Massachusetts Institute of Technology
Artificial Intelligence Laboratory
and
Center for Biological Information Processing

A.L. Memo 846 August, 1985
C.B.I.P. Memo 014

THE COMPUTATIONAL APPROACH TO VISION AND MOTOR
CONTROL

Ellen C. Hildreth and Johun M. Hollerbach

Abstract. Over the past decade, it has become increasingly clear that to understand
the brain, we must study not only its biochemical and biophysical mechanisms and its
outward perceptual and physical behavior. We also mnust study the brain at a theoretical
level that investigates the computations that are necessary to perform its functions.
The control of movements such as reaching, grasping and manipulating objects requires
complex meochanisms that elaborate information from many sensors and control the
forces generated by a large number of muscles. The act of sceing, which intuitively
secins so simple and effortless, requires information processing whose complexity we are
just beginning to grasp. A compulalional approach to the study of vision and motor
control has evolved within the field of Artificial Intelligence, which inquires directly into
the nature of the information processing that is required to perform complex visual and
motor tasks. This paper discusses a particular view of the computational approach and
its relevance to experimental neuroscience.
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1 Introduction

1.1 The Founding Principles of Artificial Intelligence

The computational approach to vision and motor control is an outgrowth of the field of
Artificial Intelligence, from which the basic tenets are derived (Minsky, 1968). Research
in Artificial Intelligence has two main goals: to develop computei‘ systems that exhibit
intelligent behavior and to understand the nature of intelligence itself. The field is
founded upon two basic principles. The first is to separate the tasks performed by a
complex information processing system from the hardware that carries them out. The
second is to analyze natural intelligent systems through the synthesis of artificial systems
that perform the same tasks.

The birth of computers led to a distinction between a process as specified by soft-
ware and the machinery or hardware that executes the process. Computers over the
decades have been built from a variety of components, including cams, relays, analog
circuitry, transistors and microchips, yet all are capable of performing essentially the
same computations. The thought naturally arises that neurons can be viewed as another
form of computational machinery and that an intelligent process need not be limited
to biological nervous systems, but could in principle be implemented in computers as
well. If intelligent processes can be separated from hardware, then intelligence can be
considered an abstract entity, subject to its own rules, laws and structure, and can be
studied in its own right. These laws are independent of the underlying computational
machinery and reflect fundamental properties of particular information processing tasks.

The birth of computers also presented the opportunity to duplicate an intelligent
process in a machine; this capability has become a fundamental tool of Artificial Intel-
ligence. The synthesis of intelligent processes leads to insights that otherwise cannot
readily be obtained. In laying out a computer program to perform a particular task, all
details must be resolved and hidden assumptions made explicit. Even if the program
never performs the task successfully, the act of carefully specifying the steps of a process
forces a rigorous analysis of the problem. If a theory of how to solve a problem can
be embodied in a computer program, then the theory can be tested by demonstrating
whether the program can solve the problem. The implementation of proposed methods
for solving problems in vision and motor control often exposes important gaps in our
understanding of these problems and sometimes reveals essential features of their solu-
tion that can radically transform our thinking. Thus, machine synthesis adds a critical
hypothesis—and—test loop to the study of intelligent processes and can sometimes lead

to serendipitous discovery.




The attempt to duplicate intelligent processes such as vision and manipulation has
shown how surprisingly difficult these problems are to solve. Biological systems, which
currently provide the only working examples of intelligent behavior, supply useful hints
about solutions to these problems. Accordingly Artificial Intelligence has always in-
cluded as goals an understanding of human intelligence, as well as the development of
intelligent processes that run on a computer.

Artificial Intelligence arose in part from the feeling that the methodologies of exper-
imental psychology and physiology by themselves were limited in their ability to yield
decp insights into the functioning of the human brain. The premise was that one cannot
determine how a complex system works simply by extrapolating from the properties of
its elementary components. It is necessary to have a theory of what the complex system
is trying to do and how it could be doing it, before the elementary components can be
identified and fit together.

The example of bird flight illustrates the difficulty of understanding a complex system
by only making observations on its behavior. Suppose one is interested in how birds fly.
Pulling the feathers off a bird causes the bird not to fly; this observation might lead to
the conclusion that the sccret of flight lies in feathers. Research might then continue
through study of the properties of feathers. In reality, it is argued that bird flight could
not have been understood until the development of aeronautics. Through the attempt
to build a flying machine, a set of physical principles was derived that then shed light on
how birds fly and what role feathers play. In essence, there are many ways of realizing
flight and feathers may just be an implementation detail for birds.

The principle of analyzing a complex system by duplicating its abilities emphasizes
that ideas must work in principle. Hypotheses are sometimes put forth for vision and
motor control that cannot work because they are too vague or are ineffective procedures.
It is often the case that before we can understand how a biological system solves an
information processing problem, we must understand in sufficicnt detail at least one
way that the problem can be solved, whether or not it is a solution for the biological
system. In effect, we may need to be engincers before we can be scientists.

The above suggests that it may be desirable to have available a set of competence
theories before attempting to develop a performance theory. This distinction is borrowed
from Chomsky (1965), who defined a competence theory in natural language as a gram-
mar that generates correct sentences. A performance theory is a competence theory that
generates sentences the way humans do. One is ultimately interested in performance
theories for biological systems, but it may not be possible to develop a performance

theory directly without first having available a number of competence theories. Compe-




tence theories provide bases for understanding a problem, through development of a set
of concepts, principles, and procedures that can be drawn upon in particularizing to a
performance theory. The criticism sometimes made, that computer implementations of
intelligent processes are implausible biological models might be beside the point, insofar
as such implementations may lead to competence theories that teach us more about the
problem.

Developments in many fields contribute towards understanding human intelligence,
and fields like mechanical engineering have emphasized the approach of learning by du-
plicating. What is the unique contribution of Artificial Intelligence that differs from
mathematics, physics, psychology, control theory and engincering? Why did research
in vision, manipulation and robotics arise in Artificial Intelligence laboratories? Com-
puter Science and Artificial Intelligence have contributed a rich set of computational
metaphors that already are entrenched firmly in daily language. There is no longer any
question of whether metaphors such as representations and algorithms are relevant to
understanding cognition or complex information processes. It is sometimes difficult to
distinguish a cognitive scientist or linguist from a researcher in Artificial Intelligence.
In addition, while the knowledge of Newton and Euclid is old, looking at geometry
and physics in a computational framework is new. Vision and motor control studies
place new demands on these arcas and considerations of algorithms and computational
complexity often force a reanalysis of how to formulate a problem.

The ultimate strength of Artificial Intelligence may not lie in its particular method-
ologies of separating algorithm from hardware and synthesizing artificial systems, how-
ever, but in the freedom to approach information processing problems without precon-
ceptions. Artificial Intelligence is a young field and has not yet developed a rigid set
of formalisms or approaches that predispose one towards viewing a problem in a sin-
gle way. Artificial Intelligence research borrows from many fields, and this flexibility
is essential for progress in inherently multidisciplinary undertakings such as the study
of vision and motor control. Artificial Intelligence does not substitute for the neces-
sary and important research in the fields of experimental psychology and neuroscience.
Rather it complements these fields, and through a symbiotic interaction with them, can

facilitate progress in the study of biological systems.

1.2 The Computational Approach to Neuroscience

The computational approach to neuroscience is essentially a top—down approach, em-
phasizing the importance of understanding the detailed nature of the problems posed

by particular information processing tasks. There are at least three specific contribu-




tions that this approach can make. First, by elucidating the problems that need to be
solved in vision and motor control, computational studies can aid the initial exploration
of the function of neurons in the visual and motor pathways. Second, by elucidating
the possible methods by which visual and motor tasks can be accomplished, compu-
tational studies can refine models of how neurons function and by what mechanisms.
Third, computational studies can provide a powerful predictive tool. If a model for the
function of a class of neurons is specified in sufficient detail to be implemented on a
computer, then the behavior of the model can be compared directly with physiological
data in a rigorous manner.

The computational approach to the study of biological systems was elegantly cast
by David Marr into a framework of natural computation (Marr, 1982; Marr and Pog-
gio, 1977), derived from the founding principles of Artificial Intelligence. Marr was
attracted to the field of Artificial Intelligence after experiencing the limitations of tra-
ditional approaches to brain research in his early work on the cerebellar cortex. Marr
had hypothesized a model for cercbellar function as implementing a simple form of as-
sociative memory (Marr, 1969). Yet he abandoned this line of research after realizing
that this simple memory function was useful in a variety of computations, but shed no
light on how complex motor behavior can actually be achieved.

In his later work in computational vision, Marr elucidated three distinct levels of

analysis that are necessary for understanding an information processing problem:

1. A computational theory clarifies what problem is being solved and why, and inves-
tigates the natural constraints that the physical world imposes on the solution to

the problem.

2. An algorithm is a detailed step—by—step procedure that represents one method for

yielding the solution indicated by the theory.

3. An implementation is a physical realization of the algorithm by some mechanism

or hardware.

These levels could be construed as a prescription for conducting research on complex
problems: one first formulates a theory, then proposes an algorithm, and lastly designs

an implementation:

theory => algorithm = mechanism.

In reality, problems are not solved in this rigid manner because constraints exist at

all levels. Relevant experimental data, known properties of the biological machinery,




and the biological feasibility of algorithms must all be taken into account. Instead, the
formula is best considered as a prescription for clear thinking about complex information
processing systems. In essence, the computational approach regards an understanding
of a problem in vision or motor control to be complete only when the problem can be
explained at all three levels. When pursuing a particular line of research, it is essential
to know which level is being addressed.

Thus the computational approach to neuroscience emphasizes the use of all sources
of constraints: external constraints imposed by the task, constraints imposed by the
biological machinery such as limbs and muscles, and constraints imposed by neuronal
computing abilities. For example, the slowness of the proprioceptive feedback loops in
biological motor control makes inapplicable many engineering control theories that rely
on near—instantaneous feedback, although other aspects of modern and classical control
theory are quite useful in analyzing biological motor control. Properties of biological
systems may not only proscribe but also prescribe theories. TFor example, springlike
properties of muscle can suggest mechanisms of trajectory control. Synaptic properties
suggest the basic computational elements out of which algorithms are built (Koch and
Poggio, 1984).

Finally, some problems may lack an available theory or may be so complex that we
must look to biology for clues. It may be that these problems cannot be understood
independently of the biological solution. Ultimately, a deep understanding of vision and
motor control at the three levels of theory, algorithm and implementation, requires a
strong bridge between experimental and theoretical studies of these problems. The flow

of information is therefore in both directions:

theory => algorithm <= mechanism.

The phrase computational approach has also been applied to certain neural modeling
approaches that study how neural networks can operate and how these operations can be
extrapolated to explain higher brain functions. Examples of this approach include the
work on perceptrons (Minsky and Papert, 1969) and parallel “connectionist” networks
(Ballard, 1985), as well as Marr’s original work on the cerebellum. The word computa-
tion in this case refers to the detailed working of the processing hardware rather than
to the algorithm that is executed by the hardware; hence the two approaches differ con-
siderably. Of course an explanation of how the neural machinery operates is necessary
for understanding biological intelligence and eventually algorithms must be couched in
terms of elementary neuronal operations. Koch and Poggio (1984), for example, have

proposed such operations from biophysical studies of dendritic trees, and have suggested




how some low-level vision algorithms could be implemented by networks that execute
these operations. The computational approach described in this chapter stresses the
need to consider both the problems that must be solved by the biolegical system and
the properties of the ncural hardware that implements the necessary computations.
The usefulness of detailed neural modeling for understanding the nature of the com-
putations that are carried out in biological hardware depends in part on the specificity
of the computation performed by the neural circuitry. Suppose a given neural net-
work were capable of performing a general purpose computation, analogous to modern
computers and also, as proposed by Marr, functioned for the cerebellum as mentioned
above. Then it might be impossible to deduce what computations are taking place at
a particular time, simply by recording the output signals of individual neurons. In the
same way, it would be impossible to determine what computations are taking place in a
modern computer, simply by recording voltages in the electronic circuitry. The behav-
ior of the circuits is being analyzed at a level that is inappropriate for understanding
the computations being performed. Suppose on the other hand that the neural network
is closely tied to a particular computation.! Then the pattern of connections between
individual neurons in the network and the electrical signals they carry might provide
useful information about the computation. Even then, it might still be difficult to infer
how the neural code represents information that is useful in the task being performed
and how the computation is distributed over single cells, neuronal clusters, or even

patches of dendritic trees.

1.3 Relation to Other Areas of Artificial Intelligence

Vision, manipulation, and robotics have been among the most successful areas for ex-
ploration by Artificial Intelligence, along with natural language. These areas possess an
advantage over more cognitive domains such as learning, knowledge representation and
reasoning, in that they represent the results of processing by neural mechanisms that
lie close to the periphery. As a result, external constraints of geometry and physics can
be brought to bear, making hypotheses more suitable for implementation and testing.
In cognitive areas, hypotheses are more difficult to detail and to evaluate and there are
fewer constraints on hypothesis formation to guide this research toward clear conclu-
sions. Vision and motor control were chosen as a focus for this chapter, in part because
of the relative success of research in these areas and because their study has established

a strong bridge between Artificial Intelligence and the experimental neurosciences.

!Expressed in modern computer terms, suppose that a particular computation is compiled into special-

purpose clectronic hardware.




On the other hand, it is by no means true that vision and manipulation offer simpler
~ problems than those posed by higher cognitive functions. The ability of lower animals
to see and move, but not to speak or reason, is mislcading if taken as evidence that
vision and motor control are not intelligent processes on par with higher cognition.
Evolution has had millions of years to compile vision and motor control into hardware
and it is easy to underestimate their complexity. After all, a number of the supposed
highest examples of intelligent behavior have been easiest to duplicate, such as chess
playing, symbolic mathematics and logic, whereas vision and motor control have proven
stubbornly difficult. Precisely the most common abilities of humans and animals seem
hardest to understand, and it has been suggested that we will replace mathematicians
before we replace gardeners.

Intelligent behavior requires the connection of perception to action, and it can be
argued that vision and robotics will eventually assist in understanding cognition. The
task of obtaining information about the environment by interpreting sensory data under
noisy and uncertain conditions, and knowledge about the manipulation of objects, must
have strong implications for central representations. Research in vision and robotics
will also need to address higher brain functions, as we begin to ask deeper questions
about problems such as the recognition and manipulation of objects, navigation through
complex environments, learning of visual and motor tasks, and the control of visual

attention.




2 The Study of Vision

This section describes some of the ways in which computational methods strengthen
the study of biological vision. The most important contribution of the computational
approach thus far has been to demonstrate just how difficult it is to solve problems in
vision. Seeing is a deceptively simple task to perform. We open our eyes and suddenly
capture many important aspects of the world — its structure, movement, color, texture,
and so on. But hidden beneath this simple act are complex processes that transform
the visual image into this rich internal description of the world.

A second contribution of the computational approach has been to show how prop-
erties of the physical world constrain the methods required to solve problems in vision.
For example, the general strategies that any visual system uses to extract depth infor-
mation from the two viewpoints given by the left and right eyes depends on the physics
of the projection of surfaces onto the eyes and the structure of physical surfaces. The
strategy used to distinguish whether a change in light intensity is due to a change in
surface reflectance, surface structure or surface illumination, depends in part on the
physics of light.

A third contribution of the computational approach has been to design specific
algorithms to solve problems in vision, and to implement and test these algorithms
with a computer. Such analysis forces a detailed specification of proposed methods
for solution and tests the adequacy of the methods for solving visual problems. The
computer implementation of vision algorithms often uncovers new aspects of a problem
that were not realized in the theoretical analysis, or reveals aspects that were thought
to be easy to solve but in fact turn out to be difficult. The importance of algorithms is
illustrated in this section through examples of specific problems in vision.

At this stage in the study of vision, few compelling examples exist of the potentially
fruitful interaction between computational studies and the experimental neurosciences.
The bridge is only now being formed. Fortunately, there are some problems for which
this interaction has begun to show promise. Two examples discussed in this chapter are
the analysis of visual motion and detection of changes of intensity in the retinal image.?
Section 2.2.2 describes how a computational analysis of motion measurement guided a
physiological study of neurons in the middle temporal area of the extrastriate cortex.
Section 2.3 shows how computational, physiological and psychophysical studies of the

detection of intensity changes are together uncovering the role of some striate cortical

2A third problem for which there has been substantial interaction between computational and experi-
mental studies is binocular stercopsis. Computational, perceptual and physiological studies of stercopsis

are summarized in a review by Poggio and Poggio (1984).




neurons in early visual processing.

2.1 The Representational Structure of Vision

The goal of vision is to determine what is in the world and where. Biological vision
must begin, however, with measurements of the amount of light reflected from surfaces
in the environment onto the eye. The retinal image provided by the photoreceptors
can be thought of as a large array of continuously changing numbers that represent
light intensities, as shown in Figure 1. Irom this array of light measurements, the
visual system does not achieve an understanding of what is seen in a single step. Vision
proceeds in stages, with each stage producing increasingly more useful descriptions
of the world. The process of vision can be viewed as the construction of a series of
representations of visual information, with explicit computation that transforms one
representation into the next.

It is not yet known how biological systems represent visual information, but com-
putational studies have suggested several intermediate representations that are useful
in visual processing (for example, Marr, 1982; Barrow and Tenenbaum, 1978; Horn,
1985). Representations proposed for the early stages of vision capture information that
can be extracted simply and directly from the initial image. Later representions cap-
ture information that is necessary to solve complex tasks such as navigation through
the environment, manipulation of objects, and recognition. Marr (1982) distinguished
three representations called the Primal Sketch, the 2%—D Sketch and the 3-D Model.
The Primal Sketch is a rich description of the changes of intensity in the image, which
correspond to the locations of important physical changes in the scene such as object
boundaries and surface markings. The 2%—D Sketch captures the local geometry or
shape of visible surfaces in the scene, represented as the orientation or depth of sur-
faces at each location in the image. The 3-D Model captures the full three~dimensional
structure of objects in the world, sometimes filling in hidden structure that cannot be
seen. Many familiar visual processes, such as the analysis of movement, binocular stere-
opsis, surface shading, texture and color, can contribute to the computation of these
intermediate visual representations.

Representations such as the Primal Sketch, 2%—-D Sketch and 3—D Model are tools for
focusing the goals of visual computations. They make explicit what information must
be computed in order to solve problems in vision. The choice of which representation to
use is critical in a computational study, as some representations facilitate the solution
to visual problems more than others. As an analogy, arithmetic operations such as

multiplication can be carried out more easily with a representation of numbers as Arabic

10




218 213 215 221 220 217 222 219 218 211 213 220
220 219 217 212 215 214 215 217 211 203 209 219
217 211 214 202 191 185 169 161 149 132 147 221
214 209 180 169 155 141 137 132 127 129 141 218
182 162 156 149 143 139 133 127 123 171 188 217
154 149 141 139 137 141 134 122 142 158 184 219
144 142 137 131 129 127 129 141 161 177 201 222
136 140 145 149 146 137 139 152 160 181 209 216
142 152 153 157 156 149 142 158 163 180 211 214
111 113 151 158 157 155 172 175 179 177 210 216
101 107 158 161 162 168 160 167 170 171 213 219
104 111 152 155 157 172 161 169 180 186 209 220
100 109 157 174 179 189 203 215 217 216 218 219
105 121 187 194 202 209 220 218 216 219 221 223
103 189 199 200 214 217 219 220 218 217 219 220
172 201 202 207 211 212 218 217 221 216 218 222

b.

Figure 1: The light intensitics measured by a digital camera, for the rectangular area outlined
in the image of (a) are shown in (b).
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numerals versus Roman numerals. It is sometimes assumed in computational studies
that vision proceeds sequentially from the image through the Primal Sketch, 2%—D
Sketch and 3-D Model. As vision research progresses, the relationship between these
representations may become more complex.

Studies of biological vision systems have begun to examine what information is
extracted from the changing retinal images. Perceptual studies address how the human
system represents visual information. Examples of studies that address how the human
visual system represents changes of intensity in the image are mentioned briefly in
Section 2.3. At a neural level one should not expect to insert clectrodes at some stage
of the visual pathway and find an explicit representation such as the Primal Sketch or
2%—]) Sketch. Neurons exist that select for movement and depth, but an accurate and
detailed representation of these properties may not exist explicitly in the outputs of a
population of neurons.

The computational study of vision has also addressed several higher level processes,
such as the control of selective visual attention, analysis of spatial relations, recognition
of objects, and the organization of visual memory. While many interesting theoretical
and experimental developments have emerged, the closest interaction between computa-
tional studies and the neurosciences has been in the carly stages of vision. This chapter
focuses on these early stages, which contribute to representations such as the Primal
Sketch and 2%—D Sketch.

2.2 Natural Constraints in Vision

An important aspect of the computational study of a visual task is to elucidate the
physical assumptions necessary to solve the problem. From the changing image that
reaches the eye, the human visual system derives a single, stable interpretation of what
is in the scene, where it is located, and how it changes with time. For most problems
that are solved in the carly stages of vision, however, there is an infinity of possible solu-
tions. To obtain a single interpretation of the image, it is necessary to make assumptions
about the physical world that allow most interpretations to be ruled out, leaving one
that is most plausible from a physical standpoint. The analysis of which assumptions
are most appropriate for a given problem includes insights from physics, mathematics
and perceptual psychology. Although less directly accessible through physiological ex-
periments, the choice of physical assumptions constrains the type of algorithm used to
solve a problem, which in turn constrains the neural mechanisms used to carry out a
computation.

For the early stages of vision that precede recognition, the physical assumptions can
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be general. For example, physical surfaces tend to be solid and locally rigid; points on
a surface occupy a single location in space at each moment; the structure of a surface
usually varies smoothly across the visual ficld and transforms slowly over time. Such
assumptions are essential and often sufficient to solve problems such as the measure-
ment of visual motion and the recovery of three-dimensional structure from binocular
stereopsis and relative movement. This section examines the way in which physical as-
sumptions can be used to formulate some of these problems, in order to obtain a single

interpretation of the visual image.

2.2.1 The recovery of three-dimensional structure from motion

To illustrate the ambiguity that arises in the interpretation of visual information, con-
sider the problem of deriving three-dimensional (3-D) structure from relative move-
ment. When an object moves in space, the motions of individual points on the object
differ in a way that conveys information about its 3—-D structure. Suppose, for example,
that the wireframe object of Figure 2a is rotated about its central vertical axis. Figure
2b shows the result of projecting this object and its movement onto the two—dimensional
(2-D) image.® The arrows represent the projected direction and speed of movement of
individual points on the object. The directions are all horizontal, but the spced of move-
ment varies in a way that depends on the structure of the object. Wallach and O’Connell
(1953) showed that the human visual system can derive the correct 3-D structure of
moving objects from their changing 2-D projection alone. Other perceptual studies
also demonstrated this remarkable ability (for example, Green, 1961; Braunstein, 1962,
1976; Johansson, 1973, 1975; Regan, Beverly and Cynader, 1979; Ullman, 1979).

The recovery of 3-D structure from the changing 2-D image is difficult because
in theory, there are infinitely many combinations of 3-D structure and motion that
could give rise to a given 2-D image. This ambiguity is illustrated with a pattern of
unconnected dots in motion in Figure 3. A set of dots on the surface of a rotating
transparent cylinder are projected onto a 2-D display screen, using an orthographic
projection (Figure 3a). A birds’ eye view of this projection is shown in Figure 3b. When
the dots are projected onto the image, information about their location and movement
in depth is lost. Yet when human subjects view only the 2-D pattern of moving dots,
they derive a vivid impression of the dots lying on a transparent cylinder in rotation.
Clearly, many interpretations are possible. The dots actually lie on the flat plane of the

display screen, but in principle could lie anywhere in depth and undergo any movement -

STor simplicity, an orthographic projection is used, in which points in space are projected in parallel

and in the direction perpendicular to the image plane.
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2 B b.

Figure 2: Deriving three-dimensional structure from two-dimensional motion. (a) Three views
of a 3-D wireframe object that is rotating afgout a central vertical axis. (b) The projected 2-D
image aund motion of the object. The arrowsf represent the projected 2-D velocity of individual
points on the object.

in depfh.- The random field of moving dots shown from a birds’ eye view in Figure 3¢
also gives rise to the same projected 2—D image. How does the human visual system

conclude that the moving dots lie on the surface of a rotating cylinder?

Computational studies have used the assumption of rigidity to derive structure from
motion. These studies assume that if it is possible to interpret a changing 2-D image
as the projection of a rigid 3-D object m motion, then such an interpretation should
be chosen (Ullman, 1979, 1983; Clocksin:? 1980; Prazdny, 1980, 1983; Longuet—}Iiggins,
1981; Longuet-Higgins and Prazdny, 198?1; Tsai and Huang, 1981; Hoffman and Flinch-
baugh, 1982; Bobick, 1983). When the; rigidity assumption is used in this way, the
recovery of structure from motion requi;res the computation of the rigid 3-D objects
that would project onto a given 2-D imafge. The rigidity assumption was suggested by
perceptual studies that described a ten(iency for the human visual system to choose
a rigid interpretation of moving elements (Wallach and O’Copnell 1953; Gibson and
Gibson, 1957; Green, 1961; Johansson, 1975)

Computational studies have shown th‘at it is possible to use the rigidity assumption
to derive a unique 3-D structure from a changing 2-D image. Furthermore, it is possible
to derive this unique 3-D interpretation;by iﬁtegrating image information only over a
limited extent in space and in time. For ]xample, suppose that a rigid object in motion -
is .projected onto the image using the oﬁthogmphic projection illustrated in Figure 3.

Three distinct views of four points on the moving object are sufficient to compute a

unique rigid 3-D structure for the pointsi
|
|

14

(Ullman, 1979). In general, if only two views




R}

(<

— S
D
. T ~

}

s
[
T

Figure 3: The ambiguity of interpreting structure from motion. (a) A set of dots on the surface
of a rotating transparent cylinder are projected onto a 2-D display screen. (b) Birds’ eye view
of the projection of the dots in (a). (¢) A field of randomly moving dots that project to the same
2-D image as the dots shown in (b).
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of the moving points are considered or fewer points are observed, there are multiple rigid
3-D structures consistent with the changing 2-D projection. Suppose that a perspective
projection of objects onto the image is used instead. In this case, two distinct views of 7
points in motion are usually suflicient to compute a unique 3-D structure for the points
(Tsai and Huang, 1981). Other theoretical results regarding the recovery of structure
from motion are summarized in Ullman (1983). These theoretical results are important
for two reasons. First, they show that by using the rigidity assumption, it is possible to
recover a unique structure from motion information alone. Second, they show that it is
possible to recover this structure by integrating image information over a small extent
in space and in time. The second observation could bear on the neural mechanisms
that compute structure from motion — in principle, they need only integrate motion
information over a limited area of the visual field and a limited extent in time.

Computational studies of the recovery of structure from motion also provide al-
gorithms for deriving the structure of moving objects (for example, Ullman, 1979;
Longuet-Higgins, 1981; Tsai and Huang, 1981). Typically, measurements of the po-
sitions or velocities of features in the image give rise to a set of mathematical equations
whose solution represents the desired 3-D structure. The algorithms generally derive
this structure by using motion information that is extracted over a limited area of the
image and a limited extent in time. Testing of these algorithms reveals that although
this strategy is possible in theory, it is not reliable in practice. A small amount of
error in the image measurements can lead to very different (and often incorrect) 3-D
structures (Ullman, 1983, 1984). This suggests that an algorithm for deriving structure
should use image information that is more extended in space or time or both. Percep-
tual studies have indicated that the human visual system also requires an extended time
period to reach an accurate perception of 3-D structure (Wallach and O’Connell, 1953;
White and Mueser, 1960; Green, 1961).

Most methods for recovering structure from motion compute a 3-D structure only
when it is possible to interpret the changing image as the projection of a rigid object in
motion. They otherwise either yield no interpretation of structure or yield a solution
that is incorrect or unstable. Yet the human visual system can derive some sense of
structure for nonrigid objects in motion (Johansson, 1964, 1978; Jansson and Johansson,
1973). Furthermore, displays of rigid objects in motion sometimes give rise to the
perception of a somewhat distorting object (Wallach, Weisz and Adams, 1956; White
and Mueser, 1960; Green, 1961; Braunstein, 1962; Hildreth, 1984). These observations
suggest that while the human visual system tends to choose rigid interpretations of a

changing image, it probably does not use the rigidity assumption in the strict way that
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previous computational studies have suggested.
Ullman (1984) proposed a more flexible method for deriving structure from motion
“that allows both rigid and nonrigid motion to take place. It makes use of the rigidity
assumption, but in a different way from previous studies. The algorithm maintains an
internal model of the structure of a moving object, which consists of the estimated 3-D
coordinates of points on the object. The model is continually updated as new positions
of image features are considered. Initially, it is assumed that the object is flat, if no other
cues to 3-D structure are present. Otherwise, its initial structure may be determined
by other cues available, from binocular stereopsis, shading, texture or perspective. As
each new view of the moving object appears, the algorithm computes a new set of 3-D
coordinates for points on the object. In particular, the algorithm chooses a new set of
coordinates that maximize the rigidity in the transformation from the current model
to the new positions. This is achicved by minimizimg the change in the 3-D distances
between points in the model. Thus the algorithm interprets the changing 2-D image
as the projection of a moving 3-D object that changes as little as possible from one
moment to the next. Through a process of repeatedly considering new views of objects
in motion and updating the current model of their structure, the algorithm builds up
and maintains a 3-D model of the objects. If objects deform over time, the 3-D model
computed by the algorithm also changes over time.
| The method proposed by Ullman (1984) for recovering structure from motion was
motivated in part by the limitations of previous computer algorithms and in part by
knowledge of the human visual system. The method has overcome the limitations of
previous computational studies in two ways. First, it provides a reliable recovery of
structure in the presence of error in the image measurements, by integrating image
information over an extended time period. Second, it allows the interpretation of non-
rigid motions. These are essential qualities for any method that is proposed as a viable
model for the recovery of structure from motion by the human visual system. This
method also has other attributes that are consistent with human perceptual behavior:
(1) it sometimes yields a nonrigid interpretation of rigid structures in motion, (2) a brief
viewing time results in a structure that is “flatter” than the true structure of the object,
(3) it allows a 3-D interpretation of scenes containing as few as two points in motion
(Borjesson and von Hofsten, 1973; Johansson, 1975), and (4) it provides a natural means
for integrating multiple sources of 3-D information. The existence of a detailed model
for recovering structure also allows predictions that could form the basis for further
psychophysical experiments. For example, computer experimentation with this method

shows that the recovery of the structure of rotating objects degrades as their axis of
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rotation is tilted away from the plane of the image (Grzywacz and Hildreth, 1985).
This raises the question of whether the ability of the human visual system to recover
the structure of rotating objects varies with the orientation of the axis of rotation in
space.

This discussion of the structurc—from-motion problem illustrates a number of im-
portant points that also arise in the computational study of other problems in the early
stages of vision. First, a single solution to the problem cannot be obtained from infor-
mation in the image alone; additional constraint is requircd. This is a general aspect
of vision problems that makes them especially difficult to solve. Second, physics and
mathematics can be used to show that a gencral physical assumption such as rigidity
is sufficient to solve the structure-from-motion problem uniquely. Third, an assump-
tion such as rigidity can be incorporated in many ways into an algorithm to recover
structure. The development of a reliable algorithm requires a cycling between com-
puter implementation, testing and refinement. Finally, perceptual studies can suggest
and test particular assumptions and reveal aspects of the algorithm used by the human
visual system for solving a given problem. It is typical of computational studies that
the initial methods proposed for solving a problem only loosely consider the detailed
observations of biological systems. These first studies uncover useful aspects of the
problems. Later studies then combine this knowledge of the problem with observations
of biological systems to derive models that more closely mimic the computations carried
out in biological systems.

To study the neural mechanisms that underly the recovery of structure from motion,
it would be useful to explore the properties of neurons that respond selectively to the
interpreted position or movement in depth of features in monocularly viewed changing
patterns such as those illustrated in IFigures 2 and 3. There exist neurons in area 18
of the cat visual cortex (Cynader and Regan, 1978, 1982) and area V1* of the primate
visual cortex (Poggio and Talbot, 1981) that appear to be selective for direction of
movement in depth. These studies used binocularly viewed moving bars, however, so
they address the interaction between binocular stereopsis and motion measurement for
the recovery of movement in three dimensions, rather than the recovery of structure |

from motion alone.

2.2.2 The measuremeht of visual motion

As a second example of the ambiguity that arises in the interpretation of visual infor-

mation, we examine the problem of measuring movement in the changing 2-D image.

4Arca V1 is also referred to as area 17, striate cortex, or primary visual cortex.
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Consider the computation of the projected 2-D velocity field illustrated in Figure 2b.
Suppose that the movement of features in the image was first detected using operations
that examine only a limited area of the image. For example, movement might be de-
tected by neural mechanisms with spatially limited receptive fields. Such mechanisms
can provide only partial information about the true motion of features in the image.
This is a consequence of the aperture problem illustrated in Figure 4a (Wallach, 1976;
Fennema and Thompson, 1979; Burt and Sperling, 1981; Horn and Schunck, 1981; Marr
and Ullman, 1981; Adelson and Movshon, 1982). Suppose that an extended feature such
as the edge E moves across the image, and that its movement is observed through a
window defined by the circular aperture A. Through this window, it is only possible to
observe the movement of the edge in the direction perpendicular to its orientation. The
component of motion along the orientation of the edge is invisible through this limited
aperture. Thus it is not possible to distinguish between motions in the directions b, ¢
and d. This property is true of any motion detection operation that examines only a
limited area of the image. Neural movement detectors with spatially limited receptive
fields, for example, can directly measure only the component of motion in the direction

perpendicular to the orientation of moving image features.

As a consequence of the aperture problem, the measurement of motion in the chang-
ing image requires two stages of analysis: the first stage measures components of motion
in the direction perpendicular to image features; the second combines these components
of motion to compute the full 2-D pattern of movement in the image. In Figure 4b,
a circle undergoes pure translation to the right. The arrows along the contour repre-
sent the perpendicular components of velocity that can be measured directly from the
changing image. These component measurements each provide some constraint on the
possible motion of the circle. Its true motion, however, can be determined only by
combining the constraints imposed by these component measurements. The movement
of some features such as corners or small specks can be measured directly. In general,
however, the first measurements of movement provide only partial information about
the true movement of features in the image.

The measurement of movement is difficult because in theory, there are infinitely
many patterns of motion that are consistent with a given changing image. For example,
in Figure 4c, the contour C rotates, translates and deforms to yield the contour C' at
some later time. The true motion of the point p is ambiguous. Additional constraint
is required to identify a single pattern of motion. Many physical assumptions could
provide this additional constraint. One possibility is the assumption of pure translation.

That is, it is assumed that velocity is constant over small areas of the image. This

19




N

Figure 4: The aperture problem. (a) A motion detector that views the moving cdge E through
a limited aperture A detects only the component of motion ¢ in the direction perpendicular to
the edge. (b) A circle undergoing pure translation to the right. The arrows along the contour
represent the perpendicular components of velocity obtained from the changing image. (c¢) The
contour C undergoes translation, rotation and deformation to yield the contour C’ at some time
later. The true motion of the point p is ambiguous.
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assumption has been used both in computer vision studies and in biological models of
motion measurement (for example, Lappin and Bell, 1976; Pantle and Picciano, 1976;
Fennema and Thompson, 1979; Anstis, 1980; Marr and Ullman, 1981; Thompson and
Barnard, 1981; Adelson and Movshon, 1982; Lawton, 1983). Methods that assume pure
translation may be used to detect sudden movements or to track objects across the
visual field. These tasks may require only a rough estimate of the overall translation
of objects across the image. Tasks such as the recovery of 3-D structure from motion
require a more detailed measurement of relative motion in the image. The analysis of
variations in motion such as those illustrated in Figure 2b requires the use of a more
general physical assumption.

Recent computational studies have assumed that velocity varies smoothly across
the image (Horn and Schunck, 1981; Hildreth, 1984; Nagel, 1984). The assumption
rests on the principle that physical surfaces are generally smooth. Variations in the
structure of a surface are usually small, compared with the distance of the surface from
the viewer. When surfaces move, nearby points tend to move with similar velocities.
There exist discontinuities in movement at object boundaries, but most of the image is
the projection of relatively smooth surfaces. Thus, it is natural to assume that image
velocities vary smoothly over most of the visual field. A unique pattern of movement
can be obtained by computing a velocity field that is consistent with the changing image
and has the least amount of variation possible. In other words, a pattern of movement
is derived, for which nearby points in the image move with velocities that are as similar
as possible.

The use of the smoothness assumption for motion measurement has several impor-
tant attributes from a computational perspective. First, it allows general motion to be
analyzed. Surfaces can be rigid or nonrigid, undergoing any movement in space. It is
always possible to compute a projected velocity field that preserves the real variation in
the local pattern of movement. Second, the smoothness assumption can be embodied
into the motion measurement computation in a way that guarantees a unique solution
(Hildreth, 1984). Third, the velocity field of least variation can be computed straight-
forwardly, using standard computer algorithms (Horn and Schunck, 1981; Hildreth,
1984).

From the perspective of perceptual psychology, one can ask whether the human
visual system derives patterns of movement that are consistent with those predicted
by a computation that uses the smoothness assumption. In particular, one can ask
whether an incorrect pattern of motion is perceived in situations where a computer

algorithm also fails. The method for computing the velocity field suggested by Hildreth
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(1984) is guaranteed to yield the correct solution for at least two classes of motion: (1)
pure translation, and (2) general motion (translation and rotation) of rigid 3-D objects
whose edges are essentially straight. For example, the computation yiclds the correct
velocity field for the moving objects of Figures 2a and 4b. For the case of smooth curves
undergoing rotation, this computation sometimes yiclds a solution that differs from the
correct projected velocity field. The human visual system also appears to derive an
incorrect perception of motion in these situations. Threc examples are shown in Figure
5. The true velocity fields for these moving figures are shown in Figures 5a, 5c, and
5¢. The short line segments along the smooth contours represent true directions and
speeds of movement of individual points on the contours. The velocity fields of least
variation that are consistent with the changing images are shown in Figures 5b, 5d
and 5f. The first example is a logarithmic spiral whose image rotates about its center.
Human observers perceive an expansion or contraction of a rotating spiral, depending on
its direction of motion (Holland, 1965). Thus, the true motion is pure rotation, but the
perceived motion contains a large radial component. Consistent with this perception,
there is a large radial component in the smoothest velocity field shown in Figure 5b,
particularly toward the center of the spiral. The second figure is an ellipse that is almost
circular and rotating about its center. Wallach, Weisz and Adams (1956) showed that
human observers do not perceive the rotation of the ellipse; rather, they perceive the
major and minor axes of the ellipse as pulsating inward and outward. This perception
is also consistent with the smoothest velocity field shown in Figure 5d. Finally, if a
deformed circle such as that shown in Figure 5e is rotated about its center, the circular
part of the figure appears to stand still, while the bump travels around the perimeter
(Wallach, Weisz and Adams, 1956), consistent with the smoothest velocity field shown
in Figure 5f. Many other examples exist of the consistency of human motion perception

with a computation that embodies the smoothness assumption (Iildreth, 1984).

The motion measurement problem can also be examined from a physiological per-
spective. Ifarly movement detectors in biological systems have spatially limited recep-
tive fields and therefore face the aperture problem. Stimulated by a theoretical analysis
of the aperture problem, Movshon et al. (1985) sought and found direct physiologi-
cal evidence for a two-stage motion measurement computation in the primate visual
system. Two visual areas that include an abundance of motion-sensitive neurons are
cortical areas V1 and MT.® The experiments of Movshon et al. (1985) indicated that

the selectivity of neurons in area V1 for direction of movement is such that they could

SMT is the middle temporal arca of the extrastriate cortex, located in the posterior bank of the superior

temporal sulcus (STS).
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Figure 5: Motion illusions. (a), (c) and (e) The true velocity fields for a logarithmic spiral,
ellipse and deformed circle, respectively, rotating about their centers. The short line segments
along the smooth contours represent the direction and speed of movement of individual points
on the contours. (b), (d) and () The smoothest vclocity fields that are consistent with the
rotating patterns shown in (a), (c) and (e), respectively.
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only provide the component of motion in the direction perpendicular to the orientation
of image features. Area MT, however, contains a subpopulation of cells, referred to
as pattern cells, that appear to combine motion components to compute the real 2-D
direction of velocity of a moving pattern. This study used visual stimuli that consist of
superimposed sinewave gratings of different orientations, each moving in the direction
perpendicular to its orientation. These experiments do not yet distinguish between the
use of the simple assumption of pure translation, as suggested in the study (Movshon et
al., 1985), versus the more general smoothness assumption. Stimulus pattefns under-
going more complicated motions are required to make such a distinction. If the pattern
cells in area MT embody the assumption of smoothness in their computation of motion,
one would expect to find direct interaction between pattern cells that analyze necarby
areas of the visual field.

The study of Movshon et al. (1985) illustrates the importance of integrating the-
oretical and experimental studies. Theoretical studies of motion measurement showed
that a particular type of computation should take place in order to solve this prob-
lem, namely, the combination of perpendicular components of motion to determine the
real direction of motion of a pattern in two dimensions. This observation then led to
a specific physiological study aimed at determining where in the visual pathway this
computation takes place.

Poggio and Koch (1984) presented a hypothetical neural implementation of the com-
putation of the smoothest velocity field that uses known properties of neural hardware.
Poggio and Koch first designed electrical and chemical networks to perform this com-
putation in an analog manner. From these networks, a neural circuit was then designed
that behaves in a similar way. Examples of the electrical and neural networks are shown
in Figure 6. In the network of Figure 6a, the currents I; and conductances g and g;
represent measurements of the perpendicular components of velocity and other proper-
ties of a moving contour obtained directly from the image. The voltages V; represent
the tangential component of velocity® that is recovered by the computation of the full
2-D velocity field. These analog networks allow a fast computation of the smoothest
velocity field. In the corresponding neural implementation of Figure 6b, the tangential
component of the velocity field is represented by the voltages V; along a dendrite, which
are sampled by dendro-dendritic synapses. Measurements from the image are repre-
sented by synaptically mediated current injections I; and other synaptic inputs R; that

control the membrane resistance. The full 2-D velocity field is represented implicitly

8The tangential component is the component of velocity in the direction parallel to the orientation of

features in the image.
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by the combination of the currents I; and the voltages V,. This hypothetical neural
implementation was not intended as a specific model for the measurement of motion
in the area MT. Rather, its intent was to show that it is possible for neural hardware
to exploit a model of this computation that incorporates a general assumption such as
smoothness of the velocity field. Models such as this can help to focus experimental

questions regarding the actual neural circuitry in areas such as MT.

The assumption of smoothness of physical surfaces and their motion is not always
appropriate. Although much of an image can represent the projection of relatively
smooth surfaces, sudden changes or discontinuities may exist in surface structure and
motion, both within objects and at object boundaries. The detection of discontinuities
in motion is an important problem that must be considered together with computations
of motion that rely on the smoothness assumption.

This discussion of the measurement of motion again illustrates a number of important
aspects of the computational study of vision. Similar to the recovery of structure from
motion, a unique pattern of movement cannot be obtained from information in the
changing image alone. This problem requires additional constraint that is imposed by
properties of the physical world. The need to relate vision to properties of the external
world is not a new idea. Gibson (1950, 1966, 1979) argued this point forcibly in his
theories of vision. Computational studies have taken this observation further. A full
understanding of how the human visual system solves a problem in vision must make
explicit these additional assumptions, their physical justification, and how they can be
incorporated into a specific computation in a way that yields a unique and stable solution
to the problem. The design and implementation of algorithms that embody a particular
assumption provides a uscful tool for making predictions from the computational model
that can be tested directly through perceptual experiments. For many visual processes
it is difficult to predict the outcome of a computational model without an algorithm
that implements the model. Finally, theoretical studies reveal the computations that
must take place in order to solve problems such as the measurement of motion, which
can guide physiological studies that explore where these computations take place in the

visual pathway. The study of Movshon et al. (1985) is one example of this interaction.

2.3 From Theory to Implementation: the Detection of Inten-
sity Changes

This section examines the role of computational, physiological and psychophysical ap-

proaches in the study of vision, through the problem of detecting changes of intensity
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Figure 6: Analog models of the velocity field computation. (a) A simple resistive network
that computes the smoothest velocity field. The conductances g and g;, and the currents I;
represent properties of a moving contour that are measured directly from the image. The 2-D
velocity field along the contour is represented implicitly by the combination of these inputs and
the resulting voltages V;. (b) A hypothetical neural implementation of the circuit shown in
(a). Synaptic mediated currents I;, and additional inputs R, represent properties of a moving
contour.  The resulting voltages V;, sampled by dendro—dendritic synapses, together with the
input currents, represent local velocities along the contour.
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in the visual image. Important physical features such as object boundaries, surface
markings, shadows and surface textures, give rise to changes in the light intensity that
is reflected onto the eye. The detection of these intensity changes in the image provides
the first clue about the structure of the scene and is considered an important aspect of
early visual processing. A description of intensity changes is also useful for the subse-
quent analysis of motion, binocular stereopsis, texture and other visual properties. Until
the late 1970’s, largely independent investigations of the early stages of vision took place
in physiology, psychophysics and computer vision. Recent studies have integrated the
findings of these three fields in a way that both reveals the computations necessary to
detect intensity changes and contributes understandings about the function of neurons
in the visual pathway.

Early studies in computer vision made a number of important observations concern-
ing the detection of intensity changes, or edges as they are often called (for reviews see
Davis, 1975; Pratt, 1978; Hildreth, 1983; Horn, 1985). First, in real images, intensity
typically changes from one location in the image to the next and not all of these changes
are due to significant physical events. Some, for example, are due to noise in the sensors.
If the intensity measurements are smoothed, however, minor fluctuations of intensity
can be removed, leaving only the most important. Second, the detection and localiza-
tion of intensity changes can be facilitated by performing a first or second derivative 7
operation on the smoothed intensities. These smoothing and derivative operations are
illustrated in Figure 7. Figure 7a shows a one-dimensional intensity profile that repre-
sents the intensity of light measured along a horizontal line in a natural image. These
intensities are then smoothed in Figure 7b. Spatial changes in the smoothed intensity
profile give rise to peaks in the first derivative shown in Figure 7c, or zero—crossings
(transitions between positive and negative values) in the second derivative shown in
Figure 7d. This can be seen by following the dotted lines from Figure 7b through 7d.
These peaks and zero—crossings are easy to detect, and properties such as the position
and height of the peaks can be used to compute the location, sharpness and contrast of
the intensity changes in the image. Properties of the intensity changes in turn provide
useful information about the underlying physical changes in the scene, although little
is known at this time about how this interpretation of intensity changes might proceed.
A third observation from early computational studies is that important changes in the
image occur at different spatial resolutions and can often be detected by sﬁioothing the

image by different amounts.

TThe first derivative of a function is a measure of the rate of change of the function and the second

derivative is the rate of change of the first derivative.
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Figure 7: Detecting intensity changes. (@) One--dimensional intensity profile that represents the
light intensities measured along a horizonital line of a natural image. (b) The result of smoothing
the intensity profile shown in (). (¢) The first derivative of the smoothed intensity profile shown
in (b). (d) The second derivative of the smoothed intensity profile shown in (b). The dotted
lines show the relationship between significant changes in (b), peaks in (¢) and zero-crossings
in (d).
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Physiological studies suggest that the analysis of intensity changes may be one of
the first stages of processing in biological vision systems. Early electrophysiological
recordings showed that retinal ganglion cells have a spatial receptive field with an an-
tagonistic center-surround organization (Kufller, 1953), whose shape can be described
as the difference of two Gaussian functions, shown in Figure 8a (Rodieck and Stone,
1965; Enroth-Cugell and Robson, 1966). These early studies also distinguished ON and
OFF center cells, shown in Figure 8b. In the case of ON center cells, light in the center
of the receptive field increases the cell’s response, while light in the surround decreases
the cell’s response. OFF center cells bchave in the opposite manner. Rodieck (1965) de-
scribed the output of the retinal ganglion cells as the convolution® of the changing image
with the spatial difference—of-Gaussians (DOG) function, combined with a particular
temporal filtering. This spatial filtering with the DOG function enhances changes in
light intensity.

Physiological studies also have revealed the existence of different classes of retinal
ganglion cells. The two main cell types have been labelled X and Y cells in the cat®
(Enroth-Cugell and Robson, 1966; Cleland, Dubin and Levick, 1971). X cells generally
have smaller receptive fields than Y cells (cat: Enroth-Cugell and Robson, 1966; Boycott
and Wassle, 1974; Peichl and Wassle, 1979; monkey: deMonasterio and Gouras, 1975),
X cells sum theit inputs linearly, while Y cells are highly nonlinear (cat: Envoth-Cugell
and Robson, 1966; Hochstein and Shapley, 1976; monkey: Schiller and Malpeli, 1977;
deMonasterio 1978a), and X cells exhibit color selectivity while Y cells generally respond
to a broad range of colors (monkey: deMonasterio and Gouras, 1975; Schiller and
Malpeli, 1977; deMonasterio, 1978b). Finally, X cells respond in a sustained manner
to temporal changes in light intensity, while Y cells respond in a transient manner
(cat: Cleland, Dubin and Levick, 1971; Cleland, Levick and Sanderson, 1973; monkey:
deMonasterio, 1978a). The optic nerve carries the output of the X and Y retinal ganglion
cells to the lateral geniculate nucleus (LGN), where the main properties of these two
systems of cells are largely preserved (Cleland, Dubin and Levick, 1971; Hoffman, Stone
and Sherman, 1972; Dreher and Sanderson, 1973). The output of the LGN then forms
one of the main sources of input to area V1 of the visual cortex. With regard to function,
it has been proposed that the X system plays a greater role in the spatial analysis of the

image, while the Y system serves to analyze movement or temporal change (for example,

8Convolution is an operation that weighs inputs within some arca of the image by different amounts

and sums the results.

9The X and Y cell distinction only strictly applies to the cat, but cell classes with similar properties
exist in the monkey, so studics of retinal ganglion cells in the monkey are also listed here.

29




center-mechanism

Figure 8: The receptive fields of retinal ganglion cells. (a) The shape of the spatial receptive
fields of retinal ganglion cells, described quantitatively as a difference of two Gaussian functions,
a narrow positive one and broader negative one. (b) ON and OFF center cells, which respond in
an opposite manner to light stimulation in the central and surrounding areas of their receptive
fields.
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Tolhurst, 1973; Kulikowski and Tolhurst, 1973; Tkeda and Wright, 1972, 1975).

Early recordings in the visual cortex of cat and monkey revealed cells that respond
vigorously when simple features such as edges or bars of a particular orientation and
contrast move across the visual field (Hubel and Weisel, 1962, 1968; Pettigrew, Nikara
and Bishop, 1968; Bishop, Coombs and Henry, 1971; Goodwin, IHenry and Bishop,
1975). Cortical cells also segregate into different classes on the basis of physiological
properfies. Hubel and Wiesel (1968) originally distinguished four functional classes,
labelled nonoriented, simple, complex and hypercomplex. The main class of interest
here are the simple cells, which respond optimally to an edge or bar of a particular
orientation moving across their receptive field. Some simple cells are also selective for
the sign of contrast of the edge or bar and its direction of motion. In a quantitative
study of cortical cells in the rhesus monkey, Schiller, Finlay and Volman (1976) further
subdivided simple cells into seven distinct classes, on the basis of the spatiotemporal
distribution of their response to moving edges and rectangles and stationary flashed
stimuli. With regard to the function of cortical cells, it was suggested by Barlow (1972)
and others that these cells may be the neural correlates of primitive feature detectors.

Perceptual studies also stressed the importance of intensity changes in early visual
analysis. As early as 1865, Mach observed that our perceptual system is particularly
sensitive to and actually enhances spatial changes in light intensity. Studies by Corn-
sweet (1970), Land (1959a,b; Land and McCann, 1971) and others also revealed that
sharp changes of intensity play an important role in the perception of lightness, while
gradual changes are essentially ignored.

A second important psychological discovery is that the visual system initially pro-
cesses the image through a number of separate channels that differ in the way they
analyze spatial and temporal variations of intensity (for example, Campbell and Rob-
son, 1968; Blakemore and Campbell, 1969; Graham and Nachmias, 1971; Kulikowski
and Tolhurst, 1973; Tolhurst, 1973, 1975; Spitzberg and Richards, 1975; Breitmeyer
and Ganz, 1977; Cowan, 1977; Graham, 1977; Watson and Nachmias, 1977; Wilson
and Bergen, 1979). Some channels are more sensitive to slower spatial variations of
intensity in the image, while other channels are more sensitive to rapid fluctuations.
The channels also differ in their sensitivity to temporal variations of intensity. Wilson
and Bergen (1979) proposed a quantitative model of the operations performed by these
channels, which incorporates a spatial filtering of the image with the DOG function
found in physiological studies.

To illustrate how theoretical, physiological and psychophysical studies each con-

tribute toward the computations that underly visual processing, we examine here a par-
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ticular method for detecting intensity changes proposed by Marr and Hildreth (1980).
The example was chosen for several reasons. First, the method grew out of compu-
tational arguments and integrated a number of the important ideas that had been
developed in earlier studies of edge detection. Second, it has stimulated the design of
neural models to implement the computations. Third, it has motivated physiological
and psychophysical experimentation aimed at testing its validity as a model of a stage
of processing in biological vision systems. At this time it remains only a hypothesis for
one aspect of early vision.

Marr and Hildreth (1980) first proposed on theoretical grounds that to detect inten-
sity changes, the image should be filtered with an operator whose spatial shape is given
by the Laplacian operator applied to a Gaussian distribution, which is closely approx-
imated by the DOG function. This filtering embodies operations that were considered
important in early edge dectection studies. The spatial extent of the DOG function
serves to smooth the image and the center-surround mechanism performs a kind of
second derivative operation. Figure 9 shows an example of the result of this filtering
computation. The image of Figure 9a is shown filtered through a DOG function in Fig-
ure 9b. The filtered image contains positive and negative values, with the most positive
shown in white and most negative in black. The ON and OFF center retinal ganglion X
cells can be thought of as carrying the positive and negative parts of this DOG-filtered
image. When viewing the image of Figure 9a, the ON center cells are expected to be
most active in the brighter areas of the image of Figure 9b, and the OFF center cells
most active in the darker areas.

Marr and Poggio (1979) observed that the elements in the output of the filtering
stage, which correspond to the locations of significant intensity changes in the image,
are the zero—crossings mentioned earlier. These zero—crossings are the contours that
separate the positive and negative regions of the output of the filtering stage. The
zero—crossings of the filtered image of Figure 9b are shown in Figure 9¢c. In addition to
the position of the zero—crossings, one also can measure how rapidly the filtered image
changes as it crosses zero. This quantity is related to the contrast and sharpness of the
intensity change.

Intensity changes at different spatial resolutions can be analyzed by varying the sizes
of the two Gaussians. Figure 10 illustrates a single image and the results of filtering
and zero—crossing detection that use different size DOG functions. A larger operator
captures the gross structure of the image, while smaller operators capture its fine detail.
This is the kind of spatial information that is accentuated by the multiple channels in

the human visual system.
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Figure 9: Detecting intensity changes. (a) An image of a natural scene. (b) The result of
filtering the image shown in (a) with a difference-of-Gaussians function. (c) The positions of
the zero-crossings of the filtered image shown in (b).
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From a theorctical perspective, many operators can be used to filter the image
for detecting intensity changes. The DOG function is one possibility, but in general
the operator need not have a Gaussian shape and need not be circularly symmetric.
Theoretical studies, however, have shown that in onc dimension, an operator whose
shape is given by the first or second derivative of a Gaussian!® can be best suited for
detecting intensity changes!! (Shanmugam, Dickey and Green, 1979; Marr and Hildreth,
1980; Canny, 1983; Poggio, Voorhees and Yuille, 1985; Torre and Poggio, 1985; Yuille
and Poggio, 1984a,b). There is still debate over the best operators to use in the detection
of intensity changes in two dimensions. Under some criteria, the Laplacian of a Gaussian,
or its DOG approximation, is best suited for the task (Marr and Hildreth, 1980; Torre
and Poggio, 1985; Yuille and Poggio, 1984a,b). In other words, if the retina is filtering
the image for detecting intensity changes, it is performing this function in one of the best
ways possible. This observation is nontrivial. It may not shed further light on what
operations are performed in the retina, but it does suggest why these operations are
performed at the first stages of vision. Substantial theoretical work on edge detection
prescntly is directed at two further questions. First, to what extent can a representation
of the changes of intensity capture all of the important information in the image, and
second, how can a description of the changes in the image be used to understand the
physical changes taking place in the real world.

Computational studies have suggested specific models for the function of some classes
of neurons in the visual pathway, which can be tested through physiological experiments.
Let us consider an example of a possible model for one function of simple cells in the
visual cortex. The model first assumes that the input to the visual cortex that is carried
by the X system represents the spatial filtering of the retinal image with the DOG
function, combined with a temporal filtering (Rodieck and Stone, 1965; Enroth-Cugell
and Robson, 1966; Hochstein and Shapley, 1976; Victor and Shapley, 1979; Shapley and
Victor, 1981; Richter and Ullman, 1982). The elements in this input that correspond
to significant intensity changes in the image are the zero-crossings. We might therefore
hypothesize that simple cells play a role in the detection of zero-crossings in the filtered
image provided by the X system (Marr and Poggio, 1979; Marr and Hildreth, 1980;
Marr and Ullman, 1981; Poggio, 1983).

100 one dimension the sccond derivative of a Gaussian can be approximated by the difference of two

one-dimensional Gaussian functions.

U A variety of criteria have been used to evaluate the best operator. Some studies examine the ability of
the operator to detect a step change of intensity that is embedded in a pattern of noise, where the noise
might by Gaussian or uniformly distributed. Across a wide variety of different criteria, the Gaussian

shape appears to be best suited for detecting intensity changes.
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Specific models have been proposed that suggest how simple cells could detect zero—
crossings (Marr and Hildreth, 1980; Marr and Ullman, 1981; Poggio, 1983; Richter and
Ullman, 1984). A neural zero—crossing detector can be constructed straightforwardly by
combining the outputs of the ON and OFF center cells. Suppose the ON and OFF center
cells carry the positive and negative parts of the DOG-filtered image, respectively. A
zero—crossing is a transition between positive and negative values in this fitered image.
A zero—crossing is then revealed by the presence of significant activity in ON center
cells adjacent to significant activity in OFF center cells. This observation led to the
model illustrated in Figure 11a (Marr and Hildreth, 1980; Marr and Ullman, 1981).
The outputs of adjacent ON and OFF center cells are combined through an AND
operation. In this model, the cell is active only when a zero-crossing is present in the
DOG-filtered image that forms the input to the cell. The ON and OFF center cells
can also be arranged in columns to provide the cell with additional selectivity for the
orientation of a local zero—crossing contour (Marr and Hildreth, 1980). Pharmacological
and physiological studies, however, do not support the particular model shown in Figure
11a for how simple cells might combine inputs from the LGN (Sillito, 1975, 1977; Sillito
et al., 1980; Schiller, 1982).

The work by Sillito and his group (Sillito, 1975, 1977; Sillito et al.) suggests that
the selectivity of simple cells for both the orientation and direction of movement of an
edge or bar involves inhibitory interactions of some type. This conclusion is based on
experiments showing that direction selectivity is abolished and orientation selectivity is
impaired when the chemical substance bicuculline is injected into an area of the visual
cortex. Bicuculline is thought to act antagonistically to the putative cortical inhibitory
neurotransmitter GABA'2, In the particular model shown in Figure 1la, orientation
selectivity arises through AND-like interactions between the inputs (or an array of
inputs). The model does not make explicit use of any inhibitory interactions.

The results of Schiller’s (1982) experiments suggest that the sensitivity of cortical
cells to the presence of edges in their receptive field arises through the interaction
between cells of a single type (either ON or OFF center cells alone). This study used
the observation that injection of the chemical substance APB!® into the retina reversibly
blocks the ON center cell system, thus preventing any outputs of the ON center cells
(within a particular area of the visual field) from reaching the visual cortex. While
the injection of APB was effectively blocking the ON center system, Schiller made the

following observations of cells in the visual cortex: (1) cells that originally responded

12~ aminobutyric acid

13DL--2- amino-4-phosphonobutyric acid

36




Figure 11: Simple cell models. (a) The simple cell model proposed by Marr and Hildreth,
in which the responses of adjacent ON and OFT center LGN cells are combined through an
AND-like operation. (b) The simple cell model proposed by Poggio, in which adjacent LGN
cells of the same type are combined through an AND-NOT operation.
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to edges of either contrast sign now only responded to edges of one contrast sign, and
(2) cells did not loosc their oricntation or direction selectivity. In the model of Figure
11a, the detection of edges arises through the interaction between ON and OFF center
cells. It is therefore inconsistent with Schiller’s study, which suggests that simple cells
can detect moving edges when only the OFF center cells are active.

The above mentioned pharmacological and physiological studies led to a subsequent
model for simple cells proposed by Poggio (1983; Koch and Poggio, 1985) that combines
two of the same kind of cell with an AND-NOT operation (illustrated in Figure 11b). A
zero—crossing is detected when there is significant activity in, say, the ON center cells,
adjacent to an area of no activity in the ON center cells'*. The “NOT” part of the
AND-NOT operation can be carried out by inhibitory interneurons, yielding a model
that is consistent with the experiments by Sillito (1975 1977; Sillito et al., 1980). This
model is also consistent with the study of Schiller (1982), because an edge is detected
through the interaction of only one cell type (either ON or OFF center cells). The
model proposed by Poggio was therefore guided both by a computational analysis that
showed the importance of zero—crossings, and by experimental data regarding the neural
properties of simple cells.

The AND and AND-NOT operations appearing in the simple cell models of Figure
11 should not be interpreted as strict boolean logical operations, as neurons in general
do not function in a discrete binary manner. The fundamental biophysical processes
that underly information processing in neurons, i.e. conductance and voltage changes,
are smooth functions that (with the exception of the spike) give rise to graded, analog
signals. Analyzing the computations performed by neurons in terms of boolean logical
operations is an oversimplified but suggestive way of representing these truly analog
operations (Koch and Poggio, 1984, 1985).

The simple cell models described above have stimulated physiological experiments to
test the underlying zero—crossing hypothesis more carefully (Richter and Ullman, 1984).
The experiments relicd on the fact that zero—crossings in a DOG-filtered image do not
always correspond to cdges in the original image. Due to the smoothing of nearby edges,
spurious zero—crossings sometimes occur where no real edge exists in the image. If some
simple cells detect zero—crossings, they should respond to these spurious zero—crossings.
The stimulus used by Richter and Ullman (1984) is a gray-level “staircase” composed
of two adjacent step changes of intensity, as shown in Figure 12a. The one-dimensional

intensity profiles (cross—sections of the actual stimuli used) are shown in Figure 12b for

14The model proposed by Poggio also includes a mechanism for the sclectivity of simple cells for the

direction of motion of a stimulus (Koch and Poggio, 1985).
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a range of separations between the two edges. The results of filtering these stimuli with
the DOG function shown in Figure 12¢!® are shown in Figure 12d. When the separation
between the two edges is small (rows 1 and 2 of Figure 12d), they cannot be resolved
by this DOG filter. That is, they give rise to a single zero-crossing, indicating the
presence of only a single edge in the stimulus. When the separation between the two
edges is large compared with the size of the DOG filter (row 6 of Figure 12d), they are
analyzed almost independently. Two distinct responses to the two edges appear in the
filtered profile — it decreases gradually through zero between the locations of the two
edges, without giving rise to a significant zero—crossing. At intermediate separations
(row 4 of Figure 12d), three distinct zero—crossings appear in the filtered profile. Two
are associated with the actual intensity steps and a third of opposite sign is located at
the middle of the plateau between the two. This “extra” zero—crossing indicates the
presence of a change of intensity (or edge) that does not exist in the original intensity
profile.

The double—edge stimulus of Figure 12 was used to test the hypothesis that some
simple cells detect zero—crossings. Suppose that a simple cell responds only when a
vertically oriented edge that is dark on the left and light on the right is moved from left to
right across the cell’s receptive field. If the cell detects zero—-crossings, it should respond
whenever adjacent negative and positive areas appear in the DOG-filtered image (with
the negative area on the left). Suppose that the staircase stimulus of Figure 12a is
moved in the preferred direction. The zero—crossing hypothesis predicts that when the
two intensity edges are close together, the cell should respond only once to the two-step
stimulus. When the edges are sufficiently separated, the cell should respond to each
of the two edges, giving two distinct responses for each single sweep of the stimulus
across the cell’s receptive field. Suppose that the sign of contrast of the stimulus is then
inverted, as shown (in one dimension) in Figure 13a. The result of filtering this inverted
stimulus, for an intermediate separation between the two step changes of intensity, is
shown in Figure 13b. For the inverted stimulus, the zero—crossing hypothesis predicts
that if the two edges are close or sufficiently separated, the cell should not respond at all,
because a zero—crossing of the appropriate sign of contrast never appears in the cell’s
receptive field. For intermediate separations, however, there appears a zero—crossing
of the appropriate sign, to which the cell should respond, even though no edge of the

appropriate sign of contrast exists in the original stimulus (see Figure 13b).

Richter and Ullman (1984) tested the zero—crossing hypothesis for a subclass of sim-

I5A slightly asymmetric DOG function was used, which incorporates a temporal delay between the
responses of the center and surround Gaussians (Richter and Ullman, 1982).
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b.

Figure 12: (a) The “staircase” stimulus used by Richter and Ullman, consisting of adjacent bars
of different intensities. (b) The graphs represent the cross-section of the intensity distribution
across the bar pattern, for a range of separations between the two step changes of intensity. (c)
An asymmetric difference-of-Gaussians function. (d) The results of filtering the patterns shown
in (b) through the difference-of-Gaussians function shown in (c). '
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Figure 13: Testing the zcro-crossing hypothesis. (a) The staircase stimulus of Figure 12, with
its contrast inverted so that the step changes of intensity are light on the left and dark on the
right. (b) The result of filtering the profile in (a) with a difference- of -Gaussians function of
intermediate size.

ple cells that were “edge-specific” in that they respond preferentially to edges of light of
a particular orientation and sign of contrast. In the classification introduced by Schiller
et al. (1976), this subclass includes the simple cell type S;, which is also selective for
the direction of motion of the edge, and type S3, which responds to edges moving in
both directions. In electrophysiological recordings from edge-specific cells in the cat,
roughly half of the cells (28 out of 55 recorded) showed a clear response to the extra
zero—crossing present in the staircase stimulus with its contrast inverted. This result
suggests that the zero—crossing hypothesis may be plausible for some simple cells. The
experiment by Richter and Ullman does not yet rule out alternative hypotheses about
the function of simple cells. 'Other models suggested by Spitzer and Hochstein (1985)
and Movshon (personal communicatidn), for example, may also account for these exper-
imental results. Although an ideal experiment would discriminate between alternative
hypotheses, this example illustrates how a computational theory can lead to a specific
model of the function of neurons in the visual pathway and can provide testable pre-
dictions for physiological experimentation. A recent study by Hochstein and Spitzer
(1984) also provides experimental evidence regarding the possible role of simple cells in
the analysis of zero—crossings. As a result of these experiments, Hochstein and Spitzer
proposed that simple cells may behave as zero—crossing filters, in that they respond
strongly in the presence of zero-crossings, but also respond weakly in the presence of
other features in the input from the LGN.

Models for zero-crossing detection such as the one described above also have stimu-
lated psychophysical work, aimed at showing what visual information is extracted from

the retinal image. For example, Watt and Morgan (1983a) studied the way in which
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spatial position is assigned to features in the retinal image. They considered several the-
orctical models for spatial localization and designed stimuli composed of bars of different
luminances that would discriminate among the thcoretical models. The performance
of human observers in these experiments is consistent with a model that encodes the
occurrence and location of zero—crossings in the sccond derivative of the retinal im-
age. Later studies of the ability of human observers to judge other spatial properties
of intensity variations in the image, such as the extent of blur of the intensity changes,
suggested that peaks in the second derivative of the retinal image also may be used to
encode retinal image information (Watt and Morgan, 1983b). An experiment by May-
hew and Frisby (1981) also suggested that peaks in the second derivative of intensity
may be used in the analysis of binocular stercopsis. Recent experiments by Morgan et
al. (1984) and van Santen and Sperling (1984) addressed the question of what spatial
features the visual system uses to measure motion. In all of these psychophysical stud-
ies, theoretical models of the extraction of image features provided critical input to the
design and interpretation of the experiments.

To summarize, early progress on the problem of detecting intensity changes was made
independently in computer vision, perceptual psychology and visual neurophysiology,
but much greater progress has come since the observations of these three fields were
brought together. Insights about early visual processing in biological systems have led
to more general and reliable methods for edge detection in computer vision systems. At
the same time, the computational analysis of the early stages of visual processing has led
to productive psychophysical and physiological experiments perhaps offering a better
understanding of the function of neural mechanisms in the visual pathway. Investigators
may alternate many times between theoretical models and experiments before finding
models that are consistent with all experimental data. If the models are stimulated
by what is needed in the system from a computational perspective, then when feasible
physiological examples are found, we will have a deep understanding of why particular

mechanisms exist and the role they play in visual function.
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3 The Study of Mdtor Control

Although vision and motor control represent different areas of research in terms of theo-
ries, mechanisms, and experimental procedures, the underlying approach to their study
by the computational paradigm is the same. A primary emphasis is placed on discov-
ering and examining all possible natural constraints, and then tracing the implications
of these constraints on control mechanisms. Insight into the motor control problem is
obtained by the development of competence theories, by way of computer simulation
and then implementation on actual mechanical hardware.

The computational approach to motor control is strongly interdependent with robotics.
Both ficlds share the goal of the intelligent translation of perception into action. Robotics
provides a convenient laboratory for developing and testing control principles. Although
the differences in mechanical structure and computational architecture between biolog-
ical systems and machines might at first seem to differentiate robotics from motor
control, at a certain level of abstraction the problems encountered are the same. Motor
control is first and foremost a mechanical problem. The body is composed of linked
segments with attributes of mass and geometry, which accelerate in a gravitational field
and interact with objects in the environment. Just as in robotics the biological motor
control system must have developed to reflect these mechanical constraints, even thongh
in this instance control signals are sent to muscles rather than to motors.

The above considerations indicate how robotics has contributed towards the under-
standing of motor control at a higher level than muscles and nerves, in line with the
“top-down” nature of the computational approach. External constraints on movement
necessarily have been defined, since movements frequently contact environmental sur-
faces. Mechanical constraints of linkage geometry and mass also have been examined in
great detail. Even at the level of actuator constraints, functionally equivalent models
of motors and muscles have sometimes been proposed. Recent trends in the design of
tendon-actuated robot hands are actually bringing the respective mechanical structures
closer to biological counterparts (Jacobsen et al., 1984).

Properties of the ncuromuscular system impose intrinsic limits on what models may
be proposed, so that concepts developed in robotics must be carefully evaluated for pur-
poses other than general background since some may be biologically inapplicable. At
the same time, biology offers important clues to investigators of robotics, since human
motor performance generally far outstrips robot performance. In the sections that fol-
low, several sources of constraints that operate at the neuromuscular, mechanical, and
external levels are examined. The section goes on to present as a competence model a

hierarchical movement planning and control structure adapted from robotics, so as to
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give an example of how these constraints can be accomodated. This structure is exam-
ined with respect to its implications for biological motor control and its accomodation

with experimental results.

3.1 Features of Motor Control Research

The understanding of biological motor control has proven stubbofnly difficult, and we
cannot yet establish a direct analogy between neural processing and computational
studies. Whereas in vision it is known that processes of edge extraction, stereopsis, and
optical flow exist, in motor control no consensus agrees upon the fundamental trans-
formations. It is an open question whether biological processes for inverse kinematics!®
or inverse dynamics!? exist, or whether the nervous system plans movement trajecto-
ries explicitly on a point-to-point basis. Indeed, we do not know even whether control
operates on variables at the level of muscle, joint, or endpoint, and for a given level
whether theée variables specify stiffness, length, velocity, force or torque (Stein, 1982).
For motion-related sensors and neuronal centers, basic questions such as the influence of
muscle spindles in movement remain unresolved (Hulliger, 1984). The specific contribu-
tions of motor cortex, cerebellum, basal ganglia, and spinal cord in motor computations
are cven less well understood.

A significant difference between motor control and vision is that the former is not
just a pure information processing problem. Between motor performance and neural
processing lies a set of complex biomechanics that greatly enhances the difficulty of
relating motor events directly to neural events. Properties of this biomechanics are
integral to the formulation of a motor plan. Said another way, motor control cannot be
understood without knowing the biomechanical properties of the system and how these
properties influence and are accommodated by the motor control system.

When a muscular movement is observed, it is not necessarily the reflection of a neural
process. A simple analogy would be a spring, which oscillates with an attached mass
purely due to mechanical properties. It has been proposed that muscles possess spring-
like properties that can be organized to realize complex movement goals with simple
forms of control (Hogan, 1982). In a humcrous vein McMahon (1984) has suggested
that the function of neural control during running is to prevent disruption of the natural
mechanical resonances of the system. Motion at one joint is also influenced by motions

at other joints, due to the effects of complex dynamic interactions (Hollerbach and

16The transformation from endpoint variables to the corresponding joint angle variables.

TThe transformation from joint positions, velocitics, and accelerations to joint torques.




Flash, 1982). The elbow will flex passively, for example, in reaction to acceleration at
the shoulder, and vice versa.

In addition to their differences in output functions, movement is voluntary and dis-
continuous, while vision is involuntary and continuous (at least at the lower levels). A
paralyzed and anesthetized animal can visually process a pattern without any act of
volition, and this continuous and repeatable input may be traced through the neuronal
circuitry to infer its associated transformations. Movement, by contrast, once executed
is finished, hence is discontinuous; subsequent repetitions may differ and give rise to
varied neuronal activity. Since movement is primarily a voluntary activity, alterations
of the CNS by drugs or surgery severely compromise the ability of the system to per-
form naturally. It remains a major controversy whether movement features following a
neuronal lesion indicate the role of the lesioned center in motor control, or represent a
totally different strategy of the animal compensating as best it can with the remaining
circuitry.

The psychophysics of movement is less well developed than that of vision, primar-
ily because natural movements are difficult to measure. Movements often must be
reduced to the simplest cases, usually about single joints, merely because of the dif-
ficulty in recording kinematic features and of applying perturbations except in simple
configurations. EMG signals are hard to interpret, especially during active movement.
Nevertheless danger exists in siimplicity: limiting studies to single-joint movements may
lead to too narrow a view of what is involved in motor control.

Fortunately, experimental techniques have improved substantially in recent years
and should ameliorate many of the past limitations. Movement monitoring systems
such as the Selspot system!® (Atkeson and Hollerbach, 1985) allow measurement of
kinematic features of unconstrained, natural movements. Neuronal recording techniques
have improved; floating electrodes for example allow spinal recording during natural cat
locomotion (Hoffer et al., 1981). One remaining difficulty, however, is the application
of perturbations to ongoing movement, since almost by definition a natural movement
cannot be constrained by an apparatus that is to apply the perturbations. Though per-
turbations are currently limited to one or two-joint movements for experimental study,
nevertheless there has been much new information about biomechanical properties and
reflexes by the use of sophisticated engineering analysis (Kearney and Hunter, 1983).

A remaining general consideration is that there are many sensorimotor systems and

their interrelationships are often unclear. Eye movement for example may have little

18 An optoclectronic sterco camera system, produced by Selcom of Sweden, that senses infrared led

markers attached to a imb by means of lateral-effect diodes in each camera.
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in common with arm movement, which in turn may differ substantially from locomo-
tion. The eye is a comparatively simple and predictable mechanical object, as its mass
never changes and its movement is confined to orbital rotation. By contrast, the arm is
kinematically complex and varies in its load conditions due to gravity, grasped objects,
and environmental contact. In locomotion it is not clear that the leg trajectory need
be controlled similar to the arm trajectory. So far, several different theories with little
in common have been proposed for these various scnsorimotor modalities: linear con-
trol theory for eye movement (Robinson, 1973), potential field models for arm control
(Hogan, 1982), and oscillation models for locomotion (Grillner, 1975). Ultimately one
hopes to find unifying principles that underly all of motor control, but such rules can
emerge only after a more thorough understanding of the individual systems.

The remainder of this section focuses primarily upon control of human arm move-
ments. Other sensorimotor modalities that could have been discussed in terms of the
computational approach are locomotion (Raibert, 1984) and hand control (Jacobsen et
al., 1984, 1985; Salisbury and Craig, 1982). Research into one and four legged hopping
machines is generating new ideas about modular processes in locomotion, while research
into the design and control of four-fingered, tendon-driven robot hands is providing in-

formation about elementary hand functions and the use of contact sensing.

3.2 Natural Constraints in Motor Control

Natural constraints confront the motor control system at several levels: neuromuscular,
mechanical, and task. The neuromuscular level reflects the mechanical and computa-
tional properties of the biological system. The mechanical level views limbs as mechan-
ical linkages and analyzes them from a standpoint of kinematics and dynamics. The
task level focuses on how endpoint positions and forces should evolve in response to
environmental goals and constraints. When comparing control of movement between
biological and robotic systems, the considerations are similar at the mechanical and
task levels, but they differ at the neuromuscular level since the computational and
actuational characteristics of robots are so dissimilar.

All sources of constraints must be identified for their possible effects on the nature
of the biological motor controller. The following sections give examples of constraints

at each level, and indicate how they influence hypotheses about motor control.
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3.2.1 Neuromuscular Constraints

The motor control system must sense its own machinery and be able to forge a solution
within its limitations. The mechanical machinery includes muscles, joints, and limbs.
Muscle is a complex tissue, whose contraction depends on force, velocity, and level of
activation. The contribution of passive tissues such as ligaments and tendons must be
considered. Individual muscle fibers display a variety of architectures when assembled
into a whole muscle, such as pinnation and compartmentalization (Loeb, 1984). Redun-
dant musculature surrounds most joints, e.g. the shoulder joint contains 18 muscles.
Over half of all muscles pass over two or more joints. Some muscles have elaborate
three-dimensional trajectories during contraction; the normal biomechanical assump-
tion of straight-line trajectory between origin and insertion would predict the wrong
direction of torque production (Wood, Meek, and Jacobsen, 1984). Further, most joint
articulations do not satisfy ideal models such as a hinge joint (knee) or a spherical joint
(wrist); the clavicle moves with five degrees of frecdom, which is close to that of a free
body.

Signal transmission and processing delays in the nervous system have far-reaching
implications on how the motor system can conduct real-time control. While spinal
feedback loops for arm movement have a latency of 25 msec, these feedback loops turn
out to have too low a gain'® to operate effectively to counteract movement perturbations
(Bizzi et al., 1978). The more substantial long-latency responses of 80-100 msec are too
long to serve effectively as closed-loop feedback, because control under conditions of
substantial feedback delays would be unstable (Hollerbach, 1982). For moderately fast
arm movements, by the time a corrective response can act, the limb will have reached a
new state for which the response is inappropriate. Although delays can be compensated
if higher-order derivatives of the error are known, it is unlikely that the nervous system
could accurately compute these derivatives (Arbib and Amari, 1985).

In the face of the above arguments and a variety of experimental evidence, it has
been concluded that fast to moderately fast arm movements must be controlled open-
loop?. Feedback would not serve for fine tuning of ongoing movement in the classic
servo sense, but could monitor the movement for global adaptation (such as estimating a
load mass), local adaptation (such as refinement of points along a repeated trajectory),
or reprogramming after major disturbances. These limits on feedback efficiency make

inappropriate attempts to apply linear control theory where instantaneous and accurate

19Ganes (1983) indicates that the short-latency spinal loop may be more effective during small perturba-

tions or incremental movements.

20The term open-loop refers not to the absence of feedback but to the role feedback plays.
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feedback is typically assumed to biological motor control. The only alternative seems
to be that the motor control system has constructed a system that allows accurate
predictive control. “
Interestingly this biological solution goes against developments in modern control
theory, where it is often argued that such a complex system can only be handled by
robust control. A robust controller relies on feedback because thus far a sufficiently
accurate and useful model system has not been constructed (Slotine, 1985). Tt appeafs
that the biological solution may provide an alternative viewpoint on how a problem can
be solved and may prevent us from believing too strongly that our artificial constructs
are the only way of proceeding. ‘
Given the complexity of the biological machinery, some have characterized biological
motor control as a smart controller for sloppy hardware. According to this view, the
controller must fight with an unpredictable and uncooperative system to achieve a
successful movement. Whatever the properties of the system might be, the task woﬁlid
be to refine the controller sufficiently to overcome the system’s natural tendencies. _'
‘Tt is unlikely that this view is either correct or workable. The motor control machin-
ery is anything but sloppy, and the more we learn about muscles, tendons, and sensofs,
the more we realize advantages they have over man-made hardware. Rather than con-
sidering system properties as making control more complex, perhaps these properties
are actually adapted to accomplishing a motor task and indicate something fundamental
about the task (Jacobsen et al., 1985). The way tendons in the fingers split and indi-
vidually route over bumps at the joints may reflect a useful geometrical computation,
for example, the ratio of joint movements. Furthermore, the particular combination
of active and passive stiffness in the muscle-tendon system may allow stable recovery
from unexpected collisions. Natural selection may have generated biomeckanics of leg
muscles for optimal locomotor efficiency (Loeb, 1984). It is a maxim in mechanical
engineering that design must interact with control, and the biological system may have

evolved this maxim to the furthest degree.

3.2.2 Mechanical Constraints

Above the level of the muscles and nerves, the body can be considered as an assembly
of mechanical links and joints. Movement of these links must satisfy the geometrical
constraints of the environment and the goals of movement. Nevertheless, these links
are inertial objects, with attributes of mass, center of mass, and inertia. These links
are acted upon by gravity, and as mentioned earlier their dynamic interactions compli-

cate joint torque production. Just as with neuromuscular constraints, the mechanical
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constraints of kinematics and dynamics restrict the range of possible control strategies.

The whole problem of kinematics is the nonlincar transformation between end posi-
tions, orientations and joint angles. The difficulty of this tranformation has far-reaching
implications for motor control. An object in space can be located by six variables, three
for position (such as Cartesian z,y, 2z coordinates) and three for orientation (such as
roll, pitch, and yaw angles). To grasp such an object, a linkage system also must have
at least six degrees of freedom. The tnverse kinematics problem is, given the location of
an object in space, to find the joint angles that correspond to the arm at that location.
When the linkage has more than six degrees of freedom, it is kinematically redundant
because there are more degrees of freedom than absolutely necessary for general po-
sitioning. Redundancies are useful to avoid obstacles, climinate internal singularities,
and avoid joint limits.

The inverse kinematic transformation is only computationally efficient if the mechan-
ical linkage contains certain kinematic arrangements (Pieper, 1968). One such arrange-
ment is a spherical joint, usually at the wrist, which allows separation of positioning
from orienting. It is probably no accident that humans have spherical wrist joints to
accomodate a roll motion in the forearm, a pitch motion at the wrist (flexion-extension),
followed by a wrist yaw motion (abduction-adduction). The human arm actually pos-
sesses redundant motion because it has seven degrees of freedom (not counting body
movement): three degrees at the shoulder joint, a single degree at the elbow joint, and
the spherical wrist. It has been argued that this particular kinematic arrangement is
optimal in terms of the advantages of redundancies mentioned above (Hollerbach, 1985).
At the same time that redundancies bring advantages, however, they make calculation
of the inverse kinematics transformation more complicated because of the necessity of
resolving the redundancy (Hollerbach and Suh, 1985).

The first level of abstraction above muscle activation is dynamics, which relates
torque production at the joints to desired joint position, velocity, and acceleration.
What makes dynamics complex is the presence of interaction torques, due to inertial,
centripetal, and coriolis forces. Inertial forces are the normal actions and reactions
that result whenever a body is accelerated, but for a multi-joint linkage, acceleration at
one joint creates a reaction torque at other joints. Centripetal forces are proportional
to squared velocity and are analogous to inwardly directed accelerations; an example
keeps a ball whirled around on a string in a circular orbit. The forearm also represents
a body kept in orbit about the shoulder joint, attached by the upper arm, and must
leave centripetal torques acting at all joints. Coriolis forces arise whenever two rotating

systems interact, for example, the rotation of the earth with north-south movement
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of hot and cold air, which gives rise in the northern hemisphere to counterclockwise
vortical forces. The rotating sytems in the arm are the upper arm, forearm, and hand,
which interact to yield a complex combination of coriolis forces.

The interaction of these several forces is usually overlooked in motor control, partly
because these forces are complex. Also, investigators might be hoping that the inter-
acting forces are ordinarily insignificant or can be overcome with feedback. But as
Hollerbach and Flash (1982) showed, all three types of interaction forces operate during
ordinary movement and cannot be ignored. Morcover, they pointed out that lineariza-
tion of dynamics cannot be justified on the basis of movement speed, because they
showed the dynamic interactions to be speed invariant. This contradicts the normal
assumptions in the robot control literature, where investigators have attempted to fit
arm dynamics into linear control theory more because the latter is a well-developed area
than because it is well suited.

The motor control system cannot treat dynamic interactions as perturbations or
errors to be corrected by feedback, because of the transmission delays mentioned earlier.
Even if feedback were faster, it is unlikely that a controller could ignore dynamics
without running into stability problems. It might be justifiable to ignore link dynamics
if muscle dynamics were dominant. Whether one can do so depends on the particular
circumstance. -The fingers are relatively light compared to the muscles that activate
them; combined with frictional losses of the tendons routing all the way from the fingers
to the forearm, it is likely that muscle/tendon dynamics dominate the finger dynamics.
Said another way, finger muscles overpower finger mass. For the arm or leg, however,
the limb masses are substantial and lead to significant link dynamics.

It is fair to say that the mechanical constraints in motor control have been underem-
phasized relative to the neuromuscular constraints. Part of the reason is the restriction
to studies of single-joint movement, where issues of kinematics and dynamics are triv-
ial. In such studies all levels of analysis are the same: force is directly proportional to
acceleration, and there are no dynamic interaction forces. Trajectory planning degen-
erates to control of one position variable. On the other hand, for multi-joint movement
force or torque and acceleration become no longer proportional. Trajectory planning be-
comes a complex problem of relating joint angles to externally defined positions. Even
planar two or three joint movement is considerably simplified over three-dimensional
movement, because orientation is so much more complex in three dimensions than in

two.
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3.2.3 External Constraints

Movement is not just a matter of freely generating trajectories, but is constrained both
by task demands such as accurate throwing and by physical contact with external sur-
faces. When an object of unknown weight is picked up, the dynamic characteristics of
the arm suddenly change. The motor control system must quickly estimate the inertial
parameters of the object relative to the hand’s grasp and update its internal model to
achieve a skillful movement. Similarly, when a pointer is grasped, the kinematic pa-
rameters of the arm are changed suddenly. Again, these parameters must be estimated
quickly and incorporated to modify the kinematic solution relating endpoint and joint
angles. |

The geometry of the external world constrains how movement may take place, by
defining a set of natural coordinates by which to plan the action. Picking up a cup
requires definition of the cup position and orientation, to be matched by an approach
direction and a grasp. The cup must be kept level to avoid spilling when transported,
and the motion should be fairly straight to minimize angular accelerations that could
also lead to spilling. As the cup or other object is moved, obstacles must be avoided and
a path found through a cluttered environment. Often in robotics straight-line Cartesian
paths are preferred because it is easier to predict the consequences of movement in terms
of avoiding obstacles. Real-time constraints must be matched as well, as in catching a
flying object where the hand must achieve a specific position at a specific instance of
time.

Motion can also be constrained by prolonged contact with an environmental surface.
Writing on a blackboard requires that movement can take place only parallel to the
board and not into or away from it; the board sets up a natural coordinate system
defining allowable directions of movement plus another direction in which force can be
generated, as discussed below. We can match our movements and force application to
the external coordinates of a light socket so as to screw in a lightbulb in practically any
position and orientation — above our heads, to the side, or when we're upside down.
Opening a door requires that the hand follow the natural circular trajectory of the door
handle.

If the generation of endpoint positions were the only problem in motor control, it
would be hard enough, but it is only half the problem. The other half is the requirement
to generate endpoint forces, arising precisely when environmental surfaces are contacted.
For blackboard writing, the environment signals that it is forbidden to move through the
board by pushing back as hard as the hand pushes into it. During contact the normal six

degrees of positioning freedom are reduced, yet it is a fundamental law of mechanics that
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the lost freedoms of position are converted into freedoms of force and torque. Writing
on the board is an example of point contact with five positioning freedoms, by the hand
translating in two directions and rotating the chalk point in three directions. Against
the board one can generate a normal force but not a displacement; this single force
freedom plus the five position freedoms add to six by necessity.

Force control or compliance is recognized as a fundamental issue in robotics (Mason,
1982), and in some sense is considered as a somewhat different problem from the gener-
ation of unconstrained trajectories. Reliance must be placed on contact sensors instead
of on position sensors, and the servo response to contact must be much more rapid than
to position errors because very high contact forces can arise in little time with essentially
no displacement. A mechanism that could serve as an alternative or complement to an
active force servo would be passive compliance by actuators, transmission clements, or
structures. Such an approach seems particularly pertinent for biological motor control.
The difficulty with passive compliance schemes, however, is to arrange the compliant
elements in a useful and flexible way, not just for one kind of contact condition, but for
many contact conditions. Later, it will be considered how the spring-like properties of
muscle ensembles could be organized in this way.

A general form of motor control is hybrid force/position control, where certain de-
grees of freedom are controlled for position and other degrees of freedom are controlled
for force (Raibert and Craig, 1982). The task in environmentally constrained motion
is to generate a movement plan with the best available geometrical information about
external surfaces, but to recognize that one’s external model will be uncertain and that
one will have to comply with contact conditions when the model and the actual external
geometry differ.

By and large, investigators in biological motor control have emphasized control of
position rather than control of force during constrained movement. Yet as mentioned
earlier, most experimental movements are restricted to one or a few freedoms of position
because of measurement difficulties. Thus since the excluded position freedoms are
merely transformed into force freedoms many workers have inadvertently been studying
compliant motions without recognizing that such was the case. The arm generates
a six-dimensional force/torque vector at the hand, but only the vectorial component
projected onto the instantaneous motion axis would be observed in control of position
studies. An important question to be resolved in biological motor control is whether,
as in robotics, different considerations govern force control and position control, or
whether some common principle underlies both (Hogan, 1984). The danger is that

by not focusing on freedoms of force in an experimentally constrained movement, one
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Figure 14: A modular planning and control structure for robot arm movement. A trajectory
is planned in hand coordinates, synthesizing a hybrid force-position strategy. The endpoint
trajectory z(t) is transformed into a joint trajectory 0(¢) by solving the inverse kinematics. The
feedforward torques T'(¢) arc then found by solving the inverse dynamics, and are corrected by
feedback for force and position errors.

misses an essential component of the motion.

3.3 Movement Planning Hierarchy

The sources of natural constraints fall roughly into a hierarchy, and in robotics a move-
ment planning and control structure has evolved that directly reflects these different
levels. The control structure consists of an object level, a joint level, and an actua-
tor level, and is represented as a sequence of transformations in Figure 14. Trajectory
planning takes place at the object level. External task constraints are synthesized by
planning a time sequence of endpoint positions and forces that form a correct interface

to the geometry of the external world.

At the next level, the joint level, the time sequence of endpoint coordinates are trans-
formed into a time sequence of joint angles by solving the inverse kinematics problem.
At the actuator level, the time sequence of joint angles is converted into a time sequence
of joint torques by solving the inverse dynamics problem and by feedback correction of
errors based on position and force. Mechanical constraints are therefore synthesized

at both the joint and actuator levels. Another aspect of computation at the actuator
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level is to convert the joint torques to commands appropriate for each actuator and its
ultimate controller, such as current for an clectromagnetic motor. How a joint torque is
transformed into a motor torque depends greatly upon the particular actuation system,
and would correspond to the neuromuscular constraints in biological motor control.
The purpose of elaborating this hierarchy of movement planning and control derived
from robotics is to provide a competence medel that applies to general motion control.
The elements of this model define conceptual stages in processing, which serve at the
very least as descriptions of the motor task if not as prescriptions for a control strategy.
This framework then allows one to consider whether the biological motor control system
can exhibit the same level of flexibility in motion control, and if not how any limitations

may be reflected in shortcuts or specific solutions to elements of this structure.

3.3.1 Object Level

At the highest level, motion of an endpoint or a grasped object alone is planned, without
specific consideration that an arm is required to move the object or endpoint. It is as
if Adam Smith’s invisible hand were applied, not to the economy, but to placing an
object in a desired position. The object level has also been called the ideal effector level,
because it is presumed that the effector can generate whatever forces or positions are
required by the task.

Planning at the object level therefore proceeds by analyzing the natural constraints
of the task. A geometric analysis should indicate what are the positioning freedoms
and what are the force freedoms, as the first step towards synthesizing a hybrid force-
position control. For example, suppose it is desired to slide an object along a surface.
A generalized spring strategy is one way to synthesize forces normal to the surface
while generating positions tangent to the surface. In response to normal displacements
caused by movement or modeling errors, the object moves like a spring and generates
proportional forces. It is called a generalized spring strategy (Mason, 1982) because
action of the spring can be placed in any arbitrary direction, according to the contact
conditions. Moreover, contact forces and resulting displacements can be combined in a
general manner; for example, the object could have been made to rotate in response to
a contact force in order to place an object flush on a surface.

Specification of motion is best done by employing external variables such as Carte-
sian position and orientation, since these are most conveniently applied to capture the
geometrical constraints of the environment. Often trajectories are made to take on sim-
ple features such as straight-line motion in these variables, because then consequences

of movement such as avoidance of collisions can often be predicted.
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Of course, motion of the endpoint cannot be planned in complete isolation of char-
acteristics of the actuation and mechanical linkage, and some of the hardest problems
in robotics involve propagation of constraints from a lower to a higher level. Finding
the minimum-time path, for example, depends critically on properties of the actuators
(Sahar and Hollerbach, 1985; Rajan, 1985). Collision of the arm with obstacles must
be considered as well as collision of the endpoint (Lozano-Perez, 1982). Nevertheless,
attributes of the lower levels are largely considered to provide the broad boundaries of
movement, such as maximum reach, payload, and acceleration, and as long as movement

stays safely within these boundaries they do not overly limit the planning process.

3.3.2 Joint Level

Once time sequences of hand positions and orientations have been specified, they are
transformed into a corresponding time sequence of joint angles, through solution of
the inverse kinematics problem. For the generalized spring strategy, a time-varying
joint stiffness can be found that realizes the desired hand stiffness. Several problems
complicate inverse kinematics: singularities, redundancies, joint limits, and obstacles.

Singularities are manipulator configurations for which there are fewer than six de-
grees of freedom. They arise when joint axes are aligned in such a way that a particular
direction of motion becomes impossible. Workspace boundaries are always singular; for
example, if the elbow is straight then no further radial motion of the wrist is possible.
A larger problem consists of singularities in the interior of the workspace; for a typical
rotary-joint manipulator, they occur when the wrist is straight or the wrist point is over
the shoulder. With such singularities the inverse kinematic velocities cannot be solved,
and hence singular points cannot be utilized in a trajectory and must be avoided. Large
portions of the rotary manipulator’s workspace become useless in this way.

The best solution to singularities is to add extra degrees of freedom and hence to
make the manipulator redundant. Seven is the smallest number of degrees of freedom
that eliminates all interior singularities. As mentioned earlier, the human arm has seven
degrees of freedom (not counting shoulder movement), consisting of spherical wrist and
shoulder joints and a rotary elbow joint. The extra degree permits a self-motion, which
is an internal linkage movement that does not move the endpoint. With the hand fixed,
the elbow point can move in a circular arc about a line joining the shoulder point to
the wrist point. This allows interior singularities to be eliminated, because if a singular
configuration happens to arise then a self-motion can be exercised to move the arm out
of the singular configuration. Hence all interior workspace points can be utilized.

Redundancies are also uscful for avoiding joint limits and obstacles. The self-motion
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can be used to find a new set of joint angles in the event that one of the angles approaches
its limit, again without moving the endpoint. The forearm and upper arm define a major
plane of movement; the self-motion rotates this plane about the shoulder-wrist line. If
an obstacle lies in the major motion plane, then it might be possible to avoid it by
rotating this plane (Hollerbach, 1985).

- In terms of the calculations involved in redundancy resolution, the main focus has
been on the generalized inverse technique (Liegeois, 1977). This is an instantaneous
optimization method, and has beén used to avoid joint limits, to partition endpoint
variables into high and low priority, to avoid obstacles, to minimize kinetic energy, and
to minimize torque production. Nevertheless, because the generalized inverse optimizes
a local trajectory point, it is possible that the solution will not remain globally optimal
across a whole trajectory. In fact, Hollerbach and Suh (1985) showed that during
torque optimization a whipping action develops gradually that thrusts the endpoint off
the intended path.

3.3.3 Actuator Level

From a time sequence of joint angles, the corresponding time sequence of joint torques is
found by solving the inverse dynamics problem. Initially it was thought in robotics that
the dynamic equations are too complex to solve in real time, but it is now known that
highly efficient recursive formulations exist that arc of linear complexity in the number of
degrees of freedom (Brady et al., 1982; Hollerbach, 1980). Furthermore, if the kinematic
configuration is simple and the mass distributions are symmetric, as is true of the human
arm, the dynamic equations become drastically simplified down to a manageable number
of operations (Hollerbach and Sahar, 1983). Even if this number were not adequate,
it is possible to recast the dynamic equations into a parallel architecture executable in
time proportional to one multiplication and 3 additions, after an initial startup time
(Lathrop, 1985).2! Thus there is no longer any question in robotics about computing
dynamics in real time.

With solution of the above problem, research in robotics has shifted instead to ques-
tions of whether a sufﬁciéntly accurate dynamic model of the robot can be formulated
to be useful for control. If the model of the robot is not sufficiently accurate, then a

predictive control based on this model will lead to substantial errors and instabilities.

(1) The dynamic equations for a robot arm require knowledge of the inertial

parameters for each link.

2f feedback crrors are processed through the dynamics, then the startup time becomes the critical

factor.
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It is seldom known what the inertial parameters of robot links are, since manu-
facturers typically specify only the kinematic parameters and the inertial parameters
are incidental attributes of design. Fortunately automatic calibration methods have
recently been developed that infer these parameters as a result of movement. Since the
inertial parameters appear linearly in the dynamic equations, they can be estimated
by least squares by relating joint torques or forces to joint velocities and accelerations
(An, Atkeson, and Hollerbach, 1985; Olsen and Bekey, 1985). A reclated problem is
load estimation of objects picked up by the manipulator, since a change in the load
changes the kinematic and dynamic characteristics of the manipulator. Although the
inertial parameters of loads can be derived through joint torque sensing as above, it
is more accurate to use full wrist force-torque sensing (Atkeson, An, and Hollerbach,
1985; Mukerjee and Ballard, 1985).

The above methods can be implemented on-line or off-line,?? and require no spe-
cial calibration movements. The accuracy of the estimation depends on how well joint
torques or forces and accelerations can be sensed and on how fast the robot can acceler-
ate. Yet inaccuracies in inertias may not pose a problem for control, because parameters
that are hard to identify have little effect on observed variables and therefore are prob-

ably not important.
(2) Manipulator links are not perfectly rigid.

When there is significant bending in the structure, the manipulator dynamics become
much more complicated. In present-day industry there is a push towards lighter-weight
manipulators to increase relative payload ability, speed of motion, and cost, but the
price one pays is increased link flexibility. The underlying problem that has led to these
developments in robot design is inadequate actuation with respect to power to weight
ratio, especially when compared to human muscle. It is not clear this push would exist
to the same extent if the actuation were better, and it does not seem that flexible-link
dynamics is a particular source of worry in the biological system since bones do not
bend very much. ’

In biological limbs the mass distribution can change due to muscle contraction;
for example, the center of gravity of the thigh can shift by 10%. These changes are
probably predictable, and while complicating the control problem do not pose the same
level of complexity as flexible link dynamics. A potentially more significant problem

is transmission flexibility, whether it be tendons, gear trains, or chains, which creates

22 An on-line computation is one cxecuted at the same time an associated process is running; an off-line

computation takes place after the process has finished.
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passive springiness at the joints. Again, transmission flexibility is less of a concern than
link flexibility, since the rigid body dynamics still apply. Transmission flexibility may
turn out to be an advantage rather than just a problem because, as mentioned earlier,
it scems likely that some passive compliance will be needed for force control (Kazerooni,
1985).

(8) Actuator dynamics are not adequately taken into account or are too complez to

model.

Due to nonlinearities in motors and amplifiers, control signals can bear a complex
relationship to motor torque. Friction often provides an unpredictable element, arising
from transmission elements or from intrinsic motor characteristics (Snyder, 1985). If
actuator dynamics cannot be modelled usefully, they may dominate considerations of
link dynamics. Nevertheless, actuator dynamics are still in some sense simpler because
they are described by one variable compared to the n variables for link dynamics.

One way of compensating for an inability to model the actuation and transmission
elements is to tune the output for specific movements through repetition. This approach
is very reminiscent of the motor tape idea, in which the output is known only for one
particular trajectory. According to this approach, general movements would be made
coarsely or suboptimally with an imprecise system model and control, but for frequeﬂn.t
movements the control system would modify its output for a new repetition based on
errors from the previous repetition (Arimoto, Kawamura, and Miyazaki, 1985; Craig,
1984).

3.3.4 Feedback Control

However complete a dynamic model of a manipulator may be, it is not possible to pre-
dict exactly the actuator torques that will be required to execute a movement. There
will always be some error in the model of the manipulator, and aspects of the model
such as the actuator state may fluctuate. External disturbances that by their nature
are not accounted for may also arise. In the human case, for example, putting on a coat
perturbs arm movement. It is therefore considered essential that a feedback process
exist to correct the inevitable errors in a trajectory. The inverse dynamics computation
represents a feedforward process that attempts to predict the exact torques, and a feed-
back process works in conjunction with the feedforward process to correct the output.
A feedback process is also necessary for force control, because the resultant motion is a

consequence of the sensed contact force or kinematic errors.
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In the most general form, the feedback law relating trajectory errors to corrective
torques is cast in terms of task variables. After all, when controlling hand position
‘the correction of errors is most sensibly done in hand coordinates rather than in joint
coordinates, given the complex relation between joint errors and endpoint positions. It
is interesting that studies of reflexes in humans indicate that corrections often occur,
not in muscles, joints, or even limbs to which a perturbation is applied, but in remote
sites that are appropriate for the motor tasks. Abbs and Gracco (1983) perturbed the
lower lip during speech and observed upper lip compensation to maintain the speech
goals. Similarly, Abbs, Gracco, and Cole (1984) perturbed a finger in a pinching task
and found a compensation by the other finger. Lacquaniti and Soechting (1984) showed
that reflex compensation at the elbow during perturbation of the whole arm is consis-
tent with maintenance of joint torque rather than of any intrinsic muscle parameter.
This separation of the response from the point of sensing is a necessary capability for
achicving sophisticated control and argues against narrow reflexology.

A typical feedback law in hand coordinates is proportional-derivative (PD) control,
where a position error is multiplied by a position gain and added to a velocity error
multiplied by a velocity gain. The position gain is equivalent to a stiffness, and the
velocity gain is equivalent to a damping. Other terms that may be added in this
feedback law are desired acceleration (Luh, Walker, and Paul, 1980; Takase, 1977)
and contact force (ITogan, 1984). The sum of all these terms yields a corrective hand
acceleration that should be appropriate to reduce the errors. One must then convert
hand acceleration to joint acceleration by solving the inverse kinematics, and then find

the corrective torques by solving the inverse dynamics.

3.4 Biological Implications

This movement planning hierarchy represents a general motion control system, and
illustrates the kinds of transformations that must occur explicitly or implicitly to realize
a desired endpoint trajectory. An explicit realization would be a deliberate sequence of
transformations as in the robotics model of a planning hierarchy, from a dctailed point-
by-point evolution of the endpoint positions, to the corresponding time sequence of joint
angles, and then finally to the actuator torques required. An implicit realization would
involve setting up some lower-level organization, perhaps muscle synergies for biological
motor control or coupled joint activations, to evolve in such a manner as to approximate
the movement goals.

We examine next how the movement planning hierarchy may be applied towards

understanding human arm movement. First, what evidence is there for planning in
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Figure 15: Different planning variables and their resultant trajectories for planar two-joint
arm movement. (a) A straight line in joint coordinates generates a complex curved endpoint
trajectory. (b) A straight line in Cartesian coordinates requires a relatively complex elbow and
shoulder joint movement.

endpoint coordinates, as opposed to planning in joint coordinates or in actuator co-
ordinates? Second, how can the motor control system be reconciled with movement

dynamics?

3.4.1 Planning in Hand Coordinates

It would almost seem teleologically imperative that the motor control system have an
ability to plan in terms of hand coordinates. The tasks of writing on a board, picking
up and moving a cup, screwing in a lightbulb, and opening a door, given earlier as
examples of external constraints, would seem to demand this ability. When planning
in hand coordinates, the external constraints are most easily captured. The alternative
of planning in more intrinsic coordinates presents the difficulty of how to predict the
consequences of movement in the face of the complex transformation that take place
between the various levels.

While planning in intrinsic coordinates intuitively possesses the easiest method to
organize movement, this approach is viable only if simplifying strategies can be found
that exhibit near-general, or at least adequate, behavior. Ordinarily one would expect
that simple trajectories at one level should yield complex trajectories at another; for
example, a straight line in hand coordinates yields a complex joint angle trajectory,
while .a straight line in joint coordinates yields a complex endpoint trajectory (Fig.
15). Said another way, there is a conservation of complexity in movement planning.
With intrinsic planning coordinates, it must be explained how external constraints can
be matched without requiring a controller more complicated than one operating at a

higher level and doing the necessary transformations to lower levels.

Some experimental evidence in fact supports the concept of hand-coordinate plan-
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ning, primarily straight-line trajectories in the act of making sclf-paced point-to-point
reaching movements (Morasso, 1981). That Cartesian straight-line trajectories support
hand-space planning is an argument based on Occam’s razor: the simplest description
of movement reflects how the movement is generated. This argument is similar to Bern-
stein’s principle of equal simplicity (Whiting, 1984). If the spatial shape of a trajectory
is invariant irrespective of the muscle scheme or the joint scheme, then the motor plan
must be closely related to the topology of the trajectory and considerably removed from
joints and muscles.

Hand-space planning has also been invoked to explain curved movements, such as
those induced by requiring subjects to pass through a via point between start and goal
(Abend, Bizzi, and Morasso, 1982). TFlash (1982) found that modeling movement in
terms of endpoint coordinates and requiring that these endpoint coordinates minimize
jerk (the third derivative of position) captured the essential features of path shape and
velocity profile.

If hand-space planning exists, then biological processes equivalent to inverse kine-
matics would have to exist as well, but there is no direct evidence of such processes.
Soechting (1984) observed that in accurate pointing movements the wrist motion is only
loosely coupled to the elbow and shoulder joint motion. Given the earlier discussion
about spherical wrist joints and simplicity of the inverse kinematics solution, the exper-
imental evidence is consistent with positioning being separated from orienting degrees

of freedom in order to solve the inverse kinematics.

3.4.2 Planning in Joint Coordinates

Straight lines in joint angle space are known in robotics as joint interpolation, where
all joints are executed in lockstep with the same time profile. The joint angles interpo-
late linearly from start to goal, and hence never reverse direction. Joint interpolation
generates curved Cartesian paths for two-joint arm movement as shown in Figure 15A.
Hence joint interpolation is an instance of planning in joint coordinates that does not
generally allow one to realize simple endpoint trajectories.

If to circumvent the above limitations the definition of joint interpolation is gener-
alized to allow one joint to start or finish before another, and a joint’s time profile to
expand or compress, approximately straight Cartesian trajectories can be generated in
certain regions of the workspace (T'ig. 16). This strategy is henceforth referred to as
staggered joint interpolation. The affected workspace regions correspond to Cartesian
straight-line motions where a joint is not required to reverse itself, since as mentioned

above, joint reversal is not allowed in joint interpolation. When a joint must reverse
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Figure 16: Joint angle plots of shoulder angle 0; versus clbow angle 0, (a) and correspond-
ing endpoint trajectories (b) for perfect straight-line Cartesian trajectories (solid lines) versus
staggered joint interpolation (dotted lines).

itself, a Cartesian straight-line path cannot be well approximated. The ability to gen-
erate approximately straight Cartesian paths by staggered joint interpolation cautions
against automatically assuming that planning in hand coordinates is required to achieve

straight Cartesian paths.

Recently evidence has appeared that in certain portions of the workspace human arm
movements take on curved features explainable by joint interpolation. Corresponding
to endpoint trajectories in Figure 17(a)-(d) between various targets in a vertical plane,
the plots of joint angles in Figure 17(e)-(h) show that the curved trajectories (c) and (d)
reflect straight lines in joint space. These movements correspond to workspace regions
where joint reversal is required for Cartesian straight-line motion, and it is postulated
that subjects in this experimental task refrain from joint reversal and adopt the simpler
strategy of joint interpolation (Hollerbach, Moore, and Atkeson, 1985). Trajectory (a)
is a special case of a Cartesian straight line passing through the shoulder, the only
situation where joint interpolation generates a straight hand path. Although trajectory
(b) is also approximately straight, it can be explained by staggered joint interpolation.
In this instance the subject was able to find the best compromise to a Cartesian straight

line by an appropriate choice of interpolation parameters.

A strategy demonstrably equivalent to joint interpolation has also been proposed by
Soechting and Lacquaniti (1981), who found that in arm movements reaching towards
the edge of the workspace the deceleratory phase consisted of a constant joint rate
ratio between shoulder velocity and elbow velocity. Simulations based on this data are
shown in I'igure 18. In Figure 18a the plot of elbow joint velocity versus shoulder joint

velocity for several trajectories shows an approach to a constant slope in the last half
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Figure 17: Trajectories of unrestrained arm movement between vertical plane targets measured
with a Selspot system. The endpoint trajectories are shown in (a)-(d) as projected onto the
vertical plane, aud the corresponding joint angle plots of elbow versus shoulder angle are shown

in (e)-(h).

of the movement. It has recently been shown, however, that any movement toward the
workspace boundary approaches a constant joint rate ratio, regardless of the approach
direction, location on the boundary, or coordination strategy (Hollerbach and Atkeson,
1985). In Figure 18b the movement plane is overlayed with contours of constant joint
rate ratio. Movements of the endpoint in the lower right quadrant from the starting
point towards various parts of the boundary traverse these contour lines to reach exactly
the same joint rate ratio, which depends only on the link lengths and hence is a peculiar

artifact of kinematics near the workspace boundary.

Thus the movements described in (Soechting and Lacquaniti, 1981) cannot by themQ
selves be taken as evidence for joint interpolation, and a different set of experiments are
required to make this argument that stay away from the workspace boundary. Although
the initial part of the trajectories in (Soechting and Lacquaniti, 1981) did not show a
constant joint rate ratio, it is nevertheless possible that the whole trajectory could be
explained by staggered joint interpolation. The endpoint trajectories were relatively

straight, but no joint was required to reverse itself. Once again, this analysis indi-

——

cates that a superficial regularity at one level of description could have an explanatory

underpinning at a different level.
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Figure 18: Simulations of vertical planar arm movements involving shoulder and elbow joints.
In (b) the arm is shown in the starting position in the lower right quadrant of the movement
plane. The center represents the shoulder point, and [; and Il are the upper arm and forearm
lengths. The outer circle represents the workspace boundary, the points of maximal reach. The
simulated movements begin from the starting position and approach different points on the
boundary along straight-line paths. In (a) the ratio of clbow velocity to shoulder velocity are
shown for each of these movements. Contour lines of constant joint rate ratio are imposed on
the movement plane in (b).
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3.4.3 Planning in Muscle Coordinates

Proposals have been made that utilize the viscoelastic properties of muscle to generate
trajectories, and as such represent instances of planning in terms of muscle coordinates.
Feldman (1974a, 1974b) and Crossman and Goodeve (1983) independently proposed the
final position control hypothesis, also known as the equilibrium point control hypothesis.
Muscles are assumed to act like springs to a first approximation, where for a given level
of activation the force is proportional to length and a change in activation alters the
spring stiffness or the zero setting. Around a joint the agonist and antagonist muscles
act as opposing springs, and corresponding to their activations a total joint stiffness
and equilibrium joint angle is defined that automatically generates restoring torques in
response to a perturbation.

This essentially static model would be ideal to explain postural control, but the final
position control hypothesis adapted this model to propose a basis for the generation of
active movement. When the equilibrium point is shifted suddenly by changing the
muscle activations to correspond to an equilibrium point at a desired final position, the
mass attached to the springs will automatically move to and come to rest at the final
equilibrium position. In this model, there is no explicit trajectory plan, which evolves
dynamically through interaction of the moving mass with the potential field set up by
the springs.

Some early experimental evidence supported the equilibrium point control hypothe-
sis (Kelso and Holt, 1980; Polit and Bizzi, 1979), and theorctical models developed from
it (Sakitt, 1980). More recent experiments employing perturbations, however, show the
existence of intermediate equilibrium points (Bizzi, Chapple, and Hogan, 1982; Bizzi
et al., 1984). Furthermore, theoretical simulation studies have convincingly shown that
kinematic features of two-joint movements cannot be captured by this simple model

(Delatizky, 1982). Hence the final position control hypothesis is now discounted.

3.4.4 Dynamics and Control

However one plans a trajectory, the correct joint torques and muscle activations must
be arrived at to produce the movement. One of the most controversial issues in motor
control is the extent to which the system knows about dynamics (Loeb, 1983). A main
issue is the numerical computing ability of the nervous system, which it has been argued
is inadequate to perform the many computer-like arithmetic operations required by even
the efficient forms of inverse dynamics, acting at the servo rates that would be required
during movement. Alternatives to analytic computation involve various forms of lookup
tables for all or part of the dynamic equations (Albus, 1975a, 1975b; Raibert and Horn,
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1978). These methods are similarly thought to require too much memory to represent
with sufficient granularity the useful movement regions, even though these formulations
were originally derived from theories of the cerebellum and motor learning (Albus, 1971,
1981; Raibert, 1978).

Instead of evaluation of exact nonlinear equations for dynamics, a frequently pro-
posed alternative is a simplification or linearization of the dynamics, attempting to
keep the most important terms and compensating the resultant errors with feedback.
As mentioned earlier, it is unlikely that the biological system could implement this
solution with proprioceptive feedback because of the transmission and processing de-
lays. Two other alternatives are the utilization of viscoelastic muscle properties and the

development of specially tuned movements, examined in more detail below.

Utilization of Muscle Properties

Because of muscle’s viscoelastic properties, it is conceivable that an equivalent me-
chanical feedback could substitute for proprioceptive feedback. The equivalency results
from the functional similarity of the actions of passive viscoelastic elements and active
proportional-derivative (PD) control loops. Since viscoelasticity is a mechanical prop-
erty of muscle, it acts instantaneously to resist perturbations and hence overcomes the
basic speed limitations of active feedback.

The viscoelasticity of muscle is transferred to joints and ultimately to the endpoint
due to the redundant musculature around joints and the presence of two-joint muscles.
Whenever muscle contraction generates a joint torque or endpoint force, an apparent
stiffness and viscosity is defined around the nominal state that will resist perturbations.
As with active feedback, mechanical feedback will be most effective when the pertur-
bations are not too large. If dynamics is treated as a perturbation, then ultimately the
controllability of fast movements is limited (Johnson, 1982).

A scheme that proposes to treat dynamics as a perturbation through more explicit
control of the effective endpoint viscoelasticity is the reference trajectory hypothests.
This hypothesis is derived from the final position control hypothesis in that it posits a
sequence of equilibrium points from start to goal (Bizzi et al., 1984; Hogan, 1982). The
multi-dimensional viscoelasticity of the endpoint can be set up around an equilibrium
point to resist perturbations. The way the appropriate torques are generated is that the
reference equilibrium point always moves in advance of the actual arm position, thereby
creating a disequilibrium that propels the endpoint to follow the reference point. In
effect, this strategy reduces movement to posture and dynamics to statics.

Research into the viability of this hypothesis is continuing; simulation results were
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encouraging in capturing some detailed aspects of trajectories (Flash and Mussa-Ivaldi,
1984). A hypothetical equilibrium point trajectory was inferred from one measured
trajectory and static stiffness fields, and was applied towards other workspace regions.
The simulated trajectories captured the essential linearity of the corresponding exper-
imental movements, even down to fine details of curvature. The extent to which the
multidimensional viscoelasticity can be controlled is under study (Mussa-Ivaldi, Hogan,
and Bizzi, 1984). One way this scheme could avoid problems with fast movements is if
the viscoelastic properties scaled their intensities appropriately with movement speed
to make the dynamics of the system time-invariant. It is not yet known if such is the
case. It will also be necessary to demonstrate that the reference point moves in a simple
manner and is invariant with speed; otherwise, it would just represent a different way

of encoding dynamics.

Specially Tuned Movements

If the motor control system does not have a sufficiently accurate model of itself and if
active or passive feedback processes cannot adequately compensate for dynamic motion,
then the main alternative is specialized and individually tuned movements. Reminiscent
of the motor tape idea, one is hesitant to propose this as an alternative because of the
implied lack of flexibility. Nevertheless, thinking along these lines one would have to ask
first if all movements are separately tuned or if there are elemental movements which
serve as building blocks for more complex movements, second how these movements are
actually tuned, and third whether decompositions exist that permit some flexibility in
adapting to different conditions.

Currently little can be said one way or another about the existence of elemental
movements. One possibility is that straight-line trajectories form a basic unit, which
can be combined with some blending process to generate curved trajectories (Abend,
Bizzi, and Morasso, 1982). Developmentally, it appears that babies adopt basic kine-
matic features of adult arm movement véry early on (Fetters and Dclatizky, 1984), so
that perhaps these elementary movements are set up in early months and then slowly
modified with growth. ‘

With regard to tuning mechanisms, again not much is known about how this may
come about, but perhaps the recent work in robotics mentioned earlier can serve as
inspiration. The idea that movement regions could be represented coarsely or finely,
depending upon the level of practice and skill, was explored in the context of robot
dynamics by Albus (1975a, 1975b, 1981). This concept has been frequently mentioned

as a possibility for motor control, e.g. (Loeb, 1983), but concrete proposals for how fine
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vs. coarse tuning would take place are lacking.

Recently discovered time and load scaling properties of dynamics (Ilollerbach and
Flash, 1982; Atkeson and Hollerbach, 1985) could make the motor tape concept more
attractive, because they allow flexibility with regard to changes of movement speed and
hand-held load without requiring one to construct a completely new motor program.
In Figure 19a the tangential velocity profiles of the wrist point for particular vertical-
plane arm movements are normalized for time and distance to illustrate the underlying
similarity in Figure 19b. It was found that these profiles were invariant for different
trajectories, speed conditions, hand-held weights, and even subjects. The results were
interpreted in terms of a massless phantom arm arm that carries the load and whose
movement is superimposed on the physical arm (Figure 19¢). By separately scaling the
phantom and real arm for speed and load changes, through separation of the gravity
torques from the inertial torques, simple linear combinations of these components were
found to yield exact torque profiles for the different speeds and loads. In order for
the scaling properties to simplify movement dynamics, the shape of the path and of
the tangential velocity profile must remain invariant across speed and load changes,

consistent with experimentally observed trajectories.

3.5 Conclusions

Biological motor control has been viewed from the perspective of a hierarchical plan-
ning and control structure derived from robotics. This perspective illuminates issues of
kinematics, dynamics, and control that are an essential part of motor control but that
are often overlooked in detailed physiological studies. The motion planning and control
hierarchy represents a general-purpose structure that defines the transformations that
must take place for the most advanced manifestations of movement control.

This general structure provides a framework for considering how the biological motor
control system might derive its own solutions to the implied transformations. The basic
question is how close to a general purpose structure is the biological motor controller?
At the same time that limitations in control may restrict what can be accomplished,
they may permit shortcuts in the transformations mentioned above. To answer the basic
question requires much experimentation to determine exactly what are the bounds that
circumscribe motor control. The lack of an adequate psychophysics of movement alluded
to in the introduction creates a serious detriment towards progress on this issue. The
search for regularities or invariances in movement production is an attempt to ferret
out the motor control system’s limitations. Many more experiments are required to test

the extent to which these invariances hold or others might appear.
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Figure 19: (a) The tangential velocity profiles of the wrist point for six vertical arm movements
measured with the Sclspot system. (b) The movements are normalized for time and distance to
demonstrate the underlying invariance in profile shape. (c) A hypothetical phantom arm carrying
the load and superimposed on the actual arm allows movement speed and load conditions to be
simply changed if and only if the tangential velocity profile is invariant.
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The computational approach to motor control is relatively new, and only a few
investigators are applying the paradigm. So far there have been few concrete results.
Indeed, progress in motor control research as a whole is moving rather slowly. A number
of alternative biological strategics have been considered here, but it is premature to
attempt to draw conclusions. The strategy of staggered joint interpolation may often
allow a good approximation of Cartesian straight-line trajectories and would greatly
simplify the inverse kinematics problem. The dynamic scaling properties of movement as
implied by invariant tangential velocity profiles under different speed and load conditions
show how a simple restriction on movement production could lead to simplification of
the inverse dynamics computation. The viscoelastic properties of muscle could provide
a feedback mechanism that avoids problems of transmission delay, and at the same
time would unify position control and force control. Tuning mechanisms may exist
to optimize certain movements that need to be repeatedly and accurately controlled,
while leaving some more general purpose but coarser mechanism for less demanding
movements. '

What the computational approach offers is a fuller view of the scope of the motor
control problem and ways in which it can be solved. It brings to bear the most recent
advances in artificial intelligence, robotics, mechanical design, and control theory. Many
of the general issues raised by the computational approach were already present in
Bernstein’s writings (Whiting, 1984), but technical advances have given better answers
to old questions and raised new ones. Even since Saltzman’s (1979) seminal paper on
levels of sensorimotor representation, there have been significant advances in all aspects
of control — trajectory planning, kinematics, dynamics, sensing, etc. — that have strong
implications for motor control research. |

The computational approach to motor control is intended to complement the re-
search in motor psychophysics and physiology. Biologically specific constraints must be
provided by experimentation, and hypothetical control strategies must be put to test.
The hope is that the computational approach can contribute towards setting upimore
discerning experiments, interpreting data, and eventually discovering how the brain

accomplishes its information processing tasks.
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