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ABSTRACT.

Methods for calculating the distribution of absorption densities in a
cross section through an object from density integrals along rays in the
plane of the cross section are well-known, but are restricted to particular
geometries of data collection. So-called convolutional-backprojection-
summation methods, used now for parallel ray data, have recently been ex-
tended to special cases of the fan-beam reconstruction problem by the addi-
tion of pre- and post-multiplication steps. In this paper, I present a
technidue for deriving reconstruction algorithms for arbitrary ray-sampling
schemes: the resulting algorithms entail the use of a general 1inear opera=
tor, but require little more computation than the convolutional methods,
which represent special cases.

The key to the derivation is the observation that the contribution of
a particular ray sum to a particular point in the reconstruction essentially
depends on the negative inverse square of the perpendicular distance from
the.point to the ray and that this contribution has to be weighted by the
ray-sampling density. The remaining task is the efficient arrangement of
this computation, so that the contribution of each ray sum to each point
in the reconstruction does not have to be calculated explicitly.

The exposition of the new method}is informal in order to facilitate
the application of this technique to various scanning geometries. The
frequency domain is not used, since it is inappropriate for the space-
variant operators encountered in the generé] case. The technique is il-
lustrated by the derivation of an algorithm for parallel-ray sampling with

uneven spacing between rays and uneven spacing between projection angles.




BACKGROUND AND MOTIVATION.

Recent interest in computeriied axial tomography as a means of deter-
mining absorption densities in a cross section through an object has led
to a variety of basic algorithms [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Part
of this interest stems from the diagnostic benefits derived by the medical
community from scanners utilizing X-ray sources which provfde cross sections
of the head, body and, soon, the heart. Reconstructioh from the mass of
data generated by many ray samplings was not feasible before the advent of
small, fast computers, and the choice of reconstruction method depends to a
large degree on the speed with which such a computer can perform the calcu-
lations. As a result the so-called convolutional-backprojection-summation
algorithm has emerged as the method of choice and is largely displacing
competing methods using two-dimensional Fourier transforms or iterative
solution techniques used to solve large sets of sparse equations. These
other methods do still find application in specialized areas where speed
is not the main criterion of success. A further advéntage of the methods
based on convolution is that each collection of density integrals, a1$o
called a projection, can be treated in a separate computation [6, 117.

Reconstruction methods developed so far, however, have mostly been
suited to the parallel-ray projection method of data collection, commonly
employed in early, slow compuferized axial tomographic scanners [9]. Here
density integrals or ray sums are sampled evenly along a line perpendicular
to the rays (see figure 1); such a collection of data is called a projection,
and projections are formed for a set of projection angles evenly spaced
over either 180° or 360°. Reviews of a variety of reconstruction algorithms

for this ray—sampling scheme may be found in several references [12, 13, 14].



Since X-rays cannot be focused or deflected as visible Tight rays can,
the pencil beams used for parallel-ray sampling are obtained by tight
collimation of radiation emitted from an X-ray source radiating into a large
solid angle. Most of the output of the source is therefore wasted. Since
a certain number of X-ray photons must be absorbed in order to get a suffi-
ciently accurate estimate of the density integral a1ong the ray, a great
deal of time elapses before all ray sums have been observed. In the mean-
time, the object may have moved. For these and other reasons, modern
scanners use fans of rays striking a multiplicity of detectors (see figure
2). A whole projection may now be measured in the time it would have takeh
to measure a single ray sum with the older system [15, 16].

One difficulty with the so-called fan beam approach is that ray sums are
no longer evenly spaced in terms of ray direction and distance of rays from
the center of the region being scanned. As a result, conventional reconstruc-
tion techniques do not apply without modification. Resorting the ray sums
and interpolating to approximate parallel-ray data has not proved very ef-
fective, because accuracy is compromised by the interpolation step [15, 16,
17, 18].

Convolutional reconstruction methods have been modified, however, to
deal with two very special cases of this ray-sum collection scheme (19, 20,
21]. The first method applies to the situation where the fan is sampled
evenly along a line at right‘angles to the Tine connecting the source to
the center of the region being scanned. Such data collection can be achieved
only with a detector érray that co-rotates with the source of radiation.
This puts a demand for exceptionai stability on the central detectors in

the array, since points near the center of the region being scanned are



"seen" only by a few detectors during the complete scan [22].

The second method applies to the situation where the detector array
Ties on a circle about the center of the region being scanned with radius
equal to the radius of the circle on which the source moves. This geometry
lTends itself to the use of a fixed detector array with consequent simplifi-
cation of the scanner mechanics. Since they 1ie on the same circle, there
is a spatial conflict between the source and the detectors. If they are
placed on circles with differing radii, the special case solution no longer
applies. The Tatter geometry is in fact common amongst proposed fast scanners.

Clearly a method is needed for deriving algorithms similar to these
modified convolutional methods for data collected by arbitrary sampling of
the ray-sum space. Unfortunately, as it turns out, convolutional-backpro-
Jection-summation techniques apply only to a few special geometries. Even
the two fan-beam reconstruction methods mentioned above augment the convolu-
tional step of the algorithm with a premultiplication of each ray sum by a
factor depending on thé position of the corresponding ray in the fan. Further-
more, both involve the use of a postmultiplication during the summation step
with a factor which depends on the position of the point being reconstructed
relative to the fan currently being treated.

While the main impetus for this work comes from the computerized X-ray
transverse axial tomography application, similar methods are of importance

~in such other fields as radio astronomy [2, 3] and electron microscopy [4, 5].



PREVIEW.

The algorithms developed here use general linear operators. Operations
using general linear operations can be thought of as spatially varying con-
volutions, where the "kernel” or "point-spread-function" is allowed to de-
pend on the position at which the operator is applied. The derivation de-
pends on the following observations, which will be elucidated in the next

few sections:

<% The contribution made by a particular density
integral or ray sum to a particular point in the
reconstruction is a function of the perpendicular

distance from the point to the ray.

% This contribution is essentially proportional to the
negative inverse of the square of the distance, ex-
cept for rays passing very near to the point in

question.

<% The contribution of a particular ray sum has to be
divided by the local ray-sampling density, to account

for uneven sampling of the ray-sum space.

% The ray-sampling density is simply the inverse of the
Jacobian of the transformation from a convenient uni-
form scanning coordinated system to the coordinates

used in parallel ray reconstruction.



% Using a general linear operator, it is possible
to arrange the computation efficiently for most
scanning geometries of interest. That is, each
generalized projection gives rise to a separate
computation and it is not necessary to determine
the contribution of each ray sum to each picture

cellvexplicitly.

<% For a fewspecial cases, the general linear operator
is spatially invariant and thus is simply a con-
volution. Parallel-ray sampling is the best known

example of this.



SOME PRELIMINARY DEFINITIONS.

The notation used here is similar to that used by Lakshminarayanan
[19, 6]. The set of rays sampled is a finite subset of the two-parameter
family of straight lines in the plane. Various ways can be envisioned for
designating particular rays. We may, for example, specify the inclination
6 of a ray (relative to the upright axis in figure 3), as well as the per-
pendicular distance ¢ from the center of the region being scanned. For some
scanning geometrieé, othér parameters will be more suitable, but for para-
1lel-ray systems this method is convenient, because, for this case, the
projections correspond to evenly spaced values of 6, while rays within a
projection correspond to g!gnlx_spaced values of 2.

Let p(2,8) be the density integral or ray sum along the ray (2,6). In
practice we will be given only a finite set of these density integrals,
corresponding to discrete»values of 2 and ¢ which depend on the scanning
geometry. If we choose to use polar coordinates (r,¢) fo designate points
in the region scanned, and let f(r,¢) be the absorbing density at the point
(r,9), then our task will be to reconstruct values of f(r,@), given a set
of values of p(2,9).

One important quantity we will need is the perpendicular distance, t,

from a given point to a ray. Using figure 3 again, we get,
t=2-rcos(s - ¢) (1)

If we Tet &' be the value of 2 torresponding to t = 0, the case of a ray

passing directly through the point, then &' = r coﬁ(e - ¢), and so

t=12-23 (2)



RADON'S FORMULA REVISITED.

The earliest known solution to the reconstruction problem is given by
Radon in his paper of 1917 [1]. His result will not be rederived here, since
advanced mathematical concepts are needed and because he has given such a
clear account of the proof. To apply his formula, we have to assume that
f(r,¢) is bounded, continuous and zero outside the region scanned. Then
p(2,8) will also be zero outside a certain range for &. Further, p(2,6)
will be continuous. Now assume that the partial derivative of p(2,e) with

respect to ¢ is continuous, too. Radon's inversion formula then is [21, 15, 1],

flr,p) = —— o +°°(- 1y 3 5(s,6) de de (3)
¢ 41;2./(; f t oL P

The above result does not strictly apply if some of the conditions --
particularly the one régarding the continuity of the partial derivative of
p(2,6) -- are Vio1éted. We may expect certain artifacts or reconstruction
errors in and near regions where the assumptions fail to apply. The mag-
nitude of the resulting errors depends on the details of the numerical
approximations made to the above equations.

The inner integral is singular, since t = 0, when 2 = ¢' (equation 2).
This singular integral may be interpreted as

2'-¢ +o0

h‘m/ (- %)%p(z’e) iy + h‘mf (- %)%p(g,e) ds (4)

e~+0 >0 e

Integrating both terms by parts, we get
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lim [—l— p(e'-e,0) + -l— p(2'+e,0) + /(- l;)D(R,G) dﬂ] (5)
e>0 It] t
t) 2 ¢

Since p(2,6) is assumed to be continuous with respect to %, we can rewrite

this.
-I. Foo
m / F (t) p(2,6) de (6)
e~+0 . €
where
F(t) = o for |t] < e (7a)
= - ;%- for |t] 2 e (7b)
t

Combining the above results,
. (2 Tim /‘+°°
f(r,s) = Z;Zl/r 50 Fe(t) p(2,0) de de (8)
0 -

% Clearly each density integral or ray sum p(2,0)
contributes to each point in the reconstruction

according to its distance from that point.

% In fact, all but those rays passing very close to
the point, contribute with weight proportional to
the negative inverse of the square of the distance

from the point.

%k The weight of the contributions of rays passing

near the point is such that the sum of all weights
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is zero. That is,

+c0

/ F(t) dt =0 (9)

The above three observations are important in the derivation of the new
algorithms. The only other problem that will have to be tackled concerns
the calculation of ray-sampling density. Then the techniques developed here

can be applied to particular scanning geometries.
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REVIEW OF THE CONVOLUTIONAL-BACKPROJECTION-SUMMATION METHOD.

Let the inner integral (equation 6) discussed in the previous section
be called g(s',8). Clearly it can be thought of as a convolution of the
original projection data p(2,6) with the filter function Fe(t), since
t=12"-2¢ and Fe(t) are symmetric:

11’m/+°°
9(258) = 9 ) F(a' - 2) plase) do (10)
We can then use the outer integral (equation 8) to calculate the densities

from this convolved or filtered data:

2n
fr,¢) = —]—2— / g(2',0) de (11)
T 0

In practice we know only a finite number of ray sums and consequently have
to approximate both of the above integrals by finite sums. If we choose to

~observe M projections evenly spaced in angle from ¢ = 0 to 6 = 2r, we may

approximate the outer integral (equation 11) by

M-
1 .
£(r,0) = > jz;o 9;(2") 60 (12)

where §6 = (2n)/M is the angular increment between successive projections.

th projection evalu-

Note that gj(z') is the convolved projection data of the j
ated at 2' = r cos(6-¢). For reasons of computational efficiency, we cal-
culate the convolved data at only a small number of places -- typically the
same ones for which projection data is available. This allows the use of a

single convolution per projection, independent of the location of the points
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in the reconstruction. The value of gj(z'), needed in the above summation,
must however then be estimated by interpolation from the values at those
places where the convolution was actually computed.

This convolution will be discussed next. If we let W be the width or
diameter of the region being scanned, and N the number of evenly spaced rays
across this width (sampled by the detectors) we can approximate the inner

integral (equation 10) by

N -1

g.ilj = Z F'i'-'i pij 82 (]3)

i=0

where 62 = W/(N - 1) is the uniform interval between successive rays in a
projection and pij is the ray sum for the ith ray in the jth projection (see

figure 4). Now the jth

ray passes at a distance &' = i' 82 - W/2 from the
origin, so this is the value of &' associated with gi'j' From this relation-
ship one can determine which values of gi'j should be used in the interpola-

tion for estimating gj(z'). One uses gi'j and g(i. where

+1)J
it= (s Ws2)/ss| (14)
We next turn our attention to the discrete approximation to Fe(t)

(equation 7),

Wi

F = - ——— for k # 0 (15a)
(k s2)2

Fo= 2 3 F - (1s)

| k=1

The value of F0 is chosen simply so that the sum of all filter coefficients

is zero, in view of a similar condition on Fe(t)‘ (equation 9).
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The weights, Wy s give some flexibility in the numerical approximation to the

singular integral (equation 10). Some common choices are:

1. Ramachandran & Lakshminarayanan (1971)

W, = 2 for k odd, and W, = 0 for k even (16)

2. Shepp & Logan (1974)
W, = 4k2/(4k? - 1) (17)

3. Horn (1976)

W, = 1 (18)

The third set of weights corresponds to the trapezoidal rule for numerical
integration or quadrature. Linear combinations of the above weights may also
be used. For example, a combination of (1/3) of the first set and (2/3)v
of the third set produces weights which are alternately (2/3) and (4/3).
This corresponds to Simpson's well-known rule for numerical quadrature.
The second set of weights on the other hand corresponds to a numerical in-
tegration formula which takes into account the singular nature of the in-
tegral being approximated, as will be shown later.

By summing the series indicated (equation 15b), one finds that

(62)2F0 = 712/2, 4 and 72/3 for the three sets of wefghts suggested.
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CHOICE OF WEIGHTS.

This analysis differs from the standard derivation of the weights W -
These coefficients-are commonly obtained by inverse Fourier transformation
from a filter response designed in the frequency domain. Their differences
are usually discussed in a somewhat ad hoc fashion in terms of the need to
Tow-pass filter the projection data in order to avoid aliasing or under-
sampling. Clearly, this is wrong, since to avoid the effects of under-samp-
1ing, low-pass filtering has to be'performed before sampling. After sampling
we throw out the good with the bad, since they are no longer distinguishable.
(Fortunately, the finite size of the detectors and to some extent the finite
size of the source of radiation, account for some low-pass filtering of the
projection data before sampling and thus help to limit the magnitude of the
resulting artifacts).

~ The derivation of these weights as coefficients in formulae for numéri-
cal quadrature instead seems more insightful. The connection between these
two points of view is made by Hamming [23, 24] in his discussion of the
frequency response of integration formulae.

Different choices of weights lead to different approximation behavior.
As one might expect, there is a trade-off between noise and resolution. Ran-
dom additive noise in the density integrals leads to noise in the final re-
construction. The amplification factor depends on not only the details of
scanning geometry (number of projections and number of rays per projection),
but also the weights chosen. The first filter above (equation 16), for ex-
~ ample, has fine resolution at the cost of sensitivity to noise and sharp
contrasts, makes full use of the sampled projection and does not attenuate

higher frequencies. The third filter, on the other hand (equation 18) lies
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at the other extreme and fends to blur sharp edges, while suppressing noise;
it removes some of the higher frequency components of the sampled projection
data. The second filter (equation 17) lies between the two extremes. In
practice, one should allow for the possibility of using different weights

to suit different applications, in order to be able to exploit fully the
trade-off between noise amplification and resolution.

Overshoot in regions Where p(2,8) does not have a continuous derivative
with respect to g is a common problem with filters thét produce high resolu-
tion results. They are most sensitive to violations of the assumptions un-
derlying Radon's inversion formula.

Finally, note that the two summations (equations 12 and 13) allow us to
evaluate the estimated denéity at arbitrary points (r,¢). In practice, one
uses a fixed grid of picture cells, in the form of some regular tesselation
of the plane. This limits the amount of‘computation and reflects the fact
that resolution is limited, in any case, by the sampling width (s¢) along
each projection, and that no new information is gained by performing re-

construction on a grid much finer than this.
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RAY-SAMPLING DENSITY.

With the parallel-ray scheme described, sampling is uniform in % and 6.
That is, successive rays in a particular projection correspond to eveh]y
spaced values of ¢, while successive projections correspond to evenly spaced
values of 6. Thus % and 6 are natural coordinates for the rays. Other co-
ordinates are preferred when we are dealing with fan beams or more general
.scanning schemes. Essentially, whatever the scanning scheme, we must find
coordinates ¢ and n natural to the particular geometry,'such that we have

uniform sampling in £ and n. The collection of ray sums p(2,8) for a fixed

value of n will be referred to as a generalized projection. It is simple now

to rewrite the reconstruction formula" (equation 8) as follows:

1 lim
flrsg) =— F.(t) p(2,8) J de dn (19)
4q2 :

where,

J = 32 38 36 98 (20)

3¢ 9n  3& 3n

is the Jacobian of the transformation from (g,n) space to (%,6) space. It
can be conveniently visualized as the factor by which a small area in (£,n)
space is expanded when mapped into (2,6) space (see figure 5).

Since we have uniform sampling in (£,n) space, the sampling density
in (2,0) space equals the uniform density divided by J. To see this more
clearly, et two rays (2,8) and (&',8') be considered “near" each other if
IzA— 2'| < 88/2 and |6 - 6'| < 86/2. Clearly then the number of rays “near"

a given ray is proportional to (1/J) s2 &o.
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<% Consequently, we can state that the ray-sampling

density is inversely proportional to J.

% Further, itiscléar that the contribution of a
particular ray sum to a particular point must be
weighted by J, that is, the inverse of the ray-

sampling density.

Intuitively, this seems reasonable since we do not want to emphasize
contributions from regions of (2,6) space which happen to be sampled more
densely than others. It should be noted that we can no longer expect all
regions_of the reconstruction to be equally well determined or resolved,
since rays important to the reconstruction of one may be sampled more
coarsely than the others. Fortunately, for practical fan-beam systems,
the equivalent change in point-spread function over the region being recon-
structed tends to be fairly small and thus not visually noticeab]e.

We may write (equation 19):

Flrog) = 1 fg(r,¢an) dn (21)
4r2
where
Tim
9(.Y‘,¢an) = e0 Fe(t) J(E,n) P(E,n) dE (22)

In the general case, t = 2 - &' will be a function of both (r,¢) and (g,n).
As a result, the inner integral may have to be evaluated separately for every
point (r,¢) in the reconstruction, for every projection. That is, g is a

function of three variables, unless we further restrict the possible scanning
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schemes. Fortunately, in most interesting cases a variable x(r,4) can be
introduced which is natural to the scanning scheme such that g becomes a
function of x and n only. (This may require splitting the variable t into
a product of a term which depends on £ and one which does not -- the latter
term can be moved out of the inner integral.

If g can be written in terms of x and n only, a great computational
efficiency arises, because the inner integral has to be eValuated only for
every x(r,¢) for a given projection, not separately for every picture cell
(r,¢). An example later on will make this clear. Frequently, a good choice

for x(r,¢) is ¢' defined by the equation 2(c') = 2'.
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GENERAL LINEAR OPERATORS.

If we can find a new parameter x(r,¢) as described above, then the in-

ner integral (equation 22) becomes

gbn) = fFLtcEm)] (En) plean) (23)

If we consider n as a parameter for the moment we can write this in a form

that is more easily recognized:

5,00 = [ X 6e) b (6) a2 (21)

This is a general linear operation with kernel Kn(x,g) = Fs(t) J. This
operation is very similar to a convolution aside from the fact that in a
convolution the kernel would be invariant. The above integral may also be
reférred to as a superposition integral and the general linear operator may
also be called a linear space-variant operator. Integrals of similar form
occur in the solution of partial differential equations, in which case the
kernel is called a Green's function. In a number of special cases, such as
uniform, parallel-ray scanning, the kernel is space-invariant (that is, is
a function of y -£ only) and the operation simply becomes a convolution.
Note, by the way, that the sampling-density factor, J, presents no
special problems, representing merely a pre-multiplication of the ray sums.
In fact, under fairly general conditions, J is a function of £ only and so
each ray sum is simply multiplied by a factor depending on its position within

its generalized projection.
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PARALLEL-RAY SCANNING WITH VARIABLE RAY- AND PROJECTION-ANGLE SPACING.

As an illustration of the utility of the new method for finding recon-
struction algorithms, we develop an algorithm suited to parallel-ray scanning
where both the spacing between successive rays in a projection and the in-
terval between successive projection angles are non-uniform.

Let the rays be evenly spaced in g, while projections are evenly spaced
in n. Then we write 2 as a function of &, and we writé 6 as a function of
n. Clearly, 2(g) andAe(n) should be monotonically increasing, continuous
and differentiable. This also assures us that the inverse functions will
exist. That is, given 2 we can find £, and given 6 we can find n. The
Jacobian (equation 20), here simplifies to:

= 9% 98
J = 5 oy (25)

It is clear given these assumptions that J will be positive and that its
two factors may be split between the inner and outer integrals. Now choose

£', such that ¢(g') = 2', that is (equations 1 and 2),
2(g) = r cos [8(n) - ¢] | (26)

Then, t = 2(¢ ) - 2(¢') and consequently we find that the inner integral

is a function of ¢' and n only. Finally (from equations 21 and 22),

1 30
) = —— ') &2 27
f(r ¢). e j/'g(a n) o dn (27)
where
Tim 52
g(;'ﬂ'l) = =0 FS(R - 2") P(i,n) —8‘5_ dE (28)
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Here then we have an inner integral which corresponds to a general linear
operation. It becomes a convolution only if & happens to be a linear func-
tion of £, that is, when the spacing of the rays in a given projection is
uniform.

For discrete sampling of the ray sums we approximate the above in-

tegrals by sums:

flre) = 0= 2 g.(e') . (29)
4e2 j 9 J |
th th

Here again, p,. is thé i” ray sum in the jth projection. If o, is the j
1] J

projection angle and 21 is the distance of the ith

ray from the center of the
region being scanned, then sej is the angular interval dssociated with a
particular projection, while 62{ is the projection interval associated with

a particular ray, where

5ej = (9j+i - ej_i)/z and 62, = (zi+] - zi_])/z (31)
Also,
Witg
Fig = - - for i # i’ (32a)
(Ri - Qa,il)
Foier88:r = 20 Fays 80, (32b)
1°1 1 17!1" 1°1 1

That is, Fii is chosen so that

2F . 82, =0 (33)
1 .
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Here we happen to calculate gi'j for a set of values of &' which corresponds
to the set of values of & for rays whose ray sum is known. One could equally
well have decided to perform the calculation for a different, perhaps evenly
spaced set of values of ¢'. In either case, the values gj(z') have to be
found from the known gi'j by interpolation as indicated before.

Note that the inner sum (equation 30) is not a convolution, but a general
linear sum. Fortunately, it requires Tittle more calculation than a simple
convolution. It is also clear how the above simplifies if either the ray
spacing or the projection-angle spacing becomes uniform.

It should be pointed out that there is a minor bractica] problem due
to the slow convergence of the series (equation 32b) for Fi'i" When rays
are spaced evenly, this sum can be found analytically (equation 15b), while
it is Tikely that numerical techniques are required here. If & is asymptotically
lTinearly related to &, then the error term of the sum evaluated with n terms
is proportional to 1/n. This illustrates the problem as well as suggests
a solution. If we let Sh be the sum of Fi‘idli from i = i'-n to i = i'+n,

then a good estimate of the sum from i = -» to i = 4= is given by

s, = (n+1) Spe] " (n) Sh (34)
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TAKING INTO ACCGUNT THE SINGULAR NATURE OF THE INNER INTEGRAL.

The inner integral (equation 28) can then be written as:

T O —— n 2.. -
i'-1 ’q'1'+] %]

So far, when we approximate the inner integral (equation 28) by the
sum (equation 30), we pay little heed to the singular nature of the kernel
Fé(z - 2'). It is reasonable to suppose that better approximations may be
found by considering methods which deal with the singularity. In this re-
gard we note first thaf the values of the density integral p(g,n) are known
only at discrete points, and that it is reasonable to assume that this com-
ponent of the integrand varies relatively sTowly over small distances along
a projection (in fact, the partial derivative of this function was assumed
to be continuous). The term (-1/t2) on the other hand is known everywhere
but varies rapidly near the point t = 0. We can make use of these observa-
tions after splitting the inner integral into many integrals, each over the
width of one detector.

h

Let the it detector intercept rays lying in the beam between 25 and

2341 (see figure 6). It measures the density integral pij in the jth projec-

tion. Further, let
2;1 = (Sl,.i;'*' Z.,'l_l_-l)/z (353)

and

™
1

A z]_,)/z (35b)

h

[Note that here the center of the it detector lies at (Ri + zi+])/2].

|

Yoo R
> o e [ Dy arTf

i=-0 g, =
i Ri‘ i=i'+1 %5

i+1
(- l—) p(2,6) dao’
t2

7(36)

———
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Now note that t = (& - 2') and

2.
i+]

: . : (e =) .
__._._.L__Zd,H 1 - ! S . W ~ (37)
L5 (2 - 2") (£i+1 - ") (zi - ") (zi+] -2 )(zi - ")

If we use this result and replace p(2,8) with Pij when L S a< %547» then
the inner integral (equation 36) becomes
(z.+ - 2.)
91"3 = _.__._.i______p_['j - ‘Z." i+] ' 1 : p1J (38)
(2]"""] - Z_Ii) 1#1 (2,1-+~! - % )(,Q,'i - 2 )

The reader may verify that this in fact reduces to Shepp and Logan's method
(equation 17) when rays are evenly spaced [that is, when Py = (i - 1/2)82 - W/2,
8% = W/(N - 1)]. More complicated integration formulae may be developed if
one fits low-order polynomials to the values of pij instead of assuming that
the density integrals are constant over the width of one detector. Techniques
for doing this may be found in standard texts on numerical analysis [23].
Here, however, we will be satisfied with the simple form developed above
(equation 38) which is better than the method developed earlier
(equation 30) since there is no difficulty in finding the weights by which
the ray sums are to be multiplied.

The method can be further simplified by using the other form (equation

37) of the integral of (-1/t2):

4o
4 1 1
- S Pt .t Y - P
2 1J -z ) 1 (2.,4-2')  (2.-2")| 1
L i=ie1 | ] i

(39)
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Splitting both sums and rearranging terms leads to the surprisingly simple

result,

.-y ('pij - P(i-m) (40)

‘(gi -2")

9ij .
j

The reader may want to compare this with the original form of the inner in-
tegral (equation 4), from which this result can also be obtained directly.
This numerical approximation of the inner integral is particularly advanta-
geous from a computational point of view since it is no Tonger necessary to
keep a two-dimensional array of pre-calculated weights. This assumes that
one can afford to calculate (zi - 2'), and that the ray sums are replaced
by the differences of ray sums as required above (equation 40). This latter
calculation is needed only once per projection.

The form of the result also implies that reconstruction may be possible
when the ray spacing varies discontinuously, that is, when 2(z) does not
have a continuous derivative with respect to £. This in turn suggests the
poséibility of using evenly spaced detectors; combining the measurements of
neighboring detectors in portions of the projection where high resolution

is not required.
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MOTIVATION FOR STUDYING VARIABLE RESOLUTION METHODS.

In a number of situations, one is intested in reconstructing as object
buried inside some larger entity of less interest. If one were simply to
restrict the scanned region to the object of interest, correct reconstructions
would not be obtained, since the absorbing density is then non-zero outside
the region being séanned. This violates assumptions underlying Radon's
formula. Up to now, the only alternative was to scan the whole region oc-
cupied by absorbing material and reconstruct it with uniform resolution.

(At best, there is‘some saving in the backprojection step, since one need
not calculate the density of picture cells dutside the region of interest).

The new variable resolution method to be illustrated here has the ad-
vantage that the computation of the filtered projection is speeded up con-
siderably since fewer ray sums have to be measured. Of equal importance may
be the fact that less radiation is needed to obtain this smaller set of

measurements.
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DEMONSTRATION OF THE VARIABLE RESOLUTION METHOD.

In order to illustrate some of the features of the new method, a computer
algorithm based on the results derived here (equations 40 and 29) has been
developed. This algorithm has been applied to ray sums ca]éulated from a
mathematically defined object or phantom composed of elliptical parts (see
figure 7). A comparison will be made of the results obtained in three

cases:

(a) .N
(b) N

200 evenly spaced rays, 2 mm apart.

100 evenly spaced rays, 2 mm apart at the center,
8 mm at the edge.

(c) N =100 evenly spaced rays, 4 mm apart.

In order that‘the comparison be fair, all other parameters were held constant.
The region scanned had a diameter W = 400 mm, and M = 150 projection angles
were employed in each case. For case B, the following transformation from

uniform scanning coordinates to actual scanning coordinates was used:

(3) (1 +¢2) (41)

N =

2:

where -1 S £ S #1. In all cases the ray sums were averages obtained by in-
tegrating from the left edge of a beam striking a detector to the right edge
of this beam so as to simulate the suppression of high frequency components

obtained in practice as a result of the finite width of the detectors.

Each projection is first processed to produce the differences required
in the summation (equation 40). The filtered sums are then determined for

positions corresponding to the individual detectors. In order to facilitate
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back-projection, these values are (linearly) interpolated to a much finer,
evenly spaced set of positions. Backprojection proceeds much as it does
for convolutional algorithms by processing each picture cell in turn. For
every picture cell, the appropriate point in the interpolated filtered data
is found by considering the projection angle (as illustrated in figure 4).
The value found there is then added into the sum accumulated for this pic-
ture cell so far. The whole process is repeated for all projection angles.

The picture cells were spaced 1.5 mm and lay inside a circle of diameter
330 mm for the reconstructions shown in figures 8 and 9. For the reconstruc-
tions shown in figures 10 and 11, the spacing was .75 mm inside a circle of
150 mm diameter.

The time required for backprojection was essehtia]ly the same for the
three cases, while the time for the general linear operation in cases B and

C was about one quarter that required for case A, as expected.
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ANALYSIS OF RECONSTRUCTION RESULTS.

The Tow resolution near the edge of the region of reconstruction (where
the rays are spaced 8 mm apart) of method B can best be seen in figure 8.

Not much is visible in this figure of the central components however. Figure
9 more clearly shows the low overall resolution of method C. (It is important
not to be misled by the apparent high resolution of high contrast features

due only to the reduced density scale of this mode of presentation). The

good réso]ution of method B in the central regions is illustrated by figure
10, as well as by the density profiles in figure 11. The density.profiles

are along the lines indicated in figure 12. It appears that while the
variable resolution method, B, requires only about as much computation as

the Tow resolution method, C, it has about as much central resolution as

the high resolution method, A.

The reader will have noticed the reconstruction artifacfs particularly
apparent in the high contrast presentations (figures 9 and 10). The phantom
was purposefully constructed to include high contrast features outside a
central region with a variety of Tow contrast features, since artifacts
radiating outwards from the former often degrade the presentation of the
latter.

As indicated earlier, these artifacts are due to the projection data's
failure to obey the assumptions underlying Radon's formula. That is, the
partial derivative of p(z,8) with respect to ¢ is not everywhere continuous.
It is easy to see that the discontinuities occur at the edges of the elliptical
componefits of the phantom and that line-like artifacts oriented tangentially
to the high-contrast components radiate across the reconstructed density

distribution. The exact magnitude of these artifacts depends on the particular
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alignment of a projected edge relative to the edges of the detectors. It is
easy to see, too, that the magnitude of these effects varies inversely with
the number of projection angles, since the contribution of each projection
varies in this way. Further, it can be shown that the magnitude of this ef-
fect also decreases with the number of rays in a projection. The artifacts
are visible in the examples presented here because both the numbér of pro-
Jjection angles (150) and the number of rays per projection (100 or 200) are
relatively small and because of the strong contrast between some of the large
features in the phantom.

The important point is that these artifacts, while visible, do not
mask the Tow contrast detail in the center, and that the magnitude of the
artifacts in the central region are not significantly larger in the recon-
struction obtained using method B, than they are in those obtained using
method A. The new method would be of less interest if this were not the

case.
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SUMMARY AND CONCLUSIONS.

A fechnique has been developed for finding reconstruction methods for
arbitrary ray-sampling schemes. The algorithms use a general linear opera-
tor, the kernel of which depends on the particufar scanning geometry. It
is suggested here that the kernel coefficients can be fruitfully considered
as weights in a method for numerical quadrature of an integral. In a few
special cases, the kernel is a function of the difference of coordinates
oh1y, and the general linear operation becomes simply a convolution. In
this case, the algorithm essentially reduces to the familiar convolution-
backprojection-summation method.

As an illustration of the more general case, an algorithm was derived
which applies to parallel-ray data when the spacing of rays in a projection
is uneven and the projections are spaced unevenly in angle. The new method
requires little more computation than does the convolutional method.

Importantly, the Fourier transform is not used in the derivation. In-
deed, it does not apply to the linear space-variant systems that occur in
the general case, and also in particular cases of practical importance.

A future paper will explore the application of this general method to a
variety of fan-beam scanning geometries suitable for modern tomographic

machines.



1.

-32-

REFERENCES.

J. Radon, "Uber die Bestimmung von Funktionen durch ihre Integralwerte

langs gewisser Mannigfaltigkeiten," Berichte Saechsische Akademie der

Wissenschaften, Vol. 69, pp. 262-279, 1917.

R. N. Bracewell, "Strip integration in radio astronomy," Aust. Jour. of

Phys., Vol. 9, pp. 198-217, 1960.

R. N. Bracewell & A. C. Riddle, "Inversion of fan-beam scans in radio

astronomy," The Astrophysical Journal, Vol. 150, pp. 427-434, 1967.

D. De Rosier & A. Klug, "Reconstruction of three-dimensional structures

from electron micrographs,” Nature, Vol. 217, pp. 130-138, 1968.

R. A. Crowther, D. J. De Rosier & A. Klug, "The reconstruction of a three-
dimensional structure from projections and its application to electron

microscopy,” Proc. Roy. Soc., London, Ser. A, Vol. 317, pp. 319-340, 1979.

G. N. Ramachandran & A. V. Lakshminarayanan, "Three-dimensional reconstruc-
tion from radiographsand'e]ectronlnicrographs: Application of convolution

instead of Fourier transforms," Proc. Nat. Acad. Sci. U.S., Vol. 68,

pp. 2236-2240, 1970.

B. K. Vainshtein, "Finding the structure of objects from projections,"

Sov. Phys.-Crystallogr., Vol. 15, pp. 781-787, 1971.

A. M. Cormack, "Reconstruction of densities from their projections with
applications to radiological physics," Physics in Medicine and Biology,

Vol. 18, pp. 195-207, 1973.




9.

10.

11.

12.

13.

14.

15.

16.

-33-

G. N. Hounsfield, "Computerized transverse axial scanning (tomography):

Part 1. Description of system," Brit. Jour. Radiology, Vol. 46, pp. 1016-

1022, 1973.

Robert B. Marr, "On the reconstruction of a function on a circular domain
from sampling of its line integrals," Jour. of Math. Anal. and Appli.,

Vol. 45, pp. 357-374, 1974.

L. A. Shepp & B. F. Logan, "The Fourier reconstruction of a head section,"

IEEE Trans. Nucl. Sci., Vol. NS-21, pp. 21-43, 1973.

R. Gordon & G. T. Herman, "Three-dimensional reconstruction from projec-

tions: A review of algorithms," Int. Review of Cytology, Vol. 38,

pp. 111-151, 1974.

R. M. Mersereau & A. V. Oppenheim, "Digital reconstruction of multi-dimen-

sional signals from their projections," Proc. of the IEEE, Vol. 62,

pp. 1319-1338, 1974.

R. A. Brook, & G. Di Chiro, "Principles of computer assisted tomography

in radiographic and radio -isotopic imaging," Phys. Med. Biol., Vol. 21,

pp. 689-732, 1976.

J. W. Beattie, "Tomographic reconstruction from fan beam geometry using

Radon's integration method," IEEE Trans. on Nucl. Sci., Vol. NS-22,

pp. 359-363, 1975.

Z. H. Cho & J. K. Chan, "A comparative study of 3-D image reconstruction
algorithms with reference to number of projections and noise filtering,"

IEEE Trans. on Nucl. Sci., Vol. NS-22, pp. 344-358, 1975.




17.

18.

19.

20.

21.

22.

23.

24.

-34-

L. Wang and Z. H. Cho, "3-D reconstruction algorithms for fan beam

scans," Image Processing for 2-D and 3-D Reconstruction from Projections,

WB-61-64, Topical Meeting of the Optical Society, August 4-7, 1975,
Stanford, 1975.

P. Dreike & D. P. Boyd, “Convolution reconstruction of fan beam projec-

tions," Computer Graphics and Image Processing, Vol. 5, pp. 459-469,
1976.

A. V. Lakshminarayanan, "Reconstruction from divergent ray data,"
TR-92, Dept. of Computer Science, State University of New York, Buffalo,
1975.

Lily Wang, "Three-dimensional reconstruction with a fan beam scanning
geometry, ATR-75(8139)-2, The Aerospace Corporation, E1 Segundo, CA,
1975.

G. T. Herman, A. V. Lakshminarayanan, A. Naparstek, E. L. Ritman, R. A.
Robb, & E. H. Wood, "Rapid computerized tomography," in Medical Data

Processing, London: Taylor & Francis Ltd., 1976, pp.

G. Kowalski, "Reconstruction of objects from their projections: the
influence of measurement errors on the reconstruction," IEEE Tran.

on Nucl. Sci., NS-24, pp. 850-864, 1977.

R. W. Hamming, Numerical Methods for Scientists and Engineers, New York:

McGraw-Hill, 1972, pp. 323-330.

R. W. Hamming, Digital Filters, Englewood C1iffs, N.J.: Prentice-Hall,

pp. 37-41, 1977.



FIGURE

-35-

CAPTIONS.

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Parallel-ray scanning geometry. Many projections are measured,

each with rays arriving in a particular direction.

Fan-beam scanning geometry. Many projections are measured, each

with the source in a particular position.

Designation of particular rays and calculation of distance be-

tween a ray and a point in the region being scanned.
Detailed geometry of a parallel ray projection.

Transformation from uniform scanning coordinates to coordinates
used in Radon's inversion formula. The Jacobian is the ratio of

the area of the quadrilateral A'B'C'D' to that of ABCD.

Positions of detectors along projection as defined in derivation

of numerical approximation to singular integral.

Outlines of the elliptical components of the phantom used in the
demonstration of the variable resolution method. The numbers in-

dicate the absorbing densities of the components.

Reconstructions obtained in the following three cases:

(A) 200 evenly spaced rays

(B) 100 unevenly spaced rays

(C) 100 evenly spaced rays

In this figure black corresponds to a density of -.06, while white

corresponds to a density of 1.22.



Figure .9, .

Figure 10.

Figure 11.

Figure 12.
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The same reconstructions as in previous figure displayed with higher
contrast. Here black corresponds to a density of .94, while white

corresponds to a density of 1.06.

Higher resolution display of central regions of the reconstructions

shown in previous figures.

Horizontal density profiles through the middle of the central
circular component of each of the three reconstructions. While
method B requires only about as much computation as method C, it

gives rise to resolution about as good as method A.

Lines along which density profiles of previous figure were taken.
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