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Abstract

This paper presents a system for understanding the concept of near and
far, weighing such factors as purpose of the judgement, dimensions of the
ob jects, absclute size of the distance, and size of the distance relative
to other objects, ranges, and standards. A further section discusses the
meaning of phrases such as wery near, much nearer than, and as_near as.
Although we Will speak of near as a judgement about physical distance, most
of the ideas developsd Wwill be applicable to any continuous measurable
parameter, such as size or time. An adaptation for rows (discrete
spaces] is made as well.



"It"s not the pale moon that
excites me, that thrills and
delights ne, oh, no == it"s
just the nearpess of youw"

= Med Hashington
{popularised by Glennm Millerl
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SCOFE AND METHOD

The question of near falla roughly into twuo parts. Une part
is how to put together vafious kinds of geometric inforsation io
decide the nesr threshold, The other is how to extract the above
information fron coniest and gensral kpowledge., This paper will deal
chiefly with the firast part. 1% is therefore in the tradition of some
recent high=leval viasion dork, and will deal more with geosetry and
thresholdas than with language understanding or structure of Kpowledge,
though there is a section on different linguistic usages of near.

The thresholding systen defines several geomatric paramaters
of a situation: range, standard distance, amd object size. The first
tuo of these may have both local (specific to the present aituation)
and global (typical) values, and the object size information takes
gome account of shape as uell. From each of these, a near threshold
may be defined. These different thresholds are then "lineariy®
reconciled by taking their geonstric neana,

While 1 do not specify in detail how to make the appropriate
choices for each of these paramsters in a situation, | do show thru
many examples that commonsense choices lead to a8 good threshold. Thus
tha system provides a framsuork to guide selection of relevant
geamatric information from a situation by telling what kinds of
parameters are deaired, and then it tells what to do uith these
parameters,

Let's conaider an exanple, |f a motorist asks me vhether AIT
is far from Harvard, | can use the fact that people driving by car in
g city have a range l{e=pectied mawimum distancel of the diareter of the
city, or about 1B milea for the Boston area, to infer that near means
one-eighth of this, or 2 miles. Thus Harvard ia near HIT to a Boston
motarist, barely. [F a friend of mineg in another city asked me the
same question out of curiosity, so that the method of transportation
uas unclear, | could again use the range to get a threshold, Since he
knous only toat the tuo places are both in the Boston area, the range
would again be the diameter of the Boston area, and the ansuer wowld
once more be 2 miles,  This shows how a saliont geometrical paraseter
can often be succeasful by used aa a “defawi!™ range, regardless of the
exact purpose of the near judgnent. On the other hand, if a
pedestrian asked me the question, or if my friemt already knew both
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places were in Cambridge, | would use smaller ranges appropriate to
these situations.

Although [ give marmy examples in this paper to illustrate the
theory, [ have rot conducted empirical studies of the meaning of near
on any hupan subjects other than mysae!f.  However if such studies
reveal that the theory does not guite reflect general usage, 1 have at
least provided a basic vocabulary of concepts which, with minor
ad juatments, is likely to be able to represent the general usage.

ORIGIMNS AND RELATED WOHY

In <Hinssy 15974> attention is called to the lack of uaefulness
of continuous-range numerical data. In using a measurement, what jia
ultimately used, wery often, i3 not the exact walus, but some
gualitative judgement based om this value. This is repressnted in
Ernglish by such uords as “near,” "far," "very near,” "small,"” "big,™
etc.

Methods for dealing with this problem are suggested by ideas
in «linston 1978 and <Freiling 1973», Winaton develops a syatem of
decision rules based on fixed numerical cutoffe or thresholds, for
deciding when & sel of objecis in 2 scene are similar encugh to each
other, close enough together, o~ sufficiently similarly oriented, to
be conzidered a "group.® Freiling applies the same principles to
defining such concepts as "zhove," "in front af,” "standing in the way
of " and "surrounded by."

Tue more recent papers developing thess methods are ths
master's theses of Hollerbach and Kann,  Hollerbach applies thresholds
to height-width and neck-body ratios of vases to decide such traita aa
"marrow” and "shallow,” which be uses to classify the vase by type.

He alao uses five discrete categories for curvature and four for rate
of change of curvature.

Kakhm, in his tipe-specialist, represents such terma as
"meveral® and "many" by numbers with "fuzz," or expected errora.
Frailing uses one-fifth as a near threshold, and Kahn defines "pese "
or "almost” as one-ninth. My range threshold of one-eighth falls in
betuesn theirs. Thia value haa the advantage of being a poder of 2,
fitting into my system of consecutive nearness thresholds, each double
the next (quite near, very near, etc.). Hollerbach uvses 2 for about
half of his critical ratios, and | use it also in deciding whether a
dimgnsion of an object is long or short, in comparison to the leongeat
dimension.

Eahn does not attempt to define the terms "recently™ and "a



EI-".l.r.'n:._-I
Keaha's
||I-l'='b'|!'l':-'|'|

&M

aF
cuverel

'l,'."!.r exhelds

o

h u-r-:u-th-:r
l.:.+-

Cpag bl oo TIVT

threshaldyg

Elcmflli

-|:II.'E.L e
B

o nlinggas

ORIGINS AND RELATED HORK a

while ago,” painting out that these terms are too context-dependent to
be handled by his methoda, 1 show in DIHENSTONS OTHER THAM DISTAMCE
hou my theory can be adapted very directly to yleld a satisfactory
treatment of these phrases, wvhich mean easentially "near the presgnt
time,®

SUHARY OF THE PAPER

several different near thresholds are defined, sach based on a
different kind of evidence, WHhen pore than one kind of evidence is
available, and no enz of then s known to be sost Felevant, the
thresholds are combined by taking their geometric mean (GHY, two at a
time, G is wsed instead of A larithmetic mean) because AN is
insensitive to the order of nagnitude of the smaller guantity being
averaged, thus throwing auway most of the information from it. A cheap
method of corputing approsimate GM is illustrated.

Far is defined as four times near, and other small integral
pokers of 2 are used to define quite near, very near, not guite near,
guite far, etc., giving a hierarchy of conseculive nearness
thresholds. & related approach 1o wsed to define 3 system of
comparative nearness thresholds, e.g9., nearer than, as near as, nearly
as far as, etc. The theory is shoun to be applicable to time and
animal size, as examples of domains other than physical distance,

Copious examples are wvorked out to show that the theory gives
reasonable results in a wide range of applications draun from everygday
life (usually uithin £25% of uhere a human would place the threshold,
I claiml. Small-domain examples include nearness of lines om a page
of print to one another or to the top of the page, and nearness of
pages in a book. Larger examples include books on bookshelves of
various sizes, nearness of a platfors atandes to the tracks at an FMBTA
station, mearmess to a pole, nearnesa of furniture in a room, and
nearness to the walls of a long corridor. Still larger examples
include nearmess of offices on a floor of a building, of buildings on
the MIT canpus, of 3n apactnent to the MBTA, of cars on a road, of
Boston suburbs to one another, of Massachusetts touns, New England and
Amaerican cities, and plans=tary orbits,  The gecgraphical and
astronomical categories illustrate the wtility of the GH rule in
domains where thers is a great difference betueen object siZe and
ob ject distance.

Different thresholds are defined to handle casss where object
gsize and distance vary contirucusly, such 25 nearness of furniture in
a roomn, and “discrate” cases, where objecta are closely-packed andfor
evenly-spaced, such 33 books in 3 bookcase or telephans poles along a
road. In the diacrete case, distance can be expresaed in terms of hou
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many objects apart tuo objects are, and one can tell if any objects
are missing from the scene. In the continuows case, distance ia
measured betusen the nearest points of the tuo objects, while in the
discrete case, it i3 mpeasured from the centersa.

In continuous case, three kinds of threashold are used: range,
object size, and stondard. Range threshold is one-gighth of the uay
from the minimum possible distance to the maximum possible distance.
Special attention is glven to tuo-dimensional ranges, both square and
elongatead.

A crude object aize threshald can be defined as equal to the
diameter of the larger object. [ present a more refined veraion which
takes into account the sizes of all six dimensions that the two
ob jects possess betueen them, but which aveids computing producta or
square roota. A 3 x 3 table gives factors by which the largesat
dimension of the larger object should be multiplied to get the
threshold., The factors are integral pouers of 2 betussn 174 and &,
depending on which of thres absolute size calegories the largest
dimengion is in, and on how nany of the six dimensions are "large,”
is8., greater than half the largest dimension.

Standard threshold is bassed on the distance betuesn the
members of pairs of "adjacent” objects similar to the pair under
discussion and in the same physical neighborhood. 1t equals this
distance or half of it, depending on uhether the epphasis o on
typical nearness or unusual nearness.  The latter would be indicated
by such phrases as "so nzar”™ or "too near.”

For range and standard thresholds, both a local and 3 global
threshold may exist. A local threshold is based on the data of the
particular exarple being discussed, while 3 global threshold is based
on tuypical values of data in this kind of example, as retrieved from
gerneral knouwledge, [f both a local and a global standard exist, ue
take their G to get the standard threshold, and aimilarly for range.
For gwanple, in discussing hou closely the car behind is following wus
on the road, our threshold will be affected by the nearness of other
cars to each other in our neighborbood on the road {local standard),
since we will have a stricter threshold in a traffic jam. But it will
also be affected by the usual nearness of cars on a road of this kind
fglobal standard).

If range, object size, and standard threshold all exist, ue
take the GH of the firat tuo fo get the "spatial threshold," and then
the GH of that with the astandard theaskold, Standard theeshold o
given more deight because it is a more direct kind of evidence, not
requiring computation of corplicated spatial considerations that may
or may not be relevant, A threshold should be omitted from the mean
if ita inclusion yields a mean threshold outaide, or almoat outaide,
the rangs.
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Al though these rules sesn complicated and riddled with ad hoc
coarrections, the computation is actually guite simple for moat
examples, since only a few of the rules will be applicabie. In
particular, it is often unnecassary to take meansz, since only one
threshold may be available, or all the thresholds may B+ about egqual.
1f they differ by only a facter of about 2, the AR may be harmlesaly
gubstituted for the Gi.

In the discrete case, | use the four=cbject rule, which atates
gimply that two objects in & row of ehjecty are near (or one object iae
near the end of the rouwl if they azre four objects apart li.e., three
objects in betweesn theml, This ie adeguate when the size of the rouw
is noderate, about tuo or three dozem objects in length. For the
general case, | take the GA of & and the range threshold, which is 1/8
of the total number of objects, giving 8 threshold of Yz,

A discussion is given of tuo-choice cases {near one end or the
othar] and three-choice cases (nesr an end versus near the middlel,
and an axiomakic treatment of these for small nusber of objects ia
given, based on comsoniense propesties of near. It is shoum to he
veriy ¢lose to the sguare root rules.

[ define several dimensions of usage of near, incloding
symmetry, definitensss, and locative-conparative. These usages are
likened to Martin's distinction batusen differenl sepses of
prepositions such a5 "with." Cluzs far identifying usage are
digscuased, and the refevance of usage to answering gquesticnas about
near is illustrated,

The paper also includes discussions of vaguensss and
transitivity. Three kinds of vapueness are diastinguished; asbiguity
of meaning, useful conceptual vagueneas (Kabhn's "fuzz"), and
statiastical vagueness dus to randon variation betusen observations.
The last may be reducible by repeated cheervations, but net the first
tra.

From aimple statistical considerations, amsended by a
psychological observation about the suggestive effect of tramsitivity
gituations, a realistic theory of transitivity ias developed. Several
more complicated approaches are then compared, and it is shown that
nothing is gainad by using nornal distributiona inatead of uniform
distributions in defining transitivity. An exanple is given of how to
apply the theory to compute transitivities in teo-dimensional ranges,
gz well as a takle of one-dinsnzioral transitivities for sequences of
objects both in order of increasing distance and in random order.
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SONE REMARKS ON USE OF THE GEOMETHIC MEAM

My use of the geomatric mean to reconcile theesholds derived
from different sorts of evidence, when these are equal ly relevant (as
| show i3 a good default assumption when nore tham one Rind of
evidence is present] may at first sight be criticized as "too
mathematical," too "simple-minded,” or "not what people probably do.®
I would like to say a number of things in answer to these objections.

Firstly, the method is not a sophisticated mathamatical
concept, but sieply linear interpolation, the simplest way of
combining two numbers. The GM is @ more natuwral form of interpolation
here than the arithmelic mean because the latter is insensitive to thae
order of magnitude of the smaller guantitu: changing this guantity by
a factor of 1/1B or L/1E8 may have no apprecianle effect on the AN,
but does affect the near threshold. The GN is always more relevant in
situations where ratios rather than differences are what count, and
s#hera there 5 a natural zero to act as a reference paint {zero
distance, in our casel.

Computational ly the GMN is not real ly such rore complex than
the AM. Since near thresholds are computed only to within £ 25% the
ampunt of compufation reguired iz small in either case {gaa padge E2¥.

Thess pbservations are probably true for pecple in particular,
gince we are hore sensitive o Fatios than differemnces; the Heber-
Fechner Lau (see page ¥4) says de respond to the logarithn of a
stimulus, i.e,, equal Fatios kave equal effect, This las provides 5
raticnale for my “exponential"” scale of consecutive nearnsss
thresholds, (near, guite near, very near, etc.), in which each
threshold is hal f the previocus, and is the G of the thresholds on
each side of it. It is likely that while higher level thought
processes [including many higher leve! vision processas)! are sumbolic,
matrical operations, or some operation capable of computing G, plays
a role too., Since this can be done by taking logarithms ard Bisecting
the resulting interval, and we have just seen that the brain takes
logarithas all the time, such a process would be a lot easier to
envision than, say, a process for analog rotation of cubes in the
mind.

The simple linear idea works in reconciling thresholds
because the more difticult comaiderations have already been taken care
ot in computing the individual thresholds., At the pressnt stage, the
thresholds are nuiebers and pust e conbined to yield a result that
depends continuoualy on both. Only when thia final mean threshold is
applied, is the nunber converted to 8 varbal judgment.
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My use of interpalation to reconcile several ideas based on
mora sophisticated knowledge is sinilar in spirit to Hinsky's frame
system for perceiving roous and cubes. He suggests |inear
interpolation betueen several tuypical, but gualitatively different,
wiews, It is important to distioguish this use of interpolation as a
final atep in dealing with data which has been sufficiently cogitated
over, from, soy, Greemblatt’'s static evaluator for chess, where |inear
combination 13 wused as 3 firs! apprexination in @ asltuation that
reguires furthar thought,

My examples show that the GR of range, object size and
atandard thresholds is an elegant representation of the meaning of
near over Wide guantitative and qualitative ranges, including distancea
betueen cities, betusen furniture in @ room, and betuwesn pages in a
book. Hhether people indesd conpute G oin either 3 digital or analog
fashion, or whether they memorize a table of values or 3 large
collection of frames, is another guestion. It seems unlikely they
could have enough frames to interpalate seoothly along several
dimensions simultaneously, without some form of [inear sroothing at
least betuween frames, if pol a3s the basic formuala for the wbhale
process,  And such a system of frames with smoothing, especially sipce
it would probably involwe separate frane systems for different
contexts, would seem Fike an unuieldy w3y of doing 3 problem which |
have shown can be handled in all contests so simply. MNevertheless it
iz certainly poasible that peaple use such a patchuork mathed, In view
of its applicability to a wide range of other problems.

HOU VAGUE 15 WEAR?

In gdeciding for which, of varioua possible distances betueen
tuo objects, thes tuwo objects would be considered near, there is an
imterval ar band in dhich the distanse could be considered elther near
or net nedr. This band separaies the two regions in which the
distance 18 clearly near or clearly nob near,  In estimnating tha near
threshold, a8 person will choose some point in this band.

1 eatinate the width of the band, for situations in dhich the
range of possible distances is not inordinately large, to be about S8%
of the mean threshold T (the center of the band)l, extending about 25%
on each side of this mean (see Figure lal, Thus the lousst acceptable
value of the threshold = 354 ot the wean threshold, and is 374 = 45
= 3/5 of the highest accezptable value., 1 think it iz reasonable that
the lowest and highest acceptable values should differ by about a
factor of 2.

These ratios of 374 and 4/5 are close to lfﬁ {(=.71V. This

sugpests that, although the £25% vagueness band is convenient for
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practical puerposes, & more patural definition would be to set the band
limits at 1/ 2 T and¥2 T, =0 that the ratio of extrese acceptaniae
thrasholds ia exactly 2, consistent with our hierarchy of consecutive
nearness thresholds differing by ratios of 2. The highest acceptable

P value of each threshold is then the lowest acceptable value_ﬂf the
next higher threshold (Figure lb; for further remarks on thias, see "a
ratio of 2" in CONSECUTIVE MEAHNESS THRESHOLDSY!. Also, by using
ratios instead of differences, the error allowsd on the far side is
greater, which makes senss, aince there is more room for error there.
AZ (=l.61%) means ue are allowing as much as a 41% error on the far
side, Which may be a little excessive, but this oxireme value will
rarely occur, since errors are distributed normal ly.
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It would be intoresting to test the above ideas with human
subjecta. | thirk that 7§ an eppirical atudy shows a band such wider
than 25%, it is likefy that the subjects are attributing i fforant
mexnings to neac.  To avoid thia aubigul ty, one must make the contest
or purposa af the judgrent sufficiently clear.

But when the possibis distances vary over a greatl ramgs lat
least 2 or 3 orders of magnitudel, one may wish to increase the
banduidth significantly over S0% of the threshold,  Thus even i f one
has some idea of purpose le,g., to search for planets), it is, qguite
Fikely very vagus to say “The spaceship was near Algal.®™ Ohe person
may sat the threshold at five light-ysars, another at one-tenth th=t,
In general, we cen set the banduwidith squal to the ratio of consecutive
nearness thresholds, as defined on page B7.

There are tuo ways in which we can vied the 25% vaguenessa
Band. It may be due to an innate unceriainty in the threshold:; there
is mo good reason why the threshold should be located atl oms point
rather than a nearby point. 0Or it may be that there exists an ideal
threshold which could be approached 3s clesely as we wish by taking
the mean of a largs nureber of hesan judgments, provided that we can
avoid the amoiguity problem. The vagueness in the second case would
be a statistical error (siatistical vaguenessl.  (Since we decided
that huran judgrents almost aluways fall in this band, the LBoand wowld
correspond to 3t least two standard deviations (35%F of the error
distribution, which would be some wariant of a normal disteibution.)
Hhile it is difficult to disentangle these differant kinds of
vaguaness, 16 15 convenient for us to aasune an ideal threshold, aince
it is easier to design a theory which predicts one than to design a
theory which predicts a vague threshold, e can always add the = 25%
vaguenass caveat afterwards,

Hhile wz do not necessarily e=xpect our theory ta really
predict the center of the band, we do hope that 1t will at least fall
Hithin the band. [n most of the sxamples | have tried, the theory
doss do this well. [In the remaining exasples, it comes close. Im the
few cases when 14 falls oubside the band, one can usually spot somes
logical consideration unigue to the situvation, which when added to the
general theory givea a better result le.g. the corridor example on
page 391, The reader may judge for hinsalf hou justifiable these "ad
hoc® considerations are. The rez!l vorld s bound to inclode
occazional special circunstances, especially from the point of view of
today's ignorant corputers, and so [ do not consider taking account of
them in this way to bBe "fudging,” a3 long as | can show a goed
rationale which clearly is not applicable elsskhere.

This value of £25% also guides wus in deciding how accurataly
we should compute the threshald in our theory. [necouracies in
computing the theoretical prediction can stom both from failure to
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interpelate smoothly the theory, which sets up object size and shaps
categories based on integral powers of tawo, and from arithasticzal
approximations in the computation. There is no point in computing the
threshold to much better than+25%,

When | call an object near, [ an saying it is within the pear
threshold. 1 may also be implying sometimes that it is not within the
rext smaller threshold, cuite Asac. In any casae, there is still soms
uncertainty in the ochject's location. Unlike anbiguity and
statistical wagueness, this wuncertainty is a desirable characteriatic
of the pear concept. giving it its wusefulness. HWe can call it
conceptual vaguensss. 1t is equivalent te Kahn's "fuzz.”

Let us revied the thres kinds of vagueness defined above,
Conceptual vagusness or "fuzz" is an uncertainty deliberataly
incorporated into the definition of a concept. GStatistical wagueness
ia a general ly smaller wuncertainty caused oy human inconsistency, and
reducible by averaging repeated judgrents dhen a more precise value
would be peaningful. Ambiguity is a larger uncertainty caused by |ack
of knowledge of the purpose of the judgrent, or, if you lika, by the
fact that one word represents @ nuabec of ol fferent concepts.

HOW THANSITIVE [S NEAR?

Another problesm that suggests itself in defining near ig how
to ensure the right arount of transitivity., For esample, if we know
that A is mear B, and B is near C, then we would expect that A is
probably near C, but clearly we dould not wamt such a chain of
reasoning to be extended indafinitely.

Most definitions of near will be based on some cutoff paint.
He might define, for eaxanple, tuo objects to be near each other
uhenever their distance is less than zomns threshold T. 1§ we assume
that (NEAR A B) implies that the position is distributed uniformiy
Hithin the interval (0, £=7) then {NEAR A B) and (KEAR B C) imply that
there 15 a 58% chance of (NEAR A C), if the three objects are in
alphabetical order on a straight line. [(The sun of the two means,
each T/2, gives the mean sum, T, Also the sum of tuwo random variables
Hith symeetric distributions is itself symmetric. Therefore its mean
ig its median. So the chance is 59% that the sum is less than T.)

1f they are in random crder on a straight line, we get 75%,
{There is equal chance that BC must be added to, or subtracted from
AB. If added we have the alphabetical case, getting 1/2 = GBY = Z5¥%,
and 1f subtracted, we get 172 « 100% « S0¥, giving a total chance of
754 for [MEAR A C).}

Intuitively, it would seer that, if we have {KEAR A B} and



(NEAR B Cl, the chances of (NE4R A Cl are a lot closer to 1BAY than is
given by the above results. There are two ways in which we can try to
modi fy ouws theory o account for this.

Firee The first method that suggests itself is to assume that (NEAR
SaleCisnd A B) does not imply @ uniform distribution, since the threshold is
f:trn-:[-'-h'-[ vague, indicating a gradual cutoff. Thua the mean distance is smaller

' than in the uniform case, and the sum of tuo i3 more litely to be
threshald nedr, The curve will be something like the ene in Figure Za.
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Thia eurve gives the chance that a given distance uwill be
called near. The reverse problen, the probability that a distance has
a given value, given that soweons has told ws it ia near, hasz the same
curve, but normalized to have unit area. This follows from Bayes®
Lau.

But this curve has a higher mean than did the uniforn
it E.,HL_T".F“ distribution, because it has a tail outside the threshold as large as
the missing area inside the threshold!

The second jdea s to assume that phen people judgs the

- nearness of A0, they use a laxer threshold, since they "expact" AD to
het e be near. [f one 08 80 ignorant thal one has to depend on tramsitivity
i e to locate an object, then even a lax threshold fs & help, and too

gtrict 8 threshold would be 3 hindrance to the apeaker in selecting a



treasitivE . Buitable reference object.  Thus we shall assusme that far AC (o A,
'r-;.Jir ‘-_-_:t.u'lu-.lt":__], etc.) to be near, they reed only be at a distance less than tuice the
near threshold., This is the not quite near or almost near threshold
(zea CONSECUTIVE MEARMESS THAESHOLDSK. Thus, in the alphabetical
case, AC has a 188Y chance of almost near, and AD am 83% chance (5761,
and in the randon order case, AD is LBEZ again, and AD 3B% [(23/24)
{computed from the sun of uniforn distributiona.

Frelu-ie The above analysis is adequate, but my curiosity fed se to
explore some further atatistical approaches to this problen. These
occupy most of the rest of this section.
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[f we alse want to take into account the vagueness of near, ue
could try wusing both of the above ideas. Since we want the threshold
to be spread over a band of Width .5 T (see HOU YACUE [S MEAH?Y, with

" very |ittle chance of being anyuhere aelse, we can assume the threshold
iz normally distributed around the mean threshold, with the band
covering tuo standard deviations on each side of the mean (35X of the
nerral curve areal. For distances less than thoss in the band, the
distribution is uniform, giving us a8 "conpound distribution.”™ Figure
2b shous that, if AB is near, then there iz about a 1/16 chance that
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it is beyond the mean threshold.” The chance that it Wwill not be
judged near in a second, independent judgrent is then also roughly
1/16, since the ned threshold will en the average be somewhers near
e rth the mganlthreahnluj. Thus, if & is naar B, there iz about a BL chance
- that it ien't! But the chance that it is almost near is virtually
e 18a%, For the random order case, the chance that AC is near is -
probably about 73IE, and almost near, 83, (] estimated these figures
by summing the conponents of the compound disteibution.) Theae
figures are almoat the same as for the uniform diastribotion.

AL

The higher order transitivities can be computed from the
distribution of the sum of n independent random variables., The -
computation is non=trivial, but it only needs to ne done once.

An ingenious possibility ia that the computation could be made
advantoqes a lot easier If we could use, instead of the uniform or compound
oF o distributions, 3 pure norpal distribution, since the sum of normal
distributions iz alse norpal. This can be done by assuming that thes -
position of B is distributed normally about A, with @ standard
distribetion deviation sbout egual to the nmean threshold, as inm Figure Z2o. The
probabilities are as shown in the bottom row of the table in Figure 3,
Hhich susmarizes our results so far.
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to a band of vaguensss extending from about .1 T to several timea T
[since the band ought fto inclwle aimost all the probable location of
the thresholdl. This meanz that the threshold varies by a largs
factor. This might be reasonable in situations where the meaning of
near is anbiguous, rather than having merely its usual statistical
vaguenass,

The analogoua values for the alphabetical case can be based on
chi-sguare disteributions dhich add almost as easily as normal
distributions, changing only the number of degrees of freedom.

For the tuwo- and three-dinensional cases, we can usa the
multivariate case of one of the above distributions, to represent the
probabi ity that a given distance will be considered near. But the
74 almost near threshold, being again twice the near threshold., gives an

almast near area 3 or 7 times larger than the near area, unlike in one
dimensions dimension, where they were egual. This corresponds to the fact that
it is easier to pack objects closely In higher dimensional spaces. It
also means that if an object has been judged near, the distribution of
ite location will no longer be the same shaps [normalized) as the
probability that a given location will be judged near (Figure Zal,
which 1a Independent of dimenaion, since Bayss’ Law will 0ive extra
ueight to the farther locations.

The probability that AC is near, wsing a bivariate uniform
distribution, loocks like roughly 7%, when AB is at its median near
value of T/ 2 (the radius which divides the near disc into tuo equal
areasl, as shoun in Figure 4. This ia slightiy less than the Frandom
order case in 1 dimension (75%), and this seems reasonable.
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USAGE

| e ]

Befare an appropriate threshold can be computed, one nust
decide the sense in which near is being used in a sentence. [n OWL
<1375, Hartin points out that most common prepo=sibions, such as
"with," have up to a half dozen distinct, though related, mzanings.
Distinguishing the senses of & word forms a level of linguistic
analysis intermediate to ordinary syntas and a full=fledged semantics
which tries to explain in detail the seaning of each aense, 1§ our
threshold syatem i3 the full-fledged semanticas for near, then this
usage chapter is the intermediate level for pear. | describe this
level in terms of asveral uwsage dirensions,

The first step is to decide whether usage is suymmetric or
asymmetric. In symmetric usage, the order of the two objects in the
near phrass is reversible, and one i3 privarily interested in the aize
of the distance. In asyometric usage, the first ochject is either more
mowable, more variable in location, or pore uncertain as teo location
than the second object, which serves as a "base.”™ The purposs is to
provide some information about the first object, making use of the
more Well-understood base.

Usage ia also either pair-definite or single-definite. In
pair=definite usage, one is interested in the nearness of thess tuwo
objects for some purpose that invalves bath of thease specific objects.
Meither object could be replaced by anocther: the identity of both
objects is essential.

In single=definite usage, the identity of the fFirst object is
egsential, bub the base is free to be chosen purely oul of convenience
for best conveying scne information about the First object. 1t s
gelected by good general base qualities, such as nearness,
familiarity, and lack of ambiguity.

Intermediate to pair-definite and single-definite usage are
cases that may be termed aepi-definite. Here, the second object’s
idenkity is essential only up to belonging in a certain set; as leng
as it is chosen from Within this set, it is {free to be selectad by
nearnass or other general base criteria. Semi- and single-definite
dill be together referred to as indefinite cases. {l wse the terms
"case" and “usags" interchangeably.]

In asymnetric case, ue said the first object is the one wvhoss
identity is aluways essential, but the base is more well-knoun in
location., Thus the base is providing some information about the
ezgential ohject. This information iz always one of two kimdz. In
the locative case, the listener knous the identity of the first
object, and is being told its focatien. In coerparative case, he khows
the location of several candidates for firat object, and is bBeing told
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its identity, or else, several objects are being compared as to
nearneas to the base,

If the locative case is single-definite, we are interested in
the absolute location of the first object. 1f it is pair-definite, ue
are intereated in the location of the first object with respect to the
base. (The latter purpose is kard to distinguish from airply Lanting
ta kmol the diatance betueen the ftwo objects, the wsual purposs of
symmetric usage, but locative ia asymeetric because the first object
is of less uwell-astanlished position.)

1f the comparative case is of the first kind defined above
lidentifying the essential object]l, it may be pair-definite or single-
definite, but if the goal is cosparing, it must be pair-definite,
gince there would be no point in corparing distances to an arbitrary
ochject.

All thase points will be nade clearer by the following
exanples. They also suggest that our classification schene i onfiy a
first approszination to what wvould be regquired to fully woderstand
ugage; for ore thing, there are various Kinds of semi-definitensss,
Hore guestions would have to be ansuwered to determine hou this usage
inforaation 15 to be wsed in understanding the meaning of the passage.

Examples of pair-definite symmetric usage are: “Hy home is
near my job, so [ don't uaste much time travelling.” ®Salt and pepper
are uaually mear each other on the table," or even "Put the salt near
the pepper,” if naither of them has been placed yet, =o that the
speaker is not specifying a location for the salt, but is merely
saying “"Hherever you put them, put them near each other.™

A gemi-definite summetric example is "1 can read easily, as my
chair is near a lamp.” This is symeeiric becausze it can be reversed:
"I can read easily because there is a larp near my chair." The
distance itself, rather than the focation or identity of one of the
objects, is our primary interest. [f one wished to swrmise which lamp
the speaker uwas referring o, say in order to verify his claim, you
uwouwld pick the one nearsest the chair, or possibly a brighter and morse
noticeable one that was a little farther. Thus, even in sysmetric
waage, & non-essential object behaves something ke a base.

True single-definite examples are Rard to find in symmeteic
ugage, singe it is unlikely one would be interested aymma=trically in
distance to an arbitrary object, but we come a little closer in the
example "[s there angthing near the bonb?" ("ls the homb nzar
anything?®] But this is still essentially semi-definite, since we are
not interested in the base-like qualities of the arbibtraey object, buot
are real ly referring to "anything valuable.”™

1§ the pepper were already on the table, and ! wanted the salt
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to e placed near i, or if | want the mustard placed near the cold
cuts, thia would be pair-definite locative. 1f | digd not care what
specific object the salt was near, but was merely using that object to
specify location as in ansuering the qguestion “Hhere is the salt? [a
it near the cabbage?" ([(Reply: "Ho, it's near the spinach."} This
would be single-definite locative, "Is it near the cabbage or near
the spimach?” would be semi-definite case.

The question of whether bocks on a shzlf are near the left end
of the shelf s implicitly semi-definite, since there is an implied
coaparison With the right.end of the shelf., Thus, no matter hou short
the shelf is, a book closer to the left end will not be considered
close te the right end. And in 3 lopg shelf, 3 book may be considered
near the left end as long asz it is clearly nearers the lelt end than
the right end. {5ee "tuo-choice nearnsss,” page EL, for a more
detailed treatment of this problen.)

As stated above for asymeetric cases, the first object is
el ther sore movable, more variagble in lecation, oF Bore uncertain an
to location. Thus if a person is about to start up his car, [ might
say "He careful. The cat is near the car.® But If we are easing the
car ints the driveway, and we know the cat or Grandea is in the
driveway, I might say, "Go slow. The car will be pear the cat soon,”
or “The car ia nod near Grandea in ber deckchair.™ However, if the
driver didn’t kRoow the cal or Grandma were near the driveway, thay
would again kave the more variable locations, and | might say "Go
slow, the cat, or CGrandma, is near the car.”

In buying a house, | would ask "ls the house far from the
shopping center?” because, since | have not yet decided on this house,
its position is somewbat variable, and even uncertain §F 1 don® b krnowo
where it is. But if | am with the realtor at the house [ might ask
"Ta bR -.1:'|11:.||::||'r'|:‘|g cepler far frae here?™ 1F 0 buy the houwse and iy
cousin cores to vizit me for a uesk, he would ask “ls the shopping
center far from your house?" since he knouws by house better than he
kneus the shopping cenler. [f he asked "ls your house far from the
shopping center?™ | night take thia as an implied slur against my
house's location, or as a hint that he did not want to do the
shopping. This is because bhe is treating my house as variable, as
somathing whose location is to be questionsd, rather than as a given.

Further properties of a base are famibiarity, importance, size
and raritys ARarity is wseful because, with @ commen object, you don”t
know which one you're referring to le.g. "His house is near the fire
hydrant.®] Familiarity and rarity are not mutually inconsistent, as
you nead only be fanilizr with this particular instance of the object.

Consider the question "[s the red chair near the wall?" This
gounds el ther pair-definite locative, sxpecting a reply like "No, it
is far from the wall,® or aingle-definite locative, especting a reply
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ke, "Mo, it i& near the door." However in some contexts one would

bz more likely to reply "MNo, the blue chair 14 fedr the wall.®™ In
this case, the task of thes listener ia not to locate a particular
chair or learn its diatance from the wall, but to selfect among, or
compare, several chairs as to nzarpess to the wall, because one wants
the chairls)l with this propecty. This is corparative usage. From
the speaker®s wisupoint, houever, the chair was fixed {(eseential
identityl and the wall as base was selected to describe iIt, something
like in locative case.

Usage is more explicitly conparative when nearer than, nearoast
or as near 23 are used, or when near is in apposition to a noun, oF is
in an adjectival clavae: "The chair near the wall is blue." ar "The
chair which is near the wall is blue.” But if the clause is set off by
commas, it is locative, being equivalent to a coordinate clauae:"The
chair, which 15 near the wall, is blue.” (reaning: "The chair o blue,
and it is near the wall."l Alao lecative are adverbial elauses:
"You' Il find the chair near the wall.”

Hhat case is meant is not alwaya cbvious from the sentenca,
since a sentence may seem indafinite le.g., "The chair is near the
sall" - - the wall looks like it was chosen freely from among 3l Froom
objects because it happermed to be one of the neareat ones to the
chair, and thus serves as a convenient descriptor of location), but
the context may make clear why that base had to be chosen ("so uou can
lean backuards in it safely®), giving @ synmetric pair=definite usags,
or the context may specify @ set from which the object had to be
chosen [the previous sentence nay have been "1 the furniture In his
roosn Was el ther near the wall or near the window™] giving 2 semi=
definite lacative.

Objects referred to by "what?," “which?, ™ "a,* "any, " etc.,
are clearly indefinite. |f one object szens to be rather arbitrarily
chosen, such as being 2 member of a set of identical or grouped
objects, e.qg. "My shot landed near the nineball,™ o i F 3t i3 an
uninteresting or iwmovable object, such 3s a wall or door (since thair
main use in nearneas phrases is to locate or select other objects),
then single-definite usage s likely.

Symmetric usage ia indicated when the tee objecls are 3imilar.
Symmetric and pair-definite locative are usuvally discriminable from
other usages by the presance of a clear purposs in wanting to know the
relative proxkinity of these tuo particular objects, e.g-. "I hope the
sprinkler isn't near the picnic table.” Comparative case is usually
explicit from the grammatical form of near or the relation of the near
phrase to the sentence. Houwever the case where the First object is a
mamber of an identical or grouped set conm he either locative or
comparative, “ls the red chair near the wal 1?," as we sau at the
beginning of the section on comparative usage. The cases depend on
Hhat guestion this sentence la comnatrued tao be in answer ta. This
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problen resembles the reference problem in language understanding.

Once waage has besn dizgoosed, the pair-defini te caszes are tha
simplest to deal with, since uz know which tuo objects we are talking
about, and nelther can be upstaged by a ghostly member of some
implicit clasa of objects. MNearmess can be judged using a threshold
determining system to be described later in this paper.

But in the single-definite cases, one must first detersine
which, 1f any, of the eligible objects are near, and then select ona,
or more than one, if appropriate. The former procedure is basically
the same 3s that to be used for the pair-definite determination of
near, Hhile the latter will be dons as described presently.

A alricler interpretation of the threshold showld be reguired
for pair-definite cases, since, the two objects being already
determined, ouwr atiention is likely to foows in sharply on them. In
indefini te usage, on the othes hand, we do not have to be quite as
strict, since wsually we are merely trying to find an object, and any
hint that reduces the search is helpful. This is like the laxness, or
"suggestibility® in transitivity on page 17. In semi=definite and
comparative usages, it is often not even necessary for ihe object to
be near, as long 23 1 is nearear than the other objects, as in the
end-of bookshelf example on page 25. This is especially true §if the
context absolutely requires selection of an object, e.g. "Hhat city is
nearast the North Pole?® But if a very near object exists, single=
definite usage may actually be stricter, confining the choice to the
nearest object to the ewclusion of ather near objects.

Mevertholess it will wsually be useful, even v comparative
case, to apply the threshold, 1§ 1 say "Take the nearest subuzy,™ you
may reply “There is ro subuay near bere.® [f 1 say "ARD the stores
I eertainly mean at least the mearest one, but
it is unclear hod many more | mean wntil some nearness oeiterion is
applied. This nmay be based on grouping the stores by their relative
nearness to each other, or may be based on a direct application of the
threshold to each store, Clearly bow we nake our selection once we
have applied the threshold will depend on houw important it is teo
select an object, and what Kind of results we are wilbing te put up
with., (See "selecting the near object,” below.) These matters
require an analysis of the purpoze of the judgment.

& good example of pair-dafinite strictness occwered to me
while exploring nearness thresholds empirical ly for this
investigation. [ found that when | asked myself "Ts thias object near
that object? 1 tended to use thresholds about half as Varge, or
gral ler, than thresholds that would pass in normal comwersation, which
iz usually single-definite in referring to the undistimguished |tess [
Mas using, such as books, pens and tupesriters.
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Yocabulary is important in determining usage and strictness.
"Wear the end of the table” is not as near a5 "near the cdge of the
table." *“End® emphasizes the range, being an implied semi-definite
case, making & comparison With the middie. “Left end® would be a
comparison with the right end. "“Edge" emphasizes the object "edga"
which has zero width, and hence i pair-definite with a very strict
threshold,

In ansuering the questions "Where is the sguash?® or "[ls the
squash near the cabbage?" (probsbly single-definite locativel in a
grocery store, one must not only check that they are near, but also
whether something else might be nearer.  [n the latter case, and
eppecially if the second object was only marginally near, or the third
object much nearer, one must add a caveat "Yes, it i= near, but
something else is pearer,” or "Yes, in fact, it's right hera near the
eggplant."  1f second and third objects are both about the same
distance, but the third object is more important, one favors it. [
the third is egually important, one might mention both (but not too
marwy, unless you can refer to them as a groupl. 1f the third is less
impor-tant, ignore it. Hote that in somne ways iemovable objects are
better bases since you know where they are, but on the other hand this
very fact makes them less remarkable and hence less likely to be wsed
in some cases., MNear a wall, door, or floorlamp possibly means nedrer
than near a pair of skis leaning against the wall, as the latter is
more remarkable and so has a larger "sphere of influence.®

[§ the second object was named, 3% in an assertive sentence,
then one ean "go along”™ with the choice in moat of the above casaa,
but if it is we who are to selest it, as in ansuwering a guestion, then
one follows the above Fules strictiu.

Threshelds for as near as, much nearer than, etc., will be
developed as corollaries to our near deterniner (see CONPARISON
THRESHOLOS! .




PART 11: DETERMINING THE NEAR THRESHOLD
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FACTORS INVOLVED [N DETERMINING THE THRESHOLD- - A HOTIVATION

Fart Il has a prosentation consiating of several passes over
the same subject matter. This overview chapter will introduce the
reader o the complexity of the problem and the kKinds of concepts that
Hill be needed For the solution, The independent need for each of
these concepts Wwill be demonatrated. The following sectiona will
develop each of these concepts in detail, and apply them to examplea,
to see how well they actually do. Oftem the same examples will he
varked several times, at first using just one oF two of the basic
concepts, and later using the complete syatem, and the Pesults will be
comparad.

Making the judgment of uhat is near in 3 given situation
depends on a number of different kinds of factors. These include
contextual information such 3s the purpose of the judgesent, the rangs
of possibla values in the specific context [local rangel, the distancae
betueen other pairs of objects in the locality (local standardl, and
the size and shape of the objects invoelved: and gensral knowledge such
as typical values of the range and standard in this kind of contest,
[glebal range and global standardl, and the the acale of distances
that characterise most human activities (absolute sizel. (In this
essay, "context" will refer to intormation given in, or inferred from,
the actual test or scens in which the particular instamce of Aear
being discussed appeara, while "general knouledge" will refer to
relevant general information culled from our long-term memory by the
information in the conte=t. The “situation” will refer to both. The
relative isportance af these factors itself depends on elues in the
contesxt, and on general knodledge about the contest.

Conaider the exanple: A friend of minz ia in my room and asks
me "Hhere is your copy of Brave New World?" 1 reply. "It's near the
middle of the top sheli in my bookcase “"or *1t°a near Blake, on my top
ghea| f."

The purposs here (g to help oy friend find the ook, given
that he is in my room or knows how to get te it. Thus near sheould
select out some reasonable fraction of the possible locationa, i.e.,
the warious positions on my top shelf. The selection should narrow
the field of search by at least a factor of tao or fowr, But not by so
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FACTORS [NVOLVED M DETERMINING THE THHESHOLO = - A MOTIVATION 21

much as to restrict the field to a region that could better be
referred to by the terms "at" or "next to," as that vauld Timif the
applicability of the near concept, as well as make it a mere synonym
for these other terms.

Therefore an upper bound for the meaning of near would be some
fraction of the length of the bookcasze. The length of the bookcose is
the local range. A lower bound would be some multiple of the size of
the book, Mot only does a amaller object need to have its location
more exactly specified to be found easily, both becavse small objects
are intrinsicallly hard to spot and because there can be more of them
in the neighborhood, but also a small book can be nerely near at a
distance at which a large book would be "at” or “next to.”

The meaning of near should not only be confined somewhere
Hithin these bounds, bub should depend continuously on both of them,
if we are to make full use of the information they provide. He might
gxpect that, given the ratio of these tuwo bounds, the ratio of the
near cutoff to each of them would be determined.

But this ia not all, Even if we hold this ratio conatant, by
increasing tha thicknesa of the books in proporticn to the length of
the shelf, we would be less [ikely to refer to a distance equal to,
gay 174 the length of the shelf, as near in a long bookshalf than in a
short one. In a vary short shelf, all the books would be near each
other for some purposes (though they would net all be near the left
end of the shelfl. The effect of local range is moderated by its
typicality or the global range. In other words, a theary uhich takes
into aceount enly local range and object size works for tupical walues
of the local range, but, to the extemt that the local rangs is
atypical, its efftect on the meaning of pear is reduced. A typical
range is one whose length is mear the mean of the global range, the
range of sizes of bockcase shelves as known from general knodledoe.
{Actually, I use tha term "global range® to mean “typical range® thru
moat of this paper.)

But thiz iz still not all. Suppose the local rangs is typical
for the context., Our judgnent will still ke influenced by the
absolute size af the distances invalved. For a small context such an
the inside of a change purse, we would be pore inclined to refer to a
given fraction of the range as near than we would for 8 large context
such as a houss, a city block, or & geographical area.

But canmat the concept of absolute size also handle typicality
of range? The atupically large range would automatical ly reduce the
near fractional threshold, sinply becauce it is large. Thia is not
true, because a given size differonce will have more effect if it is
due to atypicalifty than if it 18 nerely due to abaolute aize.

To see this, we will compare a naturally large distance With
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one that 15 equal, but atypically large; the latter will seem larger
because one tends to compare it with its typical walue. Imagine a
ten-foot square living room and & ten-foot sguare bathroom. One would
say that the furmiture in such a living room mwst be packed clooe
tagether, whereas the furnishings in such 3 bathroon are far apart,
aven if these furnishings are the sape in nubber and sizZe.

Finally. focal and global standards may exist. On a library
shelf from which thres-quarters of the books have been renoved
[selected at random from the shelfl, two bocks would be considered
nedr, which, on a full shelf, would not be. Pairs of adjacent objects
lobjects which are each other's nearest neighbors along the |ine
joining them) define a local standard for their locality, which is
larger for a partly eppty shelf than for & full shelf. As in the case
of range, this local standard may be moderated by a tuypical, or
global, standard, the typical distance for adjacent pairs in this Kind
af context. In the library exanple, 1078 Aol clesr whether te showuld
choose for global standard the distance betussn books on a tupical
partly enpty shelf, or en & full shelf; prebaoly the latter unless few
shalves are full,

Mote that a range nay specify a wininum a5 well 35 3 raxioum,
as in the cases of spead or distance betusen cars on a road. The
rangs minimum is an absolubte lower limit, while the standard is a
typical value. Hhat you mean when you say "the next car is fol lowing
us rather closely”™ is determined by the cornonest distance betueen
BUccessive cars Hithin your sight (local standard), since you would be
less likely to menticon it 0if traftfic was dense, and by the minisum
distance cars can ever lor should ever) follcu one another by on this
kind of road (global range minisun). The latter increases the near
threshold, as well as excluding swall values frow consideration,

The above considerations nust be podified when applied to
situations where there are only a seall nuskber of objects. 1f my
dresser has four or five drauers, ['m likely to refer to either of the
top tuo as "near the top.”™ The front tuo cares in a rod of five are
"rnear the front” of the line. Clearly objscis tuenty to forty percent
of the way auzy from the end of a line would not be considered near
that end if there uere ten or more objects in the line. In tha small
number cases, ue allou 1t because we do not want nedr io medn the same
as "at."” ’

On the other hand, in the case of a large number of objects,
such as a magazine of 75 pages, one may balk at calling many more than
the last four or five near the end. OF course, information about
number i6 not independent of ouwr previous considerations: oumbar can,
in fact be deduced from range. object size. and standard coistance.

But this is a rather corplicated calculiation, since standard distance
means the distance petuesn the nearest points on teo objects, not the
distanco betusen their centers. AThis is necessary, 3s can be seen in
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furni ture near each ather.l 11 seens ikely that number enters as an
independent conzideration, when the objects are closely packed or
evenly spaced, This idea will form the basis of cur treatment of the
dizcrete case,

In the exarple of the hookcase, purpose did not play a major
role. This was because the local range was explicitly given in the
Hords "the top shelf of my bogkcase." Here the range not specified,
as in the cars on the highuay, we would have to know the purpose of
the judgement to help us to select a suitable range lin this case, a
range minimen). Another exarple is: A pedeatrian asks me "la it far
to Harvard Square?" Cleariy [ am more likely to answer "yes® than if a
motorizt aska me the same guestion.

In sum, a procedure to compute near must invelve both |inear-
like functions which weigh the effects of several continuousiy-varying
measures, and heuristic rules with discrete thresholds or cutoffa,
which tell which measures are relevant and dhat size they must be.

My suggestion is that the various factors be arranged in a
flekible "default® hierarchy, or partial ordering, in which §tens
initially at the same level, or in one order of precedence, may he put
in another order of precedence if the situation advises it. [tema at
the same fevel get averaged in some comtinuous way, while items with
precedence may either be given special weight in some continuous way
{relative precedencal, or may be given the whole say whenever their
value is knoun or inferrable from the sitwation (absclute precedancel,
or when they, or othes Blems, have certain values, or in certain
qualitative situations lconditional precedencel.

DETERAINING THE THRESHOLD - - CONTINUOUS CASE

Range and Standard

Once usage has been determined, one is ready to examine the
factors that determine whether the two objects are indesd near. The
first guestion to ask is "ls there 3 purposs exsplicit or Inferrable
from context? If not, from general knouwledge? Usually information
fram both sources will be needed. A porpose dividea the distance
domain into threes reg ons: near, far, and in-betueen. A vaguer
purpose may merely suggest that our threeszhald be "ateiet™ or "law"

Usually the context also suggesis a rooge.  Hange and purpose
ara closaly intertuined, each suggesting a suitable choice for the
ather. [f both are present in the contexi, the range can be wused to
confire the purpese.  [F ang does not know the purpose, or if 1L ks



unclear how fo use §%, he can uvsually divide the dorain reasonabliy
appropriately, from consideration of the range alaona.

I I =ee an ad "Apartment for rent, near MBTA," | infer the
purpose "near encugh to be easily accesaible by MATA." But this
distance can be estinated sinply by taking it to mean anything leoas
than sore modesrately small fraction, say one-sighth, of the maximum

META distance an apartment in the metropolitan area is likely to be from
the MBTA. [f this seens too snall, it is probably becauss the MBTA s
Exnmplll" dasigned so that most places are reasonably near it. 1f we really

consider the uhole metropelitan area in choosing the maximum, we will
probably get a reasonable theeshold. An alternative approach is to
decide that the maximum for distance to the HBTA in the city is just
not quite far, and interpolate the other CONSECUTIVE NEARNESS
THHESHOLDS [page 67 1. This gives half the mazimum as the ne
threshold (see also “standard®, below, for another approach yielding
this same result). See SCOPE AKD METHOD for some further exanples of
ranga. ;

If Hother tells her son, while waiting for the streetcar, "Do
mot stand near the tracks,” the purpose can be inferred to be "near

anather enough to get hit by the atreetcar.® But this distance can also be
HETa derived by taxing it to be one-eighth of the platform width., In this
= r.;mph example, however, the child would be more likely to assume Mother

meart anything significantly less than the distance the other people
mere standing from the tracks, unless few other people were there.
This would be an exarple of standard, which is often present in the
context along with range.  (See page 28 for mere on standard.) In owr

ctandard apartment example, the distance of apartments from the PBTA ia
uniformly distributed through the entire range, so standard i3 not
easily applicable, unless one defines it as half the tupical maxisum,
giving the same answer as our modified range analysis in the previous
paragraph.

Let ws define a threshold based on range as showun in Figure B.
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Motice that if we congider the possible position of the object
to be uniformly -disteibuted dithin the_range, as in our apariment near
§ bt s tieal MATA, the standared deviation is L/{ZY¥3) = .29. Our threshold is .375
-'J.,-,hF.“-ln.;." aday from the mean, or about &/3 deviations. & threshold of 1/S, such
as Freiling uvees, would ba close to one stondard deviation away from
thes mian,

For a one=dirensional or elongated tuo=dimensional range, a
threshaold of 178 the length of the range is adequate. Bub for a range
with significant widih, such as a sguare, this width should act to

2= bimensrancl increase the threshold, since it increases the size of the range
Fenyes itself. Heouwever we wish to avoid complicated arithmetic such as
computation of area or taking of sguare roots. Onfe approach would be
to define the effective one-dimsngional range as the longest cross-
section of the tuo-dimensional range lor a bit more), and use 1/8 of
this for the threshold. This iz still impractical, since we usually
kriow only the rectangular dimensions of rooms, rot their diagonals.

A oimple, adeguate solution is, for squares, to define the
effective one-dimenzional range as tuice 5, the length of side, thus
adjusting for the existence of the width., The threshold would then be
1/8 af this effective range, or 5/4. Figure 7 shous how nicely this
works out for several examples. [t is reasenable that the large
guare should have a threshold ~Z times that of the small Souare,
gince their lengths of side are in that ratio. 42 also oeems a
reasonable ratio for the threshold of the seall sguare to the
threshold of the astraight line. :
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For rectangular ranges, ue can usual ly get an adequate
approximation by treating them i ther 25 a sguare or 35 8 one=
dirensional range, depending on how elongated they are. An
intermediate model for 2 % 1 rectangles can be prepared also, if
desired, by a linear interpolation of the tuo extreme caseas.

Lat us see what our rule doss for an & = 1 rectangle and a
gguare of egual area. The near threshold will be 1 for the rectangle,
and (2 % 22 1/8 = .7 for the sgquare, whoze side is 2 2. The area
near 3 point at the end of the rectangle is 1, but the area near a
point at the edge of the square is 2 x (.7 = 1 alse, since this area
extends .7 on both sides of the point, due to the large width of the
gguara.  Similarluy, both figures have near areas of 2 for points near
the center.

He may see this equality as a balance of tuo apposing
tendencies - - the square has smaller dimensiocna, reducing the
threshold in proportion, but it is also more compact, leading us to
expect that a greater portion of it wlll be near any point, other than
a corner. Thus ue are seasuring shaps without multiplying sides or
taking sguare rootsa.

In the case of very long ramges, such as roads, or ranges in
uhich one dinsnsion is of different status thanm the other, an
alternative definition nay be indicated. Our regular definition
treats long objects as one-dirensional, ignoring their width, This
may be appropriate for comparing the lecation of bulldings on one
block of a8 atreet, where total lemgth of the block is relevant, and
width is not., But in talking about nearness of tee ebjects on 3
sidewalk, or nearness of parked cars on a reoad, it iz clear that the
width of the range is more relevant as a pear threshold than any
function of the length, which is essentially infinite. The width is a
natural scale unit for phenomena cccurring In such a rangs. Sometimes
one may even want to use a amal ler scale, letting the width be range,
and taking 1/2 of it as threshold., This would be true if one has lost
a small object on the sidewalk.

Exarples where a single dinension is the range would be
nearness of pages inoa book, or of lines on a page.

Tf you have a collection of small bottles in a medicine
cabinet, you may say "Put the aspirin near the antacid pills" meaning
approxirately the atandard distance hetwsen adjacent botties on the
gshelf. This is an adequate substitute for considering the actual
purpose, dWhich is that they be close enough so that when you see one,
you see the other, but far encugh to keep you from knucking one down
when you pick up the ather.  [f near is used Tn a sense that suggests
"unusual ly near,” as in "Hhy ia that driver fol loning us so clasely?®
then ane should define near as significant!y leas than the standard
diastance betwesn adjacent objects. "Significantly less" can mean
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“mora than one standard deviation below the atandard, " but one-hal f
the standacrd distance, duhich we veed in our apar bRent-rear-NETA
exanple on page 2%, is an adeguate approximation.

When you have a crouwd of ochjects of one kind near an object of
another Kind, as people near 3 track in a subuay stabtion, you have a
kind of atandard uhich 1as 3 disguised comparative usage. There are
again tuo cases. You may have to decide whether “near the track®
means "where the neareat people to the track are,” j.8., comparison
mith a standard analogous to the adjacency standard above, or “nearer
than the nearest people,” using the one=hal f adjacency criterion
stated above. The latter case ieg often identifiable by use of words
Fike "too near" or "so near,”

Let us try out our range and standard rules on some examples.
If 1 tell sopeone on the AIT campus “Project HAC is near Polaroid,™ he
will do well to assume | mean within one-eighth of the diameter of the
campus l(one milel, say 209 yarda or lesa.

[f we are on the eighth floor of fhe Al Lab building amd 1
tell him Hoore™s office is near Hinsky's, he will do well to assume |
mean ahout ene-eighth of the greatest walking distance hetueen tho
points on the eighth floor, i.e., at most 2 or 3 offices apart.

If up are discussing a 18 = 18 foot office, and | say "The
desk |8 near the window," he could assume | meant "uwithin about 2 1/2
feet of the window," 178 of the "effective one-dimensional range” for
a square range (see page 35: dimensional ity of rangeld.

Let us now bry the standard threshold on the above examples,
The standard diastance betueen adjacent buildings on campus ia perhaps
189 feet or so, somevhat less than the range threshold. 0On the eighth
floor, standard wedld mean ene affice auay. But aince offlces are
closely packed objects and we don’t want near to mean "next to," (see
paga 311, we vould expand the standard to tuwo offices, the same as the
range threshold, & rore direct treatrent of offices will be given
under DISCAETE CASE. [Inside the office, most objects on the order of
gize of a desk or window are, if "adjacent,” about a foot apart
probably, not ruch less than the range threshold of 2 1/2 feet.

Standard farness can be defined as greater than four times
standard nearness, as we shall do for all kinds of nearness.

Let ws try out the rules on distance belueen cities in the
USA. Since the continental USA is about 3200 miles across, our far
range threshold is 1608 miles, and our near range threshold is 488
miles. Thus Boaton is near New York (2150, and Detroit is near
Chicago (262), put Boston is not near Washington (4611, and L.A. is
just outside the near threshold of San Francisco (412). Chicago is
naither far nor pear from New York (B08). (Most figures taken from
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Sunoco map of Eastern United States.) These judgments are a little on
the near side, but probably fit well what a foreigner would say, and
can be improved if we take into account the atypically large size, as
a country, of the United States (glopal rangel, or the fact that owr
ranges may really be a part of the USA. Standards would give a
alightiy smaller threshold too, since the typical distance betueen
adjacent large cities is closer to 2080 miles (judging largeness Ly a
local standard). 1f ore is doing smaller cities, it would be |ikely
that one's range is restricted to, say, New England, which again would
give reasonable range and standard thresholds, as we shall see later,
when we do elties with the completed theory (page 54).

Mow let ug try a smal ler-sized domain, the bookcase. 1f it is
4B inches long, the ramge thraeshold is five inches, or about five or
aix books. Since, like with the offices, wa have closely-packed
ob jects, the standard must be increased to several books, so near
won't be restricted to "next to.” Thus we have rough agreesent
betueen range and adjusted standard rules. This example will be
worked in detail under DISCRETE CASE.

A smaller domain yet is 3 page of a book. [f a page has 4@
lines, our rangs rule says the fifth line is near the top of the page.
The adjusted standard would be close to that.

A atill analler dorain is the distance betueen pages of a
book, [f a book has 488 pages, the range near threshold is B0 pages.
Corrected standard gives several pages. Here wue have significant
disagresment. The implications of this will be discussed shortliy.

Clues to selecting the appropriate range include what region
the listener has already restricted the location to, the tupical range
for thia kind of context, the distance of the speaker or |istensr from
the scens, and any other distance playing @ significant role in
contest.

Standard should be based on other pairs of objects in the
range, of the same type, or of the spre or greater importance than the
objects in guesbion. ’

Object Size

Mote that im all the cases where the range and standard rules
worked well, pasely the META, DIT carpusa, bookcase, and lines-ocn-a-
page exanples, the near threshald was only a8 fes times larger than the
gize of the objecta involved, But in the pages-of-a-book example
where the range rule overestimated, its threshold was 58 times the
gize of the objects involved (thickness of a page). Also, in the
geographical example, where one could make a goed argueent that New
York and Boston are not nedr, the near threshold (488 miles) uas 28
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times the dianster of a city (28 milesl. This suggests that we can do
better by taking into account object size.

[wagine two objects located im a woid. Each has three
dimensions. Consider any of these six disensicns to be large if it is
greater than half the largest of the six. Figure & shous a table
explaining the object size thrashold we Will use, amnd Figures 3a-n
illustrate it pictorially, actual size, for small and medium size
SCENES.

The thresholds refer to the distance between the nearest
paints on the the two objects. This rule also takes into account
absolute size, as you can see, taking the largest length of objec:
that a person can -E':JI‘I-'-I'E:I'IiE-"ITT':_] hold betuwesn tho hands as the cutoff
betuesn medium and large. The largest size easily hald between thusb
and finger is the cutoff hetusen medivm and small. OFf course one
could add an interpolation rule to smooth the tranmsition betueen
categories. MWithout it, the error created will be as much asTZ , but
this is not much worase than our desired accuracy of 25% (see HOW VAGUE
1S NEAR?). (It is a little worse than the o 2 vaguensss error though,
since the chject aize probability distribution does not taper off at
category edges like the mormally distributed wagueness error does, but
the error will be diluted when the object size threshold s seaned
Hith the range threshold later.)

The reader may note we have considered absclute size in our
object size rule but not in our range rule. If the range rule is to
be discrininating, its near and fa2r thresholds clearly cannot vary too
puch from where [ have set thesn. Also, we don't want to work too hard
on absoclute size. For a similar reason 1 have not wused "global object
size," though this emission may be unjustified. For further remarks
on absolute size, see paga S51. Also, =ee pages B1-52 for a way for
absolute size to influence pure range judgrents via “default™ object
gize.

Hote that our treatment of dimensionality is an adaptation of
pur treatment of it in the range rule. There ue doubled the effective
length and threshold of a sguare becavse it has tuwo large dimensicns
instead of one. Here we are dounling the thresheld {on the averagel
whenever one more long dimension is added per object. The variation
in this rule froo spaller to larges objects 12 a way of eoderating the
influence of that sudden transition betusen size categories.

As in the case of long ranges, we may, for bong objectsa
{length more than eight times width, say: the width is near @), wish
to ignore the long dirension(sl, and use the lengest reraining
digension as the large dimensicn, 1§ It 13 nore sultable for our
purpose. DOr a geometric mean of several dimensicns may be résorted
te. OFf course we want ta Bimit usa of these fudges to situations
where we have a good excuse. Une such excuse would be §if not wsing
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CONTINUDUS CASE: Object Size &1

them would put the near threshold mear the edge of, or outside, the
range.

Let us illustrate by two examples. MNear a 38-foot telephone
pole is 7 1/2 feet by object size, and this ia reasonable despite the
great disparity betusen the pole’s height and thickness, since the
range is unlinited.

He will now examine a corridor probles, uherse we do have to
drop 4 long dimension., bHe will show in addition, for this problem,
that a satisfactory analysis is chtained only when a basic
paycholegical characteristic af the situation is recognised, namely
the indistinguishability of the tuo walls. Far a2 corridor, both a
range threshold and an object size threshold exist, and, anticipating
the next chapter, we will use the spatial threshold, which ias defined
as their georetric mean.

Hear' a ten-foot high wall in a narrod corridor meana githin
five feet by object size, since the wall has two large dirensiona. He
are ignoring the value of the [possiblyl very long dirension parallel
to the corridor, considering it only a second "large” dimension. [f
the width of the corridor is & fest, the range threshold is 172 foot.
The spatial threshold is then 5 = 172 = 1 172 feet. This is still
too large, since it means an object only a half foot from the center
of the corridor is near the walls. He could drop another leng
dimension, the height of the wall, but that does not seem a reasonable
thing to do.

An object is aluays within tuo feet of some wall, and for
practical purposes the two walls are indistinguishable. HWhen ue aay

h;. "He is standing close to the wall,” we wsually mean "close to one of

the wallse.™ This_suggests taking tuo feet as our range.
a threshold of 5 = EM = 1 foot, better.

Let ws check this by replacing cne of the walls by a screen.
Mow it seems more reasonable that 1 172 feet is near the wall, or, on

the other side of the corridor, 1 1/2 feet from the screen is near the
screen.,

This yields

The tuo wall case is really 2 question of "near 3@ wall" verous
"riear the middle,” lika the “"end of the table® example on page Z8.
The threshold is therefore stricter than in the screen case, where it
is "near the wall" versus "mear the screen,” or simply "near the wal "
veraus "not near the wall,"” .

Houwever the pure rangs threshold of 172 foot may be at least
|45 good & result nere, sugiesting that 1t is best to simply omit a
threshold if its correct wanner of use is not o|ear,
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Reconciling Different Thresholds

He are now faced with the problem of reconciling our sevaral
thresholds, as well as integrating local and glebal thresholda., [f
gaveral thresholds aro prosent ard disagroz, and the purpose doas not
asuggest use of a partlicular threshald, then anm appropriats threshold
can be calculated as follows:

17 If there is both a focal amd glebal range, take
the gecnstric mean of their thresholds, and similariy
for local and global standard,

2l If both range and object size thresholds can be
foreulated, and differ by rore than a factor
af apout 1 154 to 1 172, take their geomstric mean.

This new threshold may be called the spatial or indirect theeshold,
because both range and object size are based on spatial {geametricall
considerations as opposed to standard, which is a more direct Kind of
evidence based on cospariscn With analogous exanples. Usually the
spatial threshold will be 8 good substitute for the standard; if not:

31 1f both a spatial threshold and a standard exist, and
there is no good reason for choosing a particular ane aof them,
take theirs GN.

The arithmafic mean cam be harmlessly substituted for the
geocmetric shen the thresholds differ by only a factor of 2 or so. Use
of arithmetic sean for factors greater than & would tend to not
reflect the crder of ragnitude of the snaller threshold.

Mote that either tha range threshold or the object size
threshold may be the larger. The former occurs when you have tuo
gmall objects far apsrt, the lattor when tuwo large objects, or one
large and one small object, are close together. [n the latter cases,
if they are very close (@ range with spall maximem}, the spatial
threshold will aluauys yield 3 pear dgment, since it §ia greater than
the maximpum distance. This ccours in judging whether fuo objects ars
close enough to rub each other. Here ue bust ignore object size.
Sinilarly, when the cbhbjects are at great distances coepared to their
size, such as plamets, the spatial threshold will likely yield far,
I# there are a great many objects, such as stare in the Galaxy, then
neighboring objects are bound to be pear by the range threshold,
though they may still be far by object size threshold. (The spatial
threshold here turns out to be abput & tenth of a light-ysar, so that
only mesbers of multiple atar systens are near.) Standard would be
the only sensitive threshold in these cases. [f one desires a
discriminating judgment, one must consult the purpose for an
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appropriate threshold, or failing that, wae whichever rules
discriminate. Hhen range 19 nuch greater than object size, ona is
more |ikely to discard the object size threshold 1f one knowa for sure
that no objects fall within the spatial thresheld, j.e.; «h2n range
minimum exceeds it. Thia ia the case for planetary orbite:

I[f one takea the radius of the aolar system, three Lillion
miles, as range, giving a near threshold of 48d million miles, and
object alze 18,B88 miles [rough mean diamster of the planets), giving
a near threshold of 18,888 miles, ue get a spatial threshold of 2
million milea, ao one might say of the salar aystem "No teo planeta
are close, but the Earth and Moon are close.” But if one already
knouws this, one might 4ish to uss the pure rangs threshold of 488
million miles, and say "The inner planets are all close to each other,
but not the outer planzts." Standard ia difficult to apply, since
there are separate standards for the inner and outer planets. 1f one
accepts the Titus-Bode Law as providing a atandard, one can say "Nara
and Jupiter are unusually far apart,” since the ratio of their orbits
ig off Titus-Bode by a factor of 2.

If there ia any difficulty in the formulation or use of a
particular threshold, it is wsuvally best to simply omit it, as it is
likely irrelevant. (E.g., the coreidor problem on page 41.1 1f enly
a range rule or am object size rule can be formulated, we would like
to wuse only that rule in calculating spatial threshold. This would be
equivalent to assigning a default threshold of egual value to the
other rule, corresponding, in the case of a pure range judgment, to a
dafault nize about equal to the range near threshold, and in the case
of a pure object size judgmrent, to & default range several times tha
gize of the tuo furthest points on the objects.  The option to wae
default values gives modularity to our aystem, since ke can do Wi thout
migsing information easily.

Houwever, there is a alight bug in this simple default idea.
In the continuous case, uszing a pure range rule, the default object
size threshold as defined above would be equal to the range threshold.
Mow, the ratio of the cbject size threshold to the cbject size varies
from 1/% to &4 over the nine differant absolute size and shape
categories. This means that we are inplying different default object
sizes, as a fraction of range, for differant absolute size or shapsa
categories. Large, globular objects are baing assumed to have norae
restricted ranges than snall, long ones. There iz no resson why such
an effect should ccocur in reallty,

The solution, fortunately, is aimple and even has & good side-=
affect. One assumes, not a default object size threshold, but a
default object size, egual to the range near threshold. For the
intermediate absolute size category, with intermediate nurber of |ong
dimensions, this yields an object size threshold equal to the rangs
threahold. But for large abjects, thias yielda a dafault cbject aize
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threshold 1#2 as large as tha range threshold, for intermediate number
of long dimensions, and tuwice as large for small objects. He now
compute the spatial threshold inm the wsual way, by taking the mean of
the range and object size thresholds. The ret result is to decreasa
large range thresholds by /47, and increase small ones (1] 1“? thus
providing a way in which acsolute size can have sowe affect on pure
range judgemenfts, as we pronised on page 33. This ratio is just large
anough to be non-negligiblea,

Dur use of defaults means that the judgment of the distance
betuesn tuo geometric points will not be the limit one would get fram
a seguence of pairs of sealler objects, but rather corresponds to a
pair of iraginary, ressonable-sized objects located at the pointa, [t
is clear that this discontinuity is justified, since points are
ugually used to represent the locations of reascnable-sized cbjects,
not microscopic objects, and conformance to usage is what we want, not
possession of nice ratheratical properties such as comtinui tu.

It is important to note that our invocation of the GO rule
doas not mean we are comeitbting ourselves to an expensive computation
involving multiplication or sguare roots. Since we only want the
results to *25 per cent, there cught to be a cheap method. To
illustrate, ue will shod hod an accuracy of +58% can be achieved.

I# we uze only ona significant binary digit of sach nurber,
rounding in the right direction, we will achieve this accuracy, since
each rounded nueber i3 correct to Within a factor of 342, Sguaring of
thig error factor in multiplication is undone when you take the square
root. Since the product of tuo l-digit nusbers also is l-digit, we
lose no significant digits in multiplication. Ue must, houswer, usa
an accurate value of [zay L.8]l binary, good to about 13%, or
1.81l1, good to about 3% when taking the sguare root, if the product
has an odd nusber of Zeros, Since no pore arithmetic 18 done after
that, these extra digits do not mean extra work. 1§ we omit them, our
result may be off by as ruch as 372 v 2 = 2.1.

The GH rule alse gives us a handy way to compute relative
precedence, if one ever nzeds it. [n the astronomy example, for
exanple, if we decide that range is sore important than object siza,
but do not want to completely ignore object size, we can take the GH
of the tuo a5 we did, and than take the [ of that value Wwith the
range threshold., This gives™ 2 million » 48@ million = 28 million
mifles. Thus adjacent inner planetis are just about near each other,
arnd Mars, but nAot Earth, is far from the sun. He get a similar result
if we use the tuo-mean rule with @ standard of 488 million, tha mean
distance betuween neighboring orkite. Thease resulta are relatively
independent of cur choice for object size (18,898 miles), since thay
vary only as the fourth roct of it. kWe are, if you like, taking into

account only the order of magnitude of the abject size.
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In examples like these, vhere two BN s have to Be calculated
in series, one would have to use sore significant digits i f the
threshold is to be accurate to within the desired factor, but, on the
other hand, since the the ratics are so large, we can afford a highere
error factor in the threshold., In any case, this siteation will be
WErY FErE.

In our object size rule, we took some account of absolute
size, dividing it into thres categories. The most useful piece of
advice for treating this subject, is to try to ascertain from the
context whether the esphasis is on cokparing the distances under
discugssion with normal-size diatances, or WHith distances in thelr oWn
gize range {or some other size rangel. This is especially important
for very large or very small distances. If the topic of discussion is
just being introduced for the first time, or the listener is assumed
ignorant, them one is likely to be talking absplute size. But once we
are engrossed in the topic, and have more specific purposes in mind, a
judgment relative to the standard for the topic is likely. Thus
absolute aize can be handled by selecting a range or standard that
reflects the reader"s ewxpectation of what values are possible.

Mevertheless T will throw ocut several ideas for guantitative
treatment of absolute size.

For, especially, distances that do not differ too much from
ugual ranges, one can bias the threshold in a "strict®™ or "lawx™
direction by halving or doubling it. A more aebitious and less
practical method, for astrormomical and microscopic distarces, would be
to take a weighted geometric mean of the spatial threshold with a
distance of 2 1/2 fest., The weight, or degree of relative precedence
of the one factor aver the other, could be selected somshcow from one's
estimate of their relative inportance for the topic. Prebably the
spatial threshold should be given the major Weight, since ctheruise
the threshold will not be very discrirminating for the tepic. Apart
from arithmetic consideraticns, the main defect af this linear theory
iz its lack of refined consideration of any specific things we Know
about the purpose of the judgment, but it may be useful when we are
ignorant and nead something.

Earlier in this paper, we nentioned that a vague purpose, or a
factor such as usage, may indicate that our thresheld should be
"gtrict® or "lax.® This can be handled, as stated above, by doubling
or halving the threshold. This is eguivalent te moving the abject to
the next size category c~ nunber-of=large-dimensions category, in the
case of object size threshold., Aczcordingly, the decision may be
influsnced by hod claose the object size, or the number of large
dimensions, is to the edge of the category. This is a form of
interpolation betwesn categery values,

Let wueg now see how the mean rules do for distances Delueen
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cities, The range near threshold was 422 miles. Since large cities
are about ZB » 28 miles in estent (counting suburbs), excapt for MNew
York which ia 4GB » 48, a pair of large cities will have & "large"
dimenziona, and the object size pear theeshold is 28 milea. The
spatial threahold ia 688 « 28 = 92 miles. The standard distance is
about 208 miles. Their mean is 790 « 288 = 135 miles (Z-mean rulel.
This meana Baston is not guite near Meuy York (see CONSECUTIVE MEARMESS
THRESHOLDS), Washington is just at the very near threshold of
Baltimore (35}, and Philadelphia ie near Mew York (BB) and Baltimore
(85). MWashington is not quite far from Boston, as is L.A. from San
Francisco [just over 488 miles each). Detroit and Chicage (2Z98) are
near the not guite near-not gquite far boundary. Cities more than S48
miles apart, such as New York and Detroit or Chicage are far, and
cities over 1189 miles apart, such as MNew York and Denver, are guite
tar. Cities over 2288 miles apart are very far, such as New York and
Phoenix, Arizona. Undzr a pure range rule, no cities would be VErY
far, and only cities 3288 mniles apart would be guite far. DOoubling
the rangs becauss of its tuo-dimensionality would only alter these
resulta by 2 factor of /2 = 1.2, or less, since the USA 1s really a
2 % 1 rectangle. I think our tuo-mean rule agrees pretty well with
common uaage, when the context is the whole United States. Usual ly,
however, We use a regional context, because w2 are most intereated In
mileages when driving a car.

Let us look at the context of southern Mew England. Here the
cities are about 18 x 18 miles in area, so the cbject size threshold
is 1B miles. The range is about 288 miles, giving a range near
threshold of 25 miles. The spatial threshold is ~/1B = 25 = 1B miles.
The standard distance is about 40 miles, aince "adjacent” pairs of
cities, such as Boaton-Providence, Bostom-Horcester, Boston-MNashua,
Providence-Horcester, and Hartford-New Haven all are &8 miles.
{Springfield=Horceater ia 58, but Springfield-Hartford is ZB.) The
tuwo-mean rule givea therefore "‘JIE ®* 58 = 25 milea for the near
threshold and 188 niles for the far threshold. This happens te equal
the range threshold. (This coincidence did not occocur for largs cities
in the US&; corresponding valuss wera: near tuwo-rean threshold, 135;
near ranga threshold, 488.) Thus Hartford-Springfield [(26),
Haterbuwry-Neu Haven (211, Bridgeport-New Haven (13), Providence=Fall
River (18), and Boston-Brockton (18] are near. Boston-Springfield
(83) and Springfield-Albany (31) are almost far. Boston-Portland
(187) and Hartford-New York (113) are far.

Actually, since New York i: 48 = &3 in area, we should expect
it to have a bigger threshold. [ts object size threshold for pairing
with zmall Mew England cities is 28 rather than 1B miles. This gives
it & two=-mean rule near threshald of

Y Y28 x 25 x 4 = 38

or 38 miles for pairing with small Neu England cities, not much
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bigger than our 25 mile thrashold, dus ta the fact that the aobject
size entered only as a fourth root. However pe are saved if we
remember that distance in CONTINUOUS CASE is reasured from the nearest
points of objects, not from their centers. Thus Norwalk (43) is near
Mew York, since Ned York City has a radius of 28 miles; we can almost
call Bridgeport pear. Springfield (137 miles from center of New York)
ia near the far threshold. Thus most of the cities in western
Ennnecticut, beyond Bridgeport, are neither near nor far from New

ork.

Let's apply our rules to furniture and walls in a living room.
Tuo chairs 3 1/2 feet high and 2 feet wide will be near by object size
if they are within 3 1/2 fezet. 1f the room is 28 = 28 feat, the
effective one-dimensional range is 4B feet and the rangs thrashold ias
& feet: Ignoring the two=dimensicnality of the range, We would get
2 1/2 feet. The standard distance also falls somswhera in this range,
depending on whether ona considers all chairs in the room, ar all
furniture in the roon. Thus all three thresholds are similar and
reasonab | e.

A owall 18 feet high and 28 feet long is on the edge of the
one-large-dimension and tuo-large-dirensions categories for object
size. Let's interpolate object size threshold at 7 feet, the nean of
5 and 18 feet. Since the range threshold is & feet, we get a spatial
threshoid of & feet. These are large. The standard distance of
furniture or people from a wall is probably about a foot, since the
distance is likely B for furniture next to a wall but may be a few
feet. But tuo feet from a wall is still near it. This figure can be
ootained by taking the geometric mean of & and 1 according to the tuo-
mean rule (4B = 2.45),

DETERMINING THE THAESHOLOD - - DISCRETE CASE

Large MNumber of Objects

Before we do any more exarples, we mest deal with the
“discrete” case of near, l.e., closely-packed or evenly-spaced
objects, where the nurber of objects is more ieportant than the
distances or sizes.

In the discrete case, we have a range, consisting of the totl
rnumber of objects, or object positions, lined up in 3 row. Instead of
object size or standard distance, we have as a measure of distance the
numier of object positions apart the two points in gquestion are.
Unlike distance betwsen randonly apaced objectas, discrete diatance o
messured from the centera of objects, not the neareat pointa.
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Let us nou comaider several different medsures of nearness,
Thae strictest is the four-cbject rule. [f tuo objects, or an object
and a point, such as the middle or end of the line, are within four
positions of each other, they are near. This rule is applicable to
rows of a dozen or more objects.  (Kith fewer objects, it may still be
a good guess in the object-object case if the esasple is one wherse the
range isn't clearly restricted te the row. E.g., if | ask “Where is
Enuth?" and it happens to be at one end of a five book bookshelf at
the other end of which is Human Problem Solving, one might ansuer "t
is near Human Problem Solving.” 1+ the shalf is a little longer, we
have a dilemsa. Should we use the discrete rule which szus "pa," or
the spatial threshold for fwo books in @ room, which would still say
"yes?" But let us restrict ourselves to the row and go on with the
analysis of the discrete case.)

Thie four=object rule is a rather strict rule in the case of
wvery long rows, and lax for very short rows. A much laxer rule for
large n is the pure range rule. Tuo entities are near if they are
Hithin A/8 positions of edch other., For small n, this rule 1= too
strict. MHe can compromise by taking the mean of the two rules. HRound
the result downwards. He summarize the behavier of these thres
methods, and a legarithmic rule as well in the table in Figure 11.
Rules grow laser from left to ~ight. The leg rule has been calibrated
60 as to equal the mean rule for n = 1B, To test the rules, imagine a
history paper of n pages, and soneone asks you "Hhere does it mention
Julius Caesar?'  "Near the beginning” or “"Near where it mentions
Gawl."
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From the table it is clear that the lpg rule is not the right
ogne, and that the mean rule dossa”t do badly, although for soma
purposes one might choose one of the ather rules. Let’s look at some
examples that we comsidered edrlier under the range and object size
rules.

Let ws lock at the offices on the eighth floor. There is a
problem with the topologu, since the offices are arranged along the
periphery of a circuitous (rFectangular) corridor. Let us consider the
range to be the total number of offices in two adjacent sides of the
rectangle, in analogy with the continuous treatment. This makes
sense, sinse the distribution of distances from one office to the
others is the sansz as i f galy half the rectangular corridor and
offices existed, starting at that office. The range is about 28, the
mean is [~ & » 28/8 1 = 3. (Sguare brackets indicate the "largest
integer in" function.] The continuous treatment gives [T = 28/8 1
+ 1 =2, He added 1 sirce continucus distances are medsured from tha
neareat pointa.  Thus only the discrete rule nakes Minston’s office or
MacDonald's office near Minsky's. This is perhaps reasonable,
congidering we are judging the whole eighth floor, not just the Al Lab
here., 1f the continuous threshold of 2 offices seems better, perhapa
this indicates that we are really judging doors, not offices, since
the doors are all we can really ses from the corridor. Doors, being
not closely packed or {often) regularly spaced, would suggest
continuous case. MWe will now look &t some examples where the merit of
the discrete rule ia clearar,

For nearness of pages in a2 GE@-page book, we have a range
thrashold of S88/8 = 58 pages. Let us see how well we can do with the
continuous treatmant first. He would get a threshold outside the
range unless we ignore the size of the tuo large dimensions of each
page. Considering them anly as tuo pore ®large” dimensions along with
the thicknesa, ue have six large dimensions, small size category, and
an object size threshold of one page thickness. The GH of 1 and SB is
7, and adding 1, we get a spatial near threshold of &, not altogether
a bad value. But this approach looks artificialy it seems to make
more sense to take a pure one-dinensional approach, since the page
length and width are not only too large but also probably irrelevant
im & more fundamental sense. [m this case ue have tuo large
dimenaions, the thicknesses of tha tuo pages, and the object size
threshold is 2, giving & spatial threshold of [Y2 x 4BB/8 ] + 1 = 11.
The discrete rule gives [7% « 483/8 1= 14, | think this is at least
as good as the best of the continuous values, [n any case, we asee
that the contisucus values approsch it more closely the more one-
dimensional our approdch io.

Let us try mearness of lines on a page. Assume the page has
48 lines, each B8 characters long. The lines are 1 character wide,
arnd the distance betuesn adjacent lines i9 also about 1 character, ao
a line in the usual scnse is 2 of our line widths wide, (For the
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purpogs of the computation, e are te3king a literal interpretation of
the lines as objects, in the =pirit of the continuous approach.) [f
ue assume the characters bhave equal length and width, we get a
threshold of [41 = 1/2 = GB = gﬁf&-l +1 = 13, too large, like the
corresponding method for pages in @ book, vhich gave a threshold
outside the range. Considering the lengtha aof the lines only as tuo
Bore |arge dimensions together with the widtha, we get

[ w 12 u fa ] +1 = 3, much better.  The pure l-dimensional
approach yields the same. The discrete rule gives [+& = 4B/8 ] = &,

Let us look at my bookcase, which is of typical length and
contains 59 books on the top shelf, averaging 5/8 inch in thickness.
The books are 8 inches or 3.E book thickresses high. The regular
continuous rule gives [ 19.61 = G8/8 ) + 1 = & books apart as near,
once again rather large. Treating the length and width of the books
only as two more large dimensions along with the thicknesas, we get
["J? % GB/E 1 + 1 = 3, again wuch batter, but perhaps a bit on the
small side. The pure l-dirensional treatment yields [Y2 =x GA/E 1 + 1
E 4, the best value so far.  The discrete rule gives [ ¥ BB/E ) =

Al though the appropriate variaticna of the continuous rule
give reasonable results in all threze of the above examples, in sach
case an equivalent result was provided mech more directly and
logically by the discrete rule. Let ws look at fwe more bookcase
examples to test out our local-global rean rule. He will compare the
discrete and regular continuous rules.

Let's consider a bookcase 5 times as long., The discrete rule
gives ¥ & » 250/8 = 11.2, the continucus Y19.6) = 298/8 = 1 = 18.3.
But we forgot to consider global range. Since this bookcase is 5
times typical length, the global=local mean rule results in a decrease
of threshold by a factor of "% 5 =¥2.2 = 1.5, Our discrete rule then
gives [11.2 # 1.5) = 7, and our comtinuous I17.3 7/ 1.5) + 1 = 172
izince we nust divide before adding 1), Again | think the discrete
rule ia better.

New consider a short bookshelf with 18 boeks,  The discraete
and continuous rules give '}’E % 18/8 = 2.2 and Y19.6) = 18/8 4 1 =
4.5, Corrected by global range, we get 2.2 = 1.5 = 3 and [3.5 =
1.5) +1 = 6. The discreta rule seema just right.

I In judging the nearnesa of fwo suburbs of 8 city like Boston,
the suburbs generally have to be abutting, or close to aoutting, to be
near. 1f there ia & whole other suburb betuwsen them, they are only
marginal ly pear at most. E.g., Medford and Chelsea, separated by
Everett; Hedford and Casbridge, separated by Somerville; or Canbridoge
and Halthan! separated by Watertoun. MWatertown and Arlington are more
likely to be considersd near because Belmont, which separates them, ie
short from north to south, and perhapa because they are
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demographical ly more similar than the other pairs.

Houw do our rules do? Let's try the continuous traatment
first., The range is the Boston area, diameter 16 miles. Tha range
threshold e tuo niles, Object size is 2 miles, giving a threshold of
2 miles. (These distances are betusen the nearest points.) Their
mean is just under 2 172 miles. This agrees well with our
obhservations.

But since suburbs are closely packad objects, we should use
the discrete rule. & object lengths is & x 3 = 12 niles. The GH of
12 and 2 is 5. But since discrete distance applies to the centers of
the objects rather than the nearest pointa, we must subtcact twice the
radius of a suburbk, giving 2 miles as threshold, the same as the
continuous value to the nearest mile. Since suburbs are so
irregularly shaped, ons can nake as good 8 case that the continuous
rule applies as that the dizcrete rule applies, 8o it iz nice that
they agrae.

Let's look at towns in Massachusetts. The range is 288 miles,
giving 25 wiles as range nzar threshold, Diameter of each ias & alles.
The continuous rule gives a threshold of V% = 256 = 18, Discrate
gives ™ IE x &) =I5 - & = 16, This compares to 25 for cities in
southern New England, One would expect cities to have the larger
threshold, since they are farther apart.

Small Number of Objects

Let ws see how the mean rule works for small n.  Imagine a
dresgser or filing cabinet with drauvers, a very short bookshel f, or a
city block with several buildings.

Since We measure from centers, adjacent objects are 1 apart,
the end objects are 1/2 from the end, and in the even case, the
central objects are 1/2 from the center, while in the odd case the
central object is B from the center, etc. (see Figure 12].

Thus, for n = 1, the object is near both enda and the middle.
For n = 2, each object is nedr its end and the middie, and marginally
near the other object (reasonable, since they are neighboring, yet as
far apart as possible dithin the rangel.

For n = 3 and n = 4, only the end objects are near the end.
This 1% rather strict, since we do not want near to mean "at." “"The
ghirts are near the top of the dresser™ could mean the top tuo
draders, even in a three-draser dresser, certainly in a faur-drawer

end SLncteest  giegcar,

For n = & %o about a dozen, the end object and their immediate
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neighbors are near the end. Objects not adjacent can be near each
other only at n 2 & This s possibly slightiy too atrict, but the
threshold is close for n = 7. For all odd n, the objects neighboring
the middie object are near the middle. Ewcept possibly for n = 3,
this is reasonable both in wies of the "laker than at" criterion, and
because these obhjects are nearer the center than the ends. For o= 3
this is lawx, as 1t would mean all objects were near the middle, which
would seem to deprive near of any information content. Of course
there would still be some information conveyed, since the
probabilities of the end objects are lesa than that of the center
object, For comparative and indefinite usages, these sieple relative
probabilities may be more useful than the cut amd dried
classifications we are making here [(see page 27). For n = 3, the
third and seventh cbjecta are also near the middie, a little lax,
though they are nearer to it than to the ends. For even n from B to
about a dozen, the objects one remgved from the middle pair are also
near the middle. For n = B, this iz a little lax, but possibly
acceptable; they are also, and eqgually as puch, near the enda. For n
= 18, we encounter for the firat tine objects which are near naither
the middle nor the end.

Hote the three lax cases, 3, 5, 3, all occur in nearnsss to
the middle. This is because the middle has objects on bolh sides of
it, encompassing therefore, a lot of objects, but perhaps we fesl that
in order to convey at least ong hit of information, not more than hal f
the objects should be near the middle. He can amend the rule by
dropping those objects outside the middle half. UWe can do the sase in
anauering the guestion "la 1t near [anyl one of the ends?" aimilar to
our choosing & stricter threshold in the probliem of @ man near the
wall in a corridor (page #1}. Such amendments, er caveats, to the
general foreula, based on common sense (possibly the desice to
transmit a maximal amount of information)! are very usefuel. WHe will
gsoon see, indeed, how such commensense ideas can fork the basis of a
definition of near.

The rest of this section, except for the last paragraph, is an
attespt ko analyze the relation belueen tuo-choice nearness (near one
end va. near the other) and three-choice nearness {near one end, near
the other end, or near the middlel., 1t tries to show why the ' n/2
rule we have developed fits the 3-choice better than the 2-choice
case, and by 2 "linear™ argument, derives from this rule a new,
possibly more fundamental, 0 rule for the 2-choice case. | also
develop an axiomatic approach for n £ &, baszed on commonsense
properties of near. The 2-choice version agrees with fhe n 2=
choice rule, and the I-choice vorsion avoids the end-strictness and
middle-laxity of the 'fﬁ?f J-cholice rule.

If "e are talking about nearness to one end versus the other,
disregarding the niddle, as in "Near which end of the atreet do you
[Iwe?” we may dish to be laxer. For n less than about a dozen, an
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Ardatment

object iz mear one end unless it iz almoest at, oF is beayend, tha
middle. In general, it is & good "linear" approximation to say, in
the two-choice case, it is near one end if it would be near that end
in the thres-choice case for twice as many objects. l.e., the middle
acts as an end for each half of the line, Actually, we need a fittle
more strictneas than in the 3-choiee caae, where an object can be near
both the middle and a0 end for some n.

Sinca ?’:E ia the J-choice formula, the 2-choice formula ue
get by this linear approximation is -y, The louwest n where the fuo-
and three=- chaice rules disagrees, apart from n = 2 and n = 3 where ue
thought the three-choice rule uaa a little strict, ia n = 7. Hesults
for bath cases are shown in Figure 13.

herreason dhy the mean rule fite the three-choice case better
than the tuo-choice case is that it was derived from considerations
that were pair=definite {or, looked at another way, single-definital,
Hhereas the tuo-choice case s distinctly semi-definite. The usage
vocabulary is a little confusing in thie context, but let pe explain.
Hear by the range or d-ghject rules meant neac in a paic-—defini te
sense, because one is interested in nearness of a particular object to
cne particular point, the specified end. Thus we have a case of
nearnass to this point versua any other point, such as the middle or
the end, This situation can also be described as aingle-definite [(see
pages 272 and 25 in USAGE), if we see ourselves picking out this end as
a convenient base from among all points on the line, &.9., the middla
and the ather end. Since the range and four-object rules reprasent
our general nearness theory, it is not surprising that the situation
they fit can be viewed in several waygs. The teo-choice case, an the
other hand, is distinctly semi-definite, as the nzar point must be
chasen from 3 set of two apecific points, the two ends.

The ¥ rule fits the tuo-choice case posaibly better than the
T;-"_E' rule fits the three-choice case, deapite the fact that we derived
the former from the latter, using an appro=zimation. This suggests the
norulte ig more fundamental, which makes sense, since bath the two-
choice case and the ¥ rule are simpler than the three-choice case
and ¥A/2 rule, respectively. [f we retain the 71 rule, and if we
werg to replace the |inear approsiealtion by a eore exact relationship,
the 3-choice nearness-to-an-end rule would, according te the last
chservation in the paragraph on "3-choice va. Z-choice,™ be slightiy
laxened, as e have wanted. This view is incorporated in the
folloding asiomatic treatment. '

The amendment idea of page 61 can be esxpanded intoc a complete
axiomatic syster for the small n cases., The axiora can be arcanged in
a precedence hierarchy, each taking effect only i§f it does not
contradict the previcus ones, or, equivalently for these axioma, §f §t
is needed to disambiguate the meaning. [ present the axiocms for
nearness to an end. Axioms for poarness o the middle @n 3-choice
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cage Ccan be dorked out ainilarly; the above-mentionsd amendment enters
at n = B.

1} linforration axioml At least one, but not all, objects are
nedrs

This handies the n = 2 case.

2} (plurality axion) At least two objects are near (i.e.
near does not mean "at").

This handles the i1 = 3 case.

2) [preference or seni-definitensss axiom) Ame object cannot
be near one end i f it is nearer the other end.

This handles the n = & cass.

4) lewcluded middle awion} An object at the cemter, or
adjacent to the center for even n, is pear neither end.

Thia ia adequate up to n = B.

o) (Z-choice/3-choice discrimination axiom) Ay remaining
undecided objects should be called near for Z=choice case, and not
near for J-choice case,

Thia is adequate up to n = &.

These axioms pake the Z2- and 3-choice cases idemtical for
n g 6, avoiding the strictness of the A /2 rule for = 3 and 4.

OFf course there iz a great deal of redundance §n these axiomas:
it seems almost pointless to have five axioms to explaim only eight
cases. Mlso, they seem to be phrased a0 as to be of s little uae as
possible for larger n. | found these draubacks could met be avoided
wi thowt either making the explanation of the small n cases
unconvincing, or changing the results for the large n e3ses from what
baoth the root rules and commen usage prescribe. The awxioss uere not
chosen to provide an efficient derivation of the weaning of near, but
to shouw how its meaning 15 rooted in certain commonsense ideas. WHhile
information maximizing principles seem to be able to explain the
meaning for very small n where there is little choice inm the
definition if it is to convey any information at all, they soon break
doun as they rust, for near seens to be based rather on a concept of a
"moderately small" distance, as we have sean in this paper. This
concept ig informationally efficient only in the contewxt of a Fich
natural languags vocabulary where it filla a spall "ecolagical niche, ™
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DISCRETE CASE: Smal! Number of Dojecis BES

Hhat cowmon basis can we find for the discrete and continuous
rules? Such a basis should shou an analogy between the &-object rule
and the object size rula., Thae 4-object threshold is & times the
distance betueen successive chject positions, which 13 the smallest
distance that plays a role in the discrete case. 0On ths average, the
ob ject size threshold egquals the object size, which is & times L7574 the
object size, the smallest distance that plays a role in the continuous
case. (It is the theeshold for the large absolute size, one large
dimension category.} Thus in both cases the object-dependent
threshald bs four times the amallest significant distance, or
"guantum.® This distance ia at the very near obhject threshold, and
hence can be describaed as a very small distance.



FART 111: FURTHER DEVELODPPMENTS AND APPLICATIONS
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CONSECUTIVE NEARNESS THRESHILOS &7

Fr R PR E

A higrarchy af thresholds (see Figuere 141 may be defined in
relation to the near threshold, which Wwill be represented as l.
Ordinarily the ratio betuesn conseculive thresholds should be 2. A
ratio of 2 m=ans that uhen we narrod a description down by one
threshold we are adding one it of information. According to the
chapter HOU WADUE 15 NEAR? this is the closest the thresholdas can be
to each other without bheing mistakable for each other with any
gignificant |ikelihood, and, if they were farther apart, there would
bBe values in betueen which could aot likely be taken as values of
el ther threshold, thus suggeating that a ned intermediate verbal
Judgment be invented.

These are default definitions in the senae that they apply
whan there is no good reason to think they don®t apply. The purpose
may suggest a airicler or la<er ratio than 2. In particular when the
geometric nean threshold is szveral posers of 2 below the range
threshold, we should increase the ratic, so as to spread tha
thresholds more evenly through the range. 1§ we wanted to spread them
eractiy evenly, we should chosse the ratio to be the fifth root of the
ratioc of range 1o near threshold, allowing ws to interpolate the four
higher threshalda botusen them, [t is adequate to select convenient
integer or fractional values for the thresholds, that yield ratios
that are agproximateiy egual., [(See animal size example on page 78.)

Un the other hand, whan ithe near threshold is simply the range
near threshold, f.e., 173 of the range, only the range maximum is
guite far, and nothing is very lar. These latter characterizations
are only applicable vhen the range is at least 16 or 32 times the size
of the pear threshold.,  See NIN-MEASURABLE SPALES, papge 72, for a
suppoeting example,

Hien the Frorge Bas a ninieus grealer than 8, a similar
phenomenon may awclutde the wery near threshold. 1f we want to avoid
thia, a3 in cors teavelling very near each ether on a highday, meaning
a carlength auay [the minimum safe distancel, we should compute all
threshaolds by their diatance fro. the minimer, inatoad of their

distonce from B,
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Kafa's
preblem

Mote that if we think of near as a "small” distance, then our
at threshold says that a second-order small distance ia negligible.

Sometimes de want a very lax threshold, as uhen we say “lt*s
in the first part of the book." This ia accomplished by waing the
word "part™ which indicates a substantial portion of the book. “Part®
could be taken az one-quarter te ene-half the bock. In this case the
components of a part are not guite far from cne another, by the range
rule. & "section" could be one-eighth to one sixty=fourth of tha
book; its contenta are near to one another, but ot 3t the same place.
This makes a section have at least several pages.

COMPARISON THRESHOLDS

In doing indefinite and comparative cases, we often have to
compara the nearnsss of several chjects, "comparands,” to a reference
object. |Ff the purpose or standard does not specify thresholds, then
e must fall back on a syster based on range and object size, or rangs
and number in the discrete case.

He want to make the judgrent depend as much as possible on
concepts we have already developed. He can say that, basically, the
tuo comparands are about, almost or nearly as near or as far _as each
other when the difference of their distances ia Within the near
threshold of the tuo objects, They are as near or as far as each
other when the difference is within their at threshold. The nearer
one i% much, or guite a2 bit, nearec than the other when its diatance
from the the reference object is less than that of the farther
comparand by at least the ratio of consecutive nearness thresholda.
See Figure 15,

Ususally the twe comparands have a commoen range dhich may be
wsed in computing the near threshold. [f the range is unknown, a good
default might be the distance of the farther cosparand, or a small
multiple of it

DIMENSIONS DTHER THAN DISTANCE

Kahn in his master's thesis develops a time-specialist, but
do=s not deal with concepts such 2s “recently” or "a while ago,™ which
he points out are very context=dependent. These phrases mean
essential ly "near this time." Let us ses how our near system can
handle these concepta.
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DIRENSIONS OTHER THAN DISTANCE 7l

Conaider the statement "His birthday ia near Chriastmas.® The
objects involwved are days, which clearly match our discrete case. The
rFange is 152 = Z65 = 183, since no twe dates can be more than half a
year apart (similar to the offices in the circuitous corridorl. The
rangs threshold s 178 = 183 = 23 days. The fG-object rule gives &

days. The GH of these ia 9 or 18 days, a very reasonable ansuer.
Mow consider “He came doun with nephritis soon after his trip
to Europe.® Thig is continuous case, and the durations of the tuo

events, the trip and the disease, recemble object sizes. [f ue take
Six weeks for the dusations (11 seems 3@ good estinate for both of
then), then we know the threshold must also be in this neighborhood,
uhich s guite reasonable,

One may object that we should have halved the threshold

‘because the durations aro in what we could call the "large absoluts

size" cateqory (nare than a day)l but this ia balanced by the fact that
there are two rather than one large dimensions {the soal ler duration
is more tham Ralf the larger). [f the |ater event had besn a shorter
event |ike "He caught a cold,” the threshold would be halved to theee
weeks because there s only one large dicenaion. - A more detailed
treatment might alse take into account range [(the upper limit on how
much later he could have become ill, sugpested, say, by the present
date, ar by usome other svenl similae fo fhe (rip which would have Been
used as the reference if the illness had happened after it} and
standard (3 threshold for a cold might be shorter because one expects -
te catch them more often].

Let us see houw our consecutive thresholds apply to the

judgeent of animal size, UWe will comsider only macroscopic animala.
Dur range smaximus is a whale, aay 198 metres long. Thiz gives a range
near, or small, threshold of 12.5, say 18 metres. The range minimuos,
and, more important, the smallest distinguishable distance, is about 1
millimetre. 1f ue equate this with the snallest aignificant distance
[gee page BS), we get an "object size” threshold of four millimetres.
The geometric mean of that with the range threshold i about 2718 of a
metre, or eight inches. Therefore a squirFrel §ia @ small animal. This
is about as good as cne can hope to get by thia methad, since the aize
of the largeat aniral is someuhat arbitracuy.

A better idea is to tzke 3 hupan as & standard. To choose pur
ratio af consecutive nearness thresholds, the best jdea 18 ta decide
what size would he, say, very large, and then interpolate te get large
and qui e larga. But since uz rarely ses animala larger than the
elephant, and are not very familiar with their sizes, it is best to
base the interpolation on "elephant" as guite large leaving whales as
"gualitatively" very large. [An alternative would be to decide uhat
ig the smallest wg think of as large and extrapolate for gu'lte large
and very large.}



An elephant is about B metres long. Call this guite large.
/ Call humans (2 metres) astandard, or not quite large {the G of small
frge and largel. Then interpolate large as 3 1/2 metres, a rhinoceros
animals perhaps. A horse s not quite large by this criterion, but it would
be if ue went by weight irstead of length, since its shape is morae
compact tham a human® s.

Let us interpolate small, quite small, and very small betueen
e ] humans [EB") and our minimum visible aize, say 8.1 inches. A factor
e .f of 5 will serve to separate these thresholds, giving small = 132%
@remect s feat), gquite small = 2" (mousel, very small = B.5 inches linsectl.
Hote we have used a two-ratio system, a different ratio above and
belouw the standard.

NOM-HEASURABLE SPACES: EMOTIOMAL CLOSEMESS

In talking about hou close | feel to various members of my
class of 32 students, it is unlikely that 1 have a convinging
numerical measure of distance. MNevertheless, 1f [ assume that the

an closeness of studenta to me la wnifermiy distributed over & range
t‘;HT-’tmL[r extending from as close 3s possible to as far as possible, then | can
say the closest four students (L/B of the classl are close to se, the
closest 2 of those are quite close, 1 is very close, the farthest 16
ides far, and the farthest @ quite far., In a class of 32, no one iz very
ter kb € far.

Efmllﬁl'lr

Hore |ikely, the distribution is chi-square with a number of
degrees of freedom determined by the nusber of dimensions along which
I can feel close to someone, e.g., intellectually, emotionally, etc..
But it is questionable whether such 2 sophisticated analysio ia
feasible or necessary. The point worth making is that the one-
dimenaional uniforn distribution works pretty well.

GROUPIMG BY NEAR - - A FAILURE DF THE THEORY

Suppose We have n objects, located in some apatial
configuration, and we wish to group them into groups based in some
natural way on thelr nearness to ome a2nother. The approach suggeated
T it impt by our theory is to define tuo objects to be in the same group if they
£a '“.-"‘F'r..? are near each other, waing the diameter of the whole configuration as

range. He then take the tranaltive closure of this nearness
the *""'-**'*"C;'- relationship, giving an equivalence relation which divides the objects
into disjoint groups.

i



As the examples in Figure 15 show, this method is hopalessiy
inadeguate, since in reality, an intra-group distance of as much as
[ tuo=thirda the diameter of the whole configuration (Figure lEa, uhich
. is supnosed to be almost a sguare] can exist, and thias distance may be
only alightly less than the inter=group distance. DOur method dossn™t
evern work in one dimension (Figure 1B0). [t seems clear that no
method that could ressconably be considered an extenzion or
medification of our theory could work.

(o) (b)

Figuee E‘»E:' - Der neap -tl-.eana_ cant handle cuven
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diFferences 1n distance Can b "L"“'tt small .

& An idea thal works beites is to sort the distances betueen
:f.jéf{y "naighboring® objects into two classes, long and short, and then
"join® objects separated by short distances, and take the transitive
closure. This works for the above tuo examples, but would run into
problems with more complex examples, One would have to decide when
tuwo objects are neighbors, and uhece the cutoff be betueen short and
long. The latter is itself a ora-dimensional grouping problem. Ewven
if We could do this, the method would leave a lot to desire, aince it
the trve  goes not take account af such isportant spatial considerations as
“‘--‘f-'“""'* where the distances being sorted are with respect to one another.
e gl Hhat may be “flong" im one part of the configuration may be "short®™ in
e o another, and a group’s shape i% 3s important as its intra-group
distance in deciding whether it iz indesd one group. Clearly, a deep
understanding of space is necessary to handle this problem.

s sy
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Appendix: FMATHEMATICAL CAPABILITIES OF THE HUMAN PERCEPTUAL RECHANISH

According to an article by 5. 5. Stevens in The Handbook of
Perception, vol. [, <1374», the well-known Heber-Fechner Law was
replaced about 1353 by a more accurate power function law relating
gtimulus to responea. The article leaves little doubt that perceptual
mechanisna of the brainm commonly compute square roots and other pouer
functiona. A particularly relevant exarple Stevens reports is that
the subjective visual area of @ sgquare ia proportional to the 273
pouer of its actual area. The geometric mean of the area and the
length of side is the 3/4 power of the are3a. Stevens has tha
folloding to say:

" .« Is it a general law, or does it hold only for wision
and hearing? Experiments to answer that question have
explored more than three dozen sensory and perceptual

continua. The remarkable and quite unesxpected result Ts that
this psychophysical lad asems to hold in all sense modalities.
« » « In general, sach sensa modality has its own exponent,
but the values of some of the esxponents depend om such
parameters as adaptation and contrast.® - - (page 364]

" s« The electrical recording of nervous activity turns
out to give highly variable results, but in many sensa
modalities the electrical potentials have been shown to grow
a3 a4 pouer functlon of the stimulus intenaity. There appears
to be little question, therefore, that the sensory systems are
capable of pouwer tramsformations. . . «

« ¢+ +« In some of the physiclogical experiments, the
recorded data can be described by power functions
agpproximately the same @s the corresponding psychophysical
functions." = = [pages 3E5)
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