Massachusetts Institute of Technology
Artificial Intelligence Laboratory

6.December 1979 Al MEMO # 4828B
(Revised)

DIRECTOR GUIDE

Kenneth M. Kahn

Abstract

Director is a programming language designed for dynamic graphics, artificial intelligence,
and use by computer-naive people. It is based upon the actor or object oriented
- approach to programming and resembles Act 1 and SmaliTalk. Director extends MacLisp
by adding a small set of primitive actors and the ability to create new ones. Its graphical
features include an interface to the TV turtle, quasi-parallelism, many animation
primitives, a parts/whole hierarchy and a primitive actor for making and recording
"movies”. For artificial intelligence programming Director provides a pattern-directed
data base associated with each actor, an inheritance hierarchy, and a means of
conveniently creating non-standard control structures. For use by naive programmers
Director is appropriate because of its stress upon very powerful, yet conceptually simplé
primitives and its verbose, simple syntax based upon pattern matching. Director code
can be turned into optimized Lisp which in turn can be compiled into machine code.

The research described herein is being conducted at the Artificial Intelligence Laboratory,
a Massachusetts Institute of Technology research program.
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Preface to the First Revision

Experimental languages like Director change at very fast speeds. In the year since
the first version of this guide has come out, much of Director has been rewrittén several
ﬁmes. The internal representation of actors and methods changed frequently, the
"compilation” of actors even more so. Many new features were added for dealing with
parts and wholes, constraints, method extensions, and activitikes.. Other features such as
"demons" have been elimiﬁated, typically because they are now easy to obtain using
newer more generic features. The patterns of many methods have changed and the
names of many primitive actors have changed, typically to obtain a more consistent

naming.

Preface to the Second Revision

Since the last version Dirgctor has not changed very much. The mechanism for
extending methods has changed drastically. The workings of the Director compiler and
‘fhe internal representation of actors has been simplified A new experimental
m‘elr.\u-ori_ented interface for Director has been implemented. This is expected to be very

important for the ease of use of Director by children and computer-naive adults.
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Section |  The General Idea

Director is an actor-based extension of MacLisp and is described in Al Working
Paper 120. [Kahn 1976] This document is intended to help you.use it.

While much of the work described here is intended for a graphics audience
(describing much simpler and more intuitive ways of thinking about graphics and
animation), much of it should be of interest to anyone interested in actors. Graphics is an
ideal domain to test out different styles of message passing in a way that is concrete. A
face telling its mouth to smile is pedagogically a much better example than a number
being told to multiply by the result of factorial being sent the result of that number

being asked to subtract one.

The language is also designed to be an Al language. Each actor has rather
sophisticated abilities including inheritance, a relational data base, method extension, a
~ parts/whole hierarchy band a pseudo-parallel control and planning structure. The
language ‘is cﬁ_rrent!y grafted upon MaclLisp (or Lisp Machine Lisp), so that in addition to
lists, atoms, numbers, lambda expressions and other Lisp entities, Director provides
actors and a few primitives for manipulating them. This implementation strategy wkasbonke
of necessity and many of Director’s deficiencies would disappear were it built upon an

Actor language such as Act 1.
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Section Il An Introductory Example

To get a general impression of what Director is all about try the following the
next time you are logged into Al on a TV (if you want to try it on a Lisp Machine or on
ITS without graphics read the "Getting Started” section). Start up the system by typing

:direct <{carriage return)
IWelcome to Director Version # 89} ;; at which point Director is ready for instructions

(ask poly make pent) ;; create a polygon named pent

(ask pent show) ;; a default polygon (a hexagon) should appear

(ask pent set your angle to 72) ;; it should now look like a pentagon
(ask pent turn Teft 90) ;; have it wurn 90 degrees

(ask poly make star) ;; make another poly named star

{ask star set your angle to 144) ;; set its angle to 144

(ask star show) ;; finally ask it to show

~ (ask star move forward 200) ;; ask star to go forward 200 steps

(ask star grow 250) ;; ask the star to become 250 units larger

(ask star print) ;; if you are curious about what star knows try printing it

At this point, you might want to play around. If the typing is too much for you
there are abbreviated versions of nearly all the messages. For example typing,

(ask star @sypt (200 -100)) ;; is the same as typing
(ask star set your position to (200 ~-100))
3 which means go to the point 200 units over and 100 down from the center

A list of all the abbreviations is in the index at the end of this document.

To make a little movie type the following

(ask movie make my-first-fiim) 3 make a movie called “my-first-film"

(ask default-clock set your frames-per-second to 2) ;; have it run at 2 frames per second

33 if the computer were faster 30 might be nicer

- (ask star plan next do at speed 25 move forward 100) ;; slowly move forward 100 steps
(ask star plan after 2 seconds grow 50) ;; grow 50 units 2 seconds into the movie

(ask star plan after 4 seconds turn right 18) ;; turn left 18 after 4 seconds

(ask pent plan next gradually grow 300) ;; now for the pentagon ,

(ask pent plan next do in 4 seconds move back 200);; take 4 seconds to move back 200 steps

(ask my-first-film fiIm the next 4 seconds);; roll the cameras for the next 8 clock ticks
(ask my-first-film project);; you just saw the film being shot, now lets see it projected
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DB DB BB & [

2 Figure 1 Ask My-First-Film Project
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Section Il What Every Actor Can Do

When you start up a new Director you initially have available to you only a few
actors The most important one is called Something and it does everything that every
actor should be able to do. In other words, Something maintains a memory, accepts print .
messages, makes instances of itself, maintains plans for pseudo-parallelism (with the help
of Clock), and can be told how to handle new messages. Performer, Movie, The-Cast

and Stage do graphical things and are described later.

Every actor is an offspring of Something and therefore, unless explicitly told
otherwise, will behave as Something does when receiving the messages is this section.
The sections describing messages of Performer, Movie, Clock, and Stage apply only to
those actors and their descendants. The relationships of the actors initially present in

Director is depicted in the following diagram.

SOMETHING

PERFORMER STAGE CLocK HOVIE

THE-CAST POLKXT FLOWER INTERPOLATION DEFAULT-CLOCK

Figure 2 Family Tree of Primitive Actors
This guide is organized by the patterns of messages an actor can handle. Each
section describes a primitive actor by listing the methods directly associated with it (i.e.
those messages that the actor itself handles rather than passing the problem on up to its
parent or more distant ancestors). Variables that the actor treats specially are also

described.
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A pattern is a list of words or patterns. If a word begins with a question mark "?"
or a "4" then it is treated specially. Patterns are matched against messages. A question
mark means that anything may be typed in the corresponding position of a message. if a
question mark is followed by a word, then that word becomes the name of what you
typed in the corresponding position in the message. A "%4" means that any number of
sub-items (even zero) can be at the corresponding position of the message. For
ekample, the message "(I eat pot stickers)” matches the pattern "(I ?action %things)" and
as a result the name "action™ temporarily gets the value "eat” and the word “thihg_s" is
bound to (i.e. gets the value) "(pot stickers)”. The "%" may be used only once at each

level of the pattern.

You may type upper or lower case letters as you prefer. The patterns :-e
presented in this paper with capital letters for required words and lower case for
variable names. If there is an abbreviation for a pattern in the text then it is on the far

. right of the pattern.
Subsection A Creation and Destruction of Actors

(ASK 7anyone MAKE 7name)

This causes an instance of the receiver of the message to be made and given the "pame”.
The name can be either a single word or a list. The newly created actor behaves
exactly as its parent does (except when asked for its name, offspring, or parent’s name
of course). You can tell it new things to remember and how to behave if it receives new
kinds of messages. If there was already an actor around with the same name it will be

destroyed and replaced by this new one.

Any time you want to ask an actor anything you type "(ask ", then its name, the
message and end with a ")". So to create an actor named Sally just type, |

(ask something make Sally)
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(ASK ?anyone MAKE)
This method is also makes a new actor, but it does not have a name.! A new instance of
the recipient is returned (while the previous methods returned the name of the new
instance). Typically this message is used in such a way that the newly created actor is
stored away. For example,

(ask sally set your secret-friend to ,(ask friend make))

The comma above means we want the result of *(ask friend make)* to be there.

Without it the téxt "(ask friend make)" would be set to Sally’s secret friend.

(ASK ?anyone MAKE ?nam‘e IF ITS NOT ALREADY) : : . make ? 1‘1na
If there already exists an actor with the same name then nothing happens otherwise one

is made. Name is returned in either case.2

(ASK ?anyone MAKE UP A NAME) ' muan
Sometimes you don’t want to make up names for actors, but you want them to have
‘names that you can refer to. This method is handy for this, If your program is making
lots of flowers then you might want to make them as follows, |

(ask flower make »(ask flower make up a name))

l. One reason for putting up with this inconvenience is so that the actor is subject to garbage collection, i.e.
will go away when you no longer can get to it to ask it anything. Also there is no problem with name
conflicts and nameless actors use up less memory. » .
2. "lina” is an abbreviation for "if its not already” so you can just as well type (ask sam make samson eiina).
48 The “e" is needed to signal Director that what follows is an abbreviation. '
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(ASK ?anyone MAKE UP AN UNINTERNED NAME) muaun
This behaves like the previous one only the name picked cannot be typed in. To talk to
the resulting actor you must either save the result of this message in a Lisp variable or

have some other actor store it (like with the previous (MAKE) message).

(ASK ?anyone CLONE)

An exact copy of the recipient in this message transmission is created and returned. The
only differences between the newly createa actor and the recipient is that the newly
created actor has no name or offspring. Of course, afterwards they may be told different
"facts and how to handle messages. This creates an identical twin (a clone) while the
"Make" messages create children. One big difference is that if you change a twin its
sibling is not affected but if you change a parent then its children potentially ‘wiill be
- affected.

(ASK ?anyone CLONE AND NAME IT ?name) cani ?
This is like the previous CLONE message except you provide a name for the newly

created clone.

{(ASK 7anyone MAKE SYNONYM 7name) ‘ "s ?_ .
This does not create é new actor. Instead the recipient is given an alias, anothéf'_haﬁié
which you can use to send it messages. Besides providing a way to give shorter n'aymﬁés, )
to any actor, this is often useful when the name is a list. For example, if you have an
‘actor-that is the comparison between A and B then you can define the comparison and
give it an equivalent name as follows,

(ask something make (comparison-of A B))
(ask (comparison-of A B) make synonym (comparison-of 8 A))
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 Subsection B Definng the Behavior of Actors

- (ASK 7anyone DO WHEN RECEIVING 7pattern 7’act1ons) N ; dwr ? x
Thls very important message expands the repertoire of an actor. The "%4" indicates that

acttons is to be the name of the part of the message that follows the "pattern”.

Suppose you want an actor named “Sally” to type an answer to questions of the
form “What is your <something-or-othe,r>"' Sally can be told how to handle such
messages as follows,

(ask Sally do when receiving (what is your ?name-of-some- variable)
35 if Sally receives the words "what is your” followed by one other word
35 that Jast word we will temporarily call "name-of-some- vanab!e
(type “(Oh its ,(ask myself recall your ,name-of -some- vartiable))))

it the comma had not preceded the variable “name-of-some-variable” then she would
always type the message "oh its name-of-some-variable” To test it out we again ask
Sally something, this time to respond to “good morning".

(ask sally what is your name)
3 to which she responds
OH ITS SALLY

The variable "myself" is always bound to the actor that originally received the message.
Using it in "(ask myself recall your ,name-of-some-variable)” is a good idea if you want
the method to work ok for Sally’s offspring as well as Sally herself. If you prefer you
can use the word "I" for "ask myself” and "my” for “your" so the expression could have

read “(I recall my ,name-of-some-variable)".

(ASK ?anyone DO ONCE WHEN RECEIVING ?pattern %actions) dowr 7 %
This is the same as the previous method, except that the method created by this
message self-destructs after its first use. In other words, the "actions” will only happen

the first time a message comes in matching "pattern”.
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Subsection C Printing

(ASK ?anyone PRINT YOUR ?variable) py 7
This types out the value of the "variable” of the recipient. It is especially useful when
planning as described later. For example, typing

(ask something print your clock) ;; will make

;SOMETHINGs value of CLOCK is DEFAULT-CLOCK 3+ appear on your console

(ASK ?anyone PRINT {or mehory variables script databasé all}) ps OR pm OR pvs OR pdb
This causes the script or the memory of the recipient to be printed. The script is a
description of each method of the actor. The memory is split up into "variables” &

“database"”.

(ASK 7anyone PRINT {or memory variables script database all1} ON FILE ?file-name)
This is like the previous message expect, in addition, you specify a file you want things
printed out on. So to print the entire definition of Sue to a file called "sue file" type

(ask Sue print al? on file (Sue file))

This will cause Sue to be printed out in a form that is designed to be easiest to read. It

cannot be read back into Director however. To do that use the following message.

. (ASK ?anyone SAVE %file-names)

This message causes the recipient to print itself out in Lisp onto the "file-names”. If any
of the files already exists the actor will add itself to the end. You can call the Lisp
compiler upon the file or just use this to save away an actor onto file. Using t'he, Lisp
function "Load" you can read the saved actors back into Director. If there are no
"file-names”, then it will return the Lisp form instead. If you want to save away Sally

and Sue for another time, for example, then type
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(ask sally save (flower file)) ;; put sally in the file called “flower file"
(ask sue save (flower file)) ;; put sue there too

If another time you want Sally and Sue just type (load (flower file)).

(ASK ?anyone HELP %pattern)

‘This causes the recipient to print out comments about the different messages it can

receive. If no pattern is given then all the different messages are described. If a

'pattern is given then only those that match the pattern are printed. So, to learn about

the messages that begin with the word "project” that a movie can handle just type

(ask movie help project X)

(ASK ?anyone RECALL METHOD FOR %sample-message) rmf %
This will return the first method that matches the "sample-message”. For example, if

you tell Sally,

~{ask sally do when receiving (bye Twhen) ‘(goodbye ,when)) ;; eg. {ask sally bye now)

(ask sally recall method for bye any-ol-time)
((BYE ?WHEN) “(GOODBYE yWHEN)) ;; is returned

(ASK ?anyone RECALL INTERNAL METHOD FOR %sample-message) o rimf %
Same as the previous message except the internal representation of the method is

returned. You might use this if you are curious, but should not need to otherwise.

{ASK ?anyone REMOVE METHOD FOR %sample-message)
This removes the first method to catch the "sample-message” in the recipient. It will not

affect its ancestors.
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Subsection D Tracing

(ASK 7anyone TRACE ?pattern %action)

If any message is sent to the recipient that matches the "pattern” then a comment that it
happened is printed and the “action”, if any, is taken. Finally the message is sent and a
comment is printed describing the results. |If you want to see all the messages for Sally
that begin with either grow or shrink, for example, you should ask her to trace by
typing!

(ask sal'ly trace ({or grow shrink} %))

or if you want a Lisp break point when she receives a message that recalls or changes
the value of the variable "size" then type

(ask sally trace ({or set recall} your size %) (break size-being-set-or-recalled))

If you want to trace every message that Sally receives you can type

(ask sally trace) ;; same as.(ask sally trace 7))

' (ASK ?anyone UNTRACE ?pattern)
This removes any traces that match the "pattern”. If no pattern is given (the message is
simply "untrace”) then all traces on that actor are removed. Actors that accomplish the
tracing are all offspring of an actor named Tracer. To remove all traces from everyqne’

just type "(ask tracer untrace all)"

1. Patterns in Director can be more complicated than described so far. A complete description of patterns
can be found in a fater section. The use of {} and "or” in the examples here mean that the pattern succeeds if
it matches either of the subpatterns. ' :
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Subsection E Memory Messages

Something (and since all actors are descendants of Something this is true of all
actors in Director) has two kinds of memories: variables and a relational data base. The
variables are known by the actor that was originally told to set them and indirectly by all

of its offspring and more distant descendants, The data base is good for remembering

-~ any list structure and recalling it later with a pattern.

Variables

Each Director variable is associated with a particular actor. The value and the

. name of a variable may be either an atom or a list. So for example, an actor may have a

variable called "(EYE COLOR)" and its value may be "BLUE",

(ASK ?anyone SET YOUR ?variable TO ?new-value) o sy ?7to?
A message matching this pattern causes the value o‘fv"v:ariabie" to be ysert’(or’chékt"n‘ged; io
"new-value”. If the actor had no such variable then one is created and its value set.
New-value is returned. For example, if Sally just got a hair cut you might want to
update her hair length as follows

(ask sally set your (hair length) to medium)

- which causes Sally’s variable “(hair length)" to be set to "medium".

(ASK ?anyone RECALL YOUR ?variable) : o ‘ ry ?
This message causes the value of "variable” to be returned. If there is no such variable
associated with the actor, then its parent will be asked the same question, and so on

until either a value is found or finally NIL is returned.! 'So, if you ask Sally

t. The returning of NIL for unbound variables is a very convenient defaut, especially for novices. This can
be overridden so that it becomes an error as discussed in the section on extending methods. The defauk
value is bound to "nothing-found" if you want to change it.
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(ask sally recall your {hair length))

the word "medium” will be returned.

(ASK ?anyone RECALL EACH OF YOUR ?variable-pattern) reoy ?
Variable names may be either atoms or lists. If it is a list then one can refer to it by
giving only part of its name and a "?" for each missing part. This message returns the list
of the values of all the variables that match the "variable-pattern”. An actor using lists
as variable names has the equivalent of property lists, nested property lists, and arrays.
For example,

(ask sally set your (color-of friend bob) to red)
(ask sally set your (color-of friend sam) to blue)
{ask sally set your {color-of stranger tom) to green)
3+ then asking

(ask sally recall each of your (color-of friend ?))
(BLUE RED) ;; is returned

+3 while asking

(a“sk sally recall each of your (color-of X))

(GREEN BLUE REDB) ;; returns all three

{ASK ?anyone INCREMENT YOUR ?variable BY ?amount) iy by ?
This causes the value of "variable” to be set to the sum of its old value plus "amount” in
the me‘ssage. If there is no such variable then one is created and set to the "amount”.
Unless both “amount” and the value of "variable” are numbers an error will result. The
new value of "variable” is returned. So if you type

(ask sam increment your size by 10)

and his old size was 20 then his size is now 30. If Sam did not know what to do when
he received a message asking him to increment a variable you could have told him by

typing
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(ask sam do when receiving (increment your ?variable by ?amount)
B {script (I set my ,variable to ;; "I" is just short-hand for "ask myself®
y(ptus {or (I recall my ,variable)
0) ;; In case it has no value yet
amount)}))

Notice that this message and the following ones do not change the value of a
variable of an ancestor. So if, when asking Sam to increment his size, he did not know
his size and had to ask his parent, then his parent’s size is not affected by this change.
Instead a variable for size is created for Sam and initialized to bekthe sum of his parent’s

size and "amount”.

(ASK ?anyone MULTIPLY YOUR ?variable BY ?factor) v myx ? by ?
This message differs from the previous one only in that the current value of the

"variable” is multiplied by the "factor”,

(ASK 7anyone ADD Znew-item T0 YOUR LIST OF 71ist-name) add ? tylo ?
If "new-itém" is already a member of the contents of "list-name” then nothing happens,
otherwise "new-item" is added to the 'value of "iiét-name". The new value of list-name
is returned. For example, typing

(ask sam set your neighbors to (fred bob sally))
(ask sam add sue to your 1ist of neighbors)

results in Sam’s variable "neighbors” to be set to (SUE FRED BOB SALLY).

(ASK ?anyone ADD ?new-item TO YOUR LIST OF ?7ist-name REGARDLESS) add 7 tylo 7 reg
This is the same as the previous "add .." message only the "new-item” is added even if

it is already a member of the value of "list-name”.
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(ASK ?anyone REMOVE ?01d-1tem FROM YOUR LIST OF ?11st-name) remove ? fylo ?
This removes all copies of "old-item” from the contents of "list-name". Shppose Bob
moves away from Sam, then you can ask Sam

(ask sam remove bob from your list of ne1ghbors)

(ASK ?anyone CONSIDER ?1ist-of-names SYNONYMS)

This makes eaéh of the names in the "list-of-names” equivalent for the recipient. All of
the variable manipulating messages described above will behave the same if any of the
names in the "list-of-names” are substituted for one another. One place where this is
used is in the "gradually .." message described later. For example, Performer considers
the names (MOVE FORWARD SPEED) and (MOVE BACK SPEED) to be synonyms. For ihe
deséendants of the recipient, the names will be considered equivalent by default, but if
they are expli’citty set they will be different. For example,

(ask performer consider ((move forward speed) (move back speed)) synonyms)
(ask performer set your (move back speed) to 25)

(ask performer recall your (move forward speed))

25 ;; is returned

(ask performer make lobster) ;; make an offspring

(ask lobster set your (move forward speed) to 5)

(ask lobster recall your (move back speed))

25 ;5 ; this is inherited from performer

i3 this would not have been the case if lobster itself had the synonyms.
(ask lobster set your (move back speed) to 20)

(ask lobster recall your (move forward speed))

5 ;; still the same o i

(ASK ?anyone CONSIDER ?names‘COHPONENTS OF ?variable)
Sometimes you have a variable that is made up of "smaller" variables. At times you
want to refer to the whole and at other times the parts. The parts/whole convention

described in a later section is too expensive for such a simple use, especially since
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Director uses Lisp’s lists rather than have actors for them.! The turtle state of a
performer, for example, is a list of its horizontal coordinate, its vertical coordinate, and
its heading. The use of this message permits the following,

(ask Joe consider (x Y heading) components of turtle-state)
(ask joe set your turtle-state to (10 20 90))

(ask joe recall your y)

20 ;; is returned

(ask joe set your heading to 45)

(ask joe recall your turtle-state)

(10 20 45) ;: is returned

(ASK ?anyone CONSTRAIN YOUR ?variabie TO EQUAL ?function OF ?variable-2 OF ?other)
This method is for creating and maintaining a very limited class of constraints. It makes
sure that if the "other’s” value of the "variable-2" changes that the recipient’s "variable”
will become the "function” of thg new value of the "variable-2". "Function” can be any
Lisp function of one argument. Suppose that regardiess of what happens, you want Saily
to be twice as ta" as Sam is wide. You could then type, |

(ask sally constrain your height to equal double of width of sam)
(ask sam constrain your width to equal half of height of sally)

Where half and double are Lisp functions which could have been defined as follows,

(defun double (x)
(plus x x))

(defun half (x)
(times x .5))

Anticipated are new methods for describing more complex constraints. Use the "help”

message to find out about them,

L. This is ver)} Important for efficiency, given the design of Director. Efficient lists implemented as actors
are possible, however as demonstrated by Act L.
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(ASK ?anyoné LIST ALL .YOUR VARTABLE NAMES) layvn
Returns a list of the names of all the variables known directly by the recipient. Special
variables like descendants and siblings are not included since they are computed when

asked for and are not known otherwise.

(ASK ?anyone FORGET YOUR ?variable) fy 7
’f If the recipient has such a "variable”, it is forgotten (the actor is restored to the same
: condition as before the variable was created). Otherwise NIL is returned. This does not
affect any variables whose value is inherited from an ancestor. "Forgetting” differs from
setting the same variable to NIL in that it restores inheritance of the value from its

ancestors.

(ASK ?anyone FD_RGEIT EVERYTHING) fe
Restores the recipient’s memory to its time of birth. Methods and the data base.

éssociated' with the actor are not affected.
" Relational Data Bases

Associated with each actor (since each actor is an offspring of Something) is a
powerful data base. The patterns used to retrieve items from the data base have the
same forrh as the message patterns, e.g. " is used for anything in that position, "4" for
anything taking up any number of positions. A complete description of patterns can be

, found in a later section.
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(ASK ?anyone MEMORIZE ?item) mem ?
Any'list structure may be remembered. Once an actor is told to memorize an item it will
never forget it unless you ask it to "forget” as described later. Some examples of
memorizing are

(ask sally memorize {color sky blue))
(ask sally memorize (color ocean blue))

It doesn’t do any good to have Sally remember these things if we can’t ask her about

them so we have the following messages.

(ASK ?anyone RECALL AN ITEM MATCHING ?pattern THEN Xactions) raim ? then X
If an actor has memorized at least one thing that matches the "pattern™ it will do
whatever the "actions" are. So, if you type

(ask sally recall an item matching (color 7thing blue)
then {(type (i know that the »thing is blue))) ;; to which she responds
1 KNOV THAT THE OCEAN IS BLUE

If you hadn’t told her about any blue things then she would have answered "NIL".

(ASK 7anyone RECALL EACH TTEM MATCHING ?pattern THEN %actions) ~ reim 7 then %
The previous message isn’t too helpful if the actor in question Has remembered several
items that match the pattern since you never know which item the .actor will base its
answers on. Director once had (and it could come back by popular demand) a series of
messages for creating a stream of answers to questions that could be interrogated for
its answers one by one. Instead of that, this simpler, less general, "recall each item
matching ..." message is provided. It does the "actions" for each item which matches the
"pattern”. If we changed the previous example to recall "each” item rather than “an"
item we would get,

(ask sally recall each item matching (color ?thing biue)
then (type “(1 know that the ,thing is blue)))

I KNOW THAT THE OCEAN IS BLUE

I KNOW THAT THE SKY IS BLUE
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(ASK 7anyone COLLECT ITEMS MEMORIZED MATCHING ?pattern) cimm ?

This message collects into a list and returns all the forms that were memorized and

match the "pattern”. So if you type

"(ask sally.collect items memorized matching (color ? blue))

((COLOR OCEAN BLUE) (COLOR SKY BLUE)) ;; is returned

It is defined in terms of the previous message as follows

(ask something do when receiving (collect items memorized matching 7pattern)
(I recall each item matching {and ?the-item ,pattern}
;3 recall items matching the “pattern” and return them
then the-item))

This works because "recall each item matching" returns a list of the values returned by

the "a;tions" taken on each matching item.

{ASK ?anyone FORGET ITEMS MATCHING ?pattern) ' fim ?
This removes any previously memorized item matching the "pattern” _fr'om the data base
of an actor. If you want Sally to forget about all the blue things she knows about you
could type: '

(ask sally forget items matching (color 7 blue))

To have her forget everything (except her name, parent and methods) type

(ask sally forget items matching ?) ;; forget every data base item
{ask sally forget everything) ;; forget all your variables
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Subsection F Plans and Pseudo-Parallelism

Normally when an. actor recewes a message it responds as quickly as possible. In
order to have several actors behave at what seems to be the same time this is not
desirable. Director solves this by providing a "tick” mechanism which i is briefly described
below and in greater detail in [Kahn 1978].

(ASK ?anyone PLAN NEXT %action) pn %

This indicates that the message called "action” should be sent after the next tick.

(ASK ?7anyone PLAN AFTER ?number ?units %action) pa? ?‘x
This requests that the message called "action” be sent after "number” "units" The units
can be either ticks, seconds, or frames and are described below in the section on
"clocks". Suppose you want to have Sally grow and after that to go forward and st the
‘same time you want Sam to go forward on the next tsck and to grow on the tick after
that. You could type

(ask sally plan next grow 100)

(ask sally plan after 2 frames move forward 50),
(ask sam plan next move forward 50)

(ask sam plan after 2 frames grow 100)

Once all the plans have been made you can get an actor to do all that its planned
for ‘the next tick by askihg it to (TICK). If you ask an actor named Default-clock to
(TICK) then all the actors with anything planned will be sent a tick. If you ask
Default-clock to "(RUN FoR 3 TICKS)" then 3 ticks of action will happen. |
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(ASK ?anyone PLAN AFTER RECEIVING ?event-pattern TO ?message-form) parx ? to ?
If the recipient of this message type receives a message matching the "event-pattern”
then the "message-form" is evaluated (in the environment extended by matching the
event-pattern with the event message) and sent to the recipient. Suppose you want
Sam to melt after colliding with a sun otherwise to explode. Then you could enter:

(ask sam plan after receiving (colliding with ?other) to
;3 il a message matches (colliding with ?)
(script (cond ((ask ,other are you a sun) ;; if the other is a sun
7(melt)) ;; then the message to be sent is melt
(t “(explode))))) ;; otherwise it is explode

(ASK 7anyone TICK)

fhié message causes those messages planned for the next tick to be sent. These <o

kept on the variable called "things-to-do-next”. Conceptually the transmissions planned

for a tick happen in parallel as does the broadcasting of tick messages by either a movié
or a clock. A tick is a quantum of time during which you should not care about the order
of transmission of any planned messages. See the sections describing Movie and Clock

below for more details.

(ASK ?anyone GRADUALLY %action ?amount) grad % ?
This method is the most crucial one for animation and simulation. Changes take place
" over time, and this method lets you express those changes that should take place
gradually not abrupﬂy. For example, to ask Sally to gradually increase her age type the
following,

(ask Sally gradually increment your age by 20)

But what could this mean, unless you say how fast she should age? "Gradually” messages

assume that the speed with which they do things is named (!,action speed), or in this
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¢ése (increment your age by speed).! The speed is in units per second, so if we wanted

Sally to age 2 uits per second then we should type,

(askk Sally set youf (ihcrement your age by speed) to 2)

When Sally gets a (TICK) message, she will do the following (assuming that, as is the

default, there is one tick per second).

(ask Sally increment your age by 2) ;; Age by the speed
(ask Sally plan next gradually increment your age by 18) ;; plan next to age what's left

The scheme for "gradually" type messages works wéll when the change is additive,
but what if its multiplicative? There are currently two kinds of "speeds” that an action
can have: additive or multiplicative. The additive one is given by the list (App
?some-number) (ot for convenience just a number) and the multiplicative one is given by
(MULTIPLY-BY ?some-number). Suppose you wanted Sally to double in size, growing’ 5%
per second, then you could type in the following,

(ask sally set your (multiply your size by speed) to (multiply-by 1.05))
»+ grow at 5% per second
(ask sally gradually multiply your size by 2.0)

What if the action requires more than one number to control? How does this work
then? Suppose you want Sally to gradually change her position by moving right 200 units
and up 150. You could type

(ask sally ptan next graduvally move right 200)
(ask sally plan next gradually move up 150)

Alternatively if you think more in terms of "positions” (lists of horizontal and vertical
coordinates), you could try the following.

(ask .sally plan next gradually increment your position by (200 150))

The problem is how is Sally going to know enough to break it apart to add the list

1. The ™" in the description of the speed name means that the list that follows should be inserted into the Jist
without its parenthesises. T his applies generally to messages and quoted lists in Director. For example, typing
“(let ((m *(print memory))) (ask sally 'm))" is exactly the same as typing “(ask sally print memory)”.
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component—wise.' The solution is to tell Sally as follows

(ask Sally set your {(components of increment your position by)
to ((increment your xcor by) (increment your ycor by)))

In other words the variable (COMPONENTS OF !,action) is recalled and it should contain a

list of actions which accomplish the original action.

(:ASK ?anyone GRADUALLY SET YOUR ?variable to ?value) gsy Tto ?
The previous "gradually” message covers a large number of cases, but it is base upon
the assumption that the action is the sort that you can do a little on a tick, and ‘plan to
do what’s left over on the next tick until nothing is left over. If you want to gradually
set the value of variable, howe\}er, there no clear notion of what “"what’s left v 5"
‘means. What this method does is do a little (as deiermined by a speed associated with
the actor) and then if that did not set the "variable" to the "value” it plans to try again
on the next tick. The speed is called "(,variable speed)”. For example,

{(ask sally set your (size speed) to 50) ;; maximum change in size is 50 units per second
(ask sally gradually set your size to 300) ;; gradually go to a size of 300

This is equivalent to the following only if nothing else is happening concurrently to

change Sally’s size.

(ask sally set your (increment your size by speed) to 50);; increment at 50 unitsl]second

{ask sally gradually
increment your size by ,(difference 300 (ask sally recall your size)))

The first one will not give up until Sally’s speed is 300, while the second way will stop

when its added the difference of her current speed and 300.

1. If Director were thoroughly based upon actors, this would not be a problem because the actors
representing lists of numbers would know how to add component-wise.
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This message also works for variables whose value is a list, so long as the actor in
question has a variable that indicates what the components of the variable are called.
For example, if Sally’s position is a list of her xcor and ycor then we could have her
gradually move to the center as follows,

(ask sally set your (components of position) to (xcor ycor))
(ask sally gradually set your position to (0 0))

Interesting behavior results if concurrent with this you have Sally gradually moving

around.

(ASK ?anyone DO AT SPEED ?speed ¥action 7amount) k - das’ T ?
The "gradually” methods described above look up the current value of the speed of the
actlon on every tick. This enables you to change the speed as an actor s behavmg for
more complex behavior (such as acceleration). The dlsadvantages are that it is awkward
to set and reset an actor’s speed and occasnonally an actor may be doing the same thmg
at different speeds (for example, the wind may be making the actor slowly turn back and

forth while the actor is turning quickly chasing someone else). This method provides a

-means of overcoming these difficulties, at the price of being unable to change the speed.

To ask Sally to move back 150 units at a speed of 20 units per second, just type

(ask Sally do at speed 20 move back 150)

(ASK ?anyone DO IN ?number Ttime-units %action ?amount) doin? 7%?

This is like the previous method, where the speed is computed given the “"amount™ and

. the "number” of "time-units". The previous example, could equivalently been expressed

as

(ask sally do in 30 frames move back 150)

assuming that there are 4 frames to a second (see the section on clocks).
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(ASK ?anyone ASK ?another ¥message)
This one may seem kind of silly. Why ask someone to ask someone else something, like

(ask sally ask joe print memory)

Why not just ask them yourself? This is handy mostly when you are planning or
repeating something because they, by convention, deal with messages that are to be sent
to the planner at some later time. The planner is typically the same actor as the one
who executes blans but occasionally this is not the case. For instance, suppose there is
an actor that is being influenced by two others. You anticipate that when one wins out
the other’s inflqence will disappear.

(ask fear ;; fear keeps trying to keep Marty at home
gradually ask marty set your position to (0 0))
(ask desire ;; while *desire” tries to have him move forward 500 steps
~ gradually ask marty move forward 500)
{ask marty ;; After 5 seconds Marty will overcome his fear
plan after 5 seconds ask fear stop everything)

If "after 5 seconds Marty has neither traveled the 500 steps nor returned back home,
then “fear” will be stopped and Marty will travel whatever is left of his 500 step

journey.

(ASK ?anyone SEQUENTIALLY %actions) ' - se %
This does each of the "actions” one at a time waiting for them to finish if they are
"gradually” or "plan” type messages. For exarﬁple, to have Sally appear, slowly grow,
wait a‘ second and then fall over, type

(ask sally sequentially
(show)
{(plan next gradually grow 300) _
~ (plan after 1 second gradually turn right 90))
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(ASK ?anyone CONCURRENTLY %actions) ; . co %

This does each of the actions simultaneously.

The differences between the "concurrently” and the "sequentially” type messages
are very important (unless all the actions are instantaneous, i.e. take less than 1 tick). If
you are confused about the difference between them look at the difference between
results of the previous example and the folloWing one in the following figures

(ask sally concurrently ;; this is the only difference with the previous example
(show)
(plan next gradually grow 300)
{plan after 1 second gradually turn right 90))

Figure 3 Sally Doing It Sequentially

I B I B

Figure 4 Sally Doing It Concurrently

Of course, the “"concurrently” and "sequentially” messages can be included within each
- other. One of the test programs used to see if Director is working okay uses the “face”

example included in the parts/whole section below. The entire action of the movie is
described as follows.
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(ask looking-around sequentially ;; look around by doing the following

(ask looking-left ask eyes plan next gradually move left $0) ;; look left

(plan after 1 second ask Yooking-right concurrently ;; a second after that
;3 look right by doing the following concurrently
(ask eyas gradually move right 100)
(ask nose plan after .5 seconds gradually move right 40)
(ask mouth plan after .5 seconds gradually move right 50))

(ask the-surprise sequentially ;; when the above is finished do the following
(ask scenery hide) ;; have the flower disappear
(ask mouth plan next set your angle to 10)})) ;; become a circle {its surprised)
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Figure 5 A Face Looking Around
The actors called “looking-around”, "looking-left", "looking-right”, and "the-surprise” are

activities because they ask others to do things rather than dc them themselves. This A
provides both structure and hooks to alter the events within an actmty as a unit (for
example, postpone their begmnmg) An actor that is planning to do somethmg itself is its

own actmty
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(ASK‘?anyone REPEAT message FOREVER)
This sends the message to the target immediately and on every subsequent tick. It is
defined as follows:

(ask something ;; every actor Inherits this behavior from Something
do when receiving (repeat ?message forever)
(script (I sequentially ,message ;; send the message to yourself
plan next repeat ,message forever)))
;3 then plan next to repeat the same thing again

(ASK ?anyone REPEAT ?message ?number TIMES)

If "number"” is greater than 0, this method causes the "message” to be sent immediately.
One tick after the "message” is finished the original message is sent again except that
';number" is decremented by 1. If you wanted Sue to turn around every 5 seconds ol
do this 10 times just typé

(ask sue repeat (plan after 5 seconds turn right 180) 10 times)

Suppose we want a "beacon” to blink on and off 10 times. We could enter the
following ’

(ask beacon repeat (sequentially (show) (plan noxt hide)) 10 times)

(ASK 7anyone STOP EVERYTHING)
This will stop all the things that the recipient is doing, but it will not take affect until the
beginning of the next tick. Since you have no control aver the order of events within a

tick this is not really a new restriction.
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- {ASK ?anyone WAIT FOR %signal) ‘ wf‘ %
This is like the "stop everything” message above, except that the things that the
recipieht has planned to do are stored away and can be resumed by sending it the
"signal”. So to have Sally move in a circle, slowly growing, and to temporarily stop when
h_‘er size is greater than 300 units type the following. |

(ask sally + 3 first time size is set 10 a value over 300
do once when receiving (set your size to {greaterp ?size 300})
(continue-asking) ;; send the message on along to really set the size
7+ see the section on extending methods
(ask sally wait for go ahead) 3+ signal will be "go ahead”
‘size)

(ask sally concurrently i3 now have sally grow and move in a circle
(gradually turn right 360)
(gradually move forward 500)
(gradually grow by factor 4))

You can send Sally the (6o AHEAD) message any time and she will finish growing and

moving.
Subsection G Broadcasting Messages

Sometimes you want to have an actor send messages on along to others it knows

about. The following messages are to help you do that,

(ASK ?anyone ASK YOUR 7variable %message) ay 7%
This asks the recipient to recall its "variable” and then send to it the "message”. For
example,

(ask sally set your friend to bob)
(ask sally ask your friend recall your address)

Any message can optionally begin with the word "to" so if you prefer the last
transmission is equivalent to

(ask sally ask your friend to recall your offspring)
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Hopefu'lly Sally has more than one friend. In that case you can create a different

variable (“ffiends“ is a good name) and use the next message.

(ASK ?anyone ASK EACH OF YOUR ?variable %message) aeoy ? %
This sends out the "message” to each of the members of the list that is the value of
“variable”. Nothing happens if there is no value for "variable”. As an example,

{ask sally set your friends to (bob ted carol alice))
{(ask sally ask each of your friends print variables)

There are a few special variables that are useful together with this message.
They are "descendants”, "childless-descendants”, "siblings” and "offspring”. Offspring are
all the _chlldren of an actor, siblings are all the offspringbof an actor’s parents exc-pt
itself, descendants are all the children and their children’s children and so on, and
chi!dlessédescendants are those descendants that themselves have no children. If you
wanted all the actors in existence (except Something and those actors created without
names known to the reader) to print, for example, you just type ‘

(ask something ask each of your descendants to print) ;; the "to” is optional

{ASK ?anyone BROADCAST TO VYOUR ?others-name %message) bty ? %
This method causes the "message” to be sent to the recipient and the entire messaée
(including the "broadcast to your..") is sent to each of the recipient’s "others-name". Wé
can use this, ihstead of "ask each of your descendants” described above, as follows,

(ask something broadcast to your offspring print)

The operational difference between this and the previous transmission is that this one

will also send the print message to Somethihg.
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(ASK 7anyone DO OR BROADCAST TO YOUR 7others-name ¥message) | dobty ? %
This method differs from the previous one in that it will send "message” only to those
actors whose "others-name" is empty (i.e, value is NIL). The following two transmissions
are equivalent (except for the order of broadcasting).

(ask something ask each of your childless-descendants to print memory )
(ask something do or broadcast to your offspring to print memory)

(ASK ?anyone KEEP DOING UNTIL ?predicate %message) kdu ? %
The recipient of this message keeps sending the "message” to itself until it results in
something that satisfies the "predicate”. Suppose you want Sam to grow 10 until he is
at least 200 big. Then you could type

‘ (ask sam keep doing until (lambda (result) (> result 200.0)) grow 10)

Subsection H Variables that are Special to All Actors

| There are a few variables that are treated specially. Among them are "siblings”,
"descendants"”, and "childless-descendants”. There are methéds for recalling them which
generate the values on need. They return either the relatives indicated or NIL if there
are none. A few variables are "private”, i.e. do not follow the usual convention about
being inheritable by the offsprihg. "Offspring",’ "name”, “synonyms", “parts”, and

"things-to-do-next" are the common ones.

name /s a variable whose default value is <name used when made>

Only actors with names can be compiled or saved on file.

p_@_t is a variable whose default value is (the maker of recipient

Every actor has as its parent the actor that created it. It essential to have a parent to
accept any message or recsll any variable or database item that one does not know
explicitly. You can change your mind as to who a parent of an actor is and reset it using

"set your parent to ..",
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of fspring /s a variable whose defsult value is ni1 and is abbreviated as offs
Every actor knows the names of all its offspring (except those without names or that are

" not interned). This variable is not inherited of course.

private-variable-names is a variable whose default value is {offspring
things-to-do-next name ‘synonyms wﬁole parts) and is abbreviate_d as pvn

This variable contains the list of names of variables that should be considered private, 4
i.e. their value should not be inherited from the actor’s ancestors. This variable is only

inspected the first time a variable is set.

siblings is a variable whose default value is ni1 and is abbreviated as sib

An actor’s siblings are all of its parent’s offspring except itself.

descendants /s & variable whose default value is ni1 and is abbreviated as des

This is a list of the actor’s offspring and their offspring and so on.

 childless-descendants /s a variable whose default value is ni1 and is abbreviated as
cd '

This is a list of all the actor’s descendants that themselves have no_qffspring.

clock /s a variable whose default value is default-clock
The variable "clock” is used in planning and its value should always be a descendant of

Clock. The clock is informed whenever an actor has anything planned.

things-to-do-next is a variable whose default value is ni1 and is abbreviated as tidn
This variable contains the list of things that its owner plans to do upon receipt of the
next tick message. You need not worry about this variable unless you want to write

your own planning primitives.

default-speed is a variable whose default value is 100.0 and is abbreviated as ds

The "gradually” type messages described above interrogates the actor in question for

the speed of the action involved. If one is not provided, then a warning is typed and the
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; speed is assumed to be synonymous with the "default-speed”. All speeds are in the

" units of the action per sécond.

- Subsection | How to Extend the Behavior of a Method

Using the "do when receiving .." messages you can extend the behavior of an

~actor by adding new methods. To extend the behavior of an existing method, you could

just go and edit the text of the method and then evaluate it (with the Lisp variable

' "sreplace-old-methods” being non-nil). But what if the method is a system primitive?

What if the extension only makes sense to only a subset of the descendants of the

"owner” of the message? What if you want your programs to temporarily or permanently

. modify the behavior of an actor? "Suppose the extension is only a special case of the

currently existing method, how would you extend the method then?

Over the history of Director, | have struggled with various "solutions" to this
problem. At times there were transmission primitives for sending a message to someone
but to start searching for methods somewhere other than the recipient. This was neither
general enough nor very modular. Another idea was to have a new type of method that
was invisible to itself when running, so the search for methods would skip it and find the
"older” methods of its ancestors. One problem with this was that sometimes the body of
this method would cause messages to be sent to the recipient’s descendants to do things
and they would not see this method. Another problem is that it made those methods
non-recursive, since by definition if they invoked themselves they would be skipped.
The most | recent experiment was with a primitive called ASK-0LD which made the
currently running method temporarily invisible only to the recipient of the message. This
scheme was expensive to implement and | found it difficult to explain to people what it
did. -
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The current Director primitive for extending methods is called CONTINUE-ASKING. It

simply continues the search for an applicable method immediately following the current

_one. You can optionally change who the recipient is and more usefully what the message
was. The three forms of this macro are: |

(continue-asking) ;; doesn't change "mysell’
(continue-asking joe) ;; changes “myself
{continue-asking myself set your size to ,(times old-size .5)) ;; change the message

For example, suppose Jack does not want anyone to know that hé is older than
39, but wants to be honest until he gets that old. Here are two ways this could be done
using "continue-asking".

{ask Jack do when receiving {set your age to ?number) ;;; when Jack is told his age
{script (continue-asking myself set your age to ,{(min 39 number))))
; Another way to do this is

(ask Jack do when receiving (recall your age) ;; Jack will lie when asked for his age and
{min 39 (continue-asking)));; answer with minimum of 39 and real age

Jack will e?en lie when asked to print.

There are many less frivolous uses of "continue-asking”. It can be used as the
basic building block of database demons (i.e. actions that should happen if an item is
added, removed or needed from an actor’s data base). It is important in implementing
constraints and for helping the Stage maintain images of the latest appearances of tﬁe
actors. It is also used in implementing many of the more sophisticated "planning” type

messages.

In the first version of this report, there was a long section on “"demons”, actions
that place when a variable is set or recalled, or an item added or taken from thé data
base. One problem that demons were used for was generating "virtual” items. We had a
"table" with blocks on it and we wanted to be able to say that blocks were left of one
another and for it to know which blocks were right of which others. We can use

"continue-asking” instead of demons as follows,
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(ask table do when receiving (recall al1 possible items matching (right-of ? 7))
“(union ;; combine the two lists, eliminating copies
2 (I recall each item matching ;; then look for items that says that
(left-of ?block-2 ?block-1) i3 the second block is left-of the first one
then “(right-of ,block-1 ,block-2)) ;; if found pretend right-of item was there
{continue-asking))) ;; and also include those that would have normally been found
~ To test this out type the following,

(ask table memorize (left-of (green block) (red cube))) 3+ tell it something

(ask table recall an item matching (right-of (7color cube) ?some-other-block)
then (type “(the ,some-other-block is right of the »color cube)))

i3 after asking it for something that is right of a cube it responds

THE (GREEN BLOCK) IS RIGHT OF THE RED CUBE

The unpleasantness of this scheme is that one needs to know about the message
"recall all possible items matching .." which Director always uses to get items which
might match the pattern. If this bothers you just define a method for defining demons as
follows,

(ask something do when receiving (if-needed ?pattern ?virtual-items)
(script (I do when receiving (recall all possible items matching ,pattern)
' (union ,virtual-items {continue-asking)))))

and then type

(ask table if-needed (right-of ? ?) ;
(I recall each item matching (left-of ?block-2 fblock-1)
then “(right-of ,block-1 ,block-2)))

If you haven’t gueésed. making demons that go off when an item is added is quite
easy. To make Table add a "right-of" item when it learns of a "left-of" item just type,

(ask table 'do when receiving (memorize (left-of ?block-1 tblock-2))
(script ,
(I memorize (right-of ,block-2 ,block-1) ;; add the “right-of" item
if its not already) ;; memorize only if you don't know this already
(continue-asking))) .

The second transmission must be an' “continue-asking” sort, otherwise the method
would recurse infinitely. The first one has the suffix "if its not already”™ added in case
you added the corresponding “demon” for memorizing “right-of" items, so the two

methods do not invoke each other forever. It could be defined as follows, (ask something
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do when receiving (memorize %item if its not already)
{script
(cond ((not (I recall an item matching ,item then t))

(| memorize ,item)))))

"Continue-asking" is used for many different things. One last example of its use
follows. The problem is to draw "snowflake” or Kach curves [Mandelbrot 1977]. We

want to replace each line with four line segments as follows.

-Figure 6 Moving Forward (Level 0)

Figure 7 Moving Forward (Level 1)

Figure 8 Moving Forward (Level 2)

Then we want to do that all over again any number of times. We can do this by
repeatedly giving a performer a method for moving forward that uses the previous such

method for drawing its lines. A program for this follows.
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- (ask performer make snowflake) ;; define a performer named “snowflake"

(ask snowflake do when receiving (snow ?size) snow
33 when asked to move in snowflake curve
(script (repeat 3 ;; repeat the following three times
(I move forward ,size) ;; move forward whatever size called for
(I turn right 120}))) ;; turn right 120 degrees

(ask snowflake do when receiving (add ?level levels) ;; to add more levels of “recursion”
(repeat level ;; repeat the number of levels the following
(I do when receiving (move forward ?distance)
;3 add methods for moving forward a distance
(script :
(let ((distance (quotient distance 3.0))) ;; divide the distance by 3
(continue-asking myself move forward ,distance) ;; go forward the older way
(I turn left 60)
(continue-asking: myself move forward ,distance)
(I turn right 120)
(continue-asking myself move forward ,distance)
{I turn left 60)
(continue-asking myself move forward ,distance))))))

Now to test it out we type the following,

(ask snowflake make joe)

(ask joe pen down) ;; so he leaves a trajl as he moves

(ask joe add 5 levels) ;; make it a fifth degree snowflake
(ask joe snow 400) ;; draw it (see the result in following figure)
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Figure 9 Joe Drawing a Fifth Degree Snowflake
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- Section IV What Every Performer Can Do

Performer is the top-level actor for those that can be seen on a display screen.
Performers are much like Logo turtles only much more versatile. They handle messages
to move, turn, show, hide, grow, change colors, and so on. A subset of its methods are

compatible with the TV turtle.
Subsection A Creation and Appearance

Performers are created usihg the "Make"” message described above. In order to
iﬁform this hewiy created actor of its appearance it must be told the name of a Lisp
program (made up of turtle commands) that will draw it on a display. You can do this
explicitly using the "when drawing use" message described below or let Director do it
for you using the "when drawing do” message below. Alternatively you can build up the
appearance as a combination of simpler parts. Or you can use the "instant turtle” to
procedurally "sketch” its appearance as described later. If the desired appearance is not
.easuly describable by turtle commands (such as text) then you can supply methods for
the reception of display and erase messages. This is described in the section on

"non-standard” appearances.

(ASK ?a-performer WHEN DRAWING DO %messages) wdd %
Performers can be asked to move around. As you'll see later they can put down a "pen”
so that they leave trails as they move. You can turn these trails into appearances of
performers using this message. The trail that would have resulted from doing the
"messages” becomes the appearance of the recipient. This method sometimes takes a
while, but the appearance is remembered so that as the performer moves, turns and

grows none of the "messages" need be sent.
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Suppose you want to define squares this way, then you could type the following

(ask performer make square)
(ask square when drawing do
(repeat (sequentially (move forward 100) ;; repeat 4 times moving forward and
(turn right 90)) ;; turning right 90 degrees
4 times)) ‘
(ask square show) ;; to see if it worked

You needn’t worry about the performer’s pen unless you want "white" space in the
appearance. If you wanted to define "half squares” whose sides are only half drawn then
you could do it as follows

(define half-square performer ;; make a performer named “half-square”
73 and send it the following message
(when drawing do
(repeat (sequentially (pen up) ;; the first part will be invisible
{move forward 100)
(pen down) ;; the rest will be seen
(move forward 100)
{turn right 90))
4 times)))

If you remember how we got a performer named "Joe" to leave a "snowflake” trail
then yéu should be able to guess how we could make Joe look like a snowﬂéke.
Suppose'as part of a movie you want Joe to lock like a snowflake as he draws one wkith
one more level of detail.

~ {ask Jjoe when drawing do (snow 100)) ;; look like a snowflake

(ask Jjoe show) ;; show yourself

(ask joe add 1 levels) ;; add another level of detail (another "move forward” method)
(ask joe snow 400) ;; draw a that flake :

(ASK ?a-performer WHEN DRAWING USE ?draw-procedure OF %draw-args) ] wdu ? of %
This informs "a-performer” that it should draw itself using the "draw-procedure”. The
procedure may consist of Forward, Back, Right and Left commands but coordinate

commands (for example, Setxy) should be avoided. Instead of Penup and Pendown usé
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Thingup and Thingdown.! "D‘raw-args"" is alist of variables that are "Recall-able", i.e.
N \;kéfiawblés R_rkvdwnm(‘éiwthﬁyer”dire‘(:lt:lkyp 6r through ihﬁeritance) by the actor in question. If these
variables are changed and the Performer is currently being displayed, then its
appéérance will be updated. For example, to define a Performer that can appear as any
polygon we could type

(define poly performer
(set your angle to 60) ;; set the default to be a hexagon
(when drawing use draw-poly of size angle))

The macro "Define” is just short hand for:

(ask performer make poly)
(ask poly set your angle to 60)
(ask poly when drawing use draw-poly of size angle)

Draw-poly in Lisp could be defined as follows:

(defun draw-poly (distance turnage) .
(do ((number-of-sides (sides-in-poly turnage) (1- number-of-sides)))
. ((= number-of-sides 0) no-value);; if back to the original heading, then return
(forward distance) ;; each time go forward the distance
(right turnage))) ;; and turn right the turnage

(defun sides-in-poly (turnage)
i3 the number of sides in a poly is 360 divided by the gcd of the angle and 360
(// 360 (gcd (round (float turnage)) 360)))

When giving the arguments to the drawing procedure one may put any of the arguments
in parenthesis. This declares to Director that the argument does not change the shape of
the performer. For example, if the drawing procedure has an argument for the texture
then it should be in parenthesis otherwise whenever the texture is changed Director will
go through much more work than necessary. If "draw-poly" had a third argument for the
texture then you should type, "WHEN DRAWING USE DRAW-POLY OF SIZE ANGLE (TEXTURE)".
Also, the variable "size" is treated specially by the system (in the definition of grow and

shrink for example) so you should use that name when that is what you mean. All sizes

I. Thingup and Thingdown work even if the pen is an eraser or an "xor” pen.
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are standardized so that any performer of size, say, 100 will just fit inside a circle of
radius 100 units. You needn’t worry about centering the appearance, Director will do it

for you. This can be overridden as described under the "fuse your parts” method.

Currently the initial environment includes this definition of Poly and two other

performers, Racket and Flower.
Subsection B Showing and Hiding

{(ASK ?a-performer SHOW)
"A-performer” is shown if not already being shown. If it is made of parts each of its

"visible-parts" are asked to display.

{ASK ?a-performer HIDE)
"A-performer™ is hidden if currently visible. If it is made of parts then each of its

“visible-parts” are asked to erase.

(ASK ?a-performer SHOW ALL)

"A-performer” asks each of its "parts” to show and notes that it is now visible.

(ASK ?a-performer HIDE ALL)

Asks all of its parts to hide and notes that it not visible.
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‘Subsection C Moving and Turning

Just as in Logo there are at least two ways of changing a Performer’s'posi-tioh' or
orientation. You can ask it to go forward or to turn, or you can ask it to change either
its’ "xcor" (the horizontal coordinate), "ycor" (the vertical coqrdinate), “heading”,

"position” (the xcor and ycor) or "state" (the xcor, ycor and heading).

There are two ways of moving or turning. A performer can either disappear ffom
where it is and appear in its new position or orientation. Another way of moving or
turning is to do it gradually. "Gradually" messages to performers do not cause them to
move slowly when the message is received. Instead they move only a tick’s worth (see
previous discussion of “gradually”) and plan to do the rest. In order to see the
performer move gradually one should ask an instance of Clock or Movie to run for a

number of ticks (see below).

Moving
(ASK ?a-performer MOVE FORWARD ?amount) mf ?
{ASK ?a-performer MOVE BACK ?amount) ‘ v mb ?

Every performer has a "heading”. If one receives either of these messages it will hide
(if currently visible), move forward or back "amount” in the direction of its heading, and
then reappear. So typing (ask sally move forward 200) causes Sally to disappear and
then to appear 200 steps forward from the way she was facing (her heading). By
default, there are 1000 steps from the top to the bottom of your screen. if she was

“hidden to start with she will move but you won't see her.
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(ASK ?a-performer MOVE RIGHT ?amount) ml ?
(ASK 7a-performer MOVE LEFT ?amount) e ?
These messages cause the recipient to move to your left or right the "amount™. They

ignore the recipient’s heading.

(ASK ?a-performer MOVE UP 7amount) i mu ?
" (ASK ?a-performer MOVE DOWN ?amount) . md 7

These make' the recipient move up or down the "amount”.
Turning

(ASK ?a-performer TURN RIGHT ?degrees) gr 2
This message causes "a-performer” to add "degrees" to its current heading. If it is

visible, it will hide first, turn, and then reappear.

(ASK ?a-ﬁerformer TURN LEFT ?degrees) t1 ?
This is the same as the previous message except that it subtracts "degrees™ from the

" current heading.
Coordinate Messages

‘Gometimes you might want to tell a performer where to go by giving the distance
up or down and the distance left or right from the center of the screen. The up vand
down part is called the y coordinate and the left and right part is the x coordinate. You
can change the position of a performer by setting it directly using the normal "set your
?variable to ?value” message. The variable "position” is a Iis.t of the horizontal and

vertical coordinates. . "State” also contains the performer’s "heading”. The messages are
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(ASK 7a- -performer SET YOUR STATE T0 (7xcor ?ycor ?heading)) ... . syst?
‘ (ASK ?a performer SET YOUR XCOR to ?value) syxt ?
(ASK ?a-performer SET YOUR YCOR to ?value) ' ' syyt ?

- (ASK ?a-performer SET YOUR POSITION T0 (?xcor ?ycor)) - sypt 7

(ASK Pa-performer SET YOUR HEADING T0 ?direction) . syht?
To change the "heading" of a performer you can set it directly using messages like "set

your heading to 27". Heading is in degrees and a heading of 0 is straight up.
Subsection D Growing and Shrinking

All performers whose appearance was defined by a "when drawmg use .."

message, a "when drawing do .. ." message, or the "instant” mode can change their size.

(A»SK ?a-performer GROW ?amount)
This is the same as the messages of the form INCREMENT YOUR SIZE BY ?amount. If the
performer is currently visible it will disappear and reappear bigger (if "amount” is

positive).

(ASK ?a-performer SHRINK ?amount)

~This is the same as a grow message of the negative of the "amount™.

(ASK ?a-performer {or SHRINK GROW) BY FACTOR ?number) sbf OR gbf
This is like the previous two messages except that the current size is multiplied by

“factor”. It is no different from messages of the form MULTIPLY YOUR SIZE BY ?number.
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Subsection E Parts and Wholes

In addition to the child/parent hierarchy, Director maintains an optional parts/whole
hiérarchy. Currently many of the methods for dealing with parts and wholes are part of
- Something, but since only Performer make any use of them they are presented here as

- a feature of performers.

Groups of actors can be referred to as a whole while individual parts can stiil be
addressed. A face, for example, can be made up of a mouth, a nose, eyes, and a hsad

(an outline). The eyes in turn can be made up of a left eye and a right eye.

- (ASK ?ta-performer SET YOUR WHOLE TO twhole) syt 7
This message makes the recipient become a part of the "whole". Its size, heading, and
position are recomputed to be relative to the "whole". The "whole” has a list of "parts”
and the recipient is added to it. if the whole’s siie, position, or heading Fhanges then the
parts are informed of the fact. Parts have a default way of responding to messages
telling fhem of changes {o their whole that makes the whole respond as a coherent unit.
For example, if the face is asked to turn, each of its parts will turn and revolve around

the face’s center.

An example of defining such a composite actor follows. (This same face was used

in the example in the section on plans and pseudo-parallelism.)
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(define face performer)

(define eyes performer
{set your whole to face))

(define left-eye circle (define right-eye circle

{set your size to 10) (set your size to 10)
(set your whole to eyes) (set your whole to eyes)
(move left 40)) (move right 40))

(ask eyes go forward 20)

(define nose triangle
(set your size to 20)
(set your whole to face)
(turn left 30))

(define mouth horizontal-line
(set your size to 15)

(set your whole to face)
{move down 50))

(define head square
(set your whole to face))

So we can ask the "face” to show and move a few parts as follows.

00
Vv

Figure 10 Ask Face Show All

OVO

Figure 11 Ask Face Grow 100
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Figure 12 Ask Face Turn Right 15

Figure 13 Ask Mouth Grow by Factor 2

( ASK ?a-performer ABSORB YOUR PARTS) ayp
This message makes all of the parts of the recipient nameless "disembodied” actors.
They become accessible only as variables of the whole. If you “clone” a composite actor,
how would Director know whose mouth you meant when you typed *(ask mouth grow by
factor 2)"? This method is provided to avoid this problem. The "proper” way to clone
a composite actor is to have it absorb its parts first és fobllows,

(ask face absorb your parts)
{(ask face clone face-two)

The price you pay for using "absorb your parts” is the inconvenience of having to send
messages via the "whole”. To ask the left-eye to grow you have to type (ask face ask

your eyes ask your left-eye grow by factor 2). This is the main reason that parts
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aren’t absorbed incrementally as they are declared part of the "whole™.!

(ASK ?a-performer FUSE YOUR PARTS) fyp
After a performer has absorbed its parts, it can then "fuse" them together. Fusing
destroys all the parts of the actor, but first changes the appearance of the actor to be
all the appearances of the parts. The advantage of doing this is that often many few
actors need exist. vThe disadvantage of it is that it both irreversible and you no ionger

can change any of the parts independently.

One use of this method is to create performers whose centers or orientations are
not standard. Lines, for example, by default turn around their center and with this
method you can construct one that turns around an end point or even a point far from
the line. Most of these modifications could be (and indeed were in earlier versions of
Director) accomplished by giving performers a few more speciai variables describing the
center and orientation. This method is much more general, though admittedly more

clumsy.

A simple example of the use of "fusing” is to make a hexagon'which when pointed
up has its top horizontal. This can be done by creating a normal hexagon (which has a
vertex on top) turning it 30 degrees and making it part of another performer and then
fusing it as follows.

(ask poly make hexagon) 33 make a normal hexagon

(ask hexagon show)

(ask hexagon turn right 30) ;; turn it so top is horizontal

(ask performer make f Tat-top-hexagon) ;; make a performer called “flat-top-hexagon”
(ask hexagon set your whole to flat-top-hexagon) ;; make the hexagon part of it

(ask flat-top-hexagon fuse your parts) ;; flat-top-hexagon’s appearance is as desired

L. Perhaps this would be more acceptable if a "path name” syntax were incorporated so you could just type
(ask left- eye of eyes of face ..).
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A problem suggested by Bill Gosper was to use such a hexagon to produce a

cbmplex fractal design. The hexagon is replicated three times and arranged as foliows.

Figure 14 A Hexagon Transformed into 4 Hexagons
The result is then replicated and moved in the same manner producing the designs on the

next page. A program for this follows.
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(define four-hex performer) ;; define the performer that will do this

(ask four-hex do when receiving (clone and move)
(script
(I shrink by factor .5) ;; shrink down a half
(Tet ((next-level (ask four-hex make »(ask four-hex make up a name)))
s 3 create the performer that will be the next level of recursion

(distance (8 (I recall my size) #,(sqrt 3.0)))

33 figure out how far apart each hexagon should be

(part-1 (I clone)) ;; make three copies

(part-2 (I clone))

(part-3 (I clone))) )

(ask ,part-1 move forward ,distance) ;; place the first one above the center
(ask ,part-2 turn right 120)

(ask ,part-2 move forward ,distance)

(ask ,part-2 turn left 120) ;; put the second one to the right

(ask ,part-3 turn left 120) '

(ask ,part-3 move forward ,distance)

(ask ,part-3 turn right 120) ;; and the third one on the left
{ask-each (,part-1 ,part-2 ,part-3 myself) set your whole to ,next-level)
33 make all the copies and the original part of the next level four—hex

(ask ,next-level fuse your parts) ;; fuse all the part together
next-level)}) ;; return the name of the next level guy

Now we that we have defined "four-hex" we should use it. We could remake
flat-top-hexagon the same as before but have its parent be "four-hex” or we can
change it now and then clone it repeated as follows.

(ask flat-top-hexagon set your parent to four-hex) ;; always change patents with care
(ask flat-top-hexagon clone and move) ;3 try it out

four-hex-1 ;; is returned

(ask four-hex-1 clone and move)

four-hex-2

{ask ,(ask four-hex-2 clone and move) clone and move) ;; do two levels at once
four-hex-4

(ask four-hex-4 clone and move)

At this point we have created konly a few actors. Had we left out the "fuse your parts”

transmission from the "clone and move" method we would have over a thousand.
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Figure 16 64 Hexagons Transformed into 256
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Figure 17 256 Hexagons Transformed into 1024
Subsection F What The-Cast Does

The-Cast is a performer with no special methods. It is however the default
"whole" for all newiy created performers. Unless you turn off this feature by setting
Performer’s default-whole to NIL (or some other actor), then every performer is either
diréctly or indirectly a part of the The-Cast. This enables a simple means of achieving
"cinemégraphic" effects such as zooms, pans, and the like. If you want to zoom and pan
slowly to the left then just type,

« ch) 33 This is a TV Turtle command to make anyone who goes off the screen invisible
{ask The-Cast concurrently

(gradually grow by factor 4.0)
»3 zoom by a factor of 4 at The-Cast’s grow by factor speed)”
(do at speed 50 move right 500))
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‘Subsection G Logo Compatible Commands

Director supports many of the Logo Turtle commands as described in [Goldstein
1975]. The Logo commands that performers can take are FORWARD, BACK, RIGHT, LEFT,
SETXY, SETX, SETY, SETTURTLE, SETHEADING, DELXY, DELX, and DELY.

It is possible to have a performer behave as a turtle and run turtie procedures.

To do this use the following message pattern

(ASK ?a-performer RUN ?action)

“Action” can be any turtle cohmand, procedure, or sequence of them beginning with the
word "script”" (or "progn”). If you want a performer named Sam to go forward 100, *u:vn
right 45, and then follow the course of a circle then you could type:

(ask sam pen down) ;; to see his trail
(ask sam run (script (forward 100) (right 45) (draw-poly 10 10)))

where draw-poly is a Li_sp TV Turtle program.
Subsection H Pens

When a performer moves it can leave a trail behind itself. The type of trail

depends upon the "pen-type” of the performer. The currently valid pen types are

"normal” which draws regardless of whats underneath, "eraser” which erases what ever

it passes over, and "xor" which draws if nothing is there already otherwise it erases

what’s there.
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(ASK ?a-performer PEN DOWN) ) : ; . pd

Thiskputs the pen of the performer’s "pen-tyee" down,

(ASK ?a-performer PEN UP) pu
This moves the pen up, so the performer stops leaving a trail behind as it moves. This is

the default for performers.
Subsection | Special Variables

We have already seen a few variables that performers treat specially such as

" "

"heading”, "state", and "position”. Also the arguments for drawing given in the "when

drawing use .." message are also special variables. They are defined to cause the
performer in question to disappear if visible and then to reappear with a new

appearance. This is accomplished using the "continue-asking” type of transmission

' descrlbed in the sectuon on extendmg methods Suppose Bob is a square and you want

him to become a tnangie of size 200 then Just type

(ask bob set your angle to 120) ;; become a triangle
(ask bob set your size to 200)

There are a few other special variables associated with performers that you might

want to set sometimes.

erasability /s a variable whose default value is t and is abbreviated as eras

Director has two ways to erase a petformer, either redraw it with an eraser or
erase everything in the region of the performer. Only if the performer’s erasability is nil
is the latter action performed. This is necessary if the appearance is shaded for

example' and is often faster if the drawing is complex.

default-whole is a variable whose default value is The-Cast

When a performer is made it is told that it is part of the "default-whole™.
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standardize-size? is a variable whose default value is t

The size of all performers whose appearance was defined by the "when drawing use .."
message is standardized to just fit within a circle of the same size. This feature can be

turned off by setting a performer’s "standardize-size?" to NIL.

standardize-center? is a variable whose default value is t

The default behavior is to center performers by averaging the positions of each vertex

in its appearance.
draw-mode is a variable whose default value is (pendown)

erase-mode is a variable whose default value is (eraserdown)

Normally when the appeérance of a performer is drawn on the screen it is done with ii:n
TV turtie’s “"pen” and erased with its "eraser”. Sometimes, however, you want the
performer to move over other stationary performers without having to redraw them as
they become partially erased. A common solution to this is to both draw and erase using
an “exclusive or" {xor) pen. You can do this by setting a performer’s "draw-mode”™ and
"erase-mode” to "(xordown)". This introduces a new problem however. If two
;;erformers overlap the overlapping areas will be white. The "draw-mode”™ variable can

alsd be used for more esoteric purposes, e.g, to change the pen color frequently.

pen-type is a variable whose default value is normal

The "pen-type" describes the kind of pen to be used in the trail of a performer’s
movements, not in drawing the performer itself (see the previous description of
"draw-mode" and "ease-mode”). The permissible types are "normal”, "xor" and "eraser”.
The "pen-type” has no affect unless the pen is down (see the "(pen down)" message

above).

variables-to-copy-upon-creation is a variable whose default value is (state
visibility) and is abbreviated as vtcuc '

This is really a special variable of Something. However, Sbmgthing has it set to NIL so
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it is inoperationai by default. When an actor is made, the variables in the
"variables-to-copy-upon-creation” list are “"recalled" and then "set”. These variables are

not shared by an actor’s offspring as is the usual case for variables.
Subsection J Colors

If you want to change the colors of a performer you use can the “set your .."

‘message. If colors were mentioned in the "When drawing ‘use” message then this will

work automatically. The list of possible colors is in the Lisp variable ".coiors" and oihers
can be made as using "Makecolor” as described in the LLogo memo [Goldstein 1975]. If
you want to see a smooth transition from one set of colors to another you can use the

followmg message

(ASK 7a- -performer DO IN ?number ?time-units SET YOUR COLORS TO ?colors)  do in 7 7
syct ? ; —— ;

The number of colors béfore should be equal to those after. Each color is slowly
changed to the color in the corresponding position in "colors”. Only 1/number of the
change will occur, the rest willv be planned for later. Of course, if you are not running
the color system then these colors will all ook white, but internal variables can be

inspected to see that indeed the color is being "changed".

(ASK ?a-performer PREPARE TO MIX COLORS WITH 7other-colors) ' ptmcw 2

The number of "other-colors” should be the same as ﬂwe current value of colors. This
message sets up a variable called "color-mix" that controls the mix of the old colors with
the “other-colors™ If “color-mix" is set to 0.0 then the old colors appear, if it 1.0 then
the new-colors, if it is .5 then they are mixed 50-50 and so on. This message is used in

the definition of the previous method as follows
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{ask performer
do when receiving (do in ?number funits {or set change} your colors to ?colors)
(script
(I prepare to mix colors with ,colors) ;; prepare the mix
(I set my color-mix to 0.0) ;; initialize color-mix
{I do in ,number ,units increment your color-mix by 1.0)))

For example,

(ask sally do in 5 ticks change your colors to (red white blue})

is the same as typing

(ask sally prepare to mix colors with (red white blue))
(ask sally set your color-mix to 0.0)
(ask sally do in 5 ticks increment your color-mix by 1.0)

Subsection K Interpolation

Sometimes you want a performer’s shape to slowly change to another shape. in
Director you can create an actor that is the inlerpolation of the appearances of two

other performers.

(ASK ?a-performer MAKE_?name INTERPOLATION TO ?another-performer) make ? itx ?
This returns an actor named "name" that is the interpolation between "a-performer™ and
"another-performer”. This actor is a performer that you can tell to grow, turn or
whatever. It has associated with it a special variable called "amount”. Amount is initially
.5 which means that the appearance should be exactly between the two appearances.
0.0 will make it ook like "a-performer” and 1.0 the appearance of "another-performer”.
Very interesting results occur if you try negative numbers or numbers greater than one.

To make a simple movie of a circle becoming a star try the following
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(ask poly make circle) ~
(ask circle set your angle to 10) ;; will Took like a circle but will really be a 36-agon
(ask poly make star)

(ask star set your angle to 144)

(ask circle make circle-to-star interpolation to star) ;; make interpolation actor
{ask circle-to-star set your amount to 0.0) ;; start off looking like a circle

(ask circle-to-star set your (increment your amount by speed) to .1)

{ask circle-to-star gradually increment your amount by 1.0)

{ask circle-to-star show) ;; needs to be visible if we're going to make a movie of it
(ask movie make cts-movie) ;; movies are described in a later section

(ask cts-movie film the next 10 ticks) ;; send out 10 ticks recording as you go
(ask cts-movie project) ;; filming is over so project yourself

elolelelolelelelor

Figure 18 Ask Cts-Movie Project

This_ transition is linear. If you want the rate of change to increase just enter the

following before running the movie.

" (ask circle-to-star

set your (increment your (increment your amount by speed) by speed) to .01)
; the amount speed itself has a speed now (ie the acceleration)
(ask circle-to-star gradually increment your (amount speed) by .25)

Subsection L Appearance Definition Using Instant Turtle

Another way of creating appearances for performers is by using a mode calied

“instant turtle". It is entered by typing (instant) and is exited by either typing "q" or

control-g. The idea is to enable you to "draw” on the screen by having the turtle move

* to your every key stroke. Most single letters cause a performer to do something or to

define the current imagé as either a performer or a procedure to be attaghed to a letter.
Numerical arguments are given to it by typing them before the letter command. If no

argument is given then the previous argument to that letter is assumed (or 1 if it is the

~ first time that letter is used). It is useful for quickly and easily positioning performers as

well as defining unusual appearances for performers. The mode is self-documenting.
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I’ll le’gy‘e; it as an exercise for you to finish the space war program. Unfortunately,
it will be the slowest Space war ever created. To speed things up very much!
compile our code as described in the next section.

we could

1.

But probably still not enough to run on the Al machine.
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This is the minimum needed' to define a text of any font, position, or orientétion.
You might want the screen to reflect changes in the variables "string" and "font", This
can be accomplished as follows using the "continue-asking" type of transmission.

(define-method (set your {or string font) to Tnew-value) text
3 3 this method works for both changes to the string or font
(let ((visibility (I recall my visibility)))
- (cond (visibility (I hide)))
(continue-asking) 33 this actually sets the variable
(cond (visibility (I show))))
new-value) ;;; we should still return the “new-value”

We can now use the new text definition.

(ask text make tabel)
(ask label show)

(ask label set your string to |Here I am]) 33 So it becomes the words "Here I am”
(ask labe) move forward 200) ;; to move it forward

The "text" actor in Director is defined as described here with the ability to display
the text in various fonts. The fonts have to be made by "windowize” which is described

in ai:libdoc;f.Wmake kenl. You can use a font called tr18 (about 3 times bigger than

normal) and it will aufométically be loaded in. Fonts are loaded in automatically if the

font name has a “font-autoload-file™ property. If you type

(ask labe] set your font to tri1sg)

the text will be displayed in that font.
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Section V' What The Stage Does

The Stage actor provides the interface between the world of actors and a display
screen via the TV Turtle. There is currently only one "stage” though the system could
be extended to have multiple stages. To see them on different physical displays is
anothgr que_stion{ Much of what Stage does you need not bother with. The messages of

some use follow,

(ASK STAGE WIPE)
This wipes off anything from the Stage and then redraws any performers that should be
visible.. This is useful if a message or something messed up your display area. This can

also be invoked by typing control-r (i.e,, holding down the ctrl and r buttons).

(ASK STAGE CLEAR)

This tells all the actors to hide, so that the stage becomes empty.

The variables that are special to the Stage follow.
height /s a variable whose default value is 200

width Js a variable whose default value is 550

The height a’ndb width of the screen is controlled by its variables “height” and
"width". If you want a square screen 400 big then type

(ask stage set your height to 400)
(ask stage set your width to 400)

mode /s a variable whose default value is norma? _
If the variable "mode"” is set to "silent” then the Stage “"pretends” to do what its told but
does not show anything on the TV. This is useful mostly for making movies, but also if

’
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one wants to do many things and then see the final result. For example, if it takes a
while to draw a performer you may not want to see it erase and redraw as you tell it to
go forward, grow and turn. You could always hide the performer first but if there are
many such performers then it is easier to set the stage’s "mode”. If, while Director is
runhing, you want the Stage to run silently you can type "control a" at any time.

"Control r" restores the mode and redisplays.

Page - 69




- Director Guide ' What Clocks Do Kenneth Kahn

Section VI What Clocks Do

Clocks (instances of Clock) are the actors responsible for knowing who wants
"tick" messages. Any actor that has planned anything has told its clock that it has
something to do. (The "plan .." messages handle this) The only thing that you need ask
of a clock is to run when you want all the planned activities to occur. Each actor is
asked for its "clock” when planning and unless told otherwise inherits from Something
one called "default-clock”. Telling a clock to run is not recommended when the display is
involved instead Movie should be asked to "ﬁ‘lm". (Movies are described in the next

séction.)

(ASK ?a-clock RUN FOR ?length ?units) ’ rf ¢ ?
Send tick messages to each actor with something planned for "length™ “units”. Units can
be either "ticks", “frames”, or "seconds”. To run through a scene with, say, Sally and Sue
both growing you could type

(ask sally plan next gradually grow 300)

(ask sue plan after 2 ticks gradually grow 200)

(ask-each (sue sally) repeat (print your size) 5 times) ;; to see the values each time
{(ask sally ask your clock to run for 4 ticks)

3 unfess told otherwise Sue and Sally share the same clock

Most of the planning type messages accept units of time of either seconds, ticks,
or frames. Seconds are most convenient for you to use, ticks are what Director uses,
~and frames ‘are what movies (see below) use. The relationship between these dcfferent

units of time is defined in the clock of the actor involved in the planning.

frames-perésecond is a variable whose default value is 1 and is abbreviated as fps

If the display and computer were fast enough setting the number of frames per second
to 20 or 30 and projecting at that rate would make the movement very smooth. If you
set the frames-per-second of the clock used in a movie called "Fantasia® to 4 then

every fourth frame will be the same as if you had left the frames-per-second at the
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default of 1. You can think of frames-per-second as the speed with which the "camera”

shoots the action.

ticks-per-frame /s a variable whose default value is 1 and is abbreviated as tpf

If you want to film just every 5th tick then set the movie’s “ticks-per-frame” to 5.
This is primarily useful if you want a tick to be a small unit for accuracy and yet don’t

want to see or record every tick.

actors-to-run- next /s a varlable whose default value is n11 and is abbreviated as atrn

Thas variable is kept by each clock and should be a list of all actors sharing that

clock with anything planned.
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Section VII  What Movies Do

Movies (instances of Movie) can also be told to run and they differ from clocks in
that movies manage to remember any changes to the screen. Movies can then be asked

to play back the changes at a speed that is typically much faster than when first created.

{ASK ?a-movie FILM THE NEXT ?7fiim-1ength ?units) ftn ?2 ¢
This is similar to the “run for .." message for instances of Clock, however movies also
fecord what’s happening to the display. Tn create a movie named Fantasia 12 seconds
long one need only type |

(ask movie make fantasia) .
(ask fantasia film the next 12 seconds)

All performers that are currently on the screen or plan to appear during the next 12
seconds will be in the movie. Remember that "seconds” means film or animation time, not

‘real or compute time.

(ASK ?a-movie FILM SECRETLY THE NEXT ?length Tunits) f#tn 77
This does the same as the previous message in that all changes to Stage are recorded
except here they are not displayed (the stage’s mode is "silent”). This is useful if you
want to save the time of displaying changes on the screen or to free the terminal to do

something else (e.g. edit a file) while the movie is being computed.

There is a wide selection of different messages asking a movie to display itself.
They are:
{ASK ?a-movie PROJECT)
3 Show all the frames from the start not skipping any
(ASK ?a-movie PROJECT SHOWING EVERY 7so-many FROM ?begin TO ?end) pse ? from 7 to ?

3} Show from frame number BEGIN to END skipping every SO-MANY frames.
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(ASK ?a-movie PROJECT FRAMES 7begin T0 7end) |  pitter

# assume that no frames should be skipped

(ASK ?a-movie PROJECT STARTING AT FRAME ?byegin SHOWING EVERY '?so‘-’many) psaf 7 se ?

3 show until the end of the movie from BEGIN showing every SO-MANY frames

(ASK ?a-movie PROJECT SHOWING EVERY ?s0-many) pSe 7

H staits at the beginning and goes to the end showing every SO-MANY frame
(ASK ?a-movie PROJECT FRAME ?number) ' pf ?

i just show that one frame

speed /s a variable whose default value is 99999

Movies have a speed which indicates how many frames per second should be

~ displayed. Unfortunately the computer seldom can show more than a small number per

- second. The speed may be less than one if you want very slow motlon. If the machine

cannot d:splay frames as fast as indicated (for example if the speed is the default of

'99999) then it will just show them "as fast as it can". If the speed is the same as the

clock’s. frames-per-second, and if the machine is fast enough, then you will see the film

at just the rate you planned things.

new-frame-action /s a variable whose default value is erase-old and is abbreviated as

nfa

Another variable associated with movies is called the "new-frame-action™. This provides
instructions as to how to make the transition between frames. The default is "erase-old”
which erases by redrawing frames with the eraser down. If it is NIL then nothing will
happen and you will see all the frames superimposed on the screen. If the value is
"(erase-previous <number>)" then the "number"th previous frame is erased. For
instance, if you set a movie’s new-frame-action to (erase-previous 10) then the movie is
projected so that you always see the 10 most recent frames. Any other value is

EVALuated. One useful value is "(clearscreen)" which just clears everything off the

~ screen. Sometimes this is faster.
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stage-mode /s a variable whose defaull value is sitent

" This variable specifies what mode the Stage should be in while filming. The défault is

"silent" so that all the intermediate changes that occur within a frame are not seen. This
is desirable in conjunction with the default value of the "new-frame-handler” described

below.

new-frame-handler s a variable whose default value is frame-handler and is

abbreviated as nfh

" The "new-frame-handler” of a movie is an actor that is sent a méssage whose pattern is

RE

(just made frame number ?frame-number for ?movie)

whenever a frame is completed. What the default frame-handier does when feceiviné
such messages is to show all the visible performers and then store the frame in ‘e

movie. When niaking a movie with "film secretly the next .." the new-frame-handler is

- changed to one called "just-store-away-frame” which does not show you current state of

the Stage. When Director is hooked up to a movie camera, then a "new-frame-handler”
is defined to just show the visible performers and click the shutter and does not usually

save away the frame in the movie.

(ASK ?a-movie COMPILE ?file-name)

This method creates a file of Lisp code that can then be compiled. The resulting movie

projects fhe same as before but can run faster and be saved for another day. To run

‘the movie, load it into a Director and ask the movie to project just as before. So to

- save the movie My-first-film in "ffilm >", compile it and then run it, do the following

(ask my-first-film compile (ffilm >))

$3 put a Lisp translation of “my-first-film” in the file "ffilm >" on your directory
Az ;: Leave Director '

zcomplr fFfilm > ;; compile the film if you want it to run a little faster
direct™h ;; after compilation is finished return to Director

(load “ffilm) ;; load the compiled movie into your Lisp

{ask my-first-film project)
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Section VIl A Big Example

Suppose we want to write a space war in Director. First we Will want to define
space ships, suns, and gravity. One way to do this is to associate with each physical
object a perforrﬁer corresponding to ifs velocity. The velocity actors have their own
position which corresponds to the magnitude and direction of the velocity. On every tick
each object’s position is updated by turning it in the direction of its velocity and going
forward the magnitude of its vélocity. Also the .velocfty itself may be updated in a
similar manner by the thrust of the ship or by the gravitational pull of other objects.
This use of a turtle’s position to represent the velocity vector is similar to the approach
'ipresented in [Abelson 1975). |

First we define physical objects that will include the space ships and the suns.

Then we define the gravitational' field to apply the forces between the objects to their

velocities.
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; this file is a test of Director for doing orbital physics

" (define physical-object performer
33 make physical-object as a kind of performer and send it the following messages
(set your mass to I0) ;; the default mass
{do when receiving (update your state)
35 when I get a message asking me to update my state
(I set my position to ;; I update my position by
++ adding to.my current position to the position of my  velocity
,(position-sum (I recall my position)
(I ask my velocity recall your position)))
33 1 ask the gravitational field at my location to change my velocity
(ask gravitational-field
apply gravitational forces at

,(1 recall my position) to ,(I recall my velocity)))
(do when receiving (yield pull at ?place)

;3 to determine the gravitational pufl at the place (G=1 in our units)
(quotient (I recall my mass) ;; take my mass
{square (I yield distance to ,place))
;3 divide by the square of my distance to the place to get force per second
(I ask my clock recall your frames-per-second)
;3 divide by this to get force per frame
(I ask my clock recall your ticks-per-frame)))
33 divide to get force per tick .
(do when receiving (recall your velocity) ;; if asked for my velocity
{let ((velocity (continue-asking))) ;; find old one
(cond ({null velocity) ;; if one does not exist then make one
(let ({velocity (ask velocity make)))
(ask ,velocity set your thing to ,myself)

(I set my velocity to ,velocity)))
{t velocity)))))
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(define gravitational-field something
33 I never move or appear on the screen so no need to be a performer
3+ make the field ‘and send it the following messages _
{(do when receiving (apply gravitational forces at ?place to fvelocity)
33 for me to apply the gravitational forces at a place to a velocity
(I exert pulls of ;; I exert the pulls of the masses not at the place
» (remove-any-at-place (I recall my masses) place)
on ,velocity at ,place)) ;; on the velocity
(do when receiving
(exert pulls of (?first-mass 4rest-of-the-masses) on ?velocity at ?place)
35 to exert the gravitational pull at a point of some masses on a velocity
(compile-using performer
;3 this declares that the variable "velocity" is a performer
: i3 without jt. this transmission would compile less efficiently
(ask ,velocity move »{ask ,first-mass yield pull at ,place) in direction
from ,place to ,(ask ,first-mass recall your position)))
35 move towards the mass from the place by the pull (acceleration) at that place
(I exert pulls of srest-of-the-masses on ,velocity at »place))
33 and let the rest of the masses exert themselves on the velocity
(do when receiving (exert pulls of () on ? at 7)
33 when there are no more masses do nothing
nit))

(define ship physical-object ;; now to define ships
(do when receiving (thrust ',forward ?amount) ;; When I'm asked to thrust forward

(I ask my velocity set your heading to ,(I recall my heading))

i3 I set the heading of my velocity to my own heading -

(I ask my velocity ;; and change my velocity by
3+ having it go forward the quotient of the thrust and my mass
move forward ,(quotient amount (I recall my mass))))

(when drawing use draw-rocket of size))
s and I am drawn by the Draw-rocket procedure applied to my size

{define sun physical-object ;; a sun is ako a physical-ob fect

(set your mass to 100) ;; the default mass of a sun fs 100

(when drawing do (repeat (sequentially (move forward 10) (turn right 10))
36 times))) ;; near enough to a circle (really a 36-agon)

3 What follows is reasonable to give to every performer
(ask performer ;; to move parallel to a line between the positions given
: do when receiving
(move ?amount in direction from ?begin-position to ?end-position)
(script
(et ((original-heading (I recall my heading)))
(I set my heading to »(heading-from begin-position end-position))
(I move forward ,amount)
(I set my heading to »original-heading))))
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Now to test out this program we make a short movie. One ship will pass by a
double star system. We define this as follows

(define enterprise ship ;; make a ship called the enterprise
(set your state to (-1000 -400 90)) ;; put me at an interesting starting state
(show) ;; show myself
(plan next
repeat (thrust forward 200) 5 times)) ;; turn on thrusters for the next 5 ticks

{define sunl sun +3 make sunl
(set you‘r position to (0 200)) ;; start off 200 units above the screen center
(ask your velocity forward 25) ;; start me off with a velocity of 25 upwards
(set your size to 100) ;; give it a size
(set your mass to 7000000)) ;; and a big mass

(define sun2 sun ;; this one is a little smaller and less massive
{ask your velocity to back 75)
{set your position to (600 200)) ;; start off way to the right of Sunl
(set your size to 60)
(set your mass to 3000000))

(ask-each (sunl sun2 enterprise) plan next repeat (update your state) forever)
; on every tick send to each of the objects the message (update your state)

(ask sunl do when receiving (display) .

(continue-asking) ;; display yourself as normal

(ask the-turtle perform (shade “lighttexture))) ;; so that it is shaded
i {ask sunl set your erasability to nil)
{ask sunl show)

(ask sun2 do when receiving (display)

-(continue-asking) ;; display yourself as normal

(ask the-turtle perform (shade “texture))) ;; a darker texture for Sun2
{(ask sun? set your erasability to nil)
(ask sun2 show)

3 tell the field about the objects
(ask gravitational-field set your masses to (sunl sun2 enterprise))
; Everythmg is ready to go. so to test it we make a 10 tick movie. It can be seen in Figure 1.

(define test-movie-1 movie
(film the next 11 ticks);; fimally make the movie
{project)) ;; show the movie at default speed and order
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I’ll le’gy‘e; it as an exercise for you to finish the space war program. Unfortunately,
it will be the slowest Space war ever created. To speed things up very much!
compile our code as described in the next section.

we could

1.

But probably still not enough to run on the Al machine.

Page- 79




A Big Example

Director Guide
®
(=3
o
B>
@
(=3
@
(=3
_ (5]
=
O
N

Figuré 19 A Test of the Space War Program

Page - 80

Kenneth Kahn




Director Guide ' - Compiling  Kenneth Kahn

-+ Section X Compiling

Director code can be translated into efficient Lisp so that it will run at a more
reasonable speed. There are three major optimizations, one is to compile the patterns
given in "do when receiving" messages and database inquiries. As an example of the
pattern optimization, consider what happens to the pattern

(plan after ?number ?units *message)

It becomes something like the following

3 this is the test part of the pattern
(AND (EQ (CAR MESSAGE) “PLAN) ;; the first element of the message must equal ‘plan
(EQ (CADR MESSAGE) “AFTER) ;; and the next element equal "after
(CDDDR MESSAGE)) ;; and the message must be at least four elements fong
The binding of values happens only after the predicate indicates that there definitely is a
match. In this case the body of the method becomes

((LAMBDA (MESSAGE UNITS NUMBER) ;; the variables in pattern are bound
¢body of the method is here>) | . e |
(CDDDDR *MESSAGE) (CADDDR *MESSAGE) (CADDR #MESSAGE)):: to parts of the message

‘This compilation of patterns happens throughout the system. The method patterns and

the data base inquiries are compiled..

The list of method patterns owned by an actor are compiled into nested CONDs so
that redundant tests are avoided. If you are curious about how this works create a
simple actor and then ask it to save (see description of "save ?file-name" earlier) and it _
will return the optimized Lisp version of itself. (Note that this does not make the actor

become more efficient. To do that you should eval the result, e.g. (eval (ask sue save)).)

The most important optimization is the compilation of message transmissions.
Several different actors, some with many different methods, will typically try to match a
‘message as it gets passed along to each actor’s parent. To skip all this computation the
macro for transmissions (ASK) figures 6ut what methods will be involved by the

transmission. For example, the transmission
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(ask my-first-film project frames 3 to 6)

is replaced by

{LET ((MYSELF (ACTOR-OF “MY-FIRST-FILM))
{xMESSAGE “(PROJECT FRAMES 3 T0 6)))
(QUICK-COMPILED-ASK “#,(METHOD-AT-POSITION (]PROJECT FRAMES ? TO ?| 0) MOVIE)
‘ 35 the "o indicates that the method is found at load time
“#,(ACTOR-OF “MY-FIRST-FILM)})) ;; the compilation target

where the Lisp function QUICK-COMPILED-ASK will ruﬁ the first method of Movie whose
pattern is (PROJECT FRAMES ? TO 7).

This scheme works fine even when the message and target contain commas
indicating variables. If the target is a variable, then the compiler tries to find a
campilétion tafget, an actor that either will receive the message or one of its
descendants will. (If it can’t deduce one, thén Something is used) At run time i:a
message is sent to the actor and its ancestors stopping at the compilation target (the
second argument to OUICK-COMPI.LED-ASK). If no one along the way from the actor to the
compilation target claimed the méssage then the method indicated as the first argument
to QUICK-COMPILED-ASK is run. If the message has "commas"” in it indicating variabies,
then the compiler' generates a list of methods that could possibly be applicable.
Typically this list is short and the pattern predicates of each element is run against the
message at run time until one succeeds. For this case the Lisp function COMPILED-ASK is

used.

(ASK ?anyone MACRO EXPAND WHEN RECEIVING ?pattern %form)

This creates a "macro” method, which is like a normal method except that it is doubly
evaluated When compiling the first evaluation takes place, leaving the second
evaluation for when the code is really running. For example, Something’s "increment

your ..." method is really a macro method defined as follows,
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(ask something macro expand when receiving (increment your ?variable by ?amount)

 7(ask ,myself set your ,variable to

“{plus (or (ask ,myself recall your ,variable)
0) ;;i1f variable is new for example
,amount)))

The backquote (Y is a way of inserting commas, it becomes a comma upon evaluation. A
transmission like the following one

(ask sally increment your height by 2)

-‘expaknds to

(ask sally set your height to »(plus (or (ask sally recall your height) 0) 2))

One advantage of making such a method a.macro is that the expansion can then be
compiled with a “compilation-target” that is typically lower in the parent/offspring

hierarchy. In the previous case, we can compile the “"set your" and "recall your”

messages knowing they will go to Sally, while otherwise they would have to check at run

time from Sally to Something to see if anyone has special methods for this. A

- disadvantage is that any special methods that Sally might have for "increment your"

messages will not be noticed by compiled code, so if you use mécro methods be

prepared to recompile your code when you change them.

There are two ways in which you can use the cohpiler. One is incrementally and
all you need do is to type (COMPILER-SWITCH T) and it is turned on. From then on all
transmissions will be replaced by their expanded form and their old form prefaced by the
atom "Macroexpanded",! ‘(COMPILER-SVITCH NIL) will not only prevent new forms from

being made but will clean up old expansions.

L. This uses the macro- expansion- use set to ‘macroexpanded option of "defmacro” in Maclisp and a similar
scheme on the Lisp Machine.
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- (ASK 7anyone COMPILE MESSAGE %message)

This provides an easy way to see how a message would be compiled. For
example,

. v‘(a‘sk sally compile message set your color to blue)

will return

(LET ((MYSELF (ACTOR-OF “SALLY))
(*xMESSAGE “(SET YOUR COLOR TO BLUE)))
(QUICK-COMPILED-ASK “#,(METHOD-AT-POSITION (|SET YOUR ? TO ?| 0) SOMETHING)
“#,(ACTOR-OF “SALLY)))

To compile a file of Director code, you should run the function COMPILE-FILE from
Director. It produces a file of Lisp (the second file name is "LISP") which you then hand
off to the Lisp compiler. For example, to compile the file "ken;dhex >” do the followir;,

(compile-fite “|ken;4hex|)

Idone| ;; Its finished making the Lisp file

*z ;; ‘eave Director _
:complr ken;4hex Visp ;; start up a Lisp compiler and give it the Lisp file just created
direct™h ;; when its finished go back to Director

(load “|ken;4hex|) ;; load in the compiled version of the file

Besides compilation therg is another mechanism for efficiency in Director. It allows
~a user to declare a more efficient representation for a subset of variables. The current
teature is limited, but does point to a general scheme for getting some of the efficiency

back this is lost in using very general mechanisms for implementing variables.
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(ASK ?anyone WHEN REPRESENTING ?pattern-for- variables USE AN ARRAY OF SIZE ?size)
This adds two new methods to the recipient: one for recalling a variable that matches
the "pattern-for-variables” and another for setting any such variables. Movies use this
as follows,

(ask ,new-movie
when representing (frame tnumber) use an array of size »(1+ max-frame- -number))

Which sets up an array to hold the values of the variables whose names are (frame 0),

(frame 1), and so on up to (frame <max- -frame-number>).
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Section X Odds and Ends -
Subsection A Debugging

For the most part debugging Director is like debugging Lisp. The "trace” message
described under the Something section is quite helpful. There are four kinds of break
points. Lisp ones, "shouldnt-happen” ones which indicate a system bug, "no-such-actor”,
and "bad—m:essage" break. These last two are often easy to recover from. The
"no-such-actor" break can be returned from as foliows: -

{ask sue recall your parent)
;Warning from ASK that SUE is not an actor.
The message is RECALL YOUR PARENT
For help type (?)
{(?) ;; so you type ")
SUE is not defined as an actor --- if it is misspelled then type
(return “<{correct-spelling)
if you want to define SUE do so now and then type
(return ‘retry)
otherwise type "$p " and the transmission will not occur and NIL will be returned o
(ask something make sue) ;; so then you make sue
(return “retry) ;; have have it try again
SOMETHING ;; and the original question is answered

If | had meant "sally" not "sue", then | could simply have replied (RETURN ’SALLY).
Similarly the "bad-message” break point can be returned from. If you fix it so that the
message is receivable then just return ’retry. If the message was wrong just return the

right message. In general, when you get an error try typing "(?)", it might be helpful.
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Subsection B Complete Description of Patterns

A pattern can be any list structure. If an atom in the pattern begins with a "?"
then anything can be in the corresponding position in the message. In addition, the Lisp
variable whose name follows the question mark becomes bound to the corresponding
expression in the message. The character "4" is similar but will match any number of
elements in the corresponding list structure. It should be used only once per list (which
can be a sublist of course).! An expression surrounded by curly brackets {} is treated
specfally. If it begins with the word "OR" then if any of the following sub-patterns match
the corresponding element in the message, then the match continues. If the word is
"AND", then all the following patterns must match and all the bindings are made. Any
other expression is evaluated and if it returns NIL the match fails. Such expressions can
have an atom beginning with a “?" in it which becomes bound and then evaluated. For
example, the pattern ”{greatei;p ?n 33}" will match any number greater than 33 and n
will be bound to that number. An error will result if the corresponding element is not a
number, however, so to bé safe you should write the pattern as "{and {numberp ?}
{greaterp ?n 33}}". An atomin s pattérn can have a comma in it, in which case the value

of the atom is looked up at run time.

L. If the "% appears anywhere other than the end of a pattern, it should work but will be much slower than
otherwise. The pattern matcher does no back-tracking so if you use more than one %" at the same level it
will match only some of the messages that it "could".
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Subsecﬁon C Global Variablés

There are very few global variables, and even fewer worth knowing about. A few
useful ones follow.

MYSELF ;; this is bound to the actor who originally received the message
;3 even if the message has been passed along to an ancestor to handle
«MESSAGE ;; the most current message

«xTVRTLE-FILE-NAME
s this is set to the normal tv turtle and should be reset if you want color for example

 xPRINT-LOAD-MESSAGES ;; if NIL then no messages are typed when a file is loaded

*MESSAGE -NOT-UNDERSTOOD
;3 its value is a function of the target and message and it should
;; handle messages that are not understood. The default value puts you in a break-point

*ACTOR-NOT-DEF INED
+3 a function of the target and message called when target is not defined

«INSERT-METHODS-AT-END ;; Normally NIL

ss If T then new methods are added at the end of the actor. )
;3 T is the default when loading in a file using DIRECTOR-LOAD so the file
;3 can have the methods in the same order as they will be in the actor

*REPLACE-OLD-METHODS ;; Normally NIL
;3 if T then when defining methods will replace equivalent method
;3 instead of adding the new method to the beginning or end of the list of methods of the actor

*REPLACE-OLD-ACTORS ;; Normally T
:; if T and you MAKE an actor that already exists, you replace it with this new one
33 otherwise it UNMAKEs the old actor and then makes a new one

*PROTECT-ALL-ACTORS ;; Normally T
;3 asks for confirmation before any actor is UNMAKEd

*PROTECTED-ACTORS ;; Initially all the system's primitive actors
;: makes it hard to UNMAKE or replace any actor whose name is on this list

? :; This a very handy variable, usually bound to some help so
33 try typing it whenever you need some help or (?) to print ? more nicely
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Subsection D Useful Lisp Functions and Macros

To make life a little easier there is the "define” macro for defining new actors.
For example the definition of Poly is:

(DEFINE POLY PERFORMER
(SET YOUR ANGLE TO 60)
(WHEN DRAWING USE DRAW-POLY OF (SIZE ANGLE)))

You type the namé, its parent and then a list of messages to be sent to this newly
created actor. There is a variant of define called "Define-or-add-to-actor” that differs
only in that if the actor already exists it adds to it, while "Define” will clobber the old

one.

Another pleasant macro is called " It simply expands to "ask myself® which
happens very frequently within the body of methods. For readability you can use "my"
instead of "your" in any message since a method macro will convert it for you.
(Therefore using "my" in interpreted code will be slower but there is no overhead once
its compiléd.) | | '

The Lisp predicate "Exists? of an actor returns NIL if the actor does not exist.
"Actor-bf" returns the internal representation of an actor if you are curious. It is
typically printed specially, howéver (print (actor-of ’clock)), for -example, should show it
to you as it really is. The function "Script” is identical to the Lisp function "Progn”,
however it serves the important function of "pro‘t,ecting" any commas within from causing
“the next element to be e\)amatéd irhmediately. Those elements preceded by commas will

instead be evaluated when the "script” itself is being run.

There are many slight variants of the "ask” macro. They differ primarily in either

how errors are handled or how the target is specified. They are
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TELL ;;; same as ask, just not as polite

ASK-IF-EXISTS ;; just like ask except returns NIL if target does not exist

ASK-IF-UNDERSTOOD ;; ask but returns NIL if message not understood

ASK-IF-CAN ;; return NIL if either actor not defined or message not understood

UNCOMPILED-ASK ;; normal ask but is not to be compiled

A ;; Same as above, useful at top level when incremental compiler is on

ASK-ALL ;; ask all actors whose name matches the target (works only with non-atomic names)
33 eg. (ask-all (comparison-of sam ?) .) to ask all the comparisons of sam

. ASK-EACH ;; the target is a list of actors to send the message to

You can define your own abbreviations by using “define-abbreviation’f which itself
is abbreviated "da". If you are often asking Sally lots of things then to abbreviate “ask
sally” just enter

(@da sal ask sally) ;; "sal” should be an abbreviation for “ask sally”
(@sal @pm) ;; Test it out, this is same as typing (ask sally print memory)

 Subsection E Why Director is the Way it is

Director is the way it is mostly because | am a fan qf object-oriented
prograrﬁming. For graphics its seems the most natural way of thinking about what
happens on a display screen. For knowledge-baéed programming the association of a
data base with eéch actor and the inheritance mechanisrh are very handy. Moré
imbortan.tty. the ability t_o arbitrarily mix data and procedure (and different forms of each)
is a great convenience for representing complex knowledge. For knowledge-based
programming the spectrum of flexibility is nicely spanned by the variables, the data base,
the methods and‘the‘extended methods --- all potentially usable by the same actor.
These features lead naturally to very modular programs with all the advantages that that

brings.

The graphics in Director is strongly influenced by turtles. Director’s performers
are generalized turtles that can change appearance and remember things in addition to
the usual turtle actions. The pseudo-parallelism based upon ticks is to ease the tésk of
coordinatiné the actions of several different performers "at once”. For more about ticks

see [Kahn 1978] Good sources for learning more about turtles are, among many,
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. ‘[fv’fpert 1971a], [Papert 1971b], [Goldstein 1975], [Goldstem 1976], and [Kahn 1977b1

One desvgn dectslon that may stnke many as pecullar is the verbose style of
programmmg in Director. The advantages are many. Programs need few comments since
the code is itself close to English. Debugging is aided by the long, typically
self- explanatory, messages that are traced or seen at error break points. While
someone unfamiliar with Director could not write any code, compared to most languages
there is a good chance such a person could read the code. The obvious objection to
such long messages that it necessitates too much typing is just plain false. The
abbreviation feature in Director cuts down drastically the amount of typing needed while
retammg all the advantages since the abbreviation is expanded at read time. All of the

abbreviations are also available for use by Emacs’s abbreviation package.! This has the

'added teatures of expanding as soon as a space or parenthesis is typed without

requiring a prefix character.?2 Another mechanism in Director that both drastically

,reduces the amount of typing hecessary and makes clear at any point what all of the

user’s alternatwes are is a menu-oriented interface describe in the section called
"Getting Started".

Another common objection to such English-looking syntax for. programs is that
users get confused and expect paraphrases that are valid in English to be valid in the
computer language. This does not really apply to Director since the user learns about

pattern matchmg very early on and that is the only mechanism for " parsmg

Director was built upon MacLisp so that | could fall back upon Lisp for memory
management, a garbage collector, debuggers, readers, printers, an evaluator, and a
compiler (to machine code). The running of Lisp at low levels of Director made it_

feaslble to put in many costly features in "Ask®, the basic transmission mechanism of

1. Emacs is an excellent text editor developed at the MIT Artificial Intelligence Lab. [Staliman 1979] The
abbreviatlon package in Emacs was developed by Eugene C. Ciccarelli.
"2 This is why all the abbreviations that would be an English word have an "x" at the end.
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Director. The overhead of a transmission is reasonable for events of the size typically
dealt with by Director. A message-passing definition of factorial in Director, however,
would be exceedingly slow (though it would compile pretty well). This inefficiency need
not be the case with message-passing languages --- witness Smalltalk and Act 1. Ideally
Dir}ectoksho'uld have been built upon such a base to make things more consisient -—

everything could then be an actor.
Subsection F How Director Works

You shouldn’t need tovknow how Diractor works to use it effectively. If you are

curious and know Lisp well then read on, otherwise skip to the next section.

Actors are represented as lists. The first element of the list is the = 'm
"director-symbol-for-actor” which indicates that what follows is an actor. The rest of
the list is a list of methods, except for the last element. The last element is the name of

the actor’s parent if it is named otherwise it is a pointer to the parent itself.

Each method is represented by a list. The first element indicates what kind of
method it is. The second element is a function of no arguments that correspondé to the
‘body (the "actions” given in "do when receiving .." messages for example) embedded in
some code that binds the variables of the method’s pattern. Compiled actors just have
the "subr” pointers of the functions here. The third element of the list is a predicate of
one argument that returns NIL only if the pattern of the method does not match the
argument. If the pattern does not contain any variables then the pattern itself is here
and EQUAL is used. The fourth element is optional and is an alist for additional
| properties of the method. |

There are four kinds of methods. The simplest is a "value-method” which just
holds a constant and returns that when invoked. The most common method type is a
"normal-method”. When its predicate applied to the message returns a non-nil value its
body is invoked. A "Macro-method” is similar except that the result of invoking its body

is EVALed. The fourth type of method is a "method-selector”. They are generated by
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the compiler. When a method selecto’s "body” is invoked it returns a method that
matches the message if one does. It also contains a pointer to the last method that it is
a selector for. When Director is searching for a matching method this pointer is followed

if the selector returns NIL thereby skipping all the methods in between.

The Lisp macro "Ask" just goes through the methods of the target of the message,
invoking their method selectors and pattern predicates. If no method is found theh"{ it
- tries again with the parent of the actor. When it finds a method its body is invoked and

the result returned.

Variables are implemented as a "value method” that contains two alists. The first
is for variables with atomic names and the second for the others. The value method is
always the first method of an actor. Data bases are implemented as variables with

internal names.

Atomic names of actors are m\plemented bolh as a hormal variable of the actor

' and by puttmg the actor on the property list of the name under the indicator actor

Non-atomic names use a generalized property list scheme.

Méssage continuations are used for activities that take longer than a tick. The
messages that need to be sent after the current actlwty completes are passed along

until the activity is fmlshed
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Subsection G Why One Might Want to Use Director

It’s both fun and good for writing real programs (i.e. iong complex movies or large

Al programs).
Subsection H Getting Started

Couldn’t be easier (well almost). You type:!
:DIRECT

After you see the message "Welcome to Director” you can type. For example, type

(ask poly make star)
(ask star set your angle to 144)
(ask star show)

and ybu should see a star appear on your TV. Type "(?)" for a little bit of help.

Another way of interacting with Director is via a menu-oriented interface. Instead
of typing in programs this subsystem incrementally puts together Director programs in
response. to answers to questions. Besides drastically reducing the amount of typing
required this mode also makes clear at every point what your alternatives are. This
mode can be entered by typing
{talk)

or if you want the system to keep a copy of the program being written on file then type
(talk “<{file-name>)

If want to use only part of Director, are running it in color (in which case you
should typé (run-color) before doing anything) or want Director to control a 2500
graphical display then type
:LISP KEN;DIRECT

and as you need things the appropriate files will be loaded. Have fun and report any

1. Don’t do this if you are not on a TV or are planning to run Director in color or with a 2500 display.
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problems to KEN@Al.

- There is a version on the Lisp Machine [Weinreb 1979] which is currently so
volatile that you should ask me if you want to run it.
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-~ Section XIl  Index of Patterns

Message Pattern PPN veeeees aaeis sesseneinen. . Abbreviation Page

* Patterns that Something Handles
(MAKE Pname) ... -

(MAKE) oo e ———— e y
(MAKE ?name IF ITS NOT ALREADY) ..iviiiiiiiniiiiinriiiiiiin, make ? 1ina |
(MAKE UP A NAME) .................... e —— Ceveebiniieiie),  mUAN
 (MAKE UP AN UNINTERNED NAME) oeeeiinniieoeeeoes oo e .. muaun
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(CLONE AND NAME IT ?name) .............. ., CaRT T
(MAKE SYNONYM ?name) ....... e ————— e TS 7
(DO WHEN RECEIVING Zpattern Xactions) .............. . e OWE 7%
(DO ONCE WHEN RECEIVING ?pattern %actions) dowr 7 %
(PRINT YOUR ?variable) ...... s s R SPRTRTIe . py ?

(PRINT {or memory variables script database all}) .... ps OR pm OR pvs OR pdb
{PRINT {or memory variables script database all} ON FILE ?file-name) ........

(SAVE %file-names) ............... Crveriirianes s e ‘e
(HELP %pattern) ........... i B T
(RECALL METHOD FOR %sample-message) .......... oo PEE %
(RECALL INTERNAL METHOD FOR Xsample-message) R U oL 1,1 & 4
(REMOVE METHOD FOR %sample-message) .............
(TRACE ?pattern *%action) ................. veeens Ceereene T T
(UNTRACE ?pattern) .................. heereeeiea, Ty vernes
(SET YOUR ?variable TO new-value) ............ Cereriranies Pereeireiiraean. sy 2to?
{RECALL YOUR ?variable) ............ Crereierereraaes crevias Cerieidens Veridasddinea, TY 7
(RECALL EACH OF YOUR ?variable-pattern) ........... ferveraerees ........ reoy ?
, (INCREMENT YOUR ?variable B,Y,?am,ouht) ...... ..... iy ?by 7
(MULTIPLY YOUR ?variable BY ?factor) ....... e rverires MYX 7 by ?
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(ADD ?new-item TO YOUR LIST OF ?1ist-name) ..........c.cooeee veerrene add ? tylo ? 19
(ADD ?new-1item TO YOUR LIST OF ?Vist-name REGARDLESS) ....... add ? tylo ? reg 19
(REMOVE ?01d-1item FROM YOUR LIST OF ?1ist-name) ........... <. remove ? fylo ? 20
(CONSIDER ?1ist-of-names SYNONYMS) ............... e teesensenssaneennerarareerasreres 20
(CONSIDER ?names COMPONENTS OF ?variable) ......cocoevviiiaiiiciniiniciienns P 20
(CONSTRAIN YOUR ?variable TO EQUAL ?function OF ?variable-2 OF Tother) ...... 21
: (LIST ALL YOUR VARIABLE NAMES) ...oiiivvvrrineinneaiiarosseiensisccssesnisanaoes layvn 2z
(FORGET YOUR 2variable) ......cccoovvieriiiimimimimiuninsninnsssenncienneisnss fy 7 22
{FORGET EVERYTHING) .......coovevnviiiinnnnnes eeeeennraesantriscotranisenanseses ense fe 22
(MEMORIZE 71L@M)  .eiiriiiiiiurnierainesiistessnesistsesnnisasssionsasnsisossscnnnes mem ? 23
(RECALL AN ITEM MATCHING 7pattern THEN %actions) ...cocvveevinnse raim 7 then % 23
(RECALL EACH ITEM MATCHING ?pattern THEN %actions) ............. reim 7 then % €3
(COLLECT ITEMS MEMORIZED MATCHING ?pattern) ........cceveevuiimeinicninnees cimm ? 24
(FORGET ITENS MATCHING ?pattern) ....ccciiiiiiiiiiiaieiiinnninieietisinsenens fim ? 24
(PLAN NEXT %acti0on) .ooovvrernieiniieiininnniininieninn, ederesenngtesertnssnse pn % 25
(PLAN AFTER ?number 7units %action) .........cceeeeeiiiiiiiineniiiieninnns pa?7?% 25
(PLAN AFTER RECEIVING ?event-pattern T0 message-form) ........... parx ? to 7 26.
[ 1004 T PP e RE PR IR Y 26
(GRADUALLY %action 2amount) ..........cocecevnviicrinneens ceerererereaneiinians grad % 7 26
(GRADUALLY SET YOUR ?variable to ?7value) ......cococvevriiiiiiniinnnas gsy ?7to ? 28
(DO AT SPEED ?speed ¥action 7amount) ........ccciciiiiriniiiniacneioninents das 7% ? 29
(DO IN ?number 7time-units %action famount) ...........cccoeeeennes doin? 7% ? 29
(ASK 7another ¥MeSSAge) ........ovvveriirverererrersnrieisnsiionoeinens TS teereeeeas 30
(SEQUENTIALLY %aCEiONS) +vevivereuinrniiiriineiiienanarieneneiossrasnioniisrasnsans se % 30
(CONGURRENTLY %aCETONS) .vvveveressavessesseresescererersssneneseens e co% 31
(REPEAT 7message FOREVER) .....ocoieiiininieiiiiiireenennincoicinionaneenes I 34
(REPEAT 7message ?number TIMES) ....ccoviviiviiiirieneneneneiesinistisiioncrsensonsons 34
(STOP EVERYTHING) ..evuiinnuniriiniinversicrasersanensinnercosesenens eiesasensrenny cesveees 34
(WALIT FOR %STONAT) 1.iiiiiiieiiviiiirerriisiiiitinestusssnasssssueniasssenssseans eees WE X 35
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(AS‘K YOUR ?variable *message) ...............ooioinilll T eeer AY 7%
(A_SK EACH OF YOUR ?variable %message) .................... e esieveenens. aeoy 7 %
(BROADCA_ST TO YOUR ?others-name xmessage) ...........oeceiniiineiinniin.l, bty ? %
(DO OR BROADCAST TO YOUR ?others-name Xmessage) .................... . dobty 7%
{KEEP DOING UNfIL ?predicate Amessage) ...........ooceiiniiniinl, veeerneee. kdu ? %

Patterns that Performer Handles

(WHEN DRAWING DO Xmessages) ....................... et e i e i e e eens Wdd %
(WHEN DRAWING USE ?draw-procedure OF *draw-args) ........ creeresiiiae Wdu ? 6f %
(SHOW) oo e e reeas s
(HIDE) oo berrieneies Creveriieaan,
.(SHO-W ALL) oo N Ceereeserna.
(HIDE ALL) oo .
(MOVE FORWARD Pamount) ..., ettt reieeererans Ceern Cerreenies B S . mf ?
(MOVE BACK' Pamount) ...........ceieeiiiiinilll B L KT PP RSO '\ 1K ;
{MOVE RIGHT Pamount) ... VeddiedTins ml?
(MOVE LEFT ?amount) ...................... Ceeres e, [REETPPPIPTIN ceo.mr ?
(MOVE UP 7amount) ....... RETTTRTTOR e, Crereriieden, Ceesreraes crees ceer. MU ?
(MOVE DOWN ?amount) ............. e e e erereseea. vrevesoiid ?
(TURN RIGHT ?degrees) ............................ R Y TR PRGNSR f S
(TURN LEFT ?degrees) ......... e —— ) €1 7
(SET YOUR STATE TO ( ?xcor ?ycor theading)) ...... crares frereniiiiiiniiaiie,. SYSt 7
(SET YOUR XCOR to ?value) ....... e, e e, SYXE 7
(SET YOUR YCOR to value) ....iiiiiiiiiiiiiins .............. Cedsviens weseeeees SYyt ?
(SET YOUR POSITION TO { ?xcor ?ycor)) ........ e bt eraeieeirnreenennes Creaneea sypt ?
(SET YOUR HEADING TO ?direction) ............ e — e . syht ?
(GROW ?amount) .................. e ereea e e i e iade I
(SHRINK ?amount) ................. e, cearnren D
({or SHRINK GROW} BY FACTOR ?number) ..........., teisressrsesiiieiiiiss.. SO OR gbf
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(SET YOUR WHOLE TO whole) ........ovvvvivininiininienninis .................... sywt ?

(ABSORB YOUR PARTS) ....viveviiviniiiiinniininniieenesnns e eer et iraaesaeeas ayp
(FUSE YOUR PARTS) ...evveverrerereeseeeeenneeeseessnsaens e e fyp
(RUN 7action) ............................................................ ererseianans
(PEN DOWN)  Loiviiniininintiiininitineiietetsrerrienransesiserensnsnensnans tereraerenres pd
(PEN UP) .vvevviieeeenireeeereeereecnrens et eeee DU
(DO IN ?number ?timé-units SET YOUR COLORS TO ?colors) ...... doin?? syét ?
(PREPARE TO MIX COLORS WITH ;Iother-colorS) ............... Cereerarsiananaes ptmcw ?
- (HAK_E Tname INTERPOLATION TO ?another-performer) ................. make ? itx ?
(LET ME DRAW YOU) ......cvervrnnnnn, e vrereens Tmdy

Patterns that Stage Handles
(WIPE)  otiniiiiiiniiiitiinteteriineeeiennenerernererennanss fererereeenreeneaeteetrernenreaen
(CLEAR) oevveiveinnreeiniieecnieeenresnes,s e ettt areaen

Patterns that Clock Handles
{RUN FOR ?Tength units) .......ccoeiinnveenrereceecnans feeseriireeessarasenaeais rf?7?

Patterns that Movie Handles

(FILM THE NEXT ?fiTm-Tength 2units) ........cooeviininiiniiiecnnnrennnnenes ftn??

(FILM SECRETLY THE NEXT 21ength 2UNTES) ...vvivvvvrrrererrnnernncrsneensens fstn 7 7
(PROJECT) terniniiiiiiiiiiiininriieieninienneneianes et er et b e et e ee e eranaetrararens
(PROJECT SHOWING EVERY ?so-many FROM ?begin TO ?end) ........ pse ? from ? to ?
(énoaecr FRAMES ?begin‘TO ZLT: ) SO OO veeeiensennes pj ?to?
(PROJECT STARTING AT FRAME ?begin SHOWING EVERY 7so-many) ........ psaf ? se ?
‘ (PROJECT SHOWING EVERY 7SO-MANY)  tvivtrirrininsiiiieseesrssensserenoarsenassnnes pse 7
(PROJECT FRAME 7NUMDEF) vvveerevveennn. e e eee—aaerara pf ?
(COMPILE 7F110-NAME) .vvevverevereeereeserrrenns RRTUIRRR et
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erasability ................ooooill rerrereeian D SO SN Y o7 SR -3 |
default-whole e s s is et eeee s B]
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Variables Treated Specially by Clock
frames-per-second .............. errereraeniiiieane, Cesaeens vesaias ceersreaeieans coeen.fpS

ticks-per-frame ................... rrens eveenens e i eierireieen PRUDPTRRIE <1 3

speed .............. Crersseresciernnes PN Cereaesees S .e
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