and to consider enough context for good assessments of match strength.
Furthermore, cells near the edge of a region can gather support from large sup-
port neighborhoods, despite the fact that these neighborhoods cannot be centered
about them. Previous algorithms have been forced to trade the benefits of wide
support neighborhoods off against the problems of smearing and contamination

across sharp changes in depth.

Thus, the stereo matching algorithm shows how the topological ideas de-
veloped in this thesis can be used in solving practical problems. Furth?rmore,
the images being matched can be quite complicated, with large amounts of fine
texture. Most discussions of topological properties, both in mathematics and
computer vision, consider only examples with simple structure. One is tempted
to think of topology in terms of Euler-number classifications of surfaces or to
reduce it to connectedness for more complicated problems. Stereo matching and
edge finder testing illustrate how one can use the full topological structure of

even very complicated images.
5. Linguistic Semantics

The next group of data that I consider in this thesis comes from linguistic
semantics. The goal in this field is to formulate rules for describing the meaning
of sentences. Since a full description of sentence meaning would require solutions
to much of Artificial Intelligence, researchers in linguistic semantics are partic-
ularly concerned with classifying those aspects of meaning that are important
in determining whether a string of English words is an acceptable English sen-
tence. Not only does this data suggest interesting uses for topological properties

in semantics, but cellular models of time avoid technical problems encountered
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by previous researchers.

The data that I describe in most detail involves models for the temporal struc-
ture of different types of situations,” verb tense and aspect, and temporal adverbs
and connectives. [ represent time using a cellular model, shown in Figure 10.
Situations in time will be modelled by associating descriptions of properties with

cells in time and descriptions of processes with (connected) intervals of time.

Figure 10. A cellular model of time consists of an ordered set of 1-cells, each one
joined to the next at a common endpoint, as shown in the upper drawing. The
underlying space is just like the real number line (center). The lower drawing
shows an alternative graphic representation for this set of cells.

The situations described by natural language verb phrases seem to fall into a
limited number of classes: states, activities, state changes, and accomplishments.
For example, Sentence 1 describes a state, Sentence 2 describes an activity, Sen-

tence 3 describes a state change, and Sentence 4 describes an accomplishment.

(1) Sussman was in the machine room.
(2) The aide shredded incriminating documents.
(3) Bonnie passed her area exam.

(4) Eric made a fresh pot of coffee.

T 1 use the term “situation” to cover both actions, such as “running,” and states,
such as “being green.” I am using this term in an informal sense and do
not intend it to imply any particular theory of how actions and states are
represented.
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States are descriptions of the world at a moment in time, activities describe on-
going patterns of change, state changes describe abrupt changes in the world, and
accomplishments describe an activity brought to an edge by an abrupt change.
I refer to activities, state changes, and accomplishments as actions. Figure 11

shows the models for the temporal structure of these four classes.

states O =2 0...0
activities 0...0 = o0...0
actions state changes O] [O

accomplishments "\;go o OJ[O
cod P

Figure 11. The topological patterns of different types of situations.

The four classes of situations can be distinguished linguistically, because cer-
tain constructions place restrictions on the class of the verb phrase (or other
constituent) used in them. For example, state descriptions can be verified from
a description of the world at only one moment of time,® whereas verifying that
an action has occured requires examining the world at two or more moments
of time. Since the present tense in English refers to only a moment of time,
this means that only states can appear in the present tense. Thus, Sentence 5
is acceptable, whereas Sentence 6 is not acceptable unless re-interpreted as a

(state-like) description of the aide’s habits.

(5) Sussman is in the machine room.

8 Represented as a cell in these models.
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(6) #The aide shreds incriminating documents.’

Conversely, only actions can appear in the progressive aspect, as illustrated

by Sentences 7-8:

(7) #Sussman is being in the machine room.

(8) The aide is shredding incriminating documents.

This can be explained by observing that progressives of actions behave as if they
were states. In the model for progressives described in Chapter 7, the progressive
of a state would mean the same thing as the original state and it would thus be

redundant.

The three types of actions can be distinguished by similar types of tests.
For example, only activities can occur with prepositional phrases using “for” to

measure an amount of time, as illustrated by Sentences 9-11:

(9) The aide shredded incriminating documents for several minutes.
(10) #Bonnie passed her area exam for several minutes.

(11) #Eric made a fresh pot of coffee for several minutes.!?

State changes are distinguished from the other two classes because they cannot

occur in constructions of the form “stop X-ing,” as illustrated by Sentences 12-14:

(12) The aide stopped shredding incriminating documents.

(13) #Bonnie stopped passing her area exam.

9 I use the hash mark (#) to indicate that a sentence is unacceptable and a
question mark (?) to mark sentences of dubious quality. When sentences
are so bad as to be ungrammatical, an asterisk would be more traditional.
However, in the data I present, clear cases of ungrammaticality are rare. It is
more typical that a sentence could be acceptable, but would have to describe
a bizarre situation or be embedded in a bizarre context. I am using the hash
mark to indicate this looser type of unacceptability.

0Dowty (1979) finds this type of sentence acceptable. I do not.
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(14) Eric stopped making a fresh pot of coffee.

Chapter 7 discusses other tests which distinguish different classes of situations

and how they can be explained in terms of the cellular models.

This pattern of topological classes and various types of internal structure for

actiéns is roughly paralleled by English noun classes. Consider Sentences 15-18:

(15) I picked up a pencil.
(16) #I picked up some pencil.!?
(17) #I picked up a sand.

(18) I picked up some sand.

Nouns can be divided into two classes: count nouns and mass nouns. Count
nouns, such as “pencil,” describe objects. Mass nouns, such as “sand,” describe
types of stuff. These two types of nouns can be given representations analogous

to those for accomplishments and activities, respectively.

In Chapter 7, we see several ways in which the new model of space and
boundaries can help in analyzing this linguistic data and in which the linguistic
data provides evidence for the new model. There are two important points. First,
cellular topology predicts a relationship between boundary locations and region
connectivity. The linguistic data provides suggestive examples supporting this
prediction. Secondly, cellular models avoid technical problems encountered by
previous analyses (e.g. Allen 1984, Dowty 1979), due to a combination of the

new model of boundaries and the use of digitized functions.

Connectivity, in the sense of cellular topology, seems to be useful in explaining

the meaning of the perfect aspect in English. Consider Sentences 19-20:

(19) John has been in the kitchen for two hours.

HThis can be acceptable, but only if “some” is stressed.
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(20) Hal has fed the panther.

These sentences, in the perfect aspect, assert that a state was true or that an
action occured over some interval in the past. In addition, they also assert
that some state has persisted from the end of the state or action through to
the present. The perfect leaves the details of the persisting state vague. So,
depending on the context, Sentence 19 can either imply that the panther is no
longer hungry or that Hal has experience feeding panthers. We can model this in
cellular topology by requiring that no boundary relevant to the current context
intervene between the state or action and the present moment, i.e. that the

present moment is connected to the end of the state or action.

There is also suggestive evidence from certain English language constructions
that boundaries due to different actions tend to coincide. For example, the
connective “until” indicates that one state or actitivity occured over an interval

ending at some specified boundary, as in Sentence 21:
(21) The panther stared hungrily at me until Hal fed him.

Forms with “until” do not actually assert that the first situation stops when the

state change occurs, but they strongly imply it.

Chapter 7 presents these two examples in more detail, along with other exam-
ples involving the progressive aspect and the connective “when.” These examples
provide evidence that the behavior of different types of situations is consistent
with the topological details of the models I have given them, particularly the
boundaries used in representing accomplishments and state changes. While this

evidence is fragile, it is a useful addition to evidence from other sources.

The new model of space and boundaries also avoids several technical problems

encountered by previous researchers. First, cellular topology allows the distinc-
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tion between states and actions to be expressed in terms consistent with real
measurements, by distinguishing intervals containing only one cell from longer
intervals. In previous models, this distinction was expressed as a distinction be-
tween points and intervals. This is difficult to connect with real measurements,

because data is not available at individual points in time.

Secondly, cellular topology provides a problem-free model for state changes,

as in Sentence 22:
(22) Bonnie passed her area exam.

This sentence expresses a change over time between two discrete property values.
Previous researchers have encountered two problems modelling such sentences as
functions from IR to a property space. First, it is unclear whi?h of the two values
to assign to the point exactly at the transition. Secondly, state changes occur
over a minimal-sized interval surrounding the change. In models based on IR,
there may exist no such minimal interval. Cellular topology provides solutions

to both these problems.

Finally, digitized functions can provide an explanation for why certain verb
phrases become temporally bounded when they contain a spatial bounded direct

object. Consider Sentence 23:
(23) John drank a glass of water.

This sentence describes an accomplishment, although the verb “drink” describes
an activity. The direct object “a glass of water” is a count noun describing
a bounded amount of water. Because it is bounded in space, the action of
progressively consuming it must be bounded in time. This line of reasoning,

proposed by Tenny (1987), works in cellular topology,!? but it does not work if

12Chapter 2, Section 9 presented this briefly.
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standard real functions are used.

The linguistic data provides an interesting extension of the domains in which
cellular topology can be applied. Analyses used by authors in this domain can not
only be re-written within cellular topology, but technical problems can be elimi-
nated. There is suggestive evidence that connectivity and topological boundaries
are useful in modelling this data. Furthermore, this data is closely related to the

data considered in high-level reasoning, which I describe in the next section.
6. Reasoning and high-level vision

The final group of examples come from reasoning and high-level vision. In
these areas, researchers try to emulate the human ability to identify and describe
situations, predict what will happen to objects in them, and plan actions for
changing a situation. This research is somewhat removed from any source of
concrete data, either visual or linguistic. However, the phenomena that this work
attempts to explain are more varied and more intuitively appealing. Ideally, it
should provide the link between low-level vision, motor control, and low-level
language processing. This section provides a summary of the relevant parts of

this work and it is discussed in more detail in Chapter 8.

Reasoning examples of interest to this thesis can be divided into four types
of problems: modelling physical objects, modelling changes over time, route
planning, and recognizing objects. Suppose, for example, that we are training a
robot to make coffee. We might first describe the shape of the coffee maker, the
sink, the water container, and the coffee pot. The robot must be able to recognize
all of these items visually in order to orient itself and start work. Route planning
would be used to determine how the robot must move its arms in order to put

the pot in the machine, fill the container with water, and pour the water into the
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machine. Models of changes over time would be used to describe how the water
is heated and to predict that coffee will flow into the pot for a time and then
eventually stop. There are many other things involved in making coffee, but I

consider primarily these four aspects of the problem.

Models of physical objects are essential to reasoning about practical problems.
and topological properties of these models are considered important by many
researchers. For example, in the coffee making example, water can flow through
the coffee maker precisely because the water input for the machine is connected
to the coffee output by an open tube. If you pull on one end of an electrical
wire, the other end will move because the entire wire is physically connected.
Current can flow between the two ends of the wire because it is also electrically

connected.

Other types of reasoning, such as route planning, require metric information
in addition to topological information. Consider the bowl shown in Figure 12.
The bowl is connected, so water and objects cannot pass through it. The interior
of the bowl is connected to the outside of the bowl, so water and objects can
move into and out of the bowl. However, since the paths out of an upright bowl
all involve motion against the force of gravity, water will not move out of the bowl
spontaneously. The first two deductions depend only on topological properties
of the bowl. The third deduction requires metric information. However, because
the metric information is augmenting a topological description of the bowl, rather
than standing alone, it need not be very precise. The reasoning depends on the

presence of a concavity, but not on the details of its shape.

Topological properties are also important in recognizing objects and situa-
tions. Most algorithms for analyzing the shape of objects use connectivity, in the

form of routines that parse image boundaries into extended connected segments.
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Figure 12. Things can move out of a bowl, because it is topologically open, but
they do not do so spontaneously, because of gravity.

Objects are often described as assemblies of sub-regions, each of which must be
connected and sometimes convex. Topological properties are important in recog-
nition because 3D objects must be identified from their 2D projections. Distances
change as an object is viewed from even slightly different directions. Topological

and convexity features are stable over larger ranges of viewing positions.

The clustering of sharp changes in different functions, together with lack of
connectivity, is a well-known phenomenon in high-level reasoning. Consider a cup
sitting on a table, as shown in Figure 13. The cup is not connected to the table.
Furthermore, all manner of properties, from color to temperature to material
composition, change abruptly at this boundary. Because of this clustering, it
is possible to make intelligent guesses about material discontinuities relevant to
manipulation on the basis of intensity or texture discontinuities discovered during
visual processing. When abrupt changes in two properties, such as intensity and
color, are observed in similar locations, they can be coelesced into one common
boundary. Postulating a common boundary not only reduces the complexity of

the representation.
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Figure 13. A cup sitting on a table.

When reasoning about changes in properties, we must consider the structure
of time as well as the structure of space. Since we have f;ew intuitions about
temporal connectivity, evidence about boundaries in time comes almost entirely
from the behavior of properties across time. Consider the process of freezing
water in an ice-cube tray. As long as the temperature of the water remains
above the freezing point, the temperature changes steadily, at a rate determined
by the temperature of the freezer. When the water reaches the freezing point,
however, its temperature stops falling (more or less), but more and more of the
water changes to ice. When all of the water is ice, its temperature starts to fall
again. Thus, as shown in Figure 14, we have three periods of time during which
the rate of change of temperature varies smoothly and the water is in a constant
set of phases. These periods are separated by boundaries at which a new phase

appears or disappears and the rate of temperature change is abruptly altered.

An number of implemented reasoning algorithms (Forbus 1984, de Kleer and
Brown 1984, Williams 1984, Kuipers 1984, 1986) are concerned with describing
and predicting these patterns of change over time. During periods of smooth

change, these qualitative physics algorithms use only rough models about rates
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Figure 14. Freezing water involves three regions of smooth change over time,
separated by boundaries at which something changes abruptly.

of change to predict property values. These predictions are used primarily to
hypothesize what types of abrupt changes can take place and in what order.
Estimates of metric information, such as how long the water will take to freeze,
may also be provided. However, precise metric information is not essential. This
type of algorithm has been used for reasoning about changes in temperature and

phase, fluid flows, behavior of circuits, and motion of objects.

In addition to these new uses for boundaries and topological structure, high-
level reasoning provides more examples of phenomena already seen in low-level
vision or natural language. In Chapter 8, we see that researchers in high-level
reasoning have had formal problems modelling sharp changes in properties across
time, similar to those found by researchers in linguistic semantics. In reasoning,
however, these problems occur in representations of 2D and 3D space, as well
as in representations of time. Cellular models constrain space so as to avoid
infinitely dense boundaries and phenomena such as Zeno’s paradox. However,
cellular models can represent the full variety of boundaries and regions needed

for reasoning, including regions that touch themselves and boundaries that end
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abruptly.

In reviewing research on reasoning, we also see more examples of properties
with wide support. Wide support regions are needed in producing coarse-scale
models of situations, analyzing spatial texture, and analyzing textured patterns
of events over time. Researchers in this area and in natural language semantics
typically take it for granted that such support regions are trimmed so as not to
cross relevant boundaries. However, there is more tendency to propose point-
sampling models that can cause the aliasing and drop-out problems described in

Chapter 2.

In Chapter 8, I also compare cellular models of phenomena to point-based
models. Some previous researchers have advocated models in which one can
refer to certain individual points, such as the exact boiling point of water, the
top of the arc through which a thrown object moves, or the surface of an object.
Although these methods can be accomodated within cellular topology, using the
closed-edge model of boundaries, I argue that these “points” are not exact in real
situations, even for such seemingly precise examples as phase equilibria. Thus,
it may make more sense to allow for measurement error and refer to the cells

adjacent to boundaries, rather than the points right at the boundary itself.
7. Conclusions

In this chapter, we have seen a wide range of application domains in which
topological structure is useful. We have seen connectivity requirements appear in
many places, including noise suppression in edge finding, building support regions
for evaluating image matches, parsing object shapes into parts for identification,
analyzing flows of fluid, planning motion of objects, determining the effects of

forces on objects, and in describing sequences of actions across time. We have




94

seen how homeomorphism can be used as a powerful constraint on matching two

images, a task required by a number of low-level vision applications.

We have also seen some evidence from all domains that multiple functions
tend to have sharp changes in value at the same locations. We have also seen that
there is often a lack of connectivity at these same locations. This is evidence for
the proposed model, in which all of these effects would be caused by a boundary
in space (or time), and against a model that treated them as discontinuities in
individual functions and isolated quirks in the definition of connectedness. The
implemented edge finder also shows how these locations can be detected in real

sensory input.

Digitized functions are commonly used in computer vision and occasionally
in high-level reasoning. In Section 5, we saw how they may also be useful in
explaining phenomena in natural language semantics. In all domains, we have
seen examples of functions requiring wide support. These functions include those
used in noise suppression, evaluating stereo matches, and descriptions of textured
patterns in space and time. I have also briefly indicated a number of places in
which previous researchers have had technical problems modelling bounda.riés.

In Chapters 4-8, we return to all of these examples in more detail.




Chapter 4: The Edge Finder

1. Introduction

The first step in analyzing visual input is to detect locations of sharp changes
in light intensity that might indicate the presence of boundaries in the scene.
The edgé finder implemented for this thesis uses a relatively standard approach,
based on analyzing second directional differences of the image intensities. The
main new feature of this algorithm is that it uses the topological structure of
the responses in determining which responses represent real features and which
are due to camera noise. The edge finder is named “Phantom” after Watt and

Morgan’s (1984) MIRAGE algorithm, to which it is closely related.!

I divide the problem of detecting boundaries into two sub-problems. First,
the algorithm detects regions of the image in which directional second differences
are significantly different from zero. The pattern of second differences is then
analyzed to determine where boundaries should be hypothesized to account for
the observed second difference responses. This decomposition of the problem
dates back to Marr and Hildreth (1980). It allows one to separate the problem
of suppressing effects of camera noise from the problem of classifying the wide

variety of boundary shapes that occur in images of natural scenes.

Both steps in edge finding incorporate algorithms to suppress effects of cam-
era noise. The current implementation contains only one noise suppression algo-

rithm, which is used at three points during the edge finding process. As we saw in

1 An earlier version of this edge finder is described in Fleck 1988.
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Chapter 3, responses to real features are distinguished from those due to camera
noise based on the sum of second difference responses over a maximal star-convex
neighborhood of each cell. This constitutes the main use of topological structure

in the edge finder.

Sections 2-3 present the algorithm for describing second difference responses.
Since the noise suppression algorithm does not interact with the rest of the edge
finding process, it is presented separately, in Section 4. Sections 5-7 discuss
how the clean responses are classified and boundary locations hypothesized and
Section 8 discusses problems of combining information from different scales. In
Section 9, I present results of the edge finder on a range of images and Section 10

compares the Phantom edge finder to previous edge finding algorithms.
2. Taking differences

The Phantom edge finder finds boundaries in an image by locating regions of
the image in which directional second differences are significantly different from
zero. This is done by taking differences in several directions independently and
then combining results over all directions. This produces a four-way classification
of cells in the image, which is used in determining where to place boundaries. In

this section, we see the details of this process, ignoring issues of image noise.

As we saw in Chapter 2, boundaries in space license abrupt changes in the
behavior of continuous functions. These changes in behavior may involve changes
in value that could not be achieved by any continuous function or, more often,
changes in value that would require some other constraint to be violated, such as
bounds on function differences or derivatives. In detecting boundaries from image

intensities, we assume a bound on second differences of intensity.?2 Therefore,

2 Strictly speaking, these differences must be normalized by the distance between
the points used to determine the difference, before any bound is applied. In
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any second differences larger than this bound must indicate the presence of a

boundary.

Boundaries in images can be classified on the basis of the shape of the inten-
sities in a straight 1D path across the boundary. Figure 1 shows several common
intensity shapes and their second differences. In all of these patterns, intensity
varies continuously. Because images are represented only to finite resolution and
the space of intensities is connected, we can never observe a pattern of intensities
in a digitized image that could not represent a continuous function. However,
in the patterns representing boundaries, the second difference is significantly

VARSI,
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Figure 1. Common patterns of intensity values along straight 1D paths in an
image. Left to right: no change, smooth variation in lighting, step edge, roof
edge, thin bar. The top row shows the image intensities, the middle row shows
their first differences, and the bottom row shows their second differences. The
righthand three cases indicate the presence of boundaries, whereas the lefthand
two cases do not.

We are more accustomed to thinking of abrupt changes in properties in terms

the applications discussed below, all differences are taken using a consistent
spacing, so this point can be finessed.
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of high first differences. For example, if I place a white cup in front of a dark
background, first differences taken across this object boundary will be very high.
However, in analyzing camera images, high first differences are not reliable evi-
dence of a boundary. Smooth variations in light intensity and smooth shading
can create high first differences even within a region whose physical properties
(material, surface color, and so forth) are homogeneous. Imposing a bound on
first differences would cause spurious boundaries to be reported in regions with
variations in shading. Such markings would be intuitively unreasonable and un-

stable under changes in viewpoint and lighting,.

Analysis of image intensities is not unusual in having usable bounds on sec-
ond differences but not on first differences. This pattern occurs also in reasoning
about changes in physical properties over time, because processes of change, such
as boiling water or moving objects, often create high first differences (see Chap-
ter 8 for discussion). When a textured surface is seen at an angle, perspective
distortion causes the size of regions composing the texture to change rapidly
across the visual field. In all of these cases, high second differences or changes
in first difference sign reliably indicate the presence of a boundary and high first

differences do not.

In analyzing camera images, or other real input, we do not have access to
the underlying function values, but only to digitized versions of these values.
Intensity values are smoothed before sampling, to avoid the aliasing effects dis-
cussed in Chapter 2.3 The second difference values depend on the amount of
smoothing and the density at which the image has been sampled. However, the

Gaussian-like smoothing used in most computer vision systems consistently de-

3 More or less. I have occasionally seen aliasing in video camera images, so
apparently the smoothing is not exactly the right shape to accomplish this
goal or perhaps some of it is applied after, rather than before, smoothing.
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creases differences taken between any two points in the image. Thus, any high
difference detected in an image must reflect a high difference in the underlying

continuous intensities. The converse, naturally, does not hold.

The second differences used in my edge finder are taken along a straight five-
cell path. Intensities at the cells along the path are added together, weighted
by the values [—1,0,2,0, —1].* All other things being equal, differences should
be computed using cells as close together as possible, to provide the most de-
tailed representation. However, the narrowest second difference, using three-cell
paths with weights [—1,2, —1], detects artifacts due to the interlacing used in
most video cameras. The differences are taken along straight paths, because the
processes responsible for high first differences in images produce differences that

are constant along straight paths, at least locally.

Readers familiar with recent research in computer vision may notice that I
have been very cautious in making assertions about the real world. It is currently
the fashion for theoretical analyses of computer vision algorithms to build very
precise models of reality. Unfortunately, these more specific models are typically
unverifiable or, in some cases, incorrect. For example, it is often stated that phys-
ical properties change discontinuously across boundaries. First of all, not even
the physicists have any solid evidence about the differential structﬁre of space
and an algorithm whose input is digitized can hardly depend on structure finer
than its digitization. Secondly, at a macroscopic level, most physical processes

change in a way that seems continuous, if viewed at a high enough resolution.

* The usual definition of the second difference is the negative of this mask. I
have inverted the mask so that lighter regions of the image produce positive
values, because that seems intuitively more natural.
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3. Combining results from different directions

In the previous section, we have considered only how individual directional
differences indicate the presence of boundaries. Directional differences, however,
can be taken in number of directions about each cell in a 2D image, although
digitization limits this to a finite set of distinct directions. In this section, we see
how to summarize the pattern of differences about each cell into a single label

for that cell.

The basic idea behind Phantom’s method of summarizing second differences
is that differences between cells can be described well by grouping them into four
classes. Consider the four cells shown in Figure 2. The first type of cell, which is
labelled zero has no significant second difference response. If there were no noise,
“significant” would be determined by the bound on second differences. However,
in practice, the bound is concealed by the stricter requirement that it must be

possible to distinguish the second difference response from the effects of camera

N //%
Z

Figure 2. The four types of cells. Left to right: no significant second differences,
positive second differences, negative second differences, a mixture of positive and
negative second differences.

noise.

The other three types of cells have significant second difference responses. In

the first two cases, directional differences crossing the boundary have significant
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amplitude. All of them have the same sign and the largest amplitude occurs when
the difference is taken perpendicular to the boundary. Differences that do not
cross the boundary may have either sign, but they have much lower amplitude.
In these cases, the pattern of second differences can be reasonably summarized
by giving the sign and amplitude of the strongest response. Cells of this type are

labelled dark or light, as appropriate.

In the final example, the cell has both significant positive and significant
negative second differences. These cells are saddles. Specifically, in order to
distinguish this case from dark and light cells, the edge finder considers the am-
plitudes of the strongest positive and negative responses, across all directiqns. If
the weaker response is at least % of the stronger, the cell is considered a saddle.
Cells labelled as saddles are considered to lie in the middle of the boundaries,
when boundaries are finally generated. Identifying such cells is crucial to insuring

connected boundaries when multiple regions touch at a common vertex.

Thus, all four types of situations can be distinguished by finding the maximum
amplitude positive and negative second difference responses, over all directions.
Figures 3 and 4 shows an image, directional differences in one direction, and
the directional differences combined over all directions.® As you can see, the
directional difference only responds well to boundaries that are perpendicular
to the direction in which the difference is taken. Boundaries parallel to the
direction of the difference are not detected at all and the locations of boundaries
at other angles are distorted. The combined result, however, detects boundaries
of all orientations correctly, because the highest amplitude responses come from

differences perpendicular to the boundaries.

In the current implementation, differences are taken in four directions: hor-

5 These outputs have also received the noise suppression described in Section 3.
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Figure 3. A digitized image (330 by 420 cells).

izontal, vertical, and two diagonal directions. The algorithm has been tested
with other sets of directions and it makes little difference to the output. Perfor-
mance is improved slightly as more directions are used. Output also seems to
be changed only slightly when the differences are taken using triples of cells that

deviate slightly from straight lines.

This method of classifying cells performs well on two types of situations that
cause problems for most edge finders: sharp corners aﬁd vertices at which several
regions meet. Good examples of this problem are shown in Chapter 9, Section 6,
where Phantom’s performance is compared in detail against that of Canny’s
(1983, 1986) edge finder. Similar problems occur for many other edge finders.
These problems occur because these edge finders make stronger assumptions
about the pattern of directional difference responses over different directions.

When the responses do not fit this pattern, the edge finder typically fails.
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Figure 4. Left: Sign of directional difference in one direction (diagonally down
and to the right) for the image in Figure 3. Right: sign of directional difference
combined over all directions. Positive responses are shown in white, negative
responses in black, and zero responses in a checkerboard pattern.

Consider first the Marr-Hildreth edge finder (Marr and Hildreth 1980, Hil-
dreth 1983). This edge finder uses the sign of either the Difference of Gaussians
or the Laplacian of a Gaussian to classify cells as dark or light. In either case,
ignoring issues of smoothing and noise suppression, the effect is similar to tak-
ing second differences in a number of directions, evenly sampling the space of
directions, and adding them together. This works properly on straight bound-
aries, because positive and negative responses are approximately balanced at the
boundary. Near sharp corners, however, the sum is skewed because cells inside
the corner have too many responses of the correct sign and cells outside the cor-
ner have too few, as shown in Figure 5. As Berzins (1984) shows, the boundary
shape is deformed near the corner. Furthermore, since the outside response is

weak, the boundary shape tends to be corrupted by camera noise. Ulupinar
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and Medioni (1988) and Chen and Medioni (1987) discuss other types of bias
in the locations produced by this type of edge finder. However, their method of

reducing them has not been extensively tested.

Figure 5. Cells inside sharp corners have high amplitude directional difference
responses from too many cells and cells outside the corners have responses from
too few directions.

Canny’s edge finder has problems on corners for a different set of reasons.
His edge finder detects local maxima of the first difference. He assumes that the
first differences about each cell approximate a linear transformation. Therefore,
he takes directional differences in only two directions and uses these to compute
gradient direction and magnitude. Unfortunately, this approximation fails near
sharp corners, such as the one shown in Figure 5, and region intersections, as in

the lefthand picture in Figure 4.

The problem here is that differences only behave like derivatives in the limit.
It is plausible to assume that the intensities underlying all of these situations are
continuous, since the image has been smoothed by the camera system. Thus, we
are guaranteed that first differences about each point in the image approximate® a
linear transformation within some neighborhood of the point. This is the Taylor

series approximation from standard Calculus. However, there is no guarantee

6 For any desired goodness of fit.
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that this neighborhood is even one cell wide. Thus, finite differences taken one

or two cells apart may fail to approximate a linear transformation.

Because its assumptions are not satisfied, Canny’s edge finder displays a num-
ber of undesirable behaviors near sharp corners and region intersections. The
exact behavior depends on details of the image, including the angle between the
boundaries and the two directions in which differences are taken. It may deform
the boundary shape, break the boundaries, and/or create spurious boundaries.
Phantom avoids these problems by making weaker assumptions about the pat-
tern of second difference responses near boundaries. Detailed examples of the

behavior of both edge finders are presented in Chapter 9.

4. Noise suppression

The algorithm described in the previous two sections does not consider effects
of image noise. If this algorithm were run by itself, with no noise suppression, the
results on the example image would look as shown in Figure 6. Even images that
do not look noisy have considerable high-frequency fluctuation in intensity values.
This section describes a new algorithm, based on star-convex neighborhoods, that
removes these effects of noise and produces clean outputs, like those shown in

Figure 4.

The traditional method of eliminating camera noise consists of two parts:
smoothing and thresholding. First, the image is smoothed prior to edge finding.
Since camera noise is largely concentrated in the high frequencies, this tends to
reduce the amount of noise relative to the amount of response to real features. An
edge detection process is then run and its responses are thresholded to eliminate
responses due to the remaining noise. However, available methods of measuring

response strength have not been very sensitive and thus excessive amounts of
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Figure 6. A directional difference (left) and the combination of differences from
all directions (right), with no noise suppression.

smoothing are required in order to eliminate noise. Therefore, previous edge
finder have had difficulty detecting fine texture and fine details of boundary

shape.

The Phantom edge finder uses a new method of distinguishing real responses
from noise that takes advantage of both the response amplitude at each cell and
the shape of the response region. For low-noise images, such as those produced
by modern camera systems, this method can distinguish real features from noise
without any image smoothing. Under higher noise conditions, smoothing be-
comes desirable, but less smoothing is required to achieve stable output than in
previous algorithms. By reducing the amount of smoothing, the Phantom edge

finder can detect more fine detail than has previously been possible.

Second difference responses due to random camera noise have two properties

that are useful in distinguishing them from responses representing real features
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of the scene. First, responses due to noise have low amplitude at all cells. Sec-
ondly, noise responses vary in sign, forming only small regions of the same sign.
Real scene features typically generate responses that have higher amplitude than
effects of noise. Furthermore, camera systems blur the image before introducing
noise, so that real boundaries are blurred but noise is not. Thus, even when
real responses have amplitudes similar to that of noise, they typically generate
responses that are both longer and broader than those due to noise. This is

illustrated in Figure 7.

Figure 7. Responses to real features are generally longer and wider than re-
sponses due to camera noise.

Amplitude and shape information can be combined by summing amplitude
over the response region. This technique was proposed by Watt and Morgan
(1984) and has also been used by Huertas and Medioni (1986) and, in curva-
ture analysis, by Huttenlocher (1988). In the 1D cases considered by these au-
thors, the strength of the response region containing each cell can be assessed
by summing responses over the largest connected region about that cell in which

responses have a consistent non-zero sign. This is illustrated in Figure 8.

There are three problems involved in extending this approach to 2D images.
First, some bound must be placed on the radius of the region used in summing,
because connected response regions can extend for substantial distances across

the image. Secondly, even within a restricted radius, connectivity is too weak




108

+(2)

- (d)

Figure 8. To measure the strength of a second difference response region in 1D,
responses are summed over each connected region of same-sign responses.

a requirement on the region shape. Full connected regions are expensive to
compute. Furthermore, they provide poor discrimination between noise and real
responses, because noise can generate quite large connected regions. Finally,
noise not only creates spurious response regions where the response should be

zero, but also breaks up real response regions.

Phantom defines sensible regions for summing responses using the maximal
star-convex neighborhoods defined in Chapter 2. These neighborhoods are re-
stricted in radius (currently at most 3 cells from the starting cell) and are not
allowed to contain cells whose sign does not match that of the starting cell.” As
Figure 9 illustrates, since these neighborhoods cannot cross regions of opposite
sign, they are confined to one response region. The star-convexity requirement
prevents large neighborhoods from being generated in twisty response patterns
typical of noise. At each cell in the image, the sum of responses over the star-
convex neighborhood of that cell gives a robust evaluation of whether the response

at that cell is due to noise or to a real response.

The examples shown in Figure 9 only contain dark and light cells. As we

saw in Section 3, cells can also be labelled saddle or zero. Two steps are taken

7 Cells labelled saddle can belong to neighborhoods of either sign.
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Figure 9. The star-convex neighborhoods about cells are restricted in radius
(left), cannot cross into neighboring response regions (middle) and do not follow
twisted response regions due to noise (right).

to handle these cells. First, two sums are computed for each of these cells, one
treating them as if they were light and one treating them as if they were dark.?
Secondly, the star-convex neighborhood about each cell® is allowed to contain

cells labelled zero or saddle, as illustrated in Figure 10.
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Figure 10. The star-convex about a cell can cross cells labelled zero. Left: the
star-convex neighborhood of a dark cell. Right: the star-convex neighborhood of
a zero cell, if it is treated as if it were labelled dark.

The evaluation at each cell is used to re-label cells as zero if they reflect only

the effects of camera noise. If the cell has the label dark or light but an evaluation

8 One could consider that two computations are also done for the light and dark
cells, but one of the computations is guaranteed to return zero.
% No matter which of the four labels it bears.
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below the noise threshold, it is relabelled as zero. Cells labelled as saddles are
treated as being labelled both light and dark. Either or both of these labels
can be removed if the corresponding sum is below the noise threshold. The noise
threshold must be adjusted for the camera setup in use. For the images presented
in this thesis, the noise threshold is set at 60, based on the results of evaluations

presented in Chapter 9.

The cell evaluations are also used to fill small gaps in response regions. If a
cell is labelled zero but one of its sums is above the noise threshold, the cell is
re-labelled dark, light, or saddle, as appropriate. This allows small gaps in re-
sponse regions to be filled with an appropriate label. When the second difference
response happens to be zero in the middle of a zero crossing,!? this process labels
it as a saddle. As described in Section 7, these saddles allow boundaries with the

correct topology to be generated in these cases.

Noise suppression is done at three points in the Phantom edge finder algo-
rithms. It is used first to clean up directional differences taken in each individual
direction. Weak responses to real features are easier to detect in the individual
directional responses than in the combined response. The same algorithm is used
a second time to clean up the result combined from all directions. In each case,
noise suppression is done twice. The main reason for the second pass is to fill in
holes in response regions created where the first pass suppressed responses with
the wrong sign. As we will see in Section 6, noise suppression is also used in

identifying response regions not due to step edges.

As you can see by comparing Figures 4 and 6, this method of suppressing

10This is not as unusual as it may seem. Responses are only represented to 8
bits of precision. Blurred edges often have low amplitude near zero crossings
and can easily generate zero responses, particularly after one round of noise
suppression.
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noise is quite effective, even in the absence of smoothing. Smoothing is only used
for a few images presented in this thesis, taken with particularly noisy camera
setups.!! Even in these cases, less smoothing is required to achieve stable output
than with previous edge finders. This technique was designed to work on noise
roughly resembling Gaussian noise. Other techniques would need to be employed
for camera systems with very different noise characteristics. For example, Horn

and Woodham (1978) present techniques for de-striping images.

A final point to note is that the noise in many camera systems is primarily high
frequency. As described in Section 8, Phantom is run not only on the original
image, but also on coarser-scale versions of the image. Although the current
implementation uses the same noise threshold for all scales, it should probably
be adjusted for each scale independently. Since the sub-sampled images have
much less noise than the finest scale, it is important not to test algorithms on

sub-sampled images.
5. Inducing boundaries

The algorithms described in Sections 2-4 produce clean maps of significant
second difference responses in an intensity image. The final step in edge finding
is to hypothesize boundary locations that might explain these observed response
patterns. In this section, I discuss how boundaries are hypothesized for responses
due to step edges. In the next section, I show how to identify responses that

cannot be accounted for in this way.

Most boundaries in camera images can be roughly approximated as step edges.
The simplest type of step edge is shown in Figure 11. This type of boundary

generates a characteristic pattern of second difference responses, in which a dark

U These cases are all explicitly marked.
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response region touches a light response region, occasionally with some saddle
cells on the boundary. The boundary is located where light and dark cells touch
and where there are saddle cells. This is illustrated in Figure 12. For consistency

with traditional terminology, I refer to these locations as zero-crossings.
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Figure 11. A step edge and its second difference. Top: intensity profile. Bottom:
2D response regions.

In natural images, step edges may have slightly different intensity profiles
and/or variations in 2D shape, as illustrated in Figure 13. For these variant
intensity profiles, there is no generally accepted definition of where the boundary
should be placed. Cellular topology tells us that there should be some boundary
in such a response pattern, but does not provide any direct guidance as to where
it is. The simplest option seems to be to treat these responses just like the
step edges and hypothesize boundaries at zero-crossings. Then we can deduce

boundaries from the second difference responses using the following rule:

— Place an adjacency set in the boundaries whenever it contains either a cell

labelled saddle or both a cell labelled dark and a cell labelled light.
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Figure 12. The labelling of the cells shown on the left induces the boundaries
shown on right. Boundaries are placed on adjacency sets containing both a dark
(d) cell and a light (1) cell. These adjacency sets correspond to the boundaries of
cells. Adjacency sets containing a cell labelled saddle (s) are also placed in the
boundaries. In particular, each single-cell adjacency set containing a saddle cell
is placed in the boundaries. These adjacency sets correspond to whole cells.

Figure 14 shows an example of boundaries found by this method. Since most
boundaries fall between cells, this figure shows both boundary cells and cells to

the dark sides of boundaries, to insure connected boundaries.!?

One way to represent these boundary assignment rules is to model the set
of labels as the cellular space shown in Figure 15. If cell labels (after noise
suppression) are assumed to have little or no measurement error, the rules follow
directly from this representation. Since the saddle label is a boundary cell, any

cell mapping onto it must also be a boundary cell. Since there is a boundary

12Exact display of boundary output requires enlarging the image by a factor
of two in each dimension, so that locations between cells can be represented.
Chapter 9, Section 6 shows such enlargements for small details of images. How-
ever, they become unwieldy for larger images. The dark cell representation is
inspired by the discussion given by Pearson and Robinson (1985). They point
out that if boundaries are drawn darker than the background, boundaries in
the line drawing are perceived as being at edges of the dark lines. Thus, if
boundaries are represented by dark lines on a light background, they should
be drawn slightly to the dark side of the boundary.
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Figure 13. Variations in step edge shape. Top: variations in intensity profile.
Bottom: variations in 2D shape of boundary.

Figure 14. Significant second difference responses, boundaries placed at zero
crossings.

between the dark and the light label, a.continuous map changing from one label




115

to the other would have to pass through the label zero. If measurement error is
assumed to be small enough, we can assume that such a transition would always
generate at least one cell labelled zero in the path. Thus, a direction transition

between light and dark also indicates the presence of a boundary.

Figure 15. A cellular representation of the value space consisting of the four cell
labels.

For most situations found in natural images, these rules provide boundary
locations that are stable, that are intuitively acceptable, and that can be used
successfully in most computer vision applications. There are two sources of cri-
teria for evaluating theories of boundary placement. First, to the extent that
we want to emulate human performance, we can make use of human intuitions
about boundary placement. This is helpful for general guidance, but it is difficult
to obtain precise psychophysical data in this area. Secondly, we can consider the
requirements of applications using the boundaries. The stability evaluations pro-
vided in Chapter 9 are a first step towards developing such criteria. It is popular

in computer vision to develop theories of boundary placement by considering
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what types of 3D objects might have created the image. However, this approach
does not solve the problem, but simply pushes it back one step, since there is no

generally definition of where the edge of a 3D object is.

6. Identifying other types of responses

Marking boundaries at zero-crossings accounts for many of the situations
found in natural images. However, there are two configurations in which this
method performs poorly. On staircase-like intensity patterns, the algorithm may
generate spurious “phantom” zero-crossings. In pictures of scenes with large
amounts of smooth shading, it is also possible to get regions of significant second
difference responses that are not well explained in terms of zero crossings. This

section discusses these two cases and how they might be handled.

Under one set of conditions, the zero-crossing rules given in Section 5 cause
the Phantom edge finder to hypothesize intuitively unacceptable boundaries. In
staircase patterns, the dark response region from one boundary may touch the
light response region from another boundary. This is illustrated in Figure 16 and
real edge finder examples are shown in Chapter 9, Section 6. The rules for deduc-
ing the presence of boundaries mark this label transition as a boundary. These
spurious responses only happen when the regions in the staircase are relatively

narrow, less than about 10-12 cells in width.

I do not know of any robust way to identify and remove extraneous boundaries
in staircase patterns using only one scale of analysis. In theory the sign of
the intensity change should not agree with the dark/light labelling at such a
phantom boundary (Clark 1986, Ulupinar and Medioni 1988, Chen and Medioni
1987). However, I have not been able to convert this observation into a robust

algorithm. The problems lie in distinguishing these spurious boundaries from
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Figure 16. Zero-crossings of second differences need not correspond to step-edge
boundaries. Top to bottom: two staircase intensity profiles, their second differ-
ences, and their dark/light labelling. For the narrower staircase, zero-crossings
are not only created between the steps, but also in the middle of them.

real boundaries that have low contrast. Watt and Morgan (1983) suggest that

humans may also have problems correctly interpreting fine staircase patterns. -

Since the Phantom edge finder produces multi-scale output, as described in
Section 8, it may be possible to eliminate many phantom boundaries by com-
paring edge finder output at different scales. In order for this to succeed, the
phantom boundaries must occur at a scale that is not the finest representation of

| the image and the staircase pattern must be correctly represented at some finer
scale. Chapter 5, Section 5 discusses briefly how edge finder output from differ-
ent scales can be compared, to determine where the representation has changed
between the two scales. Suppose this matching process can be modified so that
fine and coarse scale representations match even when a phantom boundary ap-

pears only at the coarse scale. For example, we might fill in zero regions in both
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representations, so that both scales have phantom boundaries. Staircase phan-
tom boundaries could then be identified as boundaries present only at the coarse

scale, but in regions where the two scales match exactly.

A second type of problem with the zero-crossing method is that there are
occasional second difference responses that do not fit the step edge pattern. Fig-
ure 17 shows two images containing such responses.!® In some cases, the response
region is simply not connected to a zero crossing. In other cases, the region is
connected to a zero-crossing, but it is too wide or has the wrong amplitude pro-
file to be entirely due to a step edge at that zero-crossing. Previous proposals
for parsing algorithms, such as Watt and Morgan’s (1984) MIRAGE algorithm,
have considered only the first type of example. Both types of examples seem to
be relatively rare in natural images. I have implemented an algorithm to identify

such regions, but it is unclear where to hypothesize boundaries to explain them.

Phantom identifies responses not due to zero-crossings by estimating how
much of the second difference response might be due to the observed zero cross-
ings. This is done using an algorithm that examines straight paths through
response regions. The path is required to start at a zero crossing and it is termi-
nated when a zero-crossing boundary is reached, as shown in Figure 18. The first
three elements of the path are assumed to belong to the zero-crossing response
and are used to estimate the height of the response pattern. If the average of
these first three values is h, the zero-crossing response for the next four cells is

h h b

assumed to have the pattern h, 3, 7, g-.“ All response up to these levels is

marked as belonging to the zero-crossing response.

13The image containing the hand was smoothed using a Gaussian with o = 1 cell
before edge finding, due to high noise conditions.

14This model was produced by informal experimentation, based on the second
difference of an ideal step edge with Gaussian smoothing.
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Figure 17. Top: two images containing examples of second difference responses
not due to step edges. Bottom: significant second difference responses for the
two images. The image of the room corner has very low contrast and has been
displayed with enhanced contrast. The image of the hand has been smoothed
prior to edge finding, because it was taken with a noisy camera system.

The marking algorithm is repeated for horizontal, vertical, and two types of
diagonal orientations (both opposite directions are considered for each orienta-
tion). At each cell, the algorithm accumulates the maximum response amplitude
that could be due to a zero-crossing, over all path directions. These responses are
subtracted from the original response amplitudes, to yield a map of response am-
plitudes not due to zero-crossings. The noise suppression algorithm (two passes)
is used to clean up these response regions, yielding the clean map shown in Fig-

ure 19. As you can see, it does a relatively good job of identifying the problem
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Figure 18. Responses due to zero-crossing boundaries are identified by examining
straight paths through the response regions. Each path must start with an edge
cell, i.e. a cell next to a zero crossing. It continues until another zero-crossing
boundary is reached.

regions.

Having identified response regions not due to zero-crossings, the algorithm
should hypothesize boundaries to account for them. Unfortunately, it is un-
clear where these boundaries should be placed. The traditional suggestion is
that boundaries should be placed at the point of maximum response amplitude.
However, notice that these response regions often continue the line of one side
of a zero-crossing response. In many cases, the intuitively best location for the
boundary would be along one side of the response region. Such a placement
would insure that boundaries remain connected when they shift between zero-
crossing and non-zero-crossing response patterns, but it requires a method for
determining which side of the response region to place the boundary on. A
final option would be to treat all cells in non-zero-crossing response regions as

boundary cells. Designing a robust method of hypothesizing boundaries for these




121

Figure 19. Top: zero-crossing boundaries for the images in Figure 17. Bottom:
zero-crossing boundaries, together with response regions not due to zero-crossing
(shown as black regions). :

response regions requires examination of more examples than I have been able

to gather.

7. The form of boundaries

Cellular topology allows a wide variety of boundary shapes, because it im-
poses few restrictions on boundary shape and because it allows both inter-cell
and on-cell boundaries (including thick boundaries). The Phantom edge finder
takes advantage of this flexibility to produce stable representations for the full

variety of natural boundary shapes. Previous representations have imposed more
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restrictions on the form of boundaries. For example, they may allow only inter-
cell or only on-cell boundaries or prohibit boundaries from ending abruptly. In

this section, we see that these restrictions cause problems in handling real input.

The most common restriction on the form of boundaries is a requirement
that they occur either between cells or on cells, but not both. Most current
edge finders (e.g. Canny 1983, 1986, Sher 1987, Heurtas and Medioni 1986)
seem to use on-cell boundaries. A few algorithms, including Geman and Geman
(1984) and Blake (1983), use inter-cell boundaries. Both of these choices create

problems.

The main problem with on-cell boundaries is that they use up cells that could
otherwise be used to represent regions. This can be a problem in fine texture,
where regions occasionally narrow to only one cell in width. A second problem
is that many edge finder algorithms, particularly those based on first or second
differences, most naturally locate boundaries between cells. Placing boundaries
on cells requires introducing a small bias into the edge locations (as the MIT
implementation of Canny seems to do) or using complicated tests to insure that

the best on-cell approximation is chosen (see Huertas and Medioni 1986).

Inter-cell boﬁndaries, on the other hand, misrepresent the boundary topology
when a boundary location falls in the middle of a cell. If the boundary is close
to the middle of the cell, the edge finder may not be able to make a stable
decision as to which side of the boundary to place the boundary on. This happens
particularly often when the boundary is low contrast or blurred and thus has low
response amplitude near the boundary. In such a situation, choosing either site,
or even both sites, leads to incorrect boundary topology, as shown in Figure 20.
In such situations, the Phantom edge finder treats the disputed cells as belonging

entirely to the boundary. Although this makes the boundary thicker, it insures
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Figure 20. When a boundary falls midway between two sites, a connected bound-
ary cannot be insured using only inter-cell boundaries. If only one site is chosen
(left), but the choice is unstable, the boundary is broken. If both sites are chosen
(middle), an extraneous region is formed. With on-cell boundaries (right), the
correct topology can be insured.

the correct topological structure.

Occasional use of boundary cells is helpful in other situations. For example,
they can be used to represent blurred boundaries. They are essential in for-
malizing the boundary motion operations used in Chapter 5. Finally, they are
useful in representing situations in which many regions touch at a point. Such
situations may be difficult to represent using only inter-cell boundaries, if the
regions are a poor match to the digitization. For example, in a hexagonal cell ar-
rangement, only three cells touch at each vertex. Thus, a checkerboard in which
four cells touch at one point cannot be represented directly using only inter-cell
boundaries, as shown in Figure 21. Stable representations for such situations can
be achieved by using small numbers of on-cell boundaries near the intersection
point. Chapter 9, Section 6 shows many examples of boundary cells in Phantom’s

output.
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Figure 21. In a hexagonal cell arrangement, only three cells touch at each vertex.
Therefore, a situation in which four cells touch can only be represented using
boundary cells.

A second restriction sometimes imposed on the form of boundaries is that
boundaries cannot end abruptly in the middle of a region. The algorithms pro-
posed by Geman and Geman (1984) and Blake (1983) strongly discourage such
boundaries and they are forbidden by region-based segmentation algorithms.
However, we saw in Chapter 2 that such boundaries can occur in 2D views
of scenes. In some cases, they represent slits in the 3D object that terminate
abruptly in the middle of a 3D region. However, as Koenderink and van Doorn
(1982) show, such boundaries can be produced in an image even when the 3D
object represented by the image is smooth and has no internal boundaries. Thus,
such a restriction would make it impossible to correctly represent the boundaries

in many natural scenes.
8. Multi-scale output and reconstruction

The output magnitudes and labels after direction combination provide repre-
sentations of the image at multiple scales of resolution. This multi-scale represen-
tation is used in later applications, such as stereo matching. By reconstructing

the image from the edge finder output, we can see that very little important
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information has been lost during this processing. When only the sign bits of the
edge finder output are used, the image is still recognizable, but smooth shading
information is lost. Removing sign information entirely makes the image difficult

to interpret.

The Phantom edge finder is run not only on the original image, but also on
smoothed and sampled versions of the image. Thus, it analyzes each image at
a range of resolutions. Each sampled version of the image is only one quarter
the area of the next finer version. Thus the entire multi-scale computation takes

only % times as long as the computation for the single finest scale.1®

Multi-scale results for two images are shown in Figures 22-23. The first
image preserves the same structure at coarser scales, except for loss of detail.
The second image contains blurry boundaries that appear only at coarser scales
and thus it exhibits qualitative changes in representation between scales. In
Chapter 5, we will see how these two cases might be distinguished by matching
results of adjacent scales. In this section, I will discuss ways of displaying multi-

scale output.

The information present in such a multi-scale representation can best be ap-
preciated by reconstructing the original image from it. There are quite a number
of ways in which reconstructed images can be produced, suitable for different
types of applications. These reconstructions are useful for display purposes and
also for assessing what types of information would be lost if certain parts of the
representation were not used. Figures 24-25 show four ways of displaying the

information in the edge finder output.

Figure 24 (top) shows a representation in which coarse-scale labels are used

to fill in areas with no significant fine-scale response. This filling process starts

15Because the image sizes form a geometric series.
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Figure 22. Two images (330 by 420 cells and 288 by 227 cells).

at the coarsest scale and proceeds to finer scales. At each step, the coarser-scale
labels are expanded and smoothed, and then used to fill in regions labelled zero
at the next finer scale. This technique results in a vivid binary cartoon of the
image. My experience has been that individual people are easily recognized from
this type of representation. For comparison, it often requires some thought even
to identify human faces in dark edge displays, such as those shown in Figure 24

(bottom).

Figure 25 shows two grey-scale images reconstructed from the edge finder
output. The top version uses only the dark/light labelling at all scales. The bot-
tom version also takes account of the magnitude of edge finder responses at each
cell. In both cases, reconstruction proceeds from coarse to fine scales. At each
step, the reconstruction based on coarser scales is interpolated (by expanding
and then smoothing) and combined with the edge finder results from the next

finer scale. This yields a finer-scale reconstruction of the image. This process is
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Figure 23. Multi-scale edge finder results for the two images in Figure 22.




128

- e
L ST
"o'!":;:.é"

e T e T .

fesaeiaatoic
SIS ALY ALY
Stames ot

Figure 24. Two ways of displaying multi-scale edge finder output. Top: fine scale
results with fill-in from coarser scales. Bottom: fine-scale boundaries.




129

playing multi-scale edge finder output. Top: recon-

Figure 25. Two ways of dis
om: reconstruction using magnitude information.

struction from sign bits. Bott
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repeated until the finest scale is reached.

The algorithm for combining results at each step must accomplish two things:
fill in areas of zero response at the finer scale and average the two results. When-
ever the finer scale had no significant edge finder response, the coarse-scale re-
sponse is used to fill in the fine-scale image. The two images are then averaged
to produce the final reconstruction. In this averaging, the coarser-scale image is
weighted by the number of coarser scales it represents and the fine-scale image is
weighted twice as heavily as each coarser scale. This sharpens boundaries slightly

and makes and fine-scale texture more visible.

As you can see from Figure 25, the reconstruction using magnitude infor-
mation preserves almost all useful information in the image. It differs from the
original in two ways. First, information about the overall intensity of the image
is lost. Thus, if the image had been lighter or darker overall, the reconstruction
would have been the same. Secondly, some slopes in intensity may be lost. This
does not affect all of the shading on curved objects, because shading often gener-
ates some second difference response, particularly at coarser scales. However, an
even gradient across the image, such as might be caused by changes in lighting,

might disappear entirely.

The reconstruction using only sign labels clearly loses more information. Rel-
ative contrast of regions is no longer visible except in extreme cases and smooth
shading is lost. However, when the image has significant changes in structure
across scales, this representation conveys much more information about the im-
age than a fine-scale cartoon does. The matching applications described later
in this thesis all use multi-scale sign information, without taking magnitude in-
formation into account. Thus, this reconstruction conveys a good sense of the

information available to these algorithms.
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9. More examples of algorithm performance

Figures 26-31 show more examples of Phantom'’s output on scenes containing
both natural and manmade objects. Further examples are presented in Chap-
ters 9 and 10. These images, and those presented earlier in the chapter, were
chosen to represent a range of scenes with approximately constant camera noise
characteristics, so that the edge finder could be run with a constant noise thresh-
old. For other camera systems, it may be necessary to adjust the noise threshold,
smooth the image slightly before running the edge finder, and/or add de-striping
algorithms. However, the edge finder has been tested on a large number of im-
ages over the past year and a half and the examples presented are typical of its

performance.

The examples presented in this thesis were generated by a LISP implemen-
tation running on a Symbolics LISP machine. The main liability of this current
implementation is that it runs very slowly, 4-7 minutes per 100 by 100 block
of image, depending on the image contents. The primary problem is the star-
convex sum operation and its speéd could be improved in several ways. First,
for historical reasons, the current implementation uses a large set of paths in
growing star-convex regions. A previous implementation at Oxford used fewer
paths without any substantial difference in performance. Secondly, the current
implementation was designed for easy experimentation, often sacrificing speed to
modularity. Finally, this algorithm is ideally suited to parallel implementation

and would speed up greatly on appropriate parallel hardware.

There has been some recent interest (Hildreth 1983, Huertas and Medioni
1986, Young 1986, Nalwa and Binford 1986) in sub-pixel localization of bound-
aries. I have implemented a simple interpolation algorithm for Phantom’s bound-

aries. This algorithm uses smoothing to interpolate response values and the
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Figure 26. An image of some parts (540 by 425 cells) and an image of a Puma
robot (450 by 420 cells).
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Figure 27. Images of a house (450 by 420 cells), a building (250 by 350 cells),
and some zebras (250 by 350).
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Figure 28. Phantom output on the parts image.
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Figure 29. Phantom output on the robot image.
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Figure 30. Phantom output on the house image.
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Figure 31. Phantom output on the building and zebra images.
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boundary adjustment algorithm described in Chapter 5 to move boundary loca-
tions to reflect those interpolated responses. Figure 32 shows an example of its
output. Clearly this process can be repeated to enlarge the image to arbitrary
size. I have not, however, been able to study how much of this reconstructed
precision is stable.!® Clearly this depends on the contrast of the intensities across
the boundary. High-constrast boundaries can probably be localized to high pre-
cision, but low-contrast boundaries may be moved 2-3 cells by varying camera

noise.

Figure 32. Left to right: an image, edge finder output, expanded version of
output (made by repeating each value over a 2 by 2 block), interpolated output.

The boundary adjustment algorithm described in Chapter 5 can also be used
for two other operations on edge finder output. First, the Phantom edge finder
sometimes produces boundaries that are thicker than topologically necessary, re-
flecting uncertainty in the boundary locations. The boundary thinning algorithm
described in that Chapter can be used to reduce these boundaries to minimal
size, if this is desirable for some application. Secondly, the matching algorithm
described in Chapter 5 can be used to compare edge finder output from dif-

ferent scales, determining which coarse-scale boundaries represent new features

16Stability is the only well-defined criterion for success. Except for the rare
special case of perfect step edges, psychophysical judgements of the “correct”
location of boundaries only provide this location to within perhaps one or two
cells. Although more precise definitions exist, they are ad hoc.
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and which are simply blurred variants of the fine-scale representation (cf. Canny

1983, 1986). Examples of this are presented in Chapter 5, Section 5.

Finally, boundaries could be detected in properties other than light intensity.
Generally accepted theories of visual processing suggest that sharp changes must
also be detected in color, depth (as from stereo), motion fields, and surface
texture properties (such as periodicity). It seems likely that techniques developed
for intensity edge finders could be adapted to these other applications. For
example, Figure 33 shows boundaries detected by the Phantom edge finder (noise

threshold 240) in a map of stereo disparities.

Figure 33. Detecting boundaries in a stereo depth map. Left to right: stereo
disparities, match map, boundaries, boundaries and non-matching regions. The
match map shows which cells have been assigned a stereo match (in white) and
which have not been assigned a stereo match (in black). Cells not assigned a
match may represent either errors in matching or surfaces visible to only one
eye.

These other types of properties are, however, somewhat more difficult to
handle than grey-scale intensities. The space of values for some properties is
more complicated. For example, texture orientation may require a circular space
of values and color a spherical one. Stereo depth data is only a partial function,
because no depths are available for occluded regions of the image. Finally, edge
finding algorithms in these other domains must operate on the results of analysis

algorithms that are, themselves, still experimental. Because of these factors,
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there has been no systematic study of how to extend edge finder algorithms to

these other types of properties.

10. Comparison to previous algorithms

The Phantom edge finder differs from previous edge finders in two ways. First,
it uses a more flexible model of boundaries than previous algorithms. As we will
see in Chapter 9, this enables it to perform reliably on sharp corners, region
intersections, and dense texture. These types of features cause problems for
previous edge finders. Secondly, it uses a more reliable method of distinguishing
real responses from those due to camera noise. In this section, I survey previous
algorithms for edge finding and discuss how they differ from the method used by

Phantom.

There have been three recent approaches to edge finding: boundary mod-
elling, surface modelling, and edge operator.l” In the boundary modelling ap-
proach, used by Sher (1987), Hoff and Ahuja (1987) (stereo depth data), Hueckel
(1971, 1973), and Nalwa and Binford (1986), models are developed for all desired
boundary shapes. These models are then fit to patches of the image. Statisti-
cal considerations are used to determine how good a fit is required in order to
hypothesize a boundary, given an estima,fje of the camera noise. The problem
with this approach is developing a sufficiently flexible set of models for bound-
aries. Models have typically limited to isolated, straight boundaries and with a
small variety of intensity profiles across the boundary. These algorithms perform

poorly at region intersections, at sharp corners, and in dense texture, where none

of the set of models is a good fit to the image. The proposal of Leclerc (1985) is

1"For earlier approaches to the problem, see the surveys in Davis (1975), Pratt
(1978), Ballard and Brown (1982), adding also the algorithms describe in Bin-
ford (1981) and Persoon (1976).
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more general, but has not been tested on real images.

In the surface modelling approach, represented by Haralick (1980, 1984) Har-
alick, Watson, and Laffey (1983), and Parvin and Medioni (1987), the image
intensities in each patch of the image are modelled. The model for each surface
patch is then analyzed to detect the presence of boundaries, e.g. by looking
for zero-crossings of the second-differences of the model. The weakness in this
approach is, again, the set of models. Surface models in current use can only
provide good approximations for patches of image in which the intensities vary
smoothly or in which there are only restricted types of boundaries (typically,
again, isolated straight step edges). Thus, these approaches also fail on intersec-
tions, sharp corners, and dense texture. Brooks (1978) discusses how some earlier
edge operators can be viewed in terms of surface modelling. The segmentation
algorithm of Besl and Jain (1988), the regularization proposal of Torre and Pog-
gio (1986), and the corner detector of Noble (1987) represent similar approaches

to image description.

In the edge operator approach, some operation (such as taking second dif-
ferences) is applied to the image to yield a map of “edge responses.” Some
test is then applied to distinguish significant responses from those due to cam-
era noise and boundaries are hypothesized to account for significant boundaries.
The Phantom edge finder falls into this class of algorithms. Other recent ex-
amples include Marr and Hildreth (1980), Hildreth (1983) Canny (1983, 1986),
Pearson and Robinson (1985), Grimson and Pavlidis (1985) (stereo depth data),
Watt and Morgan (1985), Huertas and Medioni (1986), Young (1986), Gennert
(1986), Boie, Cox and Rehak (1986), Deriche (1987), Spacek (1985), Argyle
(1971), Macleod (1972), Nevatia and Babu (1980), Huttenlocher (1988) (cur-
vature data), and Lee, Pavlidis, and Huang (1988). These algorithms can be
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described in terms of two independent problems: what operator to use and how

to distinguish real responses from noise.

Quite a variety of operator shapes have been proposed, most of them close
variants of one another. Consider the 1D case first. There are two basic shapes
of edge operators: first difference and second difference.!® Boundaries are hy-
pothesized at maxima of first difference responses and at zero-crossings (and
occasionally isolated maxima) of second difference responses. On a perfect step
edge, the two types of operators behave similarly. First difference operators have
the problem of producing spurious responses on ramps, formed by blurred bound-
aries and smooth shading. They are also unable to detect isolated maxima of the
second difference, known as creases or roof edges. Second difference operators,
on the other hand, produce spurious boundaries in staircase patterns. These

problem behaviors are shown in Chapter 9, Section 6.

Many of the edge finders listed above use second difference operators, as the
Phantom edge finder does. Those using first difference, or similar, operators
include Canny (1983, 1986), Argyle (1971), Macleod (1972), Spacek (1985), De-
riche (1987), Nevatia and Babu (1980), and Gennert (1986). Gabor filters (cf.
Young 1986) and Difference of Gaussian operators (Marr and Hildreth 1980)
are similar in shape to the second difference. Residual operators (Grimson and
Pavlidis 1985, Lee, Pavlidis, and Huang 1988, Huang, Lee, and Pavlidis 1987)
also seem similar in shape to second differences. The details, however, depend
on the type of approximation used and have not been explored in detail. Boie,
Cox, and Rehak (1986) use a combination of first and second difference type

operators.

There are three methods of extending these operators to 2D: directional,

18Fither type may, of course, be combined with smoothing. See below.
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oriented, and isotropic, shown in Figure 34. In the directional method, the 1D
operator is applied along straight paths through the 2D image. This is the
method used by the Phantom edge finder. Oriented operators are formed by
taking directional responses from a set of parallel paths and averaging them.
This favors extended straight boundaries. Isotropic operators are created by
averaging responses from directional differences taken about a common point,
but in different directions. Isotropic and oriented operators both distort the

shape of boundaries that are not straight.

A/

Figure 34. Left to right: directional, oriented, and isotropic methods of taking
differences.

When directional or oriented edge operators are used, the results from differ-
ent directions must be combined. The Phantom edge finder is unique in having a
robust method for combining directional responses. Nevatia and Babu (1980) use
a similar method for combining oriented first difference operator responses, but
it is unclear that their later thinning and linking algorithms are robust. Canny
(1983, 1986) assumes that the directional first differences approximate a linear
transformation and summarizes them into a gradient direction and magnitude
on this basis. As we saw in Section 3, this assumption is not valid near sharp
corners and intersections, at which Canny’s edge finder performs poorly. Gennert

(1986) accepts a directional response at a cell only if it is an extremum over all
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directions and larger than the response in the perpendicular direction. This has
not been thoroughly tested, but it also seems liable to make errors at corners

and intersections.

The other main variation in edge operator algorithms is in how they eliminate
the effects of camera noise.!® The most popular method of eliminating noise is to
smooth the image before applying the operator and then remove responses with
low amplitude. The problem with this technique is that smoothing reduces the
resolution of the edge finder output. Because of this, recent work has attempted
to reduce the amount of smoothing required by better methods of distinguishing
real responses from noise in the output of the edge operator. Methods using
edge linking (Nevatia and Babu 1980, Persoon 1976) have been proposed, but it

is unclear how well they work.

Matching representations from different scales is occasionally suggested as a
method of identifying spurious edge finder responses (Marr and Hildreth 1980,
Hildreth 1983, Schunck 1987, Bergholm 1987). Other researchers have suggested
evaluating responses based on a sum or product of responses from different scales
(Watt and Morgan 1985, Rosenfeld 1970, Schunck 1987). While preservation
over multiple scales or occurrence at a sufficiently coarse scale may be useful
as a measure of the importance of a boundary, neither criterion seems helpful in
identifying spurious boundaries. First, many legitimate features in images appear
only at the finest scale, because they are simply too small to be detected at any
other scale. Secondly, in images with qualitatively different representations at

different scales, such as the cleaning cloth image discussed in Section 8 and

19Pearson and Robinson (1985) seem to achieve good results with only minor
amounts of noise suppression. However, since my re-implementation of their
algorithm is sensitive to camera noise, their low-resolution images may have
been produced by some type of sub-sampling. Since camera noise is primarily
high-frequency, sub-sampled images contain far less noise.
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Chapter 5, Section 5, many legitimate features last only one or two scales.

Two methods for distinguishing real response from camera noise have recently
been proposed, both using image topology in addition to response amplitudes.
Blake (1983) and Geman and Geman (1984) use iterative procedures to assem-
ble responses into extended boundaries. Although interesting, these techniques
have not yet been developed into robust algorithms. Furthermore, they make
excessively strong assumptions about the form of boundaries (see Section 7). As
discussed in Section 4, algorithms similar to Phantom’s have also been proposed
by Watt and Morgan (1985), Huertas and Medioni (1986), and Huttenlocher
(1988) (curvature data). However, these researchers discuss only the 1D case
and, thus far, Phantom’s algorithm is the only robust 2D version of this idea.
Lee, Pavlidis, and Huang (1988; also Huang, Lee and Pavlidis 1987) propose
another 2D version, but the details are unclear and it has not been extensively

tested.

11. Conclusions

In this chapter, we have seen how boundaries can be detected robustly in
digitized camera images. More detailed evaluation of its output and a detailed
comparisoﬁ to Canny’s (1983, 1986) edge finder is provided in Chapter 9. The
new algorithm produces boundaries at higher resolution than previous algorithms
without sensitivity to camera noise. It also performs more reliably on sharp cor-
ners, regions intersections, and dense texture. If later algorithms use topological
properties based on these boundaries, as this thesis claims, this ability to detect

stable boundary locations from real sensory input is extremely important.

Use of topological structure is also important in the edge finder algorithm

itself. First, connectedness, in the form of star-convexity, is used in assessing




146

response strength. This constraint prevents evaluation of one response region
from being corrupted by nearby responses. The resulting evaluations are able
to distinguish real responses from camera noise more robustly than previous
proposed methods. Connectedness was also used in the algorithm for deciding

which response regions were associated with zero-crossings and which were not.

Finally, intensities are an important example of a digitized function. We have
seen two examples of how the digitization interacts with the process of finding
boundaries. First, we saw that edge finder results can be produced at a range of
scales, by changing the digitization. Secondly, we saw that the set of directional
differences about a cell may not approximate a linear transformation, unlike the
directional derivatives about a point. Although this means that techniques from
calculus cannot be used directly on digitized functions, we saw that patterns
of finite differences can still be analyzed, by looking at maximum amplitude

responses.
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Chapter 5: Image matching

1. Introduction

As we saw in Chapter 3, both stereo analysis and edge finder evaluation
require an algorithm for matching two edge finder outputs. For each image, the
edge finder specifies both a labelling of cells in the image as dark, light, zero,
or boundary and a set of boundaries induced by this labelling. The matching
algorithm should preserve both the topological structure of the images and the
dark/light labels. In this chapter, we see how this matching is done for a fixed
alignment of the two images. In Chapter 6, I show how a stereo analysis algorithm
can be built using this matcher and, in Chapter 9, I show how the matcher can
be used in edge finder evaluation. Examples illustrating potential uses in other

domains, such as texture analysis, are also discussed briefly in these chapters.

As we saw in Chapter 3, matching images is divided into three phases: adjust-
ment, computation of match strength, and analysis of boundary motion. This
decomposition of the matching problem allows two difficult problems to be tack-
led separately. Consider the situation shown in Figure 1. If we decide to adjust
boundary A to match boundary B, boundary A must be moved through the
shaded region and cells in this region must have their labels altered. However,
there are many ways that individual points in A could be paired with individual
points in B. The adjustment phase of matching builds matches between extended
sections of boundaries, making arbitrary decisions about the point-wise pairing.

The analysis phase then solves the aperture problem, i.e. it determines which
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point-wise pairing is appropriate. This can be done by analyzing the shape of
the adjustment region, without considering the details of how the adjustment

was done.

Figure 1. Two ways of adjusting the same boundary.

The two halves of the matching algorithm have very different requirements.
Adjustment must consider the detailed topological structure, in order to decide
how boundaries can be moved. This is made tractable by the fact that each
adjustment operation considers only a small section of the image. On the other
hand, solving the aperture problem, which the analysis phase must do, requires
examining a large enough area of the image to extract a reliable direction of
motion. Such a support region would not be tractable if topological detail had

to be considered at the same time.

The matcher illustrates two important uses of image topology. First, sections
of image can only be matched if they have the same topological structure. Using
such a requirement for practical applications such as stereo analysis or edge
finder testing is a direct test of the main claim of this thesis, that topological
structure is useful. Enforcing this requirement during boundary adjustment also
provides a good example of how to use the mathematical machinery developed in

Chapter 11. Finally, algorithms in the analysis phase of matching use the same
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star-convex sum operation that the edge finder used, but for different purposes.
Thus, they illustrate some of the variety of applications for which connectivity

requirements are useful.

Section 2 presents the basic operations used to adjust boundary locations.
Section 3 discusses how they are used to build an adjustment algorithm. Section 4
explains the computation of matching strength and Section 5 presents details of
how boundary motion is estimated. Sections 6 and 7 review previous proposed

matching algorithms.
2. How to adjust boundaries

The key to understanding the boundary adjustment algorithm is that the
details of the correspondence between the two images are going to be thrown
away before the analysis phase. Boundary adjustment operations must guarantee

that:

— regions through which boundaries are moved consist of exactly those cells
whose labels are altered during adjustment, and
— there exists a correspondence between the original and the adjusted image

that preserves topological structure.

However, so long as both of these conditions can be guaranteed, the adjustment
algorithm need not reconstruct the correspondence ezplicitly. This is very useful,
because cell labellings are easy to handle explicitly in a computer program and

correspondences are not.

Since we only care about the existence of a correspondence, not the corre-
spondence itself, development of adjustment algorithms involves discussion of
when two images are homeomorphic, i.e. have the same topological structure.

Chapter 11 develops three techniques for showing that the spaces represented
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by two cell structures are homeomorphic.! Recall the adjacency and incidence
structures discussed in Chapter 2. The first technique for proving spaces home-
omorphic says that if the cells in two cell structures can be paired so that the
adjacency/incidence structure and the boundary markings are preserved, then
the spaces represented by these cell structures are homeomorphic. Thus, for
judging homeomorphism, we only need to pay attention to the incidence or ad-
jacency structure and the boundary markings. I call this technique redrawing,
because it implies that we are free to redraw a cell complex with cells of differ-
ent shapes and positions, without altering its topological structure. This is very
convenient, because it means that proofs can be written using pictures of cell

complexes, rather than detailed analytic descriptions of the underlying spaces.

The other two techniques are not so trivial. The second technique, called
subdivision says that a cell can be split into two cells sharing a common (non-
boundary) edge, without changing the topological structure of the underlying
space. This is illustrated in Figure 2. This technique alone can be used to relate
two images if they contain no boundaries. Suppose that the initial alignment
between the two images was not bijective, because a cell in image X was as-
sociated with more than one cell in image Y. We can split the cell into X as
many times as it takes to create exactly one cell corresponding to each of the
cells in Y. Similarly, if the initial alignment is bijective, but does not preserve
adjacency/incidence structure, it can be made bijective by subdividing cells in
both images. In the applications presented in this thesis, alignments are always
integer translations of rectangular arrays, so they always preserve topological

structure. However, in more general applications, it may be necessary to do this

! For technical details of these operations, see Chapter 11, Sections 5-6. The
following discussion is consistent with these technical details, but does not
presuppose that the reader is familiar with them.
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type of subdivision in order to create a correspondence that preserves the cell

structure.

Figure 2. Subdivision of a cell in a cell complex.

In most applications, a small number of alignments can be pre-compiled and
used repeatedly. For example, humans are only able to fuse a limited range of
stereo disparities without eye movement. The alignments in this range, known as
Panum’s area might be pre-compiled. Thus, we can assume that the two images
X and Y have been subdivided in advance and that the initial alignment preserves
cell structure. What boundary adjustment must do is make the two images
have not only the same cell structure but also the same boundary labelling.
Where this can be achieved, redrawing implies that the two images must represent
homeomorphic spaces. Thus, we have converted a problem of proving two images
homeomorphic into one of moving boundaries in one image without changing its

topological structure.

In order to develop operations for moving boundaries, we need a third tech-
nique for proving homeomorphism, called boundary thickening. This technique

allows a vertex or an edge that is marked as a boundary to be replaced by a whole
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boundary cell. Remember that in either the closed-edge or open-edge model of
boundaries, points in boundary cells are deleted from space. Thus, the cell com-
plexes before and after thickening have underlying spaces that look exactly the
same, as shown in Figure 3. More precisely, they might have different points or
different shapes, but they must have the same topological structure. The formal
details of this operation are slightly difficult and are given in Chapter 11. How-
ever, a pictorial understanding of boundary thickening is sufficient for. reading

the rest of this chapter.
\
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Figure 3. Thickening a boundary in a cell complex. The top pictures show a
vertex being thickened. The bottom pictures show an edge being thickened.
From left to right: before thickening, after thickening, and closed-edge model of
underlying space.
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Figure 4 shows the final boundary adjustment operations used in the matcher.
These operations relate a cell structure in which some cell z is a boundary cell
to a similar cell structure in which z is not a boundary cell. The patterns
described by these operations can be applied in rotated or reflected form. To

avoid explicitly testing these possibilities, they are compacted into one boundary
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test in the current implementation. This test is described in Appendix B.

Each of the four adjustment operations specifies a topological equivalence be-
tween two cell structures. Thus, each operation can be applied in either direction.
In one direction, the operation thickens a boundary and, in the other direction, it
thins a boundary. In either case, each operation changes the boundary marking
of only one cell.? Because each operation makes such a small change to the cell
structure, it is not difficult to prove that it preserves the topological structure of
the underlying space. However, larger adjustments can be produced by repeated

application of the operations.

Using the three techniques given above—redrawing, subdivision, and bound-
ary thickening—we can develop simple proofs that the boundary adjustment
operations preserve the topological structure. Each proof is a sequence of local
cell structures, starting with the input to the operation and ending with its out-
put, in which consecutive structures can be related via one of the three basic
operations. These proofs are given in Figures 5-8. Because each of the basic

operations preserves the topological structure, so must their composition.

This set of adjustment operations cannot relate an arbitrary pair of repre-
sentations with the same topological structure. There are three limitations that
seem to hold, though I do not have a formal characterization of them, still less
any proof that they are a full description of the limitations. First, the operations
cannot relate an infinite cell complex to a finite one. For example, a region con-
sisting of the real number line and a single-cell region that is a subset of the real

line are homeomorphic in the open-edge model of boundaries. However, these

% It is tempting to confuse the effect of these operations with that of boundary
thickening. Boundary thickening adds a new cell in the middle of a boundary,
whereas the adjustment operations re-label an existing non-boundary cell as a
boundary cell.
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Figure 4. The four boundary adjustment operations.




155

C thicken thicken >

thicken subdivide

{2

redraw

&_/7

Figure 5. A proof that one of the adjustment operations preserves the topological
structure of the image.

two regions cannot be related via any finite sequence of operations. Among other
reasons, the same operations work for the closed-edge model, in which these two

sets are not homeomorphic.

Secondly, I do not believe that the adjustment operations can relate arbitrary
mirror-reversed representations, even finite ones. Consider two scenes containing
handed objects, such as granny knots. If the matcher is given an alignment of
the two scenes in which one knot is lefthanded and the other knot is righthanded,

I do not believe it can successfully match the two knots. Such a match would




156

SN—>

2 9
( thicken thicken

thicken subdivide
subdivide subdivide
123
redraw

Figure 6. The second operation.

require changing the orientations of cells in the region representing one knot,
relative to that of cells in the other knot. I do not believe that the current set of

adjustment operations can do this.

Finally, the adjustment operations cannot change inclusion relationships.

That is, they cannot remove one region from inside another region, as illustrated
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Figure 7. The third operation.
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in Figure 9. This limitation seems to match intuitive judgements about what

changes are structurally important. Despite thes

e three types of limitations, the

boundary adjustment operations are sufficient for matching images robustly, as

we will see in Section 3.

As a conclusion to this section, I should emiphasize one point about these
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Figure 8. The fourth operation.
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Figure 9. The adjustment operations cannot change inclusion relationships.
Thus, they cannot successfully match the image on the left to the image on the
right, although they are homeomorphic. Intuitively, these images have different
structure.

adjustment operations. The operations are specified in terms of changes to the
combinatorial cell configurations. The correspondence whose existence is guar-
anteed, however, relates the underlying, infinite-resolution spaces represented by
these complexes. Thus, when I say that the matcher preserves topological struc-
ture, I mean that in the usual mathematical sense, not in some sense peculiar to
digitized spaces. It is typical in computer vision algorithms to use approxima-
tions to mathematical concepts, e.g. smoothness or differentiability. Although
there may be noise in the boundaries that are input to the matcher, the transfor-
mations performed by the adjustment phase of the matcher are mathematically

exact.
3. Using adjustment operations

This section explains how boundary adjustment operations ar;a used by the
topological image matcher. In image matching, cell labels must be adjusted as
boundary locations are changed. Furthermore, unrestricted application of the
adjustment operations could scramble the contents of an image in undesirable
ways. The actual matching algorithm restricts the application of these operations

so as to allow only minor adjustments to region shapes.
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Requiring two images to have the same topological structure, using the model
of boundaries developed in Chapters 2 and 11, is a very weak condition on the
images. It does not, for example, constrain the order of regions to be the same,
as shown in Figure 10. The four image adjustment operations cannot be used to
relate any pair of images that have the same topological structure, as we saw in
Section 2. However, they can scamble patterns of 2D regions in ways that are
not desirable in image matching. The image matcher applies the operations only

in limited ways, so as to make only small adjustments to the images.

= o

Figure 10. These two images have the same topological structure.

Boundary adjustment is applied to an image in two phases. The input to
adjustment is a pair of images, one of which is to be modified so as to match the
other (target image) as well as possible. The first phase, thickening, identifies
all cells whose labels are not the same in the two images and moves as many
of these cells as possible into the boundaries. The second phase, thinning, then
moves as many cells as possible out of the boundaries. A cell is moved out of the
boundaries only if it can be re-assigned the label of the corresponding cell in the
target image. As Figure 11 illustrates, this process of thickening boundaries and
then thinning them has the effect of moving boundary locations. The details of

this process are described in Appendix B.

This pattern of applying adjustment operations restricts the ways in which



161

[ g &

Figure 11. A boundary location can be moved by thickening the boundary with
cells from one side and then moving these cells out the other side.

boundaries can be moved. Boundaries are only moved through regions in which
labels conflict in the original images. Cells whose labels agree in the original
images are not altered. This means that two regions can only be matched if
they overlap in the original alignment. Furthermore, a boundary can only be
matched to one of the boundaries nearest to it in the original alignment and it

cannot “hop over” any intervening boundaries.
1%

Both the thinning and the thickening phase involve multiple passes through
the image. Since the adjustment operations are local, they can be done at many
image locations in parallel. However, each pass can only thicken or thin each
boundary by one cell. Since most applications involve larger boundary motions,
multiple passes are needed. In the current implementation, three passes are used
in each phase, so each boundary can be moved approximately three cells in any
direction.? This amount of motion seems sufficient for all of the applications I

have considered, though it could be increased without great consequence.

Limiting the number of adjustment passes restricts changes in region shape

3 Due to details of the algorithms, described in Appendix B, slightly more move-
ment may be possible in some cases. The actual bound varies between 3 and
6 cells, depending on the details of image geometry.
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to those that are plausible for the current application. More generally, the mini-
mum number of operations required to transform one image into another can be
used as a measure of how different two topologically equivalent representations
are.® This distance function measures, roughly, the amount of work required
to determine that the two representations are equivalent. The algorithms de-
scribed in this thesis can only prove two representations topologically equivalent
when this requires very little work, that is when the representations are also very
similar in metric and cell structure. As Figure 12 illustrates, it is difficult for
people to determine whether two situations are topologically equivalent if their
metric structure is very different. I doubt that the general problem of proving

topological equivalence for cellular representations is computationally tractable.

Figure 12. If the metric structure of two situations is very different, it is difficult
to determine whether they have the same topological structure.

After both phases of adjustment are finished, the adjusted image is compared
to the target image. A cell is marked as matching if it has the same label in the
adjusted and target images and as non-matching otherwise. Because boundaries
in edge finder output are induced by label transitions, all boundary mis-matches

must involve label conflicts. Thus, it is not necessary to flag boundary mis-

* The details of this distance function depend, of course, on the details of the
operations provided.
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matches explicitly. Figure 13 shows match results for two images used in edge
finder testing (see Chapter 9). These images represent the same scene, but have
different samplings of random noise. The match results correctly identify which

regions of the images have been corrupted by the noise.

Figure 13. Top: Noisy edge finder output for two images used in edge finder
testing. These images reflect the same scene, but with different samplings of
random noise. Bottom: the match between the two images before (left) and

after (right)adjustment . Matching cells are shown in white and non-matching
cells in black.

Cells that match after adjustment are further classified into those whose label
was changed during adjustment and those whose label was not altered. This is
done by comparing the adjusted image to the original image from which it was
derived. This information is used in the analysis phase to determine the amount
of boundary motion. Thus, the output of adjustment is a three-way classification

of cells into matching, adjusted, and non-matching. I refer to this as the raw
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match map.

The adjustment process described above does not treat the two images sym-
metrically. When the images contain matching boundaries, the two outputs from
the two directions differ primarily in that the final boundaries lie to opposite
sides of the adjustment regions. However, if a boundary in one image does not
correspond to any boundary in the other image, the two outputs differ more sub-
stantially. Consider two images, one blank and the other containing a dot, as in
Figure 14. When the image containing the dot is adjusted, the mismatch can be
reduced to a single point. When the other image is adjusted, however, the mis-
match covers the full area of the dot, because no adjustment is possible. In order
to handle such cases properly, the matcher does adjustment in both directions,
in parallel. The two raw match maps are then reconciled by re-classifying a cell
as non-matching in one image if it is non-matching in the other. In cases such
as the missing dot, this combined match map contains a non-matching region

covering the entire area of the dot.
4. Computing match strength

As we saw in Section 3, the adjustment phase produces the raw match map,
indicating which cells match after adjustment and which cells had their labels
changed during adjustment. The second phase of matching assigns strengths to
the match at each cell. We see in this section that these strengths can be used to
remove those matches that cannot be distinguished from ‘random noise, yielding
a more meaningful clean match map. Section 5 then discusses how the analysis
algorithms extract information about boundary motion from the clean match

map.

Consider the image match shown in Figure 13. As we saw in Chapter 3, the
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Figure 14. If there is a dot in one image and nothing in the other (top), then a
mismatch the size of the dot is generated in one direction of match and only a
single point mismatch is generated in the other direction (bottom).

size of a connected match area is a good indication of how good the match is. In
particular, regions where two different random noise patterns are matched have
only very small connected match regions. This difference in connectivity is used
to calculate matching strength. For edge finder testing, matching strength is
used only for pruning responses due to noise. For other applications, such as the
stereo analysis algorithm described in Chapter 6, these strengths are also used

to choose among competing matches.

Matching strength is computed using the star-convex sum operation described
in Chapter 2. Recall that this operation builds the largest neighborhood of a cell
z, up to some maximum radius r, in which every cell can be joined to z by a
connected, straight path consisting entirely of cells in the neighborhood. Since
the paths must be connected, star-convex neighborhoods cannot cross bound-
aries. In the case of the matching strength computation, all non-matching cells

are interpreted as boundaries. Thus, the star-convex neighborhoods are required
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to contain only cells marked as matching.

The star-convex sum operation implemented for the edge finder uses a maxi-
mum radius of 3 cells. For computing matching strength, a larger support neigh-
borhood is desirable. For this implementation, I have cascaded two iterations of
star-convex sum using radius 3 cells. Another option would have been to build
another version of star-convex sum using a wider radius.® In the input to the
first layer of star-convex sum, all matching cells are given the value 1. The final

output values are divided by 10, yielding strengths in the range [0, 240].

Star-convexity was used, rather than connectedness, for two reasons. First,
it can be computed more efficiently, because it requires searching only straight
paths, rather than all paths, out from the cell of interest. Secondly, it reduces
the amount of “leaking” through small gaps in the boundaries. Finally, because
the shape of the neighborhoods adapts to the boundaries present, cells near the
edges of match regions and in thin match regions can gather as much support as

possible without contamination from the nearby non-matching regions.

Once matching strengths have been computed, the algorithm removes re-
sponses indistinguishable from noise. This is done using the same noise sup-
pression algorithm built for the edge finder, except that no gap filling is done.®
Specifically, a (third) iteration of star-convex sum is done. If the result of this
sum falls below a set threshold (currently 3000), the cell is considered to be noise
and is re-classified as non-matching. This is repeated twice, as in the edge finder.
Figure 15 shows the over-threshold matching strengths and the clean match map

computed for the image match from Figure 13. In Figure 13, many cells in the

5 This is easy in theory, but difficult in practice, because the star-convex sum
operation is hand-coded, for efficiency.

6 In retrospect, I think that it was probably a bad decision not to use gap filling
after noise suppression, to eliminate tiny topological flaws.
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noisy regions were classified as matching. As you can see, in the clean match

map, these regions are entirely classified as non-matching.

Figure 15. Left: The matching strength computed for the match in Figure 13.
Right: The clean match map obtained by pruning matches with low strength.

The same matching procedure can also be used for other matching tasks. For
example, Figure 16 shows a clean match map for two alignments of a stereo pair.
In stereo analysis, the two images must be matched at a range of alignments
and the best matches chosen over all alignments. Chapter 6 describes in detail
the control structure needed to handle this. As we see in Chapter 6, the same
control structure used for stereo matching may also be useful in motion analysis,

because the two problems are very similar.

Figure 17 shows a match of a textured pattern against itself. At the align-
ments at or near the period of the texture, many cells match in the clean match
map. At other alignments, few cells are identified as matching. As in stereo
analysis, additional machinery would be required to extract an estimé.te of the
period for each cell from such a sequence of matches. This is a topic for future

research.

Finally, Figure 18 shows the results of matching outputs from different scales

of the edge finder. At each scale, the program has identified those cells that rep-
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Figure 16. Top: Edge finder output for two images in a stereo pair. Bottom:
matching them at an alignment appropriate for the man’s shirt and nearly ap-
propriate for the rest of the man. From left to right: the match before adjustment,
the raw match map (after adjustment), and the clean match map. In all cases,
matching cells are shown in white.

il

i

(9,0)

Figure 17. A match of a textured pattern against itself at a range of displace-
ments, moving the image horizontally against itself. Top to bottom: image,
match before adjustment, raw match map (after adjustment), and clean match
map. In all cases, matching cells are shown in white.

resent edge information that is topologically different from that at the next finer
scale. As you can see, the second finest scale shows much the same regions as

the finest scale, but in less accurate form, but the third scale shows a totally dis-
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tinct set of edges. The matcher correctly identifies the third scale as representing

primarily new information and the second scale as largely redundant.

Figure 18. A match between edge finder outputs at different scales. Each row
shows the match between consecutive scales of representation. Left to right:
fine-scale output, coarse-scale output (expanded to the same size as the fine-
scale output, and clean match map.

5. Measuring boundary motion

The final stage of analysis in the matcher computes descriptions of how bound-
aries were moved during adjustment. These descriptions include both estimates
of the overall motion of patches of the image and also estimates of the local
fluctuation in boundary locations. In this section, I describe how both types of

measurements are computed, using the clean match map.

How boundary motions should be described depends on the application. In

the edge finder evaluations presented in Chapter 9, there is no overall motion
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of the images relative to one another. Thus, boundary adjustment only cor-
rects for fluctuations in boundary locations caused by camera noise (and, in one
test, changes in digitization). In stereo matching, on the other hand, one of the
images may be shifted relative to the other. As we will see in Chapter 6, the
amount and direction of this motion must be assessed. However, local fluctua-
tions in boundary locations are not interesting to this application and should be

suppressed.

The amount of fluctuation in boundary locations, required by edge finder
testing, can be assessed very easily. It is measured by counting the number of
cells marked in the clean match map as matching and as having had their labels
altered during adjustment. This figure depends both on the amount of motion
of each boundary and the total amount of boundaries in the image. Therefore,
the numbers reported in Chapter 9 are normalized by the number of edge cells

in the image (divided by two).”

The more difficult task is to determine overall motion of a patch of image from
the clean match map. One difference between overall motion and local fluctuation
is that overall motion is a signed (vector) quantity and total fluctuation is an
unsigned (vector magnitude) quantity. Thus, calculating overall motion requires

determining the direction of motion at each cell, in addition to its magnitude.

As we saw in Chapter 3, adjustment regions in the clean match map have a
special form. Each boundary that has been moved has a connected adjustment
region to one side of it, as shown in Figure 19. This is a consequence of the method
of applying adjustment operations that was described in Section 3. When motion
is perpendicular to the boundary, the width of the adjustment region indicates

the amount of motion the boundary has undergone. The direction of the motion

" See Chapter 9 for more detailed discussion of this measure.
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is indicated by the side of the boundary to which the adjustment region lies. If

the boundary may have moved in other directions, the parsing problem is more

complicated.

d S £
—
amount of movement

Figure 19. Adjustment regions lie to one side of boundaries and indicate how
much the boundary has been moved.

The current implementation makes the assumption that the horizontal and
vertical components of motion can be measured separately. That is, the width
of the adjustment region is computed for a horizontal and a vertical search path,
starting from each edge cell, yielding measurements of the two components of
motion at that cell. This is a dubious heuristic for computing the motion, justified
primarily by the observation that the errors introduced in this method tend to
cancel out in later smoothing. Since this computation was not central to this
thesis, more sophisticated methods such as those described by Hildreth (1984)

were not explored.

Figure 20 shows a picture of the computation for horizontal motion, starting
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at some edge cell z. The computation is done in two halves, one of which moves
left and one of which moves right. The figure shows the computation for the
leftward pass. The algorithm first verifies that = is an edge cell and that there
is a boundary between z and the cell to its right. It then proceeds leftward,
counting cells until it reaches either a boundary or a cell that is not marked as
having been adjusted. The cell z is included in this count. The count reflects
the amount of leftward motion of the boundary to the right of z. The computed
horizontal motion at z is the sum of the leftward and rightward computations,

though it is rare for more than one of them to return a non-zero result.

a a
aﬁa
11 2
a a
a a

Figure 20. The amount of motion in a direction is computed by measuring the
length of a straight path through the adjustment region (cells marked a). Each
path starts at a edge cell and stops when a non-adjusted cell is encountered.

Once the two components of motion have been estimated for each edge cell,
these measurements are interpolated to non-edge cells and smoothed to cancel
out effects of local fluctuations in boundéry locations (e.g. due to camera noise).
Both interpolation and smoothing are simple applications of star-convex sum. To
interpolate motion values, all edge cells are marked with their computed motion
and other cells are given the value 0. Star-convex sum is then run on the result.
For each cell, this sum must be normalized by the total number of edge cells

in the star-convex neighborhood, which can also be computed using star-convex
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sum. If there are no edge cells in the neighborhood, some default value must
be provided. For the current stereo system, this value is 0.® Each boundary
is flanked by two sets of edge cells, but only the edge cells in the adjustment
region return non-zero motion measurements. Thus, the average motion over
all edge cells in some region must be multiplied by 2. Smoothing is done in
a similar manner, using two applications of star-convex sum to average motion

measurements.

It is important to note that the spreading and smoothing steps in this motion
calculation are confined to cells marked as matching in the clean match map.
That is, the non-matching cells are considered boundaries that the star-convex
sum operation cannot cross. This prevents values in matched regions from being
corrupted by values from non-matched regions. In stereo and motion analysis,
this reduces smoothing across depth discontinuities, because typically only one

of the surfaces meeting at a discontinuity matches at any given alignment.

In some contexts, such as stereo, humans can judge relative motion of two
images to extremely high precision. There are several ways in which a matcher
of this sort could achieve sub-pixel accuracy in boundary motion measurements.
First, the measurement of motion at edge cells could use sub-pixel edge locations,
if they are available from the edge finder. All that is required is to indicate, for
each cell, how much of the cell is dark and how much is light. The matching
algorithm would use the whole cell locations and proceed as described above.

However, the motion measurement would count these cells using the appropriate

8 By itself, this would cause stereo values to drift to zero in regions of uniform
color. However, as described in Chapter 6, the stereo matcher biases matching
strengths so as to prefer matches similar to those obtained at coarser scales.
This causes disparities computed in regions of uniform color to tend towards
the coarse scale disparities and the default value is only important at very
coarse scales.



174

fractions. This idea has not be incorporated into the current implementation.

Secondly, sub-pixel disparities could be computed due to the smoothing of
motion measurements, because errors due to quantization and noise in boundary
locations tend to cancel out. There is, of course, a tradeoff between the precision
of the calculated disparities and the precision with which changes in disparities
can be localized in space. A final possibility is that, if the same scene can be
viewed for an extended period of time, small eye movements (always happening
in human vision) would cause boundaries to move relative to the digitization. If
it is possible to match stereo outputs obtained from these different views, the
temporal averaging would increase the precision of discriminations. The current
implementation reports boundary motion to the nearest tenth of a cell,’ but I

do not have detailed data on errors in these measured disparities.
6. Other approaches to matching

The image matcher implemented for this thesis compares images on the basis
of edge finder output. Previous image matchers can be classified by the types
of features they match. There are four types of features commonly used: raw
intensity values, easily identified points, extended boundary segments, and edge
finder output. In this section I survey these four approaches to matching, concen-
trating on the first three types. In Section 7, I provide a more detailed discussion
of recent algorithms based on edge finder output. Barnard and Fischler (1982)

also provide a survey of some of the earlier techniques used in stereo matching.

The features used in matching have a large influence on the types of matching
strategies employed. For example, algorithms using features such as boundary

locations return disparity values at a large number of points. However, the large

% All calculations are done using integer arithmetic and this is implemented using
an integer multiplier.
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number of features to be considered forces them to use relatively simple matching
strategies. Algorithms using easily identified points or extended boundary seg-
ments can use more elaborate strategies for disambiguating candidate matches,
because they have fewer features to consider per image. However, they also

return disparity values at only a sparse set of points.

A number of previous algorithms (e.g. Quam 1984, Mori, Kidode, and Asada
1973, Levine, O’Handley, and Yagi 1973, and Barnard 1986) have matched im-
ages directly, without going through an edge finder. The basic idea behind these
intensity-based stereo systems is to match cells with similar intensities. Sim-
ple correlation of intensities over neighborhoods has been used, e.g. by Gillett
(1988). Baker (1982; Baker and Binford 1981) uses similarity of intensity values
in interpolating disparities between matched boundaries. A typical problem with
intensity correlation is that intensity values may differ in the two views, due to
the change in viewing angle or varying adjustments of the cameras. In order to
cope with this problem, Gennert (1986) adds a smoothly varying multiplier term,
which is reconstructed along with the match. Scott’s (1986) intensity-based mo-
tion algorithm calculates the reliability of each component of the motion estimate
at each point and uses these reliabilities to influence reconstruction of the motion
field. Another variant on this theme is due to Kass (1983a,b), who suggests using
smoothed derivatives of the image intensities, at a range of scales, as matching

features.

Intensity-based matching has slightly more information at its disposal than
boundary-based matching, because edge finders discard information about
smooth slopes in intensity. Also, although contrast magnitude information is
available from most edge finders, it is often ignored in boundary-based match-

ing. A good way to get a feeling for what information is being lost is to look at
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the examples of reconstruction from sign bits presented in Chapter 4, Section 8.
Because edge finder output is available at multiple scales, some types of inten-
sity differences and some types of intensity slopes are preserved even in sign-bit
representations. It is unclear whether the additional information offered by full
grey-scale information is a help or a hindrance in stereo matching. Random-
dot stereograms can be fused even when there are large differences in contrast,
however Bilthoff and Mallot (1987) present psychophysical data suggesting that

intensity values can play a role in matching.

There are a few examples of intensity-based algorithms that use frequency-
space techniques rather than direct spatial analysis. Several researchers (Bajcsy
1972, 1973, Matsuyama, Miura, Nagao 1983) have used Fourier transform tech-
niques to analyze texture periodicity. Yeshurun and Schwartz (1987) propose an
analytic algorithm for stereo matching of grey-scale images. This technique jux-
taposes two patches, one from each stereo image, so as to create one image. The
algorithm then looks for stereo disparity using a technique, known as cepstral
filtering, originally developed for detecting echos in auditory signals. Both tech-
niques transform spatial periodicity into features in the frequency domain and
then transform the results back into the spatial domain. It is unclear whether

this is an improvement over direct spatial matching.

There are also a few techniques that re-cast the matching problem as one
of matching image sequences or textured images against templates describing
idealized features. We have seen this approach used in edge finder design. It
has not been used in stereo analysis, but it has been used in texture and motion
analysis. For example, Bolles, Baker, and Marimont (1987) analyze motion by
detecting the 3D surfaces traced out by image boundaries across time. Heeger

(1987) uses spatio-temporal Gabor filters that are tuned to an ideal edge moving
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through time. Bovik, Clark, and Geisler (1987) use spatial Gabor filters in a
similar way to detect a subclass of periodic textures.!? Zucker (1985) and Kass

and Witkin (1985, 1987) use similar techniques to detect texture orientation.

The second basic type of matching algorithm looks for features in the image
that can be easily identified in the other image. These features might include
simple configurations such as corners, spots, or more complex patterns of local
texture. The features can be identified either in the grey-scale image directly or
in the output of an edge finder. Researchers in stereo and motion analysis who
have used this type of approach include Barnard and Thompson (1980), Law-
ton (1983), Moravec (1977, 1981), Nevatia (1976), Hannah (1980) and Gennery
(1977).11 There are two difficulties with this approach. Firgt, it has proved dif-
ficult to define features that can be reliably detected. Secondly, under the best
of conditions, relatively few locations in the images are matched. This results in

a very sparse disparity field that must be filled in by unspecified means.

The third group of stereo algorithms uses edge finder output, but the bound-
aries are parsed into extended linear segments and these segments are then
matched. This approach is used by Medioni and Nevatia (1985) and Ayache
and Faverjon (1987). The linear segments matched by these systems are rela-
tively sparse, though not as sparse as easily identified features. However, the
sparseness allows more sophisticated matching strategies to be used than is fea-
sible for matchers using raw edge finder output. Furthermore, this technique
imposes a limited type of figural continuity. However, because boundaries must
be described using sets of line segments, curved boundaries are poorly repre-

sented. Boyer and Kak (1988) carry this approach one step further and ‘match

10They can only detect textures that are not only periodic, but where the texture
matches itself on the half-period, but with opposite phase.

1 These researchers all treat motion and stereo processing as instances of the
same problem.
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extremely sparse high-level descriptions of regions in the two images.

Finally, there are quite a variety of algorithms that match images on the
basis of raw edge finder output. These algorithms make use of the location
and contrast sign of all points on boundaries, and sometimes also orientation
and contrast magnitude information. They produce relatively dense disparity
measurements, except in extended regions of uniform intensity. My matcher is
most closely related to this class of algorithms and a detailed comparison of this

class of algorithms is done in the Section 7.
7. Other matchers using edge finder output

Recent algorithms from a number of domains match édge finder outputs.
Applications for this type of matching include stereo matching, motion analy-
sis, analysis of texture periodicity and orientation, evaluating edge finders, and
matching edge finder outputs from different scales. The techniques used in dif-
ferent domains are very similar. By definition, boundary locations are used in all
such matchers. Shape information, such as boundary orientation, is occasionally
used, but connectivity or topological information is rarely exploited. The con-
trast sign across boundaries, i.e. which side of the boundary has darker intensity
values, is widely considered a reliable feature that must be matched. Although
contrast amplitude is occasionally used, it is unclear that it is reliable. In this

section, I review previous proposals for matching edge finder output.

The most heavily studied edge finder matching problem is stereo matching.
Boundary-based stereo matchers have been proposed by Mayhew and Frisby
(1981), Pollard, Mayhew, and Frisby (1985), Grimson (1981a,b, 1985), Marr
and Poggio (1976, 1979), Hoff and Ahuja (1987), Prazdny (1985), Ohta and
Kanade (1983, 1985). Drumbheller and Poggio (1986), Baker (1982) and Baker
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and Binford (1981). Nishihara’s (1984) algorithm matches dark/light labels,
without explicit boundary information, but is still similar. Medioni and Nevatia
(1985) and Ayache and Faverjon (1987) parse boundaries into extended linear

segments and match these segments between two stereo images.

Boundary-based matching approaches to motion analysis seem to be less
common. The only one that seems parallel to the stereo matching examples
is described by Little, Bulthoff, and Poggio (1987). Spacek (1985) also matches
contours, but constrains the matching process by identifying and matching high
curvature points along boundaries. Short-range motion algorithms, such as the
ones described by Hildreth (1984) and Buxton and Buxton (1984), are interesting
from the point of view of estimating the direction of boundary motion. However,
they need not solve the matching problem, because they deal with only small

boundary motions.

Boundary-based matching in other domains has been explored more spo-
radically. Although the idea of comparing edge finder output across scales has
been around since at least Marr and Hildreth (1980), no researcher has properly
addressed the question of how it should be done. Since Witkin’s (1983) scale-
space proposal, it has become very popular to track features across scales (e.g.
Bergholm 1987, Ponce and Brady 1986, Asada and Brady 1984, Canny 1983,
1986). However, as Witkin and others (particularly Canny) have noted, features
can change drastically between scales. Thus, it is necessary to distinguish which
coarse-scale features are blurred versions of finer-scale features and which coarse-
scale features represent new information. Witkin’s original proposal for matching
features assumes certain constraints on the transition between representations at
different scales. For example, he assumes that new features cannot appear out of

nowhere at coarser scales. While this is true for the 1D features he considers, it
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is not true for real image features.!? So far, Canny’s feature synthesis proposal
g p

still seems to be the only algorithm that matches real image features.

Edge finder evaluation algorithms are all but non-existent. Recent researchers
who have attempted quantitative evaluations include Sher (1987a,b), Pratt
(1978), Nalwa and Binford (1986), and Haralick (1982). All of these researchers
state that they want to separate boundary motion from real missing or extrane-
ous boundaries. All of the evaluations, however, are done for simple, synthetic
images and the matching techniques described seem inadequate for handling com-
plex natural images. For example, Nalwa and Binford, as well as Sher, assume
that boundaries move less than a cell from the correct location. This is not

adequate for handling natural images.

Boundary-based analysis of texture periodicity and orientation is roughly in
the same state. Vilnrotter (1981; also Vilnrotter, Navatia, and Price 1986) de-
scribes the only boundary-based periodicity algorithm that I know of. Although
it is not expressed this way, her algorithm is equivalent to matching the im-
age against itself, as I did in the texture example in Section 4. As far as I
know, matching techniques have never been used to analyze texture orientation,
although from a mathematical point of view it is similar to periodicity. For exam-
ple, if the example from Section 4 is matched against itself at displacements along
its dominant orientation, the match pattern is as shown in Figure 21. Whereas
a periodic pattern matches against itself only at discrete locations, an oriented
pattern matches against itself for an extended connected set of locations, along

some straight path.

The basic information available in boundary-based matching is the set of

boundary locations. Edge finders may be able to provide these locations to sub-

21n particular, adding noise suppression to a feature detection algorithm, as is
commonly done in edge finders, allows new features to emerge at coarse scales.
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Figure 21. Matching an oriented pattern against itself at a range of displace-
ments. Top to bottom: image, match before adjustment, raw match map (after
adjustment), and clean match map. In this series, the image was moved down
and to the right, in a direction approximating the orientation of the stripes.
Notice that most of the image matches at all displacements.

pixel resolution and this information could be used to compute disparities to
higher precision. However, sub-pixel edge finders are still at the experimental
stage and are rarely incorporated into matching algorithms. In stereo analysis,
if vertical disparities are assumed not to exist, the matching problem can be
made one-dimensional. In this case, representing sub-pixel boundary locations
is not technically difficult. If vertical displacements are possible, however, direct
representation of sub-pixel information requires expanding the size of the image.
Depending on the details of the matching algorithm, it may be possible to use
partial representations of the information, such as the cell fraction descriptions
suggested in Section 5. Note also that for inter-scale matching, and perhaps for

texture analysis, sub-pixel boundary locations are not useful.

Many boundary-based matchers use boundary orientation information in ad-
dition to boundary locations. Orientations provide information about the shape

of the boundary near the cell of interest or, in some cases (e.g. the edge finder
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described in Canny 1983, 1986) limited sub-pixel information. In my system,
this information is made largely redundant by the use of figural continuity infor-
mation. It is unclear to me whether orientation information is reliable for most
matching tasks. Typically, a wide allowance (£30 degrees in Grimson’s algo-
rithm) is made for errors in orientation. When a boundary has fine-scale shape,
such as serrations, boundary orientations may be extremely sensitive to changes
in scale (in stereo, motion, or inter-scale matching) or scene irregularities (in

texture analysis).

My matcher makes extensive use of the image topology in deciding whether
two sections of image can be matched. This information has only rarely been
exploited by previous matching algorithms and then only in the weaker form
of boundary connectedness. The only proposal using full homeomorphism of
regions is Chen (1985). He proposes using topological structure to explain the
results of some psychophysical experiments on motion perception. However, his
experiments are confined to simple, isolated shapes. It is unclear how to translate

his proposal into an implementable algorithm.

Use of boundary connectivity information in matching has been proposed by
Mayhew and Frisby (1980, 1981), Baker (1982), Baker and Binford (1981), Ohta
and Kanade (1983,1985), Mohan, Medioni, and Nevatia (1987). The first three
proposals are confined to requirements that adjacent boundary cells on differ-
ent horizontal lines be matched to adjacent boundary cells in the other image.
The proposal of Mohan, Medioni, and Nevatia (1987) seems confined to individ-
ual straight boundary segments. In addition, stereo matching algorithms that
match extended boundary segments (Ayache and Faverjon 1987, Medioni and
Nevatia 1985) use boundary connectedness implicitly, but they match only rela-

tively sparse segments and handle non-straight boundaries poorly. The proposal
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closest to the one described in this thesis is due to Grimson (1985). He extends
Mayhew and Frisby’s idea to a requirement that every match belong to a con-
nected boundary of sufficient length (perhaps with one or two gaps) all of whose

points match at a similar disparity.

A major weakness in all of these formulations is the restriction to a single
connected boundary. Consider an image whose texture consists of many small
dots. If the dots are too small, no single boundary will meet minimum length
requirements. If the dots are larger, all dot-to-dot matches will be accepted.
In an areal formulation, such as mine, a potential boundary match can collect
support from other nearby boundaries, even if they are not connected to it (as in
dot-like textures). Furthermore, my matcher can split boundaries!® when they
cross depth boundaries. When objects are covered with fine texture, as in some
of the stereo pairs presented in Chapter 10, intensity boundaries often run across

depth boundaries.

Boundary-based matchers typically also use information about the sign of the
contrast across each boundary, i.e. an indication of which side of each boundary
has higher intensity values. This information can be expressed in many forms. In
Grimson’s (1981a,b, 1985) algorithms, it is expressed as a sign in the boundary
description, a technique that is only stable because boundaries near horizontal
are not used. Alternatively, boundary orientation and contrast sign may be
combined into a signed orientation with a 360 degree range. In my matcher and
in Nishihara’s (1984), contrast sign is encoded using cell labelling. Contrast sign
seems to be reliably preserved between images in most matching applications.
Occasional exceptions occur, e.g. at occlusion boundaries in stereo analysis, but

they seem to be rare in practice. In one form or another, almost all image

13Even single dots in random-dot stereograms! See Chapter 10.
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matching algorithms require that contrast sign be preserved.

Contrast sign information seems to be very important in human visual per-
ception. For example, random-dot stereograms with reversed contrast cannot
be fused. In higher-level processing, Cavanagh (1987) shows that shadows such
as those on faces are only parsed correctly if they have lower intensity than the
surrounding regions. Pearson and Robinson’s (1985) work on low bit-rate image
coding of sign language also suggests that contrast sign is essential to produc-
ing output acceptable to naive observers. The effect of sign information can be
appreciated by comparing edge and cartoon output from my edge finder, shown
in Chapters 4 and Chapter 9. While untextured objects with simple shapes can
be recognized from unsigned boundary locations, it is difficult to parse complex
scenes, textured regions, or objects with complex shape without sign informa-
tion. Human faces, in particular, look extremely poor when represented with

unsigned boundary maps.

Contrast magnitude, on the other hand, is typically ignored in stereo match-
ing other visual analysis tasks. Although most edge finders can measure the
magnitude of the intensity change across boundaries and humans can clearly es-
timate this magnitude, only a few matching algorithms use this information to
evaluate boundary matches. Researchers using this information include Canny
(1983, 1986) (inter-scale matching) and Pollard, Mayhew, and Frisby (1985)
(stereo matching). What evidence is available suggests that this information is
less important to human perception than contrast sign information. For exam-
ple, random-dot stereograms with different contrast magnitudes, but the same
sign, can be fused without problems. Furthermore, objects and scenes can easily

be recognized from black and white versions of images (such as those produced

by my edge finder).
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Algorithms matching images on the basis of edge finder output invariably
place boundaries where there are step-edge-like responses, e.g. at peak responses
of a first difference operator or zero-crossing of second difference operator. How-
ever, other types of edge information can be detected and there is some evidence
that they should be used in matching. For example, Mayhew and Frisby (1981)
present psychophysical data suggesting that humans must be using information
in addition to step-edge boundaries when matching stereo images. They suggest
that this additional information may consist of locations of peaks and troughs
in the second differences. Watt and Morgan (1983) make a similar suggestion,

based on psychophysical experiments on human perception of edge blur.

The Phantom edge finder detects both zero-crossing and roof edge responses,
but my matcher uses only zero-crossing boundaries are used in my matcher im-
plementation. There are at least two ways that roof edge information could be
incorporated. The stereo matcher could be extended to use roof edge informa-
tion directly. Alternatively, the matching program could use locations of all label
transitions, not just zero-crossings, as boundaries. This would allow responses of
both types to be used together in matching. Classification of responses into roof
edges vs. zero-crossings would then be postponed until after stereo fusion. This
solution might be able to account for Mayhew and Frisby’s (1981) data, though

additional experimentation would be required to test this.

8. Conclusions

This chapter has shown how to build a matcher that preserves topological
structure. The matcher is interesting for several reasons. It illustrates sev-
eral ways in which topological structure can be useful in solving an important

practical problem. It also exercises the mathematical machinery developed in
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Chapter 11 more thoroughly than the other applications presented in the thesis.
Finally, it is interesting as a possible solution to problems that are both central
to visual analysis and difficult for existing computer algorithms to handle. The
acid test of its performance comes in Chapters 6, 9, and 10, when the matcher is
applied to analysis of stereo images and to edge finder evaluation. I summarize

the other points in this section.

The matching algorithm developed in this chapter directly tests one cen-
tral hypothesis of this thesis, that topological structure is important in solving
practical reasoning problems. Equivalence of topological structure is the main
constraint on the matching process. If the only requirements were that labels be
preserved and the correspondence not deviate much from the original alignment,
considerable scrambling of images would be possible. Using this constraint, the
algorithm makes a sharp and intuitively reasonable distinction between matches
and non-matches. This is illustrated by the results presented in this chapter and
later chapters. In particular, the results of edge finder testing presented in Chap-
ter 9 show convincingly that the algorithm consistently rejects matches between
two random noise patterns, but not between two copies of the same signal, even

when slightly corrupted by noise.

The analysis phase of the stereo computation also contains several algorithms
that use connectivity. Two of these algorithms measure the size of a connected
neighborhood. The matching strength computation measures the area of star-
convex match neighborhoods, whereas measurement of boundary motion mea-
sures the length of a connected path through an adjustment region. Further-
more, motion measurements are interpolated and smoothed by algorithms that
are constrained not to cross boundaries. Thus, in addition to the use of the

full topological structure in the adjustment phase, the matcher also offers more
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examples of uses of connectivity similar to those in the edge finder described in

Chapter 4.

The development of boundary adjustment operations, unlike most other ap-
plications presented in this thesis, fully exercises the mathematical machinery
developed in Chapter 11. Although the idea of using boundary topqlogy has
been proposed before (particularly in stereo matching), previous researchers have
not been able to provide a sufficiently clear or powerful formulation to make full
use of the idea. To attack matching in the way that I did requires a large in-
vestment in mathematical machinery and development of techniques for building
algorithms. This investment would never have made sense without the additional

context of problems from other domains requiring similar machinery.
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Chapter 6: Stereo analysis

1. Introduction

As we saw in Chapter 3, the task in stereo matching is to establish a corre-
spondence between two images of the same scene taken from slightly different
viewpoints. In this chapter, I present a new stereo matching algorithm based on
the image matcher discussed in Chapter 5. We have seen how this matcher can
compare two images at one fixed alignment. This chapter describes the control

structure needed to search a series of alignments to locate good matches.

Stereo matching is a good domain for testing the image matcher, because it is
a well-studied problem and the correct answer to each matching task is relatively
clear. Some evaluation problems still arise. For example, what people see in a
synthetic stereogram rarely corresponds exactly to the input depth specifications.
However, since stereograms produce vivid subjective perceptions, the desired out-
put is much clearer to human observers than in tasks such as inter-scale matching.
Furthermore, substantial psychophysical data about human stereo perception is

available. This data is useful in making design decisions for computer algorithms.

This chapter begins with an overview of the control structure used in the
stereo algorithm. This control structure consists of two parts. First, camera
positions are adjusted and the algorithm chooses the set of alignments at which
to search for matches. This is described in Section 3 and compared to previous

algorithms in Section 4. After matching is done at each alignment, the results
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from different alignments must be combined. This process is described in Sec-
tion 5. Sections 6 and 7 discuss types of matching constraints used in previous
stereo algorithms and analyze how they are related to the constraints used in my

implementation.

As I mentioned in Chapter 3, the new stereo matcher offers two advantages
over previous algorithms. First, the topological continuity constraint makes its
match evaluations more robust. This allows it to disambiguate larger numbers of
candidate matches without becoming confused. Secondly, the matcher requires
support neighborhoods for strength and disparity to be connected sets of cells
at a similar disparity. This prevents results for cells near depth boundaries from
being contaminated by values on the other side of the boundary. Chapter 10
presents detailed results of the stereo algorithm’s performance on both natural
and synthetic images. It also shows an example of how an adaptation of the

algorithm might be used for motion analysis.
2. Overall control structure

This section provides an outline of the stereo algorithm as a whole and a brief
description of its main components. I describe both the control structure of the
implemented off-line stereo matcher and also a control structure that would be
more plausible for real-time or biological processing. I also sketch the form of the
input and output to each stage of the stereo algorithm. Later chapters discuss

each step in more detail.

The input to the stereo analysis is the result of Phantom edge finder applied
to both images in the stereo pair. Two points about this edge finder output are
relevant to stereo matching. First, in these outputs, the effects of camera noise

have been suppressed. In a few previous stereo algorithms, described by Grimson
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(1981a,b, 1985) and Gillett (1988), noise is not adequately suppressed in regions
of uniform intensity. This makes it difficult to distinguish regions with rivalrous

fine texture from regions with matching uniform intensities.

Secondly, many previous algorithms eliminate boundaries that are close to
horizontal before doing matching. The reason for this decision is that such bound-
aries cannot contribute useful information in assessing disparity. This is true for
horizontal disparity, but not for vertical disparity. In fact, these boundaries are
the most useful type for constraining vertical disparity. Thus, when both types
of disparity may be present, it is essential to use boundaries of all orientations,

as the implementation described in this thesis does.

The stereo matcher uses a coarse-to-fine control structure. As we saw in
Chapter 4, the edge finder produces edge maps at a range of scales Stereo analysis
at each scale is given the output of the edge finder at that scale, together with
the disparity and match maps computed at the next coarser scale. In order to
avoid dependence on choice of the coarsest scale, all scales available from the
edge finder were used. Since the coarsest scale is smaller than 10 cells in one or
both dimensions, it typically provides no successful matches, but little time is

wasted in analyzing it.

There are three steps of processing at each scale:

— adjusting the relative positions of the images and choosing a set of alignments,
— matching images at each alignment, and

— choosing the best disparities over all alignments.
The details of the second step were discussed in Chapter 5. This chapter concen-

trates on the first and third steps. A diagram of this control structure is shown

in Figure 1.
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(1) adjust relative positions of images
:é (2) choose set of alignments
coarse-scale disparities \Ll/

_-—%’; (3) match images at each alignment »
(4) choose best disparities over all alignmeénts

fine-scale edge finder results \ll/

fine-scale disparities

Figure 1. The control structure for the implemented stereo algorithm.

The implemented control structure was designed to operate efficiently for
off-line processing of stereo images. In real-time stereo matching, the control
structure shown in Figure 2 would be more appropriate and a better match to
what is known about human stereo processing. These two control structures
are able to fuse slightly different types of stereo pairs. Although the differences
may be significant in detailed comparisons to human performance, they are small

enough not to be of interest to my main goal, testing the matcher.

The on-line control structure has the disadvantage that it re-matches each
alignment many times if eye position is varied slowly and Panum’s areal is large.

Since the current implementation runs relatively slowly, this would be a serious

! The range of disparities that can be fused without eye movement.



192

problem. Furthermore, implementing the on-line control structure elegantly re-
quires a good model of deciding how to explore the image via eye movements

(both foveation and vergence). These issues are beyond the scope of this thesis.

(1) decide which region of image to look at
$ (2) estimate its disparity
(3) adjust position of eyes
current disparity map

(4) match images at each of a fixed range of alignments
(5) choose best disparities over all alignments
(6) merge new disparities with current disparity map

edge finder output \L)/

new current disparity map

Figure 2. A control structure for on-line stereo processing.

The first step in analyzing a given scale is to adjust the relative positions
of the images. The goal of position adjustment is to bring the two images as
close as possible to exact vertical alignment. Three adjustment parameters are
computed from the coarse-scale disparities: a vertical translation, a horizontal
translation, and a rotation about the image centers. After these calculations
are done, the edge finder output for the two irﬁages is shifted (both horizontally

and vertically) and rotated. Although this is done in software, the intent is to
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simulate the effects of corrective eye movements.

All alignments explored by this stereo matcher are translations.? Choice of
alignments is based on the assumption that the correct fine-scale disparity for
each patch of surface is similar to the disparity computed at the coarser scale. |
Thus, the algorithm searches only a limited range of disparities about each coarse-
scale value. The search area was chosen to reflect roughly human capabilities,
as discussed in Sections 3 and 4, and is somewhat larger than that considered
by most stereo implementations. In particular, the new matcher can hypothesize

substantial vertical disparities, which most previous algorithms cannot do.

Once the set of alignments has been chosen, the stereo algorithm then matches
the two edge finder outputs at each alignment. As we saw in Chapter 5, the
matching algorithm produces three outputs. First, it specifies which cells of
the image match at this alignment. For each matching cell, it also supplies a
number representing the strength of the match about that cell. Finally, for each
matching cell, it estimates the amount of boundary motion, both vertically and

horizontally, at this alignment.

The final stage of matching combines the results from different alignments
into one match map and one disparity map. At each cell, the disparity value
with the highest strength is chosen. This decision is biased in favor of disparities
similar to those computed at the next coarser scale. This allows the algorithm to
take advantage of the wider context available at coarser scales in deciding among
multiple possibilities. This is particularly important in regions of uniform color
where many alignments may all match perfectly. The resulting map is then

processed to remove outliers and fill small gaps using a modification of the noise

% These alignments are all relative to the adjusted image positions. The combi-
nation of an alignment and the effects of image adjustment can also contain a
rotational component.
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suppression algorithm used in the edge finder.

3. Adjusting image position and choosing the set of alignments

The first step in stereo analysis at each scale is to adjust the position of the
two images so as to bring them into a vertical correspondence and then choose the
set of alignments to be explored at the current scale. The adjustment in position
is made on the basis of the vertical disparities computed at the next coarser scale.
The set of alignments chosen also depends on the coarse-scale results, but uses
both the horizontal and vertical components of disparity. This section describes
the details of both algorithms. In general outline, these algorithms are similar to
those used in previous stereo algorithms, particularly those of Grimson (1981a,b,

1985).

The software adjustment of image positions used in my implementation is
intended to minic the effects of adjusting camera positions in a real-time system.
For the images available at MIT, I have been able to use an extremely simple
model of distortions due to errors in camera position. This model assumes that
alignment errors can be expressed as a translation of one image relative to the
other, plus a rotation of one image (equivalently: both images) about the center
of the image. Since modelling camera geometry was not my main interest in
building this algorithm, I have not explored more sophisticated models of these

distortions.

I have also assumed that optical distortion is small enough to ignore. Since
my algorithm is tolerant of small errors in image alignment, this assumption is
satisfied for the images I have been using. Noticable optical distortion seems to be
significant primarily for systems using very wide-angle lenses. If my algorithm

were used in such a system, it would be necessary to estimate the distortion
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beforehand and correct the images so as to eliminate its effects.

At each scale, three adjustment parameters are estimated: mean horizontal
- disparity, mean vertical disparity, and average rotation about the image center.
This estimation is based on the disparity values at all cells that were successfully
matched at the next coarser scale. In order to eliminate estimates based on
excessively small numbers of cells, the current implementation requires that at
least 25% of the image be matched in order to compute a non-zero correction to
the image alignment. The coarse-scale disparities, on which estimation is based,
are stored internally to the nearest tenth of a cell, although I have not been able

to assess their precision in detail.

The two mean disparity parameters are simpiy the averages of each compo-
nent of disparity at all cells that matched successfully at the next coarser scale.
Rotation is estimated using only the vertical component of disparity, because
the vertical component of disparity depends only on the the relative positions of
the cameras,? whereas the horizontal component also depends on surface depth.
Rotation is estimated as the average, over all cells in the image, of

(V-MV)
Y
where V is the vertical component of disparity at the cell, MV is the mean
vertical disparity, and Y is the (signed) location of this cell relative to the image
center. This is a relatively unsophisticated method of estimation, but seems

adequate for the purposes of the current implementation.

Once mean disparities and rotation have been calculated, each image is ro-
tated and translated by half this amount, so that the two images are aligned

vertically. The effects of this translation and rotation are then subtracted from

3 To a first approximation. Although vertical parallax is possible, its effects will
be quite small for most standard stereo viewing conditions.
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the vertical and horizontal disparities inherited from the coarser scale, yielding
a set of disparities relative to the new image positions. It is these net disparities
that are used in the rest of the stereo computation. Although only vertical dis-
parities are used in estimating rotation, horizontal disparities are also corrected

for any effects of rotation.

Before calculating the set of alignments to be searched, the program imposes
bounds on the net vertical and horizontal disparities. Net vertical disparities are
due to four factors: vertical parallax, inaccuracies in the translation plus rotation
model, inaccuracies in the estimates of translation and rotation, and inaccuracies
in the coarse-scale disparities. All of these factors should produce only small net
disparities. Thus, the current implementation limits vertical disparities to +2
cells. That is, cells with net disparities beyond this limit are assigned a net
disparity of 2 or -2 cells, as appropriate. Since the vertical search radius (see
below) is +2 cells, the program can explore alignments that move the image at

most +4 cells vertically from the adjusted image position.

Net disparities in the horizontal direction reflect differences in surface depth
and can be quite large. These disparities are bounded primarily in order to limit
the running time of the program. The bound depends on the scale of calculation:
net disparities of £60 cells are allowed at the finest scale and bounds for coarser-
scales are adjusted proportionately. For example, the disparity bound at the
third finest scale would be £15 cells. Since the horizontal search radius (see
below) is +10 cells, the largest alignment that could be considered at the finest
scale is £70 cells. Remember that this is the maximum displacement from the
mean horizontal disparity. The maximum calculated disparity (mean plus net

disparity) could be much higher.

The bound on horizontal disparities was imposed as a placeholder, rather than
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as a final solution. When an image is complicated and contains wide ranges of
disparities, it would seem reasonable to employ more sophisticated search strate-
gies than searching every candidate presented by a coarser-scale match. These
considerations would be particularly important for eventual real-time systems
that must control not only stereo vergence but also which part of the scene is
covered by a high-resolution fovea. One possibility would be to stop search in
a given region when a good enough match has been found. This could be most
easily done within the real-time control structure sketched in Section 2, rather
than using the implemented control structure. A final answer to how stereo ex-
ploration is controlled may have to incorporate information about the reasoner’s

interests, which is beyond the scope of this thesis.

At each scale of analysis, certain cells are not assigned a net disparity, because
they did not match at the next coarser scale. At the coarsest scale of analysis,
this is true for all cells in the image. These cells are assigned a net disparity of
zero. This default value determines the set of alignments considered for these

points, as well as the bias used in the final selection of the best disparities.

The adjusted images and the net disparities form the input to the later stages
of stereo analysis at this scale. This later processing also requires a set of align-
ments to explore. The alignments used in the current implementation translate
the image by an integral number of pixels. The range of alignments considered
is computed by taking the range of disparities suggested by the next coarser
scale and extending this by a search radius of £10 cells horizontally and £2 cells

vertically.

As an optimization in the current implementation, not all cells in the image
are considered for matching at each disparity. A cell is only considered for match-

ing at a given alignment if the net disparity computed from the next coarser scale
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differs from that alignment by at most +10 cells horizontally and +2 cells ver-
tically. Because there may be errors in the location of depth discontinuities, the
program considers not only cells meeting this criterion, but also any cells within
+8 pixels of them. As we see in Section 5, each scale computes two separate
disparity maps, one from the perspective of each eye. A cell is considered for
matching at a given alignment if either of these coarse-scale estimates satisfies
the above conditions. In a parallel implementation, there may be no advantage
to this type of optimization, because it inay take just as long to process part of

an image as to process the whole image.*
4. Comparative discussion of search space limitations

Imposing sensible restrictions on the search area at each scale involves a
tradeoff between speed of computation and robustness. If the search area is
small, then stereograms containing high-frequency patterns cannot be fused at
large disparities. Furthermore, the program is sensitive to errors in coarse-scale
edge finder output and disparities. Stereograms with extremely large disparities
can only be fused to the extent that they contain clear coarse-scale cues as to
the correct disparity. On the other hand, the larger the search area, the slower
the stereo algorithm runs. The current implementation was run with relatively
large search areas, both in order to match estimates of human performance and

also to test the robustness of the matching evaluations.

There has been extensive discussion of how large a range of disparities humans
can fuse, but the psychophysical data is not definitive. There are two difficulties
with determining search areas. First, if the search areas are proportional to the

scale of analysis, experiments must be designed so that it is clear which range of

* Even in the current serial implementation, there are fixed costs associated with
processing an alignment. These limit the effects of this type of optimization.
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scales is responding. Secondly, the total range of disparities that can be fused is
very large. The search area explored for each cell at each scale corresponds not
to this total range of disparities, but to the range of disparities that can be fused

without eye movement (Panum’s area).

The psychophysical data are summarized by Poggio and Poggio (1984). Mea-
sured values for Panum’s area seem to be approximately +10 minutes of arc in
both the horizontal and vertical dimensions. Since the measurements in question
are for foveal vision, where the center-to-center distance between adjacent cells
is about 0.5 minutes of arc (Yellott, Wandell, and Cornsweet 1984, p. 273), this
translates into about +20 cells. It is unclear, however, what scale of analysis this

reflects.

Two experiments seem to shed more light on the problem. First, Nielsen
and Poggio (1983) report two figures for vertical disparities. They report that
an entire image can be fused if it is shifted by no more than 6.5 minutes of arc
(13 cells). Secondly, a portion of the image can be shifted by no more than
3.5 minutes of arc (7 cells) relative to the rest of the image. The first case is
improved if viewing time is long enough to permit eye movements, whereas the
second case remains difficult even with eye movements. These numbers were
obtained from judgements of relative depth. Nielsen and Poggio also attempted
a form discrimination task, but found that form discrimination was extremely

poor.

Nielsen and Poggio’s results suggest two things. First, the difficulties in form
discrimination suggest that their vertical disparity measurements do not reflect
fusion at the finest scale, but at some coarser scale. Secondly, the differences
between whole image disparity and disparity of part of the image, suggest that

vertical eye movements are used to correct the relative positions of the two images
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as a whole. This is also supported by some observations in Duwaer and van
den Brink (1981). Horizontal eye movements, by contrast, are used to search
a wide area of displacements, bringing successive parts of the image into fusion
individually. It was this observation that motivated the bounds on vertical net

disparities used in my algorithm.

The second interesting experiment was reported by Mowforth, Mayhew, and
Frisby (1981). They presented subjects with random-dot stereograms that had
been high-pass filtered, at a range of disparities and tracked the subjects’ eye
movements. They found that stereograms filtered at 3.75 cycles/degree could
initiate smooth eye movements resulting in fusion for (horizontal) disparities as
high as +56 minutes of arc, and that stereograms filtered at 7.0 cycles/degree
could initiate fusion for disparities as high as +28 minutes. Higher frequencies
do not initiate movements resulting in successful fusion. Since small features
become reliably visible to my edge detector when they are about 2 cells wide,
this would translate into a search radius of about +13 cells horizontally, at each
scale. Notice that 56 minutes of arc translates into over 100 pixels of disparity.
However, the entire stimulus was at this disparity, so this experiment cannot be
used to test whether the bound on net horizontal disparities imposed by my

program is reasonable.

Previous stereo algorithms have used a large range of constraints on search
areas. The matching algorithm proposed by Marr and Poggio (1979) and im-
plemented by Grimson (1981a,b) uses relatively small search areas. For a Marr-
Hildreth operator with w = 4 cells,® this stereo algorithm searches a horizontal
range of £ 4 cells at each scale. It appears to have had a limited ability to deal

with vertical disparities in a multi-scale fashion, but the published reports claim

5 Approximately the resolution of my edge finder.
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that it handled vertical disparities at most +3 at the finest scale. The same
numbers seem to hold also for Grimson’s more recent algorithm (Grimson 1985).
Small search neighborhoods are crucial for these algorithms, because they have

only limited ability to disambiguate rival matches at each scale.

Pollard, Mayhew, and Frisby (1985) assume the images are perfectly reg-
istered vertically and search +30 cells horizontally, in a single-scale algorithm,
using a Marr-Hildreth operator with w = 4 cells. The early algorithms described
by Mayhew and Frisby (1980, 1981) were not developed in enough detail for
search issues to be explored. The algorithm described by Drumbheller and Poggio
(1986), also used by Gillett (1988), searches a range of £20 cells at only one
scale, with Canny edges using o = 1.5 cells.® This is approximately equivalent to
a range of £13.3 cells for my algorithm, because of the difference in edge finder

scales.

Nishihara’s (1984) correlation-based stereo algorithm uses a multi-scale al-
gorithm to limit search. The correlation operation can find disparities within a
+2 cell range, both vertically and horizontally. An extremely limited amount of
search is done at the coarsest scale and search at subsequent levels is only used
near discontinuities. This system only produced disparities to relatively coarse
resolution. Baker (1982; also Baker and Binford 1981) describes a multi-scale
algorithm for matching edges. This algorithm assumes no vertical disparities. It
appears to use coarse-to-fine matching to restrict search areas at each scale, but

the details are unclear.

Search area limitations are less critical for stereo algorithms using sparse
features. Medioni and Nevatia (1985), and Ayache and Faverjon (1987), have

implemented stereo algorithms that match extended linear edge segments. Al-

6 The constant for Canny’s edge finder was supplied by Walter Gillett, personal
communication.
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though the details of their search areas are not specified precisely, they leave the
impression that they are large. Barnard and Thompson (1980), Hannah (1980),
Gennery (1977), and Moravec (1977, 1981) detect sparse local features that are
easy to identify in the other image. Gennery and Moravec use a multi-scale
matching strategy to identify points with both vertical and horizontal disparities,
apparently using small search windows at each scale. Barnard and Thompson
use a single scale algorithm and, as far as I can determine, search areas of £15

cells in both the horizontal and vertical dimensions.

Compared to these previous systems, my stereo implementation uses rela-
tively large search areas. Allowing for differences in edge finder resolution, the
horizontal search area of +10 cells is moderately large for any type of algorithm.
Among algorithms that use multi-scale analysis, where small coarse-scale sug-
gestions can translate into large fine-scale displacements, it is even larger. More
importantly, my algorithm searches for vertical displacements as well as hori-
zontal ones. The only previous algorithms that have done this have either used
sparse features or coarse-resolution images. These vertical displacements cause
a multiplicative increase in the search space and place correspondingly larger

amounts of pressure on the evaluation of candidate matches.

The implemented matching algorithm can successfully handle large vertical
displacements. Chapter 10 presents successfully fused images that have vertical
disparities up to 16 cells and rotations up to 5 degrees. These images can also be
fused by human observers, although some of them take noticably more effort than
simpler stereograms. The exact amount of deviation that can be tolerated in an
image depends on the scale at which reliable features appear, which depends on

the size and contrast of regions in the scene.
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5. Building the final disparity map

The last stage in stereo matching combines results from different alignments,
by choosing the disparity at each cell which has the highest strength. A variant
of the edge finder’s noise suppression code is run over the resulting disparity map,
to prune outliers and fill small gaps. This process is very similar to the directional
combination step in the edge finder. Most of this computation is straightforward.

Thus, this section deals almost entirely with niceties and special cases.

At each alignment, there are actually two sets of match results, because the
matching process described in Chapter 5 is asymmetrical. One set of match re-
sults describes disparities from the perspective of the left image and one describes
them from the perspective of the right image. The implemented stereo algorithm
does two parallel computations, one starting from each of the two images. Infor-
mation is passed between them at two points: once when the raw match maps
are reconciled and once when suggestions from both images are used to deter-
mine the search area about each cell. Otherwise, they proceed independently.
Because of the communication and the inherent similarity of the two tasks, the
two computations typically return similar answers, but they are not guaranteed

to be identical.

Reconciling the two final disparity maps may be desirable, b