
PERKIN-ELMER

OSi/32

APPLICATION LE\fEL PROGRAMMER
Reference Manual

48-039 FOO ROO

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpor·
ation assumes no responsibility for any errors that may appear in thi~ document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Computer Systems Division 2 Crescent Place, Oceanport, New Jersey 07757

© 1981 by The Perkin-Elmer Corporation

Printed in the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 PERKIN-ELMER OS/32 PRO~RAMMING LANGUAGES AND UTILITIES

1. 3
1.3.1
1.3.2
1.3.3
1. 3. 4
1.3.5
1.3.6
1.3.7
1.3.8
1.3.9

1.4
1. 4. 1
1.4.1.1
1.4.1.2
1.4.2
1.4.3
1.4.4
1. ti •. 5

1.4.6
1.4.7
1.4.8
1.4.9
1.4.10

INTRODUCTION

ENVIRONMENTS

PERKIN-ELMER OS/32 PROGRAMMING LANGUAGES
Common Assembly Language/32 CCAL/32)
CAL Macro/ 32 ·
FORTRAN VII Development (D) Compiler

·FORTRAN VII Optimizing (O) Com~iler

COBOL
BASIC Level II
CORAL 66
Report Program Generator (RPG II)
Pascal

UTILITIES
Linkage Editors
Link
Task Establisher Task CTET)
Edit
Text
Sou r;ce U P:i 3. ter
Automatic Interactive Debugging· System
C l'.I DS)
Copy
Library Loader
Macro Library
Sort/Merge Level II
Patch

2 TASK STRUCTURE

2.1 INTRODUCTION

2.2 TASK AND MEMORY PROTECTION

48-039 FOO ROO

v

1-1

1-1

1-1
1-1
1-2
1-2
1-2
1-3
1-3
1-4
1-4
1-4

1-5
1-6
1-6
1-6
1-6
1-7
1-7

1-7
1-8
1-8
1-8
1-9
1-10

2-1

2-1

i

CHAPTERS (Continued)

2.3

2.4
2.4.1
2.4.2

2.5

2.6

2.a
2.8.1

3 TRAPS

3.1

3 .. 3

3.4
3 .. 4. 1
3.4.2
3 .. 4. 3
3 .. 4. 4
3 .. 4.5
3 .• 4.6
3,. 4. 7

3 .. 5

USER TASK CU-TASK) ADDRESS SP~CE

TASK SE~MENT TYPES
Impure Se:;iments
Pure Segments

IMAGE LIBRARISS

COMMON SEGMENTS

TASK STATES

SUBTP.SKI N:;
Tasks Loaded from Multi-Terminal
Monitor (MTM) Terminals

INTRODUCTION

USER DEDICATED LOCATION CUDL)

TASK STATUS WORD CTSW)

TASK TRAP SERVICE ROUTINE
Power Restoration Trap
Arithmetic Fault Trap
SVC 14 Trap
Memory Access Fault Trap
Illegal Instruction Trap
Datn Form2t/Alignment F~ult rrap
Task Queue Service Traps

TASK EVENr SERVICE ROUTINE

4 SYSTEM MACROS AND STRUCTURES

INTRODUCTION

4.2 EXAMPLES USING SYSTEM M~CROS

5 VOLUME, FILE, AND DEVICE INFORMATION

s.1 INTRODUCTION

5.2 VOLUME ORGANIZ A'rION

2-2

2-3
2-3
2-5

2-6

2-7

2-8

2-10

2-10

3-1

3-2

3-10

3-13
3-1 :3
l- 1 '3
3-1 l+
3-15
3-15
3-16
3-17

3-21

'~-1

4-1

5-1

5-1
5.2.1 Volume Descriptor and Sector Allocation ~ap 5-2
5.2.2 Primary and Secondary Fi le Direct'Jry 5-3

ii 48-039 FOO ROO

CHAPTERS (Continued)

5.3
5.3.1
5.3.2

s·.4
5.4.1
5.4.2
5.4.3

5.5
5.5.1
s.s.2

5.6
5.6.1
5.6.2

5.7

5.8
5.8.1
5.s.2
5.8.3
5.8.4

5.9
5.9.1
5.9.2
5.9.3
5. 9 it 4
5.9.5

FIGURES

2-1

2-2

2-3
2-4
2-5

3-1
3-2

5-1

FILE TYPE5
Indexed Files
Contiguous Files

FILE STORPiGE
.Temporary Files
Permanent Files
Spool Files

BUFFER MANAGEMENT
Buffered Logical (BL)
Unbufferei Physical CUP)

FILE ACCESS METHODS
Random Acces.s
Sequential Access

CHOOSING FILE TlPES

FILE AND DEVICE PROTECTION
Static Protection Using Read/Write Keys
Dynamic ·Protection Using Access Privileges
Write-Protected Volumes
St~tic ani Dynamic Protection Modification

FILE MANA:;EMENT
File Allo:::ation
File Assignment
File Deassignment (Close)
File Deletion
File Checkpointing

Task Address Space on a Me~ory Access Controller
(MAC) Machine
Task Address Space on a Memory Address rranslator
(MAT) Machine
Impure Segment
Impure Segment with Root and overlay Area
Pure Segment·

User Dedicated Location (UDL) Structure
Task Status Word (TSW)

Volume Descriptor Structure

48-039 FOO ROO

5-4
5-6
5-8

5-9
5-9
5-9
5-9

5-9
5-10
5-10

5-11
5-12
5-12

5-12

5-13
5-13
5-15
5-16
5-16

5-17
5-17
5-18
5-18
5-18
5-19

2-2

2-3
2-4
2-5
2-6

3-2
3-10

5-2

iii

TABLES

2-1

3-1
3-2
3-3
3-4
3-5
3-6
3-7

5-1
5-2
5-3

I MD EX

iv

TASK WAIT STArES

ARITHMETIC FAULT TRAP-CAUSING EVENTS
ARITHMETIC FAULT TRAP ACTION
MEMORY ACCESS FAULT TRAP-CAUSING EVENrs
DATA FORMAT/ALIGNMENT FAULT TRAP-CAUSING EVENTS
TASK QUEUE SERVICE TRAP-CAUSrNG EVENTS
PARAMETERS ENrERED ON THE TASK QUEUE
SUBTASK REASON CODES CRC) AND CORRESPQNDING
STATE CHANGES

PERKIN-ELMER I/0 FILENAME EXTE~SIONS
READ/WRITE KEYS
ACCESS PRIVILEGE COMPATIBILITY

2-9

3- 14
3-14

. 3-15
3-16
3-17
3-18

3-19

5-5
5-14
5-15

In:l-1

trn-039 .E'OO ROO

PREFACE

This manual is an ic1troduction to Perkin-Elmer 32-bit software
products and includes an overall description of task traps,
macros, and file m~nagement. The manual is inteniei for
application level programmers designing.and programming tasks to
run under OS/32.

Chapter 1 is an overall description of Parkin-Elm~r 32-bit
software products used for program preparation. 8hapter 2
describes the task structures. Chapter 3 presents traps ani
details trap-causing eve~ts. Chapter 4 pres~nts system ma:ros
and data structures. Chapte~ 5 contains info~mation ~n volume
organization, file types, classes, and file management metho1s.

This manual has been extracted from the. obsolete OS/32 Programmer
Reference Manual, Publication Number S29-613. This man11al
applies to the OS/32 R~6 software release and higher.

The following manuals can be used in conjun=tion with this
manual:

MANUAL NAME

OS/32 AIDS User's Guide

BASIC Level II Referen=e ~~nual

OS/32 Bit Synchronous Communications Reference
Manual

COBOL Reference Manual

CORAL 66 Reference Manual

Source Up1ater User Guide

FORTRAN VII D User M1nual

FORTRAN VII 0 User Manual

RPG II Reference Manual

OS/32 COPY User Guide

48-039 FOO ROO

PUBLICATION
NUMBER

529-488

S29-544

529-545

S29-587

S29-630

S29-657

529-659

S29-661

S29-676

v

MANUAL NAME

OS/32 TEXr User Guide

OS/32 Link Reference Manual

OS/32 Edit User Guide

32-Bit Systems User Documentation Summary

Pascal User Guide, Language Reference, an1 Run
Time Support Reference Manual

OS/32 System Planning and Configuration ·Guide

OS/32 Operator Reference Manual

System Generation (SYS~EN/32) Reference Manual

OS/32 System Level Programmer Reference Manual

OS/32 Multi-Terminal Monitor (MTM) Reference
Manual

Common Assembly Language/32 (CAL/32) Pcogcamminq
Reference Manual

CAL Macco/32 Processor and Macro Library Utility
Reference Manual

For further information
32-Bit manuals, see
Summary.

vi

on
the

the contents of ~11

32-Bit Systems User

PUBLICATION
NUMBER

$29-677

48-005

48-008

50-003

48-021

48-024

48-030

48-037

48-040

48-043

48-050

48-.057

Pei:kin-El'ller
Do::umentation

48-039 FOO ROO

CHAPTER 1
PERKIN-ELMER OS/32 PROGRAMMING LANGUAGES AND UTILirIES

1.1 INTRODUCTION

T11is chapt~r provides an overview of the pro~ramming langu~~es
and utilities available for program development under the OS/32
and MTM environments. The Reliance environment is also available
for transaction processing.

1.2 ENVIRONMENTS

Programs can be developed under the basic OS/32 envir~nment or
the multi-terminal monitor (MTM) environment~ Programs developei
in an OS/32 environment can be entered ~nly at the system
console. Programs developed in an MrM environment can be entered
at any available terminal. MTM is an OS/32 extension that all~ws
time sliced interactive programming and batch programming. If ~

system is configµred to include the Reliance extension in
addition to MTM, programs cannot be developed while runninq unier
Reliance. The terminal user, however, can switch from. Reliance
to the MTM environment by using the environment contr~l monitor
CECM). If programs are then developed in the MrM environment,
they cannot be added to the Reliance system unless tha Reli~n=a
system is completely shut down. For further 1etails =oncerning
the use of the ECM, see the Envi~onment Control Monitor (ECM)
Reference Manual.

1.3 PERKIN-ELMER OS/32 PROGRAMMING LANGUAGES

The following nine languages are supported by JS/32:

• Common Assembly Lan~uage/32 CCAL/32)

• CAL Macro/32

• FORTRAN VII Development (D) Compiler.

• FORTRAN VII Optimizing (0) Compiler

• COBOL

• BASIC Level II

48-039 FOO ROO 1-1

• CORAL 66

• RPG II

• Pasc~l

1.3.1 Common Assembly Lanqua9e/32 (CAL/32)

CAL/32 produces the Perkin-Elmer 32-bit object code format fco~
source code input. Features include:

• Program relocation

• Program segmentation

• Complex data definitions

• Expression analysis

• Code optimization

• Conditional assembly instructions

1.3.2 CAL Macro/32

CAL Macro/32 allows programmers to define m2cros for use in
program generation. A macro is a copy of a frequantly used
assembler code sequence that is inserted into a macro libr~ry.

A macro call or request is made to the library to insert a m~=ro
into the body of the calling task. Once inserted~ the macro is
expand~d by the CAL Macr~/32 processor into intecmedi1te sour=e
statements that CAL/32 can convert into object =ode for
processing with the rest of the task. Features incluie:

• Ability to process both user-defined and Perkin-Elmer supplied
macros

• Positional, keyword, or mixed mode macro prototype statements

• Nested macro instructions

• Conditional macro expansion
assembler instructions

independent of C3n1ition~l

• Ability to incorporate variables within a mlcro definiti~n

• Macro call instructions
definitions into memory
execution

• Macro trace facility

for
at

calling frequently used ma=ro
the start of macro processor

1-2 48-039 FOO ROO

1.3.3 FORTRAN VII Development CD) Compiler

The Perkin-Elmer FORTRAN VII Development (D) Compiler passes
through the source program only once to pro1u=e obje=t coda in
32-bit format. Features include:

• Over ·100 compile time diagnostic routines

• Run time error mess~ges

• Optional run time debug facility ·for checking sub~=ript values
and tracing variables and labeled statements

• Conditional :ompilation for diagnostic programming

1.3.4 FORTRAN VIl Optimizing (0) Compiler

·FORTRAN VII O is designed to minimize user program execution time
by producing object coie in 32-bit loader form~t or C~L/32 source
format •. When global optimization is enabled, program flow and
language constructs are analyzed at the source pro~ram level,
reducing the number of computations required at executi~n.

Features inc~ude:

• Diagnostic compilation routines (250)

• Run time er~or messages

• Optional run time debug facility for checking subs=ript values

• Optional trace facility for variables and labeled statements

• Conditional compilation for diagnostic programming

• Batch compilation facility for compiling several subprograms
using 3 single compiler invocation

1.3.5 COBOL

The COBOL compiler processes COBOL source statements t~ produce
CAL/32 source statements that are assembled by CAL/32 into object
programs. Functions include:

• Sequential I/O

• Relative I/O

• Indexed I/0

o Interprogram communication

48-039 FOO ROO 1-3

• Table handling

• Sort

•· Debug

• Library functions

1.3.6 BASIC Level II

The BASIC Level II Interpreter allows users to. create, execute,
and modify programs interactively. Features include:

• Single/double precision floating point

• ASCII and binary I/J

• File and device access

• Program and matrix manipulation

• String operations

• User-defined f uncti~ns

• Tracing

• Programmed error handling

• Syntax error checking

1.3.7 CORAL 66

CORAL 66 is a high level language primarily designei for
implementing online real ti~e systems. Perkin-Elmer COR~1.56,
which is based on Algol 60, incorporates features of FORTRAN ~ni
Jovial. Major features offered by the compiler include:

• Block structure

• Algol-like procedures

• Independent compilation

• Code inserts

• Built-in macro scheme

• Mixed arithmetic

• Library functions

• Pac~ed data format

1-4 48-039 FOO ROO

1~3.8 Report Program Generator (RPG II)

RPG II is a high level language primarily iesigned for file
updating and report generation. RPG II proviies seven
preformatted forms used to code programs to inDut, pro:ess, and
retrieve data files. Sequential, relative, ani indexe1 files can
be accessed randomly or sequentially. Perkin-Elmer RPG II ~lso
can be used to process online files maint~ined by the
Perkin-Elmer database system, Data Management System/32 CD~S/32).

1.3~9 Pascal

The Pascal compiler provides a set of control statements for
manipulating data structures~ Pascal has many standari iata
types available such as Boolean, · character, or real. rhe
programmer can also define data structures that are more
appropriate abstractions of the problem data and combine si~ple

data structures into arrays and records.

Pascal automatically expands all integer variable values within
an arithmetic expression to the length of the longest operani.
In addition, all literal integer constants within an arithmetic
expression are compiled as type INTEGER, while all literal real
constants are compiled as type REAL.

A variety of executable statements is available to the Pascal
programmer. Simple statements, such as the Empty, Assignment,
Procedure Call, and the GOTO statements, perform ona specific
operation. Structured statements are a combination of other
statements such as the compound statement that pcovides a
framework for the main body of a pcogram. The P~scal :ASE
statement is a structured statement that provii~s the :apability
of the computed GOTO of FORTRAN but does not require statement
lahels. Because the alternatives to be executed under each
condition are embedded in· the CASE statement stru~ture, this
statement reduces the need of GOTO statements in a program.

The Per~in-Elmer implementation of Pascal, which is a subset of
the st~ndard defined in the £§§£~! Y§g£ A!IlY~l ~Il~ R~QQ~t by
Jensen and Wirth, features:

• Syntax graphs

• Header statements

• Run time support

• Corn~~nd substitution system (CSS) procedures

1 Jensen and Wirth, fi§£Al Q§g~ H~ilYA1 ~n~ ftgQQI1r New York,
Springer-Verlag, 1975.

48-039 FOO ROO 1-5

1.4 UTILITIES

The following Perkin-Elmer utility programs =an be used with
DS/32:

• Linkage Editors

e Edit

• Text

• Source Updater

• Automatic Interactive Debugging System (AIDS)

• Copy

• Library Loader

• Macro L~brary

• Sort/Merge Level II

• Patch

1.4.1 Linkage Editors

Perkin-Elmer linkage ejitors are used to gener~te an image l~ai

module from one or more object modules. Image load modules can
be tasks, sharable segments, or operating systems. External
references to task common and to previously establishe1 reentrant
library segments are also processed. The available linkage
editors are:

• Link

• TET

Link replaces TET under OS/32 R06 and higher.

1.4.1.1 Link

Perkin-Elmer Link can build image load modules in sizes up to
16Mb. The Link tree-structured overlay feature allows autom~ti=
loading of user-specified routines into an overlay area when the
routine is called during task execution. The overlay structure
does not have to be defined in the source module.

1-6 48-039 F~O ROO

1.4.1.2 Task Establisher Task (TET)

Each TET overlay must be defined completely before another
overlay statement is presented in the command stream. After all
overlays are defined, the task overlay area is set to the size of
the largest area requested. Only one overlay area is reservei
for each task, no matter how many overlay commands are enterei.

1.4.2 Edit

Edit is a disk-based editor that can be used to append, alter, or
save data on a line-by-line basis. Features include:

• Interactive or batch mode execution

• Global alterations of character strings

• Data deletions, additions, or insertions

• Character string se~rches

• Permanent file data storage

• User-specified record length, termination characters, and tab
settings .

1.4.3 Text

Text is used to generate, revise, and print m~nuals, i~=uments,

and letters. The editor is linked with rext to provi1e all
editing capabilities. Text features include:

• Line centering

• Margin definition

• Boldface entries

• Pagination

• Right ju~tification

• Left justification

• Underscoring

• Indention

48-039 FOO ROO 1-7

1.4.4 Source Updater

!he Source Updater is used to create and maintiin source files on
mass storage devices. Source updater commands enable the user to
verify, modify, or list source files.

1.4.5 ·Automatic Interactive Debugging System (AIDS)

AIDS is a user-oriented assembly level debugging program that:

• Displays and modifies memory locations and floating point ~n1
general registers

• Prints sections of memory to a list device

• Provides the following program utilities:

Snapshot printouts

Cell/register protection

Trace exe~ution

Breakpointing

• Provides single step execution that displays:

Current bias

Location counter

Task status

Condition code

• Converts regueste1 iata or the current opan cell from one
format to another

1.4.6 Copy

Copy transfers data from one device to another device 2ni
supports:

• A ve~ify operation that guarantees the integrity ~f copied
data

o Blocked or unblocked, labeled or unlabeled input and output
tapes

1-8 48-039 FOO ROO

1.4.7 Library Loader

Library Loader is an interactive utility that illows the operator
to create object program library files on a mass storage device.
Once the object program library files ara created, oper~tor

commands can be used to search these files. In addition, the
automatic link editing feature allows the operator to load all
library programs required for any one particul~r task by using
only one command.

1.4.8 Macro Library

The Perkin-Elmer Macro Library Utility Program provides
capabilities for establishing and maintaining the syste~ ma=ro
library and/or any user-deslgnated. macro libraries. This
utility:

• Creates a new library

• Maintains an existing library

• Adds new macro definitions to a library

• Deletes macro definitions from a library

• Lists macro definitions from a library to a device file

• Prints the directory macro names of a library to a 1evice or
file

• Stores an up1at~d library in a permanent file

1.4.9 Sort/Merge Level II

Sort/Merge Level II allows a user to reorder a file of fixed
length records accor1ing to user-defined key fields; ~r proiuce
a single, ordered file from two or more input files of fixe1
length records that presorted in identical key sequences. rhe
main features of Sort/Merge Level II are:

• Input and output can use disk, magnetic tape, or any
sequential, fixed length record device.

• Commands and parameters can be input on an interactive devi=e.

• As many key fields as required can be specified (_up to a
maximum total key length of 1024 bytes).

48-039 FOO ROO 1-9

• Keys can be of a variety· of types:

String
Signed binary integer (16-, 32-, and 64-bit)
Signed floating point binary (32- and 64-bit)
Packed decimal
·Unpackei decimal

• Ascending or desceniing se1uence can be specified separately
for each key.

• Up to four files can be merged.

• A single input file can be specified. to th~ merge function,
providing a record sequence checking facility.

• A series
alternative
operations.

cf input files can be sortei together ~s an
to a sequence of separate sorts followe1 by marga

• Repeated sort and/or merge op~rations can be carrie1 out
without reloading the program.

1.4.10 Patch

Patch is a program development tool that allows users t~ aid to
or chanqe object or image program versions without re2sse~mbling
the source module. Th8 cap3bilities provided are:

• A history feature that records all changes made

• The ability to manipulate object libraries and compoun1
overlay files

Patch is a disk-based reentrant program that c1n run in either
interactive or batch mode.

1-10 48-039 FOO ROO

2.1 INTRODUCTION

CHAPTER 2
TASK STRUCTURE

The fundamental work unit of the Perkin-Elmer 32-bit operating
system is the task. A task can be a single program or a main
program with a number ~f subroutines an1 overl~ys. A total of
252 tasks can reside in the system at one time.

Each task is compiled ~r assembled into an object code m~dule.

From this object module, Link builds an imaqe load moiule. Jnce
the image load module is built, the task can be loadei using a
LOAD command or a load function executed by another task. Tasks
are identified by a taskid assigned to the task when it is loaded
into the system. A group of special program davelopmant commanis
are available to facilitate compiling, linking, ani running of
tasks. These comman1s are described in detail in the 05/32
Multi-terminal Monitor (MTM) Reference Manual.

This' chapter discusses. task structure as iefined by OS/32.
Included are explanations of task address space, task segments,
task states, and subtasking.

2.2 TASK AND MEMORY PROTECTION

User tasks (u-task) run in a protected mode. They =annot be
accessed by tasks outside their boundaries. In addition, u-tasks
cannot execute code in common areas or use any of the privileged
instructions. The privileged instructions include all I/J
instructions; e.g., JC, RH, wH, SSR, and any instru:tion th~t
changes the state of the processor, such as LPSWR or EPSR.

To execute I/0 in~tructions or change the process~r state,
u-tasks make requests of the operating system via ~ supervisor
call (SVC) instructi~n. The relocation/prote:tion hardware
provides memory protection for u-tasks. rhe
relocation/protection hardware and the Perkin-Elmer processors
associated with it are:

• Memory access controller (MAC)

Model 7/32

Model 8/32

Model 3220

48-039 FOO ROO 2-1

• Memory address translator (MAT}

Model 3210

Model 3230

Model 3240

Model 3250

This protection is transparent to u-tasks running under OS/32.

Task memory access errors are handled automatically by the
operatinq system or by the task itself if a trap servi:e routine
ex! sts.

2.3 USER TASK CU-TASK) ADDRESS SPACE

When a u-task is loaded into memory, relocation/protection
hardware automatically relocat~s the. task relative ~ddress to
physical memory. The u-task refers to data and instructions
relative to the first location in the task iS if the task were
loaded at location O in memory.

U-t~sk address space is divided into segments. A segment is a
set of contiguous program addresses startinq on a 64kb boundary.
A maximum of 16 segments on a MAC machine is available for each
u-ta$k. Each seqment is divided into 256-byte pages. See Figure
2-1.

s

E

G

M

E

N

T

s

1 5 I I
1-------------------------~-------f FOOOO

14 I I
1---------------------------------1

13 I I
,1--------------------------------~,.L.

"1--------------------~-----------~r
4 I I · 1 Mb

1---------------------------------1
3 I I

1---------------------------------1
2 I I

1---------------------------------1
1 I I

1---------------------------------1
o I I 256 256-byta

--------------------------------- pages or 64kb

Figure 2-1 Task Address Space on a Memory Access
Controller (MAC) Machine

./

2-2 48-039 FOO ROO

On MAT machines a maximum of 192 segments are available for each
u-task, and each of these segments is divided into 2048-byte
pages. See Figure 2-2.

191 I I
1----------------~----------------t BFOOOO

s 190 I I
1---------------------------------1

E 1a9 I I
1---~-----------------------------1

G 1 a B I I

M
,.!- ---- ------- -- ------ --------- -----;L

1------------ --------------------- -'"f
4 I I E

12!1b

1---------------------------------1
N 3 t I

1-----------~---------------------1
T 2 I I

1------------------------------~--1 s 1 I I
1---------------------------------1 o I I 32 2048-byte
--------------------------------- pa~es or 64kb

Figure 2-2 Task Address Space on a Memory Aidress rr~nslator
CHAT) Machine

The task address of each segment begins on a segment boundary;
e.g., 00000, 10000, 20000, up to F0-000 (1Mb) for MAC machinas,
and up to BFOOOO (12Mb) for MAT machines.

2.4 TASK SEGMENT TYPES

Segments within u-task address space are classified as pure or
impure. An impure segment can be written to, reai from, or
executed only by the task in which it resides. A pure segment
contains data or instructions that can be read or executed by any
task. In addition, a u-task can contain one or mor3 optional
reentrant library segmants or common data areas.

2.4.1 Impure Segments

Every task must have an impure segment to hold the user program
and data. This segment, which cannot be sh~red with any other
u-task, starts with segment number o. If the u-task occupies
more than the 64kb of address space, the task is extende1 into
one or more of the segments contiguous to the first impure
segment.

48-039 FOO ROO 2- 3

The impure segment is defined by three parameters: UBJT, UrJP,
and CTOP. The current values of these three parameters 1re
available to the terminal user through the DISPLAY PARAMETERS
command. UBOT always holds the starting adiress of the impure
segment. For u-tasks this address is always Y'O'.

When a task is loaded, UTOP holds the address of the first
fullword above the iefined portion of the impure segment. rhe
defined portion is the section of the impure segment that is
explicitly defined in object code by Link. Some progr~ms use ~n

undefined portion of memory above their defined portion for
dynamic storage. An example of such an undefined area is the
symbol table area used by Common Assembly Langu~ge/32 (CAL/32).
While this undefined area lies within the impure segment, it lies
above the area to which UTOP points but below the a~ea iefined by.
CTOP8 the ~ddress of the highest halfword in the impure se~ment.
For a MAC machine, crop always contains an address that is ~ne

halfword less than a 256-byte boundary. For ~ MAT machine, crop
always contains an address that is one halfword less than a
2048-byte (2kb) boundary. ·see Figure 2-3.

-----~---------------------------
'-- t <---CTOP

Undefined portion I
I of impure se1ment I

UTOP--->f---- 1· I
1---------~-----------------------1
I I
I Defined portion I
I of impure segment I
I I 1---------------------------------1
I I
I UDL I

UBOT--->t::::J ____________________________ I

Figure 2-3 Impure Segment

Link defines the initi~l values for UTOP and crop when the u-task
is bu~lt. Link increases the value of CTOP through the comman1:

OPTION WORK=(min,rn1x)

This command gives the task an undefined storage area 1bove its
originally defined space. Using the LOAD command can in:rease
the value of CTOP at load time. After a task is lo~ded, the

2-4 48-039 FJO ROO

value of UTOP can be modified by a GETSTORE ani s RELSrJRE ma=ro.
When a resident task is restarted, the origin1l value ~f uroP is
restored.

If a program uses overlays, the overlay area becomes a part of
the impure segment. UTOP initially is set equal to the aidress
of the first fullword above the overlay area. The oveclay 1rea
is large enough to contain the largest program overlay. During
task execution, the overlay area will have only one resiient
overlay. Thus, in ~emory, the impure segment of 1 task usin~
overlays contains (beginning at the lowest location) a root
section, an overlay section, and an expansion section (if' usei).
Any expansion area follows the overlay area. See Figure 2-4.

,------------------------------,::
I
I
I

Expansion area

UTOP--->1----I . .
1---------------------------------
1

<---CTOP

l.
Undef ine1 portion
of impure se~ment

I Overlay area

!-----------::::-:::::::--------~- I
I

Defined DOrtion
of impure segment

, ________________________________ _

I
I UDL

UBOT--->l====j----------------------------

Figure 2-4 Impure Segment with Root and Overlay Area

The task code in the task impure segment is preceded by the user
dedicated location (UDL) that occupies memory lo=ations O thr~ugh
255. The UDL contains task status word (TSW) swap areas used for
communication between the operating system and the task.

2.4.2 Pure Segments

The user can optionally allocate one pure segment within a t~sk.

This segment is the shared portion of the task ~ni uses the
lowest available segment after the maximum workspace size
reserved by Link. The actual segment number used is c~mputei by
Link. The size of the pure segment is limited only by the total
nu~ber of segments within a task.. The puce segment co~tains
reentrant code that can be shared by several t~sks con:urrently.

48-039 FOO ROO 2-5

The code for this segm~nt is assembled with the CAL/32 option
PURE. A task cannot modify any location within its pura segment.
The relocation/protection. hardware prevents other tasks from
writing to the pure seqments.

The Link command:

OPTION WORK=(min,max)

builds the pure segment above the maximum workspace ~rea.

See Figure 2-5.

I
I

Pure segment I
l

I I

':l---------------------------------1:!. ~MJ.i1 .. nxzeik·mum workspace
spacifiej by

1---------------------------------1
I '--1<--~crop
I I

UTOP--->1----, f
1---------------------------------1
I I
I Defined portion of I
f impure segment I
I I 1---------------------------------1
I I
I UDL I

UBOT--->f----1 I
----------------------~~-~---~---

Figure 2-5 Pure Segment

2.5 IMAGE LIBRARIES

Image libraries are segments built by Link outside the u-task
address space. An example is the FORTRAN run time libr!rY CRrL).
When a task· that is to use an image library is built, Link sets
linkages from the task to the appropriate library segments. A
maximum of 15 library segments can ~e used by a task ~unning on
a MAC machine; 191 libraries can be used by ~ task on i. MAr

2-6 48-039 FOO ROO

machine. Once these linkages are set, a u-task can re!i from or
execute the image library segments. Relocation/protection
hardware prevents the task from writing to these segments.

Image library segments are allocated to and deleted fr~m memory
by the operator with these commands:

e LOAD.LIB

• LOAD.SEG

• REMOVE.SEG

Image library segments also can be loaded automatically at t~sk
load time.

2.6 COKKON SEGMENTS

Memory areas can be allocated for storing data that all system
tasks can read from or write to. These areas 2re callei common.

Local common segments located in local memory can be ~!located,

defined, and deleted by the operator with thesa =ommanis:
t

• TCOM

• LOAD.TCM

• LOAD.SEG

• REMOVE.SEG

Data areas can also be allocated for storing informati~n th~t =~n
be read or written to by all tasks under the control of t~o or
more Perkin-Elmer processors. These areas, callej glob~l comm~n,
located in ~lobal memory, are defined and allo=atad by the system
generation (sysgen) TCOM command.

To the u-task, all common segments appear as a task c~mmon. A
task common is a data area within the task impure se~ment that
can be written to or read from only by the other segments within
the task where it resides. An example of a task c~mm~n area is
that area of the impure segment used by the FJRrR~N :OMMJN
statement to store variables.

Link initializes common segments- Because common areas can cc~ss
segment boundaries, tha size of a single common area is limited
only ~Y the amount of memory available. Link can designate a
common as write-protected, allowing only one task to modify the
segment~ the remaining tasks can only read that area.
Relocation/protection hardware prevents tasks from executin~ =ode
in common areas.

48-039 FOO ROO 2-7

The user defines the name of a global or local com~on. This name
must correspond to predefined names given to these areas by the
operator or nt sysgen time. If a user-defined name of a common
corresponds to a predefined na~e, the user-jefined com~on is
automatically loaded in the respective local or globil common.
If the name of a user-defined common does not corresponi to a
pr~defined name, the user-defined common becomes part of tha t~sk
impure segment and is treated as a task common.

Link is given the names of the predefined common areas. When a
reference to a predefined common is encountered in the obja=t
code of the u-task, Link sets the appropriate linkage· from the
u-task to the common.

2.7 TASK STATES

Tasks can be resident or nonresident. A nonresident task is
removed from memory after execution; a resident task cemains in
memory after execution. A task can be classified as resident by
Link or at run time.

A task in memory can b~ in any of these states:

• Current
I

• Ready

• Wait

• Rolled

A task is in the current state while it is exe=utinq
instructions. Only one task can be in the current state at any
given time. All other tasks in memory are in one of the other
states.

A task is in the
dispatched; i.e.,
becoming current.

ready
there

state
are no

when it is
obstacles

eligible to be
to prevent it from

A task is in the wait state when it cannot become ready until
some specific event occurs. Table 2-1 lists the wait states and
their meanings.

2-8 48-039 FOO R~O

TABLE 2-1 TASK WAIT STATES

---------------------------------~-----------------------
WAIT STATE MEANING

--
I/0 wait

Connection wait

Time wait

Trap wait

Load wait

Task wait

Boll wait

Terminal wait

I/O queue wait

Accounting wait

Intercept wait

Console wait

Dormant wait

.
~ait for an I/O operation to complete

wait for a system resource

Wait for an interval to el~pse or for
a particular time of d~y to occur

Wait for a task-handled trap to ~c=ur

Wait for a requested load oper1tion
to complete

Wait to be continued by another task

Wait to he rolled out

Wait for I/O to complete to 1

terminal device (applies to terminal
tasks only)

Wait for an I/J queue to be f reei
when task reaches its JIO limit

Counters overflowed; task waiting for
accounting facility to collect
accounting data and remove wait

Wait for an SVC to be executed

Wait for system operat~r, user, or
another task to instruct an inter­
rupted task to continue exe=uti~n

Wait for system operator, user, or
another task to initiate a task.
After a task is loaded, it enters
dormant state and rem1ins there un­
til execution is initiated. When a
resident task goes to end of task,
it reenters the dormant state

---~---------------

A task is in the rolled state when its task impure segment has
been written to a direct access device. A task becomes rollable
when it is specified as a rollable, nonresident task by Link. A
rollable task is rolle1 out when a higher priority task requires
its memory segment. It is rolled in when it becomes the highest
priority rolled task and sufficient memory is availabie to
accommodate it.

48-039 FOO ROO 2-9

2.8 SUBTASKING

A subtasking facility ~llows one task (monitor task) to stsrt,
cancel, delete, and monitor the progress of the task it controls.
The monitor task can set starting options ani make logical unit
(lu) assignments on behalf of the subtasks. rhe monitor task,
using standard SVC 6 calls, can also control the task environment
of its· subtasks.

The operating system informs the monitor task that the subtask:

• ~s·paused,

• has gone to end of task,

• is suspended,

• is released,

• is rolled out/rollei in,

• has been started, or

• has inherited subtasks from one of its subtasks.

To assign a ta~k as a monitor, use SVC 6 to spacify the subt~sk
report option. The number of subtasks that report t~ a single
monitor is unlimited. When all subtasks of a monitor go to en~
of task, the monitor is no longer refarr~d to as a monitor. rhe
normal SVC 6 functions that provide intertask communication and
control are equally applied between monitor/subtask and
subtask/monitor.

By adding an entry to the monitor task queue and giving the
monitor a task trap, the operating system informs a monitor of a
subtask state change. Bit 15 of the current task st:i.tus. word
(TSW) ~nables task queue entries for subtask state changes. The
monitor services the subtask report when tr~p service is en~bled.

2.a.1 Tasks Loaded from Multi-Terminal Monitor CMTM) Terminals

All tasks loaded and started from a user terminal execute as
subtasks of MTM. Tasks executing under MTM will run at a m~ximum
priority of at least one less than the priority of MTM.

Both interactive and batch processing are supported by MTM. Up
to 64 interactive tasks can be executed concurrently, one from
each terminal. A terminal initiating an inter~ctive task c~n be
used to submit multiple batch jobs. Batch jobs are queued by
MTM. The number of batch jobs that can execute concurrently is
specified by the operator during MTM system st1rt up.

2-10 48-039 r'OO ROO

3.1 INTRODUCTION

CHAPTER 3
TRAPS

When certain events oc=ur during the execution of a user task
Cu-task), the task can take traps to handle them. A tea~
suspends task execution and executes a special routine to hanjle
the event. This routine can be a trap servic~ routine or ~ t~sk

event service routine. When the event has been serviced, the
u-task resumes normal execution.

The user dedicated location CUDL) contains the dedicatei
locations required to use the trap service routine. Fpr each
type of trap that is supported, the UDL. =ontains locations for
holding the old and new task status words CTSW) affected by the
trap. When a trap occurs, the current TSW is saved in the old
TSW location and the TSW in the new TSW lo=ation is loaded to
become the current TSW. This TSW must point to the trap service
routine written to service the type of trap c~used by the event.
After the trap service routine terminates, the contents of the
old TSW location of the UDL are loaded into the new TSW location,
and the u-task resumes normal execution. No registers are saved
as a part of the TSW swap that caus~s a trap service .routine to
be initiated. It is the responsibility of the tr~p service
routine to save any registers it requires. Events that can be
serviced by the trap service routine are:

• Power restoration

• Arithmetic faults

• Supervisor call 14 (SVC 14) execution

• Memory access faults

• Illegal instruction execution

• Data for~at/alignment faults

• The addition of items to a task queue

Other events are handled through the task event tr~p service
routine. This routine differs from the trap service routine
described above in that the address of the routine is stored in
the parameter block of the SVC that caused the trap r~the~ than
in the task UDL.

48-039 FOO ROO 3-1

3.2 USER DEDICATED LOCATION (UDL)

The UDL is an area occupying locations 0 through 255 (X 1 FF 1
) in

each task impure memory space, preceding task code. It =ontains
TSW swap areas and other data areas for communication batween the
operating system and the task. The queue entry and new TSW
fields in the UDL are used only 1£ the corresponding bits in the
TSW are enabled. In Figure 3-1, the names in parentheses are the
symbolic names of the fields as defined in the UDL j~~~

structure. A SUDL macro call generates the stru=tu~a5 and
eJuates for the UDL data structure. Figure 3-1 depicts the UDL
structure. All fields are described following the figure.

3-2

0(0}
CTOP

(UDL.CTOP)
---~------~--------
4(4}

UTOP
(UDL. UTOP)

---~-----
8(8}

UBOT
CUDL.UBOT)

-----~-~-~----~----~~----------~------~-~----~~---~-~------
12(C)

16(10)

20(14)

24(18)

Data management system
(UDL.DMS)

A(task queue)
(UDL.TSKQ)

Reserved

A (message ring)
CUDL.MSGR)

-··------------------------------------~------------~~------
28(1C)

A(SVC 14 arg)
(UDL.SV14)

Figure 3-1 User Dedicated Location CUDL)
Structure

I
f

48-~39 FOO ROO

--------~~--~~~-------~------·-~-~~-~--~--------~--~-~-~-~~-
32(20)

36(24)

40(28)

44(2C)
I

48(30)

52(34)

56(38)

60(3C)

64(£l0)

68(LJ4)

72(48)

76(L~C)

(U DI •• EXT 1)

Reserved

. C UDI •• EXT2)

Reserved

Power restoration old TSW
(UDL.PWRO)

Power restoration new TSW
(UDL.PWRN)

Arithmetic fault old TSW
(UDL.ARFO)

Arithmetic fault new TSW
(UDL.ARFN)

f---
180 (50) 181 (51) 18 2 (5 2) 18 3 (5 3) f
I Reserved I ~eason code I Reason code I Reason code I
I I (UDL.DFFR) I (UDL.MAFR) I (UDL.ARFR) I

Fiqure 3-1 User Dedicated Location (UDL)
Structure (Continued)

48-039 FOO POO 3-3

1---1
f 84C54) I
I Address following arithmetic fault instruction I
I (UDL.ARFX) I
1---f
188(58)
I ·Data for mat/alignment fault ajdress
I (UOL.DFFX)
---------------------~-----------------------~-------------
92(5C)

MAC/MAT fault, actual fault address
C UDL .• MAFL)·

-----------------------------------~-----------------------
96(60)

100(64)
SVC 14 old TSW

(UOL.5140)

-------------------------------------~------·--------------1
104(68) l

I
I

------ SVC 14 new TSW ------1
108(6C) (UDL.S14N) I

112(70)

116(74)

120(78)

124(7C)

128(80)

I
I , _____ _
f 132(8C)
f
I

Task queue service old TSW
(UDL.TSKO)

Task queue service new TS~
(UOL.TSKN)

Memory access fault old TSW
(UDL.MAFO)

Figure 3-1 User Dedicated Location (UDL)
Structure {Continued) .

I
I

3-4 48-039 FOO ROO

l---------------------~-------------------------------------
1136(88)
I
I
1---·--- Memory access fault new TSW

CUDL.MAFN) 1140 (BC)
I
f

144(90)

148(94)
Illegal instruction old TSW

(UDL.IITO)

----------~------~-~-----~-~~-----~~----~~-~-~-------~-----
152 (9 8) .

156(9C)

160(AO)

164(A4)

Illeqal instruction new TSW
CUDL.IITN)

Data format/alignment fault old rsw
(UDL.DFFO)

____ _

-----~-------~------------~-------~--~------~-------~------
168(A8)

172(AC)
Data format/alignment fault new TSW

CUDL.DFFN)

---------~---
176(80)

180(84)

184(88)

Reserved

Pointer to system network architecture table
CUDL.SNA)

Figure 3-1 User Dedicated Location (UDL)
Structure (Continued)

48-039 FOO ROO 3-5

1---1
l188(BC) . I
I Save area used by system network architecture I
I (UDL.RSAV) l
1---1
l192(CO) I
1------ ------1
f 196(Cq) I
1------ ------1

A_ Reserved for AIDS A,

T244(F4) 1-"
1 ··-·---- ---·---1
1248 (FS) I
- - - ----------:... ... ---- ... ---- -- -- -------- ---- - - ---- -------------.... - __ ._

Figure 3-1 User Dedi~ated Location (UDL)
Structure (Continued)

Fields:

3-6

CTOP
(UDL.CTOP)

UTOP
(UDL.UTOP)

UBOT
(UDL.UBOT)

Data
management
system
(UDL.DMS)

A(task queue)
(UDL.TSKQ}

is the top of the impure se~ment. After ~

fetch pointer CFETPTR) macro call, crop
contains the program address of the highest
halfword in the task impure segment~ rhe
value of CTOP which is defined by Link can be
overridden at load time.

is the user top. After a fetch pointer
CFETPTR) macro call is issued, UTOP contains
the program address of the first fullwori
following the defined portion of the impure
segment. The GETSTORE and RELSrORE macro
calls manipulate the valua of UrJP, vhich
cannot exceed the value of crop by more than
two bytes ..

is the user bottom~ After ~ fetch pointer
(FETPTR) macro call, UBOT cont~ins the
program ad1ress of the bottom of the user
program. For user tasks, this value is o.

is the field used by tll-e data mana;iement
system and must contain zeros.

is the field into which the user stores the
address of the task queue. If the content of
of this field is zero, no task queua entr.ies
can be made, even if the rsw task queue"entry
bit is set.

48-039 FGO RO~

Reserved

A(message
ring)
(UDL.MSGR)

ACSVC 14 arg) ·
(UDL.SV14)

Reserved
(UDL.EXT1)
(UDL.EXT2)

Reserved

is a field reserved for futuce use th~t must
contain zeros.

is the field into which the user stores the
address of a 76-byte st~rage area before
receiving any messages. rhis storage area
must be aligned on a fullword boundary. If
the content of this field is zero, no message
can be received, even if the TSW task queue
entry on the message bit is set.

is the field where the operating system
stores the effective address of the SVC 14
argument when an SVC 14 trap occurs.

is the field reserved for system use that
must contain zeros.

is a field reserved for future use that must
contain zer"s•

Power restora- is the field where the operating system
tion old TSW stores the task's current rSW when a po~er
(UDL.PWRO) restoration trap occurs.

Power restora- is the field into which the user stores the
tion new TSW TSW to be loaded as the current rsw when a
(UDL.PWRN) power restoration trap occurs. The lo=ation

Arithmetic
fault old TSW
(UDL.ARFO)

Arithmetic
fault new rsw
(UDL.ARFN)

Reserved

Data format/
:t lignment
fault reason
code
(UDL.DFFR)

48-039 FOO ROO

counter portion of this TSW should contain
the address of a power restoration trap
service routine.

is the field into which the operating system
stores the task's current TSW when an
arithmetic fault trap occurs. For the
Perkin-Elmer 3200 Series Processors, the
location counter portion of this rs~ cont~ins
the address of the faulting instruction. For
7/32 and 8/32 processors, the location
counter portion of this rsw contains the
address of the next instruction.

.is the field into which the user stores the
rsw to be loaded as the current rsw when an
arithmetic fault trap occurs. The lo=ation
counter portion of this rsw contains the
address of an arithmetic f1ult trap service
routine.

is a field reserved for future use that must
contain zeros.

is the field into which the operating system
stares a reason code indicating the type of
data forma.t/alignment fault wnen ·1 1:ita
format/alignment fault trap occurs.

3-7

3-8

Memory access
fault reason·
code
CTJDL.MAFR)

Arithmetic
fault reason
code
(UFL.ARFR)

Address
following
arithmetic
fault
instruction
(UDL.ARFX)

Data format/
alignment
fault address
(UDL.DFFX)

MAC/MAT
fault, actual
fault
address
CUDL.!1AFL)

SVC 14
old TSW
CUDL.S140)

SVC 14
new TSW
(UDL.S14N)

Task queue
service
old TSW
(UDL.TSKO)

is the field into which the operating system
stores a ~eason code indicating the type of
memory access fault when a memory access
fault trap occurs. This fiel1 applies only
to the Perkin-Elmer 3200 Series Pro=essors.

is the field into which the operating system
stores a reason coie indic~ting the type of
arithmetic fault when an arithmetic fault
trap occurs. This field applies only to the
Perkin-Elmer 3200 Series Processors.

is the field into which the operating system
stores the address of the instruction
following the instru=tion ~hat resulted in
an arithmetic fault trap. This field applies
only to the Perkin-Elmer 3200 Series Pro­
cessor.

is the field into which the operating system
stores the address of the location in
referenced by the instruction whi:h
the alignment fault or the d~ta f~rmat

memory
cause::!
f:iult

the trap. This field applies only to
Perkin-Elmer 3200 Series Processors.

is the field into which the operating system
st~res the address of the location that
caused a memory access fault trap. rhe
adiress.can be the effective address of iata
or the instruction address depending on the
fault type indicated in the ·memory 1ccess
fault reason code field CUDL.MAFR)~ rhis
field applies only to the Perkin-Elmer 3200
Series Processors.

is the field into which the operating syste~
stores the current TSW when an SVC 14 trap
occurs. If SVC 14 traps are disabled in the
rsw, the execution of an SVC 14 is illegal.

is the field into which the user storas t~e
TSW to be loaded as the current rsW when an
SVC 14 trap occurs. The location counter
portion of this TSW cont~ins the !ijress of
an SVC 14 trap servic= routine.

is the field
stores the

into which the operating system
current TSW when a t2sk queue

service trap occurs.

48-039 FOO ROO

Task queue
service
new TSW
(UDL.TSKN)

Memory access
fault old TSW
(UDL.MAFO)

Memory access
fault new TSW
CUDL.MAFN)

Illegal
instruction
old TSW
(UDL.IITO)

I llega 1
instruction
new TSW
CUDL.IITN)

Data format/
alignment
fault old TSW
(UDL.DFFO)

Data format/
alignment
fault new TSW
(UDL.DFFN)

Reserved

is the field into which the user stores the
TSW to be loaded as the' current rsw when a
task queue service trap oc=urs. The location
counter portion of this TSW contains the
adiress of the task queue trap service
routine.

is the field into which the operating system
stores the current TSW when a memory 1c=ess
fault trap occurs •.

is the field into which the user stores the
TS~ to be loaded as the =urrent T5W ¥hen a
memory access fault tr~p occurs. rhe
location counter portion of this rsw cont!ins
the address of a 'memory access fault trap
service routine.

is the field into which the operating system
stores the TSW to be loaded as the current
TSW when an illegal instruction tr!p o=curs.

is the field into which the user stores the
TSW to be loaded as the :urrent TSW when an
illegal instruction trap occurs. rhe
location counter portion of this rsw contains
the address of an illegal instruction trap
service routine.

is the field into which the operating systen
stores the task's current rsw when a iata
format or alignment fault ttap occurs. rhis
field applies only to the Perkin-Elmer 3200
Series Processors.

is the field into which the user stores the
TSW to be loaded as the current TSW when
a data format or alignment fault trap o=curs.
The location counter portion of this TSW
contains the address of the data format fault
or alignment fault trap service routine.
This field applies only to the Perkin-Elmer
3200 Series Processors.

is a field reserved for future use th~t must
contain zeros.

Pointer to is the field into which the operating system
the systen netwJrk system network stores the address of

architecture architecture table.
table
CUDL.SNA)

48-039 FOO ROO 3-9

Save area is a field reserved for internal use by 1~ta
used by system communications network softw2re.
network
architecture
(UDL.RSAV)

Reserved for
AIDS

is a field used by OS/32 AIDS that must
contain zeros.

User-supplied fields in the UDL; e.g, all new rsw fields an1 the
task queue and message ring address fields, can be assembled as
constants or loaded during the task initialization phase. Link
builds tasks from program object code. rasks containin~ a
user-assembled UDL are specified by the Link command:

OPTION ABSOLUTE=O

This command specifies that a UDL exists in the program and th2t
storage should not be reserved for it. If a task does not
contain a user-assembled UDL and the ABSOLUTE parameter is
omitted in the OPTION command, Link reserves 256 bytes ~f storige
for the UDL at the beginning of the image load module.

3.3 TASK STATUS WORD (TSW)

The TSW describes the task state at any time with respect to
user-controlled intera=tion with the operating system. rsw 2ls~

a~ts as a location counter for the task and enables ani disables
the various task traps an1 additions to the task queue. A srsw
macro call generates the TSW structures and equates. Figure 3-2
depicts the TSW. All TSW fields are described following the
figure.

I W I P I A I s I O I Pl I I I R I Reserved I K I D I T I I E I L I o I Z I F I Rsvd I V I I CC

---~------------
Bits I

0 2 3 4 5 6 78 1 1 1 1
4 5 6 7

1 2 2 2 2 2
9 0 1 2 3 4

Reserved I Location counter

2 2 2 2
5 6 ., 8

3
1

--~----------------------~------------------
Bits:

3
2

3 4
9 0

Figure 3-2 Task Status Word (TSW)

3-10 48-039 FOO ROO

6
3

o < rsw. wnn

1(TSW.PWRM)

2(TSW.AFM)

3(TSW.S14M)

4(TSW.TSKM)

5(TSW.MAFM)

6(TSW.IITM)

7(TSW.DFFM)

is the trap wait bit. If enabled, the task
iR suspended until a trap occurs.

is the power restoration trap bit. If
enabled, the task receives a trap when p~wer
is restored following a p~wer f1ilure. If
disabled, the task is paused.

is the arithmeti~ . fault trap - bit. If
enabled, the task receives a trap when an
arithmetic fault occurs. If disabled, the
task is paused and a ~essage is displayed on
the user console.

is the SVC 14 trap bit. If enablei, the task
can use SVC 14 and receive a trap when an SVC
14 is executed. If disabled, execution of an
SVC 14 is illegal. Because SVC 14 is usei by
AIDS to set breakpoints, it must not be used
in a task being debuqged with OS/32 AIDS.

is the task queue service trap bit. If
enablei, the task receives a trap when an

.item is added to the task ~ueue or when a rsw
with this bit set is loaiei and the task
queue ~ontains items. If disablei, n~ trap
occurs when item is added to task queue.

is the memory access fault trap bit. If
enabled, the task receives a trap when it
attempts to access memory outside its task
space. If disahled, the task is paused and
a message is displayed on the user =onsole.

is the ill~~ga 1 instructi::>n trap bit. If
enabled, the task receives a tr:3.p when it
executes an i llega 1 instruction. If
disabled, the task is paused and a message is
displayed on the user con so le.

is the data format fault and alignment fault
trap bit. If enabled, the task receives a
trap when it executes an instruction that
causes a data format or aliqnment fault. If
disabled, the task is paused and a message is
displayed on the user console.

8-14(Reserved) is a field reserved for future use that ~ust
contain zeros.

48-039 FOO ROO 3-11

15(TSW.SUQM)

t6(TSW.DIQM)

17(TSW.TCM)

18(Reserved)

19CTSW.PMM)

20(TSW.LODM)

21(TSW.IOM)

22(TSw.TMCM)

3-12

is the subtask queue entry bit. If enabled,
the task receives items on its queue
specifying a subtask state change. If
disabled, no items are entered on the task
queue when a subtask state change o=curs ani
the notification of change is lost.

is the task queue entry on device interrupt
bit. If enabled, an item is enterei on the
task queue when a trap is received from an
I/O device. If disabled, no _items are
entered on the task queue ~hen a device trap
oc::urs.

is the task queue entry on SVC 6 queue
parameter call bit. If anabled, ~n item is
entered on the task queue when a task issues
an SVC 6 queue Parameter ~pti~n. If
disabled, the call to the task is rejected.

is a field reserved for future use that must
contain zeros.

is the task queue entry on task message bit.
If enabled, the task can receive a message
from another task or the operator. rhe t~sk

queue receives the address of the mess~ge
buffer. If disabled, no message is sent.

is the task queue entry on completion of a
load and proceed operation bit. If enablad,
the task queue receives an item specifying
the parameter block address of the 5VC 6 load
call ~hen the load is completed. If
disabled, no item is entered on the task
queue when a load and proceed operation is
completed.

i·s the task queue entry on I/0 =ompletion
bit. If enabled, the task queue receives an
item specifying the address of the sv: 1
parameter block when an I/0 proceed c~ll is
completed. If disabled, no item is entered
on the task queue when ~n I/O oper~tion is
completed.

is the task queue entry on timeout =ompletion
bit. If enabled, the task queue re=eives an
item indicating a specifiej time interval nas
elapsed. If disabled, the task is not
notified that a time interval has elapsed.

48-039 FOO ROO

23(TSW.ITM)

24-25
(Reserved)

26(TSW.TESM)

27(Reserved)

2B-31(CC)

32-39
(Heservad)

40-63(LOC)

is the. task queue entry on an SVC 15 buffer
transfer, command execution, termination, or
halt I/O bLt. This function is supportei
only by the data communicaions subsystem. If
disabled, no item is entered on the task
queue when one of the spe=ified
communications operations is completei.

is a field reserved for system use that must
contain zeros.

is the task event trap bit. If enabled, the
task can receive task events. If 1is~blei,
all task events are queued until a new rsR is
loaded with the task event trap enabled.

is a field reser~ed for future use that must
contain zeros.

is the current condition coie contained in
th~ program status word (PSW).

is a field reserved for future use that must
contain zeros.

is the location counter contained in the PSW.

The task always has a current TSW. The initial TSw or the
current TSW when the task is lo~ded is set by Link. If Link is
not re~uested to set an initial TSw, the ititi~l TSW defaults to
all zeros (no traps or queue entries enabled). ·rhe initial
location counter defaults to the~ starting addrass, if a tr~nsfer

address is specified at assembly time, or to the start of the
impure segment, if a transfer address is unspe=ified.

A task can change its current TSW at any time by issuing an Lrsw
macro call. The TSW must be loaded in an 8-byte area alignei on
a fullword boundary. The first fullword of the rsw contains the
status, and the second fullword contains the location counter.
Following an LTSW macro ·call, the ta~k resumes executio~ at the
location specified in the loaded TSW. If only the status of the
current TSW is to be changed, a value of zero should be specified
in the location counter portion of the new TSW. In this case,
execution resumes with the instruction following the ma=ro call.

3.4 TASK TRAP SERVICE ROUTINE

There are seven types of task traps that can be handled by a task
trap service routine:

• Power restoration

• Arithmetic fault

48-039 FOO ROO 3-13

• SVC 14

• Memory access fault

• Illegal instruction

• Data format/alignment fault

• Task queue service

3.4.1 Power Restoration Trap

A power restoration trap occurs after power is restored following
a power failure and the TSW.PWRM bit in the rsW is set. rhe
current TSW is stored in the UDL.PWRO field, and the new rsw in
the UDL.PWRN field is loaded and becomes the =urr~nt rsw. rhe
location counter of the new TSW should contain the adir:ss of the
power restoration. tr~p service routine. rhis trap service
routine exits by issuing an LTSW macro call to load the rsw
stored in the UDL.PWRO field as the current TSW.

3.4.2 Arithmetic Fault Trap

An arithmetic fault tr~p occurs when one of the events listed in
Table 3-1 occurs.

TABLE 3-1 ARITHMETIC FAULT TRAP-CAUSING
EVENTS

I REASON I
t EVENT I CODE I
1===1
I Fixed point zero divide I X'OO' I
I Fixed point quotient overflow I x·o1• I
f Floating point zero divide I X'02' I
I Floating point exponent underflowf X'03' I
I Floating point exponent overflow I X'04' I

When an arithmetic fault occurs with the TSW.AFM bit set in the
rs~, the current TSW is stored in the UDL.ARFO field, and the ne~
TSW in the UDL.ARFN field is loaded and becomes the current rsw.
The reason code is stored in the UDL.ARFF field. The location
counter of the new TSW contains the address ~f the ~rithmetic

3-14 48-039 F:JO ROO

fault trap service routine. The action taken when an ~rithmetic

fault trap occurs depends on the options specified by Link ~ni
the traps enabled in both the TSW and the PSW. rable 3-2 shows
actions taken when combinations of different options a~e
specified. The trap service routine exits by issuinq an Lrsw
macro call to load the TSW stored in the UDL.ARFO fi:li ~s the
current TSW.

TABLE 3-2 ARITHMETIC FAULT TRAP ACTION

I LINK I
ARITHMETIC I ARITHMETICI

FAULT BIT I FAULT I
I SETTING IN TSWI OPTION I ACTION TAKEN I
J========~=====================================I
I 1 I AFCONT I Trap occurs I
I 1 I AFPAUSE I Message/paused I
I 0 I AFCONT I Message/=ontinueil
I O I AFPAUSE I Message/paused I

3.4.3 SVC 14 Trap

SVC 14 is a user-defined SVC, and its function is performed in
the SVC 14 trap service routine. An SVC 14 trap occurs when an
SVC 1u is executed with the TSW.S14M bit set. The currant rsw is
stored in the UDL.S140 field, the new TSW stored in the UDL.514N
field is loaded and becomes the current TS~, and the ~ddress of
the SVC 14 argument is stored in the UDL.SV14 field. The address
of the SVC 14 argument can be used by the trap service routine.
This trap service routine exits by issuing an LTSW macro call to
load the TSW stored in the UDL.S140 field as the current TSW.

AIDS also uses SVC 14: therefore, SVC 14 must not be used by a
task that is to be debugged by AIDS.

3.4.4 Memory Access Fault Trap

A memory access fault trap occurs when one of the events listei
in Table 3-3 occurs.

48-039 FOO ROO 3-15

TABLE 3-3 MEMORY ACCESS FAULT TRAP-CAUSING EVENrs

I REASON I
PROCESSOR I EVENT I C~DE I

==!
·3220 SVC address error I X'JO'

Execute protect violation I X'01'
Write/interrupt protect violation I X'J2'
Reserved I X'J3'
Write protect violation
Reserved
Reserved
Reserved
Segment number not present
Reserved
Progr~m a1dress is greater th~n

segment limit fault (SLF)

I
I
I
I

·1

x_· o 4 •
X'OS'
X':>6'
x I 'J7 f

x•as•
I X'J9'
I
I X'JA'

----------~-----~---~-----~------~-----~~--~~---~----~--
3240 Reserved

Execute protect violation
Write protect violation
Read protect viola ti on
Access level fault
Segment limit fault
Nonpresent segment fault
Share1 segment table (SST) size

exceeded
Private segment table (PST) size

exceeded

All protection violations
relocation/protection hardware.

are dete::ted

I X'JO'
I X'01'
I x I 0 2 II

I X'J3~

I x. '.)4"

I x. ::> 5 11

I x f J6 II

I
I X''J7"

I
I XI:'.) 8 II

by the

When a me~ory access fault occurs with the TSW.MAFM bit set, tha
current TSW is stored in the UDL.MAFO field, the new rsw in the
UDL.MAFN field is loaded and becomes the current TSW, the
faulting instruction address is stored in the UDL.MAFL fieli, ~nd

a reason code is stored in the UDL.MAFR field. The new rsw
location counter should contain the address of the memocy access
fault trap servicG routine. This trap servi=e routina exits by
issuing an LTSW macro =all to load the rsw stored in tha UDL.MAFO
field as the current T3W.

3.4.5 Illegal Instruction Trap

An illegal instruction trap occurs after a u-t1sk executes an
illegal instruction with the TSW.IITM bit set. The current rsw
is stored in the UDL.IITQ field, and the new TSW in the UDL.IITN
field is loaded and becomes the current TSW. The new rsw

3-1 f. 48-039 FOO ROO

location ~ounter shoul1 contain the address of the illegal
instruction trap service routine. This trap servi=e routine
exits by issuing an LTSW macro call to load tha rsw storei in tha
UDL.IITO field as the current TSW.

3.4.6 Data Format/Alignment Fault Trap

A data format or alignment fault trap results when one of the
events listed in Table 3-4 occurs.

TABLE 3-4 DATA FORMAT/ALIGNMENT FAULT
TRAP-CAUSING EVENTS

I REASON I
EVENT I CODE I

==='
Res€rVed I x•oo• I
Reserved f X'01' I
Invalid sign digit, packed data I X'02' I
Invalid data digit, packed data f X'03' I
Reserved I X'04' I
Reserved I X'05' I
Fullword alignment fault I X'06' I
Halfword alignment fault I X'07' I

--------------------------~----------------

When a data format or alignment fault trap occurs with the
TSW.DFFM bit set, the current TSW is stored in the UDL.DFFO
field, the new TSW in the UDL.DFFN field is loaded and becomes
the current TSW, the address of the location in memory referenced
by the faulting instruction is stored in the UOL.DFFX field, and
the reason coie is stored in the UDL.DFFR field. Th~ new rsw
location counter contains the address of the d~ta format or
alignment fault trap service routine. This trap servi:e routine
exits by issuing an LTS~ macro call to load the rsW stored in the
UDL.DFFO field as the current rsw.

3.4.7 Task Queue Service Traps

A task queue service trap results when one of the events listed
in Table 3-5 occurs.

48-039 FOO ROO 3-17

TABLE 3-5· TASK QUEUE SERVICE
TRAP-CAUSING EVENTS

I REASON I
I EVENT I CODE I
l=========================~=====~=========f
I Device interrupt
I Queue parameter
I Subtask state changes
I Reserved
I Reserved
I Reserved
I Message received
I Load and p~oceed completion
I I/O proceed completion
I Timer termination
I SVC 15 command execution
I SVC 15 buffer transfer
I SVC 15 termination
I SVC 15 halt I/O
I ZDLC buffer input

ZDLC buffer output
ZDLC error condition
ZDLC buffer error
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
EMT3270 unsolicited input
EMT3270 unrequested disconnect
EMT3270 switched line connect

timeout

I X'OO'
I x • o 1 •
I x•o2•
I x:•o3•
1 x•o4•
I X'OS'
I X:'06'
I X'07'
I X'J8'
I X'09'
f x·o~·

X' OB'
X:'OC'
X' 0 D'
X' J E'
X'OF'
x I 1 0 I

){'11'
X'12'
x I 1 3 I

){'14'
x. 1 5.
x t 16.
XI 17 I
X' 1 B'
x. 1 9.

X' 1 A'

Except f~r the subtask change event, all items added t~ the t~sk
queue are four bytes long and have the following format:

I Reason I
I code I

Bytes:
0

3-18

1

Para metc:~r

3

48-039 FOO R:J:J

Fields:

Reason code is a 1-byta hexadecimal number specifying the
reason why the trap occurrej. See Tible 3-5.

Parameter is a 3-byte parameter specifying additional
information about the Parti=ular item adiei to
the task queue. See Table 3-6.

TABLE 3-6 PARAMETERS ENTERED ON THE rASK QUEUE

EVENT I PARAMETER I
==)

Device interrupt
Queue
Subtask state changes
Message received
Load and proceed =ompletion
I/O proceed completion
Timer tArmination
SVC 15 command
SVC 15 buffer
SVC 15 termination
SVC 15 halt I/0
ZDLC read done
ZDLC write done
ZDLC general error
ZDLC buff er exhaustion error
FMT3270 unsolicited input
EMT3270 unreguested disconnect
EMT3270 switched line connect
timeout

NCJTE

Associated with device
Specified by sending task
Type of st~te change
A(message ring)
A(SVC 6 parameter block)
A(SVC 1 parameter block)
Specified in call
ACSVC 15 p~rameter block)
A(SVC 15 parameter block)
A(SVC 15 p2rameter block)
A(SVC 15 Parameter block)
A(UDR list)
A(UDW list)
A(information block)
A(UQR list)

For more information, see the OS/32 Bit
Synchronous Communications Reference
Manual.

Subtas~ items in the t~sk queue are th~ee fullwords l~n~. Using
three add to the bottom of the list (ABL) instructions, the
operating system adds items to the bottom of task queue. rhe
three fullwords form a 12-byte entry as follows:

--(~--------------
1 ISubtas~ I I I
I Reason I reason I TCI I raskid I
I code t code I I I
---~ ~--------------

Bytes:
0 1 2 3 4 11

48-039 FOO ROO 3-19

Fields:

Reason code is a 1-byte field indicating a subt!sk st~te
change occurred.

Subtask
reason code

is the 1-byte field that defines the
particular subtask state chan1e that
oc=urred. See Table 3-7 for possible subtask
reason codes.

TCI is a 2-byte field that
information specific
change.

provides additional
to a subtask state

Ta skid is an 8-byte field that inii=ates the name of
the subtask.

TABLE 3-7 SUBTASK REASON CODES (RC) AND
CORRESPONDING STATE CHANGES

I SUBTASK I
I RC I SUBTASK STATE CHANGE
)===
I 0 I End of task; bytes 2 and 3 are
I I binary end of task codes , __ _

t 1 I Paused

2 I Continued

3 I Suspended

-------~-------------------------------------
4 I Released f

---~---1
5 I Rolled out I

--------------------------·------------------1
6 I Rolled in I ___ ,
7 I Started by a task other than the I

I monitor I

When a task queue service trap occurs; i.e., an item is contained
in the task queue an1 the bit is set, the current TSW is stored
in the UDL.tSKO field, and the new TSW is loaded in the UDL.TSKN
to become the current rsw. The new TSw location =ounto~ =ont~ins
the address of the trap service routine. rhe tr~p ~ervice
routine must issue a remove from top of list (RTL) instruction to

3-20 48-039 FOO ROO

remove an item from the task queue. The item in the queue then
can be examined to determine the reason the trap occurred, and
appropriate action can be taken. This trap service routine exits
by issuing .an LTSW macro call to load the TSW storei in the
UDL.TSKO as the current TSW. If additional items are on the task
queue ~hen the old TSW becomes the current TSW, a trap occurs
immediately.

OS/32 also allows ·a task to receive a trap from external
trap-generating devices. The 8-line interrupt module iriver can
add an item to a task gueue in response to a device interrupt.
If task queue service is enabled, the addition to tha task queue
can cause the task to take a trap. Currently, the only
Perkin-Elmer driver that supports trap-generating 1evice
functions is the 8-line interrupt module driver. Users can write
their own trap-generating devi=e drivers. OS/32 provides the
followinq functions for handling trap-generating devices.

e Connect - attach a trap-generating device to a task

e Thaw - ~nable interrupt on a trap-generatin~ ievice

• Sint - simulate an interrupt on a trap-generating ievice
(addition to Instrument Society of America (ISA) standards)

• Freeze - disable interrupts on a trap-generating device

• Unconn8ct - detach ~ trap-generating device from a t~sk

These functions implement the entire ISA proposed staniards for
process control.

3.5 TASK EVENT SERVICE ROUTINE

Events that cause task event traps to occur are alw~ys associated
with previously issued SVCs. The address of the routine that
services the task event trap is stored in the parameter block of
the SVC that generates the trap.

To take a task event trap, a task must have the TSW.TESM bit in
the TSW enabled. If the TSW bit is not set, the task event trap
will be queued until a TSW is loaded with this bit set. In
addition, a task cannot take i task event trap while eKecuting a
service routine for a previous task event trap. Task queue traps
and task event traps that occur during ex~cution of a task event
trap service routine are queued until the task issues the TEXIr
macro to exit from the routine.

48-039 FOO ROO 3-21

During execution, the task event service routine can re=eiva i~t~
that is in reg~ster O, 1, or· 2 that pertains to the trap. rhe
data contained in these registers before the tr~p was taken will
be lost unless the TEQSAVE option is specified during LINK.
Specifying the PARTIAL parameter for TEQSAVE allows rEQSAVE to
save the contents of registers O, 1, and/or 2 that pert1in to the
trap and to restore those registers after the task exits from the
routine. Specifying the ALL parameter allows all registers to be
saved and restored; no registers are saved if the NONE par~meter
is chosen.

3-22 48-039 FOO ROO

CHAPTER 4
SYSTEM MACROS AND STRUCTURES

4.1 INTRODUCTION

The Common Assembly language/J2 (CAL/32) Assembler symbolic~lly
references numerical =onstants and constant displacements within
a data structure •

. Code written using symbolic references is easier to upiate th~n
numeric code. In addition, symbolic references are easier to use
because it is easy to remember a name. Errors inv~lving

references are less likely because an inaccurate numerical
constant can still be assembled while an inaccurate symbolic name
is recognized as an undefined symbol that c~nnot be 2ssemblai.
Assembly language symb~lic names can reflect the meanin~ of the
numerical constant represented or the name of the field the
symbol points to within a structure.

Numerical constant symbols and displacement symbols are used
throughout OS/32 coding. These same symbols and stru:tures are
used equally by assembly language programmers ~riting pr~gr~ms to
run under OS/32. The collection of symbols and structures
related to OS/32 is contained in the operating system structure
macro library supplied with the system source (filename
SYSSTRUC.MLB on disk). Individual structures can be incluiei in
the user task Cu-task) by calling the appropriate macro.

4.2 EXAMPLES.USING SYSTEM MACROS

The following example shows task status word CrSW) construction.
The status portion of a TSW enabling trap wait, ~ask queue
service trap, queue entry on task call (queue parameter from
another task), and I/0 proceed termination can be written as
follows:

Example:

STSW

DC TSW.WTMITSW.TSKM!TSW.TCM!TSW.IOM

48-039 FOO ROO 4-1

This sequence instructs th~ assembler to perf~rm a l~gical JR
operation on four masks, each mask settinq a p~rticul~r bit, to
form a word with all the required bits set. Within the iata
structure, symbols defining bits are in two forms:

• Symbols ending in M have the value of the bit mask needed to
enable a particular bit.

• Symbols ending in B have the value of the bit position.

The following example illustrates loading a TSW int~ the user
dedicated location (UDL). A TSW, enabling queue entries on I/J
proceed termination ani timeout completion, is loaded into the
task queue service new TSW field of the UDL. This allows ~~eue
entrias for these two events to continue while the task queue is
being serviced. The TSW contains a location counter field
pointing to the task queue service routine.

Example:

SUDL
•
•

LM
STM

QSERYICS EQU

•

TSKQTSW DC

R14,TSKQTSW
R14,UDL.TSKN

*

TSW.IOM!TSW.TMCM,QSERVICE

The UDL field can be referenced by its displa~ement within the
UDL alone rather than in combination with. a pointer to the
beginning of the UDL. This is because, in an 05/32 user t~sk,
the UDL begins at address O within the t~sk progr~m address
space. The one line definition of the TSW (TSK~T3W) generates
two full~ords: a status portion, enabling =ertain bits, ani a
location counter (LOC} portion, pointing to the t1sk queue
service routine as QSE~VICE.

The following example illustrates loading an SVC 6 function c~de
into an SVC 6 parameter block. A function code specifying l~ad
and start immediately for some other task, as opposed to a
self-directed SVC 6, is loaded into an SVC 6 parameter block.

4-2 48-039 FOO ROO

$SVC6
•

LI R1,SFUN.DOM!SFUN.LM!SFUN.SIM
ST R1,PARBLK+SVC6.FUN
•

PARBLK EQU *
frS SVC6.

The DS sv:6. instruction reserves the proper amount of space for
the SVC 6 parameter block. SVC6 is the lanel of the structure
defining the SVC 6 parameter block, and is set by CAL/32 to the
siz~ of the data structure defined by the $SVC6 macro.

A fiel1 within a dat~ structure can be raferenced using a
structure by directly referencing a field.

Example:

$SVC6

•

ST R1,PARBLK+SVC6.FUN

The field also can be referenced using an indeK register.

Example:

$SVC6

•
•
•
LA R3,PARBLK
•

ST R1,SVC6.FUN(R3)

PAR3LK DS SVC6.

48-039 FOO ROO 4-3

The direct method does not use an additional register, while the
index register method passes the address of iifferent par1meter
blQcks through a register (perhaps to a subroutine).

The previous @xamPles 1eal with applications where 1 program
dynamically loads various fields with appropriate values. This
approach is correct when the contents of the various fields
change with time and must be dynamically initializei and
subsequently changed. However, for applications where the
contents of fields are static, there is ~n alternitiva tb~t
permanently assembles the appropriate v~lues into data
structures. This alternative saves both assembly c~da size and
execution time.

This example shows how to assemble values into a UDL. Assembling
a UDL into a task requires an OPTION WORK=n command when linking.

Example:

SUDL

TUDL EQU *
ORG TUDL+UDL.TSKQ
DC task queue addr
OPG TUDL+UDL.PWRN
DC status,loc
ORG TUDL+UDL.S14N
DC status,loc
ORG TUDL+UDL.TSKN
DC status,loc
ORG TUDL+UDL

The label TUDL is used to avoid conflict with UDL whi=h is
defined in the UDL structure by the $UDL macro. To omit any of
the field definitions from the code, delete tha ORG corcesponiing
to the relevant field and the constant definition for that fieli.
~RG TUDL+UDL s~ts the location counter past tha .end of the UDL.

This example shows how to assemble taskid and function =oie into
an SVC 6 parameter block.

4-4 48-039 FOO ROO

Example:

PARBLK

$SVC6

•
•
•
ALIGN 4
EQU
ORG
DC
ORG
DC
ORG

*
PARBLK+SVC6 .• ID
C'TASKA'
PAR BL K+S V C 6 .• FUN
SFUN.DOM!SFUN.SIM
PARBLK+SVC6 ,,

TARGET TASKID

START IMMED. FUNCTIJN

ORG PARBLK+SVC6. sets the location counter past the eni of the
par a rn et er block.

48-039 FOO ROO 4-5

CHAPTER 5
VOLUME, FILE, AND DEVICE INFORMArION

5.1 INTRODUCTION

To provide device independent I/O, programs direct all I/0
requests to a logical unit (lu) rather than t~ a specific 1evi=e.
or file. The system maintains an lu table CLTAB) for e~ch task.
T~e lu numbers, which range. from 0 to 254, correspond to entries
in the task LTAB. Task logical. units must be assigned to
specific devices or files by an operator, multi-terminal monitor
(MTM) command, or a supervisor call 7 (SVC 7) (via macro) prior
to their use. Devices can be m~rked offline, m~kinq them
unavailable for assignment by user tasks Cu-task). ~11 OS/32
supported direct ac=ess devices can be accessed through the file
manager which provides volume and file management servi=es.

Data on a direct access device is organized into a series of
files on a named logical volume. When a direct access device is
made available by the operator command MARK ON, the name of the
volume mourited on that device is associated with the ievice and
refers to it. A MARK OFF command allows the m~unted disk volume
to be removed from the device list. A disk mounted without first
being marked offline can be marked online only in a
write-protected mode. If a disk is not marked offline before
dismounting, further writing to the disk might make any
information in an indeterminate state unrecoverable.

Before using a dire=t access volume, the ~ppropri~te iisk
formatter program must format it, and the OS/32 Disk Initializer
Utility must initialize it. In addition, the Disk Initi~lizer
can send an operating system image to a direct ~ccess volume for
BOOT loading.

5.2 VOLUME ORGANIZATION

A direct access volume under OS/32 contains sevecal
structures:

• Volume descriptor

• Sector allocation (bit) map

• File directory

• Contiguous file type

• Indexed file type

48-039 FOO ROO

iata

5-1

A u-task cannot access the first three structures. The operating
system uses them to control the rest of the stor~ge on the
volume.

The bulk of the storage area is used for file storage. All the
files on the volume are indexed or contiguous file types. rhe
amount of storage on the volume is the only limit on the number
of files on the volume. A task, macro, or an operator or MTM
command initiates file allocation, assignment, anj deletion.
Generally, file storage is permanent. A file remains on the
volume until it is deleted.

For applications requiring temporary storage, JS/32 also supports
temporary files. The temporary file is like any other file
except that when a temporary file is closed, it is autJmatically
deleted. A temporary file can be a contiguous or indexed file
type.

5.2.1 Volume Descriptor and Sector Allocation Hap

Sector O, cylinder O of a disk volu~e contains the volume
descriptor. The volume desc~iptor has six fullword fLelds. See
Figure 5-1.

10{0)
I Volume name
I I
1~--------------------------~---------------------------·----1

· I 4 < 4 > . I
I Attributes I
I I
1-------------------~-----------------------------------·----1
rs<s> I
f Pointer to file directory I
I I
1---1
f12(C) I
I I
I I
1------ Reserved ------(
l16C10> I
I f
I I 1---·----f
120<14> I
I Pointer to sector allocation ~ap I
I I

Figure 5-1 Volume Descriptor Structure

5-2 48-039 FOO ROD

Fields:

Volume name

Attributes

is the volume name field that =~ritains a
4-=haracter ASCII volume ijentifier, the name
by which the volume is known to the system.

when the disk is marked off, the ittributas
field is O; when the disk is marked on, bit
O of the attribute field is set to 1.

Pointer to contains the address of the first sectors of
file directory the primary file directory. rhe file

directory contairis information the systam
needs to process files recorded on the
volume. An entry in the iirectory is ma1e
for each file.

Reserved

Pointer to
sector
allocation
ffiiiP

is an 8-byte fieli reserved for future use.

contains the ajdresn of the first sect~rs of
the sector allocation map. The allocation
rnaP is a bit map containing one bit for each
sector on the volume. This map records
allocated, una1located, and dafective
sectors. If a sector is allo=atei or
defective, its· corresponding bit in the
allocation map is set to 1; if un~llocated,

it is set to o.

The Disk Initializer Utility initially
all data in the volume 1escriptor.
does not modify any portion of the
1escriptor, except to indic~te

online/offline state of the volume.

places
OS/32

volume
the

5.2.2 Primaty and Secondary File Directory

The file directory consists of two sections:

• Primary directory

• Secondary directory

The primary directory is organized as a forward-linked list ~f
1-sector blocks on a disk. A directory block contains spa:::e for
five file entries. Ea~h entry contains inform1tion ~bout the
file: name, type, length, protection keys, d~ta created, and
data written. Since only one directory block :::an be in· memory at
one time, only five file entries can be memory resijent. rhe
other jirectory blocks remain on disk and ~re accessed by I/0
operations.

48-039 F'OO ROO 5-3

To reduce file search time, a secondary directory is av~ilable as
a system qeneration (sysgen) option. The se=ondary 1irectory,
portions of which are in memory, is a contiguous fila with the
reserved name SYSTEM.DIR. This directory cont~ins filenames and
primary directory block pointers for all the files on the volume
plus available slots Can expansion factor) for a us9r-defined
number of files yet to be allocated (default 1JO). The secondary
directory is orga~ized so that 20 file entries are containei
within each sector. The number of secondary directory sectors
resident in memory is dependent upon the parameters set by the
MARK JN command.

If a secondary directory runs out of free file slots, the
operator can choose to continue with a mixture of primary and
secondary directories (at a cost in file search time), or mark
the disk off and then mark the disk on with an ~dditional
expansion area.

5.3 FILE TYPES

OS/32 supports two file types:

• Inde?Ced

• Contiguous

In most cases, the same data manipulations can be performed on
both file types. The choice of file type usu~lly depends 6n how
the data is to be accessed and not the data type to be ·put in the
file. Each file type is optimized for one specific form of
access.

File descriptors (fd) 1re entered in 1 standari format.

Format:

[
voln:] [{file class}]

[file name J [· [ext] J I
dev: actno

Parameters:

voln:

5-4

is a 1- to 4-character alphanumeric string
specifying the name of 1 iisk volume. rhe
first character must be alphabetic and the
remaining, alphanumeric. If the v~lume n2rne
is omitted, the default is the system or user
volume.

48-039 FOO ROO

dev:

filename

• ext

file =lass

actno

is a 1- to 4-character alphanumeric string
specifying a device name. rhe first character
must be alphabetic ani the remaining,
alphanumeric.

is a 1- to a-character alphanumeric string
specifying the name of ~ file. The first
character must be alphabetic and the
remaining, alphanumeric. If a filename is
specified when a device name is spe=ifiei, the
filename is ignored.

is a 1- to 3-character alphanumeric st~ing
sPe=ifying the extension to a filename.

is a 1-character alphabetic string specifying
the type of file class in a system running
undgr MTM. The file class types are:

P for private file

~ for group file

S for system file

is a 1-character string spe=ifying the system
account number. If MTM is not being usei or
if the operator is using tha system cons~le,

the file class is the account number. If this
field is omitted, the default value is 0 ~r
the system account. Any other account must be
specified by typing the slash (/) ani a
decimal number within the range of 0 through
255.

Some Perkin-Elmer .Programs an~ shown in
recommended filename e~tensions.

Table 5-1 with

48-039 FOO ROO 5-5

TABLE 5-1 PERKIN-ELMER I/0 FILENAME
EXTENSIONS

I INPUT I OUTPUT I
PROGRAM OR f---------------------------1

I COMMAND NAME I EXTENSIONS I
1==1
I BAS325, BAS32D BAS BAS I
f CAL32 CAL OBJ I
I COBOL CBL CAL I
I CORAL CRL OBJ I
I F7D FTN CAL, OBJ I
I F70 FTN OBJ I
I LIBLDR OBJ OBJ l
f Link OBJ,3EG TSK,SEG I
I SBUILD command CSS I
I BUILD comman1 CSS I
I CALMAC32 MAC,MLB CAL I
I Pascal PAS OBJ I
I Patch OBJ,TSK,SEG OBJ,rsK,SEG I
I PPG RPG OBJ I

5.3.1 Indexed Files

Indexed files are supported on all disk stor~ge devices. The
indexed file is an open-ended file composed ~£ a chain of iniex
blocks and a series ~f data blocks. The index blo~ks are linked
together and contain full~ord pointers to one or more iata
blocks, depending on the number of blocks in tne file. The iniex
and data blocks of the indexed file are transparent to the user.

The user allocates data block size, index block size, and l~gi;31
record size. These parameters are fixed until the file is
deleted. Data blo=k size and index block size ~re specified in
sectors (multiples of 256 bytes). ·Logical recor1s are physic~lly
blocked into data blocks.

An indexed file can be sequentially or randomly accessei. These
two access met.hods can be mixed without closing and r?assigning
the file. Because of the physical structure of the file, ranjom
access is re~dily performed. For example, to read block 1 and
then block 60, the indexed file structure requires an overhead
read operation for the index block =ontaining the pointers to
blocks 1 and 60.

The open-ended struct~re of the indexed file allows the file to
be sequentially extended by writing a loq~cal record numbered one
greater than the number of existing records. If five recoris are
currently in a file, ~ request to write recori 5 causes the ·file
to be ~xtended. However, if there are currently five recor1s, a

5-6 48-039 FOO ROO

request
status.
record.

to write record·? or higher causes an end of file (EJF)
The file can be updated by writing over ~n existing

Indexed files can have shared write access pri~ileges (SRW, S~~,

ERSW) that allow more than one task to con=urrently appenj or
update an indexed file. Indexed file I/O raturns EDF st1tus
if a:

• read sequential operation is attempted at the end of file;

• read random operation is attempted and the logical record
number specified is greater than the total number of logi=al
records in the file: or

• write random is attempted and the logi=al record number
specified is greater than the total number of logic1l records
in the file, plus one.

End of medium (EOM) status is returned if a write operation is
attempted without enough space on the volume c~ntaining the file.

If an I/O error occurs during a read operation, I/O is terminated
and the I/0 error status is returned to the user. If an I/0
error occurs during a write operation, data is not written. rhe
system returns the file to its last known state, adjusts the file
inform3tion in the FCB, and returns an I/O error status to the
user. The user should checkpoint the fila and issue a fetch
attributes macro CFETArR) to obtain the current status of the
file.

A forward file or backward file operation positions an indexed
file at the end or beginning, respectively.

ASCII, binary, and image operations all are supported on indexed
files. Also supported are test and set, write filemark, forward
space filemark, and backspace filemark operations.

The block containing the current record pointe~ or I/J ma=ro that
specifies the start of a logical record is read into a system
buffer. The contents of the system buffer ace then transfecrei
to the user-specified buffer until the user buffer is full or the
number of bytes egual to the logical record length of the file
has been moved. When the curr~nt record pointer is set to the
record following the a=cessed record, the transfer is complete.

Output operates the same way as input, except that the iata is
moved from the user buff er to the system buffer. If a current
record pointer value of one greater than the last recori in the
file is specified, a record is appended to the file, thus
allowing the file to be extended at any time. If the size of .the
specified buffer is less than the logical record length, the
record is padded on the end with spaces (ASCII format) or· zeros
(binary format).

48-039 FOO ROO 5-7

The test and set macro, TESTIO, provides record locking to
synchronize ~imultaneous updates.

The advantages of using indexed files are that the user does not
have to compute the maximum size of the file and unuse1 space on
the volume is available for other files. In m~st cases, the user
should choose an indexed file. ·

5.3.2 Contiguous Files

The contiguous file is a fixed length file. All bio=ks of a
contiguous file are contiguously allocated adjacently on the
volume. The file size, in 256-byte sectors, is specified; and
all required space is reserved at allocation time. rhe system
considers each sector (block) a record. Random reads and writes
can access any record on the file, regardless of whi=h records
were previously accessed, making it possible to write a
contiguous file in a random fashion. Random and sequential
access can be mixed without closing and reassigning the file.
Contiguous files are supported on all devices supportei by the
moving head or floppy disk drivers, or by a m~ss storage media
CMSM) driver.

Contiguous file I/O is nonbuffered, ani transfers of variable
amounts of data occur directly between the task buffer and the
disk. The user can tr1nsfer data in logical records greater or
smaller than a sector size. The appropriate sector number mQst
be specified to position the file for random access. All
transfers begin on a sector boundary (multiple of 256) and ani
whenever the number of spec~fied bytes is transferred. Follo~ing

a data transfeL, the file's current sector pointer contains tne
address of the next consecutive sector. The user shorild ~lways
transfer an even number of bytes to a contiguous file.

The contiguous file supports a pseudo filemark capability that
gives it some of the characteristics of a ma1netic tape device.
The pseudo filemark is an X'1313' at the beginning of a record
(block). Ensure that data containing an X'1313' is not
inadvertently written at the beginninq of a recor1. On a
contiguous file the forward file and backw~ri file ~perations
function as they would on a magnetic tape. Th2t is, the file is
respectively positioned forward or backwari until a filemark
(X'1313') is found. For a backward file operation, tha current
record pointer is left pointing to the re=ord containing the
filemark (X'1313'). For a forward file operation, the current
record pointer is left pointing to the record following the
filemark. The write-filemark results in writing X'1313' at the
beginning of the current record. The rest of the record is left
in an undefined state.

The shared write access privileges (SRW, SWO, ERSW) are permitted
on contiguous files and allow more than one t~sk to append or
update a contiguous file concurrently. ASCII binary and image
operations are all supported on contiguous files. Also supp6rted
are test and set, wait, unconditional and conditional pr~ceed,

rewind, backspace record, and forward space r~;ori operitions.

5-8 48-039 FOO ROO

The primary advantage of using contiguous files is that all sp~=e
required for the file is fixed when the file is allocated. Since
the maximum file length cannot be changed,. the user knows how
much data can be input. This advantage should be weiqhed against
the cost of loss of file space on a volume.

5.4 FILE STORAGE

Both indexed and contiguous files can be storei as temporary,
perman~nt, or spool files.

5.4.1 Temporary Files

Temporary files are used for storage of temporary data. rhe
TEMPFILE command allocates and assigns temporary files. See the
OS/32 Operator Referen=e Manual and the OS/32 Multi-rerminal
Monitor CMTM) Reference Manual.

Temporary files are allocated on the default temporary volume
which is established by the operator VOLUME =ommand. Temporary
files are given a special filename consisting of the ampersand
character (&) and the date and time of alloc~tion. Jhese files
exist only as long as they are assigned and are deletei when the
assignment is clo~ed.

5.4.2 Permanent Files

Permanent files are created whenever
are created and the rEMPFILE command
files are deleted only if explicitly
user through the DELETE command.
default system or user volume.

5.4.3 Spool Files

indexed and contiguous files
is not specified.. Permanent
deleted by the oparator or

Files are allocated on the

Spool files are create1 when a task assigns a pseui~ printer
device. Output is sent to the spool file and queued to ~ slow
speed output device. Spool files are given a special file n~me

consisting of the at sign character (@) follo~ei by eight di~its
assigned by the Spooler.

5.5 BUFFER MANAGEMENT

OS/32 supports two buffer management methods:

• Buffered logi~al (BL)

• Unbuffered physical (UP)

48-039 FOO POO 5-9

5.5.1 Buffered Logical (BL)

logical C BL) management m1~th::d .• Indexed files use the buffered
This method divides files
record length for any qiven
allocated, thus becoming a
would be impossible to write
and write 80-byte records on

into logical re=ords. The
file is fixed when the
permanent attribute of the
20-byte records on a file
the same file later.

logic 3.-1
file is

fil1~. It
one time

It is possible to read or write less than ~ logi=al reclrd.
However, this wa~tes space because the file is .physically divide1
into logical records of the size specifiei when tha file was
allocated. Also, it is not possible to write variable length
records on a f~le without wasting space. In this case, the
logical record length spec~fied at allocation time must be the
size of the longest re=ord the user will ever write on th~t file.
If the user tri~s to read or write a record that is l~ngeL than
the file logical recor1 length, data is lost on ~ write operation
or is not returned on ~ read operation.

The BL method packs logical records into physical blocks as
efficiently as possible, allowing logical records to overlay into
the next physical block if necessary. The logical recori size
can exceed the size of a physical block. The only restriction on
logical record size is that no logical record =an exceed 65,535
bytes.

In the BL method the current record is interpreted as a logical
record and not as the physical blo=k number. All
logical/physical transformations are handled automatically by the
BL method. When a blo=k is read or written, the actual i1t~

transfer takes place between the device and a buffer in system
space~ This buffer is not accessible to the user ·progr1m. When
a task reads or writes a record, data is transferred between the
task and the system buffer. Physical reads and writes take place
only when required. All actions of the buffer m~nagement meth~d

are transparent to the user.

5.5.2 Unbuffered Physical CUP)

The unbuffered physi::al {UP) management method, used by
contiguous files, works directly with physical blocks. Data is
directly tr.~nsferred fr~m a buffer in the user program to the
device, without bein~ moved into a system buffer. F~r a write
operation, data is moved from the user program iirectly to the
file 0r device.

In the UP method, the current record pointer points to the
current physical blo=k. All data transfers must begin ~n a
physical block boundary. The length of data to be transferred
can be less or larger than the length of a physical block, but
not larger than the total size of the file. With =ontiguous
files, the current record pointer can be incremented by more than
one.

5-10 48-039 E'OO HOO

An adv~ntage of the UP method of transfer is that the time
required for ~oving data between a system buffer ani user sp~ce
is eliminated. The primary disadvantage is that space on the
disk volume is often wasted.

S.6 FILE ACCESS METHODS

OS/32 supports two methods of file access:

• Random access

• Sequential access

These access methods can be intermixed without closing and
reopening the file.

The current record pointer is a number from 0 to the number of
logical records currently in the file, indic~tinq the recor1 to
be read or written on the next sequential access. Each recori is
numbered in sequence, starting ·with o. The current record
pointer is adjusted in one of these ways:

• It is set to O by:

Rewinding

Backspacing to filernark (except on conti~uous files where
the record pointer is positioned at the record containing
the previous pseudo filemark)

Assigning (except for write access only)

• It is set to the number of records in the file (the proper
position to append new records) by:

Assigning for write access only

Forwarding to filemark (except on contiguous
the record pointer is positioned after
containing the next pseudo filemark)

files
tne

where
recori

• It is decremented by one by a backspace record operation,
unless the file is already positioned at its beginning.

• It is incrementad by one as follows:

Forward record (unless already at EDF)

Sequential read or write to an indexe1 file

48-039 FOO ROO 5-11

• A random read or write sets the cuirent recori pointer to a
value one greater than the record read or written.

• It is incremented by
accassed to satisfy
contiguous file.

5.6.1 Random Access

the number of sectors th~t mu5t be
a sequential read or write re~uest to a

For random access, the user supplies the rec~rd number to be
accessed. If this record is found, the d~ta tr~nsfer is
performed, and the current record pointer is sat to point to the
next sequential record. If the user continues to use raniom
access, the current record pointer is ignored, sin=e it is
readjusted on every call. However, the user =an read or write a
sequence of records, starting with a known racord number. In
this case, a single random call followed by a number of
sequential calls can be used.

Any record allocated for a contiguous file can be read from or
written to during random access. When indexed files are randomly
accessed, only records currently in the file =an be upiatei. In
addition, index files must be sequentially expandei. If the
record number specified is more than one record past the end of
the fil8, the call is rejected with EOF status. For ex!mple, if
the file has only five records, a sixth could be added; but
record number 100 could not be added.

With contiguous files, there is no restriction on using random
write or read access. Any record within the file's 1llocation
can be read or written.

5.6.2 Sequential Access

When the user accesses the files using the sequenti~l methoi
file, records ar~ read or written in sequence. The current
record pointer is automatically adjusted at each access. rhe
rewind, forward record, backward record, forward file, and
backw~rd file operations can reposition a file as described.

5.7 CHOOSING FTLE TYPES

Follow these guidelines to choose a file type:

If pseudo filemarks are required for magnetic tape emulition, the
contiguous file structure is required. This can o=~ur when
magnetic tape-oriented programs are used.

If the maximum length of the file is completely unknown, only an
indexed file can be used.

5-12 48-039 FOO ROO

Most applications define files sc> that a logical guess of each
data structure's maximum length is generally DOssible. Assuming
the disk is not badly fragmented, the contiguous file can be
considered. If the disk is fragmented, the allocation ~f a large
contiguous file might not be possible. Use the OS/32 Disk Backup
Utility to compress the disk space and eliminate fragmentation.

If all or most of the file data is to be sequentially accessed,
choose the indexed file structure. Long files randomly ac=essed
require the contiguous file structure.

For most applications, choose the indexed file
indexed file can perform random and sequential
However, the index file uses an extra sector as an
for every 62 data blocks.

be:ause th.e
operations.

iniex block

Once the indexed file structure is chosen, th.e physi=al block
size must be selected. Reasons were given for kaeplng the
physical block size small. However, a large blo:k size can be
very helpful in some cases. The main time factors involved in a
disk access are seek time (for moving-head disks) and cotational
latency time. Usually these times overshaiow the a=tual d3ta
transfer time. Therefore, transferring two ·or more sectors
generally costs little more time]than a transfer of only one
sector. Fo.r this reason, the number : of disk acce-sses is the
critical figure in computing file ac~ess time. A larga physi=~l
block size can reduce thA number 04 accesses. Consider th.e
performance of the overall system. If a given t~sk is not
critical or is running in a single task environment, a l~rge
physical block size might reduce running time.

If access speed is paramount and the file size is fixed, use the
contiguous file structure because the amount of systen overhe~d
needed to access contiguous files is less than for any ~ther file
type.

It is possible to write programs that use both of these file
structures as well ~s previously existing file structures from
other programs. The user can use these programs to test the
application to determine which possible file structures are most
efficient.

The contiguous fil~ is compatible with the indexed file, pr~vided

that the contiguous file. does not use the pseujo filemark
capability.

5.8 FILE AND DEVICE PROTECTION

Files and devices can be statically and dynarni=ally protected.

48-039 FOO ROO 5-13

5.8.1 Static Protection Using Read/Write Keys

Each file or device has associated with it two protection keys,
one for read access and one for ~rite access. Each key is ~ne
byte long and has a value from X'OO' to X'FF'. If the values of
the keys are within the range X'01' to X'FR', the file or jevice
cannot be assigned for read or ~rite access unless the operitor
or requesting task supplies the matching keys. If a key has a
value of X'OO', the file or device is unprotectei for that ~c=ess
mode. Any.key supplied by the operator or requesting task is
accepted as valid. If a key has Q value of. X'FF', the file is
unconditionally protected for that access mode. It · =annot be
assigned for that access mode to any u-task, regardless of the
key supplied. An unconditionally protected file can be assigned
to an executive task Ce-task). Table 5-2 lists the read/write
keys used for static protection.

TABLE 5-2 READ/WRITE KEYS

WRITE I READ I
KEY I KEY I MEANING
-----------------------------~-------~--

00

FF

07

FF

00

27

.I oo
I
f FF

00

A7

FF

32

Completely unprotected

Unconditionally protected (used
by e-tasJ.:s)

Unprotected for read, c~niition­
ally. Protected for write (user
must supply write key = X'07').

Unconditionally . prote=tei for
write, conditionally protected
for read. User must supply read
key of X'A7'.

Unprotected for write, uncondi­
tionally protected for read

Conditionally protected for both
read and write. User must supply
both keys.

The file protection keys are defined when the file is ~llocated.
The system operator or any task having that file assigned for
exclusive access can change the protection keys. See Section
5.8.2. The protection keys are changed via the REPROTE:T commani
or a REPROT macro. The device protection keys are iefined at
sysgen time, anrl only the system operator can change them.

5-14 48-039 FOO ROD

5.8.2 Dynamic Protection Using Access Privileges.

By assigning exclusive access privileges to a file, ot~er tisks
are prevented from accessing that file. These privileges remain
in effect as long as the file is assigned to them. The access
privileges are:

• Sharable read only (SRO)

• Exclusive read only {ERO)

• Sh~rable write only (SWO)

• Exclusive write only CEWO)

• Sharable read/write CSRW)

• Sharable read, exclusive write CSR EW)

• Exclusive read, sharable write (ER SW)

• Exclusive read/write CERW)

A file cannot be assigned with an access privilege in=ompatible
with an existing assignment of that file. For example, a request
to open a file for EWJ is compatible with an existing ~ssignment
of that file for SRO or ERO, but is incompatible with ~ny

existing assignment for other access privileges. Table 5-3 sho~s
which access Privileges are compatible. If the user attempts to
change access privileges by adding a privilege that is
incompatible with existing ones, the old access Drivileges
remain.

48-039 FOO ROO 5-15

TABLE 5-3 ACCESS PRIVILEGE
COMPATIBILITY

----------------~-------~---~--~------
E
R
s
w

E
R
0

s
R
0

s
R
w

s
w
0

E
w
0

s
R
E
w

E
R
w

====== --
ERSW - I -

I
ERO - I -

I
SRO - I -

I
SRW - I -

I
swo * I *

I
EWO - I *

I
SREW - I -

I
ERW -

' -

LEGEND

* Compatible
Incompatible

*

* *
Ir * * * *

* * *

* * *

*

*

Exclusive access was discussed in terms of multiple tasks sharing
the sa~e file, assuming that a single task does not attempt to
assign the same file to multiple logical units. However,
occasionally the same file is assigned to multiple logi~al units
as a result of default assigtiments or system operator
assignments. In this ~ase, access privileges to the file must be
assigned to the lu as if it were a task. For example, a file
cannot be assigned for exclusive read access on one lu 2nd shared
read on another. If a file is assigned for exclusive reai or
write access on any given lu, it cannot be ~ssignei for that
access on any other lu.

5.8.3 Write-Protected Volumes

Mark the disk online as a protected device to protect 111 files
on a disk from write operations. When a volume is
write-protected, only 1ssignments for SRO and SRW are accepted;
SRW is changed to SRO. If the hardware write-protected feature
of a disk is enabled, the volume must be markei on as a prote=tei
volume. Ref er to the :JS/32 Opera tor Reference- Manual.

s-1c 48-039 Foo aoo

5.8.4 Static and Dynamic.Protection Modification

The system operator or any task having that file assignej for
exclusive access can change a file's prote=tion keys. If the
task file is assigned for ex~lusive write, the write key can be
changed; if the task h~s the file assigned for ERW, it =an ~h~n~e
either or both keys.

Under the proper conditions, a task can change its file access
privile~es without having to close the file. For example, a task
having a file assigned for shared read cannot.=hange to exclusive
read if the file is also assigned for shared reai to .an~ther t~sk
(or another lu of the same task). The CHANGE ~CCESS PRIVILE~ES
(CHAP) macro changes the access privilege. rhe user cannot
change from read only or write only to read/write, from rea1 ~nly
to write only, or from write only to read only. If the user
attempts to change access privileges and is un~ble to get the new
privileges, the old access privileges remain.

5.9 FILE MANAGEMENT

This section discusses the ALLOCATE, ASSIGN, close delete (CLOE),
and checkpoint (CKPOINr) macros~

5.9.1 File Allocation

When a file is allocated,
a contiguous file, sp~ce

can be allocated from the
via an ALLOCATE macro.
the following information

Volume id

Filename/extension

Write key/read key

Logical record
length

48-039 FOO ROO

its directory entry is built; if it is
is reserved for it on the dis~. A file
system console or from a riser pro~r~m

Regardless of how a file is allocated,
must be specified:

specifies the volume ~n which the file
is to be allocated. It must be the name
of an online direct access volume,
otherwise volume error is returned.

gives a name to the newly allocitei
file. There must not be any ~ther file
of that name and extension on the
specified volume, otherwise an error
status message is returned.

sets up the initial protaction keys for
the file. If this fieli is not set, the
default is an unprotected file.

is the field used when illo=ating
indexed files. This sets the loai=~l
record length for the file. It can be
any size up to 65,535 bytes; however
once established, it cannot be changed.
Specifying zero recori length is flle~al
and vill result in an error status.

5-17

Size

File type

5.9.2 File Assignment

The ASSIGN {ALAS) macro

is the size of the entire file in
sectors for a conti~uous file. It =an
be any size up to the maximum contiguous
space available on th1t volume at that
time. If the size requested is too
large, a message is returned.

For an indexed file, this size is the
Physical block size for the file in
sectors. It can be any size up to a
maximum set at sysgen time for the
system {never greater than · 255). If
this parameter is t~o large, it :an be
difficult to open the file.

Indexed or contiguous.

or the ASSIGN command ~ssigns a file t~

an lu. At this point, t~ desired access privileges must be
specified; the read key must be given if read access is
requested; the write key must be specified if write access is
requested.

When a file is assignei, the system alloc~tes witnin tne system
space a file control block and buffers~ Any buff er space
required depends on the chosen buffer management method an1 the
physical block size of the file. If the file's physical blo=k
size is too great for the remaining system space, the file is not
opened and a buffer error status is returned. When a buffer
error occurs, the user program can close another open file
assignment, freeing some system space and allowing the first file
assignment to be retried. For this reason, d~ not keep files
open longer than necessary. The physical block length of the
file should also be kept as short as possible unless there are
other overriding considerations.

5.9.3 File Deassignment (Close)

Issuing a CLOSE comma~d closes a file assigned to an lu.
Information othet than the lu assignment neei not be specified.
rhe system waits for any incomplete write iata transfers to
terminate, writes out to the volume any partially fillei buffers,
and updates the f~le directory entry. The lu that the file w~s
assigned to is closed.

5.9.4 File Deletion

A file can be deleted only if it is not currently assigned to a
task. When using the DELETE macro or commani to delete a file,
the user must supply the volume name as the iefault rolu~e oc

5-18 48-039 FOO ROO

supply the volume name· along with the filename and extension.
When the file is deleted, the directory entry is removej ani tha
deleted file's disk space is made available to other files.

5.9.5 File Checkpointing

The checkpoint macro (CKPOINT} perfor~s the buffer clearing and
directory updating functions of a CLOSE macro or command without
closing the lu. This operation is a protective operation to
guard against system failure for very critical files or for files
running for lengthy periods.

If the system fails, data appended to a ftle after the latest
close or checkpoint operation is lost for certain files and
buffer management methods because the directory is only updated
at close or checkpointing time. If the system failura does not
corrupt the volume directory or the physical media, all . data
appended before the file was closed or checkpointed is ~uaranteed
safe.

48-039 FOO ROO 5-19

A

Access privileges
Acccunt numbet
Add to bottom of list

CAEL) instruction
AIDS
ALLOCATE macx:o
Arithmetic fault,

definition of field
trap
trap action
trap-causing events
reason code

ASSIGN ccmrnand
ASSIGN (ALAS) macro

B

BASIC Level II

Buffered logical (BL),
defined
logical record size

c
CAL Macro/32

CHAP macro
Checkpoint CCKPOINT) macrc
CLOSE command
COBOL

Commands,
ASSIGN
CLOSE
I.: El.ETE

DISPLAY PARAMETERS
LOH
LCAL.TCM
IOAD.SEG
MARK OFF
~ARK CN
OPTION ABSOLUTE
CPTION WORK

REMCVE.SEG
REPROTECT
TEMPFILE
TCCM
VOLU11E

Comrrcn Assembly Language/32
(CH/32)

48-039 FOO ROO

5-15
5-5

3-19
3-15
5-17

3-7
3-13

. 3-14
3-14
3-14
5-18
5-18

1-1
1-3

5-10
5-10

1-1
1-2
5-17
5-19
5-18
1- 1
1-3

5-18
5-18
5-9
5-18
2-4
2-5
2-7
2-7
5-1
5-1
3-9
2-4
2-6
2-7
5-14
s-·9
2-7
5-9

1-1
2-6

I~IDEX

Common segment
Connect
Contiguous files,

advantages of
f or\lard and backward file
operations
i;:seudc f ilemark capability
random and sequential
access

shared write access
r;rivileges

CCR AL 66

CTOF

D

Data communications
Data format/alignment fault
Data format/alignment tra~

DELETE command
Device trap
Direct access volume
Directory,

file
primary
secondary

Disk initializer utility
CISFLAY FARAMETERS command
Dynamic ~rotection,

modificaticn of
using access privileges

E

ErIT

8-line interrupt module driver
Bnd of medium CEOM)
Environments

environment control monitor
(ECM)

multi-terminal monitor CMTM)
CS/32
Reliance

Fault,
arithmetic
data format/alignment
MAC/MAT
D'iemory access

2-7
3-20

5-9

5-8
5-8

5-8

5-8
1-1
1-4
2-4
3-6

3-12
3-7
3-11
3-16
!:-9
3-11
5-1

5-3
5-3
5-3
5-3
2-4

5-16
5-15

1-!:
1-6
3-20
5-7
1-1

1-1
1-1
1-1
1-1

3-7
3-8
3-8
3-8

Ind-1

File,
access methods
allocation
assignment

·check.pointing
class
contiguous

deassignment
deletion
descrh~tors (fd)

directory
group
indexed

permanent:
rrivate
~rot.action

spool
temporary

File access ~ethods,

random
sequential

File allocation
Fil~ and device protection,

dynamic
5tatic

File assignment
File checkpointing
File class
File deassignment (close)
File deletion
File descriptcrs (fd)

File directory
File name extensions
F'iletypes,

contiguous
indexed
selection guide lines

FORTRAN VII Cevelopment (C)
Cou:i;:iler:

FORTRAN VII Optimizing (0)
Comi:iler

Freeze

G H
GETSTCRF. macro
Group file

I J K

Illegal instruction trap

Image librar:ies

Ind-2

5-12
5-17
5-18
5-19
5-5
5-2
5-8
5-18
5-18
5-4

5-3
5-5
5-2
5-6
5-9
5-5

5-13
5-15
5-9
5-2
5-9

5-12
5-12
5-17

5-15
5-13
5-18
5-19
5-5
5-18
5-18
5-4
5-3
5-5

5-12
5-12
5-12

1-1
1-2

1-1
1-:.;:
3-20

2-5
5-!:

3-11
3-1?
2-6

I
I
I
I
I
I
I
I
l.

Impure memory space
(see impure segments)

Impure seqment.s
Indexed files,

access methods
advantages of
EOF status
EOM status
shared-write access
privileges

I/0 proceed call

L

Library Loader

Link

LOH
LCAD.SEG
LOAI:.TCM
Location counter

Logical unit (lu)

Logical unit table CLTAB)
LTSW mact:o

M N
Macr:o library

Macros,
ALLCCATE
ASSIGN (ALAS)
CHAP
Check~oint (CKPCINT)
r. EL .ET E
FETPTR
GET STORE
LTSW
BELSTORE
HF ROT
'IESTIC
TEX IT
UDL

MAiiK CFF command
MARK ON com'.lland
Memory access controller

(H AC)

Mefficry access fault
Memory access fault trap

2-3

5-6
5-8
5-7
5-7

5-7
3-12

1-6
1-8
1-6
2-1
2-4
2-6
3-12
3-14
3-21
2-5
2-7
2-7
3-13
3-14
~-1

5-18
S-1
3-13
3-14

1-6
1-8

5-17
5-18
5-17
s-·19
5-18
3-6
3-6
3-13
3-6
5-14
5-7
3-21
3-3
5-1
5-1

2-1
2-2
2-4
2-7
3-7
3-11
3-15

48-039 FOO ROO

