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Philosophy in Mechanical Engineering.

Abstract

Control of machines that exhibit flexibility becomes important when designers at-
tempt to push the state of the art with faster, lighter machines. Three steps are necessary
for the control of a flexible plant. First, a good model of the plant must exist. Second,
a good controller must be designed. Third, inputs to the controller must be constructed
using knowledge of the system dynamic response. There is a great deal of literature
pertaining to modeling and control but little dealing with the shaping of system inputs.
Chapter 2 examines two input shaping techniques based on frequency domain analysis.
The first involves the use of the first derivative of a gaussian exponential as a driving
function template. The second, acausal filtering, involves removal of energy from the
driving functions at the resonant frequencies of the system. Chapter 3 presents a linear
programming technique for generating vibration-reducing driving functions for systems.
Chapter 4 extends the results of the previous chapter by developing a direct solution
to the new class of driving functions. A detailed analysis of the new technique is pre-
sented from five different perspectives and several extensions are presented. Chapter 5
verifies the theories of the previous two chapters with hardware experiments. Because
the new technique resembles common signal filtering, chapter 6 compares the new ap-
proach to eleven standard filters. The new technique will be shown to result in less
residual vibration, have better robustness to system parameter uncertainty, and require
less computation than other currently used input shaping techniques.
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Introduction and Problem

Description

Chapter 1

Control of machines that exhibit flexibility becomes important when designers at-
tempt to push the state of the art with faster, lighter machines. Three steps are necessary
for the control of a flexible plant. First, a good model of the plant must exist. Second,
a good controller must be designed. Third, inputs to the controller must be constructed
using knowledge of the system dynamic response. There is a great deal of literature
pertaining to modeling and control but little dealing with the shaping of system inputs.

When a machine moves, its motion induces vibrations in its structure. At low speeds
these vibrations can be ignored. At moderate-to-high speeds these vibrations become
larger, and various parts of the machine no longer move the way in which they were
intended to move. Many machines in industry are performance limited by these vi-
bration problems. Some examples include robots, automated assembly and production
equipment, inspection equipment, and heavy equipment.

Large machines, such as cranes, cherry-pickers, fire-ladders, and the US Space Shut-
tle robot arm must operate slowly in order to avoid large, dangerous vibrations. The

operators of these machines must often wait between motions so that vibrations damp
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out. For example, on the space shuttle, an astronaut must wait between 20 and 40
seconds for the manipulator arm to settle after a move. The space shuttle costs approx-
imately $20,000 per minute to operate, therefore, a great deal of money can be saved by
eliminating these pauses.

The space shuttle arm is also plagued by vibration induced from handling flexible
payloads. Space structures, such as the long, flexible cooling panels that are to be used
on the space station oscillate as they are moved into position. The handling of these
payloads is extremely difficult if the vibration of the structure is not reduced.

Smaller machines are not exempt from this problem. Operators of high-speed wire-
bonding machines look through a microscope while commanding the machine to connect
silicon chips to package pins. These machines are idle forty percent of the time during
which they are used because the commanded motion of the machine creates unacceptable
levels of vibration.

The current method of dealing with structural flexibility is to avoid it. Machines
are operated slowly so that flexibility is not a problem. If a higher speed is absolutely
required, then the machine is designed to be more rigid. The extra structural rigidity
is obtained at great expense. The design cost is high and the machine’s weight is
increased. The increase in weight lowers the maximum acceleration of the machine,
therefore, designing around structural flexibility is a constant tradeoff.

The benefits of vibration reduction are numerous. First, wait time for vibrations
to settle can be minimized. Second, systems with less damping can be successfully
operated. Third, system operating speeds and cycle times can be increased. Fourth,
machine life is extended because it is not exposed to harmful vibrations. Fifth, the
machine’s actuators would not have to “fight” the system’s oscillations, therefore, less
input energy is needed and smaller actuators are required. Sixth, more powerful motors
could be successfully utilized on less-rigid, lower-weight machines, thus gaining a large

increase in performance.



Many researchers are pursuing the goal of vibration reduction in machines. Current
approaches are plagued by four major drawbacks. First, a good, often sophisticated
model of the machine must be made. This is a difficult and time consuming process
which can be justified for few machines. Second, special sensors must be added to the
system or the system may have to be totally redesigned in order to use a particular
technique. Third, a great deal of computation is required to implement the techniques.
This costs both in operation time and programming and debugging time. Fourth, the
vibration reduction capabilities of these techniques degrade rapidly if the system changes
slightly. These four problems have restricted the use of current vibration control methods
to the laboratory. The goal of this work is to develop a better approach for commanding
motion of flexible computer-controlled machines.

Chapter 2 examines two input shaping techniques based on frequency domain anal-
ysis. The first involves the use of the first derivative of a gaussian exponential as an
acceleration command to the system. Because the gaussian function has both a sharp
frequency cutoff and is symmetric, it is chosen as a motion template. The second tech-
nique examined in this chapter is acausal filtering. A desired trajectory is generated
and then notch-filtered. The filtering is performed acausally — the complete trajectory
is processed prior to execution. Therefore, the unwanted frequency components can be
removed without phase shift of the other frequencies.

Chapter 3 presents a linear programming technique for generating vibration-reducing
driving functions for systems. The input to the system is discretized and a linear pro-
gramming routine solves for the amplitude of the input function at each of the discrete
times. The constraint equations for producing vibration-reducing inputs are presented.
Next, additional constraints are included so that the vibration-reducing effects do not
degrade under conditions of parameter uncertainty.

Chapter 4 extends the results of the previous chapter by developing a direct method

for obtaining the solution to the new class of driving functions. A set of equations can be



directly solved to yield the simplest inputs that have the same vibration-reducing effects
of the more complicated inputs generated in chapter 3. Next, A detailed analysis of
the new technique is presented from five different perspectives including a new domain
called vector diagrams. Lastly, a series of advanced applications and extensions of the
basic technique are presented.

Chapter 5 verifies the theories of the previous two chapters with hardware experi-
ments. A single degree-of-freedom system is constructed. In the first series of experi-
ments, one flexible beam is attached to a rotating base and the theories presented are
verified on this essentially one-mode system. Next joystick inputs are processed in real-
time at one-kilohertz, demonstrating that the new technique requires little computation.
Next, the technique is demonstrated on a two-mode system in hardware.

Because the new technique resembles common signal filtering, chapter 6 compares
the new approach to eleven standard filters. Both notch and lowpass filters with finite
and infinite impulse responses are considered. The common filters (all of which are
designed in the frequency domain) are shown to have weak performance and require

excessive computation.

1.0.1 Nonlinear System Disclaimer

Linear system theory is used to derive the new shaping technique. The applicability of
this technique to nonlinear systems is not proved in this thesis. No general statement can
be made regarding the application of the new technique to nonlinear systems since each
nonlinearity poses unique problems. However, systems with nonlinearities that tend to
appear as shifts in natural frequency seem to benefit from the new shaping technique
because of the robustness to frequency uncertainty that was included in the derivation.
Many simulations of different, geometrically nonlinear systems have been performed and
a selection of representative data are included in support of this hypothesis. As long

as the geometrically nonlinear system is varying slowly (relative to the time constant of



the system), the new shaping technique tends to work (at least on the manipulator-type
systems that were considered). In addition, significant joint friction, nonlinear stiffness,
and digitization are nonlinearities that are present in both the shuttle RMS simulations
and the hardware experimental system. The new technique is shown to work well on
both these systems. Additionally, all vibratory systems that have been considered by
the author to date have been shown to benefit from the new shaping technique. While
this is not a proof of the applicability of shaping to systems with extreme nonlinearities,
it suggests that the new technique should not be overlooked merely because a system is

nonlinear.



Frequency Domain Techniques

Chapter 2

2.1 Introduction to Frequency Domain Techniques

The first approach considered is to generate input trajectories that do have little or
no energy content at the resonances of the system. Avoiding the resonances specifies
that no residual vibration will be caused by the input. Naturally, vibration caused
by other sources (such as disturbances) is not reduced. Energy content at the natural
frequencies can be reduced in two ways. First, energy can be filtered from an input
trajectory at the resonant frequencies of the system. The resulting trajectory will have
a new shape, and will not excite the system resonances. Second, a new trajectory
may be constructed that has no energy at the system resonances. Meckl and Seering
[88] prove that residual vibration response is reduced if either of these techniques is
performed. They also demonstrated that the energy removal must eliminate a range of
frequencies in the neighborhood of the resonances because damping in the system will
create a situation in which any of a range of frequencies will excite the system. Three
approaches which have not been addressed by Meckl and Seering are considered in this
chapter.

Often, a conventionally designed notch filter is proposed for input signal conditioning.

6



2.2: Gaussian Shaped Input Trajectory 7

Chapter 6 will show that this approach gives poor results for several reasons. First, a
causal (real time) filter distorts the phase of the resulting signal. This effect is aggravated
by lengthening the filter sequence of digital filters or by increasing the order of analog
or recursive filters. Therefore, efforts to improve the frequency characteristics of a filter
result in increased phase distortion. Also, penalties, such as filter ringing or long move

times result from attempts to improve the frequency characteristics of the notch filter.

2.2 Gaussian Shaped Input Trajectory

The first approach is to examine an open loop trajectory (or driving function) that has
no energy content above the first resonance. This input function is required to have
several properties. First, if it is a torque command, it must have an acceleration phase
and a deceleration phase. Second, it must be able to be scaled for different moves. Third
it should have a sharp frequency cutoff so that it can be used to drive the system as
quickly as possible without exciting resonances.

The command shape chosen was the first derivative of a gaussian probability density

function (figure 2.1):
—(t=tc)?
(t—1t.) e( 2e )

f(H)=- 2o : (2.1)

Where ¢ and t. determine the shape of the function, and ¢ is time in seconds. This

was chosen because it’s shape is basically correct for driving the arm and it has a sharp
frequency cutoff. Taking the magnitude of the Fourier transform of this expression yields

the following function:
(=)
¢ jwl

Fw) = s

(22)

in which the frequency is specified by w. Figure 2.2 demonstrates that this function
drops off quickly in frequency so it is well suited for use as a driving function. The

parameter, o, (referred to as the standard deviation in probability theory) is chosen so
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Figure 2.1: Open loop driving function. The shape is that of the first derivative of a
gaussian probability density function.
that the amplitude of F(w) in equation 3.2 is small at the first resonance of the system.
The time offset, ¢., is chosen to be 40 so the driving function starts at about 2% of its
maximum value. The gaussian driving function is then offset to account for friction.
This is required so that the open loop torque command drives the arm only forward.
Paden and Bayo [16] have published a similar work which presents some other ap-
plications for this open loop driving function technique. Experimental results using this

technique are shown in section 2.4.

2.3 Theory Verification

In order to verify the gaussian template and other methods that will be developed
throughout this thesis, a test system had to be constructed. The development of good
systems on which to implement various vibration reduction techniques was a significant
obstacle. Several options were exercised. The first was the use of simple linear models
with lumped flexibility. The second was the generation of more detailed, nonlinear

models with distributed flexibility. The third was use of an existing, extremely detailed
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Figure 2.2: Frequency content of the gaussian driving function shown in figure 2.1.

model which includes many forms of nonlinearities and nonlinear flexibility.

2.3.1 Lumped Parameter Linear Models

Linear models are the easiest to develop and provide useful information about the po-
tential of a new technique. Throughout this document, linear models will be used to

demonstrate concepts and show the theoretical limitations of a given technique.

2.3.2 Flexible Nonlinear Models

Models that include continuous, flexible members are more realistic. However, the equa-
tions of motion for these systems are hard to obtain. For example, the assumed-mode
equations of motion for a planer, two-link model with flexible links were generated by
Maizza-Neto [22]. Many pages of the thesis were devoted to merely expressing the equa-
tions of motion. In addition, little insight was available from the equations because the
assumed-mode terms became extremely complex.

In order to facilitate the generation of the full partial differential equation (non-

assumed-mode) models for systems with continuous elements, a new extension to Kane’s
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method was developed. The details of this new method are given in Appendix A.
Prior to this extension, Kane’s method had to be used in conjunction with an assumed
mode shape solution. The mode shapes of the continuous elements are assumed and
ordinary differential equations are obtained. The new technique produces the exact
partial differential equations of the system. The advantage of generating the exact
equations are three-fold. First, more techniques are available for solving the equations.
Second, the partial differential equations provide more insight into the dynamics of the
system. Lastly, less mathematical manipulation is required to obtain the results.

The new method was implemented in MACSYMA, a symbolic mathematics manip-
ulation language. Appendix B describes the code that implements the new technique.

Several models were generated using the new technique.

2.3.3 The DRS Space Shuttle Manipulator Model

Next, a detailed model of the Space Shuttle Remote Manipulator System (RMS) was
adapted for this research. C. S. Draper Laboratories developed this complex model
which they call the DRS (Draper Remote-manipulator Simulation). NASA uses the
DRS to verify and test payload operations on the actual shuttle. The Draper shuttle
manipulator model includes many of the complicating features of the hardware shuttle
manipulator such as stiction/friction in the joints; nonlinear gearbox stiffness; asyn-
chronous communication timing; joint freeplay; saturation; and digitization effects. The
simulation was verified with actual space-shuttle flight data. Excellent agreement was
obtained both for steady-state and for transient behavior. Approximately ten man-years
of programming was invested in this model in order to assure that it accurately repre-
sents the actual shuttle hardware. Detailed descriptions of the DRS model can be found
in [1,54,133].

The model was executed with twenty-two degrees of freedom. These include three
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Figure 2.3: Space shuttle remote manipulator system joint reference coordinates.
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rotational degrees of freedom for the space shuttle, five vibrational modes in each of the
two long links, freeplay at the swingout joint and grapple point (between the arm and
the payload), and seven degrees of freedom of the arm. The five vibrational modes in
each long link are comprised of a first and second bending mode in two perpendicular
directions, and one torsional mode. The four bending modes are modeled using an
assumed cubic mode shape (figure 2.3).

The DRS model was programmed for an IBM mainframe in FORTRAN. The first
task was to transfer the 14,000 lines of FORTRAN code (with 11,000 additional lines
of comments) so that the program could be executed on a SUN Microsystems 3/160
computer. Various portions of the code had to altered so that it would be compatible
with the UNIX FORTRAN compiler on the SUN.

Appendix C provides a detailed characterization of the DRS. This appendix provides
the results of some frequency tests that were performed on the DRS model. This model
was ideal as a test facility. It provided a repeatable, realistic environment for testing
vibration suppression techniques. New concepts could be easily implemented in software
without risking hardware. Additionally, new techniques could be inserted into the model
at any location. On real hardware it is often difficult to implement different concepts

because specialized hardware would have to either be altered or constructed.

2.4 Gaussian Input Trajectory Results

Figure 2.4 shows the result of driving the RMS model with both the current space
shuttle controller and the open loop driving function specified in figure 2.1. The arm
was moved for eight seconds in both experiments. The gaussian function drove the arm
several inches further in the move time yet it left the arm with imperceptible vibrations
(.08 inch maximum amplitude). The existing closed-loop controller, however, left the

arm with residual vibrations over two inches in amplitude. In addition, these vibrations
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Figure 2.4: DRS response to a gaussian-shaped input compared to the response using the
current shuttle controller. This is a time response of the DRS endpoint in the z-direction
during a move.

remained significant (=& .3 inch amplitude) 15 seconds after the move ended. The

residual vibration was reduced by a factor of 25 using the gaussian input.

2.5 Acausal Input Filtering

2.5.1 Shaping Inputs Through Acausal Filtering

The process of filtering a signal can be performed either “causally” or “acausally”.
Causal filtering refers to real-time processing of a signal — only current and past values
of the signal are required for filtering. The term “acausal filtering” refers to filtering of
a signal using knowledge of the entire time history — including future values. Acausal
filtering can not be performed in real time, however, acausal filtering is superior to

causal filtering. The advance knowledge of the entire signal that is to be filtered can
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be used to correct for phase distortion and lag time. Acausal filtering can be used
to process trajectories in order to remove unwanted frequency components around the
system resonances. This technique may be used in any application for which trajectories
are known in advance of the move.

An important consideration when discussing filtering of signals is the phase of the
resulting, filtered signal. The frequency domain analysis of a signal contains information
about both the magnitude and phase of the signal. While different filters will have the
same effect on the magnitude, differences in the phase of the signal result in considerable
differences between competing filters. The ideal is, of course, to have no phase distortion,
or zero phase lag at all frequencies. Increasing phase distortion causes the filtered
waveform to have less of a resemblance to the original (desired) signal.

This approach will be presented in two steps. First, a goal for an “ideal” shape will
be presented. Next, a method for modifying this shape into a similar one which yields
reduced vibration is discussed.

Most manipulators are velocity limited. This limitation is caused either by one or
more mechanical components (ie. ball screws, linear bearings), by electronic component
voltage limits, or hydraulic component flow limits. For most manipulators, this velocity
limit is reached even during relatively short moves. Under these limitations the time
optimal command for moving from one location to another is to accelerate as quickly as
possible to this maximum velocity, coast at this speed, and then decelerate as quickly
as possible to the commanded position.

First, assume that the servo controllers on the system that is to be controlled take
velocity commands from the controller. Therefore, a time optimal move for the system
would be commanded by a rectangular velocity pulse (figure 2.5). For other systems
in which the motor torque is commanded, this rectangular pulse would be sent as a
torque command to bring the system up to peak velocity as quickly as possible and then

repeated in reverse to stop the moving system (figure 2.6).
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In either case, the rectangular torque or velocity input to the system time optimally
performs the rigid body motion of the robot while simultaneously putting energy into
the structural modes of the manipulator. Therefore, an acausal filter was derived for
reshaping the rectangular pulse so that it contains no frequency components in the

vicinity of the first two structural resonances of the manipulator.

Elimination Of Unwanted Frequencies

The elimination of energy at the system resonances is based on filter theory developed
in the field of signal processing. The filters that will be designed are not intended to
be used within the closed loop of the system. This strategy would not be effective
since cascading a filter with the system would essentially be equivalent to adding a
compensator. The root locus of the system could only be manipulated to a limited
extent and the resonances would still be present. In addition, the extra significant poles
added by the filter would be costly in phase lag.

The filters that will be used are for preprocessing the input to the plant so that
no energy is ever put into the system near its resonances. Since in many computer-
controlled machine applications there is no requirement for real-time processing, acausal
filters can be utilized because of their vast superiority over causal filters. In the next
section, the equation for an acausal notch filter is derived. This filter will then be used
to remove the unwanted frequency components from a rectangular input pulse. The
resulting shaped input pulse will have the same general shape (with added oscillations)
as the rectangular pulse, however, the unwanted frequency components will have been

removed.

Derivation Of The Acausal Filter

The derivation of the acausal notch filter is based on using the continuous inverse Fourier

integral on a chosen analytic frequency spectrum. An approximate technique such as
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using a finite impulse response (FIR) filter design program could have been used. How-
ever, an extremely fine frequency resolution would be required to successfully notch the
low frequency resonances out of the space shuttle arm input. This resulted in the need
for over a one thousand point FIR filter which was computationally intractable for the
available computer programs [113].

First a frequency magnitude response for the filter was chosen (figure 2.7). Since the

filter can be acausal, the phase lag can be chosen to be zero. The Fourier transform pair

used is
(1) = ziﬂ /_Zp(w)e*wtdw (2.3)
Flw) = /_Z F(t)em“tdt (2.4)

where ¢ is time, w is frequency, f(t) is the time signal and F(w) is the Fourier transform
of f(t). Thus the corresponding time filter for the Fourier transform shown in figure 2.7

is given by
sin Fit — sin Fyt + sin F3t — sin Fy + sin Fst
nt

f@) = ) (2.5)

where F; and Fj are the lower frequency edges of the the notches, F; and F, are the
upper frequency edges of the two notches, and Fj is the cutoff at the Nyquist frequency.
This result can be superposed to form any combination of notches noting that a sine
term corresponding to a cutoff frequency adds in the positive sense and a sine term

corresponding to the start of a passband is subtracted for each additional notch.

Convolution of the Filter and a Square Pulse

The next step is to convolve the filter impulse response with the rectangular pulse of

figure 2.5 given by
00 t<0

z(t) =10 0<t<Ty . (2.6)
0.0 Ty <t
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Figure 2.7: Notch filter magnitude. The phase is zero for all frequencies
The convolution expression is given by
v = [ ft=ma(r)ar (2.7)

where y(t) is the filtered pulse. Substituting z(¢) and f(t) and using the relation for the

sine-integral

) s v siny
= —— 2.
si(u) =~ + [ = dy (28)
equation 2.7 becomes
T t) —g(t — T,
/0 't = ydr = 2 975 ) (2.9)

with
g(z) = si(Fiz) — si(Fyz) + si( Faz) — si(Fyz) + si(Fsz)

Figure 2.8 shows the result achieved by convolving the notch of figure 2.7 with a
rectangular pulse. The filtered waveform exists for all time. Therefore, implementation
requires that the waveform be windowed in time so that a causal robot input is generated.

For the following experiments, a Bingham style cosine taper data window [101] was
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Figure 2.8: Rectangular pulse notch filtered between .4 and .8 hertz and between 1.2
and 1.7 hertz.

chosen. The cosine taper window provides a quick decay at the tails of the window, yet
it does not significantly alter the spectrum of the signal. The waveform was also shifted
slightly in time so that it starts at zero time (figure 2.9).

A first point to note is that if a specified filter spectrum has a very sharp transition,
the impulse (time) response becomes long. This is accommodated by windowing after the
filter is convolved with another waveform. A gentle transition in the frequency spectrum
(possibly caused by windowing in the frequency domain) would result in a more narrow
impulse response and, in some cases, would eliminate the need for windowing later. A
sharp notch was used for simplicity since the benefits of windowing in frequency, rather
than time, were not clear in this application.

A second point to note is that this derivation was performed analytically, rather than
using a Discrete Fourier Transform (DFT). This avoided any effects of discretization and
truncation until the end. The “ideal” filter could first be generated and than processed

into a discrete waveform for input into the system.
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Figure 2.9: Windowed and shifted rectangular pulse notch filtered between .4 and .8

hertz; and between 1.2 and 1.7 hertz.

Computational Issues

The calculation of these filtered rectangular pulses requires the computation of the sine
integral. This computation poses some numerical difficulties. The series approximation
of si(u) is an alternating series. For moderate and large values of u (u greater than 15),
the terms become huge and precision is lost.

Romberg integration of equation 2.8 also proved to fail because the integrand is peri-
odic and the Romberg algorithm uses constant interval sizes, thus accumulating errors.

dT™ calcula-

The random interval romberg integration implemented on Hewlett-Packar
tors was the only standard routine found that was successful in maintaining precision
integrating over many periods of the function.

The waveforms were calculated by numerically integrating si(u) once over each half
period (intervals of 7) with a standard Romberg technique. These values were stored

in a table. The value of si was looked up at the multiple of 7 nearest to u. The final

value of si(u) was computed by adding to this the integral from the multiple of 7 to u.
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This technique has the advantage that most of the numerical integration is done once
and stored. In addition, the Romberg integration is never used to integrate over more
than one half of one period of the integrand, so there is no loss of precision.

Once the analytical input function is generated, a wide range of signal processing
issues must be addressed prior to implementation. This involves careful consideration of
several tradeoffs. By truncating the resulting infinite continuous function for the input,
the carefully chosen frequency characteristics are altered. If the function is truncated
to be short in time (in order to reduce move time), the frequency notches tend to close.
This is because the time function is being multiplied by a short duration window, which
is equivalent to convolution with a long duration signal in the frequency domain. A
smooth time domain windowing function is more desirable than a sharp one. This is
because a sharp cutoff causes large, infinite duration ripples in the frequency spectrum of
the input waveform. However, a smooth window tends to make the time duration longer.
Lastly, the actual Fourier transform of the discrete signal increases between the frequency
points. In order to reduce this effect, the solution is to close the spacing of the points in
the frequency domain. However, improving the resolution of the frequency response in
the notches results in an increased time duration. In summary, improvements in time
domain response conflicts with improvements in the frequency domain. This conclusion

is well documented in the field of digital signal processing [101,128].

Acausal Filtering Summary

The use of shaped inputs for controlling open or closed loop plants shows that significant
vibration reduction can be achieved. The cost in extended move time is small compared
to the time saved in settling of the robot. Since settling time often limits the completion
of a useful task, this is an important problem to address.

By using acausally filtered rectangular pulses to control a plant, a close approxima-

tion to the time-optimal, rectangular waveform can be generated. This new waveform
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can then be used to drive a manipulator without significantly exciting its structural
resonances.

This technique has some limitations due to the process by which the input waveforms
are generated. There is a constant tradeoff between the time length of the shaped input
and the quality of its vibration reducing properties. Therefore, signal processing issues

such as windowing are important to consider when using this technique.

2.6 Acausal Filter Results

Figure 2.10 shows a comparison between the current shuttle RMS controller and an
acausally filtered input controller. A step command in velocity is given to the manip-
ulator at one joint. The RMS controller produces a ramped input to the motor. The
acausally filtered controller generates the motor command shown in figure 2.9. Shown
is the motion of the endpoint of the manipulator throughout the move. The residual

vibration is reduced by a factor of four for the unloaded shuttle arm.
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Figure 2.10: Comparison between the RMS controller and an acausally filtered rectan-
gular input. The two runs do not end at the exact same location because both moves
are open-loop command responses.



Generating a Simple,

Vibration-Free Input Function

Chapter 3

3.1 Introduction

Most researchers have examined the transient vibration of manipulators in terms of
frequency content of the system inputs and outputs. This approach inherently assumes
that the system inputs are not actually transient, but are one cycle of a repeating
waveform. The approach taken in this chapter is fourfold: first, the transient residual .
vibration amplitude of a system will be directly expressed as a function of its transient
input. Second, the input will be specified so that the system’s natural tendency to
vibrate is used to cancel residual vibration. Third, the input will be modified to include
robustness to uncertainties. Fourth, the case of arbitrary system inputs will be examined.
The analyses and derivations presented in this Chapter are based on assumptions of
system linearity. In the next chapter and appendix D some of the linearity assumptions
will be relaxed and this technique will be shown to work on some non-linear systems.
The robustness that is included in the linear derivation enables this technique to work

on many systems for which superposition does not hold (including real harware).-

24
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This chapter considers the problem of generating some input command that com-
pletes a motion of the system without any residual vibration. Several researchers have
produced vibration-reducing input functions (see Chapters 2 and 7; also [45,130,49,63]).
These approaches involved selecting parameters in continuous template functions. This
chapter approaches the problem from a new perspective. A discrete input is considered
and the values of the input function at each time is determined.

The motivation for this approach was the use of the DRS shuttle manipulator model
described in section 2.3. Command updates are sent to the servos every .08 seconds.
At this rate, an input trajectory contains relatively few points (only 12.5 points per
second). The approach that was used was to assign a variable to each of these servo
commands and to solve for a set of these commands that moves the system without any
residual vibration. The duration of the input was shortened (the number of points or
variables was reduced) until the shortest vibration-free input was obtained. Figure 3.1
demonstrates this concept graphically. The advantage of this approach is that input
functions do not need to be continuous. This chapter details a series of variations on

this technique, several of which were used to command the DRS model.

3.2 Linear Programming Formulation

The method of generating a digital input sequence is to rely on either an integer or
linear programming routine to select the input values (the A; in figure 3.1). For the
space shuttle manipulator, sequences were solved using the following linear programming
formulation. A variable, A; is established for the value of each input pulse. For example,
if a 2 second sequence is to be generated with .1 second sampling times then 20 variables
will be selected. The next step is to formulate an expression that relates the A; to the

residual vibration of a system.
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Time

Figure 3.1: Concept of discrete input sequences. The unknown amplitudes, A;, in the
impulse sequence shown are computed by the optimization routines described in this
chapter. The width of the pulses may be set by the digitization of the system that is to
be controlled or some other system limitation.
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3.2.1 No Vibration Constraint Equations

The first step toward generating constraint equations which guarantee a vibration-free
system output is to specify the system response to an impulse input. For this derivation,
the system input is assumed to be a position command and the output, an actual
position. The results of this section generalize for any input or output (velocity, torque,
etc.). A linear, vibratory system of any order can be specified as a cascaded set of

second-order poles with the decaying sinusoidal response [19]:

y(t) = AT(;'U'—_C'G_CLU(t—tO)] sinwy/1.0 — C3(t —tp) (3.1)

where A is the amplitude of the position impulse command, w is the undamped natural
frequency of the plant, ¢ is the damping ratio of the plant, ¢ is time, and #o is the time
of the impulse input. Equation 3.1 specifies the position response, y(t), at some point
of interest in the system. This equation also assumes that numerator dynamics are not
present. The validity of this assumption is discussed in section 4.5.5. In this section,
only one mode is assumed (the general case is treated in section 4.6).

Equation 3.1 is the system response to an impulse input. The response of the system
to a pulse is a trivial extension of this since the digital pulse input can be formed from a
superposition of impulses. The response to the pulse is, therefore, the superposition of
responses given by equation 3.1. For the purposes of the derivation in this section, the
finite duration pulse can be treated as if it were the equivalent impulse which has the
same area and occurs at the starting time of the pulse. Once the result is obtained, the
validity of this simplification will be discussed (section 4.4). In this section, only one
mode is assumed (the general case is treated in section 4.6). The two impulse responses
(each described by (3.1)) can be expressed mathematically for all times greater than the
duration of the input. The two decaying sinusoidal responses can be added using the

trigonometric relation:
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Bisin(at + ¢1) + By sin(at + ¢2) = Aampsin(at +¢) (3.2)

where

Aamp = \/(31 005 ¢y + Bs cos ¢)? + (B sin ¢y + By sin ¢;)?

b = tan! B; cos ¢; + B, cos ¢,
B, sin ¢ + By sin ¢, ’

This equation can be generalized to the N impulse case by applying the formula recur-
sively and simplifying the result (or more simply, by noting the symmetry of the problem

and proving by induction). The amplitude of vibration for a multi-impulse input is given

by (from [48)):
Aamp = J

¢; =

The B; are the coefficients of the sine term in (3.1) for each of the N impulse inputs,
and the t; are the times at which the impulses occur. Elimination of vibration after the
input has ended requires that the expression for Aamp equal zero at the time at which

the input ends, tenq. This is true if both squared terms in 3.3 are independently zero,

yielding:
Bycos¢y + Bycosdy +---+ Bycosgy = 0 (3.4)
B,sin¢, + Bysingy + ---+ Bysingy = 0 (3.5)
with
Bj — Ajw e-—(w(te,.d—t_,')

=0
where A; is the amplitude of the jth impulse, ¢; is the time of the jth impulse, and

tend is the time at which the sequence ends (time of the last impulse). Making the final
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substitution and simplifying yields:

N
Vi = ) Ajetltena=tidgip (tjw\/l - 42) =0

7=1
N

o= > Ajem¢ltena=t) cog (tjw\/l - CQ) =0 (3.6)
=1

If the input is chosen so that there are N digital pulses, N terms must be included in
equation 3.6.

These two equations can now be used to generate an input sequence for a digital sys-
tem with some known resonance. A revised simplex algorithm (IMSL Routine ZX3LP)
was used to generate sequences of N digital impulses. The formulation used was to
minimize the sum of V; and V; given by the equations 3.6. The number of pulses in the
input was shortened until V; and V, were no longer zero. The result was the shortest
sequence that met this no-vibration constraint.

The constraints given by equations 3.6 guarantee no residual vibration as long as the
assumption of the system natural frequency and damping ratio are correct. Since the
parameters of the system are never precisely known, some robustness to system uncer-
tainty must be incorporated. Two additional constraint equations are added to provide
this robustness to the solutions that are obtained. Further discussion and justification
of these constraints are given in chapter 4. The robustness constraint that was chosen
can be expressed in English as “have the residual vibration change little for variations in
the natural frequency or damping ratio of the system”. Mathematically this constraint
is formed by taking the first derivative of equation 3.3 with respect to w and ( (the
system natural frequency and damping ratio). However, it can be easily shown that
this is mathematically equivalent to taking the derivative of equations 3.6 with respect
to w. The next section proves that setting the derivative with respect to w to zero

automatically sets the derivative with respect to { to zero.
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3.2.2 The Robustness Constraint Equations

The derivatives of the expressions for V; and V, (equation 3.6) are taken with respect

to w. This step results in the following equations:

d X .
d—vl = > —Ajwtje“c“’(t"""t’) sin (tjw\/l - Cz>
W £
J=1

AjCw (teng — t;) e~ ltenda=t) cos (tjw\/l——_?f)
B VI=C
Aje¢ltend=t) cog (tjw\/f——g'f)

+ (3.7)
=
d N
EZE = Y Ajwt e @ tena=ti) cog (tjw\/l - Cz)
1=1
A;Cw (teng — t;) e~¢Wltena=t) sin (tjw\/l - (:5)
Ve
Aje~Swltena=t) gin (tiwy/T — (2
+ = (& ) (3.8)

i
These equations can be simplified. First, the last term of each of equations 3.7 and 3.8
can be multiplied by w to yield equations 3.4 and 3.5 which are the equations for no
residual vibration. These terms must be zero. (The prerequisite for this robustness
process was that there be no residual vibration.)
The second term of each of equations 3.7 and 3.8 results from the change of the
damping envelope with changes in w. This term (as will be shown below) surprisingly
also becomes zero. The result after dividing both sides by w is

N
> Ajt e~ ¢Wltena=t) i (tjw\ll - C2) = 0

1=1

N
> Ajtje W ltena=t) cog (tj(d\/l - (2> =0 . (3.9)
Jj=1
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These two equations together form the first-derivative robustness criterion.

The proof of this answer is not straightforward because the results from the sinusoidal
terms are used to simplify the cosinusoidal terms and vice-versa. This fact requires that
we assume an answer and prove that (if the answer is correct) the results are consistent.

Now, using this assumed result from equation 3.9, the second term of equation 3.7

will be shown to be exactly zero.

A;Cw (teng — t;) e~ {tena=t) cog (tjw\/l—:ff)

Term = i C7
B Aijtende‘C“’(tmd‘ti) cos (tjw\/l - C’)
- vi=(?

AjCwt et ltend=t) cos (tjw\/l — 2)
* T=C

By requiring that V; = 0, the first term of equation 3.10 must be zero (from equa-

(3.10)

tion 3.6). The term that remains is exactly the second expression from equation 3.9 (the
term that was assumed to be zero!)

The same dependent proof is required to show that the derivative with respect to (
is already satisfied by satisfying equations 3.9 and 3.6. Start by taking the derivatives

of equations 3.6 with respect to (:

4V, N A;Cwt e¢wltena=t) sin (tw4/T =
1 joWty ]

T "X e
Ajw2 (tend - tj) e~ ¢w(tend=ts) cog (tjwvl - Zi)
=

n AjCwe¢w(tena=ti) cos (tjwm)
(vi=o)

(3.11)

dVg N —A]‘Cw%jé-cw(t’"d_t-i) CcOs (tj(.U\/l_—_CT)
T T X e

i=1
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A;w? (teng — t;) e~¢@ltena=t) sin (th\/l—_—_an-)
=
N AjCwe™Swtena=t) gin (tjw\/leT)
(vi=0)

Each of the terms in these two equations can be eliminated by using the identities of

(3.12)

equations 3.9 and 3.6. This proves that setting both the residual vibration constraints
to zero and the constraints that set the derivatives of these constraints with respect to
w to zero causes the derivative expressions with respect to { to be zero.

Higher derivative constraints follow by differentiating equations 3.6 further. The

general result is that the gth derivative constraint is given by:

N
3 Aj(t5)° e~ Swtena=ts) gip <t wy/1 —C"’) = 0

=1

N
3 A (t;) e Wltena=t) cos (t wy/1 —C2> =0 (3.13) .

=1

L%

<.

The next section describes how these equations are included in an optimization routine

in order to generate a robust, vibration-reducing input sequence.

3.2.3 Assembling the Linear Programming Constraints

The constraints given above can now be used to form a robust, vibration-less system
command input. The same revised simplex program that was used in the previous section
was used to solve for the new sequences. The second derivative expression (equation 3.13
with ¢ = 2) given by:

N
ZAJ 2 e~ $wltena=t;) gip) (t w\/l__—_g) =0

=1

N
3T A;(t;) e ¢ltend=t) cog (t wy/1 —42) =0 (3.14)

=1

L

.

is then minimized subject to the following constraints:
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e The sinusoidal part of the vibration amplitude expression equals zero (the first

equation of 3.6).

o The cosinusoidal part of the vibration amplitude expression equals zero (the second

equation of 3.6).

o The sinusoidal part of the first derivative () expression equals zero (the first

equation of 3.9).

e The cosinusoidal part of the first derivative (%) expression equals zero (the second

equation of 3.9).
¢ The magnitude of the impulse amplitudes must be less than a limit (A; <= Limit)
e The sum of the impulse amplitudes are unity.

The length of the input sequence is determined by the number of variables that
are chosen (which is equal to the number of terms in the summations). The length of
sequence (N in the equations above) is reduced until the constraint equations can no
longer be satisfied. The resulting solutions are theoretically exact. If the system were
to be exactly as modeled, the response to the input would be totally without vibration.
The digital timing of the system is already included in the derivation, therefore, the
digitization does not alter the vibration-reducing effects. For example, the space shuttle
manipulator in a particular configuration has a .5 hz natural frequency. The digital
timing of the controller is fixed at .08 seconds. The smallest sequence that meets the
constraints above is 22 digital pulses in length (1.68 seconds). The resulting sequence is
shown in figure 3.2.

The unusual result that was obtained is that the input sequence does not apprpach
a continuous function, but rather is a sequence of discrete pulses. The understanding of

these results (the topic of chapter 4) leads to a better technique for commanding systems



3.2: Linear Programming Formulation 34

Magnitude
0.35

0.3
0.25
0.2
0.15
0.1
0.05

0.84 1.68
Time

Figure 3.2: Robust digital sequence. This sequence meets the constraint that requires
that the system have no residual vibration when the input has ended. Additionally, this
sequence meets the robustness constraint that requires the rate of change of the vibration
with respect to changes in natural frequency be zero. Therefore, small uncertainties in
the parameters of the system (ie. natural frequency) do not cause an appreciable increase
in residual vibration.
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Figure 3.3: Comparison between the RMS controller and a controller that shapes inputs
with a three-impulse equivalent sequence (a second-order robust sequence adjusted for
the digital system).

to move without vibration. In addition, a method for using a basic, vibration-reducing

input to form arbitrary vibration-reducing inputs for a system will also be presented in

the next chapter.

3.3 Results on the DRS Model

The shaped command of the previous section was next tested on the computer model
of the Space Shuttle Remote Manipulator System (RMS). The details of this and the
other models used for theory verification are given in section 2.3. Figure 3.3 shows a
comparison between the response of the DRS using the current shuttle RMS controller
and the response of the DRS using the digital sequence of figure 3.2 as a velocity input.
The residual vibration is reduced by more than one order of magnitude for the unloaded

shuttle arm. Comparable results were obtained for a variety of moves tested.
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3.4 Using Additional Constraints

This method of generating input sequences can be implemented using more constraints
than the ones chosen in the analysis above. (The constraints of zero vibration and zero
derivatives to changes in natural frequency.) The advantage of choosing other constraints
is that the input can be tailored to a specific system or application. As an example a
sequence with much greater robustness will be generated in this section. The additional
robustness could be obtained by setting higher derivatives to zero, however, (as will be
shown in chapter 4) setting higher derivatives to zero results in longer duration inputs.
An alternate route is to enforce constraints that minimize vibration over a range of
frequencies. The resulting vibration is not necessarily zero but is forced to be small.

A variety of different constraint combinations can be used. An example is given
for a constraint problem that allows the amplitudes of the pulses to be negative. This

sequence is created with the following constraints:

e The sinusoidal part of the vibration amplitude expression equals zero at the fre-

quency wy, (the first equation of 3.6).

e The cosinusoidal part of the vibration amplitude expression equals zero at the

frequency w, (the second equation of 3.6).

o The sinusoidal part of the first derivative (w.r.t natural frequency) expression at

the frequency w, equals zero (the first equation of 3.9).

¢ The cosinusoidal part of the first derivative (w.r.t natural frequency) expression

at the frequency w, equals zero (the second equation of 3.9).

o The sinusoidal part of the vibration amplitude expression is less than some thresh-

old value at the frequency w; (the first equation of 3.6).
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e The cosinusoidal part of the vibration amplitude expression is less than some

threshold value at the frequency w; (the second equation of 3.6).

¢ The sinusoidal part of the vibration amplitude expression is less than some thresh-

old value at the frequency w, (the first equation of 3.6).

e The cosinusoidal part of the vibration amplitude expression is less than some

threshold value at the frequency w, (the second equation of 3.6).
o The magnitude of the impulse amplitudes must be less than a limit (|4;| <= Limit)
e The sum of the impulse amplitudes are unity.

An example of utilizing the constraints given above is shown in figure 3.4. The
vibration error curve shown was generated by constraining the vibration error and slope
at three nearby frequencies. The effect of this is to create a sequence that suppresses
residual vibration over a large range of frequencies. The price that is paid for the
additional constraints is often duration of the sequence in time. However, it is important
to note that the sequence with the vibration error plot shown in figure 3.4 is shorter
in duration than the sequence obtained by setting several derivatives to zero in order
to achieve the same robustness. This is because the vibration error is not constrained
to be zero throughout the region of interest — a minimum level of tolerable vibration
was set and the sequence was constrained to remain below that level. Depending on
the application, this technique may be preferable to the simpler derivative sequences of

section 4.3.

3.5 Summary

Optimization routines that used constraints on the time-domain behavior of a sample

system were used to generate input sequences for that system. The resulting inputs
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Figure 3.4: Example of using additional robustness constraints to generate an pulse
sequence. This is a curve of vibration error vs. nondimensional frequency for a pulse se-
quence that meets the constraint equations given in this section. Note how the constraint
equations force the vibration error to be low over a wide range of frequencies.
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Time Domain Technique —
Shaping Inputs with Impulse

Sequences

Chapter 4

4.1 Introduction

This chapter will generalize the linear programming results presented above. First,
the constraint equations will be solved under special conditions without resorting to
the linear programming routine. Next, the robustness of these input sequences will be
examined. Third, the practicality of these results will be enhanced by extending the
results so that they apply to arbitrary inputs. This step involves using the basic system
input as a finite impulse response (FIR) filter. Fourth, the filters will be analyzed in
several different domains. Lastly, a series of advanced topics and applications will be

presented.

40
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4.2 Direct Solution of the Constraint Equations

The derivations of chapter 3 assumed that the input to a system was digital, therefore
the input was constructed from a sequence of pulses which were spaced at the digital
sampling interval. Under this scenario, the timing of the pulses is fixed and the am-
plitudes are calculated. This section includes the time of each impulse as a variable in
addition to the amplitudes. Because the impulses can now be placed at any arbitrary
time, the inputs can be treated as impulses and not digital pulses as in the previous
chapter.

First, the two basic constraint equations (equations 3.6) are considered separately.
Since there are only two equations, only two unknowns can be solved. Equation 3.6

expressed for the case when only two impulses exist (N = 2) results in two unknown

quantities:
Bl COS¢1+B2008 ¢2 =0 (41)
Bl sin ¢1 + Bg sin ¢2' =0 y (42)
with
B] — AJw e—(W(tend‘tj)

e
where A; is the amplitude of the Nth impulse, ¢; is the time of the Nth impulse, and
teng is the time at which the sequence ends (time of the last impulse).

Therefore, the values of A; and t; may be assumed; and the values of A, and t;
may be determined. By selecting 0 for the time of the first impulse (¢,), and 1 for its
amplitude (A;), the two equations with two unknowns (A; and t;) are solved. A; scales
linearly for other values of A;. The solution of these two equations is graphically and
symbolically given in figure 4.2. The amplitudes of the impulses have been normalized
so that they sum to unity. This step is justified because the selection of A, was arbitrary.

Since the equations are transcendental, there are an infinity of periodic solutions to the
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equations. The solutions that are shown in this chapter are the fundamental solutions.
They are the shortest time-duration sequences that will satisfy the equations assuming
that only positive amplitudes are used. In section 4.8, the shorter, negative amplitude
solutions are considered.

Figure 4.1 graphically demonstrates why the two impulse solution achieves a vibra-
tionless response from the system. The two responses shown can be superposed so that

the system moves forward without vibration after the input has ended.

4.3 Robustness

4.3.1 Robustness to Errors in Natural Frequency

The two-impulse input, however, cancels vibration only if the system natural frequency
and damping ratio are exact. In order to quantify the residual vibration level for a
system, a vibration-error expression must be defined, here as the maximum amplitude
of the residual vibration during a move as a percentage of the amplitude of the rigid body
motion. The system for which this value is computed is a simple harmonic oscillator.
No numerator dynamics are included. The vibration error plots shown in this chapter
are generalized in section 4.5.5 to more complex systems. Figure 4.3 shows a plot of the
vibration error as a function of the system’s actual natural frequency. The input was
designed for a system with a natural frequency of wy. Acceptable response is defined as
less than 5% residual vibration for the simple oscillating system. Figure 4.3 shows that
the two-impulse input is robust for a frequency variation of less than = +5%.

In order to increase the robustness of the input under variations of the system natural
frequency, a new constraint may be added. The derivatives of (3.4) and (3.5) with respect
to frequency (w) can be set equal to zero — the mathematical equivalent of setting a

goal of small changes in vibration error for changes in natural frequency. The resulting
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Figure 4.1: Generating a vibrationless output. The two impulse responses shown add to
form an output that shows a net positive motion with no vibration after the input has
ended. The system moves forward and returns to a zero position — analogous to the
impulse command.
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Figure 4.3: Vibration error vs. system natural frequency for three systems with different
values of damping ratio excited by the two-impulse sequence in figure 4.2.

constraints are (see Chapter 3):

;e wltena=t) gin (tj(.l)\/l - (2> =0

N
> At
i=1
N
Z Aj (tJ
=1
with w = wy.

Two equations are added to the system; therefore, two more unknowns must be
added by increasing the input from two to three impulses (added unknowns: Aj; and
t3). Assuming arbitrary values of A; = 1 and ¢, = 0; solving for the values A2, A3, t3,
and t3; and then normalizing so that A; + A; + A3 = 1 produces the answers shown in
figure 4.4. The corresponding vibration error curves are shown in figure 4.5. In this case,
the input is robust for system frequency variations of &~ +20% Results of experiments

on a mechanical system are presented in chapter 5.

The process of adding robustness can be further extended to include the second
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Figure 4.5: Vibration error vs. system natural frequency for three systems with different
values of damping ratio excited by the three-impulse sequence in figure 4.4.

derivatives of (3.4) and (3.5) with respect to w. Setting the second derivatives to zero
requires that the vibration error be flat around the intended natural frequency. Two
more constraint equations are added, therefore, the impulse sequence is increased by
one to a total of four impulses. The corresponding input and vibration error curves
are shown in figures 4.6 and 4.7. In this case, the input is robust for system frequency

variations of ~ —30% + 40%.

4.3.2 Robustness to Errors in Damping

In order for these system inputs to be insensitive to system parameter variation, uncer-
tainty in damping ratio must also be considered. As with respect to natural frequency in
the previous section, the derivative of the amplitude of vibration with respect to damp-
ing ratio ({) can be computed. In chapter 3 it was shown that the same expressions

that guarantee zero derivatives with respect to frequency also guarantee zero derivatives
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Figure 4.7: Vibration error vs. system natural frequency for three systems with different
values of damping ratio excited by the four-impulse sequence in figure 4.6.

with respect to damping ratio. Therefore, robustness to errors in damping has already
been achieved by the addition of robustness to errors in frequency. Figure 4.8 shows
the vibration-error expression as a function of changes in damping ratio for the same
three sequences as were generated in 4.3.1. The exact system damping ratio is .05 in
this example. Note that extremely large variations in damping are tolerated. Changes
in damping do not have as large an effect on the vibration error as changes in frequency.
This fact is fortunate since it is generally easier to measure frequency than it is to

measure damping.
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Figure 4.8: Vibration error vs. damping ratio for the two, three, and four-impulse inputs
presented in section 4.3.1 calculated for a system with a damping ratio of .05.
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4.4 Using Impulse Sequences to Determine System
Commands

Sections 4.2 and 4.3 have presented a method for obtaining the shortest system impulse
input sequence (constructed of only positive impulses) which simultaneously eliminates
vibration at the natural frequencies of interest and includes a specified degree of robust-
ness to system variability. This statement is true because the equations 3.4, 3.5, and
4.3 have no solutions for a smaller t; assuming that the A; are positive quantities.
This section presents a method for using these “time-optimal” sequences to generate
arbitrary inputs with the same vibration-reducing properties.

Systems can not be commanded with impulses as inputs. Therefore, these “input
sequences” are merely a conceptual system input. They represent the shortest inputs
that meet the desired design criteria. Therefore, if the system were to be commanded
to make an impulse motion, the best that could be commanded in order to achieve
a vibration-reducing move is the multiple-impulse sequence that was derived for the
system. Since all complex moves are just superpositions of elemental moves, complex
vibration-reducing moves can be constructed from elemental vibration-reducing moves.
Just as the single impulse is the building block from which any arbitrary function can
be formed, the impulse sequence can be used as a building block for arbitrary vibration-
reducing inputs. This superposition is accomplished by convolving any arbitrary desired
input to the system with the impulse sequence in order to yield the shortest actual
system input that makes the same motion without vibration. The sequence, therefore,
becomes a prefilter for any input to be given to the system. The time penalty resulting
from prefiltering the input equals the length of the impulse sequence (on the order of
one cycle of vibration for the sequences shown in 4.3). Figure 4.9 shows the convolution

of an input (for example, the signal from a joystick in a teleoperated system) with a
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non-robust, two-impulse sequence.

Note that actual impulse sequences are never sent to the system unless the requested
motion is an impulse. The filtered system input is always as smooth as the requested
motion. The convolution process is essentially just repeating the requested motion
several times.

The impulse sequences from 4.3 have been normalized to sum to one. This normal-
ization guarantees that the convolved motor inputs never exceed the maximum value of
the commanded input. If the commanded input is completely known in advance for a
particular-move, the convolved motor input can be rescaled so that the maximum value
of the function is the actuator limit of the system. It should be noted that this form of
shaping will work on any type of input — torque, velocity, position, etc. because these
quantities are related by integration. The integral or derivative of a vibrationless signal
is also vibrationless.

If the commanded input results in system saturation, the shaped command will also
saturate the system. Under these conditions, the vibration reduction will not work. A
peak value for the command must be selected and never exceeded before the command
is shaped. This enables the vibration reduction to perform as expected.

For much of the analysis impulses and pulses were used in input sequences inter-
changeably. The justification of this can now be provided. If an impulse sequence is
convolved with a unit pulse (whose width is determined by the sampling rate or some
other constraint), the result is a sequence of pulses. The leading edge of each pulse is
a the spacing of the impulses and the heights are scaled accordingly. We have shown
above that the convolution of any signal with some impulse sequence results in a signal
that has the same vibration-reducing effects as the impulse sequence. Therefore, the
pulse sequence will be vibration-reducing. In order to simplify the analysis of a pulse
sequence, the equivalent impulse sequence (with each impulse beginning of the leading

edge of each pulse) can be used.
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Figure 4.9: Shaping arbitrary inputs. Shown is the convolution of a command in (a)
with a two-impulse sequence shown in (b) yielding the system input shown in (c).
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For historical reference, the result of convolving a non-robust two-impulse sequence
with a step input yields the Posicast input developed by O.J.M. Smith in 1958 [127].

The robustness plot of figure 4.3 demonstrates why Posicast is not generally used.

4.5 Evaluation of Filtering using Impulse Sequences

The concept of filtering with impulse sequences has been presented in the previous sec-
tion. The goal of this section is to present the concept from several different points of
view in order to put this work in proper perspective. The vibration cancellation and
robustness effects will be presented in five different representations. First, a new repre-
sentation, called vector diagrams will be presented. Second, a time domain presentation
will be discussed. Third, these filters will be examined in the frequency domain. Fourth,
a phase plane analysis will be presented. Fifth, the effect of shaping inputs using impulse

sequences will be discussed in terms of transfer function analysis.

4.5.1 Vector Diagrams

A new representation which graphically demonstrates how the new shaping technique
works was developed for analysis and impulse sequence-generation purposes. This sec-
tion will present this new representation which we will call vector diagrams.

The concept of shaping inputs using impulse sequences is based on time domain
cancellation of system vibrations. If an impulse is input into the system, it causes an
oscillation with a particular phase. If the same input is repeated later in time, the same
response is generated. By delaying the second impulse input, the relative phase of the
responses is determined. The phasing of the oscillatory responses was demonstrated in
figure 4.1.

Figure 4.10 shows that the impulses in time can be plotted as vectors around a circle

as an alternative to time line plots. The first impulse (by arbitrary convention) is plotted
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in the positive x direction, its angle is 0 (corresponding to zero time) and its length is
the amplitude of the impulse, A. The other impulses are then also plotted as vectors
in this new space. The angle of the vector is ¢; = w,6T;. The length of the vectors are
their respective amplitudes. The frequency, w, is arbitrary. Any value can be selected
and a new graph will be generated. By making the frequency, wy, equal to a natural
frequency of the system, the graph becomes a useful tool for determining the vibration
reducing properties of an impulse input sequence.

If w, is a natural frequency of the system, then the impulses can represent the
amplitude of an oscillation at this frequency, the resultant vector of the set of impulses
plotted in the vector diagram represents the residual vibration after the last impulse has
been input into the system. The magnitude of the resultant vector is the amplitude of
the oscillation, the angle of the vector is the phase of the oscillation (where a phase of
zero means in phase with the oscillation induced by the first impulse). This fact can be

proven by noting that the equations of the vector resultant:

Ajcos ¢y + Azcosda+---+ Aycosdy = 0 (4.4)

Arsing, + Azsingg + ---+ Axysingy = 0 (4.5)

are the same as those in equation 3.4 and 3.5 when the mode of interest has no damping.

See subsection 4.5.1 which explains the inclusion of system damping.

Using Vector Diagrams for Analysis

Figure 4.11 shows that the two impulse sequence exactly cancels vibration when the
frequency is exactly as anticipated when the sequence was designed. The lower portion
of the figure demonstrates the effect of designing the sequence for one frequency while
the oscillations are occurring at a nearby frequency. Note that for small frequency
perturbations, the vectors still cancel to a first order in the x-direction. However, a

significant resultant (which is a direct measure of residual vibration) appears in the
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Figure 4.10: Creating a vector diagram. The impulses of a sequence can be plotted as
vectors in a cylindrical space. w, is a frequency of interest (for vibration reduction, the
natural frequency is used).
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y-direction. This graphically demonstrates the lack of robustness of the two impulse
sequence.

Figure 4.12 shows the vector diagram for a three impulse sequence. When the fre-
quency is exactly as expected, the vectors cancel exactly. However, the robustness of
this sequence can be graphically demonstrated by plotting the vector graph with an
error in frequency. Note that the vectors cancel in both the x and y-directions to a first
order approximation .

Figure 4.13 demonstrates the same effect for the four impulse sequence. For small
errors, the angle 8 is small. Using the polynomial expansion for sine and cosine of 4, all
terms in 8 and 02 cancel. This sequence of figures shows why the impulse sequences be-
come more robust to frequency shifts or uncertainties as the higher derivative constraints
are included.

Now that the properties that create robustness have been demonstrated, the vector
diagrams can be used as a tool for generating new sequences. Any new sequence can
be plotted on a vector graph. The order to which its vectors cancel gives the level of
robustness for the sequence. For example, any sequence that cancels to a second order
is functionally equivalent to the four-impulse sequence. All of the vibration data that is

developed for the four impulse sequence applies to this new sequence.

Vector Diagrams With Damping

When the mode is damped, two slight modifications must be made to the vector dia-
grams. First, damping alters the frequency by the factor /1 — {?. The damped natural
frequency is the one which is used to plot the vectors since the oscillations from the
system will be at this frequency. Second, the amplitudes of the vectors must shrink
with time in order to cancel. Figure 4.14 shows a damping spiral superimposed over
the vector diagram. Fortunately, the effect of damping on the vector magnitudes can be

initially ignored. The vectors are plotted using the damped natural frequency but the
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Figure 4.11: The two impulse sequence shown in a vector diagram. In both plots the
chosen frequency, wy, is exactly the natural frequency of a system that needs to be
controlled. The top plot is the case when the design frequency of the sequence matches
the natural frequency of the system. The bottom plot is the case when the design
frequency of the sequence does not match the natural frequency of the system.
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Figure 4.12: The three impulse sequence shown in a vector diagram. The chosen fre-
quency, wy, is exactly the natural frequency of a system that needs to be controlled.
Shown is the case when the design frequency of the sequence does not match the natural
frequency of the system.
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Figure 4.13: The four impulse sequence shown in a vector diagram. Shown is the case
when the design frequency of the sequence (w,) does not match the natural frequency
of the system (w,). The vector diagram is drawn so that 27 radians corresponds to one
period of w,, the actual frequency of the system.
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magnitude change is not included. Once the analysis is complete, the damping spiral
can be superimposed on the vectors to get their final magnitude. For all of the analyses,
the undamped magnitudes will be used to simplify the derivation of sequences.

One powerful feature of the vector diagrams is that they automatically nondimen-
sionalize the problem of impulse sequence generation. One revolution is the natural
frequency of the system. If a sequence is developed for one natural frequency, it can be
easily changed for a new system. The angles of the vectors remain the same — only the
actual mapping into impulse times changes. (Remember that the angles are related to
time by 0 = w,AT.) Additionally, the damping effect can be separated from the vector
cancellation. A basic sequence can be generated for a system assuming that it has no
damping. After a sequence is selected, the damping spiral can be superposed as the last

step before implementation. An actual implementation would follow the following steps:

o Select a sequence for an undamped system with the same natural frequency as the

system of interest (w,).
e Determine the impulse times using the damped natural frequency (w,+/1 — (?).

e Scale the vectors by the damping spiral (multiply each vector at time, ¢, by e=¢“s*)

4.5.2 Time domain Analysis

This section explains the relationship between the robustness of various impulse se-
quences. Figure 4.15 demonstrates pictorially how a pair of two-impulse sequences each
yields a small residual vibration because of errors in estimating the natural frequency
of the system. These two residuals have the same amplitude (Rp in this example) and
phase (relative to the first of the two impulses). The residual amplitude (R; in this
example) is the same for any set of vectors A and B with the same time separation, AT

(the assumption of linearity). By placing two pairs of these impulses approximately out
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Figure 4.14: Damping spiral shown on a vector diagram. All the vectors on this plot
have the same effective magnitude because of system damping. The vibration amplitude
caused by an early vector, decays with time. In order to cancel this decaying vibration, a
smaller amplitude input must be given to the system. For example the vector, A, causes
a vibration that decays to amplitude, C, in T, seconds. The vector that is equivalent to
vector A at a later time, T, is vector C'. This is equivalent to saying that at times later
than T, the same amplitude of vibration caused by vector A at ¢t = 0 can be caused by
vector C' at ¢t = T.. The dashed spiral shows by what amount the amplitude must be
scaled. The damping spiral is essentially a plot of e~¢# in the polar coordinates of the
vector diagram.
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Figure 4.15: Time domain summary. The two impulses in the top half of the figure
attempt to cancel vibration but produce a residual (R;). By constructing a three-impulse
sequence when two, two-impulse sequences are summed out of phase, the residuals, R,
cancel thus producing an even smaller residual, R,. This is the source of the robustness
of the three-impulse sequences.
of phase with each other, as in figure 4.15¢c, the two residuals will be approximately out
of phase. (They are phased by AT which is an approximation of the half-period of the
oscillation). The two residuals therefore cancel, producing a much smaller residual (R,).
By summing the two pairs of impulses, the three impulse sequence is obtained.

The same effect can be seen in generating the four impulse sequence. Two three-
impulse sequences each produce a small residual. Because they are identical inputs,

the residual vibration that they produce are equal in magnitude and phase. The two

three-impulse sequences are roughly out of phase so an even smaller residual is produced.
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4.5.3 Frequency Domain

The new type of filter that was developed can also be analyzed in the frequency domain.
Figure 4.16 shows the exact Fourier transforms of two, three, and four-impulse sequences
for a system that has no damping. Note that the magnitude response must be exactly
zero at the natural frequency in order to cancel the infinite magnitude response of a
system without damping. The difference between the three sequences is the width of
the trough. The four-impulse sequence is more robust due to its wider notch.

Figure 4.17 shows the exact Fourier transforms of two, three, and four-impulse se-
quences for a system that has .05 damping. Note that the response never drops to zero
magnitude — it drops low enough to eliminate the peaks of the system. Figure 4.18
shows the exact Fourier transforms of two, three, and four-impulse sequences for a sys-
tem that has .2 damping. All of the filters have an infinite number of zeros. This can
be seen in the frequency domain as a repetition of the notch at higher frequencies. The
infinite number of zeroes is caused by the transportation lag associated with delaying
the impulses in the sequences [104] (p. 350). The sequences have no poles. This is im-
portant because filters that have poles will be shown in the next chapter to have inferior
performance to filters without poles.

The success of the new input shaping (or filtering) technique appears in the frequency
domain as a notch that matches the resonant characteristics of the system. As the
damping of the system is increased, the notch widens and decreases in depth in order to

match the widening and decreasing resonant peak of the system.

4.5.4 Phase Plane

The vibration canceling and robustness can also be observed in the phase plane. Fig-
ure 4.19 shows exact cancellation in the phase plane. A vibration is induced by inputting

an impulse in position set point. The system is allowed to vibrate through one half cycle
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Figure 4.1: Comparison of the two, three, and four-impulse sequence exact Fouri.er
transforms without damping. The frequency is nondimensionalized to wg, the antic-
ipated frequency of the system of interest.
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Figure 4.17: Comparison of the two, three, and four-impulse sequence exact Fourier
transforms with .05 damping. The frequency is nondimensionalized to wp, the anticipated
frequency of the system of interest.
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Figure 4.18: Comparison of the two, three, and four-impulse sequence exact Fourier
transforms with .2 damping. The frequency is nondimensionalized to wy, the anticipated
frequency of the system of interest.
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Figure 4.19: Exact cancellation in the phase plane. This is a phase plane plot for a
system without damping that was given a two-impulse input. The input was tuned
exactly to the system. Note the absence of residual vibration.

until it is has no velocity and then a second impulse setpoint is input to stop the system
from vibrating. Because the system is commanded with impulses, it does not actually
move to a new location. This was done to simplify the phase plane plot. If the system
responds to impulses without vibration, then the system must respond to steps and
other trajectories without vibration.

Figure 4.20 shows the effect of an error in frequency estimation. The system has a
finite velocity which will result in an oscillation. Figure 4.21 shows a phase plane plot
of a robust three-impulse sequence. Note that a frequency underestimate causes the
system to overshoot in position at position 2. However, when the system moves from
position 3 to position 4 the same underestimate tends to cancel the original overshoot.

Figure 4.22 shows the phase plot for the four-impulse sequence. The same tendency
to cancel errors can be seen in this figure. The cancellation happens twice, therefore,

the residual vibration is greatly reduced over that of the three-impulse case.
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Figure 4.20: Phase plane plot for a two-impulse input. The system’s resonant frequency
is 10% higher than the anticipated natural frequency.
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Figure 4.21: Phase plane plot for a three-impulse input. The system’s resonant frequency
is 10% higher than the anticipated natural frequency.



4.5: FEvaluation of Filtering using Impulse Sequences 69

Velocity

Residual

Vibration 1

S
2 I _/ Position

6

Figure 4.22: Phase plane plot for a four-impulse input. The system’s resonant frequency
is 10% higher than the anticipated natural frequency. The systems moves from the origin
up to 1; around to 2; up to 3; around to 4; up to 5; around to 6; and back to (very near)
the origin

4.5.5 Transfer Function Perspective

From the point of view of transfer function analysis, it is important to note that the
impulse sequences are designed considering only the poles of the system. The zeros
of the transfer function are not used for the implementation. Because the zeros do
not need to be determined, the implementation of this technique is greatly simplified.
Therefore, the technique will work on non-minimum phase systems, which are common
when considering flexible machines.

Section 4.5.3 demonstrated that the impulse sequences worked by matching notches
to the system resonances. Since numerator dynamics (zeros) do not cause resonant
peaks, they can be ignored in designing a shaping sequence. Another way to show that
numerator dynamics do not need to be included is to consider the transfer function

of a linear system. Terms in the numerator indicate that the overall response is a
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Figure 4.23: Vibration reduction for several modes. An example of convolving two
three-impulse sequences together to form a single sequence that reduces vibration in
two separate modes.

combination of the characteristic response plus derivatives of the characteristic response.
Since the characteristic response is a decaying sinusoid (equation 3.1), the derivatives are

also sinusoidal at the same frequency. If a shaping technique causes the characteristic

response not to vibrate, then derivatives of the response must also not vibrate.

4.6 Including Higher Modes

The previous sections have assumed only one vibrational mode present in the system.
However, the impulse sequence can easily be generalized to handle higher modes. If
an impulse or pulse sequence is designed for each of the first two modes of a system
independently, they can be convolved to form a sequence which moves a two-mode
system without vibration. Figure 4.23 graphically shows this convolution for an example
system.

The length of the resulting sequence is the sum of the lengths of the individual
sequences. The sum, however, is an upper bound on the length of the two-mode sequence
which can be generated directly. The direct solution is performed by simultaneously
solving together the same equations that generated the two individual sequences with

the addition of the extra terms. For example, if the four equations used to generate the
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sequence in figure 4.4:
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were repeated for a different frequency, a system of eight equations would result and
could be solved for four unknown impulse amplitudes and times (plus the first, arbitrary
impulse), yielding a five-impulse sequence. Note that originally only 3 vectors were
needed so N = 3; when both sets of equations are used N = 5 so each of the equa-
tions gain some terms. The resulting sequence has four less impulses than the result of
convolving the two independent sequences, and is always shorter in time. An arbitrary
number of such sequences can be combined (either by convolution or by direct solution)
to generate an input that will not cause vibration in any of the modes that have been

included in the derivation.

4.7 Digital Implementation

The derivation pfesented above assumed that the timing of the impulses (the times at
which the requested input is repeated into the system) could be specified exactly. If the
system is digital, the spacing of the impulses is at fixed intervals — multiples of the
sampling rate. Figure 4.24 demonstrates this problem assuming that a three impulse
input is used. The middle impulse falls directly in between two sampling intervals. This
causes a timing error. This section evaluates how well this technique fares when the

sampling induced error § becomes large.
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Figure 4.24: The problem of shaping inputs to digital systems. Top is the desired
sequence. Middle: The digital timing of the system requires that the impulses do not
all line up with the sampling intervals. Bottom: If the closest digital approximation
is used (rounding to the nearest sampling interval), the impulse sequence is essentially
translated as shown.
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4.7.1 Quantizing the Error

The error will be measured as the vibration amplitude expressed as a percentage of the
input magnitude (the same measure used in the robustness plots shown in section 4.3).
The assumed impulse sequence has not been normalized, therefore, the three impulses do
not sum to unity (this will be corrected later). Using the vibration amplitude expression

from equation 3.3 for this situation shown in the bottom of figure 4.24 yields:

[1 + 2 cos (wAT - %) + cos t.‘)AT]2

Aamp = . . 2
+ [1 + 2sin (wA - %) + sm2wAT]

(4.6)

where AT is the half period of the oscillation, and § is half of the sampling period.

Since wAT is equal to 7, this expression becomes:

s = (oo (o= Z)[ s fpon (-2

2
2 + 2cosmcos ¥ + 2sin wsin ¥
2 2

. . 2
\ + (2sm7rcos“’—6 —2cos7rs1n“’5)
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2
wé
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sin 1
6

This value for the residual vibration magnitude was derived for an impulse sequence
that sums to 4 because the sequence was not normalized. In order to express the
vibration error as a fraction of the input magnitude this factor of 4 must be divided

out. The final estimate for the residual vibration error due to discretization is:
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Figure 4.25: Vector diagram for a digital system. The vectors must be on one of the
dotted lines. These correspond to the integral multiples of the sampling interval.

Error x ——

4AT

If this fraction is small for a particular digital system, then the digitization of the
system can be ignored, and the impulses can be moved to the nearest sampling interval
without inducing a significant vibration penalty. Small values for the error are typically

less than 5% - 10%.

Sequences for Digital Systems

Once it has been determined that the error due to digitization is unacceptably large, a
new form of the input sequence must be generated. This input sequence is made up of
pulses which occur at integral multiples of the sampling interval. Figure 4.25 shows the
effect of this added constraint on the location of the input pulses. The vectors must lie
on the gray lines (at integral multiples of the sampling time).

It is desirable to put vectors in between these gray lines. Using the principle of
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Figure 4.26: Adding impulses to create resultant impulses at the correct time. The two
solid impulses add to form the hashed impulse. The hashed vector can replace the two
solid vectors in the right-hand plot of the impulse sequence.

vector addition, it is possible to place two vectors (or more, if desired) on the gray lines
such that they add to form the desired resultant which lies in between the gray lines.
Figure 4.26 demonstrates the addition of two impulses to form the equivalent impulse
between the two vectors.

Therefore, the solution for accommodating digital systems is to add at least one
extra vector (one extra pulse to the sequence) so that the vibrations cancel. Figure 3.2
shows a sequence that was generated for a digital system with .08 second sampling
interval. The sequence has the same robustness as the three-impulse sequence shown in
figure 4.4. This five pulse sequence behaves identically to the three impulse sequences
generated earlier. Additional pulses adjust for the timing constraints — the same
robustness and vibration reducing constraints have been met. Because there
are more pulses than constraint equations, the minimization routine additionally was
able to minimize the second derivative constraints, thus yielding a slightly more robust
sequence. The benefit of adding this additional constraint was minimal, however, it was

retained since it has no “cost” associated with it. This demonstrates the relationship
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Figure 4.27: The effect of a negative impulse. The shaded vector is created with a neg-
ative impulse at the time corresponding to the dotted line in the upper-right quadrant.
Note that because this vector flips over in to the lower left hand quadrant, it can cancel
both the x and y components of the other vectors.

between the continuous, impulse sequences presented in this chapter and the digital,

pulse formulation of chapter 3.

4.8 Negative pulses

In the previous sections, the impulse sequences consisted only of positive impulses. If
this constraint is relaxed, shorter sequences result. As will be demonstrated, for a given
robustness, a sequence can be made arbitrarily short. The price that is paid for the
shorter sequences (and, therefore, faster system response) is actuator effort. The limiting
factor, therefore, in shortening the sequences is saturation of the system actuators.

An examination of equations 3.6 will reveal that an infinity of shorter sequences exists
and that the sequences can be arbitrarily short. Figure 4.27 graphically demonstrates
this result on a vector diagram. The shaded vector is created by a negative impulse along
the dotted line in the upper-right hand quadrant. Since the magnitude is negative, it

has the same functional effect as placing a positive vector where the shaded vector is.
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Figure 4.28: Shortening a sequence with negative impulses. This is a vector diagram of
a sequence that has been shortened by 33%. The second impulse is negative, therefore,
it points into the third quadrant. This enable it to vector-cancel with the other vectors.
This sequence has the same robustness qualities as the positive, two-impulse sequences.

Since each system is different, no one short sequence can be used. A sequence must be
shortened until actuator limits are reached or derived directly by including additional
constraints that are imposed by the system. However, in this section, a two-impulse
sequence that is shorter than the one shown in figure 4.2 is derived.

Figure 4.28 shows this new sequence that is equivalent (in terms of robustness) to
the two-impulse sequence. This sequence does not exceed any control limits because
when it is convolved with a step, it never exceeds unity. This sequence is 33% shorter
than the two-impulse sequence derived above yet it is functionally equivalent. Note
that the magnitude of the impulses (assuming no damping) is one. The equations that
were solved to yield this sequence (equations 3.6) have no solutions that result in a
shorter sequence without the impulses exceeding unity magnitude (without damping —
the sequence can be made slightly shorter as a function of damping). Therefore, the

sequence of figure 4.28 is the shortest sequence that is equivalent to the two impulse

input that does not exceed control limits.
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Figure 4.29 shows a shortened equivalent to the three-impulse sequence derived
above. The sequence shown in the figure is for a digital system with .08 second sampling
time and a .6 hz natural frequency. This sequence was generated using a minimization
routine that shortened the sequence length while imposing the constraints used to gener-
ate the three-impulse sequence. The cost function was the second derivative expression
so that the maximum robustness was obtained. Some additional constraints were in-
cluded in order to require that the system not saturate during a unit step input. Note
that this one sequence is 10% shorter than the equivalent three-impulse sequence. This
sequence demonstrates the combination of several of the variations presented in this
chapter for non-standard systems.

For many applications, there is no requirement to shorten the sequences, therefore,

the sequences that only have positive impulses will often be preferred.

4.9 Multiple Joint Actuation

4.9.1 Linear Systems

One important question that must be addressed in using this technique is the effect of
simultaneously shaping two separate joints of a machine. The technique would be of
limited utility if it could only be used on single joint machines. This last section will
discuss the effect of shaping several machine inputs simultaneously.

First, a generalized linear system is considered. Figure 4.30 shows a three-mass, two-
input example system. The output that will be considered is z3. Since any vibration of
M3 must appear in the other coordinates as well (according to Newton’s Law), it makes
no difference which output is examined. The transfer functions for the input-output

relationships at z3 are:
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Figure 4.29: Negative sequence for a digital system. This figure demonstrates the com-
bination of several techniques. The sequence is shortened by allowing the impulses to
be negative. The system is digital, therefore, additional pulses must be added to satisfy
all of the constraints. The system natural frequency is .5 hz; the sampling time of the
system is .08 seconds.
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Figure 4.30: Multiple actuation on a linear system. The same filter is used for both
irputs to the system because the characteristic equation is the same.
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Note that the characteristic equations are the same. This fact is a characteristic of
all linear systems. Since the shaping is designed for the resonances of the system (the
natural frequency and damping ratio), the characteristic equation fully determines the
shaping sequence that will be used. Because the two transfer functions have the exact

same characteristic equations, the prefilters on each of the inputs are identical.
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Using an informal inductive explanation, the prefiltering on one input can be shown

not to effect or interfere with prefiltering on the other inputs. The argument is as follows:

o A prefilter on input Fj will cause the output z; to change without vibration.
¢ The same prefilter on input F3 will cause the output z3 to change without vibration.

o All inputs are superposable. The output at z3 due to both an input at F} and
an input at F3 is the sum of the outputs due to inputs F; and F; put into the
system alone. The response caused by one input cannot effect the other input.

This would be a violation of superposition and linearity.

Therefore, for linear and quasi-linear systems, any number of inputs may be prefiltered
using the same impulse sequence to shape the inputs. The next section will show how
multiple joint actuation applies to geometrically nonlinear systems. Appendix D dis-

cusses additional nonlinear system applications.

4.9.2 Vibrationless Cartesian Motion from Non-Cartesian Ma-

chines

When the system that is to be controlled is a cartesian machine, the techniques of the
previous Chapters apply. However, often the system is not cartesian and, therefore,
straight line motion must be achieved by computation of joint trajectories for cartesian
motion. The problem that will be addressed in this section is the effect of shaping on
the overall endpoint trajectory of the machine. The sample system that is used for the
results in this section is the two-link manipulator shown in figure 4.31. This system has
rigid links and lumped parameter springs at the joints. The parameters for this model
used in this section are:
e length of link 1 and 2: 1.0

e mass of link 1 and 2: 1.0
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Figure 4.31: Nonlinear test model used to evaluate various techniques.

e inertia of link 1 and 2: 1.0
¢ end mass: 12.0

e end mass inertia: 9.0

e spring 1: 50.0

e spring 2: 100.0

Damping was excluded so that the effect of shaping is isolated from the effects of damp-
ing.

Two main approaches will be examined. The first is to determine the straight line
joint trajectories that would be required assuming that the signals were not to be shaped.
Next, these joint trajectories are shaped so that they become vibration-reducing. The

- advantage of this approach is that the vibration control is the best possible (keeping all
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other factors constant) . The disadvantage is that the trajectories are not theoreti-
cally exact straight line trajectories. However, the original “straight-line” trajectories
are not perfectly straight either [108]. Intermediate points are computed on a straight-
line trajectory and non-straight, joint-interpolated motion is used between these points.
Therefore, cartesian trajectories in practice are only as straight as the available com-
putation allows (Paul [108] states that joint-interpolated motion requires roughly 1%
of the computation of cartesian motion). Shaping the trajectory does not significantly
alter the cartesian nature of the input, especially as more intermediate points are used.
Additionally, since the shaped trajectory does not have the unwanted vibration in the
output, the actual endpoint position will be far closer to “straight” than the unshaped
trajectory. (If the vibration was not causing problems, shaping would never have been
considered for that system!) Figure 4.32 shows a schematic of this arrangement.

The second approach is to shape the cartesian trajectories and then convert them
to joint trajectories. This approach guarantees that the trajectories will be as straight
as possible (keeping all other factors constant). The drawback of this approach is that
the vibration reduction is slightly degraded. Figure 4.33 shows a schematic of this
arrangement.

Under many conditions and for many systems, either approach is acceptable although
not exact. Figure 4.35 shows a simulation of the two link system when the Jacobian
calculation is performed before the vibration shaping. Figure 4.36 shows a simulation
of the two link system when the Jacobian calculation is performed after the vibration
shaping. Both modes of the system are included in the command shaping. The slightly
longer, convolved version of the two mode formulation is used. Note that both config-
urations are extremely straight with little vibration. The system was assumed to be
velocity limited and is therefore started using one sequence and stopped with a different
sequence according to the technique described in appendix D.2. The next section shows

similar results from cartesian motion on the space shuttle remote manipulator arm.
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Figure 4.32: Cartesian Motion — shaping before Jacobian. This is the schematic of
the simulations that were performed when the shaping algorithm was placed before the
Jacobian calculation. The Jacobian calculation converts the cartesian command to joint
angles.
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Figure 4.33: Cartesian Motion — shaping after Jacobian. This is the schematic of
the simulations that were performed when the shaping algorithm was placed after the
Jacobian calculation. The Jacobian calculation converts the cartesian command to joint
angles.
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The plots of figures 4.34, 4.35, and 4.36 show that adding shaping to this sample,
undamped, geometrically-nonlinear system reduces the residual vibration by approxi-
mately a factor of fifty. Both configurations of Jacobian calculations had comparable
(and small) residual vibration levels. When the Jacobian calculation is performed as
the last step before sending the command to the systém, the slewing motion is straight
and follows the commanded y position (except during the acceleration and deceleration
phase). When the Jacobian calculation is performed first, the slewing is straight but it

does not follow the commanded y position (figure 4.36).

4.10 Cartesian Motion Using the Shuttle Arm.

Figure 4.37 shows a cartesian move on the space shuttle arm. The details of this and the
other models used for theory verification are given in section 2.3. The joint trajectories
are calculated first and then are shaped. The plot shows the motion in the y-direction.
Figure 4.38 shows the x and z direction motion for the same cartesian move. The
command is only in the y-direction. These plots demonstrate that even without the
preshaping, the shuttle’s “cartesian” motion is not straight, and the vibration amplitude
effects the straightness of the motion to a much larger extent than the alteration of the
joint trajectories from shaping.

Figure 4.39 shows a comparison of the energy consumed by the shuttle manipulator
during the two moves. A 20% savings in energy was realized by not inducing vibration
in the arm. This energy savings has significant implications for space systems like the
shuttle and space station. Since energy in space is expensive (the shuttle, for example
must carry its own fuel) the energy savings alone may justify shaping of the command

input for the reduction of vibration.
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Figure 4.34: Cartesian Motion from a two link manipulator — unshaped results. The
top plot shows the X motion of a system for which no shaping is performed. The bottom

plot shows the Y motion of the same system. The system has no damping so that the
vibration-reducing effects are isolated.
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Figure 4.35: Cartesian Motion from a two link manipulator — shaping first. The top
plot shows the X motion of the two-link system for which the shaping was performed
before the Jacobian calculation (figure 4.33). The bottom plot shows the Y motion of
the same system. The system has no damping so that the vibration-reducing effects are
isolated.
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Figure 4.36: Cartesian Motion from a two link manipulator — shaping last. The top
plot shows the X motion of the two-link system for which the shaping was performed
after the Jacobian calculation (figure 4.32). The bottom plot shows the Y motion of
the same system. The system has no damping so that the vibration-reducing effects are

isolated.
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Figure 4.37: Cartesian motion of the shuttle manipulator. The command to the shuttle
was a straight-line motion (step) in the y direction. The dashed line is the unaltered
RMS controller. The solid line is a shaped input. The data is shown is motion in the y
direction. The next figure shows the x and z motion during the same move.
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Figure 4.38: Cartesian motion of the shuttle manipulator. The command to the shuttle
was a straight-line motion (step) in the y direction. The dashed line is the unaltered
RMS controller. The solid line is a shaped input. The motion perpendicular to the
commanded motion is shown. The previous figure shows the motion in the commanded
direction. Note that neither move (with or without shaping) is extremely “straight” on

the DRS.
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Figure 4.39: Energy plot for straight-line motion. This figure demonstrates the energy
savings by using the shaping technique of chapter 4.

4.11 Trajectroy Alterations Caused by Shaping

This chapter has shown that shaping of an input trajectory can create a new trajectory
that does not cause the system to vibrate. This section will examine how close the new
trajectory is to the original, unshaped commanded trajectory; shaped and unshaped
trajectories will be compared in order to reveal the effect of shaping. The system response
will not be considered in this section. Chapter 5 will show that systems closely follow
the altered trajectory without vibration.

First, a single axis command is considered. Figures 4.40 and 4.41 compare several
similar trajectories. A versine of amplitude from 0.0 to 1.0 units is generated. The
shaping sequence is a three-impulse sequence designed for a system with a .1 damping
ratio. The results are normalized so that the time of one system period is 1.0 on the

normalized time axis. The rate at which the transition is made is varied from .1 periods
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to 5 periods. Note that when the transition is extremely short compared to the period of
the system, the shaped trajectory does not have the same basic shape as the command.
This corresponds to the situation when the input trajectory has high frequency content
compared to the system natural frequency. When the transition is slow (low frequency
input trajectory), the shaped trajectory has the same basic shape as the requested input.
The shaped trajectory lags behind the command by one period of the system. However,
for all moves, the shaped trajectory ends at the same value as the command.

The next situation that is considered is the effect of shaping on cartesian trajectories.
The system that is considered is the two-link, planer manipulator shown in figure 4.31
with one unit link lengths. A requested cartesian trajectory is generated. It is then
converted to a joint trajectory. Next, the joint trajectories are shaped. The resulting,
shaped joint trajectories are then converted back to a cartesian reference frame and
compared to the original, requested command. Figure 4.42 shows a schematic of this
test. Figure 4.43 through 4.46 summarize the results of this test. A series of versine x-
coordinate commands were given to the system while the y-coordinate was commanded
to remain at zero (a straight-line motion in the x-direction). The trajectory is nearly
straight when the transition time is long compared to the system’s period of vibration.
When the transition is fast, the trajectory does not remain straight. Note that the
figures are to scale so that the each curve shown is the motion of the endpoint in the
‘workspace of the two-link manipulator.

The cartesian situation in which the trajectory is shaped prior to resolving the
joint commands is not considered separately. The x-coordinate motion for this situ-
ation is identical (by definition) to that of the single-axis trajectory considered in fig-
ures 4.40 and 4.41. The y-coordinate is unaltered by shaping and remains .5 (for the
example shown) for all time.

As the requested trajectory becomes fast relative to the period of the system, the

trajectory following degrades. However, it is important to note that the ability of the
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Figure 4.40: Single axis trajectory comparison. The unshaped trajectory is convolved
with a three-impulse sequence designed for a sytem with a .1 damping ratio. One
unit of nondimensional time corresponds to one period of oscillation used to design the
three-impulse sequence. The top plot shows the result for a relatively slow versine input
that transitions from 0 to 1 in 5 periods. The bottom plot shows the result for a relatively
fast versine input that transitions from 0 to 1 in 1 periods.
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Figure 4.41: Single axis trajectory comparison. The unshaped trajectory is convolved
with a three-impulse sequence designed for a sytem with a .1 damping ratio. One
unit of nondimensional time corresponds to one period of oscillation used to design the
three-impulse sequence. The top plot shows the result for a fast versine input that
transitions from 0 to 1 in .5 periods. The bottom plot shows the result for an extremely
fast versine input that transitions from 0 to 1 in .25 periods.
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Figure 4.42: Schematic of the cartesian trajectory experiment. A variable-duration
versine input is commanded in the x-direction while no motion is commanded in the
y-direction. The joint trajectories are shaped and then converted back to cartesian
corrdinates before being plotted.



4.11: Trajectroy Alterations Caused by Shaping 97

Y-Coordinate

5.0 Period Duration

2-Link Arm (to scale

0 0.5 1 1.5 2
X-Coordinate

Figure 4.43: Cartesian trajectory comparison. The commanded trajectory is a fast
versine in the X-direction with a constant .5 value commanded for the Y-direction. The
The versine transitions from 0 to 1 in 5 periods. Note that this is not a time plot. The
manipulator geometry is shown for a single point along the trajectory.
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Figure 4.44: Cartesian trajectory comparison. The commanded trajectory is a fast
versine in the X-direction with a constant .5 value commanded for the Y-direction. The
The versine transitions from 0 to 1 in 1 period. Note that this is not a time plot. The
manipulator geometry is shown for a single point along the trajectory.
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Figure 4.45: Cartesian trajectory comparison. The commanded trajectory is a fast
versine in the X-direction with a constant .5 value commanded for the Y-direction. The
The versine transitions from 0 to 1 in .5 periods. Note that this is not a time plot. The
manipulator geometry is shown for a single point along the trajectory.
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Figure 4.46: Cartesian trajectory comparison. The commanded trajectory is a fast
versine in the X-direction with a constant .5 value commanded for the Y-direction. The
The versine transitions from 0 to 1 in .25 periods. Note that this is not a time plot. The
manipulator geometry is shown for a single point along the trajectory.
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system to track the unshaped trajectory also degrades under these conditions. Fig-
ure 4.47 shows the response of a simple harmonic oscillator to the unshaped .1 period
versine input (top) compared to the response of the same system to the shaped trajec-
tory (bottom). Figure 4.48 shows the response of a simple harmonic oscillator to the
unshaped .5 period versine input (top) compared to the response of the same system to
the shaped trajectory (bottom). |

The shaped trajectory becomes more jagged as the commanded trajectory becomes
faster. However, the system tends to smooth the shaped trajectory in its response. The
result is a response that has the same basic shape as the unshaped command without the
vibration. It should be noted that the presence of the vibration alone in the response to

an unshaped input degrades trajectory following considerably more than shaping does.
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Figure 4.47: Trajectory response of a simple-harmonic oscillator. The input for both
plots is a .5 period versine. The top plot shows the unshaped system response and the
unshaped, commanded trajectory. The bottom plot shows the same input shaped with
a three-impulse sequence superimposed over the system response. Note that the system
tends to smooth the high frequency-content input of the bottom plot.
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Figure 4.48: Trajectory response of a simple-harmonic oscillator. The input for both
plots is a .1 period versine. The top plot shows the unshaped system response and the
unshaped, commanded trajectory. The bottom plot shows the same input shaped with
a three-impulse sequence superimposed over the system response. Note that the system
tends to smooth the high frequency-content input of the bottom plot.



Hardware Experiments

Chapter 5

5.1 Design of a Flexible Test Fixture

A test machine was constructed for experimenting with various vibration-reducing strate-
gies. This machine was used to verify the results of the shaping techniques presented,
and to determine the overall feasibility of these techniques on real, non-idealized sys-
tems. This chapter describes the design of the test machine and then presents some

results that were obtained.

5.1.1 Mechanical Hardware

The MIT Flexible Test Machine was designed and built by Andrew Christian and Neil
Singer. It consists of a single rotational degree-of-freedom in the base; a rotary joint to
which a slender link is attached; another rotary joint; and one additional slender link. At
each of the three joints is a lumped rotational spring that can be adjusted for different
stiffnesses. Each of the two thin links provides structural flexibility.

The primary goal of the MIT Flexible Test Machine design was to construct an in-

strumented laboratory machine that was representative of “real” machines. A secondar
p y

104
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requirement for the machine was to have large-amplitude, low-frequency, structural vi-
brational modes so that the oscillations are visual. A third requirement was to make
the machine be similar in geometry to some class of industrial machines.

The first requirement meant that specialized hardware was not to be used — the
components of the system were restricted to industrial components. The low natural
frequency requirement creates design problems for machines that work in gravity envi-
ronments (as on Earth). The endpoint deflection of the machine under the influence
of gravity is directly related to the natural frequency of the machine by the following

approximation:

§= % (5.1)

where 6 is the endpoint deflection due to gravity loading, ¢ is the acceleration of gravity,
and w is the natural frequency of the system (see Blevins [18] pages 451-3). The details
of this tradeoff and the MIT Flexible Test Machine design analyses can be found in {32].

The two rotary joints at the base use standard DC servomotors with a 10:1 timing
belt reduction. The joint at the end of the first link uses a Samarium-Cobalt two piece
torquer. The need for this one expensive motor was driven by the large-amplitude, low-
frequency vibration requirement for the machine. An inexpensive motor at this location
would have been heavier, and thus would have reduced the payload capacity of the arm
and limited its visual impact by requiring that the vibrational deflections be reduced.

Each joint has a brake and an optical shaft encoder.

5.1.2 Electronics

The computer and electronics configuration is a slightly customized version of the CON-
DOR system developed by Sundar Narasimhan and David Siegel [97,98]. This system
consists of a Sun Microsystems 3/160 Computer connected to a VME backplane. Inter-

face cards and 68020 microprocessors are inserted into the backplane and communicate
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with the Sun using the CONDOR development system.

5.2 Hardware Results and Theory Verification

The shaping technique presented in Chapter 4 was first verified by using just the one base
degree-of-freedom on the MIT Flexible Test Machine. A thin steel beam was mounted
on the joint so that it could swing in the horizontal plane (figure 5.1). The beam was
constructed from } inch by 2 inch by 24 inch long, ground 4140 half-hard steel. A large
mass was cantelevered at 19 inches from the rigid beam supports. Adjustable weights
could also be placed at the end of the beam so that the natural frequency of the system
could be easily varied.

A simple PD Control loop was implemented by graduate student, Erik Vaaler. A
linear-quadratic gaussian observer was designed. The noise that was assumed was due
to discretization from the encoder. Figure 5.2 shows a step response of the table when
no flexible members are attached to it. This figure demonstrates that the flexibility
introduced into the system is from the structural flexibility and not the controller. The
controller has well damped poles at approximately 15 hz. — well above the 2 ~ 7 hz

modes of the flexible beams.

5.2.1 Robustness Verification

The first experiment was a verification of the robustness of the new technique. Normally
the system natural frequencies would be estimated and the sequence would be designed
for those frequencies. However, because of uncertainties in the parameters of real sys-
tems, these frequencies may no longer be the ones that were estimated. To simulate
this uncertainty and verify the robustness of the new shaping technique, the shaping
sequences were intensionally designed for frequencies that were different from the mea-

sured frequency of the beam system. In a “real” system, the system would be changing



5.2: Hardware Results and Theory Verification 107

Figure 5.1: Sketch of the beam setup that was used for the hardware experiments.
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Figure 5.2: Step response of the base joint of the MIT Flexible Test Machine. The
motion is rotary in the horizontal plane. The flexible beam is not mounted on the table.
This plot shows that the flexibility present in the later moves is from the structure and
not the controller.
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and the shaping sequence would be fixed. However, it was easier to experimentally
collect data when the system was left unaltered and the sequences were varied over a
large range in software. The two situations are entirely equivalent because the type of
robustness that is of interest is the ability of the sequences to reduce vibration when the
system has different parameters from those that were expected when the sequence was
designed. For visual demonstrations (as opposed to data collection), the mass at the
end of the beam is varied while the sequences are kept fixed.

Two-, three-, and four-impulse filters were generated for a fixed, 2.45 hz system. Step
inputs were sent to the system while the amplitude of the vibration was measured at
the encoder. The vibration was due to the combined flex in the steel beam and stiffness
in the joint servos. The motion of the end mass feeds back into the joint and causes an
oscillation which can be monitored at the encoder. The higher modes of the beam were
ignored because none of them appeared significant in the data.

Figures 5.3 5.4 and 5.5 compare the hardware results obtained from the MIT Flexible
Test Machine to the theoretical plots presented in Chapter 4. The theoretical curves on
the plots of figures 5.3 5.4 and 5.5 are plots of:

Vv ViE+ V2
yit e (5.2)

Vibration E =
ibration Error 55

with the V; and V, given in equation 3.6, and with the impulse sequence normalized to
unity (the sum of the A; is one). The factor of 8.5 is the ratio of the joint stiffness to
the beam stiffness. This factor is included because the vibration is being measured at
the encoder. Any vibration at the endpoint will appear at the encoder scaled down by a
factor of 8.5. Measuring the motion of the mass at the end of the beam is more difficult
than measuring the encoder data and requires special hardware. The decision was made
to tradeoff the signal strength for ease of measurement and scale the theoretical curves
accordingly.

Figure 5.3 shows the lack of robustness of the two impulse sequence. Figure 5.4
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Figure 5.3: Comparison of hardware vibration error vs system natural frequency to
theory (two-impulse sequence). The test system was fixed with wy = 2.45 hz. The
two-impulse shaping sequence was varied to intensionally create an error (and residual
vibration).

demonstrates the effect of using a three impulse sequence}and figure 5.5 shows the effect
of using a four impulse sequence.

Figure 5.6 shows a time response of the single mass-beam system using a two impulse
sequence. The top plot shows the response when the system and sequence design fre-
quency are the same (as close as possible using real hardware). The bottom plot shows
the response when the sequence is designed for a frequency that is 40% higher than
the measured frequency of the beam-system. For reference, the unaltered step response
of the system (relying on damping alone) is shown superimposed on these plots. Fig-
ure 3.7 presents the same set of plots using a three-impulse shaping sequence. Figure 5.8

presents the same set of plots using a four-impulse shaping sequence.
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Figure 5.4: Comparison of hardware vibration error vs system natural frequency to
theory (three-impulse sequence). The test system was fixed with wy = 2.45 hz. The
three-impulse shaping sequence was varied to intensionally create an error (and residual
vibration).
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Figure 5.5: Comparison of hardware vibration error vs system natural frequency to
theory (four-impulse sequence). The test system was fixed with wy = 2.45 hz. The
four-impulse shaping sequence was varied to intensionally create an error (and residual
vibration).
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Figure 5.6: Step response of the hardware experimental system shaped with a two
impulse sequence. The top plot shows the response when the sequence design frequency
is the system natural frequency. The bottom plot shows the response when the filter
design frequency is 40% higher than the system natural frequency. The setpoint to the
shaping routine is a step to .6 radians. The dashed line is the signal (after shaping) that
is sent to the servo.
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Figure 5.7: Step response of the hardware experimental system shaped with a three
impulse sequence. The top plot shows the response when the sequence design frequency
is the system natural frequency. The bottom plot shows the response when the filter
design frequency is 40% higher than the system natural frequency. The setpoint to the
shaping routine is a step to .6 radians. The dashed line is the signal (after shaping) that

is sent to the servo.
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Figure 5.8: Step response of the hardware experimental system shaped with a four
impulse sequence. The top plot shows the response when the sequence design frequency
is the system natural frequency. The bottom plot shows the response when the filter
design frequency is 40% higher than the system natural frequency. The setpoint to the
shaping routine is a step to .6 radians. The dashed line is the signal (after shaping) that
1s sent to the servo.
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5.2.2 Effectiveness on Arbitrary Inputs

The next experiment involved generating arbitrary command inputs from a human op-
erator and shaping them in real time. A potentiometer was used as a joystick so the
operator of the machine could send position setpoints to the closed-loop servo on the
one degree-of-freedom system. Figures 5.9 and 5.10 show a comparison between one run
generated by sending the unshaped joystick commands to the servo, and another run
generated by first shaping the joystick signal. For each run, the joystick command is
shown as a dotted line. The response shown is that of the rotary table at the motor
encoder. The vibrations shown in the upper plot of figure 5.9 correspond to a 7 inch
amplitude oscillation at the mass on the end of the 19 inch long beam. The joystick
inputs to the system had to be moderated when shaping was not used so that the beam
would not plastically deform. The data shown on the plots are the reduced-amplitude

encoder positions (reduced by a factor of 8.5).

5.2.3 Multiple Mode Operation Verification

In order to verify the extensions of the new input shaping technique to multiple mode
systems, the hardware was slightly modified. A second beam was attached to the hub
so that two structural modes and one servo mode were present. Figure 5.11 shows the
configuration used for the experiments in this section. Figure 5.12 shows the response
of the two-beam system to an unaltered step input. Both modes appear in the output
response of the system. Figure 5.13 shows the effect of shaping to remove only one of
the two modes of the two-beam experiment. The top plot used a sequence designed for
the 2.45 hz mode. The bottom plot used a sequence tuned for the 6.4 hz second-mode.
Figure 5.14 shows the effect of shaping for both modes. The shaping sequence for both
modes was generated by convolving the three-impulse seugence designed for the 2.45

hz. mode with the three-impulse sequence designed for the 6.4 hz. mode. The result-
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Figure 5.9: Response of the hardware system to arbitrary inputs. The solid trace is the
response of the experimental system to a joystick input. In this run the command is not
shaped.
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Figure 5.10: Response of the hardware system to arbitrary inputs. The solid trace is
the response of the experimental system to a joystick input shaped with a three-impulse
sequence. The shaped command is shown with a short-dashed line. Note the time delay

is one period of the system.
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ing nine-impulse sequence was slightly longer than necessary. The shortest sequences
are generated using a nonlinear equation solving routine (Chapter 3 and section 4.6),

however, for simplicity, the convolution approach was used in this experiment.

5.2.4 Negative Impulses — Shorter Sequences

Figure 5.16 shows the effect of using a shorter sequence for shaping the system input
to the single beam system. A negative sequence (shown in figure 5.15) .27 seconds in
length was used to shape inputs to the single-mode system. The use of this sequence
saved 30% in the shaping delay time. The sequence was generated by convolving two of
the negative sequences shown in figure 4.28 together in order to form a robust sequence.
(Alternatively, the equations presented in chapter 4 could have been solved for a similar
sequence.) Figure 5.17 shows hardware vibration measurements as the sequence design
frequency is varied away from the natural frequency of the system. This curve is shown
on top of the theoretical vibration error curve for a three-impulse sequence. Note that
the negative sequence was designed so that it would meet the same robustness constraints

as the three-impulse sequence.

5.2.5 Sequences that Meet Multiple Constraints

Section 3.4 presented a formulation for including additional constraints in generating
sequences so that more robustness could be obtained. This section discusses the imple-
mentation of such a sequence on the MIT Flexible Test Machine. The sequence that
was developed was intended to be robust over a braod range (between one and five
hertz). The vibration error and derivative were set to zero at 1.5 hertz and 3.5 hertz.
The vibration error, only, was set to zero at 2.45 hertz. The sequence that is shown
in figure 5.19 was generated by convolving three individual sequences that each satisfy

one of the above-mentioned constraints. This method was more costly in terms of time
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Figure 5.11: Sketch of the two-beam setup that was used for the multiple-mode hardware
experiments.
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Figure 5.12: The two beam system commanded with an unshaped step input. This plot
is for comparison with the next three figures.
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Figure 5.13: The two beam system shaped to remove just one mode. The top plot
shows the response with just the low frequency mode removed. The bottom plot shows
the response with just the high frequency mode removed. The setpoint to the shaping
routine is a step to .6 radians. The dashed line is the signal (after shaping) that is sent
to the servo.
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Figure 5.14: The two beam system shaped to remove both modes. The setpoint to the
shaping routine is a step to .6 radians. The dashed line is the signal (after shaping) that
1s sent to the servo.
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Figure 5.15: A shorter, negative sequence is designed for the single-beam system. This
sequence is compared to the three-impulse sequence. Both sequences meet the same
mathematical constraints. The negative sequence saves time at the expense of actuator

effort.
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Figure 5.16: The single beam system is commanded with a shorter sequence. The
sequence is shortened by using both positive and negative impulses. The setpoint to the
shaping routine is a step to .6 radians. The dashed line is the signal (after shaping) that
is sent to the servo.
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Figure 5.17: Comparison of hardware vibration error vs system natural frequency to
theory (negative impulse sequence). The negative impulse sequence shown in figure 5.15
was used to shape inputs to the hardware system. The robustness curve is compared to
that of the three-impulse sequence to show that the same constraints are satisfied.
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Figure 5.18: Negative sequence effect on joystick inputs. The solid trace is the response
of the experimental system to a joystick input shaped with the negative impulse sequence
shown in 5.15. The shaped command is shown with a short-dashed line. Note the time
delay is two-thirds of one period of the system. The joystick input is the same as that
used in figure 5.9
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Figure 5.19: Top: Eighteen impulse sequence used for shaping inputs to the MIT Flexible
Test Machine. This sequence was generated by convolving a three-impulse sequence
designed for 3.5 hz; a two-impulse sequence designed for 2.45 hz; and a three-impulse
sequence designed for 1.5 hz. The resulting sequence is long, however, it is robust for

large frequency changes in the system. Bottom: A plot of vibration error as a function
of system natural frequency.
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Evaluation of the Time Domain

Shaping Method

Chapter 6

6.1 Introduction

The technique presented in the previous chapter essentially results in a finite impulse
response (FIR) filter. These filters, however, are unlike filters produced by conventional
design methods because they are not designed exclusively in the frequency domain. The
constraint equations that were used to derive the filters are essentially time domain
constraints. The impulse sequences can be considered “notch” filters in a decaying
sinusoidal domain — Just as a frequency notch filter removes a range of frequency
components from a signal, the new sequences remove a range of decaying sinusoidal
responses. This effect makes them particularly useful for preshaping signals to vibratory
mechanical systems.

Three criteria will be used to evaluate the various techniques. First, the impulse
response duration is important. The time required for the system to complete a move
depends on the duration of the impulse response. The impulse response is a lower bound

on the move time. If the shaping technique were perfect, the system would make any
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requested move with a fixed time penalty of the length of the filter’s impulse response.
The second criterion is a measure of the residual vibration after the filter (or shaping
method) is finished. The third criterion is the robustness of the shaping technique to

uncertainties in the system.

6.1.1 Tests Performed

In this chapter, each of the filters described will be used to shape the inputs to a simple
harmonic oscillator with one natural frequency (set to be one hertz). In order to evaluate
the various filters, two plots will be used. Two step responses will be shown for each
filter. One is the response of the test system when it has the exact natural frequency
that was assumed during the filter design process. The second is the step response of
the test system when its natural frequency is set 15% lower than expected. 15% was
chosen so that the robustness comparison is made when a significant, but realistic error is
induced. The frequency is lower than expected in order to fairly evaluate lowpass filters.
Lowpass filters, by definition work better as the frequency of the system is increased.
However, a significant time penalty is incurred by making the cutoff frequency of the
lowpass filter too low. Therefore, there is an incentive to make the filter cutoff as high
as possible, thus overestimates of the natural frequency will be most common. The
results of this section will show that lowpass filters perform significantly worse than
notch filters, therefore, this tradeoff will not be an issue. Both systems have no damping
so that two quantities can be observed — the time at which the filter finishes, and the
residual vibration amplitude. Damping is removed in order to isolate the performance
of the filters.

This chapter will demonstrate that filters designed in the frequency domain will
result in large move time penalties and/or significant residual vibration compared to

moves performed using the shaping methods of chapter 3 and 4. Systematically, a range
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of filter types will be addressed.

In the following sections, results obtained using a series of filtering techniques are
presented as step response plots. The added lines on the plots indicate the performance
specifications that are tabulated in the summary. On the left-hand axis the residual
vibration for a system that has the expected natural frequency (exact) is expressed as
a percentage of the move distance. The two lines indicate the absolute magnitude of
the residual vibration for this response (the solid curve). On the right-hand axis the
residual vibration for a system that has a natural frequency that is 15% lower than
expected s expressed as a percentage of the move distance. The two lines on this side
indicate the absolute magnitude of the residual vibration for this response (the dotted
curve). For both responses, the filter “ends” at the time indicated by the open circle on
the axis. The “end” of the filter was determined as the time at which the filter output
stays within 5% of its steady-state final value. The residual vibration is the magnitude
of the oscillation after this time. For some of the filters, the end time is longer than
the 10 second window shown and is, therefore, off the graph. This situation is indicated

with an arrow next to the circle.

6.1.2 Three-Impulse Sequence

Figure 6.1 shows a step response of a system whose input is shaped with a three-impulse
sequence. Two responses are shown. The first, in black, shows the response of a system
that has the natural frequency that was expected in designing the shaping sequence.
The second response, in gray, is that of a system with a natural frequency 15% lower
than the design frequency. Note that for a significant error in the system parameters,

very little vibration penalty is incurred.
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6.1.3 Four-Impulse Sequence

Figure 6.1 shows a step response of a system whose input is shaped with a four-impulse
sequence. Two responses are shown. The first, in black, shows the response of a system
that has the natural frequency that was expected in designing the shaping sequence.
The second response, in gray, is that of a system with a natural frequency 15% lower
than the design frequency. Note that the four-impulse sequence results in less residual
vibration for the same amount of error in the system natural frequency (as compared to
the three-impulse sequence). The response time, however, is longer for the four-impulse

sequence.

6.2 Lowpass Filters

6.2.1 Ideal Lowpass Filters

Ideal lowpass filters have the rectangular magnitude of freqeuncy response shown in fig-
ure 6.2. This ideal filter is physically unrealizable because the impulse response continues
indefinitely. Truncation of the impulse response limits the desired frequency response
by what is referred to as Gibbs Phenomenon [105] (pp. 239-41). Figure 6.2 shows a

comparison of an ideal lowpass filter to a typical realizable lowpass filter.

6.2.2 FIR Lowpass Filters

The ideal lowpass filter has an infinitely long impulse response which decays slowly.
In order to shorten the time response of the ideal lowpass, some form of truncation is
used. This truncation process is the basis for many FIR filter design techniques. The
truncation process (windowing) can not be made abrupt because the frequency response
will be corrupted (the Gibbs Phenomenon). First, a common Hamming window will be

used to truncate the ideal lowpass filter. Figure 6.3 shows the performance of a lowpass
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Figure 6.1: Comparison of responses of a simulated simple harmonic oscillator (SHO) to
a unit step input passed to the system through various filters. Two responses are shown
for each. The solid line is the response of an SHO with the exact natural frequency that
was assumed during the design of the filters. The dashed line is the response of an SHO
with a natural frequency that is 15% lower than the natural frequency used for the filter
design. The residual vibration amplitude is marked on the axes. The time duration of
each filter is marked with an open circle. T, is the vibrational period of the SHO system.
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Figure 6.2: Ideal lowpass filter magnitude compared to a typical realizable lowpass filter.

In this case the solid line is an FIR lowpass designed using a Hamming window.

filter designed using a Hamming window with a time duration of three system periods
[105]. Figure 6.3 shows the performance for a longer filter (five system periods) designed
with a Hamming window. These figures demonstrate that the filter length needs to
be large compared to the period of system oscillation in order to achieve a reasonable
response.

Figure 6.3 shows that the 5-second Hamming-windowed lowpass filter generates a
step response with little vibration when the system is known. The drawback is that the
time penalty is 5 seconds (or 60% longer than the three-impulse filter). An additional
drawback is that there is little robustness. When the system natural frequency is lowered
by 15%, a large, 30% residual vibration is incurred. The system response to the shorter,
3-second Hamming-windowed lowpass filter has considerably more vibration than either
the 5 second version or the three-impulse sequence. Note that since both Hamming-
window lowpass filters are true lowpass filters, if the system frequency is higher than
expected, the vibration is always reduced. It is often suggested .at this feature be

exploited by setting the filter frequency significantly below the actual resonance. The
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problem with this approach is that as the frequency of the filter is lowered, the time

required for the filter sequence increases.

6.2.3 Parks-McClellan FIR Lowpass Filters

Next, FIR lowpass filters were designed using the Parks-McClellan-Rabiner technique
[107]. The computation was performed with the original Remez exchange design program
written by Parks and McClellan [107]. The highest possible filter length that double
precision arithmetic allowed was used. Therefore, the filters in this paper are near the
performance limit of Parks-McClellan designs and are computationally expensive. A 256
point FIR Filter was designed using the Parks-McClellan-Rabiner Algorithm. The filter
was constrained to have a one system period time duration — the same time duration as
the equivalent three-impulse shaping sequence. This filter was designed with a passband
at 80% of the anticipated natural frequency, and a stopband at 95% of the anticipated
natural frequency. Figure 6.3 demonstrates the effect of using this filter on the example
system described above.

Note that the Parks-McClellan lowpass filter ends after 3 seconds. This was part of
the design specifications. However, because the filter duration is short, the performance
of this filter is poor. It performs better than the 3 second Hamming-windowed filter
because the Parks-McClellan algorithm uses an optimality criterion to determine the
filter coeflicients while the Hamming technique does not. Even when the system is

exact, a large, 14% residual vibration resulted.

6.2.4 Infinite Impulse Response Lowpass Filters

Oppenheim and Schafer [105] note that FIR filters provide greater “flexibility in the
attainable filter response”. However, infinite impulse response (IIR) filters are extremely

common, therefore, they will be considered. IIR filters are limited because they must
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Figure 6.3: Comparison of responses of a simulated simple harmonic oscillator (SHO) to
a unit step input passed to the system through various filters. Two responses are shown
for each. The solid line is the response of an SHO with the exact natural frequency that
was assumed during the design of the filters. The dashed line is the response of an SHO
with a natural frequency that is 15% lower than the natural frequency used for the filter
design. The residual vibration amplitude is marked on the axes. The time duration of
each filter is marked with an open circle. T, is the vibrational period of the SHO system.



6.3: Notch Filters 139

have poles and therefore, contain integration dynamics. Three common IIR filters will be
examined — Butterworth, Chebyshev, and elliptic. The Butterworth and Chebyschev
filters were designed with a passband at 70% of the anticipated natural frequency, and
a stopband at 95% of the anticipated natural frequency. The Chebyschev filter had
2db ripple and 50db attenuation in the stopband. The elliptic filter was designed with a
stopband at the anticipated natural frequency, and a passband at 70% of the anticipated
natural frequency with 10 db ripple and 30db attenuation.

Figure 6.4 compare the system responses of the Butterworth, Chebyshev, and elliptic
IIR filters. Large time and vibration penalties are incurred by using these filters. The
time duration of the IIR filters was measured as the time at which the filter response has
decayed to within 2% of its final value. These IIR Lowpass filters all have less residual
vibration than the FIR lowpass filters. However, the time durations are considerably
longer. The Butterworth filter had the shortest time duration of ~ 5.8 seconds and a

reasonably small residual vibration.

6.3 Notch Filters

6.3.1 Ideal Notch Filters

Ideal notch filters, like ideal lowpass filters, are not realizable. Figure 6.5 shows a

comparison of an ideal notch filter to a typical realizable notch filter.

6.3.2 Hamming Window Notch Filter

A Hamming window can be applied to an ideal notch filter in the same manner as it
was applied to the lowpass filter. The windowing process produces realizable filters
with frequency responses close to that of the ideal filter. First, the ideal notch impulse

response is determined. Next, the coefficients of the impulse response are multiplied
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Figure 6.4: Comparison of responses of a simulated simple harmonic oscillator (SHO) to
a unit step input passed to the system through various filters. Two responses are shown
for each. The solid line is the response of an SHO with the exact natural frequency that
was assumed during the design of the filters. The dashed line is the response of an SHO
with a natural frequency that is 15% lower than the natural frequency used for the filter
design. The residual vibration amplitude is marked on the axes. The time duration of
each filter is marked with an open circle. T, is the vibrational period of the SHO system.
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Figure 6.5: Ideal notch filter magnitude compared to a realizable notch filter. In this
example the realizable filter is a Parks-McClellan notch filter.
by the values of the Hamming window. Figure 6.6 shows the effect of the applying
a 5 period window to an ideal notch filter. The center of the notch is at the natural
frequency of the system. The notch extends +20% about the center frequency.

The hamming-windowed notch filter performed poorly. Even though it had a rela-

tively long, 5 second duration, it resulted in a 32% residual vibration.

6.3.3 Parks-McClellan Notch Filters

FIR notch filters were also designed using the Parks-McClellan-Rabiner algorithm. A 256
point Parks-McClellan FIR filter is used for the comparisons. The filter was constrained
to have the same time duration as the three-impulse shaping sequence (one system
period). This filter was designed with a passband of +20% about the anticipated natural
frequency, and a stopband of +5% about the anticipated natural frequency. Figure 6.6
shows the results of using this filter on a test system. The Parks-McClellan FIR design
technique has no capabilities of modeling the decaying sinusoidal response of the system
so this information can not be included in the filter derivation.

The Parks-McClellan notch filter performed the best of any of the filters shown
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(except for the three- and four-impulse filters). The drawback of this filter is that a 256
point sequence was used. This filter is virtually impossible to implement-in real time
because 256 multiplies and additions must be performed at each time step. Chapter 5
implements a Parks-McClellan that is 5 points long (the most that could be run at a 1
Khz servo rate is &~ 10). As the filter length is shortened, the performance of the filter
degrades.

The reason that the Parks-McClellan algorithm does not produce the three- or four-
impulse filters is because the Parks-McClellan algorithm spaces the points (the impulses)
out at even intervals in time. The three- and four-impulse filters are successful because
the timing of the impulses is carefully chosen (or in the case of digital systems, more
pulses are included to compensate for the lack of precise timing). Additionally, the
shaping sequences generated in chapters 3 and 4 for damped systems are not linear

phase FIR filters while Parks-McClellan produces only linear phase filters.

6.3.4 Infinite Impulse Response Notch Filters

Figure 6.7 compares the system responses of the Butterworth, Chebyshev, and ellip-
tic IIR notch filters. These filters were designed with a passband of 330% about the
anticipated natural frequency, and a stopband of £20% about the anticipated natural
frequency. Large time and vibration penalties are incurred by using these filters. They

performed poorly in this application.

6.4 Summary

Table 6.1 compares some benchmarks for the simulations shown in the series of fig-
ures 6.1 through 6.7 . Three values are listed for each of the filtered systems which were
commanded with a step input. The time duration of the filter is the number of system

periods required for the output of the filter (which is the input to the system) to settle
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Figure 6.6: Comparison of responses of a simulated simple harmonic oscillator (SHO) to
a unit step input passed to the system through various filters. Two responses are shown
for each. The solid line is the response of an SHO with the exact natural frequency that
was assumed during the design of the filters. The dashed line is the response of an SHO
with a natural frequency that is 15% lower than the natural frequency used for the filter
design. The residual vibration amplitude is marked on the axes. The time duration of
each filter is marked with an open circle. T, is the vibrational period of the SHO system.
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Figure 6.7: Comparison of responses of a simulated simple harmonic oscillator (SHO) to
a unit step input passed to the system through various filters. Two responses are shown
for each. The solid line is the response of an SHO with the exact natural frequency that
was assumed during the design of the filters. The dashed line is the response of an SHO
with a natural frequency that is 15% lower than the natural frequency used for the filter
design. The residual vibration amplitude is marked on the axes. The time duration of
each filter is marked with an open circle. T, is the vibrational period of the SHO system.
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to within 2% of its steady state value. The vibration amplitude benchmarks are the
amount of residual vibration that remains in the system expressed as a percentage of

the move distance.

6.5 Conclusion

A comparison of the performance of a new shaping method to a variety of filters demon-
strates that frequency domain filter design techniques are less effective for shaping
vibration-reducing inputs to systems. The three and four impulse shaping sequence are
shown to offer significant performance advantages in that moves require less time, and
result in little or no residual vibration. In addition, the response is robust to variations

in the system parameters.
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Filter Duration Vibration
(cycles) | Exact | 15% Low

Three Impulse Sequence 1.00 0.0% 10%
Four Impulse Sequence 1.5 0.0% 3%

Hamming Window Lowpass (short) 2.46 20% 54%
Hamming Window Lowpass (Long 3.54 2.0% 30%
Parks-McClellan Lowpass 1.00 28% 57%
Butterworth Lowpass 5.61 2.0% 11%
Chebyschev Lowpass 8.90 7.2% 13%
Elliptical Lowpass 8.50 6.9% 5.4%
Hamming Window Notch 3.93 329%, 73%
Parks-McClellan Notch 1.00 7.8% 18%
Butterworth Notch >10.0 16% 18%
Chebyschev Notch >10.0 36% 44%
Elliptical Notch >10.0 17% 239,

Table 6.1: Summary of the comparison of the filters examined in this paper. The first
number is the duration of the filter expressed in terms of the number of system cycles of
vibration. The next two columns are the residual vibration expressed as a percentage of
the move distance. The middle column is for a system with a natural frequency that is
exactly the frequency that was used for the filter design. The last column is the residual
vibration percentage for a system that has a natural frequency that is 15% lower than

expected.



Literature Review

Chapter 7

7.1 Control of Flexible Systems

Several articles have been written on the topic of modeling and control of flexible systems.
Balas [9] provides an excellent survey of this literature. Dubowsky [40] discusses the
problems that need to be addressed in several fields of robotics. Nurre [103] surveyed the
aerospace literature by examining the dynamics and control of large space structures.
The next few sections present a moderately detailed discussion of the flexible system

literature.

7.1.1 Modeling Flexible Systems

The first step toward controlling flexibles systems is developing the tools to generate
good models. The models for flexible systems tend to be highly complex. Machines
that are modeled by continuous structural elements that move through space lead to
highly-coupled, nonlinear equations.

Many researchers have generated models of flexible systems and some have applied
standard control approaches to the equations that resulted. Some examples are [1,

10,11,26,129,62,69,65,76,79,96,102,111,114,37,140]. The work of Truckenbrodt [132] is
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noteworthy because of the experimental verification that is included. Bremer [25] and
Barraco [13] compare different modeling approaches. Book [20,22,30] has presented a
series of formulations for simplifying the generation of flexible models. Computer meth-
ods for symbolic equation generation have also been investigated [30,50]. Eppinger [44]

shows what aspects of flexible plant models are important to consider.

7.1.2 Vibration Reduction

Robot vibration reduction research efforts can be classified into seven distinct approaches.
Several of these techniques apply to existing robots while others involve redesign of the
manipulator.

The first approach is to add structural damping or passive vibration absorbers to
the manipulator. The goal of this is to make the structure damped to the extent that
structural vibration can be ignored in the control strategy. Ideally, inputs would excite
vibrations which would decay in magnitude fast enough so that the task of the robot
would not be significantly delayed. Several researchers are investigating the use of piezo-
resistive films or elements which apply bending moments to the beam so as to resist the
beam’s motion [3,35,36,46,51,91,22,8,131]. Passive vibration absorption techniques have
been extensively studied in the literature [60,91,106]. Damping is often difficult to add to
systems. Active damping schemes have had limited success because of energy dissipation
restrictions.

The second approach is to directly measure the absolute position of the endpoint of
the manipulator. This position measurement can then be used in a conventional feed-
back loop to control out endpoint vibration such as in many of the works of Cannon
[121,27,28,22,21,23,38,39,73,120,119]. This technique involves addressing the technical
issues of noncollocated control. In addition, noise-free measurement of endpoint loca-

tion without interfering with the robot’s task is a difficult problem. Yurkovich [141,72]
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and Chalhoub [31] have examined the use of endpoint acceleration feedback to damp
vibrational response.

The third approach is to obtain a direct measurement of the modal response of the
robot. This research direction requires addressing two major problems. The first is
developing a method for measuring the vibration in a robot link. Some researchers
have used distributed strain gages to measure the structural bending in each link [36,
8,110]. However, this approach must address noise issues. The second is developing
a computational technique for distinguishing the different modes in the overall link
deflection. Once the modal information is available, several approaches can be taken.
For example, a control loop can be closed around each distinguished mode in order
to .dd damping or to actively drive the axes in a manner which reduces vibration
[10,11]). Many papers have examined the use of conventional feedback for the control of
a measured vibrational state. Some examples are [9,22,28,29,46,52,67,70,75,78,81,100]
Optimal feedback approaches have also been examined, for example, [24,52,82,94,115,
120,135,136,139]. Eldred [43] and Schaechter [116] control the shape of a beam using
several actuators and feedback techniques. A good example of work which synthesises
several approaches of feedback and feedforward is Pfeiffer [L09].

The fourth approach is to use additional actuators to damp structural vibration.
Some researchers have examined the use of lumped-actuators {141,110,83,142]. Others
have examined distributed actuators {36,35,91,90] which are placed around the structure
in order to damp vibrations throughout the system.

The fifth approach is to use a small positioner (micro-manipulator) at the endpoint
of the large manipulator [57]. The small positioner would have a much higher bandwidth
than the large robot. Therefore, the small manipulator would be able to compensate
for small amplitude vibration in the large manipulator. This requires that the endpoint
position or relative position be measurable so that it may be used as the set point for

the micro positioner. In this configuration, the robot vibration would be treated as a
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disturbance to the fine positioner. One difficult problem with this approach is that the
compensating action of the fine positioner is necessarily at the exciting frequency of the
manipulator, therefore, the micro positioner can excite the system, eventually driving
the system unstable.

The sixth approach is to use a model of the system in order to generate feedforward
command inputs which give the desired trajectory. Several techniques have been used
for this approach. Some researchers use a linear model to generate trajectories [47].
Others have used an inversion of the nonlinear equations of the system [6]. A detailed
examination of this literature is provided in the next section.

Many of the above have been used in an adaptive formulation in an effort to ex-
tend them to nonlinear and varying systems. Some examples of adaptive formulations

specifically targeted for vibrating systems are [12,41,99,118,119,121,126,134,141].

7.2 Feedforward Command Shaping

7.2.1 Mechanical Systems

There are three aspects of commanding a machine’s motion. The first is the problem of
specifying a path for the robot. There is a great deal of literature on the topic of path
planning and obstacle avoidance which generates desirable paths. Some examples can
be found in [80,42]The second problem is that of specifying an exact trajectory that the
robot can physically be able to follow. Often trajectories are requested that are beyond
the limitations of the machine to reproduce. The third aspect is that of generating
an input command that produces the desired trajectory, without oscillations, on the
machine of interest. The third problem is the one which is addressed in this work and
is referred to as “command shaping”.

Command shaping involves preshaping either motor commands or setpoints so that
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vibration is reduced. This aspect of control is often ignored because it is mistakenly
considered to be useful only for open loop systems. However, if the input shaping
accounts for the vibrational modes of the closed loop plant, then shaped input commands
can be given to the closed loop plant as well. Thus, any of the preshaping techniques
may be readily used as a closed loop technique [88,127].

The earliest form of command preshaping was the use of high-speed cam profiles as
motion templates. These input shapes were generated so as to be continuous throughout
one cycle (ie. the cycloidal cam profile). Their smoothness (continuous derivatives)
reduces vibration by not putting high frequency inputs into the system [117]; however,
these profiles have limited success.

Another early form of setpoint shaping for a one-mode system was the use of posicast
control by O.J.M. Smith [127]. This technique involves breaking a step of a certain
magnitude into two smaller steps, one of which is delayed in time. This results in a
response with a reduced settling time. In effect, superposition of the responses leads
to vibration cancellation. However, this is not generally used because of problems with
robustness. The system that is to be commanded must have only one resonance, be
known exactly, and be very linear for this technique to work. A version of Smith’s
posicast control was developed for moving nonlinear pendulum systems by Jones [59].

Optimal control approaches have been used to generate input profiles for command-
ing vibratory systems. Some examples are [4,17,21,45]. Junkins, Turner, Chun, and
Juang have made considerable progress toward practical solutions of the optimal con-
trol formulation for flexible systems [63,61,33]. Dubowsky and Shiller [42] developed a
method for generating trajectories that a machine can successfully follow. Typically,
a penalty function is selected (for example integral squared error plus some control
penalty). The resulting “optimal” trajectory is obtained in the form of the solution to
the system equations (a model). This input is then given to the system.

Farrenkopf [45] and Swigert [130] demonstrated that velocity and torque shaping
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can be implemented on systems which modally decompose into second order harmonic
oscillators. They showed that inputs in the form of the solutions for the decoupled modes
can be added so as not to excite vibration while moving the system. Their technique
solves for parameters in a template function, therefore, inputs are limited to the form of
the template. These parameters that define the control input are obtained by minimizing
some cost function using an optimal formulation. The drawback of this approach is that
the inputs are difficult to compute and they must be calculated for each move of the
system.

Gupta [49], and Junkins and Turner [63] also included some frequency shaping terms
in the optimal formulation. The derivative of the control input is included in the penalty
function so that, as with cam profiles, the resulting functions are smooth. Several papers
also address the closed loop “optimal” feedback gains which are used in conjunction with
the “optimal” open-loop input. [63,61,33]

There are four drawbacks to these “optimal” approaches. First, computation is
difficult. Each motion of the system requires recomputation of the control. Though the
papers cited above have made major advances toward simplifying this step, it continues
to be extremely difficult or impossible to solve for complex systems.

Second, the penalty function does not explicitly include a direct measure of the sys-
tem vibration. Tracking error is used in the penalty function, therefore, all forms of error
are essentially lumped together — the issue of vibration is not addressed directly. One
side effect is that these approaches penalize residual vibration but allow the system to
vibrate during the move. This leads to a lack of robustness under system uncertainties.
Removing vibrational energy from a system is difficult especially under conditions of
system uncertainty. Techniques that start a move, allowing the system to vibrate and
then expect to remove that vibration later in the move lack robustness to slight param-
eter variations unless the vibration is measured. In addition, vibration is undesirable

during a move as well as at the end.
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Third, the solutions are limited to the domain of continuous functions. This is an
arbitrary constraint which enables the solution of the problem. However, chapter 4
demonstrates that discontinuous functions exist which achieve excellent results. Fourth,
the move time influences the effectiveness of optimal input strategies. Moves of different
length will have different vibration excitation levels.

Another technique is based on the concept of the computed torque approach. The
system is first modeled in detail. This model is then inverted — the desired output
trajectory is specified and the required input needed to generate that trajectory is com-
puted. For linear systems, this might involve dividing the frequency spectrum of the
trajectory by the transfer function of the system, thus obtaining the frequency spectrum
of the input. For nonlinear systems this technique involves inverting the equations for
the model. [5,6,15,47,56,68,125]

Techniques that invert the plant have four problems. First, a trajectory must be
selected. If the trajectory is impossible to follow, the plant inversion fails to give a
usable result. Often a poor trajectory is selected to guarantee that the system can
follow it, thus defeating the purpose of the input [15]. Second, a detailed model of the
system is required. This is a difficult step for machines which are not extremely simple.
Third, the plant inversion is not robust to variations in the system parameters because
no robustness criterion has been included in the calculation. Fourth, this technique
results in large move time penalties because the plant inversion process results in an
acausal input (an input which exists before zero time). In order to use this input, it
must be shifted in time thus increasing the move time.

Another approach to command shaping is the work of Meckl and Seering [84,85,86,
87,88]. They investigated several forms of feedforward command shaping. One approach
they examined is the construction of input functions from either ramped sinusoids or
versine functions. This approach involves adding up harmonics of one of these template

functions. If all harmonics were included, the input would be a time optimal rectangular
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(bang-bang) input function. The harmonics that have significant spectral energy at the
natural frequencies of the system are discarded. The resulting input which is given to
the system approaches the rectangular shape, but does not excite the resonances.

Aspinwall [7] proposed a similar approach which involves creating input functions by
adding harmonics of a sine series. The coefficients of the series are chosen to minimize the
frequency content of the input over a band of frequencies. Unlike Meckl, the coefficients
were not selected to make the sine series approach a rectangular function, therefore, a
large time penalty was incurred.

Wang, Hsia, and Wiederrich [137] proposed yet another approach for creating a
command input that moves a flexible system while reducing the residual vibrations.
They modeled the system in software and designed a PID controller for the plant that
gave a desired response. They then examined the actual input that the controller gave
to the software plant and used this for the real system. Next, they refined this input
(the reference) with an iteration scheme that adds the error signal to the reference in
order to get better tracking of the trajectory. This technique requires accurate modeling
of the system and is not robust to parameter uncertainty. In addition, this technique
has the implicit assumption that a good response can be achieved with a PID controller,
In fact, systems with flexibility can not be given sufficient damping and a reasonable
response time simply by adding a PID controller.

Often, a notch filter is proposed for input signal conditioning. This approach gives
poor results for several reasons. First, a causal (real time) filter distorts the phase
of the resulting signal. This effect is aggravated by lengthening the filter sequence of
digital filters or by increasing the order of analog or recursive filters. Therefore, efforts
to improve the frequency characteristics of a filter result in increased phase distortion.
Also, penalties, such as filter ringing or long move times often result.

Singer and Seering [123] investigated an alternative approach of shaping a time opti-

mal input by acausally filtering out the frequency components near the resonances. This
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has an advantage over notch filtering in that phase distortion and ringing no longer pose
a problem. The drawbacks of this approach [123] are the tradeoffs that must be made
between fidelity in frequency and reduction of the move time.

Prucz [112] investigated a technique called pulse control. This technique involves
pulsing a system at twice the natural frequency with impulse inputs. This technique is

essentially equivalent to repeating the two-impulse input of Chapter 4.

7.2.2 Digital Signal Processing

The shaping techniques of chapter 4 resulted in various FIR filters. A brief summary of
some related digital signal processing (DSP) work is proveded in this section. Some
good general texts that discuss standard FIR filter techniques are Oppenheim and
Schafer [105], and Stearns [128]. The DSP community has investigated many adap-
tive FIR filter formulations. It is likely that these will apply to adaptive versions of the
techniques presented in this thesis. A summary of adaptive filters and equalizers is given
in Mulgrew [93]. |

The field of adaptive antennae arrays is a spacial analog of the vibration-reducing
problem. Fundamental work on adaptive arrays is presented by Monzingo and Miller [92];
and Hudson [58].

Speech enhancement involves strengthening particular frequencies that are present in
a waveform. This field is essentially the inverse problem of vibration reduction. Lim [77)

discusses the problem of speech enhancement.



Conclusion

Chapter 8

8.1 Summary

This document addressed many aspects of shaping commands so that residual system
vibrations are reduced or eliminated. Several techniques for reducing vibrations were
considered. First, the problem was examined in the frequency domain. The frequency
content of input functions was examined. Several techniques for altering this frequency
content were presented. Two main approaches were used. First, smooth gaussian shaped
inputs were generated. Second, Some acausal filtering techniques were considered for
producing template functions that do not have energy content at the resonances.

Next, some software models were developed for benchmark tests so that the vari-
ous techniques could be appropriately compared. A new method for facilitating and
automating equation generation for flexible systems was presented. This made the anal-
ysis and modeling of experimental systems easier. Then, Draper Laboratories’ DRS
Space Shuttle Remote Manipulator model was converted to work on the MIT Artificial
Intelligence Laboratory’s SUN Computers. This model would then serve as a test system
for trying various vibration-reduction techniques and comparing their performances.

Subsequently, a new, time-domain technique was presented. This technique is based
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on the concept of breaking an input into several components and delaying the com-
ponents so that vibrations are canceled. Essentially, vibrating responses are generated
out of phase so that the vibrations cancel. Next, this concept was altered so that it
became feasible for real systems by adding robustness to the technique. Uncertainties
in the natural frequencies of the system are shown to be accommodated by the modified
technique.

Because excellent results were obtained by applying the new method on several dif-
ferent system simulations (including the DRS), the remainder of this document treated
various extensions and applications of the technique. Some examples are shortening the
sequences that are used for shaping inputs, shaping inputs to digital systems, multiple
joint actuation, and straight line motion.

Next, The new technique was compared to a variety of conventional filter formu-
lations. This section demonstrated that the new formulation is far better suited for
eliminating residual vibration in mechanical systems. This chapter helps to clarify the
different effect that the new, time domain constraint equations have on the resulting
filter design.

The new technique for shaping inputs was then verified with hardware experimen-
tation. An instrumented test facility was built so that it resembles “real” machines. A
series of experimental results supported the theories and simulation results presented
throughout the rest of this document.

Lastly, the implications of this technique concerning nonlinear systems was inves-
tigated. The limitations of the shaping were considered, and some modified, heuristic
approaches were presented. For example, systems that quickly saturate in velocity can
be sent shaped velocity inputs. This approach was demonstrated on the DRS model of

the Space Shuttle manipulator.
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8.2 Suggested Work

The success of the new shaping technique has inspired many ideas for future work.
Several of the important directions will be outlined in this section.

The concept of robust signal shaping has only been used as a pre-filter for closed loop
systems. The positive aspect of this configuration is that any controller can be used, the
signal shaping is independent of the controller. An interesting research topic would be
to examine closed-loop implementations of the shaping techniques. One major obstacle
to reformulating this technique in a closed loop form is dealing with the transportation
lag introduced by the prefilter. If a closed-loop formulation were developed, it would
be useful, because not only would the commands result in vibrationless output, but the
control corrections would also be made “vibrationless”.

A second area of research is a more in depth examination of nonlinear systems.
The robustness of the new technique, in its basic form, has been shown to have some
applications to certain nonlinear systems. An interesting follow-up study is to consider
other variations on the shaping approach that can accommodate large shifts in system
frequency.

A third area of research is to try different constraint combinations in the linear
programming formulation of chapter 3. One possibility is to consider a set of constraints
that sample the vibration error expression over a range of frequencies and limits the
error below a threshold. Under this scenario, the vibration error would never have to
be exactly zero at any frequency. This relaxation of constraints could lead to shorter
sequences.

An additional topic of study on nonlinear systems is to determine under what con-
ditions each of the heuristic techniques should be applied. Several techniques were
demonstrated, however, the particular strengths of one technique over another was not

fully considered. For example, the concept of breaking the workspace of the machine
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into several regions and using a different shaping sequence in each region was not fully
explored. Techniques for “softening” the transition between sequences would be benefi-
cial.

Chapter 4 has shown that the impulse sequences can be made arbitrarily short.
However, a design strategy should be developed for taking full advantage of the sequence
shortening. Actuator limitations and other performance constraints will have to be
considered in determining the shortest sequence for a particular system. This work would
yield some fundamental results regarding the limitations of how short the sequences can
be made.

Another related topic that seems to be a rich research area is the development of a
design strategy that capitalizes on the use of input shaping. The input shaping strategies
that were presented can significantly reduce cycle times on machines that are plagued by
structural resonances. However, machines that are currently designed to be extremely
stiff may be able to take advantage of the new shaping techniques. By lightening the
structure of a machine and/or boosting controller gains and actuator output, significant
raw speed improvements can be achieved at the expense of structural vibration. By then
using shaping techniques, the new, higher speed system can be commanded without the

unwanted vibration.



Generating the Equations of

Motion for Flexible Systems

Appendix A

A.1 Introduction

An approach is presented for deriving the equations of motion for systems With con-
tinuous flexible elements. This approach can be applied to any method for deriving
the equations of motion; here both the Lagrangian and Kane [64] formulations are pre-
sented. In the Lagrangian method, this technique simplifies mathematical manipulation
and requires no integrations by parts. For Kane’s method, this technique eliminates the
need to assume mode shapes for continuous members. For both the Lagrangian and
Kane’s methods, partial differential equations with boundary conditions are derived, yet
the complexity of equation generation is reduced to that of a rigid-body problem. This
technique was developed to facilitate computer generation of equations of motions for
flexible systems.

Advances in computational power have enabled the analysis of increasingly complex
dynamic systems. These systems often contain continuous members (such as beams)

which must be modeled. The classical approaches for formulating the equations of
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motion work well for systems of rigid bodies. However, they are difficult to apply to
complex systems that contain both rigid and continuous elements. The modification,
presented here, of the usual approach for formulating equations of motion enables the
accommodation of continuous elements with the ease of lumped-parameter elements.
The equations which result are the exact partial differential equations of the system
of interest and may be solved using any of a variety of numerical algorithms. This
modification can be applied to any formulation for deriving system equations of motion.
It was developed to facilitate the generation by computer programs such as MACSYMA
of differential equations describing flexible systems. However, it also provides advantages
when the equations are generated by hand.

Several approaches are currently used to derive equations for systems with continuous
members. The partial differential equations and boundary conditions can be derived
by expressing the Lagrangian of the system and applying Hamilton’s Principle (the
variational approach)[34]. Hamilton’s Principle requires the use of variational calculus,
and integration by parts of the integral terms. The terms that correspond to the interior
of continuous elements are manipulated in integral form, only to be converted in the last
step to differential form. An alternative to this approach is to assume mode shapes for
the continuous members and apply the rigid-body formulation of Hamilton’s equations.
Terms with mode shape integrals must then be manipulated.

Low and Vidyasagar [79] simplified this process by developing a formulation of La-
grange’s equations for systems that exhibit flexibility. This formulation avoids the need
for rederiving Lagrange’s equations for each case.

Kane's method for generating the equations of motion requires that mode shapes be
assumed in order to accommodate flexible (continuous) elements [64][66]. The limita-
tions of generating only an assumed mode solution from either the variational or Kane
technique are twofold. First, validity of the mode shape assumptions bound the accuracy

of the solution. Second, the spatial integrals of these mode shapes must be calculated.
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The use of mode-shape orthogonality aids with this calculation; however, the process is
not simple.

For the technique described here, it is assumed that each continuous flexible memeber
in a dynamic system is represented by one infinitesimal particle of mass. The resulting
dynamical equations, although incomplete, contain all of the dynamic terms found in the
equations of motion that result when flexible elements are treated as continuous. Subse-
quently, these incomplete equations of motion can be modified to include the dynamics

of the entire continuous element.

A.2 Example

The problem that will be solved as an example is shown in figure A.1. It consists of
a continuous bending beam attached to a cart with mass, M,. An ideal spring (with
constant, K;) and damper (with value, b) are attached from the cart to ground at a
distance, z. An additional spring (with constant, K,) is attached to the other end of
the beam. This spring’s extension is specified by w measured to ground. The beam
can be considered an aggregation of elemental particles denoted by m;. Each particle
is a distance z from the end of the beam attached at the cart. The motion of each
particle is y, measured to the neutral axis of the beam. In this problem, the equations
are simpler if the coordinate y, is chosen relative to ground (so that yo = z). However,
the coordinate y, is chosen to be relative to the mass, M,, because this selection of
coordinates produces an example which raises many of the issues which arise in more

complicated problems.
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Figure A.1: Example problem
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Figure A.2: Analogous example problem.
A.3 Generating a Rigid Particle Analogous System

Step 1 Each continuous element in the problem is replaced by a single particle. This
particle is allowed to exhibit the motion prescribed by the continuum. For example,
if a Bernoulli-Euler beam is being modeled, then the particle can move up or down
perpendicular to the beam; if a Timoshenko beam model is used then the particle has

two independent degrees of freedom — rotation and translation.

Figure A.2 demonstrates this step for the beam example. A Bernoulli-Euler beam is
used, therefore, the beam particle with mass, Am,, can move up or down according to
coordinate y,. The particle can rotate but its rotation is not an independent degree-of-
freedom since the Bernoulli-Euler model couples deflection and rotation. This coupling

is due to the fact that shear deformation and rotational inertia are excluded from the
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model.

Step 2 Assign degrees of freedom to the rest of system. The motion constraints are
those of the system external to the continuum. The continuum does not impose motion

constraints — it supplies only interface forces which are determined in the next step.

In the example, Mass M, has a yet unknown force and moment placed on it by
the beam particles. It can only translate up or down because of the rolling constraint.
Therefore, it is assigned a coordinate, z.

A second degree of freedom is placed at the other end of the continuum on the spring.
It also is subjected to a yet unknown force and a moment because it is connected to the
continuum. Here the geometry of the system allows this point of the system to both
rotate and translate. Therefore, it is assigned two degrees-of-freedom, w and 6,. Note

that it is not subject to the geometric constraints of a continuum particle.

Step 3 Place forces and moments applyed by the continuum on the rest of the system.
This is to enforce the connection of the continuous particle to the rest of the system.
Forces or moments that can not do any work are discarded. Care must be taken to
correctly determine the signs of these forces and moments. Table A.1 gives a consistent
summary of these values for standard continuous elements. The values for more unusual
elements can be determined from basic principles. This calculation is not extra work. In
Kane’s method this calculation is necessary since the method relies on force expressions
to derive the equations. In the Lagrangian technique, an unusual element requires the
calculation of new potential and kinetic energy functions. The derivation of these energy
expressions requires knowledge of the forces within the continuum. The most important

aspect of this step is to generate a consistent sign convention.

Once again, the beam example is considered. The mass, M, is connected to the

continuum by including the force that the continuum exerts on it, F;. The moment



A.4: Lagrangian Approach 166

that the beam exerts on this mass can be ignored because the mass can not rotate,
thus this moment can do no work. Likewise, the spring communicates with the beam
continuum through a force, F; and moment, M, because this location can have both a
rotational and translational degree-of-freedom. Note that the equal but opposite forces
and moments to F;, F3, M, are not explicitly added because they will be automatically
included in the two forces and moments on the neighboring beam particle (represented
as Amy).

The values of these forces and moments for the example are determined as follows:

%y,
Ro= -5 [EI (w] B (A.1)
0 0%y
B = —5- [EI axZ] . (A.2)
0%y,
M, = EI =il (A.3)

Once these steps have been completed, the problem has been fully transformed into
a new, analogous, rigid-particle system. The equations for this new system are now
solved using any standard approach. The next two sections present the solution using

the Lagrangian and Kane approaches respectively.

A.4 Lagrangian Approach

A.4.1 The New Procedure

The common expression for Lagrange’s equations:

d {0 oc
i(5) g = imiaes (A4
is only valid for Lagrangians of the form,
. dEI dﬁn
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It is important to note that in the case when a single rigid particle is used in the place
of the continuous element, the potential energy terms are no longer functions of the

é;. These terms in V become functions of the derivatives of the &;, %_‘- and %—}?. The

Lagrangian in this case becomes:

. a'fl afn 62{1 6257»_ 6{1 %
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In order to apply the calculus of variations to Lagrangians of this new form, La-

grange’s equations must be generalized to:

i a_£ _a_£+_@‘ oL —82 oL —=. ) =1,2 n  (A.5)
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The first two terms are the same as Lagrange’s equations. The last two terms are added

in order to handle the derivative terms that now appear in the Lagrangian. These

equations are essentially the same as those derived in [79]{74].

Step 4 Use the new form of Lagrange’s equations to find the equations of motion for
the analogous rigid body system. First, the values for the kinetic coenergy, T, and the
potential energy, V are determined. This step is essentially the same as that of the
standard variational approach. The kinetic energy term is just the sum of one half
of the particles’ mass multiplied by their respective velocities squared. The potential
terms are the same as in the rigid body case with the addition of terms for the continuous
elements. Table A.1 gives these terms for various continuums. Note that the potential
terms for the continuum all are multiplied by Az. This is important because these
potential energy terms are, in fact, densities. They are integrated in ¢ when using the
standard formulation of Hamilton’s Principle. In this technique, they are not integrated

and are applied at a particle, therefore, they must be multiplied by Axz.

After the Lagrangian is formed, the variational approach is performed in the same

manner as the standard formulation yeilding n equations of motion for the analogous
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system. It is important to note that use of the more general form of Lagrange’s equations
(A.5) requires no more computation than the equations (A.4) applied to a rigid-body
system. Most of the terms in the Lagrangian do not contain the % or the 88—2;}, and
the terms that do contain them are replacing terms that would have contained ¢; if the
system truly were a rigid-body system. Section A.6 presents the process for converting

the resulting equations into the equations for the continuous system.

A.4.2 Example Problem; Variational Approach

For our example, the rigid-body equivalent system is shown in figure A.2 for the elemental
particle at location, .

Step 4.a The independent coordinates are chosen as:

s = 2 (A.6)
2 = ¥ (A7)
s = w (A.8)
€& = 0, (A.9)

Step 4.b The kinetic coenergy, potential energy, and Lagrangian are expressed as:

. 1 dy, dz\® 1 dz\?
T = §Amx (W + %) + §Ma (E) (A].O)
1. (0%,)\" 1, , 1.,
V = EEI (W) Az + §Klz + ilig'w (All)
=T -V (A.12)

Note that V is now a function of %"f— (or %}).
Step 4.c Using the principle of virtual work, the generalized forces, =;, associated with

each degree-of-freedom are determined:

dz
= = F-b— A.
= R-b (A.13)
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=2 = q(z)Az (A.14)
= = —-F (A.15)

Step 4.d Apply the new form of Lagrange’s equations (A.5) for & = z:

d (6L 0 dy,  dz dz
E(a_) = &lAm" (W“L?z?)JFM“E{]

—— = I{lz

o (oL
b?(aT_z) =0 (A.17)

for &, = y.:
73) = wleme ()
a%(maa__;)) Az = 0 (A.18)
2 2 2
7 a(%i)) - o]
for &3 = w:

d (o€
z(a—w) =0

oL
—BTU- = ng
a oL
a_z(a(z—:,f)) =0 (19

L (oL N _
8152 6(32 ) - )

Y
g
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and for &4 = f.:

i(?_',c.) =0
a \ a9,
oL
99,

I7] oL
9z (M%—"‘)) =0 (A20)

oo
62 \3(2%)

dx?

Step 4.e Compiling the equations of motion gives:

0%y, d*z d?z _ 0 0y,
Amz (W + W) + Ma? + [{12 = —55 [E[

Py, d*z 0? 0%y,
LA Nalid —_— = 22
Am, ( 517 + dt2) + 327 [EI 6:1:2] Az q(z)Az (A.22)
0

K2w=8_a:

(‘3"’%}
EIZ% (A.23)
[ Ox? o=l

0%y,
Ox?

0 (A.24)

z=L
The four equations (A.21) - (A.24) are altered according to Section A.6 to yield the

system partial differential equations.

A.5 Kane’s Method Approach

The extension presented in this paper is particularly useful in Kane’s method for three
reasons. First, Kane’s method, until now, could not be used to generate partial dif-
ferential equations for continuous systems (as far as we know). Only assumed-mode
approximate differential equations were previously possible (Kane demonstrates only
this approach [65]). Second, Kane’s method can handle more complex problems than

the Lagrangian technique. Third, Kane’s method is not altered by this extension — the
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same steps are performed and the resulting equations are modified to account for the
system flexibility. The system is specified as a rigid body and rigid particle system
as presented in section A.3. Kane’s method is applied to this system as if it were a
rigid body system and the equations of motion are generated. Section A.6 describes the
method for transforming these lumped-parameter equations into the correct, continuous

form.

A.5.1 Example Problem; Kane’s Method

Step 4.a The particle model (figure A.1) from section A.4.2 is considered. The gener-

alized speeds are selected as:

Uy é (Z—z = Z

Uz 2 % = Yz
U3 é (fi_l: = w
Ug é % = Oe

Step 4.b Next, the velocities of the masses and the points of external force application

are specified:

I,M, A___ IGFe, — IGF0 I Fe = za,
Iyam: = IyFam: = (34 4.)a,

IVFK2 — Isz = way

IvEr = §,a,

Step 4.c , the active forces are specified (See table A.1):

:F]\’1 = —K12a2 (A25)
FK2 = —I(g‘wag (A26)
0 9%y
= —— A.
F1 oz {EI 922 ] . ag ( 27)
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o [ 8%,
F, = %[EI 052] ay (A.28)
z=L
o [ 0%,
Fam, = -3 [Ela—fz] Aza, (A.29)
Fb = —béag (A30)

Step 4.d A partial velocity table is created:

IyMa 1, Fx, , I,Fy , IFy | IyAm, , IyFam: | IyFk, : I F2 | IF,
z a, a, 0 0
Yo 0 a, 0 0
w 0 0 a; 0
. 0 0 0 a

Step 4.e The mass accelerations are calculated from the mass velocities:

IaM“ = Eag (A31)

Tqdms = (3 4+ 4,)a, (A.32)

Step 4.f Then, the inertia forces are determined for each of the m bodies from:

F*% = —Mp, 'afi  (j=1,...,m) (A.33)

Step 4.g These inertia forces are used to form the generalized inertia forces from:

m

Fr =Y 1yB FBi 4 Iy B . TB (r=1,...,n) (A.34)

"
i=1

For this example these are:

Fr = =M%~ Am, (3 +7,) (A.35)
Fy = —-Amg(3445) (A.36)
=0 (A.37)
Fr =0 (A.38)
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Step 4.h Next, the generalized active forces are determined from the p forces, P; by

P

Fo=Y W% Fh+lub .75 (r=1,...,n) (A.39)
j=1
to yield: ]
F, = —Kjz—bs— (% [EI%J - ;%22- [EI%%”} (A.40)
F, = “'a% [El%} Az (A.41)
fo 2ol na
F, = EI‘?j; (A.43)

Step 4.i The equations of motion are assembled according to
F.+F'=0 (r=1,...,n) (A.44)

to yield the same four equations (A.21) - (A.24) as those from the Lagrangian section.

A.6 Completing the Equations of Motion

Once the equations for the analogous rigid particle and body system are derived using
one of the above techniques (or the same extension applied to some other technique), the
equations must be altered to be correct for the continuous system. These » equations
of motion include the natural boundary conditions for the problem. As stated above,
each term that contains a contribution from an elemental particle can be altered into
an equivalent term for the continuous system. Since each particle contributes to the
dynamical equations in the same way as all the other particles in the continuous member,

superposition can be used to alter the equations.

Step 5 The equations which correspond to continuous coordinates are considered first.

For the example in the paper, equation (A.45) is the only equation of this type. This
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equation was derived in the Lagrangian section as equation (A.22) (following from (A.18)
for { = y;). The same equation (A.45) was derived in the Kane section from (A.36)

and (A.41) which correspond to the partial velocities in the y, direction.

The equations will have terms with differentials (for example, Am, and Az). The
differentials should be divided through and the limit should be taken as the differentials
approach zero. The motivation for this is that y, represents an infinity of coordinates
distributed throughout the continuum. The equations derived for these coordinates
apply at each location in the continuum. The fact that there exists many of these
particles does not alter the local scope of these equations. Example equation (A.22) is

divided by Az and in the limit becomes:

P (02“ + ﬂ) W F [E132y’] = ¢(2) (A.45)

ot " dt* ] " 8z | a2
Step 6 In each of the remaining equations, terms that have no reference to the beam
particles are left unchanged. Terms that contain any of the physical properties of the
continuous particle must be altered. Using the principle of superposition, this particle
represents a series of particles. To correct this term, it should be summed (in practice,
integrated) over the continuum. Differential quantities are converted to densities so that

this integration can be performed.

For the example, only one term in the remaining equations contains a reference to

Py, d*z
Amz ( 0t2 + W)

This differential is converted to p, and the term must be integrated because it refers to

the particle’s mass, Am,:

a series of particles, not to just a single particle. The result is:

L Py, d*z
[ e (—_Bt2 +W) da
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The final set of partial differential equations is:

L (9%, a2 d2z 3 0%y,
fi e (Wd‘”’LEF)“LM“W*KIZ = TE [Ef‘a—} L, A
0%y, d*z 0* %y,
pe (%*W)*T{E’%} = 4@ (A47)
9 0*yz

ng = —ax [EI ax2J L (A48)

0%y, _
T = 0 (A.49)

A.7 Conclusions

A simplified method for obtaining the exact partial differential equations of motion
for systems that contain continuous elements has been presented. This method can
be utilized in conjunction with any standard method for deriving equations of motion
of systems. The technique is particularly useful in Kane’s method because it enables
Kane’s method to be conveniently used on a class of problems that it previously could not
solve without the use of an assumed-mode shape approximation. The most significant
benefit of the technique is that it requires much less mathematical manipulation than

the standard approaches.

A.8 Implementation of Kane’s Method Version in

MACSYMA

Kane’s Method and the new extension to Kane’s method were implemented in MAC-
SYMA in order to automate the equation generating process. The MACSYMA source
code is listed in Appendix B. The built-in MACSYMA functions make the manipulation

of the mathematics simple. Two of the three pages of code which implement the method
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essentially define some vector operations. The last page of code provides functions which
perform each of the basic steps of Kane’s method.

The user performs the following steps:

¢ Define the number of reference frames.

¢ Define the relative rotations of the frames.

o Define the rotation rates of the various frames.

The user needs only supply a definition of each frame with respect to any other
frame. As long as the information provided is sufficient to determine the missing trans-
formations. For example, if there are three frames, a, b, and ¢, the user can define the
transformation of b in a, and the transformation of ¢ in b. The code will automatically
generate the transformation of ¢ in a when the function fill_in_trans_matrix() is
called.

The process continues exactly as it would be performed on paper:

¢ The number of linear and rotary speeds are defined.

o The speeds are defined in terms of the coordinates chosen.

o The number of masses and inertias are specified.

o The masses and inertias are defined in terms of the coordinates chosen.

o The velocity of each mass is specified as a vector quantity using the chosen coor-

dinates.
e The number of forces and torques is specified.
o The force and torque vectors are specified in terms of the coordinates chosen.

e The velocities of the forces and torques are specified.
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o Now the functions of Kane’s method are called in order:

— compute_general_forces(); — computes the generalized forces.

— compute_inertia_forces(); — computes the inertia forces.

— compute_fstar(); — computes the generalized inertia forces.
— compute_equations(); — assembles the equations of motion into variable
“eqn”

The partial velocities never need to be calculated because that step is automatically

performed by the computer. Fortran code (or lisp-like code) output of the equations is

then avail/able as a standard feature of MACSYMA.



MACSYMA Code

Appendix B

This Appendix gives the MACSYMA code that was used to generate the equations

of motion with Kane’s Method. The first file contains the basic function definitions.
/* -%- Mode: Macsyma; -%- %/

remarray(genf,vmpart,vfpart,amass,fstar,eqn);
matchdeclare([coef,dirla,dirib,diric,framel,
dir2a,dir2b,dir2c,frame2] ,true);

defmatch(dyadtest,coef*dy(uvect(diria,dirib,diric,framet),
uvect(dir2a,dir2b,dir2c,frame2)));
defmatch(vecd,coef*uvect(diria,dirib,diric,framel));

uvect(aa,ss,dd,ff): :=buildq([aa,ss,dd,ff,
tem:sqrt(aa“2+ss~2+dd"~2)],
if tem = 0 then 0
else buildq([al:aa/tem,si:ss/tem,dl:dd/tem,f1:£f],
uvect(al,s1,d1,f1)));

vdot(a,b):=al1,1]*b[1,1]+a[1,2]*b[1,2]+al1,3]*b[1,3];

vcross(a,b) :=uvect(al1,2]*b[1,3]-al1,3]*b[1,2],
al1,3]*b[1,1]-al1,1])*b[1,3],
al1,1]*b[1,2]1-a[1,2]*b[1,1],1);

/* This is the top level vector crossing routine

180
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each expression must be in the form of uvect’s */
cross(ex1,ex2) :=block([expl,exp2],
expl:expand(ex1),
exp2:expand(ex2),
if exp1=0 or exp2 =0 then 0 else
if part(exp1,0)="+" then
map (lambda([u],
if part(exp2,0)="+" then
map(lambda([v] ,ncross(v,u)),exp2)
else ncross(u,exp2)),expl)
else if part(exp2,0)="+" then
map(lambda([v] ,ncross(expl,v)),exp2)
else ncross(expl,exp2));

/* This pattern matches the vectors, transforms vectors
to the same coordinate frame, and then calls the

low level vcross function */

ncross(expl,exp2) :=block([pi,p2,coefl],
(if vecd(expl)#false then
(pl:[dirla,dirib,dirlc] .trans[1,framel],
coefl:coef)
else if dyadtest(expl)#false then
(pt:[dir2a,dir2b,dir2c] .trans{1,frame2],
coefl:coef*uvect(dirla,dirib,dirlc,framel))
else error("wrong type of arg to ncross",expl),
if vecd(exp2)#false then
p2:[dirla,dirib,diric] .trans[1,framei]
else if dyadtest(exp2)#false then
(p2:[{diria,dirib,diric] .trans(1,framel],
coef:coef*uvect(dir2a,dir2b,dir2c,frame2))
else error("wrong type of arg to ncross",exp2),
coef*coefi*vcross(pl,p2)));

/* This is the top level vector dotting routine

each expression must be in the form of uvect’s */
dot (ex1,ex2) :=block([expl,exp2],

expl:expand(ex1),

exp2:expand(ex2),

if expl=0 or exp2 =0 then 0 else

if part(exp1,0)="+" then
map (lambda([u],
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if part(exp2,0)="+" then
map (lambda([v],ndot(v,u)),exp2)
else ndot(u,exp2)),expl)
else if part(exp2,0)="+" then
map (lambda([v] ,ndot (expl,v)),exp2)
else ndot(expl,exp2));

ndot (expl,exp2) :=block([p1,p2,coefi],
(if vecd(expi)#false then
(p1:[dirta,dirib,diric] .trans[1,framel],
coefl:coef)
else if dyadtest(expl)#false then
(pt:[dir2a,dir2b,dir2c] .trans[1,frame2],
coefl:coef*uvect(dirla,dirib,diric,framel))
else error("wrong type of arg to ndot",expl),
if vecd(exp2)#false then
p2:[dirla,dirib,diric] .trans[1,framei1]
else if dyadtest(exp2)#false then
(p2:[dirla,dirib,diric] .trans(1,framel],
coef:coef*uvect(dir2a,dir2b,dir2c,frame2))
else error("wrong type of arg to ndot",exp2),
coef*coefi*xvdot(pl,p2)));

vdiff(ex) :=block([exp],
exp:expand(ex),
if part(exp,0)="+" then
vdiff(first(exp))+vdiff (rest(exp))
else if vecd(exp)#false then
if rot[frame1]=0 or subvarp(rot[framei]) then
diff(coef,t)*uvect(diria,dirib,dirlc,framel)

else diff(coef,t)*uvect(diria,dirib,diric,framel)+

cross(rot [framel],exp)
else error('wrong type of arg to vdiff",exp));

vers(th) :=1-cos(th);

rot(k,th) :=matrix([k[1] “2*vers(th)+cos(th),
k[2]*k[1]*vers(th)-k[3]*sin(th),
k[3]*k[1]*vers(th)+k[2]*sin(th)],
[k[1]*k[2] *vers(th)+k[3]*sin(th),
k(2] “2*vers(th)+cos(th),
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k[3]*k[2]*vers(th)-k[1]*sin(th)],
[k[1]*k[3]*vers(th)-k[2]*sin(th),

k[2]*k[3]*vers(th)+k[1]*sin(th),

k[3]“2*vers(th)+cos(th)]);

init_trans_matrix():=(trans:zeromatrix(frames,frames),

trans[1,1]:ident(3));

find(x,n) :=block([m],
if x=[] then error("axis undefined",n) else
if first(rest(first(x)))=n then
(m:first(first(x)),trans[i,n]:scanmap(trigreduce,
trans[1,m].trans[m,n]))
else find(rest(x),n));

fill_in_trans_matrix():=(trans_list:[],
for i:1 thru frames do
for j:2 thru frames do
if trans[i,j]#0 then
trans_list:cons([i,j],trans_list),
for i:2 thru length(trans_list)+1 do
find(trans_list,i));

gentrans(f1,f2,vector,theta):=
trans([f1,f2] :rot(vector,-theta);

vmpart [type,numi,dir,num2]:=

diff (expand(vel_mass[type,numi]),uldir,num2]);

vipart [type,numi,dir,num?2]:=

diff (expand(vel_force[type,numi]) ,uldir,num2]);

rectf(count,icnt) :=(if icnt<= lin_velocities then

(dir:1,
n:icnt)

else
(dir:2,
n:icnt-lin_velocities),

if count=0 then 0 else
(if count <= lin_forces then
(type:1,
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num:count)
else
(type:2,
num:count-lin_forces),
dot(vfpart[type,num,dir,n],force[type,num])
+rectf(count-1,icnt)));

rectfstar(count,icnt) :=(if icnt<= lin_velocities then
(dir:1,
n:icnt)
else
(dir:2,
_ n:icnt-lin_velocities),
if count=0 then 0 else
(if count <= lin_masses then
(type:1,
num:count)
else
(type:2,
num:count-lin_masses),
dot(vmpart[type,num,dir,n],
inertia_force[type,num])
+rectfstar(count-1,icnt)));

compute_general _forces():= (genf:[],
for i:1 thru lin_velocities+rot_velocities
do
genf:endcons(rectf(lin_forces+rot_forces,i),genf));

compute_inertia_forces():=for i:1 thru lin_masses+rot_masses
do (if i<= lin_masses then
(type:1,
inertia_force[type,i]: ‘
-m[type,i]l*vdiff(vel_mass[type,il))
else if i<= lin_masses+rot_masses then
(num:i-lin_masses,
type:2,
ww:vdiff (vel_mass([type,num]),
inertia_force[type,num]:
dot(-ww,
m[type,num])-
(-cross(ww,dot (m[type,num] ,ww)))));
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compute_fstar():= (fstar:[],
for icouat:1 thru lm ulocitimet vclecxnu
do
fstar:endcoas(

rectfstar(lin_massestrot_masses,icount),fstar));

compute_equations() :=(eqn:[],
for icount:1 thru lin_velocities¢rot_velocities
. de
(tup cv(:caup(trw
- subst(sus,sums,fstar{icennt])+
nm(m,m.mﬁmﬂ)} soval),
oqn:endcons(ev(tenp,diff)  eqn)));

kane:true;
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This File uses the functions defined above to generate the equations of motion for

the space craft shown in figure B.1 at the end of this appendix.

/* -%- Mode: Macsyma -*- */
remarray(rot,u,m,vel_mass,vel_force,force);
if kane#true then load("kane-functions.source");
/* example begins here

*/

depends([x1,x2,y,th],t);
depends(y_dir,x_dir) ;

frames:2; /* one is newtonian, one is rotating */
n:1; /* newtonian */
a:2; /* rotating frame a */

init_trans_matrix();

gentrans(n,a,[0,0,1],0); /* initial rotation
of a in n */
/* 0 radians around vector [0,0,1] in n */

/* rot[n] specifies the rotation rate
of frame n as a vector */

rot[a] :diff(th,t)*uvect(0,0,1,n); /* rotation rate of
a frame in n */
/* dth/dt in the [0,0,1] direction */

fill_in_trans_matrix();

/* ul1,n] is the nth linear velocity
ul2,n] is the nth rotary velocity

*/

/* velocities */
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lin_velocities:3; /* dx1/dt dx2/dt dy/dtx*/
rot_velocities:1; /* just dth/dt =/

/* ulx,y] means y’th velocity of the x type */
/* x = 1 linear */
/* x = 2 rotary */

ull,1]:diff(x1,t);

ul1,2]) :diff(x2,t);

ul1,3] :diff(y,t);

ul2,1]:diff(th,t);

/* masses */

lin_masses:2; /% Big Mass plus little mass*/
rot_masses:i; /* inertia of big mass*/

/* m[x,y] means y’th mass of the x type */
/* x = 1 linear */
/* x = 2 rotary */

m[1,1] :ma;

m{1,2] :mb;

m[2,1] :j33*dy(uvect(0,0,1,1) ,uvect(0,0,1,1));

/* vel_mass([x,y] means the velocity */

/* of mass m[x,y] in newtonian */

/* reference frame */

/* uvect(ni,n2,n3,frame) means */

/* a vector in the [n1,n2,n3] direction */

/* in reference frame frame */
vel_mass([1,1]:ul1,1])*uvect(1,0,0,a)+ul1,2]*uvect(0,1,0,2a);
vel_mass(2,1]:ul2,1]*uvect(0,0,1,a);
vel_mass([1,2]:(ul1,1]-u[2,1)*y)*uvect(1,0,0,a)+

(ul1,2]+(b+1)*ul2,1]+ul1,3])*uvect(0,1,0,a);

/* forces */

/* */
lin_forces:2;
rot_forces:1;
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/* vel_force[x,y] means the velocity of */
/* of force acting on [x,y] in newtonian */
/* reference frame */

/* x = 1 linear */

/* x = 2 rotary */

/* lin vel at Q */
vel_force[1,1]:ul1,1]*uvect(1,0,0,a)+(ul1,2] +
b*ul[2,1])*uvect(0,1,0,a);
/* rot vel at Q */
vel_force[2,1]:u[2,1]*uvect(0,0,1,a);
/* lin vel at P */
vel_force[1,2]:(ul1,1]-ul2,1]*y)*uvect(1,0,0,a)+
(ul1,2]+(b+1)*ul2,1]+ul1,3])*uvect(0,1,0,a);

/* force[x,y] is the force acting */
/* on m[x,y] in newtonian */
/* reference frame */

/* lin force at Q*/
force[1,1]):-ei*pdiff(y_dir,x_dir,3,0)*uvect(0,1,0,a);
/* rot torque at Q */
force(2,1]:ei*pdiff(y_dir,x_dir,2,0)*uvect(0,0,1,a);
/* force at P x/
forcel1,2]:-pdiff(ei*pdiff(y_dir,x_dir,2),x_dir,2)*
uvect(0,1,0,a);

compute_general_forces();
compute_inertia_forces();
compute_fstar();
compute_equations() ;

}
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B.1 Lagrange’s Equations in MACSYMA

For reference, The following MACSYMA script for implementing Hamilton’s Principle

is given. The user inputs a T and a V. The equations of motion are returned.

/* -x- Mode: Macsyma -*- */

/* THIS FILE COMPUTES THE EQUATIONS OF MOTION OF A SYSTEM
TS IS THE EXPRESSION FOR THE KINETIC COENERGY
V IS THE EXPRESSION FOR THE POTENTIAL ENERGY
X IS A LIST OF THE VARIABLES IN THE FORM [X1,X2,X3...]
YOU MUST SET DEPENDANCIES OF YOUR VARIABLES WITH TIME
USAGE: DEPENDS(X,T);
TS:1/2*M*DIFF(X,T);
V: 1/2%K*X"2;
LAGRANGE(TS,V, [X]);

NOTE: X IS DECLARED DEPENDENT ON T BUT IS USED AS X NOT
X(T) */

lagrange(ts,v,x):= (depends(x,[t]),
if x#[] then expand(append([lag(ts,v,part(x,1))],
lagrange(ts,v,rest(x))))
else [1);
lag(ts,v,x) :=diff (diff (ts-v, 'diff(x,t)),t)-diff(ts-v,x);
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U

Figure B.1: Spacecraft Example from Thomas Kane’s book, Spacecraft Dynamics
[65]



Characterization of the RMS

Workspace

Appendix C

In order to use the DRS shuttle simulator described in section 2.3 as a test system,
its behavior must be known. First, the system was analyzed in terms of oscillation
frequency. The vibrational data used in this paper were generated by placing the arm in
a position in the workspace, exciting the arm and monitoring the motion of the endpoint.
The excitation was an initial velocity in several of its base joints at ¢ = 0 with the axes
at their set points. This corresponds to an impulse in current (torque) in these joints.

The endpoint vibration in the three principle directions (x,y,and z in the orbiter body
coordinates) was recorded. Each of these three signals was processed by subtracting the
mean value so that there was no DC component to the signal. The data were then
windowed using a cosine taper function [101]. The discrete Fourier transform of this
processed signal yielded the fundamental frequency components of the arm endpoint
vibration in the three orbiter coordinate directions (Figure 2.3). Only the first two modes
were examined for each configuration of the arm and conclusions generated. Figures C.1

and C.2 show two examples of this data.
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Figure C.1: Frequency content of endpoint vibration for the RMS positioned along the
longeron (shoulder yaw at 0°) with a shoulder pitch of 135° and an elbow pitch of —90°.
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Figure C.2: Frequency content of endpoint vibration for the RMS pésitioned perpendic-
ular to the longeron (shoulder yaw at 90°) -with a shoulder pitch of 135° and an elbow
pitch of —90°.
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Figure C.3: The first mode of the RMS as a function of shoulder pitch and elbow pitch.
Shoulder yaw is fixed at 0° (the arm is moving in a vertical plane which includes the
longeron).

Figures C.3, C.4, C.5, and C.6 show a summary of the vibrational characteristics of
the RMS workspace. The lowest first natural frequency observed was .32 hertz when
the arm was fully extended. The lowest second natural frequency was 1.1 hertz. The
highest first mode observed was .8 hertz. The highest second mode observed was 3.2
hertz.

By examining the frequency response data, several patterns become apparent. As the
shoulder yaw axis is moved (for fixed values of all other joint rotations) the frequencies
vary over a ninety degree slice and are axi-symmetric. Therefore the arm has the same
first two modes if it points either toward the tail of the orbiter or toward the nose. The
same holds true for the arm pointing toward the port or the starboard.

The variation of this stiffness as the shoulder yaw axis moves through ninety degrees
stems from the flexibility of the connection of the arm to the shuttle. The longeron to

which the arm is attached is stiffer along its axis. When the arm is pointing along this
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Figure C.4: The second mode of the RMS as a function of shoulder pitch and elbow
pitch. Shoulder yaw is fixed at 0° (the arm is moving in a vertical plane which includes
the longeron).
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Figure C.5: The first mode of the RMS as a function of elbow pitch. The plot is shown
in two dimensions because the frequencies are the same for all values of shoulder pitch.
Shoulder yaw is fixed at 90° (the arm is moving in a vertical plane which is perpendicular
to the longeron).
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Figure C.6: The second mode of the RMS as a function of shoulder pitch and elbow
pitch. Shoulder yaw is fixed at 90° (the arm is moving in a vertical plane which is
perpendicular to the longeron).
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Geometrically Varying Systems

Appendix D

The techniques presented in chapters 3 and 4 were derived for linear systems. Sys-
tems that significantly change vibration characteristics as they change in configuration
are more difficult to command without exciting residual vibration. This appendix will
address some of the issues of generating vibration-reducing commands for systems that
have significant geometry changes. Because each nonlinear system poses its own, unique
set of control difficulties, a truly general formulation is not possible with current tools.
However, several specific nonlinear systems were considered and some conclusions can be
made from these examples. This appendix presents some discussion on how command
shaping applies to four different nonlinear situations. For some, heuristic methods for
shaping commands were presented. The results are heuristic because no general nonlin-
ear system theory exists.

Four types of systems will be considered:

e Systems for which the period of oscillation varies by a relatively small amount.

o Systems that experience large changes in period of oscillation but are velocity
limited and therefore, most of their move is spent saturated at the maximum

velocity.
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Figure D.1: Nonlinear test model used to evaluate various geometrically nonlinear tech-
niques.
e Systems that suddenly change by a significant amount because of a discontinuity

(for example, a manipulator picking up a payload).

e Systems that experience large changes in period of oscillation and spend a relatively

small percentage of the move time at velocity saturation.

The techniques discussed throughout this chapter will be demonstrated on a two
link model system shown in figure D.1. The system model is a full nonlinear simulation
of a rigid link manipulator. The coriolis and centrifugal terms have been retained.
The flexibility of the system is lumped in the joints. Chapter 4 showed some of these

techniques used on the nonlinear shuttle simulator (DRS) with link flexibility.

D.1 Systems with Small Changes in Period

For systems that change oscillation period by a small amount (less than 20% or 30%) the
robust sequences presented above may be acceptable. The robustness of the sequences
accommodates frequency uncertainties or shifts of this amount. The two-link system
shown in figure D.1 was used as a test system. The following parameters were used in
the model:
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o length of link 1 and 2: 1.0
e mass of link 1 and 2: 1.0
e inertia of link 1 and 2: 1.0
e end mass: 12.0

o end mass inertia: 9.0

e spring 1: 50.0

e spring 2: 100.0

Figure D.2 shows a move for which the system changes period of oscillation by approxi-
mately 24% (from .17 hz to .21 hz). The four impulse sequence used to shape the input
signal was fixed for a system of .17 hz fixed frequency. The residual vibration for this
system with no damping is 6.8%. Note that the inherent robustness enables the shaping

to be effective for this significantly nonlinear system.

D.2 Systems that Velocity Saturate

A great many systems that significantly change their vibrational characteristics as they
move are velocity limited. An example of this is the Space shuttle RMS. The 50-foot
long RMS reaches velocity saturation after moving just a few inches. Inputs to these
systems can be shaped just as in chapter 4 as long as the commanded trajectory (before
shaping) accounts for the velocity saturation.

For example, the DRS uses velocity commands. The DRS system is accelerated up to
maximum velocity with a vibration-reducing command. It slews at maximum velocity
and is then decelerated with a vibration-reducing command. The impulse sequence used
for accelerating the system is different from the sequence used to stop the system. Each
is selected for the configuration of the system when it acts on the system. For example,

if the space shuttle arm accelerates when its payload is close the shuttle it may have a
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Figure D.2: Robust shaping with a nonlinear system. A four impulse sequence success-

fully drives the two link system shown in figure D.1. The parameters of the model were
chosen so that the frequency shift is approximately 24%
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frequency of approximately .5 hz. A sequence tuned for .5 hz is used to accelerate the
arm. When the arm is commanded to stop by the operator, it may have a frequency of

.2 hz. A sequence tuned for .2 hz is used to decelerate the arm.

Figure D.3 demonstrates the results of this approach on a highly nonlinear 2 link
system (shown in figure 4.31). The system was altered to make it highly nonlinear. The
following parameters were used:

o length of link 1: 1.0

e length of link 2: 3.0

e mass of link 1 and 2: 1.0
e inertia of link 1 and 2: 1.0
e end mass: 50.0

¢ end mass inertia: 40.0

e spring 1: 0.0

e spring 2: 30.0

These system parameters were chosen so that the two-link system changed from a lin-
earized natural frequency of .48hz to .12hz during the 2 radian move (a factor of 4 change
in frequency). The first (base) spring constant was set to zero so that only one, nonlinear
mode was present. The one mode system demonstrates the vibration-reduction more
7 clearly than a coupled, multiple-mode system.Damping was not included in the example
in order to isolate the effect of the shaping. The residual vibration in this case was only
1.2% of the move distance.

Although these systems significantly change period of oscillation throughout a move,
they do not change much during the acceleration or deceleration phase. For this reason
shaping can readily be applied to these systems by generating a rough “map” of the
frequency shifts. Each time the system is started or stopped, the “map” provides the

estimated frequency which is used to generate the shaping sequence.
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Figure D.3: Shaping inputs to a highly nonlinear system that is velocity limited. The
two link system of figure D.1 was accelerated with one shaping sequence (.48hz) and
decelerated with another (.12hz). The parameters of the model for this test were chosen
so that the natural frequency of the system changed by a factor of four during the move.
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D.3 Discontinuous Systems

Systems that undergo a sudden discontinuity must also be considered. An example of
this is picking up a large payload. If the frequencies of the system are known both
before and after the sudden change, the sequence used for shaping can be changed. This
solution assumes a “quasi-static” approximation to the change can be used. For example,
if the machine moves to a new location, stops, and grasps a heavy object; the frequencies
of the system have suddenly changed. Fortunately, the shaping software can be made
aware that the system has changed and can change the shaping sequences accordingly.
If the ma.chine is significantly accelerating or decelerating during the discontinuity (such
as throwing a ball), some dynamic effects may interfere with the vibration reduction.
Since the “dynamic” payload change situation is specialized and application specific, it

is not discussed in greater detail.

D.4 Quasi-Linear Assumptions

The first requirement for deciding which approach to use for nonlinear systems is to
examine the conditions under which the quasi-linear approximation (use of impulse
sequences for shaping) holds. This section examines how well the three-impulse shaping
sequence works on systems with different degrees of geometric nonlinearity. Figure D.1
shows the geometry of a test system that will be used for this analysis. Two different
sets of parameters were chosen for this model in order to produce two unique systems
from which the results in this section were generated. The full nonlinear model was
simulated and prefiltered inputs were delivered to the two systems. Two types of input
commands, steps, and versines were used to move the systems.

Figures D.4 D.5 and D.6 shows the amount of residual vibration that remains for

various moves of the two different systems. The input is prefiltered with a sequence
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designed for the linearized natural frequency of the system at the starting position of
the move. The graphs of figures D.4, D.5, and D.5 indicate that linear regression seems to
be reasonable method of estimating the residual vibration amplitude as a function of the
frequency shift of the system. The slope of this line seems to depend on the parameters
and type of system. This interesting behavior is one topic of suggested future research

(see section 8.2).

D.5 Quasi-static System Tracking

Another approach to nonlinear systems is that of continuously tracking the oscillation
period of the system with a shaping sequence. This approach involves developing a crude
model of the system natural frequencies. (For example, a rough map of the frequencies
as a function of position of the system). As the system moves, the impulse sequence can
be changed based on the frequency of the system at the current position. This approach
relies on an assumption that the shifts in frequency are “quasi-static”. For many systems
this assumption will hold.

Figure D.7 shows a schematic of this new approach (which will be refered to as the
“tracking sequence” approach). Figure D.8 demonstrates the response of the nonlinear
test system commanded using a tracking shaping sequence. The tradeoff with using
this approach is that each time the shaping sequence is changed, a discontinuity is
introduced in the output. This discontinuity will cause a vibration in the output. The
discontinuities are small if the frequencies of the system have not changed significantly
during the period of time that the filter was fixed. Figure 4.4 shows that the impulse
sequences vary continuously as the frequency of the system changes. In the case of the
continuously changing filter, the discontinuities are minimized. Several systems that
significantly change oscillation period were generated by using different parameters in

the model of figure D.1. All those that were tested using the tracking sequence approach
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Figure D.4: Summary of residual vibration from nonlinear systems. Residual vibration
percentage for the two link system. The top plot is a summary of residual vibration
for a system commanded to step forward by different amounts. The bottom plot is the
same system commanded to step backward.
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Figure D.5: Summary of residual vibration from nonlinear systems. Residual vibration
percentage for the two link system. The top plot is a summary of residual vibration for
a system commanded with different length versine trajectories in the forward direction.
The bottom plot is the same system commanded with versine trajectories in the other
direction.
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Figure D.6: Summary of residual vibration from nonlinear systems. Residual vibration
percentage for a two link system. These results are for a system with drastically different
parameters from that of previous two figures. The top plot is a summary of residual
vibration for a system commanded to step forward by different amounts. The bottom
plot is the same system commanded to step backward.
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Eigenvalues Modulate Shaping

Closed Loop System

Command Output

Feedback

Figure D.7: Schematic diagram of the tracking sequence concept. The linearized eigen-
values were solved as a function of system position. These eigenvalue estimates were
used as a rough frequency estimate for the command shaping.

were moved with reduced vibration. One example is given in figure D.8.

Table D.9 shows a summary of the effectiveness of tracking the frequencies of a two
link, nonlinear simulation. Two types of inputs were used, a short versine input (20
second duration), and a long versine input command (40 second duration).

Five methods were attempted. The first three involved the use of one, stationary
shaping sequence. Table D.9 shows that this approach is effective for reasonably small
frequency shifts of the system. The second approach is to use the tracking-sequence
approach presented in this section. The last approach was to discretize the space into

3 regions and suddenly change the filter as the arm moved from one region to another.
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Figure D.8: Response of two-link system to a tracking shaping sequence. The sequence
that shapes the input is updated during each servo cycle based on a linear estimate of
the system eigenvalues.
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Figure D.9: Summary of the effectiveness of nonlinear system frequency tracking. This
is the summary of some sample results obtained from simulations of a 2-link system.
Two inputs were sent to the system using each of the five strategies. The amplitude was
the amplitude of residual vibration.
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The 3 band approach did not work well because the sudden switching of the filters
induced step discontinuities in the system input. These discontinuities generated residual
vibration in the system.

The results of table D.9 are for a system without any damping, so the results can be
used only for comparison. Real system damping will help eliminate small residual vibra-
tions. In addition, vibrations induced at the end of the move will cause more problem
in a real system than vibrations induced at the beginning of a move. Vibrational energy
induced early in a move dissipates during the motion. These tests do not distinguish

the point at which vibration is induced.
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proach to eleven standard filters. The new technique will be shown to result in less
residual vibration, have better robustness to system parameter uncertainty, and require
less computation than other currently used input shaping techniques.
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