
Contents
MAIN STORAGE PROCESSOR 3-1 Command Instructions 3-46
DATA FLOW AND CLOCK 3-2 Jump on Condition (JC) 3-46
Data Flow 3-2 Load Program Mode Register (LPMR) 3-47

Parity Checking and Generation 3-2 Supervisor Call (SVC) 3-48
Clock 3-4 FUNCTIONAL UNITS 3-50
OPERATIONS . 3-6 Main Storage 3-51
Instruction and Execution Cycles 3-6 Main Storage Address Register 3-51
Sequential Instruction Execution 3-6 Operation Register . 3-51
I/O Data Movement . 3-6 Q-Backup Register 3-51
I nstruction Formats 3-6 Q-Register 3-51
I nstruction Fetch Operation 3-8 X-Registers. 3-51
Addressing 3-10 V-Register 3-51

Direct Addressing . 3-10 Arithmetic and Logic Unit. 3-51
Indexing 3-10 Arithmetic and Logic Unit Parity Predict 3-51
Address Translation 3-10 I ncrementer or Decrementer 3-51

INSTRUCTION EXECUTION 3-12 Decimal Correct . 3-52
Arithmetic Instructions 3-13 Local Storage Register 3-52

Zero and Add Zoned (ZAZ) . 3-13 Program Status Register 3-53
Add Zoned Decimal (AZ) . 3-15 Status Byte Registers 3-54
Subtract Zoned Decimal (SZ) 3-16 Status Byte 0 (Sense Only) 3-54
Recomplement Cycle 3-18 Status Byte 1 (Load Only) 3-54
Add Logical Characters (ALC) . 3-21 Status Byte 2 . 3-54
Subtract Logical Characters (SLC) 3-22 Status Byte 3 . 3-54
Add to Register (A) 3-24 Backup Mode Register . 3-54

Data Control Instructions 3-26 Configuration Control Register 3-54
Move Hexadecimal Character (MVX) . 3-26 Address Compare Register 3-54
Move Characters (MVC) 3-28 Address Translation 3-55
Edit (ED) . 3-30 Address Translation Registers 3-55
Insert and Test Characters (lTC) 3-32 Program Mode Register 3-55
Move Logical Immediate (MV!) 3-34 Control Mode Register. 3-55
Set Bits On Masked (SBN) 3-35 ERROR CONDITIONS 3-56
Set Bits Off Masked (SBF) 3-35 Main Storage Processor Checks 3-56
Store Register (ST) 3-36
Load Register (L) 3-37
Load Address (LA) 3-38

Logical Instructions 3-39
Compare Logical Immediate (CLI) 3-39
Compare Logical Characters (CLC) 3-40
Test Bits On Masked (TBN) 3-42
Test Bits Off Masked (TBF) 3-42
Branch on Condition (BC) 3-44

Contents for Main Storage Processor

•

Main Storage Processor

The combination of the control processor and
associated control storage. the I/O interface.
and the main storage processor and associated
main storage makes up the System/34
processing unit. In System/34. the control
processor controls the main storage processor.

The main storage processor is contained on five
to eleven storage and processor logic cards.
The number of cards is specified by the amount
of main storage. Three cards are used for main
storage processor and storage logic. and the
other two to eight cards contain storage as
follows:

• Five cards for 32K bytes of storage and
processor logic

• Six cards for 48K bytes of storage and
processor logic

• Seven cards for 64K bytes of storage and
processor logic

• Nine cards for 96K bytes of storage and
processor logic

• Eleven cards for 128K bytes of storage and
processor logic

II
Main Storage Processor 3-1

DATA FLOW AND CLOCK

Data Flow

Data flows serially through the main storage
processor in 8-bit bytes (plus 1 parity bit),
through an arithmetic and logic unit, and is
distributed to the remaining functional units of
the main storage processor.

Parity Checking and Generation

The main storage processor checks for missing
or extra bits during data movement by checking
for an odd number of bits after the m()ve. The
parity checking and parity generating points are
shown in the data flow.

Parity predict circuits calculate the parity of the
result of the arithmetic and logic unit operation.
This calculated parity is compared against the
parity generated. If there is a difference, a
parity check occurs.

.3-2

. Main Storage Processor (MSP) Control Processor (CP) Portl
Channel

r-------------.--~---,----------------------,---1-----I I Sys Bus Out Low From CP I To MSP 1 1
I· • - ~

I 71Ir--- 117 I ~ ~ ~I 1 1

== ~ Main Storage I------c---: I
MGateB nr

II MS Storage Bus

CP MS Gate

MS Gate Out

Decimal
Correct

pp

I Main Storage Gate A

~
~

I

I
Processing Unit I

I
I
I
I
I
I

;

:====::>lvB'" =c ,~""" ~ ::::'" :.1
DOT Byte 1-"
OR

Sys Bus OUI- Hlqh ~========~~~ ~ I
~===============:Jj ~ Status '---- 1

CK 1 1 Gate 1
AddrSw1&2 -" ~D. I

L
A-A1J2IPC300399) ~ 1 ------------------ --- ~--.~------

AddrSw3&4 -" ~ DOT ;

Status Status r=:::::"'-, OR 1
110 Clocks 2 Gate r-v' '---- 1

1
1
1

LEGEND 1

l r--- 15
~========~v ~

r.=========~-/~ ~~te ~=_~======S=y=SB=U=S=O=U=t=L=OW====~~~~r_~~========~=====S=Y~S;B=Us=O=u=t=L=o=w~I~~:»
~ y

1
I
1

:!

Low

r-7 ~
PG

Sys Bus
Stg Out High
Gate I-- ~

v High

r>L.....- 0

I ==-
0 '7 7 0 7 7 8 15 8~ ~ 115

l X High J Y High J l X Low l YLow I
\~ ~

\ ~.~~~ \ ~i~ /
o cfu 7 8 db 15

.I r-,....--------'

=~~~r r
I

ALU Gate I
High

fPcL......
~

L _______ .,

-I
I

~ 7 8 .~
Select ~
--,- I

1
I I~

64 LSRs

7 8

I

I

15

15

7r==
ALU Gate I
Low

15

LFcl
r -~

.-"_ MS· Gate Int PP . Parity Predict 1 • Sys Bus In

.1 PG - Parity Generate ~ I • <=
PC - Parity ·Check 1 i

1 1 1 I
I 1 1 I
I 1 ~ I

A·A1P2 (PM300·499) I A-A1Q2 (PM700-899) A-A1K2 (PC400·499) 1 A·A1G2 iPC100·199) I A-A1H2 IPC200·299) I A-A1L2 L ___ .• _____ • ______________________________ L ___________________________________ ~ ___ _

"Data flow [JUS lines may not pass through FRUs as shown

Main Storage Processor 3-3

•

Clock

The main storage processor uses the
free-running, 100-nanosecond oscillator (10
megahertz) from the control processor. The
main storage processor generates its own clock
times from this. The rise of the oscillator
output causes trigger 3A to change condition,
while the fall of the oscillator output causes
trigger 38 to change condition. Triggers 3A and
38 generate phase 1 and phase 2 signals.
Phase 1 is a 150-nanosecond signal that sets
latches during the time the data is valid. Phase
2 is a 50-nanosecond signal that generates the
local storage register write pulses.

Oscillator
F 200 nSl

100 n'1
Trigger 3A

Trigger 38

Phase 1

Phase 2

- 200n, I
Major Time Op Q

Cycle 10 11 12 13 14 15

Minor Time A B C A B C

Trigger 3A -- - - - - -
Phase 1 ---
Phase 2

Trigger 0

Trigger 1

Trigger 2

Trigger 3

Trigger 4

Trigger 6

Trigger 6

Trigger 7

Trigger 8

Allow Clock Stop
(instruction dependent)

- - -

I

- - -

IH1/IXl

16 17 18

A B C

- - -

t
""f

(

4 J.Ls

Instruction Fetch Time

III

19 110 111

D ·A B

- - -

Each system instruction is divided into
instruction fetch time and instruction execution
time.

The instruction fetch time is divided into six
major times:

• Op time

• a time

• IH1/IX1 time

• IL 1 time

• IH2/IX2 time

• IL2 time

IH2/IX2 '14
112 113 114 115 116

C A B C D

117

A

- - - - -

IL2

118

B

......

3-4

These times are twenty 200-nanosecond
instruction cycles (I-cycles) that are numbered
from 10 through 119. These I-cycles fetch the
instruction bytes. Three cycles are needed to
fetch each byte from main storage. If indexing
is needed, an additional cycle is taken so that
the displacement byte can be added to the
index register and the real address can be
placed in the operation local storage register
location.

119

C

- ...,J
\

Go to 10 or to
Execution Time

---- --- ---- --.~ ~ \

- - - - - - - - - - - - - - I
(

I
(

I
(

J
l

)

(

)

\

,
(

)

)
\

I
l

I 1 1 1 I 1

The instruction execution time is divided into
three major times: EA, EB, and EC. These
times are ten 200-nanosecond execution cycles
(E-cycles): three E-cycles for EA time, four
E-cycles for EB time, and three E-cycles for EC
time. During execution time, the operands are
fetched from main storage and operated on as
indicated by the instruction being executed.

Nine triggers are needed to divide the
instruction fetch and instruction execution times
into the needed cycles. The timing charts show
how the cycle time and trigger 3A and trigger
3B work together. The output frequency from
trigger 3A is one-half the oscillator frequency.

While an instruction is being executed, the main
storage processor clock logic sets the clock to
the needed cycle time. This permits skipping
cycles or returning to a cycle in the major time.
After instruction execution is complete, the
clock logic is set to 10 time.

2 p.s

Because the main storage processor clock can
be stopped and started by the control
processor, the clock inhibit logic permits
stopping at specific points in the instruction
fetch or instruction execution times. The times
at which the clock can be stopped are
determined by the instruction being fetched or
executed.

The main storage processor clock can be
stopped only at specific times because the
control processor (1) must store the contents of
the main storage processor registers while the
main storage address register (MSAR) is being
used by the control processor instruction, and
(2) must return the contents before starting the
main storage processor clock. The main storage

. processor stops only when a change in the
MSAR can occur without affecting the system
instruction execution.

Instruction Execution Time Go to 10 or to

Another E·Time - 200 ns r-
Major Time EA EB

Cycle EO E1 E2 E3 E4 E5 E5X
•.

Minor Time A B C A B C 0

Trigger 3A ~ - - -- -- - --
Phase 1 -------
Phase 2

Trigger 0

Trigger 1

Trigger 2

Trigger 3

Trigger 4

Trigger 5

Trigger 6

Trigger 7

Trigger 8

Allow Clock Stop -
(instruction dependent)

- - - - -- - --

•

EC

E6 E7 E8

A B C

IiIIIIIa. -- -.

--- - --

-

MSP Clock Control/Stop MSP Clock
MSP Control Card A-A 1 N2

Set Interru pt Level 5

Run Latch OCD

System Bu s Out Bit 9

MC Interr upt Lth

BPC Trig

T7 Pwrd

Control S torage Access

S08 I
I

U06 I
I

P13 I
I

U07 I
I

U09

S12

S10

!

..
~*

OCD U06 L
I

Run Latch

A*OR

(not) Phase 1

Temp
Suspend 2

(not) Op Reg Bit 7
A

Op Reg Bit 6

X Type Ops Edit
Op

EC Time Code
MA
(not) Hex 20 PH

eset or Reset MSP G07 I
1 System R

The following conditions bring up inhibit:

• End of MSP instruction (temp. suspend) and
CP stopped

• MC interrupt and temporary suspend

• Main storage or MSP registers being accessed
by the CP

TG3A

Set I/O Gtd FF r-
A*OR CP

I CD

~ r--- R

~
Temporary Suspend

FF I--
A .. OR CP -..---

! OR ... Inhibit

(MSP clock) [
CD

1 '-

,..-

L A FL --- It--
S

R
Goes through

I ~ PM02B '-- PM004 ,.... ~ GtO R PM044 MSP Clo ck
Stopped

PM220

Main Stor~ge Processor 3-5

OPERATIONS

Instruction and Execution Cycles

The two types of machine cycles for the
internal operation of the main storage processor
are: instruction cycles (I-cycles) and execution
cycles (E-cycles).

Instruction cycles read instruction bytes from
main storage, and execution cycles execute the
instruction.

Instruction cycles move the instruction bytes
from main storage to the various registers
needed to execute the instruction. If the
instruction does not need any operands from
main storage, the operation is completed
without execution cycles. Instructions that do
not need execution cycles are:

• Branch

• Jump

• Supervisor call

• Load address

Most operations need data from one or two
main storage fields. Main storage holds the
operands needed for working with these data
fields. Execution cycles process the data fields.

Sequential Instruction Execution

The main storage processor works step by step.
Because of this, the instructions are placed in
increasing main storage locations. Instruction
sequence is maintained by keeping the address
of the storage location in the instruction
address register. The instruction address
register is increased by 1 as each instruction
byte is read from storage so that the next
higher storage location can be addressed. This
process continues until all the instruction bytes
have been addressed. The instruction is then
executed. After the instruction has been
completed, the instruction address register
addresses the next instruction from storage.

Branching

Branching permits the main storage processor
to change the instruction sequence under
specific conditions. Branching also permits
changing the sequence of user program
instructions. If the branch condition is met, the
main storage processor places the address of
the branch-to location in the instruction address
register, which now becomes the location of the
next branch instruction to be executed. By
branching to a different storage location and
skipping specific instructions, the sequence of
the stored program is changed.

I/O Data Movement

The user program requests I/O data movement
with a supervisor call (SVC) instruction. The
SVC instruction sets interrupt level 5, if
interrupt level 5 is enabled. When the control
processor senses an SVC instruction from the
main storage processor, the control processor
determines which operation is requested by
analyzing the constants stored in the main
storage processor as a result of executing the
SVC instruction. The control processor then
controls all data movement between the main
storage processor and the I/O devices.

Instruction Formats

The main storage processor performs three
types of instructions:

• Two-address instructions

• One-address instructions

• Command instructions

Two-address instructions have two separate
fields in main storage and, therefore, contain
two addresses. Most one-address instructions
have only one field in main storage and,
therefore, contain only one address (the load
address instruction contains the needed data
instead of an address). Command instructions
do not need main storage data fields at all and
00 not contain addresses.

3-6

Each instruction has an operation code and a
Q-code. These codes are followed either by a
control code or by one or two addresses. The
length of the instruction is from 3 bytes to 6
bytes, as determined by the type of instruction
and the type of addressing.

The first half-byte (bits 0-3) of the operation
code determines the format of the instruction
(one-address, two-address, and so on) and the
method of addressing used. If all 4 bits are set
to 1, the instruction is a command instruction.
The bits are broken into two groups (bits 0-1
and bits 2-3). If both bits in either group are
set to 1, the instruction is a one'-address
instruction; if neither group has both bits set to
1, the instruction is a two-address instruction.
If only 1 bit is set to 1 in either of the groups in
a two-address instruction, the address is
indexed. The following instruction format chart
shows the operation code bits and the number
of bytes in the associated address.

The second half-byte (bits 4-7) of the
operation code determines the operation. Use
of the Q-code and the control code is
controlled by the operation requested. The
complete main storage instruction set is shown
below under Instruction List.

Op Code Q-Code B-Field Address A-Field Address Instruction List

1 Byte 1 Byte D irect-2 Bytes Direct-2 Bytes Opera-

I I I I I Two-Address tion Instruction Q-Code

\ Indexed-l /\ Indexed-l/

Instruction Type Type I Mnemonic Operation Use

Two- X ZAZ Zero and add

I I I I Address zoned
X AZ Add zoned decimal
X SZ Subtract zoned

Op Code Q-Code B-F ield Address decimal
X MVC Move characters

1 Byte 1 Byte Direct-2 Bytes X ALC Add logical

I I I One-Address characters Field length: ,

\ Indexed-l /

Instruction X SLC Subtract logical
characters

X CLC Compare logical

I I
characters

X ED Edit
X ITC I nsert a nd test

Op Code Q-Code Control characters
Code X MVX Move hexadecimal Select a

1 Byte 1 Byte 1 Byte Command
character half byte

One- y MVI Move logical

} Instruction Address immediate Immediate
y CLI Compare logical data

immediate
y SBN Set bits on masked

} Instruction Instruction Op Code First Operand Second Operand y SBF Set bits off masked Bit

Format . Type l (Bits 0-3) Address Address
y TBN Test bits on masked selection
y TBF Test bits off masked

Two-Address X 0000 2 bytes direct 2 bytes direct
y ST Store register

} 0001 2 bytes direct Indexed by XA 1
y L Load register Register

0010 2 bytes direct Indexed by XA2
y A Add to register selection

0100 Indexed by XR1 2 bytes direct
Z LA Load address

01 0 1 Indexed by XR 1 Indexed by XA1
Z Be Branch on Branch

condition condition o 1 1 0 Indexed by XR 1 Indexed by XA2
1 000 Indexed by XR2 2 bytes direct

Command F SVC Supervisor call Pa rt of system
support program

100 1 Indexed by XR2 Indexed by XA1 product interface
101 0 Indexed by XR2 Indexed by XA2 F LPMR Load program Main storage

One-Address y 00 1 1 2 bytes direct mode register processor register

(nonbranch) o 1 1 1 Indexed by XR1 selection

1 0 1 1 Indexed by XR2 F JC Jump on condition Branch condition

One-Address Z 1 1 00 2 bytes direct
(branch) 1 1 0 1 Indexed by XRl Legend for Instruction Type:

1 1 1 0 Indexed by XR2
F Command instruction

Command F 1 1 1 1
X = Two-address instruction (can be indexed by bits 0-3)

1See FSL page PM082. y One-address instruction (can be indexed by bits a and 1)

Z = One-address instruction (can be indexed by bits 2 and 3)

1See FSL page PM082.

Main Storage Processor 3·7

•

I nstruction Fetch Operation

The instruction address register contains the
address of the leftmost byte of the instruction.
This byte specifies the operation to be
performed. During the instruction fetch, the
operation code byte is loaded in the operation
register. The output of the operation register is
decoded to determine the instruction and the
type of addressing, if needed. One is added to
the instruction address register. The second
byte loaded during instruction fetch is the
Q-byte. The Q-byte is loaded in the Q-backup
register, the Q-register, and the Q-byte of the
Op-Q local storage, register.

Again, 1 is added to the instruction address
register. The third byte read from main storage ..
is a displacement byte, the first byte of the
operand 1 address, or a control code. Note that
1 is added to the instruction address register
after each storage cycle. The operations that
follow the third storage cycle are controlled by
the instruction and the type of addressing
specified. Address calculations for indexed
addresses are done during I-fetch and are
stored in the main storage. processor local
storage registers for use during the execution
cycles. However, some instructions do not need
execution cycles. In such cases, the main
storage processor clock is set to time 10 and
the next I-fetch cycle starts the next instruction.
The I-fetch cycle:

• Loads the instruction op-code byte in the
operation register and decodes the
instruction

• Loads the Q-byte in the Q-backup register,
Q-register, and Q-byte of the Op-Q local
storage register

• Calculates and stores the addresses in the
operand 1 and operand 2 local storage
registers

• Loads the R-byte into the length count recall
register (LCRR) local storage register stack
for a nonexecutable instruction

• Calculates and stores addresses in the
instruction address register and address
recall register for branch-on-condition and
jump-on-condition instructions.

3-8

Start I-fetch
operation

Set 'first cycle'
latch. Reset
'recomplement' and
'complement' latches

Load IAR into
MSAR and address
main storage

Add 1 to IAR

Load op code into
op register and
op LSR

Load I AR into
MSAR and address
main storage

Add 1 to IAR

Load Q backup
register and Q
register

Load Q LSR

Load 1 in Y
register

Go to instruction
execution chart

Load this byte
into LCRR LSR

Set interrupt

level 5 request

(see note)

Advance clock

to 10

Allow clock
stop

Go to I-fetch

Load high byte of
operand 1 address in
operand 1 LSR high

•

No

No

No

Load IAR into
MSAR and
address main
storage

Add 1 to IAR

Yes

Load high byte of
operand 1 address
in ARR high

Advance clock
to 110

No

Note: SVC is a nonexecutable
instruction. Interrupt level 5
is set at 18 time during I-fetch.

Load operand 1
displacement byte
into Y register

Load index
register 1 or 2
into X registers

Add selected
index register
to displacement

byte

Load address

into operand 1
address LSR

Advance clock

to 113

Yes

Yes

Load address
into ARR

Advance clock
to E3

per instruction

Load IAR into
MSAR and
address main
storage

Add 1 to IAR

Load low byte of
operand 1 address
into ARR low

Advance clock

to E3

per instruction

No

No

Load low byte of
operand 1 address
into LSR low

Load IAR into
MSAR and
address main
storage

Add 1 to IAR

Load high byte of
operand 2 address
into operand 2
LSR high

Advance clock
to 117

Load I AR into
MSAR and
address main
storage

Add 1 to IAR

Load low byte of
opera nd 2 address
into operand 2
LSR (low)

No

Load operand 2
displacement byte
into Y register

Load index
register 1 or 2

into X registers

Add selected
index register to
displacement byte

~oad address of
operand 2 into
operand 2
address LSR

Advance clock
to EO

Main Storage Processor 3-9

Addressing

The main storage processor selects one of two
types of addressing when executing
instructions: direct addressing or indexed
addressing.

Most addresses given in the instruction are for
the location of the low-order (rightmost) byte of
the field. Therefore, as the instruction is
executed, the operand address local storage
register is decreased to lower the main storage'
address. An exception is the
insert-and-test-characters instruction, which is
executed from the 'high-order byte to the
low-order byte. In this case, the operand
address local storage register is increased in the
same way that the instruction address register
is increased during instruction fetch cycles.

Direct Addressing

Direct addressing needs a 2-byte address for
each field selected by the instruction. The first
address that follows the Q-byte in the
inst~uction is the address of the result field or
the first operand. In an instruction with two
addresses, the second address is the source
field (second operand) and the first operand
field is used as both a source field and a result
field. The first operand source field is changed
during the instruction execution cycles. The
second operand is not changed except when
the two operands overlap.

Indexing

Indexing gives the user a method for changing
addresses in a program without changing the
instruction. An indexed address is a single byte
in the instruction (third instruction byte). This
single byte (displacement byte) is added to the
contents of a 2-byte index register to form the
operand address. This operand address is
stored in the operand address local storage
register.

Indexing is used to:

• Perform an instruction with an indexed
address

• Add the index register to a constant

• Branch to an address to execute the
instruction at a different storage location

• Perform an instruction or a series of
instructions many times without using too
many storage locations

Either of two index registers (XR1 or XR2) can
be selected for indexing. The recognition of an
indexed address and the selection of index
registers are described under Instruction
Formats earlier in this section.

Address Translation

Address translation must be used to access any
real address in main storage from 64K through
128K.

A user program, which is link-edited to load at
one address, permits a different main storage
address greater than 64K to be selected. The
system operator does not have to keep track of
which blocks of storage are available for
program execution. For example, the system
operator may need to execute a program that is
link-edited for a 2K area of real addresses
between hexadecimal 2000 and hexadecimal
27FF. Without address translation, the system
operator cannot load the program until the
specified 2K area is available. With address
translation, the System Support Program
Product updates the ATR with a 2K address
block and issues a supervisor call instruction.
The system then moves the program to the
selected 2K area of main storage. The program
is then executed using address translation, as if
the program were in the specified 2K area.
With address translation, the addresses
specified by a user program become logical
addresses and not real addresses.

During instruction and execution cycles,
addresses are loaded into the main storage
address register. The 11 low-order bits (5-7,
8-15) of the main storage address register
contain an address inside a 2K area of storage.
The 5 high-order bits (0-4) of the main storage
address register select the output from the
sixty-four 1-byte address translation registers.
Note that 32 registers are used for main
storage processor address translation and 32
registers are used for I/O address translation.
The contents of the addressed address
translation register are then sent to the main
storage address decode logic. This decoded
output is the real main storage address. This
describes the operation for translate mode only.
For nontranslate mode, the 5 high-order bits
(0-4) of the main storage address register are
used directly to obtain the real main storage
address.

In the following address translation example,
the logical addresses specified by the user
program are between hexadecimal 2000 and
hexadecimal 27FF. Assume that the only
available 2K area of storage is between
hexadecimal addresses 17800 and 17FFF.
Therefore, the addresses must be translated. If
an address of hexadecimal 27FF is the logical
address, the real address is hexadecimal 17FFF.

In address translation, the main storage
processor:

• Loads the logical address into the main
storage address register (hexadecimal 27FF).

• Selects the output from the selected address
translation register bits 0-7, as instructed by
bits 0-4 of the main storage address register
and the main storage processor I/O selection
circuits.

• Moves the contents of the address
translation register to the main storage
address decode logic. Here, the output of
the address translation register and the 11
bits from the main storage address register
are combined to generate the real address.

• Generates the real address. The real address
is hexadecimal 17FFF.

3·10

The address translation register is selected by
the 5 high-order bits of the main storage
address register. The address translation
register must be loaded with the number of the
2K block of storage in which the program is
loaded. In the above example, the program was
loaded into the 47th 2K area of storage;
therefore, hexadecimal 2F must be loaded into
address translation register 4.

The following table shows the addresses in 2K
areas for 32K bytes of storage. The
hexadecimal address sp,ecified in any given ATR
area number may be any 2K hexadecimal block
(00-3F)" and need not be in sequence.

Area Starting Ending Starting Ending
Number Address Address Address Address
(Hex) (Hex) (Hex) (Decimal) (Decimal)

00 0000 07FF 0000 2047
'01 0800 OFFF 2048 4095
02 1000 17FF 4096 6143
03 1800 1FFF 6144 8191
04 2000 27FF 8192 10239
05 2800 2FFF 10240 12287
06 3000 37FF 12288 14335
07 3800 3FFF 14336 16383
08 4000 47FF 16384 18431
09 4800 4FFF 18432 20479
OA 5000 57FF 20480 22527
08 5800 5FFF 22528 24575
OC 6000 67FF 24576 26623
00 6800 6FFF 26624 28671
OE 7000 77FF 28672 30719
OF 7800 7FFF 30720 32767

ATR Logical Circuit

. Main Storage Address Register

PMR (5 bits)

OXXX 4567
1 ____ --1-1 __________ ---'1· ... Logical Address

EA Cycle

EB Cycle

I Cycle

+
Translation
Control

I

o 4 5 15.
\~ ____ --~J~-------~---J

Translate

...... Address ATRs or MSAR ~ I):
~ lll~\""""'"

I/O

ATR
Stack
(Task)

32 x 9 ---------
(110)

- Addresses
2K Blocks

Instruction 32 x 9

Bits 0 1 2 3 4 5 6 7 P

Iy Translated .,
Address for 1-....
2K Blocks J

Reserved for
Storage
Protection

H3--

~ ~

A 1 A

OR

I
~

\
I

I \
I

I \ ~---------r------------~I I
Storage CSX MSAR 6-15
Card Lines
Select

8K group CSY

Select Lines

Data Strobe hillo
Write Pulse hillo

Main Storage Address

•

.... Real Address

ATR contains sixty-four 1-byte
registers: 32 for main storage

processor address translation
and 32 for 110 address translation.

The address translation registers
are loaded by the control processor

program.

Logical address from main
storage processor LSR or
from control processor
LS R for control processor

or lID operation~

MSAR
Logical Address

2 7 F F

i 0 : 0 : 1 : a I 0 : 1 : 1 : 1 \1 : 1 : 1 : 1 \1 : 1 :1 : 1 I
.. _____________ 0_.' 3 4 5 7 a 7 0 7

o f

Selected

ATR

Select ATR
Output

4

Decode

Input

Address
Actual

Address

7 F F F

Main ~OOO J
Storage . --. -- - -' .. - - - _. - -_.

. 01FF

Logical rOOO - -- - -. - -.-. -- ~27FFi
Address~ = == .. == ~ _

Real Addre" ~8; == =~ = = =~;~

Main Storage Processor 3-11

INSTRUCTION EXECUTION

This section describes how each System/34
main storage instruction is executed. The
method of describing how instructions are
usually executed is:

1. Show the instruction format and operation
codes.

2. Describe what the instruction does.

3. Show the program status byte settings.

4. Use a flowchart to show how the
instruction is executed.

5. Use a timing chart to show the details of
instruction execution.

The flowcharts and timing charts show the
associated operation and machine timing.

Data flow and logical functions are controlled
by selecting the proper gating lines in the main
storage processor. These functions are shown
on this page in appropriate charts.

Instructions for the main storage processor are
divided into four groups:

• Arithmetic instructions

• Data control instructions

• Logical instructions

• Command instructions

CP Gate Selection

Bits
01 Lines Gated Through

00 No Input/Output Selected

01 MSPCtrl Gt (8-15, P)
10 MS Gt Int (8-15,P)

11 MSP Ctrl Gt ANDed with MS Gt Int

1t +CPGtSeiBitl Al-P2Jl0
+CP Gt Sel Bit a A l-P2J13

MSP XL Y L Selection

Bit
0 XL YL

a LSR Gt LSR
1 LSR LSR Gt

L+MSPXL YL Select Bit Al-P2M07

ALU Gate Selection

Bits
01 ALU Gt Hi ALU Gt Lo

00 Degate Degate
01 ALU Lo Degate
10 ALU Hi ALU Lo
11 ALU Hi/ALU Lo ALU Lo

t!=+ALU Gt Sel B~t 1 A 1-P2M12
+ALU Gt Sel Bit a Al P2M13

ALU Control Selection

Bits
01-2 ALU Function Lo ALU Function Hi

000 X and Y X minus 1 plus carry

001 Xor Y X plus carry
010 X or (not) Y X minus 1 plus carry
all X and (not) Y X plus carry
100 X minus 1 plus carry X minus 1 plus carry
101 X pi us Y plus carry X plus carry
110 X minus Y minus 1 X minus 1 plus carry

plus carry
111 X plus carry X plus carry

~+ALU Func 501 Bit 2 Al-P2P05
+ALU Func Sel Bit 1 A l-P2Pl a

~ +ALU Func Sel Bit a Al P2G13

LSR Selection

Bits
0123 Register Name

0000 }
thru Reserved
0111
1000 Operand- 1 Address
1001 Operand 2 Address
1010 Instruction Address Register (lAR)
1011 Operation Register/O-Register
1100 Index Register 1 (XR1)
1101 -Index Register 2 (XR2)
1110 Address Recall Register (AR R)
1111 Length Count Recall Register (LCRR)

tL+LSR Sel Bit 3 Al-P2Ul0
L.+LSR Sel Bit 2 Al-P2S09

'----+LSR Sel Bit 1 Al-P2U09
'--- +LSR Sel Bit 0 Al-P2S05

-Main Storage Gate A Selection

Bits
0123 Selection

0000 Control Processor System Bus Out
0001 Y Register
0010 LSR High
0011 LSR Low
0100 Zone == F, Numeric:;:: Decimal Correct
0101 Zone == 0, Numeric == Decimal Correct
0110 Not Used
0111 ALU
1000 Zone = F, Numeric == Y (12-15)
1001 Zone == D, Numeric == Y (12-15)
1010 Not Used
1011 Not Used
1100 Zone = Y (8-11), Numeric = X (12-15)
1101 Zone = Y (12-15), Numeric = X (12-15)
1110 Zone = X (8-11), Numeric = Y (12-15)
1111 Zone = X (8-11), Numeric = Y (8-11)

~+MS.Gt Sel Bit 3 Al-P2G10
+MS Gt Sel Bit 2 A l-P2G09
+MS Gt Sel Bit 1 A1-P2Ml0
+MS Gt Sel Bit a A l-P2Mll

3-12

Arithmetic I nstructi,ons

Zero and Add Zoned (ZAZ)

This instruction m'oves data from operand 2,
byte by byte starting with the rightmost byte,
into the rightmost byte positions of operand 1.
If operand 1 is longer than operand 2, the main
storage processor fills the extra positions with
high-order decimal zeros (hexadecimal FO).

The main storage processor sets the zone bits
of all bytes, except the rightmost byte in
operand 1, to hexadecimal F (binary 1111). The
zone bits of the rightmost byte in operand 1 are
set to:

• Hexadecimal F if the value moved is either
zero or positive

• Hexadecimal D (binary 1101) if the value
moved is negative

Program Status Byte Settings

Bit Name Condition Indicated

7 Equal Zero result
6 Low Negative result
5 High Positive result
4 Decimal overflow Bit not affected
3 Test false Bit not affected
2 Binary overflow Bit not affected

•

\

ZERO AND ADD ZONED INSTRUCTION FORMAT

Operands
Op Code Q-Byte1 Operand Addresses2

(hex) (hex) (hex)

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

A 1 (L 1)'A2(L2) 04 L1-L2 L2-1 Operand 1 address Operand 2 address

A 1(L1),D2(L2,R1} 14 L 1-L2 L2-1 Operand 1 address Op 2 disp
from XR1

Al (L1},D2(L2,R2) 24 L 1-L2 L2-1 Operand 1 address
Op 2 disp
from XR2

01 (L1, R 1),A2(L2) 44 L1-L2 L2-1 Op 1 disp Operand 2 address
from XR1

01 (L 1 ,R1),D2(L2,Rl) 54 L 1-L2 L2-1 Op 1 disp Op 2 disp
from XR1 from XRl

01 (L1 ,R1),D2(L2,R2) 64 L1-L2 L2-1 Op 1 disp Op 2 disp
from XRl from XR2

01 (L 1 ,R2),A2(L2) 84 L 1-L2 L2-1 Op 1 disp
Operand 2 address

from XR2

01 (L 1 ,R2),02(L2,R1) 94 L1-L2 L2-1
Op 1 disp Op 2 disp
from XR2 from XR1

01 (L 1 ,R2),02(L2,R2) A4 L 1-L2 L2-1
Op 1 disp Op 2 disp
from XR2 from XR2

1The Q-byte designates the operand length:
U-L2 (4 bits) = the number of bytes in operand 1, minus the number of bytes in operand 2.
L2-1 (4 bits) = the number of bytes in operand 2, minus 1.

Maximum length of operand 1 is 31 bytes; maximum length of operand 2 is 16 bytes.

2The operands may overlap. Address operands by their rightmost bytes.

Main Storage Processor 3J 3

Sequence and Timing

Start execute
cycle

Load operand 2
address into MSAR
and address main
storage

Subtract 1 from
operand 2
address LSR

Load operand 2
into Y register

Decrement L2

Load operand 1
address into MSAR

Subtract 1 from
operand 1
address LSR

Store operand 2
(from Y register
to main storage)

Advance clock
to E3

Reset 'first cycle'
latch

Advance clock
to 10

Advance clock
to E6

Decrement L 1

Load operand 1
address in MSAR

Subtract 1 from
operand 1 LSR

Store hex FO in
operand 1 location

Reset 'first
cycle' latch

Advance clock
to EO

Note: If the result equals negative
zero, a recomplement cycle is
necessary to convert data to a
positive zero.

Load Operand Address into MSAR

Address Main Storage

Move Operand Address to A LU

Subtract 1 to A LU Control

Write Operand Address Min us1 in LSR

Move Second Operand to Y -Register

Decrement L2 (L2 not 0 an d not first
cycle)

Decrement L 1 (L2=0 and n ot
recomplement latch)

Store Data in Main Storage
V-Register

Advance Clock:

• To EO if L2 not 0

from

• To E3 if L2=0 and recon, plement latch

• To E6 if L2=0 and 0 no to
• To 10 if 0=0 and not ree omplement

latch

Allow Temporary Suspend

See Recomplement Cycfe later in this section.

3-14

EO E1 E2 E3 E4 E5 E6 E7 E8

- - -

• •• • -
- --

Add Zoned Decimal (AZ)

This instruction with algebraic results adds
operand 2 to operand 1, byte by byte, and
stores the result in operand 1. Both operands
are executed as unpacked decimal numbers.

The main storage processor sets the zone bits
of all bytes, except the rightmost byte in
operand 1, to hexadecimal F (binary 1111). The
zone bits of the rightmost byte in operand 1 are
set to hexadecimal F if the result of the
operation is either positive or zero, or to
hexadecimal D (binary 1101) if the result is
negative.

Program Status Byte Settings

Bit Name Condition Indicated

7 Equal Zero result

6 Low Negative result

5 High Positive result

4 Decimal overflow Carry occurred from the
leftmost position of
operand 1

3 Test false B it not affected

2 Binary overflow Bit not affected

See Recomplement Cycle later in this section.

Sequence and Timing
See Subtract Zoned Decimal (SZ)

•

ADD ZONED DECIMAL INSTRUCTION FORMAT

Operands Op Code Q-Byte1 Operand Addresses2

(hex) (hex) (hex)

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

A 1 (L 1),A2(L2) 06 L 1-L2 L2-1 Operand 1 address Operand 2 address

A 1 (L 1),D2(L2,R1) 16 L1-L2 L2-1 Operand 1 address Op 2 disp
from XR1

A 1 (L1)'D2(L2,R2) 26 L 1-L2 L2-1 Operand 1 address
Op 2 disp
from XR2

D1 (L 1 ,R1),A2(L2) 46 L1-L2 L2-1 Op 1 disp
Operand 2 address

from XR1

D1 (L 1 ,R1),D2(L2,R1) 56 L1-L2 L2-1 Op 1 disp Op 2 disp
from XR1 from XR1

01 (L 1 ,R1),02(L2,R2) 66 L1-L2 L2-1 Op 1 disp Op 2 disp
from XR1 from XR2

D1 (L 1 ,R2),A2(L2) 86 L1-L2 L2-1 Op 1 disp
Operand 2 address from XR2

01 (L 1 ,R2),D2(L2,R1) 96 L1-L2 L2-1 Op 1 disp Op 2 disp
from XR2 from XR1

01 (L 1 ,R2),02(L2,R2) A6 L1-L2 L2-1 Op 1 disp Op 2 disp
from XR2 from XR2

'The Q-byte designates the operand length:
Ll-L2 (4 bits) = the number of bytes in operand 1, minus the number of bytes in operand 2.
L2 -1 (4 bits) = the number of bytes in operand 2, minus 1.

Maximum length of operand 1 is 31 bytes; maximum length of operand 2 is 16 bytes.

2The operands may overlap. Address operands by their rightmost bytes.

Main Storage Processor 3-15

Subtract Zoned Decimal (SZ)

This instruction with algebraic results subtracts
operand 2 from operand 1, byte by byte, and
stores the result in operand 1. Both operands
are executed as unpacked decimal numbers.

The main storage processor sets the zone bits
of all operand 1 bytes, except the rightmost
byte, to hexadecimal F (binary 1111). The zone
bits of the rightmost byte in operand 1 are set
to hexadecimal F if the result of the operation is
either positive or zero, or to hexadecimal 0
(binary 1101) if the result is negative.

Program Status Byte Settings

Bit Name Condition Indicated

7 Equal Zero result

6 Low Negative result

5 High Positive result

4 Decimal overflow Carry occurred from the
leftmost position of
operand 1

3 Test false Bit not affected

2 Binary overflow Bit not affected

3-16

SUBTRACT ZONED DECIMAL INSTRUCTION FORMAT

'"-

Operands
Op Code Q-Byte' Operand Addresses2

(hex) (hex) (hex)

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

A 1 (L 1),A2(L2) 07 L l-L2 L2-1 Operand 1 address Operand 2 address

A 1 (L 1),D2(L2,R1) 17 L1-L2 L2-1 Operand 1 address Op 2 disp
from XR1

A 1 (L 1),D2(L2,R2) 27 L 1-L2 L2-1 Operand 1 address
Op 2 disp
from XR2

D1 (L 1 ,R1),A2(L2) 47 L1-L2 L2-1 Op 1 disp
Operand 2 address from XR1

D1 (L 1 ,R1)'D2(L2,Rl) 57 L1-L2 L2-1 Op 1 disp Op 2 disp
from XRl from XR1

D1 (L 1 ,Rl),D2(L2,R2) 67 L1-L2 L2-1 Op 1 disp Op 2 disp
from XR1 from XR2

D 1 (L 1, R2),A2(L2) 87 L1-L2 L2-1 Op 1 disp Operand 2 address from XR2

D1 (L 1 ,R2)'D2(L2,R1) 97 L 1-L2 L2-1 Op 1 disp Op 2 disp
from XR2 from XR1

D1(L 1 ,R2),D2(L2,R2) A7 L l-L2 L2-1 Op 1 disp Op 2 disp
from XR2 from XR2

'The Q-byte designates the operand length:
Ll-L2 (4 bits) = the number of bytes in operand 1, minus the number of bytes in operand 2.
L2-1 (4 bits) = the number of bytes in operand 2, minus 1.

Maximum length of operand 1 is 31 bytes; maximum length of operand 2 is 16 bytes.

2The operands may overlap. Address operands by their rightmost bytes.

Sequence and Timing for Add or Subtract Zoned Decimal (AZ, SZ)

Start execute
cycle

Load operand 2
address into MSAR
and address main
storage

Subtract 1 from
operand 2 LSR

Load operand 2
from storage
into Y register

Decrement L 1

Load operand 1
address into MSAR
and address main
storage

Subtract 1 from
operand 1 LSR

Load operand 1
into X low register

Decrement L2

Decimally add
operand 2 to
operand 1

Store result in
operand 1
location

Reset 'first cycle'
latch

•

Yes

Set 'complement'
latch

Reset 'first cycle'
latch

Set 'first cycle'
latch

recomplement
cycle

Load Operand Address into MSAR

Address Main Storage

Move Operand Address to ALU

Subtract 1 to ALU Contro I

Write Operand Address Min us 1 in LSR

Load Second Operand into V-Register

Decrement L1 (L2=O and n ot first cycle)

Decrement L2 (L2 not 0 a nd not first
cycle)

Load First Operand into X Low

Decimal Add or Subtract Se
to or from First Operand

cond Operand

Store Result in First Opera

Advance Clock:

• To EO if L2 not 0

• To E3 if:
L2=O and 0 not 0 an
not complement
L2=O and 0 not 0 an
and complement
Recomplement

• To 10 if:

nd Location

d carry and

d not carry

L2=0 and not carry a nd not
complement

lement latch· 0=0 and not recomp
L2=0 and carry and c omplement

Allow Temporary Suspend

200 ns

EO E1 E2 E3 E4 E5 E6 E7 E8

- -

• - • - -

-

Main Storage Processor 3·17

Recomplement Cycle

. The zero and added zoned, add zoned decimal,
and subtract zoned decimal instructions are the
only instructions that use the recomplement
cycle. The result of the decimal addition can be
stored in the operand 1 location as a true value.
or as the complement of the true value. If the
result is a true value, no recomplement cycle is
necessary.

A recomplement cycle is necessary when:

• The result is negative zero or the stored
result is in complement form.

• Operand 2 is complemented and there i~ no
carry from the high-order byte after the
algebraic addition.

Op Q Operand 1 Address Operand 2 Address

Instruction AZ I 01 I 3001

3000 3001

(operand 1)

Storage

4000 4001

(operand 2)

Instruction Execution Chart

After Cycle Q Complement PSR 4

I-Fetch 01 Off XXX

1 01 On Off

2 01 On Off

Recomplement 1 01 On Off

Recomplement 2 00 On Off

4001

Operand 1
Recomplement in Storage

Off F5D5

Off F5D8

Off F7D8

On F7F2

On F2F2

Next Clock

EO

EO

E3

E3

10

Op Q Operand 1 Address Operand 2 Address

Instruction
AZ 1

02
I

3002 4002

3000 3001 3002

(operand 1)

Storage

4000 4001 4002

(operand 2)

Instruction Execution Chart

PSR 6
After Cycle Q (Internal) PSR 7 Recomplement

I-Fetch 02 Off On Off

1 02 On On Off

2 01 On On Off

3 00 On On Off

Recomplement 1 021 Off On On

1 Final Q == 2, therefore the 2 recomplement cycles are saved.

Example: Negative zero, recomplement cycle
necessary.

Note: A recomplement cycle is necessary if
there is no carry from the high-order byte; a
recomplement cycle is not necessary if there is
a carry from the high-order byte.

3-18

Operand 1
in Storage Next Clock

F7F3D5 EO

F7F3DO EO

F7FODO EO

FOFODO F3

FOFOFO 10

Sequence and Timing

Start
recomplement
cycle

Load Q register
from Q backup
register

address into MSAR
from ARR and
address main storage

Subtract 1 from
ARR

Load operand 1
into Y register

Reset X
register

Set 'complement'
latch

Add X and Y
registers

II

Force D zone
(sign) in
rightmost byte

. Store byte in
main storage
operand 1
address

Advance cI ock
to E3

Yes

Yes

Decrement L2

Force F zone
(sign) in
rightmost byte

Reset 'first cycle'
latch

Yes

Yes

Yes

Decrement L 1

Force F zone

Advance clock
to 10

Load O-Register (first cycle

Load MSAR from ARR

Address Main Storage

Subtract 1 from AR R

Write New Address in AR R

Load First Operand Result
V-Register

Set Complement Latch

)

Byte into

Move Complement Byte to V-Register

te if Negative Force F to Zone of First By

Zero. Force D if Result is N
Result is Plus, Do Not Chan

Store Complemented Byte
Storage

Advance Clock:

egative. If
ge Sign.

in Main

• To E3 if 0 not 0 and res ult not equal
and result • To 10 if 0=0 or 0 not 0

equal or ZAZ instruction

Reset First Cycle Latch

Allow Temporary Suspend

200 ns

E3 E4 E5 E6 E7 E8

-

-
--

-

-

~ain Storage Processor 3-19

3-20

This page intentionally left blank.

Add Logical Characters (ALC)

This instruction adds the binary number in
operand 2 to the binary number in operand 1
and stores the result in operand 1. Both the
operands and the result are executed as
unsigned binary numbers.

Program Status Byte Settings

Bit Name Condition Indicated

7 Equal Zero result

6 Low No carry occurred from the
high-order byte and result
not zero

5 High Carry occurred from the
high-order byte and result
not zero

4 Decimal overflow Bit not affected

3 Test false Bit not affected

2 Binary overflow Carry occurred from the
high-order byte

Sequence and Timing
See Subtract Logical Characters (SLC)

•

ADD LOGICAL CHARACTERS INSTRUCTION FORMAT

Operands Op Code Q-Byte 1 Operand Addresses2

(hex) (hex) (hex)

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

A1(L 1},A2 DE L 1-1 Operand 1 address Operand. 2 address

A1(L1l.D2LR1) 1E L 1-1 Operand 1 address
Op 2 disp from

XR1

A1(L11.D2LR2) 2E L 1-1 Operand 1 address
Op 2 disp from

XR2

D1(L1,R1),A2 4E L 1-1 Op 1 disp
Operand 2 address

from XR1

D1(L1,R11.D2LR1) 5E L 1-1 Op 1 disp Op 2 disp
from XR1 from XR1

D1(L1,R1},D2LR2) 6E L 1-1 Op 1 disp Op 2 disp
from XR1 from XR2

D1(L 1, R21.A2 BE L 1-1 Op 1 disp
Operand 2 address

from XR2

D1 (L1, R21. D2L R1) 9E L 1-1 Op 1 disp Op 2 disp
from XR2 from XR1

D1 (L 1 ,R2), D2(,R2) AE L 1-1 Op 1 disp Op 2 disp
from XR2 from XR2

1 The Q-byte designates the operand length:
U-l = the number of bytes in either 0perand, minus l.

Maximum length of each operand is 256 bytes; both operands must be the same length.

2The operands may overlap. Address operands by their rightmost bytes.

Main Storage Processor 3-21

Subtract Logical Characters (SLC)

This instruction subtracts the binary number in
operand 2 from the binary number in operand 1
and stores the result in operand 1. Both the
operands and the result are executed as
unsigned binary numbers.

For example:

Operand 1 0110 1101

Operand 2 0111 1110

Result 1110 1011

. Program Status Byte Settings

CAUTION
The results of the program status byte are not
reliable if they are selected.

Bit Name Condition Indicated

7 Equal Zero result

6 Low Operand 1 was smaller than
operand 2 before execution

5 High First operand greater than
second operand

4 Decimal overflow Bit not affected

3 Test false Bit not affected

2 Binary overflow Bit not affected

3-22

SUBTRACT LOGICAL CHARACTERS INSTRUCTION FORMAT

Operands
Op Code Q-Byte1 Operand Addresses2

(hex) (hex) (hex)

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

A1 (L1),A2 OF L1-1 Operand 1 address Operand 2 address

A1(L1),02(,R1) lF L1-1 Operand 1 address
Op 2 disp from

XR1

A 1 (L 1),02(, R2) 2F L 1-1 Operand 1 address Op 2 disp from
XR2

01(L1,R1),A2 4F L 1-1 Op 1 disp Operand 2 address from XRl

01 (L 1 ,R1)'02(.R1) 5F L 1-1 Op 1 disp Op 2 disp
from XR1 from XRl

01 (L 1 ,Rl)'02(.R2) 6F L 1-1
Op 1 disp Op 2 disp

"
from XR1 from XR2

01 (L 1 ,R2),A2 8F L 1-1 Op 1 disp
Operand 2 address from XR2

01 (L 1 ,R2)'02(.Rl) 9F L 1-1 Op 1 disp Op 2 disp
from XR2 from XRl

01 (L 1 ,R2),02(.R2) AF L 1-1 Op 1 disp . Op 2 disp
from XR2 from XR2

1The Q-byte designates the operand length:
Ll-l = the number of bytes in either operand, minus l.

Maximum length of each operand is 256 bytes; both operands must be the same length.

2The operands may overlap. Address operands by their rightmost bytes.

Sequence and Timing for Add or Subtract Logical Characters (ALC, SLC)

Start execute
cycle

Load operand 2
address into MSAR
and address main
storage

Subtract 1 from
operand 2 address
LSR

Load operand 2
from storage into
Y register

Load operand 1
address into MSAR
and address main"
storage

Subtract 1 from
operand 1 address
LSR

Load operand 1
into X low register

No

II

Algebraically
subtract operand 2
from operand 1

Store result in
operand 1 location

Advance clock
to EO

Decrement Q
register

ALe

Yes

Yes

Algebraically add
operand 2 to
operand 1

Advance clock
to 10

Reset 'first cycle'
latch

Load Operand Address int o MSAR

Address Main Storage

Move Operand Address to ALU

Subtract 1 to ALU Contro I

Write Operand Address Mi nus 1 in LSR

Decrement a-Register (not first cycle)

Load Second Operand into Y·Register

Load First Operand into X Low Register

Add/Subtract Operands

Store Result in Main Stora ge

Go to I·fetch Advance Clock:
• To EO if a not 0

• To 10 if a=o

Allow Temporary Suspend

200 ns ...

EO E1 E2 E3 E4 E5 E6 E7 E8 - -

- --- -
-

Main Storage Processor 3-23

Add to Register (A)

This instruction adds the binary number in
operand 1 to the contents of the 2-byte
register selected by the Q-byte and stores the
result in the specified register. The Q-bytes
used to specify various registers are:

a-Byte a-Byte
(binary) (hex) Register Specified

0000 0000 00 None. The system ignores
(no-ops) the instruction.

0000 0001 01 XR1.

0000 0010 02 XR2.

0000 0100 04 Program status register.

0000 1000 08 Address recall register.

0001 0000 10 Instruction address register.

0010 0000 20 Instruction address register.

0100 0000 40 Reserved; do not use.

1000 0000 80 Reserved; do not use.

Program Status Byte Settings

CAUTION
The results of the program status byte are not
reliable if they are selected.

Bit Name Condition Indicated

7 Equal Zero result

6 Low No carry occurred from the
leftmost byte and result not
zero

5 High Carry occurred from the
leftmost byte and result not
zero

4 Decimal overflow Bit not used

3 Test false Bit not used

2 Binary overflow Carry occurred from the
leftmost byte

3-24

ADD TO REGISTER INSTRUCTION FORMAT

Operands
Op Code Q-Byte1 Operand Address2

(hex) (binary) (hex)

Byte 1 Byte 2 Byte 3 Byte 4

A1,RX 36 Rx Operand 1 address

D1(,Rl),RX 76 Rx
Op 1 disp
from XR1

D1(,R2),RX 86 Rx Op 1 disp
from XR2

1 Rx specifies the register whose contents are modified by the machine
instruction.

20perand 1 is a 2-byte field addressed by its rightmost byte; operand
2 is not used.

Sequence and Timing

Start execute
cycle

1 -.
Load operand 1
address into MSAR
and address main
storage

~

Subtract 1 from
operand 1
address LSR

Load PSR into Y"~NO
Y register cycle

PSR Yes Load operand 1 into
selected 'X register

No

Load selected
LSR into X

Add X and Y

registers registers

! ~

Load operand 1 Store result in

into Y register PSR LSR

!
,

Add X and Y
registers

,
Store ~sult in
selected LSR
low

I
t k). Reset 'first cycle' - Advance cI ock

latch to E3

•

Load Q backup
register into Y
register

PSR Yes Load operand 1 into
selected X register

No

Gate high byte
Add X and Y

from X high to
Y register

registers

!

Load X low with Store result in

operand 1 LeRR LSR

~

Add X and Y
registers

~

Store result in
selected LSR
high

I
•

Advance clock
to 10

J
Go to I-fetch

Load Operand Address into MSAR

Address Main Storage

Move Operand Address to A LU

Subtract 1 from Operand A ddress

Write Operand Address Min us 1 in LSR

Load PSR into V-Register

Load Q-Backup Register in to V-Register

Load Selected LSR into X- Register

Load Operand Byte into Y­
(if an LSR is specified)

Register

Load Operand into X-Regis ter

Add X- and V-Registers

Store LSR High

Store LSR Low

Gate Byte from I ncremente
Decrementer to V-Register

Advance Clock:

r or

• To E3 if end of first cyc Ie
• To 10 if end of second c ycle

Allow Temporary Suspend

200 ns

E3 E4 E5 ~5X E3 E4 E5 E5X

- -

-

- •

-

Main Storage Processor 3-25

Data Control I n.structions

Move Hexadecimal Character (MVX)

This instruction moves the numeric part (bits
4-7) or the zone part (bits 0-3) of ,operand 2 to
the numeric or zone part of operand 1, as
specified by the Q-byte. The Q-byte codes
are:

a·Byte Q·Byte
(binary) (hex) Meaning

00000000 00

0000 0001 01

00000010 02

00000011 03

Move data from operand 2 zone
portion to operand 1 zone portion

Move data from operand 2 n"umeric
portion to operand 1 zone portion

Move data from operand 2 zone
portion to operand 1 numeric
portion

Move data from operand 2 numeric
portion to operand 1 numeric
portion

Program Status Byte Settings

This instruction does not affect the program
status register.

3·26

MOVE HEXADECIMAL CHARACTER INSTRUCTION FORMAT

Operands Op Code Q-Byte1 Operand Addresses2

(hex) (hex) (hex)

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

A 1 (I),A2 08 I Operand 1 address Operand 2 address

A1(1)'D2(,R1) 18 I Operand 1 address Op 2 disp
from XR1

A1 (I)'02('R2) 28 I Operand 1 address Op 2 disp
from XR2

01 (I,R1),A2 48 I Op 1 disp
Operand 2 address from XR1

D1 (I,R1),02(,R1) 58 I Op 1 disp Op 2 disp
from XR1 from XR1

D1(1,R1),D2(,R2) 68 I Op 1 disp Op 2 disp
from XR1 from XR2

01 (I,R2),A2 88 I Op 1 disp Operand 2 address from XR2

01 (I,R2),02(,R1) 98 I Op 1 disp Op 2 disp
from XR2 from XR1

D1 (I,R2),02(,R2) A8 I Op 1 disp Op 2 disp
from XR2 from XR2

'1 = one byte of immediate data that specifies which portion of each I-byte operand is used in the operation.
280th operands are 1- byte fields.

Sequence and Timing

Start execute 200 ns
cycle

1 EO E1 E2 E3 E4 E5 E6 E7 E8

Load Operand Address int o MSAR
Load operand 2 - -address into MSAR
and address main Address Main Storage

storage
Load Second Operand into V-Register -1 Load First Operand into X -Register -

Load operand 2
Pass 1/2 Byte through ALU

into Y register
Store Result in First Opera nd Location

1
Advance Clock to 10

Load operand 1 Allow Temporary Suspend

address into MSAR

1
Load operand 1
into X register

1
Pass one-half byte 06 07 Operation
from operand 2 and
operand 1 through I-

0 0 Move zone 2 to zone 1 - 0 1 Move numeric 2 to zone 1
ALU per Q bits 1 0 Move zone 2 to numeric 1
6and 7 1 1 Move numeric 2 to numeric 1

1
Store result in
operand 1
location

1
Advance clock
to 10

1
Go to I-fetch

• ~ainStorage Processor 3-27

Move Characters (MVC)

This instruction places the contents of operand
2, byte by byte, into operand 1. One character
can be duplicated through a complete field by
setting the operand 2 address one byte to the
right of the operand 1 address.

Program Status Byte Settings

This instruction does not affect the program
status register.

3-28

MOVE CHARACTERS INSTRUCTION FORMAT

Operands
Op Code Q Byte1 Operand Addresses2

(hex) (hex) (hex)

Byte 1 Byte 2 Byte 3 I Byte 4 Byte 5 Byte 6

A1(L1)'A2 DC L1-1 Operand 1 address Operand 2 address

A 1 (L1)'02tR1) 1C L1-1 Operand 1 address Op 2 disp from
XR1

A 1 (L1),02tR2) 2C L1-1 Operand 1 address
Op' 2 disp from

XR2

01 (L1,R1),A2 4C L1-1 Op 1 disp
Operand 2 address from XR1

01 (L 1 ,R1),02tR1) 5C L 1-1 Op 1 disp Op 2 disp
from XR1 from XR1

01 (L 1 ,R1),02tR2) 6C L1-1 Op 1 disp Op 2 disp
from XR1 from XR2

01 (L 1 ,R2),A2 8C L1-1 Op 1 disp Operand 2 address
from XR2

01 (L 1 ,R2),02tR1) 9C L1-1 Op 1 disp Op 2 disp
from XR2 from XR1

01 (L 1,R2),02tR2) AC L1-1 Op 1 disp Op 2 disp
from XR2 from XR2

1The Q byte designates the operand length:
Ll-l = the number of bytes in either operand, minus 1.

Maximum length of each operand is 256 bytes; both operands must be the same length.

2The operands may overlap. Address operands by their rightmost bytes.

Sequence and Timing

Start execute
cycle

Load operand 2
address into MSAR
and address main
storage

Subtract 1 from
operand 2 LSR

Load operand 2
into Y register

Decrement Q

register

Load operand 1
address into MSAR

Subtract 1 from
operand 1 LSR

•

Store Y register
in main storage
(operand 1 address)

Advance clock
to 10

Go to I-fetch

No

Reset 'first cycle'
latch

Advance clock
to EO

Load Operand Address into MSAR

Address Main Storage

Move Operand Address to A LU

Subtract 1 to ALU Control

Write Operand Address Min us 1 in LSR

Decrement O-Register (if no t first cycle)

Load Second Operand into V-Register

Store Second Operand in F
Location

irst Operand

Advance Clock:
• To EO if 0 not 0
• To 10 if 0=0

Allow Temporary·Suspend

200 ns

EO E1 E2 E3 E4 E5

- -

- -

Main Storage Processor 3-29

Edit (ED)

This instruction replaces bytes that contain
hexadecimal 20 in operand 1 with characters
from operand 2. Starting at the rightmost
position in both operands, the main storage
processor inspects operand 1 for hexadecimal
20. When the first hexadecimal 20 is found, the
first byte is moved from operand 2 into that
operand 1 position. The following bytes in
operand 1 are then inspected for the next
sequential hexadecimal 20. When the main
storage processor locates the second
hexadecimal 20, it moves the second byte from
operand 2 into that ~perand 1 position. The
operation continues until the last byte in
operand 1 has been inspected for hexadecimal
20. During the operation, the system sets the
zone bits of all replaced operand 1 bytes to
hexadecimal F (binary 1111).

Program Status Byte Settings 1

Bit Name Condition Indicated

7 Equal Operand 2 zero

6 Low Operand 2 negative

5 High Operand 2 positive

4 Decimal overflow Bit not affected

3 Test false Bit not affected

2 Binary overflow Bit not affected

1 The program status byte settings will be as shown
only if one of the following condition exists:
1. The program status byte bit 7 was set before

edit is executed.
2. The rightmost byte of operand 1 was hex 20.
3. Operand 2 is not zero.

EDIT INSTRUCTION FORMAT

Operands
Op Code Q-Byte1

(hex) (hex)

Byte 1 Byte 2 Byte 3

Al(L1),A2 OA L 1-1 Operand 1

A 1(L 1),D2(,R1) 1A L 1-1 Operand 1

A1(L1}'D2(,R2) 2A L 1-1 Operand 1

D1(L1 ,R1),A2 4A L 1-1 Op 1 disp
from XRl

D1 (L 1 ,R1 },D2(,R1) 5A L 1-1 Op 1 disp
from XR1

D1(L 1, Rl), D2(,R2) 6A L 1-1 Op 1 disp
from XR1

D1 (L 1, R2},A2 8A L 1-1
Op 1 disp
from XR2

D1 (L 1 ,R2},D2(,R1) 9A L 1-1 Op 1 disp
from XR2

D1 (L 1, R2), D2(, R2) AA L 1-1
Op 1 disp
from XR2

1The Q-byte designates the operand length:
U-l = the number of bytes in either operand, minus 1.

Operand 2 must contain as many bytes as there are hex 20s in operand 1.

2The operands may overlap. Address operands by their rightmost bytes.

3-30

Operand Addresses2

(hex)

Byte 4 Byte 5 Byte 6

address Operand 2 address

address
Op 2 disp from

XR~

address Op 2 disp from
XR2

Operand 2 address

Op 2 disp
from XR1

Op 2 disp
from XR2

Operand 2 address

Op 2 disp
from XR1

Op 2 disp
from XR2

Sequence and Timing
Start execute
cycle

Load operand 2
address into MSAR
and address main
storage

Subtract 1 from
operand 2 address
LSR

Load operand 2
into Y register

Load operand 1
address into MSAR
and address main
storage

Subtract 1 from
operand 1 LSR

•

'Decrement Q

register

Get operand 1 from
main storage and
test for hex 20

Reset 'first
cycle' latch

Load operand 1

address into MSAR

Advance clock
to E4

Yes

Yes

Advance clock
to 10

Force F zone, pass
numeric digit of
operand 2 through
main storage gate

Store modified
operand 2 in
operand 1 location

Advance clock
to EO

Yes

Load Operand Address into MSAR

Address Main Storage

Move Operand Address to A LU

Subtract 1 to A LU Control

Write Operand Address Min us 1 in LSR

Load Second Operand into

Decrement O-Register (if n

Test First Operand from M
for Hex 20

Force F Zone and Pass Firs
Digit through Main Storage
first operand was hex 20)

Move Modified Operand to

V-Register

ot first cycle)

ain Storage

t Operand
Gate (if

First Operand
. Location (if first operand w as hex 20)

Advance Clock

• To EO if 0 not 0
• To E4 if first operand n ot hex 20

and 0 not 0
• To 10 if 0=0 and first op erand not

hex 20

• To 10 if 0=0

Allow Temporary Suspend

Advance clock
to 10

200 ns

EO E1 E2 E3 E4 E5 E6 E7 E8

- - -

- -
- -

If Not Hex 20

Main Storage Processor 3-31

Insert and Test Characters UTC)

The single character at the operand 2 address
replaces all the characters to the left of the first
significant digit in operand 1. Only decimal
digits 1 through 9 are significant.

The operation goes from left to right, filling
operand 1 with the character from operand 2.
Finding a significant digit in operand 1 ends the
operation.

At the end of the operation, the address recall
register contains the address of the first
significant digit; if n,o significant digit is found,
the address recall register contains the address
of the byte to the right of operand 1. This new
information remains in the register until the
system executes the next decimal add, decimal
subtract, zero and add zoned, branch, or insert
and test characters instruction.

Program Status Byte Settings

This instruction does not affect the program
status register.

INSERT AND TEST CHARACTERS INSTRUCTION FORMAT

Operands Op Code Q-Byte1

(hex) (hex)

Byte 1 . Byte 2

A1 (L 1),A2 OB L 1-'

A1(L1),02(,R1) 1B L1-1

A 1 (L 1),02(' R2) 2B L1-1

01(L1,R1),A2 4B L1-1

. D1(L 1 ,R1),D2(,R1) 58 L1-1

D1 (L 1 ,R1),D2(,R2) 6B L1-1

D1 (L 1 ,R2),A2 8B L 1-1

D1(L1,R2),D2(,R1) 98 L 1-1

D1 (L1,R2)'D2('R2) AB L1-1

1The Q-byte designates the operand length:
Ll-l = the number of bytes in either operand, minus 1.

Operand 2 is a i-byte field.

2Address operand 1 by its leftmost position.

3-32

Operand Addresses2

(hex)

Byte 3 Byte 4 Byte 5 . Byte 6

Operand 1 address Operand 2 address

Operand 1 address Op 2 disp
from XR1

Operand 1 address Op 2 disp
from XR2

Op 1 disp Operand 2 address from XR1

Op 1 disp Op 2 disp
from XR1 from XR1

Op 1 disp Op 2 disp
from XR1 from XR2

Op 1 disp Operand 2 address from XR2

Op 1 disp Op 2 disp
from XR2 from XR1

Op 1 disp Op 2 disp
from XR2 from XR2

Sequence and Timing

Load operand 2
address into MSAR
and address main
storage

Load operand 2
into Y register

Load operand 1
address into MSAR
and address main
storage

Add 1 to operand 1
address

Decrement Q

register

Get operand 1
from storage

Write operand 1
address into ARR

Test for first
significant
digit

II

Store operand 2
into operand 1
location (Y to
storage)

Reset 'first
cycle' latch

Advance clock
to E3

Yes

Yes

Advance clock
to 10

Go to I-fetch

Advance clock
to 10

Load Operand Address int o MSAR

Address Main Storage

Load Second Operand into V-Register

Move Operand Address to ALU

Plus 1 to ALU Control

Write Operand Address Plu s 1 in LSR

Decrement 0- Register (if n ot first cycle)

Test for Significant Digit

Move Data from Y-Registe r to Storage

Store Data in Main Storage

Advance Clock:

• To 10 if significant digit

• To 10 if 0=0
• ToE3ifOnotO

Allow Temporary Suspend

200 ns -
EO E1 E2 E3 E4 E5 E6 E7 E8

- -
If not significant
digit; otherwise,
write operand 1

- -idress.

-

If
Significant

Digit
.-

Main Storage Processor 3·33·

Move Logical Immediate (MVI)

MOVE LOGICAL IMMEDIATE INSTRUCTION FORMAT

Operands Op Code Q-Byte1 Operand Address2

(hex) (binary) (hex)

Byte 1 Byte 2 Byte 3

Al,1 3C I Operand 1

Dl tRl),1 7C I Op 1 disp
from XR1

D1 (,R2),1 BC I Op 1 disp
from XR2

'1 = I byte of immediate data (for example. I byte of actual data
on a I-byte mask).

20perand I is a I-byte field; operand 2 is not used.

This instruction moves the Q-byte into operand
1.

Program Status Byte Settings

This instruction does not affect the program
status register.

Byte 4

address

Sequence and Timing

Start execute

Load operand 1
address into MSAR
and address main
storage

Store LSR Q
register in
main storage

Advance clock
to 10

Load Operand Address into

Address Main Storage

Select LSR Low

Write Contents of LSR Low
Storage (Q-register value)

Advance Clock to 10

Allow Temporary Suspend

LSR 11 low byte
is Q-byte.
LSR 11 was loaded
during I-fetch

MSAR

in Main

200 ns

E3

-

3-34

E4 E5

-

Set Bits On Masked (SBN)

The system inspects the a-byte, bit by bit. If
the system finds a binary 1 in the a-byte, the
system sets the comparable bit in the operand
byte to 1; if the system finds a binary 0 in the
a-byte, the comparable bit in the operand is
not changed.

Program Status Byte Settings

This instruction does not affect the program
status register.

Set Bits Off Masked (SBF)

The system inspects the Q-byte, bit by bit. If
the system finds a binary 1 in the a-byte, the
system sets the comparable bit in the operand
byte to 0; if the system finds a binary 0 in the
a-byte, the comparable bit in the operand is
not changed.

Program Status Byte Settings

This instruction does not affect the program
status register.

•

SET BITS ON MASKED INSTRUCTION FORMAT

Operands
Op Code Q-Byte' Operand Address2

(hex) (binary) (hex)

Byte 1 Byte 2 Byte 3 Byte 4

A1,1 3A xxxx xxx x Operand 1 address

01 (,R1), I 7A xxxx xxxx Op 1 disp
from XR1

01 (,R2),1 BA . xxxx xxxx Op 1 disp
from XR2

'The Q-byte contains a 1-byte binary mask specifying operand bits to
be turned on.

20perand 1 is a 1-byte field; operand 2 is not used.

SET BITS OFF MASKED INSTRUCTION FORMAT

Operands
Op Code Q-Byte' Operand Address2

(hex) (binary) (hex)

Byte 1 Byte 2 Byte 3 Byte 4

A 1,1 3B xxxx xxxx Operand 1 address

01 (,R1),1 7B xxxx xxxx Op 1 disp
from XR1

01CR2),1 BB xxxx xxxx Op 1 disp
from XR2

'The Q-byte contains a 1-byte binary mask specifying operand bits to
be turned on.

20perand 1 is a 1-byte field; operand 2 is not used.

Sequence and Timing

Load operand 1
address into MSAR
and address main
storage

Load mask byte
into Y register from
op and Q LSR

Load operand 1
byte into
X register

Set bits off
according to Q
mask byte

Store reSUlt in
main storage

Advarlce clock
to 10

SBN

Load First Operand Addres s into MSAR

Address Main Storage

Load LSR Low Byte into Y -Register
(Q-byte)

Load First Operand into X-

Set Bits On or Off Per Instr

Store Result in Main Storag

Advance Clock to 10

Allow Temporary Suspend

Set bits on
according to Q
mask byte

Register

uction via A LU

e

200 ns
-"

E3 E4 E5 E5 E7 E8

-

Main Storage Processor 3-35

Store Register (ST)

This instruction places the contents of the
register specified by the Q-byte into the 2-byte
field specified by the operand address. The
Q - byte codes are:

Q-Byte Q-Byte
(binary) (hex) Register Specified

0000 0000 00 None. The system ignores
(no-ops) the instruction.

0000 0001 01 XR1.

0000 0010 02 XR2.

0000 0100 04 Program status register.

0000 1000 08 Address recall register.

0001 0000 10 Instruction address register.

0010 0000 20 Instruction address register.

0100 0000 40 Reserved; do not use.

1000 0000 80 Reserved; do not use.

Program Status Byte Settings

This instruction does not affect the program
status register.

Sequence and Timing

Load operand 1
address into MSAR
and address main
storage

Load Q backup
register into Y
register

Store result in
main storage

Advance clock
to 10

Go to I-fetch

No

Yes

Load PSR into Y
register

Store result in
main storage

Store selected LSR
low in main
storage

Subtract 1 from
operand address

Reset 'first cycle'
latch

Advance clock
to E3

No

Store selected LSR
high in main
storage

Advance clock
to 10

Go to I-fetch

STORE REGISTER INSTRUCTION FORMAT

Operands
Op Code Q-Byte1 Operand Address2

(hex) (binary) (hex)

Byte 1 Byte 2 Byte 3 Byte 4

A1,RX 34 Rx Operand 1 address

01 ('R1),RX 74 Rx Op 1 disp
from XR1

01 (,R2),RX 84 Rx
Op 1 disp.
from XR2

1 Rx specifies the register whose contents are to be stored.

20perand 1 isa 2-byte field addressed by its rightmost byte; operand
2 is not used.

Load First Operand Addres s into MSAR

Address Main Storage

Subtract 1 from First Oper and Address

Write Operand Address Min us 1 in LSR

Load PSR into Y·Register (if PSR selected)

Load Q·Backup Register in
(if PSR selected)

to V-Register

Select LSR Low (first cycle)

Select LSR High (second cy cle)

Store Result in Main Storag e

Advance Clock to E3

Advance Clock to 10

Allow Temporary Suspend

200 ns

E3 E4

-

-

.

E5

3-36

,

E5X E3 E4 E5

-
•

-

Load Register (L)

This instruction moves data from the 2-byte
field specified by the operand address into the
register specified by the Q-byte. The Q-byte
codes are:

Q-Byte
(binary)

0000 0000

00000001

00000010

00000100

0000 1000

0001 0000

00100000

0100 0000

10000000

Q-Byte.
(hex) Register Specified

00 None. The system ignores
(no-ops) the instruction.

01 XR1.

02 XR2.

04 Program status register.

08 Address recall register.

10 Instruction address register.

20 I nstruction address register.

40 Reserved; do not use.

80 Reserved; do not use.

Program Status Byte Settings

This instruction does not affect the program
status register unless the instruction specifies
the program status register.

The 6 rightmost bits (bits 10-15) of the
program status register are condition indicators.
These bits are named the program status byte
throughout this manual. The other program
status register bits are not used.

II

LOAD REGISTER INSTRUCTION FORMAT

Operands
Op Code Q-Byte' Operand Address2

(hex) (binary) (hex)

Byte 1 Byte 2 Byte 3 Byte 4'

A1,RX 35 Rx Operand 1 address

01 (,Rl),RX 75 Rx Op 1 disp
from XRl

01 (,R2),RX 85 Rx Op 1 disp
from XR2

, Rx specifies the register into which data is loaded.

20perand 1 is a 2-byte field addressed by its rightmost byte; operand
2 is not used.

Sequence and Timing

Load operand 1
address into MSAR
and address main
storage

Subtract 1 from
operand 1 LSR

Load operand 1
into PSR and into
PSR LSR

Reset 'first cycle'
latch

Advance clock
to E3

No

No

Load Operand Address into MSAR

Address Main Storage

Subtract 1 to ALU Control

Write Operand Address Minus 1 in
Address LSR

Load First Operand into Selected
LSR or the PSR

Advance Clock:
• To E3 if first cycle
• To 10 if not first cycle

200 ns

E3 E4 E5

Allow Temporary Suspend -----------------_---j~

Load operand 1 into
LCRR

Advance clock
to 10

Go to I-fetch

Load operand 1 into
selected LSR low

Reset 'first cycle'
latch

Advance clock
to E3

No

Load operand 1 into
selected LSR high

Advance clock
to 10

Go to I-fetch

Main Storage Processor 3-37

Load Address (LA)

This instruction loads the value specified by

instruction byte 3 or instruction bytes 3 and 4
into the index register specified by the Q-byte.

If an attempt is made to load both index

registers at the same time (Q-byte bits 6 and 7
are both. on), index register 1 is loaded; if

neither index register is specified, index register
2 is loaded. .

Program Status Byte Settings

This instruction does not affect the program

status register.

LOAD ADDRESS INSTRUCTION FORMAT

Operands
Op Code Q-Byte1

(hex) (binary)

Byte 1 Byte 2

A1,RX C2 Rx

D1 {'R1),RX D2 Rx

D1{,R2},RX E2 Rx

1 Rx specifies the index register to be loaded:
XRl = hex 01 or 03
XR2 = hex 02 or 00

Operand Address2

(hex)

Byte 3 Byte 4

Direct address

Op 1 disp
from XR1

Op 1 disp
from XR2

2A direct address is loaded when the machine instruction has a C2 op code.
I When the op code is D2. the system adds the machine instruction byte 3
, value to the contents of XRl and stores the result in the index register

I specified by the Q-byte. When the op code is E2, the system adds the
I machine instruction byte 3 value to the contents of XR2 and stores

the result in the index register spe~ified by the Q-byte.

Sequence and Timing

Start
execute cycle

l
Load operand 1
address (IAR) into
MSAR and address
main storage

t
Add 1 to operand
address (IAR)

Direct
addressing
instruction

Yes

Load operand 1
address into selected
index register high

1
Advance clock
to 110

1
Load operand 1
address (IAR) into
MSAR and address
main storage

1

Add 1 to operand
address (IAR)

!
Load operand 1
address into selected
index register low

No

Load operand 1 into
Y register

Load index register
1 or 2 into X
registers

Add displacement
byte to index
register

Store address in
selected index
register

Advance clock
to 10

Go to I-fetch

Load Operand Address int o MSAR

Address Main Storage

Load IAR into X-Register

Move Operand Address to ALU

Add 1 to ALU

Write Operand Address Plu s 1 in IAR

Load First Operand into Y
(indexed instruction)

-Register

Load I ndex Register 1 or 2 into
X-Register

Add Displacement to Inde
(indexed instruction)

x Register

Write Index Register 1 or 2
(direct addressing)

Write Index Register 1 or 2
(direct addressing)

Write Index Register 1 or 2
(indexed instruction)

Advance Clock:
• Direct addressing:

- To 110
- To 10

• Indexed instruction
- To 10

Allow Temporary Suspend

High

Low

High/Low

3-38

200 ns

16 17 18 19 110 111 112

- -

- -
-

- ..
•

Direct Indexed

Logical Instructions

Compare Logical Immediate (ClI)

This instruction compares all the bits in the

a-byte with all the bits in operand 1 and
indicates a high, low, or equal condition by
setting a bit in the program status byte. Neither
the Q-byte nor operand 1 is changed by this
operation.

Program Status Byte Settings

Bit Name Condition Indicated

7 Equal Operand 1 value equal to a
byte value

6 Low Operand 1 value less than a
byte value

5 High Operand 1 value greater than
a byte value

4 Decimal overflow Bit not affected

3 Test false Bit not affected

2 Binary overflow Bit not affected

COMPARE LOGICAL IMMEDIATE INSTRUCTION FORMAT

.
Op Code Q-Byte1 Operand Address2

Operands
(hex) (binary) (hex)

Byte 1 Byte 2 Byte 3 Byte 4

A1,I 3D I Operand 1 address

D1(,R1),1 7D I
Op 1 disp
from XR1

D1 (, R2),1 BD I
Op 1 disp
from XR2

11 = 1 byte of immediate data (that is, 1. byte of actual data
that is to be used in binary form).

20perand 1 is a I-byte field; operand 2 is not used.

•

Sequence and Timing

Load operand 1
address into MSAR
and address main
storage

Load O-byte into
Y register

Load operand 1 into
X low register

Compare operand 1
with Q-byte

Yes

Set PSR bit 7
and reset PSR
bits 5 and 6

Advance clock
to 10

No

Set PSR bit 6
and reset PSR
bits 5 and 7

200 ns

E3 E4 E5 E5X

Load Operand Address into MSAR

Address Main Storage

Load Q-Byte into V-Register

Load Operand into X-Register

Compare a-Byte and Operand Byte

Set PSRAccording to Test Results

Advance Clock to 10

Allow Temporary Suspend ---------------------~

No

Set PSR bit 5
and reset PSR
bits 6 and 7

Main Storage Processor 3-39

Compare Logical Characters (CLC)

This instruction compares operand 1 with
operand 2, byte by byte, and sets the program
status register to show the compared result.
The compare mode uses each operand as a
binary quantity; that is, similar bytes from the
two operands are compared, bit for bit.

Program Status Byte Settings

Bit Name Condition Indicated

7 Equal Operand values are equal

6 Low Operand 1 value smaller than
operand 2 value

5 High Operand 1 value greater than
operand 2 value

4 Decimal overflow B it not affected
"

3 Test false Bit not affected

2 Binary overflow Bit not affected

3·40

COMPARE LOGICAL CHARACTERS INSTRUCTION FORMAT

Operands Op Code Q Byte1 Operand Addresses2

(hex) (hex) (hex)

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

A1(L1),A2 OD L 1-1 Operand 1 address Operand 2 address

A1 (L 1),D2(,Rl) 1D L 1-1 Operand 1 address Op 2 disp
from XR1

A 1(L1). D2(' R2} 2D L 1-1 Operand 1 address Op 2 disp
from XR2

01 (L1, R1 },A2 40 L 1-1 Op 1 disp Operand 2 address
from XR1

01(L1,Rl).02(,R1) 5D L 1-1 Op 1 disp Op 2 disp
from XR1 from XR1

01 (L 1, R1)' D2('R2} 60 L 1-1 Op 1 disp Op 2 disp
from XRl from XR2

D1 (L 1, R2}'A2 80 L 1-1 Op 1 disp Operand 2 address
from XR2

D1(Ll,R2).D2('R1) 9D L 1-1 Op 1 disp Op 2 disp
from XR2 from XRl

D1 (L 1, R2)' D2(,R2} AD Ll-1
Op -1 disp Op 2 disp
from XR2 from XR2

1The Q byte designates the operand length:
U-l = the number of bytes in either operand, minus 1.

Maximum length of each operand is 256 bytes; both operands must be the same length.
2The operands may overlap. Address operands by th~ir rightmost bytes.

Sequence and Timing

Yes

address into MSAR
and address main

. storage

Subtract 1 from
operand 2 address
LSR

Load operand 2 into
Y register

Load operand 1
address into MSAR
and address main
storage

Decrement Q
register

Load operand 1 into
X register

Test operand 2
for = to, <, or >
operand 1

Yes

Set PSR bit 7 if first
cycle

Reset 'first cycle'
latch

Advance clock
to EO

•

Yes

Reset PSR
bit 7

Set PSR bit 6

Advance clock
to 10

Go to I-fetch

No

Set PSR bit 5

Load Operand Address into MSAR

Address Main Storage

Subtract 1 to ALU Contro I

Move Operand Address to A LU

Write Operand Address Min
Operand Address LSR

Load Second Operand into

us 1 in

V-Register

Decrement Q-Register (if n ot first cycle)

Load First Operand into X

Compare Second Operand
First Operand

-Register

with

Set PSR per Compare Resu It

Advance Clock:
• To EO if Q is not 0
• To 10 if Q=O

Allow Temporary Suspend

200 ns

EO E1 E2 E3 E4 E5 E5X

- -

- •

-

Main Storage Processor 3·41

Test Bits On Masked (TBN)

This instruction tests specified bits in the
operand byte for a binary 1. For each mask bit
(Q-byte bit) on, the system tests the same bit
in the operand. If any tested bit is a 0, the
system turns the test false indicator (in the
program status register) on.

Program Status Byte Settings

Bit Name Condition Indicated

7 Equal Bit not affected

6 Low Bit not affected

5 High Bit not affected

4 Decimal overflow Bit not affected

3 Test false One of the tested bits not on

2 Binary overflow Bit not affected

TEST BITS ON MASKED INSTRUCTION FORMAT

Operands
Op Code Q-Byte 1 Operand Address2

(hex) (binary) (hex)

Byte 1 Byte 2 Byte 3 Byte 4

Al,1 38 xxxx xxxx Operand 1 address

Dl ('Rl),1 78 xxxx xxxx Op 1 disp
from XRl

Dl(,R2),1 B8 xxxx xxxx Op 1 disp
from XR2

lThe Q-byte contains a l-byte binary mask specifying operand bits
for testing.

20perandl is a l-byte field; operand 2 is not used.

Test Bits Off Masked (TBF)

This instruction tes.tsspecified bits in the
operand byte for a binary 1. For each mask bit
(Q-byte bit) that is a 1, the system tests the
same bit in the operand. If any tested bit is a
1, the system turns the test false indicator (in
the program status register) on.

Program Status Byte Settings

Bit Name Condition Indicated

7 Equal Bit not affected

£5 Low B it not affected

5 High Bit not affected

4 Decimal overflow B it not affected

3 Test false One of the tested bits on

2 Binary overflow Bit not affected

TEST BITS OFF MASKED INSTRUCTION FORMAT

Operands Op Code Q-Byte1 Operand Address2

(hex) (binary) (hex)

Byte 1 Byte 2 Byte 3 Byte 4

A1,1 39 xxxx xxxx Operand 1 address

D1 {,R1),1 79 xxxx xxxx Op 1 disp
from XR1

D1 (,R2);1 B9 xxxx xxxx Op 1 disp
from XR2

1The Q-byte contains a l-byte binary mask specifying operand bits
for testing.

20perand 1 is a l-byte field; operand 2 is not used.

Sequence and Timing

Turn on 'test f~lse'
. ~PSR 4) if any of

the designated bits
in the operand is
not equal to I

Set PSR according
to results of tested
bits

TBN

Start execute
cycle

Load operand 1
address into MSAR
and address main
storage

Load mask byte
into Y register

Load operand 1
into X register

Set PSR according
to results of tested
bits

Advance clock to 10

Turn on 'test false'
(PSR 4) if any of
the designated bits
in the operand is
not equal to 0

100 ns

E3 E4 E5 E5X

Load First Operand Addre ss into MSAR -
Address Main Storage

Load Mask into V-Register (Q-byte)

Load Byte to be Tested int oX-Register

Test Bits

Set Result of Test (test fals e) -
Advance Clock to 10

Allow Temporary Suspend

Main Storage Processor 3·43

Branch on Condition (BC)

This instruction, under control of the Q-byte,
tests the rightmost byte of the program status
register. If the register verifies the condition
specified by the a-byte, the system places the
address of the next sequential instruction in the
address recall register, places the branch-to
address in the instruction address register, and
branches to the branch-to address. If the

, register does not verify at least one condition
specified by the Q-byte, the system places the
address of the next sequential instruction in the
instruction address register, and the program
advances to the next, sequential instruction.

The Q-byte specifies which conditions are
tested and if the branch is to occur on
condition true (program status register bit is 1)
or condition false (program status register bit is
0).

Bits 2 through 7 of the Q-byte specify which
bits of the program status register's byte are to
be tested. These bits, and the conditions they
represent, are:

Bit Condition Tested

o If 1, branch if any condition
tested is true. If 0, bra,nch if alt
conditions tested are false.

None (bit should be set to 0)

2 Binary overflow

3 Test false

4 Decimal overflow

5 High

6 Low

7 Equal

When bit 0 of the a-byte is 1 (condition true),
the branch occurs if any condition tested is 1.
When bit 0 of the a-byte is 0 (condition false),
the branch occurs if all conditions tested are O.

Program Status Byte Settings BRANCH ON CONDITION lNSTRUCTION FORMAT

Bit Name

7 Equal

6 Low

5 High

4 Decimal overflow

3 Test fal.se

2 Binary overflow

Condition Indicated

Bit not affected
Operands Op Code Q Byte' Branch To Address

(hex) (binary) (hex)

Bit not affected
Byte 1 Byte 2 Byte 3 Byte 4

Bit not affected
A1,1 CO xxxx xxxx Direct address

Turned off If tested; D1(,R1),1 DO xxxx xxxx Disp from
XR1

otherwise not affected
D1 (,R2),1 EO xxxx xxxx Disp from

Turned off if tested; XR2
otherwise not affected

1The Q byte contains a binary mask specifying which program status
Bit not affected register positions are tested by the instruction.

BC Direct Addressing

Load IAR Address into MS AR

Address Main Storage

Load IAR into X-Register

Move IAR Address to ALU

Condition Met:
• Add 1 to ALU
• Write first operand addr essinARR
• Write IAR high
• Write IAR low

Condition Not Met:

• Add 2 to ALU
• Write second operand ad dress in IAR

Advance Clock:
• Condition met:

- To 110
- To 10

• Condition not met:
- To 10

Allow Temporary Suspend

200 ns

16 17 18

-

--
•

Condition Not lVIet

110 111 112

-

•
•

3-44

Sequence and Timing

Start execute
cycle

!

Load IAR into
MSAR and address
main storage

J

Load IAR into
X registers

Yes Branch ~ Add 1 to IAR y Yes addressing No

met instruction

~ No

Place result in
Add 2 to IAR

ARR (JAR + 1)

~ J
Load byte of
branch-to Advance clock
address in IAR to 10
high

~ J
Advance clock Go to I-fetch
to 110

Execute the next sequential

~ instruction

Load ARR into
MSAR and address
main storage

~

Add 1 to ARR

l

Load from storage
byte of branch-to Advance clock to 10 Go to I-fetch
address in IAR low

Execute the branch-to
Instruction

•

Branch
Yes y Add 1 to IAR

met

No ~

Add 1 to IAR
Place result in ARR
(JAR + 1)

! ,
Load displacement

Advance clock byte into Y
to 10 register

! 1
Load selected

Go to I-fetch index register
into X registers

Execute the next sequential
instruction 1

Add X register
to Y register

!

Place result in IAR

~

Advance clock to 10

BC Indexed Addressing

Load IAR Address into MS AR

Address Main Storage

Load IAR into X-Register

Move IAR Address to ALU

Add 1 to ALU

Condition Met:
• Write operand in ARR

Condition Not Met:
• Write operand in IAR

Load Displacement Byte in to V-Register

Load Selected Index Regist
X-Register

Add X- and V-Registers

Place Result in fAR

Advance Clock:
• Condition met:

- TolO
• Condition not met:

- TolO

Allow Temporary Suspend

er into

200 ns

16 17 18 19 -

-
-

-

~ain Storage Processor 3-45

Command Instructions

Jump on Condition (JC)

JUMP ON CONDITION INSTRUCTION FORMAT

Op Code Q-Byte' R-Byte2

Operand (hex) (hex) (hex)

Byte 1 Byte 2 Byte 3

A1,1 F2 xxxx xxxx IAR disp

'The Q-byte contains a binary mask that indicates which
status register bits (tl>le bits in the rightmost byte
of the program status register) are tested by the
machine instruction.

2The R-byte is a displacement which, when added to. the
address in the machi ne instruction address register, provides
a jump-to address.

This instruction, under control of the Q-byte,
tests the program status register. If the
program status register verifies the conditions
specified by the Q - byte, the system adds the

value stored in byte 3 of the instruction to the
contents of the instruction address register and
stores the result in the instruction address
register. The new address stored in the
instruction address register at the end of the
jump-on-condition operation fetches the next
instruction. If the register does not verify the
condition(s) specified by the Q-byte, the system
advances to the next sequential instruction in
the program. The Q-byte specifies which
conditions are tested and if the jump is to occur
on condition true (program status register bit is
1) or condition false (program status register bit
is 0).

Bits 2 through 7 of the Q-byte specify the
program status byte to be tested. These bits,
and the conditions they represent, are:

Bit Condition Tested

None (bit should be set to 0)

2 Binary overflow
3 Test false
4 Decimal overflow

5 High

6 Low

7 Equal

When bit 0 of the Q-byte is 1 (condition true),
the jump occurs if any indicator tested is on
(associated bit is 1). When bit 0 of the Q - byte
is 0 (condition false), the jump occurs if all
indicators tested are off (all associated bits are
0).

Program Status Byte Settings

Bit Name Condition Indicated

7 Equal Bit not affected

6 Low Bit not affected

5 High Bit not affected

4 Decimal overflow Turned off if tested;
otherwise not affected

3 Test false Turned off if tested;
otherwise not affected

2 Binary overflow Bit not affected

Sequence and Timing

Start
execute
cycle

Load I AR address
into MSAR and
address main
storage

Add 1 to IAR

Address main
storage

Load instruction
address byte
(R·byte) into Y
register

Load IAR into
X registers

Add IAR to
R-byte

Load new
address into IAR

Advance clock to 10

Go to I-fetch

No

Load IAR Address into MS AR

Address Main Storage

Load JAR into X-Register

Move IAR Address to ALU

Add 1 to IAR

Write Operand Address Plu s 1 in IAR

Condition Met:
• Load instruction byte in to Y·register
• Load IAR into X·registe rs
• Add X- and V-registers
• Write new address in IA R

Advance Clock:
• Condition met:

- TolD
• Condition not met:

- TolD

Allow Temporary Suspend

3-46

200 ns

16 17 18 19

-

•

•

,
Condition Not Met

Load Program Mode Register (LPM R)

Op Code Q-Byte

F6 xx

a 78

The Q-byte must have good parity.

The R-byte is the value to be put into the
program mode register.

The main storage processor instruction changes
the program mode register with the value of the
R-byte. This instruction needs much less time
and does not need to wait for service such as
an SVC'instruction.

Program Status Byte Settings

This instruction does not affect the program
status register.

II

R-Byte

xx

15 16 23

Main Storage Processor 3-47

Supervisor Call (SVC)

Op Code Q-Byte R-Byte

Operan~ (hex) (hex) (hex)

Byte 1 Byte 2 Byte 3

11,RX F4 xx 00

This instruction sets control processor interrupt
level 5. The main storage processor clock is
stopped and remains stopped until started again
by the control processor.

Bits in the Q-byte specify how the function
requested by the R-byte is to be used.
Following is a chart of the Q-byte bits and their
operation:

Bit Operation

a Control storage supervisor call indicator

Not used

2 Hold dispatch indicator

3 Nonquiescing request indicator

4 More than one unit I/O request,
or asynchronous error wait request

5 Translate off-Input/output block/parameter
list indicator

6 Nonrefreshable supervisor call indicator

7 Wait on this supervisor call indicator; or
refresh transient/transfer indicator

The R-byte specifies which control processor
function to do. (See the Control Storage Logic
Manual.) A control processor routine, executed
on a level 5 interrupt, checks the information in
the Q- and R-bytes to determine if the control
processor will (1) execute the function
immediately on a level 5 interrupt, or (2) store
the information for later processing on the
control processor main program level. The
R-byte is stored in the length count recall
register (LCRR) of the local storage register
stack for use by the control processor. A
control processor level 5 interrupt is generated
during main storage instruction fetch. When the

control processor is executing the level 5
interrupt program routine, it looks at the main
storage processor status byte 2 bit a
(nonexecutable bit) to determine if it needs the
LCRR information to process the nonexecutable
instruction. (See the flowchart under Instruction

. Fetch Operation earlier in this section.)

Two functions of the SVC instruction can be
shown here: .

. 1.

2.

R-byte = hex 04; transfer control or
system transient now has priority.

R-byte = hex 00: Change the program
mode register (similar to the LPMR

instruction).

Example of an SVC instruction and use of the R-byte:

SVC

Op Code Q-Byte

F4

(See the Control.
Storage Logic Manual.)

R-Byte

'01 '

'04' Transfer control/system transient

'00' Change program mode register·

'5F'

The program mode register can be changed by
a main storage processor SVC instruction to the
control processor. A control processor interrupt
level 5 then causes a control processor program
routine to change the program mode register
with a load or sense main storage processor
register instruction (WMPR or RMPR).

3-48

II

Supervisor Call Operation
(hardware/control storage program)

Main Storage Processor Control Processor (HDWRE)

Yes

Control Storage Program

Interrupt level 5
entry

I L5 exit

Call error

Move MSP regs from
MPL to I L5 or I L2
stack

NUCSSVC

NUHALT

InvalidOp

Invalid Q

Main Storage Processor 3·49

FUNCTIONAL UNITS

Marn Storage Processor (MSP) Control Processor (CP)
Port(

Channel

3·50

r--------~------~----------------~------------------------,----------------------,---,-----I Sys Bus Out Low From CP I.A To MSP ! I I
7ill 0 117 -. -~ ··1 II ~I I Il ___ MS Storage Bus

r;:=====:::::::>l1 Main Storage II MSP PC MSP Control Gate I 1 ~ I
(MSI10-180) 01 110 I ~ Controlr--- CP ToCP i From MSPCPGate I
A-A 1 R2, S2, T2, U2 {} I ~ Gate ~ J1;..J G~te Fv- I I -~ ~--------t"'---, I~ '-- I~L MSControlStorageBus I J-. I

I (CS 110-112) 15 15 ~ OR
Address A I Q-Backup Status Status I E
Decode W I Dp Reg Register PSR Byte a Byte 2 A-A 1 2, 04 I I

Processing Unit

15 ~

I
1
1
I
I
I

I~====~- 15 ~ I ... PC

rr=========~/~ ~~~e ~=======S=V=S=B=US=O=U=t=L=O=W==~~~ __ ~~========~======SV~S;B=U=S=O=ut=L=o=w~I~~;»
Low ::

I
Main Storage Ig -'--- - -I DOT : 15 B

r.====:::::J(;} 1 II e e • 0 CD ;. ~. Control Control .1 rP,-- FfVI SDR

1 }::::=====:'.,.J' I ~ c;;:J'A I 7 ~~o~~~:sl Storage Bus II I a 0

i r--EJ II(PMOOO-299),iEG ~ 1 QReg V I - ~ I 1-------- .:
r---'-'----'J A-A 1 N2 I I - I
l' ATR • 1----- ------·I~ I Status Gate I I 0 0 I ~~o:agel~ ~ I

~ I: ~I- I I ToMSP; I -y-v I r---. 7 ~C PC I • SysBusOutHigh FromcPi-~-- ~I - __ ~_______ • MOR PC
~ /L Display r-a I I v PG Sys Bus

II • Low By te PC ! ~ ...= F ~======~ Stg Out High
'"====~====::::;, 1_______________ L____ ,- .- I I 0 I v Gat 1-1 ==~::;-;:======~====

8i..,- .1 .• I ill- I - - - - ----- ---- ----I. SAR I I I I ~ Hi9~ ~ r-

2 I MS;AR I. I I - - I ---"'.",.
I

(PCOOO- J'V"'-- 0

-:?>" ~ ~~t~~ PMR CMR BMR CCR ACR I 099) .T-, I I I
===::!J I ALU Gate I CD I A-A 1 F2 I A-A 1 Board I

-c'- F==========1 I High Low. ~ 0 0 • 0 .. _- I. --- --- -----------------: I
~ - - - - - - - - 1-1 - - - - 1_. {2- ~=- L:::=====::~====~===========;_r~=====================!====1 f= = =*

~

~_8

~=======H::===~ ==== ==-
.'7 7 7 15

CP MS Ga

1E
te ~ KI, I I II f--,.."j Main Storage ~ I

'-- jVJ Gate B r-li Sense Byte Gate

I OR 1 OR I L. ------- L~ f:: = MS Control to CP Bus - ~~nr~:: II

I X High I I Y High J I X Low I YLow J
v Control

Addr Sw
"

Storage

Addr ~=r r ' ret;" ", ~:""i ~~ ~ \ :;~~ / \ :~~ / Com-
J>- pare
v

'-----

l L~R G 1- I ~=~nre~:orage I ~ I
High J Low compaLre !
I~~ Main Storage II ~ Address

~~ Compare B I

5r A Event Ind r--- Display I
X High X Low Y Reg V v PCR I="" High I

-=-iiiiii~iiiiiiiiii DOT Byte 1-"
,. OR'

I ~:::.::! LFv07 '" '"'0"' ""," Y """' ~ _ '1:

~ ~ ALU I CKl 1 Gate I pp. AddrSwl&2 ~D. I
L::==============:::;-;:::::::; A-A 1J2 (PC300-399) ., ~ I

•

o db 7

r,r
I ALU Gate I

High

fPcl_
~

7 8

I
8

15

Decimal 0
Correct

L ________________________ .~_---,

Addr Sw 3 & 4 ~ DOT ~====I~I====~ f=-
~

L _______ ., ~ .

- I r========-=======;

CP MS Gate

MS Gate Out

I Main Storage Gate A

LfPCl
I_~

~
~

I
MS Gate Int

Status r Status ---"", OR I

110 Clocks 2 Gate ,.--,...'1....-- I

I
I
I

I
Select 4-
'--- I

I 0

I
LEGEND I :
PP - Parity Predict I .II
PG - Parity Generate i PC - Parity Check i I

I I • I • •

64 LSRs

\ I 7 B

I
15

" ~ ".r==
ALU Gate I
Low J

15

~ PG

SyS Bus In
¢

i
I
I

I . • I· 1
A-A1P2 (PM300-499) I A-A1Q2 (PM700-899) A-A1K2 (PC400-499) I A-A1G2 (PC100-199) I A-A1H2 (PC200·299) I A·A1L2 L ___ .• _____ • ______________________________ ~ _________________ ------------------~----

"Dela flow bus lines may not pass through FRUs as shown

Main Storage.

Main storage contains 32K, 48K, 64K, 96K, or
128K addresses; each address is 1 byte wide.
User programs and the SSP programs are
loaded .in main storage.

Main Storage Address Register 0

The main storage address register (MSAR) is a
16-bit register that addresses main storage.
This register is loaded from one of the main
storage local storage registers or from the
control processor. The output from the main
storage address register goes to the main
storage address decode logic. The decode logic
selects the addressed byte in main storage.
When address translation is needed, t~e 5
high-order bits are used to select a register
from the address translation register sta9k. The
control processor loads MSAR to load or sense
the main storage. processor register with the
WMPR or RMPR instructions.

Operation Register.

The operation register (op reg) is an 8-bit
register that holds each system instruction as it
is fetched from main storage. The output is
decoded and then gates the arithmetic and logic
unit operations, program status register setting,
local storage register selection, and main
storage processor clock controls.

Q-Backup Register G)

The Q-backup register is an 8-bit register that
holds the original Q-byte obtained from main
storage. The output of this register is gated to
the Q-register. The Q-backup register is
necessary to perform a recomplement cycle
using the zero and add zoned, add zoned
decimal, and subtract zoned decimal
instructions.

•

Q-Register G

The Q-register is an 8-bit register that specifies
the length of the operands for arithmetic and
logic unit operations. The Q-register also
extends or changes the operation code. During
instruction execution, the a-byte is stored in
the Q-register. The Q-register is loaded from
the a-backup register. The decoded output of
the Q-register controls instruction execution.
The contents of the Q-register are also stored
in the Q-byte of the Op-Q local storage
register during instruction fetch.

X-Registers 0

These 8-bit registers are the buffer input to the
arithmetic and logic unit (ALU) and the
incrementer or decrementer. The X-low r~gister
is input to the ALU low; the X-high register is
input to the incrementer or decrementer. The
input to the X-low register is from the main
storage processor storage or from the selected
local storage register low. The input to the
X-high register is from the selected local
storage register high only.

V-Register e
This 8-bit register is the buffer input to the
arithmetic and logic unit (ALU) low. The output
can bypass the ALU and be gated to main
storage. The input is from the main storage
processor storage or the local storage registers.

Arithmetic and Logic Unit CD

The arithmetic and logic unit (ALU) operates on
bits 8-15 of a 1- or 2-operand instruction
when working with a 1- or 2-byte data field.
The ALU performs the following logical
operations:

• X OR (not) V

• AND (not) V

• AND Y

• OR Y

The ALU also performs the following binary
arithmetic operations:

• X-V carry out

• X-l carry in

• X+Y carry in

• X+l carry out

The input to the ALU is from the X-low register
and the V-register. The X-low register contains
a l-byte field or the low-order byte of a
2-byte field for one operand. The V-register
contains a l-byte field for the other operand to
be used in the ALU operation. The output of
the ALU is to either the decimal correct logic or
the ALU gate. From the ALU gate, the data can
be gated into a high- or low-byte position of a
selected local storage register. The output from
the ALU can also be gated to main storage
through main storage gate A.

Arithmetic and Logic Unit Parity
Predict.

Parity predict circuits calculate the parity of the
result of the arithmetic and logic unit operation.
This calculated parity is compared against the
generated parity .. If there is a difference, a
parity check occurs.

Incrementer or Decrementer 43

The incrementer or decrementer operates on
bits 0-7 of a single byte during an operation
using a 2-byte operand. The incrementer or
decrementer is a counter that increases or
decreases its contents by 1 when a carry from
the ALU occurs. The incrementer or
decrementer can also pass a single byte of
data. The operation being performed
determines if the contents are increased or
decreased. Input to the incrementer or
decrementer is from the high byte of the
selected local storage register through the
X-high register; output is to the ALU gate.

Main Storage Processor . 3-51

Decimal Correct •

The decimal correct circuits contain the logic
necessary to convert the ALU output of a
decimal operation to the correct decimal result.
The result can be a value from a through 9 or
from hexadecimal A through hexadecimal F.
Because the hexadecimal system is used to add
decimal numbers (binary addition), the result is
not always the real value. The result of a
decimal digit arithmetic operation may,
therefore, be 6 less than the real value. Six is
added to the result if a carry occurs after a
logical addition of two numbers or if the result

is from hexadecimal A through hexadecimal F.
For example, if 5 is added to 9, the result from
the ALU is hexadecimal E.

1111 0101
1111 1001

1111 1110 Result is hexadecimal E

In this case, the result is not a decimal number.

The result must be converted to a value
between a and 9. When using the hexadecimal
system, the value hexadecimal F is 6 more than
9. To perform the decimal correction, 6 is
added to the value in the decimal correct logic
and there is a carry of 1. This carry is then
added to the next 2 bytes that are added
together. Because of the result of the addition,
adding 6 gives the correct value as shown:

11110000 11111110
11110000 11110110

1111 0001 1111 0100 = hexadecimal 4
with a carry result
equals 14

The following tables show the output from the
decimal correct logic after decimal adding or
decimal subtracting. If decimal arithmetic

, specifies values from hexadecimal A through
hexadecimal F, the output from the decimal
correction values is also shown. Note that the
output from the decimal correct logic is
changed by the values of operand 1 and
operand 2.

DECIMAL CORRECT FOR DECIMAL ADDING

Op 1 plus (Op 2 or carry in)

Op 2/ Op 1
carry in 0 1 2 3 4 5 6 7

a a 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 8
2 2 3 4 5 6 7 8 9
3 3 4 5 6 7 8 9 ae
4 4 5 6 7 8 9 Dc 1e
5 5 6 7 B 9 Dc 1e 2e
6 6 7 B 9 Oe 1e 2e 3e
7 7 8 9 Dc 1e 2e 3e 4c
8 8 9 De le 2e 3e 4e 5e
9 9 ae 1c 2e 3e 4c 5e 6e

A A B C D E F 0 1
B B C D E F a 1 2
C C D E F a 1 2 3
D D E F 0 1 2 3 4
E E F a 1 2 3 4 5
F F a 1 2 3 4 5 6

F + 1 a 1 2 3 4 5 6 7

DECIMAL CORRECT FOR DECIMAL SUBTRACTING

Op 1 minus (Op 2 or borrow in)

Op 2/ Op 1
borrow in 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 9b a 1 2 3 4 5 6
2 8b 9b a 1 2 3 4 5
3 7b 8b 9b a 1 2 3 4
4 6b 7b 8b 9b D 1 2 3

5 5b 6b 7b 8b 9b 0 1 2

6 4b 5b 6b 7b 8b 9b a 1

7 3b 4b 5b 6b 7b Bb 9b a
8 2b 3b 4b 5b 6b 7b Bb 9b
9 lb 2b 3b 4b 5b 6b 7b 8b

A Ob 1b 2b 3b 4b .5b 6b 7b
B Fb ab 1b 2b 3b 4b 5b 6b
C Eb Fb Ob lb 2b 3b 4b 5b
D Db Eb Fb Ob 1b 2b 3b 4b
E Cb Db Eb Fb ab 1b 2b 3b
F Bb Cb Db Eb Fb Db lb 2b

F + 1 Ab Bb Cb Db Eb Fb Ob 1b

8 9 A B C

8 9' Dc lc 2c
9 ac lc 2e 3e
ae le 2e 3e 4e
1e 2e 3c 4e 5e
2e 3c 4e 5e 6e
3e 4e 5e 6e 7e
4e 5e 6c 7c 8e
5e 6e 7c 8e ge

6e 7e Be 9c Ae
7e 8e ge Ae Be

2 3 4 5 6
3 4 5 6 7
4 5 6 7 B
5 6 7 B 9
6 7 B 9 ae
7 B 9 Dc 1e
8 9 Dc 1c 2c

8 9 A B C

8 9 A B C
7 8 9 A B

6 7 8 9 A
5 6 7 8 9
4 5 6 7 8

3 4 5 6 7
2 3 4 5 6
1 2 3 4 5

a 1 2 3 4
9b 0 1 2 3

8b 9b 0 1 2
7b 8b 9b a 1

6b 7b Bb 9b a
5b 6b 7b 8b 9b
4b 5b 6b 7b 8b

3b 4b 5b 6b 7b
2b 3b 4b 5b 6b

D E F

3c 4c 5c
4e 5e 6e
5e 6c 7c
6c 7c 8c
7e Be ge

Be ge Ae
ge Ac Be
Ae Be Ce
Be Ce Dc
Ce Dc Ee

7 8 9
8 9 Dc
9 ae 1e
ae le 2e
1e 2e 3e
2e 3c 4c
3e 4c 5c

D E F

D E F
C D E

B C D
A B C
9 A B
8 9 A
7 8 9

6 7 B

5 6 7
4 5 6

3 4 5
2 3 4
1 2 3
0 1 2
9b 0 1

8b 9b a
7b 8b 9b

Local Storage Register.

The local storage register stack contains sixteen
2-byte local storage registers (LSRs); the first
eight are reserved and the last eight are used
as data buffers and address registers for main
storage. Main storage processor addressing is
controlled by both hardware and instructions.
Selecting a register from the local storage
register stack is under direct hardware control
as a function of the instruction format, as
shown in the following example:

Main Storage Processor Local Storage Register

a
1
2
3 Reserved
4 Area
5
6
7

8 Operand 1 Address

9 Operand 2 Address

lO IAR

11 Op I Q

12 XR1

13 XR2

14 ARR

15 LCRR I Reserved

o 7 8 15

fo-

f-

3-52

Add Logical Characters (ALC) Instruction

lOp Code Q-Byte Operand 1 Operand 2

I

I
I
I ____________ J

I

I
I
I
I
I

-----------------~
Instruction Uses Hardware for Selection of LSRs

Program Status Register.

The program status register (PSR) contains the
main storage processor conditions that are
tested by the branch-on-condition (BC) ana

. jump-on-condition (JC) instructions. The
contents of the prOdram status register can be
changed by:

• A system rerjet

• A loed register {L) instruction or an add to
register (A) instruction

• An :;1struction that changes bits

ProJrarn status register bits 0 and 1 are not
assigned and are always O. Only one of bits 5,
6, ,.md "i (high low, equal) can be set by the
ioad reQister instrlJction. If bit 7 is set to 1,
hardware forces bits 5. and 6 to O. If bit 5 is
set to 1, bits 6 and 7 are forced to O. If bit 6 is
set to 1, bits 5 and 7 are forced to O. Program
s·i:atus register bits are assigned as follows:

Bit Contents

o Not used

Not used

2 Binary overflow

3 Test false

4 Decimal overflow

5 High

6 Low

7 Equal

•

Program Status Register Setting

Binary
Overflow

Zero and Add Set
Zoned Reset
Decimal

Add and Set
Subtract Zoned Reset
Decimal

Edit l Set

Reset

Compare Set
Logical
Characters

Reset

Compare Set
Logical
Immediate

Reset

Add Set Carry out
Logical
Characters ------

Reset Reset at end
of instruction
execution

Subtract Set
Logical
Characters

Reset

Add to Set Carry out
Register ------

Reset Reset at end
of instruction

Test Bits On Set

Reset

Test Bits Off Set

Reset

Branch or Set
Jump On Reset
Condition

(PSR) Load Set Set if loaded;
Register bit 10 is on.

Reset Reset if loaded;

bit 10 is off.

System Reset Set ------
R~!iet Binary overflow

reset

Test Decimal
False Overflow

Result overflows

Test bits are
.not all ones ------

Test bits are
not all zeros

------ ------
Reset if tested Reset if tested

Set if loaded; Set if loaded;
bit 11 is on. bit 12 is on.
------ ------

Reset if loaded; Reset if loaded;
bit 11 is off. bit 12 is off.

------ ------
Test false reset Decimal overflow

reset

High Low

Result positive Result negative ------ ------
Operand not Operand not
positive negative

Result positive Result negative
------ ------

Result negative Result positive
or result zero or result zero

Operand 2 Operand 2
positive negative
--- --- - -- ---

Operand 2 Operand 2
not positive not negative

Operand 1 Operand 1
greater than less than
operand 2 operand 2
------ ------

Operand 1 Operand 1
not greater than not less than
operand 2 operand 2

Operand 1 Operand 1
greater than less than
immediate data immediate data ------ ------
Operand 1 Operand 1
not greater than not less than
immediate data immediate data

Carry out and No carry and
result not zero result not zero ------ ------
No carry or Carry out or
result zero result zero

Operand 1 Operand 1
greater than less than
operand 2 operand 2
------ ------

Operand 1 Operand 1
not greater than not less than
operand 2 operand 2

Carry out and No carry and
result not zero result not zero ------ ------
No carry or Carry out or
result zero result zero

Set if loaded; Set if loaded;
bit 13 is on. bit 14 is on.
------ ------

Reset if loaded; Reset if loaded;
bit 14/15 is on. bit 14 is off or

15 is on.

------ ------
High reset Low reset

Equal

Result zero ---- --
Operand not
equal zero

Result zero

Result not
zero

Operand 2
zero

Operand 2
not zero

Operand 1
equal to
operand 2

Operand 1 and 2
not equal

Operand 1
equal to
immediate data ------
Operand 1
not equal to
immediate data

Result equals
zero

Result not
zero

Result zero

Result not
zero

Result equals
zero ------
Result not
zero

Set if loaded;
bit 15 is on. -- ----
Reset if loaded;
bit 15 is off.

Set

1 The program status byte settings
will be as shown only if one of the
following conditions exists:
1. The program status byte bit 7

was set before edit is executed.
2. The rightmost byte of operand

1 was hex 20.
3. Operand 2 is not zero.

Main Storage Processor 3-53

Status Byte Regist"ers

Status Byte 0 (Sense Only) «I

Status byte 0 is sensed by the control
processor to determine the main storage
processor major and minor clock cycle times.
This status byte is encoded to show these clock
times:

Bits

o 1 2 3 4 5 6 7
o 0
o 1

o 0 0 0
000 1
001 0
o 0
000
o 0

000
010

o 0
1
o

o 0
o 1

Encoded Next Major
Clock Time

Not used
Complement latch set
Op time
Qtime
IH1/IX1 time
IL1 time
IH2/IX2 time
IL2 time
EA time
EB time
EC time
Minor A time
Minor B time

Minor C time
Minor 0 time

Status Byte 1 (Load Only)

Status byte 1 is loaded by the control
processor. Status byte 1 is not gated out and
cannot be displayed. Status byte 1 controls
setting and resetting the following in the main
storage processor:

Bit Function

0 Set or reset the 'step mode' latch·
Set or reset the 'clock run' latch

2 Issue a check reset ·to main storage
processor checks

3 Not used
4 Not used
5 Not used
6 Not used
7 Set or reset the 'carry' trigger

Status Byte 2 CD

Status byte 2 .is sensed by the control
processor for main storage processor check
conditions and control information. Bits are
assigned as follows:

Bit Function

o An instruction that cannot be
executed (nonexecutable instruction)

1 Control gate check
2 Local storage register gate check
3 Main storage gate check
4 First cycle
5 Recomplement cycle
6 Main storage processor address check
7 'Carry' trigger set

Status Byte 3 0

Status byte 3 is sensed and reset by the control
processor. Six of the 8 bits are not used (bits
0-5). Bit 6 indicates a main storage not valid
address check. Bit 7 is set by hardware to
indicate that a main storage exception check
occurred during a main storage processor
operation. Bits 6 and 7 are both set to indicate
that a main storage address register parity
check occurred.

Backup Mode Register.

The backup mode register (BMR), which is
loaded and sensed by the control processor,
controls hardware switching of main storage
card selection. Storage is tested by diagnostic
routines during the control storage initial
program load (CSIPL) procedure. If a storage
failure is found in the first 8K bytes of main
storage, bit 6 of the BMR is activated to cause
an electronic card switch to ~elect a different
card. In order to decrease the programming
needs, this switch bit is set only during the
control storage initial program load sequence.
Therefore, if a storage failure occurs inside the
nonrelocatable storage area (first 8K bytes)
during normal system operation, the system
operator must perform an IPL to recover. If a
main storage operation occurs with the B M R bit
6 activated, and if the physical address is
between OK and 16K, the hardware selects the
same relative address in the 16K-to-32K block.
In reverse, if the physical address is between
16K and 32K, the hardware selects the same
relative address in the OK -to-16K block.

3-54

Configuration Control Register 0

The configuration control register (CCR) is an
8-bit register that: .

• Selects the main storage address compare
function to be performed (bits 0-3)

• Stores the main storage configuration
information for input to the address check
logic (bits 4-7)

Address Compare Register CD

The address compare register (ACR) is a 17-bit
register that can be loaded and sensed by the
control processor. This register, along with the
configuration control register (CCR), results in a
main storage address compare condition that is
used for synching or stopping during hardware
or program error analysis. These two registers
are loaded by the (SSP) alter storage/display
storage routine when the main storage address
compare is desired. The address compare
register (ACR) contents are compared with
logical addresses in the main storage address
register (MSAR), or real addresses supplied by
the address translation register (ATR) and/or
main storage address register (MSAR), under
control of the configuration control register
(CCR). If the selected condition compares, and
the main storage position and address stop
positions are selected by switches on the CE
panel, an interrupt level 5 is generated and the
main storage program stops at the end of the
instruction.

Address' Translation

Address translation permits the System Support
Program Product to load a program or blocks of
a program into any 2K area of main storage.
The program addresses are then translated and
the program is executed as if it were located in
the area specified by the link-edited addresses
in the program. The three types of registers
used with address translation are:

• Address translation registers

• Program mode register

• Control mode register

Address Translation Registers.

The 64 address translation registers (ATRs) are
1-byte registers that control address translation.
Thirty-two of the registers are used for user
program address translation. The remaining 32
registers are used for I/O address translation.

The 6 low-order bits of an address translation
register are used to address one of sixty-four
2K-byte pages inside main storage. The 2
high-order bits are used for storage protection.
To protect a 2K-byte area in storage, a
hexadecimal FF is loaded into the address
translation register. Any attempt to address a
protected storage area by use of the address
translation registers is inhibited and a storage
exception is generated; this causes a processor
check if the operation is an I/O operation, or an
interrupt level 5 request if the operation is a
main storage processor operation.

The address translation registers are used with
. the main storage address register to convert the

logical address specified in the program to the
translated real main storage address. The
address translation register is selected by the 5
high-order bits in the main storage address
register. A translated address IS made by
having the selected address translation register
contents link with the 11 low-order bits from
the main storage address register.

Address translation must be used to get access
to any real address in main storage from 64K to
128K.

•

Program Mode Register.

The program mode register (PMR) is an 8-bit
register that controls main storage address
translation and protection during main storage
processor operations. This register is loaded or
sensed by the control processor using a register
control instruction: load main storage processor
register (WMPR), or sense main storage
processor register (RMPR). The main storage
processor can change the program mode
register in either of two ways: (1) a supervisor
call (SVG) instruction with an R-byte equal to
hex 00 can permit the control processor to run
an interrupt level 5 program routine using the
load or sense main storage processor register
instruction (WMPR or RMPR); or (2) a load
program mode register (LPM R) instruction that
enables the main storage processor to load the
program mode register directly if bit 7 = 0
(non privileged mode bit in the program mode
register). If bit 7 = 1 when the instruction is
executed, the program mode register does not
change and a storage exception is generated.

Program mode register bits are assigned as
follows:

Bit(s) Setting Function

0 Disable task dispatching switch.

0 Enable task dispatching switch.

1-3 Not used.

4 Instruction address register
is translated.

0 Instruction address register
is not translated.

5 Operand 2 addresses are translated.

0 Operand 2 addresses are not translated.

6 Operand 1 addresses are translated.

0 Operand 1 addresses are riot translated.

7 Task not privileged. A nonprivileged mode
operation that cannot change the ,first 8K
physical addresses in the main storage pro-
cessor. The program mode register cannot
be changed

0 Privileged mode. Permits address translation
in the first 8K physical addresses by the
main storage processor

Control Mode Register.

The control mode register (CMR) is an 8-bit
register that is used by the control processor to
control main storage addressing. Control
storage processor instructions are used to load
and sense the control mode register. Bits for
the control mode register are assigned as
follows:

Bit(s) Setting

0-5

6 o

7 o

Function

Not used

The address register selects the
task address translation register.

The address register selects the
I/O address translation register.

Does not translate the address in
the main storage address register
(address is a real address).

Translates the address in the main
storage address register (address
is a logical address).

Main Storage Processor 3-55

ERROR CONDITIONS

When the main storage processor finds an error
condition, it stops processing and sets a control
processor interrupt level 5. The control
processor then attempts to correct the error by
determining the failing instruction and error
type. Error correction and error recording are
done by control storage transients that are
loaded into control storage and executed after
the error occurs.

Processor Error Byte (Display Byte 0)

Bit

o

2

Error

Storage data
register parity
check

Cause

Parity in the storage data
register is not correct.

Micro-operation Parity in the micro-operation
register. parity register is not correct.
check

Storage gate
pa rity check

Parity at the output of the
storage gate is not correct.

3 ALU gate parity The parity expected does not
check match the parity generated at

the ALU gate.

4 Illegal control Control storage was addressed
storage outside its limits. Bits 4 and 5
address/ both on indicates that parity in

5

6

7

storage
address
register

Control storage
program
check/storage
address
register

Illegal main
storage
address/main
storage
address
register

Storage
exception/
main storage
address
register

Decode of Bits 6 and 7

Bits CMR PMR

67 Bit 7 Bit 7

1 0 0 *
1 0 1 .*
01 1 *
o 1 * 1
1 1 * *
1 1 1 *

Legend: * = don't care

the storage address register is
not correct.

The control storage program
remained in a loop for more
than 7 seconds. Bits 4 and 5
both on indicates that parity in
the storage address register is
not correct.

The real or translated main
storage address used by the
control storage program is
greater than the main storage
size of the system. Bits 6 and
7 both on indicates that parity
in the main storage address
register is not correct.

The control storage program
addressed a not valid address
translation register; that is, an
address translation register can·
tainlng hexadecimal FF. Bits
6 and 7 both on indicates that
parity in the main storage
add ress register is not correct.

Cause

I nvalid main storage address (real)
Invalid main storage address (translate)
Storage protect
MSP tried to alter PMR while PMR bit 7 = 1
MSAR parity check
ATR parity check

Main Storage Processor Checks

The following data is recorded for each error:

• The operation code

• The contents of the Q-byte register

• The contents of the instruction address
register and the address translation register
used by the instruction address register

• The contents of index register 1

• The contents of index register 2

• The contents of the address recall register

• The contents of operand 1 and the address
translation register used by operand 1

The contents of operand 2 and the address
translation register used by operand 2

• The contents of the program status register

• The contents of the program mode register

• The main storage processor status bytes

• The physical (real) failing address (storage
read errors)

• The time and date

Examples of the error history tables for the
main storage processor and the control
processor can be found under Error Indications
in the Control Processor section of this manual.
Error correction procedures are determined by
the type of error. The main storage processor
error stops the main storage processor program
(except when in check run mode) and sets the
control processor interrupt level 5.

The control storage program analyzes the cause
of the error. If the error is caused by a storage
exception (not a valid main storage address or
the address translation register contained
hexadecimal FF), the control storage program
terminates the main storage task that caused
the check condition (user error). This type of
error is not recorded. If the error is a hardware
error, the control storage program analyzes the
error condition.

If the error can be corrected, the transients,
which are put into control storage, perform
error correction, record the error information in
the main storage processor error recording area,
and restart the main storage processor at the
point the program error was found. When
correction is 'possible, the error is transparent to
the program except for the time needed to
execute the error correction function. If error
correction is not possible, the error information
is recorded in the main storage recording area
and on disk. The task that caused' the main
storage processor error is terminated. If the
error occurs when the control processor is in
control, a software processor check halt is
issued.

3-56

	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56

