
COMMON ASSEMBLY
LANGUAGE (CAL/32)
Reference Manual

OS/32 Version ROS-03 and higher

48-050 F01 R03

Concurrenliffff!J
Computer Corporation

Page 1 of 1

MANUAL UPDATE PACKAGE COVER SHEET

MANUAL TITLE: COMMON ASSEMBLY LANGUAGE/32 (CAL/32) Reference
Manual

PUBLICATION
NUMBER: 48-050

OLD REVISION LEVEL: FOO R03

NEW REVISION LEVEL: FOl R03

This package of affected pages updates the current version of the
subject manual. New features, as well as changes, deletions and
additions to information in this manual are indicated by change
bars in the page margins. Please discard the indicated old pages
and replace or insert them with the supplied new pages.

OLD PAGES NEW PAGES
======================~==

*

Title Sheet/Disclaimer, FOO
R03

Sheets i through v, FOO R03

Sheet vii, FOO R03

Title Sheet/Disclaimer, FOl
R03

Sheets i through v, FOl R03

Sheets vii through xii, FOl
R03

Sheet xiii, FOl R03

Sheets 1-1 through 1-17, FOO Sheets 1-1 through 1-18, FOl
R03 R03*

Sheet 3-19, FOO R03 Sheet 3-19, FOl R03
Sheet 3-20, FOO R03 Sheet 3-20, FOl R03
Sheet 3-25, FOO R03 Sheet 3-25, FOl R03
Sheet 3-26' FOO R03 Sheet 3-26, FOl R03
Sheet 3-27, FOO R03 Sheet 3-27, FOl R03
Sheet 3-28, FOO R03 Sheet 3-28, FOl R03
Sheet 3-35, FOO R03 Sheet 3-35, FOl R03
Sheet 3-36, FOO R03 Sheet 3-36, FOO R03
Sheet 3-57, FOO R03 Sheet 3-57, FOO R03
Sheet 3-58, FOO R03 Sheet 3-58, FOl R03
Sheet 3-63, FOO R03 Sheet 3-63, FOO R03
Sheet 3-64, FOO R03 Sheet 3-64, FOl R03
Sheet 3-65, FOO R03 Sheet 3-65, FOl R03
Sheet 3-66' FOO R03 Sheet 3-66, FOl R03

Sheet 5-3, FOO R03 Sheet 5-3, FOl R03
Sheet 5-4, FOO R03 Sheet 5-4, FOO R03

Sheets IND-1 through IND-6, Sheets IND-1 through IND-6,
FOO R03 FOl R03

Due to the time-consuming task of updating manuals,
chapter is being reissued for your convenience.

this

TABLE OF CONTENTS

SYNTAX CONVENTIONS

PREFACE

CHAPTERS

1 BASIC CONCEPTS

1.1

1.2
1.2.l

1.2.2
1.2.3
1.2.3.l
1.2.4
1.2.5

1.3
1.3.l
1.3.2

1.3.3
1.3.4

1.4
1.4.l
1.4.2

1.4.3

1.4.4

1.4.5
1.4.6
1.4.7
1.4.8

1.5
1.5.l
1.5.2
1.5.3

INTRODUCTION

THE PROCESSOR
Temporary Storage (Registers)

Program Status Word (PSW)
Input/Output (I/O) Interface
Main Memory
Software Relocation
Hardware Relocation

INSTRUCTION FORMATS (16-BIT)
Register-to-Register (RR) Instructions
Register and Indexed Storage (RX)
Instructions
Register and Immediate (RI) Instructions
Short Form (SF) Instructions

INSTRUCTION FORMATS (32-BIT)
Register-to-Register (RR) Instructions
Register and Indexed Storage One (RXl)
Instructions
Register and Indexed Storage Two (RX2)
Instructions
Register and Indexed Storage Three (RX3)
Instructions
Register and Immediate One (Ril) Instructions
Register and Immediate Two (RI2) Instructions
Short Form (SF) Instructions
Register and Indexed Storage/Register
and Indexed Storage (RXRX) Instructions

VARIATIONS ON INSTRUCTION FORMATS
Conditional Branch Instructions
Branch and Link Instructions
Other Variations

48-050 FOl R03

vii

xiii

1-1

1-1
1-4

1-5
1-6
1-6
1-6
1-7

1-7
1-7

1-8
1-9
1-9

1-10
1-10

1-11

1-11

1-12
1-13
1-13
1-14

1-15

1-17
1-17
1-18
1-18

i

CHAPTERS (Continued)

2

3

ii

SYMBOLIC REPRESENTATION

2.1 INTRODUCTION 2-1

2.2 SYMBOLS AND EXPRESSIONS 2-1

2.3 SYMBOLS AND THEIR VALUES '2-3
2.3.1 Implicit Symbols 2-3
2.3.2 Global Symbols 2-5

THE SOURCE PROGRAM

3.1

3.2

3.3
3.3.l
3.3.2

3.4

3.4.1
3.4.2
3.4.3
3.4.3.1
3.4.3.2
3.4.3.3
3.4.3.4

3.5

3.5.1

3.5.2

3.5.3

3.6
3.6.1
3.6.1.1
3.6.1.2

3.6.1.3
3.6.2
3.6.2.1
3.6.2.2
3.6.2.3
3.6.2.4
3.6.2.5

INTRODUCTION 3-1

COMMENT STATEMENTS 3-1

INSTRUCTION STATEMENTS 3-2
Fixed Format Source Programming 3-2
Free Format Source Programming 3-3

COMMON ASSEMBLY LANGUAGE/32 (CAL/32)
INSTRUCTION REPRESENTATION 3-4
Name Field 3-4
Operation Field 3-5
Operand Field 3-6
Register-to-Register (RR) Instructions 3-6
Register and Indexed Storage (RX) Instructions 3-7
Register and Immediate (RI) Instructions 3-8
Register and Indexed Storage/Register and
Indexed Storage (RXRX) Instructions 3-9

COMMON ASSEMBLY LANGUAGE/32 (CAL/32)
MACHINE INSTRUCTIONS
Usual Branch Mnemonics for the 3280, 3280E
MPS, and Micro3200 Systems
CAL/32 Machine Instructions for 3280, 3280E
MPS, and Micro3200 Systems
Instructions for the Input/Output
Processor (IOP)

ASSEMBLER INSTRUCTIONS
Symbol Definition Instructions
Equate (EQU) Instruction
External, Entry, Weak External, Weak
Entry and Data Entry (EXTRN, ENTRY,
WXTRN, WNTRY and DNTRY) Instructions
Include (INCLD) Instruction
Data Definition Instructions
Define Storage (DS, DSH and DSF) Instruction
Define Constant (DC and DCF) Instruction
Hexadecimal Constants
Integer Constants
Address Constants

3-11
3-25

3-27

3-29

3-30
3-30
3-30

3-33
3-36
3-37
3-37
3-39
3-40
3-42
3-44

48-050 FOl R03

CHAPTERS (Continued)

3.6.2.6
3.6.2.7
3.6.2.8
3.6.3
3.6.4
3.6.5
3.6.6
3.6.6.1
3.6.6.2
3.6.6.3
3.6.6.4
3.6.6.5
3.6.6.6
3.6.7
3.6.7.1
3.6.7.2
3.6.7.3
3.6.7.4
3.6.7.5
3.6.7.6
3.6.7.7
3.6.7.8
3.6.7.9
3.6.7.10
3.6.7.11

3.6.7.12
3.6.7.13
3.6.7.14
3.6.7.15
3.6.7.16

3.6.7.17

3.6.7.18

3.6.8
3.6.8.1

3.6.8.2
3.6.8.3
3.6.9
3.6.9.1

3.6.9.2

3.6.10
3.6.10.1

3.6.10.2

3.6.10.3
3.6.11

Floating Point Constants
Character Constants
Decimal String Constants
Define Byte (DB) Instruction
Define List (DLIST) Instruction
Define Command (DCMD) Instruction
Location Counter (LOC) Instructions
Pure (PURE) Instruction
Impure (IMPUR) Instruction
Origin (ORG) Instruction
Absolute (ABS) Instruction
Align (ALIGN) Instruction
Conditional No Operation (CNOP) Instruction
Assembler Control Instructions
Target (TARGT) Instruction
End (END) Instruction
Copy Library (CLIB) Instruction
Copy (COPY) Instruction
File Copy (FCOPY) Instruction
Lower-Case (LCASE) Instruction
No Lower-Case (NLCASE) Instruction
Pause (PAUSE) Instruction
Squeeze (SQUEZ and NOSQZ) Instructions
Squeeze Related (ERSQZ and NORX3) Instructions
Sequence Checking (SQCHK and NOSEQ)
Instructions
Scratch (SCRAT) Instruction
Pass Pause (PPAUS) Instruction
Message (MSG) Instruction
Batch Assembly (BATCH and BEND) Instructions
Unreferenced Externals (UREX and NUREX)
Instructions
Assembly Performance (HPM and NHPM)
Instructions
16-Bit Object Code (CAL and NOCAL)
Instructions
Conditional Assembly Instructions
Compound Conditional (IFx, ELSE and ENDC)
Instructions
Simple If (IF) Instruction
Do (DO) Instruction
Instructions for Data Structures
Structure Definition (COMN, STRUC and ENDS)
Instructions
Structure Initialization (BDATA and BORG)
Instructions
Listing Control Instructions
Listing Identification (PROG and TITLE)
Instructions
Format Control (LCNT, F.JECT, SPACE and
WIDTH) Instructions
Content Control Instructions
Auxiliary Processing Unit (APU) and NAPU
Options

48-050 FOl R03

3-46
3-47
3-47
3-50
3-51
3-52
3-52
3-52
3-53
3-53
3-54
3-54
3-55
3-56
3-56
3-56
3-57
3-57
3-58
3-59
3-59
3-59
3-60
3-63

3-64
3-64
3-65
3-65
3-65

3-66

3-66

3-67
3-67

3-67
3-71
3-72
3-73

3-73

3-75
3-77

3-77

3-77
3-78

3-81

iii

CHAPTERS (Continued)

3.7 ASSEMBLY LISTING 3-81

4 COMMON MODE PROGRAMMING

4.1

4.2

4.3

4.4
4.4.1
4.4.1.1

4.4.1.2

4.4.2

4.5

4.6

4.7

INTRODUCTION

ADDRESS OPERATION INSTRUCTIONS

COMMON MODE IMMEDIATE OPERATIONS

4-1

4-1

4-3

COMMON MODE ASSEMBLER INSTRUCTIONS 4-3
Data Definition Instructions 4-4
Define Address Length Constant (DAC)
Instruction 4-4
Define Address Length Storage (DAS)
Instruction 4-4
Assembler Control (CAL and NOCAL) Instructions 4-5

MIXED MODE COMPUTATIONS

GLOBAL SYMBOLS

SPECIAL INSTRUCTIONS

4-5

4-6

4-8

5 COMMON ASSEMBLY LANGUAGE/32 (CAL/32) OPERATING
INSTRUCTIONS

5.1

5.2

5.3

5.3.1
5.3.2
5.3.3

5.3.4

INTRODUCTION 5-1

OPERATING INSTRUCTIONS FOR ESTABLISHING
COMMON ASSEMBLY LANGUAGE/32 (CAL/32) AS A
TASK 5-1

COMMON ASSEMBLY LANGUAGE/32 (CAL/32) START
OPTIONS 5-3
High Performance Method (HPM) Assembly 5-7
Assigning Logical Units 5-9
Starting Common Assembly Language/32 (CAL/32)
Using Command Substitutions (CSS) 5-11
Common Assembly Language/32 (CAL/32) Assembler
End of Task (EOT) Codes 5-13

APPENDIXES

A

B

iv

COMMON ASSEMBLY LANGUAGE/32 (CAL/32) ERROR CODES

OBJECT CODE FORMAT

A-1

B-1

48-050 FOl R03

FIGURES

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15

3-1
3-2
3-3

TABLES

3-1

3-2

3-3

3-4
3-5

3-6

3-7

3-8

4-1

5-1
5-2
5-3
5-4

B-1
B-2

INDEX

Configuration of a Typical Uniprocessing System
Configuration of a Typical Multiprocessing System
Configuration of a Typical 3280/Micro3200 System
RR Format (16-Bit)
RX Format (16-Bit)
RI Format (16-Bit)
SF Format (16-Bit)
RR Format (32-Bit)
RXl Format (32-Bit)
RX2 Format (32-Bit)
RX3 Format (32-Bit)
Ril Format (32-Bit)
RI2 Format (32-Bit)
SF Format (32-Bit)
RXRX Format (32-Bit)

Comment Statement Column Positioning
Source Program Sequence Identification
Instruction Statement Positioning (Fixed Format)

SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND
MNEMONICS
CAL/32 MACHINE INSTRUCTIONS AND MNEMONICS FOR
THE 3200MPS FAMILY OF PROCESSORS
SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND
MNEMONICS FOR THE SERIES 3211 PROCESSORS
EXTENDED BRANCH MNEMONICS
USUAL EXTENDED BRANCH MNEMONICS FOR THE
3280, 3280E MPS, AND MICR03200 SYSTEMS
SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND
MNEMONICS FOR 3280, 3280E MPS, AND MICR03200
SYSTEMS
SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND
MNEMONICS FOR IOPS
CONSTANT TYPES

COMMON MODE ADDRESS OPERATIONS

MEMORY REQUIREMENTS FOR HPM
HPM MEMORY UTILIZATION
ASSEMBLY PERFORMANCE IMPROVEMENT USING HPM
CAL/32 LOGICAL UNITS

32-BIT LOADER ITEM DEFINITIONS
16-BIT LOADER ITEM DEFINITIONS

48-050 FOO R03

1-2
1-2
1-3
1-8
1-8
1-9
1-9
1-10
1-11
1-11
1-12
1-13
1-14
1-14
1-15

3-2
3-2
3-3

3-12

3-20

3-21
3-23

3-25

3-27

3-29
3-40

4-1

5-1
5-8
5-8
5-9

B-2
B-4

IND-1

v

SYNTAX CONVENTIONS

GENERAL SYNTAX RULES

These rules clarify the syntax of the commands in this documentA
Ref er to these conventions when interpreting the command syntax.

Multiple commands may appear on one line, but each one must be
separated by a semicolon (1). When multiple commands are entered
on the same line, they are executed sequentially. If an error
occurs, any subsequent commands on the line are ignored.

If the first character of any command input is an asterisk (*),
the remainder of that line is considered to be a comment and is
not executed. It is copied to the system log device if logging
is active.

In a batch environment, continue parameters by entering a comma
as the last character and continuing the parameters on the
following line.

Statement Syntax Conventions

The following conventions are used in all statement, command, and
instruction formats. They point out differences between
information that must be entered exactly as shown and that which
denotes information provided by the user. However, when entering
this information, upper- or lower-case can be used.

Underlining points out the mnemonic of the entry and means that
at least the underlined portion must be entered. If an entry is
not underlined at all, the entire entry must be entered.

_EAUSE

Commands and parameters are represented in upper-case and must be
entered as shown.

DELETE actno

Variables are represented in lower-case and denote information
provided by the user:

,M:COUNT n

Punctuation must be entered exactly as shown.

48-050 FOl R03 vii

Commas separate parameters and substitute for missing positional
parameters:

Commas preceding braces inside brackets must be entered if one of
the optional parameters is chosen:

Commas inside brackets must be entered if the optional parameter
is chosen:

EOU [NOSAVfilG UNPROTECT]

An ellipsis represents an indefinite number of parameters or
range of parameters:

IOTAB {cl assno, cl ass id G iocount])1 , ••• , {cl assno, cl ass id[, iocount J)"

Brackets represent optional parameters:

ENCRYPT [fd]

Braces represent required parameters of which one must be chosen:

Shading represents default options:

viii

ERRMODE EQU {,~}
~:%:

48-050 FOl R03

An equals sign associates a parameter with its keyword:

[{ ~EATE}] _MODE UPDATE [=fd3]

REPORT

Upper- and Lower-Case Characters

All commands and parameters can be entered in either upper- or
lower-case. Parameters that are retained internally (such as
task identifiers) are translated to uppercase. Subsequent
displays show the uppercase version.

Decimal and Hexadecimal Numbers

The OS/32 commands use decimal rather than hexadecimal numbers
for most numeric operands. One exception is addresses, which are
expressed in hexadecimal. Numeric operands are always integers
except for the SET SYS and TCOM commands, and the segment size
increment field of the LOAD command where the decimal point is
permissible. Leading zeros can be omitted in numeric operands,
whether decimal or hexadecimal.

Task Identifiers

Task identifiers must consist of 1 to 8 alphanumeric characters;
the first character must be alphabetic. Valid task identifiers
are:

TASK3

MAX

x

T997XY25

Examples of invalid task identifiers are:

34TASK

T43.2

TASK12345

First character is not alphabetic

Contains a nonalphanumeric character

Contains more than eight characters

The background task has the special identifier .BG[nnnnn].

48-050 FOl R03 ix

File Descriptors

Many of the command formats in this manual require the user to
enter a file descriptor (fd). File descriptors are entered in
the following format:

Format:

Parameters:

voln:

dev:

filename

• ext

x

is the name of the disk volume on which the
file resides. It may be from one to four
characters long. The first character must be
alphabetic and the remaining alphanumeric.
This parameter need not be specified. If this
parameter is not specified, the default user
volume is used. When voln is not specified,
the colon separating voln and filename must
not be entered.

is a 1- to 4-character device name. The first
character must be alphabetic and the remaining
alphanumeric. A colon must follow the device
name, and neither the filename or the
extension is entered.

is the name of a file and is from one to eight
characters long. The first character must be
alphabetic and the remaining alphanumeric. If
a filename is specified when a device mnemonic
is specified as dev:, the filename is ignored.

is a 1- to 3-character alphanumeric string
preceded by a period (.) specifying the
extension to a filename. If the period and
extension are omitted, a default extension is
appended to the filename, if appropriate for
that particular command; otherwise, it remains
blank. If the period is specified and the
extension is omitted, the default is a blank
extension.

4 8-050 FOl R03

act no

file class

Examples:

is a decimal number ranging from 0 to 65,535
specifying the account number associated with
the file. Account numbers 1 through 65,535
(excluding 255) are used by MTM. Account
number 255 is reserved for the MTM
administrator. Account number 0 is used for
system files and is the default for all
operator commands.

is the class name of the file and consists of
one character. The class names are:

• /P for private file

• /G for group file

• /S for system file

The file class can be specified by a terminal
user or the system operator. If the system
operator specifies /P, /G, or /S, the
operation is performed to account 0 only.

In the following example, PACK: is the volume name, CAL is the
filename, .TSK is the extension name and 0 is the account number.

PACK:CAL.TSK/O

In the following example, CONV is the filename, and .CAL is the
extension name with a default account number on the default
volume.

CONV.CAL

In the following example, all filenames beginning with CGG as the
first three characters and ending with the extension GG are
requested.

CGG-.*GG Possible filenames are:

CGGl.AGG
CGGl.BGG
CGGl .CGG

CGG12345.XGG

48-050 FOl R03

CGG12 .AGG
CGG12.BGG
CGG12 .CGG

CGGABCDE. ZGG

CGG123.AGG
CGG123.BGG
CGG123.CGG

•

•
CGG. YGG

xi

In the following example, CAL is the filename with a default
extension, default account number, and default volume.

CAL

In the following example, M300: is the volume name, and MAR is
the filename with a default extension and default account number.

M300:MAR

In the following example, CARD: is the device mnemonic.

CARD:

xii 48-050 FOl R03

PREFACE

This manual describes the Common Assembly Language/32 (CAL/32) •
Chapter 1 is an introduction to the basic -concepts of the
assembler, central processing unit (CPU) and main memory. Also
described are the instruction formats for 16- and 32-bit
machines, as well as variations in the formats. Chapter 2
introduces assembly language symbolic representation and
describes symbolic values. Chapter 3 defines the source program
and contains a list of machine instructions, mnemonics and
detailed descriptions of assembler instructions. Common mode
programming and common mode operations are explained in Chapter
4. CAL/32 operating instructions are listed in Chapter 5.

Appendix A contains CAL/32 error codes. Appendix B describes the
16- and 32-bit object code formats.

The FOl R03 version of the manual presents a model of a typical
3280/Micro3200 System in Chapter 1. Chapter 3 presents a 16-bit
value mode for the EXTRN instruction. The chapter also provides
additional information concerning the SCRAT instruction.

This manual is intended for use with the OS/32 ROB-03 software
release and higher.

48-050 FOl R03 xiii

1.1 INTRODUCTION

CHAPTER 1
BASIC CONCEPTS

Like all assemblers, Common Assembly Language/32 (CAL/32)
simplifies the direct control of the processor by providing the
programmer with a way of representing actual machine operations
in an easily understood symbolic form. Assemblers translate
symbolic representations of machine instructions into binary form
to be executed by the processor. CAL/32 also includes such
features as relocation, segmentation, complex data definitions,
and expression analysis. CAL/32 can run on any 32-bit processor
and produce machine code for any 32-bit processor.

Because assembly language programming is so close to actual
machine operations, it is essential that the assembly language
programmer have a good understanding of system architecture.
This chapter contains introductory architectural descriptions for
uniprocessing systems and multiprocessing systems. See the
appropriate Processor User Manual or Instruction Set Reference
Manual for more detailed information.

1.2 THE PROCESSOR

The main components of a processor are the central processing
unit (CPU) and main memory. All processors, whether in a
uniprocessing or a multiprocessing system, are stored-program,
multiregister machines.

There are four iterations of the processor:

• A standard processor for a uniprocessing system. Figure 1-1
depicts the configuration of a typical uniprocessing system.

• A CPU in a multiprocessing system.

• Up to nine auxiliary or input/output processing units
(attached processors) in a multiprocessing system. Figure 1-2
depicts the configuration of a typical multiprocessing system.

• Figure 1-3 shows a typical 3280/Micro3200 system.

48-050 FOl R03 1-1

050-1

MEMORY

MEMORY BUS

CPU

MUX BUS

CONSOLE TERMINAL

TYPICAL UNIPROCESSOR

Figure 1-1 Configuration of a Typical Uniprocessing System

050-2

MUX BUS

CON­

SOLE

CLOCK

BASE

CPU

CHANNEL
ADAPTER

MEMORY

MEMORY BUS

CHANNEL

ADAPTER

OMA BUS
APU IOP APU

Figure 1-2 Configuration of a Typical Multiprocessing System

1-2 48-050 FOl R03

050-25
3280/Micro3200 PROCESSOR c SYSTEM INSTRUCTION REGISTER • B CONSOLE lop CODEI R1 I ~ I ADDRESS I

PROGRAM ST A TUS WORD 8 SFRs

I STATUS I LOC CTR I
CDS

MASTER B 8 DFRs

1111-ax16 II APUt MAIN . GENERAL
REGISTERS MEMORY

FLOATING (UP TO 256 MB)

f CDS

POINT l CDS CDS 1 UNIT

~ I I CDS LINK T ~

[] , ,
p- SYSTEM BUS ~

1
DIRECT OMA BUS JI MEMORY

INTERFACE
(DMI) MUX BUS 1J

T J '

MPC SELCH

t = SOME SYSTEMS MAY NOT I
CONTAIN APUs. HIGH-SPEED

* = PRESENT ONLY ON 3280
1/0

PROCESSORS (4K WORDS)
DEVICES

Figure 1-3 Configuration of a Typical 3280/Micro3200 System

48-050 FOl R03 1-3

In addition to the standard tasks performed by the operating
system in a uniprocessing system, the operating system in a
multiprocessing system:

• controls all auxiliary processing units (APUs)

• monitors all activity in the multiprocessing system,

• services all APU exceptions,

• dispatches application tasks created for existing CPUs or the
CPU in the 3200MPS Family of Processors, and

• dispatches tasks to the APUs and IOPs for execution in the
3200MPS Family of Processors.

The function of an APU is to execute tasks concurrently with the
CPU and other APUs. The function of the IOP is to handle all
input/output (I/O) devices configured under it, thereby relieving
the CPU of I/O overhead.

1.2.1 Temporary Storage (Registers)

All processors have some amount of temporary storage that can be
used as accumulators or index registers. There are three types
of temporary storage:

• General-purpose registers (GR)

• Single precision floating point registers (SFR)

• Double precision floating point registers (DFR)

All processors have at least one set of 16 general-purpose
registers. In the 16-bit processors, each general-purpose
register holds 16 bits; in the 32-bit processors, each holds 32
bits. General-purpose registers can be used for integer
arithmetic, address arithmetic, logical operations, and character
operations. Floating point registers are used only for floating
point arithmetic operations. Processors with floating point
registers have either eight single precision registers or eight
double precision registers. The single precision registers hold
32 bits. The double precision registers hold 64 bits.

For a multiprocessing system, there are up to te~ sets of
registers; one for each of the nine APUs that can be part of the
system, plus a set in the CPU; (i.e., ten processors each having
16 general register sets, eight SFRs, and eight DFRs).

1-4 48-050 FOl R03

1.2.2 Program Status Word (PSW)

The PSW defines the current state of a processing unit. The
uniprocessing system has one current PSW. Since the 3200MPS
Family of Processors consists of multiple processors, there is
one current PSW for each processor. The PSW consists of three
major parts:

• Status descriptor

• Condition code (CC)

• Location counter (LOC)

Individual bits and bit fields within the status descriptor
portion of the PSW define the current state of interrupts and
various hardware features of the processor. By setting or
resetting bits within the status descriptor, the programmer can
enable or disable such interrupts as I/O, arithmetic fault, and
machine malfunction (MMF). On those processors with multiple
sets of general-purpose registers, a field in the status
descriptor defines which set is currently in use. Programmers
writing user level programs, as opposed to operating system or
stand-alone programs, cannot directly access the status
descriptor. In this case, the operating system maintains control
of interrupts and registers.

The CC provides a means of controlling program flow, based on the
results of instruction execution. As certain instructions are
executed, the value in the CC changes to indicate the nature of
the result. For example, if an operation produces a zero result,
the CC may be changed to a zero value. With branch instructions,
the programmer can test the value in the CC and branch or not,
depending on that value. Not all instruction executions affect
the CC. See the appropriate processor reference manual for more
details.

The LOC controls the order of instruction execution. Normally,
the processor executes instructions sequentially and uses the LOC
to keep track of where the instructions are in main memory, then
fetches the instruction from the memory location specified by the
address contained in the LOC. It increments the LOC by the
length of the instruction, executes .the instruction and fetches
the next instruction. Branch instructions, when executed, change
the contents of the LOC and, thereby, affect the branch.

In 32-bit machines, the PSW contains 64 bits; the least
significant 24 bits are reserved for the LOC. In 16-bit
machines, the PSW contains 32 bits; the least significant 16 bits
are reserved for the LOC.

48-050 FOl R03 1-5

1.2.3 Input/Output (I/O) Interface

The execution of certain machine instructions allows the
programmer to control external devices and to cause the transfer
of data between external devices and main memory or registers.
The actual programming of I/O operations is very much dependent
upon the hardware of both the processor and the peripherals. I/O
instructions are restricted to operating systems and stand-alone
programs. User programs can communicate with I/O devices through
facilities provided by the operating system.

1.2.3.1 Main Memory

To the assembly language programmer, main memory appears as a
block of contiguous storage locations. The smallest unit of
memory the programmer can access is the byte (eight bits). The
programmer can also access halfwords (two bytes), fullwords (four
bytes), and doublewords (eight bytes). Each byte in memory is
accessed by a unique address. Memory addresses start with zero
and are incremented by one for each succeeding byte. Memory
addresses in the 32-bit processors always consist of 24 bits. In
the 16-bit processors, memory addresses consist of 16 bits. When
accessing bytes, any memory address within the limits of the
particular hardware configuration is considered valid. Halfwords
must be accessed with halfword addresses. Fullwords must be
accessed with addresses that are multiples of four. Doublewords
must be accessed with addresses that are multiples of eight.

1.2.4 Software Relocation

Programs written in CAL/32 can be absolute or relocatable. An
absolute program is one whose origin (starting location) is
specified at assembly time as being at a fixed halfword location
in memory. Subsequent addresses within the program, whether
referring to instructions or data, are fixed at assembly time.
For execution, absolute programs must always be loaded into
memory at the location specified as the origin. This type of
programming is useful in stand-alone applications and some
operating system situations. A user program written with
absolute addresses is relocatable, but the addresses that are
used refer to their absolute values relative to task address O.
It is the actual location of this task, O, which is relocatable.

Relocatable programs can be loaded for execution beginning at any
halfword location in memory. The origin of a relocatable program
is assumed to be relocatable zero. The CAL/32 output for this
type of program specifies all addresses in the program as
relative displacements from the origin. At link time, the
linkage editor resolves all addresses within the program by
adding a relocation value (the actual memory address for the
start of the program) to the relative addresses supplied by
CAL/32. Relocation applies only to addresses within the program.
Relocatable programs can contain absolute data.

1-6 48-050 FOl R03

1.2.5 Hardware Relocation

Some processors and their operating systems support hardware
relocation and segmentation. Programs prepared for these systems
start out as relocatable. A linkage editor processes the
relocatable output from CAL/32 to link in any needed subprograms.
The output of this process is an absolute program that, because
of the relocating hardware, can be loaded beginning at any memory
address that is a multiple of 256 for memory access controller
(MAC) machines, 2,048 for memory address translator (MAT)
machines, or '4,096 for virtual address translator (VAT) machines.
At run-time, the relocating hardware adds the required relocation
value to all addresses supplied by the program. This relocating
hardware also provides for program segmentation, where the
program is divided into pieces that can be loaded into
noncontiguous blocks of memory.

CAL/32 supports segmentation by allowing the programmer to divide
the program into pure and impure segments. The pure segment of
a program consists of machine instructions and constant data and
cannot be modified at run-time. (The operating system and the
hardware prevent modification.) The impure segment consists of
the data base which can be modified at run-time. Programs
prepared as pure and impure segments can be shared (executed
concurrently) by several users. Only one copy of the pure
segment resides in memory during execution while there is one
copy of the impure segment for each user.

1.3 INSTRUCTION FORMATS (16-BIT)

The 16-bit processors have four types of machine instructions:
register-to-register (RR) , register and indexed storage (RX) ,
register and immediate (RI) and short form (SF). The following
abbreviations illustrate the instruction formats:

OP Operation
Rl First operand register
R2 Second operand register
N A 4-bit immediate value
X2 Second operand index register
A2 Second operand direct address
I2 Second operand immediate value

Most instructions require two operands, the first of which is
contained in a register. The result usually replaces the
contents of the first operand register. Exceptions to these
rules are noted in Section 1.5.

1.3.1 Register-to-Register (RR) Instructions

RR instructions cause operations to take place between operands
contained in registers. RR instructions are 16 bits long, as
shown in Figure 1-4.

48-050 FOl R03 1-7

050-3

OP R1 R2

BITS: 0 7 8 11 12 15

Figure 1-4 RR Format (16-Bit)

The first eight bits of the instruction define the operation.
The next four bits identify the first operand register. The
final four bits identify the second operand register. In most RR
instructions, the specified operation takes place between the
contents of the first operand register and the contents of the
second operand register. The result of the operation replaces
the contents of the first operand register.

1.3.2 Register and Indexed Storage (RX) Instructions

RX instructions cause an operation to take place between a first
operand, contained in a register, and a second operand, located
in main memory. These instructions require 32 bits, as shown in
Figure 1-5.

050-4

OP R1 X2 A2

BITS: 0 7 8 11 12 15 16 31

Figure 1-5 RX Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register and the next four bits
identify an optional index register. The remaining 16 bits
specify an address in main memory. The operation takes place
between the contents of the first operand register and the
contents of the memory location specified. The actual address of
the second operand is determined by adding the contents of the
index register to the contents of the address field. If the
index field of the instruction contains zero, no indexing takes
place. In most cases, the result of the operation replaces the
contents of the first operand register.

1-8 48-050 FOl R03

1.3.3 Register and Immediate (RI) Instructions

RI instructions cause operations to take place between the
contents of a register and the contents of an immediate field
embedded in the instruction itself. They are 32 bits long, as
shown in Figure 1-6.

050-5

OP R1 X2 12

BITS: 0 7 8 11 12 15 16 31

Figure 1-6 RI Format (32-Bit)

The first eight bits specify the operation; the next four bits
identify the first operand register; the next four bits identify
an optional index register; the final 16 bits are the immediate
value. The first operand is the contents of the first operand
register. The second operand is obtained by adding the contents
of the index register to the contents of the immediate field. If
the index field contains zero, no addition takes place. The
result of the operation usually replaces the contents of the
first operand register.

1.3.4 Short Form (SF) Instructions

SF instructions are variations on the RI instructions in which
the second operand is small enough to be expressed in four bits.
SF instructions require 16 bits, as shown in Figure 1-7.

050-6

OP R1 N

BITS: 0 7 8 11 12 15

Figure 1-7 SF Format (16-Bit)

The first eight bits indicate the operation. The next four bits
identify the first operand register and the 4-bit immediate
field. The next four bits contain the immediate value.
Operations take place between the contents of the first operand
register and the 4-bit immediate operand. The result of the
operation usually replaces the contents of the first operand
register.

4 8-050 FOl R03 1-9

1.4 INSTRUCTION FORMATS (32-BIT)

The 32-bit processors recognize seven different types
instructions. They are: RR, three variations on RX,
variations on RI, and SF. The following abbreviations are
to illustrate instruction formats:

OP Operation
Rl First operand register
R2 Second operand register
N A 4-bit immediate value
X2 Second operand single index register
D2 Second operand displacement
FX2 Second operand first index register
SX2 Second operand second index register
A2 Second operand direct address
!2 Second operand immediate value
Ll Length of first operand string
L2 Length of second operand string

Of
two

used

Most instructions require two operands. The first is the
contents of a register. The result of the operation usually
replaces the contents of the first operand register. Exceptions
to these rules are noted in Section 1.5.

1.4.1 Register-to-Register (RR) Instructions

The format and function of these instructions are the same as for
the 16-bit processors. They cause operations to take place
between operands contained in registers and they require 16 bits.
These instructions are shown in Figure 1-8.

050-7

OP R1 R2

BITS: 0 7 8 11 12 15

Figure 1-8 RR Format (32-Bit)

The first eight bits specify the operation. The next four bits
identify the first operand register and the last four bits
identify the second operand register. The processor performs the
indicated operation between the contents of the first operand
register and the contents of the second operand register. In
most RR instructions, the result replaces the contents of the
first operand register.

1-10 48-050 FOl R03

1.4.2 Register and Indexed Storage One (RXl) Instructions

RXl instructions define an operation between the contents
register and the contents of a main memory location.
require 32 bits, as shown in Figure 1-9.

050-8

OP A2

BITS: 0 7 8 11 12 15161718 31

Figure 1-9 RXl Format (32-Bit)

of a
They

The first eight bits define the operation. The next four bits
identify the first operand register and the next four bits
identify the optional index register. The next two bits, 16 and
17, must be zeros. The next 14 bits constitute a direct program
address in a range from 0 to 16,383.

The address of the second operand is obtained by adding the
contents of the index register to the contents of the 14-bit
address field. If the index register field contains zero, this
addition does not take place and the contents of the address
field are used as the address. The operation takes place between
the contents of the first operand register and the contents of
the specified memory location. The result usually replaces the
contents of the first operand register.

1.4.3 Register and Indexed Storage Two (RX2) Instructions

RX2 instructions define operations between the contents of a
register and the contents of a location in main memory. RX2
instructions are like the RXl instructions; they require 32 bits.
They differ from the RXl instructions in the method of
calculating the second operand address. See Figure 1-10.

050-9

OP R1 02

BITS: 0 7 8 11 12 151617 31

Figure 1-10 RX2 Format (32-Bit)

48-050 FOl R03 1-11

The first eight bits define the operation; the next four bits
identify the first operand register and the next four bits
identify the optional index register. The next bit, 16, must be
a one. The remaining 15 bits are treated as a signed integer in
two's complement notation. Bit 17 is the sign bit which, if one,
indicates a negative quantity, and if zero, indicates a positive
quantity.

The address of the second operand is obtained in two steps.

1. The signed integer, with sign bit extended to produce a
32-bit integer, is added to the contents of the index
register.

2. This intermediate
incremented LOC.

result is added to the value
The result is truncated to 24 bits.

in the

If the index register field is zero, the first addition does not
take place. The indicated operation takes place between the
contents of the first operand register and th~ contents of the
specified memory location. The result usually replaces the
contents of the first operand register.

1.4.4 Register and Indexed Storage Three (RX3) Instructions

RX3 instructions are analogous to the RX instructions in the
16-bit processors. They call for operations between the contents
of a register and the contents of an indexed memory location and
require 48 bits. See Figure 1-11.

050-10

L--o_P~l_R1_l~Fx_2~io~l1~lo~lo_ls_x2~l~ftJ
BITS: 0 7 8 11 12 151617181920 23 24 47

Figure 1-11 RX3 Format (32-Bit)

The first eight bits specify the operation; the next four bits
identify the first operand register and the next four bits
identify the optional first index register. Bit 16 must be zero.
Bit 17 must be one. Bits 18 and 19 must be zero. The next four
bits identify the optional second index register. The final 24
bits contain a direct memory address.

1-12 48-050 FOl R03

The address of the second operand is obtained by adding the
contents of the first index register to the contents of the
second index register. This intermediate result is then added to
the contents of the direct address field, and the final result is
truncated to 24 bits.

If either of the index register fields contains zero, that level
of indexing does not take place. If both are zero, no indexing
takes place. In most RX3 instructions, the operation takes place
between the contents of the first operand register and the
contents of the specified memory location. The result usually
replaces the contents of the first operand register.

1.4.S Register and Immediate One (Ril) Instructions

Ril instructions are similar to the RI instructions in the 16-bit
processors. They specify operations that take place between the
contents of a register and the contents of a field that is part
of the instruction. They require 32 bits, as shown in Figure
1-12.

050-11

___ o_P ______ R1 ___ x_2 _____ ~1t===J
BITS: 0 7 8 11 12 15 16 31

Figure 1-12 Ril Format (32-Bit)

The first eight bits indicate the operation. The next four bits
identify the first operand register and the next four bits
identify an index register. The final 16 bits are the immediate
value. The second operand is obtained by extending the contents
of the immediate field to 32 bits, by propagating the sign bit
and then adding this quantity to the contents of the index
register. If the index register field is zero, no addition takes
place and the extended immediate value is the second operand.
The operation takes place between the contents of the first
operand register and the immediate value. The result usually
replaces the contents of the first operand register.

1.4.6 Register and Immediate Two (RI2) Instructions

RI2 instructions are similar to the Ril instructions except that
the immediate field contains a 32-bit value and the instruction
itself requires 48 bits. See Figure 1-13.

48-050 FOl R03 1-13

050-12

OP R1 X2 12

BITS: 0 7 8 11 12 15 16 47

Figure 1-13 RI2 Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register. The next four bits identify
the optional index register. The final 32 bits are the immediate
value. The second operand is obtained by adding the contents of
the index register to the contents of the immediate field. If
the index register field is zero, no addition takes place and the
immediate value is the second operand. The operation takes place
between the contents of the first operand register and the
immediate value. The result usually replaces the contents of the
first operand register.

1.4.7 Short Form (SF) Instructions

SF instructions are similar to the SF instructions in the 16-bit
processors. They specify operations between the contents of a
register and the contents of an immediate field whose value is
small enough to be expressed in four bits. These instructions
require 16 bits, as shown in Figure 1-14.

050-13

OP R1 N

BITS: 0 7 8 11 12 15

Figure 1-14 SF Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register. The next four bits are the
immediate field. The operation then takes place between this
value and the contents of the first operand register. The result
usually replaces the contents of the first operand register.

1-14 48-050 FOl R03

1.4.8 Register and Indexed Storage/Register and Indexed Storage
(RXRX) Instructions

RXRX instructions resemble a pair of adjacent RX instructions,
but represent one cohesive string-processing instruction. An
RXRX instruction is comprised of two instruction members. Each
member can be any one of the RXl, RX2, or RX3 machine formats,
independent of the other member's format. For example, the first
instruction member might be of the RXl format and the second
instruction member might be of the RX3 format, yielding a 10-byte
RXRX instruction. Thus, an RXRX instruction length might range
from 8, 10, or 12 bytes.

The first eight bits of the first instruction member, OP, specify
the operation class. The particular RXRX operation is specified
by the contents of the operation-modifier (OP-MOD) field in the
first eight bits of the second instruction member. OP-MOD is
actually generated by the assembler according to the specific
RXRX operation mnemonic and the Rl/Ll or R2/L2 fields programmed
by the user in source code. See Figure 1-15.

050-14

FIRST MEMBER SECOND MEMBER

4 TO 6 BYTES 4 TO 6 BYTES

0 7 8 11 12 1L
31 /47 0 7 8 11 12

ll
31 /47

OPN1
1f I OP MOD OPN2

l}

((
IT

I
ss-

/ X2 0 0 D 11 / OP I F
II IL L C u
IT FX2 0100 SX2 A

=L1 I 1 2 N =L2
X2 1 D2 I c

__({_ l _{!_ ,,- 11
0 12-15 16 17 31 0 1 2 3 7 12-15 16-19 20-23 24 - 47

RX 1 /RX2 SAMPLE MEMBER RX3 SAMPLE MEMBER

8, 10, 12 BYTES

Figure 1-15 RXRX Format (32-Bit)

The next four bits in the first instruction member, Rl/Ll,
identify either Rl, the string's length-specifying register or
Ll, the string's actual length. The user specifies to the
assembler whether the value in the Rl/Ll field is a register or
an immediate value.

48-050 FOl R03 1-15

The Rl/Ll field is assumed to be a register unless an equal sign
(=) precedes the Ll source expression. In machine format, the
ILl field is set when the =Ll source field specifies an immediate
value as length. The IL2 field in machine format is reset when
the Rl field is used to specify a register that contains the
string's length. When the length is an immediate value, its
value may range from 0 through 15. When the length is in a
register, the register may contain a length that ranges from O
through exponent 2 -1. A length of 0 indicates a null string.

The remaining bits, 12 through 31 or 12 through 47, of the first
instruction member, OPNl, contain the address/location of the
lowest addressable byte of a string or its storage location. The
field, OPNl, is then similar to the indexed address portion of an
RXl, RX2, or RX3 machine format.

The first eight bits of the second instruction member, OP-MOD,
are an operation-modifier field containing OPNl's length
indicator, ILl, in bit O; OPN2's length indicator, IL2, in bit l;
a special circumstances bit, C, in bit 2, and in bits 3 through
7, FUNC, the specific function code of the general operation
class, OP. As described above, ILl and IL2 are determined by the
assembler. The special circumstances bit, C, and function code,
FUNC, are determined by the assembler from the
operation-mnemonic. The C bit is used by some RXRX instructions
to indicate that the result of the operation will be forced
positive.

The next four bits, bits 8 through 11, of the second instruction
member, R2/L2, identify either R2, this string's
length-specifying register or L2, the string's actual length.
Again, the user specifies in source format to the assembler
whether the value in the R2/L2 field is a register or an
immediate value. The R2/L2 source format field is assumed to be
a register unless an equal sign (=) precedes the L2 source
expression. In machine format, IL2 is set when the =L2 field is
used to specify an immediate value. IL2 is reset when R2 is used
to specify a register. When the length is an immediate value,
expressed as =L2, its value may range from 0 through 15. When
the length is in a register, its value may range from 0 through
exponent 2 -1. A zero length indicates a null string.

The remaining bits, 12 through 31 or 12 through 47, of the second
instruction member, OPN2, contain the address/location of the
lowest addressable byte of a second member's string. Both OPNl
and OPN2 are similar in format to the indexed address portion of
an RXl, RX2, or RX3 machine format. The particular format of
either OPNl or OPN2 is selectively generated by the assembler,
independently, according to the user source program.

In RXl machine format, bits 16 and 17 are zero. Bits 12 through
15 identify the index register, X2, the contents of which are
added to the absolute 14-bit value, D, to formulate the string's
address.

1-16 48-050 FOl R03

In RX2 machine format, bit 16 is set. Bits 12 through 15
identify the index register, X2, the contents of which are added
to the 15-bit displacement value, D2, to formulate the string's
address.

In RX3 machine format, bits 16 through 19 are 0100 binary. Bits
12 through 15 identify the first index register, FX2 and bits 20
through 23 identify the second index register, SX2. The contents
of both are added to the 24-bit address value, A, to formulate
the string's address.

NOTES

1. When the first member's OPNl
represents the string's address in
RX2 format, the displacement value,
D2, is relative to the end address of
the first instruction member, not to
the end of the full RXRX instruction.

2. When the second member's OPN2
represents the string's address in
RX2 format, the displacement value is
relative to the end of the second
instruction member, which is also the
end of the full RXRX instruction.

1.5 VARIATIONS ON INSTRUCTION FORMATS

Not all instructions follow the preceeding instruction formats.
Instructions may also have the following formats:

• Fields are redefined

• Instructions require two operands

• Instructions do not change the first operand

• Instructions change the second operand

• Instructions change neither operand

1.5.1 Conditional Branch Instructions

Conditional branch instructions use formats that resemble RR, RX
and SF instructions. However, the interpretation of the fields
differs from the standard, as does the actual operation. In all
conditional branch instructions, the first operand identification
is interpreted as a mask that is ANDed with the condition code.
If the result of this test indicates that the branch is to be
taken, then the second operand address is the location to which
the processor must go to obtain the next instruction.

48-050 FOl R03 1-17

In the RR instructions, the second operand register contains the
branch address. In the RX instructions, the branch address is
obtained by one of the standard methods for obtaining second
operand addresses. In the SF instructions, the immediate field
is interpreted as a halfword displacement, either forward or
backward, from the current LOC. The branch address is obtained
by adding or subtracting this quantity from the current LOC.

1.5.2 Branch and Link Instructions

These instructions facilitate branching to and returning from
subroutines. They use formats similar to RR and RX where the
first operand register is the link register. Before the branch
is taken, the address of the next memory location following the
branch instruction is placed in this register. In the RR
instructions, the branch location is the contents of the second
operand register. In the RX instruction, the branch address is
obtained by one of the usual methods for obtaining second operand
addresses.

1.5.3 Other Variations

Some instructions change the second operand rather than the
first. Most notable among these are the store instructions and
the instructions that add the contents of a register to the
contents of a memory location.

Test instructions and compare instructions change neither
operand. The indicated operation takes place between the two
operands, but neither is changed. The result of the operation is
indicated by the condition code.

Certain other instructions, such as Load PSW and Simulate
Interrupt, do not always require a first operand. In addition,
all of the I/O instructions do not follow the general rules. For
detailed information on how these instructions work, see the
appropriate Processor Reference Manual.

1-18 48-050 FOl R03

2.1 INTRODUCTION

CHAPTER 2
SYMBOLIC REPRESENTATION

When writing assembly language programs, the programmer uses
meaningful symbols to represent the binary language interpreted
by both Common Assembly Language/32 (CAL/32) and the processor.
Symbols consist of printable ASCII characters, either singly or
in combination. CAL/32 recognizes the complete set of printable
ASCII characters. However, depending on the context, there can
be restrictions on the use of the complete set. See Chapter 3
for further details.

2.2 SYMBOLS AND EXPRESSIONS

Symbols represent addresses, register identifiers, absolute
values, operation identifiers and constants. Examples of symbols
are:

A
LOOP
BXLE
PAR Tl
REGS
16

Symbols can be combined to form expressions. The arithmetic
operators: add, subtract, multiply and divide are represented in
CAL/32 by the symbols: +, -, *and/. They combine with other
symbols to form arithmetic expressions. Examples of these
arithmetic expressions are:

A+B
LAST-FIRST*TWO
A-16

Blanks and parentheses are not permitted within an expression.
For example, the following sequence would not be interpreted by
CAL/32 as an expression.

A - B * (C + D)

48-050 FOO R03 2-1

Depending on the context, CAL/32 might misinterpret the symbols,
generate incorrect code and fail to detect the error. Where
CAL/32 can recognize the error, it generates an error message.

The evaluation of expressions takes place from left to right with
no rules of precedence. Thus, CAL/32 evaluates the expression:

LAST-FIRST*TWO

by subtracting the value of FIRST from the value of LAST, and
multiplying this result by the value of TWO.

Logical expressions consist of symbols joined by the logical
operators AND and inclusive OR. They are represented in CAL/32
by the symbols & and 1. Examples of logical expressions are:

X&Y!A
CHAR&NULL

Logical expressions are evaluated from left to right with no
rules of precedence. Blanks and parentheses are not permitted in
logical expressions.

Mixed expressions are formed by combining logical and arithmetic
operators. For example:

A-B!TWO

CAL/32 evaluates this expression by first subtracting the value
of B from the value of A and then ORing the result with the value
of '!WO. Mixed expressions are like arithmetic and logical
expressions in that blanks and parentheses are not allowed and
the method of evaluation is from left to right with no rules of
precedence.

Symbols represent either absolute or relocatable quantities. At
assembly time, relocatable quantities have a value equal to their
displacement from some fixed point within the program, usually
but not necessarily, the origin or starting location. At load
time, the relocatable quantity is replaced by an absolute
quantity whose value is calculated by adding the relocation value
to the relocatable quantity. Absolute quantities are known to
the assembler at assembly time and are not changed at load time.

The operations: multiply, divide, AND and OR are permitted only
between absolute data. The plus and minus operators can be used
on mixed data. The results of such operations are:

2-2 48-050 FOO R03

OPERATION

Absolute + Absolute
Absolute - Absolute
Relocatable + Relocatable
Relocatable - Relocatable
Relocatable + Absolute
Relocatable - Absolute
Absolute + Relocatable
Absolute - Relocatable

2.3 SYMBOLS AND THEIR VALUES

RESULT

Absolute
Absolute
Invalid
Absolute
Relocatable
Relocatable
Relocatable
Invalid

By definition, certain symbols used in CAL/32 programming have
implicit values; that is, the value of the symbol is determined
by the way in which it is expressed and used. Examples of this
kind of symbol are the decimal, hexadecimal and character symbols
used as operands in instructions. There are also global symbols
in CAL/32. These symbols have preset values that cannot be
redefined by the programmer. The programmer can define the value
of a symbol explicitly by using the equate statement. This
section covers the use of implicit and global symbols. Chapter
3 covers the explicit use and definition of symbols.

2.3.l Implicit Symbols

When used in the correct context, a string of decimal digits is
automatically assigned the actual value of the number represented
by the string. For example, the expression:

A+l4

has a value that the assembler determines by adding the quantity
14 to the value A, which must be defined by some other means.

CAL/32 also recognizes the implicit value of special character
strings the programmer uses to represent decimal, hexadecimal and
character values. These strings are made up of a single letter
that indicates the particular type, followed by a group of
characters enclosed in apostrophes that represents the value.
The code characters are:

CODE
CHARACTER TYPE

H Halfword decimal
F Fullword decimal
X Halfword hexadecimal
Y Fullword hexadecimal
C Character

48-050 FOO R03 2-3

Decimal numbers consist of an optional sign (+ or -) followed by
decimal digits representing the actual value. Commas are not
allowed in the representation. Halfword decimal values can be
represented by one to five decimal digits, with a range from
-32,768 to +32,767. Fullword values can be represented by one to
ten decimal digits, with a range from -2,147,483,648 to
+2,147,483,647. CAL/32 converts these decimal numbers into two's
complement binary integers. Examples of decimal symbols, with
their internal representation expressed in hexadecimal notation,
are:

SYMBOL

H'l25'
H'32765'
H'+32765'
H'-15'
F'l23123'
F'l'
F'-2'

VALUE

0070
7FFD
7FFD
FFFl
0001 EOF3
0000 0001
FFFF FFFE

Hexadecimal symbols consist of
a string of hexadecimal digits
symbols can use from one to
use from one to eight digits.
the value is right justified.
are:

SYMBOL

X'F'
X'D4E'
Y'030'
Y'A'
Y' 0 I

VALUE

OOOF
OD4E
0000 0030
0000 OOOA
0000 0000

Character symbols consist of
enclosed in apostrophes and
Characters are right justified,
context, either a halfword or a
character symbols are:

the X or Y type code followed by
enclosed in apostrophes. Halfword
four digits. Fullword symbols can
Leading zeros are not required and
Examples of hexadecimal symbols

one to four ASCII characters
preceded by the type code c.
with zero fill. Depending on the
fullword results. Examples of

SYMBOL VALUE VALUE
(HALFWORD) (FULLWORD)

C'*' 002A 0000 002A
C' 12 I 3132 0000 3132
C'AB' 4142 0000 4142
C' 1234 I 3334 3132 3334

2-4 48-050 FOO R03

In the last example, where a halfword value was generated, only
the right-most two characters were used. Where the context
dictates a halfword and a longer string is used, a truncation
error results. One final type of implicit assignment occurs in
the use of symbols as statement identifiers. Where a symbol is
used in the name field of a statement, it is automatically
assigned a value equal to the value of the current location
counter (LOC). This type of assignment is covered in Chapter 4.

2.3.2 Global Symbols

Six symbols recognized by CAL/32 have predetermined values. They
are:

ADC
LADC
PURE TOP
IMPTOP
AB STOP
*

The use of these symbols is somewhat restricted and they cannot
be redefined by the programmer.

In programs written for 32-bit processors, the address length
constant (ADC) always has a value of 4, the length of an address
constant in bytes. (In 32-bit processors, addresses must be
contained in fullwords, even though the actual address is only 24
bits in length.) In programs for which CAL/32 is to generate
16-bit code, the ADC has the value of 2. In programs written for
32-bit processors, the log (base 2) of the address length
constant (LADC) always has a value of 2. In programs for 16-bit
processors, the LADC always has a value of 1. Both of these
symbols, the ADC and the LADC, are used most frequently in common
mode programming. See Chapter 4.

The symbols PURETOP, IMPTOP, and ABSTOP have values equal to:

PURETOP
IMPTOP
ABSWP

The next available location in the pure segment
The next available location in the impure segment
The next available location in the absolute segment

Because these values change during assembly, the symbols must be
used carefully. They can be used as second operand identifiers
in machine instructions and as operands in assembler instructions
where they are treated as address values. They cannot be used in
assembler instructions that control the LOC.

48-050 FOO R03 2-5

The asterisk symbol (*), used as an operand rather than an
operator in an expression, always has a value equal to the value
of the current LOC. Throughout the assembly process, CAL/32
maintains a LOC analogous to the hardware LOC contained in the
central processing unit (CPU). Depending on the organization of
the program, this LOC can contain any one of several values. For
32-bit programs, the LOC may point to the current location in the
absolute segment, the pure segment or the impure segment. For
16-bit assemblies, the LOC may point to the current absolute
location or the current relocatable location.

2-6

NOTE

While processing within block data
programs, common block definitions or
structure definitions, LOC has an
absolute nonrelocatable value. This
value is equivalent to the offset from
the beginning of the block, common or
structure definition to the current
location.

48-050 FOO R03

CHAPTER 3
THE SOURCE PROGRAM

3.1 INTRODUCTION

The source program consists of a set of assembly language
statements that perform the following functions:

• Specify the operations to be performed by the processor

• Define the constants and storage areas for the program

• Control the assembly process to produce the desired output

Source statements for Common Assembly Laqguage/32 (CAL/32) are of
two types: comment statements and instruction statements.
Comment statements provide documentation of assembly
instructions. This aids in the readibility of the program, which
is essential when debugging or enhancing the source code.
Instruction' statements are divided into machine instructions and
assembler instructions. Each statement consists of an
BO-character record, in which symbols and expressions identify
the statement, and where necessary, indicate the operation and
locate the operands.

3.2 COMMENT STATEMENTS

Comment statements can appear anywhere in the source program.
They allow the programmer to include easy-to-read documentation
in the source program listing. They produce no object code. The
assembler does not process comment statements except to check for
proper sequencing and scan for invalid characters.

Comment statements must always start with an asterisk (*) in the
first character position. Positions 2 through 71 can contain any
printable ASCII character, including lower-case alphabetic
characters. Blanks are considered to be "printable" characters.
If a nonprintable character turns up in a comment statement,
CAL/32 replaces it with a pound sign(#). Figure 3-1 illustrates
comment statement syntax.

48-050 FOO R03 3-1

050-16 LAIEL OPERATION OPERAND COMMENr8
1 8 10 u 18 71

"1Hl818 A COMMENT STAlEMENT

*IT 18 DENOTED BYlHE A8TEll8K MIN COLUMN 1
*IT MAY APPEAR ANVWHEFE WllHIN THE SOURCE PROBRAM

Figure 3-1 Comment Statement Column Positioning

Positions 72 through 80 are ignored by CAL/32; however, positions
73 through 80 can, at the programmer's option, be used for
sequence identification. The sequence field can contain any
printable ASCII character other than lower-case alphabetic
characters. Where sequence checking is requested, each
successive sequence identifier 'must be greater, in the ASCII
collating sequence, than the previous identifier. Figure 3-2
illustrates the use of sequence identification within a user
created source program.

050-17 SEQUENCE

13 80

GET00001

GET00002

GET00008

Figure 3-2 Source Program Sequence Identification

3.3 INSTRUCTION STATEMENTS

Instruction statements can be written in fixed format or in free
format. For either format, there are five distinct fields in
each statement and limitations on the length of certain fields.
The five fields are as follows:

• Name field

• Operation field

• Operand field

• Comment field

• Sequence field

3.3.1 Fixed Format Source Programming

Fixed format requires that the instruction and comment statements
be positioned within specific columns when coding a CAL/32
program.

3-2 48-050 FOO R03

CHARACTER POSITIONS DEFINITION

1 through 8 Name field
10 through 14 Operation field
16 through n Operand field
n+2 through 71 Comment field
73 through 80 Sequence field

Positions 9 and 15 must always contain blank characters. The
operand field and the comment field are variable in length, and
the first blank character after position 16 serves as a delimiter
between the operand field and the comment field. Because of the
way the output listing is tabulated, the comment field cannot
contain more than 37 characters. If more than 37 characters
appear, only the first 37 are printed on the output listing.
Figure 3-3 illustrates instruction statement positioning using
the fixed format method.

050-18

1~ 8
OPERATION

10 14
OPERAND COMMENTS

18 71

I DC I TABLE ADDRESS OF TABLE

Figure 3-3 Instruction Statement Positioning (Fixed Format)

3.3.2 Free Format Source Programming

CAL/32 does not require source statements to be written in fixed
format. It accepts free format source programs, in which blank
characters serve as delimiters. If, for example, the name field
is not used, a blank character in the first position indicates
that the next nonblank character is the start of the operation
field. Similarly, if the operation field requires fewer than
five characters, the first blank character following the
operation code indicates that the next nonblank character is the
first character of the operand field. As in the fixed format
statement, the first blank character following the operand field
indicates the end of that field and the beginning of the comment
field. There are two restrictions on the use of free format:

1. Comment length is limited to 37 characters, including blanks.

2. The sequence field must start in position 73.

48-050 FOO R03 3-3

The second restriction is because CAL/32 cannot distinguish
between a blank character as part of a comment and a blank
character intended to separate the comment from the sequence
field.

If there are no nonblank characters in positions 1 through 20,
CAL/32 assumes that the statement is a comment and lists it as
such with a warning note. If more than 15 blanks separate the
name field from the operation field, CAL/32 assumes that the
operation field is not present. Similarly, if more than 15
blanks separate the operation field from the operand field,
CAL/32 assumes that the operand field is not present. In both
cases, CAL/32 generates an error message.

3.4 COMMON ASSEMBLY LANGUAGE (CAL/32) INSTRUCTION REPRESENTATION

When writing CAL/32 instruction statements, the programmer uses
symbolic representation in the name field, the operation field
and the operand field. The following sections describe the use
of symbols and expressions in these fields.

3.4.1 Name Field

Where a symbol appears in the name field, it represents the value
of the current location counter (LOC) for that particular
instruction. This allows the programmer to refer to specific
locations symbolically, without having to know the actual value
of the LOC. The following five restrictions apply to the
formation of names:

1.

3-4

The first character of a name must
lower-case alphabetic character or
special characters:

• commercial at sign (@)

• dot (.)

• dollar sign ($)

• underscore (_)

NOTE

be an upper-case or
one of the following

Lower-case letters are converted
internally to upper-case except in string
constants and when the NLCASE directive
is in effect.

48-050 FOO R03

2. The remaining characters can be made up of any combination of
valid first characters, plus the numeric characters 0 through
9.

3. The name must consist of one to eight characters.

4. The name must start in the first character position of the
source record.

5. Embedded blanks are not permitted.

Examples of valid names are:

LABEL
LOO Pl
.SIN
oooro
$~E~

Examples of incorrect names are:

lLOOP
LOOPCOUNTER
AB?C

First character is numeric
More than eight characters
Question mark is illegal

As a general rule, a given symbolic string can appear only once
in the program where it defines a location. That is, the same
symbol may not appear in the name field of more than one
instruction. The exception to this is the Equate instruction.
This is covered in the section on assembler instructions.

3.4.2 Operation Field

The use of symbols in the operation field is severely restricted.
Only previously defined symbols can appear in this field. The
symbols that appear in the operation field are called mnemonics;
they represent operations to be performed by the processor at
run-time, or operations to be performed by the assembler. CAL/32
recognizes mnemonics that represent all machine operations for
all processors. It also recognizes a large set of assembler
mnemonics that allows the programmer to control the assembly
process.

Mnemonics can consist of no more than five characters. They are
formed in the same way as names and use the same character set.
CAL/32 permits users to define mnemonics. This process is
described in the section that deals with the Equate instruction.
Specific mnemonics that define machine operations and assembler
operations are described later in this chapter. Examples of
operation mnemonics are:

48-050 FOO R03 3-5

MNEMONIC TYPE MEANING

Add register
Subtract

AR
s
CLI
ORG

Machine
Machine
Machine
Assembler

Compare logical immediate
Set location counter

3.4.3 Operand Field

CAL/32 permits the use of both symbols and expressions in the
operand field of instructions. Symbols used in the operand field
can be implicitly defined or can be explicitly defined. The
rules for forming operands for assembler instructions vary from
instruction to instruction, and each is described individually
later in this chapter.

Most machine instructions require two operands while some require
only one. Where two operands are required, the first is
separated from the second by a comma. Following are the general
rules for forming operands for machine instructions.

3.4.3.1 Register-to-Register (RR) Instructions

Both the first and the second operand must
symbols or expressions with values between
If the value is greater than 15 or less than
sets it to 0 and generates an error message.
symbols 1 and 2 appear in the operand field
instruction:

AR 1,2

be represented by
0 and 15 inclusive.

O, the assembler
For example, if the
of the Add Register

CAL/32 generates the machine code to add the contents of register
2 to the contents of register 1 and store the result in register
1. The use of 1 and 2 here is an example of how decimal numbers
have an implicit value when used in the proper context. Another
example:

AR X'l',X'2'

shows how hexadecimal symbols can be used as register
identifiers. This is an exception to the previously stated rule
that hexadecimal symbols generate halfword or fullword values.
Where used as register identifiers, decimal, hexadecimal and
character symbols cause the assembler to generate 4-bit values.

Expressions can be used in identifying registers, as in:

AR A+B,C'A'-X'40'

3-6 48-050 FOO R03

where CAL/32 evaluates the expressions and uses the results as
the register identifiers. This is not a universally useful
feature of the language, although it has some applications in
common mode programming.

A more useful way to identify registers is to use explicitly
defined symbols. Suppose the symbols SUM and INC are defined to
have values of 1 and 2, respectively. Then the instruction:

AR SUM, INC

has the same effect as:

AR 1,2

3.4.3.2 Register and Indexed Storage (RX) Instructions

If the first operand is required, it must be
identifier as described for RR instructions.
separated from the first by a comma, can be

• a symbol,

• an expression, or

a valid register
The second operand,

• a symbol or an expression followed by an index register
identifier enclosed in parentheses.

Where indexing is used, identification of the registers follows
the same rules as those for specifying first or second operand
registers. In double-indexed instructions, the first and second
index identifiers are separated by a comma. An example of how
(RX) instructions are written is:

S l,A

where the first operand is the contents of general register 1,
and the second operand is the value at location A in memory.
Another example:

S SUM,TABLE(PTR)

48-050 FOO R03 3-7

shows how single indexing is expressed. In this case, the first
operand is the value contained in the register identified by the
symbol SUM, and the second operand is the value at memory
location table plus the contents of the index register PTR.
Another example:

S SUM,LAST-FIRST(BASE,PTR).

shows the use of double indexing along with the use of an
expression in the operand field. A final example:

S SUM,O(ADDR)

illustrates where an address of a second operand is contained in
the index register. Here, there must be a symbol in the address
field even if it is equal to zero.

3.4.3.3 Register and Immediate (RI) Instructions

The first
identifier.

• a symbol,

operand must be specified
The second operand can be

• an expression, or

by a valid register

• a symbol or an expression followed by an index register
identifier enclosed in parentheses.

Example:

CLI STRNG,C'ABCD'

causes the character string ABCD, represented internally as the
fullword character value 4142 4344, to be compared with the
contents of the register identified by the symbol STRNG. In
another example:

CLI ADDR,LAST-FIRST(PTR)

the expression LAST-FIRST is evaluated by CAL/32 at assembly
time. At run-time this value is added to the contents of the
index register before the comparison takes place. In another
example:

3-8 48-050 FOO R03

CLI ADDR,Y'2000'(PTR)

the fullword, hexa,decimal quantity 0000 2000, is added to the
contents of the index register. The result is then compared with
the contents of the register identified by the symbol ADDR.

3.4.3.4 Register and Indexed Storage/Register and Indexed
Storage (RXRX) Instructions

The RXRX instructions have four basic source operand fields, each
of which is separated from the other by a comma. The first
operand field can be

• a valid register identifier, symbol, or expression with a
defined absolute value in the range 0 to 15; or

• an equal sign (=) preceding a symbol or an expression with a
defined absolute value in the range 0 to 15.

The second source operand field, separated from the first by a
comma, can be

• a symbol or an expression;

• a symbol or an expression, optionally followed by an index
register identifier enclosed in parentheses; or

• a symbol or an expression, optionally followed by a pair ·of
index register identifiers, separated by a comma, with the
pair enclosed in parentheses.

The third source operand field, separated from the second by a
comma, can be

• a valid register identifier, symbol, or expression with a
defined absolute value in the range 0 to 15; or

• an equal sign (=) preceding a symbol or an expression with a
defined absolute value in the range 0 to 15.

The fourth source operand field, separated from the third by a
comma, can be

• a symbol or an expression;

• a symbol or an expression, optionally followed by an index
register identifier enclosed in parentheses; or

48-050 FOO R03 3-9

• a symbol or an expression, optionally followed by a pair of
index register identifiers, separated by a comma, with the
pair enclosed in parentheses.

Examples of how these instructions are written are:

MOVE =LENGTH2, HERE, =LENGTHl, .THERE

which moves the string of length, IJENGTHl, at location THERE to
the location HERE up to the number of bytes indicated by LENGTH2.
If LENGTHl is less than LENGTH2, this instruction pads the extra
bytes with the right-justified character in general register
zero.

In the preceding example, the first operand field is the
immediate value of symbol LENGTH2. The equal sign that specifies
LENGTH2's value is an immediate value and not a register
identifier. The second operand field is the storage address at
location HERE. The third operand field is the immediate value of
symbol LENGTHl (its immediacy is again indicated by the equal
sign). The fourth operand field is the string at location THERE.
Another example is:

MOVEP R7,PRINTOUT(LINE,COL2) ,R8,MESSAGE(CLASSX,ERRINDX)

which moves the string of the length specified in general
register RS, found at the memory location computed by summing the
address value of MESSAGE with the contents of both index
registers CLASSX and ERRINDX. The string is moved to a storage
location whose address value is computed by summing the address
value of PRINTOUT plus the contents of both index registers, LINE
and COL2. The number of bytes to be filled is the length
specified in general register R7. If the length in RS is less
than that in R7, the MOVEP instruction, by definition, pads the
extra bytes with the default character, a space.

In the preceding example, the first operand field is the register
identifier, R71 the second operand field is the storage address
at location PRINTOUT, as double indexed by the register
identifiers, LINE and COL21 the third operand field is the
register identifier, R81 and the fourth operand field is the
string's location MESSAGE, as double indexed by the register
identifiers, CLASSX and ERRINDX. Another example is:

PMV =8,DECSUMS(SALESID),5,TOTALS(ORDERX)

which packs and moves the unpacked decimal data digit string
whose length is indicated in general register 5. Note that the
5 means a general register because no equal sign precedes it.

3-10 48-050 FOO R03

The unpacked decimal data digit string is found at the memory
location computed by summing the address value of TOTALS with the
contents of the single index register identifier ORDERX. For
details on how this conversion takes place, refer to the
instruction definitions in the appropriate processor manuals.
Generally, the unpacked decimal data is converted to packed
decimal data up to the number of digits that may occupy the
reserved byte length, indicated by the =8 expression. In this
case, eight bytes are reserved, providing storage for 15 decimal
packed digits and a position for the sign-indicator. The PMV
instruction, by definition, has various safeguards for illegal
digit cases and overflow, and provides leading zeros as needed,
when the number of positions available for either the unpacked
digits and the packed digits is of unequal length. The memory
location to which the converted digit data is moved is computed
by summing the address value of DECSUMS with the contents of the
single index register SALESID.

In the preceding example, the first operand field is the
immediate value =8. Note that the equal sign specifies that 8 is
an immediate value and not a register identifier. The second
operand field is the address location DECSUMS as singly indexed
by the register identifier, SALESID. The third operand field is
the register identifier 5; and the fourth operand field is the
address location TOTALS, as indexed by the single index register
identifier ORDERX.

3.5 COMMON ASSEMBLY LANGUAGE/32 (CAL/32) MACHINE INSTRUCTIONS

Table 3-1 lists the mnemonics for CAL/32 machine instructions.
Where there is no entry in the format column, that instruction is
not available for that particular line of processors.

NOTE

Some machine instructions are illegal on
the auxiliary processing unit (APO) in
the 3200MPS Family of Processors and are
so noted in Table 3-1.

48-050 FOO R03 3-11

3-12

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS

INSTRUCTION

I I 32-BIT I 16-BIT
I MNEMONIC I FORMAT I FORMAT

===
Add
Add DP floating point
Add DP floating point
register
Add to bottom of list
Add to bottom of list
flagged

Add with carry halfword
Add with carry halfword
register
Acknowledge interrupt
Acknowledge interrupt
register
Add floating point
Add floating point
register
Add halfword
Add halfword immediate
Add halfword to memory
Add halfword register
Acknowledge interrupt
Add immediate
Acknowledge interrupt
register
Add immediate short
Autoload

Add to memory
Add register
Add to top of list
Add to top of list flagged
Branch and link
Branch and link register
Branch to control storage
Branch on equal status
high speed

Branch on false condition
backward short

A
AD

ADR
ABL

ABLF

ACH

ACHR
ACK

ACKR
AE

AER
AH
AHI
AHM
AHR
AI
AI

AIR
AIS
AL#

AM
AR
ATL
ATLF
BAL
BALR
BDCS

BESHS

BFBS

RX
RX

RR
RX

RX

RR
RX
RI!
RX
RR*

RI2

SF
RX%

RX
RR
RX

RX
RR
RX

SF

RX*
RX

RR
RX

RX**

RX

RR
RX

RR
RX

RR
RX
RI
RX
RR
RX*
RI*

RR
SF
RX

RX
RR
RX
RX
RX
RR
RI

RX**

SF

48-050 FOO R03

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

----------------~-----~---------~~~----------------------
I I 32-BIT I 16-BIT

INSTRUCTION I MNEMONIC I FORMAT I FORMAT
===
Branch on false condition I BFC RX RX
Branch on false condition I
register I BFCR RR RR
Branch on false condition I
forward short I BFFS SF SF
Branch on not equal status I
high speed I BNSHS RX**
Branch on true condition I
backward short I BTBS SF SF

I
Branch on true condition I BTC RX RX
Branch on true condition I
register I BTCR RR RR
Branch on true condition I
forward short I BTFS SF SF
Branch on index high I BXH RX RX
Branch on index low or I
equal I BXLE RX RX
Compare I c RX RX*
Complement bit I CBT RX
Compare DP floating point I CD RX RX
Compare DP floating point I
register CDR RR RR
Compare floating point CE RX RX
Compare floating point
register CER RR RR
Compare halfword CH RX RX
Compare halfword immediate CHI Ril RI
Compare halfword register CHR RR* RR
Convert to halfword value
register CHVR RR
Compare immediate CI RI2 RI*
Compare logical CL RX RX*
Compare logical byte CLB RX RX
Compare logical halfword CLH RX RX
Compare logical halfword
immediate CLHI Ril RI

Compare logical halfword
register CLHR RR* RR

48-050 FOO R03 3-13

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

---------------------------~-------------~--~-~-------~--
I I 32-BIT I 16-BIT

INSTRUCTION I MNEMONIC I FORMAT I FORMAT
===

Compare 1 ogical immediate CLI Ril RI*
Compare logical register CLR RR RR*
Compare register CR RR RR*
Cyclic redundancy check
modulo 12 CRC12 RX RX**

Cyclic redundancy check
modulo 16 CRC16 RX RX**
Decrement counter high
speed DCHS RX**
Divide D RX RX*
Divide DP floating point DD RX RX
Divide DP floating point
register DDR RR RR

Divide floating point DE RX RX
Divide floating point
register DER RR RR
Divide halfword DH RX RX
Divide halfword register DHR RR* RR
Divide register DR RR RR*
Enter control storage ECS Ril SF
Exchange program status
register EPSR RR RR
Exchange byte register EXBR RR RR
Exchange halfword register EXHR RR
Float DP register FLOR RR RR
Float register FLR RR RR
Fix DP register FXDR RR RR
Fix register FXR RR RR
Generate interprocess
interrupt GIPI RR**
Load L RX RX*
Load address LA RX RI*
Load byte LB RX RX

Load byte high speed LBHS RI**
Load byte high speed
indirect LBHSI RX**
Load byte register LBR RR RR

3-14 48-050 FOO R03

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

INSTRUCTION
I I 32-BIT I 16-BIT
I MNEMONIC I FORMAT I FORMAT

·======================;==================================
Load complement short
Load DP floating point
Load DP floating point
register
Load floating point
Load floating point
register

Load halfword
Load halfword immediate
Load halfword logical
Load halfword register

Load immediate
Load immediate short
Load multiple
Load multiple DP floating
point
Load multiple floating
point
Load program status
Load program status
register
Load program status word
Load program status word
register
Load real address
Load register
Load unnormalized floating
point
Load unnormalized floating
point register
Load unnormalized DP
floating point
Load unnormalized DP
floating point register
Multiply
Multiply DP floating point
Multiply DP floating point
register
Multiply floating point
Multiply floating point
register
Multiply halfword
Multiply halfword register
Multiply halfword unsigned
Multiply halfword unsigned
register

48-050 FOO R03

LCS
LD

LDR
LE

LER

LH
LHI
LHL
LHR

LI
LIS
LM

LMD

LME
LPS

LPSR
LPSW
LPSWR

LRA
LR
LU

LUR

LW

LWR
M
MD

MDR
ME

MER
MH
MHR
MHU

MHUR

SF
RX

RR
RX

RR

RX
Ril
RX
RR*

RI2
SF
RX

RX

RX

RX
RR

RX
RR
RX+

RR+

RX+

RR+
RX
RX

RR
RX

RR
RX
RR*

SF
RX

RR
RX

RR

RX
RI
RX*
RR

RI*
SF
RX·

RX

RX
RX

RR
RX

RR*

RX*
RX

RR
RX

RR
RX
RR
RX

RR

3-15

3-16

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

I I 32-BIT I 16-BIT I
INSTRUCTION I MNEMONIC I FORMAT I FORMAT I

===!
Move and process byte I
string register MPBSR RR%% I
Multiply register MR RR RR* I
AND N RX RX* I
AND halfword NH RX RX I
AND halfword immediate NHI Ril RI I

AND immediate
AND halfword register
AND register
OR
Output command

Output command register
OR halfword
OR halfword immediate
OR halfword to memory
OR halfword register

OR immediate
OR register
Process byte
Process byte register
Read block
Remove from bottom of list
Remove from bottom of list
flagged
Read block register
Reset bit
Read data
Read DCS
Read data high speed
Read data high speed
register
Read data register
Read halfword
Read halfword register

Rotate left logical
Rotate left logical short

NI
NHR
NR
0
oc

OCR
OH
OHI
OHM
OHR

OI
OR
PB
PBR
RB
RBL

RBLF
RBR
RBT
RD
RDCS
ROHS

RDRHS
RDR
RH
RHR

RLL
RLLS

RI2
RR*
RR
RX
RX

RR
RX
Ril

RR*

RI2
RR
RX%
RR%
RX%%
RX

RR%%
RX
RX
RR

RR
RX
RR

Ril

RI*
RR
RR*
RX*
RX

RR
RX
RI
RX**
RR

RI*
RR*

RX
RX

RX**
RR

RX
RR
RX**

RR**
RR
RX
RR

RI
SF**

I
I
I

48-050 FOO R03

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

I I 32-BIT I 16-BIT I
INSTRUCTION I MNEMONIC I FORMAT I FORMAT I

===!
Read process data high · I
speed RPDHS I
Replace PSW RPSW I

Rotate right logical
Rotate right logical short
Remove from top of list
Remove from top of list
flagged
Subtract

Store byte high speed
indirect
Set bit
Subtract with carry
halfword
Subtract with carry
halfword register
Simulate channel program

Subtract DP floating point
Subtract DP floating point
register
Subtract floating point
Subtract floating point
register
Set program mask

Set program mask register
Subtract halfword

I
I
I
I
I
I
I
I
I

Subtract halfword immediate!
Subtract halfword from I
memory I
Subtract halfword register I
Subtract immediate I
Simulate interrupt I
Subtract immediate short I

I
Shift left arithmetic I

48-050 FOO R03

RRL
RRLS
RTL

RTLF
s

SB HSI
SBT

SCH

SCHR
SCP

SD

SDR
SE

SER
SETM

SETMR
SH
SHI

SHM
SHR
SI
SINT
SIS

SLA

I
I Ril
I
I RX
I
I
I RX
I
I
I
I RX
I
I
I
I
I RX%
I

RX

RR
RX

RR

RX
Ril

RR*
RI2
Ril
SF

Ril

RX**
RR**

RI
SF**
RX

RX**
RX*

RI**

RX

RR

RX

RR
RX

RR
RX

RR
RX
RI

RX**
RR
RI*
RI
SF

RI

3-17

3-18

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

INSTRUCTION

I I 32-BIT I 16-BIT
I MNEMONIC I FORMAT I FORMAT

===
Shift left halfword
arithmetic
Shift left halfword
logical
Shift left logical
Shift left halfword
logical short
Shift left logical short
Store PSW

Subtract register
Shift right arithmetic
Shift right halfword
arithmetic
Shift right halfword
logical
Shift right logical

Shift right halfword
logical short
Shift right logical short

Sense status
Sense status register
Store

Store byte
Store byte high speed
Store byte register
Store DP floating point
Store floating point

Store halfword
Store multiple
Store multiple DP floating
point
Store multiple floating
point

SLHA

SLHL
SLL

SLHLS
SLLS
SPSW

SR
SRA

SRHA

SRHL
SRL

SRHLS
SRLS

SS
SSR
ST

STB
STBHS
STBR
STD
STE

STH
STM

STMD

STME

Ril

Ril
Ril

SF
SF

RR
Ril

Ril

Ril
Ril

SF
SF

RX
RR
RX

RX

RR
RX
RX

RX
RX

RX

RX

RI

RI
RI

RI
SF
RR**

RR*
RI

RI

RI
RI

SF
SF

RX
RR
RX*

RX
RX**
RR
RX
RX

RX
RX

RX

RX

48-050 FOO R03

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

INSTRUCTION
I I 32-BIT I 16-BIT
I MNEMONIC I FORMAT I FORMAT

===
Supervisor call
Test bit
Test halfword immediate
Test immediate
Tr·anslate
Test and set
Unchain
Write block
Write block register
Write data
Write DCS

Write data register
Write data high-speed
Write data high-speed
register
Write halfword
Write halfword register

Write processed data high­
speed
Exclusive OR
Exclusive OR halfword
Exclusive OR halfword
immediate
Exclusive OR halfword
register

Exclusive OR to memory
Exclusive OR immediate
Exclusive OR register

SVC
TBT
THI
TI
TLATE
TS
UNC
WB
WBR
WD
WDCS

WDR
WDHS

WDRHS
WH
WHR

WPDHS
x
XH

XHI

XHR

XHM
XI
XR

RX
RX
Ril
RI2
RX
RX

RX%%
RR%%
RX
RR

RR

RX
RR

RX
RX

Ril

RR*

RI2
RR

RX

RI
RI*
RX**

RR**
RX
RR
RX
RR

RR
RX**

RR**
RX
RR

RX**
RX*
RX

RI

RR

RX**
RI*
RR*

* The indicated mnemonic operation code is generated,
and the listing is flagged with a question mark to
indicate a potential error.

** Model 50 instruction set.

% These instructions are illegal on the APU of the
3200MPS Family of Processors

%% For 8/32 only, and/or not supported by Series
3200 Family of Processors.

48-050 FOl R03 3-19

+The indicated.instruction pertains to the Model 3203 and
3205 Processo*s, and to the 3280, 3280E MPS, and Micro3200
Systems only. When any of these instructions is
encountered d4ring assembly, a pound sign (#) is placed in
the first column of the listing. A single DCMD is placed
in the object code. The text of the DCMD is:

****MODULE xxxx CONTAINS NON-NORMALIZING LOADS

Where:

xxxx is the name of the module.

The no processor speqif ic warning (NPWRN) instruction can be used
to suppress the warni;ng and the DCMD output that is generated for
these instructions.

There are three machine instructions for the APU of the 3200MPS
Family of Processors. They are summarized in Table 3-2. See the
appropriate instruction set reference manual for an explanation
of these new machine instructions.

TABLE 3-2 CAL/32 MACHINE INSTRUCTIONS AND MNEMONICS
FOR THE 3200MPS FAMILY OF PROCESSORS

------------~-----------------------------------

INSTlWCTION
I I 32-BIT I
I MNEMONIC I FORMAT I

l============~=============================s=====I
I Generate Signal I GSIG I RR I
I . I I I
I Read real-time counter I RRTC I RR I
I I I I
I Reschedule I RSCH* I SF I

* This instruction is not supported by the IOP
for the 3230MPS or 3260MPS.

The current release simulates these instructions on
processors.

other

The semantics of the privileged system function (PSF) are
modified for the APU of the 3200MPS Family of Processors. Table
3-3 lists the mnemonics of machine instructions and mnemonics for
the Series 3200 Processors. The 16-bit format is not applicable.

3-20 4 8-0 5 0 F 01 RO 3

If these instructions are encountered and the APU option has not
been specified, the line containing the instruction will be
flagged on the listing with a pound sign (#). A single DCMD is
placed in the object code. The text of the DCMD is:

****MODULE xxxx CONTAINS APU INSTRUCTIONS

Where:

xxxx is the name of the module.

The NPWRN instruction can be used to suppress the warning and the
DCMD output that is generated for instructions not available on
all processors.

TABLE 3-3 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS FOR SERIES 3200 PROCESSORS

I I 32-BIT I
INSTRUCTIONS I MNEMONIC I FORMAT I

===!
Breakpoint
Compare alphanumeric (RO=pad)
Compare alphanumeric and default
pad
Load interruptible state
Save interruptible state

Load complement SP register
Load complement DP register
Load DP register from SP memory
Load DP register from SP register
Load DP register from general
register pair

Load process state
Load SP register from DP memory
Load SP register from DP register
Load SP register from general
register
Load general register pair from
DP register

48-050 FOO R03

BRK
CPAN

CPANP
ISRST*
ISSV*

LCER
LCDR
LDE
LDER

LDGR

LDPS*
LED
LEDR

LEGR

LGDR

RR I
RXRX# I

I
RXRX# I
RX I
RX I

I
RR I
RR I
RX I
RR I

I
RR I

I
RX I
RX I
RR I

I
RR I

I
RR I

3-21

TABLE 3-3 SUMMJ\RY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS FOR SERIES 3200 PROCESSORS
(Continued)

INSTRUCTIONS
I I 32-BIT
I MNEMONIC I FORMAT

===============d=============:=~=====================~=
Load general register from SP
register
Load packed decimal string as
binary
Load positive DP register
Load positive SP register
Load process segment table
des'cr iptor
Load shared segment table
descriptor
Move and pad (RO=pad)
Move and pad default pad
Move translated until
Pack and move
Pack and move absolute
Read error logger
Reset memory vo~tage failure
Store DP regist~r in SP memory
Store binary as1 packed decimal
string
Store process state
Unpack and move
Unpack and move: absolute
Store byte with no ECC

LGER

LPB
LPDR
LPER

LPSTD*

LSSTD*
MOVE
MOVEP
MVTU
PMV
PMVA
REL*
RMVF*
STDE

STPB
STPS*
UMV
UMVA
XSTB*

RR

RX#
RR
RR

RX

RX
RXRX#
RXRX#
RXRX#
RXRX#
RXRX#
RXl
RXl+
RX

RX#
RX
RXRX#
RXRX#
RX

----------------~--------------------------------------
* PSF modified for APU.

+ No register or other operands allowed in source
format.

These instructions are not supported by the IOP of a
3200MPS Family of Processors.

In addition to the set of mnemonics listed in Tables 3-1 through
3-3, CAL/32 recognizes a complete set of extended branch
mnemonics. These instructions allow the programmer to call for
conditional branch ; instructions without having to state
explicitly the condit~on code (CC) mask. Table 3-4 lists these
instructions. ·

3-22 48-050 FOO R03

TABLE 3-4 EXTENDED BRANCH MNEMONICS

--
INSTRUCTION I MNEMONIC I

==!
Branch on carry BC I
Branch on carry regis:t_er BCR I
Branch on carry short BCS I

I
Branch on no carry BNC I
Branch on no carry register BNCR
Branch on no carry short BNCS

Branch on equal BE
Branch on equal register BER
Branch on equal short BES

Branch on not equal BNE
Branch on not equal register BNER
Branch on not equal short BNES

Branch on low BL
Branch on low register BLR
Branch on

I
low short BLS

Branch on not low BNL
Branch on not low register BNLR
Branch on not low short BNLS

Branch on minus BM
Branch on minus register BMR
Branch on minus short BMS

Branch on not minus BNM
Branch on not minus register BNMR
Branch on not minus short BNMS

Branch on plus BP
Branch on plus register BPR
Branch on plus short BPS

Branch on not plus BNP
Branch on not plus register BNPR
Branch on not plus short BNPS

Branch on overflow BO
Branch on overflow register BOR
Branch on overflow short BOS

Branch on no overflow BNO
Branch on no overflow register BNOR
Branch on no overflow short BNOS

48-050 FOO R03 3-23

TABLE 3-4 EXTENDED BRANCH MNEMONICS
(Continued)

----------~---------------------------------
' INSTRUCTION I MNEMONIC

==========p=================================
Branch oni zero BZ
Branch oni zero register BZR
Branch on: zero short BZS

Branch on· not zero
Branch on not zero register
Branch on not zero short

Branch unconditional
Branch unconditional register
Branch unconditional short

No operation
No operation register

BNZ
BNZR
BNZS

B
BR
BS

NOP
NOPR

The extended branch instructions are essentially single operand
instructions where the first operand (mask) value is included in
the operation mnemonic. The programmer supplies only the operand
or branch location. For short branches, the programmer does not
have to specify the forward or backward direction. CAL/32
determines the direction of the branch and generates the
appropriate machine code. For example:

LOO Pl L
CLR
BES
AIS
BNZS
LIS
ST

STRNG,TABLE(PTR)
STRNG 1 INPUT

LOAD STRING FROM TABLE
COMPARE WITH INPUT
EQUIVALENT FOUND

END

END
PTR,4
LOO Pl
STRNG,O
STRNG,RETURN

NOT FOUND INCREMENT PTR
GET NEXT STRING
NOT FOUND END OF TABLE
RETURN VALUE

In this program, CAL/32 determines the locations of LOOP! and END
and generates the required forward and backward branch
instructions.

Two more CAL/32 instructions that do not have direct machine
equivalents are:

INSTRUCTION MNEMONIC

Branch on true condition short BTCS
Branch on false condition short BFCS

3-24 48-050 FOO R03

With these instructions, the programmer must specify the mask
value and the branch location. CAL/32 determines the direction,
forward or backward, and the appropriate machine operation is
generated.

3.5.l Usual Branch Mnemonics for the 3280, 3280E MPS, and
Micro3200 Systems

The Usual Extended Branch Mnemonics instructions supported by the
3280, 3280E MPS, and Micro3200 Systems extend the define set of
Extended Branch Mnemonics and provide a Usual Branch instruction
for each member of the Extended Branch Mnemonics set. These
instructions operate in a way that is similar to the Extended
Branch Mnemonics, but will allow the user to indicate to the
processor that the branch is usually taken. This allows the
pipeline mechanism to pref etch the correct succeeding instruction
more frequently, reducing delays. Table 3-5 lists these
instructions.

TABLE 3-5 USUAL EXTENDED BRANCH MNEMONICS
FOR THE 3280, 3280E MPS, AND
MICR03200 SYSTEMS

INSTRUCTION I MNEMONIC I
===!

Usual branch on carry I UBC I
Usual branch on carry register I UBCR
Usual branch on carry short I UBCS

I
Usual branch on no carry I UBNC
Usual branch on no carry I UBNCR
register
Usual branch on no carry short UBNCS

Usual branch on equal UBE
Usual branch on equal short UBES

Usual branch on not equal UBNE
Usual branch on not equal UBNER
register
Usual branch on not equal short UBNES

Usual branch on low UBL
Usual branch on low register UBLR
Usual branch on low short UBLS

Usual branch on not low UBNL
Usual branch on not low UBNLR
register
Usual branch on not low short UBNLS

Usual branch on minus UBM
Usual branch on minus register UBMR

48-050 FOl R03 3-25

3-26

TABLE 3-5 USUAL EXTENDED BRANCH MNEMONICS
FOR THE 3280, 3280E MPS, AND
MICR03200 SYSTEMS (Continued)

----------~----------------------------------
INSTRUCTION I MNEMONIC

===
Usual branch on minus short UBMS

Usual branch on not minus UBNM
Usual branch on not minus
register UBNMR
Usual branch on not minus short UBNMS

Usual bralfl.Ch on plus UBP
Usual branch on plus register UBPR
Usual branch on plus short UBPS

Usual branch on not plus UBNP
Usual branch on not plus
register UBNPR
Usual branch on not plus short UBNPS

Usual branch on overflow UBO
Usual brarich on overflow
register UBOR
Usual branch on overflow short UBOS

Usual branch on no overflow UBNO
Usual branch on no overflow
register UBNOR
Usual branch on no overflow
short UBNOS
Usual branch on zero UBZ
Usual branch on zero register UBZR
Usual branch on zero short UBZS

Usual branch on not zero UBNZ
Usual branch on not zero
register UBNZR
Usual branch on not zero short UBNZS

Usual branch unconditional UB
Usual branch unconditional
register UBR
Usual branch unconditional short UBS

48-050 FOl R03

3.5.2 CAL/32 Machine Instructions for 3280, 3280E MPS, and
Micro3200 Systems

In addition to the sets of instructions listed in the preceding
tables, the 3280, 3280E MPS, and Micro3200 Systems recognize a
set of new instructions which is listed in Table 3-6. See the
3280 System Instruction Set Reference Manual for a detailed
explanation of these new instructions.

TABLE 3-6 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS FOR THE 3280, 3280E MPS,
AND MICR03200 SYSTEMS

INSTRUCTIONS
I I 32-BIT
I MNEMONIC I FORMAT

===
Branch and synchronize

Branch on count down
Branch on count down backward
short
Control/Diagnostic System read
Control/Diagnostic System write
Data base management system
checksum
Disable extended real addressing
Enable extended real addressing
Fill string
Fill vector with fullword
Fill vector with doubleword
Floating point arctangent
Floating point double precision
arctangent
Floating point cosine
Floating point double precision
cosine
Floating point exponential
Floating point double precision
exponential
Floating point to a floating
point power
Floating point to a double
precision floating point power
Floating point logarithm base 10
Floating point double precision
logarithm base 10
Floating point natural logorithm
Floating point double precision
natural logorithm
Floating point sine
Floating point double precision
sine
Floating point sine and cosine
Floating point double precision

48-050 FOl R03

BSYNC

BCD

BCDBS
RCDSR
WCDSR

CKSUM
XMOFF
XMON
FIL SC
FILVG
FILVW
ATNER

ATNDR
COS ER

COS DR
EXP ER

EXP DR

EXXER

EXXDR
LlOER

LlODR
LOG ER

LOG DR
SINER

SINDR
SNCER

RX1,RX2
RX3
RX3

SF
RR
RR

RR
RR
RR
RXRX
RXRX
RXRX
RR

RR
RR

RR
RR

RR

RR

RR
RR

RR
RR

RR
RR

RR
RR

3-27

TABLE 3-6 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS FOR THE 3280, 3280E MPS, AND
MICR03200 SYSTEMS (Continued)

---------------~-----------------------------~----------

INSTRUCT IONS
I I 32-BIT
I MNEMONIC I FORMAT

==
sine and cosine
Floating point square root
Floating point double precision
square root
Get user register
Load real address block

Load test cont(ol register
Load unnormalized

Load unnormalized register
Load unnormalized double precision

Load unnormalized double precision
register
Move string
Move vector
Put user register
Send processor message
Start real-time clock
Store fullword, no ECC

Store test control register
System bus read
System bus write
Usual branch on false condition

Usual branch on false condition
register
Usual branch on false condition
backward short
Usual branch on false condition
forward short
Usual branch on true condition

Usual branch on true condition
register
Usual branch on true condition
backward short
Usual branch on true condition
forward short

SNCDR
SQRER

SQRDR
GUR
LRAB

LTCR
LU

LUR
LW

LWR
MOVS
MOVV
PUR
GIPS
SRTC
XSTF

STCR
RSR
WSR
UBFC

UBFCR

UBFBS

UBFFS
UBTC

UBTCR

UBTBS

UBTFS

RR
RR

RR
RX
RXRX
RX3
RX
RXRX,
RX3
RR
RXRX,
RX3

RR
RXRX
RXRX
RX
RR
RR

RX1,RX2
RX3
RX
RR
RR
RXRX,
RX3

RR

SF

SF
RXRX,

· RX3

RR

SF

SF

Whenever any of the 3280, 3280E MPS, or Micro3200 System commands
are encountered during assembly, a pound sign (#) is printed in
the first column of the line if a listing is requested, and a
single DCMD is placed in the object code. The text of the DCMD
is:

3-28 48-050 FOl R03

**** MODULE xxxx CONTAINS 3280 SYSTEM INSTRUCTIONS

Where:

xxxx represents the name of the program.

The no processor specific warning (NPWRN) instruction can be used
to suppress the warning and the DCMD output that is generated for
instructions not available on all processors.

3.5.3 Instructions for the Input/Output Processor (IOP)

There are machine instructions to be used only on an IOP for the
3230MPS and 3260MPS. Table 3-7 provides a summary of these
instructions and the applicable format. See the appropriate
Instruction Set Reference Manual for a detailed explanation of
these machine instructions.

TABLE 3-7 SUMMARY OF CAL/32 MACHINE
INSTRUCTIONS AND MNEMONICS
FOR IOPs

I I I 32-BIT I
I INSTRUCTIONS I MNEMONIC I FORMAT I
!====================================!
I CPU attention I ATCPU I RR I
I Exit I XIT I RR I
I Load APB I LAAPB I RR I
I Load ISP I LAISP I RR I
I Load wait time I LDWT I RR I
I Post interrupt I PINT I RR I
I Reset lock I RLOCK I RR I
I Set lock I SLOCK I RX I

When an IOP instruction is encountered, the line containing the
instruction on the listing is flagged with a pound sign (i). A
single DCMD is placed in the object code. The text of the DCMD
is:

**** MODULE xxxx CONTAINS I/O PROCESSOR INSTRUCTIONS

48-050 FOO R03 3-29

Where:

xxxx is the name of the module.

The NPWRN instruction can be used to suppress the warning and the
DCMD output that is generated for instructions not available on
all processors.

3.6 ASSEMBLER INSTRUCTIONS

Assembler instructions control the assembly process. Although
they may resemble machine instructions in form, they do not
generate any machine executable code. They are used to define
symbols, reserve storage, generate data constants and control the
final output.

3.6.1 Symbol Definition Instructions

Symbol definition instructions allow the programmer to assign
values to symbols and set up communication paths between
separately assembled programs. The latter operation facilitates
the use of subroutines because they can be written and assembled
separately from the main program. At load time, a linking loader
uses information supplied by CAL/32 to resolve addresses between
main programs and subroutines to set up the correct linkage.

3.6.1.1 Equate (EQU) Instruction

This is one of the most commonly used assembler instructions. It
assigns values to symbols and it has the form:

NAME OPERATION OPERAND

A symbolic name EQU An expression

Examples of EQU instructions are:

LOOP EQU LOO Pl
TOP EQU END-64
DELTA EQU BOTTOM-TOP
HERE EQU *
START EQU X'lOFE'
SUM EQU 1
PTR EQU 2

3-30 48-050 FOO R03

EQU instructions can appear anywhere in the program. CAL/32
requires that each EQU instruction have a symbol in the name
field and treats the absence of this symbo1 as an error. The
value assigned to a symbol by an EQU instruction is absolute or
relocatable, depending on the type of expression in the operand
field.

If. the operand of an EQU st~tement contains a forward reference,
CAL/32 will perform any additional passes required to define all
symbols. CAL/32 does not reserve storage for symbols defined by
an EQU instruction. Wherever it encounters the symbol in the
program, CAL/32 replaces the symbol with the value defined in the
EQU instruction. For example:

STRNG
PTR
INPUT

LOO Pl

EQU
EQU
EQU

L
CLR

1
2
3

STRNG,TABLE(PTR)
STRNG,INPUT

LOAD STRING FROM TABLE
COMPARE WITH INPUT

In this case, CAL/32 generates the code to load register 1 with
four bytes located at the address specified by TABLE, indexed by
register 2. The next instruction causes CAL/32 to generate the
code to compare the four bytes in register 1 with the contents of
register 3. The use of the EQU instruction here allows the
programmer to assign meaningful names to the registers that hold
the character strings, and ·index into the table. It also
provides a simple way to redefine the values assigned to these
symbols. By changing the EQU instructions and reassembling, it
is possible to change the values assigned to the symbols without
extensive editing to change each individual statement where these
registers are used.

It is also possible, although not recommended, to redefine a
symbol within a program. For example:

LOOP! EQU *
•

LOO Pl EQU *

When the symbol LOOP! is encountered in the first EQU
instruction, CAL/32 assigns it the value of the LOC. Subsequent
references to LOOP! receive this value. Following the second EQU
instruction, the value of LOOP! is changed to the value of the
new LOC. Because such redefinitions might not be intentional,
CAL/32 issues a warning message wherever a symbol is redefined by
an EQU instruction. (In the example, the programmer might have
intended to write LOOP2 instead of LOOP! in the second EQU
instruction.)

48-050 FOO R03 3-31

The user must guard against circular LOC dependency, as shown in
the· following example:

A

B

EQU
DS
DS
EQU
END

*
1
B-A
*

CAL/32 will flag an "MOOl xxxTOP" error where xxx is PURE, IMP,
or ABS, depending upon the current LOC.

As stated earlier, CAL/32 permits the user to define operation
mnemonics within the program. To do this, the user defines the
new mnemonic in an EQU instruction in which the new operation
mnemonic is in the name field and the operand field contains a
hexadecimal constant of the form X'nnxy'. Here, nn is the
machine language operation code, and x and y are descriptors that
tell CAL/32 how to handle the new mnemonic. The values of x and
y inform CAL/32 of the instruction format. The values are
defined as follows:

x = O,
x = o,
x = O,
x = O,

y =
y =
y =
y =

8
2
4
1

RR or SF format
RX or RI format
Ril format
RI2 format

To define extended branch mnemonics, x gets a value equal to the
Rl field (mask) and y gets one of the following values:

y = 3 RX format
y = c RR format
y = D SF format

For example, in the instruction:

BTC 15,ADDR

the branch on true condition mnemonic and the mask field 15 can
be combined into an extended branch instruction as follows:

BTCF EQU X'42F3'

in which BTCF is the new mnemonic1 42 is the machine code for the
branch on true conditi.on instruction1 Fis the mask value (15)1
and 3 specifies RX format. Once this new mnemonic is defined,
the programmer can write:

3-32 48-050 FOO R03

BTCF ADDR

instead of:

BTC 15,ADDR

The new mnemonic definition remains in effect only for the
program in which it is defined. The new mnemonic must be
different from all other mnemonics recognized by CAL/32.

There are three things to remember in using equate statements:

1. The name field must always contain a valid symbol.

2. The operand field must always contain a defined symbol or
expression.

3. The symbol that appears in the name field of an Equate
instruction must not appear in the name field of any other
instruction, except another Equate instruction.

If any of these rules are violated, CAL/32 generates an
appropriate error message.

3.6.1.2 External, Entry, weak External,
Entry (EXTRN, ENTRY, WXTRN,
Instructions

Weak Entry and Data
WNTRY and DNTRY)

These instructions are listed together since they perform
corresponding functions to establish links between main programs
and subroutines, and between programs with a common data base.
These instruction forms are:

NAME OPERATION OPERAND

Not used EXT RN One or more symbols
(illegal) separated by commas
Not used ENTRY One or more symbols
(illegal) separated by commas
Not used WXTRN One or more symbols
(illegal) separated by commas
Not used WNTRY One or more symbols
(illegal) separated by commas
Not used DNTRY One or more symbols
(illegal) separated by commas

48-050 FOO R03 3-33

The EXTRN instruction identifies symbols referenced by the
program but defined outside the program. The ENTRY instruction
identifies symbols d~f ined within the program and referenced
externally. (They c~n be referenced internally as well.)

OS/32 supports a 24-bit addressing mode and a 32 bit value mode.
EXTRN and ENTRY itjstructions are designed for addresses rather
than values and may qnly hold a 24-bit address. Using these
instructions for 32-bit values produces unexpected results.

For example, consider two programs: one calculates the sine and
cosine of an angl~, the other uses the sine and cosine. The
first is a general-p~rpose program that could be used by many
other programs. Th;e ENTRY and EXTRN instructions make this
possible without hav~ng to assemble the sine and cosine program
every time it is peeded. The sine and cosine program would
contain an ENTRY inst!ruction and entry points such as:

SIN EQU *·

cos EQU *

The symbols SIN and COS appear as operands in the ENTRY
instruction and as names in the EQU instructions. When CAL/32
assembles this progra~, CAL/32 informs the linking loader that
the locations ident~f ied by the names SIN and COS are entry
points into the progr~m.

i
!

The program that uses; sine and cosine would contain an external
statement and branch instructions such as:

I

EXTRN StN,COS

BAL LINK, SIN

BAL L~NK,COS

3-34 48-050 FOO R03

At assembly time, CAL/32 generates object data to inform the
linkage editor that the symbols SIN and COS are externally
defined. At link time, the linkage editor uses this information,
along with the information generated by the Entry instruction in
the other program, to provide the necessary linkage.

NOTE

See the OS/32 Link Reference Manual for
information on linking multiple object
modules.

OS/32 also allows a 16-bit value mode. A 16-bit EXTRN value is
created as follows:

EXTRN Z (LAB EL)

The WXTRN instruction is essentially equivalent to the EXTRN
instruction. However, WXTRN symbols are subject to the following
exception processing by Link:

• An error condition does not arise if the symbol is not
resolved. A warning message, n UNDEFINED WEAK. EXTERNAL
SYMBOL (s), is output if any weak external symbols remain
unresolved after the image is built.

• Object libraries are not searched in order to satisfy a weak
external.

• If a module containing an entry point referenced by a WXTRN
symbol is included, then the entry point will be used to
satisfy WXTRN references to it in the normal way.

The WNTRY instruction is essentially equivalent to the ENTRY
instruction. However, WNTRY symbols are subject to the following
exception processing by Link.

• Weak entry points are not examined when searching an object
library. Therefore, a program module containing a weak entry
point is not included to satisfy an external reference.

• If a program module containing a weak entry point is included
from a module, the weak entry point will be used to satisfy
external references in the normal way.

The DNTRY instruction is essentially equivalent to the ENTRY
instruction. Rather than providing access to executable code
being referenced by another module, DNTRY provides access to
labeled data areas. When building overlaid modules, one overlay
may require access to a data area identified in another overlay.
The DNTRY instruction is used to identify these labeled data
areas in overlay modules. This instruction identifies a symbol
defined local to the program containing the DNTRY instruction.

48-050 FOl R03 3-35

To help protect ref ~rences to data in higher level nodes, Link
automatically loads the entire path of overlays starting at the
overlay containing 4ata and ending with the overlay making the
reference to a data entry point (DNTRY). A reference to a
program section pos~tioned in a higher level node, via the
POSITION command, !is treated the same way. A reference to data
or a program sectiorl in the root does not cause a path of
overlays to be loaded.

If a DNTRY is ref er~nced in a lower level node, an SVCS manual
overlay load mightj be required to ensure that the overlay is in
memory at the time of the reference.

Restrictions on the 1use of external and entry instructions are:
I
!

• The operand f iel~ of an external instruction must not contain
an expression, such as SIN+4.

• Expressions invo~ving externally defined symbols must be of
I the form: l
;

i

External symb41 + absolute expression

External symbql - absolute expression

BAL ;R15, SIN+4

is a legal usd of an externally defined symbol.

• Externally def iqed symbols cannot be used internally as
instruction iden~if iers.

i

• Any symbol ident~f ied as an entry must appear internally in
the name of an idstruction.

•
I

Symbols identifi~d as entries cannot be redefined by
equate instructiqns.

3.6.1.3 Include (I~CLD) Instruction

multiple

This information prdvides Link with a mechanism to guarantee the
inclusion of obje~t modules without other linkage references to
it. It has the form:

NAME

Not used
(illegal)

3-36

I

OPE~ATION

INCLD

OPERAND

One or more symbols
separated by commas

48-050 FOO R03

The INCLD is used in the same fashion as the EXTRN to linking
references. However, this instruction is used to nominate
program modules rather than external symbols.

NOTE

CAL/32 generates the same object as in
the past, provided none of the following
instructions are used: external with
offset, DCMD, DNTRY, WNTRY, WXTRN or
INCLD. The assembly of any of these
instructions produces an object that TET
will reject. Link is required to process
modules containing this extended object.
These instructions are only valid in a
Target 32 assembly and have no effect on
16-bit object generation.

3.6.2 Data Definition Instructions

The following instructions allow the programmer to reserve areas
of memory to be used at run-time. Some of these instructions
allow the programmer to specify values with which these areas can
be initialized at load time. Other data definition instructions
provide easy access to complex data structures.

3.6.2.1 Define Storage (DS, DSH and DSF) Instruction

This instruction causes CAL/32 to reserve a block of storage
within the program without initializing the reserved locations to
any value. It has the form:

NAME OPERATION OPERAND

A symbol DS A previously defined absolute
(optional) expression

A symbol DSH A previously defined absolute
(optional) expression

A symbol DSF A previously defined absolute
(optional) expression

The DS mnemonic causes CAL/32 to reserve the specified block of
storage starting from the value of the current LOC.
In the DSH form, CAL/32 first aligns the LOC on a halfword
boundary and then reserves the storage. In the DSF form, CAL/32
first aligns the LOC on a fullword boundary. Examples of the
define storage instruction are:

48-050 FOO R03 3-37

BUFl
BUF2
BUF3

DS
DSH
DSF

100
JJ25
16

In the first example, CAL/32 reserves 100 bytes of storage by
simply adding 100 to the LOC. In the second example, CAL/32
reserves 125 halfworqs (250 bytes) of storage. CAL/32 does this
by aligning the LOC ion a halfword boundary, if it is not already
properly aligned, antj then adding 250 to it~ In the third
example, CAL/32 ensures that the LOC is aligned on a fullword
boundary and then adds 64 (the byte equivalent of 16 fullwords)
to it.

Define storage instructions are commonly used to reserve storage
areas for transient data. Examples of this are I/O buffers and
register save areas. For example:

LINK

RSAVE

ENTRY R;SAVE
EXTRN S!IN, COS
EQU 15

BAL J.J:INK, SIN

.
DSF 16

shows how a main prog~am might set up a register save area within
itself. The code for; the called program might look like:

RO

SIN

ENTRY S~N,COS
EXTRN RSAVE
EQU 0

1

EQU
STM *

RO, RSAVE

where the subroutine stores the
externally defined area, RSAVE.
instructions remember that:

3-38

general registers
When using define

in the
storage

48-050 FOO R03

• The DSH and DSF forms of the instruction ensure halfword and
fullword alignment.

• The define storage instructions do not initialize memory to
any particular value.

• Only one operand is allowed in a define storage instruction,
and it must be a defined, absolute symbol or expression.

3.6.2.2 Define Constant (DC and DCF) Instruction

The define constant instruction allows the programmer to reserve
areas of memory and at the same time specify the initial value to
be loaded into them. The define constant instruction has two
forms:

NAME OPERATION

A symbol DC
(optional)

A symbol DCF
(optional)

OPERAND

One or more operands
separated by commas

One or more operands
separated by commas

The DC mnemonic ensures that the first of the operands is aligned
on a halfword boundary. The DCF mnemonic ensures that the first
of the operands is aligned on a fullwor~ boundary. Operands of
different types can be used in the same define constant
instruction. However, where alignment is a concern, the
programmer must be careful in mixing operands of different types.
Types of operands are described below.

A single character code indicates the type of constant. This
character code is not always required, and the exceptions are
noted as they occur. The assembler determines from the character
code how it is to interpret the constant and translate it into
the proper object format. Table 3-8 lists the character codes
recognized by CAL/32, their meanings, and the types of constants
generated.

48-050 FOO R03 3-39

TABLE 3-8 CONSTANT TYPES

CODE I MEANING MACHINE FORMA'I'
===============~=======================================

x
y
H
F
A
z
T
E

D

c

p

u

Hexadecimal
Hexadecimal
Integer
Integer
Address
Address.
Address!
Single precision
floating point
Double precision
floating point
Character

Packed decimal
string

Unpacked decimal
string

16-bit binary
32-bit binary
16-bit signed binary
32-bit signed binary
32-bit value of address
16-bit value of address
One half of 16-bit address
32-bit floating point
format
64-bit floating point
format
An 8-bit code per
character (7-bit ASCII)
Fixed point sign-coded
integer of binary en­
coded 4-bit decimal
digits in a string of
variable byte length.
Fixed point sign-coded
integer of 7-bit ASCII
encoded decimal digits
(8-bits per digit) in a
string of variable byte
length.

3.6.2.3 Hexadecimal Constants

A hexadecimal constant consists of one or more hexadecimal
digits, 0 through 9 and A through F, enclosed in apostrophes and
preceded by the type qode X or Y. Where the X type is used,
CAL/32 reserves two · bytes of storage and generates the loader
information that will cause those two bytes to be initialized at
load time with the binary representation of the hexadecimal
number. The Y type causes four bytes to be reserved and
initialized. Examples of hexadecimal constants are:

3-40

CONSTANT

DC
DC
DCF
DCF
DC

x' 123 4'
Y'l234'
XI 2Q I

Y'0064'
X' 123 4ABC'

VALUE

1234
0000 1234
0020
0000 0064
4ABC

48-050 FOO R03

The first example shows a halfword hexadecimal constant which,
because of the DC operation code, is aligned on a halfword
boundary. The second example shows a fullword hexadecimal
constant. In this case, fullword alignment is not guaranteed.
The third example shows a halfword constant aligned on a fullword
boundary. The fourth example shows how to force fullword
alignment for a fullword constant. The last example shows what
happens when too many digits are. given. CAL/32 truncates the
constant to the least significant digits and generates an error
message. The maximum number of digits for an X type constant is
four. The maximum number for a Y type constant is eight.

NOTE

Where fewer than the maximum number of
digits are given, CAL/32 right-justifies
the value in the location and fills in
the missing digits with zeros.

Two special mnemonics facilitate the building of hexadecimal
tables by eliminating the need to specify the X or Y type code.
They have the form:

NAME

A symbol
(optional)

A symbol
(optional)

OPERATION

DCX

DCY

OPERAND

One or more operands
separated by commas

One or more operands
separated by commas

Operands for these instructions consist of one to four
hexadecimal digits for the DCX instruction and one to eight
hexadecimal digits for the DCY instruction. Examples of these
constants are:

DCX l,0,14AE,20,4040
DCY l,2FFFE,64,80000000

The DCX instruction generates five halfword constants:

0001
0000
14AE
0020
4040

48-050 FOO R03 3-41

The DCY instruction g~nerates four fullword constants:

0000 0001
0002 FFFE
0000 0064
8000 0000

!

Before generating the constants, CAL/32 ensures that they are
properly aligned with halfword constants aligned on halfword
boundaries and fullword constants aligned on fullword boundaries.

3.6.2.4 Integer Constants
i
:

Integer constants can be either halfword or fullword. Halfword
constants are expre$sed by the character code H followed by a
string of from one: to five decimal digits enclosed in
apostrophes. Fullwotd constants are expressed by the character
code F followed by a string of from one to ten decimal digits
enclosed in apostroph$s. The range of halfword const~nts is from
-21s to 21s - 1. The range of fullword constants is from -231 to
231 - 1. The range of l halfword and fullword constants is shown
below. The decimal\ strings used in these constants must not
include commas or bla~ks. A sign, + or , can precede the
string.

. I MINIMUM VALUE I MAXIMUM VALUE I
---------~--------------------------------!

I Halfword I -32768 I +32767 I
!--!
I Fullword I -2147483648 I +2147483647 I

The internal representation of integer constants is two's
complement binary. Itj this notation, positive numbers and zero
have their true binary form. For example, a halfword integer
with a value of 2S is represented internally (hexadecimal
notation) as 19.

Negative numbers are expressed in accordance with the formula:

Value = 2" - x

3-42 48-050 FOO R03

where n is the number of bits used to express the value, and x is
the absolute value of the number. For example, to represent
minus 10 in a halfword constant:

n = 16 (1015)
x = 10 (A16)
Value = 1000016 - A16 = FFF61s

Examples of integer constants are:

CONSTANT VALUE

DC H'32767' 7FFF
DC H'-32768' 8000
DC F' l' 0000 0001
DC H'-2' FFFE
DCF F'25' 0000 0019 ,

The H and F codes themselves do not guarantee correct alignment.
To ensure that a fullword integer is aligned on a fullword
boundary, the programmer should use the DCF instruction.

CAL/32 does.not require that integer constants be defined with
the character codes and decimal strings enclosed in apostrophes.
A simple decimal string can be used. For example:

DC 1
DC -7

The length of the integer constants generated by these
instructions depends on the processor on which the program is to
run. For 32-bit processors such instructions generate fullword
constants, such as:

CONSTANT

DC 1
DCF -7

VALUE

0000 0001
FFFF FFF9

For 16-bit processors, these instructions generate halfword
constants, such as:

CONSTANT

DC
DC

1
-7

48-050 FOO R03

VALUE

0001
FFF9

3-43

It is possible to fo~ce a fullword alignment by using the DCF
mnemonic with a s~mple decimal string. The use of a DCF
instruction affects dnly the alignment of the first of the
integer constants; ,the 1 ength of the constant is determined
solely by the processor on which the program is to be run. Thus,
when using these instructions with operands which are simple
decimal strings, it is not possible to generate a halfword
constant for a 32-bit processor.

3.6.2.5 Address Constants

Address constants consist of a single character type code
followed by a symbol or an expression enclosed in parentheses.
The three types of address constants are A, z and T. Type A
constants generate fullword address constants in programs
intended to be run on 32-bit processors; they generate halfword
address constants in programs intended to be run on 16-bit
processors. Types z and T address constants always generate
halfword values. Examples of address constants are:

DC A(LOOP+2)
DC A(TABLE)
DC A(TOP-BOTTOM)
DC Z(IOVECTOR)
DC T(ALPHATAB)

For 32-bit processors, the first three examples cause CAL/32 to
reserve a fullword of storage, initialized at load time to
contain the value of the expression or symbol enclosed in
parentheses. This value can be absolute or relocatable,
depending on the nature of the expression. The address quantity
is right-justified in the least significant 24 bits of the
fullword, and the most significant eight bits are forced to zero.
However, it is possib~e to use the most significant bits for some
purpose. They might be used as flag bits as in the example:

3-44

PARAM
ADDR

LINK
ADREG

DS
DC
EXT RN
EQU
EQU

STE
L
BAL

4
A(PARAM+Y'AOOOOOOO')
SIN
15
14

RO,PARAM
ADREG,ADDR
LINK, SIN

48-050 FOO R03

At the time of the branch and link instruction, register 14
contains the address of the location PARAM in the least
significant 24 bits. The most significant eight bits contain the
value X'AO'. The subroutine can use the address portion and the
flag portion independently, as:

SIN EQU

LE
TI

*

R4,0(ADREG)
ADREG,Y'AOOOOOOO'

GET PARAMETER
TEST FLAGS

The z type address constants generate halfword values. They can
be used in programs for 32-bit processors if the programmer is
certain that the actual address cannot exceed 65,535, the maximum
unsigned value that can be expressed in a halfword.

The T type address constants are used as entries in translation
tables. These instructions cause CAL/32 to reserve a halfword of
storage initialized with one half of the actual address, right
justified. The most significant bit is zero. These constants
are intended for use with the translation tables associated with
the.Translate instruction and with the auto driver channel.

Address constants can be written without the . type code and
parentheses, as in:

TABLE
BUFFl

ADDl
ADD2

DS
DS

DC
DC

16
64

TABLE
BUFFl

ADDRESS OF TABLE
ADDRESS OF BUFFER ONE

Where this convention is used, the size of the generated constant
depends on the processor for which the program is written. For
32-bit assemblies, CAL/32 generates fullword constants. For
16-bit assemblies, CAL/32 generates halfword constants. The
programmer can force halfword constants to be generated by using
the mnemonic DCZ, as:

48-050 FOO R03 3-45

DCZ TABLE,~UFFl

which causes a serfes of halfword address constants to be
generated.

3.6.2.6 Floating Po~nt Constants

The source form for i floating point constants consists of a
decimal number enclos¢d in apostrophes and preceded by the letter
E for single preci~ion, or the letter D for double precision.
The decimal number cohsists of:

• an optional plus sign or minus sign,

• one or more decimal digits that may include a decimal point,

• an optional E character followed by an optional plus sign or
minus sign, follbwed by one or two decimal digits denoting a
power of 10.

Single precision floating point constants require a fullword of
storage. Double pr~cision floating point constants require a
doubleword of storage~ Internally, floating point constants are
represented in exce~s 64 notation. In this kind of notation,
each floating point number consists of a sign, an exponent and a
fraction. The firstibit of the number is the sign bit. If this
bit is a 1, the nurnbe~ is negative; if it is a O, the number is
positive. The next ~even bits represent the exponent, expressed
in excess 64 notation~ This field can contain any value between
0 and 127 inclusive. iThe remaining bits, 24 for single precision
and 56 for double :precision, represent the fraction with an
implied radix point before the first bit.

The true value of the floating point number is obtained by
multiplying the fra~tion by 16 raised to the power indicated by
the exponent field. · In excess 64 notation, this power is
determined by subtracting 64 from the value in the exponent
field. In this way, values equal to or greater than 64 produce
a O or positive p~wer. Raising 16 to this power and then
multiplying by the fraction produces values between
.0625 and 7 .2 x 1075

• l Exponent field values that are less than 64
produce a neg~tive power and values between
.06249 ••• and 5.4 x iq-79 • Floating point 0 is represented by a
fullword or a doublewqrd of zeros.

!

See the appropriate ~rocessor User Manual for more detailed
information.

3-46 48-050 FOO R03

Examples of floating point constants are:

CONSTANT

DC
DC
DC
DC
DC
DC

E'l'
E'0.0'
E '7. 2 E7 4'
D'l0.5'
DI 5 .4 E-7 9'
D' 7 .2E+75'

INTERNAL REPRESENTATION

4110 0000
0000 0000
7Fl9 7 817
41A8 0000 0000 0000
0010 OlDl 33A9 49F6
7FFE BOE3 AD97 8760

In the internal representation of floating point constants, the
fractional part can consist of from one to six hexadecimal digits
for single precision, and up to 14 hexadecimal digits for double
precision. If the decimal number exceeds this degree of
accuracy, the magnitude of the number is preserved but the
precision is lost. In performing the conversion from decimal to
internal floating point, CAL/32 carries guard digits to ensure
six hexadecimal digit accuracy for single precision and 14
hexadecimal digit accuracy for double precision. The programmer
must ensure proper alignment.

3.6.2.7 Character Constants

Character constants consist of the single letter code C followed
by a string of ASCII characters enclosed in apostrophes. All
characters are translated into 7-bit ASCII, in which the most
significant bit is always O. Examples of character constants
are:

DC C'NAME'
DC C'APOSTROPHE = '' '

The second example shows how an apostrophe is included in a
character constant. Between enclosing apostrophes, a double
apostrophe is treated as a single character. The maximum number
of characters that can be defined in a single character constant
is 64. If the number of characters in a constant is odd, CAL/32
appends . a blank character at the end to maintain halfword
alignment.

3.6.2.8 Decimal String Constants

The source format for decimal string constants consists of a
decimal number enclosed in apostrophes and preceded by the letter
P for packed decimal string constants, or by the letter u for
unpacked decimal string constants. The decimal number is an
integer and consists of an optional plus sign or minus sign,
followed by 1 to 31 decimal digits.

48-050 FOO R03 3-47

The machine internal ~epresentation of the packed decimal string
constant is a fixed point, sign-coded integer, where each digit
occupies four bits ana each byte holds two digits. That is, each
decimal digit, 0 th~ough 9, is binary encoded in a 4-bit
hexadecimal digit. As the number of decimal digits varies from
1 to 31, the length in bytes of the decimal string varies from 1
to 16 bytes. The last hexadecimal digit contains a 4-bit code
for sign; a hexadecimal C for plus or a hexadecimal D for minus.

The integer representation is right-justified within the variable
length string, so the least significant digit of the decimal
number occupies the hexadecimal digit just preceding the sign
code. Each digit is thus consecutively packed, with the most
significant digit (zero or nonzero) in bit positions 0 through 3
of the left-most byte of the string. See the examples that
follow for the differences in internal representation, when the
packed decimal string.constant is defined by either the Define
Constant (DC) instruction or the Define Byte (DB) instruction.

The machine internal representation of the unpacked decimal
string constant is a ,fixed point, sign-coded integer, where each
zoned digit occupies a byte. That is, each decimal digit, O
through 9, is ~ncoded in 7-bit ASCII with the left-most bit 0
providing an 8-bit byte with the left hexadecimal digit
containing a zone code of 3 and the right hexadecimal digit
containing the binary encoded decimal digit. As the number of
decimal digits varies from 1 to 31, the length in bytes of the
decimal string varies from 1 to 31 bytes. The integer
representation is r~ght-justif ied within the variable length
string. The right-most byte contains the least significant digit
in its right-most hexadecimal digit and the sign code in its
left-most hexadecimal digit. The sign code is a 4-bit code,
described above with a hexadecimal C for plus and a hexadecimal
D for minus. Each digit is thus consecutively coded into bytes,
with the most significant digit (zoned zero or zoned nonzero).
See the following examples for the differences in internal
representation, when the unpacked decimal string constant is
defined by either the DC instruction or the DB instruction.

The address of the string is the address of the left-most byte
containing the most significant digit (zero or nonzero). The
address generated for iei ther the packed decimal string constant
or the unpacked deci~al _string constant is that assotiated with
the label of the source statements and the current LOC.

3-48 48-050 FOO R03

Examples of the packed decimal string (PDS) constants are:

INTERNAL
REPRESENTATION

SOURCE FORMAT (HEXADECIMAL)

DB P'l' lC
DB P'+SO' osoc
DB P'-879' 879D
DB P'+l234' 0123 4C
DB P'-1234S' 1234 SD
DB P'l234S678901234S678901234S678901' 1234 567 8 9012 34S6

7890 1234 S67 8 901C
DC P'l' OOlC
DC P'+SO' osoc
CD P'-879' 8790
DC P'+l234' 0001 234C
DC p' 123 4S' 0012 345C
DC P'l2345678901234S678901234S678901' 123 4 S67 8 9012 3456

7890 1234 5678 901C

Note that as string-processing instructions ·are intended to
operate at the lowest addressable level, on byte-addressable
locations, these constants are most efficiently generated by the
DB instructions described in the define byte instruction section.
If the DC instruction is used, an extra byte of leading zeros is
generated when the number of digits is a multiple of 4 or is an
odd number of digits not divisible by 3. Examples of unpacked
decimal string (zoned) constants are:

INTERNAL
REPRESENTATION

SOURCE FORMAT (HEXADEC~MAL)

DB U' 1' Cl
DB U'+SO' 35CO
DB U'-879' 3837 D9
DB U'+l234' 3132 33C4
DB U'l234S' 3132 3334 cs
DB U'l234S6789012345678901234S678901' 3132 3334 3S36 3738

3930 3132 3334 3536
3738 3930 3132 3334
3536 3738 3930 Cl

DC U'l' 30Cl
DC U'+SO' 3SCO
DC U'-879' 3038 37D9
DC U'+1234' 3132 33C4
DC U'-12345' 3031 3233 34D5
DC U'l23456789012345678901234S678901' 3031 3233 343S 3637

3839 3031 3233 3435
3637 3839 3031 3233
343S 3637 3839 30Cl

48-0SO FOO R03 3-49

As string-processing instructions require programmed length
attributes, famili:arization with the internal storage
requirements for both packed decimal string and unpacked decimal
string constants is advisable. In the previous examples, the
relationship of number of digits to byte length is as follows:

CONSTANT DEFINED J3Y BY'l'E LENGTH

Packed DB (integer of n/2) + 1

Packed DC 2*(integer Of n/ 4) + 2

Unpacked DB n

Unpacked DC n, for n even
n + 1, for n odd

where n is the number of decimal digits in the source formats of
the decimal constants~

3.6.3 Define Byte (DB) Instruction

This instruction defines consecutive 8-bit bytes of data. It has
the form:

NAME

A symbol
(optional)

OPER~TION

DB

OPERAND

One or more operands
separated by commas

The symbol used in th~ name field of the DB instruction is
assigned the value iof the current LOC. There is no automatic
alignment. The progr4mmer must ensure proper alignment where the
symbolic name of a DB instruction is used as an operand
identifier in an instruction requiring its operand to be located
on a halfword, fullwo~d or doubleword boundary.

The operand field can:contain one or more operands, separated by
commas. There can b~ an even or an odd number of operands. The
operands can be any symbol or expression value. For any operand
other than character or decimal string expressions, the least
significant eight bit~ of the operand value are used to generate
one byte of data. Ex9mples of the DB instructions are:

3-50

DB
DB
DB
DB
DB

X'F7'
128
-1
C'A'
C'ABCDEFG'

48-050 FOO R03

As seen in the examples, the operand of a DB instruction can be
a signed integer. In this case, the integer can have any value
between -128 and +127, inclusive.

A special form of the DB instruction:

DB *

forces alignment of the LOC to a halfword boundary. If, when
this instruction is encountered, the LOC contains an odd value,
one byte of zero value is generated, and the LOC is made even.
If the LOC is already even, this instruction has no effect.

3.6.4 Define List (DLIST) Instruction

This instruction provides a simple means for defining circular
lists used by the machine instructions:

• Add to top of list

• Add to bottom of list

• Remove from top of list

• Remove from bottom of list

The Define List instruction has the form:

NAME OPERATION

A symbol DLIST
(optional)

OPERAND

A previously defined absolute
expression

The absolute expression in the operand field specifies the number
of slots in the list. For 32-bit assemblies, CAL/32 reserves
four halfwords of storage for list pointers, followed by the
specified number of fullwords (slots). The first halfword list
pointer is initialized with a value equal to the number of slots
in the list. The remaining three pointers are initialized to
zero. For 16-bit assemblies, CAL/32 reserves four bytes of
storage for list pointers, followed by the specified number of
halfwords. The first byte pointer is initialized to a value
equal to the number of slots in the list. The remaining byte
pointers are initialized to zero. An example of the DLIST
instruction is:

LISTI DLIST 100

48-050 FOO R03 3-51

In a 32-bit assembly, this has the same effect as:

LISTI DCF
DS

X'64',X'0',X'0',X'0'
400

The DLIST instruction forces alignment to a fullword boundary in
32-bit assemblies. It forces alignment to a halfword boundary
for 16-bit assemblies.

3.6.S Define Command (DCMD) Instruction

This instruction causes the string within the set of apostrophes
to be passed directly to the object code.

NAME

A symbol
(optional)

OPERATION

DCMD

OPERAND

C'command string'

The operand of the DCMD instruction is subject to the same
syntactic rules as any other character string. CAL/32 performs
no syntax checking on the command string.

CAL/32 will generate the same object as in the past, provided the
DCMD instruction is not used. The assembly of this instruction
will produce an object that TET will reject. Link is required to
process modules containing this extended object. The DCMD
instruction is valid only in a Target 32 assembly and has no
effect on the 16-bit object generation.

3.6.6 Location Counter (LOC) Instructions

The following instructions allow the programmer to select the
current LOC and set its value. For 32-bit assemblies, CAL/32
maintains three LOCs: pure, impure, and absolute. For 16-bit
assemblies, it maintains two LOCs: relocatable and absolute. At
any given time, only one LOC can be in use. With these
instructions, the programmer can control the program segmentation
and relocation.

3.6.6.1 Pure (PURE) Instruction

This instruction causes all subsequent machine instructions to be
assembled as part of the pure segment. It has the form:

NAME OPERATION

A symbol PURE
(optional)

3-52

OPERAND

None
(ignored)

48-050 FOO R03

The current LOC is saved and the new LOC is set to point to the
next halfword boundary beyond the most recently used location in
the pure segment. If a PURE instruction occurs in a relocatable
16-bit program, it has no effect. If it occurs in an absolute
16-bit program, it causes a switch to the relocatable LOC.

3.6.6.2 Impure (IMPUR) Instruction

This instruction causes all subsequent instructions to be
assembled as part of the impure segment. It has the form:

NAME

A symbol
(optional)

OPERATION

IMPUR

OPERAND

None (ignored)

The current LOC is saved and the new halfword boundary is set
beyond the most recently used impure address. In 16-bit
assemblies, this instruction has no effect if the program is
already in relocatable mode. If it is in absolute mode, the LOC
is switched to relocatable.

NOTE

Unless otherwise specified by the
programmer, impure mode is assumed.

3.6.6.3 Origin (ORG) Instruction

This instruction selects a LOC and sets it to a defined value.
It has the form:

NAME

A symbol
(optional)

OPERATION

ORG

OPERAND

A previously defined symbol
or expression

The operand of the origin instruction determines which LOC is
selected and the value ~t is given. If the value of the operand
is pure relocatable, impure relocatable or absolute, the
corresponding LOC is selected and set to the operand value. If
the operand contains a forward reference, CAL/32 performs any
additional passes required to define all symbols.

48-050 FOO R03 3-53

The user must guard against circular LOC dependency, as in the
following example:

ORG A
LIS 4,4

A EQU a
LIS 4,4

B EQU *
END

CAL/32 will flag an "MOOl xxxTOP" error, where xxx is PURE, IMP,
or ABS depending on the current LOC.

NOTE

If no ORG instruction appears at the
beginning of a program, CAL/32 assumes it
to be relocatable starting at relocatable
zero. For 32-bit programs it also
assumes the impure segment.

3.6.6.4 Absolute (ABS) Instruction

This instruction causes the LOC to be put in the absolute mode.
It has the form:

NAME OPERATION OPERAND

A symbol ABS None (ignored)
(optional)

The current LOC is saved and the new LOC is set to point to the
next halfword boundary beyond the most recently used absolute
location. If the absolute LOC was not previously used, it is set
to zero.

3.6.6.5 Align (ALIGN) Instruction

This instruction conditionally aligns the current LOC to the next
highest value that is divisible by the specified operand. It has
the form:

3-54

NAME

A symbol
(optional)

OPERATION

ALIGN

OPERAND

A symbol or
expression

48-050 FOO R03

The value contained in the operand field determines the type of
alignment. Symbols used in the operand field must be previously
defined. The value in the operand field must be absolute and
equal to either 2, 4, 8, 16, etc. (power of 2) • If the operand
value is 2, CAL/32 adjusts the LOC to ensure that it contains a
halfword address. CAL/32 forces fullword alignment if the
operand value is 4 and doubleword alignment if the value is 8.

If at the time of this instruction the LOC
is already properly aligned, CAL/32 does not change it. If it
is not properly aligned, CAL/32 increments it by the minimum
amount necessary to force proper alignment. A symbol, if used in
the name field, receives the value of the LOC after the alignment
is performed.

NOTE

If the value of the operand is not
absolute, or if it is not correctly
defined, CAL/32 forces fullword
alignment, and generates an error
message.

3.6.6.6 Conditional No Operation (CNOP) Instruction

This instruction is similar to the ALIGN instruction in that it
conditionally aligns the LOC to a power of 2. It has the form:

NAME OPERATION

A symbol CNOP
(optional)

OPERAND

A symbol or
expression

The CNOP differs from the ALIGN instruction in that instead of
merely incrementing the LOC, it actually inserts no operation
instructions into the program stream. The value of the operand
must be absolute and equal to a power of 2. Symbols used in the
operand field must have been previously defined. If at the time
this instruction is encountered, the LOC is on an odd boundary,
CAL/32 increments it by one to make it even, inserts the required
number of CNOP instructions to force alignment and generates an
error message. This instruction has no effect if the LOC is
already properly aligned. A symbol, if used in the name field,
receives the value of the LOC associated with the first CNOP
instruction generated.

48-050 FOO R03 3-55

3.6.7 Assembler Control Instructions

These instructions alllow the programmer to control the assembly
process itself, id~ntify the type of processor on which the
program is to be run,: temporarily halt the assembly operation,
and request a limited amount of optimization.

3.6.7.1 Target (TARGT) Instruction

This instruction identifies the type of processor on which the
program is to be run. It has the form:

NAME

A symbol
(optional)

OPER!ATION

TARGT

OPERAND

A symbol or
expression

The value of the operand expression must be either 16 or 32,
absolute. Symbols used in the operand field must be previously
defined. If the operand value is 16, CAL/32 generates object
code for 16-bit processors. If the value is 32, it generates
object code for 32-bit processors. If the value is anything
else, CAL/32 genera.ltes a warning message and generates code for
the same type of processor on which it is running. If there is
no TARGT instruction in the program, CAL/32 assumes the target
machine to be the same as the machine on which the assembly is
running.

NOTE

The TARGT instruction must precede any
PURE or IMPUR instructions or any
instruction that generates machine code.

3.6.7.2 End (END) In~truction

This instruction indicates the end of the source input.
the form:

NAME OPERAT~ON

A symbol END
(optional)

OPERAND

A symbol or
expression (optional)

It has

3-56 48-050 FOO R03

Because of its function, this statement must be the last
instruction in the source input file. The optional operand, if
used, identifies the starting location of the program. For
example:

MAIN ~u *

LAST ~D MAIN

The END instruction, with the operand MAIN, causes CAL/32 to
output information identifying the location MAIN as the starting
location of the program. The loader and the operating system use
this information to ensure that the program starts at the
requested location. If there is no operand, the END instruction
merely terminates the assembly process without outputting any
loader information. The END instruction is required in all
CAL/32 programs.

3.6.7.3 Copy Library (CLIB) Instruction

This instruction allows the user to specify or change library
files from within a program. It has the form:

CLIB vol:filename.ext

Each CLIB statement logically concatenates the new library file
(operand of CLIB) to any existing library file. If the new
library file cannot be assigned, CAL/32 will log an error message
and pause.

3.6.7.4 Copy (COPY) Instruction

This instruction allows the programmer to insert source code from
library files into the source code received from the regular
source input file. It has the form:

NAME

A symbol
(optional)

48-050 FOO R03

OPERATION

COPY

OPERAND

A symbol[,vol:fname.ext]
(required)

3-57

CAL/32 assumes that the library file was assigned to logical unit
7 {lu7) {see Chapter 5). CAL/32 also assumes that the file is
made up of 80-character records. It searches through the logical
file, looking only at the first ten characters of each record
until it finds a file label of the form:

RECORD POSITION

1 and 2
3 through 10

CONTENTS

**
A valid symbolic name of
from 1- to a-characters

in which the symbolic name exactly matches the symbol in the
operand field. If the search is unsuccessful, CAL/32 logs the
message:

COPY ERROR: xxxxxxxx

in which xxxxxxxx is replaced by the name of the file being
sought. This might happen in the case of incorrect file
assignment. The operator can change the assignment and resume
the assembly process from the location of the COPY instruction.
The COPY instruction allows only one operand. The programmer
must provide one COPY instruction for each file to be copied into
the source stream.

If the optional second operand is supplied, CAL/32 will assign
and search only that physical file and ignore any files logically
attached by CLIB. If the file cannot be assigned, CAL/32 will
log an error message and pause.

The copy process terminates when an END statement is encountered
in the file, or when a record with either /* or /& in the first
two character positions is encountered. Where an END instruction
is encountered in the copy file, it does not mean the end of the
source file, but only the end of the copy file. At this point,
CAL/32 resumes reading from the source input file. COPY
instructions may not appear in files which are themselves being
included in a source 'program by means of a COPY instruction.

3 .6. 7 .5 File Copy (FCOPY) Instruction

The assembler instruction, FCOPY, allows the user to copy an
entire library file. It has the form:

FCOPY vol:filename.ext

3-58 48-050 FOl R03

When FCOPY is in effect, a /* starting in column 1 or an END in
the opcode field will be skipped, and copying will continue until
an end of file is reached. If the file cannot be assigned,
CAL/32 will log an error message and pause.

3.6.7.6 Lower-Case (LCASE) In~truction

This instruction allows the programmer to prevent the conversion
of lower-case characters to their upper-case equivalents. This
instruction applies to symbols only.

NAME

A symbol
(optional)

OPERATION

LCASE

OPERAND

None (ignored)

This option can be invoked as an instream operation or as a START
option (see Section 5.2). When encountered, this instruction
prevents the conversion of lower-case characters to their
upper-case equivalents. If this option is invoked as a START
option, all instr~am occurrences are ignored.

3.6.7.7 No Lower-Case (NLCASE) Instruction

This instruction allows the programmer to enable the conversion
of lower-case characters to their upper-case equivalents. This
is the default instruction.

NAME

A symbol
(optional)

OPERATION

NL CASE

OPERAND

None (ignored)

This option can be invoked as an instream operation or as a START
option (see Section 5.2). When encountered, this instruction
enables the conversion of lower-case characters to their
upper-case equivalents. This instruction applies to symbols
only •. If this option is·invoked as a START option, all instream
occurrences are ignored.

3.6.7.8 Pause (PAUSE) Instruction

This instruction allows the programmer to halt the assemb~y
process. It has the form:

NAME

A symbol
(optional)

48-050 FOO R03

OPERATION

PAUSE

OPERAND

None (ignored)

3-59

The PAUSE instruction temporarily halts the assembly process.
When the assembler encounters a PAUSE instruction, the assembler
requests the operati~g system under which it is running to
suspend execution. The system notifies the operator. The
operator can resume execution of the assembler at the instruction
immediately following the PAUSE instruction by using the
operating system command CONTINUE. For example, the PAUSE
instruction can be used by the operator to reassign a copy file,
such as: ·

COPY
PAUSE
COPY

REGEQUS

COMBLKS

COPY REGISTER EQUATES

COPY COMMON BLOCKS

3.6.7.9 Squeeze (SQUEZ and NOSQZ) Instructions

This instruction puts CAL/32 into squeeze or no-squeeze mode in
which it performs a limited amount of space optimization. It has
the form:

NAME OPERATION OPERAND

A symbol SQ1UEZ A symbol or expression
(optional) (optional)
A symbol NOSQZ Not used
(optional) (ignored)

The no-squeeze instruction (NOSQZ) has the effect of turning off
the optimization processes initiated by a previous SQUEZ
instruction. Optimiz~tion can be restarted by a subsequent
squeeze statement. NbSQZ overrides a squeeze start option.

When in optimization mode (SQUEZ), CAL/32 makes multiple passes
over the source input. During each pass, it attempts to reduce
long instructions (48 and 32 bits) to shorter forms (32 and 16
bits). The value of the operand expressions sets the maximum
number of passes. If CAL/32 can complete the optimization in
fewer passes, it stop~ the optimization process and completes the
assembly. ·

The value of the operand expression must be an absolute number
between 1 and 99. Any symbols used in the expression must have
been previously defin~d. If the operand value is O, or if there
is no operand, CAL/32 assumes a maximum of nine passes.

3-60 48-050 FOO R03

NOTE

If there are user-induced errors in the
source stream (illegal mnemonics or
undefined symbols), CAL/32 terminates the
squeeze operation and goes on to produce
the final assembler output. Some
instructions in this.output may have been
squeezed, depending on where in the
process the errors were discovered.

CAL/32 performs three types of space optimization:

1. Changes RX3 instructions to RX2 or RXl

2. Changes operation codes to allow the use of an equivalent,
but shorter, instruction

3. Eliminates unconditional branch instructions to the next
halfword location

An example of the first type of optimization
reference instruction. In this instruction,
defined in the program at some point beyond the
which it refers.

Example:

A Rl,VALUE

VALUE DCF F'l25'
•

is the forward
the operand is
instruction to

When CAL/32 processes the ADD instruction, it cannot tell if the
location of the second operand, identified by the symbol VALUE,
is within the range of either an RXl or RX2 instruction. It has
to assume that an RX3 instruction is necessary. By making
additional passes over the source input after all addresses have
been resolved, CAL/32 has the needed information to determine if
the reference to VALUE is within the range of either an RXl or an
RX2 instruction and make the substitution.

48-050 FOO R03 3-61

An example of the second type of optimization is:

LI R3,-l

In the optimization mode, CAL/32 reduces this instruction to:

LCS R3,l

which reduces the length of the instruction from 48 bits to 16
bits, without changing the effect. Depending on the processor,
the substituted instruction might be faster or slower than the
original instruction.

NOTE

CAL/32 changes an operation code only in
the object output. The original
instruction remains in the listing,
flagged with an asterisk.

The third type of :optimization does not occur in normal
programming, but it does sometimes appear in compiler-generated
CAL/32. For example:

ST
B

CONTINUE L

Rl,SAVE
CONTINUE
Rl,TEMP

In this case, CAL/32 simply eliminates the unnecessary branch
instruction, although the branch instruction does appear in the
assembly listing, flagged with an asterisk.

More than one SQUEZ instruction can appear in the program. The
first SQUEZ instruction sets the number of additional passes.
Subsequent SQUEZ instructions put CAL/32 back into optimization
mode after a NOSQZ instruction took it out of the optimization
mode. Operands may appear in the subsequent SQUEZ instructions,
but they are ignored.

3-62 48-050 FOO R03

Because CAL/32 looks at only one instruction at a time, and
because its global data is limited to the symbol table, squeezing
might introduce errors into the program. This is most likely to
happen when data and instructions are mixed.

Example:

LOO Pl

CONST
LOOP2

BTC 8,LOOPl

EQU

BFC
DS
ALIGN
DC
EQU

*

O,LOOP2
26
4
F' 2 56'
*

If on one pass, CONST is already aligned on a fullword boundary,
the branch to LOOP2 can be converted to a short format branch.
A subsequent pass may allow the branch to LOOPl to be shortened.
When this happens, CONST is no longer on a fullword boundary, and
CAL/32 adds two to the LOC to align it properly. This forces
LOOP2 out of the range of a short branch instruction. CAL/32
will recover from this situation by changing the branch
instruction back to its original format and marking it internally
as unsqueezabl e.

3.6.7.10 Squeeze Related (ERSQZ and NORX3) Instructions

There are two additional instructions that can be used to control
squeezing and optimization of the source input file. They have
the form:

NAME

A symbol
(optional)
A symbol
(optional)

48-050 FOO R03

OPERATION

ERSQZ

NORX3

OPERAND

Not used
(ignored)
Not used
(ignored)

3-63

The Error Squeeze instruction, (ERSQZ) can be used with the SQUEZ
instruction. It forces CAL/32 to continue squeezing even after
assembly errors are detected.

The No RX3 instruction (NORX3) provides a simpler form of
optimization during a normal 2-pass assembly. Once this
instruction is encountered, CAL/32 forces RX instructions to the
RXl or RX2 format. RX3 instruction formats are still generated
if double indexing is specified, or if the instruction references
an element of a common block or an externally defined symbol.
This instruction can be safely used in programs that are smaller
than 16kb. It must not be used in segmented (pure and impure) ,
programs.

3.6.7.11 Sequence Checking (SQCHK and NOSEQ) Instructions

The Sequence Checking instructions enable and disable the
sequence checking of source. They have the form:

NAME

A symbol
(optional)
A symbol
(optional)

OPERATION

SQCHK

NOSEQ

OPERAND

Not used
(ignored)
Not used
(ignored)

The Sequence Check instruction (SQCHK) causes CAL/32 to compare
each source statement sequence number with the number of the
preceding statement. Each successive number must be greater in
the ASCII collating sequence than the preceding one. CAL/32's
initial sequence value is equal to eight spaces, so that numbers
can be right-justified in the field without leading zeros. If a
source statement contains a value equal to or less than the
preceding statement, CAL/32 generates an error message. The
sequence fields of statements included in the program by a COPY
instruction are not checked.

The No Sequence Check instruction (NOSEQ) disables the sequence
checking process. The sequence field of this instruction is
checked, if sequence checking was in effect at the time. The
default mode of CAL/32 is NOSEQ.

3.6.7.12 Scratch (SCRAT) Instruction

This instruction causes CAL/32 to copy the source input file to
a scratch device during pass one. It also causes CAL/32 to
allocate an 800 byte scratch file. This instruction has the
f orrn:

3-64

NAME

A symbol
(optional)

OPERATION

SCRAT

OPERAND

Not used
(ignored)

48-050 FOl R03

Subsequent passes over the source input file are read from the
scratch device. Since no statement preceding the SCRAT
instruction can be copied, the SCRAT instruction should be the
first statement in the program.

NOTE

SCRAT can be used either as a start
option or in the source file.

3.6.7.13 Pass Pause (PPAUS) Instruction

This instruction causes CAL/32 to issue a pause request to the
operating system at the end of each pass. It has the form:

NAME

A symbol
(ignored)

OPERATION

PPAUS

OPERAND

Not used
(ignored)

The purpose of the PPAUS instruction is to allow the operator to
reset the source input file to the beginning for the next pass.
This is useful in situations where no scratch file is available,
and the source input file is not rewindable.

NOTE

Where neither the SCRAT instruction nor
the PPAUS instruction is used, CAL/32
issues a rewind command to the source
input lu at the end of each pass.

3.6.7.14 Message (MSG) Instruction

This instruction allows the programmer to log a message to the
system console or a multi-terminal monitor (MTM) terminal. It
has the form:

NAME

A symbol
(optional)

OPERATION

MSG

OPERAND

Text

The operand field contains the text of the message. All
characters following the operation field, up to and including
position 71, are sent to the system console as a message. This
instruction can appear anywhere in the program, and the message
is logged on every pass.

48-050 FOl R03 3-65

3.6.7.15 Batch Assembly (BATCH and BEND) Instructions

These instructions provide a means for assembling more than one
complete program in a batch stream. They have the form:

NAME OPERATION OPERAND

None BATCH Not used
(illegal) (ignored)
None BEND Not used
(illegal) (ignored)

The Batch instruction (BATCH) initiates the batch stream. It has
the effect of redefining the END instruction so CAL/32 does not
terminate itself at the end of the required number of passes.
Rather, CAL/32 terminates the assembly of that particular
program, reinitializes itself, and starts reading the next
program from the source input file. The BATCH instruction must
be the first statement in the stream of programs. If it is used,
CAL/32 assumes that there is a scratch device. Options specified
in the operating system START command remain in effect for the
entire batch assembly (see Chapter 5).

The Batch End instruction (BEND) terminates the batch assembly.
It must appear immeQiately following the END instruction in the
last program of the stream. The BEND instruction tells CAL/32 to
go to end of task when final assembly is completed. The end of
task code returned is equal to the highest code generated during
the batch assemblies. CAL/32 will also terminate a batch
assembly normally if end of file or end of medium status is
detected when attempting to read the first statement after the
END of an assembly.

3.6.7.16 Unreferenced Externals (UREX and NUREX) Instructions

These instructions permit or suppress the output of object
for unreferenced externals. The default state is UREX.
have the form:

NAME OPERATION OPERAND

Not used UREX Not used
(ignored) (ignored)

Not used NU REX Not used
(ignored) (ignored)

3.6.7.17 Assembly Performance (HPM and NHPM) Instructions

code
They

These instructions enable or disable the high performance method
of source program assembly.

3-66 48-050 FOl R03

NAME OPERATION OPERAND

Not used HPM Not used
(ignored) (ignored)

Not used NHPM Not used
(ignored) (ignored)

The HPM assembly process is automatically invoked by CAL/32 as
the default setting. However, if insufficient memory workspace
has been allocated when CAL/32 is loaded and memory is exhausted,
assembly halts and recommences assembly from the beginning of the
source file using the standard method of assembly. For further
information concerning the HPM assembly process and memory
workspace allocation, see Section 5.3.1.

3.6.7.18 16-Bit Object Code (CAL and NOCAL) Instructions

These instructions allow the assembly of a source
32-bit machine into either 16- or 32-bit format.
32-bit format while CAL produces 16-bit format.
default setting invoked by CAL/32 during assembly.

NAME

Not used
(ignored)

Not used
(ignored)

OPERATION

CAL

NO CAL

OPERAND

Not used
(ignored)

Not used
(ignored)

program on a
NOCAL produces
NOCAL is the

CAL/32 may not run as a system task on a 16-bit machine, however,
16-bit object code may be produced using the CAL instruction
during assembly of the source code.

3.6.8 Conditional Assembly Instructions

These instructions allow the programmer to include code sequences
in the program that may or may not be assembled, depending on
some condition. By simply reassembling the program and
redefining the conditions, a single program can be made to serve
more than one purpose.

3.6.8.1 Compound Conditional (IFx, ELSE and ENDC) Instru~tions

There are three instructions in this set. They have the form:

48-050 FOO R03 3-67

NAME

A symbol
(optional)
A symbol
(optional)

A symbol
(optional)

OPERATION

IFx

ELSE

ENOC

OPERAND

A symbol or
expression
A symbol or
expression
(ignored)
A symbol or
expression
(ignored)

The compound conditional instructions are used to provide
complete conditional: assembly capability. A symbol used in the
name field of an IF instruction is defined if the condition
described by the instruction is true. A symbol used in the name
field of an ELSE instruction is defined if the corresponding IF
condition is false.· Symbols used in the name fields of end
condition instructions are always defined.

In the first instruction, the compound IF instruction, x
represents the actual condition. Following is a list of the
various mnemonics for:these instructions:

MNEMONIC MEANING MNEMONIC MEANING

IFZ If zex-o IFNM If nonminus
IFNZ If nonzero !FE If even
IFP If plus IFO If odd
IFNP If nonplus IFU If undefined
IFM If minus IFD If defined

CAL/32 tests the value of the operand when processing compound IF
instructions. If the operand meets the condition specified by
the operation, the instructions immediately following the IF
instruction (until the corresponding ELSE or ENDC instruction)
are assembled. If the operand does not meet the specified
condition, the instructions immediately following the IF
instruction are not assembled.

The ELSE instruction ~everses the state of the assembler as set
by a previous compound IF statement. If the assembler was not
assembling code becau~e a previous IF statement turned off the
assembly process, the appearance of an ELSE instruction would
cause the assembler to resume assembling, starting with the
instruction immediately following the ELSE instruction. If the
assembler was assembl~ng code because a previous IF condition was
met, the appearance of: the ELSE instruction would prevent the
instructions immediatjely following the ELSE instruction (until
the corresponding ENDO instruction) from being assembled. An
ELSE instruction is · not required to appear in a block of
conditionally assembled code.

3-68 48-050 FOO R03

The third instruction of this set is the End Condition
instruction (ENDC) which terminates the presently active
condition. Normal assembly process resumes with the next
instruction. Any compound IF instruction used in the program
must have a corresponding ENDC instruction. If the end of the
source file is reached before an existing condition terminates,
CAL/32 terminates the condition, generates an error message, and
resumes normal assembly on the next pass. If the operand of the
IFx contains a forward reference, CAL/32 will perform any
additional passes required to define all symbols. As an example
of conditional assembly, consider a subroutine that can receive
its parameters in either of two ways: first,· the parameters are
located by referencing a list of addresses immediately following
the branch and link instruction in the main program; second, the
address of the actual parameter list is contained in register 14.
The subroutine could handle both of these situations with
conditional assembly, shown in the following example:

Example:

IFZ CALLI
SUB LH Rl, 0 (RF) GET FIRST PARAMETER ADDRESS

LH Rl, 0 (Rl) GET F'IRST PARAMETER
LH R2, 2 (RF) GET SECOND PARAMETER ADDRESS
LH R2,0(R2) GET SECOND PARAMETER
AIS RF,4 ADJUST RETURN ADDRESS
ELSE LIST NOT IN LINE

SUB LH Rl, 0 (RE) GET FIRST PARAMETER
LH R2, 2 (RE) GET SECOND PARAMETER
ENDC

RETURN BR RF RETURN TO CALLER

If, at assembly time, the value of CALL! is zero, the
instructions between the IF instruction and the ELSE instruction
are assembled and the instructions between the ELSE instruction
and ENDC instruction are not assembled. If the value of CALL! is
other than zero, only the instructions between the ELSE
instruction and the ENDC instruction are assembled.

48-050 FOO R03 3-69

Another example of conditional assembly shows how conditions can
be nested:

IFNP LGTH CONDITION #1
ERROR EQU 1 LGTH IS NOT POSITIVE

ELSE CONDITION #1
IFZ SRC-DST CONDITION #2

ERROR EQU2 SRC IS EQUAL TO DST
ELSE CONDITION #2
LHI Rl,LGTH
IFP SRC-DST CONDITION #3
LHI R2,SRC
LHI R3 ,DST
ELSE CONDITION #3
LHI R2,DST
LHI R3,SRC
ENDC END CONDITION #3
ENDC END CONDITION #2
ENDC END CONDITION #1

This set of nested conditionals depends on the values of three
symbols: LGTH, SRC and DST. If LGTH is negative or zero, only
the statement:

ERROR EQU 1 LGTH IS NOT POSITIVE

is assembled. If LGTm is positive, and SRC is equal to DST, only
the second statement:

ERROR EQU 2 SRC IS EQUAL TO DST

is assembled. If LGTH is positive, and SRC is greater· than DST,
the following instructions:

LHI Rl ,LGTH
LHI R2,SRC
LHI R3,DSC

are assembled. If LGTH is positive, and SRC is less than DST,
the following instructions are assembled:

3-70 48-050 FOO R03

LHI Rl ,LGTH
LHI R2,DST
LHI R3,SRC

The user must be careful, when using a forward reference in the
operand field of the IFU instruction, to avoid the following type
of code:

IFU A
B EQU 8

ENDC
A EQU 1

IFNZ B
DS 10
ENDC

B EQU 0
END

CAL/32 will flag this code with an "MOOl xxxTOP" error where xxx
is PURE, IMP or ABS, depending upon the LOC used.

NOTE

A condition once set by an IF instruction
remains in effect until the corresponding
ENDC instruction is encountered. Thus,
as in the next to the last example, when
the first condition was met, the first
statement was assembled. The ELSE
instruction reversed this state, and no
subsequent code was assembled.

3.6.8.2 Simple If (IF) Instruction

This instruction is retained in CAL/32 to maintain compatibility
with previous assemblers. It has the form:

NAME

A symbol
(optional)

48-050 FOO R03

OPERATION

IF

OPERAND

A symbol or
expression

3-71

What CAL/32 does on encountering an IF instruction depends on the
value of the operand. If the operand has a nonzero value, CAL/32
assembles all statements following the IF instruction, until the
end of the source file is reached, or until another IF
instruction is encountered in which the operand value is zero.
At this point, CAL/32 stops assembling the source input until the
END instruction, or another IF instruction with a nonzero operand
value, is encountered. If the operand contains a forward
reference, CAL/32 will perform any additional passes required to
define all symbols.

NOTE

Do not use simple IF instructions and
compound IF instructions in the same
program. Simple IF instructions must not
be used in nested conditionals.

3.6.8.3 Do (DO) Instruction

This instruction provides a form of conditional and multiple
assembly capability. It has the form:

NAME

A symbol
(optional)

OPERATION

DO

OPERAND

A previously defined absolute symbol
or expression

The DO instruction causes the statement immediately following it
to be assembled as many times as specified by the value of the
operand. The value of the operand must be between 0 and 32,767.
If the value of the operand is O, the next instruction is
skipped. If the operand contains a forward reference, CAL/32
will perform any additional passes required to define all
symbols.

The user must guard against circular LOC dependency, as in the
following example:

A

B

EQU
DO
OS
EQU
END

*
B-A
2

*

CAL/32 will flag an "MOOl xxxTOP" error, where xxx is PURE, IMP,
or ABS, depending upon the current LOC.

3-72 48-050 FOO R03

3.6.9 Instructions for Data Structures

These instructions allow the programmer to define complex data
structures. Some of these instructions allow the programmer to
define and initialize data blocks compatible with FORTRAN common.

3.6.9.1 Structure Definition (COMN, STRUC and ENDS) Instructions

Structure definition instructions are used to define data
structures. They have the form:

NAME OPERATION OPERAND

A symbol COMN Not used
(optional) (ignored)
A symbol STRUC Not used
(optional) (ignored)
A symbol ENDS Not used
(optional) (ignored)

The Common instruction (COMN) defines FORTRAN-compatible common
blocks. The Structure instruction (STRUC) defines other types of
data structures. The End Structure instruction (ENDS) terminates
both common definitions and data definitions.

The symbol in the name field of a COMN or STRUC statement
contains the absolute value of the length of the structure or
common block. The symbol specified with the ENDS instruction is
associated with the current value of the offset counter.

A symbol is always required in the name field of a COMN
instruction. To define FORTRAN compatible blank common, a
special symbol consisting of two slashes (//) must appear in the
first two positions of the name field. The remaining po~itions
must be blank. If the name field is blank, CAL/32 will assume
(//) was intended for a FORTRAN blank common.

The scope of the common block consists of all the storage
definitions between the COMN instruction itself and the next ENDS
statement. Only define storage, origin, and equate instructions
are permitted between a COMN and its corresponding ENDS
instruction. The define storage instructions included within the
common block definition do not actually reserve storage~ they
define offsets within the common block. Origin statements can be
used to modify the offset counter. The equate instructions can
be used to define symbols relative to elements in the common
block. Common blocks cannot be nested within other common blocks
or within other structure definitions.

The following is an example of the definition of FORTRAN
compatible common blocks:

48-0,50 FOO R03 3-73

c FORTRAN PROGRAM
INTEGER*2.I,J,K,KK,K2,L
COMMON A(~O), I, J(3,20)
COMMONICO~ONEIB(30), K(4), KK
COMMONICOMTWOIX,Y,Z,K2,L(24)

The CAL/32 code to define these common blocks is:

II COMN DEFINE BLANK COMMON
A DS 40 TEN FLOATING POINT NUMBERS
I DS 2 ONE 'IWO-BYTE INTEGER
J DS 120 SIXTY TWO-BYTE INTEGERS

ENDS END OF' BLANK COMMON DEFINITION
COMONE COMN DEFINE COMMON BLOCK COMONE
B DS 120 THIRTY FLOATING POINT NUMBERS
K DS 8 FOUR 'IWO-BYTE INTEGERS
KK DS 2 ONE 'IWO-BYTE INTEGER

ENDS END COMMON BLOCK COMONE
COMTWO COMN DEFINE COMMON BLOCK COMTWO
x DS 4 ONE FLOATING POINT NUMBER
y DS 4 ONE FLOATING POINT NUMBER
z DS 4 ONE FLOATING POINT NUMBER
K2 DS 2 ONE 'IWO-BYTE INTEGER
L DS 48 'IWENTY FOUR 'IWO-BYTE INTEGERS

ENDS

Common block def ini~ions must precede any statements that
reference the common!block. Referencing a common element plus a
displacement is per~itted in the operand of a machine
instruction, in a define constant instruction, or in a block data
origin instruction defined below.

STRUC is used to define general-purpose data structures. The
scope of this data. structure consists of all the storage
definitions between the structure instruction and its
corresponding ENDS i~struction. Only define storage, origin and
equate instructions can be used in a structure definition. The
define storage instructions do not actually reserve storage; they
define offsets withift the data structure. Origin statements can
be used to modify the value of the offset counter. Equate
statements can be used to define names relative to elements in
the data structure. Data structures cannot be nested within
other data struct~re definitions or within common block
definitions. Within tthe scope of a STRUC or COMN definition, the
value of the LOC is absolute and nonrelocatable. The LOC value
is equivalent to the;offset from the origin of the STRUC or COMN
definition to the current location.

To define a linked list structure, each node of which contains a
2-byte forward pointer, a 2-byte backward pointer and a set of
values such as four b~tes, one byte, one byte and six bytes, the
programmer might write:

3-74 48-050 FOO R03

NODE STRUC
FWD DS 2 DEFINE FORWARD POINTER
BAK DS 2 DEFINE BACKWARD POINTER
VALA DS 4 DEFINE FOUR-BYTE VALUE
VALB DS 1 DEFINE ONE-BYTE VALUE
VALC DS 1 DEFINE ONE-BYTE VALUE
VALD DS 6 DEFINE SIX-BYTE· VALUE

ENDS

The effect of this definition is the same as:

NODE EQU 16
FWD EQU 0
BAK EQU 2
VALA EQU 4
VALB EQU 8
VALC EQU 9
VALD EQU 10

Once NODE is defined, it can be used as follows:

POOL

LHI
LB
LH

DS

RS,POOL
RO , VALB (RS)
RS, FWD (RS)

lOO*NODE

GET ADDRESS OF POOL
GET VALUE B OF FIRST NODE
GET POINTER TO NEXT NODE

Data structure definitions must precede any references to their
elements in RX3 format instructions, unless the NORX3 instruction
or the SQUEZ instruction was used.

3.6.9.2 Structure Initialization (BDATA and BORG) Instructions

Structure initialization instructions define FORTRAN compatible
block data subprograms that consist of labeled common blocks.
They have the form:

48-0SO FOO R03 3-7S

NAME OPERATION

A symbol BDATA
(optional)
A symbol BORG
(optional)

OPERAND

Not used (ignored)

Common block and element
names, or offset

The Block Data instruction (BDATA) must precede any statements
that generate data, and the block data subprogram must not
contain any executable code. The common blocks to be initialized
must be defined at the beginning of the block data subprogram.
Once they are defined, the Block Origin instruction (BORG) is
used to initialize the data elements of the common blocks. The
operand of the block origin instruction consists of the common
block name followed immediately by the element name or its
displacement enclosed in parentheses. Only one operand is
allowed. Within the scope of the BDATA definition, the value of
the LOC is an absolute, nonrelocatable value. The LOC value is
off set from the origin to the current location. The BORG
statement sets the LOC to the value specified by the operand
field. The following is an example of a block data subprogram.

BDATA
*
* COMMON BLOCK DEFINITION

*
BLK COMN
A DS 4
B DS 40
y DS 20
z DS 4

ENDS
*
* INITIALIZE ELEMENTS A, B+8, AND Z
*
BORG BLK(A) REFERENCE BY NAME
DC E'lO'
BORG BLK (64) REFERENCE BY DISPLACEMENT
DC EI 20'
BORG BLK (B+8) REFERENCE BY NAME AND

DISPLACEMENT
DC E'30'
END

This program initializes A to a floating point value of 10; z to
a floating point value of 20; and the third fullword of B to a
floating point value of 30.

3-76 48-050 FOO R03

3.6.10 Listing Control Instructions

These instructions allow the programmer to exercise some control
over the format and the content of the source listing produced by
CAL/32 on the final pass of the assembly.

3.6.10.1 Listing Identification.(PROG and TITLE) Instructions

These instructions are used to force CAL/32 to print header
information at the top of each page of the source listing. They
have the form:

NAME

A symbol
(optional)
A symbol
(optional)

OPERATION OPERAND

PROG Text

TITLE Text

The Program instruction (PROG) specifies the primary heading for
each page of the listing. In addition, it causes the symbol in
the name field to be placed at the beginning of the object file
for program identification. On 16-bit assemblies, only the first
six characters of the name field are put in the object file.

All characters in the operand field (a maximum of 56), up to and
including position 71, are printed in the primary header line of
each page of the listing. If more than one PROG instruction is
encountered in a module, the last PROG instruction will override
all previous ones.

The Title instruction (TITLE) is a way to specify subheadings
that can be changed within the program. The text contained in
the operand field, up to and including position 71, is printed on
the line immediately below the heading produced by the PROG
instruction. As many TITLE instructions as required can appear
in the source input file. Each time a TITLE instruction is
encountered, CAL/32 starts a new listing page with the new
subheading when the next printable statement is processed.
Subsequent pages contain this same subheading, until another
TITLE instruction appears. If two or more TITLE instructions
occur together in sequence, only the last TITLE instruction
affects the subheading content since a new page is printed only
when a printable statement is encountered. TITLE instructions
themselves are not printed although they are included in the
statement count.

3.6.10.2 Format Control (LCNT,
Instructions

SPACE and WIDTH)

These instructions allow the programmer to control the format of
the listing. They have the form:

48-050 FOO R03 3-77

NAME OPERATION OPERAND

A symbol LCNT A symbol or
(optional) expression
A symbol EJECT A symbol or
(optional) expression
A symbol SPACE A symbol or
(optional) expression
A symbol WIDTH A symbol or
(optional) expression

The operand field of the Line Count instruction (LCNT) specifies
the number of lines to be printed on each page of the listing.
The operand value must be an absolute number no greater than 99
and no less than 10. The default value of the line count is 58.

Whenever the Eject instruction (EJECT) appears, it overrides the
specified or default line count, and causes CAL/32 to start a new
page when the next printable statement is processed. The new
page starts with whatever headings are in use. This statement is
included in the statement count, but it is not printed. If one
or more EJECT instructions occur together in sequence, only one
page is advanced since the actual advance occurs only when a
printable instruction is encountered. EJECT instructions
themselves are not printed although they are included in the
statement count.

The operand field of the Space instruction (SPACE) specifies the
number of lines to be skipped in the listing. The value of the
operand must be absolute. If the number of lines to be skipped
exceeds the number of lines remaining on the page, this
instruction has the same effect as an EJECT instruction and is
included in the statement count, but not printed.

The operand field of the Width instruction (WIDTH) specifies the
number of columns to be printed across the page. The value of
the operand field must be an absolute number, not greater than
132 and not less than 64. The default value is 132.

3.6.10.3 Content Control Instructions

The content control instructions control the content of the
listing. They have the form:

3-78 48-050 FOO R03

NAME OPERATION OPERAND

A symbol NLIST Not used
(optional) (ignored)
A symbol LIST Not used
(optional) (ignored)
A symbol LSTC Not used
(optional) (ignored)
A symbol NLSTC Not used
(optional) (ignored)
A symbol ERL ST Not used
(optional) (ignored)
A symbol LSTM Not used
(optional) (ignored)
A symbol ·NLSTM Not used
(optional) (ignored)
A symbol FREZE Not used
(optional) (ignored)
A symbol NFREZ Not used
(optional) (ignored)
A symbol CROSS Not used
(optional) (ignored)
A symbol NCR OS Not used
(optional) (ignored)
A symbol LS TUR Not used
(optional) (ignored)
A symbol NL STU Not used
(optional) (ignored)
A symbol WARN Not used
(optional) (ignored)
A symbol NWARN Not used
(optional) (ignored)
A symbol NPWRN Not used
(optional) (ignored)
A symbol PWRN Not used
(optional) (ignored)

The No List instruction (NLIST) suppresses listing of the source
program. Only those statements that contain errors are printed.
The NLIST option does not suppress MNOTE messages. MNOTE
messages are printed under all circumstances.

The List instruction (LIST) reverses this situation, and all
source statements are printed. The assembler default is to print
all source statements.

The List Conditionals instruction (LSTC) permits printing of
unassembled conditional assembly statements. This is the normal
default mode of the assembler.

The No List Conditionals instruction (NLSTC) suppresses printing
of unassembled conditional statements.

48-050 FOO R03 3-79

The Error List instruction (ERLST) causes CAL/32 to print all
assembly errors by type, along with the number of each statement
on which the error ·occurred, immediately after symbol table
listing. The default does not print this lista

The List Macro instruction (LSTM) permits printing of all macro
expansions that are part of the source input file. The macro
instruction, the expanded source code, and the generated object
code are printed. A plus character (+) precedes each statement
number in the expanded source to identify those statements as
part of a macro. This is the normal mode of the assembler.

The No List Macro instruction (NLSTM) suppresses printing of
macro expansions. Only the macro statement itself is printed.
The NLSTM option does not suppress MNOTE messages. MNOTE
messages will be printed under all circumstances.

The Freeze instruction (FREZE)
statement counter when a copy
included in the source input file.
file or macro expansion receive the
of the COPY instruction. This
assembler.

halts incrementing of the
file or macro expansion are
All statements in the copy
same statement number as that
is the normal mode of the

The No Freeze instruction (NFREZ) increments the statement
counter for every statement encountered in the source input.

The Cross Reference instruction (CROSS) uses CAL/32 to generate
and print a cross reference listing of all the symbols used in
the program. Each symbol is listed in alphabetical order, along
with identification of the statements in which it is referenced.
The statement in which it is defined is flagged with an asterisk.
This is the normal mode of the assembler.

The No Cross instruction (NCROS) prevents the generation of a
cross reference listing.

The List Unreferenced Symbols instruction (LSTUR) causes
unreferenced symbols to be listed in the symbol list. This is
the normal mode of the assembler.

The No List Unreferenqed Symbols instruction (NLSTU) suppresses
the listing of unreferenced symbols in the symbol list.

The warning instruction (WARN) allows CAL/32 to flag warnings in
the listing and tal]y the number of warnings encountered. This
is the normal mode of the assembler.

The No Warning instruqtion (NWARN) suppresses both the warnings
and the warning count '.from the listing.

The No Processor Specff ic warning instruction (NPWRN) suppresses
the warning and the DCMD output generated for instructions not
available on all processors.

3-80 48-050 FOO R03

The Processor Specific Warning instruction (PWRN) enables the
warning and DCMD output upon encountering instructions not
available on all processors. This is the default condition.

3.6.11 Auxiliary Processing Unit (APU) and NAPU Options

The APU and NAPU start options and the APU and
instructions turn the APU option on or off. The
start options override the corresponding APO and
instructions. If more than one APU or NAPU option
START option, the latest option takes precedence.
for this option is off.

NAPU pseudo
APU and NAPU
NAPU pseudo
appears in a
The default

If SVC, WCS or non-APU instructions are encountered when the APO
option is on, their occurrences are flagged in the listing by the
carat character (A) as CAL warnings which hav~ no affect on the
end of task code. When the APU option is in effect for each
program containing SVC, wcs or non-APU instructions, CAL/32
automatically generates and inserts one or more DCMD commands
into the object code. The text of these DCMD commands is:

**** MODULE xxxx CONTAINS SVC INSTRUCTIONS
**** MODULE xxxx CONTAINS WCS INSTRUCTIONS
**** MODULE xxxx CONTAINS INSTRUCTIONS ILLEGAL FOR APU

Where:

xxxx represents the name of the program.

3.7 ASSEMBLY LISTING

The assembly listing consists of two sections: the source and
object program statements and the symbol cross-reference table.
The format for printing the source and object program statements
is basically the same for either 16-bit assemblies or 32-bit
assemblies. The only difference is in the number of characters
printed for the LOC and the object data.

• In 16-bit assemblies, only four hexadecimal digits are printed
for the LOC and a maximum of eight hexadecimal digits for the
data. The letter R is appended to the LOC value if the
relocatable LOC is being used.

• In 32-bit assemblies, six hexadecimal digits are printed for
the LOC and a maximum of 12 hexadecimal digits for the object
data. In addition, the actual second operand address of RX2
and SF instructions is printed next to the object data. This
address is preceded by an equal sign (=) • The letter I is
appended to the LOC if the impure LOC is being used. The
letter P is appended to the LOC if the pure LOC is being used.

48-050 FOO R03 3-81

• In both 16- and 32-bit assemblies, the letter F is appended to
the data field to: indicate that the statement references an
externally defined symbol, a symbol in a common block or an
undefined symbol.

The statement number is a decimal number between 1 and 99,999.
Each source statement read by the assembler is assigned a
unique statement number, beginning with 1, except for source
statements from a copy file or macro expansion with the FREZE
instruction. The first column of the listing can contain any
of the following characters:

CHARACTER

?

*

MEANING

The name field of this instruction contains a
symbol that was redefined by an EQUATE
instruction.

A·machine instruction not available on the
target machine was used; an operand that was
improper existed and was substituted, or

a machine dependent instruction was used in
assembling a common but could be assembled, or

an assembler instruction was
operand that was improper
assembled, or

used with
but could

an
be

a SCRAT card was encountered as other than the
first statement or when batch mode is in
effect, or

an EXTRN/ENTRY symbol is longer than six
characters for target 16, or

a DS instruction was encountered in a pure
s~ction.

A machine instruction
modified by squeezing.

was shortened or

The APU option is
instruction on this
(SVC) instruction, a
(WCS) instruction,
for an APU.

in effect, and the
line is a Supervisor Call
Writable Control Store

or an instruction illegal

The instruction used is not valid on all
processors.

The following information is printed at the beginning of the
cross reference listihg:

3-82 48-050 FOO R03

• Start options in the START command.

• The number of errors detected by the macro processor if the
program assembled was generated by the macro processor.

• Number of CAL/32 errors and the page number of the last error

• Number of CAL/32 warnings and the page number of the last
warning

• Number of passes

• Message indicating the use of symbol table paging to disk

• Message indicating abnormal termination of squeezing because
of squeeze-induced errors

• Message indicating the amount of required table space

Following this, each symbol used in the program is listed in
alphabetical order along with its value. If a cross reference
was requested, the statement number of each statement containing
a reference to the symbol is printed following the value. The
statement number in which the symbol is defined is printed with
an asterisk (*) following. Associated with each symbol is a flag
used to indicate one of the following:

FLAG

)S
M
u
<
<U
>
>M
**

MEANING

Properly defined local symbol
Multiply defined symbol
Undefined symbol
Entry symbol
Undefined entry
Externally defined symbol
Multiply defined external
Unreferenced external

The flag is printed in the first column of the line containing
the symbol.

If an error is detected in a source statement, the following
message is printed immediately after the error statement:

** Annn **

A indicates the general type of error, and nnn is a decimal
number that further identifies the error. Appendix A contains a
complete list of CAL/32 error codes.

48-050 FOO R03 3-83

CHAPTER 4
COMMON MODE PROGRAMMING

4.1 INTRODUCTION

A useful feature of Common Assembly Language/32 (CAL/32) is
common mode programming where a single source file can be used to
produce object code for either 16- or 32-bit processors. In
creating a common mode source file, the programmer must be aware
of certain restrictions and safeguards and, in some cases, must
use special operation mnemonics that can be translated into
either 16- or 32-bit operations.

4.2 ADDRESS OPERATION INSTRUCTIONS

Addresses for 16-bit processors occupy 16 bits, a halfword. For
the 32-bit processors, addresses occupy the least significant 24
bits of a fullword. In normal mode, CAL/32 makes no distinction
between operations on address quantities and operations on other
data types. However, when writing in common mode, the programmer
must use special operation mnemonics for address operations so
CAL/32 can translate them into the correct target machine code.
Table 4-1 lists these instructions, their mnemonics and the
target machine translations •

. TABLE 4-1 COMMON MODE ADDRESS OPERATIONS

INSTRUCTION

I 32-BIT I 16-BIT
I TRANS- I TRANS­

MNEMON IC I LATION I LATION
===

Add address AA I A AH
Add address immediate AAI I AI AHI
Add address RR AAR I AR AHR
Add address to memory AAM I AM AHM
Compare address CA I C CH
-------~---

Compare address immediate CAI I CI CHI
Compare address RR CAR I CR CHR
Compare logical address CLA I CL CLH
Compare logical address I
immediate CLAI I CLI
Compare logical address RR CLAR I CLR
Immediate CLAI I CLI

48-050 FOO R03

CLHI
CLHR
CLHI

4-1

TABLE 4-1 COMM~N MODE ADDRESS OPERATIONS (Continued)

-------------~----------------------------------~~---~-------

INSTRUCTION

I 32-BIT I 16-BIT
I I TRANS- I TRANS­
i MNEMONIC I LATION I LATION

===================~===
Load address
Load address immediate
Load address RR
AND address
AND address immediate

I
I
I
I
I

LDA
LDAI
LOAR
NA
NAI

L
LA
LR
N
NI

LH
LHI
LHR
NH
NHI

-------------------~-----------------------------~-----------
AND address RR NAR NR I NHR
OR address OA 0 I OH
OR address immediate OAI OI I OHI
OR address RR OAR OR I OHR
Subtract address SA S I SH
-------------------~------------------------------~----------
Subtract address immediate SAI I SI I SHI
Subtract address RR SAR I SR I SHR
Shift left address arithmetic SLAA I SLA I SLHA
Shift left address :logical SLAL I SLL I SLHL
Shift right address arithmetic SRAA I SRA I SRHA

;

-------------------~-----------------~---------~-------------
Shift right addresa logical SRAL I SRL SRHL
Store address . STA I ST STH
Test address immediate TAI I TI THI
Exclusive OR address XA I X XH
Exclusive OR address immediate XAI I XI XHI

Exclusive OR address RR
Multi ply address
Multiply address RR
Divide address
Divide address RR

XAR
MA
MAR
DA
DAR

XR
M
MR
D
DR

XHR
MH
MHR
DH
DHR

CAL/32 translates these instructions into halfword or fullword
instructions, depending on the target machine. For example:

4-2

ADDl
DISP

LOA Rl,ADDl
AA Rl,DISP

DC
DC

A (TABLE)
2

48-050 FOO R03

When CAL/32 assembles these instructions for 16-bit execution, it
produces object code that would normally correspond to:

LH Rl,ADDl
AH Rl,DISP

For 32-bit programs, CAL/32 produces code that would correspond
to:

L Rl,ADDl
A Rl,DISP

Translation is at the object code level; CAL/32 prints the
original common mode code on the listing.

4.3 COMMON MODE IMMEDIATE OPERATIONS

CAL/32 provides a common mode immediate operation for the load
immediate LOI instruction. Depending on the target machine, the
LDI is translated into a fullword-referencing LI instruction for
the 32-bit machine, or a halfword-referencing LHI instruction for
the 16-bit machine, as follows:

INSTRUCTION

Load Immediate

COMMON
MNEMONIC

LDI

32-BIT
TRANSLATION

LI

4.4 COMMON MODE ASSEMBLER INSTRUCTIONS

16-BIT
TRANSLATION

LHI

In addition to all of the regular assembler instructions
described in Chapter 3, CAL/32 recognizes four assembler
instructions primarily for use in common mode programming. Two
of these are data definition type instructions; the other two are
assembler control type instructions.

48-050 FOO R03 4-3

4.4.1 Data Definition Instructions

The common mode data definition instructions are: Define Address
They have the Length Constant and Define Address Length Storage.

form:

NAME

A symbol
(optional)

A symbol
(optional)

OPERATION

DAC

DAS

OPERAND

One or more operands
separated by commas

A symbol or expression

4.4.1.1 Define Address Length Constant (DAC) Instruction

The DAC constant instEuction is equivalent to the Define Constant
instruction. It is u~ed in common mode programming to reserve
storage to be initialized with address length constants. For
32-bit assemblies, the constants are fullwords aligned on
fullword boundaries.. For 16-bit assemblies, the constants are
halfwords aligned on halfword boundaries.

4.4.1.2 Define Address Length Storage (DAS) Instruction

The DAS instruction is equivalent to the Define Storage
instruction. In 32-bit assemblies, the instruction reserves the
specified amount of fullwords aligned on a fullword boundary. In
16-bit assemblies, it reserves the specified amount of ha1fwords
aligned on a halfword boundary. Examples of the use of these
instructions are:

DAC A (TABLE)
DAS 16

When assembled for 32-bit execution, the DAC instruction
generates a fullword: containing the address of TABLE. The DAS
instruction reserves 16 fullwords of storage. When assembled for
16-bit execution, thes~ instructions cause CAL/32 to generate a
halfword containing the address of TABLE, along with a storage
area of 16 halfwords. :

4-4 48-050 FOO R03

NOTE

DAS instructions can be used in common
block and structure definitions.

4.4.2 Assembler Control (CAL and NOCAL) Instructions

Two special assembler instructions control error checking. Their
form is:

NAME

A symbol
(optional)

A symbol
(optional)

OPERATION

CAL

NO CAL

OPERAND

Not used
(ignored)

Not used
(ignored)

The first of these instructions, CAL, establishes the common mode
and enables common mode error checking. In this mode, any
machine-dependent instruction causes a nonfatal error and a
warning flag is printed on the assembly listing.

The NOCAL instruction disables the common mode and its .error
checking. mechanisms until the next CAL instruction is
encountered. This is the assembler default mode in which an
operation code mnemonic, not valid for the targeted processor but
for which there is a valid equivalent, is assembled using the
valid equivalent. A question mark (?) is then printed in the
left hand margin of the lis~ing.

4.5 MIXED MODE COMPUTATIONS

On 32-bit processors, mixed mode computations, such as adding a
halfword quantity to an address length quantity contained in a
register, can be performed. In general, any halfword arithmetic
or logical operation can be performed on address length
quantities contained in registers. The exceptions are: shifts,
multiply and divide. The halfword forms of these instructions
should never be used with address length quantities. Instead,
use the special address operation instructions.

48-050 FOO R03 4-5

4.6 GLOBAL SYMBOLS

The global symbols, A~C and LADC, are used primarily in common
mode programming. In!32-bit assemblies, ADC has a value of four,
the length in byte$ of an address length constant. LADC has a
value of two, the log: (base 2) of the address length. In 16-bit
assemblies, ADC has;a value of two and LADC has a value of one.
Illustrated are these symbol uses in which a main program calls
a subroutine and passes parameters to the subroutine in a list of
addresses immediately:following the branch and link instruction:

RETURN

BAL
DAC
EQU

RF, SUB
A(PARMl) ,A(PARM2) ,A(PARM3)
*

The subroutine picks up the parameters and calculates the return
address as follows:

SUB

SUB END

AIS
NAI
LDA
LOA
LDA

B

RF,LADC
RF,-ADC
Rl,O(RF)
R2,ADC(RF)
R3,2*ADC(RF)

3*ADC{RF)

ADJUST RF FOR
ALIGNMENT
ADDRESS OF FIRST PARAMETER
ADDRESS OF SECOND PARAMETER
ADDRESS OF THIRD PARAMETER

RETURN TO CALLER

The Add Immediate Shott instruction and the And Address Immediate
instruction are needeq in the subroutine because alignment of
address constants irt 32-bit assemblies can cause a halfword of
filler to be inserted 1 between the branch and link instruction and
the first address constant. In this case, the address in
register 15 is the address of this halfword, and these
instructions incremen~ the address in register 15 to make it
point to the first ~ddress constant. If no filler is required,
because the first con~tant is naturally aligned on a fullword
boundary, register 15 points to the first constant and these two
instructions have no effect.

4-6 48-050 FOO R03

Another use of LADC is in shift instructions where a byte pointer
must be converted into an address pointer, as:

LB
SLAL
LDA
BR

Rl,INDEX
Rl,LADC
R2, TABLE (Rl)
R2

GET BYTE POINTER
CONVER'I.1 TO ADDRESS POINTER
GET ADDRESS FROM TABLE

In 16-bit assemblies, LADC has a value of one and the Shift Left
Logical instruction has the effect of doubling the v~lue of the
byte pointer, converting it into a halfword pointer. In 32-bit
assemblies, LADC has a value of two, and the Shift instruction
has the effect of quadrupling the value of the byte pointer,
converting it into a fullword pointer.

The LADC symbol can also be used where machine dependent code
must be written within a common mode program. For example:

IFNZ
L
A
ST
ELSE
LM
AH
ACH
STM
ENDC

LADC-1
RF,A
RF,B
RF,A

RE,A
RF,B+2
RE,B
RE,A

IF NOT ZERO USE 32 BIT CODE
LOAD FULLWORD IN RF
ADD FULLWORD B
STORE IN A
LADC-1 IS ZERO USE 16 BIT
LOAD FULLWORD IN RE AND RF
ADD LOW ORDER B
ADD HIGH ORDER B
STORE IN A

shows how fullword addition, requ1r1ng double registers in 16-bit
assemblies and single registers in 32-bit assemblies, can be
handled in a common mode program.

48-050 FOO R03 4-7

4.7 SPECIAL INSTRUCTIONS

By definition, the instructions Load Multiple, Store Multiple,
and Load PSW, operate on address length data. This is why there
are no address operat,ion mnemonics for these instructions. Where
these instructions are used in common mode programming, the data
on which they oper~te must be defined by the Define Address
Length Constant (DAC) ;and the Define Address Length Storage (DAS)
instructions. For example:

START

NEWPSW
RS AVE
PARAM

LPSW NEWPSW

STM
LM

DAC
DAS
DAC

Rd,SAVE
R0,PARAM

STATUS, A(START)
16[
CON1,CON2, •.•

List processing instructions operate on address length quantities
within the list. There is some incompatibility between the 16-
and the 32-bit versions of these instructions. The 16-bit list
instructions require byte pointers at the head of the list. The
32-bit list instructions require halfword pointers. List
instructions can be us~d in common mode programming as long as
the number of slots in! the list does not exceed 255.

4-8 48-050 FOO R03

Lists always should be defined with the Define List instruction.
Use byte instructions where it is necessary to refer to the list
pointers in the program. Define displacement into the list
pointer fields in terms of the LADC symbol. For example:

SLOTS
USED
CTOP
NBO'l.1

LIST

EQU
EQU
EQU
EQU

LADC-1
2*LADC-1
3*LADC-1
4*LADC-1

LB Rl,LIST+CTOP

DLIST 32

NUMBER OF SLOTS
NUMBER USED
CURRENT TOP
NEXT BOTTOM

In this example, the Load Byte instruction is used along with the
value of CTOP to access the current top pointer in the list.

48-050 FOO R03 4-9

5.1 INTRODUCTION

CHAPTER 5
COMMON ASSEMBLY LANGUAGE/32

(CAL/32) OPERATING INSTRUCTIONS

The CAL/32 assembler is utilized to assemble a user-created
source file, thus producing a machine language object file. The
object code, once successfully assembled and linked, may be
executed by the user.

CAL/32 is loaded and started directly from a user terminal with
various START options available. The START options permit a user
to tailor the assembled output in the desired manner. This
chapter directs the user through the assembler process, including
the assignment of logical units; allocating memory workspace;
specifying START options; and the creation of a command
substitution system (CSS) to load and start CAL/32. Also
included in this chapter is a section designed to direct the
system administrator on how to establish CAL/32 as a task under
OS/32.

5.2 OPERATING INSTRUCTIONS FOR ESTABLISHING COMMON ASSEMBLY
LANGUAGE/32 (CAL/32) AS A TASK

If CAL/32 has not been established as a task under OS/32, the
relocatable object code supplied for CAL/32 must be linked as an
operating system task. This procedure may only be performed from
a system console. The following command sequence is a typical
process for establishing CAL/32 as a task using OS/32 LINK:

LO .BG,LINK
T .BG
ST
>ES TA
>OP WORK=(X30000,XEOOOO),SYS=X7FFFFF,SEG,ROL
>IN CAL32
>BU CAL32
>END

CAL/32 is segmented into pure and impure code for shared use with
operating systems that support this capability. To establish
CAL/32 as a nonsharable task, remove the SEG option from the
above command sequence.

48-050 FOO R03 5-1

When assembly is completed, CAL/32 terminates through the
operating system, which logs this message:

END OF TASK n

Where:

n specifies the end of task code.

An EQT code other than 0 or 1, indicates that CAL/32 was not
successfully linked and did not produce a usable task image. See
the OS/32 Link Reference Manual for further details concerning
linking object modules to produce task images under OS/32.

5-2 48-050 FOO R03

START

5.3 COMMON ASSEMBLY LANGUAGE/32 (CAL/32) START OPTIONS

When operating under OS/32, CAL/32 accepts certain control
options as arguments of the START command. The start options
override assembler instructions and cause a carat (A) to appear
in the first line of the listing. Any combination of spaces
and/or commas can separate or follow the options specification.

Format:

[{:::JJ [NDISC] [NFIX] [NORXT] [.!'!QRX3]

Options:

APU

NAPU

48-050 FOl R03

turns on auxiliary processing unit
warnings.

(APU)

turns off APU warnings. This is the default
setting for this option.

5-3

BATCH

CAL

NO CAL

CROSS

NCROS

DEL

NDEL

ERL ST

ERSQZ

FREZE

NFREZ

HPM

NHPM

LCASE

5-4

in~tiates a batch stream to allow the assembly
of· more than one program. See Section
3.6.7.15 for further details.

assembles a source program to run on a 16-bit
ma.chine.

as~embles a source program to run on a 32-bit
machine. This is the default setting.

generates a cross reference listing of all
symbols used in a source program.

prevents the generation of a cross reference
1 isting.

deletes and reallocates object and listing
files as required during CAL/32 assembly.
This option deletes and reallocates logical
unit 2 (lu2) and lu3 (both previously
unassigned), and assigns them to fd.OBJ and
fd.LST, respectively.

returns an 8100 error if fd.OBJ and fd.LST
ha~e not been allocated and assigned to lu2
an~ lu3, respectively. This is the default
setting.

prints all assembly errors
statement number where
encountered.

by type and the
the error was

co~trols squeezing and optimization of the
source file by continuing the squeeze process
after assembly errors are detected.

halts the incrementation of the statement
counter when a copy file or macro expansion is
included in the source file. This is the
default setting.

increments the statement counter for each
st~tement encountered in the source file.

enables the high performance method of
assembly. This is the default setting. See
Se~tion 5.3.1 for further details concerning
HPf1 assembly.

disables the high performance method of
as$embly and assembles the source program
using the standard method.

pr~vents the conversion of lower-case
characters to their upper-case equivalents.

48-050 FOO R03

NL CASE

LCNT

LIST

NL I ST

LSTC

NLSTC

LSTM

NLSTM

LS TUR

NL STU

ND I SC

NFIX

NORX3

NORXT

PPAUS

PWRN

NPWRN

48-050 FOO R03

enables the conversion of lower-case
characters to their upper-case equivalents.

specifies the number of lines to be printed on
each page of the listing. The number of lines
printed per page may be no less than 10 and no
more than 99.

prints all source program statements to the
program listings. This is the default
sequence.

suppresses the listing of all source program
statements.

permits the listing of unassembled conditional
assembly statments.

suppresses the listing of
conditional assembly statements.

unassembled

permits the listing of all macro expansions
contained in the source program. This is the
normal mode of the CAL/32 assembler.

suppresses the listing of all macro expansions
contained in the source program.

lists
table.

unreferenced symbols in the
This is the default setting.

symbol

suppresses the listing of unreferenced symbols
in the symbol table.

disables symbol table paging to disk.

prevents CAL/32 from making extra passes to
correct squeeze induced errors.

provides a simple optimization during a normal
two-pass assembly. CAL/32 forces RX
instructions to either RXl or RX2 format.

is an alias for NORX3.

issues a pause request to the operating system
at the end of each pass.

enables the warning and DCMD output generated
for instructions not available on all
processors. This is the default setting.

disables the warning and DCMD output generated
for instructions not available on all
processors.

5-5

SCRAT

SQCHK

NOSEQ

SQUEZ

NOSQZ

TARGT

UREX

NU REX

WARN

NWARN

WIDTH

Functional Details:

copies the source file to a scratch device
du~ing the first pass. Subsequent passes of
the source file are read from the scratch
deyice.

compares each source statement sequence number
with the number of the preceding statement.

disables the source statement sequence number
ch~cking process.

performs a
optimization
assembly.

limited amount
of the source

of space
file during

disables the optimization processes of the
SQUEZ option.

identifies the processor
prpgram is to be run.
tatgeted, CAL/32 generates
16"-bit processor. If
targeted, CAL/32 generates
32~bit processor.

type on which the
If the value 16 is

object code for a
the value 32 is

object code for a

outputs object code for unreferenced
externals. This is the default setting.

suppresses the output of object code for
unreferenced externals.

fl~gs warnings in the listing and outputs the
warning messages and the total number of
warnings encountered during assembly. This is
the default setting.

suppresses both warning messages and
warning count from the listing.

the

specifies the number of columns to be printed
across the page.

A typical start command for a CAL/32 assembly with start options
is:

ST ,DEL,SQUEZ=99,NCROS

When CAL/32 encounter$ conflicting start options such as CROSS
and NCROS, it wi11: regard the last option encountered as the
intended option. This allows the user to redefine the default
start options via ¢ss. See Section 5.3.2 for further details
pertaining to the redefinition of CAL/32 START options within a
css.

5-6 48-050 FOO R03

5.3.1 High Performance Method (HPM) Assembly

CAL/32 is equipped with a START option that assembles a source
program faster than the standard method of assembly. The HPM
option is automatically invoked by CAL/32 as a default setting.
See Section 5.3 for START option command conventions. If
insufficient memory space is allocated, CAL/32 halts the assembly
process using the HPM option and restarts assembly using the
standard method. The following message is displayed to the
terminal if insufficient memory is allocated for the HPM option:

Table space exceeded - defaulting to the standard method.

The HPM option may be disabled prior to source program assembly
by specifying the NHPM option in the START command. This
prevents CAL/32 from invoking the HPM option. This option is
desirable for installations with insufficient memory overhead to
assemble using the HPM option or for the assembly of programs
that consistentl¥ exceed memory allocation.

CAL/32 reports the minimum memory expansion workspace necessary
to assemble a source program using the HPM option. This feature
is beneficial to maximize memory allocation for future assembly
of the same source program. If too much memory is allocated upon
initial assembly, future allocation of memory may be tailored to
efficiently assemble the source program and maximize system
resources. The formula needed to determine the amount of memory
space required to assemble a source program using HPM is depicted
in Table 5-1.

TABLE 5-1 MEMORY REQUIREMENTS FOR HPM

I ASSEMBLY I PROGRAM ASSEMBLY ADDITIONAL MEMORY I
I METHOD I (GENERATING SYMBOL TABLE) I FOR CROSS-REFERENCE I

!===!
I Standard I 28 bytes/symbol I 2 512-byte buffers for symbols I

I I I l 256-byte buffer for bit map I

I I I I
I Faster I 44 bytes/symbol I 8 bytes/symbol (at most 2 I

I I I bits/symbol for bit map) I

In order for CAL/32 to successfully utilize the HPM option,
sufficient memory overhead is required. Table 5-2 shows the
increased memory requirements necessary for HPM.

48-050 FOO R03 5-7

TABLE 5-2 HPM MEMORY UTILIZATION

I NUMBER OF SYMBOLS I NUMBER OF BYTES USED I NUMBER OF BYTES USED I %INCREASE I
I IN A PROGRAM I IN STANDARD METHOD I IN FASTER METHOD I OF MEMORY I
l=========================~================•=====•==•••=======================I
I 500 I 12,768 I 26,250 I 78 I
I 1000 I 28,768 I 52,250 I 82 I
I 2000 I 56,768 I 104,500 I 84 I
I 3000 I 84,768 I 156,750 I 85 I
I 5000 I 140,768 I 261,250 I 86 I
I 10,000 I 280,768 I 522,500 I 86 I
I 20,000 I 420,768 I 783,750 I 86 I

CAL/32 processor time for the standard and faster modes of
assembly are relatively equal; however, the HPM option
considerably reduces input/output (I/O) time during assembly.
Table 5-3 shows CAL/32 assembly performance improvement for the
high performance method as compared to the standard method of
assembly. The source programs utilized for this comparison
varied in source statement content to best test the HPM option.
The amount of performance improvement is dependent upon the
number of symbols utilized in the source program and number of
times each symbol is referenced.

TABLE 5-3 ASSEMBLY PERFORMANCE IMPROVEMENT USING HPM

SOURCE CODE I I
1---------------------------1 ELAPSED TIME I ELAPSED TIME I % REDUCTION I
I # OF LINES I # OF SYMBOLS I STANDARD METHOD I FASTER METHOD I IN TIME I
1========================6================·=================================1
I 214 I 250 I o: 35 I o: 11 I 68 I
I 1023 I 181 I 1:05 I 1:04 I o I
I 4386 I 643 I 5:24 I 3:49 I 29 I
I 7023 I 2200 I 11:00 I 3:44 I 66 I
I 12487 I 3606 I 15:20 I 7:20 I 52 I
I 18568 I 2683 I 21:31 I 8:35 I 60 I

5-8

NOTE

To max1m1ze CAL/32 performance efficiency
when expanding using MACR0/32, a record
length of 800 should be specified for the
.CAL file.

48-050 FOO R03

5.3.2 Assigning Logical Units

The CAL/32 assembler requires a minimum of one lu and up to a
maximum of 11 logical units for operation, depending on the
options selected and the features invoked by the source program.
All of these logical units can be assigned by the user. However,
if an lu is needed and not assigned, CAL/32 will allocate
temporary system files for logical units
4, 5, 6, 8, 9, 11, 12 and 13. CAL/32 will delete and reallocate
permanent files for logical units 2 and 3, provided they were not
previously assigned and the DEL start option was specified.

The files used for scratch, cross-reference, paging, forward
equates, parameter control block (PCB) directory PCB name
directory and error summarywill be allocated by CAL/32 as
temporary operating system files if they are needed and were not
previously assigned by the user. The logical units used are
shown in Table 5-4.

TABLE 5-4 CAL/32 LOGICAL UNITS

I
LU I USE

LOGICAL I ALLOCATED I REQUIRED
RECORD I BY CAL/32 I FOR

==
1 Source input device. 80 No All

The source input to be
assembled is read from
this device on pass
one. This device is re-
wound prior to each
subsequent pass unless
BATCH is specified and
the source input is not
on a random access
device, or scratch
(SCRAT) or pass pause
(PPAUS) is specified.

2 Binary output device. 108 T=16 If DEL All
Assembled object pro- 126 T=32 specified ·
gram is written to this
device on the last
pass.

3 Assembly listing output 64 - 132 If DEL All
device. Assembly list- specified
ing is written to this
device on the last pass.

48-050 FOO R03 5-9

I
LU I

TABLE 5-4 CAL/32 LOGICAL UNITS (Continued)

USE
LOGICAL I ALLOCATED I REQUIRED
RECORD I BY CAL/32 I FOR

===================~=================~==========================
4

5

6

7

8

5-10

Source scratch device.
The source input is
copied to th~s device
during pass one. The
source input is read
from this dev~ce on all
subsequent passes.

Symbol cross-reference
scratch device. Cross­
reference information
is built on this device
during the last pass. A
device assigned to this
lu must support random
access.

Symbol table paging
device. Symbol table
information is paged to
this device during all
passes. A device
assigned to this lu
must support random
access.

Source library input
device. Source inform­
ation to be included in
the main assembly is
read from this device
on each pass unless
SCRAT or BATCH was
specified. Then the
library is searched and
read on pass one only.

Forward equate scratch
device. This lu can be
used if forward ref er­
enced equates exist in
the source input. This
device must support
random access.

80 Yes

256 Yes

512 Yes

80 No

256 Yes

SCRAT
BATCH

CROSS

Insuff i­
cient
memory

COPY

Forward
equates

48-050 FOO R03

TABLE 5-4 CAL/32 LOGICAL UNITS (Continued)

I
LU I USE

LOGICAL I ALLOCATED I REQUIRED
RECORD I BY CAL/32 I FOR

==~=======~===================~=~===============================
9

11

12

13

Error tabulation device. 80
Error messages and
their associated line
numbers are written in
binary to this device
during the last pass
and written to lu3
after completion of the
assembly and symbol
table listing.

Copy file information
directory. This device
must support random
access.

Parameter control block
(PCB) . file directory
scratch device. This
device must support
random access.

PCB name directory
scratch device. This
device must support
random access.

256

256

256

Yes ERL ST

Yes COPY

Yes CLIB

Yes COPY

----------------~------~--

5.3.3 Starting Common Assembly Language (CAL/32) Using Command
Command Substitution System (CSS)

CAL/32 may be tailored for each installation's needs with the use
of a simple css. The following sample css, named CAL.CSS for
illustrative purposes, loads CAL/32; allocates desired memory
workspace; assigns the source file to lul; and starts the
assembly process with the desired START options.

Example:

LO CAL32,@2
AS l,@l.CAL
ST ,NCROS DEL @3 @4
$EXIT

48-050 FOO R03 5-11

The first statement in CAL.CSS loads CAL/32 with the @2 variable
accepting the memory workspace allocation for the current session
of CAL/32 assembly. The value of @2 is specified during CSS
execution and is substituted within the css when the variables
are expanded. (Variable substitution is discussed later in this
section.)

The second statement assigns the source file to lul and places
the extension .CAL at the end of the source file being assembled.
The source file is represented by the CSS variable @l. This
sample CSS makes it unnecessary to enter in the source file with
the CAL/32 extension identifier. The .CAL extension is added to
the source f ilenamei automatically when the variable @l is
expanded.

The third statement starts CAL/32 with the START options: NCROS
and DEL. The @3 and @4 variables allow the user to do one of two
things. The user has the option of either specifying two
different START options or altering the START options already
~pecif ied.

The ~EXIT ends CSS execution and returns control to the command
processor.

CAL.CSS is excuted in the following manner:

CAL SOURCE,300,CROSS,SQUEZ

Where:

CAL

SOURCE

300

CROSS

SQUEZ

is the CSS call to commence execution of
CAL/32.

is the name of the source file
assembled, minus the .CAL extension.

to be

is the allocated memory workspace in kB
desired for CAL/32 execution. This value
va~ies in accordance with source program
memory requirements.

alters the NCROS option of the START command,
thus producing a cross reference of the source
file assembled.

performs a
optimization
assembly.

limited amount
of the source

of space
file during

In the above CSS call, variable substitution is used to allow
flexibility during execution. css variable substitution is
represented in the CSS call statement as follows:

5-12 48-050 FOO R03

CAL @1,@2,@3,@4

All CSS variables are expanded at the time of execution and
replace the corresponding @n value in CAL.CSS

Successful execution of CAL.CSS does not require that all
variables be specified in the C$S call statement. For instance,
CAL.CSS may be executed without memory workspace specified.

Example:

CAL SOURCE,,CROSS,NHPM

In the above example, the @2 CSS variable is not specified,
therefore, expanding only the @1, @3 and @4 variables in CAL.CSS.

CAL.CSS is only one example of the use of CSS calls to simplify
the use of CAL/32. For more information pertaining to CSS
programming, refer to the Multi-Terminal Monitor (MTM) Reference
Manual.

5.3.4 CAL/32 Assembler End of Task (EOT) Codes

When an assembly terminates, an EOF code is passed to the
operating system in the operand field of the Supervisor Call 3
(SVC3) instruction. The meanings of the possible end of task
codes are:

END OF
TASK CODE

0

1

2

3

4

5

48-050 FOO R03

MEANING

Assembly complete without errors.

Illegal option passed with the START command.
Assembly is aborted after logging the illegal
options to the console. The user should
retry.

One or more errors detected during the
assembly. This end of task code is also used
if errors are detected in one or more programs
of a batch assembly.

Misplaced BEND.

Symbol table overflow.

A cross-reference option problem. Try to
reassemble or use the NCROSS option to turn
off the CROSS option.

5-13

APPENDIX A
COMMON ASSEMBLY LANGUAGE/32 (CAL/32) ERROR CODES

AOOl

A002

A003

BOOl

B002

COOl

DOOl

EOOl

FOOl

F002

F003

F004

the address

the address

the operand

alignment

alignment

common mode

data structure

END placement

missing operand

register
specification

invalid source
field

invalid symbol

48-050 FOO R03

The address is out of range for the
specified instruction format.

The address is out of range for an
RX2 instruction.

The operand of a previously Squeezed
instruction was changed making the
Squeezed instruction invalid.

The address of the operand is on an
incorrect boundary for the
instruction specified.

An odd address used in a T constant
location counter (LOC) was not even
when the instruction was specified.

An opcode that is not part of the
common mode set is used in a common
mode assembly.

An illegal statement appears in a
STRUC or COMN definition.

An END statement was encountered
within a STRUC or COMN definition or
within an unterminated conditional.

A required operand is missing.

A register value is not in the
range of 0 to 15, or an odd register
value is used where an even value is
required.

Invalid label in the source field,
a label in the name field is not
followed by a space, or a required
label is missing; e.g., on EQU.

More than eight characters
specified in a symbol.

were

A-1

FOOS EXT RN

F006 immediate field

F007 ENTRY

FOOS delimiter

F009 invalid expres~ion

FOlO apostrophe

FOll invalid operano

F012 improper state~ent

A-2

An invalid type for EXTRN; e.g.,
common block or EXT RN was used in an
expression.

The value of data is too large to
fit into the immediate field. A
fullword EXTRN is used in Ril
instruction. A character string
used as an immediate field is too
long.

A symbol declared as an ENTRY is
undefined. Improper type for ENTRY;
e. g • ' common block name.

Operands are not separated by
commas. Unrecognizable operator.
The last operand is not followed by
a CR or a blank. Unbalanced
parentheses. Opcode is not followed
by a space or a carriage return
(CR) •

Expression uses common element names
not in the same block.

No ending apostrophe in C,D,E,F,
H,P,U,X or Y constant. Illegal
character encountered in
C,D,E,F,H,P,U,X or Y constant prior
to the ending apostrophe.

T constant was specified in TARGT 16
assembly. Argument mode of T
constant is not ABS, PURE or IMPURE.
Illegal data specified in BDATA
program. Fullword EXTRN used as an
operand of DCZ. Value of DB operand
must be absolute. Value of DS, DSF,
DSH is illegal. Invalid symbol used
for ENTRY name. Symbol used as
ENTRY must be ABS, PURE, IMPURE, or
Relocatable. Invalid symbol used
for EXTRN name. Invalid data in
BORG. Operand of CNOP or ALIGN is
not absolute. Operand of DLIST is
not absolute.

Improper type for EXTRN
e.g., common block name.
address on END statement
improper type; e.g., EXTRN.
operand on EQU.

operand;
Transfer
is an
Illegal

48-050 FOO R03

F013 file descriptor

F014 missing string

F015 invalid character

!001 conditional

MOOl symbol definition

M002 symbol definition

0001 illegal opcode

POOl location counter

P002 reentrancy check

ROOl relocation error

SOOl sequence check

S002 COPY

48-050 FOO R03

Syntax error on file descriptor (fd)
of a COPY, FCOPY, or CLIB statement.

No characters between apostrophes of
C,E,D,F,H,P,U,X or Y constant.

Illegal character encountered
between apostrophes of an E or D
constant.

An ELSE or ENDC statement found
without a matching IFx.

The symbol in the name field is also
used in the name field of another
statement. The value or type of a
symbol changed from its definition
on a previous pass. (This can occur
by illegal use of conditionals, ORG,
DO, DS or a misplaced SCRAT
statement.) Forward referenced
symbol used where a previously
defined symbol is required.

An attempt was made to redefine a
symbol with an EQU that is the name
field of a statement.

The opcode used
unrecognizable or
specified TARGT.

is
illegal

totally
for the

The location counter exceeded i 6
- 1

on a TARGT-16 or 232 - 1 on a
TARGT-32 assembly.

The instruction attempts to modify
PURE code.

An invalid combination of
relocatable terms in an expression.
A relocatable operand follows a
unary minus.

The value in the sequence numbers
field is not greater than the
previous sequence number.

COPY statement
being copied.
used as COPY
of COPY is not
comma or CR.

appears within a file
An invalid symbol

operand. The operand
followed by a space,

A-3

S003

S004

SOOS

TOOl

T002

T003

T004

invalid option
sequence

invalid option

PROG

overflow

floating point

value

divisor

UOOl not used

U002 undefined symbol

U003 undefined symbol

U004

U005

A-4

A COPY, PAUSE, MSG or DO
statement immediately follows a DO
statement.

An argument is not absolute or
exceeds 32,767. An argument of LCNT
is not in the range of 10 to 99. An
argument of WIDTH is not in the
range of 64 to 132. An argument of
TARGT does not evaluate to either 16
or 32. An argument of SQUEZ is not
in the range of 1 to 99.

Multiple PROG statements
encountered in a program.

were

The intermediate or final result of
an arithmetic expression exceeded
2 - 1.

An overflow
conversion of
constant.

occurred
floating

during
point

The data item exceeds the range for
specified type; e.g., X'12345'.

A division by 0 is attempted.

A referenced symbol is not defined
in the program.

An attempt was made to circularly
define a symbol; e.g.:

A EQU B
B EQU A

File specified as an operand of
FCOPY, CLIB or COPY does not exist.

Program name is not found in any of
the PCB libraries.

48-050 FOO R03

APPENDIX B
OBJECT CODE FORMAT

Modules in object code format produced by Common Assembly
Language/32 (CAL/32) are divided into records. Each record
contains 126 bytes of information for 32-bit object code or 108
bytes of information for 16-bit object code. The first four
bytes of each record of the object code format are organized as
follows:

050-15

l __ S_E_Q_U_E_N_C_E_N_U_M_B_E_R __ l ___ C_H_E_C_K_S_U_M~---

BITS: 0 15 16 31

The sequence numbers are sequential negative integers -1, -2, -3,
etc., represented in two's complement form. The first record in
a· program must have sequence number -1. Subsequent records must
be in proper order to be loaded.

The checksum is an exclusive OR sum of all halfwords in the
record, except itself, exclusive ORed with a halfword of all l's.

The remainder of the record is a sequence of items; an item is a
byte of loader information. There are two types of items:
loader items and data items. Each loader item is followed by a
certain number (which can be 0) of data items. The loader items
and their meanings are listed in Tables B-1 and B-2.

48-050 FOO R03 B-1

TABLE B-1 32-BIT LOADER ITEM DEFINITIONS

----------------~----------------------------------~--~~-----
LOADER I

ITEM I MEANING
NUMBER OF DATA
ITEMS FOLLOWING

===

B-2

0
1
2
3

4
5

6

7

8

9

A

B

c

D

E

F
10

11

12
13

14

15

16

End of record
End of

1
program

Reset s:equence number
Block d~ta indicator

Absolut~ program address
Pure relocatable program
address
Impure relocatable program
address:
2 bytesi of pure relocatable
data
2 bytes of impure
relocatable data
4 bytes: of pure relocatable
data ·
4 bytes! of impure
relocat~ble data
Common :reference

EXTRN

ENTRY

Common definition

Program! label
3 bytes: absolute and 3
bytes pure relocatable
3 bytesi absolute and 3
bytes i~pure relocatable
Load prpgram transfer
Define start of chain
(reference)
Load chbin definition
address,
2 bytesi absolute and 2
bytes pµre relocatable
2 bytes 1 absolute and 2
bytes impure relocatable

None
None
None
8-byte name,
3-byte displacement,
any absolute data
item (20-5B)
3-byte address
3-byte address

3-byte address

2-byte address

2-byte address

4-byte address

4-byte address

8-byte address
3-byte displacement
8-byte name, fol­
lowed by item 4,
5, or 6 .
8-byte name fol­
lowed by item 4,
5, or 6
8-byte name fol­
lowed by a 3-byte
length
8-character name
6 bytes

6 bytes

Item 4, 5, or 6
Item 4, 5, or 6

Item 4, 5, or 6

4 bytes

4 bytes

48-050 FOO R03

TABLE B-I 32-BIT LOADER ITEM DEFINITIONS (Continued)

LOADER I
ITEM I MEANING

NUMBER OF DATA
ITEMS FOLLOWING

===
I7

I8

I9
IA
IB
IC

ID

IE
IF
20
2I
22
23
•
•

SB
SC

SD

SE
SF

60
6I
62

63

64

Short form EXTRN

Length of impure and pure
segments

Perform fullword chain
Perform halfword chain
No operation
2-byte pure translation
table address
2-byte impure translation
table address
Not used
1-byte absolute data
2 bytes absolute data
4 bytes absolute data
6 bytes absolute data
8 bytes absolute data

I20 bytes absolute data
Define pure location counter

Define impure location
counter

No operation
Load program address

2 bytes relocatable data
4 bytes relocatable data
2 bytes ABS/ 2 bytes
relocation
3 bytes ABS/ 3 bytes
relocation
Load translate table
add~ess

48-0SO FOO R03

8-byte name and
Item 4, S or 6
3-byte impure length
and 3-byte pure
length
None
None
None
2 bytes

2 bytes

N/A
1 byte
2 bytes
4 bytes
6 bytes
8 bytes
•

120 bytes
1-byte location
number
8-byte section name
8-byte pool name
1-byte location
number
8-byte section name
8-byte pool name
None
1-byte location
number
3-byte relocate
address
2 bytes
4 bytes
4 bytes

6 bytes

1-byte location
number
2-bytes data

B-3

TABLE B-1 32-B:IT LOADER ITEM DEFINITIONS (Continued)

-~-----------------~-------------------------------~---------
LOADER I

ITEM I \MEANING
NUMBER OF DATA
ITEMS FOLLOWING

===================F===
65 Extended EXTRN reference 8-byte external

symbol name
1-byte flag
xxxx xxOO standard

EXTRN
xxxx xxOl weak

EXTRN
xxxx xxlO include

EXT RN
4-byte off set
Item 4, 5 or 6

66 Extended entry 8-byte entry symbol
1-byte flag
xxxx xxOO standard

entry
xxxx xxOl data

entry
xxxx xxlO weak

entry
Item 4, 5 or 6

67 Link commands 1-byte length
1-80 characters
of command

-------------------~---

B-4

TABLE B-2 16-BIT LOADER ITEM DEFINITIONS

LOADER I
ITEM I MEANING

I NUMBER OF DATA
I ITEMS FOLLOWING

==
0 End of. record None
1 End of program None
2 Perform chain None
3 Toggle absolute/relocatable None

mode
4 Transfer address 2-byte address
5 Load program address (ORG) 2-byte address
6 Load rtf erence address 2-byte address
7 Load d finition value 2-byte address
8 2 byte absolute data 2 bytes data
9 2 byte~ relocatable data 2 bytes data
A 4 byte~ absolute data 4 bytes data
B 2 byter absolute and 2 4 bytes data

bytes elocatable data
c EXTRN tef erence 6-byte name

48-050 FOO R03

TABLE B-2 16-BIT LOADER ITEM DEFINITIONS (Continued)

LOADER I
ITEM I MEANING

I NUMBER OF DATA
I ITEMS FOLLOWING

===~====
D
E
EO

El

E2

E3

E4
ES
E6

F

ENTRY definition
Decode next item
Declare common block

Load common block
definition value
2 bytes absolute block data

4 bytes absolute block data

Reset sequence number to -1
1-byte absolute data
1-byte absolute block data

Program label

6-byte name
Next item
6-byte name
2-byte size
6-byte name
2-byte off set
6-byte name
2-byte off set
2 bytes data
6-byte name
2-byte off set
4 bytes data
None
1-byte data
6-byte name
2-byte off set
1-byte data
6-byte name

All items are given in hexadecimal. Note that item E is actually
a compound item whose interpretation depends on the item it
follows. Item E and the following item are considered a single
control item and cannot be split across object records. This
effectively allows more than 16 different control items though
most of them require only one nibble.

48-050 FOO R03 B-5

A

ABS instruction
Absolute instruction. See

ABS.
Add immediate short

instruction
Address constants

types
Address operation
instructions

ALIGN instruction
And address immediate
instruction

APU instruction
APU option

start options
Arithmetic expressions
Arithmetic operators
Assembler control

instructions
batch assembly
copy
copy library
end
file copy
high performance method
lower-case
message
no lower-case
no squeeze
pass pause
pause
scratch
sequence checking
squeeze
squeeze related
target
unreferenced externals

Assembler instructions
absolute
align
common mode
compound conditional
conditional no operation
data definition
data entry
define byte
define command
define constant
define list
define storage
do
end
entry
equate
external
high performance method
impure
include
LOC

48-050 FOl R03

3-54

4-6

3-44

4-1
3-54

4-6
3-81

3-81
2-1
2-1

4-5
3-66
3-57
3-57
3-56
3-58
3-66
3-59
3-65
3-59
3-60
3-65
3-59
3-64
3-64
3-60
3-63
3-56
3-66

3-54
3-54
4-3
3-68
3-55
3-37
3-36
3-50
3-52
3-39
3-51
3-37
3-72
3-56
3-34
3-30
3-34
3-66
3-53
3-35
3-52

INDEX

Assembler instructions
(Continued)
no squeeze
origin
pure
simple IF
symbol definition
weak entry
weak external

Assembly listing
cross reference listing
object program statements
source program statements
symbol cross-reference
table

Auxiliary processing unit.
See APU.

B

Batch end instruction. See
BEND.

BATCH instruction
BDATA instruction
BEND instruction
Block data instruction. See

BDATA.
Block origin instruction.

See BORG.
BORG instruction
Branch and link instructions

c

CAL instruction
CAL/32

machine instructions
3200MPS Family of
Processors

3280 System
mnemonics
Series 3200 Processors
summary

operating instructions
start options
task establishment

Character constants
CLIB instruction
CNOP instruction
Comment statements

examples
Common Assembly Language/32.

See CAL/32.
Common instruction. See COMN.
Common mode assembler
instructions

Common mode immediate
operations

Common mode programming

3-60
3-53
3-52
3-71
3-30
3-35
3-35

3-83
3-81
3-81

3-81

3-66
3-76
3-66

3-76
1-18

4-5

3-11

3-20
3-27
3-12
3-21
3-12
5-1
5-3
5-1
3-47
3-57
3-55

3-1

4-3

4-3
4-1

IND-1

COMN instruction
Compound conditional
instructions

Conditional assembly
instructions

compound conditional
do
simple IF

Conditional branch
instructions

branch and link
Conditional no operatiorl
instruction. See CNOP.

Constant types
address
character
decimal string
floating point
hexadecimal
integer

Content control instruc~ions
cross reference ·
error list
freeze
list
list conditionals
list macro
list unreferenced symbols
no cross
no freeze
no list
no list conditionals
no list macro
no list unreferenced

symbols
no processor specif it
warning ·

no warning
processor specific

warning
warning

COPY instruction
Copy library instruction.

See CLIB.
CROSS instruction ,
Cross reference instruction.

See CROSS.

D

DAC instruction
DAS instruction
Data definition instructions

common mode data ·
definition

define constant
define storage

Data entry instruction. See
DNTRY.

OB instruction
DC instruction
DCF instruction i

Decimal string constantb
packed 1

unpacked

IND-2

3-73

3-67

3-66
3-72
3-71

1-17
1-18

3-55

3-44
3-47
3-47
3-46
3-40
3-42
3-78
3-80
3-80
3-80
3-79
3-79
3-80
3-80
3-80
3-80
3-79
3-79
3-80

3-80

3-80
3-80

3-80
3-80
3-57

3-80

4-4
4-4

4-4
3-39
3-37

3-50
3-39
3-39
3-47
3-47
3-47

Define address length
constant instruction. See
DAC.

Define address length
storage instruction. See DAS

Define byte instruction. See
DB.

Define command instruction
Define constant instruction

fullword alignment
halfword alignment

Define list instruction. See
DLIST.

Define storage instruction
fullword alignment
halfword alignment

DLIST instruction
DNTRY instruction
DO instruction
DS instruction
DSF instruction
DSH instruction

E

EJECT instruction
ELSE instruction
End condition instruction.

See ENDC instruction.
END instruction
End of task codes. See EOT.
End structure instruction.

See ENDS.
ENDC instruction
ENDS instruction
ENTRY instruction
EOT codes
EQU instruction
Equate instruction. See EQU.
ERLIST instruction
Error checking
Error codes
Error list instruction. See

ERLIST.
Error squeeze instruction.

See ERSQZ.
ERSQZ instruction
Expressions

ev al ua ti ons
Extended branch inst~uctions
Extended branch mnemonics ·
External instruction. See

EXTRN.
EXTRN instruction

F

FCOPY instruction
File copy instruction. See

FCOPY.
Floating point constants

double precision
internal representation
single precision

3-52

3-39
3-39

3-37
3-37
3-51
3-36
3-72
3-37
3-37
3-37

3-78
3-68

3-56

3-69
3-74
3-34
5-13
3-30

3-80
4-5
A-1

3-63

2-2
3-23
3-23

3-34

3-58

3-58

3-46
3-47
3-46

48-oso p·oa. ;mrB

Floating point registers
double precision
single precision

Format control instructions
eject
line count
space
width

Freeze instruction. See
FREZE.

FREZE instruction

G

Global symbols
ADC
LADC

H

Hardware
relocation
segmentation

Hexadecimal constants
High performance assembly.

See HPM.
High performance method

assembly
instruction
memory requirements
memory utilization
performance

HPM instruction

I,J,K

I/O operations
IF instruction

conditional
simple

Implicit symbols
character
decimal
hexadecimal

IMPUR instruction
Impure instruction. See

IMPUR.
INCLD instruction
Include instruction. See

INCLD.
Input/output processor. See

IOP.
Instruction execution

order
Instruction formats

16-bit
32-bit
abbreviations

reg & index storage/reg
& index storage

register and immediate

48-050 FOl R03

1-4
1-4

3-78
3-78
3-78
3-78

3-80

2-5
4-6
4-6

1-7
1-7
3-40

5-7
5-7
5-8
5-8
3-66

1-6

3-68
3-71
2-3
2-3
2-3
2-3
3-53

3-36

1-5

1-7
1-10
1-7
1-10

1-15
1-9

Instruction formats
(Continued)
register-to-register

register/immediate one
register/immediate two
register/indexed storage
register/indexed storage
one

register/indexed storage
three

register/indexed storage
two

short form

variations
Instruction statements

assembler
character position
fixed format
free format
machine
restrictions

Instruction variations
Instructions

compare
conditional branch
I/0
load PSW
simulate interrupt
store
test
usual extended branch

mnemonics
Instructions for data
structures

structure definition
structure initialization

Integer constants
alignment
examples

IOP
range

instructions for 3260MPS
System

L

LCASE instruction
LCNT instruction
Line count instruction. See

LCNT.
List conditionals

instruction. See LSTC.
LIST instruction
List macro instruction. See

LSTM.
List unreferenced symbols

instruction. See LSTUR.
Listing control instructions

content control
format control
listing identification

1-7
1-10
1-13
1-13
1-8

1-11

1-12

1-11
1-9
1-14
1-17

3-1
3-3
3-2
3-3
3-1
3-3
1-17

1-18
1-17
1-18
1-18
1-18
1-18
1-18

3-25

3-73
3-75

3-44
3-43
3-42

3-29

3-59
3-78

3-79

3-78
3-77
3-77

IND-3

Listing identification
instructions

program
title

LOC instructions
absolute
align
conditional no operation
impure
origin
pure

Location counter. See LOC.
Logical expressions
Logical unit assignment
Lower-case instruction. See

LCASE.
LSTC instruction
LSTM instruction
LSTUR instruction

M

Machine instructions
16-bit
CAL/32
mnemonics

Main memory
accessing

Memory addresses
16-bit processors
32-bit processors

Message instruction. See MSG.
Mixed expressions
Mixed mode computations
MSG instruction

N

Name field
characters
examples
restrictions

NAPU instruction
NCROS instruction
NFREZ instruction
NHPM instruction
NLCASE instruction
NLIST instruction
NLSTC instruction
NLSTM instruction
NLSTU instruction
No cross instruction. See

NCROS.
No freeze instruction. See

NFREZ
No high performance
assembly. See NHPM.

No list conditionals
instruction. See NLSTC.

No list instruction. See
NLIST.

No list macro instruction.
See NLSTM.

IND-4

3-77
3-77

3-54
3-54
3-55
3-53
3-53
3-52

2-2
5-9

3-79
3-80
3-80

1-7
3-11
3-12

1-6

1-6
1-6

2-2
4-5
3-65

3-4
3-5
3-4
3-81
3-80
3-80
3-66
3-59
3-79
3-79
3-80
3-80

No list unreferenced symbols
instruction. See NLSTU.

No lower-case instruction.
See NLCASE.

No processor specific
warning instruction. See
NPWRN.

No sequence checking
instruction. See NOSEQ.

No squeeze instruction. See
NOSQZ.

No warning instruction. See
NWARN.

NOCAL instruction
NORX3 instruction
NOSEQ instruction
NOSQZ instruction
NPWRN instruction
NUREX instruction
NWARN instruction

0

Object code format
Operand field

reg & index stor/reg &
index stor instruction

register-to-register
instruction

register/immediate
instruction

register/indexed storage
instruction

Operation field
examples
mnemonics
restrictions

ORG instruction
Origin instruction. See ORG.

p

Packed decimal string
constant

examples
internal representation

Pass pause instruction. See
PPAUS.

PAUSE instruction
PPAUS instruction
Processor specific warning
instruction. See PWRN.

PROG instruction
Program instruction. See

PROG.
Program status word. See

PSW.
Programs

absolute
relocatable

PSW
condition code
location counter
status descriptor

4-5
3-63
3-64
3-60
3-80
3-66
3-80

B-1

3-8

3-6

3-7

3-7

3-5
3-5
3-5
3-53

3-49
3-48

3-59
3-65

3-77

1-6
1-6

1-5
1-5
1-5

48-050 FOl R03

PURE instruction
PWRN instruction

Q

Quantities
absolute
rel oca table

R

Reg/index storage one
instruction (32-bit). See
run.

Reg/index storage three
instruction (32-bit). See RX

Reg/index storage two
instruction (32-bit). See
RX2.

Register and immediate
instruction. See RI.

Register and immediate one
instruction (32-bit). See
Ril.

Register and immediate two
instruction (32-bit). See
RI2.

Register and index/register
and index instruction. See
RXRX.

Register-to-register
instruction. See RR.

Register/indexed storage
instructions. See RX.

Restricted symbols
AB STOP
ADC
IMPTOP
LADC
PURETOP

RI instructions
operand representation

Ril instruction
RI2 instruction
RR instructions

16-bit
32-bit
operand representation

RX instructions
16-bit
32-bit
operand representation

RXl instruction
RX2 instruction
RX3 instruction
RXRX instruction

operand representation

s

SCRAT instruction
Scratch instruction. See

SCRAT.

48-050 FOl R03

3-52
3-80

2-2
2-2

2-5
2-5
2-5
2-5
2-5
1-9
3-8
1-13
1-13

1-7
1-10
3-6

1-8
1-8
3-7
1-11
1-11
1-12
1-15
3-9

3-64

Sequence checking
instruction. See SQCHK.

Series 3200 Processors
machine

instructions/mnemonics
SF instructions

16-bit
32-bit

Short form instructions.
See SF.

Source statements
comment
instruction

SPACE instruction
Special instructions
SQCHK instruction
Squeeze instruction. See

SQUEZ.
Squeeze related instructions

error squeeze
no RX3

SQUEZ instruction
START command
Starting CAL/32

assigning logical units
end of task (EOT) codes
error codes
object code format
using css

Statements
assembler
machine

String-processing instruction
STRUC instruction
Structure definition
instructions

common instruction
end structure instruction
structure instruction

Structure initialization
instructions

block data
block origin

Structure instruction. See
STRUC.

Subroutines
branching to
returning from

Symbol definition
instructions

Symbols
global
implicit
restricted

Symbols and expressions
examples

System architecture
multiprocessing
uniprocessing

T

Target instruction. See
TARGT.

TARGT instruction

3-21

1-9
1-14

3-1
3-1
3-78
4-8
3-64

3-63
3-63
3-60
5-3
5-3
5-9
5-13
A-1
B-1
5-11

3-1
3-1
1-15
3-74

3-73
3-73
3-73

3-76
3-76

1-18
1-18

3-30

2-5
2-3
2-3

2-1

1-1
1-1

3-56

IND-5

Task establishment
Temporary storage

types
TITLE instruction

u,v

Unpacked decimal string
constant

examples ,
internal representation

Unreferenced externals
instructions. See UREX Fnd
NU REX.

UREX instruction
Usual extended branch

mnemonics

W,X,Y,Z

WARN instruction
Warning instruction. Se~

WARN.

IND-6

5-1

1-4
3-77

3-49
3-48

3-66

3-25

3-80

Weak entry instruction. See
WNTRY.

Weak external instruction.
See WXTRN.

WIDTH instruction
WNTRY instruction
WXTRN instruction

3200MPS Family of Processors
machine

instructions/mnemonics
3260MPS System

IOPs
3280, 3280E and M3200 Systems

CAL/32 machine
instructions

3280, 3280E, and M3200
Systems

usual extended branch
mnemonics

3-78
3-35
3-35

3-20

3-29

3-27

3-25

48-050 FOl R03

In ref ere nee
to ...

I think this
manual ...

My other
comments ...

About
myself ...

Document Comment Fon

COMMON ASSEMBLY LANGUAGE/32 (CAL/32) Reference Manual -
48-050 FO 1 R03

We try to make our documentation easy to use, easy to understand, and free
from errors. We invite your comments and suggestions to assist us in improvi
our documentation to suit your needs.

Please send us comments, corrections, suggestions, etc. Use the SCA syster
to report software documentation or software problems.

Strongly Strong I~
Agree Agree Disagree DI sag re,

is easy to read D D D D
is easily understood D D D D
is concise & to the point D D D D
covers the subject D D D D
has enough detail D D D D
is well organized D D D D
provides easy-to-locate information D D D D
is aesthetically pleasing D D D D
has clear illustrations D D D D
has enough illustrations D D D D
has meaningful examples D D D D
has a he I pf ul index D D D []

Please make any additional specific comments. (Include chapter, page, table
figure number.)

Job Function: D Dev. Engineer
D Technician
D Service Eng.

D Sys. Analyst
D Administrator
D Operator

D Sys./App. Pre
D Casual user
D Other

What hardware system are you using? ____________ _

What revision level of system software are you using? _____ _

Company /Organization:
----~----------~

Address:
---------~-------------~

May we contact you? DYes 0No

Telephone: ----------- Date: -------

I
I

I
I
I
I
I
I
I
I
I

) FOLD I
---------------------------~

111111

BUSINESS 1REPL Y MAIL
FIRST CLASS PERMIT NO. 22

I

POSTAGE WILL BE PAID BY ADDRESSEE

Concurrent Computer Corporation
2 Crescent Place
Oceanport, NJ 07757

'N: ,
HNICAL SYSTEMS PUBLICATIONS DEPT.

OCEANPORT, N.J.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

----------------7-------------------~~1

LE STAPLE
9410

ConcurrelE!ff!J
Computer Corporation

PUBLICATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our users are an integral source
of information for improving future tevisions. Please use this postage paid form to send us comments,
corrections, suggestions, etc.

1. Publication number ____________________________ _

2. Title of publication ___________________________ _

3. Describe, providing page numbers, any technical errors you found. Attach additional sheet if
necessary. _____________________________ _

4. Was the publication easy to understand? If no, why not? ______________ _

5. Were illustrations adequate? _______________________ ~

6. What additions or deletions would you suggest?--------------------

7. Other comments: ___________________________ _

Date ______________ _

Position/Title _______________________________ _

9409

FOLD ___________ ; _______________ -- -I

111111

BUSINESS REPL V MAIL

~TTN:

FIRST CLASS PER~IT NO. 22

POSTAGE WILL BE PAID BY ADDRESSEE

Concurrent Co~puter C«;>rporation
2 Crescent Place
Oceanport, NJ 07757

'ECHNICAL SYSTEMS PUBLICATIONS DEPT.

OLD

fAPLE

OCEANPORT, N.J.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

STAPLE
9411

	0000
	0001
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	replyA
	replyB
	replyC
	replyD

