
PEFIKIN-ELMER

OS/32 LINK
Refenmce Manual

48-005 F01 R02

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpo­
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

©1980, 1983, 1984 by The Perkin-Elmer Corporation

Printed in the United States of America

'--

I

J

TABLE OF' CONTENTS

PREFACE

CHAPTERS

1 OS/32 LINK

1.1 INTRODUCTION

1.2 IMAGE FILE FORMAT

1.3 LINK SYMBOL TABLE

1.4 OVERIAYING A PROG~M USING LINK

1. 5 USING LINK-DEFINED SYMBOLS

1.6 SYSTEM REQUIREMENTS

1. 7 LINK COMMAND SYNTAX:
1. 7 .1 1.i' ile Descriptors

2 BUILDING JrnD STARTING LINK

2.1

2.2
2.2.1
2.2.2

2.2.3

2.3

2.4

BUILDING LINK

LOADING LINK
Loading Link from the System Console
Loading Link from a Multi-Terminal Monitor
(MTM) Terminal .
Assigning Workspace for Link

I.INK INPUT/OUTPUT (I/O) FILES

STARTING LINK

3 LINK COMMANDS

3.1 INTRODUCTION

3.2 BFILE COMMAND

48-005 FOl R02

v

1-1

1-1

1-4

1-4

1-7

1-9

1-9
1-10

2-1

2-L
2-1

2-2
2-3

2-3

2-4

3-1

3-4

i

CHAPTERS (Continued)

3.3 BUILD COMMAND 3-5

3.4 DCMD COMMAND 3-8

3.5 END COMMAND 3-11

3.6 ESTABLISH COMMAND 3-12

3.7 EXTERNAL COMMAND 3-16

3.8 FFILE COMMAND 3-17

3.9 HELP COMMAND 3-18

3.10 INCLUDE COMMAND 3-20

3.11 LIBRARY COMMAND 3-22

3.12 LOCAL COMMAND 3-24

3 .13 LOG COMMAND 3-25

3 .14 MAP COMMAND 3-26

3.15 NDCMD COMMAND 3-31

3.16 NLOG COMMAND 3-32

3.17 OPTION COMMAND 3-33

3 .18 OVERIAY COMMAND 3-47

3 .19 PAUSE COMMAND 3-49

3.20 POSITION COMMAND 3-50

3.21 RESOLVE COMMAND 3-52

3.22 REWIND COMMAND 3-57

3.23 TITLE COMMAND 3-58

3.24 VOLUME COMMAND 3-59

3.25 WFILE COMMAND 3-60

4 USING LINK

4.1 INTRODUCTION 4-1

4.2 BUILDING A TASK IMAGE 4-1

ii 48-005 FOl R02

CHAPTERS (Continued)

4.3

4.3.1
4.3.2
4.3.3

4.4
4.4.1
4.4.2
4 .. 4. 3

4.5

4.6

4.7

BUILDING FORTRAN, COBOL, AND COMMON ASSEMBLY
LANGUAGE (CAL) TASK IMAGES
Building a COBOL Task Image
Building a FORTRAN Task Image
Building a Common Assembly Language (CAL)
'l~ask Image Using Embedded Link Corrunands

BUILDING OVERIAYED TASK IMAGES
Building a Simple Overlayed Task Image
Building a More Complex Overlayed Task Image
Moving Common Blocks

BUILDING PARTIAL IMAGES

.BUILDING A TASK IMAGE REFERRING TO PARTIAL
IMAGES

BUILDING AN OPERATING SYSTEM IMAGE

5 VIRTUAL TASK MANAGEMENT (VTM)

5.1

5.2

5.3

5.3.1

5.3.2

5.3.3

5.3.4
5.3.5

5.3.6
5.3.7

5.3.8

5.4

5.5

5.6

5.7

5.8

INTRODUCTION

8YSTEM REQUIREMENTS

USER INTERFACE TO VIRTUAL TASK
MANAGEMENT (VTM)
Declaring a Virtual Task Management
(VTM) Task
Virtual Task Management (VTM) Secondary
Storage
Including the Virtual Task Management (VTM)
Module
Virtual Task Workspace
E~xample of Virtual Task Management (VTM)
Link Procedures
Virtual Task Management (VTM) Logical Units
.Rolling of Virtual Task Management (VTM)
'J~ask:s
J~bso lute Code

PORTRAN OPERATIONAL RULES

COMMON ASSEMBLY LANGUAGE (CAL) RESTRICTIONS

PASCAL CODE RESTRICTIONS

PERFORMANCE MEASUREMENT

VIRTUAL TASK MANAGEMENT (VTM) ERROR
CONDITIONS

48-005 FOl RO~~

4-2
4-2
4-3

4-3

4-4
4-4
4-6
4-8

4-9

4-11

4-12

5-1

5-1

5-1

5-1

5-2

5-2
5-2

5-3
5-3

5-3
5-3

5-4

5-4

5-4

5-4

5-4

iii

APPENDIXES

A LINK COMMAND SUMMARY

B LINK MESSAGE SUMMARY

c VIRTUAL TASK MANAGEMENT (VTM) MESSAGE SUMMARY

D OBJECT MODULE FORMAT

FIGURES

1-1
1-2

3-1
3-2
3-3
3-4

4-1

TABLES

2-1

3-1
3-2

B-1
B-2

C-1

INDEX

iv

Task Image File Format
Sample Program with Overlay Tree Structure

Example of Link Establishment Summary
Example of Link Alphabetic Map
Example of Link Address Map
Example of Link Cross-Reference Map

Sample Overlay Structure

LOGICAL UNITS ASSIGNED BY LINK

LINK COMMANDS
LINK END OF TASK CODES

SVC 7 ERROR TYPES AND STATUS
SVC 1 ERROR TYPES AND STATUS

VTM MEMORY FAULT CODES

A-1

B-1

C-1

D-1

1-2
1-5

3-29
3-30
3-30
3-30

4-6

2-4

3-2
3-11

B-11
B-12

C-1

IND-1

48-005 FOl R02

PREFACE

This manual describes the Perkin-Elmer linkage editor, OS/32
Link, which pt:ovides the user with the ability to link one or
more object mc>dules to produce an executable image. An image can
be a task, a partial image or an operating system. This manual
is intended for all users who are developing programs for
execution on Perkin-Elmer 32-bit computers using the OS/32
operating sye1tem. The user should be familiar with the
Perkin-Elmer OS/32 Multi-Terminal Monitor (MTM) if Link is to be
used in an MTM environment (see the OS/32 Multi-Terminal Monitor
(MTM) Referenc:e Manual).

Chapter 1 provrides an overview of the features of Link. Chapter
2 describes how to build, Load and start the linkage editor.
Chapter 3 lists and describes the active, passive and environment
Link commands. Chapter 4 provides examples of Link command
sequences. Chapter 5 introduces and explains virtual task
management (V'I'M). Appendix A is the Link command summary.
Appendix B i.s the Link messag,e summary. Appendix C is the VTM
message summaty. Appendix D explains the format of an object
module that is compatible with Link.

Revision FOl ll02 of this manual includes changes to the VTM
documentation in Chapter 5 and Appendix c. Appendix D has also
been changed to document additional loader items.

This manual is. intended for use with the ROl-02 version of OS/32
Link and the OS/32 R07. 2 softwar1e release.

For informatio1n on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

48-005 FOl R02 v

1.1 INTRODUC1rION

CHAl>TER 1
OS/~t2 LINK

Perkin-Elmer OS/32 Link providee~ the user with the ability to
link one or more object modules to produce a task image or
partial image that can be loaded via the OS/32 LOAD command.

Link can also build an operatin9 system image from the object
module produced by the Perktn-Elmer OS/32 Library Loader or
SYSGEN/32. The resulting image can be loaded into memory using
the Perkin-Elmer OS/32 Bootstrap Loader or Loader Storage Unit
(LSU).

This release 1of Link includes the DEBUG/32 tables (DTABLES) task
option. Thi:s option allows Link to separate symbolic debug data
from the object code and build this data into the tables required
by DEBUG/32. This release also includes the virtual task manager
(VTM). VTM p'.covides a user-transparent virtual memory capability
that allows some user tasks (u-tasks) consisting of up to 16Mb of
code and data to execute in as little as 128kb of memory.

OS/32 Link can be used with both the Perkin-Elmer Uniprocessor
System and the Perkin-ElmE~r Multiprocessor System (Model
3200MPS). Thie multiprocessor e1ystem consists of one central
processing unit (CPU) and up to nine auxiliary processing units
(APUs). In a multiprocessor sye1tem, the operating system defines
a set of logical processing units (LPUs) that are used to direct
tasks to execution queues. Link assigns the initial LPU for each
task. Link also sets APU control or queue mapping privileges
when building a task, and can optionally list comments embedded
in the object file. See the Link DCMD and OPTIONS commands.
Also see the Perkin-Elmer Model 3200MPS Overview Manual for more
information on using the Model 3200MPS system.

1. 2 IMAGE F IlLE FORMAT

Link allocate:s an image file on disk and builds an image into
this file or builds the image into an already existing file. The
format of the image file for a task is shown in Figure 1-1.

48-005 FOl R02 1-1

LOADER INFORMATION
BLOCK (LIB)

:------------------------
HISTORY
RECORDS

PRIVATE
IMAGE

OVERLAYS

OVERLAY DESCRIPTOR
TABLE (ODT)

SHARED
IMAGE

SYMBOLIC DEBUG
DATA

} Optional - generated by OS/32 Patch

Impure object code

Pure object code

Figure 1-1 Task Image File Format

1-2 48-005 FOl R02

CHAE)TER 2
BUILDING ANI> STARTING LINK

2.1 BUILDING LINK

If the Perkin-Elmer supplied ready-to-execute version of Link is
to be used, no build is necessary. However, if a new version of
Link is to be built, this sequence of commands builds Link as a
segmented task using the Perkin--Elmer supplied version of Link:

ES TASK
OPTION ACPRIVILEGE, SYSSPACE•=XFFFF
OPTION SEGMENTED,WORK=(X8000,XCOOO)
INCLUDE LINK
MAP CON: , .~PHABET IC, ADDRESS,. XREF
RESOLVE H:e:LPR072 .SEG/S
BUILD LINK
END

The reserved workspace must be a minimum of 8kb. The more
workspace allocated, the morE~ paging to and from disk occurs.
The amount of workspace spec if iE~d can be overridden when Link is
loaded.

2.2 LOADING :LINK

Before Link can be loaded into main storage, it must be built as
a task image.

2. 2 .1 Loadin1g Link from the Syt:stem Console

The following OS/32 LOAD command loads Link from the system
console:

Format:

LOAD taskid Gfd] [,workspace]

48-005 FOl R02 2-1

Parameters:

task id

f d

workspace

is a 1- to a-character alphanumeric string
specifying the name of the task after it is
loaded into main memory.

is the file descriptor of the file containing
the linkage editor image to be loaded into
main memory. If this parameter is omitted,
the default is taskid.TSK.

NOTE

The Perkin-Elmer
ready-to-execute version
is included in a file
LINK.TSK.

supplied
of Link

named

is a decimal number in kb specifying the
additional area to be added to the root node.
This value overrides the WORK• option if
specified when the image was built.

NOTE

Link requires the OS/32 Help
segment (.HELPRnnn.SEG/S- where
nnn specifies the OS/32 revision
number) to be preloaded into
memory or be available on account
0 of the default system disk
volume.

2.2.2 Loading Link from a Multi-Terminal Monitor (MTM) Terminal

The following MTM conunand loads Link from an MTM terminal:

Format:

LOAD fd Eworkspace]

2-2 48-005 FOl R02

Parameters:

f d

workspace

2-2a

is the file descriptor of the file containing
the linkage editor image to be loaded into
main memory.

is a decimal number in kb specifying the
additional area to be added to the root nodeA
This value overrides the WORK= option if
specified when the image was built.

48-005 FOl R02

2. 2. 3 Assigning Workspace for I ... ink

The size of the workspace increment value given when Link is
loaded will control the maximum symbol table size generated by
Link as shown in the following table:

WORKSPACE SYMBOL
INCREMENT TABLE MAXIMUM

0 - 7 LINK will not run
8 - 15 32 kilobytes

16 -- 31 64 kilobytes
:32 -- 63 96 kilobytes
154 - 95 128 kilobytes
96 -- 127 256 kilobytes

1.28 -- 255 1 megabyte
2.56 - or greater 4 megabytes

2. 3 LINK INPUT/OUTPUT (I /0) F II..ES

Link requires the following I/O files:

• Object files containing the compiled source code.

• Task image file to which Link outputs the task image.

• Map file tc::> which Link sends a listing of
summary and, optionally, atll external
addresses.

the establishment
programs and their

• Log file which lists all Link commands issued and any Link
generated ciiagnostic messages'.

• Command f i le cont a in ing commaLnds to r... ink.

The Link command file can be built by a command substitution
system (CSS) procedure or bui.lt as a separate file that can be
specified in the START command. If no Link command file is
specified in the START c:ommand, Link accepts commands
interactively from the terminal or console. The BUILD command
for Link automatically allocates a file, if the file does not
already exist,, for the task image using the filename entered,
followed by the extension corresponding to the type of image
(TASK, OS, partial image) being built. The log file must be
preallocated by the user. The user can optionally preallocate a
map file. However, LINK will al.locate the map file if it does
not exist.

Table 2-1 lists the logical unit (lu) assignments that are made
automatically by the Link commands.

48-005 FOO R02 2-3

TABLE 2-l LOGICAL UNITS ASSIGNED BY LINK

LINK COMMAND
I LOGICAL UNITS I

ASSIGNED I/O FILE
I
I

l ACCESS

======---INCLUDE/LIBRARY
BUILD
MAP
START
,COMMAND=

,LOG=
HELP

1
2
3

5

7

6
10

Object SRO
Task image SRW
Link map swo

Link command SRO
input
Link conunand swo
output
Log swo
Link help SRO
File

Link also assigns lu9 as needed for the temporary paging of its
symbol table.

2.4 STARTING LINK

After Link is loaded into main memory, the OS/32 or MTM START
command starts execution of the Link program and specifies the
command and log files or devices.

Format:

START [,coMMANb=fd
1

JGLoG=fd
2

]

Parameters:

COMMAND=

2-4

fd
1

specifies the input file or device from
which Link commands are read. If this
parameter is omitted, the default is the
command input device (CON:). If the command
input device is interactive, all messages
generated by Link are sent to it. If the
command input file is batch, all Link messages
are sent to the file specified by the LOG
parameter.

48-005 FOl R02

LOG=

Functional Details:

fd 2 specif iee: the output file or device which
all commands: entered and messages generated
are written. If the command input file is
batch, this parameter must be specified. If
the log output device is a disk file, it must
have been pr eiv ious ly allocated.

After the link:age editor is started, the following message is
displayed:

PERKIN-ELMER OS/32 LINKAGE E:OITOR 03-242 Rnn-nn

The revision number (Rnn) indica.tes the rev1s1on level of Link,
and the upda.te number (-nn) indicates the update level of Link.
If the command input device is interactive, the greater than (>)
symbol is th•:m displayed as a prompt indicating that the linkage
editor is ready to accept commands.

48-005 FOl R02 2-5

3 . l INTRODUC~T I ON

CHAPTER 3
LINK COMMANDS

There are three types of Link c1:>mmands:

• Active

• Passive

• Environment

Active commands are executed as they are entered and have an
immediate effect on how the image is to be built. Passive
commands are executed during th19 build process, at which time
Link processes them, making symbol table entries, etc. Although
passive commands are not execub9d when entered, the order in
which passive commands are 49ncountered can affect the image
produced by Link. This is due to the order in which items are
entered into Link's internal symbol table. Environment conunands
affect the link session inst49ad of the image being built.
Environment commands have no affect on the image being built, but
do establish the environment.

A Compatible Link Utility is included with the OS/32 software
package for conversion purpo1:ses. This utility is designed for
users who have extensive Link cc:mnand files built using the Link
conunand syntax documented in th•9 ROl version of this manual. The
Compatible Link Utility allows users to continue using the
existing LINK command sequence1:s in conjunction with the new
enhancements included in the R02 release of the OS/32 Link
Reference Manual.

Users who elect to use the Compatible Link Utility should note
that there are four Link comands documented in the ROl version of
this manual that differ in format from the R02 release of the
Link Reference Manual. The BUILD, ESTABLISH, OPTION and SHARED
commands tha.t are supported by the Compatible Link Utility use
the. formats documented in the ROl version of the OS/32 Link
Reference Manual.

Table 3-1 lists all the Link commands, categorizes the type and
describes the function.

48-005 FOl R02 3-1

TABLE 3-1 LINK COMMANDS

TYPE
1-----------------1

COMMAND I ACT I PAS I ENV I MEANING
========================--------------==--------=-=====·=·-====

BF ILE

BUILD *
DCMD *

END *
ESTABLISH *

* I Backspaces a magnetic tape or
I contiguous file

I Starts building the image

Enables execution of Link
commands embedded in object 1

modules. Enables the listing
of embedded auxiliary process­
ing unit (APU) comments to the
log device in the Model
3200MPS System.

I Terminates the linkage editor

I Specifies the type of image
I to be built

EXTERNAL * Specifies the names of common
block(s) to be externally vis­
ible from the partial image

I I I being built. ,
---!

FFII...E * I Forward spaces a magnetic tape l
I I I I or contiguous file I

---'
HELP

INCLUDE *

LIBRARY *
I I I
I I I

* Lists and describes all Link
I commands accepted by the
I current revision of Link.

I Specifies the object modules
I to be included in the image

I Specifies the object libraries !
I to be searched for unresolved :
I external references

---!
LOCAL * Specifies entry points that

LOG

MAP *

3-2

I are not to be visible from I
l outside of the partial image l
I being built

* I Enables logging all commands,
I messages, and maps to the log
I device

I Generates a map when the image
I is built

48-005 FOO R02

BUILD

3.3 BUILD COMMAND

The BUILD command is an active i::::ommand that builds the image from
the object modules specified in the INCLUDE command.

Format:

.BllILD fd

Parameters:

f d

Functional Details:

is the file descriptor that is to receive the
image. If the extension is omitted, the
default extensions are:

• .TSK for tasks

• . IMG for partial images

• .000 for operating systems

The linkage editor attempts to allocate and assign the file
specified in the BUILD command.. If the file does not exist, the
linkage editor allocates the f jlle. While in the interactive
mode, if an error occurs during this process or the file is not
specified in the BUILD command, the following message is
displayed:

ENTER FILE: DESCRIPTOR FOR IMAGE>

Enter the f d 1of the file or dev j~ ce to receive the image.

If a file with the fd specif'.ied already exists, Link will
overwrite it automatically, without issuing any prompts.

By default, Link allocates a c:ont iguous file for the image.
Building an image to a conti~ruous file is significantly faster
than building an image to an indexed file.

48-005 FOl R02. 3-5

After the task is built, the Link maps are generated if the MAP
command was entered. If the MAP command was not entered, the
following message is displayed:

MAP?)

Enter YES(Y) or NO(N). If YES (Y) is entered, the following four
messages are displayed:

• ENTER FILE DESCRIPTOR FOR MAP>

Enter the fd of the device or file to receive the maps.

• SORTED BY ADDRESS?>

If YES is entered, a map with all symbols already in address
order is generated.

• CROSS REFERENCE?>

If YES is entered, a cross-reference map is generated. This
map lists all symbols in alphabetical order and the names of
all object modules that reference each symbol.

• SORTED ALPHABETICALLY?)

If YES is entered, a map with all symbols in alphabetical
order is generated.

If NO is entered for all of these messages, only an
establishment summary is generated. See Section 3.14.

After the BUILD command is executed, the linkage editor builds
the image. To only generate a Link map without saving the task
image to a file, specify NULL: as the fd to the BUILD command.

3-6 48-005 FOO R02

Examples:

BUILD COM. IMG

BUILD TASK

BUILD TASK.TSK

BUILD NULL:

48-005 FOO RO~l

NOTE

If Link is running in batch.mode and
cannot allocate the file, the build
process is termi.nated.

3-7

DCMD

3.4 DCMD COMMAND

The define command (DCMD) command is
entered without parameters, enables
conunands in object modules included
at the same time, enables listing of
input or log device. In programs
System, this conunand entered with
suppresses listing of APU comments to

Format:

Ii{ AE.UCOMMENT }]
DCMD ~NAPUCOMMENT

Parameters:

an active command that, when
execution of passive Link
in the image. This command,
embedded comments to the
written for a Model 3200MPS

parameters enables or
the log device.·

APUCOMMENT enables listing of APU conunents to the log
device.

NAPUCOMMENT disables listing of APU conunents to the log
device. This is the default.

The DCMD command enables CAL and FORTRAN programs to contain
passive Link commands that will be executed when the image is
built. To embed passive Link commands in a CAL program, use the
CAL DCMD pseudo-op as follows:

DCMD C'linkedit command'

NOTE

This DCMD pseudo-op is not the same as
the Link DCMD command.

3-8 48-005 FOl R02

Example of CAL code containing embedded passive Link commands:

MOD

ENTRY

PROG
E!NTRY
E!XTRN
E!XTRN
E!XTRN
DCMD
DCMD
DCMD
DCMD
PURE
L
ST
BAL
SVC
E:ND

ENTRY
EXT RNA
EXTRNB
EXENTRY
C'OPTION FLOAT'
C 'MAP PR: ,ALPHA'
C'*PATCH FOR SCR 1183, 1/24/83'
C'*APU MODULE MOD INVOKES SVC CALLS'

O,EXTRNA
O,EXTRNB
13,EXENTRY
3,0

Embedded passi.ve Link commands are treated as if they were part
of the Link command sequence. Embedded LIBRARY commands are
treated as if they were entered immediately before the BUILD
command; all other embedded commands are treated as if they were
entered after the INCLUDE command.

If a log devic:e is specified in the START command, all embedded
passive Link commands are output to the log device with a plus
sign (+) in column 1 ..

The DCMD command entered without any parameters also enables
listing of e1mbedded general cmnments to the log device. These
general comments can ref er to patches applied to a particular
compiler or other general comments the user does not want
suppressed.

In programs wt·itten for a Model 3200MPS System, some language
processors, such as CAL/32 and FORTRAN VII, generate APU
information comments embedded in the object files of APU tasks.
These APU comment lines always begin with an asterisk (*) and the
letters APU. Listing or suppression of the APU comment lines is
enabled by entering the DCMD command with the APUCOMMENT or

.NAPUCOMMENT parameter. If the APUCOMMENT parameter is entered,
all comments, including the general comments, are displayed. If
the NAPUCO~~NT parameter is entered, APU comments are
suppressed, but the general comments are still displayed.

48-005 FOl R02. 3-9

When the program above is linked, the log listing will be:

ES TA
INCLUDE MOD
BUILD MOD

If the DCMD command with no parameters is entered, the log
listing will be:

DCMD
ES TA
INCLUDE MOD
+OPTION FLOAT
+MAP PR:, ALPHA
+*PATCH FOR SCR 1183, 1/24/83
BUILD MOD

If the DCMD command is entered with the APUCOMMENT parameter, the
log listing will be:

ES TA
DCMD APUCOMMENT
INCLUDE MOD
+OPTION FLOAT
+MAP PR: , ALPHA
+*'PATCH FOR SCR 1183, 1/24/83'
+*APU 'MODULE MOD INVOKES SVC CALLS'
BUILD MOD

Only passive Link commands can be embedded in CAL object modules.
If active or environment commands are embedded in CAL object
modules, they will be ignored and this message will be output:

COMMAND NOT PERMITTED

Application users in a uniprocessor
command with its parameters for
System.

system can use the DCMD
developing a Model 3200MPS

If this command is not entered, all embedded passive Link
commands are executed. To turn this feature off, use the NDCMD
command explained in Section 3.15.

3-10 48-005 FOO R02

END

3 • 5 END COMMI~

The END command is an active command that terminates the linkage
editor.

Format:

END

Functional Details:

While Link is in the interactive mode, if a Link command sequence
contains at lE~ast one INCLUDE command and an END command is
entered befoz:e a BUILD command is entered, the following message
is displayed:

BUILD IMAG~E FROM PREVIOUS INPUT?>

Enter YES if the image is to be built. Enter NO if no image is
to be built and the task is to be terminated. See Table 3-2 for
the meaning of Link end of task codes.

TABLE 3-2 LINK :END OF TASK CODES

END OF 'I~ASK I
CODE MEANING

======••==•••=•==••==========•••=•••==•a••••••==•==•==
0

1

2

3

48-005 FOl R02.

Terminated normally

An error occurred that did not affect
the building of the image.

An error occurred that affected the
building of the image.

A severe error occurred that caused
the linkage editor to abort.

3-11

I ESTABLISH I

3.6 ESTABLISH COMMAND

The ESTABLISH conunand is an active conunand that specifies the
type of image to be built and provides a package name to a
multiple segment image. The three types of images that can be
built are:

• task,

• operating system, and

• partial image

Format:

ESTABLISH

Parameters:

TASK

OS

3-12

R

E

.IMAGE [ru:cEss- •][ADDRESS- { mo:oo} J
RW

RWE

[,NAME=package name]

specifies that a task image is to be built.
If the ESTABLISH conunand or the parameters
specifying the type of image are omitted, TASK
is the default.

specifies that an operating system image is to
be built.

48-005 FOO R02

FF ILE

3.8 FFILE COMMAND

The forward file (FFILE) conunand is an environment conunand that
forward spaces a magnetic tape or contiguous file a specified
number of f ilemarks.

Format:

Parameters:

f d

n

Example:

FF MAGl: ,2

48-005 FOO R02

is the file descriptor of the device or file
to be forwa1~d spaced the specified number of
f ilemarks.

is a decimal number specifying the number of
f ilemarks to Hpace forward. If this parameter
is omitted, 1 is the default.

3-17

HELP

3.9 HELP COMMAND

The HELP command provides a list of all Link commands accepted by
the latest revision of Link. HELP also describes the syntax and
function of each command.

Format:

HELP

Parameters:

mnemonic

*

Functional Details:

is the mnemonic for a Link command that is to
be described by HELP.

lists all Link commands accepted by the latest
revision of Link. If no parameter is
specified, * is the default.

If a log device has been specified in the START command for Link,
HELP outputs all lists and descriptions of the Link commands to
the log device.

For some commands (e.g., OPTION),
require that more than one screen
Link will display a maximum of 23
carriage return (CR) to continue
except a CR will abort the remainder

3-18

the HELP information will
be displayed. In this case,
lines, then prompt for a
the display. Any character

of the display.

48-005 FOl R02

Example:

*help

BF (ILE)
ES(TABLISH)
IN(CLUDEJ1
MA(P)
OV(ERLAYJl
RES(OLVEJl
WF (ILE)
FOR HELP ON ANY OF

*help map

BU(ILD)
EX(TERNAL)
LI (BRARY)
ND(CMD)
PA(USE)

THE ABOVE

DC(MD) EN(D)
FF (ILE) H(ELP)
LOC(AL) LOG
NL(OG) OP(TION)
PO(SITION) REW(IND)
TI (TLE) VO(LUME)

COMMAND MNEMONICS, TYPE HELP MNEMONIC

MA(P) : This command is a passive command that displays a map
containing the names and addresses of symbols.

SYNTAX: MA(P) [(FD)] [,AL(PHABETIC)] [,AD(DRESS)] [,XR(EF)]

WHERE: <FD) ts the file descriptor of the device to receive the
map. If this parameter is omitted, the map is sent to the log
device. If no log device has been specified, the maps are
output to the command device, in interactive mode, and to
device PR: in batch mode.

The 'ALPHABETIC' parameter specifies that the map is to contain
all symbols in alphabetic order.

The 'ADDRESS' parameter specifies that the map is to contain all
symbols in address order.

The 'XREF' pai:·ameter specifies that the map is to contain all the
names of the modules that reference each symbol, and the name
of the module in which the symbol is defined.

48-005 FOl R02 3-19

I INCLUDE

3.10 INCLUDE COMMAND

The INCLUDE command is an active command that specifies a file
containing object modules and the specific names of object
modules that are to be included in the image. The INCLUDE
command can be entered any number of times to include object
modules from many different files.

Format:

Parameters:

f d

module1

modulen

3-20

is the file descriptor of the file or device
containing the modules to be included. If
this parameter is omitted, a preassigned lul
or the fd specified in the last INCLUDE
command entered is used. If the extension is
omitted, the default is .OBJ.

is a 1- to 8-character alphanumeric string
specifying the name of the next module of a
range of modules to be included in the image.
The first character of this string must be
alphabetic if "*" or "-" is not specified. If
an asterisk (*) is specified or this parameter
is omitted, the next module, relative to the
position of the file, is included.

is a 1- to 8-character alphanumeric string
specifying the name of the last module of a
range of modules to be included in the image.
The first character of this string must be
alphabetic if "*" or "-" is not specified. If
this parameter is omitted, module1 is
included. If an asterisk (*) or hyphen (-)
with no module name is specified, all modules
starting with module1 to the end of the file
are included.

48-005 FOO R02

Functional Details:

If no module names are specified, all modules in the file are
included.

Object code modules specified in this command can consist only of
the object code defined in Appendix D. Appendix D lists each
loader item accepted by Link and describes what data may follow
it.

Examples:

INCLUDE LIBRARY.OBJ

Include all modules in :fd LIBRARY .OBJ.

INCLUDE LIBRARY.OBJ, FIRST

Include the object module FIRST in fd LIBRARY.OBJ.

INCLUDE ,SECOND-FOURTH

Includ.e modules SECOND through FOURTH in the fd specified
in the previous INCLUDE command.

INCLUDE LIBRARY.OBJ,-FOURTH,SIXTH,TENTH-*

Include modules FIRST through FOURTH, then module SIXTH,
and module TENTH through the end of LIBRARY.OBJ

NOTE

If the NSEGMENTED option is selected,
Link writes object modules to the task
image in the samE~ order as they are
included. However,. if SEGMENTED is
specified, Link will choose the order of
modules in the task image. In this case,
modules will normally appear in exactly

.the opposite order that they were
included.

48-005 FOl R0;2 3-21

LIBRARY

3.11 LIBRARY COMMAND

The LIBRARY command is a passive command that specifies object
libraries to be searched at build time to resolve external
references. specified.

Format:

Parameters:

f d

Functional Details:

is the file descriptor of the library to be
searched. If the extension is omitted, the
default is .OBJ.

The libraries specified by the LIBRARY command are searched for
entry points that match unresolved external references in the
image being built. When a match is found, the object module is
included. Only one pass is made through the list of libraries.

When writing programs in high level languages such as FORTRAN or
PASCAL, be sure to specify all user libraries before specifying
a standard Perkin-Elmer Run-Time Library (RTL). This ensures
that each user library routine gets resolved against the standard
RTL.

Also, remember that the domain of a LIBRARY command is the entire
Link command sequence (prior to the next BUILD or ESTABLISH
command); i.e., its domain is not restricted to any overlay in
which it might be placed. Only the order in which the libraries
are specified is significant to Link.

When a program is linked, external references that were not
resolved by the INCLUDE and RESOLVE commands are matched against
the library(ies) entry points. All external references generated
from modules included from the library cause the library modules
that resolve those external references to be included, regardless
of the order of the modules within the library.

3-22 48-005 FOl R02

Weak external references generated by the WXTRN pseudo-op are not
matched against the library. These references are only resolved
against entry points to modules that have been explicitly
included, or have been included from a library through normal
(strong) external references.

Nonlinking external references qenerated by the INCLD pseudo-op
are matched against module name1:s in the library.

Weak entry points in the library generated by the WNTRY pseudo-op
are ignored during the library search.

A module is selected from a library for either of the following
two reasons:

1. The module is named in an I'NCLD pseudo-op.

2. The modul 1e contains an ENTRY or a DNTRY which can be matched
against an unresolved EXTRN in a previously included module.

Any weak entry points contained within this newly included module
also become known to Link. Thee1e weak entry points are resolved
against the list of unresolved, standard, and weak externals.

Example:

LI USER.LIB,F7RTL.OBJ

Speci:Eies the user RTL and FORTRAN RTLs to be searched.

48-005 FOl RO~~ 3-23

LOCAL

3.12 LOCAL COMMAND

The LOCAL command is a passive command that specifies one or more
entry points in a partial image that can be referred to only by
external references within that partial image. This command is
valid only when establishing a partial image.

Format:

LOCAL entry point1 ~ ... ,entry poi~tn]

Parameters:

entry point

Functional Details:

is a 1- to a-character alphanumeric string
specifying the entry point name. The first
character of the string must be alphabetic.

When a partial image is built, all entry points within that image
can be referred to by tasks external to the partial image, unless
the entry points are made local to that partial image by the
LOCAL command.

Example:

LOC ENTRYl

3-24 48-005 FOO R02

OPTION

3.17 OPTION COMMAND

The OPTION coimmand is a passive command that sets the task
options that will be in effect during task execution.

CAUTION

WHEN A TASK IMAGJE: CREATED BY LINK IS
LOADED UNDER MTM, CERTAIN MTM
CONFIGURATIONS CAN OVERRIDE THE TASK
OPTIONS SET BY THE OPTION COMMAND. SEE
THE OS/32 MULTI-Tl~RMINAL MONITOR (MTM)
REFERENCE MANUAL FOJR MORE INFORMATION.

48-005 FOl R02 3-33

Format:

3-34 48-005 FOO R02

COMMUN I CMrE

NCOMMUN I CJ\TE

CONTROL

NCONTROL

DFLOAT

ND FLOAT

DISC

48-005 FOO R02~

specifies that the task can perform the SVC 6
intertask communication f unct. ions. If th is
parameter is not specified, the Lask cannot
communicate with other taskf~.

prevents the Lask from issuing an SVC 6 for
intertask ceirnmun icat ion. If the intertask
communication option is not specified,
NCOMMUNICATE is the default.

specifies that the task can perform the SVC 6
intertask control functions. If this
parameter is not specified, the task cannot
issue an SVC 6 to control the execution of
another task.

prevents the task from issuing an SVC 6 for
intertask control. If the intertask control
option is not specified, NCONTROL is the
default.

specifies that a task can execute double
precision floating point instructions. If
this parameter is not specified, the task
cannot execute double precision floating point
i.nstr uct ions.

prevents the task from executing double
precision floating point instructions. If the
double precision option is not specified,
NDFLOAT is the def aul~.

is the bare disk I/O privilege option. This
option allows a u-task or diagnostic task
(d-task) Lo bypass the file manager and
directly assign I/O requests to a disk device.
If the disk is marked online, only assignments
for shared read only (SRO) are allowed. Any
other assignment is rejected, and a privilege
error message is output. If the disk is
marked offline, all access privileges are
allowed. See the OS/32 Supervisor Call (SVC)
R~ference Manual for a description of the
access privileges. This option has no affect
on e-tasks, since they have bare disk
privileges by definition.

3-37

ND I SC

DTABLES

NDTABLES

ENTRY

main entry

debug entry

OT ASK

3-38

prevents u- and d-tasks from directly
assigning 1/0 requests to a disk device. If
the bare disk I/O privilege is not specified,
NDISC is the default. This option has no
affect on e-tasks.

NOTE

If a task is loaded under MTM and
DISC is not specified, or DISC is
specified but the task loader has
the ETASK option disabled, the
image is loaded without the bare
disk I/O privilege.

causes the task loader to build the
appropriate debug tables in the image for
DEBUG/32. This option also increases the
number of logical units used by the task, by
one. However, LU-15 still appears on the Link
map.

prevents the task loader from building debug
tables so that all debug data contained in the
image is discarded. If DTABLES is not
specified, debug tables are not built.

specifies the name of an entry point in the
root node or the debug task where execution of
the task image is to begin. If this option is
omitted, the entry point is the starting
address specified when the task was assembled
or compiled.

is a standard entry point known to Link while
the image is being built. Standard entry
points include those for partial images but
exclude data entry (DNTRY) points. If only
the main entry is specified, omit the
parentheses.

is the name of the entry point for the debug
task. The debug entry point specifies the
location where execution of the task image
will begin. In addition, the main entry or
default entry is reserved for use by DEBUG/32.

specifies that ad-task image is to be built.
A d-task has its own virtual address space but
can execute privileged instructions. If no
task type parameter is specified, UTASK is the
default.

48-00b FOl R02

ETASK

UTASK

FLOAT

NFLOAT

INTERCEPT

NINTERCEPT

IOBLOCKS

b

NKEYCHECK

4~8-005 FOl R02

specifies that an e-task image is to be built.
An e-task can contain only
positional-independent pure and impure code
and cannot reif erence partial images. An
e-task can execute privileged instructions and
reference physical and reference physical
memory addresSE!S.

specifies that a u-task image is to be built.
A u-task cannot execute privileged
instructions. If no task type parameter is
specified, UTASK is the default.

specifies that the task can execute single
precision floating point instructions. If
FLOAT is not specified, the task cannot
execute single precision floating point
instructions.

prevents the task from executing single
precision floating point instructions. If the
single precision option is not specified,
NFLOAT is the default.

specifies that the task can intercept an SVC
issued by anoither task before the SVC is
processed by the operating system. If this
option is not specified, the task cannot
intercept an SVC issued by another task. For
more informati.on on SVC interception, see the
OS/32 System Level Programmer Reference
Manual.

prevents the task from intercepting an SVC
issued by another task. If the SVC
interception option is not specified,
NINTERCEPT is the default.

specifies the maximum number of 1/0 blocks
assigned to the task. Each I/O control block
can contain one queued 1/0 request. If this
option is not specified, Link automatically
assigns one I/O control block to the task.

is a decimal number from 1 through 65,535
indicating the, number of I/O blocks assigned
to the task.

prevents the operating system from checking
the file protection keys of a u- or d-task
having accounting or bare disk I/O privileges.
If this option is not specified, the operating
system will check the file protection keys for
all privileged u-tasks. NKEYCHECK has no
affect on e-tasks.

3-39

KEY CHECK

LU

lu

LPU

lproc

NAFPAUSE

AF PAUSE

PRIORITY

ipr i

3-40

causes the operating system to check the file
protection keys of a u- oY d-task having
accounting or bare disk I/O privileges. If
the file protection option is not specified,
KEYCHECK is the default. KEYCHECK has no
affect on e-tasks.

specifies the maximum number of logical units
that can be assigned to the task. If this
option is not specified, the maximum number of
logical units is 15.

is a decimal number from 0 through 255.

specifies the logical processing unit (LPU)
used to direct tasks to processors. This
option is valid on a Model 3200MPS System
only. Each task· on Model 3200MPS System is
assigned an LPU. Fad, LPU is logically mapped
to an execution queue. Assignment of a
particular LPU number results in the
assignment of that task to the associated
queue. The default assignment is zero, which
specifies queue 0.

specifies the LPU that the task is to be
assigned to. Legal values can range from
decimal zero to the maximum number of LPUs
present in the system (MAXLPU) up to maximum
of 255. MAXLPU is a sysgen parameter. See
the System Generation/32 (SYSGEN/a2) Reference
Manual.

allows task execution to continue after an
arithmetic fault occurs. If NAFPAUSE is not
specified, task execution is suspended after
an arithmetic fault.

suspends task execution after an arithmetic
fault occurs. If the NAFPAUSE fault option is
not specified, AFPAUSE is the default.

specifies the initial and maximum priorities
of the task. If this option is not specified,
both the initial and maximum task priorities
are 128. See the OS/32 Operator Reference
Manual for an explanation of priority.

is a decimal number from 11 through 254
indicating the initial task priority. The
initial priority must be greater or equal
numerically to the specified maximum priority
(mpri). If ipri is not specified, the default
is 128.

48-005 FOl R02

mpri

RESIDENT

NRESIDENT

NROLL

ROLL

SEGMENTED

NSEGMENTED

SYSSPACE

is a decimal number from 11 through 254
indicating the maximum priority of the task.
If mpri is not specified, the maximum priority
is 128 (the value specified for the initial
priority).

specifies that the task is to remain in main
memory after task execution is terminated.
The task can then be restarted by the operator
without issuing an OS/32 LOAD command. If
this option is not specified, the task will be
removed from memory after task termination.

specifies that the task is to be removed from
main memory after task execution is
terminated. If the RESIDENT option is not
specified, NRESIDENT is the default.

prevents the task from being rolled in and out
of main memory during task execution. If this
option is not specified, the task can be
rolled during execution.

specifies that the task can be rolled
out of memory during task execution.
NROLL option is not specified, ROLL
default.

in and
If the

is the

specifies that the pure segment of a u- or
d-task can be shared when more than one copy
of the task is loaded. If this option is not
specified, the pure segment cannot be shared.
SEGMENTED is incompatible with OPTION ETASK.

specifies that the pure segment of a u- or
d-task cannot be shared when more than one
copy of the task is loaded. If the SEGMENTED
option is not specified, NSEGMENTED is the
default.

specifies the maximum amount of system space
that a task can use during execution. System
space is used for file control blocks
associated with open disk files and other OS
data structures associated with the task. If
this option is not specified, the maximum
system space that can be used is 12,288
(X3000) bytes.

decimal value is a 1- to 7-digit decimal number specifying
the maximum amount of system space.

hexadecimal
value

4,8-005 FOl R02

is a 1- to 6-digit hexadecimal number
preceded by an X specifying the maximum amount
of system space.

3-41

NSVCPAUSE

SVCPAUSE

TSW

status

st adr

TEQSAVE

3-42

specifies that SVC 6 is treated as a
no-operation (NOP) (applies to .BG tasks
only). If a background task issues an SVC 6,
the operating system ignores that call and
continues execution of the task. If this
option is not specified, the operating system
pauses the execution of a background task that
issues an SVC 6.

specifies that SVC 6 is treated as an illegal
SVC (applies to .BG tasks only). If an SVC 6
is issued by a background task, the operating
system pauses execution of that task. If the
SVC 6 PAUSE option for background tasks is not
specified, SVCPAUSE is the default.

sets the task statue and starting address
fields of the task st~t:·1c «..'ord (TSW) in the
LIB. If multipl~ "3'~' options are specified,
an OR operation is performed on the status
field before the TSW is loaded into the final
TSW for the task image. This option overrides
any starting address specified by ENTRY.

is a 1- to 8-digit hexadecimal number
indicating the initial setting of the status
field of the TSW in the LIB. If the asterisk
(*) is specified, the current TSW is reset to
zero. If status is not specified, the initial
setting of the status field is zero.

is a 1- to 6-digit hexadecimal number
indicating the starting address for the task.
This address overrides the starting address
spec if ied when the task was a~JsAmbled or
compiled as well as any starting address
specified by the ENTRY option.

informs the operating system whether or not
the register contents should be saved and
restored when the task enters or exits a task
event service routine. The parameters of this
option are:

48-005 FOl R02

maximum
workspace

XSVCl

NXSVCl

E!xamples:

is a 1- to 6-digit hexadecimal or 1- to
7-digit decimal number indicating the maximum
amount of woz·kspace that can be added by the
LOAD command. If the maximum workspace is not
specified, 256K (X40000) is the maximum number
of bytes that can be added. The maximum
workspace value is added to the maximum
workspace valUE!S specified by previous OPTION
WORK= commands~ to obtain the total maximum
workspace.

indicates that if the task issues an SVC 1
with bit 7 of the function code set, the
options specif led by the SVC 1 extended option
field are to be! executed for all drivers which
use this field. If XSVCl is not specified, an
SVC 1 with bit 7 set performs an image I/O
transfer. See the OS/32 Supervisor Call (SVC)
Reference ManlJlal for more information on the
SVC 1 function code and extended options.

indicates that if the task issues an SVC 1
with bit 7 of the function code set, an image
I/O transfer is performed. If the XSVCl
option is not specified, NXSVCl is the
default. See the OS/32 Supervisor Call (SVC)
Reference Manual for more information on the
SVC 1 function code and extended options.

OPTION ACPRJ[VILEGE,NKEYCHECK,~LIGN=4,
DFLOJ~T,LU=lO,PRIORITY=(, 100),
SYSSPACE=X4000,VFC,XSVC'.l,
WORK== (XlOO, XlOOO)

In this example,. the task is to be linked as a u-task with
extended file access privileges and without key checking. All
c,bject modules will be aligned to the nearest fullword boundary.
The task can execute double ·precision floating point instructions
and assign up to ten logical units. Maximum task priority is
100; initial ta~sk priority is 128. VFC is in effect for all 1/0
c,perations. The options specified by the SVC 1 extended option
field are to be executed for all drivers that use this field.
The task can be loaded with a ma.ximum workspace of 4,096 bytes.
If workspace is not specified in the OS/32 or MTM LOAD command,
the task will bE~ loaded with 256 bytes. Note that X precedes the
hexadecimal nurirabers in the WORK option. Maximum system space
that can be used by this task is 16,384 bytes.

4:8-005 FOl R02 3-45

OPTION DTABLES,ENTRY=(,DEBUG32)

In this example, the u-task is to be debugged using DEBUG/32.
DTABLES builds the required debug tables needed to run DEBUG/32
while ENTRY specifies the name of the entry point to the debug
task.

OPTION INTERCEPT,TEQSAVE=PARTIAL

This example shows the task options that apply to a u-task that
is to be linked with the SVC interception software. INTERCEPT
allows the u-task to intercept an SVC of another task.
TEQSAVE=PARTIAL indicates that all register contents used by the
task event service routine are to be saved and restored. See the
OS/32 System Level Prograrruner Reference ~f- :·.ual for more
information on SVC interception ?" ·1 l...he task event service
routine.

OPTION VTM=S,VFD=PROGl.VTM

This example shows the task options that apply when a u-task is
to run under the virtual memory manager. See Chapter 5. VTM
specifies that a virtual image is to be built; VFD specifies that
PROGl.VTM is to be used as a secondary storage file by the
virtual task.

OPTION FL,RES,LU=l0,WORK=X3000,TSW=(,B020),APC,APM

This example shows the task options that can apply when the task
is to run on the APU of a Model 3200MPS System. The task can
execute single precision floating point instructions; is
resident; has a maximum of 10 logical units that can be assigned
to it; has a maximum workspace of X3000 bytes; has a starting
address field of XB020 in the LIB; can obtain APU control
privileges, and APU mapping privileges in a multiprocessor
system. The APC and APM options are valid on a Model 3200MPS
System only.

3-46 48-005 FOO R02

There are two consequences to this positioning policy. The first
is that named coimmon blocks are initialized each time an overlay
is fetched from disk. The second consequence is that more than
one copy of a common entity can exist on separate paths in the
program; i.e., two or more over l.ays can have their own separate
and private copies of a common entity. These copies could then
contain different values.

Example:

ES TASK
INCLUDE ROOT1

POSITION COMMON=(A,B)
OVERLAY OVLYl,l
INCLUDE SUBl
INCLUDE SUB2
OVERLAY OVLY2,l
INCLUDE SUB3

48-005 FOO R02 3-51

RESOLVE

3.21 RESOLVE COMMAND

The RESOLVE command is a passive command that specifies the name
of a partial image to be referred to by the task image. The
partial image can be a global entity generated at the console by
the OS/32 TCOM command, a sharable segment created by Link ROO,
or a partial image created by Link ROl.

Format:

.RES.OLVE

Parameters:

f d

3-52

[fd] ~NAME=package namel

R

E

,ACCESS• RE ~ AilDRESS==mOOOO J
RW

RWE

~Sl'.RUCTUREs (name 1 [!size;] [• ... , namen][ls izen])]

~Sl.ZE= ([min GmaxJ]) J

is the file descriptor of the partial image.
If fd is not specified, the default partial
image is the global task common defined by the
TCOM command. If the file extension for a
partial image created by Link ROl is not
specified, the default extension is .IMG.
Because the default extension for sharable
segments created by Link ROO is .SEG, the file
extension should be specified when these
segments are resolved.

48-005 FOl R02

NAME=

package nam~e

ACCESS•

48-005 FOO R02

NOTE

Link cannot get the size of a task
conunon negment defined by TCOM
from an image file; therefore,
when the partial image is a global
task ce>nunon, the size of the
partial JLmage must be specified by
the SIZE or STRUCTURE parameter .in
the RESOLVE conunand.

specifies the package name of the partial
image. If thj~s parameter is omitted, fd must
be spec if ied, c:tnd the default package name is
the package name assigned to the partial image
when it was established. When the task is
loaded, the package name is matched against
the names of any partial images already in
main memory. J:f a partial image with the
spec if ied pac~:age name is not found in memory
when the task ts loaded, the package name is
converted into an fd which is then used to'
locate and load a partial image.

is a filename. eixt that identifies the partial
image after it is loaded into memory. This
name is matched against either the name of the
global entity s1pecif ied by TCOM or the package
names of sharable segments or partial images.

specifies the access privilege of the partial
image as follows:

R

E

RE

RW

specifies that the task can read data
within the partial image. Execution
or modification of data is not
allowed.

specifies that the task can execute
code within the partial image but

.cannot read or modify data within the
image.

specifies that the task can read data
and execute code within the partial
image. Modification of data is not
allowed. If the ACCESS• parameter is
omitted, the default is RE.

specifies that the task can read and
modify data within the partial image.
Code execution is not allowed.

3-53

ADDRESS=

STRUCTURE=

size1 ••• size"

3-54

RWE specifies that the task can read and
modify data and execute code within
the partial image.

mOOOO is the starting address of the partial
image. If the RESOLVE command specifies an fd
for a partial image that is not
address-independent, the specified address
must match the address specified in the LIB of
the partial image. If ADDRESS= is not
specified, and the address was not specified
when the partial image was established, Link
automatically assigns an address to the
partial image. The variable m is a
hexadecimal number in the range from 0 through
BF.

structures task comrnor:. blocks within the
partial image specified by fd. If f d is not
specified, this parameter is used to structure
global task conunon defined by the TCOM
command.

is an 8-character alphanumeric string
specifying the name of the task common block
to be structured.

is a 1- to 6-digit hexadecimal number or a 1-
to 7-digit decimal number specifying the
length in bytes of the task conunon block.
(Hexadecimal numbers must be preceded by an X;
e.g., XFO.) This number must be greater than
or equal to the size of the task common block
specified by the program. If this number is
smaller than the size specified by the
program, Link outputs a warning message and
uses the size specified by the program. The
program size is also used if this parameter is
omitted.

NOTE

If conunon blocks in a partial
image are declared by using the
EXTERNAL conunand when the partial
image is built, STRUCTURE need not
be specified when resolving
against that partial image.

48-005 FOl R02

SIZE=

min

3-54a

specifies the m1n1mum and maximum number of
bytes of main memory that the partial image
can occupy. If SIZE= and fd are not
specified, the default size of the partial
image is that specified by the STRUCTURE
parameter. If SIZE is not specified but fd
is, the default size of the partial image is
the size obtained form the LIB of the partial
image specified by fd.

is a 1- to 6-di1git hexadecimal number or a 1-
to 7-digit decimal number specifying the
minimum number ·Of bytes of main memory that
the partial image can occupy. (A hexadecimal
number must be preceded by an X; e.g., XFO.)

48-005 FOl R02

E~xample:

INCLUDE M300:MODS.OBJ,MSP
OVERLAY A
INCLUDE ,SUBA
OVERLAY B
INCLUDE ,SUBB
OVERLAY C
INCLUDE ,suac
MAP PRl:,ADDRESS
BUILD MODS
END

1l1he first INCLUDE command specifies that the object module MSP in
the input file MODS.OBJ on disc volume M300 is to be included in
the image. Because this command is specified before any OVERLAY
command, MSP is placed in the root node.

'l~he first OVERI.J\Y command defines an overlay area named A. The
INCLUDE command specifies that the object module called SUBA is
part of overlay A. It is contained in the object file most
r~ecently specif: ied in an INCLUDE command (MODS .OBJ), and it will
be automatically loaded into memory when MSP calls SUBA if it is
not already in memory.

'I~he second OVERIAY command defines an over lay area named B. The
INCLUDE command specifies that the object module called SUBB is
part of overlay B and will be automatically loaded into the same
memory area pt~eviously occupied by over lay A, if SUBB is not
already loaded when MSP calls it.

'I~he third OVERI.J~Y and INCLUDE commands define an over lay area
named C and JLnclude the object module called SUBC as part of
overlay c.

11he MAP command specifies that an establishment summary and a
listing of thE~ names and locations for each overlay are to be
produced in address order.

'11he BUILD command builds the image called MODS.TSK which consists
of a root segment and an overlay area large enough to contain the
largest overlay (A, B, or C).

'11he END command terminates the linkage editor.

48-00S FOl R02 4-5

4.4.2 Building a More Complex Overlayed Task Image

The following example builds an overlayed task image from the
object file MOD6.0BJ which consists of a main program that calls
two subroutines (SUBA and SUBS). Subroutine SUBA calls two more
subroutines (SUBAl and SUBA2). Subroutine SUBB also calls two
more subroutines (SUBBl and SUBB2). In addition to SUBA and SUBS
overlaying each other, SUBAl and SUBA2 are to be overlayed when
SUBA is in memory. SUBB calls SUBBl and SUBB2, and SUBBl and
SUBB2 are to be overlayed when SUBB is in memory. This overlay
process can be accomplished by using another level of overlay
areas. _Figure 4-1 illustrates the overlay structure for this
example.

Level
1

I LFP I
I (root node) I

-------------1-------------

I SUSA I
I (node A) I

------1------

I SUBB I
f (node D) f

------1------

Level I SUBAl I I SUBA2 I
I (node C) I

I SUBBl I
I (node E) I

I SUBB2 I
I (node F) I 2 I (node B) I

Figure 4-1 Sample Overlay Structure

A path is defined as a set of nodes (a group of routines loaded
at one time is a node), one at each level, each of which is a
descendant of the node at the previous level. For example, node
D and node E form a path. Only nodes in the same path can be in
memory at the same time and, therefore, a routine can only call
routines in nodes that are in the same path as the node
containing the calling routine.

4-6 48-005 FOO R02

CHAPTE:R 5
VIRTUAL TASK MANAGEMENT (V'I'M)

S.l INTRODUCTION

VTM provides a virtual memory capa.bility for large FORTRAN tasks.
User tasks (u-tasks) consisting of up to 16Mb of code and data
can execute in as little as 128kb of user task memory. VTM also
supports common assembly language (CAL) and PASCAL programs with
some code restrictions.

VTM uses the memory address translator (MAT) to optimize run-time
performance. It contains run-time algorithms to provide
performance for the widest possible scope of u-task
characteristics.. VTM employs a least recently used working set
algorithm. ThE' virtual activity of a VTM task is independent of
the operating system and does not impact other tasks in the
system. VTM tasks are nonrollable by default but can be made
rollable.

S .. 2 SYSTEM REQUIREMENTS

'l'he minimum re~quirements for use of this feature are any
Perkin-Elmer prc)cessors equipped with MAT hardware, and OS/32 6.2
and higher. Perkin-Elmer processor Models 7/32, 8/32, and 3220
are not supported.

S.3 USER INTERFACE TO VIRTUAL TAS:K MANAGEMENT (VTM)

The following sections describe how to use VTM.

5. 3 .1 Declar ingr a Virtual Task Management (VTM) Task

The user declareis a virtual task via the Link OPTION command:

OPTION .VTM[==n]

where n is the number of 64kb worjlting pages desired for task
memory management.

48-005 FOl R02 5-1

The minimum value of n is 2, the default is 4, and the maximum is
127. The number of working pages needed for reasonable
performance varies depending upon the user's applications and
needs.

NOTE

The VTM option and the Link overlay
feature are incompatible and must not be
used in the same task.

5.3.2 Virtual Task Management (VTM) Secondary Storage

An additional option may also be specified via the Link OPTION
command:

OPTION VFD=fd

where fd is a contiguous file to be used as secondary storage for
the virtual task.

If the VFD option is not entered, VTM allocates a temporary
contiguous file at run-time.

The specified file descriptor (fd) may be the task image file
itself, in which case the task image file might be destroyed at
run-time. When OPTION VFD is specified, multiple copies of the
same task image cannot be run concurrently. The minimum size of
fd is (CTOP/256)-255 sectors (plus 256 sectors if fd is the task
image file). ·

5.3.3 Including the Virtual Task Management (VTM) Module

Prior to including any task modules, the user must include the
VTM object module (VTM32.0BJ) supplied with the operating system
package. The VTM module is approximately 8kb in size.

5.3.4 Virtual Task Workspace

All workspace required for the execution of a virtual task must
be requested at Link time via the WORK option of the Link OPTION
command. Additional memory cannot be obtained via the LOAD
command.

5-2 48-005 FOl R02

5.3.5 Example of Virtual Task Management (VTM) Link Procedures

'The following Link command sequence demonstrates how to build a
VTM task.

l~!xample:

OPTION VTM=S
OPT I ON DFLO.AT, FLOAT, WORK=X3 000
INCLUDE VTM32
INCLUDE MAIN
INCLUDE SUBl
INCLUDE SUB2
LIBRARY F7RTL
MAP PR:
BUILD FORTT.ASK
END

lli'ORT'rASK execubes in five working pages, using a temporary file
as secondary stiorage.

!5.3.6 Virtual •rask Managment (VTM) Logical Units

Por a VTM task, the two highest numbered valid task logical units
are reserved fo:r VTM use. For e]j:ample, if OPTION LU is not
Bpecif ied, logical units 13 and 14k are reserved for VTM.

!5. 3. 7 Rolling •:>f Virtual Task Management (VTM) Tasks

VTM tasks are nonrollable by default. A user can specify VTM
task roll eligibility after loadi.ng and before starting the task
by entering the following command:

MOD 104,l

!i . 3 • 8 Absolute Code

l~bso lute-orig in•~d code or data cannot extend beyond X' 400' in a
VTM task.

48-005 FOl R02 5-3

5.4 FORTRAN OPERATIONAL RULES

The following are FORTRAN operational rules for the VTM feature:

• The u-task workspace requested by the WORK option should not
exceed 64kb in a virtual task. Input/output (I/O) transfers
are limited to 64kb.

• Nonlanguage 1/0 calls made through the use of SYSIO fall under
the CAL coding restrictions.

5.5 COMMON ASSEMBLY LANGUAGE (CAL) RESTRICTIONS

SVC 1 1/0 buffers and SVC parameter blocks should not
logical 64kb boundaries to ensure proper execution.
suggested that the buffers be placed in the f ircl 64kb
task to avoid this possibility.

5.6 PASCAL CODE RESTRICTIONS

cross
It is

of the

To ensure proper execution, file variables should be declared
before any other variables in the global variable declarations of
the main program. The total size of the file buffers, plus 80
bytes of control data for each file, should not exceed 64kb.

5.7 PERFORMANCE MEASUREMENT

The user can analyze the relative performance of a virtual task
with different numbers of working pages using the data on the
number of I/Os available in the OS/32 DISPLAY ACCOUNTING conunand.

NOTE

Certain tasks, by their nature, do not
perform well in a virtual environment.
Tasks with extensive compute bound array
access in which a working set cannot be
contained in the number of specified
working pages might operate poorly as VTM
tasks.

5.8 VIRTUAL TASK MANAGEMENT (VTM) ERROR CONDITIONS

VTM error conditions result in the task being paused or cancelled
with end of task code 1 and an appropriate error message. A
sununary of VTM error messages is presented in Appendix C.

5-4 48-005 FOl R02

APPENDIX B
LINK MESSAGl!: SUMMARY

ADDRESS OVERFLOW' AT xxxxxx

A halfword relocatable address was larger than 64kb.

ATTEMPT TO POSITION x IN A DIFFERENT PATH

An attempt was made to position a common block to a node that
is not in the same path as is the node referring to it.

A.TTEMPT TO POS IT' I ON x IN LOWER LEVl~L NODE

An attempt was made to reposition a common block program in
a lower level node.

A.TTEMPT TO REFERENCE ADDRESS numbe·c
ADDRESS OUTSIDE OF ADDRESS SPACE FOR IMAGE
-FILE: vol: f ileiname. ext/a -MODULl~ :module
-RECORD:number -· BYTE:number

The task image being built ref 1ers to an address outside the
address space of any of the ~nown segments or partial images
of the task. This message identifies the file, module,
record numbe1r, and byte number of the object code that caused
the error.

BUILD NOT SUPPORTED ON THIS DEVICE

A file othet:· than an indexed, nonbuffered indexed, contiguous
or extended contiguous file, or the null device was specified
for building the image.

48-005 FOO R02 B-1

CHECKSUM ERROR F I LE : x MODULE : y RECORD: z

An invalid checksum was detected while reading an object
file.

COMMAND NOT PERMITTED

Command is not valid for the type of build or is not
permitted as in an embedded command in an object module.

COMMON x ENCOUNTERED IN MORE THAN ONE PARTIAL IMAGE

The same common block was specified in more than one
partial images referred to by the task.

COMMON BLOCK x, UNREFERENCED

The common block named was never referred to.

of the

COMMON BLOCK x SPECIFIED IN POSITION COMMAND IS PART OF PARTIAL
IMAGE

An attempt was made to reposition a conunon block that was
part of a partial image by using the POSITION command.

CONTINUATION NOT PERMITTED

An attempt was made to continue a command imbedded in an
object module.

ENTRY POINT x SPECIFIED IN ENTRY OPTION NOT FOUND

The ENTRY parameter of the OPTION command specified a
nonexistent entry point or an entry point in other than the
root node.

ENTRY POINT x SPECIFIED IN LOCAL COMMAND NOT DEFINED

The entry point named was never defined.

B-2 48-005 FOl R02

•.

name SPECIFIED IN POSITION COMMAND NOT FOUND

The named cc>mmon block that was spec if ied by a POSIT ION
command could not be found.

NODE IS NOT SUI1.'ABLE FOR OVERLAYS

This messagei indicates that
attempting to overlay the
segment.

the Link command sequence is
task in a partial image or pure

NUMERIC VALUE OUT OF RANGE

A numeric operand was greater than the maximum permissible
va.lue or less than the minimum permissible value.

OBJECT CODE ERROR (n) J.e'ILE: x MODOLE: y RECORD: z BYTE m

An object code error occurred. If n=l, an invalid object
code item exists in object record. If n=2, the object code
item overflows the record. If n=3, a load program address
item was expected but not encountered.

PROGRAM TRANSFER ADDRESS IN PROGRAM module IN AN OVERLAY

A program transfer address (PTA) (starting address) was
specified for the task in a module that is in an overlay
node. ·Link ignores the specified PTA and uses the task's
default starting address.

OVERLAY DEFINED OUT OF ORDER

An OVERLAY command specified a level inconsistent with the
rules for defining overlays.

RECORD LENGTH FOR MAP DEVICE/FILE < 64 BYTES

The device or file specified f .::>r the output of the maps has
a record length of less than 6i~ bytes.

SEGMENT AT x OVERLAPS PREVIOUSLY DEFINED SEGMENT

The end address of an impure, pure, or shared logical segment
was greater than the beginning address of another segment.
See the establishment summary lEor the names of the segments.

48-005 FOl R.02 B-7

SEQUENCE ERROR FILE x MODULE: y RECORD: z

A sequence number error was detected while reading an object
module.

SIZE OF SEGMENT TRUNCATED TO PHYSICAL SIZE

The maximum length of the partial image specified by the SIZE
parameter in the RESOLVE conunand is larger than any existing
segment for that image. This message indicates that Link is
using the size of the existing segment for the maximum
partial image size rather than the maximum specified by SIZE.

TOO MANY OPERANDS

More operands than allowed were encountered.

VTM TASK WORKSPACE IS GREATER THAN 64K BYTES

When a FORTRAN task is linked as a virtual task, the user
task workspace requested by the WORK option should not exceed
64kb. This message indicates that the WORK option for the
FORTRAN task being linked exceeds 64kb.

VIRTUAL SYMBOL TABLE SPACE LIMIT EXCEEDED

More than 256kb of symbol table space required.

WARNING: ABSOLUTE SPACE LESS THAN 100

Less than 100 bytes of absolute code were reserved for the
UDL.

WARNING: ADDRESS OF PARTIAL IMAGE SEGMENT FOR fd DOES NOT MATCH
ADDRESS SPECIFIED ON RESOLVE COMMAND

This warning is output if the RESOLVE conunand specifies an fd
and an address for an address-dependent partial image, and
that address does not match the address in the loader
information block (LIB) for that partial image. Link uses
the address specified in the partial image's LIB.

WARNING: COMMON xxxxxx APPEARS MORE THAN ONCE IN STRUCTURE
COMMAND

B-8

In the STRUCTURE parameter of the RESOLVE command, the user
attempted to use the same name to define two separate common
blocks. Common block names within a partial image must be
unique.

48-005 FOO R02

.•

APPENDIX C
VIRTUAL TASK MANAGEMENT (VTM) MESSAGE SUMMARY

INSUFFICIENT VTM WORKING PAGES

For this ta:sk, at least onE~ additional working page is
required fo:r VTM execution.

MEM FAULT AT xx:x:xxx INSTR AT XXXXll:X CODE=xx (task paused)

Task memory access fault. xx specifies the code that
describes the type of memc•ry error fault that occurred.
These codes are defined in Table C-1.

TABLE C-1 VTM MEMORY FAULT CODES

MEMORY I
FAULT I
CODES I MEANING

00 Supervisor ca.11 (SVC) address
error

01 Execute protect error

02 Write protect error

03 Read protect error

04 Access ·level error

07 Shared segment table size error

08 Private segment table size error

TASK FD ASGN-ERR. - CODE=xx

Error in assigning task file. xx is the SVC 7 error status.

48-005 FOl R02 C-1

VIRT FD AI.LO-ERR - CODE=xx

Error in allocating temporary file. xx is the SVC 7 error
status.

VIRT FD ASGN-ERR - CODE=xx

Error in assigning VFD file. xx is the SVC 7 error status.

VIRT FD NOT CONTIG

Specified file is not contiguous.

VIRT FD TOO SMALL

Specified file is too small.

VTM RD-ERR STAT-xxxx (task paused)

Unrecoverable read error on a virtual 1/0 transfer. xxxx is
the SVC 1 status halfword; a device independent status of 00
indicates a length of transfer error.

VTM WT-ERR STAT=xxxx (task paused)

C-2

Unrecoverable write error on a virtual I/O transfer. xxxx is
the SVC 1 status halfword; a device independent status of 00
indicates a length of transfer error.

48-005 FOl R02

A

Accounting Facility
APU

conunents
control privileges
mapping privileges

Arithmetic fault
Auxiliary processing unit.

See APU.

B

Background task
Backspace file command
Bare disk I/O privileges

BFILE conunand

BUILD conunand

LOG
MAP

Building a task image

c

CAL object modules
Central processing unit.

See CPU.
Conunand file
Conunands

BFILE

BUILD

DCMD

END

ESTABLISH

EXTERNAL

FFILE

HELP

48-005 FOl R02.

INDEX

Conunands (Continued)
INCLUDE 3-2

3-35 3-5
1-1 3-20
3-46 3-22
3-8 4-1
3-36 4-2
3-36 LIBRARY 3-2
3-40 3-22

4-2
LOCAL 3-2

3-24
LOG 3-2

3-25
MAP 3-2.

3-42 3-6
3-4 3-19
3-37 3-26
3-40 4-1
3-2 4-2
3-4 NDCMD 3-3
2-3 3-31
3-1 NLOG 3-3
3-5 3-32
4-2 OPTION 3-1
2-3 3-3
2-3 3-33
4-1 4-2

OVERLAY 1-6
3-3
3-47

PAUSE 3-3
3-10 3-49

POSITION 1-7
3-3

2-3 3-50
RESOLVE 3-1

3-2 3-3
3-4 3-22
2-3 3-52
3-1 REWIND 3-3
3-2 3-57
3-5 SEGMENT 3-3
4-2 TITLE 3-3
3-2 3-58
3.-8 VOLUME 3-3
3-2 3-59
3-11 WFILE 3-3
4-1 3-60
3-1 Conunon blocks
3-2 placement of 4-8
3-12 shared 4-11
3-54 Compatible Link Utility 3-1
3-2 Complex overlayed task image
3-16 building of 4-6
3-54 Contiguous file
3-2 f ilemark 3-60
3-17 CPU 1-1
3-2
3-18

IND-1

D

DCMD command

Debug tables
De'f ine command. See DCMD

command.

E

Embedded Link commands
END command

End of task codes
Entities

common
global

Entry point
ESTABLISH command

Establishment summary

EXTERNAL command

External references

nonlinking
unresolved
weak

FFILE command

F

File access privileges
extended

File protection keys
FORTRAN operational rules

CAL restrictions
Pascal restrictions
performance measurement

FORTRAN task image
Forward file command. See

FFILE command.

G

General comments
embedded

Global entity

H

HELP command

IND-2

3-2
3-8
3-38

4-3
3-2
3-11
4-1
3-11

1-7
1-7
3-38
3-1
3-2
3-12
3-54
2-3
3-26
3-2
3-16
3-54
3-24
3-55
3-23
3-22
3-23

3-2
3-17

3-35
3-40

5-4
5-4
5-4
4-12

3-9
3-52

3-2
3-18

I ,J ,K

I/O
control block
f ilea

Image
I/O transfer
operating system
partial
task

INCLUDE command

Input/output. See I /0. ·
Intertask communication

control

L

LIB

LIBRARY command

Link commands
active
environment
passive

syntax
Link maps

address
alphabetic
cross-reference

Link symbol table
Loader information block.

See LIB.
LOCAL command

LOG command

Log device
Logical processing unit.

See LPU.
Logical unit. See lu.
LPU

lu
assignments
maximum number

Magnetic tape
f ilemark

Map
heading

M

3-39
2-3

3-45
3-12
3-12
3-12
3-2
3-5
3-20
3-22
4-1
4-2

3-37
3-37

1-3
3-38
3-42
3-2
3-22
4-2

3-1
3-1
3-1
3-10
1-9
3-6
3-26
3-27
3-27
3-27
1-4

3-2
3-24
3-2
3-25
3-25

3-40

2-3
3-40

3-60

3-58

48-005 FOl R02

MAP conunand

MAT
Memory address translator.

See MAT.

N

NDCMD conunand

NLOG conunand

0

Object modules
default boundary

alignment
included in the image

ODT
Operating system image

building of
OPTION command

Overlay
descriptor table
nodes
structure

OVERLAY co.nunand

Overlay descriptor table.
See ODT.

Overlayed task

building of image

P,Q

Partial image

access privileges of
building of
common blocks in
entry points
ref erred by the task

image
Passive Link commands

embedded
execution 01f

PAUSE command

48-005 FOl R02

3-2
3-6
3-19
3-26
4-1
4-2
5-1

3-3
3-31
3-3
3-32

3-36
3-20
3-21
1-3

4-12
3-1
3-3
3-33
4-2

1-3
4-7
1-4
4-6
1-6
3-3
3-47

1-7
3-47
3-50
4-4

1-3
3-53
3-13
4-9
3-16
3-24

3-52

3-9
3-8
3-31
3-3
3-49

Perkin-Elmer multiprocessor
system

POSITION conunand

Private image segment

R

RESOLVE command

REWIND conunand

Root.
node

segment

Run-time performance

s

Segment
shared

SEGMENT command
Segmented task
Simple overlayed task image

building of
SVC interception
SVCl

extended option field
SVC6
Symbol maps
Symbolic debugger
Symbols

link-defined

Task
rolling

T

Task common blocks
global
structure

Task event service routine

Task image
CAL
COBOL
FORTRAN
file format
building partial images

Task memory management
Task options

setting

1-1
1-7
3-3
3-50
1-3

3-1
3-3
3-22
3-52
3-3
3-57

1-6
4-6
4-8
1-3
3-47
3-50
5-1

3-41
3-3
2-1

4-4
3-39

3-45
3-42
3-28
1-3

1-7

3-41

3-54
3-54
3-42

4-2
4-2
4-2
1-2
4-11
3-44

3-33

IND-3

Task priority
initial
maximum

Task status word. See TSW.
TITLE command

TSW

u

UDL
User-dedicated location.

See UDL.

v

Vertical forms control.
VFC.

VFC
Virtual task
Virtual task management.

See VTM.
VOLUME command

VTM

error conditions
memory fault codes
message summary
object module
rolling of tasks

W,X,Y,Z

WFILE command

Workspace increment

IND-4

See

3-41
3-41

3-3
3-58
3-42
3-42

1-3

3-43
3-43

3-3
3-59
1-1
5-1
5-4
C-1
C-1
C-1
5-2
5-3

3-3
3-60
2-3

48-005 FOl R02

Page 1 of 2

MANUAL TITLE:

PUBLICATION
NUMBER:

MANUAL UPDATE P~~CKAGE COVER SHEET

OS/32 LINK Reference Manual

OLD REVISION LEVEL: FOO R02
48-005

NEW REVISION LEVEL: FOl R02

This package of affected pages updates the current version of the
subject manual. New features, as well as changes, deletions and
additions to infprmation in this manual are indicated by change
bars in the page margins. Please discard the indicated old pages
and replace or insert them with the supplied new pages.

OLD PAGES NEW PAGES
===============-==============•=================s==============I
Title Sheet/Disclaimer,
FOO R02

Sheets i through iv, FOO R02

Sheet v, FOO R02

Sheet 1-1, FOO R02
Sheet 1--2, FOO R02

Sheet 2-1, FOO R02
Sheet 2-2, FOO R02

Sheet 2-3, FOO R02
Sheet 2-4, FOO R02
Sheet 2-5, FOO R02

Sheet 3-1, FOO R02
Sheet 3-2, FOO R02
Sheet 3-5, ROO R02
Sheet 3-6, FOO R02
Sheet 3-7, FOO R02
Sheet 3-8, FOO R02
Sheet 3-9, FOO R02
Sheet 3--10, FOO R02
Sheet 3--11, FOO R02
Sheet 3-12, FOO R02
Sheet 3-17, FOO R02
Sheet 3-18, FOO R02
Sheet 3-19, FOO R02
Sheet 3-20, FOO R02

Title Sheet/Disclaimer,
FOl R02

Sheets i through iv, FOl R02

Sheet v, FOl R02

Sheet 1-1, FOl R02
Sheet 1-2, FOl R02

Sheet 2-1, FOl R02
Sheet 2-2, FOl R02
Sheet 2-2a, FOl R02
Sheet 2-3, FOO R02

1 Sheet 2-4, FOl R02
Sheet 2-5, FOl R02

Sheet 3-1, FOl R02
Sheet 3-2, FOO R02
Sheet 3-5, FOl R02
Sheet 3-6, FOO R02
Sheet 3-7, FOO R02
Sheet 3-8, FOl R02
Sheet 3-9, FOl R02
Sheet 3-10, FOO R02
Sheet 3-11, FOl R02
Sheet 3-12, FOO R02
Sheet 3-·· l 1, FOO R02
Sheet 3-18, FOl R02
Sheet 3-19, FOl R02
Sheet 3-20, FOO R02

I
I

Page 2 of 2

OLD PAGES NEW PAGES
=====================m=~============~==================•=•=~===:
Sheet 3-21, FOO R02
Sheet 3-22, FOO R02
Sheet 3-23, FOO R02
Sheet 3-24, FOO R02
Sheet 3-33, FOO R02
Sheet 3-34, FOO R02
Sheet 3-37, FOO R02
Sheet 3-38, FOO R02
Sheet 3-39, FOO R02
Sheet 3-40, FOO R02
Sheet 3-41, FOO R02
Sheet 3-42, FOO R02
Sheet 3-45, FOO R02
Sheet 3-46, FOO R02
Sheet 3-51, FOO R02
Sheet 3-52, FOO R02
Sheet 3-· 53, FOO R02
Sheet 3-54, FOO R02

Sheet 4-5, FOO R02
Sheet 4-6, FOO R02

Sheets 5-1 through 5-5,
FOO R02

Sheet B-1, FOO R02
Sheet B-2, FOO R02
Sheet B-7, FOO R02
Sheet B-8, FOO R02

Sheet C-1, FOO R02
Sheet C-2, FOO R02

Sheets IND-1 through IND-3,
FOO R02

Sheet 3-21, FOl R02
Sheet 3-22, FOl R02
Sheet 3-23, FOl R02
Sheet 3-24, FOO R02
Sheet 3-33, FOl R02
Sheet 3-34, FOO R02
Sheet 3-37, FOO R02
Sheet 3-38, FOl R02
Sheet 3-39, FOl R02
Sheet 3-40, FOl R02
Sheet 3-41, FOl R02
Sheet 3-42, FOl R02
Sheet 3-45, FOl R02
Sheet 3-46, FOO R02
Sheet 3-51, FOO R02
Sheet 3-52, FOl R02
Sheet 3-53, FOO R02
Sheet 3-54, FOl R02
Sheet 3-54a, FOl R02

Sheet 4-5, FOl R02
Sheet 4-6, FOO R02

Sheets 5-1 through 5-4,
FOl R02

Sheet B-1, FOO R02
Sheet B-2, FOl R02
Sheet B-7, FOl R02
Sheet B-8, FOO R02

Sheet C-1, FOl R02
Sheet C-2, FOl R02

Sheets IND-, l through IND-3,
F'Ol R02

,...,,

The purpose of this document~tion change notice (DCN) is to
provide a quick and efficient ,way of making technical changes to
manuals before they are formally updat.d or revised.

I

The manual affected by these changes is:

---- ------·· ·----··----·-·----r--·i!'-----------------------·-----·---·-
AS -.0.0..5 EOO R02. OS/.3.2 Link R~fe.:cence Manual

i -·---- .. -- ·-··-·· . ·-···--···- . ·---···-·-·--·---·-·---·..,. .. -·.····---· ·-· ····-·- _ __ ... _________ -· ·-· ·-· ··-· -

For conversion1 purposes, a ComJpatible Link Utility (R02) is
included with the OS/32 Soft~are Package. This utility is
designed to allow users who h~ve extensive Link conunand files
built using the Link RO l co~an~:i syntax to continue to use those
Link conunand sequences and also ~oe able to use all of the new
enhancements included in the ~02~ revision of Link.

The users who elect to uee th~ pompatible Link Utility should
note that there are five con:vnarads with formats that differ from
the formats· documented in the RO~ release of Link. The formats
of these commands are the .s~ne as those documented in the ROl
Link Manual.

The differences between the ROl and R02 versions of these
conunands are as follows. K~ep in mind that the ROl versions of
these conunands are those ~upported by the Compatible Link
Utility.

• BU[LD Conuna.nd

The BU[LD conunand fd has a ,deJ~ault extension of . IMG in the
Link ROl version, and an, R02 default ext.ension of .SEG,
documented on Pages 3-5 and A-1 of the R02 version.

48-·oos FOO R02.A l

e ESTABLISH Command

2

The ESTABLISH command in the ROl manual has a SHARED option.
The ROl version of the ESTABLISH command is:

IA.SK

QS.

E

E~TABLISH R
~ mOOOOf /

~HARED Ga~cEss= RE] ~ !Q DR ES S = ! * I]

RW

~ .f!A !'! E = se CJ men t J

On Pages 3-12 and A-1 of the R02 manual, the ESTABLISH command
has an IMAGE option instead of the SHARED option in the ROl
version. The R02 version is:

R

E

ESTABLISH .IMAGE [ACCESS• RE][ADDRESS• {mo~oo} J
RW

RWE

[, .HAME•package name]

48-005 FOO R02A

• OPTION Commc:md

The OPTION c:ommand has different values for the ENTRY, WORK,
and SYSSPACE options. The ltOl version of the OPTION corrunand
is:

Q£TION rt:~:::}] u::::;::E}J H.::,::: }J H i::::}J
[·{:::Ln u:::.n J::.n [{:~:::::E}]

48-005 FOO R02'.A 3

The R02 version of the OPTION conunand, that appears on Pages 3-33
. and A-2 , is :

4 48-005 FOO R02A

e SHARED Conunand

The SHARED command in the
1

RO\ manual is replaced by the
RESOLVE command on Pages 3-52 and A-3 in the R02 manual. The
SHARED conuna.nd syntax is:

,ACCF.SS= RE

RW

RWE

~S.IRUCTUR E= (name 1 Esize J
t~m=([min trn]])J

E ... , name n [_i size iill)]

The R02 RESOLVE command syntax is:

.RESOLVE [fd] [,NAME•pac~:age name]

,ACCESS• G ADDRESS•mOOOO]

~STRUCTURE• ~ame 1, [Is ize 1] G ... , namen [lsizenJJ)]

~s.l.ZE• [min ,maxj]

The rest of this DCN refers to errors that must be corrected
in the R02 version of the tink Manual. This portion of the
DCN is not :related to the Com,>atible Link Utility.

48-005 FOO R02A s

• Page iv

Please delete reference to Table 5-1, and add the following
reference after B-2:

C-1 VIRTUAL TASK MANAGEMENT (VTM) MEMORY FAULT CODES

with a page reference of C-1.

• Page 5-3

In the last sentence, please change:

Absolute-original code ... to:

Absolute-origined code ...

• Page 5-4

In the last paragraph, please change:

or one of the end of task codes explained in Table 5-1.

to:

or one of the memory fault codes explained in Table C-1.

• Page 5-5

Please delete Table 5-1 from Page 5-5. This table will appear
on Page C-1.

• Page C-1

6

Afte~ the second message, please inae~t the table from Page
5-5, with the following changes:

TABLE C-1 VIRTUAL TASK MANAGEMENT (VTM) MEMORY FAULT CODES

4a-oos FOO R02A

_.,

I

Please change the heading for the first column of this table
from:

END OF 'rASK CODES

to:

MEMORY :FAULT CODES

• Page C-1

After the second message (M'.EM FAULT AT ...), please delete the
sentence that reads:

xx is the SVC 7 error s,tatus.

and replace it with the following sentence:

xx specifies the code ihat describes the type of memory
error fault that occurred. These codes are defined in
Table C-1.

• Page C-1

In the explanation for the
ASGN-ERR ...), please change:

xxx is the SVC •••

to:

xx is the SVC •.•

48-005 FOO R02~A

fifth message (VIRT r'D

7

• Page IN0-3

8

Under the alphabetical heading V, in the 6th line, please
change:

end of task codes

to:

memory fault codes

with a page reference of C-1.

48-005 FOO R02.A

