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lntroduction

' "Non-monotonlc" loglcal systems are logncs in which the mtroductlon of new
axioms can invalidate old theorems. Such logrcs are very important in modeling the
beliefs of active processes which, acting in the presence of incomplete information, must
~make and subsequently revise predictions in light of new observations. We present the
" motivation and history of such logics. We develop model and proof theories, a proof
procedure, and applications for one important non-monotonic logic. In particular, we
~prove the completeness of the non-monotonic. predicate calculus and the decidability of the
non-monotomc sentential calculus. We also discuss characteristic properties of this logic
and its relationship to stronger logics, logics of mcomplete mformatlon, and truth
""’mamtenance systems e e e e e e L

. ‘_ The Problem of Incomplete Knowledge

_ The relatron between formal loglc and the operation of the mind has. always '
, been unclear. Some of the more stnkmg dlfferences between properties of formal logics
vand mental phenomenology occur in situations dealing with perception, ambiguity,

common-sense, “causality and predlctxon One common feature of these problems is that
they seem to involve working with mcomplete knowledge. Perceptlon must account for the

~ noticing of. overlooked features, common-sense ignores myriad special exceptions, assigners -

of blame can be mxsled and plans for the future must consider never-to-be-realized -

contmgencxes It is this apparently unavoidable making of mistakes in these cases that_
-~ leads to some of the deepest problems of the formal analysxs of mmd '

Some studies of these problems occur in the phllosophlcal ltterature, the most T

relevant here being Rescher's [1964] analysis of counterfactual conditionals and belief-
contravenmg hypotheses In arttﬂcxal intelligence, studies of perception, ambiguity and
‘common-sense have led to knowledge representations which explicitly and implicitly

o -embody much  information. about typical cases, defaults, and methods for handling

" mistakes. [Minsky 1974, Reiter 19781 Studies of problem-solvmg and acting . have
“attempted representmg predlctrve and. causal knowledge so that decisions to act require

~only limited contemplation, and that acuons, their variations, and their effects can be -

A ’,convemently described and computed. [Hayes 1970, 1971, 1973, Doyle 1978] Indeed, one
- of the original names applied to these efforts, "heuristic programmmg , Stems from
E feffxcrency requnements forcmg the use of methods which occasionally are wrong or which
fail. - The possnblhty of failure means that formalizations of reasoning in these areas must
capture the process of revisions of percept:ons, predxctlons, deductxons and other beliefs. -

In fact the need to revise bellefs also occurs m deductrve systems workmg thhm -
tradmonal loglcs Much work has been done on mechamzed proof techmques for the -



first-order predicate calculus. [J.A. Robinson 1965, Nevins 1974, Moore 1975] Incomplete |

“information is represented in these systems as disjunctions of the several poss:bllmes where
" the individual disjuncts may be independent of the axioms being used, that is, cannot be

proven or contradxcted by arguments from the axioms. Thus, proof procedures engage in
case-splitting, in which disjuncts are considered in a case-by-case fashion. At any given
tlme, the proof procedure will have some set of current assumptions, from which the
current set of formulas has been derived. If failures in the proof attempt lead to

'mvestlgatmg new splits, and so change the set of current assumptions, the current set of

derived formulas must also be updated, for it is the current set of formulas on which the

_proof procedure bases its actlons

Classrcal symbohc logic lacks tools for descrtbmg how to revxse a formal theory
to deal wrth inconsistencies caused by new. information. This lack is due to a recognition

" that the general problem of finding and selecting among alternate revisions is very hard.

" (For an attack on this problem, see Rescher [1964]. "Quine and Ullian [1978] survey the
S complexmes) Although logicians have been able to ignore this problem, philosophers
"'"','*and researchers in artificial intelligence have been forced to face it because humans and
o '-computatlonal models are subject to a continuous flow of new information. One important
g msxght gained through computauonal expertence is that there are at least two different
~ problems mvolved what ‘might” be called "routine revision" and "world-model -
reorgamzatton T e S : e '

World model reorgamzatlon is the very hard problem of rev:smg a complex ,

) model of a srtuatton when it turns out to be wrong. Much of the complexity of such - '
~ models usually stems from parts of the model relying on descriptions of other parts of the

- model, such as inductive hypotheses, testimony, analogy, and intuition. An example of

o “such large-—scale reorganization would be the revision of a Newtonian cosmology to account

for perturbations in Mercury's orbit. Less grand examples are children's revisions of their

~ world-models as discovered by Piaget, and the revision of one's opinion of a friend | upon '

.dtscovermg his dxshonesty : :

Routme revxslon, on the other hand, is the problem of mamtammg a set of facts i

_' K whlch although expressed as universally true, have exceptions. For example, a program
-~ may have the belief that all ammals with beaks are birds. Telling this program about a -

platypus will cause a contradxctlon “but intuitively not as serious a contradlcuon as those

" requiring total reorgamzatton The relative simplicity of this type of revision problem
" 'stems from the statement itself expressing what revisions are appropnate by referring to

~possible exceptlons Such relatively easy cases lnclude many forms of inferences, default'
assumptlons and observations.

Classxcal logxcs, by lumpmg all contradlctlons together, ‘has overlooked the

BN possnblhty of handlmg the easy ones by expandmg the notatlon in which rules are stated. |



That is, we could have avoided this problem by stating the belief as "If something is an_
 animal with a beak, then unless proven otherwise, it is a bird." "If we allow statements of
this kmd the problem becomes how to coordinate sets of such rules. Each such statement

may be seen as providing a piece of advice about belief revision; for our approach to .

_ make sense, all the little pieces of advice must determine a unique revision. This is the
'subject of this paper. Of course, even if we are successful, the. world-model
. reorganization problem will still be unsolved. But we hope factormg out the routine
revision problem will make the more dlfflcult problem clearer,

, Approaches to Non Monotomc Loglc and the. Semantlcal leﬁcultles

The study of the problem of formalmng the process of revision of beliefs has
been almost ‘completely confined to the practical side of artificial intelligence research,
- where much work has been done. [Hewitt 1972, McDermott 1974, Stallman and Sussman

| ~ 19717, Doyle 19781 Theoretical foundations for this work have been lacking. This paper

tudles the foundauons of these forms of reasomng thh revisions whlch we term non-
. monotomc Ioglc ' : , :

Tradltlonal loglcs are called monotomc because the theorems of a theory are‘

'_ : :always a subset of the theorems of any extension of the theory. (This name for this '
;-’»"fproperty of classxcal logics was used, after a suggestxon by Pratt, in Minsky's [1974] ,
o discussion. Hayes [1973] has called thlS the “extension" property.) In this paper, by

" theory we Wl" mean a set of axioms. A more precise statement of monotonicity is this: If
" A and B are two theories, and A € B, then Th(A) € Th(B), where Th(S) = {p: Sl’p} is

" ,the set of theorems of S. We wnll be even more precnse about the defmmon of F later

Monotomc loglcs lack the phenomenon of new mformanon leadmg to a revnslon"

'of old conclusions. We obtain non-monotonic logics from classical logics by extending

them with a modality ("consxstent ) well-known in artificial intelligence circles, and show

" that the resulting logics have well-founded, if unusual, model and proof theories. We

introduce the proposition-forming modality M (read consxstent") Informally, Mp is to
mean that p is consistent with everything believed. (See [McCarthy and Hayes 1969])

"l.'._.z,;;'l‘hus one small theory employmg this modallty would be

-(1) noon /\ M[sun—shmlng] ) sun-—shmmg
(2) noon SRR
- _»(3) ecllpse =) -vsun-shmmg,

- in WhICh we can prove

‘ (4) sun-shining.



If we add the axiom
(5) eclipse
then(4) is ‘inconsist’ent, so (4) is not a theorem of the extended theory.

The use of non-monotonic techniques has some history, but until recently the
xntumons underlymg these techniques were inadequate and led to difficulties involving the
semantics of non-monotonic inference rules in certain cases. We mention some of the
guises in which non-monotonic reasoning methods and belief revrsmg processes have
appeared : - : :

s Mlchael Scnven [1959 1963] proposed that explanatlons, and in partlcular '
htstoncal explanattons of rational actions or decisions, are based not on universal or
statistical laws, but’ rather on truisms.or more generally, what he terms "normic" '
_statements. Normic statements include such statements as "In delicate circumstances, -
rational men act cautlously, or "All murders are committed from motives of revenge, lust,
Jealousy, hate, greed, or fear" Such statements frequently involve terms such as’
naturally," "normally,"v"typlcally," "tendency," "ought," "should," and others. _Normic
’ statements provide plaustble explanations of actions or situations, explanatlons which may :
~_be invalidated by provxdmg exceptions, special cases, or ‘other medlatlng circumstances;
that is, instances of. normic statements are dg‘easzble. In this way, normic statements seem .
, closely related to statements expressxble in non-monotonic logic. Scriven pomted out that =
 while in some cases normic statements could imply statistical statements and so have some
" predictive power, in other cases normic statements can only supply coherent explanations,
~ cannot rule out alternative coherent arguments, and thus fail to have ‘predictive power.
De Kleer [19791 amplifies this point in considering explanat:ons of the behavior of
- designed artnfacts. As we shall see in this paper, thns cnrcumstance is also highly
suggesttve of non-monotomc logrc

calculus, the THNOT primitive formed the basis of non-monotonic reasoning. THNOT, as

a goal, succeeded only if its argument failed, and failed otherwise. Thus if the argument

- to THNOT. was a formula to be proved, the THNOT would succeed only if the attempt to

_prove the embedded formula failed. In addition to the non-monotonic primitive THNOT, =

PLANNER employed antecedent and erasing procedures to update the data base of

e statements of beliefs when new deductions were made or actions taken. Unfortunately, it

was up to the user of these procedures to make sure that there were no circular

. dependencies or mutual proofs between beliefs. Such circularities could lead to, for .

example, errors of groundless belief (due to two mutually supporting beliefs) or non-
termmatmg programs (a more techmcal but no less irritating problem)

In PLANNER [Hewrtt 1972] a programmmg language based on a nezatlonless B



: Two related forms of non-monotonic deductive systems are those described by
McCarthy and Hayes [1969] and Sandewall [1972]. McCarthy and Hayes give some
“indications of how actions might be described using modal operators like ' normally and

. "consistent”, but present no detailed guidelines on how such operators might be carefully

 defined. Sandewall, in a deductive system applied. to the frame problem (which is
basically the problem of efficiently representing the effects of actions; see [Hayes 19731)

~used a deductive representation of non-monotonic rules based on a primitive called

" UNLESS. This was used to deduce conditions of situations resulting from actions except in

- ~ those cases where properties of the action changed the extant condltlons Thus one mlght,'
o say that thmgs retain their color unless palnted ‘ ' :

‘ Sandewall s mterpretauon of UNLESS was in accord with then current mtumons
UNLESS(p) is true if p is not deducible from the axioms using the classical first-order

" infer ence rules. Unfortunately, this definition has several problems, as pointed out by

. Sandewall ‘One problem is that it can happen that both p and UNLESS(p) are deducible,

~ since from a rule like "from UNLESS(C) infer D" D can be inferred, but at the same time ,'
o UNLESS(D) is also deducible since D is not deducible by classical rules. These problems - '
' ', are partly due to the dependence of the notion of "deducible" on the intention . of

- deduction. rules based on "not deducible". This question-begging definition leads to

: perplexmg questions of beliefs when comphcated relations between UNLESS statements are

present For example, grven the ax1oms

AL e
AN um'ess‘(B) E c“ o
A N Unless(C) B B

we are faced with the somewhat paradoxmal sltuatton that elther B or C can be deduced
but not both slmultaneously On the other hand m the axrom system s
~ A AlUnless(B) oC
~ A A Unless(C) =D

-~ A A Unless(D) o'E,

T one would i'expe‘c’t to see 'A. rCland E beheyed" and' B and D not belii-eved.

One mlght be tempted to dismiss these anomaious cases as umnterestmg ln fact

such ‘cases are not perverse, rather, they occur naturally and are very important in many
_ apphcatlons One common way they are introduced is by employing assumptrons which

require further assumptions to be made. - Of course, such hierarchical relations between

choices can be avoided in any fxxed theory by rephrasing the system in terms of one
universal state variable, but such a solution is practically undesnrable and inefficient.



lnstead it is necessaxy to employ systems which allow such patterns of dependency

relationships to occur.

Spurred by‘Sandewall's presentation of the problents arising through such non-

“monotonic inference rules, Kramosil [1975] considered sets of inference rules of the form

"From kp, ¥q, mfer l—r

where F and ¥ are tokens of the meta- language and the number of antecedents can be
arbitrary. Kramosil defmed the set of theorems in such a system as the intersection of all

K subsets of the languageclosed under the inference rules. He noted that this set may not

itself be closed under the inference rules, and showed that in the special case in which the -

_ inference rules preserve truth values (that is, are effectively monotonic) that if the set of

. ,theorems of the monotonic inference rules alone is also closed with respect to the non-

. monotonic inference rules, then this set is the set of non-monotonic theorems. Kramosil's

:_'conclusmn was that a set of inference rules defines a formalized theory (one in Wthh all
o formulas have a well-defmed truth value) if and only if this same theory is that of the
- monotonic inference rules alone, Wthh he mterprets to mean that the non-monotomc rules
‘are elther useless or meanmgless ' '

As we w:ll show in thls paper, Kram051l's mterpretatton was too pesslmlstlc thh -

regard to the possxblllty of formalmng such rules and their unusual properties. As we o
- have argued above, the purpose of non-monotonic mference rules is not to add certain

knowledge where there is none, but rather to guide the selection of tentatively held beliefs ‘
in the hope that fruitful investigations and good guesses will result. This means that one

- 4should not a priori expect non-monotonic rules to derive valid conclusions mdependent of

the monotonic rules. Rather one should- expect to be led to a set of beliefs which whlle‘

‘.v"perhaps eventually shown incorrect will meanwh:le coherently gulde investigations.’

‘ Non-monotomc mference rules need not appear in the expllcxt forms dtscussed“; _‘
vby Kramosll Many authors have described artificial intelligence programs which exhibit '

non-monotonic behavior only implicitly. Non-monotomcnty in these systems - stems

‘typically from extra-logical devices like conflict resolution - strategies, ‘which use

productlon rule orderings and specificity criteria to determine the next system actlon. :

Pratt [1977] and Josh1 [1978] term this property of their systems non-monotomcxty

One class of non- monotomc inferences consist of what mlght be called mmlmal" )

: mferences, in ‘'which a minimal model for some set of beliefs is assumed by assuming the -
~ set of beliefs to be a complete descrxptlon of a state of affairs. Joshi and Rosenschein

[1975] describe a partial-matching procedure based on the operation of taking least upper
bounds in a lattice of sets of beliefs. This has the effect of assuming just enough

- additional information to allow a desired partial match to succeed. - McCarthy [1977]



- outllnes a procedure called "circumscription”, in which the current partial extension of '

some predicate is assumed to be the complete extension. Of course, new examples of the

predication can invalidate previous completeness assumptions. Reiter [1977] analyzes the
_related technique of assuming false all elementary predications not explicitly known true.
He outlines some condltxons under which data bases remain consistent under this "closed
“world assumption”, and shows certain forms of data bases to be naturally consistent with
this assumption. However, the closed world assumption does not seem to allow for any
locality of definition of defaults, since it applies this assumption to all primitive predicates,
and does not allow defaults applied to defined predicates. Circumscription, on the other

hand, would seem to be applicable to any predicate whatever. Although they describe

~ tools for non—monotomc reasomng, none of these authors dxscuss the. problem of revxsron . -
S of behefs. ST , e e e St b s

: These problems were mostly resolved in the Truth Mamtenance System (TMS) of
'Doyie [1978] and related systems [London 1977, McAllester 19781 in which each statement -
has an assoc1ated set of justifications, each of which represents a reason for holdmg the =
' statements as a belief. These Justlﬁcatlons are used to determine the set of current beliefs
' * by examining “the recorded justifications to find well- -founded support (non-circular
proofs) whenever possible for each belief. When hypotheses change, these Jusufxcauons'
} are again examined to update the set of current beliefs, This scheme provides a more
.- accurate version of antecedent and erasing procedures of PLANNER without the need to .
o '__ exphcrtly check for circular proofs The non-monotonic capablhty appears as a type of
.- justification whxch is the static analogue of the PLANNER THNOT primitive. Part of the
justification of a belief can be the lack of valid justifications for some other p0531b|e a
 program belief. This allows, for example, belief in a statement to be justified whenever
- no proof of the negation of the statement is known. This representation of non-monotonic
. justifications, in combination with the belief revision-algorithms, produced the first system
‘capable of performmg the routine revision of apparently inconsistent theories into
- consistent theories. Part of - thrs revision. process is a backtracking scheme called
dependency-dlrected backtrackmg [Staliman and Sussman 19771 We will analyze this
: system in more detail later, but frrst we prov1de some theoretlcal foundatlons for thls work

In outhne, ‘our anaIysxs of these quesuons will proceed as follows We fnrst .

e _'defme a standard - language of discourse including the non-monotonic modality M

("consistent"). The semantics of the language is based on models constructed from fixed
points of a- formalized non- monotonic proof operator. Provability in this_system is then

‘defined, and a proof of completeness for this system is presented. This is augmented by a
_' proof procedure for a restricted class of theorxes and an analy5|s of some of the structure '
~of mode}s of non monotomc theornes
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Linguistic Preliminaries

We settle on a langtxage L whlch will be the language of all theories mentioned

in the following. L has an infinite number of constant letters, variable letters, predicate

letters, and proposmonal constant letters. The formation rules of the language are as
" follows: ’ ‘ B :

The atomic formulas of L are the propositional constant letters and the strings of
the form g(xl, w¥p ) for predicate letter g and variables or constants X1y w3 X The
formulas of L are elther atomic formulas or, for formulas P, q and variable letter x,

" strings of the form Mp, -p, p2q, and Vxp. We use the usual abbreviations of pAq for

= =[p>~ql, pvq for =p>q, Ixp for ~Vx~p, and abbreviate ~M~p as Lp. A statement is a e o
R '_ formula with no free variables. The usual criteria for determining free variables apply

(see [Mendelson 1964]) In addmon a variable x is free m Mp lf and only if x is free
-in p :

ln thls paper, ‘the letters C D E and F will be used as syntacttc vanables

' rangmg over proposmonal constant letters The letters p, q and r will be used for -

A formulas lmplxcxt quasi- quotation is used throughout. That is, if p and q are formulas,
‘t"—'__“__;'_" p:q is the formula obtamed by concatenatmg p, the implication symbol and q. This
: f_ notatlon extends to handle finite sets of formulas in the following way: if Qisa finite set
of formulas, and Q appears .in a quasi-quoted context, it - always stands for the
- conjunction of its elements. For example, Qop means the formula obtained by con joining
all the elements of Q and followmg the result with the implication symbol and P (If Q xs"

_ empty, it stands for Cv-‘C) Since syntax is not a preoccupation of this paper, the
c presentatxon is not rigorous in spec1fymg the number of arguments of predicate letters,
L parenthesnzatxon etc ' '

o The mferent:al system used defmes a flrst-order theory to be a set of axxoms
o mcludmg the followmg mfmlte class of axioms:

For all formulas P, q and r:
_(6) (i) palq=p]
- (ii) [p>Iq DrJ]D[[qu]DEquJ]
(iii) [~q>-ploll-~q2plaq]
© (iv) Vxp(x)op(t)
* where p(x) is a formula and t is a constant or a variable free for x in p(x) and p(t)
~ denotes the result of substituting t for every free occurrence of x in p(x) and
- (v) ¥x[p>ql=lpoVxql - :
if p is a formula contammg no free occurrence of x. (These axioms are from [Mendelson -
- 19641.) These are the logical axioms. All other axioms are called proper, or non-logical
- axnoms ( Thls termmology is mlsleadmg for ax:oms whlch are loglcal consequences of the
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- . logical axiotnS', but we will ignore this inelegance.) The theory with no proper axioms is
~ called the predica‘te calculus (PC). (Note that this theory also contains strings containing
the letter M, so it is actually not strict PC.) The sentential calculus (SC) consists of -

~ axioms which are instances of (i), (ii) and (iii) only. A theory consisting only of the _
~sentential calculus plus a finite number of statements is called a statement theory.

~In this paper, the letters A and B will be used to stand for theories.

Proof-Theoretic Ooerétors'
_t__ } vw,_;Th_e monotonic rules'of inference_ we will use (also from [Mendelson 19641) are
S Modfns»Ponens:. from p and p2gq, infer g _
EE Generalization: from p, infer pr.

If S is a set of formulas, and p follows from S and the axioms of A by the rules (7) we .
’ say SI-Ap We abbrevmte I'PC by l- alone. We define Th(S) = {p Sl-p}

; The partlcular mference rules (7) are not very xmportant Later in the paper,
7 when we concentrate on statement theones, the rule of generalization will be dropped o
: _wnthout much fanfare. All that is important is that the operator .Th have the followmg'_ ’
properttes, whlch together are. called monotomczty ' - -

: (') ) ASTh(A)
(u) If A c B then Th(A) c Th(B)

' and the property (9) of zdem;zotence
. ',‘(9»_ RO R, | h(wm - Thw

Clearly, any classical mference system sattsf:es these conditions. Condition (9) can also be',f )
viewed as a fixed point equation, stating that the set of theorems monotomcally derivable
- from a theory is a fixed point of the operator which computes the closure of a set of
" formulas under the monotonic inference rules, A well-known property of the monotonic
_' inference rules is that Th(A) is the smallest fixed point of this closmg process; in fact,
that Th(A) is the mtersectlon of all S such that A €S and Th(S) = -

In oxder to deal with non-monotonic loglc, we need a new mference rule like thls
one (whlch we w1|l take back 1mmed1ately) '

(10) oo "If}HA “p, thenl-A Mp."
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~ That is, if a formula's negation is not derivable, it may be inferred to be consistent. As it

~ stands, however, this rule is of no value because it is circular. "Derivable” means
~"derivable from axioms by inference rules", so we cannot define an inference rule in terms

- of dérivability 0 casually. : ‘ o

, Instead we retain the definition of F as meanmg monotomc derlvabllnty, and
defme the operator NM as follows: for any first-order theory A and any set of formulas
SeL (L recall, is the entire Ianguage) let :

an R NMA(S) = Th(A AsA(s))'
s _- where AsA(S) the set of assumptwns from S, is given by .
= f‘»_v(12) | fi f' AsA(S) = {Mq q€ L and -q ¢S} - Th(A)

Nottce that theorems of A of the form Mq are never counted as assumptions. “'NM A takes a
" set S and produces a new set which includes Th(A) but also includes much more: -

7'~everyth1ng provable from the enlarged set of axioms and ‘assumptions which is the -
PR original theory together with all assumptions not ruled out by S, We depict thts situation in
. the following ﬁgure, for the spec:al case of S NMA(S), in whtch Sisa ftxed pomt of‘ .
the operator., ) S « : ~

_____________ A6>i: | -S

| TR N

o We would like to defme TH(A) the set of theorems non-monotomcally dertvable
from A by analogy w:th the monotomc case as
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(1) "TH(A) = the smallest fixed point of NM "

This "definition" trles to capture the idea of addtng the non-monotonic inference rule (10)

- to_a first-order theory A. This is plausible, since it demands a set such that all of its
~.elements ‘may be proven from axioms and assumptions not wiped out by the proofs.

Unfortunately, there is in general no appropriate fixed point of NM,. It can happen that
a theory has no fixed point under the operator NMA Even if there are fixed points,
there need not be a smallest fixed pomt '

- For example, consider the theory T1 obtained as
(14) ' . Tl = PCu { MC>-D, MD>-C },
where C and D are propositional constants. NMTI has two fixed points, which can be

‘ called F1 and F2. F1 contains ~C but not -D, and F2 contains ~D but not -C. Since ~D is
“not in F1, MD is in F1, and so -C is in F1. Stmrlarly, the presence of =D in F2 keeps -C

out and MC in F2.  The problem is that neither FInF2 nor FI1UF2 is a fixed point of

- NMry. Since neither ~C nor -D is in FInF2, MC and MD are both in NMTI(FlnF2), $0
© -C and -D are in NMTl(FlnFZJ, so FInF2 # NMTl(FlnF2) Similarly, both -C and -D

“are in NMTI(FIUFZ) so applying NMTI to the umon results in a smaller set. So in thts

i i"'case there is no natural status for -C and -D

An example of a theory thh no ﬁxed pomt of the correspondmg operator is the', B

_j_theory T2 obtamed as .
- (15) LA LT L T2 PCU{MCDHC}
“In this case, NMT2 has no frxed point, since alternate apphcatlons of the operator to any»’
o oset produce new sets in whtch either both MC and -vC exist or neither exist. '

Therefore, we must accept a somewhat less elegant definition of TH Let us -

s ~“defme TH as follows

'(16) B TH(A) = ﬂ({L} {S NMA(S) = S})

+ That is, the set of pxovable formulas is the intersection of all fixed pomts of NM,, or the

entire language if. there are no fixed points. We will use the abbreviation Abp to indicate

- that p € TH(A). With this definition, neither MC nor MD is a theorem of T1 in (14),
- but MCVMD is. In the following, we will abbreviate {S: NM,(S) = S} as FP(A), and

A (somewhat abusmg the terms) call the elements of this set fixed points of the theory A.

Thts defmmon of the provable statements is qu:te similar in some respects to the N

- definition of compatibility-restricted entailment given by Rescher [19641. In that system, a

set S of formulas is said to CR-entail a formula p if p follows in the standard fashion

“from each of one or more "preferred" maximal consistent subsets of S. In the present case,

we obtain the preferred subsets of formulas as frxed pomts of the operator NMA (the
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"}comrpatible subsets_"), but in contrast to normal deducibility where the empty set always .
suffices, there need not be any such subsets. This case produces the entire language as the
set of provable formulas by vacuous fulfiliment of the condition of derivability.

wOvneunu'sual consequence of this definition of orovability’ie that the deduction

" theorem does not hold for non-monotonic logic. For example, while { C } b MLC, it is

not true that P COMLC. This failure of the deduction theorem is to be expected,

~ however, since the non-monotonic provability of a formula depends on the completeness
~of the set of hypotheses, that is, on the fact that no other axioms are available. The

deduction theorem, however, would if valid produce implications valid no matter what

‘other axioms were added to the system, even if these axioms would invalidate the
. completeness condition. used in the derivation of the implication. One should note that

although the deduction theorem does not hold in general in non-monotonic logic, there are

" 'many particular cases in which it does hold. For instance, if some conclusion follows
- classically from some hypotheses, then the expected implication will also hold. In
addmon not all properly non-monotonic- theories are such that the deduction theorem
~fails. It is an interesting open problem to characterize the precxse cases m which the

'deductron theorem is valtd in non-monotonic theories.

So far, we have defmed provabtltty w:thout defmmg proof For a formula

_ to be provable in a theory, it must have a standard proof from axioms and assumptlons.
"“_v’xn each_ flxed pomt of the theory, and, as yet, we have no way of enumerating fixed .
.. points or even of describing.one. It is worth note that when a theory has more than one

fixed point, the fixed points are tnaccessnble in the sense that the sequence Th(A),

_‘ »NMA(Th(A)) NMA(NMA(Th(A))), .. does not converge to a fixed point. We have a'
~ proof, which we do not present here, that if NMA has exactly- one fixed point, then the o
- fixed point is the limit of successive appltcattons of NMA to the sequence of sets startmg
with A. We will eventually attend to det‘mmg ‘non-monotonic proof but first we turn our

attentlon to the toplc of semant!cs

‘ Model Theory

The semantlcs of non- monotomc Ioglc is buxlt on the notion of model, Just Tlike

“the semantics of classical logic. In fact, the defmltton of model for a non-monotonic
theory depends dtrectly on the usual deftmtton

An mter;bretatwn V of formulas over a language Lisa palr <X, B, where X is

‘a nonempty set, and U is a function which associates relations and values over the domain

X with each predicate, variable, -constant and propositional constant letter in the usual

fashion. That is, for each n-ary predicate letter P, U(P) & X" for each varlablevor
- constant x, U(x) € X; and for each propositional constant letter C, U(C) € {0, 1}.
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Usmg this mapping functlon U we “define the value V(p) of a formula p in the
.mterpretatron V to be an element of {0, 1} satisfying the following conditions: For an
~ atomic formula p(X], =y x,), the value is 1 if <U(xy), .., U(x,)> € U(p), and is 0
__ otherwise. V(-p) = 1if V(p) = 0, and is 0 otherwise. V(qu) = 1 if either V(p) = 0 or
V(q) = 1, and is 0 otherwise. V(pr) =1if for all y € X, V'(p) = 1, where V' = <X
Ly / x]U) where [y/ xJU is the mapping derived from U by changmg its value at the
point X to the value y. V(pr) 0 otherwise. If V(p) = 1, we say that V satisfies p, and
. write Vi=p ’ : . : . :

A monotonic model of a set of formulas S € L is an mterpretatnon A% whlch ,

satisfies each formula in S, that is, V(p) = 1 for each formula p € S. A non-monotonic

- o - model of a theory A is a pair <V, 8>, where V is a monotonic model of S, and S € FP(A).

_ When the context makes the mtended meaning clear, we will use the term mode! of A to

~ mean either a non-monotomc model, a monotonic model, or an element of FP(A) for the -
theory A ~ : :

. Although unorthodox this defrmtlon provndes a meaning for formulas Mp '
'whlch reflects the’ proof theoretic property that "p is consistent with what is believed",
- This notion is made precise by including in the model a set of "current assumptions” .
"’"-y},(namely, As, (8)). A model for a theory must assign 1 to all of these assumptions, so the

L effect is that Mp is ass:qned 1 in a model if ~p is not derivable and -Mp is not derlvablev‘ﬂ
i -",'from the current assumpuons and the original theory, that is, if p is consistent with. ‘what
s "believed" in the model. Unfortunately, Mp may be assigned 1 in some model even
= ‘when ap is derlvable (for example, when no axiom mentions Mp at all). This indicates
o ."'that the Ioglc is too weak We wm drscuss thrs questlon later.,

: o A more elegant approach towards the defmmon of non- monotomc models mnght o
“"involve the defmmon of a notion of "noncommittal" models, followed by a demonstration
~of a connection between noncommlttal models and fixed points of theories. This would

. give the model theory some independence from the proof theory. We have developed such -

- an approach for a stronger non-monotonic logic, as discussed Iater, but this sort of

f 'approach seems doomed to failure in the present weak Ioglc o

’ _ Much of - the unorthodoxy of thrs semantics stems from the nature of non-‘ -
. monotomcrty itself. Because the intended meaning of the operator M makes reference to
‘the other formulas of the theory, an unusual holistic semantics results in which the
' meanlngs of formulas mvolvmg M depend on the theory as a whole. . Thus the semantics
L is quite. unhke the Krlpkean semantics developed for the standard modal logics. In a later
' _sectron we will examme such dlffexences in more detail. : -

: W_i_th this definition of model, we can justify the 'defin_ition of provsbility., .
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'Theorem 1. (Soundness) If Al"p then VEp for all models <V, S) of A.

Proof Assu.me Al"p., If there are no models:of A, the theorem follows tri‘via_lly.
_ Otherwise, p is a member of every fixed point of A. But since every model of A is a
monotonic model of a fixed point of A, every model assigns 1 to p. i ' '

T heorem 2. (Completeness) If VEp for all models <V, S> of A, then Abp.

" Proof: Assume that it is not true that Akp, Thus there is a fixed point S of NM,,
. which does not contain p. Now Th(S) = S by idempotence, so SHp. But the predicate
‘ calculus is complete so some monotonic model V of S has V(p) =0. I

‘
S

, lt is not suxpnsmg that we have completeness, since the defmmon of truth
_',-makes reference to provability. The proof was for first-order theories, but it can easily be
generalized to any cornplete formal logic. For example, if we take care not to confuse M

__ with the S5 operator possrbly , we can easily get a complete non-monotonic extension of
: ,"_”-SS However, none of these observations are very interesting unless we have some

- assurance that provabxhty is decidable. We will shortly present a proof procedure for -
_ non-monotonic statement theories. :

. FixedPointsof Theories

. This section will try to analyze the structure of fixed points for non-monotonic
theories. We mvestlgate the number of fixed pomts of theories, and their relatlon to the
provable statements o » :

Non—monotomc theorles may have- varymg numbers of flxed pomts Classically
lnconsrstent theories have just one fixed point (the entire language L) and thus no
models. The theory T2 in (15) also has no models due to the lack of a fixed point.
: Theorles formulated in strlctly classxcal |anguage have exactly one flxed pomt, as does the L
theory :

an T3'= PCU{MCDC} : :
-Some theorles have several fixed points, eg. T1 in (14). It is also possrble for a theory to
have an infinite number of fixed points. This is exemplmed (we assume equallty and an
~infinite domain of unequal constants) by :

(18),  T4= PCu{vxtMp(x):tp(x)/\Vytx¢y:>~p(y)J]J}

' Even in. theorres havmg only one frxed pomt the non-monotomcally provable
L »_statements need not coincide with the classically provable statements, Theory T3 above is
“an example, for C € TH(T3), but C ¢ Th(T3). Some statements will be provable in
theories with multiple fixed points, but will have different proofs in each fixed point. For
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example, MCVMD ¢ TH(TL), and IxMp(x) € THTS).

. The classtcal results concernmg truth and provability for logical languages are
~ that, for a given theory A, a formula is valid in A (true in all models of A) if and only
“if it is provable in A, and that the theory has a ‘model if and only if it is conszstent_

- (cannot be used to derive a contradiction). In non-monotonic logic, somewhat different

circumstances obtain. As Theorems 1 and 2 have shown, validity in a theory remains

equivalent to provabnhty However, from the definition of models of non-monotonic
theories, it follows that a non-monotonic theory A has a model only if the operator NM »

has a classically consistent fixed point. Non-monotonic theories can lack fixed points (eg. '
a the theory Tl) but we have defined such theories to be mconsnstent

, , The basnc structure theorem states that all fixed pomts of a non—monotontc
theory A are (set mclusron) mlmmal flxed _points.

leeorem 3 lf Sl, Sg € FP(A) and Sl IS 82, then Sl 82

Proof lf Sl c 82, then AsA(S2) c AsA(Sl), $0 by the monotomcnty of Th
NMA(S2) . NMA(SI) But since Sl and 82 are fixed pomts of thls operator, 32 c Sl’ )
Sl 32 ST : . -

i Thls result suggests that strlct set-theoretlc mlnlmallty is not a partlcularly mterestmg ., :
. o dxstmctton “among fixed points. In the following sections we will make steps towards more =
interesting classifications, but without a fully satisfactory solunon l_mpo_r_tant applications

of thls theorem are the followmg two corollarles o

- Corollary 4. lf L isa f:xed pomt of A then xt is the only ﬁxed point of A
Proof lf S € FP(A) then S c L 50 S L by Theorem 3. H
Note that lf L 1s a flxed pomt of A then A is classncally mconsnstent that is, Th(A) =

- Corollary s, lf p, -»p € TH(A), then lH(A) =
Proof I A has no fxxed pomts, the theorem follows by definition. lf both p and -ap'

" are members of a fixed point S of A, then since flxed points are closed under monotomc
deductlon S L But then FP(A) = {L} 50 'lH(A) =L B

thh these results, we can study the notion dual to provablltty in non -monotonlc '
theories. We say that a formula p is arguable from A if p € UFP(A), that is, if some
fixed point of A contams p.  Clearly, all provable formulas are arguable. Our next

theorem shows that in consistent theones, provablltty and arguability are almost dual
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. notions.- .
leeorem 6. If A is consistent and pis provable in A then ~p is not arguable

Proof lf p is provable in a consistent theory A, then any S € FP(A) Vcontaivning P

o "would be inconsistent, which is impossible by Corollary 4. @

Unfortunately, the converse of this theorem is not true. For example, in the theory with
no proper axioms, ~C is not arguable, but C is not provable. We will term the notion

»_"dual to provability concewabzlzty Thus all arguable formulas are concetvable, but not vice

versa. We say doubtless p if and only if —'p is not arguable ln PC C is doubtless yet not

~V"'?€jarguable, and in the theory R -
-(19) S Y TS=PCu { MCDC M-C>-C }

_C is arguable yet not. doubtless Summanzmg, we have the following dlagram of sets of
S formulas wnth these propertles, where all mclusuons are proper

CONCEIVABLE

 DOUBTLESS  ARGUABLE -

” PROVABLE

lt is worthy of note that the provable and arguable statements of a’ consrstentA ,

" theory cannot be classified as the monotonic theorems of the theory augmented by some set

of assumptions. That is, the set of arguable statements may be inconsistent yet not sum to .
.. the entire language L, and the <et of provable statements may involve assumptions that

vary from fixed point to fixed point, as in the theory T2 above, where neither the'
: assumptron MC nor the assumption MD is present in both fixed pomts

N Another natural classrﬁcatron is that of "decrsron We say that p is deaded by a. '
consrstent theory A if and only if for all S € FP(A), either p € S or =p € S. The dual to

 this. notion is Just its negatton ln this case we say’ that A is ambwalent about pif pis not
decnded by A. '
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- Corollary 7. If p is doubtless yet decided by A, pis provable.

Proof: For each § € FP(A), either p € Sor «p € S; yet -p ¢ S, so pesS. i

- The Evolution of Theories _

We now turn to _analyzing inter- theory relatronshtps ‘These are tmportant mv

' descrtbmg the effects of incremental changes in the set of axioms, and this is the task of
‘practical systems like the TMS [Doyle 1978], which has the task of maintaining a

description of .a model of a changing set of axioms. As we shall see, there are many

7= unusual phenomena which occur when theories change. The most striking result shows

that the analogue of the compactness theorem of classical model theory does not hold for

" non-monotonic theortes This has important - repercussions on_the methods useful in
,co'nstrUCting."models of theories mcrementally :

' ‘Theorém 8. Ther.e exists a consistent theory with an inconsistent subtheory.

L Proof Consrder the consistent theory :
@) T6=PCu{MCaC, C )
b {_The subtheory PC U { MC>-C } is inconsistent. ﬂ' '

, _'Note, however that the theory T6 in (20) has as a thesis the formula -MC ‘which makes
it quite different than some prevnously consndered theories. We will discuss this type of
o theory in more detail Iater ' R

ln many cases, the changes in med pomts mduced by changes in theortes is less

: _drasttc than those apparent in the previous theorem The stmplest cases are as follows.

"leeorem 9, lf A is consistent, and P is arguable in A then A' = Au{p) is consistent, and- '
_ FP(A )nFP(A) '# z, o _ '

Proof Smce p is atguable there is some S € FP(A) such that p € S. But clearly, S is

then also a ftxed pomt of NMA. g

Unfox tunately, this theorem cannot be strengthened to conclude that FP(A ) is contatned

~in FP(A) since in the theory
- (21) . T1=PCu{ MCD"D MDD“C "'CDE }

there are two fixed points, call them F1 and F2, wrth -C €Fl, E€Fl and -D € F2,

,E € F2. Extendmg this theory by adding the axiom E produces a theory also with two

fixed points, one of which is F1, but the other fixed pomt F3 dtffers from F2 in that
EGFB and M~E¢F3 . :
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T heorem 10. lfA ’and A' = Au{p} are consistent and FP(A)nFP(A') # &, then p is
arguable in A. o ' .

__Proof: Sincep € A", p €S for every S € FP(A'). Thus p €S for some S € FP(A). H

‘Theorem 11 1f A and A' = Au{p} are consistent, then p is prbvable in A if and only if
FP(A") = FP(A). - : | i and only if

- Proof: If p is provable in A, p €S for every S € FP(A), so each member of FP(A) is
also a member of FP(A'). If FP(A) = FP(A'), then since p € S for each S € FP(A"),
p €S for each S € FP(A), so p is provable in A. -
. The import of these theorems is that if a new axiom is already implicit in the

~ current axioms, either no change of fixed point is necessary, or a simple shift to a
'diffe_rentAf’ixed point of the previous axioms is allowable. When considering changes
‘which delete axioms from theories, the basic problem is the non-compactness result
 mentioned above. - Other interesting questions are of the form "how few axioms must. be
added or removed to remove p". Answers to these questions will in general depend on the

" specific theory in question.

L Another important phenomenon is the “hierarchy of assumptions” [Doyle 19783,
~ . in which some non-monotonic choices depend on others. This manifests in terms of fixed
' _points as the addition of new axioms increasing the number of fixed points of the theory. -

. For example, adding the axiom E to the theory : 4 '
S (22) - T8=PCu {[EAMCI>D, [EAMDI>~C } i
. incr’eas”e'svthe» number of fixed points from one to two. In this case, E can be interpreted as -
the reason for choosing between -C and -D. L o .

~ To get a global view of theory evolution, we consider the set of all consistent
R consider the evolution of the properties of p of being arguable, provable, or decided over
. sequences of extensions of the theory A. The evolution of arguability is mainly a question
.. of control structures; ‘this is the point of the encoding of control primitives in non-
' _monotonic dependency relationships given by Doyle [1978]. We have at present no way of
" describing the evolution of decision. However, analysis of the relationships between the
‘theories and their extensions will shed light on how our semantics for Mp matches the
- intuitive notion of "p can be added consistently to the theory", ' E

. We say that p is assumable in a consistent theory A if the theory Au{p} is also

- consistent. We name the dual notion by saying that P is uncontroversial in a theory if p

- is not assumable in the theory. The matching of the semantics of non-monotonic logic
with this more standard notion of ‘consistency will be apparent upon examining the

. the'oriesb containing a_ consistent theory A as a subtheory. For a formula p,Awe can
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correlation ibetween assumability of p and the arguability of Mp in a theory, since this

“latter  condition would seem to say there is a coherent interpretation of the axioms in

‘which p is consistent. Our logic is weak, however, and so this correlation is weak. (The

~ correlation is much stronger in the stronger logics mentioned later.) As an approximation,

~we note that Mp is arguable if p is arguable, and so instead attempt to correlate

- arguabtlxty of p with assumability of p. This correlation is as follows. By Theorem 9 the
~ assumable formulas includes the arguable formulas, but not vice versa since C is assumable

but not arguable in PC. The assumable formulas are incomparable with the concelvable
formulas, since C is ‘conceivable but not assumable in

S g  T9=PCu { CoIDAIMD>-D1 },

— formulas are incomparable with the uncontroversial formulas, since C is assumable but not -

and -C is assumable but not conceivable in the theory T3 of (17). Also, the assumable

uncontroversnal in PC and C is uncontroversial but not assumable in

o e T10= PC U { CoLDATMD=-D, ~CoIEATME~ET] ).

We spec;fy another classrftcauon by saying that a formula p is safe in a

o "t;'con51stent theory A if and only if p € TH(A') for all consistent A’ such that A € A', and
.. that p is forseeable if and only if ~p is not safe. Let Safe(A) = {p p is safe in A}
, then can characterxze the set Safe(A) as follows

'v:_»'fT"eo’e"l 12 lf A lS conststent then Safe(A) is the least set such that the followmg three »
_. conditions hold : S _ "

(i) Aes Safe(A) ,
~ (ii) Th(Safe(A)) = Safe(A)
(m) lf p € Safe(A), then Mp 3 Safe(A)

» Proof The frrst two cases are correct because all formulas classncally deducnble from safey
formulas (in partxcular the axioms) will remain classically deducible when the set of

'axmms is enlareed The case of interest is (iii), which declares that "covered"
assumptions. are safe. That is, if p € Safe(A), then =p cannot be a member of any
"consxstent extensron of A SO Mp will be a member of every consistent extensron, thus Mp

is safe l

lt is clear that all safe formulas are both assumable and uncontroversxal and
that these inclusions are proper. - Elementary considerations show further’ that the

J " forseeable formulas include the assumable and uncontroversial formulas, but again, not
- vice versa. Also, the provable formulas properly include the safe formulas with theory T3 .

in: (17) as the example, and the forseeable formulas ‘properly mclude the concexvable

formulas via the same example

A weakened version of assumabxllty is produced by saying that p is realtzable in

',"-h_‘a consnstent theory A if there is some consistent theory A' such that A c A' and p € A'
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"We also say that p is undeniable if and only if -p is not realizable. Clearly, the realizable
formulas include the assumable formulas, but the converse does not hold as MC>-C is not
assumable in PC but is an axiom of the consistent theory T6 in (20). The forseeable
- formulas obviously include the realizable formulas, but not vice versa since C is forseeable
but not realizable in the theory T9 of (23). Also, the realizable formulas are
incomparable with the conceivable formulas, since C is conceivable but not realizable in
T9 of (23), and -C is realizable but not conceivable in T3 of (17). The example of T10
in (24) provides an example of what following Kripke might be called the paradoxical
formulas of a theory, formulas (in this case C) such that neither they nor their negations
‘are realizable. The example of T9 in (23) provides an example of what might be called
- the intrinsic formulas of a theory, formulas (in this case ~C) which are realizable and
ey undeniable, e o T R T S i e i

o Ai‘f'.:;”.. Puttmg all these oﬁservations}oge‘thér, we arrive at the following diagram of
" inclusions. . R ~ M_ FORSEEABLE ' ' '

CONCEIVABLE

 DOUBILESS REALIZABLE

- UNCONTROVERSIAL' ASSUMABLE

AAAAA ' UNDENIABLE ARGUABLE

PROVABLE

‘ SR . SAFE .

~ This illustrates the distinction between arguability and assumability, that arguability does

not completely capture the notion of assumability. This is probably to be expected from
- the Tarski-Godel results on the indescribability of consistency within consistent theories. It -
- would be interesting to see a more careful analysis of this situation. One goal of such. an
. analysis might be to connect the logic of incomplete information implicit in non-monotonic
- logic to other logics of incbmp‘le;e information, such as the S4 interpretation of the
.»in}tuivt_i\onisrtic}'_ predicate calculus [Heyting 1956, Kripke 19651, Kripke's theory of truth
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CKripke 1975; cf. Martin and Woodruff 1976, Takeuti 19681, and Lipski's theory of
incomplete models [Llpskl 1977; cf. Van Frassen 1966, A. Robinson 1965). The S4
interpretation of IPC tries to describe the gradual accumulation of mathematical truths,

~~ and seems closely related to our notion of safety. Kripke's theory of truth has strong

similarities to the current _theory, for it develops models for the truth of self-referential
and theory-referential statements which are fixed points of a certain operator on partially.
defined truth-predicates. Since the acceptable models of truth are restricted to be fixed
points of this operator, there can be never-decided paradoxical statements. The logic of
the natural nottons of possibility and necessity thus are not dual, but mstead form a
diamond relatxonshrp similar to the case for non-monotonic assumability and safety.

 Lipski's theory of incomplete models is considerably simpler and stronger than either
- Kripke's theory or non-monotonic logic, for his incomplete models can be constructed from -
- any partial extensions ‘of the predicates of the language, thus producing a certain

- completeness in the set of possrble models. This logic is partlcularly interesting in that it
~allows for the truth vvalue of formulas to change arbltrartly often upon successive

extensnons of models

In the above we have been concerned only with ways of descrtbmg the evolutlon

of theorxes upon the addmon of new axioms. One mlght also define descriptors for the |

" case of removmg axioms, or for the past history of provabllrty ‘For example, assuming
»that all subtheortes of A are consistent, we might say that p is untested if p is conceivable
o in every subtheory of A. (Cf. [Heyting 1956, p. 115]) Are there mterestmg descriptors of -
" 'this kind? If so, what are thetr properues” We have not mvesttgated these quest:ons, but

L suspect they may be frmtful

A Proof Procedure for"Nvon-Monotonic Statelnent Theories '

ln thxs sectton, we demonstrate a proof procedure for the non-monotomc‘

v statement logic. This procedure is based on the semantic tableau method for the ordinary =
sentential calculus. [Beth 19581 In this method, a systematic attempt is made to find a

falsifying interpretation for a formula under test. The formula is labeled "false" or "8",

- ‘and semantxc rules gurde further labeling in an obvious way. For example, to show

‘ 'start by labelmg the formula false: ,

[C:D]D[-CVD]

B o 500 5 [—~c-v D)
T g

- For it to be false, its antecedent must be true ‘and its consequent false:
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5D 5 v D
1 8 '@

a, and snmllarly for dis junction and neqatlon In order to proceed further, the tableau must
- split into two cases to handle the embedded implication; : ’

11;1 €500 > [CvDl
81 B ele

ln case L., C is labeled both 1 and 0 ln case ll D is labeled both 1 and 0 Thus there is
e - no fals:fymg model and the formula 1s valid. '

On the other hand conslder the tableau for [C \% D] E [C A D]

,i£“(2§lf' [C v D] 5 MCADl

o tvDlsICaDl

T
[CvD>(CAD  CLOSED
T e o et
ol s CaDl oPEN
‘119 @ 188 e

-kf{,tc,qdnl 5_tc.AmDJ'
11 o

VDl 5> ICAD - OPEN
811 8 881 ~
CvDl5(CAD  CLOSED
111 8180

.B

~ This tableau has been split tw:ce for a total of four branches. Two branches are closed as

before, that is, some ‘formula is labeled both true (1) and false (8). But two are open,

" _that is, there is an exhaustive consistent labelmg of formulas. This means that there are
two falsxfymg models, so the formula is not valid, (Notlce that we could have been more
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clever in labeling the lines of thrs tableau. In the second line, for instance, we could have
labeled both C's at once, forcmg the D's to be labeled 0, and arriving at an open branch
, »lmmedlately )

We W|ll extend thls procedure to handle non-monotonic statement theorles
‘Without going into details, we assume an implementation of the algorithm just alluded to,
‘which takes a goal and generates the complete tableau for it. (E.g., the goal of (25) is
[CvDISLCAD]) A tableau has several branches, each a consistent labeling of

subformulas if one exists (when the branch is open), else a partial labeling (when it is

closed). The tableau is the result of applying all rules to the goal. Two tableaux are

i . equal if and only if they have the same goal. The tableau of a formula is obviously

: "“"’if"computable, since the number of branches is no greater than 2N, where N is the” number""‘_’

of subformulas of its goal
We state wrthout proof the followmg propertres of the tableau method

The procedure is complete in the sense that a formula is provable 1f and only if

‘ 1ts tableau has all closed branches

SR The procedure is exhaustzve in the followmg sense: if X and Y are sets of‘ S
formulas such that X €Y and YI'SCp but Xb‘SCp, then in the tableau for p, in every

5 v'ropen branch there |s some element of Y- X labeled 0..

For non-monotomc loglc, we need to generaltze to tableau structures lf A is a

e statement theory, and p is a formula whose provabrltty is to be tested, then <A, p, t, X>

" is an A-tableau structure .if and. only if t is the tableau with goal ASp; and X is the '
smallest set such that t € X, and if t' € X, then if Mq appears labeled 0 in some branch b .

“of t', then t" € X where t" is the tableau wrth goal A:hq ln this last srtuatlon we say
_ that t' mentzans t 1n branch b : : '

: ln the classrcal procedure, a tableau is closed |f all its branches are, and thrs can
~ be determmed unambiguously. In the case of a tableau structure, we can't tell whether a
tableau is closed until we have determined the status of the ‘tableaux it mentlons, and' '
,,there may be loops to contend with, S e

: Therefore we mtroduce the notion of an admtsszble labelmg of a tableau

"’structure, an assignment of one label elther OPEN or CLOSED to each tableau in the
‘structure, such that e

(a) If the tableau wrth goal A:hq is labeled OPEN ‘then every occurrence of Mq is
labeled 1in every tableau and , y
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(b) A branch is labeled CLOSED if and only if some formula is labeled both 0 and 1

~in that branch

ST The ‘proof procedure creates tableau structures and labels them, as follows.
' vaen A and p, the first step is to construct the tableau with goal ADp. All other tableaux
‘needed are then constructed. That is, if some constructed tableau has a formula Mgq

labeled 0 in an open branch, then construct the tableau with goal AD-wq if that tableau

was not prevnously constructed. The tableau structure is then checked for admissible
labelings by exammmg all possible labelings of the tableaux for labelings satisfying the
‘ admxssnbtllty test.  This test consists of first labeling with 1 each occurrence of Mg in the

~tableau structure provided that the structure contains the tableau with goal A>-q labeled
’"f““’"”’" OPEN.. Then the labeling is admissible if all tableaux labeled OPEN have some open
‘ branch and all tableaux labeled CLOSED have every branch closed. If in all admissible -

labelmgs the initial tableau with goal Aop is labeled CLOSED, then p is provable, and
’ otherwnse is unprovable We wnll shortly prove the correctness of this algorlthm .

We fnst present some examples ln the theory

> (26) i T]_l SC u { MC:)-aD MD:-‘E ME:hF }

711 = ncaan l | ‘| LR
ST l; el | el | el | )
. MDo-E | . ME. | MD | MC |
1 '|"*' e "lls e 1 e
NED,*F N | [ o
S | CLOSED .|; OPEN | CLOSED |- ~ OPEN -

Nottce that we dont bother to copy the axioms in each tableau, but only those parts that
become relevant The tableau structure shows that -F € TH(Tll) but -C ¢ TH(Tll)

Another example is the Tl2 tableau structure for -C, where ‘

(21 ff_f_ ~g"‘”.Tm:SCu{MCJ®,MD:C},
T2 =MD |t - |t
1 o} et 91
CoommsC | M | orc
' ] ._8', l 8

1

"_(see [Sandewall 19723) the 111 tableau structure for -'F has only one adm1551ble labeltng o

Thxs tableau structure has two admlssxble labelmgs If t is labeled OPEN, tis labeled
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- CLOSED, and vice versa. So there is an admxssnble labelmg in which t is labeled OPEN

';712 - MCo>-D

and -C is not- provable

_ On the other hand the T12- tableau structure for MCVMD looks like this:

| t MCcwMD |t ~c | t' D

, 1 B o8 | Bl | - 81

" MD>-C | /" Mm ] M
1 r [ 8 | )

7 rAgam, there are two admlssnble labelmgs, but in both of them tis labeled CLOSED S0
: MCVMD is a theorem of T12 X Sy .

(The tableau structures just glven are not really complete lt is left as an

’ exercrse for the reader to show that usmg the axioms to split each tableau mto branches

ey wnll not change the outcome)

| ., .T/zeorem 13. The prool‘ procedure always halts and finds all admtssrble labelmgs of the‘
' _tableau structure for 1ts goal e _ ; e , o

i Proof The theorem is easxly seen true by notmg that because the set of proper axioms -

of the theory is flmte, only a flmte set of tableaux can be constructed. Once this is done,
- there are only fxmtely many labelmgs to. cycle through “with tnvral checks for

adm:ssrbnhty and P"U"ab"'ty ﬁ "

The next two lemmas guarantee the correctness of the approach

: »Lemma 14 lf S is a flxed pomt of NMA, there is an- admxssnble labelmg of the tableau
- structure for ADp such that P € S if and only if the tableau is labeled CLOSED in that ‘

labelmg

- Proof Let S € FP(A) We will constrict the admlssrble labeling. In the tableau’

- structure for ADp, label a tableau OPEN if the goal of the tableau is A>q and qg ¢ S.

- Consider one of the remaining tableaux, with goal Aor. There must be a mlmmal set of -

‘elements X = {May, «, Mg}, such that X ¢ Asp(S) and Xk,r. If X = &, then the
tableau for A>r is closed no matter how assumptions are labeled. Otherwise, by

. ;_-'exhaustlveness, every branch of the tableau has some Mgq; € X labeled 0. So there will be
-~ a tableau for each such A:hq But these tableaux will be labeled OPEN (because

- 0q; €85), so the correspondmg branch of the tableau for A>r will be CLOSED So the

whole tableau for Aor will be CLOSED. ‘Further, no open tableau will be labeled

~CLOSED, because then there would be a proof of its goal from assumptions. Thus, if the
tableau for ADp is labeled CLOSED, it can be proved from assumptxons in AsA(S), so
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pES. lf it is OPEN p ¢S by construction. ]

Lemma 15 lf there is an admissible labelmg for the tableau structure for Aop, there is a
fixed point S of NM such that, for every tableau with goal A2q, the tableau is labeled

CLOSED if and only if q € S

Proof‘ We construct S from the labelmg Let RO be the set of formulas Mg such that the
tableau for Ao-q is labeled OPEN. Let SOV— Th(AURO), and let Mqy, Mq2, .. be an
enumeration of all the for mulas of the form Mq in L- RO, with the property that if Mql i

J a subexptesston of MqJ, then i < j. (Eg, MC is a subexpressnon of M-MC)

Defme R|+1 and S|+1’ foriz=0, 1 as: follows

e R|+l R lf "qx+1 € Sl, else R = R U{Mqﬁl}’ and

Sl"'l Th(AUR’+1)

_ Now et S U 'Sl, and R U,-o R Clearly, §; Sx+1 and S Th(_AUR).H
Smce NMA(S) -Th(AUAsA(S)) we can show that NMA(S) S by showing that
R AsA(S) . o o B

Flrst to show AsA(S) = R Let ~q ¢ s. We will show Mq €R. If Mq € RO, then

vsmce RO E R, Mq € R Otherw1se q ‘must beé some qp If ~q ¢ S, then q ¢ S, _1, s0

| " Mq GRI, soMq €R.

Second to show R c AsA(S), that is, if Mq €R, then ~q ¢ S. There are two

o Ccases. If Mq € RO, then there is an OPEN tableau for AD-»q Assume that ~q € S. Then

- there- must be a k21 such that "q €5y and ~q ¢ S, _y. So RyF,~q and Ry-1¥a~q. But

"Qf_ then by exhaustlveness qu is labeled 0 in the tableau for A>-q. So there is also a

tableau for ADﬂqk If this tableau is OPEN, then Mgy € Rg. If this tableau is CLOSED

qu € SO, and hence qu € Sk l Elther way, Ry = Rk—l’ whtch is 1mpossxble

ln the other case, q will be some qj, S0 Mq € R, and ~q ¢ S l ‘Assume that ’

-'q € S, that 1s, ~q is an element of some Syy kzi, and ~q ¢ Sk-l Then Rk l'A "q but

Rk -1¥4 "q, 50 {qu}URk -LFa e

Now qu does not occur as a subexpressxon of q q; (since k2i), so qu must

- occur in, ‘the axioms A. So in some branch of the tableau for A>-q, Mqy must be labeled

~ 0. But this means that qu must be labeled 0 in some branch of the tableau for A>p, for
any Pp. So any tableau structure must ‘have a tableau for AD-vqk _This tableau must be,
OPEN, or ~qy would be a member of Sp, and hence a member of Sk—l So qu € RO, so
Rk = Ry 1, which is a contradlctnon




It remains to show that the ‘labels agree with the fixed point. If the tableau for

~ A>-q is OPEN, then Mq € S by construction. If it is CLOSED, there is a proof of ~q

from Ry, so -q € SO. But Sp €S, so the final labeling agrees as well. @

Tbeoremlé lfA is a statementrrtheory (a finite extension of the sentential calculus), then

— a fixed point of NM, which does not contain p, so p is unprovable. B

non-monotonic provability in A is decidable.

Proof: Let <A, p, t, X> be the tableau structure for a formula p. If the procedure labels

Tt CLOSE'D‘ in every admissible labeling, then there is no fixed point of NM , which does

not contain p, since there then would be an OPEN labeling. So p is in all fixed points, |
and hence provable. If the procedure labels t OPEN in some admissible labeling, there is

'THép?ddf brocedufg extends a previbus procedure due to Hewitt [1972], and

' 'terhb('Jdie‘d"in: -Micro-PLANNER [Sussman, Winograd and Charniak 19711, a computer

* programming language for (among other things) mechanical theorem proving. A practical
. implementation of this procedure would interleave the building and labeling of tableaux,
. and would avoid building a complete tableau structure when unnecessary. We invite you

" to compare this procedure with, for instance, the tableau-structure method for S5. [Hughes

- and Cresswell 19721 One difference between these procedures is that the present procedure
7o splits tableaux .into :
7 the whole set of ‘alternatives into branches.

ranches before generating alternatives, while the S5 procedure splits

.. The Truth -Mailn‘ivténén'cebysvysteni

~ The bnly_‘ khoWh z‘a'deq'uate solutions to the hand!ing'of,noh—monotonic ﬁrobfs are

Doyle's [1978] TMS program and its relatives [London 1971, McAllester 19781, With our
.- theoretical results in hand, we can present an approximate description of what this
B ;'_._ program does. The TMS has two basic responsibilities: ' ' ' S

~ both -~q and Mg in the data base simultaneously, _ . N RS
~ - (b) It detects inconsistencies, and adds axioms to a theory in order to eliminate them.

~ (2) It maintains a data base of proofs of formulas generated by an independent
proof procedure or perceptual program. In our terms its goal is to ‘avoid the presence of

' The TMS keeps track, for each formula in:ithe data base, of the formula's.

- justifications. A justification of a formula p is a set {py, .. p,} of formulas which entail

‘ p. Suchv'a_‘jus_t‘i'fication may be viewed as a fragment of the tableau for ASp; that is, for

' “'branch,

each branch of p's tableau, the justification contains a formula p; labeled 0 in that

v 'fThie_ basic. TMS algorithm searches for  a iébeling of formulas ‘irpvdlved m
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justifications. It obeys two principles; p is labeled 1 if and only if all the formulas in"
some justification of p are labeled 1, and Mp is labeled 1 if and only if -p is labeled 0.,
When the TMS finds a labeling satisfying these conditions, it arranges the data base so

. that only formulas labeled 1 are "visible" to the higher-level proof procedure or program.
Thus, from the point of view of a program using the TMS, it chooses a subset of formulas
to "believe". These formulas are said to be in; the other formulas are out. - o

, ~ This is reminiscent of our proof procedure's search for admissible tableau
labelings, but there are some important differences. The TMS operates on partial sets of

~ tableau fragments, so its decisions may require revision as new fragments ( justifications)

, " are discovered. But there is a more striking difference between our proof procedure and
e the TMS.. The TMS searches for just one admissible labeling of its tableau fragments, not -
' o all such labelings. The most it can hope to find is one fixed point (actually, a finite
. subset of one), not all of them. In the terminology we developed earlier, it finds some of
" the arguable formulas rather the than provable formulas. For example, consider- its

.- behavior on the theory T12 in (27). In this theory, MC is arguable, and so is MD, but

- neither is provable (only MCVMD is provable). Nonetheless, the TMS, given the

- Jjustifications {MC} of =D and {MD} of ~C, will pick one of {MC, MD} to be in, and the
* other.to be out. ' o o S . :

f‘; Thefe are sévefal jg;tifitatiohs for such jumping to conclqsions.' One is that -~
__ - since-all arguable formulas are also assumable, these decisions may at worst lead to- later
2~ shifts in fixed points. That is, since arguable formulas might be added consistently later
7 onm, it cannot hurt much to act on the assumption that they will be added. A more
 pressing. rationale for this behavior is that the program or proof procedure using the TMS N
typically depends on beliefs of certain types to decide what to do, and cannot abide by
.su'spen'ded judgement; even if there is a choice of possible circumstances, the program
~ 7.7 ‘expects the TMS to decide on one so that action may be taken. o

o . Of course,fjumpingrJ:trq‘_‘_con_clusioﬁs in this manner introduces the problem of
" having to choose between fixed points of the theory. In many cases this problem solves
itself because of the way the TMS is typically used. Usually a program using the TMS is

© attemipting to discover- which fixed point of a theory corresponds to the real world. The

~ best way to do this is to pick one model and stick with it until trouble arises, and then
. salvage as much information as possible by making as few changes as necessary.

"Trouble"v can take the form of new information or new deductions from old information

-~ conflicting with old information or assumptions. Either way, the response is the same; to .

'switch to a new fixed point. Programs frequently try to organize their use of the TMS so

. as to ensure the case of a single fixed point being the usual case. However, it is usually - .

- hot possible or- desirable to completely determine in this fashion how the TMS should’
~decide between alternate fixed points. One way even more information of this sort might
..+ be used would be to employ Rescher's [1964] suggestion of modal categories as a method -
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’for'selecting among the various fixed points generated by a theory. That is, suppose the
formulas of the language are segmented into n+l modal categories L = MOU...UMn. Then
given fixed points of a theory A as Sl’ .y Sm, with corresponding sets of assumptions Al’

ey A, we'_'can' segment the A; into components Al,O’ .y Al,n’ vy Am,O' vy Am,'n in
concordance with the modal categories. We can then rank the fixed points by schemes
inVoIvi'ng’ orderings on the vectors of assumption components. Adding such devices to

TMS-like systems is an interesting topic for future research. '

- The two goals of the TMS, to prevent both <p and Mp being in, and to prevent

both_vp and -p being in, give rise to two different types of activity. In the first case, when

a new justification is discovered for some formula which then invalidates some current

. consonant with the enlarged set of justifications. This process is fairly straightforward,

_although there are important special cases concerning circular proofs which require special

care. This process thus takes on the appearance of a relaxation procedure for finding an’

. acceptable labeling, and then determination of non-circular proofs for all formulas
~ labeled 1. =~ = ' - o ' :

.. The second type of inconsistency handled by the TMS, that of p and -p being
. in, requires somewhat different treatment. In the first type of process just described, the
~-~ TMS uses justifications in a unidirectional manner, determining labelings of formulas from
- the labelings of the formulas of their justifications, and not vice versa. In the second case,

. the TMS must traverse these justifications in the opposite direction, seeking the
assumptions underlying the conflicting formulas. This is why theﬁnon-circular proofs are
- important tools. To resolve the inconsistency of these assumptions, the TMS converts the
~problem to one of the first type by producing a new justification for the denial of one of
- the assumptions in terms of the other assumptions. This might be viewed as the TMS
* sharing the weakness of our logic; it cannot rule out an assumption Mp by deriving ~Mp,
but must instead produce a detivation of sp. This second process is called dependency-

T —* directed _ba_c.ktracki‘ng [Staliman and Sussman 19771,

~ For example, the existing theory may be { MCoE } in which both MC and E
_arebelieved. Adding the axiom MD>-E leads to an inconsistent theory, as MD is assumed

- (there being no proof of ~D), which leads to proving ~E. The dependency-directed
backtracking process would trace the proofs of E and -E, find that two assumptions, mMC

- and MD, were responsible. Just concluding “MCv-MD does no good, since this does not
- rule out any assumptions, so the TMS adds the new axiom E>-D which invalidates the
o aSsu'mption', MD and so restores consis'ten'cy.. There are many subtleties involved, as
~ discussed in [Doyle 19781, " E ‘ : ' i B

o Of coixrse‘,'w'ith nonfm_oﬁotonic logic there is also another kind of inconsistency,
that due to there being ho fixed point at all. It can be shown [Charniak ez al. 1979] that

“assumption, the TMS must reexamine the current labeling to find a new labeling
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' 'the 'IMS will always find a fixed point of a theory if every subset of the theory is

consistent. Unfortunately, the TMS program can loop forever if given a theory with an
inconsistent subtheory, as the check which could prevent this failure is quite expensive
and only rarely needed in practice, and thus has been omttted from the program. :

- As we mentioned, this description of the behavior of the TMS is only
approximate. The ‘TMS is incomplete in a certain practically unimportant way; it will not
conclude D from the axioms CoD and -CoD. This type of reasoning is the responsibility
of the program or proof procedure employing the TMS. The above description is slightly
inaccurate in other ways as well, in that the logic of the TMS does not seem to be precisely
the non- monotonic logic we have developed here. For example, the TMS really deals with

- only four formulas for each real formula P Mp, M-p, Lp, and L-p. It does not allow

contradtctlons of the form LpAM-p, but does tolerate inconsistencies of the form LpAL-p

if no assumptions can be found underlymg these formulas. This suggests a somewhat
. dlfferent logic than that ptevnously described, or at least a different interpretation of the

TMS in terms of non-monotonic logic. This type of logic seems reminiscent of Belnap's

- [19761 four-valued Iogtc of belief. It would be interesting to pursue the connections
between non-monotonic logic, the TMS; and Belnap's logic of belief and relevance logics.

[Anderson and Belnap 19751 Other ways the description of the TMS might be improved

"vv—':.'_'_bwould be to study its algonthmlc efﬁcxency to perhaps improve that efficiency, and to

guarantee that the TMS wm always fmd a consnstent extensnon of a theory when one

,Di'scussion S

, In contrast to classxcal Iogtcs the non-monotomc loglcs exammed in thls paper .
have the property that extendmg a theory does not always leave all theorems of the

_original theory intact. Such logics are of great practical interest in artificial intelligence
_research but have suffered from foundational weakness. We have tried to repatr this
“weakness by providing analyses of non-monotonic provability and semantics.  Our-
_definitions lead to proofs of the completeness of non-monotonic logic and the decndabthtyi
of the non-monotonic sententtal calculus.

The area of non-monotomc logtc is rtpe for further research Some open

’ problems have been mentioned in the precedmg sections.’ ln the followmg, we list some

further mterestmg toplcs

The maJor problem for non-monotonic |og|c is decndtng provablhty for more -
general cases than statement theories.- Unlike classical logic, it appears that the non-

“monotonic predlcate calculus is not even semi-decidable. That is, there seems to be no
§ procedure whlch wxll tell you when somethmg is a theorem. If there were, then we could




(28) i o |
~ is inconsistent in our logic because although ~MG follows from -~D -and MC>oD, -C does
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use it to decide whether p was a theorem of number theory by trying to prove p and M-p
simultaneously, since one of these must be a theorem (as there is only one non-monotonic
fixed point of number theory). - » ' : ' ‘

 Are 'th.ere ébécial cases in which provability is decidable or semi-decidable? “We

- conjecture  that many theories of interest to artificial intelligence are asymptotically

decidable, in the following sense: there is a procedure which is allowed to change its
answer an indefinite number of times about whether a formula is provable, but changes
its answer only a finite number of times on each particular formula, (See for example the
problem solving procedures given in [de Kieer et a/ 19771, Note also that classical first-
brder provability is asymptotically decidable by a procedure that changes its answer only

. once; answer "unprovable" and then call any complete proof procedure, changing the
- ‘answer if the proof procedure succeeds.) Asymptotic decidability is a fairly weak property .

- of a predicate, but it isn't vacuous since there are predicates (such as totality) which are
" not decidable even in this sense. Furthermore, a procedure of this kind could be useful in
~_ spite of the provisional nature of its outputs, since a robot always has to act on the basis -
- of incomplete cogitation.  Unfortunately, it appears that even for some finite first-order

theories, piovva‘bilflty is not asymptotically decidable. We must look for_uéerl special cases.

S We have p"re'sent'e.d_ a formalization of non-monotonic logic which, although very

_,;,wea'k‘, 'captur'e_s"mo's't of. the important properties desired, especially with regard to the
_ structure of models of n’on-'monc_itonic,theories and their behavior upon extension by new
- axioms. The logic seems to-be adequate for describing the TMS, an ability following
SR namrally from the structure ahd evolution properties just mentioned. The logic also
- admits a proof of :completeness and a proof procedure for the case of statement theories, o

- Unfortunately, the weakness of the logic manifests itself in some disconcerting

~ exceptional cases which, while essentially irrelevant to the structure and evolution

'pro'perties,v'.ind-icaté that the logic fails to capture a coherent notion of consistency. For
example, the theory - ' ’ ' '

"T13=PCu { MCoD, -D }

not follow, thus allowing MC to be assumed; and so the theory fails to have-a fixed
point. This can be remedied by extending the theory to include ~C, the approach taken

- by the TMS, but this extension seems arbitrary to the casual observer. As it happens,

axioms like MC2D are much less common in applications than the unproblematic MCoC,

" but it would be nice to get rid of this problem. Another incoherence of our logic is that
consistency is not distributive; MC does not follow from MICADI. Our logic tolerates

axioms which force an incoherent notion of consistency, as in
(29) N - Tl4=PCu{MC, -C}

* A stronger logic might not allow this by forcing such theories to be inconsistent.
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_ We will remedy this situation . a forthcoming paper, wher we present a
strengthened logic such that each fixed point of a consistent theory in the logic will possess -
a coherent notion of consistency. This is achieved by augmenting the logic to contain

~ extensions of S5 in each fixed point. This fixes the problems mentioned above on the

exceptional cases, and preserves the behavior of the logic on the vast ma jority of cases, in

~ that all of our results concerning the structure, interrelationships, and evolution of models

of non-mdnotonic theories carry over to the new logic. In addition, some new results
permit a very elegant description of the logic of theory evolution. This strengthing of the

“theory is not quite as drastic as it may seem, for parts of S5 are already present in the
~current logic. For example, all instances of the schema Lp2p (or poMp) are provable,

and hence true in all models of any theory in the current logic; the difficulty is that some

- of these theories are inconsistent, but would be consistent in the S5 extension. These
_improvements have their price, however. Since the new logic includes extensions of S5,
~ the definition of model must be revised, and a new proof of completeness must be
_presented. For the same reason, the proof procedure for statement theories must be
‘ 'altbered_’,A thus requiring a new proof of correctness, As a bonus, however, the stronger ' -
logic has a more elegant model theory, in which the notion of a "noncommittal" model is

" correlated with the proof-theoretic notion of a fixed point of a theory.

smEliento There are several problems of a matheématical nature raised by non-monotonic

Jlogic. What are the details of the relationship between non-monotonic logic and the logics
* of incomplete information? What are the effects of different rules of inference on the
“.construction  of non-monotonic models? . What are the details of the evolution of the

properties of decision and provability? Are there interpretations of non-monotonic logic

- Wwithin classical logics? Are there connections between non-monotonic logic and logics with

statements of infinite I_ength?_ Is there a topological interpretation of non-monotonic logic A

~in analogy to the topological interpretation -of the intuitionistic calculus?

~ There are ‘also a number of more speculative and long range topics for

. investigation raised by . non-monotonic logic. The revision of beliefs performed by
" artificial intelligence programs can be viewed as a microscopic version of the process of
- change of scientific theories. (For a figurative description of such processes which is very
* close to a true description of ‘non-monotonic logic and the TMS, see the beginning of
-section 6 of Quine's Two Dogmas of Empiricism.) Can the ideas captured in non-
“monotonic” logic "be used to describe the general process of scientific discovery, .or

pragmatic behavior in general? How are the holistic semantics of non-monotonic logic

i related to changes in meanings? (Cf. particularly [Dummett 19731.)  What are the trade-
- offs involved in Jjumping to conclusions? How costly is the suspension of judgement? Can

counterfactuals, and causality? .

~ non-monotonic logic be used to effectively describe and reason about actions, commands,
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