PERKIN-ELMER

0S/32
SYSTEM LEVEL

Programmer Reference Manual

48-040 FOO RO3

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Eimer Corpo-
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Eimer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer,

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757
© 1981, 1983, 1984 by The Perkin-Elmer Corporation

Printed in the United States of America

PREFACE

CHAPTERS

TABLE OF CONTENTS

1 0S/32 SUBSYSTEMS

H

.

NN NDNDNDNDNDNDNDNDDNDND el

HERFHRRREOONO0 U S WN -

FPRHRFRFRFEFFPFRPFRFFRPRERRRE R
A WNRFO

INTRODUCT ION
0S/32 Multiprocessing Support

SOFTWARE SUBSYSTEMS

Task Management Subsystem

Task Scheduling on a Model 3200MPS System
Job Accounting Subsystem

Memory Management Subsystem

Timer Management Subsystem

File Management Subsystem

Input /Output (I/0) Subsystem

Error Recording Subsystem

Memory Diagnostics Subsystem

Loader and Segmentation Subsystem

Basic Data Communications Subsystem
Console Monitor Subsystem

Command Processor Subsystem

System Initialization Subsystem

Internal Interrupt Subsystem

Optional User Supervisor Call (SVC) Subsystem
Floating Point Subsystem

2 PRIVILEGED TASKS

2.1

INTRODUCT ION

EXECUTIVE TASKS (E-TASKS)

Writing Executive Tasks (E-Tasks)

0S/32 Data Structures Used by Executive
Tasks (E-Tasks)

PRIVILEGED USER TASKS (U-TASKS)

DIAGNOSTIC TASKS (D-TASKS)

48-040 F0O RO3

N0
N

CHAPTERS (Continued)

3

ii

PROGRAMMING IN A MODEL 3200MPS SYSTEM MULTIPROCESS ING
ENVIRONMENT

3.1

w
N

sBw N

3

(S04, > w w w w w
.

w w w w w w w ww w
w N [

L]
[6,] o

3.5.4
3.5.5
3.5.6

INTRODUCTION

DESIGNING TASKS TO RUN ON A MULTIPROCESSING
SYSTEM

PREPARING AN AUXILIARY PROCESSING UNIT (APU)
FOR TASK EXECUTION

Queue Assignments

Auxiliary Processing Unit (APU) Operating
States

APU-Only Queue Operating States

Logical Processing Unit (LPU) Mapping

ASSIGNING TASKS TO A PROCESSOR QUEUE
CONTROLLING TASK ORDER OF EXECUTION

Changing Auxiliary Processing Unit (APU)
Task Queue Ordering

Monitoring and Preempting Auxiliary Processing

Unit (APU) Task Execution
Transferring a Task from an Auxiliary
Processing Unit (APU) to the Central
Processing Unit (CPU)

Internal Task Control of Auxiliary Processing

Unit (APU) Execution

Verifying Task Transfer to an Auxiliary
Processing Unit (APU)

Customizing Auxiliary Processing Unit (APU)
Fault and Supervisor Call (SVC) Handling

PREVENTING MEMORY ACCESS CONFLICTS
Avoiding System Deadlock

MEASURING REAL-TIME PERFORMANCE ON A MODEL
3200MPS SYSTEM

WHERE TO GO FOR MORE INFORMATION

SUPERVISOR CALL (SVC) INTERCEPTION

INTRODUCTION
HOW SUPERVISOR CALL (SVC) INTERCEPTION WORKS

PREPARING A TASK FOR SUPERVISOR CALL (SVC)
INTERCEPTION

Request Descriptor Block (RDB) Buffers
Circular List for Request Descriptor Block
(RDB) Buffers

Task Event Trap

w
[}
(]

ww
|

w w wWww
|
o] o0 ~ oW NN

w w

! | [1 [
,—l

o

3-17
3-18
3-19
3-19
3-21
3-21
3-22
3-25

48-040 FOO RO3

CHAPTERS (Continued)

4.11
4.12
4.13

4.13.1
4.13.2
4.13.3
4.13.4
4.13.5
4.13.6
4.13.7
4.13.8
4.13.9
4.13.10
4.13.11

4.14

CREATING INTERCEPT PATHS (ICREATE)

HOW TO CREATE A PSEUDO DEVICE OR TASK
WITH ICREATE

USE OF GENERIC NAMING FOR PSEUDO DEVICES
AND TASKS

FUNCTIONAL SUMMARY OF SUPERVISOR CALL (SVC)
INTERCEPTION

FULL AND MONITOR CONTROL INTERCEPT PATHS

HOW INTERCEPT PATHS HANDLE SUPERVISOR CALLS
8VCs) OCCURRING AT END OF TASK

TERMINATING THE INTERCEPTED SUPERVISOR CALLS
8VCs)

HOW TO REMOVE INTERCEPT PATHS
ERROR HANDLING

MACROS USED WITH SUFERVISOR CALIL (SVC)
INTERCEPTION
ICREATE Macro
IREMOVE Macro
IGET Macro
IPUT Macro
ICONT Macro
IPROCEED Macro
IROLI, Macro
ITERM Macro
ITRAP Macro
IERRTST Macro
$RDB Macro

SAMPLE SUPERVISOR CALL (SVC) INTERCEPTION
PROGRAMS

5 0S5/32-SUPPORTED INPUT/OUTPUT (I/0) DEVICES

5.1

w
NN
H

o
w

INTRODUCT ION

VERTICAL FORMS CONTROL (VFC)
Horizontal Tabs

Theory of Operation

CARD READERS

CARD READER/PUNCH DEVICES

48-040 FOO RO3

4-10

4-11

4-13

4-13
4-13

4-15
4-16
4-21
4-23
4-24
4-26
4-27
4-28
4-29
4-30
4-32
4-34

iii

CHAPTERS (Continued)

5.5 TELETYPE (TTY) READER/PUNCH

5.6 TELETYPE (TTY) KEYBOARD/PRINTER

5.7 PAPER TAPE EQUIPMENT

5.8 LINE PRINTERS

5.9 TAPE CASSETTE

5.10 MAGNETIC TAPE

5.10.1 Standard Input/Output (I/0)

5.10.2 Gapless Input/Output (I/0)

5.11 DISK STORAGE

5.12 FLOPPY DISK

5.13 VIDEO DISPLAY UNIT (VDU) TERMINALS

5.14 8-LINE INTERRﬁPT MODULE

5.15 DIGITAL MULTIPLEXOR (MUX)

- 5.16 CONVERSION EQUIPMENT

5.17 ANALOG INPUT CONTROLLER (AIC)

5.18 ANAL.OG OUTPUT CONTROLLER (AOC)

5.19 DIGITAL INPUT/OUTPUT (DIO) CONTROLLER

5.20 ETHERNET DATA LINK CONTROLLER (EDLC)
APPENDIXES
A 0S/32-SUPPORTED INPUT/OUTPUT (1/0) DEVICES
B SUPPORTED VERTICAL FORMS CONTROL (VFC)

CHARACTER SET

F IGURES
1-1 Typical Model 3200MPS System Configuration
3-1 Valid APU Operating States
3-2 Valid APU Queue Operating States

iv

6]
i

[5,]
t

=
I

w w
[
o w w

48-040 FOO RO3

FIGURES (Continued)

($, 3, > >
i
N N

INDEX

Request Descriptor Block
System Task Buffer List (Standard Circular List)

Random Field Format
Analog Output Data Format

PERKIN-ELMER 0S/32 SOFTWARE SUPPORT

0S/32 DATA STRUCTURES MACRO LIBRARY
MTM DATA STRUCTURES MACRO LIBRARY

QUEUE PRIORITY ASSIGNMENTS

TIMER MACROS

ADDITIONAL INFORMATION SOURCES FOR MODEL 3200MPS
SYSTEM PROGRAMMING

SYSTEM MACROS FOR SVC INTERCEPTION

ERROR CODES RETURNED FOR INTERCEPT MACROS
VALID COMBINATIONS FOR SVC, MODE AND NAME
PARAMETERS

48-040 FOO RO3

IND-1

PREFACE

This manual describes operating system features intended for use

by system programmers, system analysts, designers, engineers and
training instructors.

Chapter 1 presents an overview of the operating system and the
software subsystems it supports. Chapter 2 describes the
privileged task types supported by 0S/32. Chapter 3 describes
the techniques used in writing system level control programs that
take advantage of the increased throughput offered by a
Perkin-Elmer Model 3200MPS System. Chapter 4 contains a
functional description of the supervisor call (SVC) interception
feature. The vertical forms control (VFC) feature is described
in Chapter 5, along - with other device-independent and
device-dependent features supported by 0S/32.

Revision 03 is intended for use with the 0S8/32 R07.2 software
release or higher. It introduces a change in the method of task
execution by the auxiliary processing units (APUs) within the
Model 3200MPS System. Therefore, Chapter 3 has been totally
reorganized. Material related to 0S8/32 8VCs 1is no longer
included in this manual. This material is now documented in the
0S/32 Supervisor Call (SVC) Reference Manual.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

48-040 FOO RO3 vi

CHAPTER 1
0S/32 SUBSYSTEMS

1.1 INTRODUCTION

Perkin-Elmer 0S/32 is a general-purpose, event-driven operating
system for Perkin-Elmer 32-bit computer systems. Custom versions
of 0S/32 are created through the use of a system generation
program (Sysgen/32) that provides parameters for tailoring 0S/32
to a specific installation. The combined hardware and software
capabilities of a Perkin-Elmer 32-bit computer system provide
support for all phases of program and system development. 0S/32
supports concurrent multiprogramming, with up to 252 user
programs written in any of the supported languages. The program
development facilities are designed to minimize the time and
effort needed to test, debug and integrate application programs
and systems. In addition, the 0S/32 command language allows
complex jobs to be performed with minimum operator intervention.

0S/32 incorporates a powerful interrupt handling capability at
the task level. This capability permits a task to be interrupted
during its normal execution sequence by a variety of hardware and
software conditions.

The 0S/32 virtual task manager (VTM) allows the memory
requirements of a task running under 0S/32 to exceed available
task memory.

The roll function allows segments of a task to be rolled out to
disk until enough memory is available for the entire task. In
real-time applications, rolling is commonly used to queue low
priority tasks while tasks of higher priority are active. The
roll eligibility of a task is established when the task is 1link-
edited. However, a task option is provided to prevent rolling of
a task when necessary (e.g., when the task must be able to
respond to real-time events).

VTM has a virtual memory capability that allows tasks consisting
of up to 16Mb of code and data to execute in as little as 128kb
of memory. This feature is provided by the 0S/32 linkage editor.
See the 05/32 Link Reference Manual for more information.

A basic data communications facilities package is supplied with
0s/32. This package also provides support for higher level
Perkin-Elmer data communications products.

The scope and power of the operating system can be extended
through the following Perkin-Elmer 0S/32 companion products.

48-040 FOO RO3 1-1

- o @ e

e Multi-terminal monitor (MTM)

® Reliance

MTM is a subsystem monitor that uses the subtasking capabilities
of 0S/32 to provide a time-sliced, interactive program
development environment for up to 64 concurrent terminal users.
MTM simultaneously supports both on-line terminal users and batch
background tasks. MTM terminal users are also provided with an
input/output (1/0) spooler for use with slow speed devices.

Reliance is a transaction software system, consisting of the
integrated transaction controller (ITC), data management system
(DMS/32), and industry standard COBOL. ITC allocates system
resources, develops screen formats, and controls terminals.
DMS/32 supervises disk allocation and data access.

1.1.1 0S/32 Multiprocessing Support

0S/32 provides a transparent multiprocessing capability for wuse
with the Perkin-Elmer Model 3200MPS System. This system consists
of one central processing unit (CPU) and from one to nine
auxiliary processing units (APUs) (see Figure 1-1). A task can
execute on an APU without any special preparation, unless it is
going to take advantage of certain features specific to the
multiprocessing system (e.g., APU assignment, APU control, etc.).
See the 0S/32 Supervisor Call (SVC) Reference Manual for more
information.

0S/32 defines a set of logical processing units (LPUs) that are
used to schedule tasks to APU queues for execution on an APU.
Tasks are assigned to an LPU that is mapped to an APU queue. The
logical processor mapping table (LPMT) defined by 0S/32 contains
the mapping arrangement between the LPUs and APU execution
queues. (More than one LPU can be mapped to an APU queue.)

Each APU in a Model 3200MPS System is assigned a wunique
identifying number and is assigned to an APU queue. (More than
one APU can be assigned to a queue.) Tasks on the APU queue
execute on an APU assignhed to the queue.

If a task is mainly computation intensive, executing that task on
an APU increases overall system performance. An I/0-intensive
task, if directed to an APU, decreases system performance since
each I1/0 request requires the task to be transferred back to the
CPU for 0S/32 1/0 support services.

The main performance advantage of a multiprocessing system Iis
achieved when a problem is broken down into parts so that several
tasks on several processors can work on the problem at the same
time. See Chapter 3 for more information on programming within
a Perkin-Elmer Model 3200MPS System environment.

1-2 48-040 FOO RO3

6269

GLOBAL

MEMORY
GLOBAL MEMORY BUS A
CACHE CHANNEL CHANNEL CACHE CACHE
ADAPTER |**°| ADAPTER
APU APU
& MUX BUS cPU 1 cos N
§ omasus § § owasus §
CONSOLE -
RTSM RTSM RTSM
l
RTSM

Figure 1-1 Typical Model 3200MPS System Configuration

1.2 SOFTWARE SUBSYSTEMS

0S/32 consists of the following subsystems:

Task management

Job accounting

Memory management

Timer management

File management

I/0 management

Error recording and reporting
Memory diagnostics

Loader and segmentation

Basic communications

Console monitor

Command processor

System initialization
Internal interrupt

Optional user supervisor call 14 (SVCl4)
Floating point

Table 1-1 summarizes the software supported by 0S/32.

48-

040 FOO RO3 1-3

TABLE 1-1 PERKIN-ELMER 0S/32 SOFTWARE SUPPORT

TYPE H SOFTWARE PRODUCT ! STANDARD | OPTIONAL
ey I rryxxrrrx sy 1y vy sy R R R R R R R R D R R R
Program Task management !
develop- Job accounting i
ment Memory management |
Timer management /
File management !
1/0 management H
Error recording and reporting]
Memory diagnostics |
Loader and segmentation !
]

;

!

i

!

]

)

!

Console monitor

Command processor

Floating point

Internal interrupt subsystem
ITC*

Writable control store (WCS)

ERE A

|
|
|
I
|
!
|
|
|
|
|
|
|
1
1
1
|
|
|
|
|
|
1
1
|
|
i
|
|
|
|
|
1
|
|
|
I
|
1
|
|
!
1
1
|
I
|
|
|
|
1
1
]
|
|
I
I
I
|
!
1
1
|
|
I
|
|
|
|

Program ! Automatic interactive debugging |]
debugging | system (AIDS) | X |

{ DEBUG/32 ! i
Data base |
manage- H
ment |
| Asynchronous data communications |
| Character synchronous communica- |
| tions !
| Bit synchronous communications !
i 2780/3780 RJE emulation i
]]
' L}
i |
i i

cations

3270 emulation
HASP/32
Ethernet communications
Languages | Common microcode assembler
| (MICROCAL)
| Common assembly language/32
i (CAL/32)
! CAL macro/32
! FORTRAN VII development (D)
| compiler
{ FORTRAN VII global optimizing (O)
| compiler
[}
;
:
:
:
=
‘

b

S

FORTRAN VII universal optimizing
(Z) compiler

COBOL*

BASIC Level 11

CORAL 66

RPG II

PASCAL

KX XX XX

1-4 48-040 F00 RO3

TABLE 1-1 PERKIN-ELMER 0S/32 SOFTWARE SUPPORT (Continued)

! TYPE | SOFTWARE PRODUCT ! STANDARD | OPTIONAL |
= I-----..------II---_--------------'Il------------------.---'---------‘- {
| Utilities | Link H p | i
! | Edit H b4 i i
| | Text ! ! x }
i { Source Updater ' x ! i
i i Copy i X i !
| | Library Loader H X | !
! | Macro Library ! b4 i i
] | Sort/Merge 11 ! i X i
| | Patch ' X | |
' i 08/32 Spooler H X i i
| | SPL/32 | X | ‘
] | Fastchek | X H !
] ! Fastback H b4 ! H
| { Account Reporting i x i /
! ! Backup i X | |
| { Error Reporting | X H |
| { Disk Dump] x i |
' } Dump Print ! x i]
| | Mirror Disk Synchronizaton H ' b 4 |

— o ———— - " - — — —— — ————— W —— — T — — S — — . S S R - T e W S S W S S S S S ————

* ITC, COBOL and DMS/32 comprise the Perkin-Elmer Reliance
software system designed for transaction processing.

1.2.1 Task Management Subsystem

The task management subsystem allocates processor time for each
of the tasks executing in an 0S/32 multitasking environment. The
task manager determines the order in which each task gains

processor control on a user-defined priority basis. Task
priority levels range from O to 254 (0 being the highest priority
level). Of these 255 priority levels, 10 through 249 are

available for user-written tasks, while 1 through 9 and 250
through 254 are reserved for system use.

The task manager maintains four priority levels for each task:

e Maximum
® Task
® Run

e Dispatch

48-040 FOO RO3 1-5

Maximum priority, set by Link, is the highest priority level
(i.e., the smallest number) that can be assigned to a task. Task
priority 1is the priority that is currently assigned to a task.
Initially, task priority is set when the task is linked, but this
priority can be changed after the task is loaded. However, task
priority can never be set higher than the maximum priority set by
Link.

Run priority can be set dynamically to a value ranging from the
task priority to task priority plus n. The value of n is based
on the behavior of the task. Run priority can only be set for
tasks that have dynamic time-slice/priority scheduling enabled.
If dynamic scheduling is not enabled, a task's run priority is
equal to its task priority. Currently, only MTM enables dynamic
time-slice/priority scheduling.

A dispatched task usually has a priority level equal to its task
priority, even if dynamic scheduling is enabled. Nevertheless,
if a higher priority task requires specific system resources
(e.g., a disk directory or bit map) that are currently controlled
by a lower priority task, the dispatch priority of this lower
priority task is raised to the priority of the higher priority
task waiting for the resource. When a task releases control of
a system resource, its dispatch priority is reset to its run
priority.

Tasks competing for processor time are maintained in priority
order on a task control block (TCB) queue known as the ready
queue. Tasks competing for both memory and processor time are
maintained in priority order on the roll-in queue. Tasks at the
same priority level are serviced on a round-robin basis; i.e.,
tasks are added to the ready queue or roll-in queue behind tasks
of the same priority.

In the absence of time-slicing, once a task gains control of the
processor, it continues executing until it voluntarily
relinquishes that control or is preempted by a higher priority
task. A task will relinguish control of the processor to another
task when one of the following occurs.
e It is paused by the system operator.

e It is cancelled by the system operator, user or another task.

e A higher priority task becomes ready due to an external event,
such as the completion of an outstanding I/0 request.

e It executes an SVC that places it in a wait, paused or dormant
state.

e It initiates 1/0 to a device.

e Its time-slice expires.

1-6 48-040 F0OO RO3

After the task relinquishes control of the processor, it is
returned to the ready queue, where its TCB is placed behind the
TCBs of tasks of equal priority. This allows the other tasks on
the queue to be given a turn on the processor.

To determine which task should have control of the processor, the
task manager chooses the highest priority task among those on the
ready queue, the roll-in gqueue, and any currently executing task.
If a task is chosen from one of the gqueues, the currently
executing task is placed back on the ready queue and the chosen
task becomes the current task.

The task manager supports two types of time-slicing:

® System time-slice

® Dynamic time-slice

System time-slicing limits the execution of a task so that
round-robin scheduling of priority tasks can take effect.
Time-slicing allows tasks of equal priority to receive equal
shares of processing time.

At system generation (sysgen), system time-slicing can be enabled
through the use of the SLICE command. This allows time-slice
scheduling to be activated automatically by the system.
Thereafter, the operator SET SLICE command can be used to
override the SLICE command.

Dynamic time-slicing is enabled only for MTM subtasks. The
dynamic time-slice is calculated as:

slice = 1 + 2%¥*pm
Where:
m = task priority - run priority + 1
The slice is measureé in units of 1line frequency clock (LFC)

ticks (one LFC tick = 8.333ms).

Run priority is adjusted whenever a task uses up a time-slice, is
removed from a wait state, or has its priority modified by the
operator SET PRIORITY command. When a task uses up a time-slice,
its run priority is adjusted as follows:

New run priority = run priority + 1 or :
task priority + k (whichever is smaller)

48-040 F0O0 RO3 1-7

Where:

k = number of dynamically scheduled tasks or
12 (whichever is smaller)

Because a task that is placed in a wait state does not use up its
last assigned time-slice, the run priority of the task, when it
is removed from suspension, is adjusted as follows:

Run priority = run priority - 1 or
task priority (whichever is larger)

The task manager also performs intratask context switches to
allow tasks to receive and handle task traps in response to
synchronous and asynchronous trap-causing events. Synchronous
events include task-initiated faults (e.g., arithmetic, memory
access, illegal instruction, etc.) and svCil4 traps.
Asynchronous events originate outside of a task and include the
task queue traps (e.g., I/0 and timer completion, SVC6 send
message/data and queue parameter, etc.) and the task event traps
currently associated only with SVC intercept support.

In addition to task scheduling and task trap support, the task
manager handles the state of a task during execution. Task
execution state is determined by the setting of the program
status word (PSW). The task manager switches or exits tasks from
one execution state to another.

1.2.1.1 Task Scheduling on a Model 3200MPS System

The 0S/32 task manager uses four different types of queues to
facilitate task scheduling on a Model 3200MPS System:

e CPU ready queue

e CPU receive queue

e CPU roll-in queue

e APU execution queue

An APU execution queue can be one of four different types:

e APU idle queue, not serviced by any processor
e APU private queue, serviced by a single APU

e APU shared queue, serviced by several APUs

1-8 48-040 F0OO0 RO3

e CPU/APU shared queue, serviced by the CPU whenever its own
ready queue is empty and/or by one or more APUs; this is
always APU execution queue 0.

Each APU execution queue can be designated either no-priority or
priority-ordered. Priority-ordered queues can be either enforced
or not enforced, depending upon whether a task put on the top of
the queue preempts a currently executing task of lower priority.
The CPU ready queue 1is priority-enforced, and the CPU receive
gueue is no-priority.

When a task requests processor time on a Model 3200MPS Systen,
the task manager adds the TCB for that task to the CPU ready
queue. The task manager selects a task for execution from the
queue on a strict priority basis. After selecting a task, the
task manager then decides whether the task is to be executed on
the CPU or placed on one of the APU queues in the system. A task
is transferred to an APU queue for processing only when all of
the following conditions are true:

e The task must be executing in the user state, not in the
system state.

® The task's "LPU-directed" status must be set. (In MTM, when
the 1load-leveling executive (LLE) is active, subtasks of MTM
cannot be LPU-directed unless the user has SVC6 privileges.)

® The task status word (TSW) does not specify CPU-override
status. (If the CPU-override status bit of the TSW is set,
the task is executed on the CPU.)

When all of the above conditions are true for the highest
priority task on the CPU ready queue, the task manager transfers
the TCB for that task from the CPU ready queue to an APU queue.
If the APU is waiting for the task (i.e., APU processing has been
suspended until the task arrives), the TCB becomes the current
TCB and execution begins immediately. If the APU is not waiting
for the task, the TCB is placed on the APU queue.

Whenever it is not processing a task, the APU continually checks
its APU queue. If the APU finds entries on the queue, it will
execute the task at the top of the queue.

Once the APU starts a task, the task will execute until it:

e relinquishes control voluntarily (reschedules itself),
® encounters a fault,

® 1issues an SVC, or

® 1is returned to the CPU via an operating system request on
behalf of a monitoring task, operator command, etc.

48-040 F0O RO3 1-9

The task may reschedule itself to the rear of the APU queue or to
the CPU. In a no-priority APU queue, the task is placed at the
bottom of the queue. In a priority APU queue, the task is placed
behind all tasks of equal or higher priority, or at the queue top
if there is no task of equal or higher priority on the queue. In
a priority-enforced APU queue, the task is placed on the queue in
the same manner as for a priority queue. In addition, whenever
the task happens to be placed at the queue top, the operating
system executes the preempt procedure to ensure execution of the
highest priority tasks, even if a 1lower priority task Iis
currently executing.

The task is returned to the CPU receive queue if it is
rescheduled to the CPU, if a fault occurs, or if an SVC or
operating system request occurs. The task waits on the receive
queue until the CPU places the task on the CPU ready queue.

If the task is placed on the receive queue as a result of a
fault, the task is moved to the CPU ready queue. If the
appropriate bits in the TSW are set, the task's TSW location is
set to the address of the task trap handler. The task can then
be dispatched back to the APU queue.

If the task is placed on the receive gqueue as a result of issuing
an SVC, the task is moved to the CPU ready queue and executed on
the CPU until SVC processing is complete. The task can then
automatically move back to the APU queue.

Rollable tasks are moved from the roll-in queue to the CPU ready
gqueue and are processed in the same manner as any other task
running on a Model 3200MPS System. Rollable tasks may be
dispatched to an APU.

Tasks running under MTM will run on APUs as determined by the LLE
at a priority scheduled by the priority scheduling mechanism
(PSM) . when the ILE 1is active, MTM controls whether the task
will be assigned to one of the APUs or to the CPU.

1.2.2 Job Accounting Subsystem

The job accounting subsystem reports CPU usage and time elapsed,
memory and disk space utilized, and number and length of I1/0
transfers by device class. The job accounting subsystem contains
the:

e Data Collection Facility

e Account Reporting Utility

The Data Collection Facility collects accounting data on

all user activities and stores this information in the
accounting transaction file (ATF) when the task terminates.

1-10 48-040 FOO RO3

The Account Reporting Utility is designed to accommodate specific
customer site requirements. The performance information gathered
by the Data Collection Facility 1is prepared by the Account
Reporting Utility for use by system maintenance personnel.
Reports can be requested for individual user accounts, summaries
of user accounts and system usage. See the 0S/32 System Support
Utilities Reference Manual.

Through the DISPLAY ACCOUNTING command, the system operator has
access to accounting data for one or all tasks in the system.
This command also gives MTM users access to accounting data for
a task monitored by MTM on their behalf.

NOTE
The 0S/32 3job accounting subsystem now
reports APU usage and time elapsed in a
Model 3200MPS System.
1.2.3 Memory Management Subsystem
When a task 1is loaded, the memory management subsystem

dynamically allocates necessary space in memory. 0S/32 supports
three types of memory:

e Local
e Shared
® System

Local memory is physically contiguous starting from location 0O
and contains the operating system, task space and system space.

Shared memory is located above local memory and is not required
to be contiguous. Global task common segments located in shared
memory can be used by more than one processor.

System memory is shared by all processors in a Model 3200MPS
System. System memory contains both 1local and shared areas.
Local memory is used by the CPU and all APUs.

Local memory is allocated on a first-fit basis when sufficient
memory 1is available for a sgpecific task. Free segments are
allocated in ascending address order. When no space is available
for a task, the memory manager determines which tasks are to be
rolled out to ensure that higher priority tasks take precedence.
When memory becomes free, adjacent areas are merged together to
minimize search time and to provide large free blocks of memory
for bigger tasks. System task space is also maintained by the
memory manager and is dynamically allocated when a task or device
structure is built.

48-040 FOO RO3 1-11

The memory manager maintains task space through free and
allocated lists. Segments are allocated dynamically on a
first-fit basis by searching the free lists. When free task
space is allocated to a segment, it is removed from the free list
and connected to the allocated list. This list is called the
segment control list (SCL). Similarly, whenever a segment is
released, its memory space is removed from the allocated list and
connected to (or merged into) the free list.

1.2.4 Timer Management Subsystem

The timer management subsystem provides tasks with a set of timer
management /maintenance services. These services control all
time-dependent functions (e.g., time-slicing, I/0, job accounting
and file dating) through the universal clock (UCLOCK).

The following timer queues are maintained by the timer management
subsystem:

e Time of day

e Device time-out

e Communications device time-out

e Interval timer

There are several timer routines that service these queues.
Entries are placed on the time of day queue and the interval

timer queue as a result of SVC2 timer requests. The control
blocks on the time of day queue are referred to as timer queue
elements (TMQs). The interval timer queue has the same format as

the time of day queue but is maintained as a separate queue.

The UCLOCK consists of an LFC and a precision interval clock
(PIC). In a 60Hz system, the LFC generates an interrupt every
8.3ms or 120 times per second. In a b50Hz system, the LFC
generates an interrupt every 10ms, or 100 times per second. The
PIC interrupts when a task's requested time interval has expired
or at intervals of 4,096ms, whichever 1is shorter. If the
interval terminates or the time of day is reached, the TMQ |is
removed from system space and a trap is generated, or the task is
removed from timer wait.

In a Model 3200MPS System configuration, the real-time support
module (RTSM) provides each processor with a 32-bit real-time
counter for timing program execution. These counters are
incremented every microsecond by an RTSM 1MHz on-board
oscillator. The RRTC instruction allows tasks to read the
counters. See the Perkin-Elmer Model 3200MPS System Instruction
Set Reference Manual for more information.

1-12 48-040 FOO RO3

1.2.5 File Management Subsystem

The 0S/32 file management subsystem stores and retrieves
information for a task on secondary storage devices (disks,
floppy disks, etc.). The file manager partitions this storage
into smaller areas, called files, that can be used by tasks for
data and program storage. In addition, the file manager provides
tasks with the following support services for file management:

Allocate creates a file by allocating space on a
secondary storage device.

Delete . removes a file from a secondary storage
device.

Rename changes the name of a file.

Open assigns a logical unit (lu) to a file.

Close cancels the lu assignment.

Fetch examines the attributes of a file.

attributes

Checkpoint ensures that all data in an output buffer is
written to a secondary storage device.

Software selects recording density for 6250 bits

density per inch (bpi) magnetic tape drives.

selection

1.2.6 Input/Output (I1/0) Subsystem

The 1/0 subsystem provides a uniform programming interface
between the task and external dev1ces I1/0 operations can occur
in the following task modes:

Wait halts execution until data transfer is
completed.

Proceed 1/0 continues task execution during data transfer.

Halt 1/0 allows the task to cancel previous proceed I/0
requests.

Queued 1/0 allows a task to queue I/0 requests to a busy
device and continue execution until the device
is free.

A task trap mechanism can be used to report each completed 1/0
operation. Wait-only and test I/0 functions allow the task to
synchronize its execution with the completed I/0 operations.

48-040 F0OO RO3 1-13

1.2.7 Error Recording Subsystem

The error recording subsystem logs all data on disk errors for
the Error Reporting Utility, which analyzes the data and
generates reports.

0S/32 memory error recording software supports the memory error
log hardware of the Perkin-Elmer Series 3200 processors. Error
log hardware keeps a history of the single-bit corrected memory
errors. The operating system reads the error log hardware and
stores the error information into an internal error log buffer.
When the error log buffer is full, its contents are stored on an
error recording file with the date and time of the last error
recorded. When the error recording file is almost full, a
warning message is displayed on the system console indicating
that a new error recording file should be allocated or that the
Error Reporting Utility should be initiated.- The Error Reporting
Utility provides reports on the previously recorded error
information in the error recording file.

The current error status can be displayed to the system console
by using the DISPLAY ERRORS command. The internal error log
read-out period can be changed by the system operator.

1.2.8 Memory Diagnostics Subsystem

The memory diagnostics subsystem eliminates inoperable memory
areas from the system without affecting task execution. It
allows the operating system to execute when portions of real
memory have been removed (holes) or when a part of the system is
powered down for maintenance. Memory can be tested and marked on
and off through the operator MEMORY command or when the operating
system is initialized.

The marked-off areas are noted as allocated in the memory map.
Memory is marked-on when previously marked-off memory is to be
used again. If an irrecoverable memory error occurs during task
execution on a Perkin-Elmer Series 3200 processor, the operating
system automatically marks off the area occupied by the task.

1.2.9 Loader and Segmentation Subsystem

The 0S/32 resident 1loader is responsible for 1loading tasks,
reentrant libraries, task common (TCOM) segments, and partial
images. These tasks and segments must have been built by Link.
Each task image generated by Link contains information related to
the task (e.g., task options, size, libraries referenced) in a
record called the loader information block (LIB). The 08/32
resident loader uses this information to generate data areas, set
the task options, create segment tables for the tasks and map the
task segments.

1-14 48-040 FOO RO3

All user tasks (u-tasks) in 0S/32 are built as though they were
loaded at physical address 0 in memory . The
relocation/protection hardware automatically relocates the task
addresses at run-time by using the task segment table. This
process is totally transparent to the user.

The loader is also responsible for creating the task environment;
allocating roll files; creating, maintaining and deleting segment
tables; maintaining a segment control 1list; and mapping and
unmapping partial images.

The task image can be divided into pure and impure segments by
specifying the SEGMENTED task option when the task is built by
Link. Regardless of the number of times a task 1is 1loaded, the
loader will allow only one copy of the task's pure segment in
memory at any one time. A separate copy of the task's impure
segment is loaded each time the task 1is 1loaded. The
relocation/protection hardware ensures the integrity of pure
segments by allowing read-only and execute-only access privileges
to those segments.

Access to task common is achieved mnemonically in FORTRAN or
assembly programs. The 1linkages are resolved by Link. Link
commands are also used to request read, write and execute
privileges for task common blocks. See the 0S/32 Link Reference
Manual for more information.

1.2.10 Basic Data Communications Subsystem

The basic data communications subsystem provides a software
interface between tasks and common carrier facilities. Basic
data communications facilities allow the user to access remote
terminals or computers as though they were locally attached
peripherals. For example, with 0S/32 Data Communications
software, a task performs I/0 to a remote terminal in the same
manner as [/0 to a local device.

In addition to providing device-independent (logical 1/0) access
to the task, the subsystem provides a device-dependent [/0
capability that allows the systems programmer to tailor a
communications package to a particular installation. Such a
package can include device-dependent and device-independent
support of asynchronous line devices as well as device-dependent
support of binary synchronous lines.

The 0S/32 Basic Data Communications software support package is
required for all 32-bit communications products; e.g., HASP,
2780/3780 Remote Job Entry, the zero-bit data link control (ZDLC)
Channel Terminal Manager and the Ethernet Data Link Controller
(EDLC), which support the synchronous data logic control (SDLC),
high-level data 1link controller (HDLC) and advanced data
communications control procedure (ADCCP) protocols.

48-040 FOO RO3 1-15

1.2.11 Console Monitor Subsystem

The console monitor subsystem processes all I/0 requests directed
to the system console device and the system log device from all
tasks including the command processor task. The console driver
is responsible for intercepting system console I/0 requests and
for directing them to the console monitor or to another monitor
task such as MTM. All I/0 operations between the system console
and tasks running under MTM are routed to the user's terminal
through MTM and not through the console monitor.

Wwhen a command is issued from the system console, the console
monitor issues an SVC6 to the command processor notifying it of
a command to be processed. The command processor interprets the
command and issues an SVC6 to the console monitor indicating that
it is ready to accept another command.

The console driver is a part of the 0S/32 I/0 subsystem and is
the module that intercepts [/0 requests to the system console,
processes them, and gives them to MTM or to the console monitor
to perform the actual I/0.

The console monitor is the first task dispatched at 08/32
initialization. The console monitor initializes both itself and
the dummy device control block (DCB) used by the console driver
to intercept requests from the system console. The monitor then
issues an SVC6 to start the command processor.

1.2.12 Command Processor Subsystem

The command processor subsystem accepts commands from the system
console monitor, decodes them, and calls the appropriate
executor. Commands can be input to the command processor by
entering them directly through the system console or issuing them
through a foreground task that wuses the system console as an
interactive I1/0 device. Commands input from a foreground task
are executed by the command processor in the same manner as
commands entered from the system console. If an error occurs
during execution of a command, the command processor outputs an
error message to the console.

An extension to the command processor, the command substitution
system (CSS) allows commonly performed sequences of operations to
be executed with one command. The CSS routines provide the user
with the ability to build, execute and control files of operator
and MTM commands. The user establishes command files that are
called from the user console and executed in the user-defined
sequence. In this way, complex operations can be carried out by
the user with few commands. These commands are analogous to
macro instructions in assembly language.

1-16 48-040 FOO RO3

The CSS provides a set of logical CSS commands to conditionally
control the precise sequence of commands to be executed.
Parameters can be passed as part of a CSS call so that general
sequences can be written that take on specific meaning only when
the parameters are substituted. Other calls to CSS files can be
imbedded within a CSS file (nested calls).

The command processor normally runs at the second highest
priority 1level after the console monitor in 0S/32. This task is
strictly trap driven and responds to the SVC6 task queue
parameter calls from the console monitor to service a command
request. When the command is processed, it signals the console
monitor for a new command read via an SVC6 queue parameter call
and then enters into a trap wait state. The command processor
priority can be decreased by the operator ATTN command. This
command can be used in a real-time application environment to
allow a task to run at a higher priority than the command
processor.

1.2.13 System Initialization Subsystem

After the operating system is lcaded, the system initialization
subsystem initializes the memory diagnostics subsystem, error
recording subsystems, and system control blocks and tables in
memory . It then dispatches the console monitor, which readies
the command processor to accept commands from the system console.
1.2.14 Internal Interrupt Subsystem

The internal interrupt subsystem is responsible for:

® handling illegal instruction faults,

e handling arithmetic faults,

e detecting memory faults,

e handling system queue service (SQS) interrupts,

® handling relocation/protection hardware faults,
e handling data format/alignment faults,

e handling power fail and power restore conditions,

e restoring an interrupted task to its previous program state
upon resumption of the task,

® handling parameter block errors,

48-040 F0OO RO3 1-17

e handling illegal SVCs and SVC interrupts,
e handling machine malfunction interrupts, and

e performing memory image dumps.

Processor-dependent interrupt handlers comprise the internal
interrupt subsystem. This subsystem does not support external
I/0 interrupts; they are handled by the appropriate device
drivers.

On a Model 3200MPS System, the CPU handles all fault conditions
or interrupts that occur during execution of a task on an APU.
Thus, the APU can execute another task while the CPU is handling
the fault or interrupt.

1.2.15 Optional User Supervisor Call (SVC) Subsystem

SVCl4 is provided as an optional SVC that can be defined by the
user. On execution, the task receives a task trap for SVCl4.
See the 0S/32 Application Level Programmer Reference Manual for
information on how to implement the SVCl4 trap feature.

1.2.16 Floating Point Subsystem

A task has optional access to single and/or double precision

floating point instructions under 0S/32. Floating point
instructions can be executed through hardware or simulated by
software. Systems that do not support floating point options

handle all floating point instructions as illegal instructions.

1-18 48-040 FOO RO3

CHAPTER 2
PRIVILEGED TASKS

2.1 INTRODUCTION

In a multi-user system, improper wuse of certain machine
instructions, called privileged instructions, can have a
detrimental effect on system integrity. Privileged instructions
include storage protection setting, interrupt handling, timer
control, input/output (I/0) and some processor status-setting
instructions. To prevent accidental or intentional misuse of
thege instructions, 0S/32 provides a privileged operating state
in which tasks can execute these instructions. In addition to
the privileged operating state, 0S/32 provides a privileged task
state in which tasks can access the file account and bare disk
0S/32 supervisor routines.

Only privileged tasks can execute in a privileged operating or
task state. 08/32 allows three types of privileged tasks:

® Executive tasks (e-tasks)

e Privileged user tasks (u-tasks)

e Diagnostic tasks (d-tasks)

A task can be linked as a privileged task by specifying one or
more of the following task options in the Link OPTION command:

ETASK, ACPRIVILEGE, DISC, DTASK
See the 0S/32 Link Reference Manual.

This chapter describes the privileges that are available to each
type of privileged task through the Link OPTION command.

48-040 FOO RO3 2-1

2.2 EXECUTIVE TASKS (E-TASKS)

E-tasks run with the memory address relocation/protection
hardware and are allowed to execute all instructions provided by
the hardware. E-tasks always have file account and bare disk
privileges. In addition, e-tasks can execute code that modifies
or enhances the 0S/32 system software. For example, an e-task
can modify one of the system modules to enhance an existing 0S/32
feature. E-tasks can also function as drivers that support
nonstandard peripheral devices. A task can be 1linked as an
e-task by specifying the ETASK task option in the Link OPTION
command . The following sections detail the programming
considerations that must be taken into account when writing
e-tasks.

2.2.1 Writing Executive Tasks (E-Tasks)

Because e-tasks execute in a privileged state, certain
precautions must be taken when e-tasks are programmed.

When an e-task is executing, no memory address protection or
relocation 1is provided and all interrupts are enabled. The task
has access to all machine instructions and memory address space
in the system. In addition, the e-task can access system tables
and control information via the system pointer table (SPT). The
address of the SPT is stored in the halfword at location X'62' in
memory.

Link builds the image for an e-task as if it were loaded at
absolute location zero. The loader, however, is free to load the
e-task into any available memory location. Therefore, an e-task
must be coded as if it were positionally independent; an e-task
must not contain relocatable code.

Because Link relocates e-task addresses to absolute zero, e-tasks
cannot assemble code containing address constants as shown in the
following example.

Example:

SVC7BLK DB X'80',7
DAC ADDR

An e-task must dynamically set the addresses required by the
task.

2-2 48-040 F0OO RO3

To reference addresses in the +16kb range, use the following
technique:

UE, BUFSTART
UF , BUFEND

U3, SVC1PBK

STM UE,SVC1.SAD(U3)
sve 1,0(U3)

b5 5

References to addresses exceeding the 1l6kb range can be made in
the following manner.

Example:

BASE LA U4 ,BASE
- LA UE, BUFSTART-BASE (U4)
LA UF , BUFEND-BASE (U4)
LA U3,SVC1BLK-BASE (U4)
ST™ UE,SVC1.SAD(U3)
sSvC 1,0(U3)

E-tasks smaller than 16kb must use the no RX3 (NORX3) (CAL/32)
instruction to force all RX instructions to the RX1l or RX2
format. The tasks must not contain any RX1l or RX3 instructions
with relocatable addresses. See the Common Assembly Language/32
(CAL/32) Programming Reference Manual.

2.2.2 0S/32 Data Structures Used by Executive Tasks (E-Tasks)

0S/32 provides two macro libraries that contain 0S/32 and
multi-terminal monitor (MTM) data structures. The 0S/32 data
structure macro library is stored in file SYSSTRUC.MLB. Table
2-1 contains a 1list of the macros and corresponding data
structures in this library. Data structures specific to the MTM
subsystem are stored in file MTMSTRUC.MLB. The contents of this
library are listed in Table 2-2.

Using the 08/32 e-task capability and the data structures
available to e-tasks, the system level programmer can incorporate
changes or add user-written modules to the source of the 0S/32
system modules supplied by Perkin-Elmer.

48-040 FOO RO3 ‘ 2-3

TABLE 2-1 0S/32 DATA STRUCTURES MACRO LIBRARY

MACRO

Y E T XTI T T Y E 1 i iR R i i i R R 2 R 2 3 B A AR R_B_ 3 BB B 2 2 3 3 S

$ACB
$AOPT
$APB
$APBS
$APRC
$APS
$APST
$ATF

$CCB
$CTX

$DATB
DCB
$DDCB
$DDE

$DFLGC
$DIR

$DXFL -

$EMIL
$EFMGC
$EREGS
$ERRCS
$ESYS
$EVN

$FCB
FCB
$FDE
$§FFLG
$FD

$GERC
$HB

INTCPARM
$ICB
$I10B
$I0BS
$IOBF
$IOH
$IPCB
$IRCB
$IVT

DATA STRUCTURE

Directory access control block (ACB)
Auxiliary processing unit (APU) options
Auxiliary processor block (APB)

$APB, $APRC, APS, SAOPT

Passback reason codes and equates

APB status codes and equates

APU status codes, error codes and equates
Account transaction file (ATF)

Channel control block (CCB)
U-task context block

Device attributes equates

$PDCB, $DDCB ,DCB EQUATE, $DFLAG, $DATB, $DXFL
Device-dependent device control block (DCB)

Error log data structure
DCB flags

Primary directory entry
Disk-extended flags

System milestone recording entries
Bulk device error recording entries

16 executive registers (El=register 1)
$GERC, $EFMG, $ESYS, $EMIL, $MERC
System error recording entries

Event node

File control block (FCB).
FCB and FCB flags

Free block descriptor entry
FCB flags

File descriptor (fd)

General error recording information
Help subroutine argument block

Supervisor call (SVC) intercept information
Intercept control block

1/0 block

1/0 and 1/0 flags

1/0 block flags

I1/0 handler list

Intercept path control block

Intercept control block

Initial value table

48-040 FOO

e e o s m- ——- —— — ——— —— A = Amas M= e e e MEee Smem Mmen e wmen e Gmes SeAn MEER M Wman Gmas Mean Gmms Smem e man Mmem WhAn M MRes Smem SRes Smem SR e mes e el e e

RO3

$LIB
$L.IBS
$LLE
$LPMT
$LOPT
$LSG
$LTCB

$MAGDCB
$MERC

§OCB
$0DT
$ORT

$PDCB
§PFCB
$PSDCB
$PSTCB
$PSW

$QH
$QPB
$OPBS
$QPSTAT

$RCTX
$REGSS
$RLST
$RREGS
$RSARCPY

$S1X0
$SDCB
$sSD
$SDE
$SOPT
$SPLMSG
§SPT
$SPTE
$SPOL
$STE
$SPR
§svcl
§svcls
$SVCI1ERR
$svca
$SVCS
§SVCH
$svC7

48-040 FO0O0O RO3

0S/32 DATA STRUCTURES MACRO LIBRARY (Continued)

it
1]
]
Il
il
Il
I
il
I}
]
1]
il
L]
il
it
]
]
]
1]
1]
]
[]
1]
]
1]
]
]
I
I
"
1]
It
it
[
]
1]
]
]
]
il
]
I}
I}
I}
[}
[
II
n
[
il
]
il
1]
[
1]
it
]
il
il

Loader information block (IL.IB)

L.IB and loader options

Load leveling executive (LLE)

Logical processor mapping table (LPMT)

Loader options

Load segment

Loader task control block (TCB) redefinitions

Magnetic tape DCB
Memory error recording entry

Over lay control block
Overlay descriptor table (ODT) structure
Overlay reference table

Primary (device-independent) DCB
Private FCB

Pseudo DCB structure (device—-dependent)
Pseudo TCB

Program status word (PSW)

SVC intercept queue handler structure
Queue parameter block (QPB)

$QPB, $QPSTAT

QPB status

RS/RSA context block

$SOPT, $UREGS, $EREGS, $RREGS, $PSW

Roll selection list

16 general user registers (Rl = register 1)
Reentrant system state alternate save area

SVC1l extended options masks
Pseudo print DCB structure
Send data message block
Segment descriptor element
System options

Spooler message structures
SPT

SPT extern definitions
Spooler message

Segment table entries (STEs)
Segment privilege flags
svCl

SVCl and SVC1l error codes
SVC1l error codes

System SVC - reserved

SVCS5 parameter block

SV(C6 parameter block

SVC7 parameter block

TABLE 2-1 0S/32 DATA STRUCTURES MACRO LIBRARY (Continued)

o e —_— — e e - —— A S S — S o P N 7 T T o W G " (" o S o —— o

MACRO H DATA STRUCTURE

$SVC7EXT | Extended SVC7 functions

i

H

i i

$SVC7SPL. | Spooler SVC7 parameter block H
$SVC13 i SVC1l3 parameter block H
§SvCl3$ | $sSvCl3, $APST H
§s5VT | System value tab i
$SYP | System space structure i
$$SPT ! SPT table definitions |
) 1

1 [

$TABLS | Structure/extern generating macro H
$TCB ! TCB, $SDE, IOB, $TCB, $CTX |
$TCBS | $TCB, $TOPT, $TSTT, $TWT, $TLFL, $PSTCB, $0OCB, |
! $TQE, $TFL, $TPRC, TQH |

$TFL | TCB flags 1
$TKQ { Task queue head H
$TLFL i Logical unit (lu) table of flags !
$TMQ { Timer gueue entry]
$TOPT i Task options flags H
$TPRC | Task passback codes i
$TQE i Task event queue entry i
$TQH | Task event queue header i
$TQ27 | 8VC2 code 27 parameter block |
$TSTT | Internal task status flags i
$TSW ! Task status word (TSW)]
$TTB i APU trap block '
FTWT | Task wait status flags i
i !

$UDL ! User-dedicated locations (UDLs) i
$UDLS i UDL and TSW i
$UREGS | 16 general user registers (Ul = register 1) i
[}]

i [

$VD i Volume descriptor i
$VFCHARS | Vertical forms control (VFC) characters /
$VFDCB | Common VFC DCB structure |
i |

1 !

$WAP | Read/write access matrix header structure |

o o e o t - —— ———————— " ATe = T 0 " — > — L ———— " N i ——— —— ——

48-040 FOO RO3

MACRO DATA STRUCTURE
$TERMUSR Terminal user block

$AUF Authorized user file (AUF) record
$MTMSTE Terminal state definitions

$PRIV User privileges

] i

] =

]]

1]

) [

] [}

1 [

1]

i]

! $VAR ! Command substitution system (CSS)
| { variable flags and structures
]]

; |

] i

i i

] i

$BTQ Batch queue header and entry structures
$CMB Command buffer structure

$LMB Log/broadcast message buffer structures
$CBH Common buffer header structure

$CSTK €SS pointer stack structure

2.3 PRIVILEGED USER TASKS (U-TASKS)

I.ike nonprivileged u-tasks, privileged u-tasks run with the
memory address relocation/protection hardware ‘enabled and are
restricted to a subset of instructions known as nonprivileged
instructions. If a u-task attempts to execute a privileged
instruction, it causes an illegal instruction fault. However,
unlike nonprivileged u-tasks, privileged u-tasks have file
account and bare disk privileges. File account privileges allow
tasks to specify an account number in the file account/class
field of a fd. Bare disk privileges allow tasks to perform I/0
operations to a bare disk device. See the 05/32 Supervisor Call
(SVC) Reference Manual.

A u-task acquires file account and bare disk privileges by
specifying the ACPRIVILEGE and DISC task options, respectively,
in the Link OPTION command when the task is built.

2.4 DIAGNOSTIC TASKS (D-TASKS)

D-tasks, like e-tasks, can execute all instructions provided by
the hardware. However, like u-tasks, d-tasks run with the memory
address relocation/protection hardware enabled and execute in the
nonprivileged task state. D-tasks are designed for wuse in
diagnostic applications, loading writable control store (WCS),
and direct execution of 1/0 instructions.

A task can be linked as a d-task by specifying the DTASK task
option in the Link OPTION command. To execute in the privileged
task state, a d-task must be built with the ACPRIVILEGE and DISC
task options enabled.

48-040 FOO RO3 2-7

- wmas wme Gmer e e wmen e W e Gme e Wa wmew e

CHAPTER 3
PROGRAMMING IN A MODEL 3200MPS SYSTEM
MULTIPROCESSING ENVIRONMENT

3.1 INTRODUCTION

Programming in a Model 3200MPS System multiprocessing environment
is similar to programming in a uniprocessing environment.
However, due to the nature of the hardware configuration, the
Model 3200MPS System environment offers one major programming
advantage: increased throughput. For efficient wuse of this
expanded comput.ing ability, the system 1level programmer should
take the following into consideration:

e The selection of tasks that are to be executed on auxiliary
processing units (APUs)

e The preparation of the APUs for task execution
e The assignment of tasks to the processors
e The establishment and control over the order of task execution

e The prevention of invalid data variables, caused when two
tasks running on different processors concurrently read and
modify a common data structure

® The measurement of real-time performance of the individual
tasks in the system

® The customization of APU fault handling

This chapter focuses on some techniques that can be used by an
assembly language programmer in solving some of the programming
problems that are ‘unique to the Model 3200MPS System
multiprocessing environment. For additional information on Model
3200MPS System programming, see Table 3-3 at the end of this
chapter.

3.2 DESIGNING TASKS TO RUN ON A MULTIPROCESSING SYSTEM
The main performance advantage of designing an application to run
on a multiprocessing system is that a job can be broken down into

several parts that can be run on different processors
simultaneously.

48-040 FOO RO3 3-1

A job can be divided among a number of tasks that control
individual operations, such as process input/output (1/0),
perform calculations resulting from a particular action, and
provide an operator interface for reporting and responding to the
results of the calculations.

The individual APUs running these tasks can transmit all status
information regarding the components of the system to another
task, called the supervisor monitor. The supervisor monitor can
then output messages to a console or printer as the status is
received. Another function of the supervisor monitor is to store
a code in a status word in memory that can be accessed by a
standby t.ask. The standby task then would be able to
periodically check the status of the system and adjust task
execution accordingly.

Once the programmer has divided a job into several tasks that can
be run simultaneously, the next step should be to assign each
task to an APU for execution. It should be remembered that
execution of a computation-intensive task on an APU increases
overall system performance, while an [/O-intensive task running
on an APU decreases system performance. Because the operating
system executes exclusively on the central processing unit (CPU),
each I/0 request made by an APU task causes the task's execution
to transfer back to the CPU for operating system support. All
I/0-intensive tasks should be assigned to the CPU for execution.

3.3 PREPARING AN AUXILIARY PROCESSING UNIT (APU) FOR TASK
EXECUTION

0S/32 supports a multiprocessing configuration consisting of one
CPU and one to nine APUs. The operating system schedules tasks
for execution by arranging them in queues. These gueues consist
of a CPU ready gqueue and APU execution gqueues.

3.3.1 Queue Assignments

The CPU ready queue 1is intended for supervisor «call (8VC)
I/0-intensive tasks and is serviced by the CPU. The APU queues
are numbered 0 through n where n represents the number of APUs in
the system. They are intended for the computation-intensive
tasks and are serviced by APUs assigned to them. APU queue 0 is
serviced by the CPU when the CPU ready queue is empty. The APU
execution queues numbered 1 and above are also referred to as
APU-only queues.

The APU-only queues may have the following assignment
possibilities:

e The queue is idle with no APUs assigned
e The queue is private and has one APU assignad

e The queue is shared with two or more APUs assigned

3-2 48-040 FOO RO3

When the operating system is loaded, each of the APU-only queues
is designated as a private queue and is assigned to one APU. The
number of the queue will correspond to the number of the APU to
which it is assigned. Subsequently, the APUs may be reassigned
using a corresponding SVC1l3 control function or the operator
command APC. To employ an SVC1l3 control function, a task must be
linked using the OPTION APCONTROL command of LINK.

3.3.2 Auxiliary Processing Unit (APU) Operating States

0S/32 maintains two operating states for an APU, each differing

in the degree of APU readiness for task execution. These states
are:

DISABLED APU is unavailable for all purposes except
running the power-up link check procedure.

ENABLED APU has successfully passed the power-up 1link
check procedure and is ready for task
execution.

All APUs are put into the DISABLED state upon operating system
load or power restore. On a power fail restart, an attempt is
made to upgrade each APU not disabled prior to the power fail to
the ENABLED state.

The transition from one APU state to another can be accomplished
along the paths shown in Figure 3-1. These transitions are
executed by the corresponding SVC13 control functions or the
operator APC command. The APU firmware logic requires resetting
the APU state after it is disabled in order to be enabled again.
The resetting 1is done using the appropriate button on the APU
board or by powering down the APU cabinet.

9231

MARK DISABLED

DISABLED
STATE

ENABLED
STATE

MARK
ENABLED

MARK ENABLED

Figure 3-1 Valid APU Operating States

48-040 FOO RO3 3-3

- e e e m— —————

3.3.3 APU-Only Queue Operating States

0s/32 maintains three operating states for each APU-only queue,
each differing in the degree of queue availability for task
scheduling. These states are:

OFF APU queue is not available for task
scheduling.

ON EXCLUSIVE APU gqueue has only a designated task scheduled
to it. (Only an idle or private APU gueue can
be marked ON EXCLUSIVE.)

ON APU queue is fully available for task
scheduling.

All the APU-only queues are put into the OFF state upon operating
system load. Upon a power fail restart, the 1load power fail
monitor (LPFM) restores the queue states. The queue 0 is always
maintained in the ON state.

The transition from one APU queue state to another can be
accomplished along the paths shown in Figure 3-2. These
transitions are executed by the corresponding SVC13 mapping
functions or the operator QUEUE command. To use an SVC1l3 mapping
function, a task must be linked using an OPTION APMAPPING command
of LINK.

3-4 48-040 FOO RO3

6275-1

ON
EXCLUSIVE

MARK ON

ON
STATE

MARK ON
EXCLUSIVE

MARK OFF

Figure 3-2 Valid APU Queue Operating States

3k ke k sk 3k ke ok dk ek sk ok ok dk gk 3k Xk ok 3k 3k dk ok 3k dk e ok sk Sk ke gk ke ok 3k 3k gk kX k3 ok 3k ok dk %k 3k ok ek Kk Kk K k K X %

x The following code demonstrates how SVC13 *
* is used to enable an APU and mark on the queue x
x for task scheduling. This example does not x
* check for SVC1l3 execution errors. A task incor- *
x porating this code must be linked using a LINK *
% X
X *x

command OPTION APCONTROL., APMAPPING.
KHHKIKHKHIKIKIKIKKKKIKIKIK KKK IR AK KKK HIXIKIK KKK IKI KKK KK KKK KKK KX

48-040 FOO RO3 3-5

Example:

$5vC13

ALIGN 4
ENABLE DS SvCcl3 ALI.OCATE STORAGE FOR SVC 13 PARBLK
ENABLEE EQU x
*GAIN CONTROL RIGHTS, ENABLE APU, START APU, ASSIGN TO QUEUE,
*RELEASE CONTROL RIGHTS

ORG ENABLE+SV13.0PT

DB X'cp’

ORG ENABLE+SV13.FUN

DB X'03" FUNCTION CODE=3

ORG ENABLE+SV13.DOP

DB X'o1' SEND START APU COMMAND
ORG ENABLE+SV13.APN

DB 2 APU NUMBER

ORG ENABLE+SV13.USE

DCX 3 ASSIGN APU TO QUEUE

ORG ENABLEE
***BUITLD SVC 13 PARAMETER BLOCK FOR MARKING QUEUE
ALIGN 4
MARK DS SVC13. ALLOCATE STORAGE FOR SVC 13 PARBLK
MARKE EQU *
*GAIN MAPPING RIGHTS, MARK QUEUE ON, MAP LPU,
*RELEASE MAPPING RIGHTS
ORG MARK+SV13.0PT

DB X'Bl’

ORG MARK+SV13.FUN

DB 2 FUNCTION CODE=2

ORG MARK+SV13 .DOP

DB 2 LPU NUMBER TO BE MAPPED
ORG MARK+SV13.APN

DB 3 QUEUE TO MAP LPU TO

ORG MARKE

xxxxx*x[SSUE SVC 13 TO ENABLE APU AND MARK QUEUEX*XXXxx
svc 13,ENABLE ENABLE APU
svC 13 ,MARK MARK QUEUE ON

3.3.4 Logical Processing Unit (LPU) Mapping

For the purpose of directing tasks to the queues, 0S/32 defines
LPUs ranging from O to 255. LPUs are mapped into the APU queues
while each task is associated with a particular LPU.

All the LPUs are initially mapped to queue 0 at operating system
load time. LLPUs 1 through 255 can later be mapped to other
gueues using a corresponding 8SVC13 mapping function or the
operator LPU command. LPU O always remains mapped to queue O.

3-6 48-040 FOO RO3

3.4 ASSIGNING TASKS TO A PROCESSOR QUEUE

As mentioned above, each task in the Model 3200MPS System is
associated with an LPU. The initial LPU value is established at
task link editing time to be either LPU=0 by default or a value
specified in the OPTION LPU command of Link. The LPU value may
be changed at task load time or whenever the task is paused via
a corresponding SVC6 function or with an operator OPTION LPU
command.

Each task's LPU mapping (association with an APU queue) is
enabled or disabled in a task status either by default or via a
corresponding SVC6 function or via operator OPTION LPU and OPTION
NLPU commands. By default, LPU mapping is disabled if the task
is 1linked with LPU=0 and is enabled if the task is linked with a
non-zero LPU. The operator OPTION LPU command, however, sets the
specified LPU and also enables mapping even if LPU=0 was
previously specified. The operator OPTION NLPU command enables
mapping without changing the LPU number.

All tasks with mapping enabled are called LPU-directed tasks.
0S/32 places the LPU-directed tasks onto corresponding APU
queues. Tasks with mapping disabled and CPU-directed tasks are
placed onto the CPU ready queue.

Sk Kk K gk ok sk ok ok ko ke 3k kK kK sk ok kK ok ok 3k okt ok e ok ke 3k gk ok sk ok sk sk ok sk 3k dk ok ok ok sk ok sk ok ok ok sk ok ok Xk ok Xk X

b 4 *
* This example 1loads and starts a copy of a task *
x and makes it LPU-directed via the SVC6 function. *
* b 4

%k kK ek Kk sk ok dk ok ok ke ke sk ek ok gk kK 3k ke Ok ok ok ok sk 3k ok ok ok ke 3k ok gk ok 3k 3k ok ok 3k ok sk ok ok sk dk ok ok ok %k Xk Kk kR ok Xk

$5VCH

ALIGN 4 ’
PARBLK DS SVC6 ALIL.OCATE STORAGE FOR PARBLK
ENDBI K EQU x "
*SET LOAD, ASSIGN LPU, LPU-DIRECTED, & START FUNC CODES

ORG PARBLK+SVC6 . FUN

DC SFUN.DOM!SFUN.LM!SFUN.LPM!SFUN.XLM!SFUN.SIM
ORG PARBLK+SVC6 .LU
DB 5 LU OF DIRECTED.TSK (IMAGE)
ORG PARBLK+SVC6 . SAD
DC 0 TASK EXECUTION START ADDR
ORG PARBLK+SVC6 . SOP
DC 0 START OPTIONS (none)
ORG PARBILK+SVC6 . SEG
DC Y'40' TASK WORKSPACE
ORG ENDBLK
START EQU x
*SETUP NAME OF TASK TO BE LOADED
LI R1,C'APU1"’
ST R1l,PARBLK
LI R1,C'TASK'

ST R1l,PARBLK+4

48-040 F0OO RO3 3-7

- e - ————

*ASSIGN LPU NUMBER
LIS R1,2
STB R1,PARBLK+SVC6 .LPU
*[SSUE SVC6 TO LOAD TASK FROM LU5S
svc 6, PARBLK
END START

After the SVC6 in the above example is executed, the task will be
loaded into memory from the file (DIRECTED.TSK) with a workspace
of 64 (X'40') bytes. When the task is started, the task manager
dispatches it to the APU queue into which LPU2 is mapped.

3.5 CONTROLLING TASK ORDER OF EXECUTION

In a uniprocessor system, priority scheduling determines the
execution flow of the tasks in the system. In order to affect
task scheduling, a programmer must change the priority of the
tasks in the system. In an 0S/32 Model 3200MPS multiprocessing
system, there is a choice of possibilities to control the order
of task execution as described in this section.

3.5.1 Changing Auxiliary Processing Unit (APU) Task Queue
Ordering

Each of the APU queues can be set to handle its assigned tasks
through the following priority disciplines.

e The no-priority queue services tasks in a first-in/first-out
(FIFO) order, regardless of task priority.

e The priority queue services its highest priority tasks first
and its equal priority tasks in a FIFO order. No preemption
of currently executing tasks by higher priority tasks will
occur.

e The priority-enforced queue services its tasks 1in the same
manner as the priority queue; however, higher priority tasks
are allowed to preempt lower priority tasks being executed on
the processor assigned to the queue.

At operating system load time, the qgueues are initially set with
the following priority assignments or disciplines. See Table
3-1.

3-8 48-040 FOO RO3

TABLE 3-1 QUEUE PRIORITY ASSIGNMENTS

' QUEUE | PRIORITY DISCIPLINE

: X T F - F F F F 2 3 7 F 2 F F FF_F F 3 -F F ¥ ¥ F - F F ¥ F FJ

{ CPU Ready Queue Priority-enforced
i APU Queue O Priority-enforced
| APU Queue 1 to n} No-priority

T ot o s s s o S o o i s e o o e — —— — T —— = i1

These initial settings can be subsequently altered via a
corresponding SVC1l3 mapping function or with an operator QUEUE
command .

R KKK KK Kk kK Rk de kK Kk Kk sk ok ke ke k ki kK ke kK kK ke kK sk ok Kk ke ok ok ok ke k% Kk ok kK kK kK kK K

o The following example uses SVC1l3 to change a x
* queue priority discipline. If the discipline *
x of this queue prior to the SVC1l3 call was no- *
x priority, 0S/32 will reorder the queue according x
x to the task priorities subsequent to the SVC13 *
x call. A task incorporating this code must be *
* b 4
* *

linked using the LINK command OPTION APMAPPING.
KK K KK K Kk Kk Kk ek ke kK Kk sk ke sk Kk sk Kk ok vk ok kR ok kK ok ok kK kK kK ki k ok k kK sk k ok ok ok ok ok ok kX

Example:
SVC13
ALIGN 4
DISCIP DS SVC13 ALLOCATE STORAGE FOR SVC1l3 PARBIK
SETD EQU *

*GAIN MAPPING RIGHTS, SET QUEUE DISCIPLINE,
*RELEASE MAPPING RIGHTS
ORG DISCIP+SVC13.0PT

DB X'85"

ORG DISCIP+SVC13.FUN

DB 2 FUNCTION CODE=2

ORG DISCIP+SVC13.APN

DB 3 QUEUE NUMBER

ORG DISCIP+SVC1l3_.USE

DC H'1l' PRIORITY DISCIPLINE
ORG SETD

*ISSUE SVC1l3 TO CHANGE QUEUE DISCIPLINE
svCcl3, DISCIP

48-040 FOO RO3 3-9

e mmes

3.5.2 Monitoring and Preempting Auxiliary Processing Unit
(APU) Task Execution

The Model 3200MPS System provides facilities to monitor APU
operation via the mechanism of task trap service. The APU
reports its significant events to 0S/32 by issuing asynchronous
status signals.

An APU status signal is a byte with the following format:

! PAR | RUN | NON- | WAIT | RESP | ERROR | MOD1l | MOD2 |

i i i TASK | | i | ! i

Bits

0 1 2 3 4 5 6 7

PAR is the parity bit which is adjusted to
maintain odd parity for the byte.

RUN is set to 1 if the APU is currently not idle.
The APU may be executing task instructions or
performing servicing functions (nontask) such
as: selecting a task from the queue,
releasing a task back to the queue, processing
a task fault, etc.

NON-TASK is set to 1 if the APU is performing any of
the servicing functions.

WAIT is set to 1 if the APU is idle and in the wait
state imposed upon it by the last executed
task.

RESP is set to 1 if the APU is returning the status
in response to a command from the CPU
(normally an SVC13 read APU status function);
this bit is always reset in an APU
asynchronous status signal.

ERROR is set to 1 if the APU has detected an error
in system data structures and subsequently
entered an idle state.

MOD1l, MOD2 are set or reset to supply some additional

status information.

3-10 48-040 FOO RO3

When the last three bits are set to 1, they have the values of 4,
2 and 1, respectively. The actual value of these three bits
reflects the APU status condition as follows:

] Undef ined.

1 The APU has detected that the gueue to which
it is assigned is empty (contains no tasks).

2 The APU has rescheduled (released) a task to
the APU gqueue as a result of an RSCHL
instruction in the task or as a result of an
appropriate command issued via _an SVC13
control function.

3 The APU has rescheduled a task to the CPU
ready queue as a result of an RSCH O
instruction in the task, an appropriate

command 1issued via an SVC13 control function,
a nonexecutable APU instruction (normally an
sVC), or a task fault.

4 The APU has detected an error in data
structures at an arbitrary moment.

5 The APU has detected an error in data
structures while attempting to select a task
from its queue.

6 The APU has detected an error in data
structures while attempting to lock its queue.
Each processor locks its assigned gueue prior
to manipulating it.

7 Undef ined.

Detailed information regarding the data structure errors detected
by the APU can be obtained using SVC1l3 read APU status function.
NOTE
In the ‘absence of an APU monitor task,

5/32 reports APU errors via the operator
console.

This section will examine the methods used by an APU monitor task
to:

® receive status signals from an APU, and

e preempt the current task executing on an APU with another task
after a certain time interval has elapsed.

48-040 FOO RO3 3-11

To receive a status signal from an APU, the APU must be connected
and thawed (via SVC6) as a trap-generating device to the monitor
task. In addition, the monitor task must have the appropriate
bits in its task status word (TSW) set, a task queue to receive
the status signal, and a task queue trap-handling routine to
service the trap. ‘

22 2222283832233 23233233232 3232233233333 232222ttt ittt

* The following example demonstrates how to code *
x a typical APU monitor program to receive and %
X handle task queue traps from an APU. For more x
* information on task trap handling, see the 05/32 *
X X
X *

Application Level Programmer Reference Manual.
SOk X Kk % kK % %k % sk %k %k %k 3k 3k 3k ke sk 3k ok sk ok ok o sk 3k ok ok % 3k k% 3k 3k 3k 3k dk kg gk k k dk ok dk ok ok ok ok Xk kX

Example:

xxxx Define a task queue to receive APU signals Xx¥kxkxkxkxkkxx

X x
ALIGN 4 _
TASKQ DLIST 100 DEFINE TASK Q OF 100 ELEMENTS.
b 4 *
* Put the address of task gqueue in UDL (UDL.TSKQ) *
4 *

LA R14, TASKQ
ST R14,UDL.TSKQ

*
%

Set TSW bits to enable the applicable task traps.

*
*

LI R14,TSW.TSKM+TSW.APTM

TSW.TSKM enables task queue service traps

TSW.APTM enables signals from APU

Save TSW values to enable APU signals and task Q entries
ST R14,ENTRIES SAVE TSW VALUES

* % % %
¥ X X %

* TO ENABLE APU SIGNALS AND TASK Q ENTRIES
X *
* SET UP TSW FOR TRAPS IN UDL *
4 *
LA R15,QSERVICE
STM R14,UDL.TSKN SET UP TSW ON TRAPS IN UDL
svCe 9 ENABLE TASK QUEUE ENTRIES

3-12 48-040 FOO RO3

For information on writing a task queue trap handling routine
that removes the APU status entries from the task queue, see the
0S/32 Application Level Programmer Reference Manual.

%% gk Kk Kk Kk sk ok kK kK ke ke dk kK dk ko dk ki k ok ok ok K ok ke ok ke ke gk sk sk ki ki kK kK K K K K kK k k k ok ok ok kR X

* The following code demonstrates a method of *
* connecting the APUs as trap-generating devices *
* to the APU monitor task. *
Kk Kk ks Kk kK k ke kK kK K ke kK ke dk ok kR ok Kk ok ke ke ok ok e ok ke sk kR kR kR Kk Rk kR Kk kR Rk kR kX

Example:

* Enable each APU in the system if it is not enabled and then *
* connect to each APU, but first *
* read APU assignment information to obtain the *
* number of APUs in the system. x
* *
START svc 13,APUASGN

LB R1,BUFFER1+1 LOAD MAX APU NO.INTO R1
* SET UP SVC 13 PARAMETER BLOCK TO *
* FETCH APU STATUS *

Lis R3,X'80°

STB R3,FETAPU+SV13.0PT SET APU STATUS OPTION

LIS R3,1

STB R3 ,FETAPU+SV13.FUN SET UP FUNCTION CODE 1

LA R4 , APUBUF *

sT R4 ,FETAPU+SV13.BUF SET UP BUFFER ADDR. *

LHI R3,40

STH R3,FETAPU+SV13.LEN SET UP BUFFER LENGTH
* *x
* SET UP SVC13 PARAMETER BLOCK TO ENABLE THE APU *
* *

LIS R3,3 SET UP SVC 13 FUNC CODE 3

STB R3,ENABAPU+SV13.FUN

LIS R3,X'Cl’ SET UP CONTROL OPTIONS

STB R3,ENABAPU+SV13.0PT GAIN,ENABLE, RELEASE
X X
* GET THE APU STATUS. IF APU 1S DISABLED, *
* ATTEMPT TO ENABLE IT. IF APU CAN'T BE *
* ENABLED, LOG MESSAGE TO CONSOLE AND *
* CONNECT TO IT ANYWAY JUST IN CASE IT IS *
* ENABLED LATER. *
* *

APULOOP EQU X
* GET APU STATUS
STB R1,FETAPU+SV13.APN SET UP APU NO.

svc 13,FETAPU ISSUE SsvC 13

LH R4,FETAPU+SV13.ERR GET SVC 13 ERROR STATUS

BZ GETSTAT IF NO ERROR-GET APU STATUS
BNE ER.ROUTE IF ERROR, BRANCH TO ER.ROUTE
LB R5,APUBUF+5 GET 2ND BYTE OF APU S-STATUS
BNZ CONNECT NOT DISABLED, GO CONNECT

48-040 FOO RO3 3-13

*APU IS DISABLED;

ISSUE SVC 13 TO ENABLE IT.

STB R1,ENABAPU+SV13.APU SAVE APU NUMBER
svC 13 ,ENABAPU ENABLE THE APU
LH R3,ENABAPU+SV13.ERR GET SVC 13 ERROR STATUS
BN7Z ENAB.ERR BRANCH TO ERROR ROUTINE ON ERROR
CONNECT EQU x
x *
*SAVE APU NO. AS PART OF APU'S TGD MNEMONIC *
STB R1,SVC6.DEV
*ISSUE SVC6 TO CONNECT AND THAW THE APU o
x *
svC 6 ,APUTRAPS
LH R6,SVC6.STA GET SVC 6 ERROR STATUS
BZ NEXT.APU NO ERROR-GO CONNECT TO NEXT
* APU
STB R1,CONB.ERR+24 SAVE APU NO. IN MESSAGE
svC 2,L.OGMSG LOG MESSAGE: COULD NOT
x CONNECT TO APUX
NEXT.APU SIS R1l,1 MOVE ON TO NEXT LOWEST APU NO.
BP APULOOP GO HANDLE NEXT APU.

The parameter blocks used in the above example are defined as

follows:

*SVC 13 Read APU Assignment Parameter Block and Buffer
ALIGN 4

APUASGN DS
ENDPBK EQU

sSvCl3
x

»

ORG APUASGN+SV13.FUN
DB X'oo0’' SET FUNC CODE O
ORG APUASGN+SV13.BUF
DAC BUFFER 1 DATA BUFFER ADDR
ORG APUASGN+SV13 .LEN
DC H'50' MAX LENGTH OF BUFF
ORG ENDPBK
ALIGN 4
BUFFER D5 50
X
* SVC1l3 Fetch APU Status Parameter Block & Buffer
x ALIGN 4
* FETAPU DS svcis
ALIGN 4
40

APUBUF DS
*

**x*x 8vVC13 Enable APU Parameter Block

X

ALIGN 4

ENABAPU DS
x

*x SVC 6 Connect & Thaw APU Parameter Block

*

SVC13.

$5VCH
ALIGN 4

* %

48-040 FOO RO3

APUTRAPS DS SVC6.
ENDAPUTB EQU *
ORG APUTRAPS+SVC6.FUN
DS Y'C000 €000’ SVC6 FUNC CODE-
* SELF-DIRECTED, CONNECT & THAW

ORG APUTRAPS+SVC6 .DEV
DC C'APU' TRAP-GENERATING DEVICE MNEMONIC

ORG ENDAPUTB
*

Xxxx SVC 2 L.og Message Parameter Block
*

LOGMSG DB 0,7
DCZ CONE . ERR-CONB . ERR

CONB.ERR DB C'UNABLE TO CONNECT TO APU'
CONE .ERR EQU *

The code in the above example allows the monitor to receive traps
from the APUs. Status returned from these traps can be reported
to the console (via SVCl or SVC2 code 7) or to a file designated
for the APU output (via SVCl). In addition, this monitor program
can be coded to run a certain task (TASKl) every ten minutes on
a specific APU. To do this, the monitor sets an interval timer
via SVC2 code 23. Upon expiration of the timer, the monitor task
issues an SVC1l3 code 3 to preempt the current executing task on
the APU, as shown below. This preemption mechanism is only
allowed on no-priority queues. It is wused when the overhead
associated with maintaining a priority queue is to be avoided.

Example:
svc 13,PREQ
ALIGN 4
* PREEMPT TASK EXECUTION, RESTART APU
PREQ.OPT DB X'B9' SET SVC 13 OPTIONS:
PREQ.FUN DB X'03" SET FUNCTION CODE-
* CONTROL FUNCTION
PREQ.DOP DB X'01" DIRECTIVE OPTION-
* START APU
PREQ.APN DB X'o1' APU NO. - APU 1
PREQ.APS DS 2 APU HARDWARE STATUS
PREQ.ERR DS 2 SVC 13 ERROR STATUS
PREQ.BUF DAC BUF2 DATA BUFFER ADDRESS
PREQ.USE DS 2 LENGTH OF BUFFER USED
PREQ.LEN DC H'8' MAX LENGTH OF BUFFER
ALIGN 4
BUF 2 DC C'TASK1 ppp' TASK ID BUFFER

48-040 FOO RO3 3-15

Execution of the above SVCl3 will cause the monitor to gain
control rights to the specified APU (APUl), provided that the
task has been link-edited with the APCONTROL task option and no
other task has control rights to the APU. The control options,
specified in the SVC13 parameter block, will then cause the
following actions:

e Execution of the current executing task on the APU will be
stopped.

e The current task will be rescheduled to the end of the APU
queue.

e The APU's queue pointer will be repositioned to point to
TASK1l. (This will cause TASK1l to be selected as the next task
to be executed on the APU.) :

e The APU will be restarted for execution of TASK1.

e The monitor task will release the control rights to the APU.

The remaining code in the monitor program should check the
PREQ.ERR field of the PREQ parameter block for errors as follows.

Example:

LH R2,SV13.ERR
BNZ ERR.PREQ

If an error has occurred, ERR.PREQ can log a message to the
console.

Finally, to reexecute TASK1l in ten minutes, the interval timer
(via 8VC2 code 23) should be reset so that the SVC13 code 3 to
preempt the current APU task can be reissued when ten minutes
have elapsed.

See the 0S/32 Supervisor Call (SVC) Reference Manual for more
information on SVC13, SVC6 and SVC2 code 23.

3-16 48-040 FOO RO3

3.5.3 Transferring a Task from an Auxiliary Processing Unit
(APU) to the Central Processing Unit (CPU)

Under certain conditions, a monitor task may need to transfer
some other task back to the CPU ready queue. The task to be
transferred may be executing on an APU or waiting on its queue.
The monitor task can transfer a task back to the CPU ready queue
by issuing an SVC6, specifying the following function codes:

® Suspend (SFUN.SM)

e Transfer to CPU (SFUN.XCM)

® Release (SFUN.RM)

The suspend will transfer the task back to the CPU ready queue,
and then the LPU-directed task status is reset. Upon release,

the task will stay on the CPU ready queue and not be dispatched
according to its LPU assignment.

Example:
sve 6,CPUDIR
AL IGN 4
$SVC6
CPUDIR DS SVC6.
CPUDIRE EQU *
ORG CPUDIR+SVC6.ID
DC C'TASK1ppp' ID OF TASK TO BE
X TRANSFERRED

ORG CPUDIR+SVCH .FUN
* SET OTHER-DIRECTED, SUSPEND, TRANSFER TO CPU, & RELEASE FUNC CODES
* FOR TASK1

DB SFUN.DOM!SFUN.SM!SFUN.XCM!SFUN.RM

ORG CPUDIRE

Execution of this SVC6 causes TASK1l to be suspended (if it is not.
already in a wait state) and transferred to the CPU ready queue.
Resetting the LPU-directed status directs the task manager to
ignore its LPU mapping and to schedule this task for execution on
the CPU ready queue. When released, the task will execute on the
CPU at the location following the instruction that was executed
before the task was suspended. If the SVC6 in the above example
did not reset the LPU-directed status bit, the task will again be
dispatched to the APU queue into which its LPU is mapped upon
release from the suspended state.

48-040 FOO RO3 3-17

—— ————— i

3.5.4 Internal Task Control of Auxiliary Processing Unit (APU)
Execution

A task can exercise control over its own execution on an APU
through the SVC6 mechanism described above since SVC6 can be made
self-directed; however, there are more efficient mechanisms
achieving the same result that are particulary valuable for
real-time and APU diagnostic applications.

1. A task wishing to relinquish use of an APU while remaining on
the same processor queue may issue the following instruction:

RSCH R1,1

The APU places the task at the gueue tail and immediately
picks up the task residing at the gqueue head. 0S/32 will
restore the queue order according to the queue discipline, if
necessary.

2. A task wishing to transfer to the CPU indefinitely, may issue
the following instruction:

RSCH R1,0

The APU sends the task to the CPU and then immediately picks
up the task residing at its queue head. 0S/32 resets the
tasks LPU-directed status, which prevents the task from going
anywhere but the CPU receive queue.

3. A task wishing to transfer to an APU indefinitely, according
to its LPU mapping, may issue the following instruction:

RSCH R1,2

0S/32 insures that the task is scheduled to the appropriate
APU queue according to the task's priority and the queue
discipline.

4. A task may manipulate its TSW CPU-override status to enable
or disable its transfer to the APU, for a given reason, to
which the TSW corresponds. Bit TSW.CPOB (currently bit 8)
prevents task scheduling to an APU queue when set to 1. This
is necessary when a particular task fault, not a single
instruction, should be executed on the APU.

3-18 48-040 FOO RO3

3.5.5 Verifying Task Transfer to an Auxiliary Processing Unit
(APU)

It may be necessary for a task to verify whether or not it has
actually been transferred to an APU queue. For example, suppose
a task on the CPU is assigned to LPU3 and executes the following
instruction:

RSCH R1,2

Execution of +this instruction will cause 0S/32 to set the
LPU-directed status of the task. The 0S/32 task manager will
then attempt to transfer the task to the APU queue into which
LPU3 has been mapped. Suppose LPU3 is mapped to APU queue 3 and
APU4 is assigned to this queue. To verify that the task is
indeed executing on APU4, the next instructions executed by the
task could be:

LIS R1,0 GET RTSM PULSE LINE
* TO PULSE
LI R2,15 FILL IN APU ID
531G R1,R2 GENERATE SIGNAL

* HERE THE NO. (15) CAN NEVER MATCH
THE APU ID IN THE RTSM. NO SIGNAL WILL BE
* SENT. INSTEAD, ONLY THE APU ID IS RETURNED TO Rl

»*

After execution of GSIG, Rl will contain the number of the APU
that the task is currently executing. See the Model 3200MPS
System Instruction Set Reference Manual for more information on
the RSCH and GSIG instructions.

3.5.6 Customizing Auxiliary Processing Unit (APU) Fault and
Supervisor Call (SVC) Handling

0S/32 allows customization of fault and SVC handling by the APUs.
When consistently pursued, this route may allow reduction of the
task traffic between the APUs and the CPU caused by SVCs, or it
may provide for APU I/0 handling, "invisible" to 0S8/32, and
subsequently more efficient.

As an example of this customized handling, an APU can be made to
wait for a task return while the task fault or SVC is processed
by the CPU. This may be needed to leave private queue orders
undisturbed by occasional SVCs.

This feature is not fully supported by 0S/32 and, therefore, is

intentionally made difficult to use. However, software tools may
be easily developed to exploit the customization feature.

48-040 FOO RO3 3-19

In order to allow for custom processing of the faults and SVCs in

a given task by the APUs, the following actions must be
performed:

@ An APU trap block has to be allocated in memory. This block
will contain pairs of fullwords, each being a program status
word (PSW) for a given APU detected reason in this order:

- arithmetic fault

~ illegal instruction

- memory controller fault

- instruction format fault
- 8VC

- machine malfunction fault

¢ A single trap block 1is allocated during 0s/32 system
generation (sysgen) and 1is designated in the map under a
symbol TBLKl. Any additional blocks can be allocated wusing
the MODULE command at sysgen.

® The trap block has to be patched with zeros for various
reasons. If an APU wait is desired, the first word of the
pair is set to X'8000' (bit 16 set). The second word does not
matter. If custom processing is desired, the first word of
the pair is set to the required status and the second word is
set to the location where the custom processing begins.

® The APU gueue parameter block (QPB) fullword at location
QPB.TPTR, (currently X'8' in QPB) has to be patched to the
address of the APU trap block after task loading. This
patching can be performed using the operator MODIFY command or
via a dedicated e-task assembled with the appropriate data
structures.

When a task executes on an APU assigned to the patched queue, and
a fault is detected for which the PSW in the trap block 1is not
zero, the APU transfers control according to this PSW. In the
case of the bit 16 of the first word set in PSW, the APU
transfers the task to the CPU ready queue and awaits the task's
return. 0S/32 will restart the APU when the task 1is scheduled
back to it. 0S/32 also restarts the APU when the task for which
the APU is waiting is cancelled or terminated.

If the customized processing needs to be done on a per task
rather than per queue basis, this can be arranged by patching out
the 0S/32 code in module APSV routine TMCKAPU that loads the
QPB.TPTR into every task control block (TCB) scheduled to the
queue. Then, instead of patching QPB.TPTR with the selected
task's TCB at location TCB.TPTR (currently X'20' in TCB), it can
be patched with the address of the trap block.

3-20 48-040 F0O0 RO3

3.6 PREVENTING MEMORY ACCESS CONFLICTS

When several processors are executing simultaneously, it is
possible for tasks running on two or more processors to require
access to the same data. For example, suppose two tasks share a
buffer list consisting of 30 buffers defined as follows:

BLISTBIT DS 2
BUFLIST DLIST 30

BUFLIST contains the addresses of the buffers. BUFLIST, and the
actual buffers, reside in an area of memory shared by the two
tasks. One task collects data, writes it to a buffer and adds
the address of that buffer to the bottom of the list. The other
task removes an address of a buffer from the top of the list and
processes it. Since both tasks in a Model 3200MPS System can be
run simultaneously on different APUs, both tasks may attempt to
access the 1list at the same time. The Test and Set instruction
(TS) can be used to ensure that only one task at a time can
access the buffer.

To ensure that only one task at a time can access BUFLIST, a test
and set operation is performed on BLISTBIT. BLISTBIT acts as a
lock-out mechanism that is set and reset. A task can only access
BUFLIST if BLISTBIT is not set.

3.6.1 Avoiding System Deadlock

When using the test and set operation, care should be taken to
ensure that system deadlock is avoided.

For example, suppose task A uses TS to lock out data structure X
while task B is locking out data structure Y. Task A now finds
that it needs to access data structure Y, so it waits for Y to be
released. Similarly, Task B finds it needs to access data
structure X, so it waits for X to be released. Since each task
holds the data structure needed by the other, processing stops.
Both tasks are deadlocked.

To avoid system deadlock, the Test and Set instruction should be
used with a time-out mechanism.

KKK KKK KK K K K Kk ok ek ko kK ek ek ke ke sk sk ok ok ok kK k Kk ke k ke kK k ks gk ke dk sk gk ok Kk ok kK Kk k Kk Kk

* The following example shows how to prevent o

x memory access conflicts without system deadlock. *
J K Kk ok Kok Kk Kk e Kk Kk ok kN R Kk Kk sk kR ok ok dk ok K e e sk Kk sk K Xk sk Kk sk gk ke ok sk dk k% sk ok Kk k Kk k kK Kk ok ok Kk ok

48-040 FOO RO3 3-21

Example:

TS BLISTBIT TASK CHECKS IF IT CAN GET
* ACCESS TO LIST
BNM CONTINUE PROCESS LIST IF FREE
LI R2,50 LOAD TIMEOUT VALUE OF 50
x MICROSEC IN R2
SETBITLP EQU * TIMER ROUTINE
SIS R2,1 DECREMENT TIMEOUT COUNT
BM TIMEOUT BRANCH TO TIMEOUT ROUTINE
*IF BRANCH TO TIMEOUT IS TAKEN IT MEANS THAT THE *
*TASK STILL COULD NOT GET ACCESS TO LIST *
*THE TIMEOUT ROUTINE PRINTS A MESSAGE TO THE CONSOLE x
*SO OPERATOR CAN TAKE NECESSARY ACTION *
*ELSE CONTINUE x
LH R4,BLISTBIT USE APU CACHE TO MATCH LOCKS
BMS SETBITLP BUFLIST NOT AVAILABLE YET;
x TRY AGAIN
TS BLISTBIT BUFLIST IS AVAILABLE SO
* ATTEMPT TO GRAB ACCESS
BMS SETBITLP NOT QUICK ENOUGH, RETRY
**[F SUCCESSFUL, PROCESS LIST * %
* *
CONTINUE EQU *
X . *
* . *
X . *
*ACCESS BUFLIST EITHER BY ABL (ADD TO BOTTOM OF LIST *
*INSTRUCTION) OR RTL (REMOVE FROM TOP OF LIST INSTRUCTION). *
b x*
* . %
x . b 4
*AFTER PROCESSING BUFFER, UNLOCK BLISTBIT SO OTHER TASK CAN *
*ACCESS IT. *
X x
LIS R4,0

RBT R4 ,.BLISTBIT

3.7 MEASURING REAL-TIME PERFORMANCE ON A MODEL 3200MPS SYSTEM

The 0S/32 system macro library provides a set of timer macros
that can be used to measure the real-time performance of
individual tasks running in a Model 3200MPS System. These macros
allow the programmer to set up a named timer in memory. A named
timer can be compared to a stopwatch that measures the amount of
time elapsed from the time the watch is started to the time it is
stopped. The following example shows the data structure setup in
memory for a timer named TIMRNAME. The timer macro, CRTIMERS, is
used to set up timer data areas.

3-22 48-040 FOO RO3

Example:

ALIGN 4
TIMRNAME DCF C'TIMRNAME ' TIMER NAME (8 CHAR MAX)
DCF 0 TIMER COUNTER
DCF 0] TIMER START VALUE
DCF 0 ACCUMULATED TIME
DCF 0] REGISTER SAVE AREA

The timer macros are used to set the watch and read the
accumulated time after a specified interval has elapsed. The
timer macros are listed in Table 3-2.

TABLE 3-2 TIMER MACROS

MACRO i FUNCTION

CRTIMERS (NAME1l[,NAME2,...])) | Creates a data area for each
i named timer.

——— e . - ——— - — O ——— o — o~ ———— o " ———— - — o —— i ot ot i o o o - ————

i Gets the total time accumulated
{ by the named timer.

| Gets the number of intervals
i that have been timed by this
i timer.

e e i e e - = - ——— (" — - o T e " " —_—_n - —————— . —— o —— S i - —- " — —— —— . ——

R R R R 2 3 2233332322223 33 23 I I I I T T I I I T I T

* The following example demonstrates how these x
x macros can be used to time the execution of a x
* program and its subroutine. x

WK K K Kk kK ok ke Kk ke kK kK I Kk k% Kk ok sk ke Tk ok dk k% ke ke k 3k sk sk 3k 3k Kk sk 3 Kk ok ok Sk sk sk ok ok Kk k% X

48-040 F0OO RO3 3-23

Example:

* Create a data area for the timer
* for MAIN and the timer for SUB
*

CRTIMERS (MAIN,SUB)
x

* Start timer for MAIN.

X

START EQU *
STRTIME MAIN

BAL R15,SUBPROG

* Stop timer for MAIN
STOPTIME MAIN
o ¥ Get total time accumulated by MAIN
* Timer. Load into REG 0
GETIME MAIN,RO

-

* Log MAIN program execution time.

* Get total time accumulated by SUB
* timer. Load into REG 3
GETIME SUB,R3
* Get number of intervals timed by
* SUB timer. Load into RO
READTCNT SUB,RO

* Compute average subroutine execution
* time.
DR R2,R0O

SUBPROG EQU x
*

* Start timer for SUB
X

STRTIME SUB

*

* Stop timer for SUB
*

STOPTIME SUB
BR R15

Detailed descriptions of the timer macros can be
0S/32 System Macro Library Reference Manual.

3-24

% %

* % % %

% % X % * ¥ O X X X N M X ¥

%* %

found in the

48-040 FOO RO3

3.8 WHERE TO GO FOR MORE INFORMATION

This chapter is intended to
programming techniques used in
programs that take advantage of the Model 3200MPS System
multiprocessing capabilities. However, all the programming
facilities avallable for writing system 1level control programs
are not shown. Table 3-3 summarizes additional facilities and
lists the manuals in which they are described.

demonstrate assembly language
designing system level control

TABLE 3-3 ADDITIONAL INFORMATION SOURCES FOR
MODEL 3200MPS SYSTEM PROGRAMMING

MANUAL, PROGRAMMING METHODS DESCRIBED
R e e EEEEREEE T EEEE TS G R T T R R T T T T T T T T S EEmEm T Tm T
Model 3200MPS System Describes the machine instructions

| |
x =
| |
{ Instruction Set !
{ Reference Manual !

| |

t]

] '

]

!
!
i
specific to the Model 3200MPS System |
]
2
i
[}

processor. Also gives a detailed
discussion of the APU processor
states.

b o e e !
08/32 Run-Time Library | Describes the Perkin-Elmer FORTRAN
(RTL) Subroutines and VII RTL routines- available for

writing a FORTRAN system

Manual control program that performs the

' |
i i
i Intrinsics Reference H
| i
i i functions described in this chapter.
]

|
H
level |
i
i
1

0S/32 Operator
Reference Manual

{ Describes the operator commands that |
{ can be used to perform SVC1l3 mapping |
} and control functions. APU related |
| functions included APC, I.PU, OPTION |
| LPU, QUEUE. |
i
1

0S/32 Supervisor Call

] ! details
{ (8VC) Reference Manual |

|]

{

Gives on how to use SVC6,
SVC1l3 and assembly language program-

i
}
ming SVCs. i
]
|

{ 05/32 System Macro i Describes the time and svci3d |

{ Library Reference { macros. |

| Manual | |

: _____________ e o e o e e e e e e e e . e S S 0ot > o > Py S - e v T o S W Mt o T o S S e S e e =
08/32 Link Referenc Describes the use of OPTION IL.PU,
APCONTROL and APMAPPING at task

]] 1
]]]
| Manual H !
H i linkage time. !
[] [}

1

0S/32 Application
Level Programmer
Reference Manual

—— i — — —————— > (1~ —————— ———" —— S~ S S_- —- A S s - — . e Are i S it S — — - —— —— f— —— S S - ——— -

0S/32 System
Generation (Sysgen/32)
Reference Manual

48-040 FO0OO0 RO3

Gives details on writing a task trap
handling routine that can be used to
handle APU-related events.

Describes the
command .

use

CHAPTER 4
SUPERVISOR CALL (SVC) INTERCEPTION

4.1 INTRODUCTION

SVC interception software is used to write programs that can
emulate the SVC processing ability of 0S/32. This software
consists of macros that allow a task (intercepting task) to
intercept the SVC of another task before it goes to the operating
system for processing. Once intercepted, the 8SVC can be
monitored by the intercepting task and sent to the operating
system for processing, or it can be processed by the intercepting
task. Table 4-1 lists the system macros used for SVC
interception.

TABLE 4-1 SYSTEM MACROS FOR SVC INTERCEPTION

e ———— L — i —— — I S8 ot 1t e o e . o W S s et e e et B b i Bt B o . T M P i o e . M B e ot o o oot e e e St e o e e

macros and branches execution to specific error
routines within the intercepting task.

| MACRO | FUNCTION H
‘ R 2 2 2 3 A A3 b 3 3 & 3 % L 3§ 3 : 331 1 % 3 3 3 2 233 32 3 31 3 R YR IEEI YT TIEE RS R TR REEEE LIRS =
i ICREATE | Creates an SVC intercept path. |
i o i
| IREMOVE | Removes a previously created path. |
1]]
| | |
{ IGET { Gets data from a data area of the task that issued |
| | an intercepted SVC. |
]] {
| 1 1
{ IPUT i Puts data into a data area of the task that issued |
| i an intercepted SVC. d
i | ‘ !
{ ICONT | Continues standard execution of an intercepted SVC |
| | by passing control to an 05/32 SVC executor. |
i i - i
{ IPROCEED | Allows the task that issued the intercepted SVC to |
i | proceed with its execution. |
! i i
{ IROLL | Makes an intercepted task rollable. |
]] 1
t ']
{ ITERM i Terminates an intercepted SVC after processing. i
]] 1
I 1 f
i ITRAP | Sends a task queue trap to a task. |
]]]
i] 1
i IERRTST | Evaluates errors returned by any of the above i
i | i
i | i

48-040 FOO RO3 4-1

The intercepting task tells the 05/32 SVC executor which SVC it
will process or monitor. When the intercepting task is sent an
sve from the executor, the intercepting task handles the
intercepted SVC while the task that issued the SVC is placed in
a wait state. While executing the intercepted SVC, the
intercepting task can read from or write to the address space of
the task that issued the SVC.

A task is not aware that its SVC has been intercepted unless it
is informed by the intercepting task.

SVC interception software must be configured in 0S/32 at the time
of system generation (sysgen). See the INTERCEPT configuration
statement in the 0S/32 System Generation (Sysgen/32) Reference
Manual.

A task can intercept SVC calls only after it is linked with the
intercept task option enabled (OPTION INTERCEPT). See the 0S/32
Link Reference Manual. The task can then be programmed to
intercept any of the following SVCs issued by any application
task in the system:

e 5SVC1

e SVC2 code 7

® SVC3
e SVCb
e 5VC7

Intercepting tasks can be loaded and executed under the

multi-terminal monitor (MTM). However, the intercepting task
must be loaded from an account that has executive task (e-task)
load privileges. See the 0S/32 Multi-Terminal Monitor (MTM)

System Planning and Operation Reference Manual.

4.2 HOW SUPERVISOR CALL (SVC) INTERCEPTION WORKS

In general, SVC interception software functions as follows:

1. A task with SVC interception enabled by Link is built. This
intercepting task must:

e reserve memory for a set of request descriptor block (RDB)
buffers for each SVC to be intercepted,

e build a circular list for storing addresses of RDB buffers
containing information on intercepted SVCs,

4-2 48-040 F0OO RO3

e create, via the ICREATE macro, intercept paths that
designate the SVCs to be intercepted, and

e define, wvia the ICREATE macro, what control the
intercepting task has over the SVCs it intercepts.

An application task issues an SVC.

If no intercept path was created for that particular SVC, one
of the standard 0S/32 executors services the SVC.

If an intercept path has been created for that SVC, the
operating system:

e intercepts the SVC before it reaches the 0S/32 executor,

e removes an RDB address from the circular 1list of the
intercepting task,

e loads the SVC's parameter block and identifying
information into the RDB, and

® sends a task event trap to the intercepting task to notify
the task that an SVC has been intercepted.

Execution of the intercepting task branches to the task event
trap-handling routine. The address of this routine is
specified when the path is created via the ICREATE macro.

If the intercept path was built to monitor this SVC, the task
event trap-handling routine issues an ICONT macro to return
the SVC to the 0S/32 executor for execution.

If the intercept path was built to service the SVC, the task
event trap-handling routine processes the SVC by the
intercept macros IGET, IPUT, IROLL and ITRAP. Also, the
routine can issue the IPROCEED macro to allow the application
task to continue executing during SVC processing.

After the task event trap-handling routine processes the SVC,
it issues an ITERM macro that transfers control back to the
application task that issued the SVC.

The intercepting task exits the trap handler through the
TEXIT macro.

48-040 FOO RO3 4-3

4.3 PREPARING A TASK FOR SUPERVISOR CALL (SVC) INTERCEPTION
Before creating an intercept path, an intercepting task must:

® build a set of RDB buffers for each type of SVC to be
intercepted,

® build a circular list to store the addresses of the RDB
buffers, and

® be prepared to handle a task event trap.

4.3.1 Request Descriptor Block (RDB) Buffers

The size of each RDB buffer built by the intercepting task
depends on the size of the parameter block for the particular SVC
to be intercepted. For example, a set of buffers allocated for
SVC6 interception will be larger than a set of buffers for SVC1
interception. When an intercepting task uses one set of buffers
for intercepting two or more SVC types, the buffer size must
equal the size of the RDB needed to hold the largest parameter
block associated with the SVCs to be intercepted. Figure 4-1
shows the RDB fields. - To define a structure containing these
fields, use the $RDB macro.

10(00) 12(02) Intercept path i
' Reserved H identifier i
H (RDB.RID) : (RDB.PID) i
- e e e |
14(04) 16(06) 17(07) Task |
i Parameter block offset | SVC type i priority H
! (ROB.OFF) H (RDB.SVC) ! (RDB.TPRI) H
b = e e |
18(08) |
! 0S task identifier |
H (RDB.TID) :
{~————— e e |
112(0C) |
! SVC parameter block address H
| (RDB. PAD) :
o oo :
116(10) Instruction address following H
! intercepted SVC instruction !
! (RDB.SVAD) i
20(14) SVC parameter block

]
]
i
g (RDB.PB)
i
1
1
]
]

Figure 4-1 Request Descriptor Block

4-4 48-040 F0OO RO3

Fields:

Reserved
(RDB.RID)

Intercept
path
identifier
(RDB.PID)

Parameter
block
offset
(RDB.OFF)

svC

type
(RDB.SVC)

Task
priority
(RDB.TPRI)

0S task
identifier
(RDB.TID)

SVC parameter
block address

(RDB . PAD)

48-040 FOO RO3

The fields contained within the RDB are described as follows:

is a halfword field reserved for future use.

is a halfword field containing an SvVC
intercept path identifier exclusively reserved
for one particular SVC interception.

is a halfword field containing the hexadecimal
offset value for the parameter block field
within the RDB.

is a l-byte field containing a decimal number
specifying the type of 8VC that is to be
intercepted.

e Ol indicates SVCl.

e 02 indicates SV(C2, code 7.

e 03 indicates SVC3.

e 06 indicates SVC6.

e 07 indicates SVC7.

is a 1l-byte field containing a decimal number
specifying the priority of the task that
issued the intercepted SvcC.

is a 4-byte field containing the operating
system task identifier for the task that
issued the intercepted svC.

is a 4-byte field containing a hexadecimal
number specifying the address of the parameter
block for the SVC being intercepted. For

SVC3 interceptions, this field contains the
end of task code.

Instruction is a 4-byte field containing a hexadecimal

address number specifying the address of the instruc-
following tion following the intercepted svC
intercepted instruction. This field 1is set to 0 for
svec SVC3 interceptions.

ingtruction

(RDB.SVAD)

SVC parameter 1is a variable 1length field containing the
block parameter block of the intercepted SVC.
(RDB.PB)

4.3.2 Circular List for Regquest Descriptor Block (RDB) Buffers

The intercepting task must have a standard Perkin-Elmer circular
list to hold the address of each RDB buffer. Figure 4-2 shows
the fields of the standard circular list. When an SVC is sent to
the intercepting task for processing, one RDB buffer address is
automatically removed from the circular 1list, and the RDB is
filled with information identifying the intercepted SVC. The
circular 1list can be created by the assembler instruction DLIST.
See the appropriate Perkin-Elmer Series 3200 Processor User's
Manual or the Instruction Set Reference Manual for a more
detailed explanation of the standard circular list.

10(00) 12(02) :
H Maximum number ! Current number i
| of buffers ' of buffers !
e e e bl H
14(04) 16(06) |
i Current top 1 Next bottom i
]]]
S E
18(08) ,
H A (buffer 1) |
H {
| = e e |
112(0C) !
i A (buffer 2) |
]]
e |
! . H
i i
i H
e e e :
: :
i A (buffer n) ;
])
]]

Figure 4-2 System Task Buffer List (Standard Circular List)

4-6 48-040 F0OO RO3

Fields:

Max imum is a halfword field indicating the maximum
number of number of fullwords in the entire list.
buffers

Current is a halfword field indicating the number of
number of fullwords currently in use. When this field
buffers equals zero, the 1list is empty. When this

field equals the number of fullwords in the
list, the list is full.

Current top is a halfword field indicating the address of
the RDB buffer that is currently at the top of
the list.

Next bottom is a halfword field indicating the address of
the next RDB buffer that is at the bottom of
the list.

A (buffer n) indicates the address of an RDB buffer.

4.3.3 Task Event Trap

To receive a task event trap, an intercepting task must have the
TSW.TESB bit in its task status word (TSW) set. See the 0S/32
Application Level Programmer Reference Manual for more
information on TSW bit settings. If this bit is not set, the
task event trap will be queued until a TSW is 1loaded with this
bit set. 1In addition, a task cannot receive a task event trap or
task queue trap during execution of the task event trap-handling
routine. These traps will be queued until the task exits from
the routine.

Before execution branches to the task event trap-handling
routine, the operating system places the address of the RDB in
register 1 and a unique intercept path identifier in register O.
To prevent the data in these registers from being lost during
execution of the task event trap-handling routine, the
intercepting task should be link-edited with the TEQSAVE task
option. TEQSAVE informs the operating system which register
contents should be saved and restored when a task enters or exits
the task event trap-handling routine. See the 0S/32 Link
Reference Manual for more information on TEQSAVE.

4.4 CREATING INTERCEPT PATHs (ICREATE)

Before an intercepting task can intercept an SVC, it must create
a path to the application task that contains the SVC to be
intercepted. This path is created by executing code built by the
ICREATE macro that informs the 0S/32 SVC executor which SVC is to
be intercepted by this path. The intercepting task also accesses
the application task's address space through the intercept path.

48-040 FOO RO3 4-7

An intercept path remains in effect until it is removed by the
intercepting task creating it or until the intercepting task
terminates. Although only one type of SVC can be intercepted by
each path, there is no limit to the number of paths that can be
created by one intercepting task.

The mode parameter of the ICREATE macro specifies when an SVC is
to be intercepted. Under caller mode, the specified SVC is
intercepted every time it is 1issued by the application task.
When the recipient existent mode 1is specified, the SVC is
intercepted only when it is directed toward a specified task,
device, pseudo task or pseudo device that exists in the system.
Under the recipient nonexistent mode, the SVC is intercepted only
when it is directed toward a specified pseudo task or pseudoc
device created by execution of code built by the ICREATE macro.

4.5 HOW TO CREATE A PSEUDO DEVICE OR TASK WITH ICREATE

A pseudo device consists of a name and the SVCl or SVC7 intercept
paths attached to it. The pseudo device name, which is known to
the system but does not actually refer to any system device or

file, consists of a device name, filename and extension. A
device name that does not already exist for a real device or disk
volume must be used. Pseudo devices 1ignore the file

class/account number field of the file descriptor (fd).

When the operating system cannot find a device or filename in the
system, it will search the list of pseudo devices. If a match
occurs, the system will continue processing the SVC using the
pseudo device.

To create a pseudo device using SVC interception software, the
ICREATE macro should be set to specify either an SVC1l or SVC7.
The recipient nonexistent mode should also be specified. An SVCl
intercept path must be in effect when an input/output 1I/0
operation 1is attempted to a pseudo device; otherwise, an invalid
function (X'CO0') error status is returned.

A pseudo task consists of a name attached to one or more SVC6
intercept paths. A pseudo task name is known to the system but
does not refer to an actual task existing in the system.

To create a pseudo task, issue the ICREATE macro specifying SVC6
and the recipient nonexistent mode. Because a pseudo task does
not refer to a real task, the pseudo task cannot be cancelled.
Both pseudo tasks and pseudo devices can be deleted by removing
all intercept paths attached to them.

4-8 48-040 FOO RO3

4.6 USE OF GENERIC NAMING FOR PSEUDO DEVICES AND TASKS

A pseudo device or task can be generically named. The following
characters can be used for generic naming:

® An asterisk (*) represents any character or blank.

® A backward slash (\) represents any character.

If a pseudo device or task name specifies the filename and
extension fields as blanks, the system substitutes filename and
extension fields filled with asterisks. This has the effect of
generically naming the filename and extension fields so that they
will always match the input filename and extension.

If the operands of an ICREATE macro specify the recipient
existent mode and a generic pseudo device or task name, a pseudo
device or task must exist with its name exactly matching the one
specified by ICREATE. An error will result if the names do not
match. For example, a system is asked to create the following
pseudo devices:

e FAKE:FILE]l

e FAKE:FILEX

e FAKE:

e FAKE:FILE*.EXT

Normally, the following input will match the above pseudo
devices:

INPUT NAME SELECTED PSEUDO DEVICE
FAKE: FAKE :

FAKE:FILE3 FAKE:FILE*

FAKE:FILE1l FAKE:FILEl

FAKE:FILEll ’ FAKE:

FAKE:FILEX.EXT FAKE:FILE* .EXT
FAKE:FILEX.EX FAKE :

When the code built by the ICREATE macro is issued, specifying
recipient nonexistent mode and the pseudo device FAKE:, the
ICREATE function will not be performed because the pseudo device
already exists. Consequently, when an ICREATE macro is used,
specifying recipient existent mode along with the pseudo device
FAKE:FILE*, ICREATE will be executed because the pseudo device
FAKE:FILE* already exists.

48-040 FOO RO3 4-9

4.7 FUNCTIONAL SUMMARY OF SUPERVISOR CALL (SVC) INTERCEPTION

The following describes how interception works for each SVC

mode :

SVC1l caller

SVCl
recipient
existent

SvCl
recipient
nonexistent

8VC2 code 7
caller

SVC2 code 7
recipient
existent

SVC2 code 7
recipient

. nonexistent

SVC3 caller

SV(C3
recipient
existent

SVC3
recipient
nonexistent

SVC6 caller

SVC6
recipient
existent

SVC6
recipient
nonexistent

SVC7 caller

and

Any SVCl1 issued by the specified task is
intercepted.

Any SVCl directed to a 1logical unit (1lu)
assigned to the specified device or pseudo

device is intercepted. (Note that disk volume
interception is not supported for SVC1.)

The pseudo device 1is
call specifying an 1lu
device is intercepted.

created, and any SVC1
assigned to this pseudo

Any SVC2 code
is intercepted.

7 issued by the specified task

This call is invalid.
This call is invalid.

If the specified task goes to end of task
any reason, an SVC3 intercept will occur.

for

This call is invalid.

This call is invalid.

Any SVC6 1issued by the
intercepted.

specified task is

Any 8SVC6 directed to the
or pseudo task is intercepted.

specified task

The pseudo task is created, and any SVC6
call directed to this pseudo task is
intercepted.

Any SVC7 1issued by the specified task is

intercepted.

48-040 FOO RO3

svc7 Any SVC7 directed to the specified device,

recipient disk volume or pseudo device is intercepted.
existent

svC7 The pseudo device 1is created, and any SVC7
recipient call specifying this pseudo device is
nonexistent intercepted.

4.8 FULL AND MONITOR CONTROL INTERCEPT PATHS

The ICREATE macro specifies the 1level of control that the
intercept path allows an intercepting task to have over an
application task.

A full control intercept path allows the intercepting task to
exert full control over a task whose SVC has been intercepted.
Specifically, the intercepting task can:

e Make the task rollable via the IROLL macro. When an SVC is
intercepted, the task that issued the SVC is placed in a wait
state and made nonrollable. At the discretion of the
intercepting task, the application task can be made rollable
(assuming the application task can be rolled).

e Allow the application task to execute while it processes a
proceed SVC via code built by the IPROCEED macro. When an SVC
is intercepted, the application task that issued the SVC is
placed in a wait state and made nonrollable. At the
discretion of the intercepting task, the application task that
issued the intercepted SVC can proceed with its execution
while the intercepting task processes the SVC.

e Obtain data from the application task memory space via the
IGET macro.

e Write data into the writable memory space of the application
task via the IPUT macro.

e Send a task queue trap to the application task via the ITRAP
macro. While processing the SVC, the intercepting task may
find it necessary to send a task queue trap to the application
task. The task queue item sent must have a valid 0S/32 reason
code in the high-order byte. In addition, the TSW of the
application task must have the task queue entry (TQE) bit
associated with the reason code set.

A monitor control intercept path allows the intercepting task to
be notified whenever one of the designated SVCs is issued by an
application task. Monitor control differs from full control in
that once 0S/32 has sent the task event trap to the intercepting
task, the SVC is passed to the appropriate 0S/32 executor and the
task that issued the SVC proceeds with normal processing.

48-040 FOO RO3

F
I

11

The following guidelines should be followed when assigning a
level of control to the intercept path:

e Only monitor control can be specified for SVC3 intercept
paths. Either full or monitor control can be specified for
all other SVC type intercept paths.

® Only one full control intercept path can be attached to a
device or task (or pseudo device or task) for each type of SVC
to be intercepted.

e A task or device (or pseudo task or device) can be attached to
any number of monitor control intercept paths.

Example:

ICREATE NAME=DEVNAME ,MODE=RX, CONTROL=FC,SVC=(7)
ICREATE NAME=DEVNAME , MODE=RX, CONTROL=FC,SVC=(1)
ICREATE NAME=DEVNAME , MODE=RX, CONTROL=MC,SVC=(7)
ICREATE NAME=DEVNAME , MODE=RX,CONTROL=MC,SVC=(1)

DEVNAME DC C' ' DEFINE 8 BLANK CHARACTERS
DC C'MAG '
DC C! ' DEFINE 8 BLANK CHARACTERS (FD)

DC C' ' DEFINE 4 BLANK CHARACTERS (EXTENSION)

In this example, a full control SVC7 intercept path is attached
to device MAG:. A full control SVCl intercept path is also
attached to MAG:. No other SVCl or SVC7 full control intercept
paths can be attached. Of course, any number of SVCl and SVC7
monitor control intercept paths can be attached to MAG:; here,
one SVC7 and one SVCl monitor control paths are attached.

4.9 HOW INTERCEPT PATHS HANDLE SUPERVISOR CALIS (SVCs) OCCURRING
AT END OF TASK

SVC1l and SVC7 can be intercepted during end of task processing
(including end of task processing after cancel), if intercept
paths exist from these SVCs to devices assigned to the task's
logical units. The intercepting task must be careful when
writing into the operating system address space while executing
these SVCs so as not to destroy the system's integrity.

If the application task is cancelled while the intercepting task

is processing the SVC, 8SVC processing is aborted and the
application task proceeds to end of task.

4-12 48-040 FOO RO3

4.10 TERMINATING THE INTERCEPTED SUPERVISOR CALLS (SVCs)

When the intercepting task receives an SVC from a full control
intercept path, the intercepting task has the option of returning
the 8VC to the operating system for processing. To do this, the
intercepting task executes code built by an [CONT macro that
allows the operating system to resume processing the intercepted
SVC as if the intercept had never occurred. The ICONT macro
cannot be used if an IPROCEED or IROLL macro has been used.

If the intercepting task chooses to process the SVC, the
intercepting task executes code built by an ITERM macro after the
SVC 1is processed. ITERM terminates the interception and, if no
IPROCEED has been issued, allows the application task to resume
execution with the instruction immediately following the
intercepted SVC instruction.

Either ICONT or ITERM can be used to terminate interception from
a monitor control intercept path. The system does not
differentiate between the two calls in this case. Here the ICONT
or ITERM macro replaces the RDB buffer address back on the
circular 1list. It is very important that the ICONT or I[ITERM
macro be used to replace the RDB.

Cancelling an application task under monitor or full control
aborts the processing of the intercepted SVC in progress. The
intercepting task must still issue an ICONT or ITERM to terminate
the SVC interception.

4.11 HOW TO REMOVE INTERCEPT PATHS

An intercepting task can remove an intercept path by executing
code built by an IREMOVE macro specifying the path to be removed.
IREMOVE can be used for both immediate and delayed termination
depending on whether the controlled shutdown or abort option is
chosen.

The controlled shutdown option refuses all incoming requests and
completes the servicing of all existing queued and executing
SVCs. When processing of the last existing SVC intercepted by
the path is completed, the path is removed from the system.

The abort option terminates all existing queued and executing
SVCs before removing the intercept path from the system.

4.12 ERROR HANDLING

Run-time errors that result from executing intercept macro code
are handled by user-written error routines within the
intercepting task. When an error occurs, execution branches to
the routine specified by either the IERRTST macro statement or
the error parameter associated with each macro.

48-040 F0O RO3 4-13

The IERRTST macro is issued immediately after a macro for which
the error parameter has been omitted. If an error occurs,
execution of the intercepting task will branch to a user-written
error routine to handle the error. Error codes returned by the
IERRTST macro are listed in Table 4-2. If no error occurs,
execution continues at the instruction following the IERRTST
macro.

If the ERROR parameter is specified with an intercept macro and
an error occurs, execution branches to the specified error
routine within the intercepting task. If no error occurs,
execution proceeds to the next executable statement. The error
routine pointed to by the ERROR parameter can contain an IERRTST
macro to identify what error has occurred.

TABLE 4-2 ERROR CODES RETURNED FOR INTERCEPT MACROS

CODE "MEANING { MACROS

i i
i i
; =============S=’===============B=====B=========wﬂ============= =
{ MO | Invalid interception mode { ICREATE |
b e e e e e e e e e e e e v — i — i o o T T S 2 o e e T o o o e S o S e e o S o o e
ICREATE
ITERM
ICONT

1

I

Invalid address in parameter control block | i
i 1
! |
{ IREMOVE |
i i
i 1
t]
i i
i

(PCB)

ITRAP
IGET
IPUT

ICREATE
ITERM

Insufficient system space to do request, | i
] {
] 1
{ ITRAP i
: :
] i
] 1

]

or NINTC > 64, or PBSIZE > 998,

IGET
I1PUT

Full control already selected. { ICREATE |
i IROLL i
i IPROCEED |
{ ITRAP H
{ IGET i
i |

3

I1PUT

FD ! Invalid device name or task name. { ICREATE |

4-14 48-040 F0OO RO3

TABLE 4-2 ERROR CODES RETURNED FOR INTERCEPT MACROS

(Continued)
! ERROR | ! RELEVANT |
{ CODE | MEANING ! MACROS |
= - T I T I T T I N R I RN N T T E N T EE ST EE IR = =
i ST i Invalid state for call; e.g., IROLL | ICONT 1
| | followed by ICONT or issuing INPUT with { IREMOVE |
| i monitor control intercept path. i ITROLL |
' H ! IPROCEED |
! ! i ITRAP H
| 5 ! IGET i
| ! | IPUT H
T |
i TP i Task queue item not added. i ITRAP i
j-m————————— e e e |
! RD { Invalid RDB. | ITERM |
! H ! ICONT !
| | ! IROLL |
H H ! IPROCEED |
: : | ITRAP |
| : i IGET |
|] i IPUT H
|~ e]
| ID i Intercept path corresponding to this path | IREMOVE |
] ! ID does not exist. ! !
|- —]
I WR | Attempt to copy SVC parameter block back \ ITERM H
! { into write-protected area. ' !
j-——————————— e e i
i CD i Invalid subcode in SVC parameter block. i All |
! i SVC interception software not included at | i
| | sysgen. | |
s :
! NT | Intercepted task has gone to end of task. ! IROLL H
i ! . ! IPROCEED |
| 1 i ITRAP i
H i ! IGET]
| H i IPUT '

4.13 MACROS USED WITH SUPERVISOR CALL (SVC) INTERCEPTION

Once configured for SVC interception, the operating system allows
tasks to execute code built by macros for 8SVC interception
provided the tasks were linked with the intercept option.

This section gives the syntax for the SVC macros described in the
previous sections. See the 0S/32 System Macro Library Reference
Manual for a list of syntax rules.

48-040 F0OO RO3

S
1

15

4.13.1 ICREATE Macro

The ICREATE macro creates an intercept path for a particular SVC
type. See Table 4-3 for valid combinations for the SVC, MODE and
NAME parameters.

Format:
| |
NAME | OPERATION | OPERAND

(1)

(2,7)
symbol ICREATE SVC=<(3)
(6)
(7)

CL

, MODE=<RX

RN

,NAME=pointer
. TID=pointer

FC
, CONTROL=

MC

[HANDLER=pointer]
PID=pointer
(EXEC=pointer

[[PBSIZE=n]

[svAR=pointer]
[[ERROR=pointer]
[PCcB=pointer]
[[FORM=L]

l
|
|
i
i
i
i
i
|
]
|
i
i
i
i
i
i
i
i
i
! ,BUFFERL=pointer
|
;
=
:
:
=
g
;
:
=
|
i
|
i
i
i
i
i [[NINTC=n]
]
1

4-16 48-040 F0OO RO3

Operands:

SVC= is an integer, enclosed by parentheses, that
indicates the type of intercept path to be
created:

e (1) indicates SVC1
e (2,7) indicates SVC2 code 7
e (3) indicates SVC3
e (6) indicates SVCb
o (7) indicates SVC7

MODE= indicates one of the following interception
modes:
e CL indicates caller mode
e RX indicates recipient existent mode
e RN indicates recipient nonexistent mode
When CL is specified, an intercept path is
created for all 8SVCs (selected by the SVC
parameter) issued from the task specified in
the NAME or TID parameter.
When RX is specified, an intercept path is
created for all 8SVCs (selected by the SVC
parameter) directed to an existing task,
device, pseudo task, or pseudo device

specified in the NAME parameter.

When RN is sgpecified, a pseudo device is
d"—%
————————————

Operands:

SVC=

MODE=

48-040 FO0O RO3

is an integer, enclosed by parentheses, that
indicates the type of intercept path to be
created:

e (1) indicates SVC1l

e (2,7) indicates SVC2 code 7

e (3) indicates SV(C3

e (6) indicates SVC6

e (7) indicates SV(C7

indicates one of the following interception
modes :

e CL indicates caller mode

e RX indicates recipient existent mode

e RN indicates recipient nonexistent mode
When CL is specified, an intercept path is
created for all SVCs (selected by the SVC
parameter) issued from the task specified in
the NAME or TID parameter.

When RX is specified, an intercept path is
created for all SVCs (selected by the SVC
parameter) directed to an existing task,
device, pseudo task, or pseudo device
specified in the NAME parameter.

When RN 1is specified, a pseudo device is
created for SVCl or SVC7, or a pseudo task is
created for SVC6. The pseudo device or task
is attached to the intercept path created by
the call.

A pseudo task or pseudo device is deleted when
all intercept: paths attached to it are

removed. When a pseudo device is assigned
without SVC7 interception, the requested
access privileges are ignored and shared
read/shared write privileges are granted. 1f

an SVCl is attempted to a pseudo device
without an interception in effect, an invalid
function error (X'C0') is returned.

NAME = indicates the address of the memory 1location
specifying the name of a device task, pseudo
device or pseudo task. This location must be
fullword boundary-aligned and contain eight
bytes of blanks followed by a standard fd or
task identifier (taskid). An fd must be
packed, left-justified, and padded with blanks
within the fullword. A taskid must be
left-justified and padded with blanks.

When RX or RN 1is specified by the MODE
parameter, the standard fd or taskid given
with the NAME parameter can include an
asterisk (*) or a backward slash (\) to allow
generic naming. See Section 4.6.

TABLE 4-3 VALID COMBINATIONS FOR SVC, MODE AND NAME
PARAMETERS

|
|
|
|
1
1
|
|
1
1
|
1
|
|
|
|
|
|
1
1
|
|
|
1

SVC= | MODE= | NAME= | FUNCTION
(1) | CL | taskid | Intercepts any SVCl issued from the task.
RX fd Intercepts any SVCl directed to the

— - . ——h— —— —— ——— —— ——

1
| i i
| | | existing device.
! RN I o | !
i i i

Creates a pseudo device and intercepts
any SVC1l directed to it.
__ i
i (2,7) | CL | taskid | Intercepts any SVC2 code 7 issued |
i H ! { from the task. |
! I RX i -- ! No function; specifying fd or taskid H
H ! | | results in error. |
} | RN H -- ! Results in error. ;
= __
i (3) ! CL ! taskid | End of task interception; occurs no H
i i | ! matter how a task terminates. H
} i RX ! -- | No function; specifying fd or taskid |
i i | | results in error. !
| { RN H -- | Results in error. E
e ettt ittt e {
{ (6) { CL | taskid | Intercepts any SVC6 issued from the task. |
| ! RX ! taskid | Intercepts any SVC6 directed to the |
H i H ! existing task. H
| i RN | taskid | Creates a pseudo task and intercepts !
i ! | ! any SVC6 directed to it. H
| mm e e eSS eSS S S —————————- i
V(7)) ! CL ! taskid | Intercepts any SVC7 issued from the task. |
! ! RX { fa | Intercepts any SVC7 directed to the |
' { H { existing device. H
i ! RN { fad | Creates a pseudo device and intercepts H
i | |] i

any SVC7 directed to it.

4-18 48-040 F0O RO3

TID=

CONTROL=

BUFFERL=

HANDLER=

PID=

48-040 FOO RO3

indicates the address of a fullword location
containing a taskid. This parameter, which is
mutually exclusive with the NAME= parameter,
can be used when MODE=CL, or MODE=RX with
SVCb, to identify the task to be intercepted.
The TID can be obtained from the RDB.TID field
of an RDB from a previously intercepted SVC
call. '

contains a mnemonic indicating either full
control (FC) or monitor control (MC) over
intercepted SVCs.

When CONTROL=FC, an intercepting task can
exert full control over an application task's
intercepted SVCs.

When CONTROL=MC, an intercepting task acts as
a monitor only; it has no control over an
intercepted SVC.

indicates the address of the standard circular
list that contains the addresses of available
RDB buffers.

The RDB used by the intercepting task to
identify an intercepted SVC must not be moved
to a new location after the interception takes
place. The system ensures that the address of
this RDB is the same as the address of the RDB
that was passed to the intercepting task when
the interception occurred.

indicates the address of a fullword location
containing the name of a queue handler. This
name, a maximum of eight characters, is
left-justified and padded with blanks. If
this parameter is omitted, the default queue
handler is invoked.

NOTE

Currently, user-def ined queue
handlers are not supported.

indicates the address of a halfword 1location
that is used by the system to store the path
identifier for the intercept path.

EXEC=

PBSIZE=

SVAR:=

ERROR=

is the address of an SVC intercept executor
routine within the intercepting task. This
routine will process intercepted SVCs of the
type specified with the SVC parameter. During
SVC interception, the system removes an RDB
specified by the list, fills it with
information, and queues a task event trap with
the specified executor address to the
intercepting task.

On entry to an executor routine, general
register 0 contains the PID of the intercept
path and general register 1 contains the
address of the RDB buffer associated with the
intercepted svC. The executor routine
executes as a task event service routine.

specifies the number of bytes in the parameter
block for the S8SVC indicated by the svcC
parameter.

When this parameter is omitted, the parameter
block size defaults to the standard sizes
documented for each type of SVC in the 0S/32
Supervisor Call (SVC) Reference Manual, except
for 8SVC2 code 7 interception, which defaults
to eight bytes.

The size of the RDB.PB field in the RDB for
this interception path is the value of the
PBSIZE parameter (or its default if PBSIZE is
not specified).

is the address of a fullword location
containing user-defined data. This data is
passed to the intercept logic. The queue
handler named by the HANDLER parameter can
later access the data. The SVAR parameter is
for user-defined purposes when needed by a
user-def ined queue handler.

NOTE

Currently, user-def ined gueue
handlers are not supported.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for this macro, execution branches to this
error routine. If this parameter is omitted
and a run-time error occurs, execution resumes
with the instruction following code built by
the macro.

48-040 FOO RO3

PCB=

FORM=

NINTC=

is the address of a PCB previously constructed
and initialized by the FORM=L parameter.

When no PCB parameter is included, macro code
automatically builds a new PCB and initializes
it with values corresponding to the other
specified parameters.

L requests a PCB to be built but not executed.
Macro code constructs a PCB for this macro and
initializes it with values. Subsequent macros
can reference this PCB via the PCB parameter.

n specifies the number of interceptions that
can be handled concurrently for this intercept

path. If there are more SVC interceptions
outstanding than can be handled concurrently,
the excess interceptions are queued. The

default value for n is 1.

4.13.2 IREMOVE Macro

The IREMOVE macro allows an intercepting task to remove one or
all previously created SVC intercept paths.

Format:
i 3
NAME | OPERATION | OPERAND
symbol IREMOVE PID=pointer

48-040 FOO RO3

cs
' TERMa{ 4 }

i
i
:
|
|
i
i [[ERROR=pointer]
1
!
;
;
:

[[PCB=pointer]

[[FORM=L]

Oper

ands:

PID=

TERM=

- ERROR=

PCB=

FORM:=

is the address of the path identifier
specifying the path being removed. A zero
value in the PID halfword removes all existing
intercept paths.

indicates either of two termination modes for
intercepted SVCs already queued for the
intercepting task:

e AB indicates abort. 0S/32 aborts all
currently gueued requests before path
removal.

@ (S indicates controlled shutdown. 08/32
services only currently queued requests
before path removal; requests made after
TERM=CS 1is issued cannot be gqueued or
processed.

If this parameter 1is omitted, AB 1is the
default.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for this macro, execution branches to this
error routine. If this parameter 1is omitted
and a run-time error occurs, execution resumes
with the instruction following the macro.

is the address of a PCB previously constructed
and initialized by the FORM=L parameter.

If this parameter is omitted, a new PCB is
automatically built and 1initialized with
values corresponding to the other specified
parameters.

. requests that a PCB be built but not
executed. A PCB 1is built by this macro and
initialized with wvalues. Subsequent macros
can reference this PCB via the PCB parameter.

48-040 FOO RO3

4.13.3 IGET Macro

The IGET macro allows an intercepting task to get data from the
application task whose SVC is intercepted.

Format:

Operands:

ADEND=

48-040 FOO RO3

[}
]
OPERATION | OPERAND

———————————————————— . ———— - {—] - ———— —— i ott0 oo T ———————— 1 —

RDB=pointer
;ADST=pointer
ADEND=pointer

,SDST=pointer

[, ERROR-pointer]
[[PCB=pointer]
[, FORM=L.]

i

i

i

i

!

i

i

i

! +SDEND=pointer
1 .

!

i

i

5

5

i

| [[DONE=addr]
1

1

is the address of the RDB buffer built for the
intercepted SVC.

is the start address of a data area within the
application task whose SVC is intercepted.
The contents of this area are transferred to
an intercepting task data area.

is the end address of the data area within the
application task whose SVC is intercepted.

4.13

SDST=

SDEND=

ERROR=

PCB=

FORM=

DONE=

.4 IPUT Macro

is the start address of a data area within the
intercepting task. This area receives the
data from the application task.

is the end address of the data area within the
intercepting task.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for this macro, execution branches to this
error routine. If this parameter is omitted
and a run-time error occurs, execution resumes
with the instruction following the macro.

is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests a PCB be built but not executed.
A PCB is built for this macro and initialized
with values. Subsequent macros can reference
this PCB via the PCB parameter.

is an address that specifies that the macro is
to be a PROCEED call. When the call is
completed, a task event interrupt occurs,
using the routine specified by the address in
the DONE parameter. This routine enters with
RO containing the error code for the call and
Rl pointing to the macro's parameter block.
Once this routine has finished processing, it
exits using the code built by the TEXIT macro.

The proceed form of the IGET macro must be
used if an IROLL macro was issued to the
application task whose SVC is intercepted.
The system cannot guarantee that the
application task 1is in memory or that it can
be rolled into memory within a reasonable
time.

The IPUT macro lets an intercepting task put data into a data
area of the application task whose SVC is intercepted.

48-040 FOO RO3

Format:

] t
' L]
NAME | OPERATION | OPERAND

Operands:

ADEND=

SDST=

SDEND=

ERROR=

48-040 FOO RO3

T - ———————— — 1 —_ — ——— T —{——] - " — o o s i o i

RDB=pointer
,ADST=pointer
 ADEND=pointer
,SDST=pointer
 SDEND=pointer
[ERROR=pointer]
[LPCB=pointer]

, FORM=L,]

[DONE=addr]

is the address of the RDB buffer built for the
intercepted SVC.

is the start address of a data area within the
application task. This area receives the
contents of an intercepting task data area.

is the end address of the data area within the
application task.

is the start address of a data area within the
intercepting task. The contents of this area
are put into the application task data area.

is the end address of the data within the
application task.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine.

If this parameter is omitted and a run-time
error occurs, execution resumes with the
instruction following the macro.

PCB=

FORM=

DONE=

is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L. requests a PCB be built but not executed.
A PCB is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

is an address that specifies that the macro is
to be a proceed call. When the call is
completed, a task event interrupt occurs,
using the routine specified by the address in
the DONE parameter. This routine enters with
general register 0 containing the error code
for the call, and general register 1 pointing
to the macro's parameter block. Once this
routine has finished processing, it exits
using the code built by the TEXIT macro.

The proceed form of the IPUT macro must be
used if an IROLL macro was issued to the
application task. The system cannot guarantee
that the application task is in memory or that
it can be rolled into memory within a
reasonable time.

4.13.5 ICONT Macro

The ICONT macro relinguishes control of an intercepted SVC by
returning control to an 0S/32 SVC executor.

Format:

]
1
OPERATION | OPERAND

RDB=pointer
[ERROR=pointer]
[[PcB=pointer]]

[, FORM=L)

48-040 FOO0 RO3

Operands:

RDB= is the address of the RDB buffer built for the
intercepted SVC.

ERROR= is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine.

If this parameter is omitted and a run-time

error occurs, execution resumes with the
instruction following the code built by the
macro.

PCB= is the address of a PCB previously constructed

and initialized by the FORM=L parameter.

If this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified

parameters.

FORM= L. requests a PCB be built but not accessed.
A PCB is built for this macro and initialized
with values. Subsequent macros can refer to

this PCB via the PCB parameter.

4.13.6 IPROCEED Macro

After an SVC has been intercepted, the intercepting task can
execute code built by an IPROCEED macro to allow the application
task that issued the SVC to proceed with its execution. Until
the intercepting task executes code built by an IPROCEED macro,
the application task is in a wait state.

Format:
i i
NAME | OPERATION | OPERAND
symbol IPROCEED RDB=pointer

[ERROR=pointer]

[, FORM=L]]

[cc=n]

]
)
:
:
:
i [[PCB=pointer]
|
E
i
i
i

48-040 F0O0 RO3 4-27

Operands:

RDB= is the address of the RDB buffer built for the
intercepted SVC.

ERROR= is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine. If this
parameter is omitted and a run-time error
occurs, execution resumes with the instruction
following code built by the macro.

PCB= is the address of a PCB previously constructed
and initialized by the FORM=L. parameter. If
this parameter 1is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

FORM= L requests a PCB be built but not assessed.

A PCB is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

CC= n is a decimal number specifying the setting
of the application task program status word
(PSW) condition code after the SVC instruction
execution. If the CC parameter 1is omitted,
the condition code of the application task PSW
is set to zero.

4.13.7 IROLL Macro

After an SVC is intercepted, an IROLL macro lets an intercepting
task change the status of the application task from nonrollable
to rollable, provided that the task was established as rollable

by Link. This allows 0S/32 to roll out a task having an
intercepted SVC that requires lengthy processing.

Format:

. |
NAME ; OPERATION ; OPERAND
________________________ RDB-pointer
[LERROR=pointer]
[[PcB=pointer]

[FORM=L.]

4-28 48-040 FOO0 RO3

Operands:

RDB:= is the address of the RDB buffer built for the
intercepted svcC.

ERROR= is the address of an error routine within the
intercepting task. If a run-time error occurs
for this macro, execution branches to this
error routine. If this parameter is omitted
and a run-time error occurs, execution resumes
with the instruction following the macro.

PCB= is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

FORM= L requests a PCB be built but not accessed.
A PCB is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

4.13.8 ITERM Macro

The ITERM macro terminates SVC processing. It also allows an
intercepting task to return the parameter block of the SvVC it
processed to the application task that issued the svcC. The

returned parameter block can have updated information such as
status, number of bytes transferred, etc.

Format:
' i
NAME | OPERATION | OPERAND
symbol ITERM RDB=pointer

+ TRAP=pointer

[ERROR=pointer]
E, PCB=po inter:]
[, FORM=LT]

[, cc=n]

48-040 F0OO RO3 4-29

Operands:

RDB= is the address of the RDB buffer built for the
intercepted SVC.

TRAP= is the address of a fullword that contains an
item to be added to the task queue of the
application task whose SVC is intercepted.

COPY= Y (yes) indicates that the SVC parameter block
in the RDB is to be copied back into the
parameter block of the intercepted SVC.

N (no) indicates the copy operation is not
performed. If this parameter is omitted, N is
the default. :

ERROR= is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine. If this
parameter 1is omitted and a run-time error
occurs, execution resumes with the instruction
following the code built by the macro.

PCB= is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified

parameters.

FORM= L. requests that a PCB be built but not
accessed. A PCB is built for this macro and
initialized with values. Subsequent macros

can refer to this PCB via the PCB parameter.
cc n is a decimal number specifying the setting
of the application task PSW condition code
after the SVC instruction execution. If the
CC parameter is omitted, the condition code of
the application task PSW is set to zero.

li
i

4.13.9 ITRAP Macro
The ITRAP macro allows an intercepting task to send a task queue

item to an application task whose SVC is intercepted. The task
queue item can be any of the task queue items supported by 0s/32.

4-30 48-040 FOO RO3

Format:

Operands:

RDB=

TID=

TRAP=

ERROR=

48-040 FOO RO3

OPERATION

{RDB=pointer}
TID=pointer

, TRAP=pointer

[PCB=pointer]
[FORM=L.]

i

i

i

!

|

i

i EERROR=pointeﬂ
]

;

:

‘

;

i [[DONE=addr]
]

1

is the address of the RDB buffer built for the
intercepted SVC.

is the address of a fullword containing the
taskid for the task. Before issuing an ITRAP
macro with the TID parameter, the intercepting
task must have obtained the task identifier
from an RDB and placed it into the fullword
location.

NOTE

The TID form of this macro can be
used to send a trap to a task that
is not being intercepted.

is the address of a fullword that contains an
item to be added to the task gueue of the
application task having an SVC that is
intercepted.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine. If this
parameter is omitted and a run-time error
occurs, execution resumes with the instruction
following the code built by the macro.

4.13.10

PCB=

FORM=

DONE=

is the address of a PCB previously constructed
and initialized by the FORM=L. parameter. if
this parameter 1is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L. requests that a PCB be built but not
accessed. A PCB is built for this macro and
initialized with wvalues. Subsequent macros
can refer to this PCB via the PCB parameter.

is an address that specifies that the macro is
to be a PROCEED call. When the call is
completed, a task event interrupt occurs,
using the routine whose address 1is specified
in the DONE parameter. This routine enters
with general register 0 containing the error
code for the <call and general register 1
pointing to the macro's parameter block. Once
this routine has finished processing, the
intercepting task exits wusing code built by
the TEXIT macro.

The proceed form of the ITRAP macro must be
used if an IROLL macro was specified in the
application task having an SVC that is
intercepted. The system cannot guarantee that
the application task is in memory or that it
can be rolled into memory within a reasonable
time.

IERRTST Macro

The IERRTST macro allows an intercepting task to evaluate errors
resulting
order to branch to appropriate error handling routines.

Format:

from

execution of code built by intercept macros in

i
OPERATION | OPERAND

IERRTST

xx=pointer

[xx=p<; inter]
[ELSE=pointer]
[PcB=pointer]

[ForM=L.]

48-040 FOO RO3

Operands:

XX

pointer

ELSE=

PCB=

FORM=

48-040 F0OO RO3

is a two-character alphabetic string
specifying one of the error codes for the
intercept macros. See Table 4-2.

specifies the name of an intercepting task
error routine that handles errors having a
returned error code identical to the one
specified by the xx parameter. For instance,
an IERRTST macro might include these
parameters for evaluating an [PUT macro:

IERRTST AD=pointer,NT=pointer,RD=pointer

These parameters specify the addresses of the
error routines to which execution will branch
whenever the returned error code equals AD, NT
or RD.

is the name of an error routine to be executed
for errors other than those specified in the
XX parameter. If this parameter is omitted,
one of the following actions occurs for
returned errors:

e If the returned error code corresponds to
the one specified by the xx parameter,
execution branches to a specific error
routine.

e I[If the returned error code does not
correspond to the one specified by the xx
parameter, execution branches to the
instruction immediately following the code
built by the IERRTST macro.

is the address of a PCB previously constructed
and initialized by the FORM=L, parameter. If
this parameter 1is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests that a PCB be built but not
accessed. A PCB is built for this macro and
initialized with values. Subsequent macros
can refer to this PCB via the PCB parameter.

4.13.11 $RDB Macro
The $RDB macro is used to define a structure containing the
symbolic names for all of the RDB fields. It is recommended that

symbolic names be used to refer to the RDB fields instead of
coding the hexadecimal offsets to the fields.

Format:

OPERAT ION

4.14 SAMPLE SUPERVISOR CALL (SVC) INTERCEPTION PROGRAMS
The following program uses SVC interception software to intercept

8VCl to the existing real device MAGl. Each time an SVCl is
issued to MAGl, the program prints the following message:

SVC 1 CALlL, INTERCEPTED

The SVCl is terminated with a device unavailable error code
(X'A0').

$RDB DEF INES AN RDB STRUCTURE

* ADD AN RDB BUFFER ADDRESS TO THE RDB BUFFER ADDRESS LIST.

LA 0,RDB LOAD THE ADDRESS OF THE RDB
* INTO REGISTER O

ABL 0,BUFLIST ADD THE ADDRESS OF THE RDB
x TO THE CIRCULAR LIST

* CREATE THE INTERCEPT PATH

ICREATE NAME=INTNAME, FD FOR DEVICE NAME X
MODE=RX, RECIPIENT-EXISTENT MODE X
CONTROL=FC, GIVES INTERCEPTING TASK FULL CONTROL X
svC=(1), ALL SVC 1 ARE TO BE INTERCEPTED X
EXEC=INTRTN, POINTS TO THE SVC EXECUTOR ROUTINE X

BUFFERL=BUFLIST, ASCIGNS POINTER TO FREE BUFFER LIST X
PID=PATHID, DATA AREA FOR INTERCEPT PATH ID X

ERROR=BOMBOUT ERROR ROUTINE FOR ICREATE MACRO

4-34 48-040 F0OO RO3

* %

IF ERROR OCCURS IN ICREATE MACRO ENABLE TASK EVENT TRAP SO TASK
CAN GO INTO TRAP WAIT FOR INTERCEPTS TO OCCUR

* LOAD TSW WITH WAIT STATE SET AND TASK EVENT TRAPS ENABLED

LT5W TETS,WT

* COME HERE IF ERROR OCCURS IN ICREATE MACRO

BOMBOUT

svc 3,1 FAIL TASK ON ERROR

* ALLOCATE DATA AREA FOR ICREATE

ALICN 4
INTNAME DC c ' NODE NAME

DC c’ ' RESERVED

DC C'MAGL’ DEVICE NAME

DC c' ' FILE NAME PART 1

DC c' ' FILE NAME PART 2

DC c’ ' EXTENS ION
BUFLIST DLIST 1 DESIGNATE 1 RDB IN CIRCULAR LIST
RDB DS RDB.PB+20 ALLOCATES SIZE OF RDB + SVC 1
PATHID DS 2 DESIGNATE AREA FOR PATH ID
* TRAP EVENT SERVICE ROUTINE
* THE FOLLOWING ROUTINE IS EXECUTED WHEN AN SVC IS INTERCEPTED
INTRTN SVC 2,NOTIFY LOG MESSAGE THAT SVC 1 WAS INTER-
x CEPTED

LHI 0,X'A000' RETURN DEVICE UNAVAILABLE STATUS
* FOR INTERCEPTED SVC 1

STH 0,RDB.PB+2(1) SAVE SVC 1 STATUS IN STATUS FIELD
* OF RDB
*
* TERMINATE THE INTERCEPTED CALL, COPYING THE MODIFIED SVC
* PARAMETER BLOCK IN THE RDB BACK OVER THE USER'S SVC PARAMETER
* BLOCK.

ITERM RDB=(1),COPY=Y

TEXIT EXIT THE TASK EVENT ROUTINE

* ALLOCATE DATA AREA FOR TRAP EVENT SERVICE ROUTINE

NOTIFY

48-040 FOO R

ALIGN 4

pB 0,7,0,22 ,

DC C'SVC 1 CALL INTERCEPTED'
END

03 4-35

The following program creates a pseudo device to which a wuser
task (u-task) can assign and write. The user's data buffer is
passed to the 0S/32 command processor via SVC2 code 14 to be
executed as a command line.

IRDR PROG SVC INTERCEPT EXAMPLE - INTERNAL READER
KRR KKK KKK KKK KRR ATk Kk Rk kKRR R AR KRR R KRR KRR KRRk kkkkkkkkkkkkk

t*t**tt**t***********t*t****i************tt*********t**t*****t**t*****

* . X
X X
* This task creates a pseudo device to which a u-task x
* can assign and write. The user's data buffer is *
* passed to the operating system command processor via x
* an SVC2 code 14 to be executed as a command line. *
% . %

* *x
*t******t**********t**t**k****t*****t*************tt****t*************
tt*titit****t***********t******************t***t*****tl**k********

ROO EQU O
RO1 EQU 1
RO2 EQU 2
RO3 EQU 3
RO4 EQU 4
ROS EQU 5
RO6 EQU 6
RO7 EQU 7
ROS EQU 8
RO9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
SPACE 3
NLSTM
NLSTU
$svecl
$sVC7
$RDB

TITLE INTERCEPT PATH CREATION
KK I KKK KKK KRR KRKK KR I KRR KRR RERRAR R AR XN AR AR KRR RAR KRR KRR KRR R AR R KRR ARk k%

* *
x SET UP INTERCEPT PATHS *
x *

i*********ii****************************Qt**tt****************t*t*t***

4-36 48-040 FOO RO3

IRDR EQU
sveC
L
ST
LHI
SLL
ST
svC
LB
LR
BNZ
LIS
STH
sve
LB
LR
BNZ
LHI
SRLS
STB
svc
LB
LR
BNZ
LHI
STH
svc
LH
STH
SPACE
LHI
LA

INTRDB EQU
ATL
AHI
SIS
BNZ
SPACE

*

2,PEEKO1
ROO, CON

GET NAME OF SYSTEM CONSOLE

ROO,SVC7.VOL+SVC7CON
ROO,SV7.ASGN!SV7.SRW

R0O, 16

ASSIGN LU O SRW

R0OO,SVC7.0PT+SVC7CON

7,SVC7CON

ASSIGN TO SYSTEM CONSOLE

ROO,SVC7.STA+SVC7CON

ROO,ROO WAS THE ASSIGN OK?
BADCON NO
ROOG, O CHANGE SVC 7 TO FETCH ATTR

ROQ,SVC7.0PT+SVC7CON

7,SVC7CON

FETCH ATTRIBUTES ON CON:

R0OO, SVC7.STA+SVC7CON

ROO,ROO
BADCON

ROO,SV7.CLOS

ROO, 8

WAS THE FETCH OK?

NO

CHANGE SVC 7 TO CLOSE

DO NOT DESTROY DEVICE CODE

ROO,SVC7.0PT+SVC7CON

7,8VC7CON

CI.OSE THE SYSTEM CONSOLE

RO0O,SVC7.STA+SVC7CON

ROO,ROO WAS THE CLOSE OK?
BADCON NO
ROO,X'7FFF' BAD LENGTH FOR SVC 2,14 TO GET

ROO, COMMAND+4

2 , COMMAND

ROO, COMMAND+6

MAX LENGTH ALLOWED BY SYSTEM
WILL GET ERROR STATUS 3
USE AS IRDR LENGTH

ROO,SVC7.LRC+SVC7CON

1l

ROO, RDBNUM
RO1, RDBPOOL
*

NUMBER OF RDB'S
ADDRESS OF RDB POOL

RO1,RDBP ADD RDB TO QUEUE
RO1,RDBSIZE ADDRESS OF NEXT RDB
ROO,1 ALLLL RDB'S ADDED TO QUEUE?
INTRDB NO

1

ICREATE SVC=(7) ,MODE=RN, NAME=NAME ,

CONTROL=FC, BUFFERL=RDBP,PID=PID, EXEC=INT7

IERRTST FD=BADFD,EX=BADEX,EL.SE=BADALIL,
ICREATE SVC=(1l) ,MODE=RX,NAME=NAME , PBSIZE=SVC1X,

CONTROL=FC, BUFFERL=RDBP,PID=PID,EXEC=INT1

IERRTST FD=BADFD,EX=BADEX, ELSE=BADALL

SPACE

LTSW

SPACE
BADFD svc

svcC
BADEX svc

svcC
BADALL svc

svC
BADCON SVC

svcC

SPACE

ALIGN
LOGFD DC

DC
LOGEX DC

DC
STRANGE DC

DC
LOGCON DC

1

WT, TETS ENTER TRAP WAIT
3

2,LOGFD
3,1
2,LOGEX
3,1

2, STRANGE
3,1

2, LOGCON
3,1

1

4

H'7',H'8'
C'FD ERROR'
H'7',H'8"
C'EX ERROR'
H[l?l'Hlal
C'11 ERROR'
H'7',H'12"

48-040 FOO RO3

4-37

NAME
PID

RDBNUM
RDBSIZE
RDBP
RDBPOOL

DC C'!I1CON ERROR '

SPACE 1

DC c' IRDR !

DSF 1

SPACE 1

EQU 3 NUMBER OF RDB'S IN POOL
EQU RDB.+SVC7. MAXIMUM SIZE OF RDB
DLIST RDBNUM RDB POOL

DS RDBS I ZE*RDBNUM RDB BUFFERS

TITLE SVC 7 TEQ HANDLER

e I 2122222222222 223232333 3332233322222 222222 s R 2 0 2 0

X
*
b

INT7

INT7 .NS

: x
SVC 7 INTERCEPT EXECUTOR ‘ *

x
KK KKK KKK KKK I KKK KKK KKK I K I AIIKREKKRAKKKKAIKRKH KKK KRR KKK KKK KKK kKX
EQU x
LR R10,RO1 SAVE RDB POINTER
LR R11,R10
AH R11,RDB.OFF (R10) ADDRESS OF SVC 7 PBLK
LB ROO,SVC7.0PT(R11) GET SVC 7 OPTIONS
LR ROO,R0OO FETCH ATTRIBUTES?
BZ DOFETCH YES
CLHI ROO,X'FF' EXTENDED SVC 7 FUNCTIONS?
BE INT7.NS YES - NOT SUPPORTED
THI ROO,X'40' ASSIGN?
BNZ DOOPEN YES
THI ROO,X'04' CLOSE?
BNZ DOCLOSE YES
THI ROO,X'21° CHAP OR CHECKPOINT?
BNZ INT7.1G YES - IGNORE
SPACE 1
EQU *
svc 2, UNPACK7 PUT SVC 7 OPTION IN ERROR MESSAGE
svC 2,LOG7ERRC AND LOG ERROR MESSAGE
LIS ROO,1 RETURN ILLEGAI. FUNCTION TO USER

*
*
x

INT7.1G

*
X
*

DOOPEN

STB RO0O,SVC7.STA(R11) AS AN ERROR STATUS
ITERM PCB=TERM,RDB=(R10) TERMINATE THIS SVC 7
TEXIT PCB=EXIT EXIT FROM TEQ HANDLER
SPACE 3

IGNORE SVC 7 COMMAND PROCESSOR

EQU *

ITERM PCB=TERM,RDB=(R10) IGNORE THIS SVC 7
TEXIT PCB=EXIT EXIT FROM TEQ HANDLER
SPACE 3

OPEN PROCESSOR

EQU x

LB R15,SVC7.0PT+1(R11l) GET ACCESS PRIVILEGES

SRLS R15,5 SRO = O & ERO = 1

CLHI R15,2 REQUESTING READ ONLY ACCESS?
BL OPEN.ERR YES - ERROR

B OPEN.OK SKIP SECURITY CHECK

SPACE 2

——————— USER DEFINED SECURITY CHECK FOLLOWS--————-—=—=————=—====-
L R1S5,RDB.TID(R10) MOVE TID FOR PEEKO3

ST R15,TID

svc 2 ,PEEKO3 INFO ON USER TASK

LM R14 ,MONITOR GET NAME OF USERS MONITOR
CLI R14,C'.MTM' TASK A SUB-TASK OF MTM?

BNE OPEN.OK NO

CLI R15,C' ' BE SURE

48-040 FOO RO3

BNE
LM
CLI
BNE
CLI
BNE
L
CLI
BNE
L
CLHI
BNE
L
CLHI
BNE

SPACE
EQU
ICONT
TEXIT
SPACE
EQU
LIS
STB
ITERM
TEXIT
SPACE

OPEN.OK

OPEN.ERR

* CLOSE

EQU
ICONT
TEXIT
SPACE

* FETCH
*

DOFETCH EQU
LA
LB
STB
LIS
STB

L

ST

L

sT
LM
ST™
ITERM
TEXIT
TITLE

OPEN.OK
R14 , TASKNAME
R14,C'LEE '
OPEN.ERR
R15.,C’ !
OPEN.ERR
R15,LEGACY
R15,C'CT42'
OPEN.ERR
R15,ACCT.P
R15,29
OPEN.ERR
R15,ACCT.G
R15,18
OPEN.ERR

PCB=CONT, RDB=(R10)
PCB=EXIT

2

*

R15,9
R15,SVC7.STA(RL1)
PCB=TERM, RDB=(R10)
PCB=EXIT

3

PROCESSOR

X

PCB=CONT, RDB=(R10)
PCB=EXIT
3

NO?

GET NAME OF USER

IS IT ME?

NO

BE SURE

NO?

GET NAME OF USERS TERMINAL

IS IT MINE?

NO

GET USERS PRIVATE ACCOUNT NUMBER
AM I IN MY ACCOUNT?

NO

GET USERS GROUP ACCOUNT NUMBER
DO I HAVE MY CORRECT GROUP ACCOUNT?
NO

RETURN TO OS SVC 7 EXECUTOR
EXIT FROM TEQ HANDLER
RETURN ASSIGNMENT ERROR TO USER

RETURN BAD STATUS TO USER
EXIT FROM TEQ HANDLER

RETURN OS OS SVC 7 EXECUTOR
EXIT FROM TEQ HANDLER

ATTRIBUTES PROCESSOR

*

RO9, SVC7CON
R15,S8VC7.0PT+1(R09)
R15,8VC7.0PT+1(R11)
R15,0
R15,SVC7.STA(R11)
R15,SVC7.KEY (R0O9)
R15,8VC7.KEY (R11)
R15,NAME+8
R15,SVC7.VOL(R11)
R12,SVC7.FNM(R09)
R12,SVC7.FNM(R11)
PCB=TERM, RDB=(R10)
PCB=EXIT

SVC 1 TEQ HANDLER

GET ADDRESS OF FETCH ATTR OF CON
MOVE DEVICE CODE

GOOD STATUS
DEVICE ATTR & RECORD LENGTH

IRDR DEVICE NAME

RETURN SVC 7 FETCH PBLK TO USER
EXIT FROM TEQ HANDLER

% % %k ke ke ok ok sk gk sk gk sk ok 3k ok ok ke ke g ok Dl ok Sk ik k ok ok ok ok ok ok sk Dk Dk ok sk dk sk ok kR ok ke e Kk ke ki ko ko ok ok ok ke k ke Kk

*

* svc 1
*

INTERCEPT EXECUTOR

%
*x
x

% % d ok ke de ke ok ok ok sk sk sk ok gk o ok ke ok de dke de ok ok o ok e ok koK 3k sk ok ok ok ok sk ok ok ok gk ok ok ok ok ok ok ok ok ok ok e ok sk sk ok kR Rk % Xk

INT1 EQU
LR
LR
AH
LIS

LIS

48-040 FOO RO3

*

R10,RO1

R0O7,R10
RO7,RDB.OFF (R10)
R14,0

R1S5,0

SAVE RDB ADDRESS

ADDRESS OF SVC 1 PBLK
NO ERROR ON COMMAND FUNCTION
LENGTH OF TRANSFER

* % X X%

*
*
*x

INT1.WRT

ECHODONE

ECHOWAIT

UNPACK7

LOG7ERRC

SVC7ERRC
LOG7ERRX

TRAP

CONT

TERM

LB

THI
BNZ
THI
BNZ

R13,SVC1.FC(RO7)
R13,S5V1.CMDF
ECHODONE
R13,SV1.WRIT
INT1.WRT

GET FUNCTION CODE
COMMAND FUNCTION?

YES - TREAT AS A NOP
IS USER DOING A WRITE?
YES

A read from the internal reader will give the
user an illegal function status.

LHI
B

Queue

EQU
L

L
IGET

SR
LR
AlIS
STH
sSvVC
LH
BZ
LHI
SPACE
EQU
STH
ST
THI
BNZ
SPACE
L
Ol
ST
SPACE
ITERM
TEXIT
SPACE
EQU
ITERM
TEXIT
EJECT
ALIGN
DB
DAC
DB
DC
DB
DB
EQU
SPACE
ALIGN
DS
SPACE
ALIGN
ICONT
SPACE
AL.IGN
ITERM
SPACE
ALLIGN

R14,X'C000"
ECHODONE

ILLEGAL FUNCTION ON READ
FINISH UP

the user's command line to the internal reader

x

R11,SVC1.SAD(RO7)
R12,SVC1.EAD(RO7)

GET START ADDRESS
AND END ADDRESS

RDB=(R10) ,SDST=BUFFER, SDEND=BUFEND
ADST=(R11l) ,ADEND=(R12) :

R12,R11

R15,R12

R1S,1
R15,COMMAND+4

2, COMMAND

R14, COMMAND+2
ECHODONE
R14,X'A000"

1

*x
R14,SVC1.STA(RO7)
R15,SVC1.LXF (RO7)
R13,SV1.WAIT
ECHOWAIT

1
R15,RDB.PAD(R10)
R15,Y'08000000"
R15, TRAP

1

GET LENGTH-1 OF STRING
LENGTH OF USER COMMAND LINE

PASS COMMAND TO IREADER
COMMAND QUEUED TO IREADER?
YES

NO - GIVE DEVICE UNAVAILABLE

RETURN STATUS

RETURN LENGTH

IS USER REQUEST A WAIT?
YES - NO NEED FOR A TRAP

CET ADDRESS OF USER SVC 1 PBLK
I1/0 PROCEED COMPLETION PARAMETER

RDB=(R10) , TRAP=TRAP,COPY=Y TERMINATE WITH TRAP

PCB=EXIT
1

b 4

PCB=TERM,RDB=(R10)

PCB=EXIT

4

2,6,0,0
SVC7ERRC

0,7

Z (LOG7ERRX-*)

EXIT FROM TEQ HANDLER

TERMINATE THIS SVC 1
EXIT FROM TEQ HANDLER

PUT SVC 7 ERROR CODE IN

C'UNSUPPORTED SVC 7 FUNCTION '

c'..

INTERCEPTED '

»

-

ORM=L

ORM=L,, COPY=Y

AT AENTEANDSDN

1/0 PROCEED COMPLETION TRAP

CONTINUE SVC

TERMINATE SVC

48-040 FOO0 RO3

EXIT

PEEKO1

CON

SVC7CON

PEEKO03
TID
TASKNAME
CTSW
TOPT
WAITS
ACCT.P
ACCT.G
L..VOL
L.FD
L.EXT
MONITOR
LEGACY
PRIO

COMMAND

BUFFER
BUFEND

48-040 FOO RO3

TEXIT
SPACE
ALIGN
DB

DS

DS
SPACE
ALIGN
DS
SPACE
ALIGN
DB
DSF
DSF
DSF
DSF
DSF
DSF
DSF
DSF
DSF
DSF
DSF
DSF
DS

DS
SPACE
ALIGN
DB
DCX
DCX
DC
SPACE
ALIGN
DS
EQU
END

FORM=L

1,19
22

SVC7.

[
0
o
o

14 r 14

P e N B B R b e e e e N WD N

,14,0,0

(BUFFER)

= rk‘hbﬂ>tDOFﬂbtow
=

&
P

EXIT SVC

SYSTEM CONSOLE NAME

GET INFO AN USER TASK

USER TASK ID

NAME OF USER TASK

CURRENT TASK STATUS WORD
TASK OPTIONS

TASK WAITS

USER'S PRIVATE ACCOUNT NUMBER
USER'S GROUP ACCOUNT NUMBER
LOAD VOLUME NAME

LOAD FILE NAME

LOAD EXTENSION & FILE CLASS
NAME OF MONITOR TASK

NAME MTM USERS TERMINAL
TASK PRIORITY

(RESERVED)

QUEUE COMMAND TO IREADER
STATUS

ADDRESS OF BUFFER

CHAPTER 5
08/32-SUPPORTED INPUT/OUTPUT (1/0) DEVICES

5.1 INTRODUCTION

This chapter discusses the functional aspects of the devices
supported by 0S/32. Specific device-dependent information is
included.

05/32 devices and files support ASCII formatting, sequential
access, unconditional and conditional proceed 1/0, and vertical
forms control (VFC). Device codes associated with Perkin-Elmer
supported devices range from 0 to 255. These codes are defined
in the System Generation/32 (Sysgen/32) Reference Manual.

5.2 VERTICAL FORMS CONTROL (VFC)

VFC provides a means to control the vertical forms motion on an
output device, such as a line printer or CRT, while writing data.
Available VFC functions are:

e Set vertical tabs (EVFU)

® Vertical space 0-79 before or after printing

® Vertical tab before or after printing

® No space before or after printing (overprint)

® Select VFU channels 2-12 before and after printing

® Horizontal tabs (available with bidirectional input/output

control (BIOC) and local line printer drivers only)

The VFC character is the first character of the user's output
buffer and is interpreted to mean one of the above functions.
VFC characters supported by 0S/32 drivers are listed in Appendix
B. Other bytes in the buffer are considered to be data and are
output without further interpretation.

The 0S/32 routines that control VFC can be shared by all drivers
requiring VFC character recognition. 0S/32 makes no assumption
as to the type of device calling the routines; device
specification is maintained by each individual driver.

48-040 FO0OO RO3 5-1

5.2.1 Horizontal Tabs

When the BIOC driver encounters a horizontal tab character, the
driver replaces the character with one or more spaces, as
determined by the tab stops that were established by the last
down line load. 1If a horizontal tab character is encountered at
a column position beyond the last tab stop, it will be replaced
by one space. If a horizontal tab character is encountered while
positioned on a tab stop, the necessary number of spaces will be
output to position to the next tab stop.

The local line printer driver expands the tab character (control
I) to the appropriate number of spaces. Tab stops are defined to
be every eighth column; 1i.e., columns 9, 17, 25, etc. This
feature is enabled via extended device code X1 for device codes
112, 113 or 114 only. All other drivers output the horizontal
tab character unmodified. ‘

5.2.2 Theory of Operation

For devices that support ASCII output operations (e.g., a 1line
printer), a write operation begins with a call to the write
initialization routine to determine if there is any VFC operation
to be performed before printing.

If a VFC character 1is present, the driver performs the VFC
operation designated by that character. The driver then outputs
the user's data buffer. On completion, the driver checks for any
VFC operations that are to be performed after the data is output.
If a VFC operation is required, the driver performs it. If no
"after" VFC operation is required, but the current output is VFC,
the driver enters into a line feed (LF) pending state for the
next write operation.

For drivers that support both input and output operations (e.g.,
a CRT driver), output operations are performed in the same manner
as above. However, the procedure for input operations differs
slightly. Before an input operation, the cursor remains
positioned where the last output operation left it. To prevent
the characters that are input from overwriting the previous line,
the drive delays echoing the first character input until an LF is
output. Two types of LF echoing can be performed:

e Software-echo (e.g., BIOC drivers)

e Hardware-echo (e.g., ITAM PPSM drivers)

If a driver uses the software-echo feature, (i.e., the driver
echoes the characters that are typed in via software control),
the driver waits for the first character to be typed in by the

operator and then performs a VFC operation if it is in LF pending
state before the character is echoed.

5-2 48-040 F0OO RO3

If a driver uses the hardware-echo feature and is in LF pending
state, the driver first turns off the echo, waits for the input
character to be typed, performs the VFC operation, outputs the
character just typed in, and finally turns the hardware-echo back
on for the remainder of the buffer.

5.3 CARD READERS

Perkin-Elmer card readers can accommodate a fixed record length
of 80 bytes (ASCII), 120 bytes (binary) or 160 bytes (image).

During read ASCII operations, each card column (12 bits) is
converted into one 8-bit ASCII character. 1Illegal codes are
converted into the null character (X'00') indicating an error has
occurred.

During read binary operations, each pair of card columns (12 bits
each) is unpacked into three bytes having the following format.

Read Binary Format.:

First card column

During read image operations, each column is converted into one
halfword in the following format (U=undefined).

Read Image Format:

48-040 F0O RO3 5-3

The translation for an ASCII read is accomplished through a
translation table. Devices without hardware translation
translate 029- or 026-compatible Hollerith code to 8-bit ASCII
code. Source sysgen options include translation of 029- or
026-compatible Hollerith code to EBCDIC code. The hardware
translation matches that of the 029-compatible Hollerith to
EBCDIC translation.

5.4 CARD READER/PUNCH DEVICES

card reader/punch devices supported by' Perkin-Elmer 32-bit
processors accommodate fixed record lengths of 80 bytes (ASCII),
120 bytes (column binary) and 160 bytes (image).

During read ASCII operations, each card column (12 bits) is
converted into one 8-bit ASCII character. Illegal codes are

converted into the null character (X'00') indicating an error has
occurred.

During read binary operations, each pair of card columns (12 bits
each) is unpacked into three bytes having the following format.

Read Binary Format:

First card column

During read image operations, each card column (12 bits each) is
placed into a halfword in the following format.

Read Image Format:

e e s o i o T " o o 2" Tt o e T ey S e e = A A e e nem e =S S S

5-4 48-040 FOO RO3

During write ASCII operations, each byte of data is translated

from ASCII into a 12-bit Hollerith code. Depending on the device

code chosen, the following can occur:

® All data is punched and printed.

e Data is punched only.

® Of each 160 bytes of data accepted, the first 80 bytes are
punched while the second 80 bytes are printed.

During write binary operations, each 3-byte group is packed into
two columns on the card in the following format. Nothing is
printed on top of the card.

Write Binary Format:

0dd Column

During write image operations, the low order 12 bits of each
halfword are punched according to the following format. Nothing
is printed on top of the card. Bits 0 through 3 are ignored.

Write Image Format:

The translation for ASCII operations is accomplished through a
translation table. The standard translation is 8-bit ASCII code
to 029-compatible Hollerith code.

48-040 F0OO RO3 5-5

Source sysgen options include 8-bit ASCII code to 026-compatible
Hollerith code and also EBCDIC code to 026- or 029-compatible
Hollerith codes.

5.5 TELETYPE (TTY) READER/PUNCH

Perkin-Elmer TTY reader/punch devices support read and write
ASCII, read and write binary, and read and write image
operations. Variable length records are also accommodated.

During read ASCII operations, an X-ON character is output to turn
the reader on. The tape is read in blocked mode so data is not
copied to the printer while it is being read. Leading blank
frames and delete characters are ignored. Data is masked to
7-bit ASCII. The transfer is terminated on buffer full or when
a carriage return (CR) character is read, whichever occurs first.
On termination of the transfer, the tape is advanced to the next
delete character or blank frame. An X-OFF character is output to
stop the tape.

During read binary operations, an X-ON character is output to
turn on the tape. The tape is skipped until the first nonblank
frame is found. If the first nonblank character 1is X'FO',
subsequent frames are read in until the user buffer is full. The
characters are read in unzoned binary format.

If the first nonblank character read is not X'FO', the characters
are read in zoned binary format, stripped of their zones, and

packed 1into the user Dbuffer. Transfer begins with the first
nonblank frame after X'FO'. Only punches X'90', X'81l' through
X'84', and X'95' through X'9F' are read. Other characters are

ignored. When the user buffer is full, the tape is advanced to
the next blank frame.

During read image operations, none of the above formatting
operations are performed. An X-ON character is output to turn
the tape on, and data is read into the wuser buffer until the
buffer is full. The X-OFF character is then output to turn the
tape off and the transfer is complete.

During write ASCII operations, the driver outputs a RUBOUT-TAPE
RUBOUT-RUBOUT sequence in order to initialize the TTY
reperforator. Eight frames of blank tape are output as a leader.
The user data is output until the buffer is empty, or a CR
character is encountered, whichever occurs first. The driver
ensures that a CR-LF-TAPE OFF-RUBOUT sequence terminates the
record.

During write binary operations, the driver outputs a
RUBOUT-TAPE-RUBOUT-RUBOUT sequence, followed by eight blank
frames of leader. The user buffer is output, translating each
byte into two frames of zoned binary data. The transfer is
terminated when the buffer is empty. The driver outputs a TAPE
OFF-RUBOUT sequence.

5-6 48-040 FOO RO3

During write image operations, none of the above formatting or
control operations are performed. The user buffer is output
until the buffer is empty.

On ASCII or image write, it is possible to inadvertently turn off
the punch by outputting a TAPE OFF character. On image write, it
is the responsibility of the user to place the necessary control
characters, such as TAPE and TAPE OFF, in the user buffer to
control the operation of the tape.

Since the reader/punch portion of the TTY is connected to the
keyboard/printer portion, only one of these devices can be active
at a time. On ASCII write, the data punched on the tape is also
printed on the printer.

5.6 TELETYPE (TTY) KEYBOARD/PRINTER

Perkin-Elmer TTY keyboard/printers accommodate variable length
records and can be interfaced to current loop devices.

In non-VFC read ASCII operations, data read is masked to 7-bit
ASCII. Data 1is read until the buffer is full or a CR is found,
whichever occurs first. Upon termination, a carriage return/line
feed (CR/LF) sequence is sent to the printer.

In non-VFC write ASCII operations, the buffer 1is scanned to
eliminate trailing blanks. Data is then output until the buffer
is exhausted or until a CR is found in the data stream. An LF is
automatically appended to the detected CR; or no CR is detected,
a CR/LF sequence is output after the last nonblank character.

During non-VFC image I/0, none of the above formatting actions
occur. The amount of data requested 1is printed or read in,
without masking to 7-bit ASCII, eliminating trailing blanks,
checking for control characters, or detecting or appending CRs or
LFs. On image read, a CR is detected as an end of line sentinel.

For information on I/0 operations with VFC, see Section 5.2. See
the 0S/32 Operator Reference Manual for an explanation of the

function control keys available on Perkin-Elmer TTY
keyboard/printers.
While the reader/punch of an ASR TTY is treated as a separate
device, it cannot operate simultaneously with the
keyboard/printer.

5.7 PAPER TAPE EQUIPMENT

Variable record lengths are supported by Perkin-Elmer paper tape
devices. During read ASCII operations, leading blank tape and
delete characters are ignored. Data is masked to 7-bit ASCII.
CR terminates read. On termination, the tape is advanced until
either a blank frame or a delete character is read.

48-040 FOO RO3 5-7

During read binary operations, tape is advanced until a nonzero
character 1is read. 1If this character is X'FO', the tape is read
until the buffer is full (unzoned binary). If the first nonzero
character is not X'F0', the tape is treated as a zoned binary
tape. Each two characters are stripped of their 2zones, merged
into one byte, and placed in the buffer until the buffer is full.
On buffer full, the tape is advanced until blank tape is found.
In zoned binary mode, the only valid characters are: X's0’',
X'81' through X'84' and X'95' through X'9F'. All other
characters cause the transfer to end with a transfer error
status. .

During read image operations, the tape is read until the buffer
is full.

During write ASCII operations, eight frames of blank tape are
output. The user buffer is output up to (but not including) CR
or until the buffer is empty. CR/LF is then output.

During write binary operations, eight frames of blank tape are
output followed by the character X'FO'. The user buffer is
output until the buffer is empty.

During write image operations, the user buffer is output until
the buffer is empty.

5.8 LINE PRINTERS

Perkin-Elmer line printers support variable record lengths up to
132 bytes.

During non-VFC write ASCII operations, the user buffer is output
until a CR 1is found or until the buffer is empty. At buffer
termination, the system ensures that the buffer is printed and
the paper is spaced upward one line. During non-VFC write image
operations, the user buffer is output exactly as it exists in
memory . The system does not ensure that the data is printed or
that the paper is properly moved. The user should be familiar
with the characteristics of the particular device being used.

For information on I/0 operations with VFC, see Section 5.2.

5.9 TAPE CASSETTE

Variable length records are supported by Perkin-Elmer tape
casgssettes. During input, ASCII, binary and image modes are
identical. Data is read from the cassette into the user buffer.
The transfer terminates when the buffer is full or at end of

record, whichever comes first. If the record is longer than the
buffer, error status 1is not returned. Parity errors in the
unread part of the record can be detected. If a parity error
occurs, five retries are attempted before error status is

returned. When a parity error status is returned, the tape is
positioned in the interrecord gap following the record in error.

5-8 48-040 FOO RO3

During output, ASCII, binary and image modes are identical. Data
is written from the user buffer until the buffer is empty. The
system retries five times on parity errors.

The driver generates an end of tape condition, whether the tape
is positioned at the beginning or at the end of the reel. It
must be assumed from the last operation what position end of tape
is actually referring to.

Since the two drives on an intertape cassette share logic, only
one drive of a cassette pair (e.g., X'45' and X'55') can be
active at a time.

Continuous mode operations are used to pass requests to the
driver within the time required (10ms for read; 30ms for
backspace) .

5.10 MAGNETIC TAPE

Data transfer operations can be performed in standard and gapless
I/0 format.

5.10.1 Sstandard Input/Output (I/0)

Variable length records are supported by Perkin-Elmer magnetic
tape devices. During input, data is read into the user buffer
from the magnetic tape. The transfer ends on buffer full or end
of record, whichever comes first. If a parity error occurs, the
driver retries the read operation before an error status is
returned. The number of retries performed is determined by the
retry value set in the DCB or specified by the user in the SvVCl
extended function code field for data transfer operations. After
a parity error occurs during a read forward operation, the tape
is positioned in the interrecord gap preceding the record with
the error. If an error occurs during a read backward operation,
the tape is physically positioned following the record with the
error.

During output, data is written from the wuser buffer to the
magnetic tape until the buffer is empty. On parity error, the
tape is positioned before the record causing the error, the
record gap is extended and the write operation is retried.
Again, the number of retries is determined by the retry value set
in the DCB or specified in the SVCl parameter block.

In addition to giving users control over the number of retries
for data transfer errors, 0S/32 provides the ability to erase a
variable length of tape and to select the recording density, via
SVC1l and SVC7, respectively. See the 0S/32 Supervisor Call (svc)
Reference Manual for more information on how to implement these
features.

For read and write requests, ASCII, binary and image requests are
identical.

48-040 FOO RO3 5-9

The minimum number of bytes that can be transferred by a tape
drive 1is four. All data transfers must start on a halfword
(i.e., even byte) boundary and should specify an even number of
bytes (i.e., end address odd).

On a read operation, end of tape can be detected on a different
record than on a write operation because of mechanical tape
positioning. If rewind is issued at beginning of tape, the
driver returns normal status. Ensure that the tape is loaded at
beginning of tape unless some other condition is expected.

5.10.2 Gapless Input/Output (I1/0)

Data transfer operations in gapless mode consist of a task
reading or writing data buffers to a magnetic tape with no
intervening interrecord gaps, using only one SVCl. To perform
gapless I/0 to a magnetic tape, a task must issue an SVCl call
that specifies, among other things, a pair of buffer queues, the
IN-QUEUE and the OUT-QUEUE. The driver takes buffers from the
IN-QUEUE and returns used buffers to the OUT-QUEUE. The task
processes the buffers from the OUT-QUEUE and returns these
buffers to the IN-QUEUE for reuse by the driver. A special
gapless format SVCl parameter block must be used for gapless [/0
operations. Buffers used within a single gapless 1I/0 operation
must be equal in length, with the possible exception of the last
buffer used.

5.11 DISK STORAGE

Perkin-Elmer disk devices support variable length records.
During 1input, a current sector pointer is maintained. On a
sequential read, data is read into the user buffer from the disk,
starting at the current sector, until the buffer is full. If an
attempt is made to read beyond the end of the disk, end of medium
(EOM) status is returned. On a random read request, data is read
from the disk starting at the sector specified by the random
sector address passed with the request, until the buffer is full.
If an attempt is made to read beyond the end of the disk, EOM
status 1is returned with data transferred. ASCII, binary and
image requests are identically treated.

During output, data is written from the user buffer to the disk,
starting at the current sector (for sequential writes) or at the
specified sector (for random writes), until the buffer is empty.
Attempts to write past the end of the disk cause EOM status to be
returned. In this case, no data is transferred.

Errors on data transfers cause the operation to be retried
several times before returning error status.

5-10 48-040 FOO RO3

All data transfers start on a sector boundary, but can end on any
byte of a sector. If the size of the user buffer is 1less than
the record size of an indexed file to which it is written, the
remaining bytes will be filled with blanks for ASCII writes or
binary 2zeros for binary writes. If a record written to a
contiguous, extendable contiguous or nonbuffered indexed file is
less than the file's record length, the last byte or two bytes
are propagated through the remaining unfilled bytes of the last
256-byte sector of the record.

Only executive tasks (e-tasks), privileged user tasks (u-tasks),
and diagnostic tasks (d-tasks), linked with bare disk privileges
(OPTION DISC), can access a bare disk. Nonprivileged u-tasks and
d-tasks access the disk via the contiguous, extendable
contiguous, nonbuffered indexed or indexed file handlers.

5.12 FLOPPY DISK

Variable length records are supported by Perkin-Elmer floppy
disks. During input, a current sector pointer is maintained. On
a sequential read, data 1is read from the disk starting at the
current sector into the user buffer until the buffer is full. On
a random request, the data is read from the disk starting at the
sector specified by the random sector address passed with the
request, until the buffer is full. If an attempt is made to read
beyond the end of disk, EOM status is returned with data

transferred. ASCII, binary and image requests are identically
treated.

During output, data is written from the user buffer to the disk,
starting at the current sector pointer (for sequential writes) or
at the specified sector (for random writes), until the buffer is
empty. If an attempt is made to write beyond the end of the
disk, EOM status is returned with no data transferred. ASCII,
binary and image requests are identically treated.

Errors on data transfers cause the operation to be retried ten
times before returning error status.

All data transfers start on a logical 256-byte sector boundary
(two physical sectors on the floppy). Transfer can end on any
byte of a sector.

The floppy disk driver is designed for use by the file manager.
A user program cannot access a bare disk unless it is an e-task,
privileged u-task or d-task 1linked with bare disk privileges
(OPTION DISC). For nonprivileged u-tasks and d-tasks, the disk
is accessed by the contiguous, extendable contiguous, nonbuffered
indexed or indexed file handlers.

48-040 FOO RO3 5-11

5.13 VIDEO DISPLAY UNIT (VDU) TERMINALS

Variable length records are supported by all Perkin-Elmer VDU
terminals.

During non-VFC read ASCII operations, data read is masked to
7-bit ASCII. Data is read until the buffer is full or a CR is
encountered, whichever occurs first. Upon termination, a CR/LF
sequence 1is sent to the screen.

During non-VFC write ASCII operations, the buffer is scanned to
eliminate +trailing blanks. Data is then sent to the VDU until
the buffer is exhausted, the last nonblank character has been
processed, or until a CR is found in the data stream. An LF is
automatically appended to the detected CR; if no CR is detected,
an LF/CR sequence is sent to the terminal.

During non-VFC image I/0, none of the above formatting actions
occur. The amount of data requested is output or read in without
masking to 7-bit ASCII, eliminating trailing blanks, checking for
control characters, or detecting or appending CRs or LFs. On
image read, however, an ASCII CR is detected as an end of line
sentinel.

For information on I/0 operations with VFC, see Section 5.2. See
the 0S/32 Operator Reference Manual for an explanation of the
function control keys available on Perkin-Elmer VDU terminals.

5.14 8-LINE INTERRUPT MODULE

Interrupt simulation (SINT) is the only attribute supported by
the Perkin-Elmer 8-line interrupt module. The module provides
the processor with eight interrupt lines from external equipment
and acknowledges interrupts on a priority basis. Any line can be
selectively enabled or disabled. Several 1lines can be
concurrently enabled. An interrupt does not transfer any data,
nor is any status given.

5.15 DIGITAL MULTIPLEXOR (MUX)

ASCII operations are not supported by the Perkin-Elmer digital
MUX. During input, the second byte of the random address field
contains the segment and point number to be read. Data is read
from the point specified until the buffer specified by the
starting and ending address is full.

During output, the second byte of the random address field
contains the segment and point number to be written to. Data is
written until the buffer specified by the starting and ending
address is exhausted.

5-12 48-040 FOO RO3

5.16 CONVERSION EQUIPMENT

The analog conversion equipment, used with Perkin-Elmer 32-bit
computers, cannot be programmed in the device-independent manner
of other peripheral devices. The chassis, channel and card
addresses, and data values are directly passed to the real-time
analog system controller as the 1l6-bit words that are obtained
from the user.

During input, the random address field of the SVCl parameter
block contains the starting address of a table containing
analog-to-digital converter addresses (chassis address, channel
address and card address). The user buffer, which the start and
end addresses of the parameter block determine, 1is loaded with
the digitized data obtained from these analog-to-digital
converters.

The table length containing the converter addresses is equal to
the 1length of the buffer. It is the user's responsibility to
provide valid addresses. Since the analog input system mode of
the controller 1is wused for READ, if a nonexistent chassis is
addressed, zero data is stored and no other indication is given.

During output, the user buffer is assumed to contain sequential
pairs of alternating digital-to-analog converter addresses and
the corresponding data to be converted; i.e., ADD1l, DATAl, ADD2,
DATA2,...ADDn, DATAnN. The address and data are directly passed
to the real-time analog system controller.

The control output mode of the controller is used for write
operations. If a nonexistent chassis is addressed, the status is
set to X'88' and the remainder of the I/0 is aborted.

Each write sequence to any c¢onverter must consist of two
halfwords. One halfword specifies the adapter to do the
conversion; the other halfword contains the data to be converted.
A buffer must be a multiple of two halfwords in length;
otherwise, any attempt to do a write results in a memory fault.

For read and write operations, ASCII/binary and image/format
requests are identical.

5.17 ANALOG INPUT CONTROLLER (AIC)

Variable record lengths are supported by the Perkin-Elmer AIC.
ASCII operations are not supported. Command functions are
ignored.

The random address field of the SVC1l parameter block contains the
gain and address of the first channel to be sampled. The format
is shown in Figure 5-1. Dividing the length of the user buffer
(END-START+1) by two determines the number of channels to sample.
The digitized data is sequentially stored in the user buffer, one
halfword per channel. '

48-040 F0OO RO3 5-13

Figure 5-1° Random Field Format

The driver accepts only random calls, meaning that the first
address is selected at random and that further addresses are
sequential (in the same call). The start address must be on an
even address boundary and the end address must be on an odd
address boundary, since the AIC is a halfword device. This
complies with the Instrument Society of America (ISA) definition
of sequential analog input.

5.18 ANALOG OUTPUT CONTROLLER (AOC)

All command functions are ignored by the Perkin-Elmer AOC. One
halfword of data is obtained from the user buffer in the format
specified in Figure 5-2 and written to the device for conversion.
This procedure is repeated until all halfwords in the user buffer
are output. Dividing the length of the user buffer (END-START+l)
by two computes the number of halfwords to be output.

Figure 5-2 Analog Output Data Format

Binary image is treated identically to binary formatted; the
image bit is ignored. The sequential/random bit is also ignored.
The start address must be aligned on an even boundary, whereas
the end address must be on an odd boundary because the AOC is a
halfword device.

5-14 48-040 F0O RO3

5.19 DIGITAL INPUT/OUTPUT (DIO) CONTROLLER

All command functions are ignored by the Perkin-Elmer DIO
controller. The number of transfers is computed using the start
and end address fields: (END-START+1)/2. Resetting the
sequential/random bit in the function code field causes transfers
to occur sequentially without interruption. This is a
nonhandshaking transfer mode. 1In the handshaking transfer mode,
the sequential/random bit is set, and each transfer occurs only
after the internal strobe line is pulsed. A time-out rate for
each transfer is set at a constant of four seconds.

During a binary read operation, one halfword of data is
transferred to the user buffer whose starting address is stored
in the 8VCl parameter block. Each halfword of data from
subsequent binary read operations is stored sequentially in the
user buffer.

For binary write operations, the buffer starting address in the
SVC1l parameter block points to a buffer (K1) consisting of image
halfwords for transfer to an output device. The random address
field of the SVCl parameter block points to another buffer (K2)
of halfwords designating masks, each of which defines the
corresponding bit position of the halfwords in K1 to be changed.

The length of K2 must be the same as that of Kl1. A bit set in K2
indicates that the digital output is changed to the state defined
by the corresponding bit positicn in K1. The following 1logical
expression computes the halfwords transferred to the digital
output card:

(KleK2) + (K2eR)

Where:
° means logical AND.
+ means logical OR.
K2 means one's complement of K2.
R is the last known content of the output

register.

Binary image is treated identically to binary formatted; the
drive ignores the formatted/image bit of the SVCl function code.
Both handshaking and nonhandshaking transfer modes are supported.
The start and random addresses of the user buffer must be aligned
to even boundaries, whereas the end address must be aligned to an
odd boundary because the power input/output (PIO) controller is
a halfword device.

48-040 F0O0 RO3 5-15

§.20 ETHERNET DATA LINK CONTROLLER (EDLC)

Ethernet is a multi-access, packet-switched communication system
for carrying data among locally distributed computing systems.
The EDLC provides processor-to-processor serial communication
clocked at 10Mb per second over a common coaxial cable up to 500
meters long. The Ethernet specifications will support over 100
processor interfaces in a variety of configurations.

The following publications provide more information:

0S/32 Network Drivers Programming Reference Manual

Perkin-Elmer Series 3200 Ethernet Controller Installation,
Operation and Programming Manual

Perkin-Elmer Series 3200 Ethernet Interface Test Program
Description

Interlan NM10OA Ethernet Protocol Module Users Manual

Ethernet Network Specification Document

5-16 " 48-040 FOO RO3

APPENDIX A
0S/32-SUPPORTED INPUT/OUTPUT (1/0) DEVICES

B o I 1 i 1 X 1 % ¥ o1oX i X % | I %
| mmmmmem | mm e | mmmm | mmem | e e mmce | e | == | mmcmwm | we | == | e mmem e | e e e e | e
|~ Z R { i 1 | i i X 1 X ® 1 % i »
e B i B Bt B I e B B B e B b e e e B
(4o B < S - PR t] I : 1 1 1 t i | 1 1
B | ——=emm | == mm | mmmm | mmmm | mmmmmmme | o= | == | mmmm e | o= | | mmmmmm e | e e e | mm e
HigZAn i | [| 1 l i t i i |
D | mmmeem | mmmm | e e | mmmm | mmmmmmem | mm | e | mmmm e | == | = | e mmmm e | e e e | e e
A o E % | X A $loX 1% %t t]
O T T [e e R R el Tl Bt Bl B
X Ilm—=ZI L x| X | ¥ 1M1 X % 1 i l | i
| mmme e e mm | mm e | mmmm | mmmmmmem | mm | == | mmmm e | mm | em | mm e | e e | e
= =wmo 1 i l | 1 1 1 t | |]
L | mmmmmm | === | mmmm | mmmm | mmmmmm e | o= | = | mmmm e | e | == | e em e | e e e | —e e
EEE X XXX XXX XX
—— - —— - - — - [y ap— [S —— m PR— —— —— - -—— —— -—— anan Emen —— —— even v — ——— -
1 MmAan %1 ® % | ®ioXi X XX 1M L E S
e em e | mm i | mmmm | mmmm | mmmmmm e | == | =] mmmmme | == | o= | mm e e e | mmem e e | e
] | | ! ! i | ! ! 1 i |
il 1 | | ! { ! O i 1 t ~ i ~ |
(] i i i i i { [I o I i oM 1 (] !
] ! | | s i 1 1 S O~ | i i ™m0 i ™ M I w
(] { | © | T - 1 i 1 PV 1 | iy | () i
1 1 Y 1 8320 ! | | = @ | i i) 1 -~ i <
(] (o) | @ 1« c P x 1 x 1 3O M) | i w © I wn o !
milT [P oSt g~ Ilon i vl MO I MW NN I M@ I MO
(SN IRV 1 ! [Tl [T i milonivu PDimioni O « (] ~ 1 0O
— i © i O e BN o B ol = I i G0 i { E & = o i E™
>0 1 1 031 03 P 1 o= Q@1 ~ i~ ~%x O |~ x G 1~
=1 > 1 Ot O QO t O! Ol A @ NIt O O 1| Il @~ 0 1 B~
Qns " I AN AN D 1B I Bl oLV ITIT!I | ON 11 O 11 o
TN I UMl O]l OM®B8G!I OO 1 01O COM I c0mo I & o
WD ot 0!] Q1 I ONMOI S !IEI INnDLDIZSI Sl -3—x | #30%x | -3
] TiIiOoOTI LTI LT O | 1 i OO | 1 1 1 X O O I MO 01 MO
NO®@IOG ! DA I DG QU 1 D 1 D 1 HMAN | > i M I MM« MM ~C 1 NN
PO Q0 I OO0 ~O0iI"0O0UIHIBHIG@OCM IHIHMI OG-~ OB | O G
ﬁ4r“lr_Hr~Hrso"T_T_Cpl"T_T~PC3l.PC3l_PC
i I i i 1 | i i i
e I e e e B il Tt S
i | !
I 1 |
il | |
i ¥S) ! 1
i c [) | o]
= () 1 N\ | MM
o i £ I >N M ! @ O
>0 Q, 1 P ~0L0 I o
TR R -Ea Il OXHT O 1 Q0
IR I HEH 8 C P> Dy
it @O 1l O O3 | O M
100 | B~ I B A&
i

48-040 F0OO RO3

DEVICE
arousel 300 with

lectronic format

ontrols
600/800 bpi dual

igh-speed line
ensity

erkin-Elmer
rinter

Intertape

800 bits per inch
(bpi)

Paper tape reader/

punch
Medium-speed line

letter quality
printer

Low-speed line
printer

printer
Thermal page
printer

{i P
i C
i e
1 ¢
1
d

eyboard
rinter
Continued)
Paper tape
equipment
ape
assette

- wan wvan wman wvem en o -

— - ——— e ABam e - —

» > b

b b =

% b »

75 inches

250 bpi TELEX mag
er second (ips)

250 bpi halfword
ode controller
-track,

6
m
(
6
t
S
p
8

48-040 FOO0 RO3

DEVICE

TYPE

45 ips,

9-track,

800/1600 bpi

45 ips,

9-track,
800 bpi

1.5Mb head per
track (HPT) disk

.5Mb moving head

isk,

removable

2
d

.5Mb moving head
fixed

isk,

2
d

OMb moving head
isk (5Mb fixed,
emovable)

1
d
r

OMb moving head
removable

isk,

4
d

fixed

50Mb CDDS50,
portion (25Mb)

remov-

ble portion

25Mb)

OMb CDDSO,

5
a
(

fixed

67Mb disk,

7Mb disk,
emovable

6
r

Xixix

fixed

160Mb disk,

emovable

56Mb disk,
256Mb disk,

2
r

Xixix

fixed

fixed

675Mb disk,

48-040 F0O0 RO3

[ol I] l 1 i | T M E XM X1 X1 X X
| mmmmmm P mmmmm e | mmmm | mm e} mmem | e | mm | memm | s | s | e | e | e |
IR ZEB R 1 i i i 1 %X | X oI X 1 XM X X1 X
j mmmmmm e e em | mmem | mmmm | mmmm | mm e | e | mm e | e | = | == | = ==]
[T P Iy« PR i 1 1 i i i 1 1 | i i i
B | ~—mm == 8 mm e em | mm e | mm e | e e | e em | = | e | = | = | = | ==] = |
Sl mER XN XX XXX Dol oom b e b e | —
g L Ll i emlil) mim | e | e | e | e | == | == | -
0 I TAQEH B X % | L i ¥ i X1 X | XEoX 1 %1 X1 X1 %I
bt | mmmm e | mm e e e | e | mmem | mmem | s | o= | e | e | e | = | == - |
1l m=2Z i X E % 1 ¥ i ® 1 % | i I | 1 | 1 |
R R el Bl B e B il B Bl B BC T BT N IS
B Hwe X %1 ¥ 1 E % | 1 i i ! i i !
L —mmmmem e e | mmmm | m o= | mmm= | mm e | o= | mm e | == | == | e == | ==]
"WRT“x x" O x“ x“ x"x" x“x“x“x.x“x_
mmmm e | mmmmmm e | e | mmmm | e | mmmm | = | em = | =] == | == | == | ==]
i KO e X ¥ ® i X | » | I ¥l 1 Mo XX
e e e B el Hatl il Bt Bl I B B B I |
8 —~ 1 1 i i 1 i i i i i | !
0 =t E i 1 | €1 < 1 1 1 < i | | i
[l n ~1 0 { 1 | o i 1 i 1 P ox | i
FE O T~ (I | D W o i v | P ¥ oW
I O~E 01 OOV i T) T I >N | 1 I W | i
na OLD I NO ! 1 - I N1 D1 d [I W I DD
gl S8R0 . 17 18PIBIA<IBIRIRIBIE
- i i
Ut MTOXNE I MOl © i B i A I mw | 1 NW_ | |
~ DO NI ODE | ~ =" Il o1 D1 -~ 1t O 1O = R
> E Ol 81 O e | H L iMMNIi0oIO0ITOIlwv | wi
BT MwulTOI 1 | oD | — | ~ N = Wi N
g o®m i ol | (Y} 1O 1 O® i~ I~ 1w~
.mgiW_O 1IOEIOE I WO | = | ACI 1 1 i | !
[@ T 100 i 00iow0i 9301 D1 LAl A1 =i~ =i
O N8 Ol = PR LI D>CI O AET O O O O O
i oo IS~ Sl Sl C—I1 L1 @i T)TVTIDTIDOTITI
ROPDON I O i D>NINMX™NI BNt O1 MO O O O O1 O
“683(_M(,M5“Ms_Vt“N_Gt;M.M.M.M_M.
i i ! i i i i i ; i
e e e o mm | e e e e o o - — —— —— —— ———— e | e e - - - - - - —— ———————
[1
[l —~ 1
] o] i
[] l
[3 1
o c i >
[a T} - 1 « ~~
oL JFE) 1 OH 0 ®
B MO 10D
imo _d81W
=0] e
i

Model 6100 VDU §

i i i
| == | == omee | o= on e
1 1 i
j == | m—mmmme | e me
i i i
| == | === | =
| 1 %
| —— | === | == ==
[» 1 >
| == | === mm | ==
[| i b
| ==] e mm | em
1 ! {
| == | == e e | =
%1 i »
R B t H e
- i %
| == | == == me | oo e o
| ! i
i] 1
| i i
I) i
1 [T i
| { I {
1 1 M i
| 1 M i
I M1 O (-
w1 ~Wr
| = C i ()}
[o BRI i —
1 i [— o~
I N1 00 { @O
1 it o [¥
TR« PO L e P D
1 O1 T P og
Il =1 1 O 1 = 0O
“F,Bm 1 Q0

{ i
| ==] =— == | == -
1 ! !
[H ~
1 m i [0}
[| 2 i %
(B o | Q, { (0]
1 1 3 i o= -
I >N ONO0 0 ®Q
P Qi QM LD~
I Qi = O 30—
_o.ltd_glm
i i1 201 =3
i 00mE 1 QE-—

48-040 FO0O0 RO3

[}
1
1
!
|
!
[}
J
[}
1
========m=================n==-=--n====-=====:=-======
1
i
1
I
1
1

TYPE DEVICE IDITISINITIDIPIT|T
| Conversion Real-time analog | T A S T R A .
| equipment system with I
! internal clock Ixix) Ixix) |V}
= _______________________________________
| | Real-time analog N T T
! | system with user- | | | | | | | | |
| | supplied external | | } | V { V||
| | clock ixix) ixixi o)
= ___
| Analog 1/0 | Analog input /N T T S T R A
| controller | controller (AIC) ixiob o ixixix)
| j—— e e
! | Analog output N A T T R R T
! | controller (AOC) bodx) Ixixixt)
{ ___
| Digital 1/0 | Digital I1/0 and AR O
| controller | analog output N T T S T B R
| | system ixix) ixixixi | o

" - ————— i . . ———— A A - e e Bt a8 W hn et St men M -t A e s - —

* CLI - Current loop interface
A CLCM - Current loop communications multiplexor

$ RS-232C
ATTRIBUTES

RD Read

WRT Write

TS Test and Set
BIN Binary

WAT Wait

RND Random

FLP File Position
INT Interactive
HLT Halt I1/0

48-040 F0O RO3

| IWl IBIWIRIFIIIH

IRIRIT{I|AIN|{L|N}L|

APPENDIX B
SUPPORTED VERTICAL FORMS CONTROL (VFC) CHARACTER SET

OPERATIONS AFFECTING

|] i
] L 1
i HEX CHAR | LINE SPACING i
e L L FEEEE PR L PR
i 09 ! HT | Horizontal tab [
{t OB | VT | Set vertical tabs]
H ! i (EVFU, no print) i
i 20 b | 1 line b/print |
i 2B | + | No line advance H
i 2D | ~ { 3 lines b/print H
i 30 |} 0 | 2 lines b/print H
i 31 | 1l | Top of form b/print]
i 32 ! 2 i Select VFU-2 b/print |
i 33 | 3 | Select VFU-3 b/print |
i 34 | 4 | Select VFU-4 b/print |
{ 35 | 5 | Select VFU-5 b/print |
i 36 | 6 | Select VFU-6 b/print |
it 37 | 7 | Select VFU~7 b/print |
!} 38 ' 8 { Select VFU-8 b/print |
i 39 | 9 | Select VFU-9 b/print |
i 41 | A | Select VFU-10 b/print |
i 42 | B | Select VFU-11l b/print |
i 43 | C | Select VFU-12 b/print |
i 45 | E | 1 line a/print i
{ 46 | F | No line advance H
i 47 | G | 3 lines a/print H
i 48 | H | 2 lines a/print H
i 49 | I | Top of form a/print |
i 4a | J | Select VFU-2 a/print |
i 4B | K | Select VFU-3 a/print |
t 4C | I. | Select VFU-4 a/print |
14D | M | Select VFU-5 a/print |
i 4E | N | Select VFU-6 a/print |
{ 4F | O | Select VFU-7 a/print |
i 50 } P | Select VFU-8 a/print |
i 51 | P | Select VFU-9 a/print |
i 52 | R | Select VFU-10 a/print |
i 53 | S | Select VFU-11l a/print |
i 54 | T | Select VFU-12 a/print |
i 60 | ' i No line advance H
I 61 | a | 1 line b/print i
i 62 | b | 2 lines b/print i
i 63 | ¢ | 3 lines b/print i
i 64 | d | 4 lines b/print i
i 65 | e |} 5 lines b/print i
i 66 | f | 6 lines b/print i
i 67 | g | 7 lines b/print i

48-040 F00O RO3

OPERATIONS AFFECTING

e sm NN X ECCTORAQTDOIZI R T

DEL

LINE

SPACING

8 lines b/print
9 lines b/print

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
50
51
52
53
54
55
56
57
58
59

lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines

b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print
b/print

48-040

FOO0 RO3

| { OPERATIONS AFFECTING
{ HEX |

CHAR LINE SPACING
:====================================
i 9Cc | { 60 lines b/print
i 9D | ! 61 lines b/print
i 9E | i 62 lines b/print
i 9F | i 63 lines b/print
i AO | { 64 lines b/print
i AL | ! 65 lines b/print
i A2 | { 66 lines b/print
i A3 | { 67 lines b/print
| A4 | i 68 lines b/print
i AS | i 69 lines b/print
{ A6 | i 70 lines b/print
i A7 | i 71 lines b/print
i A8 | I 72 lines b/print
i A9 ' i 73 lines b/print
i AA | i 74 lines b/print
i AB | i 75 lines b/print
i AC | i 76 lines b/print
i AD | i 77 lines b/print
{ AE | { 78 lines b/print
i AF | i 79 lines b/print
i BO | i No line space
i B1L | i 1 line a/print
i B2 | i 2 lines a/print
i B3 | i 3 lines a/print
i B4 | i 4 lines a/print
i BS | { 5 lines a/print
i B&6 | { 6 lines a/print
i B7 | i 7 lines a/print
| B8 | { 8 lines a/print
i B9 | i 9 lines a/print
i BA | { 10 lines a/print
{ BB | ! 11 lines a/print
i BC | ! 12 lines a/print
! BD |} i 13 lines a/print
{ BE | { 14 lines a/print
i\ BF | i 15 lines a/print
i co i 16 lines a/print
i c1 | i 17 lines a/print
i cz2 | { 18 lines a/print
i C3 ¢} { 19 lines a/print
i C4 | i 20 lines a/print
i C5 | i 21 lines a/print
i C6 | i 22 lines a/print
i c7 | i 23 lines a/print
i C8 | i 24 lines a/print
i €9 | i 25 lines a/print
i ca | i 26 lines a/print
i CB | i 27 lines a/print
i cc | { 28 lines a/print
i CD | i 29 lines a/print
i CE | | 30 lines a/print
i CF | ! 31 lines a/print

48-040 FO0O RO3

OPERATIONS AFFECTING
LINE SPACING

HEX

E2

CHAR

e wmee mee Amar mmmr mmen mmme Tmer e A e WA Gmem adm WA Mdr MG dmem Gmmn e wmen E—m MM Amar mm Wmr M WRE mAe A MM e MmN Mmm MmN T e S em M s mmen GAen Mmde e e GAWe MO e en wme Gmes e

lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines
lines

a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print
a/print

48-040 FO0OO RO3

A

Account Reporting Utility
Accounting transaction file.
See ATF.
AlIC
random field format
supported record lengths
Analog conversion equipment.
See conversion equipment.
Analog input controller.
See AIC.
Analog output controller.
See AOC.
AOC
address alignment
binary image
data format
APU
execution queue
fault handling
idle queue
internal task control
memory conflicts
Model 3200MPS System
monitor task
monitoring task execution
operating states
private queue
shared queue
status condition
status signal
SVC handling
task queue order
transferring a task
trap-generating devices
verifying task transfer
APU-only queues
ATF

Auxiliary processing unit.
See APU.

B

Basic data communications
subsystem
device-dependent. 1/0Q
device-independent 1/0

protocols
Bidirectional input/output
control. See BIOC.

BIOC driver
horizontal tabbing
Buffer access

c

Card reader/punch devices
ASCII operations
binary operations

48-040 FOO RO3

INDEX

O w O O

|
= = 00 00 00 W

HWWWWWwWwWW W
1

(=)

1-15
1-15
1-1§

i
!
]
[}
]
1
]
t
]
1
]
1
]
1
]
]
1
1
1
1
1
1
]
i
]
i
1
[}
]
i
]
i
]
I
]
1
t
I
1
I
1
I
!
I
]
i
1
1
1
'
]
'
[l
]
]
]
]
1
]
i
[]
'
1
[}
]
1
1
|
]
1
1
]
]
]
]
t
t
1
i
i
1
t
t
1
1
]
1
]
t
]
[}
]
1
]
[}
]
I
]
}
]
I
1
1
]
I
]
I
]
I
!
I
]
I
]
I

Card reader/punch devices
(Continued)
Hollerith code
translation
image operations
supported record lengths
Central processing unit.
See CPU.
Circular list
Command processor subsystem
Command substitution system.
See CSS.
Commands
DISPLAY accounting
DISPLAY ERRORS
Link OPTION
MEMORY
OPTION APMAPPING
OPTION LPU
OPTION NLPU
QUEUE
SET PRIORITY
SET SLICE
SLICE
Computation-intensive task
Console driver
Console monitor subsystem
Conversion equipment
device-dependent
table length
write sequence
CPU
Model 3200MPS System
ready queue

receive queue
roll-in queue

Css

D-tasks

Data Collection Facility
Data management system.
DMS/32.
Data structures
Diagnostic tasks.
d-tasks.
Digital input/output
controller. See DIO.
Digital MUX
supported operations
DIO controller
address alignment
binary operations
transfer modes
Disk storage
ASCII operations

See

See

| I A}
F- I

LU |

FRWOHRFHFPW®OWWWREN R
|

1
FOO®OAN |t P‘;ro~lﬂ~db-d~lbrdedH
: o

)]

(S 04 06,
[| I B
wWww

i

e
i

IND-1

Disk storage (Continued)
bare disk
current sector pointer
files
random read request
random writes
sequential writes
supported record lengths
DISPLAY accounting command
DISPLAY ERRORS command
DMS/32

E-tasks
characteristics
data structures
programming
EDLC
Error recording
file
log buffer
log hardware
subsystem
Error Reporting Utility
Ethernet data link
controller. See EDLC.
Execution queue
Executive tasks. See
e-tasks.

F

Fault handling
File management
subsystem
support services
Files
Floating point subsystem
Floppy disk
bare disk
current sector pointer
driver
errors
random read request
random writes
sequential writes
supported record lengths

G
Gapless I/0 operation
magnetic tape
H

Hardware-echo
Hor izontal tabs

IND-2

5-11
5-10
5-11
5-10
5-10
5-10
5-10
1-11
1-14
1-2

3-19

1-13
1-13
1-13
1-18

5-11
5-11
5-11
5-11
5-11
5-11
5-11
5-11

I/0

attributes

functions

intensive task

operations

subsystem

supported characters
[CONT macro

ICREATE macro

Idle queue
IERRTST macro

IGET macro

Input/output. See I1/0.
Instrument Society of
America. See ISA.
Integrated transaction
controller. See ITC.
Intercept macros

$RDB

error codes

ICONT

ICREATE

IERRTST

IGET

IPROCEED

IPUT

IREMOVE

IROLL

ITERM

ITRAP

syntax
intercept path

control level

end of task operation

example

full control

identifier

monitor control

removal of
Internal interrupt subsystem
Interrupt simulation. See
SINT.
Interval timer
IPROCEED macro

IPUT macro
IREMOVE macro
IROLL macro
I1SA

ITC

ITERM macro

ITRAP macro

48-040 FOO RO3

1 RN
NN
o W ww

|
N = W 0 = 0

=]

BB HBERDPBEOHEF WO
1

W= NP

4-34
4-13
4-26
4-16
4-32
4-23
4-27
4-24
4-21
4-28
4-29
4-30
4-15
4-4

4-11
4-11
4-12
4-11
4-7

4-11
4-13
1-17

3-15
4-11
4-27
4-11
4-24
4-13
4-21
4-11
4-28
5-14
1-2

4-13
4-29
4-11
4-30

J,K

Job accounting subsystem
Data Collection Facility

L

LFC
LIB
Line frequency clock. See
LFC.
Line printers
ASCII operations
horizontal tabbing
supported record lengths
Link OPTION command
LLE
Load-leveling executive:
See LLE.
Load power fail monitor.
See LPFM.
Loader and segmentation
subsystem
Loader information block.
See LIB.
Local memory
Logical processing unit.
See LPU.
Logical processor mapping

MEMORY command
Memory conflicts
buffer access
example of preventing
system deadlock
test and set
Memory diagnostics
MEMORY command
subsystem
Memory error recording. See
error recording.
Memory map
Model 3200MPS System
additional information
sources
advantages
conf iguration
designing tasks
interrupt handling
memory conflicts
monitoring task execution
overview
performance advantage
problem solving
programming
queue assignments
queue priority
assignments
queues
real-time performance

| R T T TR N N Y |
O~

1 i |

i

onNn

table. See LPMT. rollable tasks

WHRWWHWWW WWWHFWWHF®WHWW
)
FOOONMHNNY NHEENNENDEHWRR

LPFM 3-4 task assignments -
LPMT 1-2 task execution order -
LPU 1-2 task queue order -
assigning tasks 3-7 task scheduling -
definition 3-6 verifying task transfer -19
directed tasks 3-7 Monitor program. See
mapping 3-6 monitor task.
OPTION LPU command 3-7 Monitor task
OPTION NLPU command 3-7 example 3-12
interval timer 3-15
preemption mechanism 3-15
M,N task transfer 3-17
MTM 1-2
Macro libraries 2-3 Multi-terminal monitor. See
MTM 2-7 MTM.
0s/32 2-4 Multiplexor. See digital
Magnetic tape MUX.
data transfer 5-10 Multiprocessing system. See
gapless 1/0 5-10 Model 3200MPS System.
parity error 5-9
read operation 5-10
record gap 5-9 o
recording density 5-9
retry value 5-9 Operating states
standard 1/0 5-9 APU 3-3
supported record lengths 5-9 APU-only queue 3-4
tape erasure 5-9 OPTION APMAPPING command 3-4
write operation 5-10 OPTION LPU command 3-7
Memory OPTION NLPU command 3-7
local 1-11 0s/32
management subsystem 1-11 Account Reporting Utility 1-10
shared 1-11 basic data communications 1-15
system 1-11 command processor 1-16
console monitor 1-16
Data Collection Facility 1-10

48-040 FOO RO3 IND-3

0S/32 (Continued) Queues (Continued)

data structures 2-3 priority assignments 3-9
error recording 1-14 priority-ordered 1-9
file management 1-13 private 1-8
floating point 1-18 ready 1-6
1/0 devices 5-1 receive 1-6
A-1 roll-in 1-6

1/0 operations 1-13 shared 1-8
interrupt servicing 1-17 task trap-handling 3-12
job accounting 1-10 timer management 1-12
linkage editor 1-1 types 1-8
loader and segmentation 1-14
macro libraries 2-3
memory diagnostics 1-14 R
memory management 1-11
multiprocessing support 1-2 RDB
overview 1-1 buffers 4-4
roll function 1-1 circular list 4-6
software support summary 1-4 fields 4-4
subsystems 1-3 $RDB macro 4-34
supported /0 devices 5-1 Ready queue 1-6
system initialization 1-17 1-8
task management 1-5 Real-time performance
timer management 1-12 timer macros 3-22
user SVC 1-18 Real-time support module.
VT™ 1-1 See RTSM.

Receive gqueue 1-8

Reliance 1-2

P Relocation/protection
hardware 1-15

Paper tape equipment

ASCII operations

binary operations

image operations

supported record lengths
PIC
Precision interval clock.
See PIC. :
Priority. See task priority

Request descriptor block.
See RDB.

Roll function

Roll-in queue

Rollable tasks

Model 3200MPS System
RTSM
Run priority

levels. adjustment
Private queue 1-8
Privileged instructions 2-1
Privileged tasks s
d-tasks 2-1
e-tasks 2-1 SCL 1-12
Link OPTION command 2-1 Segment control list. See
types 2-1 SCL.
u-tasks 2-1 Segments
Pseudo device impure 1-15
definition of 4-8 pure 1-18
generic naming 4-9 SET PRIORITY command 1-7
SET SLICE command 1-7
Shared memory 1-11
Q Shared queue 1-8
SINT 5-12
QUEUE command 3-4 SLICE command 1-7
Queues Software-echo 5-2
altering priority SPT 2-2
assignments 3-9 Standard 1/0
APU-only 3-2 magnetic tape 5-9
3-4 Status signal
CPU-ready 3-2 format 3-10
execution 1-8 Subsystems. See 0S/32.
idle 1-8 Supervisor call. See SVC.
Model 3200MPS System 1-8 wupervisor monitor 3-2
no-priority 1-9

IND-4 48-040 F0O0 RO3

svc
creating intercept paths
handling
recipient existent mode
recipient nonexistent
mode

SVC interception
caller mode

Task (Continued)
priority levels
privileged
processing
processor control
pure
self-directed transfer
transfer from APU to CPU

['e]

i

error handling -13 transfer to APU

functional summary -10 verifying transfer

macros - Task control block. See TCB.
-15 Task event trap

operation - handler

|

I
FERROOEN HhHgmNHHHHw ® WK
n

pseudo device creation
sample prograns

syntax

task preparation

register saved

Task management
handling task traps
Model 3200MPS System

L B WWwWWww b BB D DD D DD > B W
i 1

|
!
i
i
i
|
i
]
i
!
!
:
!
]
'
'
i
termination of -13 | scheduling
svcl i subsystem
interception - { Task priority levels
-10 | dispatch
svcl3 - i max imum
-] run
-13 task
control sequence =16 | Task trap service
example -15 | TCB
SVC2 code 7 | Teletype. See TTY.
interception -2 | Terminals. See VDU
-10 | terminals.
svcs3 i Test and set
interception -2 ! Time-slicing
-10 | dynamic
SvVCée] SET PRIORITY command
example 3-7] SET SLICE command
interception 4-2 ! SLICE command
4-10 | system
internal task transfer 3-18 | Timer macros
task transfer 3-17 | CRTIMERS
svc7 | example
interception 4-2 | GETIME
4-10 | measure performance
System initialization i READTCNT
subsystem 1-17 |} RESETIME
System memory 1-11 | STORPTIME
System pointer table. See 1 STRTIME
SPT. { Timer management subsystem
| Timer queues
] communications device
T] time-out
i device time-out
Tape cassette | interval timer
ASCII operations 5-8 ! servicing routines
binary operat.ions 5-8 ! time of day
image operations 5-8 | Trap generating devices
parity errors 5-8 | connecting
supported record lengths 5-8 { TTY keyboard/printer
Task i ASCII operations
dynamic scheduling 1-6 H supported record lengths
example 3-17 | TTY reader/punch
image 1-15 | ASCII operations
impure 1-15 | binary operations
loading 1-14 | image operations
modes 1-13 | supported record lengths
order of execution 3-8 !
|

48-040 FOO RO3

| e T S T I
nunro® NN

HFWHERERFH e D
oO=ou0nno,m
=

w

HEHPP
Lo)
-

wwww

1
NN NNNNN N
N w

U-tasks

privileged
UCLOCK
Universal clock. See UCLOCK.
User SVC subsystem
User tasks. See u-tasks.

V,W,X,Y,2

VDU terminals
ASCII operations
image 1/0
Vertical forms control. See
VFC.
VFC
character set
theory of operation
Video display unit
terminals. See VDU.
Virtual task manager. See
VTM.
VT™M

8-1line interrupt module

IND-6

48-040 F0O RO3

PERKIN-ELMER

PUBLICATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our
users are an integral source of information for improving future revisions.
Please use this postage paid form to send us comments. corrections.
suggestions, eftc.

1.

Publication number

2. Title of publication

3. Describe. providing page numbers., any technical errors you
found. Attach additional sheet if neccessary.

4. Was the publication easy to understand? |f no. why not?

5. Woere illustrations adequate?

6. What additions or deletions would you suggest?

7. Other comments:

From . Date

Position/Title

Company

Address

TAFLE STAPLE

NO POSTAGE
M ez
IF MAILED

IN THE

UNITED STATES

A

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER

Data Systems Group
106 Apple Street
Tinton Falls, NJ 07724

ATTN:
TECHNICAL SYSTEMS PUBLICATIONS DEPT.

STAPLE STAPLE

