PERKIN-ELMER

0S§/32

APPLICATION LEVEL PROGRAMMER

Reference Manual

43-039 FOO ROO

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpor-
ation assumes no responsibility for any errors that may appear in this document.

The software dascribed in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Eimer Corporation,

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Computer Systems Division 2 Crescent Place, Oceanport, New Jersey 07757

(© 1981 by The Perkin-Elmer Corporation

Printed in the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 PERKIN-ELMER 0S/32 PROGRAMMING LANGUAGES AND UTILITIES

1.1 INTRODUCTION

1.2 ENVIRONMENTS

1.3 PERKIN-ELMER 0S/32 PROGRAMMING LANGUAGES

1.3.1 Common Assembly Language/32 (CAL/32)

1.3.2 CAL Macro/32 '

1.3.3 FORTRAN VII Developrment (D) Compiler

T+3.4 - FORTRAN VII Optimizing (0) Compiler

1.3.5 COBOL :

1.3.5 BASIC Level II

1.3.7 CORAL 66

1.3.8 Report Program Generator (RPG II)

13.9 Pascal

1.4 UTILITIES

Telia1 Linkage Editors

1.4.1.1 Link .

1.4.1.2 Task Establisher Task (TET)

1842 Edit

Telle3 Text

1el.4 Source Updater

Toelte5 Automatic Interactive Debugging Systan
(RIDS) :

1«86 Copy

14,7 Library Loader

1.4.8 Macro Library

1.4.9 Sort/Merge Level II

1.4.10 Patch

2 TASK STRUCTURE
2.1 INTRODUCTION

2.2 TASK AND MEMORY PROTECTION

48-039 FOO ROO

- -
| 1
——l -

wd)) wd) ol ed wd oy =D
1
EE L WWNDNNQA =

I N N N N QI T §
| I I R S R |
NS AR

|

i

P N QU W '}
1
-0 W oww®

CHAPTERS (Continued)

2.3 USER TASK (U-TASK) ADDRESS SPACE

2.4 TASK SEGMENT TYPES

N | Impure Segments

2.4.2 Pure Segments

2.5 IMAGE LIBRARIES

2.6 COMMON SEGMENTS

2.7 TASK STATES

2.8 SUBTASKINS :

24841 Tasks lLoaded from Multi-Terminal
Monitor (MTM) Terminals

3 TRAPS .

3.1 INTRODUCTION

3.2 USER DEDICATED LOCATION (UDL)

3.3 TASK STATUS WORD (TSW)

3.4 TASK TRAP SERVICE ROUTINE

3.4.1 Power Restoration Trap

3.4.2 Arithmetic Fault Trap

3.4.3 SVC 14 Trap

3.4.4 Memory Access Fault Trap

3.4.5 Illegal Instruction Trap

3.4.6 Data Format/Alignment Fault Trap

3.4.7 Task Queue Service Traps

3.5

TASK EVENT SERVICE ROUTINE

4 - SYSTEM MACROS AND STRUCTURES
4.1 INTRODUCTION

4.2 EXAMPLES USING SYSTEM MACROS

5 VOLUME, FILE, AND DEVICE INFORMATION

5.1 INTRODUCTION

5.2 VOLUME ORGANIZATION

5.2.1 Volume Descriptor and Sector Allocation Map
5¢2.2 Primary and Secondary File Directory

ii

3-13
3-13
3-13
3-14
3-15
3-15
3-16
3-17

4-1

48-039 F0OO ROO

CHAPTERS (Continued)

s

5.3 FILE TYPES 5-4
5.3.1 " Indexed Files 5-6
5¢3.2 Contiguous Files 5-3
5.4 FILE STORAGE 5-9
5.4.1 Temporary Files 5-9
5.4.,2 Permanent Files 5-9
5.4.3 Spool Files 5-9
5.5 BUFFER MANAGEMENT 5-9
5.5.1 Buffered Logical (BL) 5-10
5.5.2 Unbuffered Physical (UP) 5-10
5.6 FILE ACCESS METHODS 5-11
5.6.1 Random Access) 5-12
5.6.2 Sequential Access ' 5-12
5.7 CHOOSING FILE TYPES _ 5-12
5.8 FILE AND DEVICE PROTECTION 5-13
5.8.1 Static Protection Using Read/Writs Keys 5-13
5.3.2 Dynamic Protection Using Access Privileges 5-15
5.8.3 Write-Protected Volumes _ 5-16
5.8.4 'Static and Dynamic Protection Modification 5-16
5.9 FILE MANASEMENT , 5-17
5.9.1 File Allozation 5-17
5.9.2 File Assignment 5-18
5.9.3 File Deassignment (Close) : 5-18
5.9.4 File Deletion 5-18
5.9.5 File Checkpointing , ' 5-19
FIGURES
2-1 Task Rddress Space on a Memory Access Controller
(MAC) Machine ’ 2-2
2-2 Task Address Space on a Memory Address Translator
(MAT) Machine . 2-3
2~3 Impure Segment 2-4
2-4 Impure Segment with Root and Overlay Aresa 2-5
2-5 Pure Segment 2-6
3-1 User Dedicated Location (UDL) Structure 3-2
3-2 Task Status Word (TSW) 3-10
5-1 Volume Descriptor Structure 5-2

48-039 F00O ROO iii

TABLES

INDEX

iv

TASK WAIT STATES

ARITHMETIC FAULT TRAP-CAUSING EVENTS
ARITHMETIC FAULT TRAP ACTION

MEMORY ACCESS FAULT TRAP-CAUSTING EVENIS

DATA FORUAT/ALIGNHENT FAULT TRAP-CAUSING EVENTS
TASK QUEUE SERVICE TRAP-CAUSING EVENTS
PARAMETERS ENTERED ON THE TASK QUEUE

SUBTASK REASON CODES (RC) AND CORRESPONDING
STATE CHANGES

PERKIN-ELMEE I/0 FILENAME EXTENSIONS
READ/HRITE KEYS
ACCESS PRIVILEGE COMPATIBILITY

3-14
3-14

.3-15

3-16
3-117
3-18

Indi-1

48-039 FOO ROO

PREFACE

This manual is an introduction to Perkin~Elmer 32-bit software
products and includes an overall description of task traps,
macros, and file management. The manual 1is int2nied for
application level programmers designing and programming tasks to
run under 0S/32.

Chapter 1 is an overall description of Parkin-Eln2r 32-bit

software products used for program preparatione. Chapter 2
describes the task structures. Chapter 3 presents traps ani
details trap-causing events. Chaptar 4 presents system mazros

and data structures. Chapter 5 contains information on volume
organization, file types, classes, and file management methods.

This manual has been extracted from the obsolete 0S/32 Programmer
Reference Manual, Publication Number S29-613. This mannal
applies to the 05/32 RJ6 software release and higher.

The following manuals can be used in conjunction with this
manual:

PUBLICATION

ﬁANUAL NAME : NUMBER
0S/32 AIDS User's Guide | S29-374
BASIC Level II Reference ¥anual S29-~u88
0S/32 Bit S}nchronous Communications Reference
Manual _ S29-544
COBOL Reference Manual $29-5u45
CORAL 66 Reference Manual S29-587
Source Updater User Guide - $29-630
FORTRAN VII D User Manual $29-657
FORTRAN VII O User Manual S29-a59
RPG II Reference Manual S529-661
05/32 COPY User Guide) S529~-676

48-039 F0OO ROO v

PUBLICATION

MANUAL NAME ~ NUMBER
0S/32 TEXT User Guide S29-677
0S/32 lLink Reference Manual 48-305
0S/32 Edit User Guide 48-«008
32-Bit Systems User Documentation Summary . 50-003

Pascal User Guide, Language Reference, and Run

Time Support Reference Manual 48-021
0S/32 System Planning and Configuration Guide 4Lg-024
0S/32 Operator Reference Manual . 48-030
System Generation (SYSGEN/32) Reference Manual | 4g-037
0S/32 Systen Level Progr&mmer Reference Manual u48-040
0S/32 Multi-Terminal Monitor (MTM) Reference

Manual ug-ou43
Common Assembly Language/32 (CAL/32) Programming '
Reference Manual 48-050
CAL Macro/32 Processor and Macro Library Utility

Reference Manual 4g-057

For further information on the contents of all Perkin-Elmner
32-Rit manuals, see the 32-Bit Systems User Documentation
Summary.

vi 48-039 FO20 ROO

CHAPTER 1
PERKIN-ELMER 0S/32 PROGRAMMING LANGUAGES AND UTILITIES

1.1 INTRODUCTION

This chapter preovides an cverview of the programming 1languages
and wutilities available for program development under the 05/32
and MTM environments. The Reliance environment is also available
for transaction processinge. ‘

1.2 ENVIRONMENTS

Procgrams can be develcped under the basic 0S/32 environment or
the multi-terminal monitor (MTM) environment. Programs devalopeid
in an 0S/32 environment can be entered '2nly at the system
console. Programs developed in z2n MTM environment can be entered
at any available terminal. MTM is an 05/32 extension that allows
time sliced interactive programming and batch programming. If a
system 1is configured to include the Reliance extension in
addition to MTM, programs cannot be developed while running unier
Reliance. The terminal user, however, can switch from Reliance
to the MTH environment by using the environment control monitor
(ECM). If programs are then developed in +the MIM environment,
they cannot be added to the Reliance system unless tha Reliance
system is completely shut down. For further 1etails <concerning
the wuse of the ECHM, see the Environment Control Monitor (ECH)
Reference Manual.

1.3 PERKIN-ELMER 0S/32 PROGRAMMING LANGUAGES

The following nihe languages are supported by 23S5/32:

» Common Assembly Languag=/32 (CAL/32)
e CAL Macro/32

e FORTRAN VII Development (D) Compiler
e FORTRAN VII Optimizing (Q0) Compiler
e COBOL

® BASIC Level II

48-039 FOO ROO 1-1

e CORAL 66
® RPGC II

® Pascal

1.3.1 Comnmon Assembly Language/32 (CAL/32)

CAL/32 produces the Perkin-Elmer 32-bit object code format fron
source code input. Features include:

e Program relocation

e Program segmentation'

e Complex data definitions

® Expression analysis

® Code optimization

e Conditional assembly instructions

1.3.2 CAL Macro/32

CAL Macro/32 allows programmers to define macros for .use in
program generatione. A macro 1is a copy of a frequantly used
assembler code sequence that is inserted into a macro 1library.
A macro call or request is made to the library to insert a macro
into the body of the calling task. Once inserted, the 'macro is
expand=2d by the CAL Macro/32 pnrocessor into intermediate souarcze
statem2nts that CAL/32 can convert into object code for
processing with the rest of the taske. Features incluie:

® Ability to ptocess both user-defined and Perkin-Elmer supplied
macros

e DPositional, keyword, or mixed mode macro prototype statements

° Nested macro instructions

® Conditional macro expansion independent of coniitional
assembler instructions

@ Ability to incorporate variables within a macro definition
® Macro zall instructions for calling frequently used macro
definitions 1into memory at the start of macro processor

execution

® Macro trace facility

1-2 48-039 FOO0 ROO

1.3.3 FORTRAN VII Development (D) Compiler

ThelPerkinfElmer FORTRAN VII Development (D) Compiler npasses
through the source program only once to proiluce object cod= in
32-bit format. Features include:

@ Over 100 compile time diagnostic routines

®#¢ Run time error messages

e Optional run time debug facility for checklng subszcript values
and tracing variables and labeled statements

¢ Conditional zompilation for diagnostic programming

1.3.4 FORTRAN VII Optimizing (0) Compiler

‘FORTRAN VIi O is designed to minimize user prdéram execution time

by producing object coide in 32-bit loader format or CAL/32 source

format. When global optimization is enabled, program flow and

language constructs are analyzed at the source program level,

reducing the number of computations required at execution.

Features include: '

e Diagnostic compilation rouatines (250)

e Run time ervor messages

® Optional run time debug facility for checking subscript values

® Optional trace facility for variables and labeled statements

e Conditional compilation for diagnostic programming

® Batch compilation facility for compiling several subprogranms
using a3 single compiler invocation

1.3.5 COBOL

The COBOL compiler processes COBOL source statements +t5 produce

CAL/22 source statements that are assembled by CAL/32 into obiject

programs. Functions include:

e Seguential I/0

® FRelative I/0

® Indexed I/O

® Interprogram communication

48-039 F0O0 ROO 1-3

e Table handling
e Sort
¢ Debug

¢ Library functions

1«3.6 BASIC Level II

The BASIC Level II Interpreter allows users to create, execute,
and modify programs interactively. Features include:
@ Single/double precision floating point

® ASCII and binary I/D |

Q File and device access

» Proéram and matrix manipulation

e String operations

® User-defined functions

e Tracing

® Programmed error handling

® Syntax error checking

1«3.7 CORAL 66

CORAL 66 is a high 1level language primarily designed for
implementing online real time systems. Perkin-Elmer CORAL 56,
which is based on Rlgol 60, incorporates features of FORTRAN ani
Jovial. Major features offered by the compiler include:

® Block structure

® Algol-like procedures

e Independent compilation

® Code inserts

® Built-in macro schenme

o Mixed arithmetic

e Library functions

® Packed data format

1-4 48-039 FOO ROD

1;3;8 Report Program Generator (RPG II)

RPG II is a high 1level 1language primarily designed for file
updating and report generation. RPG II provides seven
preformatted forms used to code programs to input, process, and
retrieve data files. Segquential, relative, ani indexed files can
be accessed randomly or sequentially. Perkin-Elmer RPG II also
can be wused to process online files maintained by the
Perkin-Elmer database system, Data Management System/32 (D¥3/32).

1.3.9 Pascal

The Pascal compiler provides a set of control statements for
manipulating data structures. Pascal has many standari data
types available such as Boolean, character, or real. Tha
programmer can also define data structures +that are more
appropriate abstractions of the problem data and combine simple
data structures into arrays and records.

Pascal automatically expands all integer variable valuss within
an arithmetic expression to the length of the longest op=rani.
In addition, all literal integer constants within an arithmetic
expression are compiled as type INTEGER, while all literal real
constants are compiled as type REAL.

A variety of executable statements is available to the Pascal

programmer. Simple statements, such as the Empty, Assignment,
Procedure Call, and the GOTO statements, perform o¢na specific
operation. Structured statements are a combination of other

statements such as +the compound statement that provides a
framework for the main body of a program. The Pascal CASE
statement is a structured statement that provides the zapability
of the computed GOTO of FORTRAN but does not regquire statement
labels. Because the alternatives to be exescuted wunder each
condition are embedded in- the CASE statemant structure, this
statement reduces the need of GOTO statements in a program.

The Perkin-Elmer implementation of Pascal, which is a subset of

the standard defined in the Pascal User HManual and Repart by
Jensen and Wirth, features:

e Syntax graphs
e Header statements
e Run time support

© Command substitution system (CSS) procedures

e e B = . Sl W Ak e G A e T R e G e e e -

48-039 FO0 ROO 1-5

1.4 UTILITIES

The following Perkin-Elmer utility proqfams zan be used witn
05/32:

@ Linkage Editors

e Edit

o Text

e Source Updater

e Automatic Interactive Debugging Syétem (AIDS)
e Copy | |

e Library Loader

e Macro Library

® Sort/Merge Le&el I1

® Patch

1.4.1 Linkage Editors

Perkin-FElmer linkage editors are used to generate an image 1loai
module from one or more object modules. Image load modules can
be tasks, sharable segments, or operating systens. External
references to task common and to previously established reentrant
liktrary segments are also processede. The available linkage
editors are: ‘

® Link

e TET
Link replaces TET under 0S/32 R06 and higher.

1.4.1.1 Link

Perkin-Elmer Link can build image load modules 1in sizas up to
16Mb. The Link tree-structured overlay feature allows automatic
loading of user-specified routines into an overlay area when the
routine is «called during task execution. The overlay structure
does not have to be defined in the source module.

1-6 48-~039 FOI0 ROO

1.4.1.2 Task Establisher Task (TET)

Each TET overlay must be defined completely befores another
overlay statement is presented in the command strean. After all
overlays are defined, the task overlay area is set to the size of

the largest area reaquested. Only one overlay area 1s reserved
for each task, no matter how many overlay commands are entered.

Edit is a disk-based editor that can be used t5 append, alter, or

save data on a line-by-line basis. Features include:

» Interactive or batch mode execution

@ Global alterations of character strings

e Data deletions, additions, or insertions

® Character string searches

o Permanent file data storage

o User-specified record length, termination characters, and tab
settings

1.4.3 Text

Text is used to generate, revise, and print manuals, i1ocuments,

and letters. The editor is 1linked with Text to provide all

editing capabilities. Text features includs:

e Line centering

® Margin definition

@ Boldface entries

® Pagination

® Right justification

» Left justification

o Underscoring

¢ Indention

48-039 F0OO ROO . 1-7

1e4.84 Source Updater

The Source Updater is used to create and maintain source files

mass storage devices. Source updater commands enable the user to

verify, modify, or list source files.

1.4.5 Automatic~interactive Debugging System (AIDS)

RIDS is a user-oriented assembly level debugging program that:

Displays and modifies memory locations and floating point
general registers

Prints sections of memory to a list device

Provides the following program utilities:

- Snapshot printouts
- Cell/register protection-
- Trace execution

- Breakpointing
Provides single step execution that displays:

- Current bias

- Location counter
- Task status

- Condition code

Converts reguested data or the current open cell from
format to another

1.4.6 Copy

Copy transfers data from one device to another davice
supports:

on

ani

one

and

A verify operation that guarantees the integrity of copiled

data

Blocked or unblocked, labeled or unlabeled input and output

tapes

48-039 FO0O ROO

1.4.7 Library Loader

Library Loader is an interactive utility that allows thes operator
to create object program library files on a mass storage device.
Once the object program library files ara2 created, operator
commands can be used to search these files. In addition, the
automatic 1link editing feature allows the operator to load all
library programs required for any one particular task by using
only one command.

1.4.8 Macro Library

The Perkin-Elmer Macro Library Utility Progranm provides
capabilities <for establishing and maintaining the systew macro
library and/or any user-deslignated. macro libraries. This
utility:

® Creates a new library

® Maintains an existing library

® Adds new macro definitions to a library

® Deletes macro definitions from a library

e Lists macro definitions from a library to a2 device file

® Prints the directory macro names of a library to a device or
file

® Stores an updated library in a permanent file

1.4.9 Sort/MHerge Level II

Sort/Merge Level IT allows a user to reorder a file of fixed
length records accoriing to user-defined key fields; or proluce
a single, ordered file from two or more input £files of fixeid
length —records that presorted in identical key sequences. Ihe
main features of Sort/Merge Level II are:

e Input and output can use disk, magnetic tape, or any
sequential, fixed length record device.
e Commands and parameters can be input on an interactive device.

® As many key fields as required can be specified (up to a
maximum total key length of 1024 bytes).

48-039 F0O ROO 1-9

® Keys can be of a variety of types:

- String

- Signed binary integer (16~, 32-, and 64-bit)
- Signed floating point binary (32- and 64-bit)
- Packed decimal

- ‘Unpackeld decimal

@ Ascending or descending sejuence can be spazcified separatesly
for each key. -
® Up to four files can be merged.

® A single input file can be specified to tha merge function,
providing a record sequence checking facility.

¢ A series o¢f input files can be sorted togethsr as an
alternative to a sequence of separate sorts fsllowedl by margs
operations.

® Repeated sort and/or merge opérations can be carrisd out
without reloading the program.

1.4.10 Patch

Patch is-a program development tool that allows users to add to

or change object or image program versions witnout reassembling

the source module. The capabilities provided are:

® A history feature that records all changes made

.® The ability +to manipulate object 1libraries and cowmpound

overlay files

Patch is a disk-based reentrant prograwm that can run 1in either
interactive or batch mode,

1-10 48-039 FD00 ROD

CHAPTER 2
TASK STRUCTURE

2.1 INTRODUCTION

The fundamental work unit of the Perkin-Elmer 32-bit operating
system 1is the task. A task can be a single program or a main
program with a number 5f subroutines and overlays. A total of
252 tasks can reside in the system at one time.

Each task is compiled or assembled into an object code module.
From this object module, Link builds an image load module. OJnce
the image load module is built, the task can bz 1loaded using a
LOGAD command or a load function executed by another task. Tasks
are identified by a taskid assigned to the task when it is loaded
into the system. A group of sbecial program davelopment commanis
are available to facilitate compiling, linking, and running of
tasks. These commandis are described in detail in the 03732
Multi-terminal Monitor (MTM) Reference Manual.

This' chapter discusses. task structure as defined by 0S8/32.
Included are explanations of task address space, task segments,
task states, and subtasking.

2.2 TASK AND MEMORY PROTECTION

User tasks (u-task) run in a protected mode. They <cannot be
accessed by tasks outside their boundaries. In addition, u-tasks
cannot execute code in common areas or use any of the privileged
instructions. The privileged instructions include all /0
instructions; e.g., JC, RH, #WH, SSR, and any instruction that
changes the state of the processor, such as LPSWR or EP3SR.

To execute I/0 instructions or change the processor state,
u-tasks make requests of the operating system via a supervisor
call (SVC) instruction. The relocation/protection hardware
provides memory protection for ~ u~taskse. The

relocation/protection hardware and the Perkin-Elmer processors
associated with it are:

¢ Memory access controller (MAC)

- Model 7/32
- Model 8/32

- Model 3220

48-039 FO0O0 ROO 2-1

e Memory address translator (MAT)

Model 3210

Hodel 3230

- Nodel 3240

Model 3250

This protection is transparent to u-tasks running under 0S5/32.

Task memory access errors are handled automatically by the
operating system or by the task itself if a trap service routine
exlists.

2.3 USER TASK (U-TASK) ADDRESS SPACE

When a u-~task 1is 'loaded into memory, relocation/protection
hardware automatically relocates the. task relative address to
physical memory. The u-task refers to data and instructions
relative to the first location in the task as if the task were
loaded at location 0 in memory.

U-ta'sk address space is divided into segments. A segma2nt is a
set of contiguous program addresses starting on a 64kb boundary.
A maximum of 16 segments on a MAC machine is available for =each
u-tack. Each segment is divided into 256-byte pages. 3See Figure
2"10

15 | |

S R e e L L L L Lt e e | FO000
14 | |

E |====merer e |
13 | |

T | © 1Mb
E | === == mmmm e e | '
3 | |
N ettt |
2 1 |
T e et bt bttt bl |
s |
0 | | 256 256-byta

-------------------------------- = pages or O6uUkb

Figure 2-1 Task Address Space on a Memory Access
Controller (MAC) Machine

2~2 48-039 FOO0O ROO

On MAT machines a maximum of 192 segments are available for esach
u-task, and each of these segments is divided into 2048-byte
pages. See Figure 2-2.

—— - ——— . . ¢ S e WS Ge WU e W T e P W S SN BE Y e e wm S wm em e e

191 | |
: == e mmm i ————— | BF0OOO
S 190 | |
= e e |
E 189 | ' |
R et el |
G 188 | |
y ATTTTmTmmmmmmmememessesosoneooos L
Y e T
E y] | , l 12M4b
R it btk |
N 3 | |
|~ e e e |
T 2 | |
e ittt bttt il |
S 1 | |
=== mm e e s e e e |
0 | | 32 20u48-byte

---------------------------------- pages or 6u4kb

Figure 2-2 Task Address Space on a Memory Address Translator
(MAT) Machine

The task address of each segment begins on a segment boundary:
e.g., 00000, 10000, 20000, up to FO0O000 (1Mb) for MAC machines,
and up to BFO0000 (12Mb) for MAT machines.

2.4 TASK SEGMENT TYPES

Segments within u-task address space are classified as pure or
impure. An impure segment can be written to, reai from, or
executed only by the task in which it resides. A purs segmant
contains data or instructions that can be read or executed by any
task. In addition, a u-task can contain one or mor= optional
reentrant library segments or common data areas.

2.4.1 Impure Segments

Every task must have an impure segment to hold the user progranm
and data. This segment, which cannot be shared with any other
u-task, starts with segment number O. If tha u-task occupies
more - than the 6#4kb of address space, thae task is ext=nded into
one or more of the segments contiguous to the first impnure
segment.)

48-039 FOO ROO : 2-3

The impure segment is defined by three parameters: uBJdT, UIJP,

and CTOP. The current values of these three parameters are
available to the terminal user through the DISPLAY PARAMETERS
command. UBOT always halds the starting address of tha impure

segment. For u-tasks this address is always Y'0°‘.

When a task is loaded, UTOP holds the address of the first
fullword above the defined portion of the impure s=2gment. Tha
defined portion is the section of the impure segment that 1is
explicitly defined in object code by Link. Some programs use an
undefined portion of memory above their defined portion for
dynamic storage. An example of such an undefined area is the
symbol table area used by Common Assembly Language/32 (CAL/32).
While this undefined area lies within the impure segment, it lies
above the area to which UTOP points but below the area defined by .
CTOP, the address of the highest halfword in the impurs segment.
For a MAC machine, CIOP always contains an address that is one
halfword 1less than a 256-byte boundary. For a MAT machine, CIOP
always contains an address that is one halfword 1less than a
2048-byte (2kb) boundary. See Figure 2-3.

| - y<---cTOP
| Undefined portion |
' i of impure sagment |

UTOP«-—>|—-——[|
[-=m=mmmmmmmo oo oo !

I |

| Defined portion |

| of impure segment |

I |
[==m=mmmmmmmmm oo oo |

| |

| UDL |

|

—— . WO S G W e e W e o e M A S G e e e

Figure 2-3 Impure Ségment
Linkvdefines the initial values for UTOP and CIOP when the u-task
is built. Link increases the value of CTOP through the commani:
OPTION WORK=(min,max)

This command gives the task an undefined storage area above its
originally defined space. Using the LOAD command can increase
the value of CTOP at load time. After a task is 1loaded, the

2-4 48-039 FO0 ROO

value of UTOP can be modified by a GETSTORE ani a RELSTIRE macro.
When =a resident task is restarted, the original value »>f UTOP is
restored.

If a program uses overlays, the overlay area becomes a part of
the 1impure sSegnment. UTOP initially is set equal to the address
of the first fullword above the overlay area. The overlay 3irea
is 1large enough to contain the largest program overlay. During
task execution, the overlay area will have only one resident
overlay. Thus, in wnemory, the impure segment of a task using
overlays contains (beginning at the lowest . location) a root
section, an overlay section, and an expansion section (if usei).
Any expansion area follows the overlay area. 3See Figurs 2-4,

- - - - - N A S W M S M WD WP WP WS A W e W W R Gm

| I) <---cToP
| |
| Expansion area | ‘Undefined portion
| | of impurs segment
UTOP--—>]-—~—l ' _ 1)
|-=mmmmmmmmmm oo oo 1
! : _ 1
| Overlay area |
| |
' R e L e L e e T | Defined portion ,
| : | of impure segment
| Root section |
] ' :
=== == ommmm oo mmmm oo !
! |
] UDL |
UBOT-—->|—-——| |

Figure 2-4 Impure Segment with Root and Overlay Area

The task code in the task impure segment is preceded by the user
dedicated location (UDL) that occupies memory locations O thraugh
255. The UDL contains task status word (TSW) swap areas used for
communication between the operating system and the task.

2.4.2 Pure Segnments

The user can optionally allocate one pure segmant within a task.
This segment is the shared portion of ths task anil us=2s the
lowest available segment after the maximum workspace '~ size
reserved by Link. The actual segment number used is computel by
Link. The size of the pure segment is limited only by the total
nunber of segments within a task. The pure segment coantains
reentrant code that zan be shared by several tasks concurrently.

48-039 FOO ROO ' 2-5

The code for this segment is assembled with the CAL/32 option
PURE. A task cannot modify any location within its pura segm=nt.
The relocation/protectinn hardware prevents other tasks fron
‘writing to the pure segments.

The Link command:
OPTION WORK=(min,max)

builds the pure segment above +the maximum workspace arei.
See Figure 2-5.

. m e G e e EE G G WL e e En e A A e G B e G S

! ' | Maximum workspace
| | size sp=cifiei by
| 1Y. Link

UTOP--—>!—--—| |
== mmommmmmmo oo mmoomeoooeoooo oo I

| I

| Defined portion of |

| impure segment |

I !

| === mmm s mm s m e mm s !

| I

] UDL |

|

——— - ——— — — ——— ——— e - A - A A e W ee WS G GE = .

Figure 2-5 Pure Segment

2.5 IMAGE LIBRARIES

Image libraries are segments built by Link outside the u-task
address space. An example is the FORTRAN run time library (RTL).
When a task that is to use an image library is built, Link sets
linkages from the task to the appropriate 1library segments. . A
maximum of 15 library segments can be used by a task running on
a MAC machine; 191 libraries can be used by a1 task on a HAT

2=6 48~039 FO00 ROD

machine. Once these linkages are set, a u-task can read from or
execute the 1image 1library segments. - Relocation/protection
hardware prevents the task from writing to these segments.

Image library segments are allocated to and deleted from menmory
by the operator with these commands:

e LOAD.LIB
e LOAD.SEG

e KEMOVE.SEG

Image library segments also can be loaded automatically at task
load time.

2.6 COMMON SEGHMENTS

Memory areas can be allocated for storing data that all systenm
tasks can read from or write to. These areas are callei commone.

Local common segments located in local memory can be 1allocated,
defiped, and deleted by the operator with thesz commands:

e TCOM
e LOAD.TCHM
® LOAD.SEG

® REWOVE.SEG

Data areas can also be allocated for storing informatioan that zan
be read or written to by all tasks under the control of two or
more Perkin-Elmer processors. These areas, called global common,
located in global memory, are defined and allozated by the systenm
generation (sysgen) TCOM command.

To the u-task, all common segments appear as a task common. A
task common is a data area within the task impure segment that
can be written to or read from only by the other segments within
the task - where it resides. An examnple of a task commdn area is
that area of the impure segment used by the FORTRAN CTOMMON
statement to store variables.

Link initializes common segments. Because commhon areas cah Cross
segment boundaries, the size of a single common area is 1limited
only by the amount of memory available. Link can designate a
common as write-protected, allowing only one task to modify the
segmrent; the remaining tasks can only read that area.
Relocation/protection hardware prevents tasks from executing code
in common areas.

48-033 FOO0 RCOC 2-7

The user defines the name of a global or local common. This nane
must correspond to predefined names given to these areas by the
operator or at sysgen time. If a user-defined name of a common
corresponds to a predefined nane, the user-defined <comanon is
automatically 1loaded in the respective local or global common.
If the name of a user-defined common does not correspond to a
predefined name, the user-defined common becomes part of tha task
impure segment and is treated as a task common. :

Link is given the names of the predefined commdn areas. When a
reference to a predafined common is encountered in the obhjsczt
code of the u-task, Link sets the appropriate 1linkage from the
u-task to the common.

2.7 TASK STATES
Tasks can be resident or nonresident. A nonresident task is
removed from memory after execution; a residant task remains in

memory after execution. A task can be classified as resident by
Link or at run time.

A task in memory can b2 in any of these states:

® Cufrent
e Ready
e Wait

® Rolled

A task is in the current state while it is executing
instructions. Only one task can be in the current state at any
given time. All other tasks in memory are in one of the other
states.

A task is in the ready state when it is eligible to be
dispatched; i.e., there are no obstacles to prevent it from
becoming current. ‘

A task is in the wait state when it cannot ba2come ready until

some specific event occurs. Table 2-1 lists the wait states and
their meanings. :

2-8 48-033 FO0 RID

TABLE 2~1 TASK WAIT STATES

- n G = o . G e M e R G WS e G B S e WO Wm D G G e m . .o - . S - - - on - - - h

| WAIT STATE | MEANING _
|===========sssrss s ss ES R S S S SR S S s SRR S s S S =s s xsSa ==

I/0 vwait Wait for an I/0 operation to complete
Connection wait Wait for a system resource

Wait for an interval to elapse or for
a particular time of day to occur

Time wait

Trap wait Hait for a task-handled trap to occur

Load wait Wait for a requested 1load operation
to complete ‘

Task wait Wait to be continued by another task

Roll wait Hait to be rolled out

Wailt for 1I/0 to complete to 13
terminal device (applies to terminal
tasks only)

Terminal wait

Wait for an I/) gqueue to be freed
when task reaches its 2I0 limit

I/0 queue wait

Counters overflowed; task waiting for
accounting facility to collect
accounting data and remove wait

Accounting wait

Intercept wait Hait for an SVC to be executed

Wait for system operator, user, oOr
another task to 1instruct an inter-
rupted task to continu=z exescution

Console wait

Wait for system operator, user, or
another task +to initiate a task.
After a task 1is loaded, it enters
dormant state and remains thers un-
til execution 1is initiated. When a
resident task goes to end of task,
it reenters the dormant state

Dormant wait

. A T S —— A A — C— — ——— ——— — a—— —— — —— — — W w— SN D G . —— — ——— —— —— - .
—— — — — S ——— — — T o— — —— — T T — —— ——— T —— N — — i — st W— — —— N N m— S D wem Sy Sma ——— —

A task 1s 1in the rolled state when its task impure s=2gment has
been written to a direct access device. A task becomes rollable
when 1t is specified as a rollable, nonresident task by Link. A
rollable task 1s rolled out when a higher priority task requires
its memory segment. It is rolled in when it becomes the highest
priority rolled task and sufficient memory is available to
accommodate it. :

48~039 FOO ROO | 2-9

2.8 SUBTASKING

A subtasking facility allows one task {monitor task) to start,
cancel, delete, and monitor the progress of th2 task it controls.
The monitor task can set starting options and make logical unit
(1lu) assignments on behalf of the subtasks. The monitor task,
using standard SVC 6 calls, can also control the task environmasnt
of its subtaskse.

The Operafing system informs the monitor task that the subtask:

e is - paused,

e has gone to end of task,
e 1is suspended,

e 1is released,

» is rolled out/rolled in,
® has been started, or

¢ has inherited subtasks from one of its subtasks.
]

To assign a task as a monitor, use SYC 6 to spa2cify thz subtask
report option. The number of subtasks that report to a single
monitor is unlimited. When all subtasks of a monitor go +to end
of task, the monitor is no longer referred to as a monitor. The
normal SVC 6 functions that provide intertask communication and
control are equally applied between monitor/subtask and
subtask/monitor,.

By adding an entry to the monitor task queue and giving the
monitor a task trap, the operating system informs a monitor of a
subtask state change. Bit 15 of the current task status word
(TSW) enables task quaue entries for subtask state changes. The
monitor services the subtask report when trap service is enabled.

2.8+.1 Tasks lLoaded from Multi-Terminal Monitor (MTM) Terminals

A1l tasks loaded and started from a user terminal execute as
subtasks of MTM. Tasks executing under MTM will run at a maximum
priority of at least one less than the priority of HTHM.

Both interactive and batch processing are supported by MTH. Up
to 64. interactive tasks can be executed concurrently, onz from
2ach terminal. A terminal initiating an interactive task c¢an be
used to submit multiple batch jobs. Batch jobs are queued by
MTM. The number of batch jobs that can executs concurrently is
specified by the operator during NTM system start up.

10 48-039 FOO0 ROO

N
!

CHAPTER 3
TRAPS

3.1 INTRODUCTION

When certain events occur during the execution of a user task
(u-tasgk), the task can take traps to handle them. & trap
suspends task execution and executes a special routine to hanile
the event. This routine can be a trap servica2 routine or a task
event service routine. When the event has been serviced, the
u-task resumes normal execution.

The user dedicated location (UDL) contains the dedicated
locations required +to wuse the trap service routine. For each
type of trap that is supported, the UDL contains 1locations for
holding the o0ld and new task status words (TSW) affected by the
trap. When a trap occurs, the current TSW is saved in the o1d
TSW location and the TS3SW in the new TSW lozation is loaded to
become the current TSW. This TSW must point to the trap service
routine written to service the type of trap caused by the event.
After the trap service routine terminates, the contents of the
old TSW location of the UDL are loaded into the new TSW location,
and the u-task resumes normal execution. No registers are saved
as a part of the TSV swap that causes a trap service .routine to
be initiated. It is the responsibility of the trap service
routine to save any registers it requires. Fvents that can be
serviced by the trap service routine are:

@ Pover restoration

e Arithmetic faults

® Supervisor call 14 (SVC 14) execution

e Memory access faults

o Tllegal instruction execution

e Data format/alignment faults

® The addition of items to a task queue

Other events are handled through the task event trap service
routine. This routine differs from the trap service routine
described above in that the address of the routine is stored 1in

the parameter block of the SVC that caused the trap rather than
in the task UDL. : :

48-039 FOO ROO 3-1

3.2 USER DEDICATED LOCATIOﬂ (UDL)

The UDL is an area occupying locations 0 through 255 (X'F¥') in
each task impure memory space, preceding task code. It zontains
TSW swap areas and other data areas for communication bztween the
operating system and the task. The gqueue entry and new TSW
fields in the UDL are used only if the corresponding bits in the
TSW are enableds In Figure 3-1, the names in parenthesass are the
symbolic names of the fields as defined - in +the UDL dai=z
structure. A SUDL macro call generates the structurses and
ejuates for the UDL data structure. Figure 3-1 depicts the UDL
structure. All fields are described following the figure.

- N - G A W ey G W WGP W G - —— G T W - - e W W R - WS - G WP ma G S GO (W S W -

| A{(SVC 14 arg)
| (UDL.SV14)

j]0(0) |
| CTOP I
| (UDL.CTOP) |
R e bbbt bbbl et |
jucn) . |
| UTOP |
| (UDL.UTOP) |
I s ettt bttt bt b ro———- |
18(8) |
| ‘ UBOT }
| , (UDL.UBOT) |
f-—=—mmm ittt B iindahebdbd mo——--- |
[12(C) i
] Data management system |
| (UDL.DMS) |
e i b bttt |
[16(10) |
| A(task queue) |
| (UDL.TSKQ) !
e et sttt sttt |
[20C11) |
| Reserved |
| 1
st e bbbt bbb bbb |
j2u(18) |
| A(message ring) |
l (UDL.MSGR) |
- —_— - —_——— - — — " ——— - _ S " e P4 B . W O - . . o — Y . - - l
128(1C) !

|

!

Figure 3-1 User Dedicated Location (UDL)
Structure

3-2 48-239 F00 ROD

l_.._......_...._..-_-.-.._.-_-—.._-.------.----—-..-u-......_-_....-...__--_-_........-'

132(20) . |
| : (UDL.EXT1) i
] |
O bt Reserved = =cea-- |
|36(24) |
] - (UDL.EXT2) |
I |
i mmmmmmmmooommooo m-ommeme- !
J40(28) |
| |
1 : !
| === Reserved T mmm——— |
juu(2C) ‘ : |
| {
| |
|mmm e e e e e e e e e e e e e e m—— o |
| 48(390) |
| |
| I
== Power restoration old TSW = =~====- |
152(34) (UDL.PWRO) |
! |
| |
o e e e e e e e e e e — e |
156(38) i
| |
| |
=== ' Power restoration new TSW = ====-- |
|60(3C) (UDL.PWRN) :]
| |
| _ |
| == e e e oo R e L Lt |
|64(40) » |
=====- Arithmetic fault old TSH = ' =—=e=-
68 (ul) (UDL.ARFO) N
'
=~ e e oo R
72(u8)
_
j—=——-- Arithmetic fault new TSW —r———
] 76(uC) (UDL.ARFN)
N
e e sttt it
180(50)
Reserved

Figure 3-1 User Dedicated Location (UDL)
Structure {(Continued)

48-039 F0OO PROO 3-3

| 84(54)

Address following arithmetic fault instruction |

| (UDL.ARFX) |
| == o e e oo |
188(58) o
| Data format/alignment fault address |
] ' (UDL.DFFX) _ |
' _____________________ s - — . - = A e G B o e - - vv........_'
]92(5C) |
| MAC/MAT fault, actual fault address |
| : (UDL. MAFL) ' |
|======= S e e e e e Rt
196(60) |
| |
! : |
-==—== SVC 14 0l1d TSW —=me——- |
j100(64) (UDL.S140) . |
| I
I : : ' |
' _____________________________ - —— - [sy o -~ - ‘----'
j104(68) : : |
| |
| |
j=====- SVC 14 new TSW =====- |
]108(6C) (UDL.S14N) |
‘ A |
| ‘ |
| == mm e e oo m--mmo-- |
1112(¢70) |
I !
| |
| ====-- - Task gueue service old TSW = ==me-- |
1116(74) (UDL.TSKO) |
| : |
P . |
D mmmmmmmmsessmeoooooeo- ===
1120(78) : |
| I
| |
|==—=- Task gueue service new TSH = ==-e=-- |
| 124(7C) (UDL.TSKN) |
| |
I I
|===== o e oo |
[128(80 |
I I
|

|————-- Memory access fault old TSW =~ = —=mee-
1132(8C) (UDL.MAFO)

Figure 3-1

User Dedicated Location (UDL)

Structure (Continued)

48-039 FO0O0 ROO

------ Memory access fault new TSW m—————
j140(8C) (UDL.HAFN)

i

|

l ---

} 144(90)

|

! - ,

| === Illegal instruction old TSW = ===-=-
[148(94) - (UDL.IITO)

|

|

e ittt bt el ittt m—m—————]
1152(98) |
| |
| |
|===~=-- ITllegal instruction new TSW e
] 156 (3C] (UDL.IITN) |
| o |
|]
l ___
|160(A0)

'I

jmm———— Data format/alignment fault old ISH = ======
164 (AL) (UDL.DFFO)

|

|

, ———————————————————————————————— P R - . - - - - -
|168(A8)

|

|

| =====- Data format/alignment fault new TSW = =-=---
]172(AC) (UDL.DFFN)

|

|

=== b e e e e e e e fueebederiededebte et |
|176(B2)

|

I .
|~====- Reserved ==e=--
j180(BuL)

|

|

| __
|184(B8)

| Pointer to system network architecture table

| (UDL.SNR)

Figure 3-1 User Dedicated Location (UDL)
Structure (Continued)

48-039 FO00 ROO

| Save area used by system network architecture |

196 (Cu)
l——h—“u

A

T244(F4) 1+
jomm—— | m=emee |
|248(F8) |
Figure 3-1 User Dedicated Location (UDL)
Structure (Continued)
Fields:
CTOP , is the +top of the impure segment. After 1
(UDL.CTOP) fetch pointer (FETPTR) macro call, Crop
: contains the program address of the highest
halfword in the task impure segmente. Ihe
value of CTOP which is defined by Link can be
overridden at load time.
UTOP is the user top. After a 'fetch pointer
(UDL.UTOP) (FETPTR) macro call is issued, UTOP contains
the program address of the first fullword
following the defined portion of the impure
segmente. The GETSTORE and RELSTORE macro
calls manipulate the valua of UTIJP, which
cannot exceed the value of CTOP by more than
two bytes.
UBOT is the user bottom. After a fetch pointer
(UDL.UBOT) (FETPTR) macro «call, UBOT contains the
program address of the bottom of the user
program. For user tasks, this value is 0.
Data is the £field wused by +the data managemant
management system and must contain zeros.
system
(UDL.DMS)

A(task queue)
(UDL.TSKQ)

(UDL.RSAV) |

Reserved for AIDS

is the field into which the wuser stores the
address of the task queue. If the zontent of
of this field is zero, no task gueuz entries
can be made, even if the TI3W task queue entry
bit is set.

48-039 FOO0 ROD

Reserved

A(message
ring)
(UDL.MSGR)

A(SVC 14 arg)-
(UDL.SV14)

Reserved
(UDL.EXT1)
(UDL.EXT2)

Reserved

Power restora-
tion old TSHW
(UDL.PWRO)

Power restora-
tion new TSW
(UDL.FHRN)

Arithmetic
fault old TSW
(UDL.ARFO)

Arithmetic
fault new ISW
(UDL.ARFN)

Reserved

Data format/
alignment
fault reason
code
(UDL.DFFR)

48-039 FOO ROO

is a field reserved for future use that nust
contain zeros.

is the field into which the user stores the
address of a 76~byte storage ar=a before
receiving any messages. This storage area
must be aligned on a fullword boundary. If
the content of this field is zero, no message
can be received, even if the TSW task queue
entry on the message bit is set.

is the field where the operating system
stores the effective address of ths SVC 14
argument when an SVC 14 trap occurs.

is the field reserved for system use that
must contain zeros.

is a field reserved for future use that must
contain zeros. .

is the field where the operating systenm
stores the task's current TSW when a power
restoration trap occurs.

is the field into which the user stores the
TSH to be loaded as the current ISW when a
power restoration trap occurs. The location
counter portion of this TSW should contain
the address of a power restoration trap
service routinee.

is the field into which the operating systen

stores . the task's current. TSH when an
arithmetic fault trap occurs. For the
Perkin-Elmer 3200 Series Processors, the

lozcatiosn counter portion of this TSW contains
the address of the faulting instruction. For
7/32 and B8/32 processors, the lozation
counter portion of this TSW contains the
address of the next instruction.

is the field into which the user stores the

ISW to be loaded as the current TSW when an
arithmetic fault trap occurs. The loczation
counter portion of +this TISW contains the
address of an arithmetic fault trap service
routine. »

is a field reserved for future use that must
contain zeros.

is the field into which the operating system
stores a reason code indicating the type of
data format/alignment fault when a data
format/alignment fault trap occurs.

Memory access
fault reason
code

(UDL. MAFR)

Arithmetic
fault reason
code
(UFL.ARFR)

Address
following
arithmetic
fault
instruction
(UDL.ARFX)

Data format/
alignment
fault address
(UDL.DFFX)

MAC/MAT
fault,
fault
address
(UDL.MAFL)

actual

SVC 14
old TSW
(UDL.S5140)

SVC 14
new TSW
(UDL.S14N)

Task gueune
service
old TSW
(UDL.TSKO)

" referenced by

is the field into which
stores a reason code indicating the type of
memory access fault when a memdry acgess
fault trap occurs. This field applies only

the operating systen

‘"to the Perkin-Elmer 3200 Series Processorse.

is the field into which the operating systen
stores a reason code indicating tne type of
arithmetic fault when an arithmetic fault
trap occurs. This field applies only to the
Perkin-Elmer 3200 Series Processors.

is the field into which
stores the address of
following the instruztion that resulted in
an arithmetic fault trap. This field applies
only to the Perkin-ELmer 3200 Series Pro-
CesSsor.

the oOperating system
the instruction

is the field into which
stores the address of the location in
the instruction whizh
the alignment fault or the data format
trap. This field applies only to
Perkin-Elmer 3200 Series Processors.

systenm
memory
caused
fault

the

the operating

is the field into which the operating system

stores the address of the location that
caused a memory access fault trap. The
address.can be the effective address of data
or the instruction address depending on the
fault type indicated in the memory access
fault reason code field (UDL.MAFR). This
field applies only to the Perkin-Elmer 3200

Series Processorse.

is the field into which the operating systena

stores the current TSW when an SVC 14 trap
occurs. If SVC 14 traps are disabled in the
ITSW, the execution of an SVC 14 is illegal.

is the field into which the user storas the
TSW to be loaded as the current ISW when an
SVC 14 trap occurs. The 1location counter
portion of +this TSW contains the addrass of

an SVC 14 trap servicz routine.
is the field into which the operating systenm

stores the current TSW when a task dqueue
service trap occurs.

48-039 FOO ROO

Task queune
service
new TSHW
(UDL.TSKN)

Memory access
fault old TSW
(UDL.MAFOQ)

Memory access
fault new T3SW
(UDL.MAFN)

Illegal
instruction
old TSW
(UDL.IITO)

Illegal
instruction
new TSW
(UDL.IITN)

Data format/
alignment
fault old TSW
(UDL.DFFO)

Data format/
alignment
fault new TSW
(UDL.DFFN)

Reserved

Pointer to

system network

architecture
table
(UDL.SNA)

48-039 FOO ROO

is the field into which the user stores the

TSW to be loaded as the' current TSW vwhen a
task queue service trap occurs. The location
counter portion .of +this TSW <contains the
adiress of the task queue trap service
routine.

is the field into which the operating systen

stores the current TSW when a memory access

fault trap occurs.

is the field into which the wuser stores the
TSW to be loaded as the current I5H when a
memory access fault trap OCCULSa The
location counter portion of this ISW zontains
the address of a "memory access fault trap
service routine. *

is the field into which the operating system
stores the TSW to be loaded as tha current
TSW when an 1illegal instruction trap ozccurs.

the user stores the
TSH to be loaded as the zurrent TSW when an
illegal instruction trap OCCUrSe. The
location counter portion of this TSW contains
the address of an illegal instruction trap
service routine.

is the field 4into which

is the field into which the operating systen

stores the task's current TSW wha2n a data
format or alignment fault trap occurs. This
field applies only to the Perkin-Elmer 3200

Serlas Processors.

is the field into which the user stores the
ISW to be loaded as the current TSYW when
a data format or alignment fault trap ozcurs.
The location counter portion of +this TSH
contains the address of the data format fault
or alignment fault trap service routine.
This field applies only to the Pe2rkin-Elmer
3200 Series Processors.

is a field reserved for future use that must
contain zeros.

the operating systen
the system network

is the field into which
stores the address of
architecture table.

Save area is a field reserved for internal usz by data
used by system communications network software.

network

architecture

(UDL.RSAV)

Reserved for is a field wused by 0S/32 AIDS that must
AIDS contain zeros.

User-supplied fields in the UDL; e.g, all new ISW fields andi the
task dqueue and message ring address fields, can be assembled as
constants or loaded during the task initialization phase. - Link
builds tasks from program object code. Tasks <containing a
user-assembled UDL are specified by the Link command:

OPTION ABSOLUTE=0

This command specifies that a UDL exists in th2 program and that
storage should not be reserved for it. If a task does not
contain a user-assembled UDL and the ABSOLUTE parameter is
omitted in the OPTION command, Link reserves 256 bytes of storage
for the UDL at the beginning of the image load module.

3.3 TASK STATUS WORD (TSWH)

The TSW describes the task state at any time with respect to
user-controlled interaction with the operating system. TSW also
acts as a location counter for the task and enables ani disables
the various task traps and additions to the task queus. & SISH
macro call generates the TSW structures and eguates. Figure 3-2
depicts the TSW. All TSW fields are described following the
figure.

.. ———— - - ——— - -

Wil A PSP Ql XTI R Resarved JXID T fE{LjoOo)2z | F 1} Rsvda | V| { cC

Bits: .

[} 12 3 4 5 6 7 8 101 1 1 1 1 2 2 2 2 2 2 2 2 2 3
4 5 6 7 8 9 0 1 2 3 4 5 6 7T 8 1

{ Ressrved | Location counter

Figure 3-2 Task Status Word (TSW)

3-10 48-039 FOO ROO

Fields:
O(TSWH.HTH)

1(TSH.PHRM)

2(TSW.AFH)

3(TSW.S14M)

4(TSW.TSKHM)

5(TSH.MAFHM)
6(ISW.IITH)

7(TSW.DFFM)

8~14(Reserved)

48-039 FOO ROO

is the trap wait bit. TIf =2nabled, the task
is suspended until a trap occurs.

is the power restoration +trap bit. It
enabled, the task receives a trap when power
is restored following a power failure. If

disabled, the task is pausad.

is the arithmetic . fault trap bit. If

enabled, the task receives a trap when an
arithmetic fault occurs. If disabled, the

task 1s paused and a message is displayed on
the user consocle.

is the SVC 14 trap bit. If enabled, the task
can use SVC 14 and receive a trap when an 3SVC
14 is executed. If disabled, execution of an
SVC 14 is illegal. Becauses SVC 14 is used by
AIDS to set breakpoints, it must not be used
in a task being debugged with 0S/32 AIDS.

is the task dqueue service trap bite. If
enabled, the task receives a trap when an

item is added to the task gueue or when a TSW

with this bit set is 1loaded and +the task
queue contains items. If disabled, no trap
occurs when item is added to task gueue.

is the memory access fault trap bit. If
enabled, the task receives a trap when it
attempts to access memory outside 1its task
spacee. If disabled, the task is paused and
a message is displayed on the user console.

is the 1illegal instruction trap bit. If
enabled, the task receives a trap when it
executes an illegal instruction. If
disabled, the task is paused and a messaga is
displayed on the user console.

is the data format fault and alignma2nt fault
trap bit. I£f enabled, the task receives a
trap when it executes an 1instruction that
causes a data format or alignment fault. If
disabled, the task is paused and a3 message is
displayed on the user console.,

is a field reserved for future use that aust
contain zeros.

15(TSW.SUQM)

16(TSW.DIQM)

17(TSH.TCH)

18(Reserved)

19(TSW.PMM)

20(TSW.LODM)

21(TSW.ION)

22(TSW.THMCH)

is the subtask gqueue entry bit. If enabled,
the task receives items on 1its gueaue
specifying a subtask state change. If
disabled, no items are entered on the task
queue when a subtask state change ozcurs and
the notification of change is lost.

is the task queue entry on device interrupt

bit. If enabled, an item is entered on the
task queue when a trap is received f£from an
I/0 device. If disabled, no 1items are

entered on the task queue when a device trap
occurs.

is the task queue entry on SVC 6 gqusus2
parameter «call bit. If =2nabled, an item is
entered on the task gqueue when a task 1issues
an SvVceC 6 gqueue Pparameter optiosne. If

"disabled, the call to the task is rejected.

is a field reserved for future use that must
contain zeros.

is the task gueue entry on task message bit.
If enabled, the task can receive a message
from another task or the operator. The task
gueue receives the addraess of the nessige
buffer. If disabled, no message is sente.

is the task gueue entry on completion of a
load and proceed operation bit. If enabled,
the task queue receives an item specifying
the parameter block address of the SVC 6 1load
call when the load is completed. If
disabled, no item is entered on the task
gueue when a load and proceed operation is
combleted.

is the task queue entry on I/0 zompletion
bit. If enabled, the task gusue ra2ceives an
item specifying the address of the SVI 1
parameter block when an I/0 proce=d call is
completeds If disabled, no item 1is entered
on the task gqueue when an I/0 op=sration is
completed.

is the task gueue entry on timeout zompletion
bit. If enabled, the task gqueue receives an
item indicating a spvecified time interval nas
elapsed. If disabled, the task is not
notified that a time interval has elaps=d.

48-039 F0O RJO

23(TSW.ITH) is the task queue entry on an SYVC 15 buffer
transfer, command execution, termination, or
halt I/0 bit. This function 1is supporteid
only by the data communicaions subsystem. If
disabled, no 1item 1is entered on the task
gueue when one of the specified
communications operations is completed.

24-25 is a field reserved for system use that must
(Reserved) contain zeros.

26 (TSH.TESHM) is the task event trap bit. If enabled, the
- task can receive task evants. If disabled,
all task events are gueued until a new ISH is

loaded with the task event trap enabled.

27(Reserved) is a field reserved for future use that nust
contain zeros. '

28-31(CC) ‘ is the current condition <code <contained in
th= program status word (P3H).

32-39 is a field reservéd for future use that must
(Reserved) contain zeros.
40o-63(LOC) _ is the location counter contained in the PSW.

The task always has a current TSW. The initial TSW or the
current TSW when the task is loaded is set by Link. If Link is
not reguested to set an initial TSW, the ititial TSW defaults to
all zeros (no traps or dqueue entries enabled). 'The initial
location counter defaults to the starting addrasss, if a transfer
address 1is specified at assembly time, or to the start of the
impure segment, if a transfer address is unspecified.

A task can change its current TSW at any time by issuing an LISW
macro call. The TSW must be loaded in an 8-byte area aligneld on
a fullword boundary. The first fullword of ths TSW contains the
status, and the second fullword contains the location countere.
Following an LTSY macro call, the task resumes execution at the
location specified in the loaded TSW. If only the status of the
current TSW is to be changed, a value of zero should be specified
in the location counter portion of the new TSWH. In this case,
execution resumes with the instruction following the macro call.

3.4 TASK TRAP SERVICE ROUTINE
There are seven types of task traps that can be handled by a task

trap service routine:

° Power restoration

® Arithmetic fault

48-039 FOO RCO 3-13

e SVC 14

e Memory access fault

o‘ Illégal instruction

e Data format/alignment fault

e Task queue service

3.4.1 Power Restoration Trap

A power restoration trap occurs after power is restored following
a power failure and the TSW.PWRM bit in the TSW is sete. The
current TSW 1is stored in the UDL.PHRO field, and the new TISW in
the UDL.PWRN field is loaded and becomes the current TISW. The
location counter of the new TSW should contain tha addrass of the
power restoration +trap service routine. This trap service
routine exits by issuing an LTSW macro call +to load the TISH
stored in the UDL.PWHRO field as the current TSH.

3.4.2 Arithmetic Fault Trap

An arithmetic fault trap occurs when one of the events listed in
Table 3-1 OCCUrse.

TABLE 3-1 ARITHMETIC FAULT TRAP-CAUSING

EVENTS
| | REASON |
| EVENT | CODE
' R s R - P S R
Fixed point zero divide X'o0"'
Fixed point guatient overflow £*'01°

Floating point exponent underflow| X'03°
Floating point exponent overflow X*o4"

- —— e = s e D e e R A W S W G e N R M e AR e T M WD B b G WS A L G B WD e e G

|

|
Floating point zero divide { X*02'

i

|

When an arithmetic fault occurs with the TSW.AFN bit set in the
TSW, the current TSW is stored in the UDL.ARFO field, and the new
TSW in the UDL.ARFN field is loaded and becomes the current TISH.
The reason code 1is stored in the UDL.ARFF field. Thes location
counter of the new TSW contains +the address of the arithmetic

3-14 | ' 48-039 FDO ROO

fault trap service routine. The action taken when an arithmetic
fault trap occurs depends on the options specified by Link anid
the traps enabled in both the TSW and the PSW. Table 3-2 shows
actions taken when combinations of different options are
specified. The trap service routine exits by issuing an LISW
macro call to load the TSW stored in the UDL.ARFO fi=21l1 as the
current TSHW.

TABLE 3-2 ARITHMETIC FAULT TRAP ACTION

- Gm . an W S S e e B e W S GE G A W G W S G GU G R T M A e e G S —m e G S R e e e

I | LINK | |
ARITHMETIC	ARITHMETIC]	
FAULT BIT] FAULT		
SETTING IN TSHW	OPTION	ACTION TAKEN
’:============’—'-‘=========T=::::::::::::::::::::::l		
1	AFCONT	Trap occurs
1	AFPAUSE	Message/paused
1 0	AFCONT	Hessage/zontinued
O	AFPAUSE	Message/paused

. O e D T G . G W WA R G =G W TR W SN ST ww R G W WG A W R G Ge G em G R S Y W e e

3.4.3 SVC 14 Trap

SVC 14 is a user-defined SVC, and its function is ©performed 1in
the SVC 14 trap service routine. An SVC 14 trap occurs when an
SVC 14 is executed with the TSW.S14M bit set. The currant TSH is
stored in the UDL.S140 field, the new TSW storad in the UDL.S1TU4N
field is 1loaded and becomes the current TSW, and the address of
the SVC 14 argument is stored in the UDL.SV14 field. The address
of the SVC 14 argument can be used by the trap service routine.
This trap service routine exits by issuing an LTSW macro call to
load the TSW stored in the UDL.S140 field as the current ISH.

ATDS also uses SVC 14; therefore, SVC 14 must not be used by a
task that is to be debugged by AIDS.
3.4.4 Memory Access Fault Trap

A memory access fault trap occurs when one of the events listed
in Table 3-3 occurs.

i

48-039 FO00 ROO ' : 3-15

TABLE 3-3 MEMORY ACCESS FAULT TRAP-CAUSING EVENTS

e T e e v B GE . S D G B W WS W e B G0 G G W S P G e M N G e S R G W SEy WP G e e S B e e e v o S e

!	REASON	
PROCESSOR	EVENT { CODE	
3220	SVC address error	X*d20°
	Execute protect violation	X°01°
	Write/interrupt protect violation	X'02°
	Reserved	X*03*
]	Write protect violation	X*ou* -
]	Reserved	X*25°
]	Beserved)	X*'o26"
	Reserved	X*37*
	Segment number not present { X*o08°'	
	Reserved '	X*29*
	Program address is greater than	
	segment limit fault (:LF)	X*JA'
[==o=mmmmmmmmooeee - mommmmmmmmmem oo mmmmmmmmmossoo-		
3240	Reserved	X*20*
	Execute protect violation I X*01'	
] Write protect violation] X*02"		
{ Read protect violation] X*23°		
	Access level fault	X*ou*
	Segment limit fault	X*35*
	Nonpresent segment fault	X*26"
	Shared segment table (SST) size	
I exceeded	X°07°	
]	Private segment table (PST) size	
	exceeded	X*38°
All protection violations are detected by the -

relocation/protection hardware.

When a memory access fault occurs with the TSW.MAFM bit set, the
current TSW is stored in the UDL.MAFO field, the new ISW in the
UDL.MAFN field is loaded and becomes the current TSW, +the
faulting instruction address is stored in the UDL.MAFL field, and
a reason code 1is stored in the UDL.MAFR field. The new ISW
location counter should contain the address of the memory access
fault +trap service routinas. This trap service routin= exits by
issuing an LTSW macro call to load the ISWH stored in th2 UDL.MAFO
field as the current T35W.

3.4.5 Illegal Instruction Trap

An illegal instruction trap occurs after a u-task executes an
illegal instruction with the TSW.IITHM bit set. The current ISW
is stored in the UDL.IITO field, and the new TSW in the UDL.IITN
field is 1loaded and becomes the current TSW. The new I3W

G
1
-t
™

48-039 FO00 RDD

location counter should contain the address of the illegal
instruction trap service routine. This trap service routine
exits by issuing an LTSW macro call to load ths TSH stored in the
UDL.IITO field as the current TSW.

3.4.6 Data Format/Alignment Fault Trap

A data format or alignment fault trap results when one of the
events listed in Table 3-4 occurs.

TABLE 3-4 DATA FORMAT/ALIGNMENT FAULT
TRAP-CAUSING EVENTS

- —— - - . A - W S e e e . G W M D S S S i wm G WS NG A D W e

| | REASON |
| EVENT { CODE |
l========::===========:=======================I
| Reserved | X*00° |
] Reserved , { X*o1' |
Invalid sign digit, packed data	X*'02°
Invalid data digit, packed data	X°'03'
Reserved	X'o4'
Reserved	X*05"
Fullword alignment fault	X'06°
} Halfword alignment fault] X*07°]

When a data format or alignment £fault trap occurs with the
TSWDFFM bit set, the zurrent 7TSW is stored in the UDL.DFFO
field, the new TSW in the UDL.DFFN field is loaded and becomes
the current TSW, the address of the location in memory referenced
by the faulting instruction is stored in the UDL.DFFX field, and
the reason code is stored in the UDL.DFFR field. The naw ISW
location counter contains the address of the data format or
alignment fault trap service routine. This trap service routine
exits by issuing an LTSW macro call to load ths I'SW stored in the
UDL.DPFFD field as the current ISH.

3.4.7 Task Queue Service Traps

A task gueue service trap results when one of the events listed
in Table 3-5 occurs.

48~-039 F0OO0 ROO 3-17

TABLE 3-5. TASK QUEUE SERVICE
TRAP-CAUSING EVENTS

- —— v > > = e f g A e . - D W i S s WD TS mP e Gmm wE T S W S e e e

| | REASON |
EVENT | CODE |
|======:z:;:::::::::::====:=======:=======t
| Device interrupt | X*00° i
| Queue parameter | X*01" |
| Subtask state changes |- X*02*' |
| Reserved { X*'03* |
| Reserved] X*our |
Reserved	X*05"
Message received	X*'06°'
Load and procesed completion	X*07°
I/0 proceed completion] X*28°	
Timer termination	X*09°*]
SVC 15 command execution	X*0A"
SVC 15 buffer transfer	X'0B"
SVC 15 termination	£*0C"
SVC 15 halt I/0	X*0D*
} ZPLC buffer input :	X*JE*
] ZDLC buffer output	X*0F*
ZDLC error condition	X*10"'
ZDLC buffer error	X*11°
Reserved	Xx*12*
Reserved	X*13"]
Reserved	X*14°
Reserved] X*15"	
Reserved	X*16*
Reserved	X*17°
EMT3270 unsolicited input] ¥*18°"	
] EMT3270 unrequested disconnect	X'19°
E¥T3270 switched line connect	
timeout	X*1A°

- o o o - G — - W W M G Gwn P G s W M AN W G el M am . —

Except f>r the subtask change event, all items added to the task
gqueue are four bytes long and have the following format:

—— . ————————— e e - e we e G an - - — - - ———— -

| code | Parameter i

—— - —— " - - - = —— e e -

3-18 48-039 F0O ROD

Fields:

Reason code ‘is a 1-byte hexadecimal number specifying the
reason why the trap occurreid. See Table 3-5.

Parameter is a 3-byte parameter specifying additional
information about the particular item addel to
the task qusue. See Table 3-6.

TABLE 3-6 PARAMETERS ENTERED ON THE IASK QUEUE

- — . Gt T W - . S dub v T We M AR T M G e VR GE W e G AN G U M M B G e R G e wn G e Gn G S M A G S W S s

Associated with device
Specified by sending task
Type of state change
Al{message ring)

A(SVC 6 parameter block)
A(SVC 1 parameter block)
Specified in call

SVC 15 command . A(SVC 15 parameter block)
SVC 15 buffer A(SVC 15 parameter block)

| Device interrupt |
| |
| |
| |
| |
i |
| |
| |
| |
| SVC 15 termination | A(SVC 15 parameter block)
| |
f |
| |
I |
| |
| |
| |
| |
! |

Queue :

Subtask state changes
Message received

Load and proceed zompletion
I/0 proceed cempletion
Timer termination

SVC 15 halt I/0 A(SYC 15 parameter block)
ZDLC read done A(UDR list)
ZDLC write done A(UDW 1list)
ZDLC general error A(information bhlock)
ZDLC buffer exhaustion error A(UQR list)
FMT3270 unsolicited input
EMT 3270 unreguested disconnect
EMT3270 switched line connect
timeout

- e Gue e D S G WS G i e Smn An Sem G wma WA GES WER W S NS WS m Sy SER WD e ST MG GES G D MER AR GEe SN TP WS SN G MID G G M R R G W TR WR WY We S G we e e e

S — — o — —— S S ———— T G — G N W — e — — ——

NOTE
For more information, see the 0S/32 Bit
Synchronous Communications Reference
Manual.
Subtask items in the task gueue are three fullwords lonjg. Using
three add to the bottom of the list (ABL) instructions, the
operating system adds items to the bottom of task gqueue. The

three fullwords form a 12-byte entry as follows:

i |Subtask | | }
| Reason | reason | TCI | : Taskid |
| code | code .| | _2 X |
Bytes

0 1 2 34 11

w
1

48-039 FOO KOO 19

Fields:

Reason code is a 1-byte field indicating a subtask state
change occurred.

Subta sk “is the 1-byte field that defines the

‘reason code particular subtask state change that
oczurred. See Table 3-7 for possible subtask
reason codes.

TCI is a 2-byte field that provides additional
information specific to a subtask state
change,

Taskid is an 8-byte field that indiicates the name of

the subtask.

TABLE 3-7 SUBTASK REASON CODES (RC) AND
CORRESPONDING STATE CHANGES ‘

| SUBTASK |

| RC | SUBTASK STATE CHANGE . |
|0] End of task; brees 2 and 3 are |
| | binary end of task codes |
Cr VU Resen T |
|2V Comeinuea T {
13T suspenaed T }
V8T T Retensed T }
s) Rerted owr T !
i‘é"'""’}'%éll;é'lﬁ """""""""""""""""" i

| 7 | Started by a task other than the |
| | monitor :

- ———— - - = . S e W AR WS AN e M e G G GE S GO SR W S L WP W AR . G W -

Hhen a task gueue service trap occurs; i.e., an item is contained
in the task queue ani the bit is set, the current TSW is stored
in the UDL.TSKO field, and the new TSW is loaded in the UDL.TSKN
to become the current T3W. The new TSW location counter contains
the address of +the +trap service routine. The trap service
routine must issue a remove from top of list_(RTL) instruction to

3-20 48-039 F0O0 ROO

remove an item from the task queue. The item in the Jqueue then
can be examined to determine the reason the trap occurred, and
appropriate action can be taken. This trap service routine exits
by issuing .an LTSW macro call te load the TSW stored in the
UDL.TSKO as the current TSW. If additional items are on the task
gueue when the old TSW becomes the current T3W, a trap occurs
immediately.

08/32 also allows a task +to receive a trap from external
trap-generating devices. The 8-line interrupt module driver zan
add an item to a task gqueues in response to a device interrupt.
If task Queue service is enabled, the addition to tha task queue
can cause the task to take a trape. Currently, the only
Perkin-Elmer driver that supports trap-generating device
functions is the 8-l1line interrupt module driver. Users can write
their own trap-generating device drivers. 05/32 provides the
following functions for handling trap-generating devices.

e Connect - attach a trap-generating device to a task
¢ Thaw - 2nable interrupt on a trap~generating device

e Sint - simulate an interrupt on a trap-generating device
(addition to Instrument Society of America (ISA) standards)

@ Freeze - disable interrupts on a trap—-generating device

® Unconnect - detach a trap-generating device from a task

These functions implement the entire ISA proposed standards for
process control.

3.5 TASK EVENT SERVICE ROUTINE

Events that cause task event traps to occur ars 3lways associated
with previously issued SVCs. The address of the routine that
services the task event trap is stored in the parameter block of
the SVC that generates the trape.

To take a task event trap, a task must have ths TSW.TESM bit in
the TSW enabled. If the TSW bit is not set, the task event trap
will be gueued until a TSW is loaded with this bit set. In
addition, a task cannot take a task event trap while executing a
service routine for a previous task event trap. Task queue traps
and task event traps that occur during execution of a task event
trap service routine are gquesued until the task issues the TEXIT
macro to axit from the routine.

48-039 FOO ROO 3

21

During execution, the task event service routine can receive data
that is in register 0, 1, or-2 that pertains to the trap. The

data contained in these registers before the

trap was taken will

be lost unless the TEQSAVE option is specified during LINK.
Specifying the PARTTIAL parameter for TEQSAVE allows TEQSAVE to

save the contents of registers 0, 1, and/or 2
trap and to restore those registers after the
routine. Specifying the ALL parameter allows
saved and restored; no registers are saved 1if
is chosen. '

that pertain to the
task exits from the
3ll registers to be
the NONE parameter

48-039 FOO0 ROO

CHAPTER &4
SYSTEM MACROS AND STRUCTURES

4.1 INTRODUCTION

The Common Assembly language/32 (CAL/32) Assenmbler 'symbolically
references numerical constants and constant displacements within
a data structure.

Code written using symbolic references is easizr to upiate than
numeric code. In addition, symbolic references are easier to usa
because it 1is easy to remember a name. Errors 1involving
references are less 1likely because an inaccurate numerical
constant can still be assembled while an inaccurate symbolic name
is recognized as an undefined symbol that cannot be assemblai.
Assembly language symbolic names can reflect the meaning of the
numerical - constant represented or the name of the field the
symbol points to within a structure.

Numerical constant symbols and displacement symbols are wused
throughout 0S5/32 codinge. These same symbols and structures are
used equally by assembly language programmers writing programs to

run under 0S/32. The c¢nllection of symbols and structures
related +to 0S/32 is contained in the operating system structure
macro library supplisd with the systen source (filename

SYSSTRUC.MLB on disk). Individual structures can be iancluded in
the user task (u-task) by calling the appropriate macro.

4,2 EXAMPLES USING SYSTEM MACROS

The following example shows task status word (ISW) construction.
The status portion of a TSW enabling +trap wait, task queue
service trap, queue entry on task call (gqueue param=2ter fronm

another task), and 1I/0 proceed termination can be written as
follows: :

Example:

DC TSWeWTMITSH.TSKMITSHW.TCM!ITSW.TIOH

48-039 FOO ROO 4-1

This sequence instructs the assembler to perform a logical OR
operation on four masks, each mask setting a particular bit, to
form a word with all the required bits set. Within the data
structure, symbols defining bits are in two forms:

® Symbols ending in M have the value of the bit mask needed to
enable a particular bit.

e Symbols ending in B have the value of the bit position.

The following example illustrates loading a T3SW into the user
dedicated location (UDL). A TSW, enabling queue entries on I/D
proceed termination and timeout completion, is 1locaded 1into the
task dqueue service new TSW field of the UDL. This allows ~leue
entries for these two events to continue while the task gueue 1is
being serviced. The TSW contains a location counter field
pointing to the task gueue service routine.

Exampleé

SUDL

LY R14,TSKQTSW
STM R14,JDL.TSKN

QSERVICE EQU *

.

TSKQTSW DC TSW.IOM!TSW.THCM,QSERVICE

The UDL field can be referenced by its displacement within the
UDL alone rather than 4in combination with a pointer to the
beginning of the UDL. This is because, in an 05/32 user task,
the UDL begins at address 0 within the task program address
space. The one line definition of the TSW (ISKQTSW) generates
two fullwords: a status portion, enabling certain bits, anid a
location counter (LOC) portion, pointing to the task gqueue
service routine as QSERVICE.

The following example illustrates loading an SVC .6 function c¢ode
into an SVC 6 parameter block. A function code specifying 1load
and start immediately for some other task, as opposed *to a
self-directed SVC 6, is loaded into an SVC 6 parameter block.

4-2 48-039 F00 ROO

LxampulLe:

$SVC6

.
-

LI R1,SFUN.DOM!SFUN.LM!ISFUN.SIY
ST R1,PARBLK+SYC6.FUN

PARRBRLK EQU *
S SvVCo.

The DS SVZ6. instruction reserves the proper amount of spacs for
the SVC 6 parameter block. SVC6 is the labal of the structure
defining the SVC €& parameter block, and is set by CAL/32 +to the
sizé of the data structure defined by the 35VC6 macro.

A field within a datai structure <can be referenced using a
structure by directly referencing a field.

Example:

$S5VC6

T R1,PARBLK+SVC6.FUN

e o o N e

The field also can be referenced using an index register.

Example:
?SVC6
éh R3,PARBLK
%T R1,SVC6. FUN(R3)
PARBLK éS SVC6.

48-039 FCO ROD » 4-3

The direct method does not use an additional ragister, while the
index register method passes the address of 1ifferent parameter
blocks thrcugh a register (perhaps to a subroutine).

The previous examples deal with applications where a program
dynamically loads various fields with appropriate values. This
approach is correct when the contents of the various fields
change with time and must be dynamically initialized and

subsequently changed. However, for applications where the
contents of fields are static, there is an alternative that
rermanently assembles the appropriate vailues into data
structures. This alternative saves both assembly code size and

execution time.

This example shews how to assemble values into a UDLe. 'Assembling
a UDL into a task reguires an OPTION WORK=n command when linking.

Example:

$UDL
TUDL EQU *

ORG TUDL+UDL .TSXQ
DC task gueue addr
ORG TUDL+UDL .DPWRN
DC status,loc
ORG TUDL+UDL.S14N
DC status,loc
ORG TUDL+UDL.TSKN
DC status,loc

ORG TUDL+UDL

The label TUDL is used to avoid conflict with UDL whizh is
defined in the UDL structure by the SUDL macro. To omit any of
the field definitions from the code, delete ths ORG corresponiing
to the relevant field and the constant definition for that field.
ORG TUDL+UDL sets the location counter past the .end of the UDL.

This example shows how to assemble taskid and function code into
an SVC 6 parameter block.

4-1 48-039 FOO ROO

Example:

$SVC6

' ALIGN &
PARBLK EQU *
ORG PARBLK+SVC6.,1ID
DC C'TASKA® TARGET TASKID
ORG PARBLK+SVC6.FUN
DC SFUN.DOM!SFUN.SIHM START IMMED. FUNCTION
ORG PARBLK+SVC6, '

ORG PARBLK+SVCeé.
parameter block.

48-039 FOO ROO

sets the location counter past the end

of

the

CHAPTER 5
VOLUME, FILE, AND DEVICE INFORMATION

5.1 INTRODUCTION

To provide device independent I/0, programs direct all 1I/0
requests to a logical unit (1lu) rather than to a specific device.
or file. The system maintains an lu table (LTAB) for each task.
The 1lu numbers, which range from 0 to 254, correspond to entries
in the task LTAB. Task logical wunits must be assignad to
specific devices or files by an operator, multi-terminal monitor
(MIM) command, or a supervisor call 7 (SVC 7) (via macro) prior
to their use. DPevices can be marked offline, making tnenm
unavailable for assignment by user tasks (u-task)e. All 0S5/32
supported direct access devices can be accessed through the file
manager which provides volume and file managemant services.

Data on a direct access device is organized 3into a seriss of
files on a named logical volume. When a direct access device is
made available by the operator command MARK ON, the names of the
volume mounted on that device is associated with the device and
refers to it. A MARK OFF command allows the mounted disk voluae
to be removed from the device list. A disk mounted without first

being marked offline can be marked online only in a -
write-protected mode. If a disk is not markad offline before
dismounting, further wvriting to the disk might make any

information in an indeterminate state unrecoverable,

Before using a direct access volume, the appropriate 1isk
formatter progygram must format it, and the 0S5/32 Disk Initializer
Utility must initialize it. In addition, the Disk Initializer
can send an operating system image to a direct azccess volume for
BOOT loading. .

5.2 VYOLUME ORGANIZATION

A direct access volume under 0S/32 contains several data
structures:

® Volume descriptor

® Sector allocation (bit) map
® File directory

® (Contiguous file type

o Indexed file type

48-039 F0O ROO 5-1

A u-task cannot access the first three structures. The operating
system uses them to control the rest of the storage on the
volume.

The bulk of the storage area is used for file storage. All the
files on the volume are indexed or contiguous file types. The
amount of storage on the volume is the only limit on the number
of files on the volume. A task, macro, or an operator or MNTHM
command initiates file allocation, assignmeat, and del=tion.
Generally, file storage is permanent. A file remains on the
volume until it is deleted. .

For applications requiring temporary storage, JS/32 also supports
temporary files. The temporary file 1is 1like any other file
except that when a temporary file is closed, it is automatically
deleted. A temporary file can be a contiguous or indexed file
type. ,

5«21 VYolume Descriptor and Sector Allocation Map
Sector 0, cylinder 0 of a disk volume contains the volume

descriptor. The volume descriptor has six fullword fields. 3See
Figure 5-1. :

e - G W . . i W S M e G S G e G W D s G G G G M S e e TR M S S G S W GG E G . . WP G W e S e e

j0(0) |
| Yolume name |
I |
|==mmmmmmmmmm o me oo mmmmmmosmmsmmoee e memmmommmmeoe- |
juy) |
| Attributes |
I |
|-=-mmmmmmmmomooom oo moomommmooomoe- moommooomooooooe- |
18(8) |
| Pointer to file directory |
! |
| = e e e e e --1
[12(¢C) |
I |
| , |
e Reserved = ==eme-- |
|16(10) |
I |
I |
| == o e e o e e e e |
{20(14)

- ——— S A M ke ST M M R M G S R G A e G NS M SR e G e A e AR G S A W T G SN G G e S8 e M e e e e a

Figure 5-1 Volume Descriptor Structure

5-2 ' 48-039 F00 ROO

Fields:

Volume name "is the volume name field that contains a
-character ASCII volume identifier, the name
by which the volume is known to the system.

Attributes when the disk is marked off, the attributaes
field 1is 9; when the disk is marked on, bit
0 of the attribute field is set to 1.

Pointer to contains the address of the first sectors of

file directory the primary file directory. The file
directory contains information the systen
needs to process files recorded on the
volume. An entry in the directory is made
for each file. :

Reserved is an 8-byte field reserved f£for future use.
Pointer to contains the address of the first sectors of
sector the sector allocation map. The allocation
allocation map is a bit map <containing one bit Eor each
map sector on the volume. This map records
allocated, unallocated, and defective
sectors. If a sector 1is alloczated or
defective, its corresponding bit in the

allocation map is sat to 1; if wunallocated,
it is set to 0.

The Disk Initializer Utility initially places

all data in the volume descriptor. 0sS/32
do=s not modify any portion of the volume
iescriptor, except to indicate the

‘online/offline state of the volume.

5.2.2 Primary and Secondary File Directory

The file directory consists of two sections:

® Primary directory
® Secondary directory
The primary directory is organized as a forward-linked 1list of

1-sector blocks on a disk. A directory block contains space for
five file entries. Each entry contains information about the

file: name, type, length, protection keys, data created, and
data written. Since only one directory block zan be in- memory at
one time, only five file entries can be memory residant. The

other directory blocks remain on disk and are accessed by I/0
operations.

48-039 FO0O0 ROO 5-3

To reduce file search time, a secondary directory is available as
a system generation (sysgen) option. The secondary directory,
portions of which are in memory, is a contiguous fil= with the
reserved name SYSTEM.DIR. This directory contains filenames and
primary directory block pointers for all the files on the volunme
plus available slots (an expansion factor) for a uszr-d=fined
number of files yet to be allocated (default 130). The secondary
directory is organized so that 20 file entries are contained
within each sector. The number of secondary directory sectors
resident in memory 1is dependent upon the parameters set by the
MARK ON command. .

If a secondary directory runs out of frea file slots, the
operator can choose to «continue with a mixture of primary and
secondary directories (at a cost in file search time), or mark
the disk off and then mark the disk on with an additional
expansion area.

5.3 FILE TYPES

0S/32 supports two file types:

e Indexed

e Contiguous

In most cases, the same data manipulations can be performed on
both file types. The choice of file type usually depends on how
the data is to be accessed and not the data type to be put in the
file. Each file type is optimized for one specific form of
ACCESS.

File descriptors (fd) are entered in a standard format.

Format:
voln: file class
[filename] [. [ext]] /
dev: actno |
Parameters:
voln: is a 1- to U4-character alphanumeric string

specifying the name of 3 d4disk volume. The
first character must be alphabetic and the

remaining, alphanumeric. If the volume name
is omitted, the default is the systzam or user
volune. ’

5-4 ' 48-239 FOO ROO

dev:

filename

«ext

file class

actno

Some Perkin-Elmer

is a 1= to U-character alphanumeric string
specifying a device name. The first character
must be alphabetic ani the remaining,
alphanumeric.,

is a 1- to 8-character alphanumeric string
specifying the name of a file. The first
character must be alphabetic and the
remaining, alphanumeric. If a filenams is
specified when a device name is specified, the
filename is ignored. '

is a 1 to 3-character alphanuﬁeric string
specifying the extension to a filenanme.

is a 1-character alphabetic string specifying
the type of file <class in a systam running
und=r ¥TM. The file class types are:

-~ P for private file

for group file

G

- S for system file

is a 1-character string specifying the systen

“account number. If MTM is not being useil or

if the operator is using th2 system coanssle,
the file class is the account number. If this
field is omitted, the default value is 0 or
the system account. Any other account must be
specified by typing the slash (/) anil a
decimal number within the range of O through
255.

proyrams are shown in Table 5-1 with

recommended filename extensions.

48-039 FOO ROO

TABLE 5-1 PERKIN-ELMER I/0 FILENAME

EXTENSIONS
	INPUT] OUTPUT
PROGRAM OR	= —mmme e e -
COMMAND NAME	EXTENSIONS
TS N I N N I L T T T o N TN ST Do oo momo oo ’	
BAS325, BAS32D	BAS
CAL32	CAL
COBOL	CBL
CORAL] CRL	OBJ
F7D	FTN
F70	FTN
LIBLDR	OBJ
i Link	OBJ,SEG
SBUILD command	.
BUILD command	
CALMAC32	MAC,MLB
Pascal	PAS
Patch	oBJ,TSK,SEG
BPPG	RPG
531 Indexed Files
Indexed files are supported on all disk storage devices. The

indexed file is an open-ended file composed 5f a chain of inilex
blocks and a series 5f data blocks. The index blocks are linked
together and contain fullword pointers +to one or more iata
blocks, depending on the number of blocks in the file. The ind=x
and data blocks of the indexed file are transparent to the user.

The user allocates data block size, index block size, and 1logizal .
record size. These parameters are fixed until the file is
deleted. Data blozk size and index block size are specified in
sectors (multiples of 256 bytes). -Logical records are physically
blocked into data blocks. :

An indexed file can be sequentially or randomly accesseil. These
two a&access methods can be mixed without closing and resassigning
the file. Because of the physical structure of the fils, 1raniom
access 1s readily performed. For example, to read block 1 and
then block 60, the indexed file structure requires an overhead
read operation for the index block containing the pointers to
blocks 1 and 60.

The open-ended structure of the indexed file allows the file to
be sequentially extended by writing a logical record numbered osne
greater than the number of existing records. If five rescoris are
currently 1n a file, a reqguest to write recorl 5 causaes thea file
to be extended. However, if there are currently five rescords, a

5-6 48-039 FOGO ROO

»

request to write record 7 or higher causes an end of file (EJF)
status. The file can be updated by writing over an existing
record.

Indexed files can have shared write access privileges (5RW, SWHO,
ERSW) that allow more than one task to concurrently appeni or
update an indexed file. 1Indexed file I/0 ra2turns EOF status
if a:

e read sequential operation is attempted at the end of file;

® read random operation is attempted and the lodical record
number specified 1is greater than the total number of logical
records in the file; or

® wWrite random 1is attempted and thz 1logizal record number
specified 1is great=ar than the total number of logical records
in the file, plus one.

End of medium (EOM) status is returned if a write operation is
attempted without enough space on the volume containing the file.

If an I/0 error occurs during a read operation, I/0 is terminatad
and the I/0 error status is returned to the user. If an I/O
error occurs during a write operation, data is not written. The
system returns the file to its last %Xnown state, adjusts ths file
information in the FCB, and returns an I/0 error status to thea
user. The wuser should checkpoint the file and issue a fetch
attributes macro (FETATR) to obtain the current status of the
file. :

A forward file or backward file operation positions an indexed
file at the end or beginning, respectively.

ASCII, binary, and image operations all are supported on indexed
files. Also supported ar2 test and set, write filemark, forward
space filemark, and backspace filemark operations.

The block containing the current record pointer or I/J macro that
specifies the start of a logical record is read 1into a system
buffer. The contents of the system buffer are then transferreid
to the user-specified buffer until the user buffer is full or the
number of bytes egqual to the logical record length of the file
has been moved. When the current record pointer is set to the
record following the accessed record, the transfer is complete.

ODutput operates the same way as input, except that the data 1is
moved from the wuser buffer to the system buffer. If a current
record pointer value of one greater than the last recori in the
file 1is specified, a record is appended to the file, thus
allowing the file to be extended at any time. If the size of the
specified buffer is less than the logical record length, the
record is padded on the end with spaces (ASCII format) or zeros
(binary format).

4g-039 FOO ROO 5-7

The test and set macro, TESTIO, provides record 1locking to
synchronize simultanecus updates.

The advantages of using indexed files are that the user does not
have to compute the maximum size of the file and unused space on
the volume is available for other files. In most cases, the user
should choose an indexed file.

5.3.2 Contiguous Files

The contiguous file is a fixed length file. All blozks of a
contiguous file are contiguously allocated adjacently on the
volume. The file size, in 256-byte sectors, . is specified; and
all required space 1s reserved at aliccation time. The systenm
considers each sector (block) a record. Random reads and writes
- can access any record on the file, regardless of which recorids
were previously accessed, making it possible to write a
contiguous file 1in a random fashion. Random and sequential
access can be mixed without closing and reassigning the file.s
Contiguous files are supported on all devices supported by the
moving head or floppy disk drivers, or by a mass storage media
(MSM) driver. :

Contiguous file I/0 is nonbuffered, and transfers of variable
amounts of data occur directly betwean the task buffear and the
disk. The user can transfer data in logical rescords greater or
smaller than a sector size. The appropriate sector number must
be specified to position the file for randon ccess. All
transfers begin on a sector boundary (multiple of 256) and eni
whenever the number of specified bytes is transferred. Following
a data transfer, the file's current sector pointer contains tne
address of the next consecutive sector. The user should always
transfer an even number of bytes to a contiguous file.

The contiguous file supports a pseudo filemark capability that
gives it some of the characteristics of a magnetic tape device.
The pseudo filemark is an X'1313*' at the beginning of a record
(block). Ensure that data containing an £'1313' is not
inadvertently written at the beginning of a recori. On a
contiguous file the forward file and backward file operations
functicon as they would on a magnetic tape. That is, the file is
respectively positioned forward or backward until a3 filemark
(X¥*1313') is found. For a backward file operation, th2 <Current
record pointer 1is left pointing +to the record containing the
filemark (X'1313'). For a forward file operation, thes current
record pointer is left ©pointing to the record following the
filemark. The write-filemark results in writing X'1213*' at the
beginning of the current record. The rest of the record is laft
in an undefined state.

The shared write access privileges (SKW, SH0O, ERSW) are permitted
on contiguous files and allow more than one task to append or
update a contiguous file concurrently. ASCII binary and image
operations are all supported on contiguous filas. Also supported
are test and set, wait, unconditional and conditional proceed,
rewind, backspace record, and forward space rezord operations.

5-8 48-039 FOGO ROO

The primary advantage of using contiguous files is that all space
regquired for the file is fixed when the file is allocatad. Siace
the maximum file length cannot be changed, the user knows how
much data can be input. This advantage should be weighad against
the cost of loss of file space on a volume.

5.4 FILE STORAGE

Both indexed and contiguous files can be storel as temporary,
permanent, or spool files.

5.4.1 Temporary Files

Temporary files are used for storage of temporary datae. The
TEMPFILE command allocates and assigns temporary files. See the
0S/32 Operator Referenze Manual and the 0S/32 Multi-Terminal
Monitor (MTM) Reference Manual.

Temporary files are allocated on the default temporary volune
which 1is established by the operator VOLUME zommand. Temporary
files are given a special filename consisting of the ampersand
character (&) and the date and time of allocation. These files
exist only as long as they are assigned and are deleted when the
assignment is closed.

5.4.2 Permanent Files

Permanent files are created whenever indexed and contiguous files
are created and the TEMPFILE command is not specified. Permanent
files are deleted only if explicitly deleted by the oparator or
user through the DELETE command. Files are allocated on the
default system or user volume.

5.4.3 Spool Files

Spool files are created when a task assigns a pseudos printer
device. Qutput is sent to the spool file and queued to a slow
speed output device. Spool files are given a special £file namne
consisting of the at sign character (@) followel by eight digits
assigned by the Spooler. :

5.5 BUFFER MANAGEMENT

05/32 supports two buffer management methods:

e Buffered logical (BL)

e Unbuffered physical (UP)

48-039 FO0 ROO 5-9

5.5.1 Buffered Logical (BL)

Indexed files use the buffered logical (BL) management method.
This method divides files into 1logical records. The logical
record length for any given file is fixed when the file 1is
allocated, thus becoming a permanent attribute of the file. It
would be impossible to write 20-byte records on a file one tiame
and write 80-byvyte records on the same file later.

It is possible to read or write less than a logizal record.
However, this wastes space because the file is physically divided
into logical records of the size specifiel when the file was
allocated. Also, it is not possible to write variable 1length
records on a file without wasting space. In this case, the
logical record length specified at allocation time must be the
size of the longest record the user will ever write on that file.
If the wuser tries to read or write a record that is longer than
the file logical recori length, data is lost on a write operation
or is not returned on a read operation.

The BL method packs 1logical records into physical blocks as
efficiently as possible, allowing logical records to overlay ianto
the next ophysical block if necessary. The logical record size
can exceed the size of a physical block. The only restriction on
logical record size is that no logical record zan exceed 65,535
bvtes.

In the BL method the current record is interpreted as a 1logical
record and not as the physical block numbear. R1ll
logical/physical transformations are handled automatically by the
BL method. When a block is read or written, the ctual 13ata
transfer takes place between the device and a buffer in systen
space. This buffer is not accessible to the user program. When
a task reads or writes a record, data is transferred b=2tween the
task and the system buffer. Physical reads and writes take place
only when required. All actions of the buffer management method
are transparent to the user.

5.5.2 Unbuffered Physical (UP)

The unbuffered physical (UP) management method, used by
contiguous files, works directly with physical blocks. Data is
directly transferred from a buffer in the wuser prograam to the
device, without being moved into a system buffer. FOr a write
operation, data is movad from the user program directly to the
file or device.

In the UP method, the current record pointer points to the
current physical blozk. All data transfers must begin on a
physical block boundary. The length of data to be transferred
can be 1less or larger than the length of a physical block, but
not larger than the total size of the file. With <zontiguous
files, the current record pointer can be incremented by more than
one.

5-10 48-039 FOO ROO

Kn advantage of the UP method of transfer 1is that the time
required for moving data between a system buffer and user space
is eliminated. The primary disadvantage is that space on the
disk volume is often wasted.

5.6 FILE ACCESS METHODS

0S/32 supports two methods of file access:

® Random access
.® Sequential access
These access methods can ba intermixed without closing and
reopening the file.
The current record pointer is a number from O to the naumber of
logical records currantly in the file, indicating the recori to
be read or written on the next sequential access. Each recori is
numbered in sequence, starting with 0. The current record
pointer is adjusted in one of these ways:
@ It is set to 0 by:
- Rewinding
- Backspacing to filemark (except on contiguous files whera
the record pointer is positioned at the record containing
the previous psendo filemark) '
- Assigning (except for write access only)
o It is set to the number of records in the file (the proper
position to append new records) by:
~ Assigning for write access only
- Forwarding to filemark (except on contiguous files where

the record pointer is positioned after the recori
containing the next pseudo filemark)

¢ It is decremented by one by a backspace record operation,
unless the file is already positioned at its beginninge.

e It iz incremented by one as follows:

- Forward record (unless already at EQOF)

- Sequential read or write to an indexed file

48-039 F0O0 ROO ' 5-11

e 2 random read or write sets the current recorl pointer to a
value one greater than the record read or written.

e It is incremented by the number of sectors that must be
accessed to satisfy a sequential read or write reguest to a
contiguous file.

5.6.1 Random Access

For random access, the user supplies the record number to be
accessed. If +this record is found, the data transfer |is
performed, and the current record pointer is set to point to the
next sequential record. If the user continues to use ranion
access, the current record pointer is ignored, since it is
readjusted on every call. However, the user zan read or write a
sequence of records, starting with a known ra2cord number. In
this case, a single random call followed by a onumber of
sequential calls can be used.

Any record allocated for a contiguous file can bhe read from or
written to during random access. When indexed files are raandosmly
accessed, only records currently in the file zan be upiatedi. 1In
addition, index files must be sequentially expandedi. If the
record number specified is more than one record past the end of
the file, the call is rejected with EOF status. For example, 1if
the file has only five records, a sixth could be added; but
record number 100 could not be added.

With contiguous files, there is no restriction on wusing randon
write or read access. Any record within ths file's allocation
can bhe read or written.

5.6.2 Seguential Access

When the user accésses the files using +the seguential methoi
file, records are read or written 1in sequence. The current
record pointer is automatically adjusted at each access. The
rewind, forwardi record, backward record, forward £file, and
backward file Qperations can reposition a file as described.

5.7 CHOOSING FILE TYPES

Follow these guidelines to choose a file type:

If pseudo filemarks are required for magnetic tape emulation, the
contiguous file structure is required. This <can o9zcur whan

magnetic tape-oriented programs are used.

If the maximum length of the file is completely unknown, only an
indexed file can be used..

5-12 48-039 FOO ROO

Most applications define files so that a logical guess of each
data structure's maximum length is generally possible. Assuming
the disk is not badly fragmented, the contiguous £fil=2 «can be
considered. If the disk is fragmented, the allocation of a large
contiguous file might not be possible. Use the 05/32 Disk Backup
Utility to compress the disk space and eliminate fragmentation.

If all or most of the file data is to be sequantially accessed,
choose the indexed file structure. Long files randomly accessed
require the contiguous file structure.

For most applications, <choose the indexed £file bezcausa the
indexed file can perform random and seqguantial operations.
However, the index file uses an extra sector as an index block
for every 62 data blocks.

"Once the indexed file structure is chosen, the physizal block
size must be selected. Reasons were given for k=zeping the
physical block size small. However, a large block size <c¢can be
very helpful in some cases. The main time factors involved in a
disk access are seek time (for moving—-head disks) and rotational
latency time. Usually these times overshaiow the actual data
transfer time. Therefore, transferring two or moras sactors
generally costs 1little more time than a transfer of only one
sector. For this reason, the number of disk accesses is the
critical figure in computing file ac&ess time. A larga physical
block size can reduce the number of accesses. Consider the
performance of +the overall systemT If a given task is not
critical or is running in a single task environment, a 1large
physical block size might reduce running time.

If access speed is paramount and the file size is fixed, use the
contiguous file structure because the amount of system overhead
needed to access contiguous files is less than for any other file
type.

It is possible to writs programs that use both of these file
structures as well as previously existing file structures from
other programs. The user can use these programs to test the
application to determine which possible file structures are most
efficient.

The contiguous file is compatible with the indexed file, provided
that the contiguous file does not use ths pseudo filemark
capability.

5.8 FILE AND DEVICE PROTECTION

Files and devices can be statically and dynamically protectad.

(5]
|

48-039 FOO ROO 13

S.8e1 Static Protection Using Read/Write Keys

Each file or device has associated with it two protection keys,
one for read access and one for write access. FEach key 1s one
byte long and has a value from X'00*' to X'FF'. If the values of
the keys are within the range X'01*' to X*'FE', the file or idevice
cannot be assigned for read or write access unless the operator
or requesting task supplies the matching keys. If a key has a
value of X'00*', the file or device is unprotected for that accass
mode. Any. key supplied by the operator or requesting task is
accepted as valid. If a key has a value of X'FF', the file is
unconditionally protected for that access nmode. It =zannot be
assigned for that access mode to any u-task, regardless of the
key supplied. An unconditionally protected file can be assigned
to an executive task (e-task). Table 5-2 lists the read/write
keys us=d for static protection.

TABLE 5-2 READ/WRITE KEYS

- e —— . - A S e - e - O A e W S S W G B P S B e WS e G M S e e S

read and write. User must supply
both keys.

e e . . - G - T S e S e = me e S G A e e W G e S e M N S S e SN S G e e G W S e T Sy wm

|
|} KEY | KEY | MEANING |
| Bt - - - e P P R R L P] l
] 00 1 00 | Completely unprotected |
| I | |
} FF | FF | Unconditionally protected (used |
]] | by e~tasks)]
| ! | -
07	00	Unprotected for read, condition-
		ally. Protected for write (user
]	must supply write key = X'07°).	
I		
FF i A7	Unconditionally - proteczted for	
		write, conditionally protected
i		for read. User must supply read
		key of X*A7'. I
I]
j 00	FF	Unprotected for write, uncondi-
		tionally protected for read
I		
I 27 | 32 | Conditionally protected for both |
i I | |
I I ! |

The file protection keys are defined when the file is 1allocated.
The system operator or any task having that file assigned for
exclusive access can change the protection Kkeys. See Section
5.8.2. The protection keys are changed via the REPROTECT commani
or a REPROT macro. The device protection keys are iefined at
sysgen time, and only the system operator can cthange them.

5-14 48-039 FOO ROO

58.2 Dynamic Protection Using Access Privileges .
By assigning exclusive access privileges to a file, other tasks
are prevented from accessing that file. These privileges remain

in effect as long as the file is assigned to thenm. The access
privileges are:

® Sharable read only (SRO)

@ FExclusive read only (ERO)

® Sharable write only (SWO)

@ Exclusive write only (EWOQ)

e Sharable read/write (SRW)

e Sharable read, exclusive write (SREW)

® Exclusive read, sharable write (ERSW)

® Exclusive read/write (ERW)

A file cannot be assigned with an access privilege inzompatible
with an existing assignment of that file. For example, a regquest
to open a file for EWO is compatible with an 2xisting assignment
of that file for SRO or ERO, but is incompatible with any
existing assignment for other access privileges. Table 5-3 shows
‘which access privileges are compatible. If the user attempts to
change access privileges by adding a privilege that is

incompatible with -existing ones, the o0ld access privileges
remain.

48-039 FOO0 ROO 5-15

TABLE 5-3 ACCESS PRIVILEGE

COMPATIBILITY
| | E | | | [| | S | |
| IRIEI|IS|S|S|E|R]|E]
i | SITRIRBR|RJ] W | W] E]R/]
: : WO]O]W]]OY}| O 1] W]| W :
| ERSW | = | = | = -1 >} -1 -1-1
I | | | I | | | | |
|l EROC | =} =~ =01 *] *]-1=1
! | | | [| | | | |
|l SRO | = | =} * | * | *} *}*] -1
i | I | | | I |
f SRW | - | = | * | * | = | -] -1 -]
| | | | | | | | | |
lsWo | > * | * | *] *|-1-1-1
| | | | | | | | | |
|l EWO | - | * | * | -1-1=-1=-1=-1
| f | | | [I | ! |
| SREW |} = | - | * | -1 -1-1-1-1
| | | | | | | | | |
| ERW | -1 -1 -01-=-1-=-41-1-1=1
LEGEND

* Compatible
- Incompatible

Exclusive access was discussed in terms of multiple tasks sharing
the same file, assuming that a single task doces not attempt to
assign the same file to multiple logical units. However,
occasionally the same file is assigned to multiple logical units
as a result of default assignments or system operator
assignments. In this zase, access privileges to the file must be
assigned to the 1lu as if it were a task. For example, a file
cannot be assigned for exclusive read access on one lu and shared
read on another. If a file is assigned for exclusive reail or
write access on any given lu, it cannot be assigned for that
access on any other lu.

5.8.3 Write-Protected Volumes

Mark the disk online as a protected device to protect 2all files
on a disk from Wwrite operations. When a volume 1is
write~-protected, only assignments for SRO and SRWH are accepted;
SRW 1is changed to SRO. If the hardware write-protectad feature
of a disk is enabled, the volume must be markel on as a protectei
volume. Refer to the 3S5/32 Operator Reference Manual.

5-1€ 48-039 FO0O 200

5.8.4 Static and Dynamic Protection Modification

The system operator or any task having that £file assigned for
exclusive access can change a file's protection keys. If the
task file is assigned for exclusive write, the write key can be
changed; if the task has the file assigned for ERW, it zan change
either or both keys.

Under the proper conditions, a task can change 1its file access
privileges without having to close the file. For example, a task
having a file assigned for shared read cananot change to exclusive
read if the file is also assigned for shared read to another task
(or another 1lu of the same task). The CHANGE ACCESS PRIVILEGES
(CHAP) macro changes the access privilege. The wuser cannot
change from read only or write only to read/write, from reail only
to write only, or from write only to read only. If the user
attempts to change access privileges and is unable to get the new
privileges, the 0ld access privileges remain.

5.9 FILE MANAGEMENT

This section discusses the ALLOCATE, ASSIGN, close delete (CLDE),
and checkpoint (CKPOINT) macros.

5.9.1 File Allocation

Hhen a file is allocated, its directory entry is built; if it is
a contiguous file, space is reserved for it on the disk. A file
can be allocated from the system console or from a user program
via an ALLOCATE nmacro. Regardless of how a file is allocated,
the following information must be specified:

Volume id specifies the volume »n which the file
: is to be allocated. It must bea the nanme
of an online direct access volune,

otherwise volume error is returned.

Filename/extension gives a name to th2 newly allocatai
file. There must not be any other file
of that name and extension on the
specified volume, otherwise an error
status message is returned.

WHrite key/read key sets up the initial protaction keys for
the file. If this field is not set, the
default is an unprotected file.

Logical record is the field used when allozating

length indexed files. This sets ths 1logizal
record length for the file. It can be
any size up to 65,535 bytes: however
once established, it cannot be changed.
Specifying zero recori length is illesgal
and will result in an error status.

48-039 FOO ROO

&3]
1
-
~

Size is the size of the entire file in
sectors for a contiguous fila. It zan
be any size up to the maximum contiguous
space available on that volumes at that
time. If the size requestad is too
large, a message is ra2turned.

For an indexed file, this siz2 1is the
physical block size for the file in
sectors. It can be any size up to a
maximum set at sysgen time for the
system (never greater than ~255). If
this parameter is tso large, it zan be
difficult to open the file.

File type . Indexed or contiguous.

5.9.2 File Assignment

The ASSIGN (ALAS) macr> or the ASSIGN command assigns a file to>
an lu. At +this point, the desired access privilegas must be
specified; the read key must be given if read access 1s
reguested; the write key must be specified if write access is
requested.

When a file 1s assigned, the system allocates within the systenm
space a file control block and buffers. Any buffer space
required depvrends on the chosen buffer management method andi the
physical block size of the file. If the file's physical blozk
size is too great for the remaining system space, the file is not
opened and a buffer error status 1is returned. Hhen a buffer
error occurs, the user program can close another open file
assignment, freeing some system space and allowing the first file
assignment to be retried. For this reason, do not keep files
open longer than necessarye. The physical block length of the
file should also be kept as short as possible unless there are
other overriding considerations.

5.9.3 File Deassignment (Close)

Issuing a CLOSE command closes a file assigned to an 1lu.
Information other than the lu assignment neel not be specified.
The system waits for any Aincomplete write Jata transfers to
terminate, writes out to the volume any partially filled buffers,
and updates the file directory entry. The 1lu that the file was
assigned to is closed.

5.9.4 File Deletion
A file can be deleted only if it is not currently assigned to a

task. #hen using the DELETE macro or command to delete a‘file,
the user must supply the volume name as the 1efault volume or

18 48=-039 FOO ROO

w
I

supply the volume name along with the filename and =2xtension.
Hhen the file is deleted, the directory entry is removel and tha
deleted file's disk space is made available to other files.

5.9.5 File Checkpointing

The checkpoint macro (CKPOINT) performs the buffer clearing and
directory nupdating functions of a CLOSE macro or command without
closing the 1lu. This operation is a protective operation to
guard against system failure for very critical files or for files
running for lengthy periods.

If the system fails, data appended to a file after the 1latest
close or checkpoint operation 1is 1lost for certain files and
buffer management methods because the directory is only updated
at close or checkpointing time. If the system failura does not
corrupt the volume directory or the physical media, all data
appended before the file was closed or checkpointed is guaranteed
safe.

48-039 F0O0 ROO

wn
]

19

A

Access privileges
Acccunt numberx
Rdd to bottom of 1list
(ABL) instruction
AIDS :
ALLCCATE macro
Arithmetic fault,
definition of field
trap
trap action
trap-causing events
reason code
ASSIGN ccmmand
ASSIGN (ALAS) macro

B
BASIC level II

Buffered logical (BL),
defined
logical record size

o
CAL Macro/32

CHAP macro

Checkpoint (CKPOINT) macrc
CLOSE command

COBOL

Commands,
ASSIGN
CLOSE
CELETE

CISPLAY PARAMETERS
10ALC

LCAL.TCH

LOAD.SEG

WARK OFF

KARK CN

OPTICN ABSOLUTE
CPTION WORK

REMCVE.SEG
REPROTECT
TEMPFILE
TCCH
VOLUME
Comrcn Assembly Language/32
(CRL/32)

48-039 F00 ROO

3-13

- 3-14

3~-14
3-14
5-18
5-18

- s
1
[FYRREY

e
1

- TN N =
]
Woed = = 3 D)
0O ~J

LIS T B |
[+< -]

xc\no‘..n\lm::\a_s..\\lsxm::;xo-n_n

[S R R A T N R S N A B
=~

[LESEHG NG ESESESENNS R ESESE SR SRENS, N RS,

N oo
!
o) JENY

INDEX

. —— —— — — i — — — — —— T W —— N S S— R G —— — T —— — W Sy W oo mm— R GET ew— T W w— G — T > e S S — G— W 4w

Common segment

Connect

Contiguous files,
advantages of
forward and backward file
operations

rseudec filemark capability

random and sequential
access
shared write access
rrivileges

CCRAL 66

CTOF

D

Data communications
Data format/alignment fault
Data format/alignment trag

DELETE command
Device trap
Direct access volume
Lirectory,
file
primary
secondary
Disk initializer utility
CISFLAY PARAMETERS command
Dynamic protection,
modificaticn of
using access privileges

E

ECIT

8-1ine interrupt module driver

End of medium (EON)
Envirooments ’

environment control monitor

(ECM)
multi-terminal monitor (MTHM)
€S/32
Reliance
E
Fault,

arithmetic

data format/alignment
MAC/MAT

memory access

(5
]
0

W
[}

[« W — g — P e <]

Nwinwwww
I T I A I |

[SRR Vo QU QT R §
N - N

-

SIS NS, 6, N3, |
[
Fwwww

[S, 0N,]
[|
- -
U1

- U W -
1
pEORS N SN W]
o

PG QY
i
- e

File,
access methods
allccation
assignment
"checkpointing
class
contiguocus

deassignment
deletion
descriptors (fad)

directory
grecup
indexed

permanent
rrivate
rrotaction

spool
temporary

File access methods,
random
sequential
File allccation
File and device protection,
dynamic
static
File assignment
File checkpointing
File class
File deassignment (close)
File deletion
File descriptcrs (£d)
File directory
File name extensions
Filetypes,
contiguous
indexed
selection guide lines
FORTRAN VII LCevelopment (L)
Compiler

FORTRAN VII Optimizing (0)
Comriler

Freeze

G H

GETSTCRE macro
Group file

I JK
Illegal instruction trap

Image libraries

Ind-2

5-12
5-17

nwunn
LI |
- -
O @

1
2 o= 0NN

1
@x @

minninomie
i

LT AT NN AT
[} [
hwnWaANNW,

e
I
WO RN

. — — —— — —— — . — ——— o VI S . — — — ——— — T S—— S . S G T RS m— — —— . ——G—. W— IS - A G— — . — AL G ST SR G o S G — — ———

Impure memory space
(see impure segments)

Impure segnents 2-3
Indexed files,
access methods 5-6
advantages of 5-8
EOF status 5-7
EOM status 5-1
cshared-vwrite access
privileges 5-7
I/0 proceed call 3-12
"L
Library Loader 1-6
1-8
Link 1-6
2-1
2-4
2-6
3-12
3-14
3-21
LOAT 2-5
LCAD.SEG 2-7
LOAL.TCH 2-7
Location counter 3-13
3-14
Logical unit (1lu) £-1
5-18
Logical unit table (LTAB) £-1
LTS® macro 3-13
3-14
M N
Macro library 1-6
1-8
Macros,
ALLCCATE 5-17
ASSIGN (ALAS) 5-18
CHAP 5-17
Checkpoint (CKPCINT) 5-19
LTELETE 5-18
FETPTR 3-6
GFTSTORE 3-6
LTSH 3-13
RELSTORE 3-6
EEFROT S-14
TESTIC 5-7
TEXIT 3-21
UCL 3-3
MAERK CFF command 5-1
MAKK ON command £-1
Memory access controller
(MAC) 2-1
2-2
2-4
2-7
Memcry access fault 3-1
Memory access fault trap 3-11
3-15
! 48-039 FO0O0 R0OO

