PERKIN-ELLMER

0S/32

MULTI-TERMINAL MONITOR (MTM)

Reference Manual

48-043 FOO RO1

The information in this document is subject to change without notice and should not be
construed as a commitment by the Perkin-Elmer Corporation. The Perkin-Elmer Corpo-
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Titie to and ownership of the described
software and any copies thereof shail remain in The Perkin-Eimer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Eimer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

®© 1983 by The Perkin-Eimer Corporation

Printed In the United States of America

PREFACE

CHAPTERS

1

TABLE OF CONTENTS

GENERAL DESCRIPTION

.

Wwwwww
e Wh -

o~
NS

—
H

.

.

PHRERPRHFR
(o e W W W W W T
oD wWN

3

. *

I—J

NN NNNNNNNN

AR BRDWNN

i el el el ol

B W N

INTRODUCTION

MULTI-TERMINAL MONITOR (MTM) OPERATION
USER INFORMATION
Multi-Terminal Monitor (MTM)
Authorization

Privileged Users
Transmitting Messages

Number of Terminal Users

Devices

MULTI-TERMINAL MONITOR (MTM) ENVIRONMENTS
Multi-Terminal Monitor (MTM) Terminal Modes
Interactive Task to Terminal Mode

LOADING A TASK

MULTI-TERMINAL MONITOR (MTM) SPECIAL FEATURES
Command Substitution System (CSS)

The Help Facility

Program Development Commands

Spooling

Security and Access Protection of Disks
Signon Command Substitution System (CSS)

CONVENTIONS

Prompt Conventions
Terminal Conventions
Using the Break Key
Command Conventions
File Conventions
Private Account Numbers
Group Account Numbers
System Account Numbers
File Descriptors (fds)

48-043 F0OO RO1

ix

P
i
s

[
i
-

i [i
(o) s 0 -3 B WwwwN

£

§

ol

i i

FHHEPRHPRE P
OO ~I~d~d

CHAPTERS (Continued)

2

ii

MULTI-TERMINAL. MONITOR (MTM) USER COMMANDS

2.12
2.13
2.14

2.15

2.17

2.19
2.20
2.21
2.22
2.23
2.24
2.25

2.26

INTRODUCTION
ALLOCATE‘COMMAND

ASSIGN COMMAND

BFILE COMMAND

BIAS COMMAND

BREAK COMMAND

BRECORD COMMAND

BUILD AND ENDB COMMANDS
CANCEL COMMAND

CLOSE COMMAND

CONTINUE COMMAND

DELETE COMMAND

DISPLAY COMMAND

DISPLAY ACCOUNTING COMMAND
DISPL.AY DEVICES COMMAND
DISPLAY DFLOAT COMMAND
DISPLAY FIIL.LES COMMAND
DISPLAY FLOAT COMMAND
DISPLAY LU COMMAND
DISPLAY PARAMETERS COMMAND
DISPLAY REGISTERS COMMAND
DISPLAY TIME COMMAND
DISPLAY USERS COMMAND
ENABI.E COMMAND

EXAMINE COMMAND

FFILE COMMAND

2-43

2-44

2-48

48-043 FOO ROl

CHAPTERS (Continued)

2.41

2.43
2.44
2.45
2.46

2.47

2.53

FRECORD COMMAND
HELP COMMAND

INIT COMMAND

LOAD COMMAND

LOG COMMAND

MESSAGE COMMAND
MODIFY COMMAND
OPTIONS COMMAND
PASSWORD COMMAND
PAUSE COMMAND
PREVENT COMMAND
PRINT COMMAND

PUNCH COMMAND
$RELEASE COMMAND
RENAME COMMAND
REPROTECT COMMAND
REWIND AND RW COMMANDS
RVOLUME COMMAND
SEND COMMAND

SET GROUP COMMAND
SET KEYOPERATOR COMMAND
SET PRIVATE COMMAND
SIGNOFF COMMAND
SIGNON COMMAND
SPOOLF [L.LE COMMAND
START COMMAND

TASK COMMAND

48-043 F0O ROl

2-49

2-50

2-53

2-55

2-68

2-71

2-72

2-73

[\
i

76

2-77

2-79

2-81

2-83

2-86

2-89

iii

CHAPTERS (Continued)

iv

2.54
2.55
2.56
2.57

2.58

TEMPF II.E COMMAND
VOLUME COMMAND
WFILE COMMAND
XALLOCATE COMMAND

XDELETE COMMAND

MTM/NON-MTM TASK INTERFACES

3.1

INTRODUCTION

INTERFACING WITH A FOREGROUND TASK
Programming Details

HASP INTERFACE

ITC/RELIANCE INTERFACE

PROGRAM DEVELOPMENT

NN

N N N N
w

(S

S
o

~

.
.

DR BB DD DD > >
ONNOOPA WD

.

(Yoo Ve JVs JVa JVs JVa JVs JNe JNa) [o.4]

INTRODUCTION

CREATING A SOURCE PROGRAM
Creating a Data File

EXECUTING A PROGRAM
MODIFYING A PROGRAM

RE-EXECUTING A MODIFIED PROGRAM

EXECUTING MULTIPLE PROGRAMS AS A SINGILE

PROGRAM
HOW TO RECOVER FROM ERRORS
ASSIGNING LOGICAL UNITS

PROGRAM DEVELOPMENT COMMANDS
ADD Command

COMPII.E Command

COMPLINK Command

EDIT Command

ENV Command

EXEC Command

LINK Command

Link Sequences

LIST Command

48-043 FOO ROl

CHAPTERS (Continued)

REMOVE Command
RUN Command

SAMPL.EE PROGRAM DEVEL.OPMENT SESSIONS

5 MULTI-TERMINAL MONITOR (MTM) BATCH PROCESSING

5.1

DN N
ounsdWONDRM

o
w

INTRODUCTION

BATCH COMMANDS
INQUIRE Command
LOG Command
PURGE Command
SIGNOFF Command
SIGNON Command
SUBMIT Command

BATCH JOB SUBMISSION USING THE SPOOLER
ERROR HANDLING
BATCH TASK PAUSE OPTION

EFFECT OF RESTRICTED DISKS ON BATCH JOBS

6 COMMAND SUBSTITUTION SYSTEM (CSS)

6.1

6.2

(o))
w

oo,
[
-

b wWN

oo,
* [. .

oo,

3
.

ocooooohooo o
oo oo,
oo WN -

.1

GENERAIL, DESCRIPTION
CALLING A CSS FILE
USE OF PARAMETERS

USE OF KEYWORDS
Referencing Keywords Within the CSS

USE OF VARIABLES

Types of Variables

Naming Local or Global Variables

Naming New Global or New Internal Variables
CSS IL.ine Expansion

Reserved Variables

COMMANDS EXECUTABLE WITHIN A CSS FILE
(%...%) Character Replacement Command
$BUILD and $ENDB Commands

$CLEAR Command

$CONTINUE Command

$COPY and $NOCOPY Commands

$DEFINE Command

File Descriptor Operators

48-043 F0O RO1

4-33
4-34

4-36

o

i

i
OO W

oo om [54]
o f

i

I i
w N

i

i
RPHERRHOWY N0
w

o000 o; (o2} o o
f ’
NO O

|

oo
bl
=
S w

6-18
6-20
6-21
6-22
6-23
6-24

CHAPTERS (Continued)

6.6.6.1.1
6.6.6.1.2
6.6.6.1.3
6.6.6.1.4
6.6.6.2
6.6.6.3
6.6.6.3.1
6.6.6.3.2
6.6.6.3.3
6.6.6.3.4
6.6.6.4
6.6.6.4.1
6.6.6.4.2
6.6.6.4.3
6.6.6.4.4
6.6.6.4.5
6.6.6.4.6
6.6.7
6.6.8
6.6.9
6.6.10
6.6.11
6.6.12
6.6.13
6.6.14
6.6.15
6.6.16
6.6.17
6.6.18
6.6.19
6.7

6.7.1
6.7.2
6.7.3
6.7.4

6.8

6.9

6.10

6.11
6.11.1
6.11.2
6.11.3

ACCOUNT Operator
EXTENSION Operator
FILENAME Operator
VOLUMENAME Operator
Logical Operators
Computation and Conversion Operators
DCOMPUTE Operator
DHCONVERT Operator
HCOMPUTE Operator
HDCONVERT Operator
Other Operators
CLLEAR Operator
CURRENT Operator
DVOLUMENAME Operator
REQUIRED Operator
SEARCH Operator
STRING Operator
$EXIT Command

$FREE Command
$GILLOBAL, Command

$JOB and $TERMJOB Commands
$LOCAL Command
$PAUSE Command
PRIOR Command
FREL.EASE Command
$SET Command

SET CODE Command
$SKIP Command

$WAIT Command

$WRITE Command

LOGICAL IF COMMANDS

End of Task Code Testing Commands
File Existence Testing Commands
Parameter Existence Testing Commands
$ELSE Command

$GOTO AND $LABEL COMMANDS

F$IFEXTENSION COMMAND

$IFVOLLUME COMMAND

LOGICAL IF COMMANDS COMPARING TWO ARGUMENTS
$IF...EQUAL, $IF...NEQUAL Commands

$IF...GREATER, $IF...NGREATER Commands
$IF...ILESS, $IF...NLESS Commands

48-043 F0O ROl

CHAPTERS (Continued)

7 SPOOLING

7.1 INTRODUCTION

7.2 THE 0S/32 SPOOIL.ER

7.2.1 Input Spooling

7.2.2 Input Spooling Control Card Statements

7.2.2.1 The /@ INPUT Control Statement

7.2.2.2 The /@ SUBMIT Control Statement

7.2.3 Output Spooling

7.2.4 Spooling Errors

7.3 THE SPI./32 SPOOLER

7.3.1 SPL/32 and MTM Interaction
APPENDIXES

mMT™M COMMAND SUMMARY

PROGRAM DEVELOPMENT COMMAND SUMMARY

MTM MESSAGE SUMMARY

CSS MESSAGE SUMMARY

A
B
Cc CcsS COMMAND SUMMARY
D
E
F

PROGRAM DEVELOPMENT MESSAGE SUMMARY

G MTM/NON-MTM TASK INTERFACES

G.1

G.2

$FOREGROUND TASK INTERFACE MESSAGES

HASP INTERFACE MESSAGES

H CONTROL SUMMARY FOR BI-DIRECTIONAL INPUT/OUTPUT
CONTROL (BIOC) CRT DRIVER

FIGURES

COMPII.E Command Functions in the Language
Environment

COMPILE Command Functions in the Multi-Mcdule
Environment

COMPL.INK Command Functions in the Language
Environment

48-043 FOO ROl

~
[y

i PR T T |
U wWwWNhNMN

i

NN NNNNNNN
oy i
o~

vii

FIGURES (Continued)

4-4
4-5
4-6
4-7
4-8
4-9

4-10

TABLES

~ =
P
N

|
W WwWN

P MMM
o |
wWN

[l
.

N
i
>

sy
i
-]

INDEX

viii

COMPLINK Command Functions in the Multi-Module
Environment

EXEC Command Functions in the Language
Environment

EXEC Command Functions in the Multi-Module
Environment

LINK Command Functions in the Language
Environment

LINK Command Functions in the Multi-Module
Environment

RUN Command Function in the Language
Environment

RUN Command Function in the Multi-Module
Environment

Perkin-Elmer Model 1200 Mode Selectors

MTM PROMPT CONVENTIONS
TERMINAL CONVENTIONS

ACCESS PRIVIT.EGE COMPATIBIILITY
DISPL.AY PARAMETERS COMMAND FIEILDS
TASK OPTION BIT DEFINITIONS

WAIT STATUS BIT DEFINITIONS

PROGRAM DEVELOPMENT LANGUAGE COMMANDS

PROGRAM DEVELOPMENT COMMAND AVAILABILITY
PROGRAM DEVELOPMENT DEFAULT VARIABLE SETTINGS
AND LOGICAL UNIT ASSIGNMENTS

PROGRAM DEVELOPMENT COMMANDS THAT COMPILE,
ILINK, AND EXECUTE

LINE DISPI.AY COMBINATIONS

4-26
4-27

4-30

4-35

4-35

H-2

Ind-1

48-043 FOO ROl

PREFACE

The information about the Perkin-Elmer Multi-Terminal Monitor
(MTM) in this manual is written for the MTM user and can also be
helpful to the system operator and system programmer.

Chapter 1 is a general description of the MTM system, containing
information on MTM system requirements, MTM features, and various
conventions. Chapter 2 describes MTM user commands. Chapter 3
describes MTM to non-MTM task interfaces that allow users to
transfer control of their terminal between MTM and other non-MTM
tasks (HASP, ITC/Reliance, Foreground) and return to MTM in an
orderly fashion. Chapter 4 describes the program development
commands . Chapter 5 describes batch processing under MTM.
Chapter 6 describes the command substitution system (CSS) and the
Ccss commands . Chapter 7 describes spooling and briefly
elucidates the two spoolers (0S/32 and SPL/32) available to users
of 0S/32 and MTM.

Appendix A summarizes the MTM user commands. Appendix B is a
summary of the program development commands. Appendix C
summar izes the CSS commands. Appendix D is an MTM command
message summary. Appendix E is a summary of CSS messages.

Appendix F is a summary of program development command messages.
Appendix G is a summary of MIM to non-MTM task interface
messages. Appendix H is a control summary for the Bidirectiocnal
Input/Output Control (BIOC) CRT driver.

Revision ROl of this manual adds two new file types to the
ALLOCATE, TEMPFILE, and XALLOCATE commands. New software density
selection options are added to the ASSIGN command. MTM now
supports up to a maximum of 65,535 accounts. A new type of user
(a PRIVILEGED user) is introduced along with new commands (SET
GROUP, SET PRIVATE, PRIOR) that enable the privileged user to
access any account on the system. A new PASSWORD command has
been added to allow users to alter their own password to enhance
account security. Two new variable types have been added to
MTM's CSS processor: new global and new internal wvariables. A
command to define these new variable types, the $DEFINE command,
‘has been added. Also, a new command to release these new
variable types, the $RELEASE command, has been added. MTM also
has the capability to use keywords and positional parameters in
CSS calls and reference them within CSS routines. A powerful
character replacement command (%...%) has been added to enable
replacement of characters within €SS 1lines on a call-by-call
basis. New interface protocols between MTM and non-MTM tasks are
available.

48-043 F0O RO1 ix

Changes were made to the DISPLAY DEVICES, DISPLAY FILES, DISPLAY
LU, PRINT, and PUNCH commands, and control information for the
new BIOC CRT driver is presented. A new command (SPOOLFILE
command) has been added to enable users of the new spooler,
SPL/32, to request spooling functions at the €SS or terminal
level.

This manual is intended for use with the 0S/32 R06.2 software
release and higher.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

X 48-043 F0OO ROl

CHAPTER 1
GENERAL, DESCRIPTION

1.1 INTRODUCTION

Multi-Terminal Monitor (MTM) permits several terminal wusers to
share system resources. Each user perceives that a computer is
at his or her disposal.

Concurrent access from online terminals |is useful during
application task development because it reduces turnaround time.
Other advantages are that concurrent access can be used to extend
the type of data processing at an installation. Using the
system-supplied interactive software means that editing, task
development, and documentation can be done simultaneously.
Furthermore, if the system-supplied interactive tasks are
supplemented by customer-written tasks, MTM application becomes
limitless, supporting a mixture of terminal users such as clerks,
software development, and operations personnel.

1.2 MULTI-TERMINAL MONITOR (MTM) OPERATION

Like all general purpose, multi-access, time sharing systems, MTM
requires operations involvement from the installation using it.
This involvement includes those functions that accompany MTM when

it is tailored to a specific installation along with dynamic
functions performed when MTM is operating.

Examples of the MTM tailoring functions are:

® Cataloguing authorized users
® System generation (sysgen)

e Establishing an installation's procedures

Examples of dynamic functions are:

e System console control
e Peripheral device supervision

® Spooled output dissemination

48-043 FOO ROl 1-1

Generally, tailoring functions are performed and maintained by
the customer's system support group responsible for making
computing facilities available to system users. The dynamic
functions are performed by a system operator during system
operation and are distinct from those functions performed by
terminal users.

The system operator can perform all the functions described in
the 0S/32 Operator Reference Manual, together with operator
functions required to administer MTM. At any time the system
operator may be initiating and controlling multiple foreground
tasks and one background task while operating MTM.

1.3 USER INFORMATION

Under MTM control, a terminal user can:

e load and execute interactive tasks,

e submit multiple batch job requests,

e perform program development,

e perform program debugging,

® create, edit, and manipulate files,

® build, modify, and execute command streams,
® use spooling functions,

e communicate with other terminal users, and

e communicate with the system operator.

A terminal user 1is either interacting with MTM itself, via
commands, or interacting with tasks supplied with the system or
developed by the installation. All of the vendor-supplied
language translators can be operated as interactive tasks by a
terminal user. Additionally, a terminal wuser can use the
vendor-supplied support software programs such as: 0S/32 Edit,
0s/32 Copy, and 0S/32 AIDS. It is the MTM software that performs
multiple online accessibility; e.g., time sharing, resource
management, batch scheduling, etc.

The terminal user can be 1local or remote. The interactive
terminals for local users are directly connected to the computer
and do not require telecommunication devices. Interactive
terminals for remote users require connection via
telecommunication equipment and data communications software.
Basic data communications supports both dedicated and dial-up
telecommunication terminals.

1-2 48-043 F0O ROl

1.3.1 Multi-Terminal Monitor (MTM) Devices

These devices can be used at any local or remote installation:

e Video Display Unit (VDU) 5508
e VDU 1100

e VDU 1200

e VDU 1250

e VDU 1251

® Perkin-Elmer SIGMA 10 terminal
e M33 Teletype

e M35 Teletype

® Nonediting VDU

e Carousel

e Carousel 300 and 300 EFC

1.3.2 Authorization

The user must be authorized to use MTM facilities. During the
signon procedure, the user must supply an account number and a
password that were previously cataloged within an MTM file called
the authorized user file (AUF). The AUF 1is updated and
maintained by an MIM-supplied task that can be initiated only by
the system operator. The terminal user can then interact with
MTM from a terminal.

1.3.3 Privileged Users

A variety of new capabilities, called privileges, are now
available to the MTM user. These privileges are associated with
an account through the AUF utility and are thereafter available
to any user that signs on to that account. For the purpose of
delineation throughout the remainder of this manual, any user
that is signed on to an account which has any or all of these new
capabilities enabled is called a privileged user.

48-043 F0O ROl 1-3

Privileged users may have, in addition to all standard MTM
capabilities, extended MTM capabilities such as:

e display all jobs in the batch queue,

e move between private accounts without knowing passwords (SET
PRIVATE Command),

e change group account numbers (SET GROUP Command),

e set the priority of a subsequently loaded task via a private
CSS (PRIOR Command),

e interface with a HASP protocol and return to MTM control as
desired ($HSP), and

e interface with a foreground task from an MTM terminal and
return to MIM control as desired ($FRGND).

For information on the specific privileges available through MTM
and the procedures for enabling these privileges on an account
basis, refer to the 05/32 Multi-Terminal Monitor (MTM) System
Planning and Operator Reference Manual.

1.3.4 Transmitting Messages

MTM can transmit messages between terminal users, between a
terminal user and the system operator, and from the system
operator to all or designated terminal users.

1.3.5 Number of Terminal Users

An installation can have up to 64 terminal users or 64 concurrent
batch streams. The sum of terminal users and batch streams
cannot exceed 64.

1.4 MULTI-TERMINAL MONITOR (MTM) ENVIRONMENTS

The MTM terminal user controls a single task at the terminal and
has the ability to run jobs through batch streams. Using the
facilities provided by MTM, the user can load a task, start the
task, and then interact with the task during its execution. MTM
provides interactive and batch user environments.

In an interactive environment, the wuser has the ability to

interact with a task executing at the terminal. In this
environment, a dialogue is carried on between the user and the
task. The interactive task receives user commands and processes
them.

1-4 48-043 FOO RO1

Only one interactive task at a time can be initiated by each MTM
terminal. However, all interactive tasks initiated by MTM
terminal users are executed concurrently. During interactive
task execution, a terminal user can direct a command to and
receive a response from MTM itself.

In a batch environment, a number of jobs are run under a full set
of automated procedures. Once a batch Jjob is accepted for
execution, no further interaction takes place with the initiating
terminal user. Requests for multiple batch jobs can be submitted
by a user, and the same terminal can be used to initiate an
interactive task.

Unlike interactive tasks, requests for batch Jjobs will not
necessarily be initiated immediately to MTM. Instead, batch 7jobs
are queued by the system, and then the queue of submitted batch
jobs awaiting execution is serviced by the system. The number of
batch jobs that can be executing concurrently is specified by the
system operator.

A terminal user can request one or more batch Jjobs to be run.
MTM maintains a queue of submitted batch jobs and concurrently
processes a number of batch jobs specified during MTM system
start-up. A terminal wuser can monitor the progress of a batch
job by interrogating the MTM batch queue. The returned status
will be either:

AWAITING EXECUTION
or

EXECUTING

If a job already has completed execution, the returned status
will be:

NO JOBS FOUND

48-043 FOO ROl 1-5

1.4.1 Multi-Terminal Monitor (MTM) Terminal Modes

An active terminal is defined to be in one of six terminal modes.
The current mode of the terminal determines which, if any, MTM
terminal commands can be accepted. Thus, it is important for the
terminal user to be aware of the current mode of the terminal.
The user terminal is defined to be in one of the following six
modes:

e Command mode: No task 1is 1loaded, €SS procedure 1is not
executing and BUILD 1is not in effect. All non-task related
commands are accepted. An "*" is the default prompt displayed
in this mode.

e Task loaded mode: The task was loaded but was not started, or
is paused. An "*" is the default prompt displayed in this

mode.

e Task executing mode: A task was started and is executing. If
started from a CSS, CSS mode 1is suspended. A "-" is the
default prompt displayed in this mode. If an interactive task

was started and a data input is requested by the task, then a
">" igs the default prompt displayed to the terminal user.

e (CSS mode: A CSS procedure is being built or executed. A "-"
is the default prompt displayed in this mode. When a CSS
terminates, the terminal returns to command mode and a "X*"
prompt is output. When BUILD is in effect, a "B>" is the
default prompt displayed.

e Foreground task mode: the terminal has been transferred to
the control of a foreground task. When the foregound task is
completed the terminal will return under control of MTM. MTM
commands are not recognized when in the foreground task mode.

e Hasp interface mode: the terminal is interfaced with a HASP
task. The hasp mode prompt is a " and all commands entered
while in this mode are sent to the specified HASP task.

1.4.1.1 Interactive Task to Terminal Mode

When a task issues an SVC 1 [/0 operation to an active terminal
that is 1in task executing mode and a previous I/0 operation to
that terminal is still pending, MTM treats the I[/0 as a wait
operation. This 1is of no concern for tasks that do SVC 1 wait
I/0. However, users with tasks that issue 8VC 1 proceed 1/0
(read or write) should be aware that MTM suspends the task until
the I/0 is completed. Then MTM posts an SVC 1 proceed 1/0
completion trap on the task's task gueue and allows the task to
continue. Completion trap posting occurs only if the appropriate
bit is set in the TSW.

1-6 48-043 FO0OO ROl

1.5 LOADING A TASK

The dynamic nature of 0S/32 memory management guarantees loading
of a task irrespective of its size unless the task is greater
than the available task memory. If not enough memory is free to
load a task, then some other task is temporarily rolled out if
roll support is included in the operating system at sysgen time.
If MM is sysgened with roll influence enabled, then MTM
continually monitors the state of the roll queue to ensure that
rolled out tasks are given the opportunity to be rolled back in.
MTM ensures equity for all its terminal operators by assigning
all the interactive tasks an equal priority. Batch tasks can
have user assigned priorities.

1.6 MULTI-TERMINAL MONITOR (MTM) SPECIAL FEATURES

The following features are designed to make MTM easier and more
efficient to use:

e Command substitution system (CSS)

e Help facility

® Program development commands

® Spooling

® Security and access protection of disks

® Signon CSS

1.6.1 Command Substitution System (CSS)

A terminal user can build a command file on a disk. Once bulilt,
a simple directive to MIM will cause MTM to obtain its directives
from the command file. When invoking the command file, the
terminal user can supply parameters to the command file that can
be used to dynamically modify command execution. Therefore, a
single terminal input can easily initiate complex operations.

1.6.2 The Help Facility
The Help facility provides a user online access to documentation

for MTM and program development commands. This information is
obtained by entering the HELP command.

48-043 F0O ROl 1-7

1.6.3 Program Development Commands

The program development commands are an integrated set of
standard CSS procedures that perform two major functions:

e maintain information that remains constant throughout a
development effort, and

e keep files current throughout a development effort in terms of
checking source, object, and image modules to ensure that
their dates are current.

1.6.4 Spooling

Both input and output spooling are provided for terminal wusers.
Tasks never need to be delayed awaiting card readers, card
punching, or line printing because a batch job can be submitted
via the Spooler. The job runs unattended and output goes to the
Spocler.

1.6.5 Security and Access Protection of Disks

Privately owned disks can be marked non-restricted by the system
operator to offer an MTM user complete security and access
protection of files. The owner of the disk can restrict or
enable access of the disk to other MTM users, the system
operator, and non-MTM tasks.

1.6.6 8Signon Command Subsitution System (CSS)

MTM users can build a special €SS file, USERINIT.CSS, within
their private accounts. The CSS file can contain commands to
load and start a terminal session, assign logical units, and
specify a language environment. At signon time, MTM searches all
online disks within the wuser's private account for the file
USERINIT.CSS and automatically executes it.

1-8 48-043 FOO0 ROl

1.7 CONVENTIONS

These conventions used by MTM are detailed in the following
sections:

e Prompt conventions

o Terminal conventions

e Command conventions

e Statement syntax conventions

o File conventions

1.7.1 Prompt Conventions

A prompt is output to a terminal device to indicate that the MTM
system 1is ready to accept input from the user. The default |
prompts displayed on the terminal devices are shown in Table 1-1.

TABLLE 1-1 MTM PROMPT CONVENTIONS

i PROMPT | USE i

X Indicates MTM system is ready to
accept a command.

> Indicates a request for input
data.
B> Indicates a request for input

data to be copied to a BUILD
file.

i

i

i

i

i

i

i

i

i

|

! Indicates that the system is
| ready to accept a command while
i
|
z
=
‘
;
=
=
1
!
i
i

an interactive task is active or

a CS8SS is running. A new CSS can-

not be initiated at this time. A

user can instruct MTM to suppress
or enable the appearance of this

prompt while an interactive task

is running, but not while CSS is

running.

" Indicates that the terminal is in

——— e e e ey EEn GmeE R AmOR WEan G wmem e Cman GReR e e Gmen Smen GGee e e -
—— e . Emem Mn AL WRGE MR e Eme W WA Weem WAR WDen Mmen WS e AMAe Wmem GEOm mmes Wmen -

48-043 FOO ROl 1-9

1.7.2 Terminal Conventions

The conventions in effect for various terminal devices are shown
in Table 1-2.

TABLE 1-2 TERMINAL CONVENTIONS

Delete a line { To delete a line, simultaneously de-
| press the CTRL and character x keys
{ for all terminals except TEC 455 VDU,
i which uses the number sign (#). Basic
| communications support both # and
i CTRL x for line deletion for asynchro-
| nous remote devices.

i
'

Delete a character i To delete a character, depress the
| Backspace key. For terminals without a
| Backspace key, simultaneously depress
i the CTRL and character h keys.

]
!
End an input line i To process an input line, depress the
{ carriage return (CR) key.
t
]

Communicate with MTM | To communicate with MTM while an

i interactive task is executing or when

{ a BUILD command is active, depress the

{ Break key and enter a command.

1.7.2.1 Using the Break Key

If the data request prompt (>) or a BUILD request prompt (B>) is
displayed and the user wishes to communicate with MTM, depress
the Break key and the system is ready to accept a command.

If input or output to the terminal is in progress, the Break key
interrupts the process. For example, if the DISPLAY or EXAMINE
command was entered and the output is in progress, depressing the
Break key halts the output in progress. The system is then ready
to accept a command.

If a CSS is currently running, the Break key interrupts the
execution of the CSS. The system 1is then ready to accept a
command. Once the command has executed, the C(SS will resume
operation unless the entered command affects the status of the
Css.

1-10 48-043 FOO RO1

1.7.3 Command Conventions

Commands are accepted one line at a time. Multiple commands can
appear on the same line, but each must be separated by a
semicolon. Multiple commands are executed sequentially. If an
error is encountered in a multiple command line that was entered
from a terminal, the commands following the command in error are
ignored by MIM. For a command 1line entered from a CSS, the
commands on the command line are skipped until a $TERMJOB is
found. A character string preceded by an asterisk in column 1 is
a comment.

1.7.4 File Conventions

A file is a collection of data stored on a direct access storage

device. MTM provides terminal users with the capability of
creating and editing files in an interactive manner. Once
created, files remain on the system until they are deleted by the
owner. However, during the life of a file, ownership can change,

based on the needs of an installation or project. File ownership
is established and maintained by MITM via an account number
mechanism.

1.7.4.1 Private Account Numbers

During the signon procedure a terminal user must supply a private
account number in addition to the correct password. Whenever a
terminal user allocates a file during an MTM session, the MTM
system automatically associates the file with the terminal user's
account number. A file associated with the terminal user's
account number is referred to as a private file.

The owner of a private file has unrestricted access to that file
and can update, execute, access, or delete it as required.
Furthermore, no other terminal user except users with the correct
privilege (privileged user) can gain access to another user's
private files. However, to supply greater flexibility for file
sharing, MTM supports the concept of group files.

1.7.4.2 Group Account Numbers

Authorized MTM terminal users are assigned both a private account
number and a group account number within the AUF. Unlike the
private account number, a terminal user is not required to submit
the group account number during the signon procedure. In fact,
a terminal user does not need to know the group account number.
The group account number will generally be the private account
number of a different authorized terminal wuser. By wusing the
RENAME command and supplying the letter 'G' in the account field,
a terminal user can change a private file to a group file.

48-043 F00 RO1l 1

11

As an illustration of the use of group files within an
installation, consider a normal development activity consisting
of two or more members working under a project leader's control.
During the early development phase, each member would probably
work alone, using private files. However, during the project
integration phase, the majority of the private files would be
switched to the project leader's private account number, which
was defined as the group account for the individual members.

Once a private file has been switched to a group file, the
original private owner no 1longer possesses unrestricted file
manipulation capability. Instead, the file can be read or
executed by the original owner and any other terminal user with
the same group number. Updating or deleting the file can now be
performed by any terminal user who signs on with the group
account number.

Although the use of group files provides a somewhat flexible file
sharing capability, it does not address the problem of universal
shar ing. For this purpose, MTM supports the concept of system
files.

1.7.4.3 System Account Numbers

In a way similar to switching a private file to a group file, a
terminal user can supply the letter 'S' in the file account field
instead of the letter 'G'. The 1letter 'S' indicates that
this private file is now considered a system file. System files
have an account number of 0. They can be read or loaded by any
authorized MTM terminal user. However, updating or deleting a
system file can be performed only by the system operator.

Within an MTM environment, the system operator is viewed as more
privileged than terminal users with respect to file ownership.
The system operator can allocate files on any account in the
system and can also change the account number of any file in the
system to any other account number. Similar to a terminal user,
the system operator uses the RENAME command to change file
ownership.

1.7.4.4 File Descriptors (fds)

File descriptors are required with some commands. A file
descriptor for MTM generally includes four fields:

e Disk volume name or device name

e Filename

e File extension

e File class

L-12 48 -043 F0OO RO1

Format:

voln:

Parameters:

voln:

filename

.ext

48-043 F0O RO1

filename[. [:exL:]] / 5

S
n

is the name of the disk volume on which the
file resides, or the name of a device. Voln
can be from one to four characters. The first
character must be alphabetic and the remaining
alphanumeric. This parameter need not be
specified. If this parameter is not
specified, the default user volume is used.
When voln is not specified, the colon
separating voln and filename must not be
entered. Where voln refers to a device name,
a colon must follow the device name, and
neither the filename nor the extension is
entered.

is the name of a file. A filename consists of
from one to eight alphanumeric characters, the
first of which must be alphabetic.

is a 1- to 3-character alphanumeric string
preceded by a period specifying the extension
to a filename. If the period (.) and
extension are omitted, a default extension is
appended to the filename if appropriate for a
particular command, otherwise, it remains
blank. If the period 1is specified and the
extension is omitted, the default is blanks.

indicates a private file. A private file has
the same account number as the terminal user's
current private account number. All of the
facilities for file manipulation are available
to the owner of this file. No other user has
access to this file unless the user has

certain standard file access privileges
(privileged user) or, the file is also a group
file. That 1is, the user's private account
number is the same as some other user's group
account number. P is the default value if

neither P, G, nor S is indicated in the
command .

Examples:

PACK:FRED.TSK

FRED.TSK

ABC:F00/G

CARD:

A:B.C/G

TEXT.FIL/87

indicates a group file. A group file, (which
may also be some other user's private file),
is accessible to members of that group for
read only purposes. The group file account
number in the AUF indicates to the system
which users can access this group file.

indicates a system file. A system file has
account number O. A terminal user can only
read a system file.

privileged users that have the privilege to
specify account numbers instead of account
class designators (P, G, and 8) can do so for
some commands such as ASSIGN, LOAD, RENAME,
and CSS calls. Access is limited to SRO if n
is not the user's private account.

is a private file FRED.TSK on volume
PACK.

is the same file as in the previous
example, if PACK is the default user
volume (private file).

is a group file with filename FOO
with default extension, on volume
ABC.

is a device name.

is a group file B, with extension C
on volume A.

is a file on the default user volume
in account 87.

48-043 FOO ROL

CHAPTER 2

MULTI-TERMINAL MONITOR (MTM) USER COMMANDS

2.1 INTRODUCTION

The following steps comprise a basic MTM terminal session:

SIGNON MAR, 118,SWDOC

vV M300

I.OAD EDIT32

START

S FILEL
END

SIGNOF

48-043 F0O ROL

Identify yourself to MTM by signing
on to the system. Enter your
userid, account number, and a valid
password.

Establish the volume you will be
working on by entering the VOLUME
command and a valid volume name.

Load the editor task into memory by
entering LOAD and the task name.

Initiate execution of the task

by entering the START command.

Save all data appended to your file
by entering the SAVE command.

Terminate execution of the task by
entering END.

End the terminal session by signhing
off.

2.2 ALLOCATE COMMAND

The ALLOCATE
communications
manager .

Format:

ALLOCATE fd,

Parameters:

fd

CONTIGUOUS

fsize

N

command

direct
for

a
block

creates

line control

CQNTIGUOUS,fsize[,

]
a[[fur]
o[[{]

i

is the file descriptor of the device

to be allocated.

specifies that the file type to

is contiguous.

acceags file or a
a buffered terminal

or file

be allocated

is a decimal number indicating file size which

is required for cont iguous files. It
specifies the total allocation size in
256-byte sectors. This size may be any value

up to the

existing on the specified volume at the

the command is entered.

number of contiguous free sectors

t ime

48-043 FOO RO1

keys

EC

bsize

isize

INDEX

lrecl

NB

I TAM

48-043 F0OO ROL

specifies the write and read protection keys
for the file. These keys are in the form of
a hexadecimal halfword, the left byte of which
signifies the write key and the right byte,
the read key. If this parameter is omitted,
both keys default to O.

specifies that the file type to be allocated
is extendable contiguous.

is a decimal number specifying the number of
256-byte sectors contained in a physical block

to be used for buffering. This parameter
cannot exceed the max imum block size
established at sysgen time. If bsize is

omitted, the default value is one sector for
indexed files and 64 sectors for extendable
contiguous (EC) and nonbuffered (NB) indexed
files. When the file type is ITAM, bsize is
the buffer size in bytes.

is a decimal number specifying the indexed
block size. If isize is omitted, the default
value is one sector for indexed files and
three sectors for EC and NB files. Like
bsize, isize cannot exceed the maximum block
size established at sysgen time.

specifies that the file type to be allocated
is indexed.

is a decimal number specifying the logical
record length of an indexed file, nonbuffered
indexed file, or [TAM device. It cannot
exceed 65,535 bytes. Its default is 126
bytes. It may optionally be followed by a
slash (/) which delimits 1lrecl from bsize.

‘For NB files, this number must be even.

specifies that the file type to be allocated
is nonbuffered indexed.

gspecifies that the device to be allocated is
a communications device.

Functional Details:

The MTM user can only allocate files in their private account.
To assign an indexed file, sufficient room must exist in system
space for two buffers, each of the stated size. Therefore, 1if
bsize or isize is very large, the file might not be assignable in
some situations. At sysgen time, a maximum block size parameter
is established in the system, and bsize cannot exceed this
constant.

To assign an EC or NB file, sufficient room must exist in system
space to contain only the index block of the stated size. The
data blocks for EC and NB files are not buffered in system space
and thus are not constrained to the sysgened block size.

The ALLOCATE command can be entered in command mode, task loaded
mode, and task executing mode.

Examples:

ALL JANE.TSK,CO, 64 Allocates, on the default user
volume, a contiguous file named
JANE.TSK whose total length is 64
sectors (l6kb) with protection
keys of O.

AL M300:AJM.BLK, IN,132/4 Allocates, on volume M300, an
indexed file named AJM.BLK with
logical record 1length of 132
bytes, data block size of four
sectors, and default isize of one
sector. The protection keys
default to 0. When this file 1is
assigned, the system must have
2.25kb of available system space
for buffers.

AL THISFILE, IN,256/4/2 Allocates, on the default user
volume, an indexed file named
THISFIILE (blank extension) with a
logical record length of 256
bytes, a data block size of four
sectors, an 1index Dblock size of
two sectors, and protection keys
of O.

AL VOL.1:AOM.OBJ,IN, 126 Allocates, on volume VOL1, an
indexed file named AJM.OBJ whose
logical record 1length is 126
bytes. The buffer size and
indexed block size default to one
sector and the protection keys
default to O.

N
i
s

48-043 FOO ROl

AL VO1l:AJM.OBJ,IN,126//3

Al SYS:XFILE.DTA,EC

AL YFILE.DAT,NB,240/250/5

48-043 FOO RO1

Allocates, on volume VOol, an
indexed file named AJM.OBJ with
logical record 1length of 126
bytes. The data block size
defaults to one sector, the index
block size 1is three sectors, and
the protection keys default to O.

allocates on volume SYs an
extendable contiguous file named
XFILE.DTA with default data block
size of 64 and index block size of
3 sectors. The file initially
contains no records, and has a
record length of one sector (same
as a contiguous file).

allocates on the default volume a
nonbuffered indexed file named
YFILE.DAT with logical record
length of 240 bytes, data block
size of 250 sectors, and index
block size of 5 sectors. The file
initially contains no records.

2.3

ASSIGN COMMAND

The ASSIGN command assigns a device, file, or communications
device to one of a task's logical units.

Format:

ASSIGN 1lu,fd

Parameters:

lu

fd

access
privileges

keys

ivileges SVC15
| SVCF
VFC

LOW
MEDIUM

is a decimal number specifying the 1logical
unit number to which a device or file is to be
assigned.

is the file descriptor of the device or file
to be assigned.

are the desired access privileges. The
default access privileges are:
- SRW for contiguous files

- SREW for indexed, nonbuffered indexed, and
extendable contiguous files

- SRO for any files that are not the users'
private files

- ERW for devices (except the users' console.
This has SRW.)

signifies the read/write protection keys of
the file or device to be assigned.

48-043 F0OO RO1

sSVC1l5 signifies that the specified device is to be

SVCF assigned for S8SVC 15 access. SVCF is the
hexadecimal equivalent of SVC1l5 and can also
be specified. This option pertains to
communications devices only. If SVC 15 access
is specified, neither vertical forms control
nor tape density can be specified.

VFC specifies the use of vertical forms control
for the assigned 1lu. If this parameter is
specified, SVCl5 access or tape density
selection cannot be specified. If this
parameter is omitted, there 1is no vertical
forms control for the device assigned to the
specified lu (unless the task was linked with
the VFC option).

HI indicates that the assigned magnetic tape will
operate at the GCR density rate of 6250 bpi.

ILOW indicates that the assigned magnetic tape will
operate at the NRZI density rate of 800 bpi.

MED I UM indicates that the assigned magnetic tape will
operate at the PE density rate of 1600 bpi.

Functional Details:

If the access privileges and keys parameters are omitted and VFC,
svcls, HI, I.OW, or MEDIUM are specified, the positional commas
belonging to the omitted parameters can be omitted.

If the access privileges and VFC, SVCl5, HI, LOW, or MEDIUM
parameters are specified and the keys parameter is omitted, the
positional comma belonging to the keys parameter can be omitted.

Access privileges can be one of the following:

SRO sharable read-only

ERO exclusive read-only

Swo sharable write-only

EWO exclusive write-only

SRW sharable read/write

SREW sharable read, exclusive write
ERSW exclusive read, sharable write
ERW exclusive read/write

If the file is not in the user's private account, only the SRO
access privilege is valid.

When the SVCl5 option is specified, only SRW, SREW, ERSW, and ERW
access privileges are accepted.

48-043 FOO RO1 2-7

The DISPLAY LU command can be used to determine the current
access privileges of all assigned units.

The ASSIGN command is rejected if the requested access privilege
cannot be granted.

When a task assigns a file, it might want to prevent other tasks

from accessing that file while it 1is being used. For this
reason, the user can ask for exclusive access privileges, either
for read or for write, at assignment time. This is called
dynamic protection because it is only in effect while the file
remains assigned.

A file cannot be assigned with a requested access privilege if it
is incompatible with some other existing assignment to that file.
A request to open a file for exclusive write-only 1is compatible
with an existing assignment for SRO or ERO, but is incompatible
with any existing assignment for other access privileges. Table
2-1 1illustrates compatibilities and incompatibilities between
access privileges.

TABLE 2-1 ACCESS PRIVILEGE COMPATIBILITY

SWO

EWO

i
i
i
i
i
i
i
i
! SRW
i
i
i
[
[
}
i
{

LLEGEND

* compatible
- incompatible

2-8 48-043 F0OO RO1

The keys format is a 4-digit hexadecimal number. The left two
digits signify the write protection key and the right two digits,
the read protection key. If omitted, the default is 0000. These
keys are checked against the appropriate existing keys for the
file or device. The command is rejected if the keys are invalid.
The keys associated with a file are specified at file allocation
time. They may be changed by a REPROTECT command or through an
SVC 7 reprotect function call.

If the values of the keys are within the range X'0l1' to X'FE',
the file or device cannot be assigned for read or write access
unless the requesting task supplies the matching keys. If a key
has a value of X'00', the file or device is unprotected for that

access mode. Any key supplied is accepted as valid. If a key
has a value of X'FF', the file is unconditionally protected for
that access mode. It cannot be assigned for that access mode to

any user task, regardless of the key supplied.

Examples:

WRITE READ

KEY KEY MEANING

e]] 0o Completely unprotected

FF FF Unconditionally protected

07 00 Unprotected for read, conditionally
protected for write (user must

supply write key=X'07")

FF A7 Unconditionally protected for write,
conditionally protected for read

00 FF Unprotected for write, uncon-
ditionally protected for read

27 32 Conditionally protected for both
read and write

An assigned direct access file is positioned at the end of the
file for access privileges SWO and EWO. It is positioned at the
beginning of the file for all other access privileges. The
command is rejected if the specified lu is already assigned. To
reassign an lu for an active task, the lu must first be closed.

If one of the HI, LLOW, or MEDIUM parameters is not chosen when
assigning to a mag tape device, the standard default density is
used. The default used is dependent upon the type of tape drive

in use. Note that if this parameter is used to select the
density of the assigned mag tape, SVC 15 or VFC access cannot be
specified. The HI, LOW, and MEDIUM parameter options are

positionally independent.

48-043 F0O ROl 2-9

The ASSIGN command can be entered in task loaded mode.

Examples:

AS 2,FILE.DAT,EWO, 99AA

AS 2,TEST.JOB,VFC

AS 2,TEST.JOB,,,VFC

As 2,TEST.JOB,,VFC

As 2,TEST.JOB,SRO,VFC

AS 2,MAGl:,LOW

AS 2,MAGl:,SRW,MEDIUM

As 2,MAGl:,,.HI

Assigns a disk file to lu2. The EWO
access privilege causes the file to
be positioned at the end. It is
conditionally protected with write
and read keys of 99AA. New records
are appended.

Assigns a disk file to lu2.
Vertical forms control is in use.
Access privileges and keys
parameters are omitted along with
their respective commas.

Assigns a disk file to lu2.
Vertical forms control is in use.
Access privileges and keys
parameters are omitted but
positional commas are specified.

Assigns a disk file to lu2.
Vertical forms control is in use.
The positional comma belonging to
the omitted access privileges
parameter must be specified.

Assigns a disk file to lu2.
Vertical forms control is in effect.
The keys parameter, along with the
positional comma, is omitted. The
privilege is shared read only.

Assigns a mag tape drive to 1lu2.
The LOW parameter indicates that the
drive will operate at the NRZI
density rate of 800 bpi.

Assigns a mag tape drive to 1lu2.
The MEDIUM parameter indicates that
the drive will operate at the
Perkin-Elmer density rate of 1600
bpi.

Assigns a mag tape drive to 1lu2.
The HI parameter indicates that the
drive will operate at the GCR
density rate of 6250 bpi. Access
privileges and keys parameters are
omitted, but positional commas are
specified.

48-043 F0O0 RO1

Invalid Examples:

AS 2,TEST.JOB,O0OFF,VFC

Invalid assignment because the
positional comma belonging to the
omitted access privileges parameter
must be specified.

As 2,TEST.JOB,SRO,VFC,SVC15

AS 2,MAGl:,SRW,LOW,SVCF

48-043 FOO ROL

Invalid assignment because vertical
forms control and SVC 15 access are
mutually exclusive and cannot be
specified in the same assignment.

Invalid assignment because tape
density and SVCF access are mutually
exclusive and cannot be specified in
the .same ASSIGN command.

2.4 BFILE COMMAND

The BFILE command backspaces to the preceding filemark on
magnetic tapes, cassettes, and direct access files.

Format:
BFILE [fd,] lu

Parameters:

fd is the file descriptor of the device or file
to be backspaced to a filemark.

lu is the lu to which the file is assigned. If
lu 1is specified without fd, the operation is

performed on the 1lu regardless of what |is
assigned to it.

Functional Details:

The BFILE command can be entered in task loaded mode.

Examples:
BF 1 Causes the device or file assigned
to lul to backspace one filemark.
BF M300:AJM.OBJ, 4 Causes file AJM.OBJ, that is

assigned to lu4 on volume M300:, to
backspace one filemark.

2-12 48-043 FOO ROl

2.5 BIAS COMMAND
The BIAS command se

commands.

Format:

*

address
BIAS {

Parameters:

address

Functional Details:

ts a base address for the EXAMINE and MODIFY

is a hexadecimal bias to be added to the
address given in any subsequent EXAMINE or
MODIFY command. For a u-task, the address
must be a valid address that exists for the
u~-task. For an e-task, the address can be any
valid address in the system. The addresses
must be aligned on a halfword boundary. If
address is omitted, it is assumed to be the
beginning of the task.

sets biags to 0 for a u-task and to the
physical load address for an e-task.

A BIAS command overrides all previous BIAS commands. The user
should enter a BIAS command if the current value is unknown.

The BIAS command can be entered in task loaded mode and task

execut ing mode.
Example:

BI 100

48-043 FOO RO1

Sets bias to 100

2.6 BREAK COMMAND

The BREAK command returns a break status (2'8200') to a task with
an outstanding I/0 on the MTM terminal.

Format:

BREAK
Functional Details:

The BREAK command can be entered in task executing mode.

48-043 FOO RO1

2.7 BRECORD COMMAND
The BRECORD command. backspaces to the preceding record on
magnetic tapes, cassettes, and direct access files.
Format:
BRECORD [fd,] 1lu
Parameters:
fd is the file descriptor of the device or file

to be backspaced one record.

lu is the lu to which the file is assigned. If
lu 1is specified without fd, the operation is
performed on the 1lu regardless of what 1is
assigned to it.

Functional Details:
The BRECORD command can be entered in task loaded mode.
Examples:

BR 1 ' Causes the device or file assigned
to lul to backspace one record.

BR M300:AJM.OBJ, 4 Cauges the file AJM.OBJ, assigned to
lu4 on volume M300, to backspace one
record.

15

48-043 FOO RO1 2

- —— v ———— - i — Sen L o -

2.8 BUILD AND ENDB COMMANDS

The BUILD and ENDB commands copy data from the command input
device to the fd specified in the BUILD command.

Format:

BUILD {

-

ENDB

Parameters:

2-16

fd

lu

APPEND

fad

lu

} [.APPEND]

is the file descriptor of the device or file
to which data 1is copied. If fd does not
contain an extension, .CSS is wused as a
default. 1If a blank extension is desired, the
period following the filename must be typed.
If £fd refers to a direct access file, an
indexed file by that name is allocated with a
logical record length equal to the command
buffer length established at sysgen time, a
blocksize of 1, and keys of 0000. If the
specified fd already exists, that fd is
deleted and a new fd is allocated.

is the lu to which data is to be copied. A
temporary file is allocated and the BUILD data
is copied to it. When the ENDB 1is
encountered, the temporary file is assigned to
the specified 1lu of the loaded task. This
form of the BUILD command is only valid when
a task is loaded.

allows the user to append data to an existing

fd. If the fd does not exist, it is
allocated.

48-043 F0O ROl

Functional Details:

Lines entered from the terminal after the BUILD command are
treated as data, and are copied to the specified device or file
until an ENDB command is encountered. ENDB may be followed by
other commands in the command line. Data following the ENDB
command is treated as a command. If any data follows the BUILD
command on the same 1line, it is treated as a comment and no
action is taken. The BUILD command can be entered from the
terminal only 1if a CSS 1is not active. It can be entered in
command, task locaded, and task executing modes.

Example:
BUILLD ASSN
AS 1, CR:
AS 2, OUT.OBJ
AS 3, PR:
AS 5, CON:
ENDB

48-043 F0O0 ROl 2-17

i — it b - o e m—

———— ————————— —— 1 -

2.9 CANCEL COMMAND
ggg CANCEL command terminates a task with an end of task code of
Format:
CANCEL
Functional Details:
The normal response to this command is:

Signon name END OF TASK CODE=255 CPUTIME=ut ime/ostime

The CANCEL command can be entered in task loaded mode and task
executing mode.

2-18 48-043 F0OO RO1

2.10 CLOSE COMMAND

The CLOSE command closes (unassigns) one or more files or devices
assigned to the currently selected task's logical units.

Format:
luy Eluz,...,lun]
CLOSE
ALL
Parameters:
lu decimal numbers signifying the 1logical units
to be closed.
ALL specifies that all logical units of the task

are to be closed.

Functional Details:

Closing an unassignhed lu does not. produce an error message. A
CLLOSE command can only be entered if the task is dormant or
paused.

The CLOSE command can be entered in task loaded mode.

Examples:

¢L 1,3,5 Closes logical units 1, 3, and 5 of
the task.

CLOSE A Closes all 1logical units of the
task.

48-043 F0O ROl 2-19

———— i ——————— ——— — -

| CONTINUE |

2.11 CONTINUE COMMAND

The CONTINUE command causes a paused task to resume operation.

Format:

CONTINUE [address]

Parameter:

address

Functional Details:

is a hexadecimal number that specifies where
the task 1is to resume operation. If this
parameter is not specified or is 0, the task
resumes at the instruction following the
pause.

The CONTINUE command can be entered in task loaded mode.
Executing this command causes the terminal mode to be switched
from task loaded mode to task executing mode.

2-20

48-043 FOO ROl

2.12 DELETE COMMAND

The DELETE command deletes a direct access file.

Format:
DELETE fd_ Efd2 ,...,fdn]
Parameter:
fd identifies the file(s) to be deleted.

Functional Details:

The file being deleted must not be currently assigned to an lu of
any task. A file can be deleted only if its write and read
protection keys are 0 (X'0000'). 1If the keys are nonzero, they
can be changed using the REPROTECT command. Only private files
can be deleted.

The DEILLETE command can be entered in command mode, task loaded
mode, and task executing mode.

48-043 FOO ROL 2-21

—— e ——

—— e e m—— - ——

———— o —— Y —— W —

2.13 DISPLAY COMMAND

The DISPLAY command is used to display new global or new internal
variables currently defined by the user. This command will not
display local variables or global variables.

Format:
n,/n,
GVARIABLE fad

DISPLAY] <N '

IVARIABLE
Parameters:

GVARIABLE indicates that the variables to be displayed
are new global variables.

IVARIABLE indicates that the variables to be displayed
are new internal variables.

ny /n, gspecifies that all variables (of the type
selected via the preceding parameter) between
the range ny to n, be displayed. Where n is
a decimal number between 1 and the maximum
value allowed at MTM sysgen for the variable
type selected.

n is the decimal number of a specific wvariable.
n must be between 1 and the maximum value
allowed at MTM sysgen for the variable type
selected.

ALL specifies that all new global or new internal
variables be displayed. This is the default
if no specific variable numbers are entered.

fd is a file descriptor of a file or device to

which the display 1is to be output. The
default for this parameter is the users
console.

48-043 FOO ROl

Functional Details:

The DISPLAY command can be used in command mode, task loaded
mode, and task executing mode.

The current value of each variable is displayed in the DISPLAY
command display.

Examples:

Example 1 illustrates a means of displaying all new global
variables currently defined by the user.

*DISPLAY GVARIABLE

GV NAME. .. . VALUE.ttt ittt et tneeeastoeeneeonsenansanenens
GO0l SOURCE TEST.FTN/P

GO03 LISTDEV SCRT:TEST.LST/P

G04 BATCH OPTIM XREF

Example 2 illustrates a means of displaying information about new
global variable 3.

*DISPLAY GVARIABLE, 3

GV# NAME. ... VALUE. ittt ittt i et eennnnnaesoneoseanennas
GO3 LISTDEV SCRT:TEST.LST/P

Example 3 illustrates a means of displaying all new global
variables between 2 and 5.

*DISPLAY GVARIABLE, 2/5

GV NAME. ... VALUE.ttt iiititieeecocacansssssssanncccacena
GO03 LISTDEV SCRT:TEST.LST/P
G04 BATCH OPTIM XREF

48-043 FOO ROl 2-23

g DISPLAY !
| ACCOUNTING !

2.14 DISPLAY ACCOUNTING COMMAND

The DISPLAY ACCOUNTING command displays accounting data collected
for a currently running or previously run task.

Format:

fd

DISPLAY ACCOUNTING |,

Parameter:

fd is the file descriptor to which the accounting
information is displayed. The user console is
the default.

Functional Details:
The DISPLAY ACCOUNTING command displays this information:

USER TIME hh:mm:ss.ms
SvC TIME hh:mm:ss.ms
WAIT TIME hh:mm:ss.ms
ROLL, TIME hh:mm:ss.ms
1/0 n
ROLLS n

The DISPLAY ACCOUNTING command can be entered in command mode,
(providing at 1least one task has been run during the current
terminal session), task loaded mode, and task executing mode.

2-24 48-043 F0OO ROl

——— T ——— i 2 -

| DISPLAY i
i DEVICES |

2.15 DISPLAY DEVICES COMMAND
The DISPLAY DEVICES command displays to the specified fd the

physical address, keys, online/offline state, and the volume name
(for online direct access devices) of all devices in the system.

Format:

fd

DISPLAY DEVICES | ,

Parameter:

fda is the file descriptor specifying the file or
device to which the display is routed. If fd
is omitted, the default is the user console.

Functional Details:

The DISPLAY DEVICES command can be entered in command mode, task
loaded mode, and task executing mode.

48-043 F0OO RO1 - 2-25

e e G e weee T Gmen R ERem Gmee Ter Man e e e Mmee e e S ——

Example:

DD

NAME DN KEYS

NULL 0 0000 D300 FC 0000 M300 CD
D301 DC 0000 M301 CD D67A EC 0000 M67A CD
D67B ED 0000 MTM SYs CD DOSA C6 0000 OFF

D058 C7 0000 FIXD CD MAG2 95 0000

MAG3 C5 0000 MAG4 D5 0000

CON 2 0000 CR 4 0000

PRT 63 0000 PR 0 0000 SPOL

PR1 0 0000 SPOL CT34 34 0000

CT36 36 0000 , CT3C 3C 0000

CT42 42 0000 CT46 46 0000

CT4C 4C 0000 cT72 72 0000

CT74 74 0000 CT7A 7A 0000

CT7C 7C 0000 IT7E 7E 0000 I TAM

DI18 18 0000 I TAM BI118 18 0000

BQLA B8 0000 I TAM BQ2A B8 0000 [TAM
BQ3A B8 0000 ITAM BQPA B8 0000 ITAM

BQLB BC 0000 ITAM BQ2B BC 0000 ITAM

BQ3B BC 0000 ITAM BQPB BC 0000 I TAM

IRDR: X kX kkkkk Xk

In the DISPLAY DEVICES output the screen or page 1is divided in
half in order to display more devices per page (or screen). The
definition of the columns is applicable to either half of the
display. Columns 1, 2, and 3 contain the device name, device
number (address), and keys, respectively. Column 4 is only
defined for pseudo-print (spool), ITAM (communications), and
direct access devices. The characters SPOL specify that the
devices are pseudo-print devices used in spooling.

For direct access devices, column 4 contains the characters OFF
to 1indicate that the device is offline. If online, the volume
name is output in column 4. For write-protected disks, column 5

contains the characters PROT. For MTM users, if the disk is
write-protected, column 5 contains the characters SY¥S. If the
disk is restricted, column 5 contains the characters RES. If the

secondary directory option is enabled, the last column contains
the characters CD.

Pseudo devices created by the 8VC intercept facility are
displayed as a file descriptor with asterisks filling the
filename and extension fields. As an example, all SPL/32 spooler
pseudo devices are displayed in this manner.

2-26 48-043 FOO RO1

i DISPLAY
| DFLOAT

——— - ————— o ——

- ———

2.16 DISPLAY DFLOAT COMMAND

The DISPLAY DFLOAT command displays to the specified fd the
contents of the double precision floating point registers
associated with the loaded task.
Format:
fd
DISPLAY DFELOAT |,
Parameter:
fd is the file descriptor specifying the file or
device to which the contents of the double
precision floating point registers associated
with a user-specified task are displayed. If
fd is omitted, the default is the user
console.
Functional Details:
The user-specified task should have been built with the DFLOAT

option at Link time.

The DISPLAY DFLOAT command can be entered in task loaded and task
execut ing mode.

Example:
D DFL
0,2 00000000 00000000 00000000 00000000
4,6 00000000 0O0O0O0O000OC 00000000 00000000
8,A 00000000 00000000 00000000 00000000
c,E 00000000 00000000 00000000 00000000

48-043 FOO ROL

2.17 DISPLAY FILES COMMAND

The DISPLAY FILES command permits information from the directory
of one

fd.

Format:

DISPLAY

Parameters:

2-28

voln:

or

more d

EILES ,

Please

irect access files to be output to a specified

voln: [filename] [}[ext]]
default user vol
Brs .
S
G
/|
N
?5
L.L.a

NOTE

see Functional Details for

variations on the DISPLAY FILES command

syntax.

specifies that all files with the user account
number be displayed regardless of what volume
they reside on. Entering the colon with part
of a filename 1limits the file search to
filenames with the specified characters.

is a 1- to 4-character name of a disk volume.
The first character must be alphabetic, the
remaining alphanumeric. If voln is omitted,
the default is the user volume.

48-043 FOO RO1

f ilename is a 1- to 8-character name of a file. The
first character must be alphabetic, the
remaining, alphanumeric.

ext is a 1- to 3-character extension to the
filename.
P indicates that information is requested for a

private file.

S indicates that information is requested on a
system file; default is private files only.

G indicates that information is requested for a
group file; default is private files only.

N indicates that information is requested for
private and group files.

o) indicates that information 1is requested for
group and system files.

L indicates that information 1is requested for
private and system files.

fd is the file descriptor specifying the file or
the device to which the display is output. If
fd is omitted, the default is the user
console.

Functional Details:

A hyphen (-) in the command format requests that all files
starting with the characters preceding the - or following the -
are displayed, subject to any restrictions specified in the
extension, account number, and fd fields. For example:

CAL32- displays all files whose first five characters
are CAL32.

CAL32.- displays all files named CAL32 with any
extension.

-.MTM displéys all files with the the extension MTM.

CH-.043 displays all files beginning with CH, with an

extension of 043.

48-043 FOO ROi 2-29

— - — -

The character * requests that all files with matching characters
in the same position(s) as those entered are displayed. For
example:

CAL32**x displays all files between five and eight
characters in length whose first five
characters are CAL32.

CALX**CAL displays all files, with a filename eight
characters 1long, whose first three and last
three characters are CAL.

xXxx%x32 OBJ displays all files with a filename containing
six characters whose fifth and sixth
characters are 32 and whose extension is .OBJ.

An asterisk in the account position indicates that all accounts
are to be searched for a match. If the user is a privileged
user, every account on the system is checked. 1If the user 1is a
nonprivileged user, the P, G, and S accounts are checked.

The characters * and - can be combined in the command format, as
described previously, to further delimit files displayed. For
example:

CAL**1- displays all files whose first three
characters are CAL, and whose sixth character
is 1.

k%xx%x32 .0~ displays all files, eight characters 1long,

whose last two characters are 32 and whose
extension begins with an O.

A colon entered with part of a filename and a dash displays all
f ilenames with the wuser account number starting with the
specified characters, regardless of what volume they reside on:

D F, :JM-

A colon entered with a specified extension displays all files
under the user account number with the specified extension,
regardless of what volume they reside on:

DF,:.JM

2-30 48-043 F0OO RO1

An example of the display produced by the DISPIAY FILES command
from a privileged user is:

M300:-. -

VOLUME= M300

FILEMAME. TY DBS/IBS RECL. RECORDS CREATED....... LAST WRITTEN.. KEYS
SYSEDIT .CMD/00205 IN 1/1 80 1 11/10/82 22:30 11/10/82 22:30 0000
TEST .C85/00205 IN 1/1 132 2 11/15/82 11:30 11/15/82 11:30 0000
CONTIG . /00205 CO 35 11/15/82 11:35 11/15/82 11:35 0000
IN . /00205 IN 10/3 50 0 11/15/82 11:35 11/15/82 11:35 0000

An example of the same DISPILAY FILES command from a nonprivileged
user is:

D F, M300:-.-/P

VOLUME= M300

FILENAME...... TY DBS/IBS RECL. RECORDS CREATED....... LAST WRITTEN.. KEYS |
SYSEDIT .CMD/P IN /1 80 1 11/10/82 22:30 11/10/82 22:30 0000
TEST .CSs/p IN 1/1 132 2 11/15/82 11:30 11/15/82 11:30 0000
CONTIG . /P co 35 11/15/82 11:35 11/15/82 11:35 0000
IN . /P IN 10/3 50 0 11/15/82 11:35 11/15/82 11:35 0000

For contiguous files, TYPE (TY) is CO, and RECORDS is the size of
the file in (decimal) sectors.

For indexed files, TYPE is IN, followed by the data and index
blocking factors, RECL is the logical record length in (decimal)
bytes, and RECORDS is the number of logical records (in decimal)
in the file.

For nonbuffered indexed files, TYPE is NB, RECL is logical record
length in (decimal) bytes, and RECORDS is the number of 1logical
records (in decimal) in the file.

For extendable contiguous files, TYPE is EC, and RECORDS 1is the
length of the file in sectors (i.e., the size of the file).

Spool and temporary files are named as *SPOOLFILE* and *TEMPFILE*
respectively (unless the user has the privilege to see the actual
filenames, in which case, the names are displayed).

48-043 FOO ROL 2-31

The DISPLAY FILES command can be entered in command mode, task
loaded mode, and task executing mode.

NOTE

If a DISPLAY FILES command is entered by
a privileged user, the account number of

each file

displayed. Nonprivileged

MTM users see the account class (P, G, or

S).

Examples:

DF

D F,CAL32.TSK/-

DF,-/-
D F, MAGl:
D F,M300:

D F,M300:A-.TSK

D F,"n,PRl:

D F,CAL**1-.-

displays to the user terminal all
files with the user's account number
on the default user volume.

displays file CAL32.TSK in the
private, group, and system accounts.

displays all files in the private
group and system accounts on the
default user volume.

displays, to the device MAGl, all
files with the user's account number
on the default user volume.

displays, to the user's terminal,
all files with the user's account
number on volume M300.

displays all files on volume M300
with first character A and extension
TSK in the user's account number.

displays all files on the default
user volume in the user's account
number with blank extension,
regardless of filename. The display
is routed to device PR1l:.

displays, to the user's terminal,
all files that start with CAL,
contain the character 1 in the sixth
position, have any extension and are
in the user's account number.

48-043 F0OO RO1

D F,M-:TASK.5%*

D F,-:EDIT-/*

D F,-/N

48-043 F0OO ROl

displays to the user's terminal the
files named TASK that have one or
two character extensions starting
with the character 5. A separate
display of these files is done for
each online disk volume whose name
starts with the letter M.

displays to the user's terminal the
files named TASK, with any
extension. A separate display of
these files is done for each online
disk volume in the system.

displays all files that start with
the four characters EDIT, on all
volumes, in all accounts, regardless
of the extension. If the wuser is
not privileged, only matching files
in the private, group, and systemnm
accounts are displayed.

displays all files 1in the user's
private and group account on the
default users volume.

2.18 DISPLAY FLOAT COMMAND

The DISPLAY FLOAT
contents of the

Format:

DISPLAY FLOAT l:,{

Parameter:

£d

Functional Details:

The user-specified task must be

command displays
precision
associated with the loaded task.

single

to the

specified fd the
floating point registers

is an optional file descriptor specitfying the
file or device to which the display is output.
If fd is omitted, the display is output to the

user's terminal.

specified at Link time.

built with the

FLOAT option

The DISPLAY FLOAT command can be entered in task loaded mode.

Example:.

00000000
00000000
00000000
00000000

NOMODT

L

mypon™

00000000

00000000

00000000
00000000

48-043 F0O0 RO1

2.19 DISPLAY LU COMMAND
The DISPLAY .U command displays to the specified fd all assigned
logical units of the loaded task.

Format:

DISPLAY [U |,

Parameter:

fd is an optional file descriptor specifying the
file or device to which the assigned logical
units are to be displayed. If fd is omitted,
the default is the user console.

Functional Details:

The lu number, file or device name, current access privileges,
current record number, and percentage thru file are displayed.
The current record number and percentage thru file are displayed
only for files.

L FILE/DEVICE RECORD THRU
M67A:RADPROC.CSS/000,SRO 30 15.0%
CON:,SRW
CON: ,SRW

CON: ,SRW

oOonwEQg

M67A:RADPROC.CSS/000,SRO 200 100.0%
CON:,SRW
M67A:4&2614586.001/000,SREW 1 100.0%
CON: ,SRW
CON: ,SRW

v e W

48-043 F0O0 RO1 2-35

The DISPLAY LU command can
task executing mode.

Example:

DISP LU,PR:

be entered in task loaded mode and

Displays assigned logical units to
the printer device (PR:).

48-043 FOO RO1

DISPLAY

1
)
H PARAMETERS

2.20 DISPLAY PARAMETERS COMMAND

The DISPLAY PARAMETERS command displays the parameters
loaded task.

Format:

DISPLLAY PARAMETERS ,{

Parameter:

fd

is an optional file descriptor specifying

of

the

the

file or device to which the display is output.
is omitted, the default is the user

If f£d

console.

Functional Details:

Table 2-2 lists the field addresses and data displayed when

DISPI.AY PARAMETERS command is entered.

48-043

STAT

TOPT

2-2 DISPLAY PARAMETERS COMMAND FIELDS
"""""""""""""" VALE | wEanme
“xxxxxxxx | Task name, also user signon
5 name
XXXXXXXX é Status portion of current TSW
XXXXX ; Current location
'
XXXXX % Task wait status
XXXXXXX E Task options
XXXXX E Current used system space

Q
Iy
O
Q

UsSspP

FOO RO1

the

TABLE 2-2 DISPLAY PARAMETERS COMMAND FIELDS

(Continued)
| FIELD | VALUE | MEANING |
| MUSP | woccx | Maximum used system space |
% MXSP E XXXXX E Maximum allowed system space E
E CTOP E XXXXX é Task CTOP E
E UTOP i XXXXX E Task UTOP E
E UBOT E XXXXX % Task UBOT %
g SLOC i XXXXX g Task starting location E
E NLU ; XXX ; Number of logical units E
E E E (decimal) | E
% MPRI E XXX ; Maximum priority (decimal) E
; SVOL ; XXXX ; ;

i " o o T o - . " W e D VP e A A n W oh a G e s e e e A e e

The addresses displayed as CTOP, UTOP, and UBOT, are not physical
addresses, but addresses within the task's own program space.
CLOC may be a program space address or a physical address in a
system subroutine being executed on behalf of the task. NLU is
given in decimal. SVOL is the ASCII default volume ID. The
fields CTOP, UTOP, UBOT, and SLOC are described in detail in the
0S/32 Application Level Programmer Reference Manual.

TOPT is given in hexadecimal. The definitions of task option
bits are listed in Table 2-3. ,

TABLE 2-3 TASK OPTION BIT DEFINITIONS

{ BIT | MASK i MEANING i
= ====a===-"‘_‘f‘:=§==;::’.‘?.“:Eﬂ:::==========2====a3=:=:‘.‘a::x‘_’!:-‘.‘?‘.‘:ﬂﬁm‘:‘"ﬂzk={i
| 4 | 0800 0000 | O = Dynamic scheduling disabled |
i] | 1 = Dynamic scheduling enabled]
] i | 1
i) L L
i 5 | 0400 0000 | 0 = Prompt disabled]
| | ! 1 = Prompt enabled !
1]] 1
] i i |
{ 6 | 0200 000G | [/0 interpreted without VFC |
1 |]]
) i I I

= O

= All I/0 interpreted with VFC

2-38 48-043 FOO RO1

TABLLE 2-3 TASK. OPTION BIT DEFINITIONS (Continued)

10
16
17

18

20
21
22
23
24
25
26
27

i

! -
i i
| i
| i
i i
I |
I i
| i
i [
i |
i |
i |
i |
i |
i |
i |
i |
i [
i i
i |
i i
| i
i i
[l 1
[} 1
P19
| i
i |
i i
i |
' i
i i
i i
i |
i |
i |
i i
! i
i i
i i
| |
| |
i |
i i
| i
i [
i |
i |
i i
i i
| |

48-043 FOO

0080

0040

0020

0]0]0]0]

0000

0000

0000

0000

0000

0ooo0

0000

0000

0000

0000

0000

RO1

/]

0

i
i
i 1 = Extended SVC 1 parameter blocks
! used
]
I
0000 | O = New TSW for task event service
i 1L = No new TSW for task event service
i
0000 | 0 = Task event all registers saved
i 1 = Task event partial registers saved
{
!
0000 | 0 = Task event no register saved
i 1 = Task event register saved
]
[}
8000 | 0 = U-task
i 1 = E-task
]
1
4000 | O = AFPAUSE
i 1 = AFCONT
]
]
2000 | 0 = NOFLOAT
i 1 = single floating point
]
i
1000 | 0 = NONRESIDENT
i 1 = RESIDENT
]
]
0800 } 0 = 8VC 6 control call
i 1 = Prevent SVC 6 control call
]
]
0400 | 0 = SVC 6 communication call
i 1 = Prevent SVC 6 communication call
|
) 1
0200 | 0 = SVCPAUSE
i 1 = SVCCONT
)
]
0100 { 0O = NODFLOAT
{ 1 = DFLOAT
1
]
0080 | 0 = NOROLL
! 1 = ROLL
1
]
0040 | 0 = No overlay
i 1 = Use overlay
'
U
0020 | 0 = Accounting disabled
i 1 = Accounting enabled
1
)
0010 } O = Task can issue intercept call
i 1 = Task cannot issue intercept call

No extended SVC l parameter blo
used (excludes communications I/

MASK H MEANING

TABLE 2-3 TASK OPTION BIT DEFINITIONS (Continued)
| 28 | 0000 0008 | O = No account privileges |
E E E 1 = File apcount privileges E
; 29 ; 0000 0004 ; 0 = Bare disk assign not allowed ;
i i E 1 = Bare disk assign allowed f
; 30 ; 0000 0002 i 0 = Not universal E
i E E 1l = Universal i
E 31 ; 0000 0001 ; 0 = No keychecks E
i i i 1 = Do keychecks !
STAT 1is given 1in hexadecimal. The definitions of wait status
bits are shown in Table 2-4.
TABLE 2-4 WAIT STATUS BIT DEFINITIONS
BIT | wAK | MEANING |
| 15 | 0001 0000 | Intercept wait |
; 16 E 0000 8000 E I/0 wait i
E 17 E 0000 4000 E (Any) IOB/WAIT é
E 18 % 0000 2000 E Console wait (paused) %
E 19 g 0000 1000 E Load wait E
E 20 E 0000 0800 E Dormant E
; 21 ; 0000 0400 E Trap wait i
; 22 E 0000 0200 é Time of day wait E
; 23 i 0000 0100 g Suspended %
; 24 i 0000 0080 E Interval wait E
; 25 E 0000 0040 E Terminal wait E
; 26 i 0000 06020 ; Roll pending wait ;
2-40 48-043 FOO RO1l

TABLE 2-4 WAIT STATUS BIT DEFINITIONS (Continued)

E~é;; i MASK { MEANING i
| 27 1 0000 0010 | Intercept initialization (MTW) |
E 28 % 0000 0008 % Intercept termination (MTM) E
E 29 % 0000 0004 E System resource connection wait E
; 30 E 0000 0002 i Account ing wait E

NOTE

Zero status indicates an active task.

CTSW is expressed in hexadecimal. For a definition of the status
portion of the TSW, see the 05/32 Application Level Programmer
Reference Manual.

The DISPLLAY PARAMETERS command can be entered in task loaded mode
and task executing mode.

Example:

The following is an example of the output generated in response
to a DISPLAY PARAMETERS command:

*DISPLAY PARAMETERS

TASK MTMUSER

CTSW 00001000
CLOC F2B7C
STAT 2000
TOPT 10021
ussp 14F8
MUSP 2208
MXSP 3000
CTOP 24FE
UTOP 2370
UBOT 0]
SLOC F0000
NLU 15
MPRI 128
SVOL M67A

48-043 F0O ROl 2-41

| DISPLAY
! REGISTERS

2.21 DISPLAY REGISTERS COMMAND

The DISPLAY REGISTERS command displays to the

contents

Format:

DISPLAY REGISTERS |,

specified

fd the

of the general purpose user registers associated with a
loaded task.

Parameter:

£d

Functional Details:

The DISPLAY REGISTERS command can be entered in task loaded

of the
displayed.

and task executing mode.

Example:

r:m4>o;gc
i
THOJWE

[

The

contents

NOTE

until the task has started.

000077F0
00000000
0000E83C
0000ESCB
O00OCE804

0000ES588
00000000
00000000
00000000
0000ESDO

0000006060
000000060
0000E848
0000E584

is the file descriptor to which the
general purpose
If £fd is omitted, the
output to the user console.

user

00004801
0000D2EA
00000028
OOOOEQSE

contents
registers are
display is

mode

of each register will be 0

48-043 FOO RO1

2.22 DISPLAY TIME COMMAND
The DISPLAY TIME command displays the current date and time to a
specified fd.

Format:

DISPLAY TIME ,{

Parameter:

fd specifies the file or device to which the
display 1is to be output. If fd is omitted,
the default is the user console.

Functional Details:

The display has the following format:

mm/dd/yy hh:mm:ss

or alternatively (by sysgen option):

dd/mm/yy hh:mm: ss

The DISPLAY TIME command can be entered in command mode, task
loaded mode, and task executing mode.

48-043 F0O RO1 2-43

—— - — - -

2.23 DISPLAY USERS COMMAND

The DISPLAY USERS command displays the wuserid, terminal device
names, and the operating mode of all users currently signed on
under MTM. Additionally, all active batch jobs are displayed.

Format:

DISPLAY USERS ,{

Parameter:

fd specifies the file or device to which the
display 1is output. If fd 1is omitted, the
default is the user console.

Functional Details:

This command can be entered in command mode, task 1loaded mode,
and task executing mode.

Example:
DU
R-NULL: @$HASPOO BG-CT22: @eMTM-MODE NERD-NULL: @$STAT
LFS-CT26 : YMTM-MODE JON-CT32: @ECM-MODE VAL-CT2A: >dMTM-MODE
GRAY-CT2C: @MTM-MODE LYNDA-NULL: @$STAT BJM-CT30 : eMTM-MODE
DAVE-CT3A: > MTM-MODE BRI-CT3E: >MTM-MODE JOB3-BATCH)MTM-MODE

> - denotes nonprivileged MTM user
@ - denotes privileged MTM user
MTM-MODE standard MTM usage
ECM-MODE environmental control monitor mode
§ - foreground task mode and HASP mode
BATCH denotes an active batch job

I

2-44 48-043 F0OO ROl

2.24 ENABLE COMMAND

The ENABLE command allows the prompt or messages previously
suppressed by the PREVENT command to be displayed on the user
console.

Format:
MESSAGE
PROMPT
ENABLE
ETM
SVARIABLE
Parameters:

MESSAGE allows other MTM users to send messages to the
user terminal.

PROMPT requests the system to print the hyphen (-)
prompt in task executing mode. The hyphen (-)
is the default prompt for task executing mode.

ETM displays the end of task message.

$VARIABLE enables variable processing of local and

global variables on a per user basis.
Functional Details:
The ENABLE command does not affect operator messages.

Local and global variable support is included in the target
sysgen option SGN.VAR.

48-043 F0OO RO1 2-45

———————————— - -

2.25 EXAMINE COMMAND

The EXAMINE command examines the contents of a memory location in
the loaded task.

Format:
,n
EXAMINE address; /address, ,{
Parameters:

address indicates the starting and ending addresses in
memory whose contents are to be displayed in
hexadecimal. All addresses specified are
rounded down to halfword boundaries by the
system.

n is a decimal number specifying the number of
halfwords to be displayed. 1If n is omitted,
one halfword is displayed.

fd is the file descriptor specifying the file or

device to which the contents of memory are
displayed. If omitted, the default is the
user console.

Functional Details:

Specifying only address,; causes the contents of memory at that
location (as modified by any previous BIAS command) to be
displayed. Specifying address; and address; causes all data from
the first to the second address to be displayed.

The EXAMINE command can be entered in task loaded mode and task
execut ing mode.

Any memory that can be accessed by the 1loaded task can be
examined with the EXAMINE command. For example, if a task uses
a PURE segment that is mapped to segment register F, then

examining addresses at FO0000 or greater will display the contents
of the PURE segment.

2-46 48-043 FOO ROl

Example:

BI B1l0O
EXA 100,10

48-043 F0OO0 RO1

Fxamines 10 halfwords starting at
relative address 100 (absolute
address B200) within the task.

2.26 FFILE COMMAND

The FFILE command forward spaces to the next filemark on magnetic
tapes, cassettes, and direct access files.

Format:
FFILE [£fd,] lu
Parameters:

fd is the file descriptor of the device or file,
to be forward spaced one filemark.

1u is the 1lu to which the file is assigned. If
lu is specified without fd, the operation is

performed on the 1lu regardless of what is
assigned to it.

Functional Details:

The FFILE command can be entered in task loaded mode.

Examples:

FF 1 Causes the file or device assigned
to lul to forward space one
filemark.

FF M300:AJM.OBJ, 4 Causes the file AJM.OBJ on volume

M300 that 1is assigned to lu4, to
forward space one filemark.

2-48 48 -043 FOO ROl

2.27 FRECORD COMMAND

The FRECORD command forward spaces one record on magnetic tapes,
casscttes, and direct access files.
Format:

FRECORD [fd,] lu

Parameters:

fda is the file descriptor of the device or file
to be forward spaced one record.

lu is the lu to which the device or file |is
assigned. If lu is specified without fd, the

operation is performed on the lu regardless of
what is assigned to it.

Functional Details:

The FRECORD command can be entered in task loaded mode.

Examples:
FR 1 ” Causes the device or file assigned
to lul to forward space one record.
FR M300:AJM.OBJ, 4 Causes file M300:AJM.OBJ on volume

M300 that is assigned to lu 4 to
forward space one record.

49

no
i

48-043 F0O RO1

—— - —— . ——_p———y - — — —

2.28 HELP COMMAND

The HELP command displays information on MTM user and program
development commands.

Format:
mnemonic
HELP
%

Parameters:

mnemonic is any valid MTM or program development

command mnemonic.
* causes a Llist of all MTM and program

development commands to be displayed to the
list device.

Functional Details:

The HELP command is implemented as a CSS procedure. When a
mnemonic or command 1is entered, information on how to use that
particular command is displayed to the 1list device. If
parameters are omitted, information on how to use the HELP

command is displayed to the list device.

Examples:

HELP LOG Displays to the list device
information on how to use the MTM
LOG command.

HEL.P COMPILE Displays to the list device
information on how to use the
program development command,
COMPILE.

HELP Displays to the list device
information on how to use the HELP
command.

2-50 48-043 FOO RO1

Example:

HELP *

ADD AL (T.OCATE) AS(SIGN) BF (ILE)
BI(AS) BREA (K) BR(ECORD) BU(ILD)
CAL CA (NCEL) CL(OSE) COBOL
COMMAND COMPILE COMPL.INK CO(NTINUE)
DE (LETE) D(ISPLAY) EDIT ENA (BLE)
ENDB ENV EXA(MINE) EXEC
FF(IT.E) FILEDESC FORT FORTO
FORTZ FR(ECORD) HELP INIT
LINK LIST L(OAD) LLOG
MACRO ME (SSAGE) MO(DIFY) O(PTION)
PASCAL PAS (SWORD) P (AUSE) PRE (VENT)
PRI (NT) PUN(CH) REL (EASE) REMOVE
REN (AME) REP (ROTECT) REW(IND) RPG

RUN RW RVOL (UME) SEN(D)
SE(T) SIGNOF (F) S (IGNON) SPOOLF IL.E
ST (ART) T (ASK) TE(MPFILE) V(OLUME)
WF (ILE) XAL (I.OCATE) XDE (L.ETE) SUB(MIT)
INQ(UIRE) PUR(GE)

For HELLP on any of the above command mnemonics, type HELP
{command>

Example:

HELP PASSWORD

PASSWORD: The PASSWORD command enables any user who has the
PASSWORD privilege to alter his own signon password.

FORMAT :
(PAS)SWORD CURRENT PASSWORD, NEW PASSWORD

PARAMETERS :

CURRENT PASSWORD must exactly match the user's current

account password.
NEW PASSWORD specifies the new account password.
This password replaces the current
password in the authorized user file.
The password can be up to 12
characters long; remaining characters
are truncated. All alphabetic,
numeric, and special characters
except blanks, commas, or semicolons
are allowed.

48-043 FOO0 ROl 2-51

2.29 INIT COMMAND

The INIT (file initialization) command initializes all data on

contiguous file to O.

Format:
segsize increment
INIT £4 |,
Parameters:
fa is the file descriptor of
unprotected, contiguous file.
segsize is the size of the buffer
increment default is lkb.

Functional Details:

INIT is implemented with a CSS procedure that
the File Manager Support Utility as a task.

The INIT command can be entered in command mode.

Examples:

INIT DATA.FIL

INIT DATA2.FIL,50
a 50kb buffer.

a

unassigned,

space used. The

and starts

Initializes the file DATA.FIL.

Initializes the file DATA2.FIL using

48-043 F0OO ROl

2.30 LOAD COMMAND

———— ————v. - — - v - -

—— i —— > - - -

The T.OAD command is used to load a user's task into memory.

Format:

LOAD [taskid]] fd[,segsize increment] [[SCTASK]

Parameters:

taskid

fd

segsize
increment

SCTASK

Functional Details:

specifies the name of the task to be loaded.

specifies the file or device the task is being
loaded from.

specifies amount of memory in kb (above the
memory size) that the task needs for
processing. When a task is built (via Link),
the OPTION WORK=n command adds additional
memory to a task. The size field in the LOAD
command overrides the amount of memory
specified by Link. The size is accepted in
.25kb increments.

specifies that the task is to be loaded as an
SPL/32 spooler subcontrol task. See the
SPL/32 Administration and Reference Manual for
information on subcontrol tasks and their
function. If the SPL/32 spooler is not the
spooler being used on the system, the
attempted use of this parameter will generate
an error message.

In order to maintain CSS compatibility, the taskid (.BG) can be
used. However, the system will ignore it. Any valid taskid can
be entered but will be ignored.

48-043 F00 ROl

———— - —— ——

If a task is loaded from a direct access device, the system first
searches the user volume or the specified volume under the user's
account. If the file is not found in the search, the system will
search the SYS volume in the SYS account if an account or a
volume designator was not specified in the LOAD command. Only
values that the user does not explicitly specify will
subsequently be searched for. If an extension is not specified
in the LOAD command, the extension .TSK is assumed. The LOAD
command can be entered in command mode.

An error might occur if a user ID under MTM is the same as the ID
of a task loaded from the system console. If a load or fd error
is displayed, sign off and sign on again with a different user
ID.

A privileged user can specify an account number in the £d. All
other wusers can only specify an account class designator (P, G,
S).

Examples:
L. VOL:CAL Load the task from file VOL:CAL.TSK.
L. PTRP: Load a task from the paper tape

reader punch device.

2-54 ' 48~043 FOO ROl

- ——— - ———— o = o=

—— e ——— i ————— - -

2.31 LOG COMMAND
The 1.0G command logs all user input and MTM responses to a

specified fd.

Formats:

e Gd] '{NOCOf’Y} ' {n?}

NOCOPY} {

SET Loc [fa] |, {

Parameters:

fd is the file descriptor of the 1log file or
device. If no fd 1is specified, logging is
terminated. If fd 1is a file, it must be

previously allocated. Files are assigned EWO
privileges so that logged output is added to
the end of the file. If a log is active when
another LOG command is entered, the old log is
closed and the new one is initiated.

CoPY specifies that all output is written to both
the terminal and the log device.

NOCOPY specifies that all output (except messages) is
written to the log device and not to the
terminal. Messages from other users and the
operator are written to both the terminal and
the log device. If this parameter is omitted,

COPY is the default.

n is a decimal number from 0 through 65,535
specifying the number of lines after which the
user log file is to be checkpointed. 1If this
parameter is omitted, the default is 15 lines.
If n is specified as 0, no checkpointing will
occur.

48-043 F0OO RO1 2-55

— - —— - —— ——

Functional Details:

The LOG command and the SET LOG command are the same. The
command can be entered either way, and both formats perform the
same function.

Checkpointing may be done on any type of file. Since indexed
files are buffered, checkpointing may be useful at any time the
file is being written to. Checkpointing nonbuffered indexed
files and extendable contiguous files is useful only if the file
is being expanded. Checkpointing to a contiguous file 1is
meaningless (no operation 1s performed). The LOG command can be
entered in command mode, task loaded mode, and task executing
mode.

Example:

LOG LOG.FIL,COPY, 10

2-56 48-043 F0OO ROl

—— - ———— - - — G — -

2.32 MESSAGE COMMAND

The MESSAGE command
Format:

user id
MESSAGE {

Parameters:
user id
message

Functional Details:

The user receiving

~QPERATOR

sends a message to a specified user.

} message

is the name of the user the message 1is being
sent to. This 1id can be obtained from the
DISPILAY USERS command. A userid of .OPERATOR
sends a message to the system console.

is the text of the message that the user wants
to send.

the message receives the userid of the sender

as well as the message.

This command can be entered in command mode, task locaded mode,

and task executing

Example:

mode.

The following message is sent to userid "AVE" from userid "TK".
The format of the message sent is:

ME AVE HELLO MTM USER

The format of the message received is:

TK-HELLO MTM USER

48-043 F0O RO1

2.33 MODIFY COMMAND

The MODIFY command modifies the contents of a memory location in
the loaded task.

Format:
data;
MODIFY address, [;dataz,...,datan]
Parameters:
address is the halfword boundary address at which the
contents of memory are to be modified.
data is a data field consisting of zero to four

hexadecimal digits that represent a halfword
to be written into memory starting at the
location specified by address. Any string of
data less than four characters is
right-justified and left-zero filled. If the
comma is entered but data is omitted, 0 |is
entered into one halfword.

Functional Details:

This command causes the contents of the halfword location
specified by address (modified by any previous BIAS command) to
be replaced with data. The modify address must be aligned on a
halfword boundary.

The MODIFY command can be entered in task loaded mode and task
executing mode.

Any segment (impure, shared, or task common) to which a u-task

has write access can be modified. Only the impure segment can be
modified for an e-task.

2-58 48-043 FOO ROl

Examples:

BIAS O
MOD 12F0,4’0’4,0

MOD DO000O, 4

48-043 F00 ROl

Modifies four halfwords at location

12F0 to contain 0004 0000 0004
0000.

Modifies the first halfword of the
task common linked to the task using
segment register D to 4.

2.34 OPTIONS COMMAND

The OPTIONS command allows an MTM user to change the task options
of the currently loaded task.

Format:

QPTIONS

AFCONTINUE

Parameters:

AFPAUSE

AFCONTINUE

SVCPAUSE

SVCCONTINUE

NONRES IDENT

Functional Detalils:

{ AFPAUSE } {S_MCBAUSE

[; NONRES IDENT]
SVCCONTINUE

specifies that the task is to pause after any
arithmetic fault.

specifies that if the arithmetic fault (AF)
trap enable bit is set, a trap is taken. If
the bit is not set, the task continues after
an arithmetic fault occurs, and a message is
sent to the log device.

specifies that SVC 6 is treated as an illegal
SVC (applies to background tasks only). I[f an
SVC b6 is executed within a background task,
the task is paused.

specifies that SVC 6 is treated as a NO-OP
(applies to background tasks only). If an SVC
6 is executed within a background task, the
task is continued.

specifies that the task is to be removed from
memory at end of task.

The OPTIONS command can be entered in task loaded mode.

Example:

OoPT AFC,SVCC

48-043 FOO RO1

| PASSWORD |

2.35 PASSWORD COMMAND

The PASSWORD command enables any MTM users with the PASSWORD

privilege (privileged

Format:

user) to alter their own signon passwords.

PASSWORD current password, new password

Parameters:

current password

new password

Functional Details:

If a user without the

must exactly match the wuser's current
account password.

specifies the new account password. This
password replaces the current password in
the authorized user file. The password can
be up to 12 characters 1long; remaining
characters are truncated. All alphabetic,
numeric, and special characters except
blanks, commas, or semicolons are allowed.

PASSWORD privilege enters the PASSWORD

command, a MNEM-ERR message is generated.

48-043 FOO ROl

2.36 PAUSE COMMAND

The PAUSE command pauses the currently running task.

Format:

PAUSE

Functional Details:

Any I/0 proceed, ongoing at the time the task is paused, |is
allowed to go to completion. This command is rejected if the
task is dormant or paused at the time it is entered.

The PAUSE command can be entered in task loaded mode and task
executing mode.

2-62 48-043 FO0OO RO1

2.37 PREVENT COMMAND

The PREVENT command suppresses either messages or the task
executing prompt (the hyphen (-) is the default) while an
interactive task is running.

Format:
MESSAGE
PROMPT
PREVENT
ETM
SVARIABILE

If a user did not input any of these parameters the terminal will
receive both messages and task executing prompts. The task
executing prompt indicates that either a task or €8S is
execut ing.

Parameters:

MESSAGE prevents other MTM users from being able to
send messages to the user terminal.

PROMPT suppresses the printing of the task executing

. prompt (the hyphen (-) is the default) during

task executing mode.

ETM supresses the display of end of task message.

$VARIABLE disables variable processing on a per user

basis.

Functional Details:

If the MTM system includes variable support and the $VARIABLE
parameter is entered, the overall performance of MTM increases.

48-043 FO00 ROl 2-63

2.38 PRINT COMMAND

The PRINT command sends the file to be printed to the Spooler for
subsequent printing.

Format:

PRINT fd [,DEVICE=pseudo device] [,COPIES=n] [[DRELETE] [,VFC]

Parameters:

fd

DEVICE=

COPIES=

DELETE

VFC

Functional Details:

is the name of the file to be printed.

pseudo device specifies the print device. If
this parameter is omitted, output is directed
to any available print device.

n allows the user to specify the number of
copies of the file fd to be output. From 1 to
255 coplies can be made. I[If this argument is
omitted, one copy is the default.

specifies the file fd is to be deleted after
the output operation is completed. If this
argument is omitted and the file is not a
spool file, the file is retained.

specifies that vertical forms control is in
use. Currently, the card punch driver does
not support VFC.

If the spool option was not selected at 0S/32 sysgen time, this
command results in an error.

48-043 FOO ROl

The PRINT command can be entered in command mode,
mode, and task executing mode.

NOTE

I[If the S8PL/32 spooler is in use on the
system, the MTM user has additional
options available for use with the PRINT
command. See the SPL/32 Administration
and Reference Manual for a detailed
description of these additional options.

48-043 F0O ROl

task

loaded

65

2.39 PUNCH COMMAND

The PUNCH command indicates to the Spooler that the specified
file is to be punched.

Format:

PUNCH fd [,DEVICE=pseudo device] [,CQPIES=n] [[DELETE] [,VFC]

Parameters:

fad

DEVICE=

COPIES=

DELETE

VFC

Functional Details:

i If the spool option
command will result

is the name of the file to be punched.

pseudo device specifies the name of the pseudo
output device. If the DEVICE= parameter Iis
omitted, punch output is directed to any
available punch device.

n is the number of copies desired. From 1 to
255 copies can be made. If the
COPIES= parameter is omitted, only one copy
is output.

specifies that the fd is to be deleted after
the output operation is performed. If
omitted, the file is retained.

specifies that vertical forms control is in

use. Currently, the card punch driver does
not support VFC.

was not selected at 05/32 sysgen time, this
in an error.

48 -043 F0OO0 ROl

The PUNCH command can be entered in command mode,
mode, and task executing mode.

NOTE

[f the SPL/32 spooler is in use on the
system, the MTM user has additional
options available for use with the PUNCH
command. See the SPL/32 Administration
and Reference Manual for a detailed
descripion of these additional options.

48-043 FOO ROl

task

loaded

2.40 RELEASE COMMAND

The $RELEASE command is used to release a new global or new

internal wvariable.

It also releases the variable's associated

buffer. This command has no effect on local or global variables
created with the $SET command.

Format:

SRELEASE {

Parameters:
GVARIABLE

[VARIABILE

ny/n,

ALL

Functional Details:

GVARIABLE

_LVARIABLE} ol [' o 'n"]

indicates that the variables to be released
are new global variables.

indicates that the variables to be released
are new internal variables. v

specifies that all variables (of the type
selected via the preceding parameter) between
the range of ny,/n; be released. Where n is a
decimal number between 1 and the value allowed
at MTM sysgen for the selected variable type.

n is a decimal number of a variable (either
new global or new internal) or variables to be
released. n must be within the range of 1 and
the maximum value allowed at MTM sysgen for
the selected variable type.

specifies that all new internal or new global
variables be released. This is the default if
no specific variable numbers are specified.

This command may be entered in command mode, task loaded mode,
task executing mode, and CSS mode.

48-043 FOO ROl

In order to reduce buffer overhead, variables that are no longer
being used should be released. If this command is directed to a
var iable that was already released, the command is ignored and no
error message 1s generated.

New internal variables that have a null or =zero value are
automatically released.

Examples:

$RELEASE GVARIABIE,l1/5 All new global variables from 1
through 5 are released.

$RETLEASE IVARIABIE, 16,19,18,25

The new internal variables numbered
16, 19, 18, and 25 are released.

SRELEASE I[VARIABIE,ALL All new internal var iables are
released.

NOTE

This command does not release local and
global variables created with the §$SET
command .

48-043 F00 RO1 2-69

2.41 RENAME COMMAND

The RENAME command changes the name of an unassigned, direct
access file.

Format:

RENAME oldfd, newfd

Parameters:
oldfd is the current file descriptor of the file to
be renamed. :

newfd is the file descriptor of the renamed file.

Functional Details:

The volume id field of the new file descriptor (newfd) may be
omitted. A file can only be renamed if its write and read
protection keys are 0 (X'0000').

The RENAME command can be entered in command mode, task loaded
mode, and task executing mode.

The user can only rename private files.

Example:

REN VOL:AJM.CUR,AJM.NEW Renames file AJM.CUR to AJM.NEW on
volume VOL.

2-70 48-043 F0OO RO1

2.42 REPROTECT COMMAND

The REPROTECT command modifies the protection Kkeys of an
unassigned, direct access file.

Format:

REPROTECT fd,new keys

Parameters:

fd

new keys

Functional Details:

is the file descriptor of the file to be
reprotected.

is a hexadecimal halfword whose 1left byte
signifies the new write keys and whose right
byte signifies the new read keys.

Unconditionally protected files can be conditionally treprotected

or unprotected.

The REPROTECT command can be entered in command mode, task loaded
mode, and task executing mode.

The user can only REPROTECT private files.

48-043 F00 ROl

2.43 REWIND AND RW COMMANDS

The REWIND and RW commands rewind magnetic tapes, cassettes, and
direct access files.

Format:

REWIND [£d,] lu
or

RW [fd,] lu

Parameters:

fd is the file descriptor of the device or file
to be rewound.

lu is the logical unit to which the device or
file 1is assigned. If 1lu is specified without

fd, the operation 1is performed on the 1lu
regardless of what is assigned to it.

Functional Details:

The REWIND and RW commands can be entered in task loaded mode.

Examples:
REW 1 Causes the file or device assigned
to lul to be rewound.
REW M300:AJM.OBJ, 4 Causes file AJM.OBJ, as assigned to

lu4 on volume M300, to be rewound.

2-72 48-043 FOO RO1

2.44 RVOLUME COMMAND

The RVOLUME command enables an MTM user to allow/disallow access
to a privately owned disk.

Format:

RW
actnoq /{ N ;---.-,max actno|/

ADD, L)

RW

ALL A
actnoy ,...,max actno

RVOLUME voln,
REMOVE,

actno

USERS|,4{actnoy - actno,

Parameters:

voln is the volume name of the restricted disk.

ADD indicates that the specified accounts will
have access to the restricted disk.

actno is a decimal number from 0 through the maximum
account number allowed on the system (limit
65,535) indicat ing the accounts

allowed/disallowed access to the restricted
disk. If ALL is specified, accounts 0 through
the maximum account number allowed on the
system (limit 65,635) have access to the
restricted disk.

48-043 F00O RO1 2--73

RW indicates that the specified account has

read/write access to the restricted disk. If
this argument is omitted, the default is read
only.

RO indicates that the specified account has read

only access to the restricted disk.

REMOVE indicates that the specified accounts are
disallowed access to the restricted disk. If
ALL 1is specified, all accounts having access
to the restricted disk are disallowed access
with the exception of the owner's account.

USERS displays all accounts having access to the
restricted disk along with the access
privileges.

Functional Details:

A disk marked on as a system disk 1is treated as a restricted
disk. Account number 255 is the owner.

The owner of a private disk can allow/disallow other MTM users,
the system operator, and other non-MTM tasks access to the
restricted disk.

If an owner enters a REMOVE parameter specifying a private
account, access will be denied to the disk; the owner can still
add accounts, remove accounts, and display accounts that have
access, along with the respective access privileges.

For a user with RW access to a restricted disk, accessing
private, group, and system files is exactly the same as accessing
files on any other disk.

For a user with RO access to a restricted disk, accessing group
and system accounts is the same as accessing files on any other
disk. Files within the wuser's private account can only be
assigned SRO or ERO. The user cannot allocate, rename,
reprotect, or delete any files.

2-74 48-043 FOO ROl

Examples:

.
RVOL

RVOL
RVOL

RVOL

RVOL

RVOL

RVOL
RVOL

RVOL

ACCT-

RVOL

MM, U

00000/RW 00001-00017/RO
00255/RW 00256-01023/RO

MTM,A,87/RW
MTM, U

00000/RW 00001-00017/RO
00087/RW 00088-00254/RO

MTM, U, 87
00087 /RW

MTM,R, 87
MTM, U

00000/RW 00001-00017/RO

00088-00254 /RO

MTM, A, 87
MTM, U

00255/RW

00000/RW 00001-00017/RO
00255/RW 00256-01023/RW

MTM,U,87-1200
ERR POS=87-1200
MTM,U,87~-1000

00087-00254 /RO

48-043 F0O RO1l

00018/RW 00019-00254/RO

00018/RW 00019-00086/RO
00255/RW 00256-01023/RO

00018/RW 00019-00086/RO

00256-01023/R0O

0001L8/RW 00019-00254/R0O

error since account

limit was 1023

00255/RW

00256-01000/R0O

75

2.45 SEND COMMAND

The SEND command sends a message to the currently selected task.
Format:

SEND message [i]
Parameters:

message is a 1- to 64-character alphanumeric string.
Functional Details:

The message is passed to the selected task the same way as an SVC
6 send message. Following standard SVC 6 procedures, the message
consists of an 8-byte taskid identifying MTM as the sender,
followed by the user-supplied character string. The message
passed to the selected task begins with the first nonblank
character following SEND and ends with a carriage return (CR) or
semicolon (;) as a line terminator. A message cannot be sent to
a task currently rolled out.

The receiving task must have intertask message traps enabled in
its TSW and must have an established message buffer area. Refer
to the 0S/32 Supervisor Call (SVC) Reference Manual for more
information on SVC 6.
The SEND command can be entered in task executing mode.
Example:

SEND CLOSE LU2,ASSIGN LU3

The following is received by the task:

-MTM CLOSE LU2, ASSIGN LU3

2-76 48-043 FOO RO1

2.46 SET GROUP COMMAND

The SET GROUP command enables a privileged user to change the
group account number associated with the account the user is
currently on. This enables a privileged user to specify any
account in the system as the current group account. This command
is only valid when issued by a privileged user.

Format:
SET GROUP n
Parameters:

n is a decimal number specifying the new group
account to be associated with the user's
current account. This number must be within
the range of 0 and the maximum account number
set in AUF (cannot exceed 65,535).

Functional Details:

The SET GROUP command can be entered in command mode, task loacled
mode, task executing mode, or from a CSS. If a task is loaded or
executing, MTM also modifies the group account number in the task
control block (TCB).

If a nonprivileged user enters this command the following message
is generated:

MNEM-ERR POS=GROUP

A user may not set his group account to 255.

48-043 F0O RO1 2

77

Example:

The user signs on to account 205 (with privilege option). The
group account number associated with account 205 is 240. A
DISPLAY FILES command of the following format will cause the
files in account 240 (account 205's group account) to be
displayed:

DF -.-/G

A privileged user can then change the group account with the SET
GROUP command:

SET GROUP 220

Now the same DISPLAY FILES command will cause the files in
account 220 (account 205's new group account) teo be displayed.

The new group account association only exists for the 1length of
the current signon session. The group-private account
associations specified with the authorized user utility are not
changed by this command. The privileged user may change group
numbers as many consecutive times as is desired.

N
i

78 48-043 FOO ROl

2.47 SET KEYOPERATOR COMMAND
The SET KEYOPERATOR command is used to change the operator
character used when defining keywords in a CSS call. When

entered without parameters, this command will display the current
operator character.

Format:

SET KEYOPERATOR [character]

Parameters:

character is any one of the following characters which
will be wused for defining keywords in (CSS

calls:

>

%

&

#

If no character 1is entered, the current
. keyword operator is displayed.

Functional Details:

At signon, the default keyword operator is the equal (=) sign.
When this operator is changed via the SET KEYOPERATOR command,
the new operator remains in effect until signoff or until another
SET KEYOPERATOR command is entered.

48-043 FO0O ROl 2-79

— - — ——

NOTE

The SET KEYOPERATOR command only changes
the operator used when defining keywords
in a €SS call. It has no effect on the
operator used when referencing keywords
within a CSS.

If the character designated as the keyword operator is to be
passed as part of a character string in a CSS call, it must be
placed within single or double quotes.
If the keyword operator is used in a CSS call and is not within
quotes (single or double), and is not a valid keyword assignment,
the following error message is generated.

KEYW-ERR POS=

(x) MUST BE WITHIN 'OR" IF NOT USED AS A KEYWORD OPERATOR.

The SET KEYOPERATOR command can be entered in €SS mode, task
loaded, task executing, and command mode.

2-80 48-043 FOO ROl

2.48 SET PRIVATE COMMAND

The SET PRIVATE command enables a privileged user to change the
private account that the user is currently in without knowing the
password of the new account. This enables a privileged user to
access any account on the system as their private account. This
command is only valid when issued by a privileged user.

Format:

SET ERIVATE n

Parameter:

n is a decimal number specifying the new private
account number the user wants access to,
except account 255. Account 255 can only be
accessed via SIGNON. n is within the range of
0 to the maximum account number set in the
authorized user file (cannot exceed 65,535).

Functional Details: '

The privileges of the user's original signon account remain in
effect regardless of the account the user is currently in. A
user can neither gain nor lose privileges when moving from
account to account.

The SET PRIVATE command can be entered in command mode, task
loaded mode, task executing mode, and from a CSS. If a task is
loaded or executing when a SET PRIVATE command is entered, MTM
also modifies the private account number in the TCB.

If a nonprivileged user enters this command, the following
message is generated:

MNEM-ERR

48-043 FOO ROl 2-81

— e - —— —————

Example:

The user is signed on to account number 255. A DISPLAY FILES/P
command would display all files in account 255. The user changes
the current account with a SET PRIVATE command:

SET PRIVATE 210

The current account number becomes 210. The group account number
remains unchanged. A DISPLAY FILES/P command would display all
files 1in account 210. The user may alter private accounts as
often (consecutively) as is desired. Note that account times and
usage information used by the accounting reporting utility use
the original signon account number regardless of the account the
user is in at signoff time.

38
i

82 48-043 F0OO ROl

— e e e - —— - ——"p A

2.49 SIGNOFF COMMAND

The SIGNOFF command terminates the terminal session. If a user
signs off when a task is loaded, the task is cancelled.

Format:

S IGNQEF

Functional Details:

When a terminal user signs off the system, these messages are
displayed:

RLAPSED TIME=hh:mm:ss CPUTIME=ut ime/ostime
SIGNON TEFT=hh:mm:ss CPU LEFT=hh:mm:ss
TIME OFF=mm/dd/yy hh:mm:ss

The SIGNOFF command can be entered in command mode, task loaded
mode, and task executing mode. It cannot be followed by another
command on the same command line.

48-043 F0OO ROl 2-83

2.50 SIGNON COMMAND

The SIGNON command allows a user to communicate with MTM. No
commands are accepted until a valid SIGNON command is entered.

Format:

fd

SIGNON userid,actno,password | ,ENVIRONMENT=

[, CPUTIME=maxt ime]

NULL[:]

Eclassid=iocounb1 E...,classid=iocountmﬂ]

Parameters:

userid

actno

password

ENVIRONMENT=

is a 1- to 8-character alphanumeric string
specifying the terminal user's identification.

is a 1- to 5-digit decimal number specifying
a valid account number (defined in the AUF).
If the number is greater than the current
account 1limit (set in the AUF) or is not an
established account, an error message is
generated.

is a 1- to 1l2-character alphanumeric string
specifying the terminal user's password.

fd is the file descriptor specifying an
existing file that will establish the user's
environment at signon time.

NUT.L, specifies that the signon €SS routine,
USERINIT.CSS, should be ignored and the user
will establish the environment after signing
on.

If the entire keyword parameter is omitted,
MTM searches all online disks for the signon
CSS procedure USERINIT.CSS/P. The system
account, on the system volume, is searched
last. [If USERINIT.CSS is found, MIM calls the
C8S and executes the routine. I[If it is not
found, MTM enters command mode.

48-043 FOO ROL

If the user does not have the ENV= privilege
(privilege to enter ENV- at signon), MTM will
ignore this parameter and force the
USERINIT.CSS to be executed (if found).

CPUTIME- maxtime is a decimal number specifying the
maximum CPU time to which the session is
limited. 1If this parameter is omitted, the

default established at sysgen time is used.
[If 0 is specified, no limits are applied. The
parameter can be specified as:

mmmm: ss
hhhh:mm: ss
8SSS

classid- is one of the 4-character alphanumeric
mnemonics specified at sysgen time associated
with each specified device or file class.

Locount is a decimal number specifying the maximum
number of I/0 transfers associated with a
particular device class to which the job is
limited. If this parameter is omitted, the
default established at sysgen time 1is used.

If 0 1is specified, no limits are applied to
that class.

Functional Details:
The SIGNON command can be entered in command mode. It cannot Dbe

followed by another command on the same line.

When ENVIRONMENT=NULL is specified, the colon is optional. This
allows the user the ability to specify the null device (NULL:).

The ENVIRONMENT= parameter may be ignored by the system,
depending on the user's account privileges.

Examples:

SIGNON ME, 1.2,PASSWD
SIGNON ME, 118, SWDOC, ENV=NUI.L

SIGNON ME, 118,SWDOC, ENV=XYZ

48-043 F0O RO1 2-85

2.51 SPOOLFILE COMMAND

This command is valid only on systems which are using the SPL/32
spooler. Systems on which the 05/32 spooler is being used may
not use the spoolfile command.

The SPOOLFILE command allows a user to allocate a spool file on
behalf of a specified pseudo device and assign that file to a
specified lu of the currently selected task. This command makes
all spooling options available at a terminal or command
substitution system (CSS) level.

Format:

VYFC
SPOOLFILE lu&lul,pseud dev,FORM=formname ,{ }

P{NQI.MAGE } {CHECKE’OINT

,BLLOCK= blocksize/indexsize {

HOLD }

} [COPIES-n] {

s

} [[BRIORITY=p]
NODELETE

Parameters:

lu is a decimal number specifying the logical
unit to which the pseudo device 1is to be
assigned.

lul indicates that lu is to be assigned to the

same spool file as lul. 1lul must be the first
lu assigned to the spool file.

pseud dev is the 1- to 4-character name of a pseudo
device. The first character must be
alphabetic; the remaining alphanumeric.

FORM= is a desired preprinted form name that can be
specified here. I[f the form specified was not
previously enabled using a FORM command, an
error message 1is 8ent to the monitoring
control or subcontrol task and the request is
processed using the default standard form
name, STD.

2-86 48 -043 FOO ROl

VFC

NOVFC

COPIES=

HOTI.D

RETL.EASE

BL.OCK

blocksize

indexsize

DELETE

NODELETE

PRIORITY=p

48-043 F0O0 ROl

specifies the use of vertical forms control
for the assigned 1lu. When VFC is used, the
first character of each record is interpreted
as a vertical forms control character. If VFC
is not included, there is no vertical forms
control for the device assigned to the
specified lu.

turns the vertical forms
for the assigned 1lu.
option.

control option off
This 1is the default

identifies the number of copies to be output.
[t must be between 1 and 255 or an error
message is sent.

causes the specified file to remain on the
spool queue until a RELEASE request is issued.

enables a spool file for output when the 1lu is
closed.

specifies the index and/or data block size.

is a decimal number specifying the physical
block size in 256-byte sectors, to be used for
buffering and debuffering operations involving
the file. The default size is 1 or the value
entered using the BLOCK command. If this
value exceeds the max imum block size
established at sysgen time, an error will be
printed when attempting to allocate the file.

is a decimal number specifying the index block
size in 256-byte sectors. The default size is
1 or the value entered using the BLOCK
command. Index size cannot exceed the maximum

‘index block size established at sysgen time or

an error will when

allocate the file.

occur attempting to

the file is deleted after output. This is the

default option.
the file is not deleted after output.

p is the desired print priority. If this
option 1is not specified, the print priority
becomes the same as the priority of the task
from which the spool file assign originated.

——— - —— — —— —

Functional Details:

The SPOOLFILE command can be used to make an assignment to a
pseudo device from the terminal or CSS level. If two conflicting
parameters are entered 1in a single SPOOLFILE command, such as
DELETE and NODELETE, the second parameter is executed and an
error message is generated. The SPOOLFILE command can be entered
in task loaded mode.

Example:

SPOOLFILE 4,pdl:,VFC,DELETE

This example causes a spool file to be allocated for pseudo
device pdl: and assigns that file to logical unit 4 of the
current task. Vertical forms control has been specified for the
specified lu and the DELETE option has been selected, which means
the file will be deleted after output.

2-88 48-043 FOO ROL

2.52 START COMMAND

The START command i

Format:

add

START {

Parameters:

address

parameter

Functional Details:

The START command c

—— e - - — i ——— -

nitiates execution of a dormant task.

ress
[,parameter1,...,parametern]

specifies the address at which task execution
is to begin. For user tasks, this is not a
physical address but an address within the
task's own program. For executive tasks, it
is a physical address. If address is omitted
or 1is 0, the loaded task is started at the
transfer address specified when the task was
established.

specifies optional parameters to be passed to
the task for its own decoding and processing.
All user specified parameters are moved to
memory beginning at UTOP. If no parameters
are specified, a carriage return is stored at
UTOP.

an be entered in task loaded mode.

Examples:
ST 138 Starts the currently selected task
at X'138°'.
ST 100,NOSEG,SCRAT Starts the currently selected task

sT ,1000,ABC

48-043 FOO ROL

at X'l00' and passes NOSEG,SCRAT to
the task.

Starts the currently selected task
at transfer address and passes
1000,ABC to the task.

2.53 TASK COMMAND

The TASK command maintains (83 compatibility of MIM to the

operating system. No specific action is performed by this
command .
Format:
taskid
TASK
+.BGROUND

Parameters:

taskid is the name of the taskid that has been loaded

into the foreground segment of memory.

. BGROUND indicates that the task has been loaded as a
background task.

Examples:

T .BG

T COPY

2-90 48-043 F0OO RO1

2.54 TEMPFILE COMMAND

The TEMPFILE command allocates and assigns a temporary file to an
lu for the currently selected task. A temporary file exists only
for the duration of the assignment. When a temporary file is
closed, it is deleted.

Format:

CONTIGUOUS,fsize

bsize

TEMPFILE 1lu, lrecl bsize ‘isize
INDEX |, N / ; / {

Parameters:

lu is a decimal number specifying the 1lu number
to which a temporary file is to be assigned.

CONT IGUOUS specifies that the file type to be allocated
is contiguous.

fsize is a decimal number specifying the total
allocation size in 256-byte sectors. This
size can be any value up to the number of
contiguous free sectors existing on the
specified volume at the time the command is
entered.

EC specifies that the file type to be allocated

is extendable contiguous.

48-043 FOO ROL 2-91

bsize is a decimal number specifying the physical
block size to be used for buffering and
debuffering operations. bsize represents the
block s8ize in sectors of the physical data
blocks containing the file. For INDEX files,
this parameter cannot exceed the maximum block
size established by the system generation
(sysgen) procedure. For EC and NB files, this
parameter mav be any value between 1 and 255

inclusive. If bsize is omitted, the default
value for INDEX files is 256 Dbytes (one
sector). For EC and NB files, the default is

64 sectors.

isize is a decimal number specifying the index block
size. For INDEX files, the default value 1is
one sector (256 bytes). For EC and NB files,
the default wvalue 1is three sectors (768
bytes). The index Dblock size cannot exceed
the maximum disk block size established by the
sysgen procedure. isize may not exceed 255.

INDEX specifies that the file type to be allocated
is indexed,

lrecl is a decimal number specifying logical record
length in bytes. It cannot exceed 65,535

bytes; its default is 126. The logical record
length is meaningful only for indexed and
nonbuffered indexed files.

NB specifies that the file type to be allocated
is nonbuffered indexed.

%

Functional Details:

A temporary file is allocated on the temporary volume.

To assign this file, sufficient room mugst exist in system space
for three buffers, each of the stated size. Therefore, if bsize
or isize is very large, the file cannot be assigned in some
situations. A maximum block size parameter is established in the
system at sysgen time. The bsize and isize cannot exceed this
constant.

To assign an EC or NB file, sufficient room must exist in system
space to contain only the index block of the stated size. The
data blocks for EC and NB files are not buffered in system space
and thus are not constrained to the sysgened block size.

The TEMPFILE command can be entered in task loaded mode and task
execut ing mode.

2-92 48-043 F0OO ROl

Examples:

TE 2,CO,64

TE 14,IN,126

TE 5,EC

TE 7,NB,240/250/5

48-043 FO0O0 ROl

Allocates, on the temporary
volume, a contiguous file with a
total length of 64 sectors (1l6kb)
and assigns it to the loaded
task's lu2l.

Allocates, on the temporary
volume, an index file with a
logical record 1length of 126
bytes. The buffer size and index

block size default to one sector.
The file 1is assigned to lul4 of
the loaded task.

Allocates, on the temporary
volume, an extendable contiguous
file with default data block size
of 64 and index block size of 3
sectors. The file initially
contains no records, and has a
record length of one sector (same
as a contiguous file). The file
is assigned to lu5 of the task.

Allocates, on the default
temporary volume, a temporary
nonbuffered indexed file with
logical record length of 240
bytes, data block size of 250
gsectors, and index block size of
5 sectors. The file initially
contains no records. The file is
assigned to lu7 of the task.

2-93

- men mmam m—a— ——

2.55 VOLUME COMMAND

The VOLUME command sets or changes the name of the default user
volume. It may also be used to query the system for the current
names associated with the user, system, roll, spool, or temporary
volume.

Format:

VOLUME voln

Parameter:

voln is a 4-character volume identifier. If this
parameter is omitted, all current default
user, s8ystem, roll, spool, and temporary
volume names are displayed.

Functional Details:

Any commands that do not explicitly specify a volume name use the
default user volume. No test is made to ensure that the volume
is actually online at the time the command is entered. If voln
is not specified, the names of the current default volumes are
output to the user console.

The default user volume is initially set to the system volume or
the default user volume (set at MTM sysgen time) when the user
signs on. If no volume was specified at MTM sysgen, the default
is the system volume. This command may be entered in command
mode, task executing mode, and task loaded mode.

Example:

VOL
USR=MTM S5YS=MTM SPL-Mb678B TEM=M301 RVL=MTM

2-94 48-043 F00 ROl

When MTM is used in conjunction with the new spooler, SPL/32, the
spool volume is not displayed by the VOLUME command.

Example:

VOL
USR=MTM SYS=MTM TEM=M301 RVL=MTM

48-043 FOO ROl 2-95

——— - - -

| WFILE |

—— " —— T — - o -

2.56 WFILE COMMAND

The WFILE command writes a filemark on magnetic tapes, cassettes,
and direct access files.

Format:

WEILE [£d,] lu

Parameters:
fd is the file descriptor of the file or device
to which a filemark is to be written.
lu is the lu to which the device or file is

assigned. If lu is specified without fd, the
operation is performed on the specified lu
regardless of what is assigned to it.

Functional Details:

The WFILE command can be entered in task loaded mode.

Examples:
WF 1 Causes a filemark to be written on
the device or file assigned to 1lul.
WF M300:AJM.OBJ,4 Causes a filemark to be written on

file AJM.OBJ, which is assigned to
lud4 on volume M300.

48-043 F00O ROl

2.57 XALLOCATE COMMAND

The XALLOCATE command is used to create a direct access file.

Format:

XALLOCATE fd,

Parameters:

fd

CONTIGUOUS

fsize

48-043 F0O0 ROl

keys
CONTIGUOUS,fsize |, '
INDEX |, [{ -

lrecl}-T

is the file descriptor of the file to be
allocated.

specifies that the file type to be allocated
is contiguous.

is a decimal number indicating file size which
is required for cont iguous files. It
specifies the total allocation size in
256-byte sectors. This size may be any value
up to the number of contiguous free sectors
existing on the specified volume at the time
the command is entered.

keys

EC

bsize

islize

INDEX

lrecl

NB

I TAM

specifies the write and read protection keys
for the file. These keys are in the form of
a hexadecimal halfword, the left byte of which
signifies the write key and the right byte the
read key. If this parameter is omitted, both
keys default to O.

specifies that the file type to be allocated
is extendable contiguous.

is a decimal number specifying the physical
block size to be used for buffering and
debuffering operations on indexed files or
data communications devices. When INDEX, EC,
or NB is specified, bsize represents the block
size in sectors of the physical data blocks
containing the file. When ITAM is specified,
bsize represents the buffer size in bytes.
For INDEX files and ITAM buffers, this
parameter cannot exceed the maximum block size
established by the system generation (sysgen)

procudure. For EC and NB files, this
parameter may be any value between 1 and 255
inclusive. If bsize is omitted, the default

value for INDEX files and ITAM buffers is 256
bytes (one sector). For EC and NB files, the
default is 64 sectors.

is a decimal number specifying the index block
gsize. For INDEX files, the default value |is
one sector (256 bytes). For EC and NB files,
the default value 1is three sectors (768
bytes). The index block size cannot exceed
the maximum diskblock size established by the
sysgen procedure. Neither bsize nor isize may
exceed 255.

specifies that the file type to be allocated
is indexed.

is a decimal number specifying the logical

record length of an indexed file or
communications device. It cannot exceed
65,535 bytes. Its default is 126 bytes. It

may optionally be followed by a slash (/)
which delimits lrecl from bsize.

specifies that the file type to be allocated
is extendable contiguous.

specifies that the fd to be allocated 1is an
ITAM buffered communications device.

48-043 FOO RO1

Functional Details:

The XALLOCATE command is different from the ALLOCATE command 1in
that if fd 1is an existing file, it is deleted and reallocated.
If fd does not exist, it is allocated.

If the fd to be allocated is a device name instead of a filename,
a DEL-ERR TYPE=VOL occurs.

The XALLOCATE command can be entered in command mode, task loaded
mode, and task executing mode.

48-043 F0O ROl 2-99

o ———— - - - -

2.58 XDELETE COMMAND
The XDELETE command is used to delete one or more files. If the
file does not exist, no error is generated.
Format:
XDELETE fd4 Efdz...,fdn]

Parameter:

£d is the file descriptor of the file to be
deleted.

Functional Details:

A file can only be deleted if it is not currently assigned to a
task and its write and read protection keys are 0 (X'0000').

An MTM user can only delete private files.

Example:

XDEL FIXD:05323240.817,RADPROC.FTN

2-100 48-043 F0O0 RO1

: CHAPTER 3
MTM/NON-MTM TASK INTERFACES

3.1 INTRODUCTION

Multi-Terminal Monitor (MTM) allows the terminal user to transfer
control of a terminal to tasks cther than MTM and then return the

terminal to MTM control in an orderly fashion. This orderly
transfer of control 1is accomplished via the use of interface
protocols that are invoked by specific MTM commands. The MTM

terminal user can interface with:

o foreground tasks,
e HASP tasks, and

e ITC/RELIANCE tasks.

3.2 INTERFACING WITH A FOREGROUND TASK

The foreground interface allows an MTM user to connect an MTM
terminal to any specified foreground task selected via the
following command:

Format:
$foreground task-id
Parameter:

foreground task-id is a task-id of 1- to 7-characters
specifying the selected foreground task
to which the MTM terminal 1is to be
connected. The following task-ids are
restricted and cannot be used:

HASPF
.MTM
.SPL
ECM

48-043 FO00 ROl 3-1

Functional Details:

This feature 1is available to all MTM users that have the
$foreground privilege.

This command can be entered in command mode as long as no CSS is
active. This command is not available in batch mode. While a
terminal is connected to a foreground task, all MIM messages to
that terminal are ignored.

The foreground task to which this command is directed must have
particular characteristics and options enabled in oxder to
establish, maintain, and terminate the interface. The foreground
task must be linked with option UNIVERSAL and must be able to
send and receive messages via SVC 6. For further information

regarding SVC 6 use, refer to the 08/32 Supervisor Call (8VC)
Reference Manual.

Example:

$XYZ

In this example, the MTM terminal issuing the §$XYZ command
becomes connected to the foreground task identified as XYZ.
A subsequent DISPLAY USERS command from an MTM terminal will

display the terminal transferred to the foreground task's (XYZ)
control as shown:

DAVE - NULL:@$XYZ

3.2.1 Programming Details

The foreground task selected with the $FGRND command must have
the following interface and a message buffer ring with message
entries enabled. The task-id may have no more than seven
characters.

The selected task gets the following message from .MTM:

ADD terminal-dn,priv-acc,group-acc,userid <CR>

The foreground task must now assign the terminal with terminal-dn
and immediately send the following message to .MTM:

$STA terminal-dn, status <{CR)

3-2 48-043 F0O0 RO1

To return the terminal to MTM control, the foreground task should
close the terminal and send the following message to .MTM:

$END terminal-dn<{CR>

MTM assigns the terminal and the user returns to MTM control.

Parameters:

terminal-dn device name of the user's terminal (variable

length from two to five characters including
":")

priv-acc user's private account number (fixed length of
five characters, right Jjustified, leading
Zeros.)

group-acc user's group account number (fixed length of
five characters, right Jjustified, 1leading
Zeros)

user id userid under MTM (fixed 1length of eight

characters left justified)

status returned from foreground task:

X'30' all OK - foreground task has assigned
the terminal.

X'31' assign-errors - terminal was not
assigned by the foreground task (.MTM
reports TASE-ERR to the user).

X'39' space error - terminal would have
exceeded the maximum number of allowed
terminals. (.MTM reports TSPC-ERR to
the user.)

{CR> carriage return (X'OD')

Functional Details:

Every ten seconds, MTM tries to reassign the terminal; 1i.e., 1if
the foreground task closes the terminal or goes to end of task
without sending a $END message, the user terminal remains
unassigned no longer than 10 seconds.

48-043 FO00 ROl 3-3

3.3 HASP INTERFACE

The HASP interface allows an MTM user to communicate with a
specified HASP control task in the foreground. The option for
the HASP interface must be enabled at MTM sysgen in order for it
to be available to MTM users. When the HASP task is started, the
optional start parameter OUT=/MTM must be used to allow messages
to be output to MTM.

Format:
$HASPxX
Parameters:

XX is a two-character alphanumeric extension of
the HASP control tasks foreground id.

Functional Details:

Option UNIVERSAL is required when linking the HASP task. Once
the §$HASP command has been executed, the MTM terminal is then in
HASP mode. The HASP mode read prompt is:

L1

All commands entered on the terminal are sent to the specified
HASP task. All commands starting with a $ are prefixed with the
HASP message command and then sent to the specified HASP task.
All messages sent by HASP to the terminal are displayed in the
following format:

HASPxx> message.....

When the user is ready to return the terminal to MTM control, the
following command is used:

SMTM

The terminal is then returned to MTM control.

3-4 48-043 FOO RO1

The $HASPxx command can be entered in command mode only. No task
can be loaded or executing, no CSS active, and the user must not
be in batch mode. While in HASP mode MTM messages from other
users and the system operator can be displayed on the HASP
terminal.

The specified HASP task is set to the same private and group
account number as the user. If $MTM is entered, the specified
HASP task remains on these accounts and continues sending
messages to the user terminal until another user connects to the
same HASP task or until signoff.

Example:

$HASPO3

This example selects the HASP task with the taskid HASPO3 in the
foreground. The terminal is now in HASP mode (if no errotrs
occurred.)

3.4 ITC/RELIANCE INTERFACE

The environmental control monitor (ECM) provides facilities for
terminal users to transfer control of their terminals between
Reliance and MTM, or between different Reliance environments,
without use of the system console or a Reliance controller's
terminal. For details about the use of the ECM, refer to the
Environmental Control Monitor/32 (ECM/32) Systems Programming and
Operations Manual.

48-043 F0O ROl 3-5

CHAPTER 4
PROGRAM DEVELOPMENT

4.1 INTRODUCTION

This chapter is written as a program development tutorial session
for new to intermediate users. The program development commands
enable you to easily create a program and modify, maintain, and
execute it from the terminal.

4.2 CREATING A SOURCE PROGRAM

To create a source program that will exist in a single source
file (language environment), enter a program development language
command with a user-specified filename. Source filename
extensions are program-supplied and language dependent. The
language command entered must be consistent with the language of
the source file. When a language command is entered, a file |is
allocated (if it does not already exist) with the user-specified
filename and program-supplied filename extension, and the editor
is 1loaded and started. If the file exists, it is set as the
current program (EDIT is not loaded.)

Table 4-1 lists the program development language command syntax
and program-supplied filename extensions.

TABLE 4-1 PROGRAM DEVELOPMENT LANGUAGE COMMANDS

(using optimizing
compiler)

! ! ! PROGRAM i
i , i] DEVELOPMENT i
i LANGUAGE | COMMAND SYNTAX {FILENAME EXTENSIONS |
:=".‘_‘==================================:’========z====‘=?========:=?==:
i CAL/32 ! CAL [[voln:] filename] i .CAL i
i i i i
| CAL Macro/32 | MACRO [([(voln:] filename] | .MAC i
| §] 1
I] ! 1
i FORTRAN VII | FORT [([voln:] filename] | .FTN i
i i (using development ' H
H ! compiler) ! i
' i i i
{ FORTRAN VII | FORTO [([voln:] filename] | .FTN i
[}]]]
! | i E
i] i i

48-043 F0O ROl 4-1

TABLE 4-1 PROGRAM DEVELOPMENT LANGUAGE COMMANDS (Continued)

! ! ! PROGRAM i
{ ! H DEVELOPMENT |
! LANGUAGE H COMMAND SYNTAX {FILENAME EXTENSIONS |
! FORTRAN VII | FORTZ [([voln:] filename] | .FTN !
H ! (using the universal ! !
i ' compiler) ! 3
] i i i
{ COBOL { COBOL ([[voln:} filename] | .CBL |
i i i i
{ REPORT { RPG [[voln:] filename] i .RPG H
| PROGRAM i i i
i GENERATOR i i i
i i i]
H { PASCAL [[voln:] filename] | .PAS |

Pascal

Program development language commands automatically set up
certain processes that will be used for the remainder of the
development effort. These processes are:

e Assignment of the standard source file language extensions,
® The compiler or assembler to be used,
e The standard Perkin-Elmer run time libraries to be linked, and

e The language tab character, a back slash, (\), and tab
settings pertinent to the specified language, (displayed when
the editor is entered).

These automatic specifications free you from constantly having to
remember them. The user-supplied filename with the
program-supplied extension will identify the source file
throughout the program development session.

Once the editor is loaded and started, the full range of Edit

commands are available to create the source file. See the 08/32
Edit User Guide.

4-2 48-043 FO0O ROl

Example:

*FORT PROG1

** NEW PROGRAM
-EDIT

-G PROGL1.FTN
-0 TA = \,7,73
-0 COM = CON:

(edit session)

-

>SAVEX*

>END

-WORK FILE = M67B: PROGL1.000/P

~RENUMBERED INPUT FILE AVAILABLE, M67B: PROGL.FTN/P

In this example, the FORTRAN language command entered with a
user-supplied filename allocates an empty file, PROGLl.FTN, and
loads and starts the editor. The FORTRAN tab settings are set

and displayed. The filename you specify is set as the current
program and is always accessed and/or executed if you do not
specify another filename. You can start to enter your program

after these messages are displayed:

** NEW PROGRAM
~EDIT
>

You can also create a source file by entering a language command
without a filename. Then enter the EDIT command with a filename.
The EDIT command allocates a file and loads and starts the
editor. You can employ all of the Edit commands to create your
source file.

Example:

*FORT
*EDIT PROGL
~EDIT - PROGL.FTN

(edit session)

>SAVE ¥
>END

48-043 FOO ROl 4-3

The FORT command creates the language environment. The EDIT
command entered with PROGl1 loads and starts the editor and
allocates PROGL.FTN for the source file that will be created via
the Edit commands. PROGL1L.FTN is saved and the edit session is
ended.

4.2.1 Creating a Data File

To create a data file, save the socurce program file to disk, and
clear the edit buffer by deleting all lines currently in the
buffer. .

Example:

>SAVEX
>DELETE 1-
>AP

(use the editor to create PROG1.DTA)

>SAVE PROG1l.DTA
>END

In this example, PROGL.FTN is saved and then cleared from the
edit buffer. The Edit APPEND command allows data to be entered
in the data file. The data file is saved, and the edit session
is terminated with the END command.

4.3 EXECUTING A PROGRAM

The program development EXEC command loads and runs the current
program.

Example:

*EXEC
**x EXECUTION OF PROGL.FTN FOLI.OWS:
-END OF TASK CODE=0

This example assumes that PROG1.FTN already exists as the current
program. The EXEC command loads and runs the current program,
PROG1.FTN, and displays a 2zero end of task code (if no errors
occurred). A nonzero end of task code indicates an error was
encountered.

4-4 48-043 F00 ROl

4.4 MODIFYING A PROGRAM

To modify your program, enter the appropriate language command
with the filename of the source file to be modified. Enter the
EDIT command to access the editor.

Example:

*FORT PROG1
*EDIT
-EDIT -~ PROGLl.FTN

-

(edit session to modify PROG1)

>SAVE¥*
>END

In this example, the FORTRAN language command is entered with the
filename PROGl. The editor is accessed via the EDIT command, and
the name of the current program is displayed. The editor is used
to modify the source file, PROGL.

4.5 RE-EXECUTING A MODIFIED PROGRAM

When the EXEC command is issued, the source program is compiled,
linked, and executed, creating object and image modules. If the
source file is subsequently modified, the dates assigned to the
previously compiled object and previously linked image modules
will not be current.

Dates and times are assigned to source, object, and image modules
when they are created. The dates are stored in the system
directory.

The EXEC command causes the object and image modules to be
datechecked. They are then compiled and/or linked if they are
out of date. The EXEC command then 1loads and runs the image
program.

Example:

*EXEC PROG1l ,

~FORTRAN PROGL1.FTN

~END OF TASK CODE=0

-LINK PROGl.0OBJ

~-END OF TASK CODE=0

** EXECUTION OF PROG1l FOLLOWS:
-END OF TASK CODE=0

48-043 FO0O0 ROl 4-5

This example assumes that PROG1L.FTN already exists. The EXEC
command, entered with PROGl, compiles, links, and then executes
the image program. A zero end of task code 1is displayed after
each process if no errors were encountered.

The program development RUN command can also be used to execute
a program. The RUN command does not datecheck, compile, or link.
It simply runs a program that was already compiled and linked.

Exampie:

*RUN PROG1
xx EXECUTION OF PROG1l FOLLOWS:
-END OF “:#3K CODE=0

I[f the EXEC or the RUN command is entered without a filename, the
current program is executed. I[f there 1is no current program,
this message is displayed:

** CURRENT PROGRAM NOT SPECIFIED

If you only want to compile a program without 1linking or
executing it, the program development COMPILE command can be
used. The program development COMPLINK command compiles and
links a program, 1if necessary, but does not execute it. The
nroagram development LINK command links the object program but
does not execute it. These commands are explained fully in their
respect.ive sections.

4 .» EXECUTING MULTIPLE PROGRAMS AS A SINGLE PROGRAM

.« source program exists in multiple source files (multi-module
anvironment), you must include the file descriptors (fd) of each
gsource file in an environment descriptor file (EDF). The EDF
retains the identity of all the source files in the multi-module
environment that will be used to create a program.

When you enter the program development ENV command, you indicate
that your source program exists in more than one file and is to
be created 1in a multi-module environment. The ENV command
creates the multi-module environment and allocates an EDF to
contain the fds of the source files.

Example:
*ENV ALILPROG

** NEW ENVIRONMENT

4-6 48-043 FOO RO1

In this example the ENV command with the user-specified EDF name,
ALLPROG, creates the multi-module environment.

No language extension is specified with the EDF filename since
each module can be written in a different language. Attempting
to enter an extension will cause an error. The user-specified or
default volume is searched for ALLPROG. If it is not found, an
empty file named AILPROG 1is allocated, and the message, NEW
ENVIRONMENT, is displayed. The EDF is now ready to receive the
fds of the multiple source files. The program development ADD

command is used to add source program fds to the the multi-module
environment.

Example:

*ENV ALLPROG

** NEW ENVIRONMENT
*ADD PROG1.FTN
*ADD PROGZ2.CBL

The multi-module environment is created and an EDF, ALLPROG, is
allocated via the ENV command. The ADD command adds the fds,
PROGL.FTN and PROG2.CBL, to the multi-module environment.

When the ADD command is entered with a user-specified fd, the EDF
is searched for that fd. If the fd does not already exist in the
multi-module environment, it is added. 1If it already is in the
multi-module environment, this message is displayed:

*x FILENAME CONFLICT - ENTRY NOT ADDED

You must rename the file or remove the existing entry from the
environment.

The program development LIST command displays the fds in the

multi-module environment, and the program development REMOVE
command removes fds from the multi-module environment.

48-043 FO0O ROl 4-7

-— —— ——

Example:

*LIST

**x CURRENT ENVIRONMENT = ALLPROG
-PROG1.FTN

-PROG2.CBL

*REMOVE PROG2

*LIST

** CURRENT ENVIRONMENT = ALLPROG
-PROG1.FTN

*EXEC

x*x EXECUTION OF ALLPROG FOLLOWS:
**x END OF TASK CODE=0

b4

The LIST command displays PROGL1L.FTN and PROG2.CBL as the fds 1in
the multi-module environment. The REMOVE command removes PROG2.
CBL., and the LIST command displays the contents of the
multi-module environment. The EXEC command runs the program,
ALILPROG.

If the ADD or REMOVE command is entered without an fd or if the
fd is incorrect, this message is displayed:

**x SYNTAX ERROR

Not all program development commands are available in both
language and multi-module environments. Table 4-2 shows the
commands that are available in the environments.

TABLE 4-2 PROGRAM DEVELOPMENT
COMMAND AVAILABILITY

H H { MULTI- |
{ COMMAND | L[LANGUAGE | MODULE |
=2==E-¢====&'u‘=’===32¥:====Ei’%e‘=&#a=ﬂ=
| ADD | | x|
! COMPIT.E | X 1 X H
{ COMPLINK | X H X !
{ EDIT ! X } X H
i ENV] i X |
{ EXEC i X | X H
! LINK H X ! bd !
! LIST | H X i
{ REMOVE | | X !
i RUN i X i X H

4-8 48-043 FOO ROl

If a command that is meaningful only in a multi-module
environment is entered in a language environment, this message is
displayed:

¥** NOT IN MULTI-MODULE ENVIRONMENT

In order to re-access a source program, modify the source file,
and 1include it in a multi-module environment, enter the ENV
command followed by the EDIT command and use the editor to modify
the source file.

Example:

*ENV ALLPROG

*ADD PROG1l.FTN

*LIST

** CURRENT ENVIRONMENT = ALILPROG
-PROGZ2.CBL

-PROG1.FTN

*EDIT PROG1.FTN

-EDIT PROG1.FTN

(edit session)

>SAVEX*

>END

*EXEC

-PERKIN-ELMER 0S/32 LINKAGE EDITOR 03/242 R00-01
-END OF TASK CODE = 0

** EXECUTION OF ALLPROG FOLLOWS:

-END OF TASK CODE = 0

>

The multi-module environment is entered via the ENV command and
the EDF name, ALLPROG. PROG1l.FTN is added to the multi-module
environment. The LIST command displays the filenames remembered
in the EDF. The EDIT command accesses the editor to modify
PROGL1.FTN. When the edit session is ended, the EXEC command
executes all the modules as one program, displaying an end task
code of 0 after successful execution (if no errors were
encountered).

48-043 FO0O0 ROl 4-9

e i Gean e M mmar e wman e e wman w——

4.7 HOW TO RECOVER FROM ERRORS

If an error occurs 1in program compilation or execution, the
process aborts, and a nonzero end of task code and an error
message are displayed.

Example:

**x COMPIILE ERRORS, LISTING ON PR:

Program development makes it easy for the user to recover from
errors. Compile errors are printed in the listing of the source
file containing the error.

Use the editor to correct the error and re-execute the program.
The EXEC command will recompile only the modified modules.

In some instances the EXEC command will recompile a successfully
compiled module if the time between the creation of the source
and object is less than one minute.

See the 05/32 Link Reference Manual for an explanation of 1link
error messages.

4.8 ASSIGNING LOGICAL UNITS

Program development defines and sets global variables that are
assocliated with particular devices. These devices have default
logical unit (lu) assignments. The global variable names and
settings are displayed when the user signs on. Table 4-3 shows
the variable names, their default settings, and lu assignments.

TABLE 4-3 PROGRAM DEVELOPMENT
DEFAULT VARIABLE
SETTINGS AND LU

ASSIGNMENTS
| VARIABLE | | LOGICAL |
e]
| ssysiN § cON: | 1 |
E SSYsSouT % CON: g 2 g
% SSYSPRT E PR: ; 3 E
g SSYSCOM % CON: ; 5 g
; SSYSMSG ; CON: ; 7 ;

4-10 48-043 F0OO ROl

Before running a program, ensure that the default variable and 1lu
settings are appropriate. The input device can be changed from
the console (default) to a pre-allocated file.

Example:

*SSYSIN FILE.IN

Listings can be sent directly to a file rather than to the
printer (default).

Example:

*SSYSPRT FILE.OUT

The user has the option to specify lu assignments unique to a
particular session. This is accomplished by creating a file, via
the editor, that contains the new lu assignments. This file must
be saved with the extension .ASN, and the last line in the file
must be a $EXIT statement. The program development software will
first search for a file with the extension .ASN. If no file 1is
found, the default 1lu assignments are used. The HELP command
provides all the information needed to create a new assignment
file.

Any variable settings you change supercede the default variable
settings and are in effect until you change them again or sign
of f£.

4.9 PROGRAM DEVELOPMENT COMMANDS

This section describes the functions of each of the following
program development commands:

ADD
COMPILE
COMPL.INK
EDIT

ENV

EXEC
LINK
LIST
REMOVE
RUN

48-043 F00O RO1 4-11

4.9.1 ADD Command

The ADD command adds the fds of source programs to the
multi-module environment. These fds are remembered in the EDF.
The ADD command is valid in the multi-module environment only.

Format:

ADD fd [, cssprod]

Parameters:
fd is the file descriptor of the source file to
be added to the multi-module environment.
cssprod is the name of the CSS procedure to be used

when nonstandard compilation is required.

Functional Details:

The ADD command causes the current EDF to be searched for the
specif ied f£fd. If the specified fd is not found, it is added to
the multi-module environment. If the fd currently exists in the
environment, the following message is displayed:

** FILENAME CONFLICT - ENTRY NOT ADDED

[f the £fd is omitted, or is in an incorrect format, this message
is displayed:

x* SYNTAX ERROR

‘If the fd is entered without an extension, this message is
displayed:

** EXTENSION OMITTED

4-12 48-043 F0O0 ROl

The cssprod parameter must be used if the extension of the
specified file differs from the language extensions listed in
Table 4-1. If this parameter is omitted when you are using a
nonstandard extension, the following messages are displayed:

** NONSTANDARD EXTENSION
** ALTERNATE CSS REQUIRED

The alternate CSS cannot be specified by just a volume name. It
must contain at least a filename.

48-043 FO0O ROl 4-13

4.9.2 COMPILE Command

The COMPILE command compiles a source module and creates an
object module if an up-to-date object module does not already
exist in the language environment. The COMPILE command
conditionally compiles when the ALL parameter is specified in the
multi-module environment. The COMPILE command does not execute
a program.)

Language Format:

voln: filename
COMPII.E { v

Multi-Module Format:

filename

ALL

COMPILE

Parameters:

voln: is a 1- to 4-character alphanumeric name
specifying the volume on which the source file
resides. If this parameter is omitted, the

default is the user volume.

filename is a 1- to 8-character alphanumeric name
specifying the source file. If this parameter
is omitted, the current program is the
default.

AlL specifies that all files in the multi-module
environment whose fds are remembered in the
EDF are to be compiled, if necessary. When

this parameter is specified, the COMPILE
command conditionally compiles all the files
that are in the multi-module environment.

41-14 48-043 FOO RO1

Functional Details:

A successful compilation ends with a zero end of task code. An
end of task code other than zero indicates a compilation error

that will be printed on the 1listing created as a result of
compile.

If the environment is not set when you enter the COMPILE command,
this message is displayed:

x* ENVIRONMENT NOT SET

If a filename is not entered and a current program is not
specified, this message is displayed:

**x CURRENT PROGRAM NOT SET

If a specified filename does not exist, the following message 1is
displayed:

xx file NOT FOUND

The COMPILE command functions are illustrated in Figures 4-1 and
4-2.

48-043 FOO ROl 4-15

ALLPROG . EDF

OBJFPT D SOURLE

| PROGL. FTN'

PROGl FTN |

i
6/20 |

i PROG2 . CBL|

i
6/20 i

MODULES A

FTER coM

6/20

]
o
=

{ PROG1.0BJ |

1
!
]
i

‘COMPILE

6/20

A

PROGZ CBL} |{PROGZ2.0BJ|

NO
EXECUTION

Figure 4-1 COMPILE Command Functions in the Language

Environment

48-043 FOO ROl

i]]
] 1] f
i i n 4
] [i @]
] k] —
li hi K =
i L 4 mnu
k i] U
1k h 4 5]
—_ k [»
& i T e,
ki L~ i
e I li i ——— - _——— ————
— N W [I] [) 1 ['
— s) ! | @ 1 ' m !
[a PR _——— 0ok ' O wn ! e} o | rO O
= [! iRy b | I B t s N Y
Q ' m f [~ 1 N N 1~ N 1 N N £ -
(ST rO ! 8Ok 1Y W0 } 'Y Wt 1Y O !
i 1 s o~ B Db i O i : t O : e i
i i N N Bk ! g ! P ' ! | !
(" 1y 0! g t O i O ! o ! H e ! 3
Ol ' O ! TSI ————— i [—— - _———— [}
f i t M 1 i Bl ~ i ~ A e
m ok (I o ko h 1 Rd) 1 ! 0,
om b —_————— |- A ! i i ! =
i I i 4 1B 1 1 O
n ——— - —————— [N)W _——— ——— i —— = - _——— 8]
ok 'z 1 1 1 ik 2z 1 o i a] 1 Z 1 1 J !
i I B ! i m ! hod N t i i ! i [=] 1 @ :
(= I 2 O T o i R ' O e ot i ' O 1o o
Qt s N IR O Qo N S - o~ ! H P e N ! 1 s Nt i
o [e T N | [N I N K Qi I I NG t N N\ - te- N PN N} -
b (I & B Ve ' ot - | 1 0 (&) O ! &) o | 1 O !
i 1 O ! 1 O ! i 1 (e} 1 1 Q ! i O 1 1 O '
~ t X i ! X ! N (A ! (I ! (A 1 (4 H
(@I 'y ! [N ! ISt ! ! [N 1 (I ! []
[T —_——— ———— B R H ———— -————— —_——— - —————
= i A ~ [Y
M ! [omk
QO —————— - = —————— E O
i ! . 1 h i
(ol 1 =] ! (m
M__ | (03] t __M I
i { » ! I n
I ! (&) |] [
m k% ! O ! [
(ST ! o ! O
oo ! n) oo
o ! —_ | oDk
O ! | 1 1O
[HIR i =4 i i
It —————— - ————— —— ! i
li [fi
4 It li
I [} [
1 i I
i H]
i It U
fi []
4 []

—— e e e . TrEn e W tER AR Gen e S weee Sean ede AR AR e e AR R G SeMR Srem TRAR MEE S Geme S GraR eEE AR e RER SPn TPER e eem Aeem TR ML S e e Geen men Seem e

Figure 4-2 COMPILE Command Functions in the Multi-Module
Environment

4:"].7

48-043 F0O0 ROl

{ COMPLINK |

4.9.3 COMPLINK Command

The COMPLINK command performs a conditional compile .and a
conditional 1link by datechecking source, object, and image
modules in language and multi-module environments. If all

modules are up-to-date, this command does not perform any
function. This command does not execute the program.

Language Format:

voln: filename
COMPL.INK -

Multi-Module Format:

COMPL.INK

Parameters:

voln: is a 1- to 4-character alphanumeric name
specifying the volume on which the source file
resides. If this parameter is omitted, the

default is the user volume.

f ilename is a 1- to 8-character alphanumeric name
specifying the source file. If this parameter
is omitted, the current program 1is the
default. Filename specification is meaningful
in a language environment only.

Functional Details:

When the COMPLINK command is used in a multi-module environment,
all the fds contained 1in the EDF are datechecked, compiled if
necessary, and linked.

If the specified source file is not found, the COMPLINK sequence
terminates, and this message is displayed:

¥*x fd NOT FOUND

4-18 48-043 FO0O ROl

If you specify any arguments in a multi-module environment,
message is displayed:

** TOO MANY ARGUMENTS

The

1
1
i
i
]
1
[}
|
1
|
i
|
[}
I
)
i
t
|
]
I

e wmam o mer wmem e e e e e e e e e Men e e ma e w—— ——

SOURCE OBJECT,

{ PROG4 . CBL |

]
6/20 |

PROG4 CBL.

]
6/20 |

N
§

{ PROG4 . CBL |

Figure 4-3

48-043 FOO ROl

6/20

COMPILE

AND IMAGE MODULFS BEFORE COMPLINK

{ PROG4 .0OBJ | IPROG4 TSK.
[[} 1]
|] i i
i 6/15 i i 6/15 H

AND IMAGE MODULES AFTER COMP[[NK

PROG4 OBJ |

6/15

/\

“A%ECHECK

| PROG4 .0BJ |

P>
o

6/20

1 1
] !
1]
|]
I L]

PROG4 TSK|
i EXECUTION
1
]

1
]
1
!

{ PROG4 . TSK |

]
6/15 |

6/20

NO

COMPLINK Command Functions in the Language
Environment

this

COMPLINK command functions are shown in Figures 4-3 and 4-4.

4-19

. — o ot e o i o it A Ak i e e e R S VSN bl i W e b o ek e S ew A A o e e o e - - Gim SAm o e e vt Yo e o i e s i e .

SOURLE OBJECT AND IMAGE MODULES BEFORE COMPLINK

ALLPROG . F.DF

SOURCE OBJECT,

e T oo o e

{PROGZ PBL{

|
| 6/20 [

|PROG1 FFN'
i |
i 6/20 5
{ PROG2 . CBL|
i i
' !
] i

I e g T e i I Em L Em & e S e e no

- -

| PROG1.0OBJ |
| |
H 6/10 i

.PROGZ OBJn

{]
1 1
i 6/10 |

{ PROG1.0BJ |
]
[}
{ 6/10

| PROG2.0BJ| ->

| [}

i i

i 6/10 i
i A

1 1
1 e e

" DATECHECK

->

i =>{PROG1.0OBJ | ->

i 6/20

}PROGZ OBJ‘—)

1
P>
:

—— - - - b e - ———

L o o ommr o n oz e

ST RN TR LT S T AN R ST I ST IT ST N R B O T

AND [MAGE MODUL.ES AFTER COMPLINK

ETAT LT AT B W0 AT TR ET YT ST OET AT TT U oz oI v g

o e o AT Ee o ome om

ALLPROG.TSK

- b o v
1
'
t

e

AT.LPROG. TSK

=

T T T ST LT T N I T T N N T L ST R RN M S T s T o e o

LT AT BT T ST I OET ST T IV

NO
EXECUTION

Figure 4-4 COMPLINK Command Functions in the Multi-Module

Environment

48-043 FOO RO1

4.9.4 EDIT Command

The program development language commands load and start the
editor for you to <create a source or data file. You can also
enter the EDIT command to create or modify a source or data file.

Format:

voln: filename

Parameters:

voln: is a 1- to 4-character alphanumeric name
specifying the volume on which the source file
resides. If this parameter is omitted, the

default is the user volume.

filename is a 1- to 8-character alphanumeric name
specifying the file to be created or edited.
If this parameter 1is omitted, the current
program is the default.

Functional Details:

A language command entered with a filename loads and starts the
editor if the file does not exist. However, if the language
command is entered without a filename, enter the EDIT command

with a filename to access the editor and create or modify a
source file.

If this command 1is entered 1in a NULL environment, the tab

character 1is set and displayed, but the language tabs are not
set.

If this command is entered with a filename not contained in a

multi-module environment, this message is displayed:

*x FILENAME NOT IN ENVIRONMENT

48-043 FOO ROl 4

i

21

If this command is entered without a filename in the multi-module
environment and there is no current program, this message is
displayed:

*x CURRENT PROGRAM NOT SPECIFIED

If this command is entered without a filename when there is a
current program in the multi-module environment, the name of the
current program is displayed:

** EDIT - current program

For information on the Edit commands, see Section 1.6.2, or the
05/32 Edit User Guide.

4-22 48-043 FOO ROl

e . - —— ——

4.9.5 ENV Command
The ENV command entered with an EDF name creates the multi-module

environment and allocates the user-specified EDF, 1if necessary.
This command can also be used to clear the current environment.

Multi-Module Format:

voln: { filename
ENV
NULL
Parameters:
voln: is a 1- to 4-character alphanumeric name
specifying the volume on which the EDF
resides. If this parameter 1is omitted, the

default is the user volume.

filename is a 1- to 8-character alphanumeric name
specifying the EDF, filename.EDF. If this
parameter is omitted, the default 1is the
current program. The EDF extension is

automatically appended and must not be entered
by the user.
NUL.L clears the current environment.

Functional Details:

If the filename parameter is entered with an extension, this
message 1is displayed:

**x SYNTAX ERROR

If the ENV command is entered without a parameter, the name of
the current environment is displayed:

** CURRENT ENVIRONMENT = XXXXXXXX

48-043 FO0O0 ROl 4-23

If the environment was not set or the NULL parameter was
specified, this message is displayed:

** NO CURRENT ENVIRONMENT

4-24 48-043 FOO RO1

4.9.6 EXEC Command

The EXEC command datechecks source, object, and image modules in
language and multi-module environments and compiles or links them
if they are outdated. When the image program is current, it is
loaded and run.

Format:

filename

EXEC v} L"start parameters"]

Parameters:

voln: is a 1- to 4-character alphanumeric name
specifying the volume on which the source file
resides. If this parameter is omitted, the

default is the user volume.

f ilename is a 1- to 8-character alphanumeric name
specifying the program to be run. If this
parameter is omitted, the current program or
EDF name is the default.

"start are parameters particular to the program
parameters” to be used. These parameters, = usually
specified with the operator START command, can
now be specified with the program development

EXEC command. Start parameters must be
entered with beginning and ending quotation
marks.

Functional Details:

When the EXEC command is entered in a multi-module environment,
all modules contained in the EDF are compiled and linked if they
are outdated. The task is then loaded and run.

If start parameters are entered, they are invoked every time the
task is executed.

Start parameters must be entered with beginning and ending
quotation marks.

48-043 F0O0 ROl 4

25

— —— - ——

EXEC command funhctions are shown in Figures 4-5 and 4-6.

A e R AR TS SRem MR G WRem AWe mmeR GRS Gmen Meee MMee Smee mew mem

e o e i s i e i sl o i e o e M i kM i At i s Dl s e ot e i e e i e e o b i 8 o i o

SOURCE, OBJECT, AND IMAGE MODULES BEFORE EXEC

!
==..===~==:.==x=:s.'===nnzs==azaﬂaguuﬂu:euaza-nsue:uﬂx::s:awaaa:z:s‘
|

______________________________ ‘

{|PROG1. FTN' i PROG1.0BJ | { PROG1.TSK| H

i P P ! |

i 6/20 i | 6/18 i | 6/18 ' |
____________________________ 1

|

SOURCE, OBJECT, AND IMAGE MODULES AFTER EXEC H

|

|

|

|PROGL.FTN| |PROG1.OBJ| |PROGL.TSK| |
] (R (N | |
i 6/20 | | 6/18 i | 6/18 l |
____________________________ g
A I A i i
Y ! |
DATECHECK |

]

___________________________ ;
\PROGL.FTN| |PROGL.OBJ| |PROGL.TSK! |
| 1> | =T |-> TASK |
| 6/20 | | 6/20 | | 6/20 | EXECUTION |
e o e e i e ot e i o e i e o i
: Al A :
— P! : !
COMP ILE LINK :

1

1

e S L - e e e Les e A " - - i o— t— i S A R e s am e A% hew v hen Ree Sem s e

Figure 4-5 EXEC Command Functions in the Language
Environment

4-26 48-043 F0OO ROl

@ ae- - - M mmE Ahee EUm T Smew M Gme hem M mem mavm dhde Mmer Ghe GG MAr GEEE MMGE MREE N GRNE GNTE BT TR hw GRS WEeE BT MM ARG MG MEN Een WY Gner EE SRe SmEE GO e e

SOURCE, OBJECT,

AND IMAGE MODUILES BEFORE EXEC

->|PROG1.FTN| |{PROG1.0BJ|
| b |
ALLPROG.EDF | 6/20 i+ 6/15 !

— i —— i — o i o

->{PROG2.CBL { PROG2.0BJ |
! P !
| 6/20 1 | 6/15 |

SOURCE, OBJECT, AND IMAGE MODULES AFTER EXEC

E X ¥ ¥ F ¥ F-F F X X5 F_F S B -F _F F N B Z_R_ B S F 3 2 3 F 3 ¥ F & BB S 3 R S _J-R _F 3 F S_F_ S JF - B F S F -8 F F -8 F R B8 5k 4

{PROGL1.FTN| {PROG1.0BJ} !

] P =1

i 6/20 i+ 6/15 b

—————————————————— | ALLPROG . TSK

[}

__________________ |

| PROG2.CBL| |PROG2.0BJ} !

i b =>1

i 6/20 i | 6/15 P 6/5
A I A H
R S D |

DATECHECK

|PROG1.FTN} }PROG1.0BJ | |

] =>4 F=>1

i 6/20 it 6/20 P

————————— ~ww-=-=-=- |ALLPROG.TSK
| A |

__________________ =

{PROG2.CBL! | PROGZ2. OBJ' !

] =>4 F=>1

! 6/20 ! H 6/20 ! ! 6/20
| A A
] b |

COMPILE LINK

-> TASK
EXECUTION

Figure 4-6 EXEC Command Functions in the Multi-Module

48-043 FOO ROl

Environment

4-27

———— - - oy —

4.9.7 LINK Command

The LINK command links the object module to yield the image
module in language and multi-module environments. If no object
module exists, the LINK command compiles the source module to

vield the object module. The LINK command does not datecheck,
load, nor execute a program.

Language Format:

voln: ’ f i lename

Multi-Module Format:

LINK

Parameters:

valn: is a 1l- to 4-character alphanumeric name
specifying the volume on which the source file
resides. If this parameter is omitted, the

default is the user volume.

filename is a 1l- to 8-character alphanumeric name
specifying the files to be compiled and/or
linked. If this parameter is omitted, the
current program is the default. A filename is
meaningful only in a language environment.

Functional Details:

When the LINK command is entered in a multi-module environment
and no object module exists, all source file fds contained in the
EDF are compiled. The resulting object modules are then linked.
If a link error occurs, the 1link sequence aborts, and this

message 1is displayed:

** L,INK ERRORS:EXECUTION ABORTED

4-28 48-043 FOO ROl

If a LINK command is entered when no environment was set, this
message is displayed:

** NO ENVIRONMENT SPECIFIED

If there is a compilation error, the process ends with a nonzero
end of task code, the link procedure never starts, and the process
is aborted. This message is then displayed:

X* COMPILE ERROR - LINK NOT EXECUTED

The LINK command also links all of the standard Perkin-Elmer run
time libraries specified by the language extension assigned when
the source file was created.

4.9.7.1 Link Sequences

The user can specify a link sequence by building a link file that
must have the extension .LNK. When the 1link sequence is
specified, the system searches the default user volume for a file
with the .LNK extension with a filename matching the EDF name or
the current program. When it is found, it is executed.

Example:

*BUILD JOB.LNK
B>ESTABLISH TASK

B> INCLUDE PROG1l.0BJ

B> INCLUDE PROGZ2.0BJ
B>LIBRARY F7RTL,COBOL.LIB
B>MAP PR:,AD,AL, XREF
B>BUILD PROG.TSK

B>END

B>ENDB

If the user-specified link file is not found, the system uses the
default 1link sequence. There is a default link sequence for each
language environment. Following is an example of a default
FORTRAN link sequence:

>ESTABLISH TASK

> INCLUDE current program
>INCLUDE LIBRARY F7RTL.OBJ/S
>OP DFLOAT, FLOAT, WORK=X3072
>BUILD filename.TSK

>END

48-043 FOO ROl 4-29

The LINK command functions are shown in Figures 4-7 and 4-8.

SOURCE AND OBJECT MODULES BEFORE LINK

=============g=========-=§=== ==-=-===================
] i
i et !
H |PROGL.FTN| | PROG1.0OBJ | H
i ' P | i
: { 6/20 | | 6720 ! ;
L e e |
i i
=::m==uu:z:::==:=======ae===gzk::a:zz:a::z-az-:a-n===:
! SOURCE AND OBJECT MODULES AFTER LINK 1
! i
| semmmeeos mmmeeeos oo |
! {PROG1. FTN' }PROGl OBJ | {PROG1.TSK| |
| i P =21 | NO i
! ! 6/20 | i 6/20 | H 6/20 | EXECUTION |
‘ i i v o e vm e e e o vt o e i [3
i H A i
i f 1 b
1 I !

i LINK !
{ i
: ==~:==;-:==========_'=====wa============gn==a=====a=~:====:
! SOURCE PROGRAM BEFORE LINK |
l===:==================‘========:===S='.-=='-====:'.='==========a‘
s |
| mmmmmmmome- !
} } PROGL.FTN | !
o ! :
H] 6/20 i i
P et !
i i
:, :::c;-:::-:-:w::=========================z=2:&:::{1:'.1:::»::::2:::
¥ SOURCE PROGRAM AFTER LINK |
:‘ ,
| mmm=mmmem mmmmmeeon cooeooeo- |
H { PROG1. FTN' {PROG1.0BJ | |PROG1.TSK| H
| -3 -5 i NO |
! ! 6/20 | ! 6/20 | | 6/20 | EXECUTION |
T :
! ! A A |
[= + 1 1
t { |]]
! COMPILE LINK i
¥]
13]

oot o _ o o 7o . 17— — i] - o] o o o o i o ot o s b e i S0

Figure 4-7 LINK Command Functions in the Language
Environment

4-30 48-043 F0O RO1

SOURCE AND OBJECT PROGRAMS BEFORE LINK

R PR Y P PRI P YL P e L Py e e e Y 2 2 P)

ALLPROG.EDF

|PROG2.CBL| |PROG2.0BJ|
| [
| 6/20 b

->

S N EERERERR R R RN N R RN RN I R RN PN N P T RN RN AN S E TR RS N

SOURCE AND OBJECT PROGRAMS AFTER LINK

2 A L2 L R TP R e e A R R e LR

{PROG1.FTN| {PROG2.0BJ|

o
~N
N
o
1
v

PROG2.CBL| |PROG2.0BJ{

! i

! i

| !

| !
|ALLPROG.TSK| NO
| i EXECUTION
! i

| [

| |

]
|
]

)
v

6/20 I 1 6/20

LINK

SOURCE MODULE BEFORE LINK

EEEE T EF T R L P b i R R P PR R Y R P I P Y R P R R YT

|PROG1.FTN|
-1
i

ALLPROG . EDF

PROG2.CBL|

]
|
!
!
!
]
1=>
|

|

EI I PP I TSR R PR R R S R R 2222 2 2 2 22 2 22 R 2 0 2 2 2 2 2 L Al 2 R bt A h b 2t

SOURCE MODULE AFTER LINK

T I P I IR SR T IR R 2T PR - RS A F 22 0 E 22 222 R 0 2 R 2 £ 2 2 3 2 2 2 2 2 L 2 b b2t

|PROG1.FTN| |PROG1.0BJ|
| b 1=>
| | H

PROG2.0BJ|

EXECUTION

! i
| i
i i
i !
{ ALLLPROG . TSK | NO
| |
| i
=i]
| |

[l
¥
[
¥
B
]

Figure 4-8 LINK Command Functions in the Multi-Module
Environment

48-043 F00 ROl

31

4.9.8 LIST Command
The LIST command 1lists the fds of all the multi-module
environment programs that are contained in the current EDF.
Format:

LIST

Functional Details:

The LIST command causes a listing to be sent to the 1list device
specified by SSYSPRT when lu assignments were made. When this
command is entered, this message is displayed:

** CURRENT ENVIRONMENT = current EDF

If the LIST command is entered and no fds are in the multi-module
environment, the following message is displayed:

** ENVIRONMENT EMPTY

If an argument is specified with the LIST command, this message
is displayed:

xx TOO MANY ARGUMENTS

4-32 48-043 FO0O ROl

4.9.9 REMOVE Command
The REMOVE command deletes specified source fds from the current
multi-module environment.
Format:
REMOVE fd

Parameters:

fd is a file descriptor of a source file
contained in the EDF.

Functional Details:

When the REMOVE command is entered, the current EDF 1is searched
for the specified fd. When found, the fd is removed from the
multi-module environment. If the fd is not found, the following
message is displayed:

xx FILENAME NOT IN ENVIRONMENT

If the fd is omitted or is in an incorrect format, this message
is displayed:

*x SYNTAX ERROR

When all of the fds have been removed from the multi-module
environment, this message is displayed:

** ENVIRONMENT EMPTY

48-043 FOO ROl 4-33

4.9.10 RUN Command

The RUN command loads and runs the image program in language and
multi-module environments. This command does not datecheck,

compile, or link.

Format:

} [,"start parameters"]

Parameters:

voln: is a 1- to 4-character alphanumeric name
specifying the volume on which the image
module resides. If this parameter is omitted,
the default is the user volume.

filename is a 1- to 8-character name specifying the
image module. If this parameter is omitted,
the default is the current program.

"start are parameters particular to the assembler

parameters" or compiler being used. These parameters,

usually specified with the operator START
command, now can be specified with the program
development RUN command.

Functional Details:

If a filename is not entered with the RUN command and a task with
the filename of the current program does not exist in the
language environment, this message is displayed:

** fd NONEXISTENT

See Section 4.9.6 for more information on start parameters.

4-34 48-043 F0O ROl

Figures 4-9 and 4-10 illustrate the RUN command functions.

IMAGE MODULE BEFORE RUN

{PROG1.TSK|
! !
|

IMAGE MODULE AFTER RUN

|
{
]
|
|
l
|
i
i
|
]
s
I
]
]
]
i
]

{PROG1.TSK|
i-> TASK
i 6/20 i EXECUTION
RUN

IMAGE MODULE BEFORE RUN

PRI R X F L FEEZ L 22 2 2 F 8 J

ALLPROG.TSK

! !
: |
! !
: !
| :
: |
: !
: !
! !
! !
! :
] 1
[} '
i]
i mmmmmmmmmes !
i |
! s EEEETETEsEsIEEEEAEER TR |
H IMAGE MODULE AFTER RUN |
:’=--'---------------.--.-----’
]]
]]
]]
i i
i |
{ |
i i
i !
i 1
i i
i !
] |
] '
d |

i

]

=

i-> TASK

ALLPROG.TSK| EXECUTION

1

|

[}

I

i

Figure 4-10 RUN Command Function in the Multi-Module Environment

48-043 FOO ROl 4-35

Table 4-4 summarizes the functions of
compile, link, and run a program.

4.10

This
deve

the

commands used to

TABLE 4-4 PROGRAM DEVELOPMENT COMMANDS THAT
COMPILE, LINK, AND EXECUTE

i COMMAND | FUNCTION
H E R R 5 - F-& 5 R R 2 23 3 R 3 5 R R S R B _F § ¥ 2 R B S 3RS R R R 3§ 4§ 22 53
COMPILE Compiles source module into object

exist or is outdated.

]
|
i modules, and compiles
i them if outdated

: program

image program.

|
i
{ outdated. Loads and
! lmage program

H program without
| datechecking, compiling, or linking.

Loads and runs image

o
c
2

'
i
i module when object module does not
i

Datechecks source, object,

{ Compiles source module

i module when object module does not
{ exist. Then links object module and
!
|

into

standard run time libraries

Datechecks image, object,

and

modules. Compiles and links them if
runs up-to-date

and image
and/or
form image

links

object

to form

source

—— —

o i . . - - o — — i — - o — . -

SAMPLE PROGRAM DEVELOPMENT SESSIONS

section presents coding examples using the program
lopment commands.
*FORT TEST Create FORTRAN language

**x NEW PROGRAM

environment with the

-EDIT FORT language command.

Specify TEST as filename
to be allocated. FORT com-

(edit session)

mand loads and starts
editor with TEST.FTN as

current program.

SAVE*
>END

48-043 FOO ROl

*SSYSIN CON:

*SSYSOUT CON:

*SSYSLIST PR:

*EXEC TEST

~-FORTRAN: TEST

** COMPILE ERRORS, LISTING ON PR:

*EDIT
~-EDIT - TEST.FTN

(edit session)

-

SAVE*
>END

*EXEC
-FORTRAN -~ TEST

(compilation sequence)

-END OF TASK CODE=0
-LINK - TEST

(link sequence)

-END OF TASK CODE=0
xx EXECUTION OF TEST FOLLOWS:
(execution sequence)

~-END OF TASK CODE=0

48-043 F00 ROl

Def ine and set new global
variables.

Execute TEST.FTN.
Compile TEST.FTN.

Compilation errors in TEST.

Find and correct errors.

Execute current program.

Compile.

Sucessful compilation.
Link the newly created
object module TEST.OBJ.

Successful link. New task
now exists.

Run the new task TEST.TSK.

4-37

*EXEC

*x EXECUTION OF TEST FOLLOWS:

(execution sequence)

-END OF TASK CODE = 0
*RUN

*x EXECUTION OF TEST FOLLOWS:

(execution sequence)

-END OF TASK CODE=0

*EXEC NEWPROG
** FILE NEWPROG.FTN NOT FOUND

*MACRO

*EXEC NEWPROG
-MACRO - NEWPROG
~CAL - NEWPROG
-LINK - NEWPROG

(liﬁk seguence)

*x EXECUTION OF NEWPROG FOLLOWS:

(execution sequence)

~-END OF TASK CODE=0

Successful execution.
Re-execute.

Ensure program is compiled
and linked.

Compile, link unnecessary.
Object and image up-to-date.

Successful execution.

Rerun.

Execute NEWPROG.

System finds NEWPROG.MAC.
Cannot find NEWPROG.FTN.
Specifiy MACRO command to
access NEWPROG.MAC and enter
a new language environment.

Execute NEWPROG.MAC.
Expand.

Assemble.

Link.

Successful execution.

48-043 FOO

RO1

*EDIT - Edit current program.
EDIT-NEWPROG.MAC

(edit session)

-

B

SAVE*

>END

*EXEC Execute current program.
-MACRO - NEWPROG : Expand.

-CAL - NEWPROG Assemble.

-LINK - NEWPROG Link. i

(liék sequence)

*x EXECUTION OF NEWPROG FOLIL.OWS:

(execution sequence)

~-END OF TASK CODE=0 Successful execution.

Create multi-module envi-
ronment with ENV command.

*ENV BIGTASK BIGTASK.EDF allocated.
** NEW ENVIRONMENT
*ADD SUB.CAL Add 3 module names to EDF. |

*ADD MACRTY.CAL
*ADD FTOR.FTN

*[LIST List all modules in EDF.]
**% CURRENT ENVIRONMENT=BIGTASK.EDF

-SUB.CAL

-MACRTY.CAL

-FTOR.FTN

*ADD SUBFUNC.FTN Add 2 more modules to EDF. !

*ADD YSUB.MAC

48-043 FOO ROl 4-39

*REMOVE SUB.CAL
*FORT SUBFUNC
~-EDIT - SUBFUNC

(edit session)

*EDIT YSUB

(edit session)

SAVE*
>END
*ENV BIGTASK

*EXEC

-FORTRAN - FTOR.FTN
-FORTRAN - SUBFUNC.FTN
-MACRO - YSUB.MAC

-CAL - MACRTY.CAL
-LINK - BIGTASK

-

(link sequence)

-

END OF TASK CODE=0

** EXECUTION OF BIGTASK FOLLOWS:
(execution sequence)

-END OF TASK CODE=2

Remove fd from EDF.

Make changes to SUBFUNC.FTN.

Make changes to YSUB.MAC.

Create multi-module envi-
ronment

Execute modules remembered
in BIGTASK.EDF.

FTOR.OBJ and YSUB.OBJ
modules are outdated.

Link BIGTASK.

All objects are linked;
appropriate RTLs are also linked.

Execution errors traced to YSUB.

48-043 F00 ROl

*MAC. Create language environment.
*EDIT YSUB Correct errors in YSUB.MAC.

(edit session)

SAVE*

END

*ENV BIGTASK Enter multi-module environment.
*EXEC

-MACRO: YSUB .MAC YSUB.MAC object is outdated.

Expand, assemble, and linkedit.
-CAL - YSUB.MAC

-LINK - BIGTASK

(link sequence)

** EXECUTION OF BIGTASK FOLLOWS:

-

(execution sequence)

-END OF TASK CODE=0

48-043 F0OO RO1 4-41

CHAPTER 5
MULTI-TERMINAL MONITOR (MTM) BATCH PROCESSING

5.1 INTRODUCTION

In addition to interactive processing capabilities, MTM also
supports concurrent batch processing, allowing the user to run
multiple batch jobs from a single batch gqueue. This feature
enables the user to effectively utilize the capabilities of the
system with minimal interference to the interactive users.

The number of concurrent batch jobs allowed at any time under MTM
is set by the operator from the system console. This number
cannot exceed 64. If more batch jobs are submitted than there
are active jobstreams, MTM gueues the requests until a jobstream
becomes available.

The batch queue is an indexed file containing the file descriptor
(fd) of the jobs to be processed. Each job is identified in the
queue by the fd of the command file. The batch queue is ordered
in priority order and in first-in/first-out (FIFO) basis within
a priority.

Tasks executing in the batch environment run at a priority lower
than or equal to the tasks in the terminal environment. Thus, a
batch job executes when the system is not occupied with work from
a terminal user. Batch jobs use the processor's idle time and
therefore increase the efficiency of the system.

5.2 BATCH COMMANDS

The batch job file consists of a series of MTM user commands
and/or command substitution system (CSS) calls. The commands
presented in this section are unique to the batch environment.

To submit a batch job a user must have created a batch job file
on disk. This file must have a SIGNON command as the first
record, and a SIGNOFF command as the last record. The only valid
commands to be used between the SIGNON and SIGNOFF commands are

MTM user commands (Chapter 2), program development commands
(Chapter 4), batch processing conmmands, and calls to a CSS file
(Chapter ©6). A batch Jjob file is not a CSS. Therefore, CSS
commands, with the exception of $IF..., $ELSE, and $ENDC, are
invalid. Any command that can be used at a terminal can be used

in the batch job file.

48-043 FO0O ROl 5-1

Example:

of a single batch job file:

SIGNON TEST1,1,PWD
L TEST 1

ST

SIGNOFF

Example:

CSS to build a batch job file and submit job:

x* ASM.CSS [MODULE]
x %
* % @ 1 (MODULE TO BE ASSEMBLED)
x %
% EXAMPLE: ASM EXIN
* X
$BU @1.JOB
SIGNON @l
XAL @1.LOG, IN, 80
LOG #1.LOG,5
ASM/G @l
$IFE O
MESS LEE *** @1.JOB COMPLETE ***
$ELSE ‘
MESS LEE *** @1.JOB ERROR ***
~$ENDC
SIGNOFF
$ENDB
SUB @1.JOB,DEL
INQ
$EXIT

5-2 48-043 F0OO ROl

{ INQUIRE |

5.2.1 INQUIRE Command

The INQUIRE command queries the status of a Jjob on the batch
gueue.

Format:

rfd‘l .
INQUIRE | f£d

Parameters:

fd identifies the job for which the status 1is
desired. If fd 1is not specified, all jobs
with account numbers the same as the user's
are displayed.

fdl specifies the file or device to which the

display 1is output. If this parameter 1is
omitted, the default is the user console.

Functional Details:

When this command is entered by a privileged user, information
about all jobs on the system is displayed. Standard MTM users
see just the jobs related to the user's private account. This

command can be entered in command mode, task loaded mode, and
task executing mode.

Possible responses to the INQUIRE command are:

JOB fd NOT FOUND
JOB fd EXECUTING
JOB fd WAITING BEHIND=n

NO JOBS WITH YOUR ACCOUNT

48-043 FOO ROl 5-3

Examples:
INQ All jobs with the user account
number are displayed.

INQUIRE TASK.JOB The status of TASK.JOB is displayed.

5-4 48-043 FOO ROl

5.2.2 LOG Command

The user can invoke a batch job to produce a log of its commands

by including the
batch stream.

Format:

Loc [£d]] |, {

Parameters:

fd

CoprPY

NOCOPY

48-043 F00 ROl

LOG command and the $COPY command within the

is the file descriptor of the 1log file or
device. If no fd is specified, logging is
terminated. 1If fd is a file, it must be
previously allocated. Files are assigned EWO
privileges so that logged output is added to
the end of the file. If a log is active when
a second LOG command is entered, the o0ld 1log
is closed and the new one is initiated.

specifies that all output is written to both
the terminal and the log device.

specifies that all output, except messages, is
written to the 1log device and not the
terminal. Messages from other users and the
operator are written to both the terminal and
the log device.

is a decimal number from 0 through 65,535
specifying the number of lines after which the
log file 1is to be checkpointed. If this
parameter is omitted, the default is 15 lines.
If n is specified as 0, no checkpointing
occurs.

—— i e e - m—on - e —am wmE— wmen mmen -

Functional Details:

The LOG and the SET LOG commands are the same. The command can
be entered either way, and both formats perform the same
function.

Checkpointing may be done on any type of file. However, on
contiguous files, the checkpoint operation is treated as a
no-operation. On nonbuffered indexed and extendable contiguous
files, the checkpoint operation 1is useful only if the file is
being expanded. On indexed files it is possible that a
significant amount of time may elapse between the time the data
to be written to the disk leaves the user's buffer and the time
that it is physically transferred to the disk. In these cases,
checkpointing "flushes" the system buffers, as well as updating
the file size in the directory. 1In general, checkpointing is
justifiable only under very specific circumstances, such as when
a very large amount of data is written to an indexed file over an
extended period of time, without the file being closed.

Example:

LOG PR:

5-6 48-043 FO0OO ROl

———— " —— -

5.2.3 PURGE Command

The PURGE command purges a submitted job from the batch queue.

Format:

PURGE fad

Parameter:

fd is the file descriptor of the Jjob to be
purged. Only Jjobs with the wuser account
number can be purged.

Functional Details:

If the specified job is executing, it will be cancelled or
terminated. If the job is waiting to be run it will be removed
from the batch gqueue.

Example:

PURGE TASK.JOB TASK.JOB is purged.

48-043 FOO ROl 5-7

| SIGNOFF |

5.2.4 SIGNOFF Command

The last command in a batch stream must be the SIGNOFF command.

Format:

SIGNQEF

Functional Details:

When a terminal user signs off the system, these messages are
displayed:

ELLAPSED TIME=hh:mm:ss CPUTIME=ut ime/ost ime
SIGNON LEFT=hh:mm:ss CPU LEFT=hh:mm:ss
TIME OFF=mm/dd/yy hh:mm:ss

The SIGNOFF command can be entered in command mode, task loaded
mode, and task executing mode.

5-8 48-043 FOO ROl

5.2.5 SIGNON Command

SIGNON must be the first command in a batch job.

Format:

fd
SIGNON userid ,actno,password | ,ENVIRONMENT=
NULL [:]
[CPUTIME=maxt ime]
[,classid=iocount1 [,...,classid=iocount3§j]
Parameters:

userid is a 1- to B8-character alphanumeric string
specifying terminal user identification.

actno is a 5-digit decimal number specifying the
terminal wuser's account number. This must be
a valid account number in the AUF file and can
never exceed 65,535. I[If this parameter is
omitted, the password parameter should also be
omitted. MTM will use the account number of
the user submitting the batch job.

password is a 1- to 1l2-character alphanumeric string
specifying the terminal user's password. This
parameter should be omitted if the actno
parameter is omitted. MTM will |use the
password of the user submitting the job.

ENVIRONMENT= fd is the file descriptor specifying the file

48-043 FOO ROl

that will establish the user's environment at
signon time.

NULL specifies that the signon CSS procedure,
USERINIT.CSS, should be ignored and the user
will establish the environment at signon time.
If the entire keyword parameter is omitted,
MTM searches all online disks for the signon

CSS procedure, USERINIT.CSS/P. The system
volume, system account, is searched last. If
USERINIT.CSS is found, MTM calls the (€SS and
executes the routine. If it is not found, MTM

enters command mode.

CPUTIME= maxtime is a decimal number specifying the
maximum CPU time to which the batch job is
limited. If this parameter 1is omitted, the
default established at sysgen is used. 1If O
is specified, no 1limits are applied. The
parameter can be specified as:

mmmm: Ss
hhhh:mm:ss
sssSs
classid= is one of the 4-character alphanumeric
mnemonics, specified at sysgen, associated

with each specified device or file class.

iocount is a decimal number specifying the maximum
number of [/0 transfers associated with a
particular device class to which the batch job
is limited. If this parameter is omitted, the

default established at sysgen is used. If O
is specified, no 1limits are applied to that
class.

Functional Details:

Between the SIGNON and SIGNOFF commands, any command or CSS call
that is wvalid from the terminal is allowed. A SIGNON command
cannot be followed by another command, on the same line,
separated by semicolons. When ENVIRONMENT=NULL is specified, the
colon 1is optional. This allows the user the ability to specify
the null device (NULL:).

The account number and password can be omitted if a batch job is
submitted from a user terminal. If a batch job is submitted from
the system console or via the Spooler, the account number and
password must be specified.

The ENVIRONMENT= parameter may be ignored, depending on the wuser
account's privileges.

Examples:

SIGNON ME

S ME,12,PSWD,CPUTIME=2:30:00,DEV1=150
S ME,CPUTIME=120

S ME,ENV=NULL,CPUTIME=120

S

ME , ENV=XYZ

5-10 48-043 FO0O0 ROl

5.2.6 SUBMIT Command

The terminal user adds a job to the batch queue with the SUBMIT
command .

Format:

SUBMIT fd [,DELETE] [,PRIORITY=priority]

Parameters:

fd is the file descriptor of the file submitted
to batch.
DELETE deletes the batch job file created to submit

the batch job. If this parameter is omitted,
the batch job file remains on the user volume.

PRIORITY= priority is a decimal number which specifies
the priority at which a batch job will run.
The range of wvalid priority numbers is
dependant upon the user's account privileges,
sysgen options, and MTM's priority. The
maximum range allowable is MTM's priority + 1
through 255. If this parameter is omitted, a
batch Jjob will run at the default batch
priority (the default batch priority is 12
lower than MTM's priority plus the value
specified at MTM sysgen time for batch
priority) or the Link priority (the priority
established when the task was built),
whichever is lower.

Functional Details:

The priority at which a batch job runs is relative to MTM's
priority and the default batch priority established at MTM sysgen
time. The u-task priorities are established at link time and can
be reset with the PRIORITY parameter of the SUBMIT command.
Interactive tasks run at the default priority of 12 priorities
lower than MTM. Batch Jjobs run at the default priority of 12
lower than MTM plus the value specified at MTM sysgen time. If
the MTM sysgen priority is set to equal 1 and MTM's priority
equals 128, interactive jobs will run at priority +12 (140), or
12 lower than MTM; batch jobs will run at priority +13 (141), 13
lower than MTM.

48-043 F0O ROl 5

11

The rules for establishing priorities are:

e Batch jobs can run at the same priority as interactive tasks
but not higher than interactive tasks if the user account has
this privilege enabled; otherwise they are run at (maximum)
one priority lower than interactive tasks.

e If a valid priority is specified, the batch job runs at that
priority or the link priority, whichever is lower.

e If the specified priority is invalid, the default priority is
assigned by MTM, and the following message is displayed:

WARNING - REQUESTED PRIORITY n ILLEGAL, n USED

e If the specified priority is greater than 255, 255 is used.

e If no u-task priority is specified with the SUBMIT command,
the batch Jjob runs at the default priority or the link
priority, whichever is lower.

The SUBMIT command can be entered in command mode, task loaded
mode, and task executing mode.

Example:

Create a batch job stream from the terminal via the BUILD...ENDB
sequence:

BUIT.D TEST.JOB
SIGNON ME, ENV=NULL
LOG PR:

L TEST.TSK

AS 3,PR:

START

S IGNOF

ENDB

Submit the job from the terminal for batch processing:

SUBMIT TEST.JOB

5-12 48-043 FOO RO1

Submit a batch job file and have it deleted after the batch job
execution is complete:

SUBMIT XYZ.J0B, DELETE

Submit a batch job and have it run at the same priority as an
interactive job:

SUBMIT XY¥Z2.J0OB, P=129

5.3 BATCH JOB SUBMISSION USING THE SPOOLER

The Spooler is also used to submit batch jobs to the batch queue
for execution under MTM. Batch Jjobs submitted through the
Spooler later can be resubmitted as a batch job through the
terminal.

5.4 ERROR HANDLING

Any error that occurs in a batch Jjob file causes automatic
termination of the job, and a message is written to the log file
or device. If a batch task pauses, the task is cancelled by MTM
with an end of task code of 255, and the job is terminated,
unless the batch task pause option was enabled at MTM sysgen.
See Section 5.5. When a batch task completes, the end of task
code can be tested by subsequent commands in the batch stream to
determine if the task completed normally.

5.5 BATCH TASK PAUSE OPTION

This option allows a batch task to pause without being cancelled
immediately by MITM. MTM logs the following message to the system
console if a batch task enters the paused state:

hh:nn:88 .MTM > task id BTCH TSK PAUSED

In this message task id is the name of the batch task that has
paused. The system operator has the option to cancel or continue
the paused batch task.

48-043 F0O0 ROl 5-13

5.6 EFFECT OF RESTRICTED DISKS ON BATCH JOBS

When accounts with access to restricted disks are given

read/write access, batch jobs are not affected. 1If read-only or
no access is specified, messages are not displayed on the user
console. If a submit file for a batch job is on a restricted

disk and account 0 does not have read/write access, the following
message is displayed on the system console:

.MTM:BATCH ASCGN-ERR TYPE=PRIV JOB=fd

5-14 48-043 FO0O RO1

CHAPTER 6
COMMAND SUBSTITUTION SYSTEM (CSS)

6.1 GENERAL DESCRIPTION

The command substitution system (CSS) is an extension to the
0s/32 command language enabling the user to establish files of
dynamically modifiable commands that can be called from the
terminal or other €8S files and executed 1in a predefined
sequence. In this way, complex operations can be carried out by
the terminal user within only a few commands. CSS provides:

e the ability to switch the command input stream to a file or
device,

e a set of logical operators to control the precise sequence of
commands,

e the ability to pass both positional parameters and keyword
parameters to a €SS file so that general sequences take on
specific meaning when the parameters are substituted or the
keyword encountered in the CSS,

e the ability to specify replacement characters within a CSS
line to alter the function of the line when executed,

e the ability to perform decimal and hexadecimal computation and
conversion within a Css line (addition, subtraction,
multiplication, and division),

e the ability to use standard local and global variables or new
global and new internal variables that introduce extended
power and flexibility to variable usage within a CSS,

e the ability to perform searches within specified CSS calls to
subtract specific sections of the call and use them as
replacements within the CSS, and

e the ability for one CSS file to call another, in the manner of
a subroutine, so complex command sequences can be developed.

48-043 FO0O ROl 6-1

A CSS file is simply a sequential text file. It can be a deck of
cards, a magnetic tape, or a disk file. An example of a simple
Css file is: '

*THIS IS AN EXAMPLE OF A CSS FILE
LOAD TEST.TSK/G,5

ALLOCATE XXXDIX.DTA,CO, 40

AS 1,INPUT.DTA

AS 2,XXXDIX.DTA;AS 5, CON:

ASSIGN 3,PRT:; *LU3-LINEPRINTER
START

SEXIT

NOTE

Blank 1lines are ignored. The semicolon
allows more than one command to be
entered on the same 1line. Null CSs
commands (;;) are ignored. An asterisk
introduces a comment.

6.2 CALLING A CSS FILE

A CSS file is called and executed from the terminal by specifying
the file descriptor (fd) of the CSS file. If only the filename
is specified, MTM appends the extension.CSS and first searches
the user default volume in the user's private account. If the
file 1is not found, the system volume system account is searched.
If the volume name or account class is specified by the user, a
system default will not be tried. A user must have the CSS
privilege in order to <call €SS files in the user's private
account or group. If not privileged he may only call system
CsS's. |If the user also has the privilege to specify account
numbers instead of classes, he may call a CSS in any account. If
the leading characters of a CSS fd are the same as a command, MTM
assumes a command:

Example:
CL.O.CSs CL.OSE MTM assumes the CLOSE command.
AS3.CSS ASSIGN 3 MTM assumes the ASSIGN command.

By specifying a volume name and/or extension, a CSS file that
otherwise would conflict with an MM command can be called.

6-2 48-043 FOO RO1

Example:

M300:CLOSE
M300:CLOSE.CSS

6.3 USE OF PARAMETERS

The CSS call can have parameters. The parameters are entered
after the €SS fd and are separated from it by one character
space. If there is more than one parameter, each is separated by
commas. If a parameter contains the double quote character ("),
or single quote character (') all parameters up to the next
double gquote character are passed as one parameter. Null

parameters are permitted.

Example:

ABC Pl, "P2A, P2B" calls CSS file ABC.CSS on the default volume
with two parameters. Parameter 1 is Pl. Parameter 2 is FP2A,
P2B.

JUMP ,,C calls CSS file JUMP.CSS on the default volume with three
parameters; the first two are null.

Within a CSS file, a parameter is referenced by the use of the
special symbol "@n" where n is a decimal integer number

indicating which parameter the user is referencing. Parameters
are numbered starting with 1. Parameter 0 has special meaning
and is defined later in this section. The first parameter is

referenced by @1, the second @2, etc. A straightforward text
substitution is employed.

Example:

A CSS file ROG consists of:

LOAD el
START e3,82

It is called as follows:

ROG PROGRAM,NOLIST, 148

48-043 F00 ROl 6-3

Before each line of the CSS file is decoded, it is preprocessed,
and any reference to a parameter is substituted with the
corresponding text. Thus, the file ROG with the previous call is
executed as:

LLOAD PROGRAM
START 148,NOLIST

@l is replaced with PROGRAM (the 1lst parameter in the CSS call).
@3 is replaced with 148 (the 3rd parameter in the CSS caill).
2 is replaced with NOLIST (the 2nd parameter in the CSS call).

Example:

All of the following references to Parameter 12 are valid
expressions:

@l2 or Rl2ABC or @1l2.EXT

This mechanism allows concatenation. For instance, if the first
command in file ROG were LOAD @l1.TSK, only those files with the

extension .TSK would be presented to the 1loader. Concatenation
of numbers requires care. 123@1 references Parameter 1, but
@1123 is a reference to Parameter 1123. A reference to a

nonexistent parameter is null.

The multiple @ facility enables a CSS file to access parameters
of higher 1level files. Css files can call each other to a
max imum depth specified at sysgen time. Thus, @2 in a CSS file
refers to the second parameter of the calling file.

Example:

Given the CSS call:

CSS1 argl,arg2

and assuming that in file CSS1l there is another call:

CSS2 arg3,arg4

6-4 48-043 F0O ROl

the following references can be made in CSS2:

el = arg3
g2 = arg4d
eel = argl
ge2 = arg?

If a multiple @ sequence is such that the calling level referred
to is nonexistent, the parameter is null.

Parameter @0 is.a special parameter used to reference the name of
the CSS file in which it is contained. Parameter @0 is replaced

during the preprocessing of the command line with precisely the
same fd used to call the file.

Example:

A CSS file consists of:

AS 1,0
FEXIT

If this file is called from the card reader (CR:), then 1lul 1is
assigned to the card reader (CR:). Likewise, a call from the
magnetic tape (MAGl:) results in:

AS 1,MAG1:

6.4 USE OF KEYWORDS

In the previous section the usage of positional parameters was

presented. The CSS language also provides a means of passing
keywords in a CSS call. Again a straightforward substitution
procedure is applied. Keywords enable the user to explicitly

specify a value that 1is subsequently substituted for each
reference of the keyword encountered within the CSS. The value
of a keyword is defined in the CSS call in the following format:

Format:

keyword = [parameter]

48-043 F00 ROl 6-5

Parameters:

keyword is the 1- to 8-character name of a keyword.
The characters must be alphabetic (A-2).

= is a required delimiter between a keyword and
its assigned value for the CSS call. This
delimiter must immediately follow the keyword
(no blanks allowed).

parameter is a character string which replaces the
keyword reference with the Css. Null
parameters are allowed.

Functional Details:

The following rules apply for the use of keywords within a CS8S
file and the relationships between keywords and positional
parameters.

e The leading blanks of a keyword parameter are skipped unless
they are included with the parameter through the use of single

('...') or double ("...") guotes.

e All characters between single or double quotes belong to the
same parameter. This allows the user to define a parameter
with leading blanks, semicolons, commas, or an equal sign. A

carriage return is not allowed within the parameter
definition.

® An equal sign (=) (by default) marks the keyword. This equal
sign can be altered (via the SET KEYOPERATOR command) to one
of six other characters. Therefore, if you want to define a
parameter with an equal sign in it the equal sign must be
delimited by single or double quotes or the key operator must
be changed to a character other than the equal sign.

e A keyword must never be followed by a positional parameter.
All positional parameters must be passed first in the CSS

call, then all keywords may follow. Positional parameters and
keywords must be separated with commas.

Examples:

These are valid examples of CSS calls using positional parameters
and keywords:

TEST ABC.FTN, ,BA,OP=BATCH,LI=CON:
TEST SOURCE=ABC.FTN,LI=CON:

6-6 48-043 FO0O ROl

These are example
parameters and keyw

ILLEGAL CSS

TEST A,B,FTNOPT

s of 1illegal €SS calls using positional
ords:

CALLS REASON

ION=HOLL keyword is greater than 8 characters

TEST A,B,OP=HOLL,D positional parameter D is after a

TEST B, ,OP=LNCT
TEST B, ,=HOLL
TEST A'='B,C'=D

6.4.1. Referencing
Within a CSS file,

of the @= symbol
parameters.

Format:

[efe...e]]e-/[x

Parameters:

keyword

48-043 F00 ROl

keyword

=60 double equal signs not valid
keyword name missing
second quote not matched

Keywords Within the CSS

a keyword parameter is referenced by the use
(similar to the @ symbol usage for positional

eyword]/

is the symbol which notifies the preprocessor
that a reference to a keyword parameter is
being made. The use of additional @ symbols
is allowed to access keywords of a higher
level Css (same as with positional
parameters).

is a 1- to 8-character keyword (excluding

period). The user has the option to define a
minimum set of required characters for a
keyword. This 1is accomplished by separating

the required characters and the optional
characters with a period. Required characters
precede the period; optional characters follow
the period.

For example, defining a keyword in the
following manner:

@e=/0P.TION/

indicates

e the keyword is OPTION, and

e¢ the minimum required character set to
reference OPTION is OP.

Functional Details:

If the same keyword mnemonic is passed more than once in a CC8S
call, the first keyword match found 1is used in substitution
(scanning from left to right in the call).

References to non-existing keywords or to higher CSS levels which
do not exist are not expanded, as well as references without a
keyword. References with a keyword expand in the usual manner.
The following examples show the result of putting keyword
references in a CSS file and then passing keyword parameters in
the CSS call.

Examples:

Css file with keyword references:

BUILD TEST
$WR [@=/0P.TION/]J(e=/LI.ST/](€=//]
$EX
ENDB

Some calls to the CSS TEST and the results of these calls:

CALL RESULT
TEST > [1 01 [1]
TEST A, LIST=PR: > [1 [PR:] []
TEST OPTION=AA,OP=BB,LI=CON: > [AA] [CON:] []
TEST A, OP=LNCT'='62,LIST="AB'@'" [LNCT=62][AB'Re'] []

6-8 48-043 F00 ROl

Note that in example 3 the first keyword definition for OPTION
(AA) 1is wused even though OP=BB is specified. Note also in
example 4 that an equal sign can be passed as part of the keyword
value as long as it is bracketed with single or double quotes.
Single quotes can also be passed as part of the keyword value as
long as they are bracketed by double quotes and vice-versa.

6.5 USE OF VARIABLES

MTM and batch users can allocate a specified number of variables
to be wused within a CCSS. In general there are two types of
variables, variables that exist from signon to signoff and
variables that only exist within a particular CSS level while the
CssS 1is active. There are now further distinctions between the
types of variables available with MTM.

6.5.1 Types of Variables

There are now four types of variables within MTM:

® Global variables
® TLocal variables
e New global variables

® New internal variables

The first two types - global and 1local variables - should be
familiar to all users of previous releases of MIM. Global
variables exist from signon to signoff or until they are freed
via the $FREE command. Local variables can be used only within
the CSS levels in which they are defined. When a particular CSS
level is exited, all local variables defined within it are freed.

The maximum number of global and 1local variables that can be
defined 1is established at MTM sysgen time. See the 0S8/32
Multi-Terminal Monitor (MTM) System Planning and Operator
Reference Manual.

The third and fourth variable types - new global and new internal
- are new with this release of MTM. These variables are similar
to the 1local and global variables in terms of usage. However,
the way in which they are defined, released, and the capabilities
available when defining these variables make them much more
powerful and flexible than the previous variables.

48-043 FOO ROl 6-9

- e - ——me ——

New global variables exist from signon through signoff or until
they are released via the $RELEASE command or if defined by the
§DEFINE command as an undefined value. The number of new global
variables allowed in a system 1is determined at MTM sysgen
(maximum of 99). No new ‘global variables are allowed in the
system if the new global option is disabled at MTM sysgen.

New internal variables exist only within the CSS level in which

they are def ined. New internal variables are released
automatically on return to the console level. The user may
release new internal variables via the $RELEASE command or by
using an undefined value via a $DEFINE command. The maximum

number of new internal variables that can be used is set at MTM
sysgen time. The maximum/limit allowed is 99.

NOTE

Users should familiarize themselves with
usage of both new global and new internal

variables. These variable types will
eventually replace the 1local or global
variables usage. Local and global

variable support will eventually be
phased out in future releases.

6.5.2 Naming Local or Global Variables

A local or global variable name can consist of l-to 8-characters
and must be preceded by the commercial @ sign. The character
following the g sign must be alphabetic (A-2); the remaining
characters can be alphanumeric.

Examples:

RA
eB19
RABCD1234

Local variables are named via the $LOCAL command. GLOBAL
variables are named via the $GLOBAL command.

6.5.3 Naming New Global or New Internal Variables
A new global or new internal variable name can consist of 1- to

8-characters. The first character must be alphabetic, the
remaining characters can be alphanumeric.

=]
i

10 48-042 FOO RO1

Examples:

GD
Ss12
51234567

New global and new internal variables are named via the $DEFINE
command and at that time are associated with a decimal number.
The variable can then be referenced by name or number within a
Css. The following conventions apply to the expansion of a new
global or new internal variable within a CSS:

To reference the value of a new global or new internal variable,
the following formats can be used;

G specifies a reference to a new global variable

I specifies a reference to a new internal
variable. This is the default.

n gspecifies the number of the variable to be
referenced
name specifies the name of the variable

To obtain the name of a new variable use the following format:

48-043 F00O RO1 6

11

@x* Nn
I
Where:
G specifies a new global variable.
I specifies a new internal variable.
n specifies the number of the variable whose
name is being requested.
Examples:
@*G3 references global variable number
3.
g*x/VOLUME/ references the internal variable
name VOLUME.
@*N3 references the name of internal

variable number 3.

6.5.4 CSS Line Expansion

The MTM preprocessor expands the entire CSS 1line 1in one step.
Because of this, the user is advised to be careful when using the
new global or new internal variable name/value in the CSS line
after redefining them with a $DEFINE command.

The following illustrates how the preprocessor handles these
occurrences:

$DEFINELl, ,ST(ORIGINAL)
$DEFINE1, ,ST(NEW) ; $DEFINE3, ,ST(@*1)

This expands to:
JDEFINELl, ,ST(NEW) ; $DEFINE3, ,ST (ORIGINAL)

The value of the new internal variable 3 is not the expected
string NEW, but the string ORIGINAL.

6-12 48-043 F00 RO1

6.5.5 Reserved Variables

Variable names starting with the character string @SYS are
reserved for system use. A user cannot define variables starting
with @SY¥S. However, a user does have read and write access to
@SYS variables.

The global variable @SYSCODE is reserved and contains the value
of the last end of task code for a particular session.

6.6 COMMANDS EXECUTABLE WITHIN A CSS FILE

All of the MTM supported commands can be used in a CSS file, as
well as a number of commands specifically associated with the CSS
facility.

Most of the CSS commands start with the $ character with the
exception of the SET CODE and PRIOR commands.

The CSS commands entered within a CSS file are described in the
following sections. Refer to Appendix E for CSS5 message
descriptions.

NOTE

If a task is started when CSS is running,
CSS becomes dormant until the task is
terminated. Execution of the CSS stream
will resume after the task terminates.

48-043 F00 ROl 6-13

-—— —— m— w—— —— ——

6.6.1 Character Replacement Command %...%

The character replacement command (%...%) enables a user to
define and replace up to four different characters within a
specified CSS line. The user must indicate the 1line in which
replacement 1is to occur, the new characters, and the characters
to be replaced. Unless otherwise specified, every occurrence of
a specified character within the line will be replaced.

Format:

charlchar24 [charlcharzz...charlcharZ{]%
3
% new delimiter

Parameters:

% is the initial current replacement string
delimiter. This indicates the start of
the character replacement specification.

char lchar 2, is the specification of the character to
...charlchar2, be replaced (charl) and the character to
be wused as the replacement (char2). Up
to four of these replacement
specifications can be specified. The
preprocessor translates this statement
as: replace the character specified by
charl with the character specified by
char2. If more than one replacement
gspecification is present there must be no
blanks between them. If charl and char2
are the same, charl is deleted from the

CSS line.

% new delimiter this indicates that a new replacement
delimiter (by default the % sign)
follows. The new delimiter is the first

character after the % sign and is active
for the remainder of the €SS 1line (or
until a new delimiter is specified).

6-14 48-043 F0O RO1

Functional Details:

Character replacement operations are only performed in 1lines
which have a percent sign (%) in column 1 of the line. This
percent sign (%) 1is not part of the character replacement
command, it merely flags lines eligible for character
replacement.

Character replacement is only allowed within a CSS.

The only legal use of blanks within the character replacement
delimiters is as replacement characters. The initial replacement
delimiter 1is always reset to % at the beginning of each CSS line
and previous replacement characters are deleted. 1In effect, each
CSS line with replacement information 1is treated as a single
entity.

Each usage of the character replacement command resets all

previously def ined replacement characters. When a new
replacement delimiter is specified, all other replacement strings
are cleared. The $COPY command suppresses the display or

printing of replacement string delimiters and replacement
strings.

NOTE

Replacing a character with an @ symbol
will result in an additional
preprocessing step for that line in order
to expand the] symbol with the
appropriate substitution parameter if
possible.

The following examples are wused to illustrate the basic
functionality of the character replacement command. Obviously,
the uses of this command are not limited to those shown below.
The command becomes extremely powerful as the user introduces
more involved substitution and replacement within the same line.

48-043 F0OO ROl 6-15

CHARACTER REPLACEMENT | H RESULT AFTER
CSS LINE | INTERPRETATION 1 PROCESS ING

i
'
]
& 2 B F R AR X £ F X2 E 2 3 5 3 2 K ¥ 2 B 5 F 2 £ 3. F ¥ ES 52X FF 3 F 2 F 222 2 8 E B 2 B F 3 2 2 £ & B 2 F B FF 2 B & 2 3 K ' F ¥ F- F E_F F 3 5
$LO %' ,%F7D'20 | Replace the single quote character | >LO F7D, 20 H
! (') with the comma (,) in the H H

{ string F7D'20. i i

1]
§

| Change the replacement delimiter]
i from § to the \, and replace the)
{ single quote character (') with H
! the comma (,) in the string H
i F7D'20. H

{ Replace the single quote character |
! (') with a comma (,) replace A !
{ with 2, replace B with a 0 in the |
{ character string 'AB. The string |
|\ F7D remains unchanged. i

$LO $',$F7D'20;%%%3W'A", Replace the single quote character >LO F7D,20;$W'A"

] i
1 I
{ with the comma character in the |
| string F7D'20. Then reset the 1
{ line (clear all replacement |
| instructions for the balance of !
{ the line). Because of this the H
| single quotes around A are not H
! replaced. |

Another use of the character replacement command is the
combination of character replacement and parameter substitution.

Example:

$BUILD TEST

c%%*@\ %3 +8%$WR @1
$EX
$ENDB

This example will result in three preprocessing passes through
the line in order to complete the requested functions. A step by
step analysis will show this. Assume TEST CSS is called with the
following call:

TEST *2,+3,'3RD USED'

The first preprocessing pass through the line causes the command
delimiter to be changed from % to \, the first parameter in the
CSS call (*2) replaces the @ 1 reference in the CSS, and the * is
replaced with an @ symbol. The line now looks like this:

$%+E3$WR @2

6-16 48-043 F0O ROl

The replace to an @ sign requires a second preprocessor pass
through the line in order to expand the reference. On the second
preprocessing pass through the line, the second parameter in the
CSS call (+3) replaces the @2 reference in the CSS line, and then
the + is replaced by an g symbol according to the second
character replacement specificaion. The 1line now looks like
this:

$WR @3

The replace to an @ sign reference requires a third preprocessor
pass through the line in order to expand the parameter reference.
On this pass the third parameter in the CSS call (3RD USED) is
substituted for the @3 reference within the CSS. The 1line now
looks like this:

§WR 3RD USED

No further preprocessing of the 1line is required. The final
output of this CSS when called as detailed previously would be:

-3RD USED

48-043 F0O ROl 6-17

- —

$ENDB

6.6.2 $BUILD and $ENDB Commands

The $BUILD command causes succeeding lines to be copied to a

specified file
command .

performed.

Format:

$BUILD {

$ENDB

Parameters:

fd

lu

APPEND

fd

lu

up to, but excluding, the corresponding $ENDB
Before each line is copied, parameter substitution is

} [, APPEND_]

is the output file. If fd does not exist, an
indexed file 1is allocated with a 1logical
record length equal to the command buffer
length. If the fd specified does not contain
an extension, .CSS is the default. If a blank
extension is desired, the period following the
filename must be specified.

specifies that a temporary file is to be
created and the $BUILD data is copied to it.
When $ENDB is encountered, the file is
assigned to the specified logical unit of the
loaded task. The lu option is valid only when
a task is loaded.

allows the user to add data to an existing fd.
If the fd does not exist, it is allocated.

48-043 FO0OO ROl

Functional Details:

The $BUILD command must be the last command on its input line.
Any further information on the line is treated as a comment and
is not copied to the file.

The $ENDB command must be the first command in the command Lline,
but it need not start in column 1. Other commands can follow
$ENDB on the command line, but nesting of $BUILD and $ENDB is not
permitted.

48-043 FOO ROl 6-19

6.6.3 $CLEAR Command

The $CLEAR command terminates a CSS stream, closes all C38S files,

and deactivates CSS.

Format:

SCLEAR

Functional Details:

The $CILEAR command can be entered in command mode, task loaded

mode, and task executing mode.

20 48-043 FO0O RO1

)]
i

6.6.4 $CONTINUE Command
The $CONTINUE command resumes execution of a CSS procedure
suspended by a §PAUSE or $WAIT command.

Format:

SCONTINUE

48-043 F00 ROl 6-21

| $COPY AND H
i $NOCOPY |

6.6.5 $COPY and $NOCOPY Commands

The $COPY and $NOCOPY commands control the 1listing of €SS

commands on the terminal or log device (if from batch). §$COPY
initiates the listing and all subsequent commands are copied to
the terminal before being executed. The $NOCOPY command

deactivates the listing, but is itself listed. The $COPY command
is an aid in debugging CSS job streams.

Format:

$COPY
ENOCOPY

6-22 48-043 FOO RO1

6.6.6 $DEFINE Command

The $DEFINE command is used to define or to redefine new global
or new internal variables.

Format:

SDEFINE {

Parameters:

GVARIABLE

IVARIABLE

name

operator,

operator; ..

48-043 FO0O ROl

GVARIABLE

va%[hamé],operaton [operator;, .. .operatory]

specifies that a new global variable is being
defined. (not allowed if new global option is
set off at MTM sysgen).

specifies that a new internal variable is
being defined. This is the default.

is the new variable number. The allowed range
is between 1 and the maximum value set at MTM
sysgen.

is the new global variable or new internal
variable name. It is 1- to 8-characters long
and can consist of any character A - Z or any
number 0 - 9.

.operatory

is one or more of the following operators
which selects a particular function to be
performed to determine the variable's value.

File Descriptor Operators

ACCOUNT

F IL.LENAME
EXTENSION
VOLUMENAME

6-23

—

Logical Operators

LOGICAL GO
LOGICAL LD
LOGICAL LU
LOGICAL TD
LOGICAL TU

Computation and Conversion Operators

DCOMPUTE
DHCONVERT
HCOMPUTE
HDCONVERT

Other Operators

CLEAR
CURRENT
DVOLUMENAME
REQUIRED
SEARCH
STRING

The following sections define the format and function of each of
these operators within the $DEFINE command.

6.6.6.1 File Descriptor Operators

The following four operators can be used to determine the
account, filename, extension, or volumename of a specified file
descriptor and then assign the determined portion of the fd as
the value of the variable being defined.

6.6.6.1.1 ACCOUNT Operator

The ACCOUNT operator of the $DEFINE command enables a user to
determine the account designator of a specified file descriptor

and assign the designator as the value of the variable being
def ined.

Format:

fd
ACCOUNT

6-24 48-043 F0OO RO1

Parameters:

£d is the file descriptor of the file or device
for which the account designator is to be
determined.

= specifies that the current total result for
this $DEFINE command is used to determine the
account designator.

Functional Details:

The value returned is /P, /G, or /S depending upon the specified
account. If no account 1is specified, /P is returned for
filenames and undefined is returned for devices. If the user has
the account number privilege, the account number, rather than an
account class, is returned.

Example:

The following CSS is built:

$BUILLD TEST

$DEFINE 6, ,ACCOUNT (@1)
§WR @*6

FEX

$ENDB

The above CSS is called with the following call:
TEST ABC.FTN/G
The result of $WR @*6 is:
/G
6.6.6.1.2 EXTENSION Operator
The EXTENSION operator of the $DEFINE command enables the user to

determine the extension of a given file descriptor and return
that extension as the value of the variable being def ined.

48-043 F0O ROl 6-25

—— ——n

Format:

fd
EXTENSION

Parameters:

fd is the file descriptor of the file or device
for which the extension is to be determined.

= the current total result for this $DEFINE
command is used to determine the extension.

Functional Details:

The returned value will contain a leading period if an extension
was specified, otherwise the value of the variable is undefined.

Example:

BUILD TEST

$DEFINE 10, ,EXTENSION(E1)
$WR @*10

$EX

ENDB

When called with the following CSS call:
TEST FORTRAN.FTN
The $WR @*10 would output .FTN
6.6.6.1.3 FILENAME Operator
The FILLENAME operator of the $DEFINE command enables the user to

determine the filename of a given file descriptor and return that
value as the defined variable.

6-26 48-043 FO0O0 RO1

Format:

s ({7

Parameters:

fd is the file descriptor of the file or device
for which the filename is to be determined.
= the current total result for this §DEFINE
command is used to determine the filename.
Functional Details:
If a file descriptor was specified in the FILENAME operator, the

returned value is the filename.
If a device name was specified in the FILENAME operator, the
returned value is undefined.

Example:

BUILD TEST

$DEFINE 10, ,FILENAME(@1)
§WR @*10

$EXIT

ENDB

When called with the following CSS call:
TEST M301:TCHFIN12.FTN

the $WR @*10 result is TCHFINL12

48-043 FO00 ROl 6-27

-

6.6.6.1.4 VOLUMENAME Operator

The VOLUMENAME operator of the $DEFINE command enables the user
to determine the volume name of a given file descriptor and
assign that value to the variable being defined.

Format:

fd
VOLUMENAME

Parameters:
fd is a file descriptor of the file for which the
volumename is to be determined.
= the current total result for this $DEFINE is
used to determine the volumename.

Functional Details:

The new variable value returned is the specified volume name, or
the user's private volume name under MTM. The volume name is
always followed by a colon (:).

Example:

BUILD TEST.CSS

$DEFINE 20,, VOLUMENAME (M301:SOURCE.FTN)
JWR @*20

$EX

ENDB

Calling the above CSS with the following call:
*TEST
The value of $WR @*20 is:

-M301:

6-28 48-043 F0O RO1

6.6.6.2 LOGICAL Operators

The LOGICAL operators of the $DEFINE command enable the user to
test the current or last result as defined, exit from the $DEFINE
command, or skip operators within the $DEFINE command.

Format:

GOn

“lof s
1o s

Parameters:

GO

$name

48-043 F00 ROl

specifies an unconditional skip of operators
or an exit from within the $DEFINE command.

is a decimal number between 0 and 999.

Where:

0 = exit the $DEFINE command.
1-999 = gkip this number of operators

specifies that the result of the last operator
is to be tested. The test performed depends
upon whether the D or U option follows.

the current total result of the $DEFINE
command is tested. The test performed depends
upon whether the D or U option follows.

tests to see if the result specified by the L
or T parameters is defined.

tests to see if the result specified by the L
or T parameters is undefined.

is a name defined via the $LABEL command. If
a s8kip is specified, the skip will be done to
this label.

—— mmen amen m——. e

Example:

BUILD TEST.CSS

$DEFINE 5,, ST (el) EXT (=) LU2 CL(L) GOO ST(.FTN)
$WR @*5

$EX

ENDB

This $DEFINE command perfoms a check to see if the first
positional parameter in the €SS call contains a filename
extension. If it does, the following two operations are
performed to clear the result of the EXT operator and the $DEFINE
is exited.

If no filename extension is specified the following two operators
are skipped and an extension is attached.

6.6.6.3 Computation and Conversion Operators

A
The computation and conversion operators are used to perform
decimal or hexadecimal computation and decimal to hexadecimal (or
vice-versa) conversion, and then assign the result as the value
of the variable specified in the $DEFINE command.

6.6.6.3.1 DCOMPUTE Operator
The DCOMPUTE operator of the $DEFINE command is used to perform

decimal computation within a CSS line. The computed value then
becomes the value of the variable defined in the $DEFINE command.

Format:

#digits
DCOMPUTE { n }, operandg U@perator,operandtj[@peratornoperandn:ﬂ

Parameters:

#digits specifies the number of digits for the decimal
result with leading zeros and including the
sign column (+ or -). If not specified the
default number of digits used (including sign)
is 4.

operand is the operand (in decimal) with optional sign
(+ or -). The range 1is absolute up to
Y'OFFFFFFF'.

6-30 48-043 FO0O ROl

operator is the computational operator:

+ (addition)

- (subtraction)

x (multiplication)
/ (division)

Functional Details:

The maximum value allowed for an operand or a result is absolute
Y'OFFFFFFF'. Values outside this range generate the following
message. '

DEF6-ERR

Mathematical computation is performed from left to right, and the
intermediate result is combined with the next operator and the
following operand. Computation is performed according to the
fixed point integer rules of rounding.

Examples:
$DEFINE 7, ,DCOMPUTE (-33)

-033 becomes the value of variable 7(@*7). The default number of
digits (4) is used.

$DEFINE 4, ,DCOMPUTE (6,-2+5/-2%*4)

-00004 becomes the value of variable 4 (@*4). The number of
digits in the result is defined as 6.

$DEFINE 5, ,DC(@*4*@*7+100)

+232 becomes the value of variable 5(@*5). This is determined by
multiplying the value of variable 4 (@*4), which is defined
above, as -4 with the value of variable 7(@*7), which is defined
as —-33 above then adding 100 to the result. The default number
of digits (4) is used.

48-043 FO0O0 ROl 6-31

6.6.6.3.2 DHCONVERT Operator

The DHCONVERT operator of the $DEFINE command is used to perform
decimal computation and then convert the result to hexadecimal.
This hexadecimal result is then assigned as the value of the
variable specified in the $DEFINE command.

Format:

#digits
DHCONVERT { N }, operand U?perator1operand1][@peratornoperandn]]

Parameters:

#digits specifies the number of digits for the
hexadecimal result with. leading zeros and
excluding the sign designator. If not

specified the default number of digits is 4.

operand is the operand (in decimal). Negative numbers
are not allowed. The range is absolute up to
Y'OFFFFFFF'.

operator is the computational operator:
+ (addition)
- (subtraction)
x (multiplication)
/ (division)

Functional Details:

The maximum value allowed for an operand or a result is absolute
Y'OFFFFFFF'. Values outside this maximum generate the following
message:

DEF7-ERR

Mathematical computation is performed from left to right and the
immediate result is combined with the next operator and the
following operand. Computation is performed according to the
fixed point integer rules of rounding.

6-32 48-043 FO0O RO1

\
/

Examples:

$DEFINE 7, ,DHCONVERT(-33) the value of variable

7(@*7) becomes hexadecimal
0021.

$DEFINE 4, ,DHCONVERT(6,-2+5/-2*-4) the value of variable

4(@*4) becomes a
hexadecimal 000004.

$DEFINE 5, ,DHCONVERT (4*@*7+100) the value of variable 5§

becomes a hexadecimal
OOBS. (4x21)+100 = 184 =
00B8 in hex.

6.6.6.3.3 HCOMPUTE Operator

The HCOMPUTE operator of the $DEFINE command enables a wuser to
perform hexadecimal computation within the $DEFINE command and
return the result as the defined variables value.

Format:

#digits
HCOMPUTE & | operand, [E)perator1 operandﬂ l'_bperatornoperandn:]]

Parameters:

#digits

operand

operator

48-043 F0O0 ROl

defines the number of digits for the
hexadecimal result with leading zeros. If not
specified the default number of digits is 4.

is an operand in hexadecimal without sign (all
values are assumed positive), the maximum
value being absolute up to Y'OFFFFFFF'.

is one of the following mathematical
operators:

+ (addition)

- (subtraction)

* (multiplication)
/ (division)

— e e —— - —— —— e ———

Functional Details:

The range allowed for an operand or a result is up to absolute
Y'OFFFFFFF' otherwise the following message is generated:

DEF6-ERR

If the hexadecimal result is negative, the following message is
generated:

DEF7-ERR

Computation within an HCOMPUTE operator is from left to right;
the 1intermediate result is combined with the next operator and
the following operand.

Examples:
$DEFINE 7, ,HCOMPUTE (AEO) @*7 = OAEO
$DEFINE 4, ,HCOMPUTE(6,C0/20+18) @*4 = 00O0O01lE

6.6.6.3.4 HDCONVERT Operator

The HDCONVERT operator of the $DEFINE command enables the user to
perform hexadecimal computation within a $DEFINE command. The
result is converted to decimal and is returned as the value of
the defined variable.

Format:

#digits
HDCONVERT B x }Zl operandg [toperator1 operand,] E)peratornoperandn:n
Parameters:
f#digits specifies the number of digits for the decimal
result with leading zeros and the sign (+ or

~-). If not specified the default number of
digits is 4.

6-34 48-043 FO0O ROl

operand is a hexadecimal operand without sign. The
maximum value allowed is absolute Y'OFFFFFFF'.

operator is one of the following mathematical
operators:
+ (addition)
- (subtraction)
x (multiplication)
/ (division)

Functional Details:

The maximum allowable value for an operand or a result is
absolute Y'OFFFFFFF'. Values greater than the maximum will
generate the following message:

DEF6-ERR

A negative hexadecimal operand will generate the following
message:

DEF7-ERR

Computation within the HDCONVERT operator is from left to right,
and the intermediate result 1is always combined with the next
operator and the following operand.

Examples:
$§DEFINE 7, ,HDCONVERT (AO) @*7 = +160
$DEFINE 4, ,HDCONVERT(6,C0/20+18) @*4 = +00030

6.6.6.4 Other Operators

The following sections detail various miscellaneous operators for
the $DEFINE command.

48-043 F00 ROl 6-35

6.6.6.4.1 CLEAR Operator

The CLEAR operator of the $DEFINE command enables the user to
clear the current total result or the last result determined in
the $DEFINE command.

Format:
L
CLEAR
T
Parameters:
L specifies that the last result determined is
to be reset.
T the current total result is to be reset.

Functional Details:

Use of the CLEAR (L) form of this operator resets the last
result, even if a skip was performed. The last result depends on
the value the last operator (except logical operators)
determined.

Example:

The following is an example of how to add the default extension
.FTN to a file descriptor. The file descriptor passed in the CSS
call is allowed with or without an extension.

BUILD TEST.CSS

$§DEFINE 5,,ST(@1l) EXT (=) LU2 <L(L) GO 0 ST(.FTN)
$WR @*5

$EX

ENDB

This example CSS tests to see if an extension is included in the
CSS call. If an extension is specified it is not changed. If no
extension is specified, the default extension .FTN is added. If
this CSS was called with the following:

TEST SYS:ABC the result @*5
TEST BBBB.XYZ the result @*5

SYS:ABC.FTN
BBBB .XYZ

6-36 48-043 FO0O RO1

6.6.6.4.2 CURRENT
The CURRENT operato

current informatio
that information as

Format:

Operator

r of the $§DEFINE command is used to determine
n within the user's environment and to assign
the value of the variable being defined.

BATCH

DATE

EQT
CURRENT GROUP

INTERACTIVE

PRIVATE

IIME

USERNAME

Parameters:

BATCH in batch mode the value returned is the batch
job file descriptor; in interactive mode the
value is undefined.

DATE the value returned is the current date in the
format MM/DD/YY or DD/MM/YY depending on the
format selected at 0S/32 system generation.

EOT the value returned is the 1last end of task
code generated. A maximum of four digits is
allowed. Leading zeros are dropped.

GROUP the value returned 1is the 5 digit current
group account number with leading zeros.

INTERACTIVE in interactive mode the value returned is the
interactive device name, in batch mode the
value is undefined.

PRIVATE the value returned is the 5 digit current
private account number with leading zeros.

TIME causes the current time (HH:MM:SS) to be
returned.

USERNAME causes the current username to be returned.

48-043 FO0O ROl

(o]
I

37

——— e o - —— e ———

Example:

BUILD TIME.CSS

$DEFINE 5, ,CURRENT(TIME)
$WR @*5

$EX

ENDB

Execution of this CSS will cause the current time to be written
as @*5.

6.6.6.4.3 DVOLUMENAME Operator

The DVOLUMENAME operator of the $DEFINE command enables the user
to determine default volume names such as SYSTEM volume, SPOOL
volume, etc. and assign the name as the value of the defined
variable.

Format:
PRIVATE
ROLL
DVOLUMENAME SPOOL
SYSTEM
TEMP
Parameters:
PRIVATE returns the volume name of the users default
volume.
ROI.L returns the volume name of the ROLL volume.
SPOOL returns the volume name of the SPOOL volume.
SYSTEM returns the volume name of the SYSTEM volume.
TEMP returns the volume name of the TEMP volume.

Functional Details:

The volume name returned is always followed by a colon (:).

6-38 48-043 F0O0 ROl

Examples:

Assume that volume SCRT/TEMP has been set at the system console.

$DEFINE 6, TEMPVOL, DVOLUMENAME (TEMP)

$WR @*6 reference by variable would return
SCRT:
$WR @*/TEMPVOL/ reference by variable name would

also return SCRT:

6.6.6.4.4 REQUIRED Operator

The REQUIRED operator of the $DEFINE command enables a user to
designate a new internal variable as required; that is, the
variable must have a defined value. If the new internal variable
designated as REQUIRED is not defined within the €SS, execution
of the CSS is paused and the user is prompted at the user's MTM
console to supply a definition for the required variable.

Format:

REQUIRED [([name])]

Parameters:

name is an optional 1- to 8-character name for the
required new internal variable that MTM will
use when the user is prompted at the wuser's
MTM terminal. This name may be composed of
any of the letters A through 2.

Functional Details:

The REQUIRED operator must be the last operator in a $DEFINE
command. All blanks between the parentheses and between the name
are dropped.

48-043 FO0O ROl 6-39

—— e e e e s e ——

The name for the required new internal variable that is displayed
to the user console 1is one of the following (in order of
precedence) :

® The name specified in the name field of the REQUIRED operator,
® The name used in the $DEFINE command, or

e The number specified in the $DEFINE command.

Examples:

BUILD TEST.CSS

$DEFINE 3,LISTDEV,REQUIRED

$DEFINE 4,0PTION,REQUIRED (NEWNAME)
$§DEFINE 5, ,REQUIRED

$EXIT

ENDB

The above CSS identifies three new internal variables (3, 4, and
5) as required variables. If this CSS is called as follows, the
following message prompts will be issued at the users console:

*TEST CSS call without parameters

-GIVE LISTDEV= Prompt for the first required variable,
the variable name 1is wused in the name
field

-GIVE NEWNAME= Prompt for second required variable, the
name in REQUIRED field is used

-GIVE IVAR 005= Prompt for third required variable, the

variable number is used

6.6.6.4.5 SEARCH Operator

The SEARCH operator of the $DEFINE command enables the user to
perform string searches for matches with specified keywords
passed in the CSS call. On each match found, the string
(including the keyword) is moved to the value of the new variable
defined in the $DEFINE command.

Format:

ldz L]
SEARCH delimiter; { %,[keyword, [Ekeywor:d2 .. 'keywordn]] ' [:str ing, [:dz str ingzzl] delimiter,
'd, + .

6-40 48-043 FOO ROl

Parameters:

delimiter,

Tr?}."j’}(z;;:rordn]

Tff?:gzingﬁ]

48-043 F0OO ROl

" is one of the following character pairs used

to delimit the SEARCH operator specifications:

delimitery; ...delimiter; = # ... #
]
+ ...+

.
-

The character pair chosen as the specification
delimiter must not appear in the SEARCH
operator specifications or as a string
delimiter (dp).

is the string delimiter which is used to
separate the strings to be searched. The
string delimiter may be any character except
carriage return or semicolon. If the 'd,’
option is used, the delimiter (d,) following
the matched string 1is not included when the
string is moved, if the 'd,+ delimiter |is
used, the delimiter (d,) is included when the
string is moved.

is a 1- to 8- character (A through Z) keyword.
A keyword specification can be further defined
to show the minimum number of characters that
can be used to reference the keyword. This is
accomplished by separating the required
characters of the keyword and the optional
characters of the keyword with a period. For
example:

OP.TION

The keyword name is OPTION but a call
specifying OP= will reference this keyword.
Multiple keywords may be defined in a SEARCH
operator, all strings are searched for matches
with each defined keyword. Multiple keywords
are separated by a ' mark.

is a character string which may contain
any character except carriage return or
semicolon. Null strings are allowed. The
specified string is searched for any matches
with keywords. If a positional parameter
reference is specified (@l, @2) the string to
be searched can be passed in the CSS call.

—— —— - a—en e e e ——

-——

Functional Details:

The beginning of a string 1is tested for a match with the
specified keywords. The search for a match begins with the first
string. If one of the defined keywords matches a string entry,
this string is moved to the new variable's value. The move
includes leading blanks, the keyword, and all following
characters up to the next string delimiter (d,) or including the
string delimiter if the 'd;+ delimiter was specified. This
process is repeated for each string to be searched. For example:

If the keyword is:

OPTION

and the string delimiter (d,) is:

l#l

and the string to be searched is:

...4% OPT = HOLL BATCH #

the new variable being defined has a value of:

OPT = HOLL BATCH

Examples:

BUILD TEST.CSS

$DEF 5, ,SEARCH('#',OP.TION'BA.TCH, @1)
$WR @*5

$EX

ENDB

The above (€SS identifies the pound sign as the string delimiter;
keywords are OP.TION and BA.TCH; the string to be searched is g@l,
the first parameter passed in the CSS call.

When calling the above CSS with the following call:

TEST OP/AAAAH# BATCH # SOURCE

6-42 48-043 F00 ROl

The first string searched is OP/AAAA. A match with the first
keyword is found OP.TION. OP/AAAA is moved to the variables
value. .

The next string searched is BATCH. A match with the second
keyword is found BA.TCH. BATCH is moved to the variables value.
next string searched is SOURCE. No match is found.

The subsequent value of $WR @*5 is OP/AAAA BATCH

If calling TEST.CSS with the following:
TEST xx # BATCH # BA/AAA # YY # OPTI

The first string searched (xx) has no match. The second string
searched (BATCH) matches a keyword. The third string seached
(BA/AAA) matches a keyword. The fourth string (YY) has no match.
The fifth string searched (OPTI) matches a keyword.

The subsequent value of $WR @*5 = BATCH BA/AAA OPTI

6.6.6.4.6 STRING Operator

The STRING operator of the $DEFINE command enables the value of

the new variable being defined to be a user specified string.

Format:

STRING delimiter; string delimiter,[...delimiternstring delimitenﬂ

Parameters:

delimiter is any of the following characters that
delimits the beginning and end of the string:

The character used as the delimiter should
never appear within the string.

48-043 FO00 ROl 6-43

string

Example:

BUILD TEST

is a character string which may contain any
characters except carriage return or the
delimiter character. This string becomes the
value of the new variable being defined in the
$DEFINE command . Leading and/or trailing
blanks are included.

$DEFINE 7,, STRING (ABC) ST # A ($%) A#

$WR [@*7]
$EX
ENDB

Calling the above CSS with the following call:

*TEST

The resulting output of the $WR @*7 statement is:

[(ABC A ($%) A]

48-043 F0OO ROl

6.6.7 $EXIT Command

The $EXIT command terminates a CSS procedure. Control is
returned to the calling C8S procedure or the terminal if the CSS
procedure was called from the terminal. All commands on the

lines after the $EXIT command are ignored.

Format:

SEXIT

48-043 F0O ROl 6-45

6.6.8 §$FREE Command

The $FREE command frees one or more local or global variables.
This command has no effect on new global or new internal
variables.

Format:
$FREE varname, [,...,varnamei]
Parameters:
varname is a 1- to 8-character name specifying the
variable whose name and value are to be freed.
Example:
$FREE @A

6-46 48-043 F0O0 ROl

6.6.9 $GLOBAL Command

The $GLOBAL command names a global variable and specifies the
maximum length of the variable to which it can be set by the $SET

command .

Format:

length length
$GLOBAL, varname || . r - - . Varname -

Parameters:

varname is a 1- to 8-character name (the first
character 1is alphabétic) preceded by the @
sign, identifying a global variable.

length is a decimal number from 4 through 32
specifying the length of the variable defined
by the $SET command. If this parameter Iis

omitted, the default is 8.

Example:

$GLOBAL @A(H)

48-043 F0OO ROl 6-47

| $JOB AND |

——— i ——— - — ——— ——

6.6.10 $JOB and $TERMJOB Commands

The $JOB and $TERMJOB commands set the boundaries of a €8S job.
The $JOB command indicates the start, and the $TERMJOB command

indicates the end of a CSS job that contains
commands.

all the wuser €SS

Format:
$J0B
CPUTIME=maxt ime
Eclassid=iocounta E...,classid=iocount3a
STERMJIOB
Parameters:

CPUTIME= maxtime is a decimal number specifying the
maximum CPU time to which the CSS routine is
limited. If this parameter is omitted, the
default established at MTM sysgen is used. If
0 is specified, no limits are applied.

classid= is one of the 4-character alphanumeric
mnemonics specified at MTM sysgen that is
associated with each specified device or file
class.

iocount is a decimal number specifying the maximum

number of I/0 transfers
routine is limited for that

to which the CsSs
class. If this

parameter is omitted, the default established

at sysgen time is used.

If 0 is specified, no

limits are applied to that class.

48-043 F0O ROl

Functional Details:

The $JOB and $TERMJOB commands are not necessary in a €SS
procedure. However, they help prevent errors in one CSS job from
affecting other €8S jobs. If a CSS job contains an error, the
statements remaining in that job are skipped until a $TERMJOB
command is found. The next command executed is the first command
found after a $TERMJOB command. If the next command is a $JOB
command signifying the start of a new €SS job, it could be
skipped because the system 1is looking for a $TERMJOB that
signifies the end of the CSS job containing the error.

The CSS job containing an error is aborted, and the end of task

code 1is 255. The $JOB command resets the end of task code to O
for the next CSS job.

Interactive jobs have no default 1limits established at sysgen
time. However, the wuser can specify CPU time and I1/0 transfer
limits for a particular job through the $JOB command.

Any limits in the $JOB command found 1in a batch stream are
ignored if limits were already specified in the SIGNON command.

48-043 FO0O ROl 6-49

6.6.11 $LOCAL Command

The $LOCAL command names a local variable and specifies the
maximum length variable to which it can be set by the $SET

command.

Format:

length length
$LOCAL varname » r -« . Varname -

Parameters:

varnhame

length

Example:

$ILOCAL @A(4)

is a 1- to 8-character name (the first
character is alphabetic) preceded by the @
sign, identifying a local variable.

is a decimal number from 4 through 32
specifying the length of the variable defined
by the $SET command. If this parameter is
omitted, the default is 8.

48-043 FO0O RO1

- —— - —— — - —————

6.6.12 $PAUSE Command

The $PAUSE command suspends execution of a CSS procedure.

Format:

SPAUSE

Functional Details:

When $PAUSE is entered, the CSS procedure remains suspended until
the $CONTINUE command is entered or the $CLEAR command is entered
to terminate a procedure suspended by a $PAUSE.

48-043 F00 ROl 6-51

6.6.13 PRIOR Command

The PRIOR command is used in CSS files to set the priority for a
subsequently loaded task. This command is available in CSS files
from the system account and from privileged users of MTM (to
raise or lower the priority of a susbsequently loaded task) and
to nonprivileged MTM ' users (to lower the priority of a
subsequently loaded task relative to the wuser's MTM priority.)
However, nonprivileged users of MTM cannot use the PRIOR command
to raise the priority of a task above their MTM priority.

Format:

PRIOR n

Parameter:

n is a decimal number specifying the priority of
the susbsequently loaded task relative to the
priority of MTIM. n may range from 1 through
255 when the PRIOR command is in a €SS file
from the system account or from a privileged
user. n may range from 12 through 255 when
the PRIOR command 1is 1in a CSS file from a
nonprivileged MTM user.

Functional Details:

The PRIOR command can be entered from CSS files only. If the
task loaded subsequent to a PRIOR command generates a load error
or goes to end of task, the priority specified 1in the PRIOR
command is reset to the default MTM priority.

If an invalid priority number is specified 1in a PRIOR command
(i.e. 1-11 by a nonprivileged user), the invalid priority
specification is ignored, no message 1is generated, and the
default MTM priority is used.

6-52 48-043 FO0O0 RO1

6.6.14 S$RELEASE Command

The $RELEASE command is used to release a new global or new

internal variable from its current value and delete the released
variable's associated buffer. This command has no effect on
local or global variables.

Format:
ny/ny
GVARIABLE -
SRELEASE 1Ny r...,Np
IVARIABLE
Parameters:

GVARIABLE indicates that the variables to be released
are new global variables.

IVARIABLE indicates that the variables to be released
are new internal variables.

n,/ny indicates that all variables (of the type
selected via the preceding parameter) between
the range ny/n, be released. Where n 1is a
decimal number between 1 and the maximum value
allowed at MTM sysgen for the specified
variable type.

n;...np n is a decimal number of a variable (either
new global or new internal) or variables to be
released. n must be within the range 1 and
the maximum value allowed at MTM sysgen for
the specified variable type.

ALL specifies that all new internal or new global

48-043 FOO ROl

variables be released. This is the default if
no specific variable numbers are specified.

—

Functional Details:

This command may be entered in command mode, task loaded mode,

task executing mode, and CSS mode. In order to reduce buffer
overhead, variables that are no longer being used should be
released. If this command is directed to a variable that was

already released, the command is ignored and no error message 1is
generated.

Examples:
$RELEASE GVARIABLE, 1/5

All new global variables from 1 through 5 are released.
$RELLEASE IVARIABLE, 16, 19, 18, 25

The new internal variables numbered 16, 19, 18, and 25 are
released.

$RELLEASE IVARIABLE, ALL
All new inteinal variables are released.
NOTE
This command does not release local and

global variables created with the $SET
command.

6-54 48-043 F0O ROl

6.6.15 $SET Command

The $SET command establishes the value of a named local or global
variable. This command has no effect on new global or new
internal variables.

Format:

$SET varname=e

Parameter:

varname= e is an expression, variable, or parameter
established as the value of the variable.

Functional Details:

Expressions for this command are concatenations of variables,

parameters, and character strings. No operators are allowed in
an expression. If a character string 1is included in an
expression, it must be enclosed between apostrophes ('). If an
apostrophe is part of the character string, it must be

represented as two apostrophes ('').

The initial value of the variable is blanks. This allows the
$IFNULL and $IFNNULL commands to test for a null or not null
value.

Examples:
$SET @A = @AleA2
$SET €A = el
$SET @A = 'A''B’

48-043 FOO ROl 6-55

6.6.16 SET CODE Command

The SET CODE command modifies the current end of task code.

Format:

SET CODE n

Parameter:

is a decimal number from 1 through 254.

48-043 F0OO ROl

6.6.17 $SKIP Command

The $SKIP command is used between the $JOB and $TERMJOB commands.
The $SKIP command indicates that subsequent commands are to be
skipped until a $TERMJOB command is found. The end of task code
is set to 255.

Format:

SSKIP

48-043 F00 ROl 6-57

6.6.18 $WAIT Command

The $WAIT command suspends execution of a €SS for a specified

period of time.

The $CONTINUE command can be used to override this command and

continue the CSS.

Format:

Parameter:

Functional Details:

is a decimal number from 1 through 300
specifying the number of seconds CSS execution
will be suspended. If this parameter is
omitted, the default is 1 second.

The $WAIT command will only function from a CSS routine.

The $CONTINUE command can be used to override this command and

continue the CSS.

58

48-043 FO00 ROl

6.6.19 $WRITE Command
The $WRITE command writes a message to the terminal or log device
for both interactive and batch jobs.
Format:
SWRITE text [;]

Functional Details:

The message is output to the terminal or log device. It begins
with the first nonblank character after $WRITE and ends with a
semicolon or carriage return. The semicolon is not printed.

48-043 F00 ROl 6-59

6.7 LOGICAL IF COMMANDS

The logical IF commands all start with the three characters, $IF,
and allow one argument; e.g., $IFE 225, $IFX B.CSS, $IFNULL el.

Each logical IF command establishes a condition that is tested by
the CSS processor. If the result of this test is true, commands
up to a corresponding $ELSE or $ENDC command are executed. If
the result is false, these same commands are skipped.

The $ENDC command delimits the range of a logical IF; however,
nesting is permitted so each $IF must have a corresponding $ENDC.

In the following examples, the ranges of the various 1logical IF
commands are indicated by brackets:

$IF
$E&DC [:—$iF [:-$iF
$E&DC $E&DC
: $IF
L———$ENDC [j..
$EﬁDC

L——%E&DC

$IF $IF

There is no restriction on the depth of nesting. Logical IF
commands are used within a CSS file. However, they differ from
previous CSS commands in that each one tests a specific built-in,
def ined condition rather than causes a specific action.

The logical IF commands fall into three categories:

® End of task code testing
e File existence testing

e Parameter existence testing

6-60 48-043 FOO ROl

6.7.1 End of Task Code Testing Commands

The end of task code is a halfword quantity maintained for each
user by the system. It is set or reset in any of the following

ways:

SET CODE n

$JOB

Command error

$SKIP

End of task
(SVC 3,n)

CANCEL

This command, which can be included in a CSS
file or entered at the terminal, sets the end
of task code to n.

As part of its start Jjob function, this

, command resets the end of task code for the

current CSS task to O.

A command error causes the (€SS mechanism to
skip to $TERMJOB assuming that a $JOB was
executed. (If no $JOB was executed, CSS
terminates.) To 1indicate that the skip took
place, the end of task code is set to 255.

This command has the same effect as a command
error.

When any task terminates by executing the end
of task program command (SVC 3,n), the end of
task code for that task is set to n.

When a task is cancelled, the end of task code
is set to 255.

The six commands available for testing the current end of task
code are as follows:

$IFE n Test if end of task code is equal to n.
$IFNE n Test if end of task code is not equal to n.
$IFL n Test if end of task code is less than n.
$IFNL n Test if end of task code is not less than n.
$IFG n Test if end of task code is greater than n.
$IFNG n Test if end of task code is not greater
than n.
In all cases, if the results of the test are "false", CCSS skips
commands until the corresponding $ELSE or $ENDC. If a CSS

attempts to skip beyond EOF, a command error is generated.

48-043 F00 ROl

6.7.2 File Existence Testing Commands

There are two commands dealing with file existence:

FIFX fd Test fd for existence

SIFNX fad Test fd for nonexistence
If the result of the test 1is false, C(S8S skips to the
corresponding $ELSE or $ENDC command. I[f a CSS attempts to skip
beyond EOF, an error is generated.
I[f the file descriptor is omitted when entering $IFX, the result
is always considered false. If $IFNX is entered without the fd,
the result is always considered true.

6.7.3 Parameter Existence Testing Commands

There are two commands dealing with the existence of parameters:

SIFNULL @n Test if @n is null

SIFNNULL @n Test if @n is not null
If the result of the test is false, €SS skips to the
corresponding $ELSE or $ENDC command. If such skipping attempts
to skip beyond EOF, a command error is given.
The use of the multiple @ notation to test for the existence of

higher level parameters is permitted. In addition, a combination
of parameters can be tested simultaneously.

Example:

$IFNU fle2e3

In effect, this tests the logical AND of @l, @2, and @3 for
nullity. If any of the three is present, the test result is
false.

6-62 48-043 F0O0 ROl

6.7.4 $ELSE Command

The $ELSE command is used between the $IF and $ENDC command to
test the opposite condition of that tested by $IF. Thus, if the
condition tested by $IF is true, $ELSE causes commands to be
skipped up to the corresponding $ENDC. If the condition is
false, $ELSE terminates skipping and causes command execution to
resume.

Format:

SELSE

48-043 FOO ROl 6-63

| $LABEL |
6.8 $GOTO AND $LABEL COMMANDS
The $GOTO command is used to skip forward within a CSS procedure.

The $LABEL is used to define the object of a $GOTO.

Format:

$GOTO 1label

S$ILABEL label

Parameters:

label is from 1- to 8-alphanumeric characters, the
first of which must be alphabetic.

Functional Details:

The $GOTO command causes all subsequent commands to be ignored
until a $LABEL command with the same label as the $GOTO command
is encountered. At that point, command execution resumes.

The $GOTO cannot branch into a logical IF command range but can
branch out from one.

An example of an illegal $GOTO is:

$IF Condition
$GOTO OUTIF

$ENDC
$IF Condition
$LABEL OUTIF

The $LABEL occurs within an IF block (the second IF condition)
that was not active when $GOTO was executed.

6-64 48-043 F0O ROl

The following is valid, however:

$IF Condition
$GOTO OUTIF

$ENDC
$IF Condition

$ENDC
$LABEL OUTIF

48-043 F0O ROl

| $IFEXTENSION |

6.9 §IFEXTENSION COMMAND

The $IFEXTENSION command is used to test for the existence of an
extension for a given fd. If the extension exists, subsequent
commands are executed up to the next $ELSE or $ENDC command. If
an extension does not exist, subsequent commands are skipped up
to the next $ELSE or $ENDC command.

Format:

SIFEXTENSION fd

Parameter:

fd is the file descriptor to be tested to
determine if an extension is included.

Functional Details:

FIFEX (with no fd) is always considered false. §$IFNEX (with no
fd) is always considered true.

6-66 48-043 F0OO ROl

6.10 $IFVOLUME COMMAND

The $IFVOLUME command tests for the existence of a volume name in
an fd. If a volume exists, subsequent commands are executed up
to the next $ELSE or $ENDC command. If the volume is omitted in

the fd, subsequent commands are skipped up to the next $ELSE or
$ENDC command.

Format:

$IFVOLUME fd

Parameter:

fd is the file descriptor tested to determine if
a volume name is included.

48-043 F0OO ROl 6-67

6.11 LOGICAL IF COMMANDS COMPARING TWO ARGUMENTS

The following logical IF commands are used to compare two

arguments. They differ from the other logical IF commands in
that they do not test specific built-in conditions but, rather,
test conditions provided by the user. These commands are

available only with MTM.

$IF . . . EQUAL
$IF . . . NEQUAL
$IF . . . GREATER
$§IF . . . NGREATER
$IF . . . LESS

§IF . . . NLESS

For each of the logical commands, two arguments are compared
according to the mode. There are three valid modes:

e Character
e Decimal

® Hexadecimal

For character mode, the comparison is 1left-to-right and is
terminated on the first pair of characters that are not the same.
If one string is exhausted before the other, the short string is
less than the long string. If both strings are exhausted at the
same time, they are equal. For character mode, the arguments can
be enclosed in double quotes if they contain blanks. The quotes
are not included in the compare.

For decimal and hexadecimal mode, the comparison is performed by
comparing the binary value of the numbers.

If after comparing the arguments for each of the commands, the
condition 1is determined to be true, subsequent commands are
executed up to the corresponding $ELSE and $ENDC. If the

condition 1is false, commands are skipped up to the corresponding
$ELSE or $ENDC.

6-68 48-043 FO0O ROl

6.11.1 $IF...EQUAL, $IF...NEQUAL Commands
The $IF...EQUAL command is used to determine if two arguments are

equal, while the §$IF...NEQUAL 1is used to determine if two
arguments are not equal.

Format:

CHARACTER
$IF DECIMAL arg, EQUAL arg,

HEXADEC IMAL

CHARACTER
$IF DECIMAL argy, NEQUAL arg,

HEXADECIMAL

6.11.2 $IF...GREATER, $IF...NGREATER Commands

The $IF...GREATER command is used to determine if argy is greater
than arg,. The $IF...NGREATER command is used to determine if
arg, is not greater than arg,.

Format:
CHARACTER
$IF DECIMAL arg, GREATER argqg,
HEXADECIMAL
CHARACTER

§IF DECIMAL arg, NGREATER arg,

HEXADECIMAL

48-043 F0O ROl 6-69

6.11.3 S$IF...LESS, §$IF...NLESS Commands
The $IF...T.ESS command is used to determine if arg; is less than

arg, - The §$IF...NILESS command is used to determine if arg, is
not less than arg,.

Format:

CHARACTER
$IF DECIMAL arg, LESS arg,

HEXADEC IMAL

CHARACTER
$IF DECIMAL arg, NLESS arg,

HEXADECIMAL

6-70 48-043 FOO RO1

CHAPTER 7
SPOOLING

7.1 INTRODUCTION

The 0S/32 Package (Revision 6.2 or higher) now comes with two
spooler tasks:

e the 0S5/32 spooler, and

e the SPL/32 spooler

Both spoolers offer input and output spooling capabilites to the
MTM user. The SPL/32 spooler offers a more extensive range of
features and capabilities than the 0S/32 spooler. The system
administrator determines which spooler will be used on a system
by selecting the appropriate sysgen statement. Only one spooler
can be active on the system at any given time. The 0S/32 System
Generation (SYSGEN) Reference Manual presents detailed
information regarding the procedures for sysgening either
spooler.

NOTE

The manner in which pseudo devices are
specified and wused in the spooling
environment differs among the two
spoolers. Pseudo devices created for the
0S/32 spooler are not compatible with
pseudo devices created for the SPL/32
spooler. Do not attempt to mix the
various pseudo device types.

7.2 THE 0S/32 SPOOLER

The 0S/32 spooler is Perkin-Elmer's first generation spooler and
until this release was the only spooler available with 0S/32.
This spooler provides basic input and output spooling services
with minimal flexibility and control over the spooling
environment. The following sections detail the manner in which
an MTM user can utilize the spooling capabilities of 0S/32
spooling.

48-043 FOO ROl 7-1

7.2.1 Input Spooling

Input spooling is a process whereby a card deck of information
(such as source programs, operator commands, command substitution
gsystem (CSS) files, or user data, is copied into a disk file for
immediate or subsequent processing.

7.2.2 Input Spooling Control Card Statements

Each batch of cards to be spooled to disk must be preceded by a
control card statement. This statement specifies the fd to which
the 1input data (card file) is to be spooled. The 05/32 spooler
provides two such control statements:

® /EINPUT

e /@SUBMIT

7.2.2.1 The /@INPUT Control Statement
The /@INPUT control statement is used to copy a card file to a
specified fd on disk. The resulting file can be explicitly

assigned and read by the user in order to access the spooled
information.

Format:

/RINPUT fd/actno [,DELETE]

Parameters:

fd is the file descriptor of the disk file in the
form of voln:filename.ext. The only required
field 1is filename. If voln is omitted, the
default spool volume is used.

actno is the account number the terminal user signs
on with.

DET.ETE specifies that if a file with the same name

and account number already exists, that file
is deleted and reallocated.

CAUTION

IF THE WRONG ACCOUNT NUMBER IS ENTERED,
THE USER MIGHT DELETE ANOTHER USER FILE.

7-2 48-043 FOO ROl

Example:

A task requires five input data records in order to execute. In
the following example, TEST.DTA in account 12 is identified as
the file to which the five data records are to be spooled. If

the file TEST.DTA currently exists on disk it will be deleted and
reallocated as specified by the DELETE option in the /gINPUT
statement.

/@IN TEST.DTA/12,DELETE
4 INPUT TEST

122736

545627

889710

632192

/e

7.2.2.2 The /@SUBMIT Control Statement

The spooler can also be used to submit batch jobs to MTM. This
is done through the /@SUBMIT control statement. This statement
copies a card file to disk and then submits the file as a batch
job. The commands located within the spooled batch file are
executed in sequence. The file remains on the disk after
execution.

To add batch jobs to the batch gqueue via the spooler, submit a
control statement card with the following format:

Format:

/BSUBMIT fd/actno [,DELETE]

Parameters:
fd is the name of the command file; 1i.e., the
batch Jjob, that is to be placed on the batch
queue.
actno is the account number the terminal user signs
on with.
DELETE specifies that if a file with the same name

and account number exists, that file is to be
deleted and reallocated.

The end of a card file is signified by placing the symbols /@ in
columns 1 and 2 of the last card in the file.

48-043 FOO ROl 7-3

Refer to the 0S/32 System Support Utilities Reference Manual for
more detailed information on the 0S/32 spooler.

The following examples are presented to illustrate two methods of
submitting a batch job through the 0S/32 spooler.

Method 1:

First, a CSS file named DATA is copied from a card file to a disk
file named TEST.CSS on account number 12 on the default spool
volume. If TEST.CSS already exists, it 1is deleted and
reallocated. This is done as follows:

/@INPUT TEST.CSS/12,DELETE
O DATA

AS 1,DATA.DTA

AS 3,PR:

AS 5,MACL:

START

/e

The CSS file TEST.CSS created with the previous /@INPUT statement
now can be submitted as a batch job named TEST.JOB via the
/@SUBMIT control statement. If a file already exists on the disk
with the name TEST.JOB, it is deleted and reallocated. When
running concurrent batch jobs, each signon ID must be unique.

/@SUBMIT TEST.JOB/12,DELETE
SIGNON ME, 12, PASSWD

[.OG PR:

t.a8T.CSS

SIGNOFF

/e

Method 2:

The procedures shown in Method 1 can also be performed 1in one
step, as the following example shows. In this example the
process of creating a CSS file and then submitting the €SS file
as a batch job is combined into one step. If the file TEST.JOB
already exists on the disk, it is deleted and reallocated. After
this batch job completes, the file TEST.JOB remains on the disk.

7-4 48-043 FOO ROl

/@SUBMIT TEST.JOB/12,DELETE
SIGNON ME, 12, PASSWD

I.OG PR:

I.O DATA

AS 1,DATA.DTA

AS 3,PR:

AS 5,MAG1l:

START

SIGNOFF

/e

7.2.3 Output Spooling

Output spooling is a process in which information destined for a
physical output device, such as a printer or card punch, is
initially copied to a disk file. This file is then copied by the
spooler to the physical output device on a task priority basis.
This process enables multiple tasks to be generating output for
the same output device since output is not routed directly to the
device as it is generated.

To make use of the output 0S/32 spooler, assign any logical units
(lu) to be printed or punched tc one or more pseudo devices. As
soon as the 1lu is closed, the 0S5/32 spooler automatically will
print or punch the results. Printing or punching may be delayed
because of a backlog to the device.

There is no limit to the number of tasks or logical wunits that
can be assigned to a pseudo device. After the user makes an lu
assignment to a pseudo device, the following occurs internally:
the operating system automatically intercepts all assignments to
that pseudo device and allocates an indexed file called a spool
file on the spool volume. Subsequent output calls cause data to
be written to this file and not to the device. The spooler
supports both image and formatted writes.

When the lu assigned to the spool file is closed, the filename,
task name, and priority are placed into the spooler print or
punch queue. The queue is maintained as a file on the spool
volume. If there 1is an entry on the gqueue, the output spooler
begins printing or punching and stays active as long as there |is
something on the queue. Files are spooled and output on a task
priority basis. The user must ensure that sufficient disk space
is available to accommodate output spooling. The user task is
responsible for handling end of medium (EOM) status while writing
to spool files within their own standard 1/0 error recovery
routines.

Printing multiple copies of a disk file or punching multiple
copies of a card deck is accomplished through use of the spooler.
To print or punch a disk file using the spooler, issue a command
through MTM from the terminal. This is done with the PRINT and
PUNCH commands. See Sections 2.38 and 2.39.

48-043 FO00O ROl 7-5

If the device specified in a PRINT or PUNCH command does not
support printed output or output punching respectively, the
output will be generated in the way that is supported on the
specified device.
For print files, a header page precedes each file printed. The
header page has the format:

USERID

ACCOUNT NUMBER

TIME OF DAY

DATE
When a file is directed to a card punch file, each output record
is 80 bytes in 1length. A header card precedes the punched

output; a trailer card terminates the punched output. Header
suppression is not supplied.

Example:

To list and punch a file named TEST.CSS in account number 12 on
the volume MTM using the 0S5/32 spooler, enter:

SIGNON ME, 12,MEPASS
PRINT MTM:TEST.CSS
PUNCH MTM:TEST.CSS
SIGNOFF

The header page for the print examples reads:

TEST
AC=00012
14:36:50
07,/08/717
7.2.4 Spooling Errors
The following message is generated by the operating system in

response to a spooler command.

FILE voln:filename.ext/acct NOT ENTERED ONTO PRINT QUEUE

7-6 48-043 FOO RO1

A spool file was closed but the spooler task was not loaded or
started. The system operator can reenter a .SPL PRINT command
when the spooler is started.

7.3 THE SPL/32 SPOOLER

The SPL/32 spooler is the latest spooling product offered with
the 0S/32 operating system. SPL/32 will only execute on systems
running Revision R06.2 or higher of 0S/32.

SPL/32 offers increased flexibility in creating and controlling

the spooling environment of a system. Some of the features of
SPL/32 include:

e The number of output devices is dependent only on the amount
of available memory.

e Capability of retaining a spcoled output file after it is sent
to a device.

e Capability of holding spooled files from output processing.

e The option to backspace, forward space, or rewind a file that
is currently being output by the spooler, and then resume
output.

e The option to produce up to 255 copies of an output file.

e The option to print informative header and trailer pages to
identify output files.

e The capability of using preprinted forms and testing for form
alignment before output.

® The capability to alter the output requirements of a file
waiting to be output.

e The capability to alter the order in which files are output.

e The capability to control devices within the output spooling
environment.

e The capability to quiesce the entire output spooling function
or individual devices in an orderly fashion.

e The capability to add or drop spool devices dynamically.

48-043 F00 ROl 7-7

7.3.1 SPL/32 and MTM Interaction

The SPL/32 capabilities available to an MTM terminal user are
directly dependent upon the manner in which the spooling
environment is configured. MTM users of SPL/32 should refer to
the SPL/32 Administration and Reference Manual for specific
details on the commands and configurational considerations of
using SPL/32.

In general, MTM should be designated the primary control task for

SPL/32. This will enable all 8PL/32 spooling facilities at the
MTM terminal level.

7-8 ‘ 48-043 FOO ROl

APPENDIX A
MTM COMMAND SUMMARY

keys
CONTIGUOUS,fsize o

{ra)]
wanee v [f]] 11

o | e]

LI 1
—t—

(access privileges SVC1l5
SVCF

keys VFC

HI

LOW

MED UM J

ASSIGN 1lu,fd |,

-
-

BFILE [fd,] 1lu

address
BIAS

*

BREAK

BRECORD [fd,] 1lu

48-043 F0O0 ROl A-1

fd

} [apPEND]

BUILD {
lu

ENDB
CANCEL

luy [,1luz,. ..luﬁ]}

CLOSE {
ALL

CONTINUE [[address]

DELETE fd, [,fdz,...,fdn]
ny /ny
GVARIABLE
DISPLAY , n '
IVARIABLE

£d
DISPILLAY ACCOUNTING ,{ﬂ }

DISPLAY DEVICES ,{

A-2 48-043 FOO RO1

-
-

DISPLAY FILES , voln: [filename] [}[ext]]

default user vol

'DISPLAY FLOAT [{

DISPLAY LU |,

DISPLAY REGISTERS |,

DISPLAY TIME ,{

DISPLAY USERS

48-043 FOO ROl

MESSAGE

PROMPT
ENABLE

ETM

$VARIABLE

’n

EXAMINE address; /address;

FEILE [£fd,] 1u
FRECORD [fd,] lu

mnemonic
HELP

*

segsize increment
INIT £fd |,

INQUIRE fd{

LOAD [taskid,] fd [;segsize increment] [,SCTASK]

NOCOPY n
Log [¢d] {% } ' {w}

SET Loc [fa] |, {

userid
MESSAGE

} message

+OPERATOR

48-043 F0OO RO1

data1
MODIFY address, [;dataz,...,datan]

AFPAUSE SVCPAUSE
OPTIONS '{

} [} NONRES I DENT]

AFCONTINUE SVCCONTINUE

PASSWORD current password, new password

PAUSE
MESSAGE
PROMPT
PREVENT
ETM
$VARIABLE

ERINT fd [,DEVICE=pseudo device] [[COPIES=n] [,DELETE] [,VFC]
PUNCH fd [,DEVICE=pseudo device] [,COPIES=n] [[DELETE] [,VEC]
PURGE fd

ni/ny
GVARIABLE
.S.RELEASE ’ n1[,...,nn]

IVARIABLE

RENAME oldfd,newfd
REPROTECT fd,new keys

REWIND [fd,] lu
or

RW [fd,] 1lu

48-043 FOO ROl

RW
actnoq |/ ‘ ,...,max actno /,

e

actnoy ,...,max actno

ADD,

RVOLUME voln,
REMOVE,

actno

[USERS | ,qactnoy - actno,

SEND message [;]
SET GROUP n
SET KEYOPERATOR [character]

SET PRIVATE n

SIGNOFF
; fd
SIGNON userid,actno,password | ,ENVIRONMENT=
NULL [:]
[}CEQILME=maxtime]
l:, classid=iocount1 [, ...,Class id=iocount32]:|

YEC
SPOOLFILE lu&lul,pseud dev,FORM=formname ,{ }

P{NQIMAGE} | {_CHECKPOINT }

| [cQPIES=n] l{uow }

[, BRIORITY=p]

,BLOCK= blocksize/indexsize {,.

NQDELETE}

A-b 48-043 F0OO ROl

address

STAEP[{

[suBMIT fd ,DELETE] [,PRIORITY=priority]

taskid
TASK
. BGROUND

CONTIGUOQUS ,fsize

bsize isize
EQ/{ } /\

INDEX |,

TEMPFILE lu, {lrecl

lrecl
NB |,

VOLUME [voln]

WFILE [£d4,] 1u

XALILOCATE fd,

XDELETE fd, [/fd,...,£dn]

48-043 F00 ROl

}

bsize
/ o

}

§,.H}} [,parameter1,...,parametern]

APPENDIX B
PROGRAM DEVELOPMENT COMMAND SUMMARY

ADD fd [,cssprod]

voln: filename
COMPILE o
s 3

filename
COMPLINK n
voln: filename
EDIT ,
voln: f ilename
ENV
F filename
EXEC [["start parameters"]
a9 - -
filename
LINK
LIST
REMOVE fd
voln: f ilename
RUN [["start parameters"]

48-043 F0O ROl B-1

APPENDIX C
CSsS COMMAND SUMMARY

{ char lchar 2, [charl char22...charlchar24]% }
%

% new delimiter

SBUILD {fd }[,APPEND]
lu
$ENbB
SCLEAR
SCONTINUE
$COPY
GVARIABLE
&DEEINE~{% n},[name],operator, Eoperator2...operatorn]
SELSE
SENDC
SEXIT
$FREE varname, [,...,varnamen]

length length
$GLOBAL varname ¢ - - =« g VAYNAME

48-043 F0O ROl c-1

$GOTO 1label

SLABEL label

CHARACTER
$IF DECIMAL arg, EQUAL arg,

HEXADECIMAL

CHARACTER

JIF DECIMAL arg, NEQUAL arg,

HEXADEC IMAL

CHARACTER

$IF DECIMAL arg, GREATER arg,

HEXADEC IMAL

$IF DECIMAL arg, NGREATER arg,

HEXADEC IMAL

" CHARACTER

FIF DECIMAL arg, LESS arg,

HEXADEC IMAL

CHARACTER

$IF DECIMAL arg, NLESS arg,

%
L
s
o
o
N

HEXADECIMAL

$IFE n

SIFEXTENSION fd

c-2 48-043

FOO RO1

$IFG n

$IFL n
FIFNE n
$IFNG n
FIFNL n
SIFNULL en
SIFNNULL en
S$IFVOLUME fd
$IFX fd
SIFNX fd
$J0B

CPUTIME=maxt ime

[, classid= iocount1] [, ...,classid= iocount32]

ﬁTEéMJOB

s v [T | .m0

SNOocoPY

$PAUSE

PRIOR n

48-043 F00 RO1

GVARIABLE
SRELEASE
IVARIABLE

$SET varname=e
SET CODE n

$SKIP

SWRITE text [;]

} ' n1

48-043 F0OO ROl

APPENDIX D
MTM MESSAGE SUMMARY

ACCESS PRIVILEGE ADDRESS ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An attempt was made to access a valid segment in an

mode; i.e., store 1into a write protected segment;

instructions from an execute protected segment; load
read protected segment.

ACCT-ERR

The account number specified is not a valid account.

ALIGNMENT FAULT INSTRUCTION AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

invalid
execute
from a

Data instruction not properly aligned to specific fields for
fullword or halfword alignment. The memory fault address is
the memory location that is not properly aligned. The memory
fault address is given only on Perkin-Elmer Series 3200

Machines.

AT.LO-ERR TYPE=NAME

A desired filename currently exists on the specified

volume.

The block size of an indexed file exceeds 1limit established

at sysgen time.

For an indexed file, a zero logical record 1length
block size was specified.

ALLO-ERR TYPE=TYPE

The volume specified is not a direct access device.

ALLO-ERR TYPE=VOL

The volume name specified, or the name it defaulted
not the name of any of the disks currently online.

48-043 FOO ROl

or data

to, is

ACCT-ERR

The account number specified is not valid.

ARGS-ERR
The amount of space between CTOP and UTOP is insufficient for
placement of START command arguments by the command
processor.

ARITHMETIC FAULT AT XXXXXX
A fixed or floating point error was detected at address
XXXXXXx, or an attempt was made to divide by zero. This only
occurs on Perkin-Elmer Models 7/32 and 8/32 machines.

ASGN-ERR

The assign failed for reason denoted by TYPE field.

ASGN-ERR TYPE=BUFF
An attempt was made to assign a file when there was
insufficient system space available to accommodate the FCB.
ASGN-ERR TYPE=LU
An attempt was made to assign to an lu that is greater than
the maximum lu number specified at Link time.
ASGN-ERR TYPE=NAME

An assignment is being directed to a nonexistent file.

ASGN-ERR TYPE=PRIV

The privilege to assign the file or device cannot be granted.
The access privileges may be incompatible with other current
assignments to the same fd,

or, a request was made to assign to a disk when bare disk
privileges are not enabled,

or, requested privileges may conflict with user's file access

privileges (e.g., assigning system file EWO when only SRO is
valid).

D-2 48-043 F0O ROl

ASGN-ERR TYPE=PROT
The file being assigned to is unconditionally protected (read
and/or write keys=X'FF') or the read/write keys specified 1in
the ASSIGN command do not correspond to those associated with

the file, and the file 1is conditionally protected (read
and/or write keys not X'OO' or X'FF').

ASGN-ERR TYPE=SIZE

An indexed file is being assigned and there 1is not enough
room on the disk to allocate a physical block.

ASGN-ERR TYPE=SPAC

An assign is refused because the available task system space
was exceeded.

ASGN-ERR TYPE=TGD

An attempt was made to assign a trap generating device.

ASGN-ERR TYPE=VOL

Volume name specified or defaulted to is not the name of any
of the disks currently online.

BTCH-ERR

The batch capability was not started and is not available for
a SUBMIT command.

BUFF-ERR

The expanded CSS line overflowed CSS buffer size.

CLOS-ERR

Close failed for reason denoted by TYPE field.
DELE-ERR TYPE=ACCT

An attempt was made to delete a file not on the user's
private account.

48-043 F00 ROl D-3

DEL-ERR TYPE=ASGN

An attempt is being made to delete a file that is currently
assigned, or is being processed by the CSS processor.

DELE-ERR TYPE=BUFF

There is insufficient memory available in system space to
perform a delete function.

DELE-ERR TYPE=DU

An attempt was made to delete a file from a device that is
not on line.

DELE~-ERR TYPE=IO

An [/0 error was encountered while attempting to delete a
file.

DELE -ERR TYPE=NAME

File with a specified name was not found.

DELE-ERR TYPE=PROT

An attempt is being made to delete a file with nonzero
protection keys.

DEL.E~ERR TYPE=TYPE

The volume name specified or defaulted to is not a direct
access device.

DELE-ERR TYPE=VOL

The volume name specified or defaulted to is not the name of
any of the disks currently online.

DUPLICATE USERNAME

Userid is already in use.

FD-ERR
The file descriptor is syntactically incorrect or invalid, or

a program on the disk is being loaded without enough system
space.

D-4 48-043 F00O ROl

fd IS NOT A CONTIGUOUS FILE
The INIT command can only be used to initialize contiguous
files.

FIT.E voln: filename. ext/acct NOT ENTERED ONTO PRINT QUEUE
A spool file was closed but the spooler task was not loaded
or started.

FIXED POINT-ZERO DIVIDE ERROR AT XXXXXX

NEXT INSTRUCTION AT XXXXXXX
An attempt was made to divide by zero. Current instruction
aborted, and next instruction at address xxxxxx.

FIXED POINT-OVERFLOW ERROR AT XXXXXX

NEXT INSTRUCTION AT XXXXXX
Fixed point arithmetic result is too large to be represented.
Instruction aborts. Next instruction at xxxxxx.

FLOATING POINT-UNDERFLOW ERROR AT XXXXXX

NEXT INSTRUCTION AT XXXXXX
Results of floating point operation are too small to be

represented. Instruction aborts. Next instruction at
XXXXXX.

FLOATING POINT-OVERFLOW ERROR AT XXXXXX
NEXT INSTRUCTION AT XXXXXX
Floating point arithmetic procedure is too 1large to be

represented. Instruction aborts. Next instruction at
XXXXXX.

FLOATING POINT-ZERO DIVIDE ERROR AT XXXXXX
NEXT INSTRUCTION AT XXXXXX

An attempt was made to perform a floating point divide by
zero.

FORM-ERR

The command format is invalid or invalid account number
specified.

48-043 FO0O0 ROl D-5

GOTO-ERR

A $LABEL that is terminating the range of the §GOTO is
branching into an IF group.

ILLLEGAL INSTRUCTION AT XXXXXX

The user task attempted to execute an illegal instruction at
location XXXXXX.

ILI.LEGAL SVC-INSTRUCTION AT XXXXXX
SVC PARAMETER BILOCK AT XXXXXX

The user task attempted to execute an illegal SVC at location
XXXXXX.

INVALID SEGMENT ADDRESS ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An attempt was made to access a memory location not within a
valid mapped segment; i.e., an attempt to access a memory
location outside of the task space.

INVALID ACCOUNT

Invalid or unrecognized account number.

INVALID PASSWORD

Password is invalid.

I/0-ERR

A device/file being accessed by MIM is returning a nonzero
I1/0 status.

[/O0-ERR TYPE=DOU

The device is unavallable.
I1/0-ERR TYPE=EOM I/0-ERR TYPE=EOF

The device reached an EOM or EOF before completing the
operation.

D-6 48-043 FOO ROl

[/0-ERR TYPE=FUNC

An invalid operation is being directed toward a device; e.g.,
attempting to write to a read-only device.

I/0-ERR TYPE=LU

An illegal or unassigned lu.

I1/0-ERR TYPE=PRTY

A parity or other recoverable error occurred.

I/0-ERR TYPE=UNRV

An unrecoverable error occurred.

JOBS-ERR

A $JOB statement was encountered following another §JOB
statement but prior to a $TERMJOB statement.

JOB NOT FOUND

The fd of job to be purged is invalid or is not in the batch
job queue.

LOAD-ERR TYPE=ASGN

Load could not be accomplished because the specified fd is
already exclusively assignhed or could not be found.

[LOAD-ERR TYPE=DU

Attempt was made to load from an unavailable device.

LLOAD-ERR TYPE=1/0

An I/0 error was generated during the load operation.

LOAD-ERR TYPE=LIB
The data in the loader information block is invalid. This

error most frequently occurs when an attempt is made to load
a task which was not built with Link.

48-043 F00 RO1 : D-7

LOAD-ERR TYPE=LOPT
Task options are incompatible with the system environment
that attempts to 1load the task; i.e., attempt to load an

e-task under MTM where e-task 1loading under MTM is not
enabled.

LOAD~-ERR TYPE=MEM

A load was attempted without enough memory specified for the
task's work space.

LOAD-ERR TYPE=MTCB

The maximum number of tasks specified at sysgen time was
exceeded.

[LOAD--ERR TYPE=NOFP

A task requiring floating point support is being loaded, and
the required floating point option is not supported in the
system.

L.LOAD-ERR TYPE=SEG

A task requiring a task common area (TCOM) and/or a run-time
library (RTL) 1is being loaded. The TCOM/RTL is not in the
system and cannot be loaded.

LOAD-ERR TYPE=ROIO

There is an I/0 error on the roll volume.

LOAD-ERR TYPE=RVOL

There is a roll file allocation or assignment error.

LU-ERR

An lu specified in an assign statement is invalid.

LVL-ERR

The number of sysgen CSS levels was exceeded.

D-8 48-043 FOO ROl

MEMORY ERROR ON DATA FETCH AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

Attempt was made to retrieve or to load data from a failing
memory area on Perkin-Elmer Series 3200 machines. If
affected memory is within task space and the operating system
has memory diagnhostic support, the affected page is
automatically marked off, and this message is displayed:

AFFECTED MEMORY PAGE MARKED OFF AT XXXXXX
MEMORY ERROR ON INSTRUCTION FETCH AT XXXXXX

MEMORY FAULT ADDRESS=XXXXXX

A Perkin-Elmer Series 3200 machine attempted to execute an

instruction from an area of memory that is failing. If
affected memory is within task space and the operating system
has memory diagnostic support, the affected page is

automatically marked off, and this message is displayed:

AFFECTED MEMORY PAGE MARKED OFF AT XXXXXX

MEMORY PARITY ERROR AT XXXXXX

Attempt made to access nonexistent or bad memory on Models
7/32 and 8/32 machines.

MISSING PASSWORD

Password omitted.

MNEM-ERR
The command mnemonic entered is unrecognizable or a

non-privileged user attempted to use a command that requires
privileged status.

NOFP-ERR

No floating point support exists in the system.

NON EXISTENT SEGMENT ERROR (PST) AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An attempt was made to access a memory location greater than
the maximum valid program address; i.e., an attempt to access
a memory location outside of the task space.

48-043 FO0O0 ROl D-9

NOPR-ERR
A command was entered that required more parameters than
specified in the command line.

PACKED FORMAT-SIGN ERROR AT XXXXXX

MEMORY FAULT ADDRESS=XXXXXX

An illegal sign digit was detected in a packed decimal number
at xxxxxx for Perkin-Elmer Series 3200 machines only.

PACKED FORMAT-DATA ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

A data error was detected in a packed decimal number at
xxxxxx for Perkin-Elmer Series 3200 machines only.

PARM-ERR

A command was entered with invalid or missing parameters.

PRIV-ERR
The access privilege mnemonic is syntactically incorrect, or

an MTM user without access privileges tried to access a
restricted file.

RENM-ERR TYPE=NAME

A filename already exists in the volume directory.

RENM~ERR TYPE=PRIV
The file/device cannot be assigned for ERW (required to

perform the rename) because the file/device is currently
assigned to at least one lu.

RENM-ERR TYPE = PROT
The protection keys of the file to be renamed are not
X'0000"'.

REPR-ERR TYPE=PRIV

The file/device cannot be assigned for ERW (required to carry
out the reprotection) because the file/device 1is currently
assigned to at least one 1lu.

D-10 48-043 FOO0 ROl

ROLL-ERR

The task is currently rolled out.

SEGMENT LIMIT ADDRESS ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An attempt was made to access a memory 1location within a
valid mapped segment, but the page number in the segment is
greater than the largest valid page number for the segment;
i.e., an attempt to access a memory location outside of the
task space.

SEQ-ERR

A command was entered out of sequence or when user was not in
the appropriate mode (e.g., CSS call in task loaded mode).

SIGNON REQUIRED

Attempt to enter a command before signon or a mistake in the
SIGNON command.

SKIP-ERR

An attempt was made to skip beyond the end of a CSS job.

SPAC-ERR

Task exceeds established maximum system space.

SVC ADDRESS ERROR-INSTRUCTION AT XXXXXX
SVC PARAMETER BLOCK AT XXXXXX

Incorrect address of SVC parameter block at xxxxxx. The SVC
parameter block must be on a fullword boundary.

SVCe6-ERR TYPE=ARGS

There is insufficient room between UTOP and CTOP to contain
the start option string.

SVC6-ERR TYPE=DORM

A command was issued to a specified task that is dormant.

48-043 F0OO0 ROl D-11

SVC6-ERR TYPE=NMSG

The directed task could not receive a message trap.

SVC6-ERR TYPE=PRES

The directed task is not present in memory.

SVC6-ERR TYPE=QUE

The message could not be queued to the directed task.

TASK-ERR

A task-related command was entered and there is no currently
loaded task.

TIME -ERR
A task cannot be loaded because the user account CPU 1limit
expired.

UNDEF INED DATA FORMAT FAULT AT XXXXXX

MEMORY FAULT ADDRESS=XXXXXX

An undefined data format/alignment fault was detected at
xxxxxx for Perkin-Elmer Series 3200 machines.

USER-ERR

An invalid userid was entered in a MESSAGE command.

VOLN -ERR

The volume specified is not online or the volume name is
invalid.

xxxx ERROR ON fd SECTOR n
An I/0 error occurred while attempting to initialize sector

n of file f£fd. xxxx 1is the type of error; it may be
unrecoverable I/0, recoverable 1/0, or device unavailable.

D-12 48-043 F00 ROl

APPENDIX E
CSS MESSAGE SUMMARY

BUFF -ERR

indicates an expanded command line exceeds the CSS buffer.
The task skips to $TERMJOB.

DBUF -ERR

The operators of a $DEFINE command create a result that is
greater than 110 characters or the command buffer
size-whichever is smaller.

DEFO-ERR

more than 8 characters specified for a keyword or a required
name in the REQUIRED operator.

DEF1-ERR

an illegal character is specified in a keyword or a required
name gspecification. A through 2 are the only valid
characters and they must be capital letters.

DEF 2-ERR

an empty additional keyword after a quote was used in a
SEARCH operator specification.

DEF3-ERR

the specified variable name is already in use.

DEF4-ERR
the REQUIRED operator must be the last operator specified in
a $DEFINE command.

DEF5-ERR

divide by zero attempted.

48-043 FO0O0 ROl E-1

DEF6-ERR

arithmetic fault - result is greater than Y'OFFFFFFF'.

DEF7-ERR
a negative hexadecimal value was specified. Only positive
values are allowed.

FD-ERR
illegal or invalid file desctiptor, or indicates not enough
space to build an fd, or required file support is not in
system. The task skips to $TERMJOB.

FORM-ERR
indicates a command syntax is invalid. The task skips to
$TERMJOB.

GOTO-ERR
indicates a $LABEL occurred inside an IF block that was not
active at the time of the $GOTO command. The task skips to
$TERMJOB.

I/0-ERR
indicates an EOF was found while skipping to $ENDC, an EOF
was found before a $ENDB while building a file, or a $TERMJOB
was found while skipping to $ENDC within a job. The CSS
skips to $TERMJOB, end of task code is set to 255, and job is
ended.

JOBS-ERR
indicates a second $JOB was found before a $TERMJOB was
found.

KEYW-ERR

a syntax error detected in a keyword, in a keyword parameter,
or a positional parameter appears after a keyword.

E-2 48-043 FOO RO1

LVL~-ERR

indicates the CCSS 1levels required exceed the number
established at sysgen time.

MNEM-ERR

indicates the command entered is not recognized. The task
skips to $TERMJOB.

NOPR-ERR

required operand for a command was not specified.

PAIR-ERR

the ' or " symbols are not matched.

PARM-ERR

indicates a command was entered with invalid or missing
parameters or a variable number is not in allowed range.

REQS-ERR
REQUIRED operator is not allowed when used with new global

variables in a $DEFINE command, or a syntax error was
detected in a REQUIRE operator.

SEQ-ERR

indicates a command was entered out of sequence or a
privileged command was used by a non-privileged user.

TASK-ERR

indicates a task-related command was entered and there is no
currently loaded task. The task skips to $TERMJOB.

%$REP-ERR

invalid replacement string definition or more than 4
replacement strings defined in a single character replacement
command .

48-043 FO0O0 ROl E-3

@SYSXXXX VARIABLE ERROR, ILLEGAL NAME
indicates that a variable was defined beginning with the
reserved characters @SYS or an attempt was made to free a
system variable.

@XXXX-VARIABLE ERROR, ALREADY EXISTS
indicates an attempt was made to define a local variable that
already exists.

@XXXX-VARIABLLE ERROR, EXCEEDS USER LIMIT

indicates that the variable limit set at sysgen was exceeded.

@XXXX-VARIABLE ERROR, DEFINITION TOO LONG
indicates that the length of the defined variable is greater
than 32.

@XXXX-VARIABLE ERROR, DOES NOT EXIST
indicates an attempt to set, free, or access the value of a
nonexistent variable. Also, during CSS execution, a variable
definition is required.

@XXXX-VARIABLE ERROR, DEFINITION DOES NOT EXIST
indicates an attempt to set the value of a wvariable to the
value of a second nonexistent variable.

@SYSCODE-VARIABLE ERROR, UNABLE TO ACCESS PAGE-FILE
indicates that at signon time MTM was unable to access the
variable page file.

VARIABI.E ERROR, VARIABLE PROCESSING NOT SUPPORTED
indicates that one of the following variable related commands

was entered into a system that does not support variable
processing:

- §$FREE

- $GLOBAL
- $LOCAL
- $SET

E-4 48-043 FO0O ROl

VARIABLLE ERROR, VARIABLE PROCESSING DISABLED

indicates that one of the following variable related commands
was entered into a system with variable processing support
that is disabled:

- $FREE

- $GLOBAL
- $LOCAL
- $SET

48-043 FO0O ROl E-5

APPENDIX F
PROGRAM DEVELOPMENT MESSAGE SUMMARY

**x ALTERNATE CSS REQUIRED

The fd entered with the ADD command contains a non-standard
extension, and the cssprod parameter was not specified.

**x COMPILE ERROR - LINK NOT EXECUTED

In a complink process, a compilation error was found, and the
process aborted before the link procedure began.

** COMPILE ERRORS, LISTING ON PR:

Errors were encountered while compiling. These errors are
listed on the specified pr:.

** CURRENT ENVIRONMENT - filename

The ENV command, entered without a filename, causes the name
of the current environment to be displayed.

** CURRENT PROGRAM NOT SET

A filename was not specified, or no current program exists.

*x EDIT - filename.ext

In the multi-module environment, the EDIT command was entered
without a filename. The fd of the current source program 1is
displayed.

*% ENVIRONMENT EMPTY

The LIST command was entered, but there are no fds in the
EDF .

** EXTENSION OMITTED

A filename entered with the ADD or REMOVE command did not
contain the required extension.

48-043 F0O ROl F-1

X Xk

x %

* %

EXECUTION OF filename FOLLOWS:

An image program is loaded and is executing.

FILE fd NOT FOUND

The specified filename cannot be found in the language
environment.

fd NONEXISTENT

A specified fd does not exist in the environment.

FILENAME CONFLICT - ENTRY NOT ADDED

An attempt was made to add an already existing fd to the EDF.

FILENAME NOT IN ENVIRONMENT

An fd specified with the REMOVE command does not exist in the
EDF .

LANGUAGE ENVIRONMENT NOT SET

A development command such as EDIT, COMPILE, COMPLINK, or
EXEC was entered without first setting the language
environment.

ILINK ERRORS - EXECUTION ABORTED

Program execution aborted when a link error was encountered.

NEW ENVIRONMENT

An empty EDF has been allocated.

NEW PROGRAM

An empty source file 1is allocated in the language
environment.

NO CURRENT EDF

The ENV command was entered without an EDF name, or there is
no current EDF.

48-043 F0O RO1

X% NON-STANDARD EXTENSION

An attempt was made to add an fd with a non-standard language
extension to the EDF without specifying a cssprod parameter.

**x NOT IN MULTI-MODULE ENVIRONMENT

A command that is only meaningful in a multi-module
environment was specified in a language environment.

** SOURCE FILE NOT FOUND

The specified source file cannot be found.

**x SYNTAX ERROR

An fd was not specified with the ADD or REMOVE command.

*x TASK fd NOT FOUND

The specified task cannot be found.

X* TOO MANY ARGUMENTS

Arguments were specified in a multi-module environment.

48-043 FOO ROl F-3

APPENDIX G

MTM/NON-MTM TASK INTERFACE MESSAGES

G.1l $FOREGROUND TASK INTERFACE MESSAGES

xxxx~-ERR SNDTID = sender task-id MSGE: received message

Where:

xxxX can be any of the following error statuses:

PARM
TNEX
‘TNCM

TASE

DSTA

MSTA

MEND

MNEM-ERR

MOSQ-ERR

NTSK-ERR

SEQ-ERR

SMGS-ERR

bad syntax in terminal-dn

specified terminal-dn not known by MTM

terminal not in correct mode

terminal assign error on $END message (still
assigned to FOREGROUND task?)

duplicate $STA message for the same
terminal-dn received

duplicate $END message for the same
terminal-dn received

missing $STA message

missing $END message

interface not

mode sequence
MTM mode

selected task
name

task loaded,
system (CSS),

available for normal MTM users

error - terminal not in normal

not in foreground or restricted task

task executing, command substitution
or batch mode

send message error

48-043 F00O RO1

#MST-ERR

#MEN-ERR

TASE-ERR

TSPC-ERR

‘missing $STA message from FOREGROUND task - terminal

reassigned

missing $END message from FOREGROUND task - terminal
reassigned

FOREGROUND task assign-error

FOREGROUND task has no more space to add the users
terminal, try again later

G.2 HASP INTERFACE MESSAGE

MNEM-ERR
SEQ-ERR
NTSK -ERR

USED-ERR

TSPC-ERR

SMGS-ERR

nonprivileged user entered the $HASPxx command
terminal in CSS, batch mode, task loaded or executing
no such HASPxx task-id found in foreground

selected HASPxx currently being used by another MTM
user

no HASP-TUB available (more HASP tasks than specified
by SGN.$HSP at MTM sysgen time)

error on sending message to HASPxx

48-043 FOO ROl

APPENDIX H
CONTROL SUMMARY FOR BIDIRECTIONAL INPUT/OUTPUT CONTROL (BIOC)
CRT DRIVER

Bidirectional input/output control (BIOC) is a standard 0S/32
terminal driver. TListed in this appendix are function control
codes for the BIOC, the standard control characters generated by
the use of the codes, and the functions performed. On terminals
that do not generate standard control characters for any of the
function keys, it 1is necessary to determine which key will
produce the required control characters in order to invoke a
desired function.

When a combination of the control key and an ASCII key cannot be
accepted, BIOC will reject that combination and respond with a
bell code. An example of this would be a "cancel"” request
(CTRL-X) on a line that has no character on it. ASCII control
characters for the BIOC will not be echoed (displayed to the
console) to prevent confusion between BIOC functions and terminal
functions.

ASCII READ MODE:

CTRL-A (SOH) Adjust Baud Rate

The baud rate adjust function must be enabled by the system
programmer before the CTRL-A can be used. When connection to
a terminal is made over a dial-up line, the adjust baud rate
mode is automatically entered.

To change the baud rate on a Perkin-Elmer Model 1200
terminal, for example, locate the front panel and remove the
cover. It is important to know which baud rates have been
made available to your terminal at system generation (sysgen)
time. When this is known, depress CTRL-A and then change the
baud rate setting inside the panel, using the scale depicted

on the inside of the panel cover (see Figure H-1). By
depressing the carriage return (CR) key repeatedly, the user
will synchronize communication at the new baud rate. BIOC

then responds with an asterisk (*) and continues with the
mode that was in use at the time the adjust routine was
begun.

48-043 FOl1 ROl H-1

C009990QQ Q0 , ON ONE FULL ON ON
S00O0S50880-R I " |
EANDTOND O N~ Wy oz A
D~ <t N - £z
N T O R R OFF TWO HALF 2250 OFF OFF
»swo
PROG. STOP AUTO INV
BAUD RATE .
MODE BIT DUPLEX PARITY TAB vID.

Figure H-1 Perkin-Elmer Model 1200 Mode Selectors

CTRL.-B (STX) Backspace (Nondestructive)

This code causes the cursor to backspace one character for
each time the code is used. To be effective, CTRL-B cannot
be entered at the first character position on a 1line. When
the cursor has been backspaced to the desired character
position, the line may be changed by typing the desired
characters. All other characters backspaced over can be
restored and the cursor brought back to the end of the 1line
in one of two ways:

e CTRL~-F, moves the cursor forward one character at a time

e CTRL-2, "zooms" the cursor immediately to the end of the
line

CTRL-C (ETX) Capture the Last Line Entered

Entering this code will cause the last line entered (maximum
of 80 characters) to be displayed on the console. By using
CTRLL-C repeatedly, character strings can be concatenated. If
an insert or delete function is performed, the CTRL-C code
will be rejected and a bell will sound to remind you that the
buffer has now been overwritten. CTRL-C will also be
rejected if the display of data to the console has been
suppressed by the use of CTRL-E.

CTRL-D (EOT) Device Control -- Echo Only

The next character entered after the CTRL-D code will be
echoed to the terminal but will not be stored in the input
buffer. This function could be helpful, for example, if an
auxiliary peripheral is used that requires certain control
characters to be entered at the console. The CTRL-D code
would prevent the peripheral control characters from being
interpreted as program input.

H-2 48-043 FOl1l RO1

CTRL-E (ENQ) Echo Toggle

Each entry of CTRL-E will change the current echo state from
ON to OFF, or from OFF to ON. This means that data display
to the console screen can be controlled. Suppression of data
display is useful for entering passwords without others being
able to observe them. All functions will work with echo off
except CTRL-C, CTRL-R, CTRL-W, CTRL-], CTRL-A, and CTRL-_.
A CTRL-M (carriage return), buffer full, or CTRL-X will turn
echo back on. A CTRL-E will be rejected if the insert mode
is selected.

CTRL-F (ACK) Forward Space and Restore

This code is used to restore a line that has been backspaced
over by the CTRL-B, CTRL-W, or CTRL-) code. After the cursor
has been moved to the desired position and the correction has
been made, CTRL-F will move the cursor forward one character
position at a time until it reaches the end of the Lline.
CTRL-F will be rejected 1if there are no characters to be
restored.

CTRL-H (BS) Backspace (Destructive)

This code is used to delete a character or characters.
Unlike CTRL-B, however, any character(s) backspaced over by
using the the CTRL-H code cannot be restored by using the
CTRL-F or CTRL-Z codes and must be retyped. If they are not
retyped, blank spaces will appear in those character
positions. CTRL-H will be rejected if attempted at the first
character position 1in a line. On most terminals the CTRL-H
code can be generated by the "backspace" key.

CTRL-L (FF) Set Page Pause Line Count

To set the CRT screen display for a specific number of lines,
the CTRL-L. code is entered, followed by depressing the
control key again with another ASCII character. The numeric
value of the ASCII character will set the number of lines to
be displayed. To select a count for a 24-line CRT, enter the
sequence: CTRL-L, CTRL-X (X has a decimal value of 24).

The following table shows the proper combinations for 1line
displays ranging from 1 to 24.

48-043 FOl RO1 H-3

TABLE H-1 LINE DISPLAY
COMB INATIONS

{ NUMBER |
{ OF LINES |

|
|
|
|
|
i
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
i
|

CTRL-L CTRL-O
CTRL-L CTRL-P
CTRL-L CTRL-Q
CTRL-L CTRL-R
CTRL-L CTRL-S

i
i
i
i
i
i
|
|
i
i
|
|
|
CTRL-L CTRL-N |
1
|
=
g
=
CTRL-L CTRL-T |
]

|

:

=

Q
5
3
[
9!
:
i
=

CTRL-L CTRL-U 21
CTRL-L. CTRL-V 22
CTRL-L CTRL-W 23
CTRL-L CTRL-X 24

Each display of the requested number of lines is terminated
with a bell sound. At this point the user may continue to
the next page by entering a carriage return (CR). This will
cause the same number of lines to appear; each CR will, in
fact, produce that number of lines until the page pause line
count is changed. To change the count, terminate write by
entering ESC or Break, and enter a different sequence for the
desired new 1line count (e.g., CTRL-L. CTRL-O = 15 lines,
etc.).

To cancel the page pause mode, use the sequence CTRL-L
CTRL-@. If the page pause mode is not terminated within 5
minutes, BIOC will automatically continue output to prevent
the terminal from being permanently tied up.

48-043 FOl1l RO1

CTRL-M (CR) Terminate Read
This function 1s a carriage return. Entering CTRL -M
indicates to BIOC that read should be terminated. If CTRL-M
is entered at a location other than the end of the line, BIOC
will perform a zoom to the end of the 1line (EOL) before
storing the carriage return and terminating the read request.
CTRL-N (S0) Neutralize Selected Options Back to Default
This code is entered to reset options back to their default
values. CTRL-N can be entered during read operations, during
write operations, or between read and write operations.
Entering CTRL-N performs the following functions:
® resets page pause to zero
e resets backspace prompt character to CTRL-H
e resets ASCII read prompt character to sysgen default

e resets backspace and CR/LF protocol to sysgen default

e resets output mode to print-on state

CTRL-O (SI) Toggle Output Between Print-on and Print-off

To suppress output in the write mode, CTRL-O is wused. To
resume output, this code 1is wused again. Alternately
depressing CTRL-O will cause output to terminate and resume;
hence, the "toggle" characteristic. When using CTRL-O to
select the print-off mode, a prompt can be immediately
received by a terminate read (CTRL-M). If this is not done

within 15 seconds after output ceases, BIOC will prompt and
reinstate the print-on mode automatically. The print-on mode
will also be reinstated upon a successful completion of a
read request, or upon entering CTRL-N for a neutralize
function.

CTRL-P (DLE) Set ASCII Read Prompt Character

By entering CTRL-P and any ASCII character, that character
becomes the designated prompt. When making the selection,
the ASCII character is not displayed to the console, but is
output by BIOC upon receipt of an ASCII read request. The
read prompt function can be turned off by the sequence CTRL-P
CTRL-X. To reset the ASCII read prompt character to the
sysgen default, enter CTRL-N.

48-043 FOl ROl H-5

CTRL-Q (DCl) Removed from Input to Allow X-ON/X-OFF Flow Control

CTRL-R (DC 2) Reprint Entered Line

When this code is entered, the current cursor location within
the line will determine the number of characters that will be
reprinted on the next line. All characters, including blank
spaces, to the 1left of the cursor will be reprinted. The
CTRL-R function will be rejected if the echo state is turned
off (see CTRL-E).

The CTRL-R function is especially useful for hardcopy
terminals where corrections are made over the existing typed
lines. To view a "clean" line after all corrections have
been made, CTRL-P is used.

CTRL-S (DC 3) Removed from Input to Allow X-ON/X-OFF Flow Control

CTRL-T (DC4) Single Character Transparent Mode

The use of this code will allow the entry of function control
characters into the input buffer. The next character entered
after a CTRL-T will be entered directly into the input
buffer.

CTRL-W (ETB) Word Backspace (Nondestructive)

CTRL-W causes the cursor to be backspaced (nondestructively)
to the nearest nonalphabetic character. Thus, CTRL-W allows
the cursor to backspace over one complete word, rather than
one character, as with CTRL-B. Words backspaced over may be
restored by the use of CTRL-F or CTRL-Z. CTRL-W will be
rejected if attempted at the beginning of a line.

CTRL-X (CAN) Cancel Current Input Line

All characters previously entered on the current line will be
deleted upon use of the code. Characters may not be restored
with the CTRL-F or CTRL-Z functions. I[If no characters are on
the line, CTRL-X will be rejected. CTRL-X will turn echo
back on if it has been turned off with CTRL-E.

CTRL-Z (SUB) "Zoom" to Furthest End of Line

CTRL.-Z can be used to restore a line that has been backspaced
over by CTRL-B, CTRL-W, or CTRL-]. CTRL-Z2 will cause the
cursor to "zoom"” to the end of the line, but will be rejected
if there are no characters to be restored.

H-6 48-043 FOl ROl

CTRL-] (GS) Backward Character Search (Nondestructive)

This code serves to locate a specific character on the
current line. For example, to find the character §, enter
CTRL-]$. BIOC will backspace until the first § is found. To
find any additional dollar signs on the same line, the code
must be entered again for each time the § symbol appears.
Characters backspaced over may be restored by using CTRL-F or
CTRL-2Z. CTRL-] will be rejected if attempted at the
beginning of the line.

CTRL-A (RS) Toggle Between Insert-on and Insert-off

Each CTRL-A toggles from insert-on to insert-off or from
insert-off to insert-on. When the insert mode is selected,
characters typed will be inserted in front of the character
currently over the cursor. The insert mode may be selected
only when the cursor is positioned at a location other than
the end of the 1line and the echo state is on. The insert
mode will be terminated by another CTRL-A or by any command
that takes the cursor position to the end of the line (e.g.,
CTRL-Z). The CTRL-C and CTRL-E functions are not valid while
in the insert mode. All other functions are valid if the
cursor is not in motion. All data entered while the cursor
is in motion will be ignored until the cursor has stopped.

CTRL-_ (US) Delete Character

Each CTRL-_. deletes the character currently over the cursor.
The delete code is valid only when the cursor is positioned
at a location other than the end of the 1line and the echo
state is on. Characters entered while the cursor is in
motion will be ignored.

WRITE MODE:

BREAK

ESC

This key terminates write with the Break status.

This key terminates write with the Break status.

CTRL-Q

48-

This code resumes write after write has been suspended by
CTRL~-T or CTRL-S functions.

043 FOl1 RO1 H-7

CTRL-R
This code
CTRL~-T or
CTRL-S

This code
CTRL-Q or

CTRL-T

This code
CTRL-Q or

resumes write after write
CTRL-S functions.

suspends write until write
until the BREAK or ESC key

suspends write until write
until the BREAK or ESC key

has been suspended by

is resumed by CTRL-R or
is depressed.

is resumed by CTRL-R or
is depressed.

48-043 FO1l RO1

/BINPUT control statement
/B8SUBMIT control statement
A

Access privileges
compatibility

Access protection of disks

ACCOUNT operator

ADD command

ALLOCATE command

ASSIGN command

Assigning logical units

Authorization

B

Batch commands
INQUIRE
LOG
PURGE
SIGNOFF
SIGNON
SUBMIT
Batch job error handling
Batch job priority
establishing
Batch job submission
using the spooler
Batch jobs
Batch processing
affect of restricted
disks on
batch task pause option
commands
error handling
introduction
Batch task pause option
BFILE command
BIAS command
Bidirectional input/output
control
control summary for
BIOC. See bidirectional
input/output control.
BREAK command
Break key
using the
BRECORD command
BUILD command
$BUILD command

CAL

Calling a CSS file
use of parameters

CANCEL command

Character replacement command

48-043 F0O0 RO2

INDEX

I R L U
NoA

FRANNBRORFN
1
uSmNHNmm

14

[|

oo,
i 1
L HHEWOVOONOW
[N W =

~N o 3]
1

w =
w

| |
w w

w

] [
W W

T NN,
1)
el vl el sl e

1-10
2-15
2-16
6-18

Checkpointing

CLEAR operator
CLOC
CLOSE ' command
COBOL
Command conventions
Command mode
Command substitution system
ACCOUNT operator
call parameters
calling a CSS file
character replacement
command
CL.EAR operator
command summary
commands
computation operator
conversion operator
CURRENT operator
DCOMPUTE operator
DHCONVERT operator
DVOLUMENAME operator
end of task code testing
commands
EXTENSION operator
file descriptor operators
file existence testing
commands
FIT.ENAME operator
general description
HCOMPUTE operator
HDCONVERT operator
line expansion
logical IF commands
LOGICAL operators
message summary
mode
other operators
parameter existence
testing
PRIOR command
REQUIRED operator
SEARCH operator
SET CODE command
signon
STRING operator
use of keywords
VOLUMENAME operator
$BUILD command
$CLEAR command
$CONTINUE command
$COPY command
$DEFINE command
$ELSE command
$ENDB command
$EXIT command
$FREE command
$GLOBAL command
$GOTO command
$IF...EQUAL command

2-56
5-6
6-36
2-37
2-19
4-2
1-11
l-el

6-24
6-3

6-14
6-36
c-1

6-13
6-30
6-30
6-37
6-30
6-32
6-38

6-61
6-25
6-24

6-62
6-26
6-1

6-33
6-34
6-12
6-60
6-29
E-1

1-6

6-35

6-62
6-52
6-39
6-40
6-56
1-7

6-43
6-5

6-28
6-18
6-20
6-21
6-22
6-23
6-63
6-18
6-45
6-46
6-47
6-64
6-69

IND-1

Command substitution system
(Cont inued)
$IF...GREATER command
$IF...LESS command
$IF...NEQUAL command
$IF...NGREATER command
$IF...NLESS command
$IFEXTENSION command
$IFVOLUME command
$JOB command
$LABEL command
$LOCAL command
$NOCOPY command
§PAUSE command
$RELEASE command
$SET command
$SKIP command
$TERMJOB command
$WAIT command
$WRITE command
Commands

introduction
COMPILE command
COMPI1E command

language format
COMPILE command

multi-module format
COMPLINK command

language format

multi-module format
Computation operator

DCOMPUTE

DHCONVERT

HCOMPUTE

HDCONVERT

CONTINUE command

Conversion operator
DCOMPUTE
DHCONVERT
HCOMPUTE
HDCONVERT

Creating a data file

Creating a source program

CRT driver. See also BIOC.

C8S. See command

substitution system.

CTOP

CTSW

CURRENT operator
$CLEAR command
$CONTINUE command

$COPY command

D

DCOMPUTE Operateor

Default lu assignménts
Default variable #é&ttings
DELETE command

DHCONVERT operatot

DISPLAY ACCOUNTING command
DISPLAY command

[ND-2

6-69
6-70
6-69
6-69
6-70
6-66
6-67
6-48
6-<64
6-50
6-22
6-51
6-53
6-55
6-57
6-48
6-58
6-59

2-1
4-14

4-14
4-14

4-18
4-18
6-30
6-30
6-32
6-33
6-34
2-20
6-30
6-30
6-32
6-33
6-34
4-2

4-1

2-38
2-37
6-37
6-20
6-21
6-58
6-22

6-30
4-10
4-10
2-21
6-32
2-24
2-22

DISPLAY DEVICES command
sample display
DISPLAY DFLOAT command
DISPLAY FILES command
DISPLAY FLOAT command
DISPLAY LU command ‘
DISPLAY PARAMETERS command
fields
task option bit
definitions
DISPLAY REGISTERS command
DISPLAY TIME command
DISPLAY USERS command
DVOLUMENAME operator
$DEFINE command

ACCOUNT operator
CLEAR operator
computation operator
conversion operator
CURRENT operator
DCOMPUTE operator
DHCONVERT operator
DVOLUMENAME operator
EXTENSION operator
file descriptor operators
FILENAME operator
HCOMPUTE operator
HDCONVERT operator
LOGICAL operators
other operators
REQUIRED operator
SEARCH operator
STRING operator
VOLUMENAME operator

E

ECM. See environmental
cofitrol moniter.
EDF. See environment
descriptor file.
EDIT command
ENABLE command
End of task code testing
End of task code testing
cofmmands
$IFE n
$IFG n
$IFL n
$IFNE n
$IFNG n
$IFNL n
ENDB command
ENV command

Environmént descriptor file
ENVIRONMENT= parameter
Environmental control monitor
EXAMINE command

EXEC

EXEC command

48-043 FO00O RO2

2-25
2-25
2-27
2-28
2-34
2-35

2-37

2-38
2-42
2-43
2-44
6-38
6-10
6-11
6-23
6-24
6-36
6-30
6-30
6-37
6-30
6-32
6-38
6-25
6-24
6-26
6-33
6-34
6-29
6-35
6-39
6-40
6-43
6-28

Executing a program
Executing multiple programs
as a single program
EXTENSION operator

$ELSE

$ELSE command

$ENDB command

$ENDC

$EXIT command

F

fds. See file descriptors.
FFILE command
File conventions
File descriptor operators
EXTENSION
F ILENAME
VOLUMENAME
File descriptors
format
parameters
File existence testing
File existence testing
commands
$IFNX
$IFX
File initialization. See
INIT command.
Filename operator
Foreground task
interfacing with
programming details
restricted task-ids
Foreground task mode
FORT
FORTO
FORTZ
FRECORD command
$§FOREGROUND task interface
messages
$FREE command

G

Global variables
Group account numbers
$GLOBAL command

$GOTO command

H

Hasp interface

linking the HASP task
Hasp interface messages
Hasp interface mode
HCOMPUTE operator
HDCONVERT operator
HELP command
Help facility

48-043 FOO RO2

2-48
1-11
6-24
6-25
6-26
6-28
1-12
1-13

6-60

[|

1
BH B RN

o]

N B WWwWw
1
Y]

79

6-9

1-11
6-10
6-47
6-64

INIT command
Input spooling
/8INPUT control statemen
/@SUBMIT control
statement
control card statements
INQUIRE command
Interactive task to terminal
mode
ITC/RELIANCE interface
$IF...EQUAL command
$IF...GREATER command
$IF...LESS command
$IF...NEQUAL command
$IF...NGREATER command
$IF...NLESS command
$IFE n
$IFEXTENSION command
$IFG n
$IFL n
$IFNE n
$IFNG n
$IFNL n
$ IFNNULL
$ IFNULL
$IFNX
$ IFVOLUME command
$IFX

J
$JOB command
K
Keywords
def ining

examples of illegal
referencing within the
Css

rules for use of

valid examples of

L

Language tab character
LINK command

link sequences
LIST command
LOAD command
Loading a task
Loading tasks.

command .

Local variables
LOG command

See TASK

checkpointing

Logical IF commands
comparing two arguments
end of task code testing

as
N

NN
I
[(NI S E,

nNnad
I
WNh W

4-2

4-28
4-29
4-32

IND-3

Logical IF commands
(Continued)
file existence testing
parameter existence
testing
$ELSE
$ENDC
§IF...EQUAL
§IF...GREATER
$IF...LESS
$IF...NEQUAL
$IF.. .NGREATER
$IF...NLESS command
LOGICAL operators
$T.ABEL command
$LOCAL command

M

MACRO

MESSAGE command

MODIFY command

Modifying a program

MPRI

MTM. See multi-terminal

monitor.

MTM/non-MTM task interface

messages

Multi-terminal monitor
ALLOCATE command
ASSIGN command
authorization
BFILE command
BIAS command
BREAK command
BRECORD command
BUILD command
CANCEL command
CLOSE command
command summary
CONTINUE command
DELETE command
devices
DISPLAY ACCOUNTING
command
DISPLAY command
DISPLAY DEVICES command
DISPLAY DFLOAT command
DISPLAY FILES command
DISPLAY FLOAT command
DISPLAY LU command
DISPLAY PARAMETERS
command

DISPLAY REGISTERS command

DISPLAY TIME command
DISPLAY USERS command
dynamic functions
ENABLE command

ENDB command
environments

EXAMINE command

FFILE command

FRECORD command

HELP command

IND-4

Multi-terminal monitor
(Cont inued)
INIT command
introduction
LOAD command
LOG command
MESSAGE command
message summary
MODIFY command
operation
OPTIONS command
PASSWORD ' command
PAUSE command
PREVENT command
PRINT command
priority
privileged users
PUNCH command
RENAME command
REPROTECT command
REWIND command
RVOLUME command
RW command
SEND command
SET GROUP command
SET KEYOPERATOR command
SET LOG command
SET PRIVATE command
SIGNOFF command
SIGNON command
SPOOLF ILE command
START command
tailoring functions
TASK command
TEMPFILE command
transmitting messages
user commands
user information
VOLUME command
WFILE command
XALLOCATE command
XDELETE command
$RELEASE command

Multi-terminal monitor

environments
batch
interactive

MUSP

MXSP

N

Naming global variables
Naming local variables
Naming new global variables

Naming new internal variables

New global variables

referencing the value of
New internal variables

referencing the value of
NLU
$§NOCOPY command

48-043 F0O RO2

6-10
6-10
6-10
6-10
6-9

6-10
6-11
6-11
6-9

6-10
6-11
6-11
2-38
6-22

(o}

OPTIONS command
0S/32 spooler
Other operators
CLEAR
CURRENT
DVOLUMENAME
REQUIRED
SEARCH
STRING
Output spooling
assigning logical units

P,Q

Parameter existence testing
Parameter existence testing
commands
$ IFNNULL
$ IFNULL
PASCAL
PASSWORD command
PAUSE command
PREVENT command
PRINT command
PRIOR command
Private account numbers
Privileged users
Program development
assigning logical units
command availability
command summary
commands
creating a data file
creating a source program
default lu assignments
default variable settings
error recovery
executing a program
executing multiple
programs
language commands
language tab character
message summary
modifying a program
re-executing a modified
prgoram
sample sessions
gsource file language
extensions
Program development commands
ADD
COMPILE
COMPLINK
EDIT
ENV
EXEC
LINK
LIST
REMOVE
RUN
Prompt conventions
PUNCH command
PURGE command
$PAUSE command

48-043 F0O ROZ2

2-60
7-1

6-35
6-36
6-37
6-38
6-39
6-40
6-43
7-5

7-5

6-60

6-62
6-62
6-62
4-2

2-61
2-62
2-63
2-64
6-52
1-11

| T O R T I I T |
VHENFO PAREEEFAOPR R
[=X=No} (=]

|
w o,
o))

I b T DD Db b E R DR D
]]

NNEEP PN

W W

R

Re-executing a modified
program

REMOVE command

RENAME command

REPROTECT command

REQUIRED operator

Reserved variables

Restricted task-ids

REWIND command

RPG

RUN command

RVOLUME command

RW command

$RELEASE command

S

Sample program development
sessions

SCTASK

SEARCH operator

Security

SEND command

SET CODE command

SET GROUP command

SET KEYOPERATOR command

SET LOG command
SET PRIVATE command
SIGNOFF command

SIGNON command

SLOC

Source file language
extensions

SPL/32 and MTM interaction

SPL/32 spooler

MTM interaction
SPOOLFILE command
SPL/32 spooler
Spooling
/BINPUT control statement
/@SUBMIT control
statement
control card statements
errors
input
0s/32 spooler
output
SPL/32 and MTM
interaction
SPL/32 spooler

START command
STAT
STRING operator
SUBMIT command
batch job priority
SVOL
System account numbers

|
N

b
N 00 O 0 ~J p~ 00

NNNNND
)

o

~NEN
i

1

}
WO gF® NN W

[FVIEN Ve

NNNNNN
]]

(o S CIENIES RN
|

=N !
1

W

N 0O =

IND-5

$SET command 6-55

USERINIT.CSS 2-84
$SKIP command 6~57 Ussp 2-37
UTOoOP 2-38
T v
TASK command 2-90 :
Task executing mode 1-6 Variables
: £ global -
Task interfaces local -

HFHEREFEFPNNRFOQLWLW
l
OO OO OO

foreground tasks

HASP tasks - naming %lobil -10

- naming loca -10
ITC/EELIANCE tasks - naming new global -10
2§2§M$§s - naming new internal -10

new global
new internal

Task loaded mode
TEMPF I[LE command

ONO OO RO OOTOOO
)
NOOOFOVOHKFEHWOW

1
Terminal conventions -10 E;;:;vg? C 3
Terminal modes - use of B
gggnggem°de ; VOLUME command -94
foreground task mode - VOLUMENAME operator -28
hasp interface mode -
interactive task to
terminal 1-6
task executing mode 1-6 W
task loaded mode 1-6
Terminal users Wait status bit definitions 2-40
number of 1-4 WFILE command 2-96
TOPT 2-37 $WAIT command 6-58
Transmitting messages 1-4 $WRITE command 6-59
$TERMJOB command 6-48
X,Y,2
U
XALLOCATE command 2-97
UBoOT 2-38 XDELETE command 2-100

IND-6 48-043 F0O ROZ2

CUT ALONG LINE

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.

From Date .

Title Publication Title

Company Publication Number

Address

FOLD FOLD

Check the appropriate item.

[Error Page No. — . Drawing No.

[[] Addition PageNo.____ Drawing No.

(] Other Page No.__________ Drawing No.

Explanation:

FOLD FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.
6434

/2;6(/:'0

STAPLE Lrp = 8 STAPLE |
PAG =5Y50F |
1D = WALT I
l
|
I
|
l
FOLD FOLD l
____________________________ _‘
I
|I|||I NO POSTAGE l
NECESSARY
IF MAILED |
IN THE

UNITED STATES ‘
[|

S
BUSINESS REPLY MAIL E—— |
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J. ——— l
POSTAGE WILL BE PAID BY ADDRESSEE I

]
Computer Systems Division A l

2 Crescent Place —_—
Oceanport, NJ 07757 PR {

I N
TECH PUBLICATIONS DEPT. MS 322A I
e
FOLD FOLD |

STAPLE STAPLE

PERKIN-ELMER
Technical Systems Division

DOCUMENTATION, CHANGE NOTTICE

The purpose of this document?tion change notice (DCN) is to
provide a quick and efficient way of making technical changes to
manuals before they are formally updated or revised.

The manual affected by these chabges is:

S——— e s o i 1 o

48- Q43 EQQ RQl 93/32 Mulh;—Tanm;nal MQDthI (MTM) Reﬁezénge
Manual

e Page 2-87
In the Parameters column, add:IMAGE directly under VFC. Then
change the last sentence of the VFC paragraph to:

If IMAGE is specified, there 1s no VFC for the device assigned
to the specified lu.

e Page 2-87
In the Parameters column, add NOIMAGE directly above NOVFC.
Then change the paragraph to:

turns the VFC option or IMAGB option off for the assigned 1lu.
NOVFC is the default option.
e Page 2-87
Add the following parameters and descriptions before COPIES=:
CHECKPOINT turns on checkpointing for the assigned 1lu.
This is the default option. The global

checkpoint option must be on.

NOCHECKPOINT turns off checkpointing for the assigned lu.

48-043 FOO RO1A " 1

