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Abstract. Since Robotics is the field concerned with the connection of perception
to action, Artificial Intelligence must have a central role in Robotics if the connection
is to be wntelligent. Artificial Intelligence addresses the crucial questions of: what
knowledge is required in any aspect of thinking; how that knowledge should be
represented; and how that knowledge should be used. Robotics challenges Al by
forcing it to deal with real objects in the real world. Techniques and representations
developed for purely cognitive problems, often in toy domains, do not necessarily
extend to meet the challenge. Robots combine mechanical effectors, sensors, and
computers. Al has made significant contributions to each component. We review Al
contributions to perception and object oriented reasoning. Object-oriented reasoning
includes reasoning about space, path-planning, uncertainty, and compliance. We
conclude with three examples that illustrate the kinds of reasoning or problem
solving abilities we would like to endow robots with and that we believe are worthy
goals of both Robotics and Artificial Intelligence, being within reach of both.
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1. Robotiesand Artificiallntelligence

Robotics is the intelligent connection of perception to action. The key words in
that sentence are “intelligent” and concomitant “perception”. Normally Robotics
is thought of as simply the connection of sensing to action using computers. The
typical sensing modalities of current robots include vision, force and tactile sensing,
as well as proprioceptive sensing of the robot’s internal state. The capacity for
action is provided by arms, grippers, wheels, and, occasionally, legs.

The software of modern, commercially available, robot systems such as the IBM
565 [Taylor, Summers, and Meyer 1982], the Unimation PUMA [Val 1980, Shimano
ct. al. 1984], and the Automatix cybervision [Franklin and VanderBrug 1982, Villers
1982] includes a wide variety of functions: it performs trajectory calculation and
kinematic translation, interprets sense data, executes adaptive control through
conditional execution and real time monitors, interfaces to databases of geometric
models, and supports program development. It does some of these tasks quite well,
particularly those that pertain to Computer Science; it does others quite poorly,
particularly perception, object modelling, and spatial reasoning.

The intelligent connection of perception to action replaces sensing by perception,
and software by intelligent software. Perception differs from sensing or classification
in that it - implies the construction of representations that are the basis for
recognition, reasoning and action. Intelligent software addresses issues such as:
spatial reasoning, dealing with uncertainty, geometric reasoning, compliance, and
learning. Intelligence, including the ability to reason and learn about objects and
manufacturing processes, holds the key to more versatile robots.

Insofar as Robotics is the intelligent connection of perception to action, Artificial
Intelligence (AI) is the challenge for Robotics. On the other hand, however, we shall
argue that Robatics severely challenges Artificial Intelligence (Al) by forcing it to
deal with real objects in the real world. Techniques and representations developed
for purely cognitive problems often do not extend to meet the challenge.

First, we discuss the need for intelligent robots and we show why Robotics
poses severe challenges for Artificial Intelligence. Then we consider what is required
for robots to act on their environment. This is the domain of kinematics and
dynamics, control, innovative robot arms, multi-fingered hands, and mobile robots.
In section 5, we turn attention to intelligent software, focussing upon spatial
reasoning, dealing with uncertainty, geometric reasoning, and learning. In section
6, we discuss robot perception. Finally, in Section 7, we present some examples of
reasoning that connects perception to action, example reasoning that no robot is
currently capable of. We include it because it illustrates the reasoning and problem
solving abilities we would like to endow robots with and that we believe are worthy
goals of Robotics and Artificial Intelligence, being within reach of both.
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2. Theneed for intelligent robots

Where is the need for intelligent robots? Current (unintelligent) robots work fine so
long as they are applied to simple tasks in almost [}Fe‘.d;i.(,‘;g;lbl(". situations: parts of the
correct type are presented in positions and orientations-that hardly vary, and little
dexterity is required for successful completion of the task. The huge commercial
successes of robot automation have been of this sort: parts transfer (including
palletizing and packaging), spot welding, and spray painting. Automation has been
aimed largely at highly repetitive processes such as these in major industrial plants.

But to control the robot’s environment sufliciently, it is typically necessary to erect
elaborate fixtures. Often, the set-up costs associated with designing and installing
fixtures and jigs dominate the cost of a robot application. Worse, elaborate
fixturing is often not transferrable to a subsequent task, reducing the flexibility
and adaptability that are supposedly the key advantages of robots. Sensing is
one way to loosen up the environmental requirements; but the sensing systems of
current industrial robots are mostly restricted to two-dimensional binary vision.
Industrial applications requiring compliance, such as assembly, seam welding and
surface finishing, have clearly revealed the inabilities of current robots. Research
prototypes have explored the use of three-dimensional vision, force and proximity
sensors, and geometric models of objects [Faugeras 1982, Clocksin et. al. 1982,
Trevelyan, Kovesi, and Ong 1984, Nakagawa and Ninomiya 1984, Porter and Mundy
1982, 1984). Other applications expose the limitations of robots even more clearly.
The environment cannot be controlled for most military applications, including
smart sentries, autonomous ordinance disposal, autonomous recovery of men and
materiel, and, perhaps most difficult of all, autonomous navigation.

3. Roboticspart of Artificiallntelligence

Artificial Intelligence (AI) is the field that aims to understand how computers
" can be made to exhibit intelligence. In any aspect of thinking, whether reasoning,
perception, or action, the crucial questions are:

o  What knowledge is needed. The knowledge needed for reasoning in relatively
formalized and circumscribed domains such as symbolic mathematics and game
playing s well known. Highly competent programs have been developed in such
domains. It has proven remarkably difficult to get experts to precisely articulate
their knowledge, and hence to develop programs with similar expertise, in medicine,
evaluating prospective mining sites, or configuring computers (see [Michie 1979,
Hayes-Roth, Waterman, and Lenat 1983, Winston 1983] for a discussion of expert
systems, and accounts of the difficulty of teasing knowledge out of experts). Among
the many severe inadequacies of the current crop of expert systems, is the fact that
they usually have limited contact with the real world. Human experts perform the
necessary perceptual preprocessing, telling MYCIN for example that the patient is
“febrile 0.8”. Moving from the restricted domain of the expert, to the unrestricted
world of everyday experience, determining what knowledge is needed is a major
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step toward modelling stereco vision, achieving biped walking and dynamic balance,
and reasoning about mechanisms and space. What do you need to know in order
to catch a ball?

o  Representing knowledge. A key contribution of Al is the observation that
knowledge should be represented ezplicitly, not heavily encoded, for example
numerically, in ways that suppress structure and constraint. A given body of
knowledge is used in many ways in thinking. Conventional data structures are
tuned to a single set of processes for access and modification, and this renders
them too inflexible for use in thinking. Al has developed a set of techniques such as
semantic networks, frames, and productien rules, that are symbolic, highly flexible
encodings of knowledge, yet which can be efficiently processed.

Robotics needs to deal with the real world, and to do this it needs detailed
geometric models. Perception systems need to produce geometric models; reasoning
systems must base their deliberations on such models; and action systems need
to interpret them. Computer-aided design (CAD) has been concerned with highly
restricted uses of geometric information, typically display and numerically-controlled
cutting. Representations incorporated into current CAD sytems are analogous to
conventional data structures. In order to connect perception, through reasoning,
to action, richer representations of geometry are needed. Steps toward such richer
representations can be found in configuration space [Lozano-Pérez 1981, 1983a,
gencralized cones [Binford 1981], and visual shape representations [Horn 1982,
Ikeuchi 1983, Brady 1984, Marr 1982].

As well as geometry, Robotics needs to represent forces, causation, and
uncertainty. We know how much force to apply to an object in an assembly to mate
parts without wedging or jamming [Whitney 1983]. We know that pushing too hard
on a surface can damage it; but that not pushing hard enough can be ineffective
for scribing, polishing, or fettling. In certain circumstances, we understand how
an object will move if we push it [Mason 1983]. We know that the magnitude and
direction of an applied force can be changed by pulleys, gears, levers, and cams.

We understand the way things such as zip fasteners, pencil sharpeners, and
automobile engines work. The spring in a watch stores energy, which is released to
a flywheel, causing it to rotate; this causes the hands of the watch to rotate by a
smaller amount determined by the ratios of the gear linkages. Representing such
knowledge is not simply a matter of developing the appropriate mathematical laws.
Differential equations, for example, are a representation of knowledge that, while
extremely useful, are still highly limited. Forbus [1983] points out that conventional
mathematical representations do not encourage qualitative reasoning, instead, they
invite numerical simulation. Though useful, this falls far short of the qualitative
reasoning that people are good at. Artificial Intelligence research on qualitative
reasoning and naive physics has made a promising start but has yet to make contact
with the real world, so the representations and rcasoning processes it suggests have
barely been tested [Hobbs and Moore 1984, Forbus 1983, Al Journal 1984, DeKleer
1975, Winston, Binford, Katz, and Lowry 1984].
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Robotics needs to represent uncertainty, so that reasoning can successfully
overcome it. There are bounds on the accuracy of robot joints; feeders and sensors
have errors; and though we talk about repetitive work, no two parts are ever exactly
alike. As the tolerances on robot applications become tighter, the need to deal with
uncertainty, and to exploit redundancy, becomes greater.

) Using knowledge. Al has also uncovered techniques for using knowledge
effectively. One problem is that the knowledge needed in any particular case cannot
be predicted in advance. Programs have to respond flexibly to a non-deterministic
world. Among the techniques offered by Al are search, structure matching,
constraint propogation, and dependency-directed reasoning. One approach to
constraint propogation is being developed in models of perception by Terzopoulos
[1983], Zucker, Hummel, and Rosenfeld [1977]. Another has been developed by
Brooks [1981, 1982] building on earlicr work in theorem proving. The application of
search to Robotics has been developed by Goto ct. al. [1980], Lozano-Pérez [1981],
Gaston and Lozano-Pérez [1982], Grimson and Lozano-Pérez [1984], and Brooks
[1983b]. Structure matching in Robotics has been developed by Winston, Binford,
Katz, and Lowry [1984].

To be intelligent, Robotics programs need to be able to plan actions and reason
about those plans. Surely Al has devcloped the required planning technology?
Unfortunately, it seems that most, if not all, current proposals for planning and
reasoning developed in Al require significant extension before they can begin to
tackle the problems that typically arise in Robotics, some of which are discussed in
Section 5. One reason for this is that reasoning and planning has been developed
largely in conjunction with purely cognitive representations, and these have mostly
been abstract and idealized. Proposals for knowledge representation have rarely been
constrained by the need to support actions by a notoriously inexact manipulator, or
to be produced by a perceptual system with no human preprocessing. ACRONYM
[Brooks 1981, Brooks and Binford 1980] is an exeption to this criticism. Another
reason is that to be useful for Robotics, a representation must be able to deal with
the vagaries of the real world, its geometry, inexactness, and noise. All too often,
Al planning and reasoning systems have only been exercised on a handful of toy
examples.

In summary, Robotics challenges Al by forcing it to deal with real objects
in the real world. Techniques and representations developed for purely cognitive
problems, often in toy domains, do not necessarily extend to meet the challenge.

4. Action

In this section, we consider what is required for robots to act on their
environment. This is the subject of kinematics and dynamics, control, robot arms,
multi-fingered hands, and locomoting robots.
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4.1. Kinematics, Dynamics, and Arm Design

The kinematics of robot arms is one ol the better understood areas of Robotics
(Paul 1981, Brady et. al. 1983]. The nced for kinematic transformations arises
because programmers prefer a different representation of the space of configurations
of a robot than that which is most natural and efficient for control. Robots are
powered by motors at the joints between links. Associated with a motor are
quantities that define its position, velocity, acceleration, and torque. For a rotary
motor, these are angular positions, angular velocities ete. It is most efficient to
control robots in joint space. However, programmers prefer to think of positions
using orthogonal, cylindrical, or spherical Cartesian coordinate frames, according
to the task. Six degrees of freedom (DOTIY) are required to define the position and
orientation of an object in space. Correspondingly, many robots have six joint
motors to achieve these freedoms. Converting between the joint positions, velocities,
and accelerations and the Cartesian (task) counterparts is the job of kinematics.
The conversion is an identity transformation between the joint space of “Cartesian”
arms (such as the IBM 7565) and orthogonal (z,y,2) Cartesian space. Cartesian
arms suffer the disadvantage of being less able to reach around and into objects.
Kinematic transformations are still needed to spherical or cylindrical Cartesian
coordinates.

The kinematics of a mechanical device are defined mathematically. The
requirement that the kinematics can be efficiently computed adds constraint,
that ultimately affects mechanical design. In general, the transformation from joint
coordinates to Cartesian coordinates is straightforward. Various efficient algorithms
have becen developed, including recent recursive schemes whose time complexity is
linear in the number of joints. Hollerbach [1983] discusses such recursive methods for
computing the kinematics for both the Lagrange and Newton-Euler formulations
of the dynamics. The inverse kinematics computation, from Cartesian to joint
coordinates, is often more complex. In general, it does not have a closed form
solution [Pieper 1968]. Pieper [1968, see also Pieper and Roth 1969] showed that
a “spherical” wrist with three intersecting axes of rotation leads to an exact
analytic solution to the inverse kinematic equations. The spherical wrist allows a
decomposition of the typical six degree of freedom inverse kinematics into two three
degree of freedom computations, one to compute the position of the wrist, the other
to compute the orientation of the hand. More recently, Paul [1981], Paul, Stevenson,
and Renaud [1984], Featherstone [1983], and Hollerbach and Sahar [1983], have
developed efficient techniques for computing the inverse kinematics for spherical
wrists. Orin and Schrader [1984] have investigated algorithms for computing the
Jacobian of the kinematic transformation that are suited to VLSI implementation.

If the number of robot joints is equal to six, there are singularities in the
kinematics, that is, a small change in Cartesian configuration corresponds to a large
change in joint configuration. The singularities of six degree-of-freedom industrial
robot arms are well cataloged. Singularities can be avoided by increasing the
number n of joints, but then there are infinitely many solutions to the inverse
kinematics computation. One approach is to use a generalized inverse technique

554
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using a positive deflinite 6 by n matrix to find the solution that minimizes some
suitable quantity such as cnergy or time [Whitney 1968, Kahn and Roth 1971].
Another approach is to avoid singularities by switching between the redundant
degrees of freedom [Paul (forthcoming)]. Finally, if the number of joints is less
than six, there are “holes” in the workspace, regions that the robot cannot reach.
Such robots, including the SCARA design, are nevertheless adequate for many
specialized tasks such as pick-and-place operations. One important application of
kinematics computations is in automatic planning of trajectories [Brady 1983c].

Most attention has centered on open kinematic chains such as robot arms.
Much less work has been done on closed kinematic chains such as legged robots or
multi-fingered hands. Hirose et. al. [1984] have designed a pantograph mechanism
for a quadruped robot that significantly reduces potential energy loss in walking.
Salisbury and Craig [1982] (sec also Salisbury [1982]) have used a number of
computational constraints, including mobility and optimization of finger placement,
to design a three-fingered hand. The accuracy and dexterity of a robot varies with
configuration, so attention neceds to be paid to the layout of the workspace.
Salisbury and Craig [1981] used the condition number of the Jacobian matrix (using
the row norm) to evaluate configurations of the hand, that is to evaluate points
in the workspace. Yoshikawa [1984] has introduced a measure of manipulability
for a similar purpose. Roth [1984] reviews the application to Robotics of screw
coordinates to link kinematics and dynamics.

The dynamic equations of a robot arm (sece Hollerbach [1983]) consist of
n coupled, second-order, differential equations in the positions, velocities, and
accelerations of the joint variables. The equations are complex because they involve
terms from two adjacent joints, corresponding to reaction and Coriolis torques.
Conventional techniques have simplified dynamics by dropping or linearizing
terms, or have proposed table look-up techniques. Recently, “recursive” recurrence
formulations of the dynamic equations have been developed that:

1. Compute the kinematics from the shoulder to the hand in time proportional
to n,

2. Compute the inverse dynamics from the force and torque exerted on the hand
by the world from the hand to the shoulder, again in time proportional to n.

The importance of this result is threefold:

e [irst, it suggests that a more accurate inverse plant moedel can be developed,
leading to faster, more accurate arms. Friction is a major source of the discrepancy
between model and real world. Direct drive technology [Asada and Kanade 1981,
Asada 1982, Asada and Ycusel-Toumi 1984] reduces the mismatch. In a direct drive
arm, a motor is directly connected to a joint with no intervening transmission
elements, such as gears, chains, or ball screws. The advantages are that friction
and backlash are low, so the direct drive joint is backdrivable. This means that it
can be controlled using torque instead of position. Torque control is important for
achieving compliance, and for feedforward dynamics compensation.
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o Sccond, the recurrence structure of the equations lends itself to implementation
using a pipelined microprocessor architecture, cutting down substantially on the
number of wires that are threaded through the innards of a modern robot.

o Third, Hollerbach and Sahar [1983] have shown that their refinement of
Featherstone’s technique for computing the inverse kinematics makes available
many ol the terms needed for the recursive Newton-ISuler dynamics.

Renaud [1984] has developed a novel iterative Lagrangian scheme that requires
about 350 additions and 350 multiplies for a six revolute joint robot arm. The
method has been applied to manipulators having a general tree structure of revolute
and prismatic joints. Huston and Kelly [1982] and Kane and Levinson [1983] have
recently adapted Kane’s formulation of dynamics to robot structures.

4.2. Control

Much of control theory has developed for slowly changing, nearly rigid systems.
The challenges of robot control are several:

o Complez dynamics. The dynamics of open-link kinematic chain robots consist
of n coupled second-order partial differential equations, where n is the number of
links. They become even more complex for a closed multi-manipulator system such
as a multi-fingered robot hand or locomoting robot.

o  Articulated structure. The links of a robot arm are cascaded and the dynamics
and inertias depend on the configuration.

o  Discontinuous change. The parameters that are to be controlled change
discontinuously when, as often happens, the robot picks an object up.

o Range of motions. To a first approximation one can identify several different
kinds of robot motion: free space or gross motions, between places where work is
to be done; approach motions (guarded moves) to a surface; and compliant moves
along a constraint surface. Each of these different kinds of motion poses different
control problems.

The majority of industrial robot controllers are open-loop. However, many control
designs have been investigated in Robotics; representative samples are to be
found in [Brady et. al. 1983, Paul 1981, Brady and Paul 1984]. They include
optimal controllers [Kahn and Roth 1971, Dubowsky 1983]; model reference control -
[Dubowsky and des Forges 1979]; sliding mode control [Young 1978 (in Brady et. al.
1983)]; non-linear control [Freuad 1981, 1984]; hierarchical control [Salisbury and
Craig 1981]; distributed control [Klein and Wahawisan, 1982]; hybrid force-position
control [Raibert and Craig 1981 (reproduced in Brady et. al. 1983), Klein Olson,
and Pugh 1983]; and integrated system control [Albus 1983]. Cannon and Schmitz
[1984] have investigated the precise control of flexible manipulators.

4.3. End effectors

Industrial uses of robots typically involve a multi-purpose robot arm and an end
effector that is specialized to a particular application. End effectors normally
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have a single degree of freedom [Fingelberger 1980]: parallel jaw grippers, suction
cup, spatula, “sticky” hand, or hook. The algorithms for using such grippers are
correspondingly simple. Paul’s {1972, sce also Taylor, Summers, and Meyer 1982)
centering grasp algorithm is one of the more advanced examples. Many end effectors
have no built-in sensors. Those that do typically incorporate devices that give a
single bit of information. The most common are contact switches and infra-red
beams to determine when the end cffector is spanning some object. The IBM 7565
is one of the few commercially available robot arms that incorporates force sensing
and provides linguistic support for it.

Many tasks, particularly those related to assembly, require a varicty of capabilities,
such as parts handling, insertion [Whitney 1983], screwing, and variable fixturing.
One approach is to use one arm but multiple single DOI grippers, or multiple arms
each with a single DOF, or some combination. One problem with using multiple
single DOF grippers is that a large percentage of the work cycle is spent changing
grippers. This has inspired research on the mechanical designs that support fast
gripper change. Another problem is that the approach assumes that a process can
be divided into a discrete set of single DOF operations.

Multiple arms raise the problem of coordinating their motion while avoiding collision
and without cluttering the workspace. The coordination of two arms was illustrated
at the Stanford Artificial Intelligence Laboratory in 1972 when two arms combined
to install a hinge. One of the arms performed the installation, the other acted as
a programmable fixture, presenting the hinges and other parts to the work arm.
Freund [1984] has presented a control scheme for preventing collisions between a
pair cooperating robots. Whenever there is a possibility of a collision, one of the
arms is assigned master status and the other one has to modify its trajectory to
avoid the master.

In contrast with such end effectors, a human hand has a remarkable range of
functions. The fingers can be considered to be sensor-intensive 3 or 4 DOF robot
arms. The motions of the individual fingers are limited to curl and flex motions
in a plane that is determined by the abduction/adduction of the finger about the
~joint with the palm. The motions of the fingers are coordinated by the palm, which
can assume a broad range of configurations. The dexterity of the human hand has
inspired several researchers to build multi-function robot hands.

Okada [1979] described a hand censisting of three fingers evenly spaced about a
planar palm. The workspace of the individual fingers was an cllipsoid. The three
workspaces intersected in a point. Okada programmed the hand to perform several |
tasks such as tighten bolts. Hanafusa and Asada [1977, 1979] developed a hand
consisting of three evenly-spaced, spring-loaded fingers. The recal and apparent
spring constants of the fingers were under program control. Stable grasps were
defined as the minima of a potential function. The definition of stability in two
dimensions was demonstrated by programming the hand to pick up an arbitrary
shaped lamina viewed by a TV camera.

Salisbury [1982, see also Salisbury and Craig 1982] investigated kinematic and force
constraints on the design of a tendon-driven three-fingered hand (see Figure 1).
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Figure 1. The three-fingered Robot hand developed by Salisbury and Craig [1981]. Each finger
has three degrees of freedom, and is pulled by four tendons. The hicrarchical controller includes
three finger controllers, each of which consists of four PID controllers, one per tendon. Reproduced
from [Salisbury 1982]

The goal was to design a hand that could impress an arbitrary (vector) force in
an arbitrary position of the hand’s workspace. Four of the parameters defining the
placement of the thumb were determined by solving a series of one-dimensional
nonlinear programming problems. A hierarchical controller was designed: PID
controllers for each tendon; four such for each finger; and three such for the hand.
To date, position and force controllers have been implemented for the individual
fingers. A force sensing palm has recently been developed [Salisbury 1984]. It can
determine certain attributes of contact geometries. The force sensing fingertips
being developed for the hand will permit accurate sensing of contact locations and
surface orientations. This information is likely to be useful in object recognition
strategies and in improving the sensing and control of contact forces.

The Center for Biomedical Design at the University of Utah and the MIT Artificial
Intelligence Laboratory are developing a tendon-operated, multiple DOF robot hand
with multi-channel touch sensing. The hand that is currently being built consists
of three 4 DOF fingers, a 4 DOT thumb, and a 3 DOF wrist (total 19 DOF). Three
fingers suffice for static stable grasp. The Utah-MIT design incorporated a fourth
finger to minimize reliance on friction and to increase flexibility in grasping tasks.
The hand features novel tendon material and tendon routing geometry (Figure 2).
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Figure 2. The prototype Utah/MIT dextrous hand developed by Steven Jacobsen, John Wood,
and John Hollerbach. The four fingers each have four degrees of freedomi. a. The geometry of
tendon routing. b. The material composition of tendons. (Reproduced from [Jacobsen et. al 1984,

Figures 2b and 7))

4.4. Mobile robots

Certain tasks are difficult or impossible to perform in the workspace of a static
robot arm [Giralt 1984). In large scale assembly industries, such as shipyards or
automobile assembly lines, it is common to find parts being transferred along
gantries that consist of one or more degrces of linear freedom. Correspondingly,
there have been several instances of robot arms being mounted on rails to extend
their workspace. The rail physically constrains the motion of the robot. More
generally, the robot can be programmed to follow a path by locally sensing it.
Magnetic strips, and black strips sensed by infra-red sensing linear arrays, have
been used, for example in the Fiat plant in Turin, Italy.

More ambitious projects have used (non-local) vision and range data for autonomous
navigation. Space and military applications require considerable autonomy for
navigation, planning, and perception. Mobile robots are complex systems that
incorporate perceptual, navigation, and planning subsystems. Shakey [Nilsson
1969] was one of the earlicst mobile robots, and certainly one of the most ambitious
system integration cfforts of its time. Later work on mobile robots includes [Dobrotin
and Lewis 1975, Giralt, Sobek, and Chatila 1977, Giralt, Chatila, and Vaisset 1984,
Lewis and Johknson 1977, Lewis and Bejczy 1973, Harmon 1983a, 1983b, Everett
1982, Moravec 1981, 1983, 1984].

10
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Figure 3. The six legged robot developed by McGhee, Orin, Klein, and their colleagues at
the Ohio State University. The robot uses either an alternating tripod of support or wave gait.
(Reproduced from [Ozguner, Tsai, and McGhee 1984, Figure 1])

All the robots referred to previously in this section are wheeled. This restricts
their movement to (nearly) even terrain. Legged vehicles can potentially escape
that limitation. The price to be paid for this advantage is the extra complexity of
maintaining balance and controlling motion. Following the photographic studies of
Muybridge and Moayer in the late 19th century, a theory of locomotion developed
around the concept of gast, the pattern of foot placements and foot support duty
cycles. The OSU hexapod, for example, has been programmed to use either an
alternating tripod of support or “wave” gait, in which a left-right pair of legs is
lifted and advanced (Figure 3) [Ozguner, Tsai, and McGhee 1984]. Hirose’s [1984]
quadruped robot (Figure 4) employs a “crab” gait, in which the direction of motion
is at an angle to the direction the quadruped is facing.

Two generic problems in legged locomotion are moving over uneven terrain and
achieving dynamic balance without a static pyramid of support.

The simplest walking machines employ a predetermined, fixed gait. Uneven terrain
requires dynamic determination of foot placement, implying variable gait. Hirose
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Figure 4. The quadruped robot built by Iirose, Umetani, and colleagues at Tokyo Institute of
Technology. The robot can walk upstairs, and can move forward in a crab gait. (Reproduced
from [Hirose et. al. 1984, photo 1])

[1984] and Ozguner, Tsai, and McGhee [1984] analyze the constraint of balance,
and use sensors in their choice of foot placement.

Miura and Shimoyama [1984] and Raibert et. al. [1982, 1984] discuss the dynamic
requirements of balance. Miura and Shimoyama reports a series of biped walking
machines. The first of these, BIPER-3 (Figure 5) has stilt-like legs, with no ankle
joint, and resembles a novice nordic skier in its gait. BIPER-3 falls if both feet
keep contact with the surface; so it must continue to step if it is to maintain
its balance. An ambitious development, BIPER-4, shown in Figure 6, has knee
and ankle joints. Stable walking of BIPER-4 has recently been demonstrated.
Raibert considers balance for a three-dimensional hopping machine (Figure 7). He
suggests that balance can be achieved by a planar (two-dimensional) controller plus
extra-planar compensation. His work suggests that gait may not be as central to
the theory of locomotion as has been supposed. Instead, it may be a side-effect of
achieving balance with coupled oscillatory systems. Raibert [1984] has organized a
collection of papers on legged robots that is representative of the state of the art.

5. Reasoningaboutobjectsand space

5.1. Task-level robot programming languages

Earlier, we listed some of the softwarc features of modern, commercially available
robot systems: they perform trajectory calculation and kinematic translation,
interpret sense data, execute adaptive control through conditional execution and
real time monitors, interface to databases of geometric models, and support program
development. Despite these features, robot programming is tedious, mostly because

12
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Figure 5. The BIPER-3 walking robot built by Miura and Shimoyama at Tokyo Uan(‘l“llty Sce
text for details. (Rvp roduced from [Miura and Shimoyama 1984, Figure 1])

I"igure 8. The BIPER-4 walking robol under development at Tokyo University. BIPER-4 has a
hip, knee, and ankle joints on each leg. (Reproduced from [Miura and Shimoyama 1984, Figure

14])

in currently available programming languages the position and orientation of objects,
and subobjects of objects, have to be specified exactly in painful detail. “Procedures”
in current robot programming languages can rarely even be parameterized, due to
physical assumptions made in the procedure design. Lozano-Pérez [1983b, 1983c]
calls such programming languages robot level.

Lozano-Pérez (1983, page 839] suggests that “existing and proposed robot
programming systems fall into three broad categories: guiding systems in which the
user leads a robot through the motions to be performed, robot-level programming

13
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Figure 7. The hopping machine developed by Raibert and his colleagues at Carnegie Mellon
University. (Reproduced from [Raibert et. al. 1984, Figure 16])

systems in which the user writes a computer program specifying motion and
sensing, and task-level programming systems in which the user specifies operations
by their desired effect on objects.” Languages such as VAL II [Shimano, Geschke,
and Spaulding 1984] and AML [Taylor, Summers, and Meyer 1982] are considered
robot-level.

One of the earliest task-level robot programming language designs was
AUTOPASS [Liebermann and Wesley 1977]. The (unfinished) implementation
focussed upon planning collision-free paths among polyhedral objects. The emphasis
of RAPT [Ambler and Popplestone 1975, Popplestone, Ambler, and Bellos 1980]
has been on the specification of geometric goals and relational descriptions of
objects. The implementation of RAPT is based upon equation solving and constraint
propagation. Other approximations to task-level languages include PADL [Requicha
1980], IBMsolid [Wesley et. al. 1980], and LAMA [Lozano-Pérez 1976]. Lozano-Pérez
[1983c] discusses spatial reasoning and presents an example of the use of RAPT.

In the next section we discuss Brooks’ work on uncertainty, several approaches
to reasoning about space and avoiding obstacles, and synthesizing compliant
programs. -
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5.2. Dealing with uncertainty

Consider the problem illustrated in Figure 8. A robot has been programmed to
put a screw in a hole. Will the program succeed? ach of the joint measurements
of the robot is subject to small errors, which produce errors in the position and
orientation of the finger tips according to the Jacobian of the kinematics function.
The position and orientation of the screwdriver in the fingers is subject to slight
error, as is the screw, box, and the lid on the box. These errors, we will call them
the base errors, are independent of the particular task to be performed. They add
up. Taylor [1976] assumed particular numerical bounds for the values of the base
errors, and used linear programming to bound the error in the placement of the
screw relative to the hole.

Brooks [1982] worked with explicit symbolic (trigonometric) expressions that
define the error in the placement of the screw relative to the hole. He applied the
expression bounding program developed for the ACRONYM project [Brooks 1981]
to the base error bounds used by Taylor to deduce bounds for the errors in the
placement of the screw relative to the hole. The bounds he obtained were not as
tight as those obtained by Taylor, but were nearly so.

Brooks’ approach had a substantial advantage over Taylor, however, and it is
paradigmatic of the Al approach. The expression bounding program can be applied
with equal facility to the symbolic expression for the error and the desired size of
the screw hole (the specifications of the insertion task). The result is a bound on the
only free variable of the problem, the length of the screwdriver. The lesson is that
it is possible to apply Al techniques to reason in the face of uncertainty. In further
work, Brooks [1982] has shown how sensing might be modeled using uncertainties
to automatically determine when to splice a sensing step into a plan to cause it to
succeed.

5.3. Reasoning about space and avoiding objects

Robot-level programming languages require the programrmer to state, for example,
that the robot is to move the block B, whose configuration (position and orientation)
Ry is to be moved to the configuration R¢;. To ensure the robot does not crash into
obstacles, the usual practice in robot level languages is to specify a sufficient number
of via points (Figure 9) (see [Brady 1983c]). In a task oriented language, one merely
says something like “put B in the vise”. It follows that a crucial component of
implementing a task oriented programming language is automatically determining
safe paths between configurations in the presence of obstacles. This turns out to
be an extremely hard problem.

Lozano-Pérez [1983a] introduced a representation called C-space that consists
of the safe configurations of a moving object. For an single object moving with 6
degrees of freedom (eg., 3 translational and 3 rotational degrees of freedom), the
dimensionality of the C-space is six. If there are m such objects, each of which
can move, the dimensionality of C-space is 6m. For example, for the coordinated
motion of two 3D objects, C-space is twelve dimensional. In practice one can deal
with “slices”, projections onto lower dimensiconal subspaces.
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Figure 8. Will the screw make it into the hole?

Donald [1984] notes that there are two components of spatial planning systems.
First, it is necessary to represent the problem, in particular the obstacles. Second, it
is necessary to devise an algorithm that can search for paths over the representation.
Most work on spatial reasoning has used representations that approximate the
exact polyhedral obstacles. Such representations may (1) restrict the degrees of
frecdom in a problem, (2) bound objects in real-space by simple objects such as
spheres, or prisms with parallel axes, while considering some subset of the available
degrees of freedom, (3) quantize configuration space at certain oricentations, or (4)
approximate swept volumes for objects over a range of orientations. Systems that
use such representations may not be capable of finding solutions in some cases,
even if they use a complete search procedure. An approximation of the obstacle
environment, robot model, or C-space obstacles can result in a transformed find-path
problem which has no solution.

Lozano-Pérez [1981, 1983] implemented an approximate algorithm for Cartesian
manipulators (for which free space and C-space are the same) that tesselated free
space into rectangloids, subdividing it as far as necessary to solve a given problem.
The search algorithm is complete for translations, and illustrates the feasibility of
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gap scparating the two obstacles shown. (Reproduced from [Brady 1983c, Figure 2a])

the C-space approach. It works by alternately keeping the heading of an object
fixed and rotating in place to alter the heading. Recently, Brooks and Lozano-Pérez
[1983] reported an algorithm capable of moving a reorientable polygon through
two-dimensional space littered with polygons. This algorithm can find any path of
interest for the two-dimensional problem. Figure 10 shows an example path found
by Brooks and Lozano-Pérez’s program. Their attempts to extend the method to
three dimensions “were frustrated by the increased complexity for three dimensional
rotations relative to that of rotations in two dimensions” [Brooks 1983b, p7].

Brooks [1983a] suggested that free space be represented by overlapping
generalized cones that correspond to freeways or channels. Figure 11 shows some
of the generalized cones generated by two obstacles and the boundary of the
workspace. The key point about the representation was that the left and right
radius functions defining a freeway could be inverted easily. Given a freeway,
and the radius function of a moving convex object, he was able to determine the
legal range of orientations that ensure no collisions as the object is swept down
the freeway. Brooks’ algorithm is highly efficient, and works well in relatively
uncluttered space, but it occasionally fails to find a safe path when it is necessary
to maneuver in tight spaces. Recently, Donald [1983] has proposed a novel channel
based technique.
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Figure 10. A path found by the Brooks and Lozano-Pérez program. (Reproduced from
[Brooks and lLozano-Pérer 1983, Figure 1aj)

R

Figure 11. A few of the generalized cones generated by two obstacles and the boundary of
the workspace. (Reproduced from {Brooks 1983a, Figure 1))

Finally, Brooks [1983b] has developed an algorithm that combines the C-space
and freeway approaches to find paths for pick and place and insertion tasks for
a PUMA. Pick and place tasks are defined as four degree of freedom tasks in
which the only reorientations permitted are about the vertical, and in which the
found path is composed of horizontal and vertical straight lines. Figure 12 shows
an example path found by Brooks’ algorithm.

Brooks freezes joint 4 of the PUMA. The algorithm subdivides free space to
find (i) frceways for the hand and payload assembly, (i) freeways for the upper
arm subassembly (joints 1 and 2 of the PUMA); (iii) searches for the payload and
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Figure 12. An cxample of path finding for a PUMA by Brooks’ [1983b] algorithm.

upper arm freeways concurrently under the projection of constraints determined by
the forearm. The subdivision of free space in this way is the most notable feature
of Brooks’ appoach. It stands in elegant relation to the algorithms for computing
inverse kinematics referred to earlier. It is assumed that the payload is convex, and
that the obstacles are convex stalagmites and stalactites. It is further assumed that
stalactites are in the workspace of the upper arm of the PUMA, not of the payload.

By restricting attention to a limited class of tasks, Brooks has designed an
efficient algorithm will not work in all cases. The advantage is that he does not
have to contend with worst case situations that lead to horrendous polynomial
complexity estimates. For example, Schwartz and Sharir [1983] suggest a method
whose complexity for  DOF is n?". For example, for two moving objects, the
complexity is n'9%. Their algorithm is not implemented. Donald [1984] presents
_the first implemented, representation-complete, search-complete algorithm (at a
given resolution) for the classical Movers’ problem for Cartesian manipulators.

There has been a great deal of theoretical interest in the findpath problem by
researchers in computational complexity and computational geometry. Schwartz
and Sharir [1983], and Hoperolt, Schwartz, and Sharir [1983] are representative.
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5.4. Synthesizing compliant programs

Compliance is the opposite of stilfness. Any device, such as an automobile
shock absorber, that responds flexibly to external force, is called compliant.
[ncreasingly, compliance refers to operations that require simultaneous force and
position control [Mason 1983]. Torce analysis of the peg-in-hole problem, and the
subsequent development of the Remote Center Compliance (RCC) [Whitney, 1983]
is an important example of the use of force trajectories to achieve compliant
assembly. Another example is scribing a straight line on an undulating surface. In
that case, it is necessary to control position in the tangent plane of the surface, and
maintain contacl with the surface by applying an appropriate scribing force normal
to the surface. Other examples of compliance include cutting, screw insertion, and
bayonet-style fixtures, such as camera mountings. Clocksin et. al. [1982] describe
a seam welding robot that uses the difference-of-Gaussians edge operator proposed
by Marr and Iildreth [1980] to determine the welding trajectory. Ohwovoriole and
Roth [1981] show how the motions possible at an assembly step can be partitioned
into 3 classes: those that tend to separate the bodies to be mated; those that tend
to make one body penetrate the other; and those that move the body and maintain
the original constraints. Theoretically, this provides a basis for choosing the next
step in an assembly sequence.

Trevelyan, Kovesi, and Ong [1984] describe a sheep shearing robot. Figure
13 shows the geometry of the robot and the “workpiece”. Trevelyan, Kovesi, and
Ong [1984] note that “over two hundred sheep have been shorn by the machine
(though not completely) yet only a few cuts have occurred. This extremely low
injury rate! results from the use of sensors mounted on the shearing cutter which
allow the computer controlling the robot to keep the cutter moving just above
the sheep skin”. Trajectories are planned from a geometric model of a sheep using
Bernstein-Bézier parametric curves. The trajectory is modified to comply with
sense data. Two capacitance sensors are mounted under the cutter just behind the
comb. These sensors can detect the distance between the cutter and the sheep’s
skin to a range of approximately 30mm. Compliance is needed to take account of
inaccuracies in the geometric model of the sheep and the change in shape of the
sheep as it breathes.

Robots evolved for positional accuracy, and are designed to be mechanically
stiff. High tolerance assembly tasks typically involve clearances of the order of a
thousandth of an inch. In view of inaccurate modeling of the world and limitations
on joint accuracy, low stiffnesses are required to effect assemblies. Devices such as
the Remote Center Compliance (RCC) [Whitney 1983] and the Hi-T hand [Goto
1980] exploit the inherent mechanical compliance of springs to accomplish tasks.
Such passive compliant devices are fast, but the specific application is built into the
mechanical design. The challenge is that different tasks impose different stiffness
requirements. In active compliance, a computer program modifies the trajectory of
the arm on the basis of sensed forces (and other modalities) [Paul and Shimano

"Prevelyan informs the author that a human sheep shearer typically cuts a sheep over 30 times,
and that serious cuts occur regularly.
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Figure 13. The sheep shearing robot developed by Trevelyan and his colleagues at the
University of Western Australia. Sheep naturally lies quite still while it is being sheared; indeed
it often falls asleep. (Reproduced from [Trevelyan, Kovesi, and Ong 1984, figure 1j)

1976]. Active compliance is a general purpose technique; but is typically slow
compared to passive compliance.

Mason [1981] suggested that the (fixed number of) available degrees of freedom
of a task could be divided into two subsets, spanning orthogonal subspaces. The
subspaces correspond one-one with the natural constraints determined by the
physics of the task, and the artificial constraints determined by the particular
task. See [Mason 1983] for dectails and examples. For example, in screwdriving,
a screwdriver cannot penetrate the screw, giving a natural constraint; successful
screwdriving requires that the screwdriver blade be kept in the screw slot, an
artificial constraint. Raibert and Craig [1983] refined and implemented Mason’s
model as a hybrid force-position controller. Raibert and Craig’s work embodies the
extremes of stiffness control in that the programmer chooses which axes should
be controlled with infinite stiffness (using position control with an integral term)
and which should be controlled with zero stiffness (to which a bias force is added).
Salisbury [1980] suggests an intermediate ground that he calls “active stiffness
control”.
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Programmers {ind it relatively easy to specify motions in position space; but
find it hard to specify the force-based trajectories needed for compliance. This
has motivated the investigation of automatic generation of compliant fine-motion
programs [Dufay and Latombe 1984, Lozano-Pérez, Mason, and Taylor 1984]. In
Dufay and Latombe’s approach; the geometry of the task is defined by a semantic
network, the initial and goal confligurations of parts are defined by symbolic
expressions, and the knowledge of the program is expressed as production rules.
Productions encode the “lore” of assembly: how to overcome problems such as
moving off the chamfer during an insertion task. Dufay and Latombe’s program
inductively generates assembly programs from successful execution sequences. The
method requires that the relationships between surfaces of parts in contact be
known fairly precisely. In general this is diflicult to achicve because of errors in
SCNSOrs.

Lozano-Pérez, Mason, and Taylor [1983] have proposed a scheme for automati-
cally synthesizing compliant motions from geometric descriptions of a task. The
approach combines Mason’s ideas about compliance, Lozano-Pérez’s C-space, and
Taylor’s [1976] proposal for programming robots by fleshing out skeletons forming
a library of operations. The approach, currently being implemented, deals head-on
with errors in assumed position and heading. Lozano-Pérez, Mason, and Taylor use
a generalized damper model to determine all the possible configurations that can
result from a motion. It is necessary to avoid being jammed in the friction cone
of any of the surfaces en route to the goal surface. This sets up a constraint for
each surface. Intersecting the constraints leaves a range of possible (sequences of)
compliant moves that are guaranteed to achieve the goal, notwithstanding errors.

Programming by fleshing out skeletons is reminiscent of the programmer’s
apprentice [Rich and Waters 1981]. The similarities are that the computer adopts
the tole of junior partner or critic, programming is based on cliches, and design
decisions and logical dependencies are explicitly represented so that the effects of
modifications to'a program can be automatically propogated through the program.
The difference is that a robot programmer’s apprentice works with rich geometric
models. Lozano-Pérez has suggested that guiding can be extended to teach a robot
plans that involve sensing, a large number of similar movements (for example
unloading a palette), and asynchronous control of multiple manipulators. The
requirement that a system deal with rich geometric models also distinguishes the
robot programmer’s apprentice from earlier work in Al planning [Sacerdoti 1975].

6. Perception

6.1. Introduction

The perceptual abilities of commercially available robots are severely limited,
especially when compared with laboratory systems. It is convenient to distinguish
contact and non-contact scnsing. Contact, or local, sensing includes tactile,
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proximity, and force sensing. Non-contact sensing includes passive sensing in both
visual and non-visual spectral bands, and active sensing using infra-red, sonar,
ultrasound, and millimeter radar.

Robot perception is only a special case of computer perception in the sense that
there are occasional opportunities for engineering solutions to what are, in general,
diflicult problems. Examples include: arranging the lighting, controlling positional
uncertainty, finessing some of the issues in depth computation, and limiting the
visual context of an object. Appropriate lighting can avoid shadows, light striping
and laser range finding can produce partial depth maps, and techniques such as
photometric stereo [Woodham 1981} can exploit control over lighting. On the other
hand, edge finding is no less difficult in industrial images, texture is just as hard,
and the bin of parts is a tough nut for sterco. Motion tracking on a dirty conveyor
belt is as hard as any other tracking problem. Representing the shape of complex
geometric parts is as diflicult as any representational problem in computer vision
[Faugeras et. al. 1983, 1984, Brady and Asada 1984, Bolles et. al. 1984]. Existing
commercial robot vision systems carry out simple inspection and parts acquisition.
There are, however, many inspection, acquisition, and handling tasks, routinely
performed by humans, that exceed the abilities of current computer vision and
tactile sensing research.

The quality of sensors is increasing rapidly, especially as designs incorporate
VLSI. The interpretation of sensory data, especially vision, has significantly
improved over the past decade. Sensory data interpretation is computer intensive,
requiring billions of cycles. However, much of the computer intensive early processing
naturally calls for local parallel processing, and is well suited to implementation on
special purpose VLSI hardware [Brady 1983a, Raibert and Tanner 1982].

6.2. Contact sensing

Contact sensing is preferred when a robot is about to be, or is, in contact
with some object or surface. In such cases, objects are often occluded, even when
a non-contact sensor is mounted on a hand. An exception to this is seam welding
[Clocksin et. al. 1982]. The main motivation for force sensing is not, however, to
overcome occlusion, but to achieve compliant assembly. Force sensors have improved
considerably over the past two or three years. Typical sensitivities range from a
half ounce to ten pounds. Most work on force trajectories has been application
specific (eg peg-in-hole insertion). Current research, aimed at developing general
techniques for interpreting force data and synthesizing compliant programs, were
discussed in the previous section. Kanade and Sommer [1984] and Okada [1982]
report proximity sensors.

Touch sensing is currently the subject of intensive research. Manufacturing
engineers consider tactile sensing to be of vital importance in automating assembly
[Harmon 1982, 1984]. Unfortunately, current tactile sensors leave much to be
desired. They are prone to wear and tear, have poor hysteresis, and low dynamic
range. Industrially available tactile sensors typically have a spatial resolution of
only about 8 points per inch. Tactile sensors are as poor as TV cameras were in
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Figure 14. Sample tactile images from the Hillis sensor. (Reproduced from [Hillis 1982,
Figure 6])

the 1960s, the analogy being that they are seriously hampering the development of
tactile interpretation algorithms.

Several laboratory demonstrations point the way to future sensors. Hillis [1982]
devised a tactile sensor consisting of an anisotropic silicon conducting material
whose lines of conduction were orthogonal to the wires of a printed circuit board
and which were separated by a thin spacer. Figure 14 shows some example touch
images generated by Hillis’ tactile sensor for four sinall fasteners. The sensor had
a spatial resolution of 256 points per square centimeter. Raibert and Tanner [1982]
developed a VLSI tactile sensor that incorporated edge detection processing on
the chip (Figure 15). This (potentially) significantly reduces the bandwidth of
communication between the sensor and the host computer. Recently, Hackwood
and Beni [1983] have developed a tactile sensor using magneto-restrictive materials
that appears to be able to compute shear forces.

Little progress has been made in the development of tactile object recognition
- algorithms. Hillis built a simple pattern recognition program that could recognize
a variety of fasteners. Gaston and Lozano-Pérez [1983] have built a program
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Figure 15. Architecture of the VLSI tactile sensor developed by Raibert and Tanner. A
layer of pressure-sensitive rubber is placed in contact with a VLSI wafer. Metalization on the
surface of the wafer forms large sensing clectrodes that make contact with the pressure-sensitive
rubber through holes in a protective layer of Si0y, the overglass. (Reproduced from [Raibert and
Tanner 1982, Vigure 1))

that constructs an interpretation tree for a class of two-dimensional objects. The
program assumes that there are n discrete sensors, at each of which the position
and an approximate measure of the surface orientation is known. They show how
two constraints, a distance constraint and a constraint on the normal directions
at successive touch points, can substantially cut down the number of possible
grasped object configurations. Grimson and Lozano-Pérez [1983] have extended the
analysis to three dimensions. Faugeras and Hebert [1983] have devcloped a similar
three-dimensional recognition and positioning algorithm using géometric matching
between primitive surfaces. Bajesy [1984] has investigated the use of two tactile
sensors to determine the hardness and texture of surfaces.

6.3. Non-contact sensing

Non-contact sensing is important for a variety of applications in manufacturing.
These include:

e Inspection. Most current industrial inspection uses binary two-dimensional
images. Only recently have grey level systems become commercially available.
No commercial system currently offers an modern edge detection system. Two
dimensional inspection is appropriate for stamped or rotationally symmetric parts.
Some experimental prototypes [Porter and Mundy 1982, Faugeras et. al. 1983]
inspect surfaces such as engine mountings and airfoil blades.

e parts acquisition. Parts may be acquired from conveyor belts, from palettes,
or from bins. Non-contact sensing means that the poemon of parts may not be
accurately specified. Parts may have to be sorted if there is a possibility of more
than one type being present.
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o determuning grasp points. Geometric analysis of shape allows grasp points to
be determined [Brady 1982, Boissonat 1982].

Active sensing has been developed mainly for military applications. Tmage
understanding is diflicult and requires a great deal of computer power. 'LIR, SAR,
and millimeter radar imagery offer limited, computationally expedient, solutions to
difficult vision problems. The algorithins that have been developed for isolating and
identifying targets in natural scenes are restricted in scope. They do not generalize
casily to manufacturing settings, where, for example, most objects are “hot”.

Vision has the most highly developed theory, and the best sensors. Now one can
get high quality solid state cameras. The rapid increase in the quality of solid state
cameras has been accompanied by the rapid development of image understanding
techniques.

Early vision processes include edge and region finding, texture analysis, and
motion computation. All these operations are well suited to local parallel processing.
Developments in edge finding include the work of Marr and Hildreth [19%0], Haralick
[1982], and Canny [1983]. Developments in grouping include the work of Lowe and
Binford [1983]. Hildreth [1983] has developed a system for computing directional
selectivity of motion using the Marr-Hildreth edge finder. Horn and Schunck [1981]
and Schunck [1983] have shown how to compute the optic flow field from brightness
patterns. (Bruss and Horn [1983] have developed an analysis of how the flow field
can be used in passive navigation.) Brady [1983b, Brady 1983d, Brady and Asada
1984] has developed a new technique for representing two-dimensional shape, and
has applied it to inspection.

The major breakthrough in vision over the past decade has been the development
of three dimensional vision systems. These are usually referred to as “shape from”
processes. Examples include: shape from stereo [Grimson 1981, Baker and Binford
1981, Binford 1984, Nishihara and Poggio 1984], shape from shading [Ikeuchi and
Horn 1983], shape from contour [Witkin 1981, Brady and Yuille 1983], and shape
from structured light [Porter and Mundy 1982, Faugeras 1983, Clocksin et. al.
1983, Bolles, Horaud, and Hannah 1984, Tsuji 1984].

Most of these “shape from” processes produce partial depth maps. Recently,
fast techniques for interpolating full depth maps have been developed [Terzopoulos
1982, 1983]. A current area of intense investigation is the representation of surfaces
[Faugeras, Hébert, and Ponce 1984, Shirai et. al. 1984, Ikeuchi and Horn 1983,
Brady and Yuille 1984]. Finally, recent work by Brooks [1981] discusses object
representation and the interaction between knowledge guided and data driven
processing.

7. Reasoningthat connectsperceptionto action

This final section is speculative. It presents three examples of reasoning and
problem solving that we are striving to make robots capable of. The aim is to
illustrate the kinds of things we would like a robot to know, and the way in which
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Figure 16. What is this tool, and what is it for?

that knowledge might be used. The knowledge that is involved concerns geometry,
forces, process, space, and shape. The examples involve tools. They concern the
interplay between the use or recognition of a tool and constraints on the use of
tools. Reasoning between structure and function is particularly direct in the case
of tools. Shape variations, though large (there are tens of kinds of hammer), are
lessened by the fact that tools are rarely fussily adorned, since such adornments
would get in the way of using the tool. ’

7.1. What is that tool for?

What is the tool illustrated in Figure 16, and how is it to be used? We
(reasonably) suppose that a vision program [Brady and Asada 1984, Brady 1984]
computes a description of the object that, based on the smoothed local symmetry
axis, partially matches a crank. The model for a crank indicates that it is used by
fixing the end P onto some object 0, and rotating the object 0 about the symmetry
axis at P by grasping the crank at the other end @ and rotating in a circle whose
radius is the length of the horizontal arm of the crank. Further investigation of the
crank model tells us that it is used for increasing the moment arm and hence the
torque applied to the object 0. We surmise that the tool is to be used for increasing
torque on an object 0. We have now decided (almost) how the tool is to be used,
and we have a hypothesis about its purpose. The hypothesis is wrong.

The one thing that we do not yet know about how to use the tool is how to fix
it at P to the object at 0. There are many possibilities, the default being perhaps
a socket connector for a nut (as for example on a tire lever). Closer inspection
of the description computed by our vision program shows that the ends of the
crank are screwdriver blades, set orthogonal to each other. Only screwdrivers
(in our experience) have such blades. Apart from the blade, the tool bears some
resemblance to a standard screwdriver, which also has a handle and a shaft. In
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the standard screwdriver, however, the axes of the shaft and handle are collinear.
Ividently, the tool is a special purpose screwdriver, since only screwdrivers have

such blades.

Tools have the shape that they do in order to solve some problem that is difficult
or impossible to solve with more generally uscful forms. So why the crank shape?
What problem is being solved that could not be solved with a more conventional
screwdriver? lere are some screwdriver-specific instances of general problems that
arise using tools:

e Parts interface bug. A part does not match the part to which it is being
applied or fastened. For example, a wrench might be too small to span a nut; a
sledgehammer is inappropriate for driving a tack. The screwdriver head may not
match the screw (one might be Philips type). There is no evidence for this bug in
I'igure 16 because the fastener is not shown.

e [Restricted rotary motion bug. A tool that is operated by turning it about some
axis has encountered an obstruction that prevents it turning further. This bug
occurs frequently in using wrenches. A socket wrench solves it by engaging a gear
to turn the wrench in one direction, disengaging the gear to rotate in the other.
How is it solved more generally? There is an analogous restricted linear motion bug.
Think of an example! (one is given at the end of the section.)

e Restricted access bug. As anyone owning a particular (expensive) kind of British
car knows only too well, often the hardest part of using a tool is mating it to
the corresponding part. Many tools have an axis along, or about, which they are
applied. The most common version of the restricted access bug is when the axis is
too long to fit into the available space. In the case of screwdriving, this occurs when
the screwdriver is restricted vertically above the screw. A short, stubby screwdriver
is the usual solution to this problem.

Can the crank-screwdriver also overcome restricted access bugs? Of course.
The geometric form of the crank-screwdriver is necessary to solve this restricted

workspace problem, rather than being a torque magnifier as initially hypothesized.
In fact, the tool is called an offset screwdriver. Figure 17 illustrates its use.

Since I first presented this example, another solution to the restricted access

‘bug has been brought to my attention. Figure 18 shows a screwdriver whose shaft

can bend about any axis orthogonal to it.

Why are the blades of an offset screwdriver set orthogonal to one another?
Put differently, what bug do they help overcome? What would you need to know

in order to figure it out?

No program is currently capable of the reasoning sketched above. Pieces of
the required technology are available, admittedly in preliminary form, and there is
cause for optimism that they could be made to work together appropriately. First,
vision programs exist that can almost generate the necessary shape descriptions
and model matching [Brady and Asada 1984, Brady 1984]. There is considerable
interplay between form and function in the reasoning, and this has been initially
explored by Winston, Binford, and their colleagues, combining the ACRONYM
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18. A flexible screwdriver [or solving restricted access bugs
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Figure 19. a. An asymmetric wrench. b. How to use a wrench.

system of shape description and Winston’s analogy program [Winston, Binford,
Katz, and Lowry 1982]. To figure out that the crucial thing about the form is its
ability to overcome a restriction in the workspace, it is necessary to be able to
reason about space and the swept volumes of objects. This is the contribution of
Lozano-Pérez [1981, 1983], Brooks [1983b], and Lozano-Pérez, Mason, and Taylor
[1983]. Forbus [1983] is developing a theory of processes, a system that can reason
about physical processes like water flow, heat, and springs. This builds upon earlier
work by DeKleer [1975] and Bundy [1979].

Answer to the problem: An example of a restricted linear motion bug: Trying to
strike a nail with a hammer when there is insuflicient space to swing the hammer.

7.2. Why are wrenches asymetric?

Figure 19a shows a standard (open-jawed) wrench. Why is it asymmetric? To
understand this question, it is necessary to understand how it would most likely be
judged asymmetric. This involves finding the head and handle [Brady and Asada
1984], assigning a “natural” coordinate frame to each [Brady 1982, 1984], and
realizing that they do not line up. Since the handle is significantly longer that the
head, it establishes a frame for the whole shape, so it is the head that is judged
asymmetric about the handle frame.

Now that we at lecast understand the question, can we answer it? We are
encouraged to relate a question of form to one of function. What is a wrench for,
and how is it used? It is used as shown in Figure 19b: the head is placed against a
nut; the handle is grasped and moved normal to its length; if the diameter of the
nut and the opening of the jaws of the wrench match, the nut (assumed fixed) will
cause the handle to rotate about the nut. Nowhere is mention made of asymmetry.
Surely, a symmetric wrench would be easier to manufacture. Surely, a symmetric
wrench would be equally good at turning nuts. Or would it?
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Recall that questions of form often relate not just to function, but to solving
some problem that a “standard”, here symmetric, wrench could not solve. The
main problem that arises using a wrench is the restricted rotary motion bug. In
many tasks there is an interval [¢y, ¢a] (measured from the local coordinate frame
corresponding to the axis of the handle) through which the wrench can be rotated.
The crucial observation is that a wrench is (effectively) a lamina. As such, it has a
degree of freedom corresponding to flipping it over. Exploiting this degree of freedom
makes no difference to the effective workspace of a symmetric wrench. It doubles
the workspace of an asymmetric wrench, giving [—¢2, —¢1]U[é1, ¢2]. In this way,
an asymmetric wrench partially solves the restricted rotary motion bug. Perhaps
this suggests how to design the head of a wrench, say by minimizing [—¢1, ¢{]
subject to keeping the jaws parallel to each other. Perhaps it also suggests (for
example to Winston’s [1980] analogy program) that other turning tools should be
asymmetric, for analogous reasons. There are many cxamples, of course, including
the offset screwdriver discussed in the previous section.

7.3. How to disconnect a battery

The final example in this section concerns a familiar Al technique: debugging
“almost right” plans. A battery is to be disconnected. The geometry of the terminal
is shown in Figure 20a. A plan, devised previously, uses two socket wrenches, one
acting as an adaptable fixture, the other to turn the bolt. The socket wrenches are
applied along their axes, which coincide with the axes of the nut and bolt.

A new model of the battery-laden device is delivered. The plan will no longer
work because there is an obstacle to the left of the head of the nut, restricting
travel of the socket wrench along its axis. Using something akin to dependency
directed reasoning, truth maintenance, or a similar technique for recording the
causal connections in a chain of reasoning, we seek a method for adapting our
almost-right plan to the new circumstance. There are a variety of techniques, one
of which was illustrated in the offset screwdriver. That suggests bending a tool so
that torque can be applied by pushing on a lever. In fact, socket wrenches have
this feature built-in, so the problem was easy.

Unfortunately, the fix did not work. Figure 20b shows why. The new model
has insufficient clearance for a socket wrench to fit around the head of the bolt.
We further reconsider the plan, adding the new constraints, removing those parts
that were dependent upon being able to use the socket wrench (none, in this case).
The next idea is to use a different kind of wrench, but this will not work either,
again because of the insufficient clearance. We need to be able to grasp one of the
nut and bolt securely and turn the other. We can hold the bolt and turn the nut.
Several ways are available, most obviously using a needlenose plier to secure the
bolt.

8. Conclusion

Since Robotics is the connection of perception to action, Artificial Intelligence
~ must have a central role in Robotics if the connection is te be intelligent. We have
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Figure 20. a. The geometry of a battery terminal. b. side view of the late model bolt.

illustrated current interactions between Al and Robotics and presented examples of
the kinds of things we believe it is important for robots to know. We have discussed
what robots should know, how that knowledge should be represented, and how it
should be used. Robotics challenges Al by forcing it to deal with real objects in
the real world. An important part of the challenge is dealing with rich geometric
models.
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