IBM DOS/VS COBOL
Compiler and Library
Programmer’s Guide

Program Numbers: 5746-CB1 (Compiler and Library)
5746-LM4 (Library)

Release 3

5C28-6478-4
File No. S370-24

IBM DOS/VS COBOL
Compiler and Library
Program Product Programmer’s Guide

Program Numbers: 5746-CB1 (Compiler and Library)
5746-LM4 (Library)

Release 3

4."

Fifth Edition (May 1981)

This is a major revision of, and make obSolete, SC28-6478-3, apd its technical newsletters,
SN20-9310 and SN20-9322.

This edition applies to Release 3 of DOS/VS COBOL, Program Products 5746-CB1 (Compiler
Library) and 5746-LM4 (Library), and to any subsequent releases until otherwise
indicated in new editions or technical newsletters.

The changes for this edition are summarized under ‘‘Summary of Amendments” following the
preface. Specific changes are indicated by a vertical bar to the left of the change. These bars will
be deleted at any subsequent republication of the page affected. Editorial changes that have no
technical significance are not noted.

Changes are periodically made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370 and
4300 Processors Bibliography, GC20-0001, for the editions that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM publications should
be made to your IBM representative or to the IBM branch office serving your locality.

Comments may be addressed to IBM Corporation, P.O. Box 50020, Programming Publishing,
San Jose, California U.S.A. 95150. IBM may use or distribute any of the information you
supply in any way it believes appropriate without incurring any obligation whatever. You may,
of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1973, 1979, 1981

EFACE

This publication describes how to
mpile a COBOL program using the Program
oduct IBM DOS/VS COBOL Compiler. It also
scribes how to link edit the resulting
ject module, and execute the program.
cluded is a description of the output

om each of these three steps: compile,
nk edit, and execute. This publication
plains features of the DOS/VS Compiler and
brary, and available options of the
erating system.

This publication is logically and
inctionally divided into four parts:

Part I contains information on job
mtrol language, library usage, and the
iterpretation of output. It is designed
)r programmers who run COBOL programs
mpiled on the DOS/VS Compiler, under the
M Disk Operating System/Virtual Storage
ttended (DOS/VSE).

Part II contains information on file
rganization, file label handling, and
icord formats. It is reference material
)r language features that are primarily
rstem-dependent. Part II is supplemental
1formation on the use of the language as
>ecified in the publication

IBM VS COBOL for DOS/VSE, GC26-3998,

1d its companion,

IBM VS COBOL for DOS/VSE Reference
Format and Reserved Word Summary,
GX26-3709.

Part III contains information on
rogramming techniques useful to the
rogrammer running COBOL programs compiled
1 the DOS/VS Compiler. Topics such as
»ding considerations, table handling
»nsiderations, and formatting data are
>vered in Part III.

Part IV contains error determination
1formation. This part covers such topics
5 program debugging and program testing.

Diagnostic messages generated by the
J)S/VS Compiler and Library and their
ccompanying documentation can also be found
n this publication.

Information on installing the DOS/VS
ompiler and Library can be found in the
ollowing publication:

IBM DOS/VS COBOL Compiler and Library,
Installation Reference lMaterial,
SC28-6479

Wider ranging and more detailed
iscussions of DOS/VSE are given in the
ollowing publications:

Introduction to DOS/VSE, GC33-5370

DOS/VSE System Generation, GC33-5377

DOS/VSE System Management Guide,
GC33-5371

DOS/VSE Data Management Concepts,
GC24-5138

DOS/VSE Macro User's Guide, GC24-5139

DOS/VSE Macro Reference, GC25-5140

DOS/VSE System Utilities, GC33-5381

DOS/VSE Messages, GC33-5379

DOS/VSE Advanced Functions: System
Control Statements, SC33-6095

IBM Virtual Machine/System Product:
CMS User's Guide, SC19-6210

Using the VSE/VSAM Space Management for
SAM Feature, gCc24-5192

Using VSE/VSAM Commands and Macros,
ST24-5144

VSE System Data Management, GC24-5209

The following publications provide

detailed information on the IBM 3886
Optical Character Reader:

IBM_ 3886 Optical Character Reader
General Information Manual,
GA21-9146

IBM 3886 Optical Character Reader Input
Document Design_and Specifications,
GA21-9148

DOS/VS _Planning Guide for the IBM 3886
Optical Character Reader, Model 1,
GC21-5059

The following publications provide

information on the IBIM DOS/VS Sort/Merge
Program Product, Program Number 5746-SM2:

DOS/VS Sort/lMerge Program Product Design
Objectives, GC33-4027

DOS/VS Sort/lMerge Version 2 General
Information, GC33-4043

DOS/VS Sort/lMerge Version 2 Programmer's
Guide, SC33-4044

DOS/VS Sort/Merge Version 2 Installation
and Reference Material, SC33-4045

The titles and abstracts of related

publications are listed in IBIM System/370
and 4300 Processors Bibliography, GC20-0001.

INDUSTRY STANDARDS

The DOS/VS COBOL Compiler and Library,
Release 3, is designed according to the
specifications of the following industry
standards, as understood and interpreted by
IBM as of May 1980:

® American National Standard (ANS) COBOL,
X3.23-1974

American National Standard (ANS) COBOL,
X3.23-1974, is identical to (ISO)
International Standard 1989-1978 COBOL,
approved in February 1978 by the
International Organization for
Standardization.

2 NUC 1,2 (Nucleus)

2 TBL 1,2 (Table Handling

2 SEQ 1,2 (Sequential I-0) except the
following:

-- the OPTIONAL phrase of the SELECT
clause is treated as documentation.

~- the reversed phrase of the OPEN
statement does not cause file
positioning.

-- the EXTEND phrase of the OPEN
statement is not supported.

2 REL 0,2 (Relative I-0)

2 INX 0,2 (Indexed I-0)

2 SRT 0,2 (Sort-Merge)

2 SEG 0,2 (Segmentation)

2 LIB 0,2 (Library) except for the

multiple library facility.
(Debug)
(Inter-Program Communication)

-

DEB
1 IPC

® The December 1975 Federal Information
Processing Standard (FIPS) PUB 21-1, Low
Intermediate level

® American National Standard (ANS) COBOL,
X3.23-1968

American National Standard (ANS) COBOL,
X3.23-1968 is identical to ISO 1989-1972.
All processing modules are supported.

NOTES

Any reference in this manual to the book

IBM DOS Full American National Standard
COBOL should be assumed to mean a reference
to IBM VS COBOL for DOS/VSE. Any reference
in this manual to VS COBOL for DOS/VS should
be assumed to read VS COBOL for DOS/VSE.

Summary of Amendments Number 7

Date of Publication: 4 September 1981

Form of Publication: TNL SN20-9347 to SC28-6478-3

New: Programming Function

DOS/VS COBOL Release 3 supports American National Standard COBOL,
X3.23-1974, with certain exceptions noted under “Features of the Program
Product DOS/VS Compiler.” References to new features of the language
have been added throughout the book.

Maintenance: Operating System Restriction

DOS/VS COBOL Release 3 runs only under DOS/VSE with Advanced
Function Release 3. Deletions of material pertaining only to earlier
releases of DOS have been made throughout this book.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments _ Number 6

Date of Publication: 28 December 1979
Form of Publication: TNL SN20-9310 to SC28-6478-3

New: Programming Function

Support for VSE/VSAM Space Management for SAM feature is provided
with DOS/VSE Advanced Functions, Release 2, and up.

Maintenance: Documentation

Clarifications and corrections have been made in various areas of the text.

Summary of Amendments Number 5

Date of Publication: 15 February 1979
Form of Publication: Revision SC28-6478-3
New: Programming Function

Support for fixed block devices is provided under DOS/VSE with
VSE/Advanced Function, Release 1.

Maintenance: Documentation
Clarifications and corrections have been made in various areas

of the text.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments Number 4

Form of Publication: TNL SN20-9235 to SC28-6478-0, -1, -2

New: Programming Function

Support has been added for the 3330-11 Disk Storage and 3350
Direct Access Storage devices.

Maintenance: Documentation

Minor technical changes and additions have been made to
the text.

Summary of Amendments Number 3

Date of Publication: December 3, 1976
Form of Publication: TNL SN20-9180 to SC28-6478-0, -1, -2
IBM DOS/VS COBOL

Maintenance: Documentation

Minor technical changes and additions have been made to
the text.

liditorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments Number 2

Date of Publication: January 9, 1976
Form of Publication: SN20-9141 to SC28-6478-0, -1

Support has been added to run DOS/VS COBOL under control of VM/370 CMS Release 3.

DOS/VS COBOL programs can be compiled in CMS and then executed in a DOS virtual machine, or
under a DOS system.

The following restrictions apply to execution of DOS/VS COBOL programs in CMS:

1. Indexed files (DTFIS) are not supported. Various clauses and statements are therefore invalid:
RECORD KEY, APPLY CYL-OVERFLOW, NOMINAL KEY, APPLY MASTER/CYL-INDEX,
TRACK-AREA, APPLY CORE-INDEX, and START.

2. Creating direct files is restricted as follows:

—For U or V recording modes, access mode must be sequential.
—For ACCESS IS SEQUENTIAL, track identifier must not be modified.

3. None of the user label-handling functions are supported. Therefore, the label-handling format of
USE is invalid. The data-name option of the LABEL RECORDS clause is invalid.

4. There is no Sort or Segmentation feature.

ASClI-encoded tape files are not supported.

6. Spanned records (S-mode) processing is not available. This means that the S-mode default (block
size smaller than record size) cannot be specified, and that the RECORDING MODE IS S clause
cannot be specified.

w

In addition, multitasking, multipartition operation, and teleprocessing functions are not supported
when executing under CMS.

For a more detailed description of VM/370 CMS for DOS/VS COBOL, see IBM VM/370 CMS User’s
Guide for COBOL, order number SC28-6469.

Summary of Amendments Number 1

Date of Publication: March 22, 1974
Form of Publication: TNL SN28-1063 to SC28-6478-0

New: Additional Compiler Capabilities
Lister feature

Execution Statistics and
Verb summary feature

SORT-OPTION

Maintenance: Documentation Only

Minor technical changes and corrections.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

'EATURES OF THE PROGRAM PRODUCT DOS/VS

JOMPILER «© ¢ v v« o o o o o o o o o @
[BM Restrictions « . « « o .
PART I & 6 v 6« o o o o o o o o o o o

[NTRODUCTION . . .
Zontrol Program .« « « « « o « « 2 o
SUPEXVISOY v o o o o o o = o« o o « =
Job Control ProcessSor . - « « « o =
Initial Program Loader « . . « « « «
Processing Programs . « « « = « o« =
System Service Programs . . .« o« o =
Application Programs « « -« « « « = =
IBM-Supplied Processing Programs . .
Data Management . . . <« « < ¢ & . o
Multiprogramming « « « o o = « o « < =
Background vs. Foreground Programs .

® @ e e« e e e @ &

JOB DEFINITION ¢ o « o o o = « o « = =
Job Steps . . .
Compilation Job Steps “ o o o o o
Multiphase Program Execution . . .
Types of JobsS . & v o o o o« o« o« &
Job Definition Statements
Other Job Control Statements . . . -

JOB PROCESSING o « o o 2 o« @« 2 o « « =
Compilation . . ¢ ¢ ¢ o 4 4 o o <« =
EAiting =« o o o o o o o o o o =« = =
Phase Execution . . « « « « o « « «

Multiphase Programs . « « « « o « « =

PREPARING COBOL PROGRAMS FOR PROCESSING
Assignment of Input/Output Devices . -
Job Control 4 4 @ o 4 2 o = =
Job Control Statements
Comments in Job Control Statements
Statement Formats . . . “ o e =
Sequence of Job Control Statements
Description and Formats of Job
control Statements . « « 4 o ¢ o .
JOB Statement < . 4 . .
ASSGN Statement . . ¢ ¢ o ¢ ¢ o a
CLOSE Statement . o o« o« o o o « =
DATE Statement . . o« o« o « ¢ o « «
TLBL Statement « o« o « o ¢ o « « «
DLBL Statement . . . -« . ¢« . & - <
EXTENT Statement . . . <« =« <« &« o« &
LISTIO Statement

MTC Statement
OPTION Statement
PAUSE Statement
RESET Statement
RSTRT Statement
UPSI Statement ¢
EXEC Statement
CBL Statement -- COBOL Option

Control Statement . . . [

LST Statement -- Llster Optlon . .

Mutually Exclusive Options

4o.1

CONTENTS

Changing the Installation Defaults
Significant Characters for Various
Options . - . . .« <. & « « & « & &
Job Control Commands - . . .
Linkage Editor Control Statements . .
Control Statement Placement . . .
PHASE Statement . <« « « « . . < .
INCLUDE Statement
ENTRY Statement . . « « « .« o . .
ACTION Statement « « o« « « « « « =«
Autolink Feature
Relocating Loader Feature

LIBRARIAN FUNCTIONS . ¢ ¢ « o o o o «
Planning the Libraries . . . « . « . .
Librarian .« « « o ¢ o o« 2 ¢ o o = « =
Core Image Library . « « « .« « .« « « .
Cataloging and Retieving Program
Phases -- Core Image Library . .
Relocatable Library .« « « « o« « « « «
Maintenance Functions
Cataloging a Module -- Relocatable
Library .« « o o ¢ o a o o o o o =
Source Statement Library - < .
Maintenance Functions

Cataloging a Book -- Source

Statement Library . « « « . « . .
Updating Books -- Source Statement
Library . . c e o 2 & = 2 o o @
UPDATE Functlon -- Invalid Operand

Defaults o« « o ¢ 4 o o o o o o o o
The Procedure Library . .

. e

MAINT, Procedure Library
Catalog ¢« « ¢ « o« « o .
PSERV, Procedure Library
Calling Cataloged Procedures
Private Libraries e e .

Determining the Location of the
Libraries
Source Language Considerations . .
Extended Source Program Library
Facility . « .+ ¢« « ¢ ¢« ¢ & o« o « o .
Reformatted Source Deck

e« e o e s e e e e e e e e

INTERPRETING OUTPUT . « o o o =« « « =
Compiler Output . . . ¢ & ¢ « « o o
Object Module . . o & 2 = = « « « &
Linkage Editor Output « . .
Comments on the Phase Map
Linkage Editor Messages =

DOS ANS COBOL Unresolved
References . . . <« ¢« & < ¢ ¢ < . .
COBOL Execution Output
Operator MesSsages e « « « « « o « o
STOP Statement . <« « « « « « « . &
ACCEPT Statement . . « <« « « « « .
System Output . . . <. ¢ « 2o 4 & & - .

CALLING AND CALLED PROGRAMS
Linkage o e e+ e e
Linkage In A Calllng Program « . e

Linkage In A Called Program . -« « - - 76 Accessing an Indexed File (DTFIS) . .121
Entry Points - - -« - 76 Key Clauses . « « « « « « = « « « <121
Correspondence of Arguments and Improving Efficiency . « « « « o < 2122

ParametersS « o« o« o« « o« o« = o« « o « « o 17
Link Editing Without overlay « - « « « « 717 PROCESSING 3540 DISKETTE UNIT FILES . .123

Assembler Language Subprograms . « « - « 78 File ProcesSing . « « o« « « o« o« « « « .123
Register Use < . . « . « « « =« « « « - 78 |COBOL Language Considerations123
Save AX€a « + <« o + 2 s+ o« = s s 2 « « 19 DIFDU & & « « « . e e e . . 128
Argument List . . < & o 79 Job Control Requlrements e e+ v . . L1284
File-Name and Procedure-Name DLBL Statement125
Arguments o o o o ¢ o o o « o = o o « 719 EXTENT Statement125

In-Line Parameter List « « « « . . . 81 3540 File . « « & + « o « « « « . 2125

Lowest Level Program . . « « « « « - « 81
OVEXlayS « o« o = o = o o o« o« « =« « = o« « 81 VIRTUAL. STORAGE ACCESS METHOD (VSAM) . .127

Special Considerations When Using File Organization127
Overlay Structures . . « . « « « = « - - 81 Key-Sequenced Files127
Assembler Language Subroutine for Entry-Sequenced Files127
Accomplishing Overlay . « « « - « « - 82 | Relative Record Files128
Link Editing with Overlay . - . - . . 83 Data Organization128
Job Control for Accomplishing Overlay 8&4 Data ACCESS « + « o o « o o o « « « « 2128
vsaM Catalog e« .« .« . 2128
USING THE SEGMENTATION FEATURE 89 File and Volume Portablllty e+« . o« 2130
LANGLVL Option and Reinitialization . . 89 Service Programs . . . « .« . « « . o . 2130
Operation . . « + ¢ ¢ « & « o« « « « « - 90 Device Support . . « +« « « ¢« « « « . . 2130
Output From a Segmented Program 91 Security . .« .+ + ¢« ¢ 4+ ¢ ¢ o + o « o . 2130
Compiler Output 91 Error Processing130
Linkage Editor Output 92 VSAM MesSsSagesS .« « « « « « « « « o« « » 2130
Cataloging a Segmented Program . . 92 Access Method Services130
Determining the Priority of the Last Functional Commands . . . « « . « . .130
Segment Loaded into the Transient The DEFINE Command130
Area . - « + o« 4 s e e e e e e e .. 92 Functions of the DEFINE Command . .130.1
Sort in a Segmented Program 93 Specification of the DEFINE Command 131
Using the PERFORM Statement in a Defining a VSAM Master Catalog:
Segmented Program 93 | DEFINE MASTERCATALOG131
Defining a User Catalog: DEFINE
PART II . « ¢ « o o « « « o o « « « « < 95 USERCATALOG 2132
Defining a VSAM Data Space. DEFINE
PROCESSING COBOL FILES ON MASS STORAGE SPACE e e e e e e o« 4132
DEVICES . « « =« « &« =« o o« o o o« « » « « 97 Defining a VSAM Flle e « « « « <« . .133
| Device Independence 97 Defining a Relative Record File . .134.1
File Organization <« <« « « o o o « « « « 97 Defining an Entry-Sequenced File . .134.1
Sequential Organization 97 File Processing Techniques134.1
Direct Organization . « « « « « - - . 97 Current Record Pointer134.1
Indexed Organization . - « - - - - - - 97 Error Handling e . . . 136
Data Management Concepts . - 98 Record Formats for VSAM Files . . .136
Sequential Organization (DTFSB) 99 Initial Loading of Records into a
VSAM Space Management for SAM . . . 99 File . . ¢« & v o ¢ v v o o o v o« . 2137
Processing a Sequentially Organlzed File Status Initialization137
File v ¢« ¢ o o o o o o o o o o o« o « « 99 Opening a VSAM File137
Direct Organization (DTFDA) . . . - - 99 Writing Records into a VSAM File . . .139
Accessing a Directly Organized Flle -100.1 Entry-Sequenced File
ACTUAL KEY ClaUSe o« o « = « =« « = = =101 Considerations for the WRITE
Randomizing Techniques - . .102 Statement . . e e e o« « o . 2139
Actual Track Addressing Key-Sequenced Flle Con51derat10ns
Cconsiderations for Specific Devices .116 for the WRITE Statement139
Randomizing for the 2311 Disk Drive 116 Relative Record File Considerations
Randomizing for the 2321 Data Cell -117 for the WRITE Statement139
Indexed Organization (DTFIS) -118 Rewriting Records on a VSAM File . . .140
Prime Area . « « « « s « = « « « « = =118 Entry-Sequenced File
IndeXesS . o« = 2 o o = s 2 = = o = o 2119 Considerations for the REWRITE
Track INd€X .« « « « o« « « « « » « «119 Statement J140
Cylinder IndeXx . « « « = =« « = - - 2119 Key-Sequenced File Considerations
Master IndeX . « « « « = « = = =« « =119 for the REWRITE Statement140
- Overflow Area = = o = « 2119 Reading Records on a VSAM File140
Cylinder Overflow Area e = - - - =119 Entry-Sequenced File
Independent Overflow Area e - = < 119 Considerations for the READ
Adding Records to an Indexed File .120 Statement . . . e e e 4 e e « . 0O

Key-Sequenced Flle Considerations
for the READ Statement1740

Relative Record File Considerations

for the READ Statement
READ NEXT Statement
READ Statement

sing the START Verb
DELETE Statement
COBOL Language Usage With VSAM . .
Creating a VSAM File
Retrieving a VSAM File
Job Control Language for a vVsSaM
File e .
DLBL Statements for Alternate
Indexes
Converting Non-VSAM Flles to VSAM
Files . . . « « « « o« . e e .
Using ISAM Programs to Process VSAM
Files . . . ¢ ¢ ¢ ¢ v v o « & o .

JETAILED FILE PROCESSING CAPABILITIES
0OBOL VSAM Control Blocks .
JTF Tables + ¢ ¢ o o o o o o &
Pre~-DTF Switch
irror Recovery for Non—VSAM Flles ..
FILE STATUS Key . . . e e e e
Use After Standard Error e e e e e .
Jolume and File Label Handling
Tape Labels o v 2 ¢« 2 o o o o a = =
Volume Labels . . o ¢ @ o & ¢ « -
Standard File Labels . . <« + « < -«
User Standard Labels . . <« < . + .«
Nonstandard Labels . o « « « o« « «
Label Processing Considerations . .
Sample ProgramsS . « « o « « « o
Mass Storage File Labels
Volume Labels . ¢ ¢ & o o o « o o
Standard File Labels o« < o« o - . .
User Labels . . -« « o -
Label Processing Con51derat10ns - =
Files on Mass Storage Device
Opened as INPUE & o & o o o = o =
Files on Mass Storage Devices
Opened as Output « « . « . « < -
Unlabeled FilesS & w o ¢ o « o o o =

PROCESSING ASCII TAPE FILES
Specifying ASCII File Processing . . .
File Handling . « o « = o o « = « «

Operational Considerations . . o « + .
Obtaining an ASCII Collating Sequence’
On @ SOt & v 2 4 o o o 4 o o 2 = o =

RECORD FORMATS FOR NON-VSAM FILES . .
Fixed-length (Format F) Records . . .
Undefined (Format U) Records
Variable-Length Records
APPLY WRITE-ONLY Clause€ . « « « =
Spanned (Format S) Records . . « « <« «
S-Mode Capabilities -
Sequentially Organized o—Node FlleS
on Tape or Mass Storage Devices . .
Source Language Considerations . .
Processing Sequentially Organized
S-Mode Files . . . - . -
Directly Organized S- Mode Flles . -
Source Language Considerations . .
Processing Directly Organized
S-Mode FileS w o o o o o o o o o =

PART III . . & « o « a o o « = =« =« = &«

. 140
140
141
181
. 141
L1481
141
143

L4401
L4401
L4401

1442

.45
. 145
.150
.155
.155
.156
.156.1
.162
.162
-162
.162
-162
-162
-165
.166
-174
174
174
<174
<174

-174

-175
-175

177
2177
-177
-178

.178

-179
-179
-180
-180
.183
-183

-184

.185
.185

-.185
187
.187
-.188

-189

PROGRAMMING TECHNIQUES o« o o o« = «
Coding Considerations for DOS/VSE.
General Considerations . « « . « «
COPY . .« < « @ o o e o e @ o = =
Syntax Checklng “ e e e s e e e e
Formatting the Source Program
Listing « o« o o «a o o o o « «
Environment Division . « « « .« . .
RESERVE Clause . .
APPLY WRITE-ONLY Clause - . .
Data Division
Storage Considerations
Overall Considerations
FD Entries o« o o o o o « « « &
PrefiXesS w o o o o o o o o« o @
Level Numbers . . o« o« « o« o «
File Section « o e
RECORD CONTAINS Clause e - e e
BLOCK CONTAINS Clause . . . -
Working-Storage Section
Separate Modules
Locating the Working-Storage
Section in DUMPS « « « « « « =
REDEFINES Clause . « =« « « o «
PICTURE ClauSe€ . w « = « « < =
USAGE ClauSe . v « « o = « « =
SYNCHRONIZED Clause . « .
Special Considerations for
and COMPUTATIONAL Fields . .
Data Formats in the Computer .

DISPLAY

-

o

Procedure Division
Modularizing the Procedure Division
Main-Line Routine
Processing Subroutines
Collating Sequences

Intercepting I/0 Errors . . .

Errors that May Escape Detection

Input/Output Subroutines . . .
Overall Considerations . . « . o
OPTIMIZE Option . . 2 o o + =
Intermediate Results . « « « « -
Intermediate Results and Binary
Data Items « o « o o o « o o @
Intermediate Results and COBOL
Library Subroutines
Intermediate Results
30 DIgitsS & 4 4 4 4 4 e o o =
Intermediate Results and

Greater Than

Floating-point Data Items . . .

Intermediate Results and the ON

SIZE ERROR Option <

Exponentiation ¢ & 4 < «
Optimization Based on Execution
Frequency . + ¢ o « o o o « w

Procedure Division Statements .
COMPUTE Statement

IF Statement
MOVE Statement
NOTE Statement
Perform Statement
READ INTO and WRITE FROIl.Options
WRITE ADVANCING with LINAGE, FOOT
and END-OF-PAGE
START Statement
STRING Statement
TRANSFORM Statement

UNSTRING Statement

USING THE SORT/MERGE FEATURE . . .
Sort/Merge Job Control Requirements

.

ING,

e 8 &

-

-191
-191
-191
-191
.191

.191
-192
.192
.192
.193
.193
.193
.193
.193
-193
.194
.194
.194
.19y
.194

-194
.194
-196
.197
. 200

.200
-200
.202
.202
.203
.203
.203
.203
.203
.203
. 204
. 204
. 204

. 204
. 204
- 204
- 204

- 204
<204

204.
-204.

.204
.204
.205
.205
.205
.205
.205

.206
.206
.206
.206
.206

.207
.207

_ e e

Sort Input and Output Control

Statements e .
SORT-OPTION Clause . e .
Sort Diagnostic Messages .

Linkage With the Sort/Merge Feature

Completion Codes
Cataloging a Sort Program

Checkpoint/Restart During a Sort . .
Using Sort in a Multiphase Environment .210

USING THE REPORT WRITER FEATURE

REPORT Clause in a File
Description (FD) Entry .
Summing Techniques . . .
Use of SUM =« &« ¢« &« o « =
SUM Routines . . « « « «
Output Line Overlay . -
Page Breaks . o o o« o o
WITH CODE Clause . . .

Control Footings and Page Format

NEXT GROUP Clause . . .
Floating First Detail .
Report Writer Routines .

TABLE HANDLING CONSIDERATIONS
Subscripts « « . & - . -
Index-names . « « = « =
Index Data Items . . . «
OCCURS Clause . « « « =
DEPENDING ON Option .

OCCURS Clause with the DEPENDING

Option v v o @ ¢ @ o o o o
SET Statement <
SEARCH Statement . . .
SEARCH ALL Statement . .
Building Tables

PART IV . & 2 o o o a = « =

LISTER FEATURE

Overall Operation of the Lister

Programming Considerations
The Listing . . . « - «
The Output Deck . - - -

Reformatting of Identification

Environment Divisions .

-

s s s &

Data Division Reformatting .

Procedure Division Reformatting

Summary Listing

The Source Listing

General Appearance . . -

Format Conventions . . .

Type Indicators

The Summary Listing . . . =«

General Appearance . . .

The Output Deck . . « - . =

Using the Lister . . . « .
Options . . « . . .

Programming Con31derat10ns

SYMBOLIC DEBUGGING FEATURES

LI SR T |

«

L]

-

.
.
-
-
-

.207
.208
.209
-209
. 209
- 209
.210

-211

- 211
-211
.211
.212
.213
-.213
L2740
214
- 214
- 215
- 215

- 217
- 217
- 217
. 217
- 217
- 217

. 218
-221
224
- 224
« 225

- 227

.228.1
.228.1
.228.1
-228.2
-228.2

-228.2
-228.2
-228.3
«228.3
-228.3
-228.3
-228.3
-228.4
-228.5
-228.5
-228.5
~228.5
-228.5
-228.6

- 229

Use of the Symbolic Debugging Features .229

Statement Number Option .
Flow Trace Option
Symbolic Debug Option . .
Object-Time Control Cards
Overall Considerations . . .
Sample Program -- Testrun .
Debugging TESTRUN . . .

-

[}

s s e e

. 229
-229
- 229
-230
. 232
-232
-233

PROGRAM CHECKOUT . . . & « & o « o o «
Syntax-Checking Compilation
Identification of Program Versions . .
Debug Language . . « « « o « o« « « =
Debugging Lineso .
Declarative Procedures--Use for
Debugging e e e e e .
TRACE, EXHIBIT, and ON e e e e e
Flow of Control . o < o o o o o o+
Displaying Data Values During
Execution . . . < & . - . « . e o«
Testing a Program Selectlvely - - =
Testing Changes and Additions to
Programs « « o« o o = « « = « = « « « =
DUMPS « « 2 « o o o o = = « « = = = =
How to Use a Dump . o« « « o o o = «
Errors That Can Cause a Dump « - . .«
Locating @ DTF o« o o « o o o o = «
Locating Data <« « « o =« & « o o « o

EXECUTICN STATISTICS o o o « o « o = =
Obtaining Execution Statistics . . .
Debugging and Testing <. .
Optimization Methods . « « « « o & « =
Resequencing the Program . . < . .
Insight into SYMDMP Output
Common Expression Elimination . .
Backward Movement . « ¢ « o a o =
Unrolling . o o o o o o o o = « =
JaMiNg o« o o « o o o o« o o = = «
Unswitching . <« . ¢ &« &« & ¢ « o .
Incorporating Procedures Inline .
Tabling .« a2 o « o o o « o « « « =
Efficiency Guidelines
Diagnostic MesSsSages . « « « « « o o »
Working with Diagnostic Messages . .
Generation of Diagnostic Messages .
Linkage Editor Output . . . « . . - .
Execution Time MeSsagesS <« « « « « « =
Recording Program Status« - . .
RERUN ClauS€ .« v o = « o o o « = = =
Taking a Checkpoint .+ « < . « <
Restarting a Program « « « o « « w « =

APPENDIX A: SAMPLE PROGRAM OUTPUT . .
APPENDIX B: STANDARD TAPE FILE LABELS

APPENDIX C: STANDARD MASS STORAGE
DEVICE LABELS . « =« o « o o a o o « =

APPENDIX D: TRACK FORMATS FOR
DIRECT-ACCESS STORAGE DEVICES

APPENDIX E: COBOL LIBRARY SUBROUTINES
Input/Output Subroutines
Printer Spacing . . - -
Tape and Sequential Dlsk Labels -
CLOSE WITH LOCK Subroutine
WRITE Statement Subroutines . . .
READ Statement Subroutines
REWRITE Statement Subroutines . .
DISPLAY (EXHIBIT and TRACE)
SUbroutines .« v « o « « o o o o @
ACCEPT and STUP (literal) Statement
SUbroutines .+ « ¢ ¢ <« « o o« 2 = =
CLOSE Subroutine . . . ¢« o« o« « « «
Multiple File Tape Subroutine . .

.247
.247
.247
. 247
.247

.247
.247

-248

-248.1
. 250

.250
. 251
-251
. 252
-252
- 253

. 260
-260
- 260
. 260
-260
- 260
. 260
. 260
- 260
- 260
. 260
. 260
. 260
. 260
-260
<260
- 260
- 261
. 261
-262
- 262
-262
-263

. 265

- 279

.281

. 287

. 289
. 289
- 289
.289
. 289
. 289
- 289
.290

-290
. 290

-290
. 290

Tape Pointer Subroutine
Input/Output Exror Subroutines . .
Disk Extent Subroutines
3886 OCR Subroutine « . .
VSAM Subroutines . « « <« « .« ¢ < .
Auxiliary Subroutines
ASCII Support Subroutines . . . - .
Separately Signed Numeric
Subroutine « ¢« ¢ ¢ @ « e o @ o o =
conversion Subroutines . « < « < . <
Arithmetic Verb Subroutines
Sort/Merge Feature Interface Routine
Checkpoint (RERUN) Subroutine . .
Segmentation Feature Subroutine . .
Other Verb Routines « « .
Compare Subroutines . . . « « «
MOVE Subroutines . . -«
TRANSFORM Subroutine < .
Class Test Subroutine < . « « o« «
SEARCH Subroutine . « « « « « = «
Main Program or Subprogram
SUDroUtine « o o 2 o o o o o « « o
Object-Time Debugging Subroutines .
Debug Control Subroutine
Statement Number Subroutine . . .
Flow Trace Subroutine . . « . . «
Symbolic Debug Subroutines
Object-Time Execution Statistics
Subroutines . . .« ¢ 4 4 4 o = o o o
COUNT Initialization Subroutine .
COUNT Frequency Subroutine
COUNT Termination Subroutine . . .
COUNT Print Subroutine =
Optimizer Subroutines
GO TO ... DEPENDING ON Subroutine
Optimizer DISPLAY Subroutine . . .
Transient Subroutines

L}

Symbolic Debug Subroutines
SYMDMP Error Message Subroutine .
Object-Time Options Subroutine . . .

STRING Subroutine
UNSTRING Subroutine
INSPECT Subroutine
SAM I/O Subroutine
GETCORE Subroutine
Alternate Collating Sequence Compare
Subroutine 0
Segmentation Subroutine
GO TO DEPENDING ON Subroutlne . e .
Date, Day, and Time Subroutine . . .
USE-FOR-DEBUGGING Subroutine

Error Message Subroutine

Error Message Print Subroutine . .

Reposition Tape Subroutine . . .
APPENDIX F: SYSTEM AND SIZE
CONSIDERATIONS . . ¢« & & o« o o o o o =«

Minimum Machine Requirements for the
Compiler

Workfile Deflnltlon in VSAM Space
Source Program Size Considerations

Compiler Capacity . « « « « o« «

Effective Storage Considerations .
Execution Time Considerations . . .
Multiprogramming Considerations . .
Sort Feature Considerations

- 290
-290
- 290
.290
- 290
. 291
. 291

-291
. 291
- 293
- 293
-293
. 293
- 293
-293
-294
. 294
. 294
- 294

- 294
- 294
- 294
- 294
.295
. 295

- 295
- 295
-295
-295
. 295
. 295
- 295
. 296
.296
.296
.296
.296
.296
.296
.296
.296
.296

.296
.296
.296
.296.1
.296.1
.296.1
.296.1
.296.1

.297

.297
.297
.297
.297
.298
.299
.300
.300

APPENDIX G:
Program Communication

APPENDIX H:

Indexed FileS o ¢ o o « a 2 o =« = «

Files Used in a Sort Operation . . .

APPENDIX I: DIAGNOSTIC MESSAGES . . .
Compile-Time MeSSagesS « = + « « « o
Operator MeSSageS .« « = o o « « o o
Object-Time Messages . . . « o o =

COBOL Object Program Unnumbered

MESSAGES 2 v o o o o o o a = 2 « = o

Statements for Invoking 3886
Functions o . - - . o o

APPENDIX K:
COMPILER« & & o ¢« o o o o o « o

INDEX . ¢ ¢ ¢ ¢ ¢ o o o o o o o o o &

.301
.301

COMMUNICATION REGION . .

.303
.304
.304

SAMPLE JOB DECKS
Direct Files e e e e e .
Creating a Direct Flle e e e e e
Retrieving and Updating a Direct
Fil€ o o v 4 o o 4 o o o o « = « « 2304
. 305
Creating an Indexed File305
Retrieving and Updating an Indexed
File o «v o ¢ o @ e o o o o« « =« « « <306
. 306
Sorting an Unlabeled Tape File . . .306
. 307
. 307
. 307

. 309

. 318

APPENDIX J: COBOL 3886 OPTICAL

CHARACTER READER SUPPORT - . . . - . .
3886 OCR Processing . - = « . - =
Implementing an OCR Operatlon o o -

. 319
.319
.319
.319
- 320
- 320
-320
-320
.321
-321
.321

Document Design . . « o o « o « «
Document Description - <« . .« « « «
COBOL SUPPOTt « = = = « « « « = =
File Description . . « « « .« « « «
Record Description . . « . . « < .
Procedural Code . . « & o o o = «
JCL Considerations . « . « . « « =
Subprogram Interface « o = =
I/0

. 324
OPEN Function (Equlvalent to OPEN
MACIO) o o o o o o o o o = o = =« =
CLOSE Function (Equivalent to DOS
CLOSE Macro) = - e e e o
READ Function (Equ1valent to DOS
READ and WAITF Macros) . « . « = =
READO Function (Equivalent to DUS
READ Macro) - « - -
WAIT Function (Equ1va1ent to Dos
WAITF MACIO) « o o a = o o o o = =
MARKL Function (Equivalent to DOS
CNTRL Macro with LMK Option) . . .
MARKD Function (Equivalent to DOS
CNTRL Macro with DMK Option) . . .
EJECT Function (Equivalent to DOS
CNTRL Macro, with ESP Option) . .
SETDV (Set Device by Loading a
Format Record) Function
(Equivalent to DOS SETDEV Macro) .
COBOL 3886 Library Routine . . .

. 324

- 324

- 324

.324

-324

. 324

. 325

.325

. 325
.325

Processing Tapes from the OCR 3886,
Model 2 . . . a4 4 e e 4 e e e e

. 326

LIMITS OF DOS/VS COBOL
.332

.333

ILLUSTRATIONS

TABLES
Table 1. Job Control Statements . . « 16
Table 2. Symbolic Names, Functions,

and Permissible Device TypeS . - - « - - 21
Table 3. Significant Characters for
vVarious Options . - « ¢ ¢ o o o « = = =
Table 4. Glossary Definition and
USAQE =+ 2 2. « o a @« =« = a = = =« « « = « 65
Table 5. Symbols Used in the Listing

and Glossary to Define

Compiler-Generated Information . . . <. - 66
Table 6. System Message

Identification Codes « o o o « o o = - - 73
Table 7. Conventional Use of Linkage
REGiSterS =« o o o = = o o o« o = = = =« - 18
Table 8. Save Area Layout and Word
Contents ¢ ¢ ¢« o 4 4 ¢ 4 4 e o « o = - « 19
Table 9. Recording Capacities of Mass
Storage DEeviCesS .+ 4 o w uw o o o o o = » 97
Table 9.1 File Organization and Access
Methods « ¢ ¢ ¢ o o o . . .97
Table 10. Partial List of Prime

NUmbers .« « o« @ o o o = «a = o = « = « 2105
Table 11. File Status Values and

Error Handling . + « o « o« = . - - «136.1

Table 12. File Status Key Values at

OPEN - e« = o o « s s =« =« = =138

Table 13. File Status at Action

Request TiME « o o = » o = = = « « « - =138

Table 14. COBOL Statements for

Creating a VSAM File “ o e = 141

Table 15. COBOL Statements for

Retrieving a VSAM File . - . . - - -

Table 16. Fields Preceding DTFMT and

DTFSD « - - e o - - 151

Table 17. Fields Preceding DTFDA --

ACCESS IS RANDOM -- Actual Track
Addressing “ e e e . - - « «151

Table 18. Fields Precedlng DTFD -

ACCESS IS RANDOM -- Relative Track

Addressing e e o = = o = = = 2152

Table 19. Fields Precedlng DTFDA --

ACCESS IS SEQUENTIAL -- Actual Track

AAAreSSing « « « o« o « o = o « = « « - 2153

.143

40.1

Table 20. Fields Preceding DTFDA --
ACCESS IS SEQUENTIAL -- Relative Track
AAAYESSING o« « o = « o « = o =« « « « « 2154

Table 21. Fields Preceding DTFIS . . -154
Table 22. Fields Preceding DTFDU . . .155
Table 23. Meaning of Pre-DTF Switch . .155
Table 24. Errors Causing an Invalid

Key Condition . . o« o« ¢« a =« = <« « « « -156.1

Table 25. Meaning of Error Bytes for
GIVING Option of Error Declarative
(Part 1 of 2) . 4 ¢ @ ¢ @ o ¢ ¢ o = «
Table 26. Location and Meaning of
Error Bits for DTFMT . . « . . . - -
Table 27. Location and Meaning of
Error Bits for DTFSD o o 2 « « « « « « +159
Table 28. Location and Meaning of
Error Bits for DTFDA o« « o « « =« - -
Table 29. Location and Meaning of
Zrror Bits for DTFIS . . «- .
Table 30. Location and Meaning of
Errxor Bits for DTFDU . . o o« o « = = =
Table 31. Data Format Conversion
(Part 1 of 2) - . . - -
Table 32. Relationship of PICTURE to
Storage Allocation « « .« o o o « 4 <« .

.157

.159

-.160
-160
.161
.198

.202

Table 33. Rules for the SET Statement .223
Table 34. Individual Type Codes Used

in SYMDMP Output « <« - <234
Table 35. Functions of COBOL lerary
Conversion Subroutines e o - =292
Table 36. Functions of CUBOL lerary
Arithmetic Subroutines . . . e o o 2293
Table 37. OCR Status Key Values and

User ACtionS v« o« v ¢ o o o o o « =« o« « 2322
Table 38. Possible Status Key Values,

By Operation « . « « o« « « < e - o 2322

Table 39. User Responses to status Key 323
Table 40. CALL Statements for

Invoking 3886 I/0 Functions326

‘igure 1.
‘or Compiling, Link Editing, and
iXxecuting a Main Program and Two

Jubprograms . ¢ 4 4 6 6 s 4 e e e e
"igure 3. How the PUB Table is

scanned . . . e e e e e e e e e e e s
?igure 3.1 Device Specifications . .
for Tapes .« « ¢« v o« & ¢ o« + « o o « =«

‘igure 4. Sample Label and File
ixtent Information for Mass Storage
"11E@S 4 4 e e e e e e m e e e e e e =

*igure 5. Job Definition -- Use of
:he Librarian . . . - - e o e = .
*rigure 6. Options Avallable During

sink-Editing e e % e e ® e ® ® e * =
figure 7. The Relative Location of
-he Four System Libraries
figure 8. Sample Coding to Calculate
*ICA . o = e e e m e e e e e o= .
*igure 9. Altering a Program from
the Source Statement Library Using
INSERT and DELETE CardsS . « « « « « =
Figure 10. Effect of INSERT and
DELETE Cards . e e e e e .
Figure 11. Examples of Compiler
Output (Part 1 of 4) “ @ o o o = = =
Figure 12. A Program that Produces
COBOL Compiler Diagnostics “ e e e o=
Figure 13. Linkage Editor Output . .
Figure 14. Output from Execution Job
Step “ e % e 2 o e @ e @ @ ® e @ = =
Figure 15. Calling and Called
Programs 6 2 @ 2 @ 2 o % ® ° « = @« =
Figure 16. Example of Data Flow Logic
in a Call Structure . . .« ¢ o« « « « =
Figure 17. Sample Linkage Routines
Used with a Calling Subprogram
Figure 18. Sample In-line Parameter
List At
Figure 19. Sample Linkage Routines
Used with a Lowest Level Subprogram .
Figure 20. Example of an Assembler
Language Subroutine for Accomplishing
OVEXlay o« o o @ o o« o o @« o « o« o o =
Figure 21. Flow Diagram of Overlay
LOGIiC 4 o 2 o o o o o a = « = o « « =
Figure 22. Job Control for
Accomplishing Overlay . . . - .
Figure 23. Calling Sequence to Obtaln
Overlay Between Three COBOL
Subprograms (Part 1 of 3)
Figure 24. Segmenting the Program
SAVECORE “ o e @ = ® e & @ @ s @« @ =
Figure 25.
Figure 26. Compiler Output for
SAVECORE e e @ o e = e w @ @ = * « =

- w o e -

Figure 27. Link Editing a Segmented
Program « « « o « o o o o @ « o « o« =
Figure 28. Location of Sort Program

in a Segmentation Structure
Figure 29. Structures of the Actual
KEY = o o o o @« 2 o « o a w o o « w

Storage Layout for SAVECORE

Sample Structure of Job Deck

-

13
25.4

25.5

30
41
Ly
56

58

58
58
60

69
70

72
75
78
80
81

81

82
84

84

85

89
91

92
EL
94

+»102

FIGURES

Figure 30. Permissible Specifications
for the First Eight Bytes of the
Actual Key c o o o e e e e 4 e e o=
Figure 31. Creating a Direct File
Using Method B (Part 1 of 4)
Figure 32. Creating a Direct File
with Relative Track Addressing Using
Method B (Part 1 of 4) « e e e e e
Figure 33. Formats of Blocked and
Unblocked ReCOXAS o o o o o « % = = =
Figure 34. Adding a Record to a Prime
frack e o o e o s % o e a @ v e =
Figure 35. VSAM Data Organization -
Figure 36. Defining a VSAM Master
Catalog o o ¢ 4 e e e e = e e e e o e
Figure 37. Defining a VSAM Data Space
Figure 38. Defining a Key-sequenced
Suballocated VSAM File with Both
Primary and Alternate Keys
Figure 39. Standard Tape File Label
and TLBL Card (Showing Maximum
Specifications) . . & < - < .
Figure 40. Standard Tape File
and TLBL Card (Showing Minimum
Requirements) . . . « . e - -
Figure 41. Standardf/User Standard
and Volume Labels . . . « o o e
Figure 42. Nonstandard Labels . - . .
Figure 43. Processing an Unlabeled
Multifile Volume (Part 1 of 2) “ o
Figure 44. Reading a Multivolume File
with Standard Labels; Creating a
Multifile Volume with Standard Labels
(Part 1 of 2) ¢ v 0 a6 v 4 o o o« o o =
Figure #45. Creating an Unlabeled
Multivolume File (Part 1 of 2) - o =
Figure 46. Fixed-Length (Format F)
RECOYAS @ o o o o @ = o a = « « « « =
Figure 47. Undefined (Format U)
RECOYAS 2 o o o o o o o = = = » « = =

Label

Figure 48. Unblocked V-Mode Records
Figure 49. Blocked V-Mode Records .
Figure 50. Fields in Unblocked v-Mode

RECOTAS @« o o o o = « o = o = o o wu =
Figure 51. Fields in Blocked V-Mode
RECOXAS 2 o o o o o o = o o = o = =~
Figure 52. First Two Blocks of
VARIABLE-FILE-2 . . o e e o =
Figure 53. Control Flelds of an
S=Mode ReCOYd .« o« o o o o« o o« « o = o
Figure 54. One Logical Record
Spanning Physical Blocks o e e e e .
Figure 55. First Four Blocks of
SPAN-FILE . ¢ « w o o o = =« o o« « =
Figure 56. Advantage of S-Mode
Records Over V-Mode Records «
Figure 57. Direct and Sequential
Spanned Files on a Mass Storage Device
Figure 58. Treatment of Varying
Values in a Data Item of PICTURE S9 .

-102

-107

-112
-118

-120
-129

.131
132
.133

-163

-164

.165
.165

.168

-170
.172
.179
.180
.180
-181
«182
.182
.183
.184
.185
.186
-186

187

- 202

Figure 58.1. Using the STRING

Statement206
Figure 58.2. Using the UNSTRING

Statement206
Figure 59. Sample of GROUP INDICATE

Clause and Resultant Execution Output .213
Figure 60. Format of a Report Record

When the CODE Clause is Specified . . .214
Figure 61. Activating the NEXT GROUP '
Clause e e e e e s e e e e 4 e e s . 215
Figure 62. Calculating Record Lengths

When Using the OCCURS Clause with the
DEPENDING ON Option 2220

Figure 63. Table Structure in Virtual
StOrage .« . ¢ ¢ 4 e 4 s e e e e e . . 2221

Figure 64. Using the Symbolic
Debugging Features to Debug the

Program TESTRUN (Part 1 of 12)235
Figure 64.1. Program with USE FOR

DEBUGGING . . +. v « o o o « &+ o« « « « 2247
Figure 65. Sample Output of EXHIBIT
Statement With the CHANGED NAMED

Option e e e e et e e e e e e e e w. G200
Figure 66. Sample Dump Resulting from
Abnormal Termination (Part 1 of 6) . . .254
Figure 67. Track Format288
Figure 68. Communication Region in

the Supervisor302
Figure 69. Sample OCR Program (Part 1

of 5) . . 4 i o e e e e e e e .327

FEATURES OF THE PROGRAM PRODUCT DOS/VS COMPILER

The DOS/VS COBOL Release 3 Compiler is
lesigned and implemented to execute under
JOS/VSE with Advanced Function Release 3
ind later. It may also be used with CMS/DOS
inder VM/SP, with restrictions.

The compiler and library are designed
wccording to the specifications of the
‘ollowing industry standards, as understood
ind interpreted by IBM as of May 1980:

» American National Standard COBOL,
X3.23-1974 (except for the restrictions
noted below), which is compatible with
and identical to International
Organization for Standardization/Draft
International Standard (ISO/DIS) 1989~
COBOL.

The restrictions place support for ANS
COBOL X3.23-1974 at the Federal
Information Processing Standard low-
intermediate level.

» American National Standard COBOL,
X3.23-1968, which is compatible with and
identical to ISO/R 1989-1972 Programming
Language COBOL.

[BM Restrictions

Some elements of American National
Standard COBOL, X3.23-1974, are not included
in DOS/VS COBOL. These elements are:

» The Communication Module.
» The Report Writer Module.

» Full support of the OPTIONAL phrase in
the SELECT clause of SEQUENTIAL I-O
Level 2. (The OPTIONAL phrase is
treated as documentation; the function
is provided by a control statement of
the operating system.)

» The OPEN EXTEND statement for SEQUENTIAL
I-0.

» Level 2 of the Inter-Program
Communication module.

» Level 2 of the DEBUG module.

» The multiple library facility of LIBRARY
Level 2. (Level 2 language is supported
as documentation.)

The DOS/VS COBOL Compiler includes the
following features:

® Object Code:

(1) Optimized Object Code —-- saves
space in object program generated
code and global tables. The space
saved depends on the number of
referenced procedure-names and
branches, and on 01-level data
names.

(2) Double-Buffered ISAM -- allows
faster sequential processing of
indexed files.

(3) The MOVE Statement and Comparisons
-- when a MOVE statement or a
comparison involves a one-byte
literal, generated code for the
move and the comparison saves
object program space and
compilation time.

(4) DISPLAY Routines -- the DISPLAY
routine has been split into
subsets for efficient object
program code.

® Alphabetized Cross—Reference Listing
(SXREF) =-- for reference to user-
specified names in a program.

e Debugging Facilities:

(1) Symbolic Debug Feature -- which
provides a symbolic formatted dump
at abnormal termination, or a
dynamic dump during program
execution.

(2) Flow Trace Option -- a formatted
trace can be requested for a
variable number of procedures
executed before abnormal
termination.

(3) Statement Number Option --
identifies the COBOL statement
being executed at abnormal
termination.

(4) Expanded CLIST and SYM -- for
detailed information about the
Data Division and Procedure
Division.

(5) Relocation Factor -- can be
requested to be included in
addresses on the object code
listing, for easier debugging.

Features of the Program Product DOS/VS Compiler 7

(6) Working-Storage Location and Size
-- when CLIST and SYM are in
effect, the starting address and
size of Working-Storage are
printed.

(7) Syntax-Check Feature —-- optionally
provides a quick scan of the
source program without producing
object code. Syntax checking can
be conditional or unconditional.

(8) WHEN-COMPILED Special Register --
makes the date-and-time-compiled
constant carried in the object
module available to the object
program. This special register is
a programmer aid that provides a
means of associating a compilation
listing with both the object
program and the output produced
at execution time.

Device Support =-- any tape or disk that
is compatible with devices previously
supported by DOS/VS COBOL can be
specified. For example, all IBM mass
storage facilities with model numbers
of the form 33xx are supported.

ASCII Support -- allows creation and
retrieval of tape files written in the
American National Standard Code for
Information Interchange (ASCII).

VSAM (Virtual Storage Access Method)
Support -- provides fast storage and
retrieval of records, password
protection, centralized and simplified
data and space management, advanced
error recovery facilities, plus system
catalog. COBOL supports indexed (key-
sequenced) files with primary and
alternate indexes, sequential (entry-
sequenced) files, and relative-record
files. Records can be fixed or variable
in length. ’

FIPS (Federal Information Processing
Standard) Flagger -- issues messages
identifying nonstandard elements in a
COBOL source program. The FIPS Flagger
makes it possible to ensure that COBOL
clauses and statements in a DOS/VS
COBOL source program conform to the
Federal Information Processing
Standard.

At system generation time, no flagging,
NOLVL (which is the system generation
default), or flagging at a specified
FIPS level, LVL=A/B/C/D, can be
specified as the installation default
option. At compile time, the programmer
can override any of these options by
specifying another level of FIPS
flagging; if NOLVL is specified, however
the option is ignored and the default
LVL option is used. Through the

LANGLVL option, the programmer can
specify flagging for either the 1972
FIPS or the 1975 FIPS.

e Lister -- provides a specially

formatted source listing with embedded
cross-references for increased
intelligibility and ease of use. A
reformatted source deck is available as
an option.

Generic Key Facility for ISAM Files --

sequential record retrieval can be
requested using a search argument
comprised of a user-specified number of
high-order characters (generic portion)
of the NOMINAL KEY. The user need not
specify a full or exact search key.
This feature is supported via the START
verb.

MERGE Support -- combines from two to
eight identically sequenced files on a
set of specified keys and makes records
available, in merged order, to an
output procedure or a sequential output
file.

Verb profiles -- facilitates
identifying and locating verbs in the
COBOL source program. Options provide
a verb summary or a verb
cross-reference listing which includes
the verb summary.

Execution-time statistics -- maintains
a count of the number of times each
verb in the 'COBOL source progrdm is
executed during an individual program
execution.

PART I

INTRODUCTION

Y

JOE DEPINITION

JOB PROCESSING

PREPARING COBOL PROGRAMS FOR PROCESSING

Y

\ 4

LIBRARIAN FUNCTIONS

INTERPRETING OUTPUT

\ 4

Y

CALLING AND CALLED PROGRANMS

Y

USING THE SEGMENTATION FEATURE

Y

PREP
PGMS

LIB
FCNS

OUTPUT

CALL
PGMS

An IBM COBOL program may be processed by
e IBM DOS/VSE System. Under control of

e operating system, a set of COBOL source
atements is translated to form a module.
order to be executed, the module in turn
st be processed to form a phase. The
asons for this will become clear later.

r now it is sufficient to note that the
ow of a COBOL program through the

erating system is from source statements
module to phase.

The DOS/VS System consists essentially
a control program and a number of
ocessing programs, and data management.

NTROL PROGRAM

The components of the control program
e: the Supervisor, Job Control
ocessor, and the Initial Program Loader.

PERVISOR

The main function of the Supervisor is

provide an orderly and erficient flow of
bs through the operating system. (A job
. some specified unit of work, such as the
‘ocessing of a COBOL program.) The
pervisor loads into the computer the
ases that are to be executed. During
ecution of the program, control usually
ternates between the Supervisor and the
‘ocessing program. The Supervisor, for
‘ample, handles all requests for
.put/output operations.

B CONTROL PROCESSOK

The primary function of the Job Control
rocessor is the processing of job control
:atements. Job control statements
:scribe the jobs to be performed and
recify the programmer's requirements for
tch job. Job control statements are
ritten by the programmer using the job
yntrol language. The use of job control
:atements and the rules for specifying
1iem are discussed later.

INITIAL PROGRAM LOADER

The Initial Progranm Loader (IPL) routine
loads the Supervisor into storage when
system operation is initiated. Detailed
information about the Initial Program
Loader need not concern the COBOL
programmer. Anyone interested in this
material, however, can find it in the
publication DOS/VS System Management Guide.

PROCFSSING_PROGRAMS

The processing programs include the
COBOL compiler, service programs, and
application programs.

SYSTEM SERVICE PROGRAMS

The system service programs provide the
functions of generating the systenm,
creating and maintaining the library
sections, and editing programs into disk
residence before execution. The system
service programs are:

1. Linkage Editor. The Linkage Editor
processes modules and incorporates
them into phases. 1 single module can
be edited to form a single phase, or
several modules can be edited or
linked together to form one executable
phase. Moreover, a module to be
processed by the Linkage Editor may be
one that was just created (during the
same job) or one that was created in a
previous job and saved.

The programmer instructs the Linkage
Editor to perform these functions
through job control statements. 1In
addition, there are several linkage
editor control statements.
Information on their use is given
later. .

2. Librarian. The Librarian consists of
a group of programs used for
generating the system, maintaining and
reorganizing the disk library areas,
and providing printed and punched

Introduction 11

output from the libraries. The system
libraries are: the core image
library, the relocatable library, the
source statement library, and the
procedure library. In addition, the
Librarian supports private core image,
relocatable, and source statement
libraries. Detailed information on
the Librarian is given later.

APPLICATION PROGRANMS

Application programs are usually
programs written in a higher-level
programming language (e.g., COBOL). All
application programs within the Disk
Operating System/Virtual Storage are
executed under the supervision of the
control program.

IBM-SUPPLIED PROCESSING PROGRAMS

The following are examples of
IBM-supplied processing programs:

1. Language translators, e.g., DOS/VS
COBOL, which translate source programs
written in various languages into
machine (or object) language.

2. Sort/Merge

3. Utilities

DATA MANAGEMENT

A third important class of components is
data management routines. These are
available for inclusion in problem programs
to relieve the programmer of the detailed
programming associated with the transfer of
data between programs and auxiliary
storage.

MULTIPROGRAMMING

Multiprogramming refers to the ability
of the system to control more than one
program concurrently by interleaving their
execution. This support is referred to as
fixed partitioned multiprogramming, since

12

the virtual address space is divided into a
fixed number of partitions. Each program
occupies a contiguous area of storage. The
amount of virtual storage allocated to
programs to be executed may be determined
when the system is generated, or it may be
determined by the operator when the program
is loaded into storage for execution.

BACKGROUND VS. FOREGROUND PROGRAMS

There are two types of problem programs
in multiprogramming: background and
foreground. Background and foreground
programs are initiated by the Job Control
Processor from batched-job input streams.

Background and foreground programs
initiate and terminate independently of one
another. Neither is aware of the other's
status or existence.

The system is capable of concurrently
operating one background program and four
foreground programs. Priority for CPU
processing is controlled by the Supervisor
with foreground programs normally having
priority over background programs. Control
is taken away from a high priority program
wvhen that program encounters a condition
that prevents continuation of processing,
until a specified event has occurred.
Control is taken away from a lower prjority
program when an event for which a higher
priority program was waiting has been
completed. Interruptions are received and
processed by the Supervisor.

In a multiprogramming environment, the
DOS/VS COBOL compiler can execute either in
the background or the foreground. In
systems that support the batched-job
foreground and private core image library
options, the Linkage Editor can execute in
any foreground partition as well as in the
background partition. To execute the
DOS/VS COBOL compiler for the linkage
editor in any foreground partition, a
private core-image library is required.
Additional information on executing the
compiler and Linkage Editor in the
foreground is contained in "Appendix F:
System and Size Considerations." COBOL
program phases can be executed as either
background or foreground progranms.

A job is a specified unit of work to be
rtformed under control of the operating
stem. A typical job might be the
‘ocessing of a COBOL program -- compiling
mrce statements, editing the module
‘oduced to form a phase, and then
‘ecuting the phase. Job definition -- the
rocess of specifying the work to be done
iring a single job -- allows the
rogrammer considerable flexibility. 1A job
in include as many or as few job_steps as
1e programmer desires.

)B STEPS

A job step is exactly what the name
plies -- one step in the processing of a
>b. Thus, in the job mentioned above, one
)b step is the compilation of source
:atements; another is the link editing of
module; another is the execution of a
1ase. In contrast to a job definition,
1e definition of a job step is fixed.
ich job step involves the execution of a
cogram, whether it be a program that is
art of the Disk Operating System/Virtual
torage or a program that is written by the
rogrammer. A compilation requires the
xecution of the DOS/VS COBOL compiler.
imilarly, an editing implies the execution
£ the Linkage Editor Finally, the
xecution of a phase is the execution of
he problem program itself.

ompilation Job Steps

The compilation of a COBOL program may
ecessitate more than one job step (more
han one execution of the DOS/VS COBOL
ompiler). In some cases, a COBOL progran
onsists of a main program and one or more
ubprograms. To compile such a program, a
eparate job step must be specified for the
ain program and for each of the
ubprograms. Thus, the DOS/VS COBOL
ompiler is executed once for the main
rogram and once for each subprogram.
xecution of the compiler produces a
odule. The separate modules can then be
onbined into one phase by a single job
tep -- the execution of the Linkage
ditor.

Each

For a COBOL program that consists of a
ain program and two subprograms,
ompilation and execution require five

JOB_DEFINITION

(1) compile (main program), (2)
(first subprogram), (3) compile
subprogram), (4) link edit (three
modules combined into one phase), and (5)
execute (phase). Figure 1 shows a sanmple
structure of the job deck for these five

steps:
compile
(second

job steps. Compilation and execution in
three job steps -- compile, link edit, and
execute -- is applicable only when the

COBOL source program is a single main
progran.

\// JOB PROG1
l.
l.
l.
\//
i

1 /*
I.
.
!.
://

|/*
I.
.
I
://
I/*
l-
-

EXEC FCOBOL
{source deck - main program}

EXEC FCOBOL
{source deck - first subprogram}

EXEC FCOBOL
{source deck - second subprogram}

EXEC LNKEDT

-io

1// EXEC

bt ot e e e — ——— — — —— — — — — — —— — —— — ——— —— — — — ——— —]

Figure 1. Sample Structure of Job Deck
for Compiling, Link Editing,
and Executing a Main Progran

and Two Subprograms

Multiphase Program_ Execution

The execution of a COBOL program has
thus far been referred to as the execution
of a phase. It is possible, however, to
organize a COBOL program so that it is
executed as two or more phases. Such a
program is known as a multiphase program.

By definition, a phase is that portion
of a program that is loaded into virtual
storage by a single operation of the
Supervisor. A COEBEOL program can be

Job Definition 1

3

executed as a single phase only if there is
an area of virtual storage available to
accommodate all of it. A program that is
too large to be executed as a single phase
must be structured as a multiphase program.
The technique that enables the programmer
to use subprograms that do not fit into
virtual storage (along with the main
program) is called overlay.

The number of phases in a COBOL program
has no effect on the number of job steps
required to process that program. As will
be seen, the Linkage Editor can produce one
or more phases in a single job step.
Similarly, both single-phase and multiphase
programs require only one execution job
step. Phase execution is the execution of
all phases that constitute one COBOL
program.

Detailed information on overlay
structures, as well as information on using
the facilities of the operating system to
create multiple phases and to execute them,
can be found in the chapter "Calling and
Called Programs."

TYPES OF JOBS

A typical job falls into one of several
categories. A brief description of these
categories follows; a complete discussion
is found in the chapter "Preparing COBOL
Programs for Processing."

Compile-Only: This type of job involves
only the execution of the COBOL compiler.
It is useful when checking for errors in
COBOL source statements. A compile-only
job is also used to produce a module that
is to be further processed in a subsequent
job.

A compile-only job can consist of one
job step or several successive job steps.

Edit-Only: This type of job involves only
the execution of the Linkage Editor. 1It is
used primarily to combine modules produced
in previous compile-only jobs, and to check
that all cross references between modules
have been resolved. The programmer can
specify that all modules be combined to
form one phase; or he can specify that some
modules form one phase and that others form
additional phases. The phase output
produced as the result of an edit-only job
can be retained for execution in a
subsequent job.

14

Compile and_Edit: This type of job
combines the functions of the compile-only
and the edit-only jobs. It requires the
execution of both the COBOL compiler and
the Linkage Editor. The job can include
one or more compilations, resulting in one
or more modules. The programmer can
specify that the Linkage Editor process any
or all of the modules just produced; in
addition, he can specify that one or more
previously produced modules be included in
the linkage editor processing.

Execute-Only: This type of job involves
the execution of a phase (or multiple
phases) produced in a previous job. Once a
COBOL program has been compiled and edited
successfully, it can be retained as one or
more phases and executed whenever needed.
This eliminates the need for recompiling
and re-editing every time a COBOL program
is to be executed.

Edit_and Execute: This type of job
combines the functions of the edit-only and
the execute-only jobs. It requires the
execution of both the Linkage Editor and
the resulting phase(s).

Compile, Edit, and Execute: This type of
job combines the functions of the compile
and edit and the execute-only jobs. It
calls for the execution of the COBOL
compiler, the Linkage Editor, and the
problem program; that is, the COBOL program
is to be completely processed.

When considering the definition of his
job, the programmer should be aware of the
following: if a job step is cancelled
during execution, the entire job is
termipnated; any remaining job_steps_are
skipped. Thus, in a compile-edit-and
execute job, a failure in compilation
precludes the editing of the module(s) and
phase execution. Similarly, a failure in
editing precludes phase execution.

For this reason, a job usually should
(but need not) consist of related job steps
only. For example, if two independent
single-phase executions are included in one
job, the failure of the first phase
execution precludes the execution of the
second phase. Defining each phase
execution as a separate job would prevent
this from happening. If successful
execution of both phases can be guaranteed
before the job is run, however, the
programmer may prefer to include both
executions in a single job.

3 DEFINITION STATEMENTS

Once the programmer has decided the work
be done within his job and how many job
2ps are required to perform the job, he

n then define his job by writing job
ntrol statements. Since these statements
2 usually punched in cards, the set of

b control statements is referred to as a
b deck. In addition to job control
atements, the job deck can include input
ta for a program that is executed during

job step. For example, input data for

e COBOL compiler -- the COBOL program to
compiled -- can be placed in the job
ck.

The inclusion of input data in the job
ck depends upon the manner in which the
stallation has assigned input/output
vices. Job control statements are read
om the unit named SYSRDR (system reader),
ich can be either a card reader, a
gnetic tape unit, or a disk extent.
put to the processing programs is read
om the unit named SYSIPT {(system input),
ich also can be either a card reader, a
gnetic tape unit, or a disk extent. The
stallation has the option of assigning
ther two separate devices for these units
ne device for SYSRDR, a second device for
SIPT) or one device to serve as both
SRDk and SYSIPT. If two devices have
en assigned, the job deck must consist of
ly job control statements; input data
st be kept separate. If only one device
s been assiogned, input data must be
cluded within the job deck.

There are four job control statements
at are used for job definition: the JOB
atement, the EXEC statement, the
d-of-data statement (/#%), and the
d-of-job statement (/&). In this
apter, the discussion of these job
ntrol statements is limited to the
nction and use of each statement. The
les for writing each statement are given
. the chapter "Preparing COBOL Programs
Y Processing."

The JOB statement indicates the
:\ginning of control information for a job.
le specified job name is stored in the
mmunications region of the corresponding
irtition and is used by job accountina and
y identify listings produced during
:ecution of the job.

The JOB statement may be omitted, in
1ich case the job name NONAME is stored in
le communications region. If the JOB
.atement is present, it must contain a job
me; otherwise, an error condition occurs.

The JOB statement is always printed in
positions 1 through 72 on SYSLST and
SYSLOG. The time-of-day and date are also
printed. The JOB statement causes a skig
to a new page before printing is started on
SYSLST.

When a JOB statement is encountered, the
joo control program stores the job name
from the JO3 statement into the
communications region. If the /& statement
was omitted, the next JOB statement will
cause control to be transferred to the
end-of-job routine to simulate the /§
statement.

The EXEC statement requests the
execution of a program. Therefore, one
EXEC statement is required for each job
step within a job. The EXEC statement
indicates the program that is to be
executed (for example, the COBOL compiler,
the Linkage Editor). As soon as the EXEC
statement has been processed, the program
indicated by the statement begins
execution.

The end-of-data statement, also referred
to as the /* (slash asterisk) statement,
defines the end of a program's input data.
When the data is included within the job
deck (that is, SYSIPT and SYSRDR are the
same device), the /* statement immediately
follows the input data. For example, COEOL
source statements would be placed
immediately after the EXEC statement for
the COBOL compiler; a /% statement would
follow the last COBOL source statement.

Note: For an input file on a 5425 MFCU,
the /* card must be followed by a blank
card.

When input data is kept separate (that
is, SYSIPT and SYSRDR are separate
devices), the /* statement immediately
follows each set of input data on SYSIPT.
For example, if a job consists of two
compilation job steps, an editing job step,
and an execution job step, SYSIPT would
contain the source statements for the first
compilation followed by a /* statement, the
source statements for the second
compilation followed by a /% statement, any
input data for the Linkage Editor followed
by a /* statement, and perhaps some input
data for the problem program followed by a
/* statement.

The end-of-job statement, also referred
to as the /& (slash ampersand) statement,
defines the eni of the job. A /& statement
must appear as the last statement in the
job deck.

Job Definition 15

OTHER JOB CONTROL STATEMENTS Table 1. Job Control Statements

P Fo- - =-=——==-—TT o 1
) Statementl Function |
The four job definition statements form b ‘}
the framework of the job deck. There are a // ASSGN | Input/output assignments. |
number of other job control statements in] |
the job control language; however, not all l'// cLOSE ! Closes a logical unit assigned
qf them must appear in the job deck. The | to magnetic tape. |
job control statements are summarized [|
briefly in Table 1. | // DATE | Provides a date for the |
| | Communication Region. |
H |
|// DLBL | Disk file label information |
The double slash preceding each | and VSAM file processing.
statement name identifies the statement as I | |
a job control statement. Most of the | // EXEC | Execute program. !
statements are used for data management --] | |
creating,‘manipulating, and keeping track | // EXTENT | Disk file extent. |
of data files. (Data files are externally i | |
stored collections of data from which data I// JOB | Beginning of control |
is read and onto which data is written.) | | information for a job. |
! I I
:// LISTIO | Lists input/output |
assignments. |
|]
{// MTC : Controls operations on :
magnetic tape.
| | |
1// OPTION: Specifies one or more job I
| | control options. |
|
I// PAUSE ! Creates a pause for operator |
I I intervention. l
| |
| // RESET | Resets input/output |
I | assignments to standard |
| : assignments. |
I
|// RSTRT | Restarts a checkpointed
I ! program I
| |) |
:// TLBL : Tape label information. :
|
:// UPSI : Sets user-program switches. |
|
| // VoL : Disk/tape label information. |
1 l
|// ZONE | Sets the zone for the date. |
| | |
| /* | End-of-data-file or 1
] | end-of-job-step. |
| |
:/g | End-of-job. |
| |
|« | Comments. !
I, e J

16

This chapter describes in greater detail
e three types of job steps involved in
ocessing a COBOL program. Once the
ader becomes familiar with the
formation presented here, he should be
le to write control statements by
ferring only to the next chapter,
reparing COBOL Programs for Processing."

MPILATION

Compilation is the execution of the
BOL compiler. The programmer requests
mpilation by placing in the job deck an
EC statement that contains the program
me FCOBOL, the name of the DOS/VS COBOL
mpiler. This is the EXEC FCOBOL
atement., If the compiler is loaded
om a user program, that program must be
cataloged phase. The name of the phase
st have as its first four characters
'COB'.

Input to the compiler is a set of COBOL
urce statements, consisting of either a
in program or a subprogram. Source
atements must be punched in Extended
nary-Coded-Decimal Interchange Code
BCDIC). The COBOL source statements are
ad from SYSIPT. The job deck is read
om SYSRDR. If SYSRDk and SYSIPT are
signed to the same unit, the COBOL source
atements should be placed after the EXEC
OBOL statement in the job deck.

Output from the COBOL compiler is
pendent upon the options specified when
e system is generated. This output may
clude a listing of source statements
actly as they appear in the input deck.
e source listing is produced on SYSLST.

addition, the module produced by the
mpiler may be written on SYSLNK, the
nkage editor input unit, and punched on
SPCH. Separate Data and/or Procedure
vision maps, a symbolic cross-reference
st, and diagnostic messages can also be
‘oduced. The format of compiler output is
scussed and illustrated in the chapter
nterpreting Output."

The programmer can override any of the
mpiler options specified when the systen
s generated, or include some not
‘eviously specified, by using the OPTION
mtrol statement in the compile job step.
mpiler options are discussed in detail in
.e chapter "Preparing COBOL Programs for
‘ocessing.”

JOB PROCESSING

EDITING

Editing is the execution of the Linkage
Editor. The programmer requests editing by
placing in the job deck an EXEC statement
that contains the program name LNKEDT, the
name of the Linkage Editor. This is the
EXEC LNKEDT statement.

Input to the Linkage Editor consists of
a set of linkage editor control statements
and one or more modules to be edited.
These modules include any of the following:

1. Modules that were compiled previously
in the job and placed at that time on
the linkage editor input unit, SYSLNK.

2. Modules that were compiled in a
previous job and saved as module
decks. The module decks must be
placed on SYSIPT. Linkage editor
control statements are read from
SYSRDR.

3. Modules that were compiled in a
previous job step and cataloged in the
relocatable library. The relocatable
library is a collection of frequently
used routines in the form of modules,
that can be included in a progranm
phase via the INCLUDE control
statement in the linkage editor job
step.

Output from the Linkage Editor consists
of one or more phases. A phase may be an
entire program or it may be part of an
overlay structure (multiple phases).

A phase produced by the Linkage Editor
can be executed immediately after it is
produced (that is, in the job step
immediately following the linkage editor
job step), or it can be executed later,
either in a subsequent job step of the same
job or in a subsequent job. In either of
the latter cases, the phase to be executed
must be cataloged in the core image libary.
Such a phase can be retrieved in the
execute job step by specifying ‘the phase
name in the EXEC statement, where phase
name is the name under which it was
cataloged. Otherwise, the phase output is
retained only for the duration of one job
step following the linkage editor job step.
That is, if the module that was just link
edited is to be executed in the next job
step, it need not have been cataloged. An
EXEC statement will cause the phase to be
brought in from the temporary part of the

Job Processing 17

core image library and will begin
execution. However, the next time such a
module is to be executed, the linkage
editor job step is required since the phase
was not cataloged in the core image
library.

If a private core image library is
assigned, output from the Linkage Editor is
placed in the private core image library
(either permanently or temporarily) rather
than in the resident system core image
library. When execution of a program is
requested and a private core image library
is assigned, this library is searched first
for the requested phase name and then the
system core image library is searched.

In addition to the phase, the Linkage
Editor produces a phase map on SYSLST.
Linkage editor diagnostic messages are also
printed on SYSLST. If the NOMAP option of
the linkage editor ACTION control statement
is specified, no phase map is produced and
linkage editor diagnostic messages are
listed on SYSLST, if assigned. Otherwise,
the diagnostic messages are listed on
SYSLOG. The contents of the phase map are
discussed and illustrated in the chapter
"Interpreting Output.”

Linkage editor control statements direct
the execution of the linkage Editor.
Together with any module decks to be
processed, they form the linkage editor
input deck, which is read by the Job
Control Processor from SYSIPT and written
on SYSLNK.

There are four linkage editor control
statements: the ACTION statement, the
PHASE statement, the ENTRY statement, and
the INCLUDE statement. These statements
are discussed in the next chapter.

PHASE EXECUTION

Phase execution is the execution of the
problem program, for example, the program
written by the COBOL programmer. If the
program is an overlay structure (multiple
phase), the execution job step actually
involves the execution of all the phases in
the program.

18

The phase(s) to be executed must be
contained in the core image_library. The
core image library is a collection of
executable phases from which programs are
loaded by the Supervisor. A phase is
written in the temporary part of the core
image library by the Linkage Editor at the
time the phase is produced. It is
permanently retained (cataloged) in the
core image library, if the programmer has
so requested, via the CATAL option in the
OPTION control statement.

The programmer requests the execution of
a phase by placing in the job deck an EXEC
statement that specifies the name of the
phase. However, if the phase to be
executed was produced in the immediately
preceding job step, it is not necessary to
specify its name in the EXEC statement.

MULTIPHASE PROGRAMS

A COBOL program can be executed as a
single phase as long as there is an area of
virtual storage available to accommodate
it. This area, known as the problem
program_area, must be large enouah to
contain the main program and all called
subprograms. When a program is too large
to be executed as a single phase, it must
be structured as a multiphase progranm.

The overlay structure available to the
COBOL programmer for multiphase programs is

_known as root phase overlay, and is used

primarily for programs of three or more
phases. One phase of the program is
designated as the root phase (main program)
and, as such, remains in the problenm
program area throughout the execution of
the entire program. The other phases in
the program -- subordinate_ phases -- are
loaded into the problem program area as
they are needed. A subordinate phase may
overlay any previously loaded subordinate
phase, but no subordinate phase may overlay
the root phase. One or more subordinate
phases can reside simultaneously in storage
with the root phase.

Use of the linkage editor control
statements needed to effect overlay are
discussed in the chapter "Calling and
Called Programs."

This chapter provides information about
‘eparing COBOL source programs for
mpilation, link editing, and execution.

‘SIGNMENT OF INPUT/OUTPUT DEVICES

Almost all COBOL programs include
put/output statements calling for data to
read from or written into data files
ored on external devices. CORBOL programs
not reference input/output devices by
eir actuwal physical address, but rather
their symbolic names. Thus, a COBOL
ogram is dependent on the device type but
t on the actual device address. Using
AM, it is not even dependent on the
vice type. The COBOL programmer need
ly select the symbolic name of a device
om a fixed set of symbolic names. At
ecution time, as a job control function,
e symbolic name is associated with an
tual physical device. The standard
signment of physical addresses to
mbolic names may be made at system
neration time. However, job control
atements and operator commands can alter
e standard device assignment before
ogram execution. This is discussed later
this chapter.

Using DOS/VS, a logical unit may also be
signed to another logical unit or a

neral device class or specific device

pe. For more information on this, see
S/VS System Management Guide and DOS/VS
stem Control Statements.

The symbolic names are divided into two
asses: system logical units and
ogrammer logical units.

PREPARING COBOL PROGRAMS FOR PROCESSING

The system logical units are used by the
control program and by IBM-suprlied
processing programs. SYSIPT, SYSLST,
SYSPCH, and SYSLOG can be implicitly
referenced by certain COBOL procedural
statements. Two additional names, SYSIN
and SYSOUT, are defined for background
program assignments. The names are valicd
only to the Job Control Processor, and
cannot be referenced in the COBOL program.
SYSIN can be used when SYSRDR and SYSIPT
are the same device; SYSOUT must be used
when SYSLST and SYSPCH are assigned to the
same magnetic tape unit. A complete
discussion of the assignment of the logical
unit SYSCLB can be found in the publication
DOS/VS System Control Statements.

Progranmer logical units are those in
the range SYS000 through SYS240 (depending
on the number of partitions in the system)
and are referred to in the COBOL source
language ASSIGN clause.

A COBOL programmer uses the source
language ASSIGN clause to assign a file
used by his problem program to the
appropriate symbtolic name. Although
symbolic names may be assigned to physical
devices at system generation time, the
programmer may alter these assignmrents at
execution time by means of the ASSGN
control statement. However, if the
programmer wishes to use the assignments
made at system generation time for his own
data files in the COBOL program, ASSGN
control statements are unnecessary.

Table 2 is a complete list of symbolic
names and their usage.

Preparing COBOL Programs for Processing 19

yle 2. Symbolic Names, Functions, and Permissible Device Types
¥ L] 1
'mbolic | Function | Permissible |
\me | | Device Types |
1 [l 1
1] 1 L]
"SRDR |Input unit for control statements or commands. | Card reader |
| | Magnetic Tape unit [
|] Disk extent]
| | 3540 diskette |
1 1]
T 1 1
'SIPT |Input unit for programs. | Card reader |
	Magnetic tape unit
	Disk extent
	3540 diskette
1 1 o	
1] T]	
'SPCH	Main unit for punched output.
l	Magnetic tape unit
	Disk extent
	3540 diskette
1 1 3	
¥ I 1	
[SLST	Main unit for printed output.
	Magnetic tape unit
	Disk extent
	3540 diskette I
1 1 4	
T 1)]	
{SLOG	Receives operator messages and logs in job control
statements.	Printer
l	Display operator consolel
(]	4
1] 1 1	
{SLNK	Input to the Linkage Editor.
} } i	
{SRES	Contains the operating system, the core image
library, relocatable library, source statement]	
library, and procedure library.	
1 1 4	
¥ Ll 1	
{SCLE }A private core image library.	Disk extent
1 1 —1	
L) 1) 1	
{SSLB	A private source statement library.
] 1]	
L L 1	
{SRLE	A private relocatable library.
1 i o	
1 T '	
{SIN	Must be used when SYSRDR and SYSIPT are assigned to} Disk
the same disk extent. May be used when they are	Magnetic tape unit
same disk extent. May be used when they are	Card reader]
lassigned to the same card reader or magnetic tape.	3540 Diskette
1 1 1	
il T i	
fsoutT	This name must be used when SYSPCH and SYSLST are
lassigned to the same magnetic tape unit. It nmust	
be assigned by the operator ASSGN command.	
1 i —]	
L T 1	
{Smax	These units are available to the programmer as work} Any unit
files or for storing data files. They are called	
programmer_logical units as opposed to the above-	I
mentioned names which are always referred to as	
system_logical units. The largest number of]]	
programmer logical units available in the system is	
1240 (S¥S000 through S¥YS240, depending on number of	
partitions). The value of SYSmax is determined by	
the distribution of the programmer logical units 1	
among the partitions.]	
I)	
]] L}
¥SVIS |Holds virtual storage page data set. | Disk extent |
L L A4
L] L}]
{SCAT jHolds the VSAM catalog. | Disk extent]
L 1 g
1]] 1
{SREC |Logs error records.] Disk extent |
L L J

Preparing COBOL Programs for Processing 21

PREP

PGMS

JOB CONTROL

The Job Control Processor for the Disk
Operating System/Virtual Storage prepares
the system for execution of programs in a
batched job environment. Input to the Job
Control Processor is in the form of job
control statements and job_control
conmands.

JOB CONTROL STATEMENTS

Job control statements are designed for
an 80-column punched card format. Although
certain restrictions must be observed, the
statements are essentially free form. Job
control statements conform to these rules:

1. Name. Two slashes (//) identify the
statement as a job control statement.
They must be in columns 1 and 2. At
least one blank immediately follows
the second slash.

Exceptions: The end-of-job statement
contains /& in columns 1 and 2; the
end-of-data-file statement contains /*
in columns 1 and 2; the comment
statement contains * in column 1 and a
blank in column 2.

2. Operation. This identifies the
operation to be performed. It can be
up to eight characters long. At least
one blank follows its last character.

3. Operand. This may be blank or may
contain one or more entries separated
by commas. The last term must be
followed by a blank, unless its last
character is in column 71.

4. Comments. Optional programmer
comments must be separated from the
operand by at least one space.

Continuation cards are not recognized by
the Job Control Processor. For the
exception to this rule, see the
descriptions of the DLAB and TPLAB
statements.

211 job control statements are read from

the device identified by the symbolic name
SYSRDR.

Comments_in Job Control Statements

Comment statements (i.e., statements
preceded by an asterisk in column 1
followed by a blank) may be placed anywhere

22

in the job deck. The remainder of the card
may contain any character from the EBCDIC
set. Comment statements are designed for
comnunication with the operator;
accordingly, they are written on the
console output unit, SYSLOG, in addition to
being written on SYSLST. If followed by a
PAUSE control statement, the comment
statement can be used to request operator
action.

Statement Formats

The following notation is used in the
statement formats:

1. All upper-case letters represent
specifications that are to appear in
the actual statement exactly as shown
in the statement format. For example,
JOB in the operation field of the JOB
statement should be punched exactly as
shown.

2. All lower-case letters represent
generic terms that are to be replaced
in the actual statement. For example,
jobname is a generic term that should
be replaced by the name that the
programmer is giving his job.

3. Hyphens are used to join two or more
words in order to form a single
generic term. For example,
device-address is one generic term.

4. Brackets are used to indicate that a
specification is optional and is not
always required in the statement. For
example, [type] indicates that the
programmer's replacement for the
generic term, type, may or may not
appear in the statement, depending on
the programmer's requirements.

5. Braces enclosing stacked items
indicate that a choice of one itenm
must be made by the programmer. For
example:

SYsS
PROG
ALL
SYSxxx

indicates that either SYS, PROG, ALL,
or SYSxxx must appear in the actual
statement.

6. Brackets enclosing stacked items
indicate that a choice of one item
may, but need not, be made by tne
programmer. For example:

’lssl]

+ALT

indicates that either, 'ss' or ,ALT
but not both, may appear in the actual

statement, or the specification can be
omitted entirely.

7. All punctuation marks shown in the
statement formats other than hyphens,
brackets, and braces must be punched
as shown. This includes periods,
commas, and parentheses. For example,
, [date]l means that the specification,
if present in the statement, should
consist of the programmer's
replacement for the generic term date
preceded by the comma with no
intervening space. Even if the date
is omitted, the comma must be punched
as shown.

8. The ellipsis (...) indicates where
repetition may occur at the
programmer's option. The portion of
the format that may be repeated is
determined as follows:

a. Scanning right to left, determine
the bracket or brace delimiter
immediately to the left of the
ellipsis.

b. Continue scanning right to left
and determine the logically
matching bracket or brace
delimiter. :

c. The ellipsis applies to the words

and punctuation between the pair
of delimiters.

equence of Job Control Statements

The job deck for a specific job always
iegins with a JOB statement and ends with a
‘6 (end-of-job) statement. A specific job
:onsists of one or more job steps. The
)eginning of a job step is indicated by the
ppearance of an EXEC statement. When an
XEC statement is encountered, it initiates
.he execution of the job step, which
ncludes all preceding control statements
lp to, but not including, a previous EXEC
itatement.

The only limitation on the sequence of
‘tatements within a job step is that which
.s discussed here for the label information
itatements.

The label statements must be in the
order:

DLBL
EXTENT (one for each area or file in
the volume)

or
TLBL

and must immediately precede the EXEC
statement to which they apply.

DESCRIPTION AND FORMATS OF JOB CONTROL
STATEMENTS

This section contains descriptions and
formats of job control statements.

Job control statements, with the
exception of /%, /&, and %, contain two
slashes in columns 1 and 2 to identify
them.

JOR Statement

The JOB control statement indicates the
beginning of control information for a job.
The JOB control statement is in the
fcllowing format:

r
|7/ JOB jobname |
L

jcbname
is a programmer-defined name
consisting of from one to eight
alphanumeric characters. Any user
comments can appear on the JOB control
statement following the jobname
(through column 71). The time of day
and date appear in columns 73 to 100
when the JOB statement is printed on
SYSLST. The time of day and date are
also printed in columns 1 through 28 on
the next line of SYSLOG.

If a job is restarted, the jobname
must be identical to that used when
the checkpoint was taken.

Note: The JOB statement resets the effect

of all previously issued OPTION and ASSGN
control statements.

Preparing COBOL Programs for Processing 23

ASSGN STATEMENT

The ASSGN (Assign Logical Name) command
or statement assigns a logical I/O unit to
a physical device. Multiple logical units
are allowed to be assigned to one physical
unit within the same partition. Only DASD
can be assigned to (be shared by) several
partitions concurrently.

The job control statement is temporary.
It remains in effect only until the next
change in assignment or until the end of
the job, whichever occurs first. At the
completion of a job, a temporary assignment
is automatically restored to the permanent
assignment for the logical unit.

The job control command is permanent.
It remains in effect until the next
permanent assignment, whichever occurs
first. A CLOSE command for a system
logical unit on disk or diskette also
removes a permanent assignment. See also
the description of the TEMP/PERM operands.

Operation Mandatory Operands Optional Operands
[//1 ASSGN cuu .TEMP] [.VOLwno.J[SHR] for disks
(address-list) |LPERM
UA .
SYSxxx, ¢ IGN Ilzgzm [VOL=no)] :::edlsk-
SYSyyy . = -
device-class \ |['ss J[TEMP | {VOL=no.] for tapes
device-type / || ALT],PERM
JH1 ,TEMP] for 2560,
.H2]|,PERM 5424/5
. TEMP for any
,PERM other
device
SYSxxXxX

Represents the symbolic unit name. It
can be one of the following:

SYSRDR
SYSIPT
SYSIN

SYSPCH
SYSLST
SYSOUT
SYSLNK
SYSLOG
SYSSLB
SYSRLB
SYSCLB
SYSnnn

SYSCAT, SYSREC, and SYSDMP can only be
assigned with the DEF command at IPL
time.

Restrictions: The type of device assignment
is restricted under certain conditions:

1. If one of the system logical units
SYSRDR, SYSIPT, SYSLST, or SYSPCH is
assigned to a disk device or diskette,
the assignment must be permanent and
follow the DLBL and EXTENT statements.

24

10.

11.

12.

13.

cuu

If SYSRDR and SYSIPT are to be assigned
to the same disk device or diskette,
SYSIN must instead be assigned and this
assignment must be permanent.

SYSOUT is only valid for a tape unit
and must be assigned permanently.

SYSLOG can only be assigned permanently.

SYSCLB requires a permanent assignment.

If SYSIPT is assigned to a tape unit,
it should be a single file and a single
volume.

The SYSLOG assignment is retricted when
IPL was done from either a 125D or
3277/3278 Model 2A device. You may not
assign SYSLOG to a 125D if IPL was done
from a 3277/3278 Model 2A and vice
versa. Also, you may not assign SYSLOG
to a 3278 with a message area of 16
lines if IPL was done from a 3277 or a
3278 with a message area of 20 lines.

SYSLOG cannot be assigned to a console
printer (3284, 3286, 3287, 3288).

It is not possible to change the
assignment of SYSLOG while a
foreground partition is active.

If a system logical unit is assigned
to a tape, DASD, or diskette, the unit
must be closed (using the CLOSE
command) before it can be reassigned.

When SYSOUT is assigned, the magnetic
tape device must not be the permanent
assignment of either SYSLST or SYSPCH.
Before assigning a tape drive to a
system output unit (SYSOUT, SYSLST,
SYSPCH), all previous assignments of
this tape drive to any system input
units and to any programmer units
(input or output) must be permanently
unassigned. The assignment of SYSOUT
must always be permanent.

If SYSLNK is assigned to one or more
foreground partitions, SYSCLB must also
be assigned to the same partition(s).
Whenever the DLBL and EXTENT
information for SYSCLB changes,
must be reassigned.

SYSCLB

A programmer logical unit cannot be
assigned to SYSLST if SYSLST has been
assigned to tape or disk before.

Indicates the channel and unit number:

channel number
unit number

C
uu

iddress-1list)

GN

You can specify a list of up to seven
device addresses in the form cuu,
separated by commas and enclosed in
parentheses. In this case, the system
searches only the PUB entries
referenced in the address list for a
free unit, starting with the first
specified device address. Once a free
unit is found, it is assigned to
SYSxxx for the job in which the
assignment is made.

For disks, if SHR is apecified, the
first unit in the list is assigned,

even if previously assigned. (See
Figure 3.)
PUB Table Search Order
Physical Device TAPE | 240079 | (380, 381,
Unit Type 183, 284)
181 240079 1 1
182 240079 2 2
183 240079 3 3 3
281 240077 4
282 240077 5
283 240079 6 4
284 240079 7 5 4
380 341079 8 ' 1
381 341079 9 2
382 342079 10
383 342079 1
Figure 3. How the PUB Table is Scanned

Indicates that the logical unit is to
be unassigned. Any operation attempted
on an unassigned device cancels the job.

The IGN option unasssigns the specified
logical unit, and ignores any
subsequent logical IOCS command (OPEN,

-GET, etc.), issued for that unit. This

allows you to disable a logical unit
that is used in a program without
removing the code for that unit. You
can then execute the program as if the
unit did not exist. This may be
especially helpful when debugging a
program.

‘The IGN option is not valid for

SYSRDR, SYSIPT, SYSIN, and SYSCLB.
The IGN option can be made temporary
by specifying the TEMP option.

When using ASSGN IGN for associated
files, all logical units of the
associated files must be assigned IGN.

SYSyyy
This may be any system or programmer

logical unit, except SYSCAT and SYSDMP
(see SYSxxx, above). If this operand
is specified, SYSxxx is assigned to
the same device to which SYSyyy is
currently assigned. This type of
specification is particularly helpful
because the specification of
SYSxxx,SYSyyy is considerably shorter
than the full specification.
Examples:)
// ASSGN SYS001,2314,PERM
VOL=RAFT01, SHR
// ASSGN SYS003,SYS001
// ASSGN SYSLNK, SYS001

device-class
In this case, the specification of
READER, PRINTER, PUNCH, TAPE (not for
8809), DISK, CKD, FBA, or DISKETTE is
allowed for the devices listed further
below. Do not, however, use a generic
assignment for a dummy device to be
used as input or output device in a
VSE/POWER-supported partition. The
system searches the PUB table for the
first unassigned unit within the
specified device-class and assigns it
to SYSxxx (see Figure 3).

This type of specifigcation might be
used if the exact configuration of the
installation is not known or not
important. However, if a configuration
consists of mixed device types of the
same device-class, such as 3330s and
3340s, then either device-type or
address-list should be used. If your-
installation includes DASD drives with
and without the Fixed Head Feature,
such as the 3348 Model 70F Data Module
or the 3344 Direct Access Storage, do
not use device-class or device-type.
Instead, use cuu (or address-list) to
specify the drives with the feature,
so as to avoid job cancellation.

If a configuration includes FBA and
CKD DASD devices, specification of
DISK will assign any disk device (FBA
or CKD) to the logical unit SYSxxx.
The parameters CKD and FBA permit more
detailed specification of the disk
device to be selected.

The specific device types to which each
device class applies are listed below.

READER
1442N1, 2501, 2520B1, 2540R, 2560,
2596, 3504, 3505, 3525RP, 5425

PRINTER

PRT1, 1403, 14030, 1443, 3203, 3211,
3800, 3800B, 3800C, 3800BC, 5203, 5203U

Preparing COBOL Programs for Processing 25

PUNCH

T442N1, 1442N2, 2520B1, 2520B2, 2520B3,
2540pP, 2560, 2596, 3525P, 3525RP, 5425
TAPE

240017, 2400T9, 341077, 3410T9, 342077,
3420T9

DISK .

2311, 2314, 3330, 3330B, 3340, 3340R,
3350, 3375, FBA

CKD

2311, 2314, 3330, 3330B, 3340, 3340R,
3350, 3375

FBA

FBA (refers to the 3310 and 3370 Direct
Access Storage Devices)

DISKETTE
3540

device-type

26

This can be any supported device as
shown under the device-class
specification, including the 8809. Do
not, however, use this specification
for a dummy device to be used as input
or output device in a VSE/POWER-
supported partition. The system
searches the PUB table of the specified
device-type for the first free unit.
When a free unit is found, it is
assigned to SYSxxx (see Figure 3).

Use this specification if you are
interested only in the specific type of
device, and not in the physical unit.
For disks, if SHR is specified, the
first unit of the specified device-type
is assigned, even if previously
assigned. If your installation
includes DASD drives with and without
the Fixed Head Feature, such as 3348
Model 70F Data Module or the 3344
Direct Access Storage, do not use
device-class or device-type. Instead,
use cuu (or address-list) to specify
the drives with the feature, so as to
avoid job cancellation.

For a 3800 printing subsystem, you can
use assignment by device codes as
follows:

SS

Specified code is valid for

3800 3800B 3800C | 3800BC
3800 x X X |x12
38008 X X1
3800C X X2
3800BC X

1

The job cannot use the additional character generation
storage feature.

2 The job cannot use the Burster-Trimmer-Stacker feature.

Specification of the device class
PRINTER may select a 3800 from a list
of printers; however, the existence
of the two optional hardware features
(the Burster-Trimmer-Stacker and
additional character generation
storage) cannot be assumed.

Figure 3 shows an example of how the
PUB table is scanned with 3 different
types of tape specifications in the
ASSGN statement/command.

Device specifications used to specify
mode settings for magnetic tapes (see

Figure 3.1). If ss is not specified

at IPL time, the system assumes:

90 for 7-track tapes

C0 for 9-track tapes (2400,3410 series)

D0 for 9-track tapes (3420 series)

60 for the 9-track 8809 Magnetic Tape
Unit

For 800 BPI single-density 9-track
tapes, a specification of C8 reduces
the time required to OPEN an output
file.

The standard mode is entered in the

PUB table at IPL time. If the mode
setting (different from, or the same
as, the standard mode) is specified in
a temporary ASSGN statement, it becomes
the current mode setting and is

entered as such in the PUB table.

This mode stays in effect until a
subsequent assignment with a new mode
or until EOJ. When the current job
ends, the standard mode is restored in
the PUB table, provided the unit was
not unassigned during the job. The
mode specification in a permanent ASSGN
becomes the standard mode. If ss is
not specified for a new job, the mode
is the same as the standard mode or the
mode specified in the last permanent
assignment.

\LT

Using multivolume tape files without
specifying ALT mode can cause
performance degradation, because the
first tape has to be rewound and
unloaded before the next tape can be
mounted.

If the original unit is reassigned,
the alternate unit must also be
reassigned. The ALT operand is

invalid for SYSRDR, SYSIPT, SYSIN,
SYSLNK, SYSCLB, AND SYSLOG.

H1
Indicates that input hopper 1 will be

used for input on the 2560, 5424, or
5425. If neither H1 nor H2 is
specified, H1 is assumed.

H2

Indicates that input hopper 2 will be
used for input on the 2560, 5424, or

5425. Note that hopper specifications
are significant only for device

independent files associated with the

logical units SYSIPT, SYSRDR, SYSIN,
and SYSPCH. In all other cases they

are invalid.

If both hoppers are used, they must be

assigned to the same partition.

PERM

TEMP

Density Parity Convert Translate ss
{bpi) Feature
200 odd on off 10
200 odd off off 30
200 odd off on 38
200 even off off 20
200 even off on 28
556 odd on oft 50
556 odd off off 70
556 odd off on 78
556 even off off 60
556 even off on 68
800 odd on off 90
800 odd off off BO
800 odd off on B8
800 even off off AO
800 even off on A8
800 single-density 9-track tapes c8
800 duabdensny‘Qﬂracktapes c8
1600 single-density 9-track tapes Co
1600 dual-density 9-track tapes Cco
6250 single/dual density, 9-track DO
1600 3420 Models 4, 6, and 8 co
1600 Streaming: high speed and long gap 90
(for 8809) | Streaming: high speed and short gap 30
Start-Stop: low speed and long gap 50
Start-Stop: low speed and short gap 60

Indicates whether the assignment should

be permanent (PERM) or temporary (TEMP).

Figure 3.1. Device Specifications for Tapes

Indicates an alternate magnetic tape
unit that is used when the capacity of
the original assignment is reached.
This operand can only be specified by
programs using logical IOCS. The
specifications for the alternate unit
are the same as those of the original
unit. The characteristics of the
alternate unit must be the same as
those of the original unit. The
original assignment and an alternate
assignment must both be permanent or
both be temporary assignments.
Multiple alternates can be assigned
to a symbolic unit. When SYSIPT is
assigned to a magnetic tape device,
the file may not be multivolume.

" The system does not adjust the tape

mode (ss) of the alternate unit to
that of the original unit. Therefore,
if tape modes are different, it is
advisable to first assign the units
with equal tape modes and then to
reassign with the ALT operand.

It is thus possible to override the //
specification or omission.

VOL=no.
Specifies the volume serial number of
the device required. This option may
be specified only for tapes, disks, and
diskettes.

If VOL is specified, the system
searches for the first unit in the
requested sequence and, if the unit is
ready (for a tape, if it is at load
point and not already assigned), checks
the volume label to see if the required
volume is mounted. If not, the next
unit is checked, and so on until the
proper volume seriay number is found

or until the end of 'the specified
sequence is reached. The requested
volume must be mounted on the unit
specified in the message 1T50A MOUNT
volser ON X'cuu'.

If a volume serial number specified

for a disk device does not match the
actual volume serial number, the system
notifies the operator and allows
correction of the assignment statement.

Preparing COBOL Programs for Processing 26.1

SHR

26.2

Note: In a mixed device configuration,
specification of TAPE,VOL or DISK,VOL
may cause the system to issue a request
for a volume to be mounted on the first
device that becomes available. Thus,
the system may request a 9-track tape
to be mounted on a device that can only
accommodate 7-track tapes. Likewise, a
request may be issued for a 2316 disk
pack to be mounted on a 3330 or 3340,
Therefore, the parameter device-type or
address-list should be used in a mixed
device environment.

This option can be specified only for
disk devices and is meaningful only in
combination with address~list, device-
class, and ‘device-type (see
corresponding discussions). It means
that the unit can be assigned to a
disk device which is already assigned.
If the option is not specified, the
system assigns the unit to a disk
device not yet assigned. Therefore,
unless a private device is required,
it is recommended that the SHR
operand be used in combination with
generic assignments.

OSE Statement

The CLOSE control statement is used to
ose either a system or programmer logical
it assigned to tape. As a result of the
OSE control statement, a standard
d-of-volume label set is written and the
pe is rewound and unloaded. The CLOSE
atement applies only to a temporarily
signed logical unit, that is, a logical
it for which an ASSGN control statement
s been specified within the same job.

e format of the CLOSE control statement
as follows:

,X'cuu" [,X'ss"])
. UA
/ CLOSE SYsxxx|,IGN

¢ALT

e e e e e

The logical unit can optionally be
assigned to another device, unassigned,
switched to an alternate unit.

Note that when SYSxxx is a system

gical unit, one of the optional
rameters must be specified. When closing
programmer logical unit, no optional
rameter need be specified.

SXXX
may only be used for magnetic tape and
may be specified as SYSPCH, SYSLST,
SYSOUT, or SYS000 through SYs240,
depending on the number of partitions.

1 (Rel. 35 and up)

r

cuu'
specifies that after the logical unit
is closed, it will be assigned to the
channel and unit specified. (See
"ASSGN Control Statement” for an
explanation of 'cuu'.) When
reassigning a system logical unit, the
new unit will be opened if it is
either a mass storage device or a
magnetic tape at load point.

ss'
represents device specification for
mode settings on 7-track and 9-track
tape. (See "ASSGN Control Statement”
for an explanation of 'ss'.) If X'ss'
is not specified, the mode settings
remain unchanged.

specifies that the logical unit is to
be closed and unassigned.

Preparing COBOL Programs for Processing

IGN
specifies that the logical unit is to
be closed and unassigned with the
ignore option. This operand is
invalid for SYSRDR, SYSIPT, or SYSIN.
ALT

specifies that the logical unit is to
be closed and an alternate unit is to
be opened and used. This operand is
valid only for system logical output
units (SYSPCH, SYSLST, or SYSOUT)
currently assigned to a ragnetic tape
unit.

DATE Statement

The DATE control statement contains a
date that is put in the Cormunication
Region of the Supervisor. A complete
description of the fields of the
Communication Region is given in "Appendix
G: Communication Region." The DATE
statement is in one of the following
formats:

I
|77/ DATE mm/dd/yy
1

N

b -
|7/ DATE dd/mm/yy
L

where:
mm
dd

Yy

month (01 to 12)
day (01 to 31)
year (00 to 99)

The format to be used is the format
selected when the system was generated.

When the DATE statement is used, it
applies only to the current jok being
executed. The Job Control Processor does
not check the operand except to ensure that
its length is eight characters. If no DATE
statement is specified in the current job,
the Job Control Processor supplies the Jdate
given in the last SET command. The SET
command is discussed in detail in the
publication DOS/VS System Control
Statements.

A DATE statement should be included in
every job deck that has as one cf its job
steps the execution of a COBOL program that
utilizes the special register CURRENT-DATE,
if the date desired is other than that
designated in the previous SET command.

The DATE statement should be used at
compile time so that the DATE-CCMPILED
varaoraph is accurate and the WHEN-COMPILED
special register is effective.

26.3

L_Statement

The TLBL control statement contains file
bel information for tape label checking
d writing. This statement replaces the
L and TPLAB statement combination used
. previous versions of the system. (The
'stem continues to support those state-
nts.)

Under DOS/VSE VSE/Advanced Functions,
ie TLBL statement is not reguired.

The format of the TLBListatement follows:

'/ TLBL filenanme,
[,"file-identifier'] [,date]
[,file~serial-number])

[,volume~sequence~number]
[,file-sequence-number]
[,generation-number]
[,version-number]

b e - e

.lename.
identifies the file to the control
program. It can be from three to
seven characters in length. If the
following SELECT sentence appears in a
COBOL program:

SELECT NEWFILE ASSIGN TO
SYS003-UT-2400-S-OUTFILE

the filename operand on control
statements for this file nmust be
OUTFILE. If the SELECT clause were
coded:

SELECT NEWFILE ASSIGN TO
SYS003-UT-2400-5

the filename operand on the control
statement for the file must be SYS003.

file-identifier!
consists of from 1 to 17 characters,
contained within apostrophes,
indicating the name associated with
the file on the volume. This operand
may contain embedded blanks. If this
operand is omitted on output files,
the filename will be used. If this
operand is omitted on input files, no
checking will be done.

ate
consists of from one to six
characters, in the format yy/ddad,
indicating the expiration date of the
file for output or the creation date
for input. (The day of the year may
consist of from one to three
characters.) For output files, a one
to four character retention period
(d-dddd) may be specified. If this

operand is omitted, a 0-day retention
period will be assumed for output
files. For input files, no checking
will be done if this operand is
omitted or if a retention period is
specified.

file-serial-number
consists of from one to six characters
indicating the volume serial number of
the first (or only) reel of the file.
If fewer than six characters are
specified, the field will be
right-justified and padded with zeros.
If this operand is omitted on output
files, the volume serial number of the
first (or only) reel of the file will
be used. If the operand is omitted on
input files, no checking will be done.

volume-sequence-nunber

consists of from one to four
characters in ascending order for each
volume of a multivolume file. This

number is incremented automatically by
OPEN and CLOSE routines as required.
If this operand is omitted on output
files, BCD 0001 will be used. 1If
omitted on input files, no checking is
done.

file-sequence-number
consists of from one to four
characters in ascending order for each
file of a multifile volume. This
number is incremented automatically by
OPEN and CLOSE routines as required.
If this operand is omitted on output
files, BCD 0001 will be used. If it
is omitted on input files, no checking
will be done.

generation-number
consists of from one to four numeric
characters that modify the
file-identifier. If this operand is
omitted on output files, BCD 0001 is
used. If it is omitted on input
files, no checking will be done.

version-number
consists of from one to two numeric
characters that modify the generation
number. If this operand is omitted on
output files, BCD 01 will be used. If
it is omitted on input files, no
checking will be done.

Note: 1If a tape file with standard labels
is opened two different ways in the same
COBOL program, and that file resides on a
multifile volume, the programmer should use
two separate TLBL cards with different
filenames specified on each.

Preparing COBOL Programs for Processing 27

DLBL_Statement

The DLBL control statement contains file
label information for mass storage label
checking and writing. The DLBL control
statement, in conjunction with the EXTENT
statement, replaces the VOL, DLAB, and
XTENT combination used in previous versions
of the Disk Operating System. The DLBL
statement has the following format:

{ // DLBL £ilename,l'file-ID'l,[datel

;[codes] [,DSF]

[,BUFSP=n] [,CAT=filename]

[,BLKSIZE=n] [,CISIZE=nl]

[,DISP=m] [,RECORDS=n] [,RECSIZE=nl

filename

identifies the file to the control
program. It can be from three to
seven characters long. If the
following SELECT sentence appears in a
COBOL program:

SELECT INFILE ASSIGN TO
SYS005-DA-2314-A-INPUTA

the filename operand on control
statements for this file must be
INPUTA. If the SELECT sentence is
coded:

SELECT INFILE ASSIGN TO
SYS005-DA-2314-A

the filename operand on control
statements for the file must be
SYS005.

'file-identifier?

date

28

is the name associated with the file
on the volume. This can consist of
from 1 to 44 alphanumeric characters
contained within apostrophes,
including the file-identifier and, if
used, generation-number and version-
nunber of generation. If fewer than
44 characters are used, the field is
left-justified and padded with blanks.
If this operand is omitted, filename
will be used.

consists of from one to six characters
indicating either the retention period
of the file in the format d through
dddd (0-9999), or the absolute
expiration date of the file in the
format yy/ddd. When the 4 through
dddd format is used, the file is
retained for the number of days
specified as dddd. For example, if
date is specified as 31, the file will
be retained a month from the day of
creation. When the yy/ddd format is
used, the file is retained until the
day (ddd) in the year (yy) specified.
For example, if date is specified as

90,200, the file will be retained

assumed.

through the 200th day of the year 1990.

If date is omitted when the file is
created, a 7-day retention period is
If this operand is present
for a file opened as INPUT or I-0, it
is ignored.

is a 2 to 4 character field indicating
the type of file label, as follows:

SD = Sequential Disk
DA = Direct Access
ISC = Indexed Sequential using Load
Create
ISE = Indexed Sequential using Load
Extension, Add, or Retrieve
DU = 3540 Diskette
VSAM = VSAM file

If code is omitted, SD is assumed.

BLKSIZE=n

specifies the number of bytes in a
physical record. n must be less

than 32,768. This parameter is

valid for the 3330-11 and 3350 devices
only, and its use is limited to
sequential files. If specified, it
overrides the BLKSIZE specification

in the definition of the file (DTF).
It permits reblocking of existing
files to a new physical record size
when they are transferred to a

3330-11 or 3350 device, without
requiring recompilation of the DTF.

If the BLKSIZE parameter is not
specified in the DLBL statement, the
new files are assumed to have the
blocksize specified in the DTF. This
parameter is not valid for the compiler
workfiles.

For further information, see DOS/VS
System Control Statements.,

CISIZE=n

specifies the control interval size
for SAM files on fixed block devices,
and improves space allocation on such
devices. The size specified must

be a multiple of the value specified
in the BLKSIZE=n operand. This
operand is valid only for a DLBL
statement with the code SD. It is
not valid for compiler workfiles.

RECORDS=n,RECSIZE=n

used for SAM files in VSAM space.
For details, see DOS/VSE System
Control Statements.

For all parameters not described here,
see DOS/VSE System Control Statements,

or DOS/VSE Advanced Functions: System

Control Statements.

"Appendix H: Sample Job Decks" contains
tlustrations of DLBL statement usage.

See the section "Processing 3540
iskette Unit Files" for the use of DLBL
irds for 3540 and the section "Virtual
torage Access Method®" for use of DLBL
irds for VSAM.

XTENT_Statement

The EXTENT control statement defines
ich area (or extent) of a DASD file -- a

file assigned to a mass storage device.
One or more EXTENT control statements must
follow each DLBL statement.

The EXTENT control statement replaces

the XTENT statement used in previous
versions of the Disk Operating System. For

Preparing COBOL Programs for Processing 28.1

yre information on the XTENT statement,
e DOS/VS System Control Statements.

The format of the EXTENT control
.atement is:

I

// EXTENT [symbolic-unit],[serial-numnber]|
[type]l,[sequence—-number] |
f{relative-track],[number-of-tracks] |

[split-cylinder-track],[B=bins] |

. |

rmbolic-unit
is a 6-character field indicating the
symbolic unit (S¥Sxxx) of the volunme
for which this extent is effective.
1f this operand is omitted, the
symbolic unit of the preceding EXTENT
statement will be used. When
specified, symbolic-unit may be any
SYSxxx assigned to the device type
indicated in the SELECT sentence for
the file. For example, if the
following coding appears in a COBOL
program:

SELECT OUTFILE ASSIGN TO
SYS004~-DA-2314-A

the symbolic unit in the EXTENT
control statement can by any SYSxxx
assigned to a 2314 disk pack. The
symbolic unit operand is not required
for an IJSYSxx filename, where xx is
IN, PH, LS, RS, SL, or RL. If SYSRDR
or SYSIPT is assigned, this operand
must be included.

arial-number
consists of from one to six characters
indicating the volume serial number of
the volume for which this extent is
effective. If fewer than six
characters are used, the field will be
right-justified and padded with zeros.
If this operand is omitted, the volume
serial number of the preceding EXTENT
control statement will be used. If no
serial number was provided in the
EXTENT control statement, the serial
number will not be checked and it will
be the programmer's responsibility if
files are destroyed as a result of
mounting the incorrect volume.

ype
consists of one character indicating

the type of the extent, as follows:

1 -- Data area (no split cylinder)

2 -- Ooverflow area (for an indexed
file)

4 -- Index area (for an indexed file)

8 -- Data area (split cylinder)

If this operand is omitted, 1 is
assumed.

sequence-number

consists of from one to three
characters containing a decimal number
from 0 to 255 indicating the sequence
number of this extent within a
multi-extent file. Extent sequence 0
is used for the master index of an
indexed file. If the master index is
not used, the first extent of an
indexed file has the sequence number
1. The extent sequence number for all

- other types of files begins with 0.

If this operand is omitted for the
first extent of ISaM files, the extent
will not be accepted. For SD or DA
files, this operand is not required.
For DA files this operand should be
specified when using more than one
EXTENT for a file. Direct files can
have up to five extents. Indexed
files can have up to eleven data
extents (nine prime, one cylinder
index, one separate overflow).

relative-track

consists of from one to five
characters indicating the sequential
number of the track, relative to zero,
where the data extent is to begin. If
this field is omitted on an ISAWM file,
the extent will not be accepted. This
field is not required for LA input .or
for SD input files (the extents from
the file labels will be used).

For fixed block devices, this operand
is a number from 2 to 2,147,483,645
that specifies the physical block

at which the extent should start.

Formulas for converting actual to
relative track addresses (RT) and
relative track to actual for the DASD
devices follow.

Actual to Relative:

2311 10 x cylinder number + track
number = RT

2314 20 x cylinder number + track
or number = RT
2319

3330 19 x cylinder number + track

number = RT

3340 12 x cylinder number + track

number = RT

3350 30 x cylinder number + track
number = RT

Preparing COBOL Programs for Processing 29

Relative to Actual:

2311 RT = quotient is cylinder
10 remainder is track
2314 RT = quotient is cylinder,
or 2 remainder is track
2319
3330 RT = quotient is cylinder,
19 remainder is track
3340 RT = quotient is cylinder,
12 remainder is track
3350 RT = quotient is cylinder,
30 remainder is track

number-of-tracks
consists of from one to five
characters indicating the number of
tracks to be allocated to the file.
For SD input files, this field may be
omitted. The number of tracks for a
split cylinder file must be a multiple
of the number of cylinders specified
for the file and the number of tracks
specified for each cvlinder.

For fixed block devices, this operand
is a number from 1 to 2,147,483,645
that specifies the number of physical
blocks in the extent.

split-cylinder-track
consists of from one to two
characters, with a value of 0 through
19, indicating the upper track number
for the split cylinder in SD files.

bins
consists of from one to two characters
identifying the 2321 bin that the
extent was created for, or on which
the extent is currently located. If
the field is one character, the
creating bin is assumed to be zero.

There is no need to specify a creating
bin for sSD or IsaM files. If this
operand is omitted, bin 0 is assumed
for both bins. If the operand is
included and positional operands are
omitted, only one comma is required
preceding the keyword operand. If any
operands preceding the bin
specification are omitted, one comma
for each operand is acceptable, but
unnecessary.

Figure 4 shows examples of using the
DLBL statement in conjunction with the
EXTENT statement. "Appendix H: Sample Job
Decks" contains illustrations of EXTENT
statement usage. '

r
'Direct file:

| The following DLBL and EXTENT statements
| tracks, beginning on relative track 10.

| // DLBL MASTER,,75/001,DA

| // EXTENT S¥s0i5,111111,1,0,10,840
|Indexed file:

| The following DLBL and EXTENT statements
|occupying 100 tracks, beginning on relative
|20-track cylinder index. The second EXTENT
| // DLBL MASTER,,75/001,ISC

] // EXTENT SYsS015,111111,4,1,1100,20

| // EXTENT SsYs015,111111,1,2,1120,80

L

describe a direct file occupying 840

indexed file on a 2314
The first EXTENT allocates a-
80-track data area.

describe an
track 1100.
allocates a

b e e et e s e e . i e s+ e on)

4.

30

Sample Label and File Extent Information for

Mass Storage Files

STIO Statement

The LISTIO control statement causes the
stem to print a list of input/output

signments on SYSLST.

The format of the

STIO control statement igc:

/ LISTIO

SYS
PROG
BG

Fl

F2

F3

Fuy

ALL
SYSxxx
UNITS
DOWN
UA

cuu
X'cuu'
ASSGN (Rel. 35 and up)

b e e e o —— et et et et e et i .)

YS

ROG

"3

"

ALL

causes the pvhysical units assigned to
all system logical units to be listed.

causes the physical units assigned to
all background programmer logical
units to be listed.

lists the physical units assigned to
all logical units of the backaground
partition.

causes the physical units assigned to
all foreground-one logical units to be
listed.

causes the physical units assigned to
all foreground-two logical units to be
listed.

causes the physical units assigned to
all foreground-three logical units to
be listed.

causes the physical units assigned to
all foreground-four logical units to
be listed.

causes the physical units assigned to
all logical units to be listed.

SYSxxx
causes the physical units assigned to
the logical unit specified to be
listed.

UNITS
causes the logical units assigned to
all physical units to be listed.

DOWN
causes all physical units specified as
inoperative to be listed.

UA
causes all physical units not
currently assigned to a logical unit
to be listed.

cuu (Release 35 and up)
or
X'cuu'
causes the logical units assigned to
the physical unit specified to be
listed.

ASSGN
causes all system and program logical
units assigned to the current partition
to be listed.

MTC Statement

The MTC control statement controls 2400
and 3400 series magnetic tape orerations.
The format is as follows:

| bt e |
! // MIC opcode, §¥g§§§}[,nn1 !
! cuu :
e e e e e e et e e e e o et e e e e e et e ot e e o -
opcode

specifies the operation to be

performed. opcode can be chosen from

the following:

BSF -- Backspace to taperark

BSR —-- Backspace to interrecord gap

ERG -- Erase gap (write klank tape)

FSF -- Forward space to tagemark

FSR -- Forward space to interrecord
gap

RUN -- Rewind and unload

Prevaring COBOL Programs for Processing 31

REW -- Rewind
WIM -- Write tapemark

SYSxxxX
represents any logical unit assigned
to magnetic tape upon which the MTC
control statement is to operate.

X'cuu'
represents any physical unit assigned
to magnetic tape upon which the MTC
control statement is to operate.

[,nn}
is the decimal number (01 through 99)
which, if specified, represents the
number of times the operation is to be
performed. If nn is omitted, the
operation is performed once.

OPTION Statement

The OPTION control statement is used to
specify one or more of the options of the
Job Control Processor. The format of the
OPTION statement is:

r —
|7/ OPTION optionl[,option2]...
L

O

The order in which the selected options
appear in the operand field is arbitrary.
Options are reset to the standard
established at system generation time upon
encountering the next JOB statement or the
/&6 statement.

The options are:

LOG
causes the listing of columns 1
through 80 of all control statements
on SYSLST. If LOG is not the standard
established at system generation time,
control statements are not listed
until a LOG option is encountered.
Once a LOG option statement is read,
logging continues from job step to job
step until a NOLOG option is
encountered or until either the JOB or
/& control statement is encountered.

NOLOG ,
suppresses the listing of all control
statements on SYSLST until a LOG
option is encountered, or until either
the JOB or /& control statement is
encountered.

DUMP
causes a dump of the registers and
virtual storage to be printed on
SYSLST in the case of an abnormal
program termination (such as a program
check). Using the compiler SYMDMP,
FLOW, or STATE features, it may not be
necessary to use this option.

32

NODUMP
suppresses the DUMP option.

LINK
indicates that the object module is to
be link edited. When the LINK option
is used, the output of the COBOL
compiler is written on SYSLNK. The
LINK option must always precede an
EXEC LNKEDT statement in the job deck.
(CATAL also causes the LINK option to
be set.) LINK is not acceptable to
the Job Control Processor operating in
the foreground unless the private core
image library option is supported and
a private core image library is’
assigned.

NOLINK
suppresses the LINK option. The COBOL
compiler can also suppress the LINK
option if the program contains an
error that would preclude the
successful execution of the program,
or if SYNTAX is in effect, or if
CSYNTAX is in effect and an E-level
error is encountered.

DECK
causes the COBOL compiler to punch an
object module on SYSPCH. If both DECK
and LINK are specified, the output of
the compiler is written on both SYSPCH
and SYSLNK.?1

NODECK
suppresses the DECK option. The DECK
option is also suppressed if SYNTAX is
in effect, or if CSYNTAX is in effect
and E-level errors exist.

LIST .
causes the compiler to write the COBOL
source statements on SYSLST. If
lister is in effect, the LIST option
is overridden; LISTER causes a listing
regardless of whether LIST or NOLIST
is specified.

NOLIST
suppresses the LIST option.

LISTX
causes the COROL compiler to write a
Procedure Division map on SYSLST. 1In
addition, glokal tables, literal
pools, register assignments, and
procedure block assignments will be
provided. You may want to use the CBL

1The //option card options pertaining to
the compiler will be suppressed if the
"LISTER ONLY" option of lister is in
effect. Otherwise, when "LISTER AND
COMPILE" is in effect, the options
specified will be in effect for
compilation.

option CLIST (condensed list) in place
of this.?®

ISTX
suppresses the LISTX option, as do the
same conditions as cause DECK to be
suppressed.

causes the COBOL compiler to write a
symbolic cross-reference list on
SYSLST. You may want to use the CBL
option SXREF in place of this, or the
lister cross-reference information for
large COBOL programs.

{REF
suppresses the XREF option. SXREF
also suppresses XREF, as do the same
conditions as cause DECK to be
suppressed.

causes the COBOL compiler to write a

~ Data Division map on SYSLST. 1In
addition, global tables, literal
pools, register assignments, and
procedure block assignments will be
provided.*

3YM
suppresses the SYM option.

RS
causes the COBOL compiler to write the
diagnostic messages related to the
source program on SYSLST.?®

ERRS
suppresses the ERRS option.
not suppress FIPS messages.

It does

SPARM=' [A|NA] [D|ND] . .

specifies COBOL execution-time options.

Eight characters may appear between
quotation marks to the right of the
equal sign. The following key

characters specify COBOL execution-time

options as indicated:

e D specifies the DEBUG option.

® ND specifies NODEBUG.

Even though the debugging facility
was specified for compilation, it
will not be used during execution
unless D is specified as an
execution-time option. D is the

'he //option card options pertaining to
he compiler will be suppressed if the
LISTER ONLY" option of lister is in
ffect. Otherwise, when "LISTER AND
‘OMPILE" is in effect, the options
ipecified will be in effect for
:ompilation.

Note:

occurrence of a character;

default and specifies that the
debugging facility is to be used.

® A specifies AIXBLD.
® NA specifies NOAIXBLD.

If the source program opens a VSAM
file for output, and if Access
Method Services is to be invoked
at execution time to build an
alternative index for that file,
then AIXBLD must be specified.
NOAIXBLD is the default; it
bypasses Access Method Services
at \execution and assumes that the
alternate index has been created
previously.

The programmer may use the eight
SYSPARM characters for whatever
purpose desired (for example, input

to an assembler language routine). Be
aware, however, that the COBOL object
program will recognize D, ND, A, and
NA appearing anywhere in the SYSPARM
bytes, and treat them as object-time
option indicators.

The results of both D and ND, or A
and NA, appearing in the SYSPARM field
are unpredictable.

The compiler will take the first
it will not try

to resolve conflicting specifications.

CATAL

causes the cataloging of a phase or
program in the core image library upon
completion of a linkage editor job
step. CATAL also causes the LINK
option to be set. CATAL is not
accepted by the Job Control Processor
operating in a batched-job foreground
environment unless the private core
image library option is supported and
a private core image library is
assigned.

STDLABEL

Prepa

causes the standard lakel track to be
cleared and all DASD or tape labels
submitted after this point to be
written on the standard label track.
This option is reset to the USRLABEL
option at end-of-job or end-of-job
step. All file definition statements
submitted after the STDLABEL option
are available to any prodram in any
area until another set of standard
file definition statements is
submitted. STDLABEL is not accepted
by the Job Control Processor operating
in a batched-job foreground
environment. All file definition
statements following OPTION STDLABEL

ring COBOL Programs for Processing 33

are included in the standard file
definition set until one of the
following occurs:

¢ End-of-job step

e End-of-job

e OPTION USRLABEL is specified
e OPTION PARSTD is specified

USRLABEL
causes all DASD or tape latels
submitted after this point to be
written at the beginning of the user
label track.

PARSTD
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the
partition standard label track. The
PARSTD option is reset to the USRLAEEL
option at end-of-job or end-of-job
step. All file definition statements
submitted after the. PARSTD option will
be available to any program in the
current partition until another set of
partition standard file definition
statements is submitted. 21l file
definition statements subritted after
OPTICN PARSTD will be included in the
standard file definition set until one
of the following occurs:

* End-of-job step

* End-of-job

CPTION USRLABEL is specified
e OPTION STDLABEL is specified

For a given filename, the sequence of
search for lakel informaticn during an
OPEN is the USRLABEL area, followed by
the PARSTD area, followed Ly the
STDLABEL area.

Note: If NCLINK and NODECK are requested

on the OPTION control statement and either
SYMDMP or OPT is specified on the CBL card,
the SYMDMP or OPT specification is ignored.

The options specified in the OPTION
statement remain in effect until a
contradictory option is encountered or
until a JOB control statement is read. In
the latter case, the options are reset to
the standard that was established at system
generation time.

Any assignment for SYSLNK, after the

occurrence of the OPTION statement, cancels
the LINK and CATAL options. These two

34

options are also canceled after each
occurrence of an EXEC statement with a
blank operand.

PAUSE Statement

The PAUSE control statement allows for
operator intervention between job steps.
The format of the PAUSE control statement
is:

r
| /7 PAUSE [comments]
L

The PAUSE control statement is effectiv
just before the next input control
statement in the job deck is read. The
PAUSE control statement always prints on
SYSLOG and SYSLST.

An example of this statement is:

// PAUSE SAVE SYS004, SYS005, MOUNT
NEW TAPES

This sample statement instructs the
operator to save the output tapes and mouni
two new tapes.

When the PAUSE statement is encountered
by the Job Control Processor, processing is
stopped in the partition until a response
is given. The end/enter key causes
processing to continue.

RESET Statement

The RESET control statement resets
input/output assignments to the standard
assignments. The standard assignments are
those specified at system generation time
plus any modifications made by the operator
by means of the ASSGN command without the
TEMP option. The RESET command is
discussed in detail in the publication
DOS/VSE Advanced Function System Control
Statements. The format of the RESET
statement is:

U

] SYS [
| // RESET PRCG |
| ALL |
] SYSxXx |
L]
SYS

resets all system logical units to
their standard assignments.

RCG
resets all programmer logical units to
their standard assignments.

\LL
resets all system and programmer
logical units to their standard
assignments.

3YSXXX

‘resets the logical unit specified to
its standard assignment.

ISTRT Statement

A restart facility is availakle for
checkpoint programs. A programmer can use
the source language RERUN clause in his
>rogram to cause checkpoint records to be
sritten. This allows sufficient
information to be stored so that program
axecution can be restarted at a specified
ooint. The checkpoint information includes
the registers, tape positioning
information, a dump of virtual storage, and
1 restart address.

Preparing COBOL Programs for Processing

The restart facility allows the
programmer to continue execution of an
interrupted job at a point other than the
beginning. The procedure is to submit a
group of job control statements including a
RSTRT control statement. The format is as
follows:

)
|// RSTRT SYSxxx,nnnn[,filename]
L - 1

SYSxxx
is the symbolic unit name of the 2400,
3410, 3420, 2311, 2314, 2319, 3330,
3340, 3350, or fixed block devices
checkpoint file used for restarting.
This unit must have been assigned
previously.

34.1

nn
is the identification of the
checkpoint record to be used for
restarting. This serial number
consists of four characters. It
corresponds to the checkpoint
identification used when the
checkpoint was taken. The serial
number is supplied by the checkpoint
routine.

.lename
is the symbolic name of the disk
checkpoint file used for restarting.
It must be identical to the SYSxxx of
the system-name specified in the
RERUN clause.

When a checkpoint is taken, the
mpleted checkpoint is noted on SYSLOG.
istarting can be done from any checkpoint
«cord, not just the last. The jobname
iecified in the JOB statement must be
entical to the jobname used when tne
ieckpoint was taken. The proper
put/output device assignments must
‘ecede the RSTRT control statement.

Assignment of input/output devices to
mbolic unit names may vary from the
Aitial assignment. Assignments are made
r restarting jobs in the same manner as
signments are made for normal jobs.

See the chapter "Program Checkout" for
rther details on taking checkpoints and
starting a program for which checkpoints
ve been taken.

SI Statement

The UPSI control statement allows the
ogrammer to set program switches that can
tested by problem programs at execution
me. The UPSI control statement has the

llowing format:

/ UPSI nnnnnnnn

(

nnnnnn
consists of from one to eight
characters of 0, 1, or X. Positions
containing 1 are set to 1; positions
containing X are unchanged.
Unspecified rightmost positions are
assumed to be X.

Preparing COBOL Programs for Processing

The UPSI byte is the 24th byte in the
Communication Regicn of the Supervisor. A
complete description of the fields of the
Cormunication Regicn is given in "Appendix
G: Communication Region."
Processor clears the UPSI byte to binary

zeros before reading control statements for

each job. When the UPSI control statement
is read, the Job Control Processor sets
these bits to the programmer's
specifications. Any combination of the
eight bits can be tested in the COBOL
source program at execution time by means
of the source language switches UPSI-0
through UPSI-7.

EXEC Statement

The EXEC statement (Execute Program or
Procedure) indicates the end of control
information for a job step and the
beginning of execution of a program, in
which case it must be the last command or
statement processed before a job step is
executed.

// EXEC [[PGM=]lprogramnamel [,REAL][,SIZE]
[PROC=procedurenanel

PGM=programname
represents the name of the program in

the core image library to be executed.

The program name corresponds to the
first or only phase of the program in
the library. The program name can be
one to eight alphameric characters
(0-9, a-%2, #, $, a). The first
character must not be numeric.

If the program to be executed has just

been processed by the linkage editor,
the program name is omitted and the
PGM keyword cannot be used.

REAL

indicates that the job step started by

EXEC will be executed in real mode.
If REAL is not specified the job step
is always executed in virtual mode.
REAL cannot be specified for prograrms
using VSAN, the 3886, for ISAM
programs using the ISAM interface

program or, for programs compiled with

the CBL option count.

SIZE=size
Size can be nK, AUTO or (AUTO, nkK).

(a) If specified with REAL, it indicates
the size of that part of the real
partition that will be needed by the
job step's associated EXEC. The
remaining part of the real partition
is given to the page pool.

The Job Control

35

_PREP

(b)

GO

36

If SIZE is omitted and REAL is)
specified, the whole real partition is
used by the job step.

In DOS/VSE and up, if the COBOL
compiler is executed in a real
partition, a SIZE parameter must be
specified. Also, make sure there is
enough real GETVIS space available.

I1f used without REAL, it specifies
that the virtual partition to be used
by the job step is divided into two
parts: the lower part with a size of
nkK will contain the program initiated
with EXEC; the upper part serves as
additional storage pool for other
modules (for example, VSAM) required
by the program in that partition. The
program reserves the upper storage
part for its needs by issuing GETVIS
macros with the required amount of
storage as parameter; it releases the
storage by issuinag FREEVIS macros.

If SIZE is omitted, the whole wvirtual
partition is used for the job
initiated with EXEC.

SIZE (without REAL) must always be
specified for VSAM programs or for
ISAM programs using the ISAM Interface
Program (IIP), as well as for 3886
processing, and for programs compiled
with the CBL option count.

If you specify SIZE=AUTO, the system
automatically uses the information in
the core image directory to calculate
the size of the program to be loaded.
If you specify SIZE=(AUTO,nK). The
system adds nK bytes to the calculated
length.

The following restrictions apply to n:

e n must not be larger than the size
of the vartition it refers to.

* n must be greater than zero.

e if n is not a multiple of 2, n+l is
used

Note: If you specify SIZE=AUTO, a
part of the partition is allocated

to the page pool. The storage space
left is not sufficient for the
compiler program. Thus you should not
specify SIZE=AUTO in an EXEC FCOBOL
statement (for more detailed
information, refer to System Control
Statements) .

Note: If CBL option SYMDMP is used,
see Appendix F: "System and Size
Considerations."

may be used when the EXEC statement
invokes the compiler, to indicate that
the compiled program should be link
edited and executed after completion.

PROC=procedurename
represents the name of the procedure to
be retrieved from the procedure library.
The procedure name can be from one to
eight alphanumeric characters, the
first of which must be alphabetic.

For more information on cataloged
procedures, as well as the use of
overwrite statements and the rules that
apply to temporary procedure
modification, refer to the VSE System
Data Management and the chapter
"Librarian Functions" in this book.

CBL STATEIMENT -- COBOL OPTION CONTROL
STATEMENT

Although some options for compilation
are specified either at system generation
time or in the OPTION control statement,
the COBOL compiler provides an additional
statement, the CBL statement, for the
specification of compile-time options
unique to COBOL.

The CBL statement must be placed between
the EXEC FCOBOL statement and the first
statement in the COBOL program. The CBL
statement cannot be continued. However, if
specification of options will continue past
column 71, multiple CBL statements may be
used.

The options shown in the following format
may appear in any order. No comments should
appear in the operand field. Underscoring
indicates the default case. To change the
defaults for your installation, see
"Changing the Installation Defaults."

-
|

CBL ADV ,APOST [[BUF=nnnn]
NOADV , QUOTE |
_ - |
, CATALR ,CLIST ,COUNT 1
,NOCATALR| |,NOCLIST ,NOCOUNT |
pt - 1
,FLAGE [, FLOW[=nn]] s LANGLVL (1) | 1
,FLAGW ,LANGLVL (2) | |
- - 1
,LIB ,LvL=aA|B|C|D] |[,0PTIMIZE l
,NOLIB , NOLVL ,OPT 1
- ,NOOPTIMIZE| |
,NOOPT |

- |

[PMAP=1] , SEQ [SPACEn] I
,NOSEQ |

- 1
, STATE , STXIT , SUPMAP I
,NOSTATE ,NOSTXIT ,NOSUPMAP [
| SXREF [, SYMDMP[=filename]] :
, NOSXREF l
, SYNTAX , TRUNC , VERB |
,CSYNTAX , NOTRUNC , NOVERB !
, NOSYNTAX :
[, VERBREF ,VERBSUM , ZWB !
,NOVERBREF | |, NOVERBSUM ,NOZWB :
-

BL
must begin in column 2 (column 1 must
be blank) and be followed by at least
one blank.

DV
OADV
indicates whether or not records for
files with WRITE...ADVANCING need
reserve the first byte for the control
character. ADV specifies that the
first byte need not be reserved.

Notes:

A file described with a LINAGE clause
will always be treated as if ADV were
specified, even if NOADV is in effect
for the compilation.

A file described with a REPORTS clause
will always be treated as if NOADV had
been specified.

A file described with APPLY WRITE-ONLY
will always be treated as if NOADV had
been specified.

\POST

JUOTE
QUOTE indicates to the compiler that
the double gquotation marks (") should
be accepted as the character to
delineate literals; APOST indicates
that the apostrophe (') should be
accepted instead. The compiler will
generate the specified character for
the figurative constant QUOTE(S).

JUF=nnnnn
the BUF option specifies the amount of
storage to be assigned to each
compiler work file buffer.

Under DOS/VSE Advanced Functions,
Release 2 and up, if compiler
workfiles are defined in VSAM space,
the BUF option must not be specified.

nnnnn is a decimal number from 512 to
32,767. If this option is not
specified, 512 is assumed. The BUF
option should be used to specify an
optional blocksize (which will depend
on the device type) for the workfiles.
Usually, a larger blocksize will
enhance the performance of the
compiler. However, for any given BUF
specification, the compiler space
requirements (over 64K) are increased
by a factor of 6x (nnnnnn-512).

ATALR

JOCATALR
causes the compiler to generate CATALR
card images on the SYSPCH file if
OPTION DECK is in effect during
compilation. This will allow
cataloging of the compiler produced

object modules into the relocatable
library. The module names in the
CATALR cards adhere to the same rules
as the phase names in the compiler
produced PHASE cards according to the
segmentation and sort phase naming
conventions (see the sections on Sort
and Segmentation Features).

CLIST

NOCLIST
indicates that a condensed listing is
to be produced. The condensed listing
will contain only the address of the
first generated instruction for each
verb in the Procedure Division. 1In
addition, global tables, literal
pools, register assignments, and
procedure block assignments will be
provided. The CLIST option overrides
the LISTX or NOLISTX options. The
LISTX or NOLISTX options are either
established at system generation time
or specified in the OPTION control
statement.

COUNT

NOCOUNT
generates code to produce verb
execution summaries at the end of
problem program execution. Each verb
is identified by procedure-name and by
statement number, and the number of
times it was used is indicated. 1In
addition, the percentage of verb
execution for each verb with respect
to the execution of all verbs is
given. A summary of all executable
verbs used in a program and the number
of times they are executed is provided.
COUNT implies VERB.

Note: If COUNT and STXIT are desired,
then either STXIT must be requested in
the program unit requesting COUNT, or
the program unit requesting COUNT must
be entered before the program unit
requesting STXIT. See the chapter
entitled "Execution Statistics" for
additional information on the COUNT
option.

FLAGE

FLAGW
determines which diagnostics the
compiler will list. FLAGW indicates
that all diagnostics will be listed
(severity levels W, C, E, and D).
FLAGE indicates that only those
diagnostics with severity levels C, E,
and D will be listed. This has no
effect on FIPS messages.

FLOW [=nn]
provides the programmer with a formatted
trace (i.e., a list containing the
program identification and statement
numbers) corresponding to a variable
number of procedures executed prior to

Preparing COBOL Programs for Processing 37

an abnormal termination. The value "nn"
may range from 0 through 99. If "nn" is
not specified, a value of 99 is assumed.
FLOW and STXIT, and FLOW and OPT are
mutually exclusive options, i.e., only
one may be in effect during a given
compilation. In addition, FLOW and
STXIT are mutually exclusive at
execution time. Additional

information on the flow trace option
can be found in the chapter "Symbolic
Debugging Features."

LANGLVL (1)

LANGLVL (2)
specifies whether the 1968 or the 1974
American National Standard COBOL
definition is to be used when compiling
those source elements whose meaning has
changed. LANGLVL(1) tells the compiler
to use the 1968 ANS standard (X3.23-1968)
if the compiler encounters any of those
source elements whose definition has
changed; this interpretation would be
the one that was used by Release 2 of
the compiler. LANGLVL(2) tells the
compiler to use the 1974 ANS standard
(X3.23-1974) when encountering any of
those redefined elements. LANGLVL(2)
is the de#ault.

Generally speaking, the language level
supported by the Release 3 compiler
includes all of that supported by
Release 2. The Release 3 compiler
will accept not only source programs
written in the new (1974) language, but
also source programs that were .or are
written in the older (1968) language.
However, the superset relationship
between the new and the older languages
is not absolute; there are a few
exceptions--elements whose meaning has
changed because of ANS redefinition.

It is only these few elements that are
controlled by the LANGLVL option.

LIB

NOLIB
indicates that BASIS and/or COPY
statements are in the source program.
If either COPY or BASIS is present,
LIB must be in effect. If COPY and/or
BASIS statements are not present, use of
the NOLIB option yields more efficient
compiler processing.

LVL=A|B|C|D

NOLVL
indicates whether the compiler should
identify COBOL clauses and statements
in a DOS/VS COBOL source program that
do not conform to the Federal
Information Processing Standard.

Under DOS/VSE Advanced Function,
Release 3 and up, if compiler workfiles
are defined in VSAM space, the LVL option

38

and the LST lister statement should not
both be specified for the same
compilation.

FIPS recognizes four language levels in
LANGLVL(1) and LANGLVL(2): 1low, low-
intermediate, high-intermediate, and ful
The FIPS Flagger provides four levels of
flagging from low (A) to high (D) to con
to the four levels of the FIPS

The FIPS Flagger needs a disk workfile
to be assigned to SYS006.

OPTIMIZE

OPT

NOOPTIMIZE
NOOPT

OPTIMIZE (OPT) causes optimized object
code to be generated by the compiler.
The more efficient code generated
considerable reduces the amount of space
required by the object program. If
neither LINK nor DECK is specified in
the OPTION statement, then optimized
code is not generated by the compiler.

This option cannot be used if either the
symbolic debug option (SYMDMP), the
statement number option (STATE), or the
flow trace option (FLOW[-nn]) is
requested.

PMAP=h

SEQ

enables the programmer to request a
relocation factor "h". If the PMAP
option is specified, the relocation
factor is included in the addresses of
the object code listing. The
relocation factor "h" is a hexadecimal
number of from one to eight digits.

If the PMAP option is not specified,
the relocation factor is assumed to be
zero. When PMAP is specified in a
segmented program, the listing for
segments of priority higher than the
segment limit (49, if the SEGMENT-
LIMIT clause is not specified), will
not be relocated. The PMAP option

has meaning only when LISTX or CLIST
and/or SYM (for the location of
WORKING-STORAGE) is in effect.

NOSEQ

indicates whether or not the compiler
is to check the sequence of source
statements. If SEQ is specified and
a statement is not in sequence, it is
flagged. If the lister feature is
invoked, the source statements are
resequenced automatically before the
sequence check is performed.

SPACEn

indicates the type of spacing to. be
used on the output listing. n can be
specified as either 1 (single spacing),
2 (double spacing), or 3 (triple

spacing). If the SPACEn option is
omitted, single spacing is provided.
Single spacing is always in effect if
the lister feature is invoked.

ATE

STATE
STATE provides the programmer with
information about the statement being
executed at the time of an abnormal
termination of a job. It identifies
the program containing the statement and
provides the number of the statement and
of the verb being executed. STATE and
STXIT, STATE and SYMDMP, and STATE and
OPT are mutually exclusive options,
i.e., no more than one may be in effect

during a given compilation. (However,
the facilities provided by STATE
automatically exist with SYMDMP.) 1In

addition, STATE and STXIT are mutually
exclusive at execution time. Additional
information on the statement number
option can be found in the chapter
"Symbolic Debugging Features."

XIT

STXIT
enables a USE AFTER STANDARD ERROR
declarative to receive control when an
input/output error occurs on a unit
record device. The use of STXIT
precludes the use of SYMDMP, STATE, and
FLOW in the compiler program and in any
other program link-edited with the
compiler program, and vice versa.

PMAP

SUPMAP
causes the CLIST and LISTX options to
be suppressed if an E-level diagnostic
message is produced by the compiler.
For the DECK option, refer to OBJECT
MODULE in the chapter "Interpreting
Output."”

REF
'SXREF

causes the compiler to write an
alphabetically-ordered cross-reference
list on SYSLST. You may want to use
the lister cross-reference information
in place of this option for large COBOL
program, to decrease run time.

MDMP [=£ilename]
indicates to the compiler that
execution-time dumps might be
requested for the program currently
being compiler. If dumps are desired,
the programmer must provide the
required control cards at execution
time. For storage considerations at
execution time, see Appendix F:
"System and Size Considerations.”

Use of the symbolic debug option
necessitates the presence of an
additional work file, SYS005, at
compile time. Under DOS/VSE Advanced
Functions, Release 2 and up, workfile
SYS005 must not be specified in VSAM
space. The "filename" parameter
enables the programmer to specify a
name for the SYS005 file that he can
retain. If no filename is specified,
IJSYS05 will be used. When several
COBOL programs are link edited
together, the "filename" parameter
enables each to have a unique SYMDMP
name. Compile and execution must be
done in the same job stream. . The
SYS005 file is deleted at end of job.
For a tape file, only unlabeled tapes
may be used, and the filename in the
SYMDMP=filename parameter is ignored.

SYMDMP and STXIT, SYMDMP.and STATE,
and SYMDMP and OPT are mutually .
exclusive options, i.e., no more than
one may be in effect during a given
compilation. (However, the facilities
provided by STATE are automatically
included with SYMDMP.) 1In addition,
SYMDMP and STXIT are mutually
exclusive at execution-time.
Additional information on the symbolic
debug option and the required
execution-time control statements can
be found in the chapter "Symbolic
Debugging Features."

If NODECK and NOLINK are requested on
the OPTION control statement and either
SYMDMP or OPT is specified on the CBL
statement, the SYMDMP or OPT
specification is ignored.

SYNTAX

CSYNTAX

NOSYNTAX
indicates whether the source text is to
be scanned for syntax errors only and
appropriate error messages are to be
generated. For conditional syntax
checking (CSYNTAX), a full compilation
is produced so long as no messages
exceed the C level. If one or more
E-level or higher severity messages are
produced, the compiler generates the
messages but does not generate object
text.

Notes:
1. When the SYNTAX option is in effect,
all of the following compile-time

options are suppressed:

OPTION control statement: LINK,
DECK, XREF

Preparing COBOL Programs for Processing 39

CBL statement: SXREF, CLIST,
COUNT, VERBREF, VERBSUM

When CSYNTAX is requested and one
or more D- or E-level messages
occur, then the preceding options
are suppressed and the CBL option
FLAGE is made active.

3. Unconditional syntax checking is
assumed if all of the following
compile-time options are specified:

OPTION control statement:
NOXREF, NODECK

NOLINK,

CBL statement: SUPMAP (and CLIST,
SXREF, VERBSUM, and VERBREF are
not specified)

4. Some compiler diagnostics do not
appear when SYNTAX or CSYNTAX is
in effect. These are listed in
"Execution Statistics.”

5. When you specify NOSYNTAX none of
these things happen.

TRUNC
NOTRUNC

VERB

applies only to COMPUTATIONAL receiving
fields in MOVE statements and arithmetic
expressions. If TRUNC is specified,
extra code is generated to truncate the
final intermediate result of the
arithmetic expression, or the sending
field in the MOVE statement, to the
number of digits specified in the
PICTURE clause of the COMPUTATIONAL
receiving field. If NOTRUNC is
specified, the compiler assumes that the
data being manipulated conforms to
PICTURE and USAGE specifications.
compiler then generates code to
manipulate the data based on the size

of the field in storage (halfword, etc.).
TRUNC conforms to the American National
Standard, while NOTRUNC leads to more
efficient processing. This will
occassionally cause dissimilar results
for various sending fields because of
the different code generated to perform
the operation.

The

NOVERB

indicates whether procedure-names and
verb-names are to be listed with the
associated code on the object-program
listing. VERB has meaning only if
LISTX, CLIST, VERBSUM, VERBREF, COUNT
or READY TRACE is in effect. NOVERB
yields more efficient compilation.

VERBREF
NOVERBREF

40

provides a cross reference of all verbs
used in the program. This option
provides the programmer with a quick

index to any verb used in the program.
VERBREF implies VERB and VERBSUM.

VERBSUM

NOVERBSUM
provides a brief summary of verbs used
in the program and a count of how
often each verb was used. This option
provides the user with a quick search
for specific types of statements
VERBSUM implies VERB.

ZWB

NOZWB
determines if the compiler will
generate code to strip the sign when
comparing a signed external decimal
field to an alphanumeric field. If
ZWB is in effect, the signed external
decimal field is moved to an
intermediate field and has its sign
stripped before being compared to the
alphanumeric field. Z2ZWB conforms to
the ANS standard, while NOZWB allows
the user to test input numeric fields
for SPACES to prevent abnormal
termination.

| LST Statement -- LISTER Option

The LST statement is used to invoke the
lister, a portion of the compiler that
processes programs written in American
National Standard COBOL to produce a
reformatted source code listing containing
embedded cross~-reference information, and
uniform indenting conventions.

Under DOS/VSE Advanced Functions, Release
3 and up, if compiler workfiles are defined
in VSAM space, the LVL option and the LST
lister statement should not both be
specified for the same compilation.

The LST option card can be placed
anywhere between the EXEC statement and the
first statement of the COBOL program. It
may be placed between any other compiler
option cards. The options shown in the
following format may appear in any order.
Underscoring indicates the default.

promp————

r
|

|[DECK, COPYPCH, LSTCOME, ROC=1col,
| NODECK' NOCOPYPCH LSTONLY 2col

| I
| 4
LST

must begin in column 2 (column 1 must
be blank) and be followed by at least
one blank.

DECK contain CBL option cards specifying the

NODECK desired defaults. Resultant defaults may
indicates whether an updated source be overridden at compilation time by
deck is to be produced as a result of supplying a CBL card in the compiler input
the lister reformatting and/or the stream.

update BASIS library.

COPYPCY

NOCOPYPCH Significant Characters for Various Options
will punch updated and reformatted copy
libraries as a permanent part of the

source when DECK is specified. When no The DOS/VS COBOL compiler selects the
updated source deck is requested, an valid options for processing by looking for
updated and reformatted COPY library three significant characters of each key
will be punched out. option word. When the keyword is identified,
it is checked for the presence or absence of
LSTONLY the prefix NO, as appropriate. The programmer
LSTCOMP can make the most efficient use of the CBL card
when LSTONLY is specified, the program by using the significant characters instead of
will not be compiled, but a reformatted the entire option. Table 3 lists the
listing will be produced along with a significant characters for each option.
deck if DECK has been specified.
LSTCOMP will provide a source listing Table 3. Significant Characters for
and will compile the program as part Various Options
of the job step. LSTCOMP does not
suppress CLIST. Significant
Option Characters
PROC=1col -
2col SEQ SEQ
will list the Procedure Division either FLAGE (W) LAG,LAGW
single~ or double-column format. At BUF BUF
least 132 print positions for the SPACE ACE
double-column format. PMAP PMA
SUPMAP SUP
For more details on the lister program, CLIST CLT
see the chapter entitled "Using the Lister TRUNC TRU
Feature." APOST APO
QUOTE QuUO
SXREF SXR
STATE STA
Mutually Exclusive Options FLOW FLO
LIB LIB
SYMDMP SYM
In some of the preceding descriptions of OPTIMIZE OPT
the CBL card options, restrictions have been SYNTAX SYN
placed on the use of one option in CSYNTAX Ccsy
conjunction with others. It should be noted VERB VER
that if these restrictions are violated, the ZWB ZWB
compiler ignores all but the last of the LVL LVL
conflicting options specified. For this COUNT cou
reason, if after a CBL statement is
coded the programmer decides to use a ..w Significant
option that is mutually exclusive with an Option Characters
option on the original CBL card, a new CBL
card can be added rather than changing the VERBSUM VERBSUM
original card. VERBREF VERBREF
STXIT STX
DECK DEC
COPYPCH COP
Changing the Installation Defaults LSTCOMP STC
LSTONLY STO
PROC PRO

In order to change the compiler default
options to suit your installation, a new
member, C.CBLOPTNS, must be added to the Note: SYM on the CBL card should not be
source statement library. This module must confused with SYM on the OPTION card.

Preparing COBOL Programs for Processing 40.1

JOB CONTROL COMMANDS

Job control commands are distinguished
from job control statements by the absence
of // blank in positions 1 through 3 of
each command. They permit the operator to
adjust the system according to day-to-day
operating conditions. This is particularly
true in the area of device assignment,
where the operator may need to

(1) communicate to the system that a device

is unavailable, or (2) designate a
different device as the standard for a
given symbolic unit. Therefore, these
commands normally are not a part of the
regular job deck for a job. Job control
commands tend to be effective across jobs,
whereas job control statements are confined
within a job.

Job control commands are discussed in
detail in the publication DOS/VS System
Control Statements.

LINKAGE EDITOR CONTROL STATEMENTS

Object modules used as input to the
Linkage Editor must include linkage editor
control statements. There are four linkage
editor control statements: PHASE, INCLUDE,
ENTRY, and ACTION.

Linkage editor control statements
initially enter the system through the
device assigned to SYSRDR as part of the
input job stream. PHASE and INCLUDE

statements may also be present on SYSIPT or.

in the relocatable library. All four
statements are verified for operation
(INCLUDE, ACTION, ENTRY, or PHASE) and are
copied to SYSLNK to become input when the
Linkage Editor is executed.

Linkage editor control statements must
be blank in position 1 of the statement.
The operand field is terminated by the
first blank position. It cannot extend
beyond column 72.

The Linkage Editor is executed as a
distinct job step. Figure 5 shows how the
linkage editor function is performed as a
job step in three kinds of operations.

1. Catalog Programs in Core Image
Library. The linkage editor function
1s performed immediately preceding the
operation that catalogs programs into
the core image library. When the
CATAL option is specified, programs
edited by the Linkage Editor are
cataloged in the core image library by
the Librarian after the editing

40.2

function is performed. The sequence
of this operation is shown in Part A
of Figure 5. Note that the input for
the LNKEDT function could contain
modules from the relocatable library
instead of, or in addition to, those
modules from the card reader, tape
unit, or mass storage unit extent
assigned to SYSIPT. This is
accomplished by naming the module (s)
to be copied from the relocatable
library in an INCLUDE statement.

2, Load-and-Execute. The sequence of
this operation is shown in Part B of
Figure 5. Specifying OPTION LINK
causes the Job Control Processor to
open SYSLNK, and allows the Job
Control Processor to place the object
module (s) and linkage editor control
statements on SYSLNK. As with the
catalog operation, the input can
consist of object modules from the
relocatable library instead of, or in
addition to, those modules from the
card reader, tape unit, or disk extent
assigned to SYSIPT. This is accom-
plished by specifying the name of the
module to be included in the operand
of an INCLUDE statement. After the
object modules have been edited and
placed in the core image library, the
program is executed. The blank
operand in the EXEC control statement
indicates that the program that has
just been link edited and temporarily
stored in the core image library is to
be executed.

3. Compile-and-Execute. Source modules
can be compiled and then executed in a
single sequence of job steps. In
order to do this, the COBOL compiler
is directed to write the object module
directly on SYSLNK. This is done by
using the LINK option in the OPTION
control statement. Upon completion of
this output operation, the linkage
editor function is performed. The
program is link edited and temporarily
stored in the core image library.

The sequence of this operation is
shown in Part C of Figure 5.

In each of the operations described in
Figure 5, if a private core image library
is assigned, output from the Linkage Edito
will be placed (either permanently or
temporarily) in the private core image
library rather than in the system core
image library. If the Linkage Editor is
executed in a batched-job foreground
partition, a private core image library
must be assigned. Private core image
libraries are a system generation option.

(® CATALOG AS PERMANENT PROGRAM

% o:arca / nkage
| EXEC FCOBOL ———-I OPTION CATAL

PHASE PROGA, *

SYSLNK

N

|
| I
fo————————— INCLUDE te EXEC PROGA
i]

{ object module}
ENTRY
EXEC LNKEDT

® LOAD AND EXECUTE

O 7
Module Loader
% % Execution
| ‘ 1
’ EXEC FCOBOL ! :ﬁélﬂ;‘eum
L {object module}
i ENTRY
EXEC LNKEDT
EXEC
© COMPILE AND EXECUTE
—_—
Source COBOL System g:"
Module Compiler Loader Ex‘:r:::lon
|
OPTION LINK }
EXEC FCOBOL |
ENTRY o
EXEC LNKEDT I
EXEC
igure 5. Job Definition -- Use of the Librarian
ntrol Statement Placement ACTION and ENTRY statements, when
present, must be on SYSRDR. PHASE and
INCLUDE statements may be present on
The placement of linkage editor control SYSRDR, SYSIPT, or in the relocatable
catements is subject to the following library.

lles:

L. The ACTION statement must be the first PHASE Statement
linkage editor control statement
encountered in the input stream;
otherwise, it is ignored. The PHASE statement must be specified if
the output of the Linkage Editor is to
consist of more than one phase cr if the

2. The PHASE statement must precede each program phase is to be cataloged in the
object module that is to begin a core image library. Each object module
phase. that begins a phase must be preceded by a

PHASE statement. Any object module not
preceded by a PHASE statement will be

3. The INCLUDF statement must be included in the current phase.
specified for each object module that
is to be included in a program phase. The statement provides the Linkage

Editor with a phase name and an origin
point for the phase. The PHASE statement
Y. A single ENTRY statement should follow is in the following format:
the last object module when multiple
object modules are processed in a r
single linkage editor run. | PHASE name,originl,NOAUTO]

Preparing COBOL Programs for Proccessing 41

name
is the symbolic name of the phase. It
is the name under which the program
phase is to be cataloged. This name
does not have to be the name specified
in the PROGRAM-ID paragraph in the
Identification Division of the source
program and, in the case of
segmentation and/or sort, it should
not be the same. It must consist of
from one to eight alphanumeric
characters. Phases that are to be
executed in a segmentation and/or sort
structure should have phase names of
from five to eight alphanumeric
characters, the first four of which
should be the same. An asterisk
cannot be used as the first character
of a phase name. If no phase name is
specified, a dummy phase name of
PHASE*** is used and execution stops
at end of compilation. The job is
then cancelled.

origin
indicates to the Linkage Editor the
starting address of this specific
phase. An asterisk may be used as an
origin specification to indicate that
this phase is to follow the previous
phase. This origin specification
format of the PHASE statement covers
all applications that do not include
setting up overlay structures. See
the chapter "Calling and Called
Programs"™ for information on the PHASE
statement for overlay applications.

NOAUTO
indicates that the Automatic Library
Look-Up (AUTOLINK) feature is
suppressed for both the private
relocatable library and the system
relocatable library. (The use of
NOAUTO causes the AUTOLINK process to
be suppressed for that phase only.)
The AUTOLINK feature is discussed
later in this chapter.

INCLUDE Statement

The INCLUDE statement must be specified
for each object module deck or object
module in the relocatable library that is
to be included in a program phase. The
format of the INCLUDE statement is as
follows:

1 1
i INCLUDE [module-namel [, (namelist)) |

The INCLUDE statement has two optional
operands. When both operands are used,
they must be in the prescribed order. When
the first operand is omitted and the second

42

orerand is used, a comma must precede the
second operand.

module-name
must be specified when the object
module is in the relocatakle library.
It is not specified when the module to
be included is in the form of a card
deck being entered from SYSIPT.
module-name is the name under which
the module was cataloged in the
library, and must consist of from one
to eight alphanumeric characters.

(namelist)
causes the Linkage Editor to construct
a phase from the control sections
specified in the list. Since control
sections are of no interest to the
COBOL programmer, users interested in
this option should refer to the

- description of the INCLUDE statement

in the publication DOS/VS System
Control Statements.

ENTRY Statement

The ENTRY statement is required only if
the programmer wishes to provide a specific
entry point in the first phase produced by
the Linkage Editor. When no ENTRY
statement is provided, the Job Control
Processor writes an ENTRY staterent with a
blank orerand on SYSLNK to ensure that an
ENTRY statement will be present to halt
link editing. The transfer address will be
the load address of the first phase. The
ENTRY statement is described further in the
publication DOS/VS System Control

Statements.

ACTION Statement

o et o s s e . e, et i e e g

The ACTION statement. is used to indicate
linkage editor options. When used, the
statement must be the first linkage editor
statement in the input stream. The format
of the ACTION statement is as follows:

CLEAR
MAP
NCMAP
NOAUTO
NOREL
CANCEL
BG

Fl

F2

F3

F4

ACTION

e e e e e ————— s)

AR Link editing for a specific address is
indicates that the entire temporary performed.
portion of the core image library will
be set to binary zero before the
beginning of the linkage editor

function. CLEAR is a time-consuning AUTOLINKX FEATURE
function and should be used only when
necessary.

If any references to external-names are
still unresolved after all modules have
been read from SYSLNK, SYSIPT, and/or the

indicates that SYSLST is available for relocatable library, AUTOLINK collects each

diagnostic messages. In addition, a unresolved external reference from the
storage map is output on SYSLST. phase. It then searches the private
relocatable library (if SYSELB has been
AP assigned) and the system relocatable
indicates that SYSLST is unavailable library for module names identical to the
when performing the link edit unresolved names and includes these modules
function. The mapping of storage is in the program phase. This feature should
not performed, and all linkage editor not be suppressed (via PHASE or ACTION
diagnostic messages are listed on statements) in linkage editor job steps
SYSLOG. which include COBOL subroutines cataloged
in the relocatable library. See the
UTo chapter "Calling and Called Programs" for
suppresses the AUTOLINK function for additional details.

both the private and system
relocatable libraries during the link
editing of the entire program.

AUTOLINK is discussed later in this RELOCATING LOADER FEATURE
chapter. PRI:P
CEL The relocating loader feature allows PGMS
causes an automatic cancellation of users to load single-phase and nmulti-phase
the job if any of the linkage editor programs at any valid problem progran
errors 2100I through 21701 occur. address in the system. Under this option,
These diagnostic messages can be found the linkage editor catalogs relocatable
in the publication DOS/VS_System phases into the core image library, and the
Control Statements. relocating loader in the supervisor assigns
the absolute machine addresses that are
F1, F2, F3, and F4 necessary for program execution. This
are options used to link edit a means the user need retain only one copy of
program for execution in a partition the program in the core image library.
other than that in which the link edit
function is taking place. See the The relocating loader is an optional
publication DOS/VS_ System Control feature, and nmust be specified at system
Statements. generation time.
EL Figure 6 illustrates options available
suppresses the relocating loader. during link-editing.

Preparing COBOL Programs for Processing 43

FPigure

4y

60

Options Available During Link~Editing

IS
ACTION = NOREL
SPECIFIED AT LINK~

EDIT TIME
?

YES

'

LINKAGE—EDITING FOR A
SPECIFIC PARTITION

— Default: Addresses will be
adjusted for the specified
virtual partition.

— Option: User may
specify linking for

LINKAGE EDITOR the associated real
PRODUCES partition,
RELOCATABLE
PHASES

WAS

SYSTEM GENERATED
WITH

RELOCATING LOADER

NO

'

This supervisor cannot
load relocatable phases.
The user should specify
ACTION=NOREL at
link-edit time, or generate
another supervisor with
relocating loader.

System retains flexibility of
loading in any partition.

Program may be included in
job stream for any partition
when program is loaded.

— Default: Program runs
in virtual mode.

— Option: User may specify
execution in associated
real partition.

DOS/VS supports four libraries: the
wre image library, the relocatable
Jbrary, the source statement library, and
.e procedure library. The core image,
‘locatable, and source statement libraries
‘e classified as system libraries and
‘ivate libraries. The procedure library
‘ists only as a system library. The
'stem residence device (SYSRES) contains
.6 system libraries. Private libraries
in be contained on separate disk packs.
.ese libraries are discussed under
‘rivate Libraries" in this chapter.
:ecutable programs (core image format) are
:ored in the core image library;
:locatable object modules are stored in
ie relocatable library; source language
utines are stored in the source statement
.brary; catalogued procedures are stored
1 the procedure library.

,ANNING THE LIBRARIES

The components of the DOS/VS system are
iipped in three system libraries: the
yTe image library, the relocatable
.brary, and the source statement library.
fourth library -- the procedure library
- is available but it does not contain any
iformation when the system is shipped.
)st programs and procedures developed and
sed by your installation will also be
:ored in these libraries. 1In addition to
1e system libraries, DOS/VS supports
:ivate libraries which you can use to
.ther substitute for or supplement the
)rresponding system libraries.

Planning the size, contents, and
>cation of these libraries according to
1e needs of your installation is an
ssential part of the system generation
cocedure. Such detailed planning will
isure that:

e No disk space is wasted by components
not required in your installation.

e The libraries are large enough to allow
for future additions.

e The libraries are accessed by the
system with maximum efficiency.

LIBRARIAN PUNCTIONS

LIBRARIAN

The Librarian is a group of programs
that perform three major functions:

1. Maintenance
2. Service
3. Copy

Maintenance functions are used to
catalog (that is, add), delete, or rename
components of the four libraries, condense
libraries and directories, set a condense
limit for an automatic condense function,
reallocate directory and library extents,
and update the source statement and
procedure libraries.

The copy function is used either to
completely or selectively copy the disk on
which the system resides. Service
functions are used to translate information
from a particular library to printed
(displayed) or punched output.

Only the catalog maintenance function of
the Librarian is discussed in this
publication for the four system libraries.
In addition, the update function of the
source statement library is discussed. A
complete description of librarian functions
can be found in the publication DOS/V¥S
System_Control Statements.

CORE IMAGE LIBRARY

The core image library may contain any
number of programs. Each program consists
of one or more separate phases. Associated
with the core image library is a core image
directory which contains a unique
descriptive entry for each phase in the
core image library. These entries in the
core image directory are used to locate and
retrieve phases from the core image
library.

Cataloging and_Retieving Program Phases --
Core Image Llibrary

If a program is to be cataloged in the
core image library, the job control
statement // OPTION with the CATAL option

Librarian Functions 45

must be specified prior to the first
linkage editor control card, and must
precede the first PHASE card of the program
to be cataloged. Upon successful
completion of the linkage editor job step,
output from the Linkage Editor is placed in
the core image library as a permanent
member. The program phase is cataloged
under the name specified in the PHASE
statement.

If a phase in the core image library is
to be replaced by a new phase having the
same name, only the catalog function need
be used. The previously cataloged phase of
the same name is implicitly deleted from
the core image directory by the catalog
function, and the space it occupies in the
library can later be released by the
condense function.

Note: The necessary ASSGN control
statements must follow the // JOB control
statement if the current assignments are
not the following:

1. SYSRDR -- Card reader, tape unit, or
disk extent

2. SYSIPT ~-- Card reader, tape unit, or
disk extent

3. SYSLST -- Printer, tape unit, or disk
extent

4. SYSLOG -- Printer keyboard

5. SYSLNK -- Disk extent

The following is an example of
cataloging a single phase, FOURA, into the
core image library. (The program phase
FOURA can be executed in the next job step
by specifying the // EXEC statement with a
blank name field.)

// JOB CATALOG

// OPTION CATAL
PHASE FOURA,*
INCLUDE

{object deck}
/*
// LBLTYP TAPE
// EXEC LNKEDT
// EXEC
/6

To compile, link edit, and catalog the
phase POURA into the core image library in
the same job, the following job deck could
be used:

// JOB CATALOG

// OPTION CATAL
PHASE FOURA,*

// EXEC FCOBOL

46

{source deck}
/%
// EXEC LNKEDT
/%
/&

When the phase is executed in a
subsequent job, the EXEC statement that
calls for execution must specify FOURA,
i.e., the name by which the phase has been
cataloged.

// JOB EXJOB
// EXEC FOURA
/6

Phases can be in either non-relocatable
or relocatable format. The non-relocatable
phases are loaded at the address computed
at link-edit time into a real or virtual
partition. The load addresses and address
constants of relocatable phases can be
modified by the relocating loader. These
phases can be loaded at a yirtual address
different from the one for which it was
link-edited.

RELOCATABLE LIBRARY

The relocatable library contains any
nunber of modules. Each module is a
complete object deck in relocatable format.
The purpose of the relocatable library is
to allow the programmer to maintain
frequent 1y used routines in residence and
combine them with other modules without
recompiling.

Associated with the relocatahle library
is the relocatable directory. The
directory contains a unicue, descriptive
entry for each module in the relocatable
library. The entries in the relocatable
directory are used to locate and retrieve
modules in the relocatable library.

MAINTENANCE FUNCTICNS

To regquest a maintenance function for
the relocatable library, the following
control statement is used:

// EXEC MRINT

Cataloging a Module -- Relocatable Library

The catalog function adds a module to
the relocatable library. A module in the
relocatable library is the output of a
complete COBOL compilation.

The catalog function implies a delete
nction. Thus, if a module exists in the
locatable library with the same name as a
dule to be cataloged, the module in the
brary is deleted by deleting reference to

in the relocatable directory.

The CATALR control statement is required
» add a module to the relocatable library.
e format of the CATALR control statement

CATALR module-name [,v.m]

S

dule-name
is the name by which the module is
known to the control program. The
module-name consists of from one to
eight characters , the first of which
must not be an asterisk.

specifies the change level at which
the module is to be cataloged. v may
be any decimal number from 0 through
127. m may be any decimal number from
0 through 255. If this operand is
omitted, a change level of 0.0 is
assumed. A change level can be
assigned only when a module is
cataloged.

All control statements required to
italog an object module must be read from
'SIPT.

te: If SYSRDR and/or SYSIPT are assigned
) & tape unit, the MAINT program assumes
1at the tape is positioned to the first
iput record. The tape is not rewound at.
1e end of the job. If a tape mark is

und, MAINT assumes end-of-job.

The following is an example of compiling
source program and cataloging the
»sultant module in the relocatable
ibrary. The job deck is read from SYSIPT.

/7 JOB NINE
/ OPTION DECK
/ EXEC FCOBOL

{source deck}
k
/ PAUSE PLACE DECK AFTER CATALR CARD
7 EXEC MAINT
CATALR MOD9

(punched deck goes here)

In the above example, as a reésult of the
mpile step, the object module is written

on SYSPCH. The next job step catalogs the
object module (MOD9) into the relocatable
library. Since the object module must be
cataloged from SYSIPT, a message to the
operator instructs him to place the object
module on SYSIPT behind the CATALR
statement.

The following is an example of
cataloging two previously created object
modules in the relocatable library:

// JOB EIGHT
// EXEC MAINT
CATALR MODSA -

{object deck}?
CATALR MODS8EB

{object deck}
/%
/&

An additional capability of the system
permits a programmer to compile a program
and to catalog it to the system
relocatable, or private relocatakle,
libraxry in one continuous run. The
programmer inserts a CATALR statement in
his job control input stream preceding the:
compiler execute statement. The CATALR
statement will be written on the SYSPCH
file (tape or mass storage device) ahead of
the compiler output when OPTION DECK is in
effect. The programmer then reassigns the
SYSPCH file as SYSIPT and executes the
MAINT program to perform the catalog
function. The output of the corpilation
(on tape or mass storage device) may be
cataloged immediately or it may be
cataloged at some later time. It can also
be held after cataloging as backup of the
compilation.

The preceding method is recormended for
single-module object decks. In programs
for which the compiler produces multimodule
object decks (when segmentaticn and/or SORT
are being used), it is necessary to use the
CBL card CATALR option. This option causes
a CATALR card to precede each object
module.

SOURCE STATEMENT LIBRARY

The source statement library contains
any number of books. Each book in the
source statement library is composed of a
sequence of source language statements.

The purpose of the source statement library
is to allow the CORBOL progranmer to
initiate the compilation of a book into the
source program by using the COPY statement
or BASIS card.

Librarian Functions 47

Each book in the source statement
library is classified as belonging to a
specific sublibrary. Sublibraries are
defined for three programming languages:
Assembler, PL/I, and COBOL. Individual
books are classified by sublibrary names.
Therefore, books written in each of these
lanquages may have the same name.

Associated with the source statement
library is a source statement directory.
The directory contains a unique descriptive
entry for each book in the source statement
library. The entries in the source
statement directory are used to locate and
retrieve books in the source statement
library.

MAINTENANCE FUNCTIONS

To request a maintenance function for
the source statement library, the following
control statement must be used:

// EXEC MAINT

Cataloging a Book -- Source Statement
Library

The CATALS control statement is required
to add a book to a sublibrary of the source
statement library.

A book added to a sublibrary of the
source statement library is removed by
using the delete function. When a book
exists in a sublibrary with the same name
as a book to be cataloged in that
sublibrary, the existing book in the
sublibrary is deleted. The following is
the format of the CATALS control statement:

r 1
| CATALS sublib.library-name{,v.m[,CI} |
L 3

The operation field contains CATALS.

sublib
represents the sublibrary to which a
book is to be cataloged and can be:

48

Any alphanumeric character (0-9, A-Z,
#, §, and @) representing source
statement libraries. The characters
A, B, C, D, E, F, P, and Z have
special uses:

A and E are used for the Assembler
sublibrary

B is used for the VTAM network library
C is used for the COBOL sublibrary

D is used for the alternate copy
sublibrary

F is used for the alternate macro
sublibrary

P is used for the PL/I sublibrary

Z is used for sample programs supplied
by IBM

The sublib qualifier is required. If
omitted, the operand will be flagged as
invalid and no processing will be done on
the book.

library-name
represents the name of the book to be
cataloged. The library-name consists
of from one to eight alphanumeric
characters, the first of which must be
alphabetic. It is the name the
programmer uses to retrieve the book
when using the source language COPY
statement or BASIS card.

specifies the change level at which
the book is to be cataloged. v may be
any decimal number from 0 through 127;
m may be any decimal number from 0
through 255. If this operand is
omitted, a change level of 0.0 is
assumed. The v.m operand becomes part
of the entry in the directory for the
specified book. Its value is
incremented each time an update is
performed on the book.

indicates that change level
verification is required before
updates are accepted for this book.

See the UPDATE control statement,
iscussed later in this chapter, for its
elationship to the v.m and C operands of
he CATALS control statement.

In addition to the CATALS control
tatement, a control statement of the
ollowing form must precede and follow the
ook to be cataloged:

R |

BKEND [sublib.library-name],[SEQNCE], |
{ count],[CMPRSD]

J

All operand entries are optional. When
sed, the entries must be in the prescribed
rder and need appear only in the BKEND
tatement preceding the book to be
ataloged.

The first entry in the operand field is
dentical to the operand of the CATALS
ontrol statement.

EQNCE
specifies that columns 76 to 80 of the
card images constituting the book are
to be checked for ascending sequence
numbers. If an error is detected in
the sequence checking, an error mes-
sage is printed. The error can be
corrected, and the book can be
recataloged.

ount
specifies the number of card images in
the book. When the count operand is
used, the card input is counted,
beginning with preceding BXEND
statement and including the subseguent
BKEND statement. If an error is
detected in the card count, an error
message is printed. The error can be
corrected, and the book can be
recataloged.

‘MPRSD
indicates that the book to be
catalogced in the library is in
compressed format as a result ot
CMPRSD having been specified when
performing a PUNCH or DSPCH service
function. These functions are
described in the publication DOS/VS
System Control Statements.

Card input for the catalog function is
‘rom the device assigned to SYSIPT. The
'ATALS control statement is also read from
:he device assigned to SYSIPT.

Frequently used Environment Division,
)Jata Division, and Procedure Division
:ntries can be cataloged in the COEOL
sublibrary of the source statement library.
. book in the source statement library
1ight consist, for example, of a file

description of the Data Division or a
paragraph of the Procedure Division.

The following is an example of
cataloging a file description in the COBOL
sublibrary of the source statement library.

// JOB ANYNAME
// EXEC MAINT
CATALS C.FILEA
BXEND C.FILEA
BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS RECA.
BKEND
/*
/6

For information on retrieving a cataloged
book, see "Programming Techniques."

Note that the library entry does not
include FD or the file-name. It begins
with the first clause that is actually to
follow the file-name. This is true for all
options of the COPY statement. Eowever,
data entries in the library may have a
level number (01 or 77) identical to the
level number of the data-name that precedes
the COPY statement. In this cace, all
information about the library data-name is
copied from the library and all references
to the l.brary data-name are replaced by
the data-name in the program if the
REPLACING option is specified. The change
is made only for this program. The entry
as it appears in the library remains
unchanged. For example, assume the
following data entry is cataloged under the
library-name DATAR,

01 PAYFILE USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9
OCCURS 1 DEFENDING ON CRLC OF
PAYFILE.

and the following statement is written in a
COBOL source module:

01 GROSS COPY DATAR REPLACING PRYFILE
BY GROSS.

The compiler interprets this as:

01 GROSS USAGE 1S DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9
OCCURS 1 DEPENDING ON CALC OF
GROSS.

Librarian Functions 49

Note also that the library-name is used
to identify the book in the library. Tt
has no other use in the COBOL program.

Text cataloged in the source statement
library must conform to COBOL margin
restrictions.

The COBOL COPY statement is discussed in

detail in the section "Extended Source
Program Library Facility."

Updating Books —-- Source Statement Library

The update function is used to make
changes to properly identified statements
witkin a book imn the source statement
library. Statements are identified in the
identification field, columns 73 through
80, which is fixed in format as follows:
Columns 73-76 Program identification
which must be constant
throughout the book.

Columns 77-80 Sequence number of the
statement within the
book.

One or more source statements may be
added to, deleted from, or replaced in a
book in the library without the necessity
of replacing the entire book. The update
function also provides these facilities:

1. Resequencing statements within a book
in the source statement library

2. Changing the chanaqe level of the

book

(v.m)

3. Adding or removing the change level
requirement

‘4. Copying a book with optional retention
of the old book with a new name (for
backup purposes)

The UPDATE control statement is used for
the update function and has the following
format:

Al
UPDATE sublib.library-name,{s.book1],|
[v.m],[nn]

J

o ——

The operation field contains UPDATE.

sublib
represents the sublibrary that
contains the book to be updated. It
may be any of the characters 0 through
9, A through Z, #, %, or a.

50

s.book1

nn

provides a temporary update option.
The old book is renamed s.bookl. and
the updated book is named
sublib.library-name. s indicates the
sublibrary that contains the old,
renamed book. It may be one of the
characters 0 through 9, R through Z,
#, $, or #. If this operand is not
specified, the old book is deleted.

represents the change level of the
book to be updated. ¥ may be any
decimal number from O through 127; n
may be any decimal number from 0
through 255. This operand must be
present if change level verification
is to be performed. Use of the
optional entry C in the CATALS control
statement at the time the book is
cataloged in the library determines

whether change level verification is

reaquired before updating. If the
directory entry specifies that change
level verification is not recguired
beiore updating, the change level
operand in the UPDATE control
statement is ignored.

If the change level is verified, the
change level in the book's directory
entry is increased by 1 by the systenm
for verification of the next update.
If m is at its maximum value and an
update is processed, m is reset to O
and the value of v is increased by 1.
If both v and m are at their maximun
values and an update is processed,
both v and m are reset to 0.

represents the resequencing status
recguired for the update. nn may be a
1- or 2-character decimal number from
1 through .0, or it may be the word
No. If nn is a decimal number, it
represents the increment that will be
used in resequencing-the statements in
the book. If nn is NO, the statements
will not be resequenced. If nn is not
specified, the statements will be
resequenced with an increment of 1.
when a book is resequenced, the
sequence number of thefirst statement
is 0000. Por example, if a book is
cataloged in the source statement
library with sequence numbers ranging
from 0010 through 1009 with increments
of 5 for each statement:

and nn is not specified when the
update function is performed, the book
is resequenced with numbers 0000,
0001, 0002, ... etc.

and NO is specified, insertions,
deletions, and/or replacements are
made with no effect on the original
sequence nunmbers.

and nn is specified as 2, the book is
resequenced with numbers 0000, 0002,
0004, ... etc., regardless of the
original sequencing of the book in the
library or the sequence numbers of the
added or replacement cards.

The UPDATE control statement is followed
y ADD, DEL (delete), and/or REP (replace)
ontrol statements as required, followed by
he terminating END statement. The ADD,
EL, REP, and END statements are identified
s update control statements by a right
arenthesis in the first position (column 1
n card format). This is a variation from
he general librarian control statement
ormat; thus, it clearly identifies these
ontrol statements as part of the update
unction.

DD Statement: The ADD statement is used
or the addition of source statements to a
ook. The format is:

) ADD seg-no

-1
!
J

ADD indicates that source statements
ollowing this statement are to be added to
he book.

eq-no
represents the sequence number of the
statement in the book after which the
new statements are to be added. It
may be any decimal number consisting
of from one to four characters.

EL_Statement: The DEL statement causes
he deletion of source statements from the
ook. The format is:

1
) DEL first-seqg-no[,last-seq—no] |

DEL indicates that statements are to be
eleted from the book.

irst-seg-no

ast-seqg-no
represent the sequence numbers of the
first and last statements of a section
to be deleted. Each number may be a
decimal number consisting of from one
to four characters. If last-seg-no is
not specified, the statement
represented by first-seq-no is the
only statement deleted.

REP Statement: The REP statement is used
when replacement of source statements is
required in a book. The format is:

) REP first-seg-no[,last-seg-no] |

o — -

REP indicates that source statements
following this statement are to replace
existing statements in a book.

first-seq-no

last-segq-no
represent the sequence numbers of the
first and last statements of a section
to be replaced. Each number may be a
decimal number consisting of from one
to four characters. Any number of new
statements can be added to a book when
a section is replaced. (The number of
statements added need not equal the
number of statements being replaced.)

Sequence number 9999 is the highest
number acceptable for a statement to be
updated. TIf the book is so large that
statement sequence numbers have "wrapped
around" (progressed. from 9998, 9999, to
0000,0001), it will not be possible to
update statements 0000 and 0001.

END Statement: This statement indicates
the end of updates for a given book. The
format is:

i) END [v.m[,C]]

v.ld

represents the change level to be
assigned to the book after it is
updated; v may be any decimal number
from 0 through 127. m may be any
decimal number from O through 255.
This operand provides an additional
means of specifying the change level
of a book in the library. (The other
method is through the use of the v.m
operand in the CATALS statement.)

indicates that change level
verification is required before any
subsequent updates for a given book.

If v.m is specified and C is omitted,
the book does not require change level
verification before a subsequent update.
This feature removes a previously specified
verification requirement for a particular
book.

If both optional operands are omitted,

the change level in the book's directory
entry is increased as a result of the

Librarian Functions 51

update, and the verification requirement
remains unchanged.

Control Statement Placement: Control
statement input for the update function,
read from the device assigned to SYSIN,
must be in the following order:

1. The JOB control statement.

2. The ASSGN control statements, if the
current assignments are not those
required. The ASSGN control
statements that can be used are SYSIW,
SYSLST, and SYSLOG.

3. The EXEC MAINT control statement.

4. The UPDATE control statement.

5.) ADD,) DEL, or) REP statements with
appropriate source statements.

6.) END statement.

7. The /* control statement.

8. The /& control statement, which is the’

last control statement of the job.

The source statement library can also be
updated by using the DELETE and INSERT
cards. These are discussed in "Extended
Source Program Library Facility" in this
chapter, and in the publication IBM_DOS
Full American National Standard COBOL.

——— e e e e e e e

UPDATE Function -- Invalid Operand Defaults

UPDATE Statement:

i. If the first or second operand is
invalid, the statement is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their validity.

2. If change level verification is
required and the incorrect change
level is specified, the statement is
flagged, the book is not updated, and
the remaining control statements are
checked to determine their validity.

3. If the resequencing operand is

invalid, resequencing is done in
increments of 1.

52

ADD, DEL, or REP Statements:

1. If there is an invalid operation or
operand in an ADD, DEL, or REP
statement, the statement is flagged,
the book is not updated, and the
remaining control statements are
checked to determine their validity.
All options of the UPDATE and END
statements are ignored.

2. The second operand must be greater
than the first operand in a DEL or REP
statement. If not, the statement is
considered invalid and is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their validity. All options
of the UPDATE and END statements are
ignored.

3. All updates to a book between an
UPDATE statement and an END statement
must be in ascending sequential order
of statement sequence numbers. The
first operand of a DEL or REP
statement must be greater than the
last operand of the preceding control
statement. The operand of an ADD
statement must be equal to or greater
than the last operand of the preceding
control statement. Consecutive ADD
statements must not have the same
operand. If these conditions are not
met, the default is the same as for
items 1 and 2.

END Statement: If the first operand of the
END statement is invalid, the statement is
flagged, both operands are ignored, and the
book is updated as though no operands were
specified.. If the second operand is
invalid, the statement is flagged, the
operand is ignored, and the book is updated
as though the second operand were not
specified.

Out-of-Sequence Updates: 1If the source
statements to be added to a book are not in
sequence or do not contain sequence
numbers, the book is updated, and a message
indicating the error appears following the
END statement. If the resequencing option
has been specified in the UPDATE statement,
the book is sequenced by the specified
value, and subsequent updating is possible.
If the resequencing option is not
specified, the book is resegquenced in
increments of 1, and subsequent updating
will be possible. If the reseguencing
option NO is specified, the book will be
out of sequence, and subsequent updating
may not be possible.

he Procedure Library

The procedure library is a new system
ibrary that may be used to store -- in
ard image format --

e Frequently used sets, procedures, of
job control and linkage editor
statements (basic support).

e Procedures additionally containing
inline SYSIPT data, especially control
statements for system utility and
service programs (extended support).
The inline SYSIPT data must be
processed under control of the
device-independent sequential IOCS or
by IBM-supplied service programs and
language translators.

The procedure library is part of SYSRES,
50 the maintenance and service functions
wvailable for the other DOS/VS libraries
vill also support the procedure library.

Cataloged procedures may ke included in
the job control input stream by a job
control statement and temporarily modified
oy overwrite statements. For more details
on cataloged procedures, see DOS/VS System
control Statements.

MAINT, PROCEDURE LIBRARY

To request a maintenance function for
the procedure library, use the following
EXEC control statement:

// EXEC MAINT.

One or more of the maintenance functions
(catalog, delete, rename, condense, set
condense limit, or reallocate) can be
requested within a single run. Any number
of procedures within the procedure library
can be acted upon in this run. Further,
one or more of the maintenance functions
for either of the other three libraries
(core image, source statement, or
relocatable) can be requested within this
run, for the same MAINT program maintains
all four libraries.

Catalog

The control statement required to add a
procedure to the procedure library is the
CATALP statement. Any number of procedures
may be cataloged in a single run. Each
procedure must immediately follow the
respective CATALP statement.

Statement Format:

CATALP procedurenamel,VM=v.m] [,EO0P=yy]
NO
,DATA=YES

Each control statement in the procedure
library should have a unique identity.
This identity is required to modify the job
stream at execution time. Therefore, when
cataloging, identify each control statement

in columns 73-79 (blanks may be embedded).

procedurename
represents the name of the procedure
to be cataloged. The procedurename
consists of one to eight alphameric
characters, the first of which must be
alphabetic. It must not be ALL.

VM=v.m
specifies the change level at which
the procedure is to be cataloged. v
may be any decimal number from 0-127.
m may be any decimal numker from
0-255. If this operand is omitted, a
change level of 0.0 is assumed.

A change level can be assigned only
when a procedure is cataloged. The
change level is displayed and punched
by the service functions.

EOP=yy
specifies a two-character
end-of-procedure delimiter. The EOP
parameter can be any combination of
characters except /*, /&, //; it must

not contain a blank or a comma. The
system assumes /+ as default
end-of-procedure delimiter. Otherwise

you can omit the EOP parameter.

DATA=YES
specifies that a procedure contains
SYSIPT inline data.

These procedures can only be executed
in the extended procedure support.

A procedure to be cataloged into the
procedure library may consist of Job
Control and linkage editor statements and,
if the supervisor was generated with the
SYSFIL option, additional control
statements for IBM-supplied control and
service programs and data processed under
control of the device-independent
sequential ICCS. The end of a procedure is
indicated by the /+ end-of-procedure
delimiter or by the end-of-procedure
delimiter as specified in the EOP
parameter.

If SYSIN is assigned to a tape unit, the
MAINT program assumes that the tape is
positioned to the first input record.
tape is not rewound at the end of job.

The

Librarian Functions 53

control statement input for the catalog
function, read from the properly assigned
device (usually SYSIN), is:

1. the JOB control statement, followed by

2. the ASSGN control statements, if the
current assignments are not those
required. The ASSGN statements that
can be used are SYSIN, SYSLST, and
SYSLOG. The ASSGN statements are
followed by

3. the EXEC MAINT control statement,
followed by

4. the CATALP control statement(s),
followed by

5. the module to be cataloged, followed
by

6. the /* control statement if other job
steps are to follow, or

7. the /& control statement, which is the
last control statement of the job.

For example:

/7 JOB CATPROC

ASSGN control statements,
if required

// EXEC MAINT
CATALP PROCA,EOQOP=AA,DATA=YES

control statements

SY3IPT inline data

/% END OF SYSIPT DATA

control statements

AA END OF PROCEDURE

The following restrictions apply when
you catalog procedures to the procedure
library:

1. A cataloged procedure cannot contain
control statements or SYSIPT data for
more than one job.

2. If the cataloged control statements
include the JOB statement, you must
not have a JOB statement when you
retrieve the procedure through the

54

EXEC statement. Conversely, if the
JOB statement is not cataloged, a JOB
statement must precede the EXEC
statement that retrieves the
procedure.

3. A cataloged procedure must not include
any of the following control
statements because they are not
accepted when the procedure is
processed:

// ASSGN SYSRDR,X'cuu’
/7 RESET SY¥YS

// RESET ALL

/7 RESET SYSRDR

// CLOSE SYSRDR,X'"cuu'
// ASSGN SYSIPT,X'cuu*
/7 RESET SYSIPT only if SYSIPT
data is
included

// CLOSE SYSIPT,X'cuu'

4. cataloged procedures cannot be nested,
that is, a cataloged procedure cannot
contain an EXEC statement that invokes
another cataloged procedure.

Note: Maintenance cannot be performed in
the background partition on the procedure
library while a foreground partition is
using the library.

PSERV, PROCEDURE LIBRARY

To request a service function for the
procedure library, use the following EXEC
control statement:

// EXEC PSERV

One or more of the three service
functions can be requested within a single
run. Any number of procedures within the
procedure library can be acted upon in this
run.

CALLING CATALOGED PROCEDURES

A cataloged procedure is called by a job
that appears in the input stream or via an
operator command. The job must consist of
a JOB statement and an EXEC statement that
specifies the cataloged procedure name.

For example:

// EXEC PROC=VCOBCLG

The programmer can write cataloged
procedures which incorporate job control he
used frequently. For example, the
programmer may wish to catalog a procedure

)r compiling, link-editing, and executing
program. It is particularly useful for
mpiling in a low-priority test partition
> which no card reader has been assigned.
5ing cataloged procedures, the operator
in execute via the EXEC statement a
italoged procedure from the console.

RIVATE LIBRARIES

Private libraries are desirable in the
ystem to permit some libraries to be
ocated on a disk pack other than the one
sed by SYSRES.

Private libraries are suppvorted for the
ore image library, the relocatable
ibrary, and the source statement library,
n the 2311, 2314, 2319, 3330, 3340, fixed
lock devices, and mass storage devices.
owever, the following restrictions apply:

1. The private library must be on the
same type of disk device as SYSRES;
the private core-image library can be
on a type of device other than the one
SYSRES is on.

2. Reference may be made to a private
core image library only if SYSCLB is
assigned. If SYSCLB is assigned, the
system core image library cannot be
changed.

3. Reference may be made to a private
relocatable library only if SYSRLB is
assigned. If SYSRLB is assigned, the
system relocatable library cannot be
changed.

4. Reference may be made to a private
source statement library only if
SYSSLB is assigned. If SYSSLB is
assigned, the system source statement
library cannot be changed.

5. Private libraries cannot be
reallocated.

6. The COPY function is not effective for
private libraries except when they are
being created.

An unlimited nurber of private libraries
is possible. However, each must be
distinguished by a unique file
identification in the DLBL statement for
the library. No more than one private
relocatable library and one private source
statement library may be assigned in a
given job.

The creation and maintenance of private
libraries is discussed in the publication
DOS/VS System Control Statements.

Determining the Location of the Libraries

Having decided which libraries you want
in your system, you must determine where on
the available devices these likraries are
to be placed. All system libraries must
reside in the SYSRES extent of the system
disk pack in a predefined sequence (Figure
7). Although it is theoretically possible
to have private libraries on the system
pack (outside the SYSRES extent), this is
not recommended because it involves
increased movement of the disk arm.

Librarian Functions 55

Cylinder O

Core Image Library

Relocatable Library

Procedure Library

Label Information

Figure 7.

The directory area for each library is
not shown in the Figure 7. By definition,
all system libraries reside on the system
residence file (SYSRES). If you have
additional disk drives, you can define
private core image, relocatable, and/or
source statement libraries on the extra
volumes. These volumes must be of the same
type as the SYSRES pack. The system
relocatable and system source statement
libraries can be removed from SYSRES and
established as private libraries; the
system core image library, however, must
always be present on SYSRES. It can be
supplemented but not replaced by a private
core image library. The procedure library
is supported only as a system library; you
cannot create a private procedure library.

56

Source Statement Library

The Relative Location of the Four

- end of SYSRES extent

System Libraries

SOURCE LANGUAGE CONSIDERATIONS

To use the private source statement
library for COPY, BASIS, INSERT, and
DELETE (see "Extended Source Program Library
Facility" for further details), the ASSGN,
DLBL, and EXTENT control statements that
define this private library must be present
in the job deck for compilation (unless
they are permanently set up by the
installation). When present, a search for
the book is made in the private library.
If it is not there, the system library is
searched. If the staterents for the
private library are not present, the system
library is searched. A prograrmer may
create several private libraries, but only
one private library can be used in a given
job.

TENDED SOURCE PROGRAM LIBRARY FACILITY

A complete program may ke included as an
try in the source statement library by
ing the catalog function. This program
n then be retrieved by a BASIS card and
mpiled in a subsequent djob.

The following control statements would
: used to catalog the program SAMPLE as a
ok in the COBOL sublibrary of the source
.atement library:

" JOB CATALOG

" EXEC MAINT
CATALS C.SAMPLE
BKEND C.SAMPLE

{source program}

BKEND

When compiling a program that has been
ataloged in the COBOL sublikrary of the
>urce statement library, a BASIS card
rings in an entire source program. The
5llowing control statements could be used
o compile the cataloged program SAMPLE:

/ JOB PGM1

/ OPTION LOG,DECK,LIST,LISTX,ERRS
/ EXEC FCOBOL

CBL LIR

BASIS SAMPLE

*

&

INSERT or DELETE cards may follow the
ASIS card if the user wishes to modify the
ook SAMPLE before it is processed by the
ompiler. The original source program must
ave been coded with sequence numbers in
:olumns 1 through 6 of each source card.

The INSERT statement will add new source
itatements after the specified sequence
wumbers. The DELETE statement will delete
:he statements indicated by the sequence
wumbers, or will delete more than one
statement when the first and last sequence
wmbers to be deleted are specified,
separated by a hyphen. Source program
rards may follow a DELETE card for
insertion before the card following the
Last one deleted. The sequence numbers in
rolumns 1 through 6 are used to update
JOBOL source statements at compilation
cime, and are in effect for the one run
only.

Assume that a company runs its payroll
orogram each week as a source program taken

from the source statement library. The
name of the program is PAYROLL. During a
particular year, the o0ld age insurance tax
(FICA) is deducted at the rate of u4-2/5%
each week for all personnel until earnings
exceed $7800. The coding to accomplish
this is shown in Figure 8.

in the old

Now, however, due to a change
out until

age tax laws, tax is to be taken
earnings exceed $10800 and a new percentage
is to be placed. The programmer can code
these changes as shown in Figure 9.

The altered program will contain the
coding shown in Figure 10.

Reformatted Source Deck

By specifying the DECK option on the 1LST
card, a new COBOL source deck can be
produced that reflects the reformatted
source listing. This deck may be saved in
a BASIS library, used directly as input to
the compiler, or punched onto cards.
Because of reformatting, the new deck may
contain more cards than the original, but
the difference is not great enocugh to cause
any appreciable increase in compilation
time. The output deck differs from the
listing as follows:

1. References, footnotes, and blank lines

are omitted.

2. Literals will be repositicned, if
needed, to assure proper continuation.

3. Statement numkers are converted to
card numbers.

a. The statement number is multiplied
by 10, and leading zeros are added
as necessary to f£ill columns 1
through 6.

b. Comment and continuation cards are
numbered one higher than the
preceding card.

C. Statement-beginning cards are
given the higher of the two
numbers produced by the first two
rules.

The use of this feature avoids having to
resequence cards for permanent updating
after they have been tested by temporary
updating using the BASIS feature; it also
avoids the errors incurred during that
resequencing process.

Librarian Functions 57

.
] 000730 IF ANNUAL-PAY GREATER THAN 7800 GO TO PAY-WRITE.]
[000735 IF ANNUAL-PAY GREATER THAN 7800 - BASE-PAY GO TO LAST-FICA.
000740 FICA-PAYR. COMPUTE FICA-PAY = BASE-~-PAY * _044 |
|000745 MOVE TAX-PAY TO OUTPUT-TAX.

| 000750 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-EASE. |
000755 ADD BASE-PAY TO ANNUAL-PAY.

|- . |
- . |
|- . |
1000850 STOE RUN. i
L d

Figure 8. Sample Coding to Calculate FICA

1
|// JOB PGM2 |
|7/ OPTION LOG,DECK,LIST,LISTX,ERRS |
| /7 EXEC FCOBOL |
| CBL QUOTE, LIB |
| BASIS PAYROLL |
|DELETE 000730~000740 [
| 000730 IF ANNUAL-PAY GREATER THAN 10800 GO TO PAY-WRITE.

]000735 IF ANNUAL-PAY GREATER THAN 10800 - BASE-PAY GO TVU LAST-TAX. |
] 000740 TAX-PAYR. COMPUTE TAX-PAY = BASE-PAY * .0585 |
/*

! !
Figure 9. Altering a Program from the Source Statement Library Using INSERT and DELETE

- Cards

r ==
1000730 IF ANNUAL-PAY GREATER THAN 10800 GO TO PAY-WRITE. I
[000735 IF ANNUAL-PAY GREATER THAN 10800 - BASE-PAY GO TO LAST-TAX.

|000740 TAX-PAYR. COMPUTE TAX-PAY = BASE-PAY* .0585. |
] 000750 MOVE TAX-PAY TO OUTPUT-TAX. |
|000760 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE. |
| 000770 ADD BASE-PAY TO ANNUAL—PAY, |
|- . |
| ‘ |
1000850 STOP RUN. |
L J

Figure 10. Effect of INSERT and DELETE Cards

58

The DOS/VS COBOL compiler, COBOL object
>dule, Linkage Editor, and other system
>mponents can produce output in the form
[printed listings, punched card decks,
Lagnostic or informative messages, and
ata files directed to tape or to mass
torage devices. This chapter gives the
ormat of and describes this output. The
ame COROL program is used for each
gkample. "Appendix A: Sample Program
utput" shows the output formats in the
ontext of a complete listing generated by
he sample program.

OMPILER OUTPUT

The output of the compilation job step
ay include:

» A printed listing of the job control
statements

e A printed listing of the statements
contained in the source program

¢ A glossary of compiler-generated
information about data

s Global tables, register assignments,
and literal pools

¢ A printed listing of the object code
e A condensed listing containing only the
relative address of the first generated
instruction for each verb
* Compiler statistics
¢ Compiler diagnostic messages
e Cross-reference listings
e System messages
e In object module
e FIPS diagnostic messages
The presence or absence of the
ibove-mentioned types of compiler output is
letermined by options specified at systemnm
jeneration time. These options can be
overridden or additional options specified

at compilation time by using the OPTION
control statement and the CBL card.

INTERPRETING OUTPUT

The level of diagnostic message printed
depends upon the FLAGW or FLAGE option of
the CBL card.

All output to be listed is written on
the device assigned to SYSLST. If SYSLST
is assigned to a magnetic tape, COBOL will
treat the file as an unlabelled tape. Line
spacing of the source 1listing is controlled
by the SPACEn option of the CBEL card and by
SKIP 1/2/3 and EJECT in the COBOL source
program. (The lister feature ignores these
commands.) The number of lines per page
can be specified in the SET command. In
addition, a listing of input/output
assignments can be printed on SYSLST by
using the LISTIO ccntrol statement.

On each page of the output, there is a
header which contains the PROGRAM-1D, date
and time of compilation, as well as an
indication of the modification level of the
ccmpiler which produced this listing.

Figure 11 contains the compiler output
listing shown in "Appendix A: Sample
Program Output." Each type of output is
numbered, and each format within each type
is lettered. The text below and that
following the figure is an exrlanation of
the figure.

(:) The listing of the job control
statements associated with this job
step. These statements are listed
because the LOG opticon was specified
at system generation time.

(:) Compiler options. The CRBL card, if
specified, is printed on SYSLST unless
the LIST opticn is suppressed.

C) The source module listing. The
statements in the source program are
listed exactly as submitted except
that a compiler-generated card number
is listed to the left of each line.
This is the number referenced in
diagnostic messages and in the object
code listing. It is also the number
printed on SYSLST as a result of the
source lancuage TRACE statement (if
NOVERR is in effect). The source
module is not listed when the NOLIST
option is specified.

Interpreting Output 59

7/ JOB TESTR26 A=5K22,0=6460
/7 OPTION LINK,LOG,NODECK,LISTX,LIST,SYM,ERRS
// EXEC FCOBOL,SIZE=128K

1 IBM DOS/VS COBOL <:::) REL 3.0 PP NO. 5746-CB1 17.26.17 02/25/81

CBL LANGLVL(1),APOST,SXREF,LVL=A,0PT
00001 100010 IDENTIFICATION DIVISION.

00002 100020 PROGRAM-ID. TESTRUN.
00003 100030 AUTHOR. PROGRAMMER NAME.
00004 100040 INSTALLATION. NEW YORK PROGRAMMING CENTER.
00005 100050 DATE-WRITTEN, JULY 12, 1968
00006 100060 DATE-COMPILED. 02/25/8%1 .
00007 100070 REMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR
00008 100080 COROL USFRS, TT CREATFS AN OUTPUT FILE AND READS TT RACK AS
00009 100090 IHPUT .
00010 100100 ENVIRONMENT DIVISION.
00011 100110 CONFIGURATION SECTION.
00012 100120 SOURCE-COMPUTER. IBM-370~H50.
00013 100130 OBJECT-COMPUTER. IBM-370-H50.
00014 100140 INPUT-OUTPUT SECTION.
00015 100150 FILE-CONTROL.
00016 100160 SELECT FILE-1 ASSIGN TO SYS001-UT-3330-S-SAMPLIL.
00017 100170 SELECT FILE-2 ASSIGN TO SY5003-DA-3330-S-SAMPL2.
.
L]
L]
00057 100530 PROCEDURE DIVISION.
00058 100540 BEGIN,
00059 100550% NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
00060 100560% AND INITIALIZES COUNTERS.
00061 100570 STEP-1. OPEN OUTPUT FILE-1. MOVE ZERD TO KOUNT NOMBER.

00074 100700 STEP-5. CLOSE FILE-1. OPEN INPUT FILE-2.

00075 100710% NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES OUT

00076 100720% EMPLOYEES WITH NO DEPENDENTS.

00077 100730 STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-8.

00078 100740 STEP-7. IF NO-OF-DEPENDENTS IS EQUAL TO '0' MOVE 'Z' TO

00079 100750 NO- OF DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO

00080 100760 STEP-

0008F 100770 STEP-8. CLOSE FILE-2.

00082 100780 STOP RUN.

INTRNL NAME LVL SOURCE NAME BASE DISPL INTRNL NAME DEFINITION USAGE R 0 Q M\
DNM=1-148 FD FILE-1 DTF=01 DNM=1-16438 DTFSD F
DNM=1-179 01 RECORD-1 BL=1 000 DNM=1-179 DS 0CL20 GROUP

DNM=1-200 02 FIELD-A BL=1 000 DNM=1-200 DS 20C DISP

DNM=1-217 FD FILE-2 DTF=02 DNM=1-217 DTFSD F
DNM=1-248 01 RECORD-2 BL=2 000 - DNM=1-243 DS 0CL20 GROUP

DNM=1-269 02 FIELD-A BL=2 000 DNM=1-269 DS 20C DISP

DNM=1-289 77 KOUNT BL=3 000 DNM=1-289 DS 1H comMp

DNM=1-304 77 NOMBER BL=3 002 DNM=1-304 DS 1H cOMP

DNM=1-320 01 FILLER BL=3 008 DNM=1-320 DS 0CL52 GROUP

DNM=1-339 02 ALPHABET BL=3 008 DNM=1-339 DS 26C DISP

DNM=1-357 02 ALPHA BL=3 008 DNM=1-357 DS 1C DISP R
DNM=1-375 02 DEPENDENTS BL=3 022 DNM=1-375 DS 26C DISP

DNM=1-395 02 DEPEND BL=3 022 DNM=1-395 DS 1C DISP R O
DNM=1-411 01 WORK-RECORD BL=3 040 DNM=1-411 DS 0CL20 GROUP .

DNM=1-435 02 NAME-FIELD BL=3 040 DNM=1-435 DS 1C DISP

DNM=1-455 02 FILLER BL=3 041 DNM=1-455 DS 1C DISP :

DNM=1-474 02 RECORD-NO BL=3 042 DNM=1-474 DS 4C DISP-NM

DNM=2-000 02 FILLER BL=3 046 DNM=2-000 DS 1C DISP

DNM=2-019 02 LOCATION BL=3 047 DNM=2-019 DS 3C DISP

DNM=2-037 02 FILLER BL=3 04A DNM=2-037 DS 1C DISP

DNM=2-056 02 NO-OF-DEPENDENTS BL=3 04B DNM=2-056 DS 2C DISP

‘DNM=2-082 02 FILLER BL=3 04D DNM=2-082 DS 7C DISP

DNM=2-101 01 RECORDA BL=3 058 DNM=2-101 DS 0CL4& GROUP

DNM=2-121 02 A BL=3 058 DNM=2-121 DS 4C DISP-NM

DNM=2-132 02 B BL=3 058 DNM=2-132 DS 4P coMp-3 R

Figure 11. Examples of Compiler Output (Part 1 of 5) : }

60

MEMORY MAP

167 @ 00828
SAVE AREA 00828

SWITCH 00870
TALLY 00874
SORT SAVE 00878
ENTRY-SAVE 0087C
SORT CORE SIZE 00880
NSTD-REELS 00884
SORT RET . 00386
WORKING CELLS 00388
SORT FILE SIZE 00988
SORT MODE SIZE 009BC
PGT-VN TBL 009C0O
TGT-VN TBL 009C4%
SORTAB ADDRESS 009C8
LENGTH OF VN TBL 009CC
LNGTH OF SORTAB 009CE
PGM ID 009D0
ACINITY) 009D8
UPSI SWITCHES 009DC
DEBUG TABLE PTR 009E4
CURRENT PRIORITY 009E8
TA LENGTH 009E9
PRBL1 CELL PTR 009EC
UNUSED 009F0
COUNT TABLE ADDRESS 009F4
VSAM SAVE AREA ADDRESS 009F8
UNUSED 009FC
COUNT CHAIN ADDRESS 00A04
UNUSED 00A08
DBG R14SAVE 00A1C
UNUSED . 00A20
UNUSED 00A24
DBG R11SAVE 00A28
PCS LIT PTR 00A2C
DBG INF PTR 00A30
OVERFLOW CELLS 00A40
BL CELLS 00A40
DTFADR CELLS 00A4C
FIB CELLS 00A54
TEMP STORAGE 00A58
TEMP STORAGE-2 00A60
TEMP STORAGE-3 00A60
TEMP STORAGE-4 00A60
BLL CELLS 00A60
VLC CELLS 00A64
SBL CELLS 00A64
INDEX CELLS 00A64
SUBADR CELLS 00A64
ONCTL CELLS 00A6C
PFMCTL CELLS 00A6C
PFMSAV CELLS 00A6C
VN CELLS 00A70
SAVE AREA =2 00A76
SAVE AREA =3 00A74
XSASW CELLS 00A74
XSA CELLS 00A74
PARAM CELLS 00A74
RPTSAV AREA 00A78
CHECKPT CTR 00A78
IOPTR CELLS 00A78
DEBUG TABLE 00A78
LITERAL POOL (HEX)
00ABO (LIT+0) 00000000 00000001 00010000 0000001A 00040014 00280023

00AC8 (LIT+24) 00000000 CO0000000
DISPLAY LITERALS (BCD)
00ADO (LTL+32) "WORK-RECORD'

PGT @ 00A30

DEBUG LINKAGE AREA 00A80
OVERFLOW CELLS 00A80
VIRTUAL CELLS 00A84
PROCEDURE NAME CELLS 00A98
GENERATED NAME CELLS 00A98
SUBDTF ADDRESS CELLS G0AA8
VNI CELLS 00AA8
LITERALS 00ABSO
DISPLAY LITERALS 00ADO

PROCEDURE BLOCK CELLS 00ADC

Figure 11. Examples of Compiler Output (Part 2 of 5)

Interpreting Output 61

Figure 11.

62

@

©

000AEQ

000AED
C000AED
C00AEQ
000AE4
000AES8
000AEC
000AF2
000AF6
000AFA
000AFE
000B02
000B06
000B08
000B0C
000B10
000B14
000B16
000B1A
000B1C
000820
000B24
000B2A

000B30
000B30
000B34
000838
000B3C
000B42
000B46
000BGA
000B4E
000B52
000B56
000B5A
000B60
000B64
000B68
000B6C
000B70
000B74
000B78
000B7A
000B7E
000B82
000B86
000B3C
000B90
000B94
000B938

000B9A
000B9E
000BA2
000BA6
GOOBAC
000BBO
000BB4
000BB3
000BBE

REGISTER ASSIGNMENT
REG 6 BL
REG 7 BL
REG 8 BL
PBL = REG 11
PBL =1
58 ¥BEGIN
61 *¥STEP-1
61 OPEN
61 MOVE
65 XSTEP-2
65 ADD
65 ADD
65 MOVE
67 MOVE
68 MOVE

Examples of

Compiler Output

STARTS AT LOCATION 000AEO

Lal -l — A - (x] Q- OUFOUNFO0

O ocood O UDTUUDOCOTUOOORD

AT OTDO

045

C 030
C 030

STATEMENT 61

PN=02

PN=03
START

1 000

®

PN=04

D 230

D 230

D 236

WORKING-STORAGE STARTS AT LOCATION 00100 FOR A LENGTH OF 00060. @
PROCEDURE BLOCK ASSIGNMENT

©

x

~ N
~

000(1)

POOAA AAvAA~ADAAD
~NcO00 OOy o000 OA
© Ov s ssXevwwswvwo
O btbmt bbbt et bt N bt bt
[P - XY RGPy
N - T
~ -

-

NONNY ~ Oo0CoOoONNOoOONOoON-
AR L O POO0O NEADSNATING
NNV oO~omo SO OLNOPDL

OO v DUl = 2% % v v v Ow v O = p=

~ . A~
oo

RO

. e .

oUW = O~
A~

~~

-

N

~ o~

-

(13)

~ O~
ML

~

0(13)
L]

ARG A AAAUS A~
~ O N~
muw

COOTMNOO CO0OOVWHOOOODOWHOOO

P -

R e TR

O~~~
O~ w
(=2

(14)

LON AN LW HODQDOULAANAULUOUWOUWANANALOWL
CONEHUOD COPNORIONTOO=AIOO
POV v e e ONONON b O s bt O b O bt X s b ON
N v OMUN Nl o W Nl e LI

~m e~

S e e BBe v e v ws iU s eSS s - s
o

OFRSD PNNPORILPEINNDHWUNNWHHWWUWNNWWW X CONNFEEHEXXHORONOREON M X X
NS Nooooy VONOoooONTONOoONTONOO

Sue -

(Part 3 of 5)

®

PBL=1
DTF=1

DTF=1
LIT+16

BL =1
DTF=1

VC(ILBDSIOO)

BL =1
BL =1
DNM=1-289
DNM=1~-304

DNM=1-3064
75=01
75=01
T5=01+6
T5=01
DHM=1-304
DNM=1-357
DNM=1-289
LIT+6

LIT+4
5BS=1
SBS=1
DNM=1-435
DNM=1-395
DNM=1-289
LIT+6

LIT+4

SBS=2

SBS=2
DNM=2~56
DNM=2~56+1
DNM=1-304
15=01
DNM=1-47¢
DNM=1-6764+3

LIT+0

LIT+0

T5=01

T5=01

DNM=1-357

DNM=1-395

T5=07

¥STATISTICSx
¥STATISTICS*
*QPTIONS IN
XOPTIONS IN
¥OPTIONS IN
¥0PTIONS IN
¥OPTIONS IN
¥LISTER OPTI

EFFECTX
EFFECT*
EFFECT*
EFFECT %
EFFECT*
ONSx*

000090 95 00 E 000
000094 47 70 F 0A2
000098 96 10 D 048
00009C 92 FF E 000
0000A0 47 FO F OAC
0000A4 98 CE F 03A
0000A8 90 EC D 00C
0000AC 18 5D
0000AE 98 9F F 0BA
0000B2 91 10 D 048
000086 07 19
0000B8 07 FF
0000BA 07 00
0000BC 00000D7C
0000C0 00000000
0000C4 00000000
0000C3 00000A80
0000CC 00000828
0000D0 0O0000AED
0000D% 00000D62
0000D8 C3D6C2D6F2F6FOF0
0000E0 E3C5E2E3D9E4D540
0000E3 00000000
0000EC FOF261F2F561F8F1
0000F4 F1F74BF2F64BF1F7
SOURCE RECORDS = 82
PARTITION SIZE = 130952
PMAP RELOC ADR = NONE
LISTX APOST
NOCLIST FLAGW
NOSTATE TRUNC
LANGLVL(1) NOCOUNT
NONE

DATA ITEMS
LINE COUNT
SPACING
SYM NOC
ZWB NOS
SEQ NOS
ADV

Figure 11.

000(14),X'00"
7,0A2(0,15)
048(13),X'10°" SWT+0
000¢14),X'FF"'
15,0AC(0,15)
12,14,03A(15)
14,12,00C(13)
5,13
9,15,0BA(15)
248(13).X'10' SWT+0
» 9 '
15,15
0,0
L4CINIT3)
L4CINIT])
L4CINITL)
L4(PGT)
L4(TGT)
L4(START)
L4C(INIT2)
X'C3D6C2D6F2F6FOF0"
X'E3C5E2E3D9E4DS540"
X'00000000°
X*'FOF261F2F561F8F1")
X'F1F74BF2F64BF1F7"
= 25 PROC DIV SZ = 29
= 56 BUFFER SIZE = 2048
= 1 FLOW = NONE
ATALR LIST LINK NOSTXIT LIB
UPMAP XREF ERRS SXREF oPT @
YMDMP NODECK VERB NOSYNTAX LVL=A
NOVERBSUM NOVERBREF

Examples of Compiler Output {(Part 4 of 5)

Interpreting Output 63

®

DATA NAMES

A
ALPHA

ALPHABET
B

DEPEND

DEPENDENTS
FIELD-A
FIELD-A

FILE-1
FILE-2
KOUNT

LOCATION
NAME-FIELD
NO-OF-DEPENDENTS

NOMBER

RECORD-NO
RECORD-1
RECORD-2
RECORDA
WORK~RECORD

PROCEDURE NAMES

BEGIN

STEP-1
STEP-2
STEP-3
STEP-4
STEP-5
STEP-6
STEP-7
STEP-8

CARD

ERROR MESSAGE

DEFN REFERENCE \\
000055

000061 000065

000060

000056

000044 000067

o

o
oo
oo
NS
~NN

000061 000069 000074
000074 000077 000081
000061 000065 000067 000071

000065

000067 000078
000061 000065 000068

000068
000069
000077

000045 0006069 000077 000079

OO0 OOoOO
coococoo0coco0o0oo
ooocococoocooo
coocoooco0oo
N DU D UTG -
RN ONNN

o
o
oo
oo
v
PR

DEFN REFERENCE

000058
000061
000065 000
000069 000
000071
000074

000077 000079

000078

000081 000077

OO O

00055 ILA2190I-W
00065 ILAS5011I-W
00065 TILAS011I-W
1 ILA8
LINE ILA8 &
00006 JLA8003I-W
00024 ILA8002I-UW
00032 ILA8002I-UW
00040 ILA8002I-W
00042 ILA8G02I-W
00050 ILA8002I-W
00053 TILA8003I-W
00056 ILA80C02I-W
00059 TILA8002I-W
00060 ILA8002I-W
00058 ILA8002I-W
00062 ILA8002I-W
00063 ILAB002I-W
00064 ILAB002I-W
00065 TILA80031I-UW
00065 ILA80063I-W
00069 ILA8C03I-W
00069 ILA8002I-W
00069 ILAB003I-W
00071 ILAB0O3I-W
00072 JLA8002I-W
00073 ILAB002I-W
00075 ILA8002I-W
00076 ILA8002I-W
00077 ILA8003I-W
00078 ILA8002I-W
00078 ILAB002I-W
00079 ILA8002I-W
END OF COMPILATION
Figure 11.

64

PICTURE CLAUSE IS SIGNED, VALUE CLAUSE UNSIGNED. ASSUMED POSITIVE.
HIGH ORDER TRUNCATION MIGHT OCCUR.
HIGH ORDER TRUNCATION MIGHT OCCUR.
ME FEDERAL INFORMATION PROCESSING STANDARDS (FIPS) DIAGNOSTIC MESSAGES
SSAGE
DATE~-COMPILED PARAGRAPH NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
RECORDING MODE IS CLAUSE NON-STANDARD AT ALL LEVELS.
RECORDING MODE IS CLAUSE NON-STANDARD AT ALL LEVELS.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
SPACES NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
COMPUTATIONAL-3 NON-STANDARD AT ALL LEVELS.
* COMMENT LINE NON-STANDARD AT ALL LEVELS.
¥ COMMENT LINE NON-STANDARD AT ALL LEVELS.
ZERO SENTENCES IN PARAGRAPH NON-STANDARD AT ALL LEVELS.
¥ COMMENT LINE NON-STANDARD AT ALL LEVELS.
¥ COMMENT LINE NON-STANDARD AT ALL LEVELS.
% COMMENT LINE NON-STANDARD AT ALL LEVELS.
COMMA OR SEMICOLON AS PUNCTUATION NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
COMMA OR SEMICOLON AS PUNCTUATION NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
UPON OPTION OF DISPLAY STATEMENT NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
UPON CONSOLE OPTION OF DISPLAY STATEMENT IS NON-~STANDARD AT ALL LEVELS.
FROM OPTION OF WRITE STATEMENT NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
UNTIL OPTION OF PERFORM STATEMENT NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
% COMMENT LINE NON-STANDARD AT ALL LEVELS.
¥ COMMENT LINE NON-STANDARD AT ALL LEVELS.
¥ COMMENT LINE NON-STANDARD AT ALL LEVELS.
¥ COMMENT LINE NON-STANDARD AT ALL LEVELS.
INTO OPTION OF READ STATEMENT NOT SUPPORTED BELOW LOW-~INTERMEDIATE LEVEL.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
EXHIBIT STATEMENT NON-STANDARD AT ALL LEVELS. ’)

Examples of Compiler Output (Part 5 of 5)

The following notations may appear on
the listing:

C Denotes that the statement was inserted
with a COPY statement.

** Denotes that the card is out of
sequence. NOSEQ should be specified on
the CBL card if the sequence check is
to be suppressed.

I Denotes that the card was inserted with
an INSERT or BASIS card.

If DATE-COMPILED is specified in the
Identification Division, any sentences in
that paragraph are replaced in the listing
by the date of compilation. It is printed
in one of the following formats depending
upon the format chosen at system generation
time.

DATE-COMPILED. month/day/year or
DATE-COMPILED. day/month/year

(:) Glossary. The glossary is listed
when the SYM option is specified.
The glossary contains information
about names in the COBOL source
program.

@and@ The internal-name
generated by the compiler.
This name is used in the
compiler object code listing
to represent the name used in
the source program. It is
repeated in column F for
readability.

A normalized level number.
This level number is
determined by the compiler as
follows: the first level
number of any hierarchy is
always 01, and increments for
other levels are always by
one. Only level numbers 03
through 49 are affected;
level numbers 66, 77, and 88,
and FD, SD, and RD indicators
are not changed.

(:) The data-name that is used in
the source module.

Note: The following Report Writer
internally-generated data-names
can appear under the SOURCE NAME
column:

CTL.LVL Used to coordinate
control break
activities.

GRP.IND Used by coding for GROUP
INDICATE clause.

64

TER.COD Used by coding for
TERMINATE clause.

FRS.GEN Used by coding for
GENERATE clause.

-nnnn Generated report record
associated with the file
on which the report is
to be printed.

RPT.RCD Build area for print
record.

CTL.CHR First or second position
of RPT.RCD. Used for
carriage control
character.

RPT.LIN Beginning of actual
information which will
be displayed. Second or
third position of

RPT.RCD.
CODE- Used to hold codeButiguy
CELL specified.

E.nnnn Name generated from
COLUMN clause in
02-level statement.

S.nnnn Used for elementary
level with SUM clause,
but not with data-name.

N.nnnn Used to save the total
number of lines used by
a report group when
relative line numbering
is specified.

@and@ For data-names, these columns

contain information about the
address in the form of a base and
displacement. For file-names, the
column contains information about
the associated DTF or FIB (for
VSAM). An indication is also
given here if the FD is invalid.

This column defines storage for
each data item. It is represented
in assembler-like terminology.
Table U4 refers to information in
this column.

Usage of the data-name. For FD
entries, either VSAM is specified,
or the DTF tyre is identified
(e.g., DTFDA). For group items
containing a JSAGE clause, the .
usage type is printed. For group
items that do not contain a USAGE
clause, GROUP is printed. For
elementary items, the information
in the USAGE clause is printed.

Interpreting Output 64.1

2le 4,

Glossary Definition and Usage

T] 1
Type | Definiticn | Usage |
- 1 + 4
Group Fixed-Length | DS OCLN | GROUP |
Alphabetic] DS NC | DISP |
Alphanumeric] DS NC | DISP |
Alphanumeric Edited | DS NC | AN-EDIT |
Numeric Edited | DS NC | NM-EDIT |
Index-Name l DS 1H | INDEX-NM |
Group Variable-Length | DS VLI=N | GROUP |
Sterling Report | DS NC | RPT-ST |
External Decimal] DS NC | DISP-NM |
External Floating-Point | DS NC | DISP-FP |
Internal Floating-Point | DS 1F | COMP-1 |
| Ds 1D | COMP-2 |
Binary | DS 1H, 1F, OR 2F | COMP [
Internal Decimal | DS NP | COMP-3 |
Sterling Non-Report] DS NC | DISP-ST |
Index-Name | BLANK | INDEX-NAME I
File (FD) | BLANK [DTF TYPE |
Condition (88) | BLANK | BLANK i
Report Definition (RD) | BLANK | BLANK
Sort Definition (SD) | BLANK | BLANK |
1 1 J
1
lote: Under the definition column, N = size in bytes, except in group variakle-length |
here it is a variable cell number. |
3
C) A letter under column: encountered, or CSYNTAX is specified
and an E-level error is encountered.
R - Indicates that the data-name A global table contains easily
redefines another data-name. addressable information needed by the
object program for executicn. For
O - Indicates that an OCCURS example, in the Procedure Division
clause has been specified for output coding (3), the address of the
that data-name. first instruction under STEP-1 (OPEN
OUTPUT FILE-1) is found in the
Q - Indicates that the data-name PROCEDURE NAME CELLS portion of the
is or contains the DEPENDING Program Global Table (PGT).
ON object of the OCCURS
clause.
(® The Task Global Table (TGT). This
M - Indicates the record format. table is used to record and save

This field is not applicable

to VSAM. The letters which
may appear under column M are:
F - fixed-length records

U - undefined records

V - variable-length records

S - spanned recoxds

The location and length of WORKING-
STORAGE are noted here when CLIST,

SYM or LSTX is specified, except under
.the same conditions as noted below.

Global tables and literal pool:

Global tables and the literal pool are
listed when the CLIST, SYM, or LISTX
option is specified, unless SUPMAP is
specified and an E-level exror is

information needed during the
execution of the object program.
This information includes
switches, addresses, and work
areas.

The Literal Pool. This lists all
literals used in the program, with
duplications removed. These
literals include those specified
by the programmer (e.g., MOVE
"ABC" TO DATA-NAME) and those
generated by the compiler (e.g.,
to align decimal points in
arithmetic computations). The
literals are divided into two
groups: those that are referenced
by instructions {(marked "LITERAL
POOL") and those that are
parameters to the display object
time subroutine (marked "DISPLAY
LITERALS").

Interpreting Output 65

66

The Program Global Table (PGT).
This table contains literals and
the addresses of procedure-names,
generated procedure-names, and
procedure block locators
referenced by Procedure Division
instructions.

Register assignment: This lists the
permanent register assigned to each
base locator in the object program.

The remaining base locators are given
temporary register assignments but are
not listed. Register assignments are
listed when CLIST, SYM, or LISTX is
specified, and output is not overridden
by the same conditions as above.

Procedure block assignments:

©)

Procedure block assignments are
printed when OPT is specified. The
procedure block assignments give the
location within the object program for
each block of code addressed by
register 11l. '

Object code listing. The object code
listing is produced when the LISTX
option is specified, unless SUPMAP is
also specified and an E-level error is
encountered, or unless CSYNTAX is
specified and an E-level error is
encountered. The actual object code
listing contains:

The compiler-generated card
number. This number identifies
the COBOL statement in the source
deck which contains the verb that
generates the object code found in
column C. When VERB is specified,
the actual verk or paragraph-name
is 1listed with the generated card
number.

The relative location, in
hexadecimal notation, of the
object code instruction in the
module. :

The actuwal object code instruction
in hexadecimal notation.

The procedure-name number. A
number is assigned only to
procedure-names referred to in
other Procedure Division

statements.

The object code instruction in the
form that closely resembles
assembler language. (Displacements
are in hexadecimal notation.)

Compiler-generated information
about the operands of the
generated instruction. This
includes names and relative
locations of literals. Table 5
refers to information in this
column.

®

Table 5. Symbols Used in the Listing and
Glossary to Define
Compiler-Generated Information

1 Kl 1

| Symbol | Meaning |

t 1 i

| DNM | SOURCE DATA NAME I

| sav | SAVE AREA CELL |

SWT	SWITCH CELL
TLY	TALLY CELL
We	WORKING CELL

1 TS | TEMPORARY STORAGE CELL

| VLC | VARIABLE LENGTH .CELL |

| SBL | SECONDARY BASE LOCATOR |

|BL | BASE LOCATOR [
| BLL | BASE LOCATOR FOR LINKAGE |
| | SECTION |
joN | ON COUNTER |
PFM	PERFORM COUNTER
psv	PERFORM SAVE
VN	VARIABLE PROCEDURE NAME
sBs	SUBSCRIPT ADDRESS
Xsw	EXHIBIT SWITCH
Xsa	EXHIBIT SAVE AREA. I
PRM	PARAMETER
PN	SOURCE PROCEDURE NAME
PBL	Procedure Block Locator
GN	GENERATED PROCEDURE NAME]
DTF	DTF ADDRESS]
FIB	File Information Rlock

i | (for vsam) [

| VNI | VARIAELE NAME INITIALIZATION |

JLIT | LITERAL |

| TS2 | TEMPORARY STORAGE |

| | (NON-ARITHMETIC) |
|RSV | REPORT SAVE AREA |
| SDF | Secondary DTF Pointer

| TS3 | TEMPORARY STORAGE |

|] (SYNCHRONIZATION) [

| IS4 | TEMPORARY STORAGE |
|] (SYNCHRONIZATION) |
INX	INDEX CELL	
	V(BCDNAME)	ADDRESS CONSTANT
VIR	VIRTUAL	
OVF	Overflow Cell	
L L d
Statistics: The compiler statistics

list the options in effect for this
run, the number of Data Division
statements specified, and the
Procedure Division size. Each level
number is counted as one statement in
the Data Division. The Procedure
Division size is approximately the
number of verks in the Procedure
Division.

An indicator is also given here if in the named table, the XREF or SXREF

dictionary spill occurred during for a SEARCH will reference the
compilation. If spill occurred, the element name for the table rather than
amount of storage assigned to the the table itself. LISTER could
compiler may be increased for better provide the source cross-reference
performance. Statistics are not material that might be desired.

listed if SYNTAX (or CSYNTAX and an
E-level or higher error occurred) was

in effect. (:) Diagnostic messages: The diagnostic
messages associated with the

compilation are always listed. The

format of the diagnostic ressage is:

Cross-reference dictionary: The
cross-reference dictionary is produced
when the XREF or SXREF option is
specified. It is suppressed if C)
CSYNTAX is in effect and an E-level

error is encountered.. It consists of

Compiler-generated card number.
This is the number of a line in
the source program related to the

two parts: error.

The cross-reference dictionary for . ‘e .

@ data~names consists of data-names f::::gz ;g:zt;g;g;z;g:.foih:he
followed by the generated card DOS/VS COBOL compiler always
number of the statement which begins with the symbols ILA.
defines each data-name, and the
generated card number of state- (© The severity level. There are
ments on which the referenced four severity levels as follows:
statement begins. For MOVE
CORRESPONDING, the data items (W) Warning
actually moved are referenced. This level indicates that an
Report Writer data-names, with error was made in the source
the exception of data-names in program. However, it is not

serious enough to interfere
with the execution of the
program. These warning
messages are listed only if
the FLAGW option is specified
in the CBL card or chosen at
system generation time.

the form "-nnn", are defined
with the generated card number
- of their respective RD's.

The cross-reference dictionary for
procedure-names consists of the
procedure-names followed by the
generated card number of the)
statement where each
procedure-name is used as a
section-name or paragraph-name,
and the generated card number of
statements where each
procedure-name is referenced.

Conditional

This level indicates that an
error was made but the
compiler usually makes a
corrective assumption. The
statement containing the error
is retained. Execution can be

A reference will appear to a procedure attempted.

name if there is a reference to a (E)
logically equivalent procedure-name; a

reference will also appear to a

procedure name, if, in a segmented

program, an implied branch to a

segment entry is made.

.Error

This level indicates that a
serious error was made.
Usually the compiler makes no
corrective assumption. The
statement or option containing
the error is dropped.
Compilation is completed, but
execution of the program
should not be attempted.

If XREF is specified, the names are

presented in the order in which they

appear in the source program. If

SXREF is specified, the names are

presented alphabetically. The number (D)
of references appearing in the

cross-reference dictionary for a given

name is based upon the number of times

the name is referenced in the code

generated by the compiler.

Disaster

This error indicates that a
serious error was rade.
Compilation is not completed.
Results are unpredictable. If
this is a compiler error, the

Since a SEARCH verb results in the job will terminate via the

examination of the individual elements

Interpreting Output 67

CANCEL macro and produce a
dump.

The message text. The text
identifies the condition that
caused the error and indicates the
action taken by the compiler.

Since Report Writer generates a
number of internal data items and
procedural statements, some error
messages may reflect internal
names. In cases where the error
occurs mainly in these generated
routines, the error messages may
indicate the card number of the RD
entry for the report under
consideration. In addition, there
are errors that may indicate the
number of the card upon which the
statement containing the error
ends rather than the card upon
which the error occurs. Internal
name formats for Report Writer are
discussed under "Glossary"
(heading 4, item C). Statement
numbers are generated when a verb
or procedure name is encountered.

The COBOL compile-time message that follows
serves as an example of the format of COBOL
compiler messages:

CARD ERROR MESSAGE

00055 ILA2190-W PICTURE CLAUSE IS SIGNED,
VALUE CLAUSE UNSIGNED.
ASSUMED POSITIVE.

e The code "00055" at the left is the
card number of the statement in which
the error has occurred. (Some errors
may not be discovered until information
from various sections of the program is
combined. For this reason, the source
card number in the error message may
not be exact.)

e ILA identifies this as a DOS/VS COBOL
compiler message.

¢ The numeral "2190" represents the
identifying number of the message; the
first digit of this identifier
indicates the phase in which the error
was detected. In this case the message
was generated by phase 1.

e The symbol "I" means that this is a
message to the programmer for his
action.

o "W" (warning) is a level of severity in
the error codes descriked in item C.

68

The message text is usually composed of
two sentences. The first descrikes the
error; the second describes what the
compiler has done as a result of the error.

Note: By specifying a PROGRAM-ID of ERRMSG
in any source program, the user can
generate a complete listing of compiler
diagnostics and problem determination aids.
(See Figure 12.) 1In this case, a normal
compilation never takes place. Only a list
of all error messages and problem
determination information is produced. The
link option is reset if it was in effect.

Some messages are not given if CSYNTAX
or SYNTAX is in effect. See "Program
Checkout" for the list of these messages.
(:) FIPS Diagnostic Messages: The

diagnostic messages associated with
FIPS are listed separately from the
compiler diagnostic messages, with a
header identifying them as FIPS
diagnostics. The format cf the FIPS
diagnostic messages is:

©)

Compiler-generated line number.
This is the nurber of a line in
the source program containing a
nonstandard element.

Message identification. The
message identification for FIPS
diagnostic messages always begins
with the symbols ILA. The
identifying numbers of the
messages will always be 8001,
8002, 8003, or 8004, where:

1 indicates an extension to a
certain level of the FIPS

2 indicates an extension to all
levels of the FIPS

3 indicates an extension to one
or all levels of the FIPS, or
an unusual condition;

4 indicates that there are no
FIPS diagnostic messages.

The severity level. All FIPS
diagnostic messages have a
severity level of W (warning).
This level indicates that
something in the source program
does not conform to the FIPS, but
the compilation of the program
will not be interrupted.

The message text. The text
identifies the condition or
element that does not conform to
the FIPS. The FIPS level is also
desianated.

// JOB ERRORMSG User information
// EXEC FCOBOL
IDENTIFICATION DIVISION.
PROGRAM-ID. ERRMSG.)
REMARKS. COMPILATION OF THIS PROGRAM WILL RESULT IN ALL COMPILER
DIAGNOSTICS BEING PRODUCED. NO OBJECT MODULE AND NO COMPILE-
TIME STATISTICS ARE PRODUCED.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

* THE SAME RESULTS CAN BE ACHIEVED BY CHANGING THE PROGRAM-ID OF
* ANY PROGRAM TO 'ERRMSG'.
STOP RUN.

b e e o o — - — .

igure 12. A Program that Produces COBOL Compiler Diagnostics

BJECT MODULE : e A map of the phase after it has been
processed by the Linkage Editor

The object module contains the external
ymbol dictionary, the text of the progranm, e Diagnostic messages
ad the relocation dictionary. It is
>llowed by an END statement that marks the
1d of the module. For additional e A listing of the linkage editor control
1formation about the external symbol statements
ictionary and the relocation dictionary,
2e the publication DOS/VS System_ Control
tatements. e 2 phase which may be assigned to the
core image library
An object deck is punched if the DECK
>tion is specified, unless an E-level

Lagnostic message is generated. The Any diagnostic messages associated with
>ject module is written on SYSLNK if the the Linkage Editor are automatically

[NK option is specified, unless an E-level generated as output. The other forms of
Ltagnostic message is generated. No deck output may be requested by the OPTION

5 punched if CSYNTAX is in effect and control statement. All output to be listed
-level errors are encountered, or if is printed on the device assigned to

INTAX is in effect. SYSLST.

Figure 13 is an example of a linkage
[NKAGE EDITOR OUTPUT editor output listing. It shows the job
control statements and the phase map. The
different types of output are numbered and
The output of the link edit step may each type to be explained is lettered. The
1clude: text following the figure is an explanation
of the figure.

e A printed listing of the job control
statements

Interpreting Output 69

DOS LINKAGE EDITOR DIAGNOSTIC OF INBUT @

JCE SAMPLE
ACTION TAKEN MAP REL
LIST AUTOLINK IJFFEZZN
LIST AUTOLINK ILBDDSPO
LIST AUTOLINK 1JJCPDV
LISsT AUTOLINK ILBDDSSO
LIST INCLUDE 1J3JCPDV
LIST AUTOLINK ILBDIMLO
LIST AUTOLINK ILBDNNSO
LIST AUTOLINK ILBDSAEQ
LIST ENTRY
PHASE XFR-AD LOCORE HICORE DSK-AD
PHASE#** (07D878 Q7D878 (Q7F1FF OS5F OF 4

UNREFERENCED SYMBOLS

002 UNRESOLVED ADDRESS CONSTANTS

Figure 13.

70

Linkage Editor Output

ESD TYPE
CSECT

CSECT

* ENTRY
* ENTRY
* ENTKRY

CSECT
ENTRY

CSECT
CSECT

CSECT
ENTKRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
* ENTRY

WXTRN
WXTRN

LABEL
TESTRUN

IJFFBZZN
IJFFZZIN
IJFFBZ22
1JFF2222

1LBDSAEC
ILEDSAEL

ILBDMNSO
ILBDIMLO

ILBDDSPO
ILBUDSP1

ILBLDSSO
ILBDDSS1
ILBDDSS2
ILBLDSS3
ILBDDSSU
1LBDDSS5
ILBCDSS6
ILBDDSS7
ILBLDSSS8

1JJCPDV
IJJCPDV1
1JJCPDV2

STXLTPSW
ILBDDBG2

LOADED
07D878

07E1C8
07E1CE
07E1C8
07E1C8

07F078
07F0CO

07FQ70
07F018

07E578
07E978

07ECFO
07EF50
07EF48
07F008
07ED1l6
07EDC2
07EE22
07EDEC
07EDY46

07EAA8
07EAA8
07ERA8

REL-FR
07D878
07E1C8

07F078

07F070
07F018
07L578

07ECFO

07EAAS8

RELOCATAELL

)

/

The job control statements. These
statements are listed because the LOG
option is specified.

Disk linkage editor diagnostic message

of input. The ACTION statement is not
required. If the MAP option is

specified, SYSLST must be assigned.

If the statement is not used and
SYSLST is assigned, MAP is assumed and
a storage map and any error diagnostic
messages are considered output on
SYSLST.

Map of virtual storage. A phase map
is printed when MAP is specified (or
assumed) during linkage editor
processing. The following information
is contained in the storage map:

®

The name of each phase. This is
the name specified in the phase
statement.

®)

The transfer address of each
phase.

The lowest virtual storage
location of each phase.’

The highest virtual storage
location of each phase.

The hexadecimal disk address where
the phase begins in the core image
library.

The names of all CSECT's belonging
to a phase.

@ 0 ® 6

All defined entry points within a
CSECT. If an entry point is not

referenced, it is flagged with an
asterisk (*).

The address where each CSECT is
loaded.

®

The relocation factor of each
CSECT.

©

The number of unresolved weak
external references. This
indication need not concern the
programmer. An unresolved weak
external reference does not cause
the Linkage Editor to use the
automatic library call mechanism.
Instead, the reference is left
unresolved, and the load module is
marked as executable. The number
of unresolved address constants
will not necessarily be the same
as the number of unreferenced
symbols listed in the Linkage
Editor output.

)

Comments on the Phase Map

The severity of linkage editor
diagnostic messages may affect the
production of the phase map. Since various
processing options affect the structure of
the phase, the text of the phase map will
sometimes provide additional information.
For example, the phase may contain an
overlay structure. In this case, a map
will be listed for each segment in the
overlay structure.

Linkage Editor Messages

The Linkage Editor may generate
informative or diagnostic messages. A
complete list of these messages is included
in the publication DOS/VS System Control
Statements.

DOS ANS COBOL Unresolved External
References

When the Linkage Editor encounters a
weak external reference (WXTRN),
autolinking is suppressed and the V-type
address constant is either resolved from
those modules included into the load module
or it remains unresolved. Unresclved
WXTRNs will not cause the Linkage Editor to
cancel the link step if ACTION CANCEL is in
effect.

The DOS/VS COBOL object time subroutine
library utilizes WXTRNs not only as address
constants but also as switches to determine
at object time whether certain options are
in effect. It is a very convenient feature
which can lead to tight and efficient code.

Unresolved WXTRNs are normally
intentional but unresolved EXTRNs are
normally unintenticnal and an error.

Any of the following unresolved WXTRNs
may appear when link editing an object
module produced by an ANS COBCL ccmpiler:

STXITPSW ILBCFLW2 ILBDMRGO
ILBDDBG2 ILBDSRTO ILEDFLW3
ILBDADR1 ILBCRELO ILBDTCOO
ILBDDBGO ILBDTEFO ILBDTCO1
SORTEP ILBDDSS1 ILBDDEG7
ILBDSTNO ILBLDSS3 ILBDDBGS8
ILBDFLWO ILBDVOC1 ILBDTC30

Interpreting Output 71

COBOL EXECUTION OUTPUT

The output generated by program
execution (in addition to data written on
output files) may include:

e Data displayed on the console or on the
printer

e Diagnostic messages to the programmer
¢ Messages to the operator
e System informative messages

e SYMDMP, STATE, FLOW, and/or COUNT
output

e System diagnostic messages
¢ A system dump

Appendix I contains the full 1list of
execution time diagnostic messages.

A dump and system diagnostic messages
are generated automatically during program
execution only if the program contains
errors that cause abnormal termination.

SYMDMP output is generated upon request,
or upon abnormal termination. STATE and
FLOW output are generated upon abnormal

termination. The output of these features
// BSSGN SYS008,X'483* ° (:)
7/ EXEC
WORK-RECORD = A 0001 HYC 2
WCRK-RECORD = B 0002 NYC 1
WORK-RECORD = C 0003 NYC 2
WCRK-RECORD = D 0004 NYC 3
WORK-RECORD = E 00G5 NYC U4
WORK-RECORD = F 0006 NYC 2
WORK-RECORD = G 0007 NYC 1
WCRK-RECORD = H 0008 NYC 2
WORK-RECORD = I 0009 NYC 3
WORK-RECORD = J 0010 NYC &4
WORK-RECORD = K 0011 NYC 2
WORK~RECORD = L 0012 NYC 1
WORK-RECORD = M 0013 NYC 2 (:)
WCRK-RECORD = N 0014 NYC 3
WORK-RECORD = O 0015 NYC U
WCRK-RECORD = P 0016 NYC %
WORK-RECOKD = Q 0017 NYC 1
WCRK-RECORD = R 0018 NYC 2
WORK-RECORD = S 0019 NYC 3
WCRK-RECORD = T 0020 NYC 4
WORK-RECORD = U 0021 NYC 2
WCRK-RECORD = V 0022 NYC 1
WORK-RECORD = W 0023 NYC 2
WORK-KECORD = X 0024 NYC 3
WORK-RECORD = ¥ 0025 NYC 4
WCRK-RECORD = Z 0026 NYC %

Figure 14. Output from Execution Job Step

72

is discussed in the chapter entitled
"Symbolic Debugging Features".

COUNT output is generated upon normal or
abnormal terminaticn of the program.
Output from this feature is described in
the chapter "Execution Statistics".

Figure 14 is an example of output from
the execution job step. The following text
is an explanation of the illustration.

(:) Job control statements. These
statements are listed because the LOG
option is specified.

(:) Program output on printer. The
results of execution of the EXHIBIT
NAMED statement appear on the program
listing.

(:) Console output. Data is printed on
the console output unit as a result of
the execution of DISPLAY UPON CONSOLE.

OPERATOR MESSAGES

The COBOL phase may issue operator
messages. In the message, XX denotes a
system-generated 2-character numeric field
that is used to identify the program
issuing the message.

BG
BG A 0001 NYC 0
BG B 0002 NYC 1
BG C 0003 NYC 2
BG D 0004 NYC 3
BG E 0005 NYC &
BG F 0006 NYC 0
BG G 0007 NYC 1
BG H 0008 NYC 2
BG I 0009 NYC 3
BG J 0010 NYC &
BG K 0011 NYC 0
BG L 0012 NYC 1
86 M 0012 NYC 2
BG N 0Ul4 NYC 3 (:)
BG 0 0015 NYC &
BG P 0016 NYC 0
BG Q 0017 NYC .1
BG R 0018 NYC 2
BG S 0019 NYC 3
3G T 0020 NYC &
BG U 0021 NYC 0
BG V 0022 NYC 1
BG W 0023 NYC 2
BG X 0024 NYC 3
BG Y 0025 NYC &
BG Z 0026 NYC 0

BG EOJ SAMPLE
00.56.19,DURATION 00.03.42

JOP_Statement

The following message is generated by
1@ STOP statement with the literxal option:

{ C110A STOP 'literal”

tplanation: This message is issued at the
rogrammer's discretion to indicate

>ssible alternative action to be taken by
1e operator.

>erator Response: Follows the
1structions given both by the message and
1 the job request form supplied by the
rogrammer. If the job is to be resumed,
it the end/enter key.

CCEPT Statement

The following message is generated by an
ZCEPT statement with the FROM CONSOLE
btion:

X C111A "AWAITING REPLY"

kplanation: This message is issued by the
oject program when operator intervention
5 required.

serator Response: Enter the reply and hit
ne end/enter key. (The contents of the
axt field should be supplied by the
rogrammer on the job request form.)
lphabetic characters may be entered lower
ase.

SYSTEM OUTPUT

Informative and diagnostic messages may
appear in the listing during the execution
of the object program.

Each of these messages contains an
identification code in the first column of
the message to indicate the portion of the
operating system that generated the
message. Table 6 lists these ccdes,
together with identification for each.

Table 6. System Message Identification
Codes

T T . A . 1
|Code} Identification |
b=t {
| 0| 2an on-line console message from |
|] the Supervisor |
r t 1
| 1] A message from the Job Control |
| | Processor |
F + i
| 2 | A message from the Linkage Editor |
1 1 __.l
T T

] 3| A message from the Librarian |
L 1] 4
T T 1
| 4]| A message from LIOCS |
R !
| 7] A message from the Sort proaram |
1 1

a— 1
| €| A message from COBOL okject-time |
| | subroutines |
L 1 -_d

Interpreting Output 73

This chapter describes the accepted
r1kage conventions for calling and called
>grams and discusses linkage methods when
ing an assembler language program. In
lition, this chapter contains a

scription of the overlay facility which
ables different called programs to occupy
2 same area in virtual storage at

fferent times. It also contains a
ggested assembler lanquage program to be
ed in conjunction with the overlay

ature.

A COBOL source program that passes

ntrol to another program is a calling
ogram. The program that receives control
om the calling program is referred to as
called program. Both programs must be
mpiled (or assembled) in separate job
eps, but the resulting object modules

st be link edited together in the same
ase.

A called program can also be a calling
ogram; that is, a called program can, in
rn, call another program. In Figure 15
'r instance, program A calls program B;
‘ogram B calls program C. Therefore:

‘e A is considered a calling program by B
!« B is considered a called program by R
}. B is considered a calling program by C

te C is considered a called program by B

CALLING AND CALLED PROGRAMS

Compiler-generated switches, e.g., ON
and ALTER, are not reinitialized upon each
entrance to the called program, that is,
the program is in its last executed state.

Note: It is necessary for an American
National Standard COBOL program to know
whether it is the main or the called
program. For this reason, any non-American
National Standard COBOL program calling an
American National Standard program must
first call the subroutine ILBDSETO. The
function of this subroutine is to set a
switch to X*FF*' in subroutine ILBDMNSO,
which is the indication to the COBOL
program that it is a called progran.
Standard linkage conventions should be
observed when calling ILBDSETO; there are
no parameters to be passed.

LINKAGE

Whenever a program calls another
program, linkage must be established
between the two. The calling program must
state the entry point of the called program
and must specify any argquments to be
passed. The called program must have an
entry point and must be able to accept the
arguments. Further, the called program
must establish the linkage for the return
of control to the calling program.

]
A B C | LINKAGE IN A CALLING PROGRAM
r 1 T 1 | S | |
|Calling | |Called | |Called | |
| program | |program | |program | | A calling COBOL program must contain the
lof B | jof A | jof B 1 1 following statement at the point where
| |—>1 | —>1 i1 another program is to be called:
1 1 |Calling | | [
| | Iprogranm | 1 11 r |
| | jof C | 1 1 ICALL literal-1 [USING identifier-1 |
L s L = —_— 1 | | [identifier-21...] 1
J [-}
igure 15. <Calling and Called Progranms

By convention, a called program may call
5o an entry point in any other progranm,
xcept one on a higher level in the "path"
f that program. That is, A may call to an
ntry point in B or C, and B may call C;
owever, C should not call A or B.
nstead, C transfers control only to B by
ssuing the EXIT PROGRAM or GOBACK
tatements in COBOL (or its equivalent in
nother language). B then returns to A.

literal-1
is the name specified as the
program-name in the PROGRAM-ID
paragraph of the called program, or
the name of the entry point in the
called program. When the called
program is to be entered at the
beginning of the Procedure Division,
literal-1 is the name of the program
being called. When the called progran
is to be entered at some point other
than the beginning of the Procedure

Calling and Called Programs 75

Division, literal-1 should not be the
same as the name specified in the
PROGRAM-ID paragraph of the called
program. Since the program-name in
the PROGRAM-ID paragraph produces an
external reference defining an entry
point, this entry point name would not
be uniquely defined as an external
reference.

If the first character of PROGRAM-ID
is numeric, the correspondence
algorithm is as follows:

0 becomes J
1-9 become A-I

Since the system does not include the
hyphen as an allowable character, the
hyphen is converted to zero if it
appears as the second through eighth
character of the nanme.

identifier~1 [identifier-2]...
are the arguments being passed to the
called program. Each identifier
represents a data item defined in the
File, Working-Storage, or Linkage
Section of the calling program and
should contain a level number 01 or
77. When passing identifiers from the
File Section, the file should be open
before the CALL statement is executed.
If the called program is an assembler
language program, the arguments may
represent file-names and procedure-
names in addition to data-names. If
no arguments are to be passed, the
USING option is omitted.

LINKAGE IN A CALLED PROGRAM

A called COBOL program must contain two
sets of statements:

1. One of the following statements must
appear at the point where the program
is entered.

If the called program is entered at
the first instruction in the Procedure
Division and arguments are passed by
the calling program:

r

|

JPROCEDURE DIVISION [USING

| identifier-1 [identifier-2]...].
—

If the entry point of the called
program is not the first statement of
the Procedure Division:

76

ENTRY literal-1 [USING identifier-1
[identifier-2]...]

[———— o
b e —

literal-1
is the name of the entry point in
the called program. It is the.
same name that appears in the
CALL statement of the program
that calls this program.

literal-1 must not be the name of
any other entry point or
program-name in the run unit.

identifier-1 [identifier-217]...]
are the data items representing
parameters. They correspond to
the arguments of the CALL
statement of the calling program.
Each data item in this parameter
list must be defined in the
Linkage Section of the called
program and must contain a level
number of 01 or 77.

2. Either of the following statements
must be inserted where control is to
be returned to the calling program:

EXIT PROGRAM.

GOBACK.

L1

por - —— —

Both the EXIT PROGRAM and GOBACK
statements cause the restoration of
the necessary registers, and return
control to the point in the calling
program immediately following the
calling seguence.

ENTRY POINTS

Each time an entry point is specified in
a called program, an external-name is
defined. An external-name is a name that
can be referenced by another program that
has been separately compiled or assembled.
BEach time an entry name is specified in a
calling program, an external reference is
defined. An external reference is a symbol
that is defined as an external-name in
another separately compiled or assembled
program. The Linkage Editor resolves
external-names and external references, and
combines calling and called programs into a
format suitable for execution together,
i.e., as a single phase.

te: Several different entry points may
defined in one COBOL source module.
fferent CALL statements in any module of
e phase may specify the same entry point,
t each definition of an entry point must

unique in the same phase.

RRESPONDENCE OF ARGUMENTS AND PARAMETERS

The number of identifiers in the

gument list of the calling program should

the same as the number of identifiers in
e parameter list of the called program.

the number of identifiers in the
'gument list of the calling program is
‘eater than the number of identifiers in
e parameter list of the called progranm,
11y those specified in the parameter list
i the called program may be referred to by
ie called program. There is a one-for-one
irrespondence. The correspondence is
)>sitional and not by name. An identifier
1st not appear more than once in the same
3ING clause.

Only the address of an argument is
issed. Consequently, both the identifier
1at is an argument and the identifier that
5 the corresponding parameter refer to the
ime location in storage. The pair of
lentifiers need not be identical, but the
ita descriptions must be equivalent. For
tample, if an argument is a level-77
ita-name representing a 30-character
tring, its corresponding parameter could
lso be a level-77 data-name representing a
haracter string of length 30, or the
arameter could be a level-01 data item
ith subordinate items representing
haracter strings whose combined length is
0.

Although all parameters in the ENTRY
tatement must be described with level
umbers 01 or 77, there is no such
estriction made for arguments in the CALL
tatement. An argument may be a gqualified
ame or a subscripted name. When a group
tem with a level number other than 01 is
pecified as an argument, proper boundary
ord alignment is required if subordinate
tems are described as COMPUTATIONAL,
OMPUTATIONAL-1, or COMPUTATIONAL-2. 1If
he argqument corresponds to an 01-level
arameter, doubleword alignment is
equired.

INK_EDITING WITHOUT OVERLAY

Assume that a COBOL main program
'COBMAIN), at one or more points in its
.0gic executes CALL statements to COBOL
rrograms SUEPRGA, SUBPRGB, SUBPRGC, and

SUBPRGD. BAlso assume that the module sizes
for the main program and subprograms are:

Module Size

Program (in_bytes)
COBMAIN 20,000
SUBPRGA 4,000
SUBPRGB 5,000
SUBPRGC 6,000
SUBPRGD 3,000

Through the linkage mechanism, all
called programs plus COBMAIN must be 1link
edited together to form one module of
38,000 bytes. Therefore, COBMAIN would
require 38,000 bytes of storage in order to
be executed. No overlay structure need be
specified at link edit time if 38,000 bytes
of virtual storage are available.

. The following is an example of the job
control statements needed to link edit
these calling and called programs without
specifying an overlay structure. The
source decks for COBMAIN and SUBPRGA are
included in the job deck, whereas SUBPRGB,
SUBPRGC, and SUBPRGD are in the relocatable
library.

// JOB NOVERLAY

// OPTION LINK,LIST,DUMP
ACTION MAP
PHASE EXAMP1,*
INCLUDE

{object module COBMAIN}
/*

INCLUDE SURPRGB

INCLUDE SUBPRGC

INCLUDE SUBPRGD

INCLUDE

{object module SUBPRGA}
/%

ENTRY
// EXEC LNKEDT
// EXEC

{data for progranm}
/*
/&

Figure 16 is an example of the data flow
logic of this call structure where all the
programs fit into virtual storage.

Calling and Called Programs 77

SYSIPT

Main Program

ot

From these combinations,

more

complicated structures can be formed.

In a COBOL program, the expansions of

the CALL and GOBACK or EXIT
statements provide the save
coding that is necessary to
linkage between the calling
programs in accordance with
conventions of the system.

PROGRAM

and return
establish
and called
the linkage
Assembler

SUBPRG B | SUBPRG A
R‘eloca?able » SUBPRG C b4
Library
A
SUBPRG D Job Control
Execute
LNKEDT
Linkage .
> Editor w
L
ATN PROGRAM 17\
Object Module
SUBPRG B Storage
SUBPRG C Layout
SUBPRG D
UBPR
Object Module -
Figure 16. Example of Data Flgﬁ Logic in a

Call Structure

Note: For the example given, it is assumed
that SYSLNK is a standard assignment. The
flow diagram illustrates how the various
program segments are link edited into
storage in a sequential arrangement.

ASSEMBLER LANGUAGE SUBPROGRAMS

A main program written in COBOL can call
programs written in other languages that
use the same linkage conventions. Whenever
a COBOL program calls an assembler language
program, certain conventions and techniques
must be used.

There are three basic ways to use
assembler-written called programs with a
main program written in COBOL:

1. A COBOL main program or called program
calling an assembler-writtem program.

2. An assembler-written program calling a
COBOL progranm.

3. An assembler-written program calling
another assembler-written program.

78

language programs must be prepared in

accordance with
conventions.

the same linkage

These conventions include:

1. Using the proper registers to
establish linkage.

2. Reserving,

in the calling program, a

storage area for items contained in

the argqument list.

This storage area

can be referenced by the called

program.

3. Reserving,

in the calling program, a

save area in which the contents of the
registers can be saved.

REGISTER USE

The Disk Operating System has assigned
functions to certain registers used in

linkages.

Table 7 shows the conventions

for using general registers as linkage

registers. The

calling program mrust load

the address of the return point into
register 14, and it must load the address
of the entry point of the called program
into register 15.

Table 7. Conventional Use of Linkage
Registers

11] A 1
{Reg. |Reg. | I
|No. |Name | Function !
i } } —4
| T {Argument| Address of the argument |
I |1list | list passed to the called |
1 |register| program. |
L [} t]
| o T 1 ’
[13 |Save | Address of the area re- |
! |area | served by the calling pro-i
| |Iregister| gram in which the contents]
|] | of certain registers are |
| | | stored by the called]
| | | program. !
b +— — 1
|14 |JReturn | Address of the location in|
l |register| the calling program to |
		which control is returned
		after execution of the
		called progran.
L 3 I3 1		
) T 1		
115	Entry	Address of the entry point
Ipoint	in the called program. 1	
Iregister		
L . . J

'E AREA

A calling assembler language progranm

st reserve a save area of 18 words,
jinning on a fullword boundary, to be

>d by the called program for saving
Jisters; it must load the address of this
2a into register 13. Table 8 shows the
yout of the save area and the contents of
ch word.

A called COBOL program does not save
oating-point registers. The programmer
responsible for saving and restoring the
ntents of these registers in the calling
ogram.

ble 8. Save Area Layout and Word
Contents

L]
f |
REA IThis word is a part of the 1
(word 1) {standard linkage convention ||
lestablished under the DOS/VS ||
|System. The word must be I
|reserved for proper 11
jaddressing of the subsequent ||
jentries. However, an 1
|assemnbler subprogram may use ||
|the word for any desired 11
|purpose. i1
t i1
\REA+4 |The address of the previous ||
(word 2) |save area, that is, the save ||
larea of the subprogram that ||
lcalled this one. 1
t 11
\REA+8 |The address of the next save ||
(word 3) larea, that is, the save area ||
{of the subprogram to which i1
|this subprogram refers. 11
F 11
AREA+12 |The contents of register 114, 1]
(word 4) |that is, the return address. ||
k 4 |
AREA+16 |The contents of register 15, ||
(word 15) |that is, the entry address. ||
k 1 1
AREA+20 |The contents of register 0. ||
(word 6) | I
t 4 |
AREA+24 |The contents of register 1. ||
(word 7) | 11
. | . 11
. | - 11
. | . 1
} 41
AREA+68 |The contents of register 12. ||
(word 18) | 11
L] |
H

ARGUMENT LIST

The argument list is a group of
contiguous fullwords, beginning on a
fullword boundary, each of which is an
address of a data item to be passed to the
called program. If the program is to pass
arguments, an argument list must be
prepared and its address loaded into
register 1. The high-order bit of the last
argument, by convention, is set to 1 to
indicate the end of the list.

Any assembler-written program must be
coded with a detailed knowledge of the data
formats of the arguments being passed.

Most coding errors occur because of the
data format discrepancies of the arguments.

If one programmer writes both the
calling program and the called program, the
data format of the arguments should not
present a problem when passed as
parameters. However, when the programs are
written by different programmers, the data
format specifications for the arguments
must be clearly defined for the programmer.

The linkage conventions used by an
assembler program that calls another
program are illustrated in Fiqure 16. The
linkage should include:

1. The calling sequence.
2. The save and return routines.

3. The out-of-line parameter 1list. (An
in-line parameter list may be used.)

4. A save area on a fullword boundary.

FILE-NAME AND PROCEDURE-NAME ARGUMENTS

A calling COBOL program that calls an
assembler-language program can pass
file-names and procedure-names, in addition
to data-names, as identifiers. 1In the
actual identifier-list that the compiler
generates, the procedure-name is passed as
the address of the procedure. For a file,
the address of the DTF is passed, and the
user must ensure that the file is already
open. A VSAM file-name may not be passed.

Care must be taken when using these
options. The user must be thoroughly
familiar with the generated coding for each
option and statement, as well as the
structure of the object program.

Calling and Called Programs 79

o - e —— —— — — —— — — — — — S — — — — i — — — — T — e W T ns e Sme e S S G S A S S — - — - —— ——— — . - —— —— — N — —— " — —)

deckname START 0 INITIATES PROGRAM ASSEMBLAGE AT PIRST
* AVAILABLE LOCATION. ENTRY POINT TO THE
* . : PROGRAM.
ENTRY nameq
EXTRN namez2
USING namey, 15
* SAVE ROUTINE

name , STM 14,r,,12(13) THE CONTENTS OF REGISTERS 14, 15, AND
* 0 THROUGH r, ARE STORED IN THE SAVE
* AREA OF THE CALLING PROGRAM (PREVIOUS
* SAVE AREA) . r, IS ANY NUMBER FROM O TEROUGH 12.
LR r3,15
DROP 15 . A
USING name,,I, WHERE rs AND r, HAVE BEEN SAVED
LR r2,13 LOADS REGISTER 13, WHICH POINTS TO THE
* SAVE AREA OF THE CALLING PROGRAM, INTO
* ANY GENERAL REGISTER, r,, EXCEPT 0 AND 13.
LA 13,ARER LOADS THE ADDRESS OF THIS PROGRAM'S
* - SAVE AREA INTO REGISTER 13.
ST 13,8(r,) STORES THE ADDRESS OF THIS PROGRAM'S SAVE
* AREA INTO WORD 3 OF THE SAVE AREAR OF THE
* ' CALLING PROGRAM.
ST C,,4(13) STORES THE ADDRESS OF . THE PREVIOUS SAVE
* ARER (I.E., THE SAME AREA OF THE CALLING
* : PROGRAM) INTO WORD 2 OF THIS PROGRAM'S
* SAVE AREA.
BC 15,prob,
AREA DS 18F RESERVES 18 WORDS FOR THE SAVE AREA
* , THIS IS LAST STATEMENT OF SAVE ROUTINE.
prob, {User-written program statements}
L : 15,VCON INDICATE COBOL PROGRAM IS
BALR 14,15 A SUBPROGRAM
* CALLING SEQUENCE
LA 1,ARGLST
L 15,ADCON

BALR 14,15
{Remainder of user-written program statements}
* RETURN ROUTINE

L 13,4(13) LOADS THE ADDRESS OF THE PREVIOUS SAVE
* AREA BACK INTO REGISTER 13.
LM 2,:1,28(13) THE CONTENTS OF REGISTER 2 THROUGH r, ARE
* RESTORED FROM THE PREVIOUS SAVE AREA.
L 14,12 (13) LOADS THE RETURN ADDRESS, WHICH IS IN
* WORD 4 OF THE CALLING PROGRAM'S SAVE AREA,
* INTO REGISTER 14.
MVI 12(13) ,X*PF' SETS FLAG FF IN THE SAVE AREA OF THE
* CALLING PROGRAM TO INDICATE THAT CONTROL
* : HAS RETURNED TO THE CALLING PROGRANM.
BCR 15,14 LAST STATEMENT IN RETURN ROUTINE
VCON DC V(ILBDSETO)
ADCON DC A (name,) CONTAINS THE ADDRESS OF SUBPROGRAM name,.
* PARAMETER LIST
ARGLST DC ALY (arg,) FIRST STATEMENT IN PARAMETER AREA SETUP
DC ALL4 (arg,)
DC Xv80¢ FIRST BYTE OF LAST ARGUMENT SETS BIT 0 TO 1
DC AL3(argn) LAST STATEMENT IN PARAMETER AREAR SETUP

e o e o e . — — — — T —— — — — — — —— —— - G —— . — . T — — —— —— — — ———— — — —— — —" — — — — — — — o]

Figure 17. Sample Linkage Routines Used with a Calling Subprogram

80

T 1
ADCON DC A (proba) | ldeckname START 0 |
. | | ENTRY name i
. | | (
LA 14 ,RETURN | | USING *,15 |
L 15, ADCON | |name STM 1u,rj,12(13) |
CNOP 2,4 | . |
BALR 1,15 | | . . 1
DC ALY (arg,) | |User-written program statements |
DC ALY (arg,) i ‘ . {
. 1 .
. | i LM 2,r,,28(13) |
DC X*80° | | MVI 12(13) ,X'FF! |
DC AL3 (argp) 1 i BCR 15,14 !
RETURN EQU * | F - ——
. |Note: If registers 13 and/or 14 are used|
gure 18. Sample In-line Parameter List |in the called subprogram, their contents |
Ishould be saved and restored by the |
|called subprogram. |
L J
~Line Parameter List Figure 19. Sample Linkage Routines Used
with a Lowest level Subprogram
The assembler programmer may establish OVERLAYS
in-line parameter list instead of an
t-of-line list. 1In this case, he may N .
bstitute the calling sequence and ~ If a program is too large to be contained
rameter list illustrated in Figure 18 for in the number of bytes available in virtual
.at shown in Pigure 17. storage, it can still be executed by means

of an overlay structure. An overlay
structure permits the re-use of storage
locations previously occupied by another
JWEST LEVEL PROGRAM program. In order to use an overlay
structure, the programmer must plan the
program so that one or more called programs

If an assembler called program does not need not be in storage at the same time as
111 any other program (i.e., if it is at the rest of the program phase. The
1e lowest level), the programmer should programmer should reassess, when moving to
1it the save routine, calling sequence, VSE, whether programs that used to require
1d parameter list shown in Figure 17. If an overlay structure still do. -Programs
e assembler called program uses any W}th an overlay structure must be compiled
:gisters, it must save them. Figure 19 with the LANGLVL(1) option of the CBL
llustrates the appropriate linkage statement.
»nventions used by an assembler program at
1e lowest level. See "Using the Segmentation Feature" for

information on the overlay structure.

SPECIAL CONSIDERATIONS WHEN USING OVERLAY
STRUCTURES

There are three areas of special concern
to the programmer who decides to use the
overlay feature. These problems concern
the use of the assembler language
subroutine, proper link editing, and job
control statements.

Calling and Called Programs 81

ASSEMBLER LANGUAGE SUBROUTINE FOR 2.
ACCOMPLISHING OVERLAY

The CALL statement is used for "direct"”
linkage; that is, the assistance of the
Supervisor is not required (as it is when
loading or fetching a phase). There are no
COBOL statements that will generate the 3.
equivalent of the LOAD or FETCH assembler
macro instructions. PFor this reason, one
nust call an assembler program to effect an
overlay of a COBOL program. This routine
nust be link edited as part of either a
root phase or permanently resident phase.

The sample overlay subroutine shown in
Pigure 20 is governed by the following
restrictions:

It can be used for assembler overlays
if the programmer has a desired entry
point in his END card and the first
statement at that entry point is 'STNM
14,12,12(13) *.

This subroutine can be used for a
COBOL program which contains an ENTRY
statement immediately following the
Procedure Division header. It will
not work with a COBOL subprogram
compiled with a Procedure Division
USING statement or for entry points in
a COBOL subprogram which appear
anywhere other than as the first
instruction of the Procedure Division.
A suggested technique for diverse

1. The
and

_ entry points is a table look-~up using
example is a suggested technigque, V-type constants.

is not the only technique.

T 1
| STHMNT SOURCE STATEMENT |
| |
| 0001 OVERLAY START 0 |
| 0002 ENTRY OVRLAY |
| 0003 * AT ENTRY TIME |
| 0004 =% R1=POINTER TO ADCON LIST OF USING ARGUMENTS |
| 0005 =* FIRST ARGUMENT IS PHASE OR SUBROUTINE NAME |
] 0006 = MUST BE 8 BYTES |
| 0007 * R13=ADDRESS OF SAVE AREA |
| 0008 =* R14=RETURN POINT OF CALLING PROGRAM |
| 0009 * R15=ENTRY POINT OF OVERLAY PROGRAM |
| 0010 * AT EXIT |
| 0011 * R1=POINTER TO SECOND ARGUMENT OF ADCON LIST |
| 0012 % OF USING ARGUMENTS |
| 0013 = R14=RETURN POINT OF CALLING PROGRAM--NOT THIS PROG i
] 0014 * R15=ENTRY POINT OF PHASE OR SUBPROGRANM, |
| 0015 =* I
| 0016 OUSING *,15 |
I 0017 OVRLAY sTM 0,1,SAVE SAVE WORK REGS |
| 0018 L 1,0(1) POINT R1 TO PHASE NAME |
{ 0019 CLC CORSUB,0 (1) IN CORE? |
| 0020 BE SUBIN YES,BR |
| 0021 MVC CORSUB(8),0(1) SET CURRENT PHASE |
| 0022 SR 0,0 |
| 0023 SVC 4 LOAD PHASE |
| 0024 SEARCH1 LA 1,4(1) STEP SEARCH POINT |
| 0025 CLC 0(3,1),=C*COB* END OF INIT1? |
| 0026 BNE SEARCH1 NO, LOOP |
| 0027 S ,=F1ig? POINT TO "START"™ ADCON |
| 0028 L 1,0(1) LOAD "START" |
| 0029 LOOP LA 1,2(1) INCREMENT TO ENTRY POINT |
I 0030 CcLc 0(2,1),=X'90EC' I
I 0031 BNE LOOP |
I 0032 ST 1,ASUB SAVE ENTRY ADDRESS |
I 0033 SUBIN LM 0,1,SAVE RELOAD WORK REGS |
I 0034 LA 1,4(1) POINT TO PARAMETERS |
I 0035 L 15,ASUB |
I 0036 : BR' 15 BRANCH TO ENTRY POINT |
| 0037 CORSUB DS 0CL8]
I 0038 DC 8X'FF' 1
| 0039 ASUB DS F |
| 0040 SAVE ps 2F 1
: 0041 END !
Figure 20. Example of an Assembler Language Subroutine for Accomplishing Overlay

82

ote: Care should be taken with the
echniques used in statements 0019 anad

020. Only when the COBOL program is

oaded are altered GO TO statements
‘einitialized. A better technique would be

.0 load the called programs each tinme they
.re required.

The examples given in Figures 20, 21, and
2 require that all overlay modules be linked
Eogether. To permit linkage to and return
‘rom modules, compiled and link edited
jeparately, the following changes to
"igure 20 are necessary:

leplace lines 25 through 28

CLC COBCON,20(1) END OF INIT?
BNE SEARCH1 NO, LOOP
LR 0,1 SAVE ADDR ADCON INIT1
L 1,0(1) GET INIT1 ADDR
MVC NOP+3(1l),139(l) GET DISP OF VIRT CELL
LR 1,0 RESTORE ADDR OF ADCON INIT1
L 1,4(1) GET ADDR OF PGT
P L 1,0(1) LOAD ADDR OF ILBDMNSO
MVI 0(l),X'FFr' SET 'CALLED PROGR' FLAG
LR 1,0 RESTORE ADDR OF ADCON INIT1
L 1,12(1) LOAD 'START' ADDRESS
Insert after line 38
COBCON DC CL3'COB'

LINK EDITING WITE OVERLAY

In a linkage editor job step, the
programmer specifies the overlay points in
a program by using PHASE statements. 1In
the Working-Storage Section, a level-01 or
level-77 constant must be created for each
phase to be called at execution time.
These constants have a PICTORE of X(8) and
a VALUE clause containing the same name as
that appearing on the PEASE card for that
segment in the link edit run.

In addition, each argument to be passed
to the called program must have an entry in
the Linkage Section. Remember, also, that
the ENTRY statement should not refer to the
program-name. (Use of the program-name
will result in incorrect execution.)

When more than one subprogram in the
overlay structure requires the same COBOL
subroutine, the // EXEC LNKEDT statement
must be preceded by INCLUDE cards for each
of these subroutines. The names of these
subroutines can be determined by requesting
LISTX at compile time.

When preparing the control cards for the
Linkage Editor, the programmer should be
certain to include the assembler language
subroutine with the main (root) phase.

Also, to achieve maximum overlay, the phase
names for the called programs should be
different from the names of the called
prograns specified in the PROGRAM-ID
paragraphs.

Figure 21 is a flow diagram of the
overlay logic. The PHASE cards indicate
the beginning address of each phase. The
phases OVERLAYC and OVERLAYD will have the
same beginning address as OVERLAYB. The
sequence of events is:

1. The main program calls the overlay
routine.

2. The overlay routine fetches the
particular COBOL subprogram and places
it in the overlay area.

3. The overlay routine transfers control
to the first instruction of the called
program.

4. The called program returns to the
COBOL calling program (not to the

assenbler lanquage overlay routine).

If OVERLAYB were known to be
the CALL statement would be:

in storage,

1
| CALL "OVERLAYB"™ USING PARAM-1, PARAM-2.|
]

But when using the assembler language
overlay routine (OVRLAY), it becomes:

CALL "OVRLAY"™ USING PROCESS-LABEL,
PARM-1, PARM-2.

wvhere PROCESS-LABEL contains the
external-name OVERLAYB of the called
prodram.

However, the ENTRY statement of the
called program is the same for both cases,
i.e., ENTRY "OVERLAYB" USING PARAM-1,
PARAM-2, whether it is called indirectly by
the main program through the overlay
program or called directly by the main
progranm.

Note: An ENTRY which is to be called by
OVRLAY must precede the first executable
statement in the called program.

calling and Called Programs 83

JOB CONTROL FOR ACCOMPLISHING OVERLAY

COBOL The job control statements required to
C) Main or Root) accomplish the overlay illustrated in
C) Figure 21 are shown in Figure 22. The

Overlay Routine PHASE statements specify to the Linkage

Overlay Area ® Editor that the overlay structure to be
established is one in which the called
programs OVERLAYE, OVERLAYC, and OVERLAYD
overlay each other when called during

<::::::::::::::> execution.

QL

OVERLAY B 4§R Note: The phase name specified in the

Subprogram > PHASE card must be the same as the value

OVERLAY C contained @n the first argument for CALL

Subprogram "OVRLAY", i.e., PROCESS-LABEL, COMPUTE-TAX,
etc., contain OVERLAYB, OVERLAYC,

OVERLAY D respectively, which are the names given in

“Subprogram the PHASE card.

It is the programmer's responsibility to
write the entire overlay, i.e., the COBOL
main (or calling) program and an assembler
language subroutine (for which a sample
program is given in this chapter) that
fetches and overlays the called progranms.

A calling sequence to obtain an overlay
structure between three COBOL subprograms

Figure 21. Flow Diagram of Overlay Logic is illustrated in Figure 23.

r L
| // JOB OVERLAYS |
{ // OPTION LINK i
| PHASE OVERLAY ,ROOT |
| // EXEC FCOBOL |
| {COBOL Source for Main Program MAINLINE} |
I /% |
| // EXEC ASSEMBLY |
| [Source deck for Assembler Language Routine OVERLAY] |
| /* ' !
| PHASE OVERLAYB,*]
| // EXEC FCOBOL |
| {COBOL Source for Called Program OVERLAYB}]
| /* ']
{ PHASE OVERLAYC,OVERLAYB I
| // EXEC FCOBOL I
| {COBOL Source for Called Program OVERLAYC} |
I /* - |
| PEASE OVERLAYD,OVERLAYC |
| // EXEC FCOBOL |
| {COBOL Source for Called Program OVERLAYD} - |
I /% |
| // EXEC LNKEDT |
| // EXEC |
I /* |
| /& |
1 |

Figure 22. Job Control for Accomplishing Overlay

84

COBOL_Program Main (Root _or Main Program)

IDENTIFICATION DIVISION.
PROGRAM-ID. MAINLINE.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 PROCESS-LABEL PICTURE IS X(8) VALUE IS "OVERLAYB".
77 PARAM-1 PICTURE IS X.

77 PARAM-2 PICTURE IS XX. .

77 COMPUTE-TAX PICTORE IS X(8) VALUE IS POVERLAYC".

01 NAMET.

02 EMPLY-NUMB PICTURE IS 9 (5).

02 SALARY PICTURE IS 9 (4)V99.

02 RATE PICTURE IS 9 (3)V99.

02 HOURS-REG PICTURE IS 9 (3)V99.

02 HOURS-OT PICTURE IS 9 (2)V99.
01 COMPUTE-SALARY PICTURE IS X (8) VALUE IS "OVERLAYD™.
01 NAMES.

02 RATES PICTURE IS 9(6).

02 HOURS PICTURE IS 9(3)V99.

02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.

CALL "OVRLAY"™ USING PROCESS-LABEL, PARAM-1, PARAM-2.

CALL "OVRLAIM™ USING COMPﬁTE-TAX, NAMET.

CALL "OVRLAY" USING COMPUTE-SALARY, NAMES.

e e o e e e e — — — ——— —— ——— —— —— — — — — —— — — — s s

|
|
|
L
*igure 23. Calling Sequence to Obtain Overlay Between Three COBOL Subprograms (Part 1 of
3)

Calling and Called Programs 85

COBOL_ Subprogram B

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAY1.
ENVIRONMENT DIVISION.
DATA DIVISION.

LINKAGE SECTION.

01 PARAM-10 PICTURE X.
01 "PARAM-20 PICTURE XX.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVERLAYB"™ USING PARAM-10, PARAM-20.

GOBACK.

COBOL Subprogram_C

IDENTIFICATION DIVISION.
PROGRAM~ID. OVERLAYZ2.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 NAMEX.
02 EMPLY-NUMBX PICTURE IS 9(5).
02 SALARYX PICTURE IS 9(4) V99.
02 RATEX PICTURE IS 9(3)V99.
02 HOURS-REGX PICTURE IS 9(3)V99.
02 HOURS-OTX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVERLAYC"™ USING NAMEX.

GOBACK.

(o o e —— — — — ———— — —— — —— ———— — — — —_—— i ———— T — — —— T — —_ — — " — — —— ———— — —— e o}

bt o e e — —— —— —— - — — — — — —— — — — — S — — — — " — — —— — ——— — —— " —— — ———— — V" — —— — —— — — —" — —— —— —— w—

Figure 23. Calling Sequence to Obtain Overlay Between Three COBOL Subprograms
(Part 2 of 3)

86

COBOL_Subprogram_ D

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAY3.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION

01 NAMES.
02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVERLAYD"

-

USING NAMES.

GOBACK.

e e ot e e o — — —— ——— —— ——— — — — —— —— — — — — — ———

*igure 23. Calling Sequence to Obtain Overlay

(Part 3 of 3)

Between Three COBOL Subprograms

Calling and Called Programs

87

Although Release 3 of the DOS/VS COBOL
mpiler accepts a source program containing
:gmentation specifications, it does not
coduce an actual overlay structure unless
ANGLVL (1) is specified. Using LANGLVL(2),
t combines all segments into one single
>ject program in segment order, and allows
1e paging of the VS operating system to
arform any overlay. The absence of actual
OBOL-performed overlay is usually not a
roblem in the DOS/VSE environment, because
dequate main storage is available for even
he largest programs.

The LANGLVL compile option chosen by the
ser affects the degree and manner of
einitialization COBOL performs on
ndependent segments because there is a
ifference between the 1968 and 1974
merican National Standard (ANS) definitions.
or further details, consult the language
anual, IBM VS COBOL for DOS/VSE.

AANGLVL OPTION AND REINITIALIZATION

Because there is a difference between
:he 1968 and 1974 ANS definitions, the
JANGLVL compile option chosen by the user
1ffects the degree and manner of
ceinitialization COBOL will perform on
independent segments. For further details,
consult the language manual, IBM VS COBOL
Eor DOS/VSE. -

COBOL segmentation permits the user to
subdivide logically and physically the
Procedure Division of a COBOL object
program. All source sections which contain
the same segment-number in their section
headers will be considered at object time
to be one segment. Since segment-numbers
can randge from 00 through 99, it is
possible to subdivide any object program
into a maximum of 100 segments.

Program segments may be of three types:
fixed permanent, fixed overlayable, and
independent as determined by the
programmer's assignment of segment numbers.

USING_THE SEGMENTATION FEATURE

Segmentation of a program would be used
when virtual storage is limited. In a real
storage system, the following would apply:

1. Fixed segments are always in real
storage during the execution of the
entire program, that is, they cannot
be overlayed except when the system
itself is executing another progranm,
in which case fixed segments may be
“rolled out.™

2. Fixed overlayable segments may be
overlayed during program execution,
but any such overlaying is transparent
to the user, that is, they are
logically identical to fixed segments,
but physically different from them.

3. Independent segments may be overlayed,
but such overlaying will result in the
initialization of that segment.
Therefore, independent segments are
logically different from fixed
permanent/fixed overlayable segments,
and physically different from fixed
_ segments.

In a virtual storage system, all
logically "fixed" segments, that is, fixed
permanent and fixed overlayable, are
treated the same. They are both "paged in
and out"™ as required for execution.

In the same manner, independent segments
are paged in and out; when they are paged
in, however, they are brought back in the
initial state.

In DOS/VS COBOL, segments that are

overlayed are not actually "paged out".

All the variable data items associated with
the segment are contained in one segment,
which is considered the root segment. When
a segment is "“paged in", all the fields
which must be reinitialized are contained
in the root segment. Thus no fields in
other than the root segment are modified.

The program SAVECORE could be seqmented
as illustrated in Figure 24.

Using the Segmentation Feature 89

l
| IDENTIFICATION DIVISION.

|

| PROGRAM-ID. SAVECORE.
|.

|-

|[ENVIRONMENT DIVISION.

|

|OBJECT-COMPUTER. IBM-370.
| SEGMENT-LIMIT IS 15.
l.

|.

|DATA DIVISION.

|

|

| PROCEDURE DIVISION.

e e e e o e e e e s s e e e e T T e e et T S — — S — — — - — —

SECTION-1 SECTION 8.

|SECTION~-2 SECTION 8.
l.

|SECTION~-3 SECTION 16.
|«

| SECTION-4 SECTION 8.
|«

| SECTION-5 SECTION 50.
|«

|«

ISECTION-6 SECTION 16.
S

|«

SECTION-7 SECTION 50.

l.

L

Figure 24. Segmenting the Program SAVECORE

Assuming that 12K of virtual storage is
available for the program SAVECORE, Figure
25 shows the manner in which storage would
be utilized. It is apparent from the
illustration that SECTION-3, SECTION-6, and
SECTION-7 cannot be in storage at the same
time, nor can SECTION-3, SECTION-5 and
SECTION~7 be in storage simultaneously.

Sections in the permanent segment
(SECTION-1, SECTION-2, and SECTION-4) are
those which must be available for reference
at all times, or which are referenced
frequently. They are distinguished here by
the fact that they have been assigned
priority numbers less than the segment
limit.

Sections in the overlayable fixed
segment are sections which are less
frequently used. They are always made
available in the state they were in when
last used. They are distinguishable here
by the fact that they have been assigned
priority numbers greater than the segment
limit but less than 49.

Sections in the independent segment can
overlay, and be overlaid by, either an
overlayable fixed segment or another
independent segment. Independent segments

90

are those assigned priority numbers dgreater
than 49 and less than 100, and they are
always given control in their initial
state.

OPERATION

Execution of the object program begins
in the root segment. The first segment in
the permanent segment is considered the
root segment. If the program does not
contain a permanent segment, the compiler
generates a dummy segment which will
initiate the execution of the first
overlayable or independent segment. All
global tables, literals, and data areas are
part of the root segment. Called object
time subroutines are also part of the root
segment. When CALL statements appear in a
segmented program, subprograms are loaded
with the fixed portion of the main progranm
as if they had a priority of zero.

Segmented programs must not be called by
another program (segmented or not
segmented) . If a segmented program calls a
subprogram, the CALL statement may appear
in any segment. However, the object module
associated with the subprogram must be
included in the root segment prior to the
execut%on of the main program. This can be
accomplished in either of two ways as
follows:

1. Produce object decks for both programs
and place the one for the subprogram
in the root segment:

PHASE ,ROOT
ESD card for the root segment

{object deck for the main program}
{object deck for the subprogranm}

followed by a // EXEC LNKEDT and a //
EXEC.

2. Catalog the object module for the
subprogram in the relocatable library
prior to link editing the main
program. Insert an INCLUDE card for
the subprogram and an ENTRY card for
the root phase into the linkage editor
control cards for the root phase of
the main program. The ENTRY card will
cause the linkage editor to pass
control to the main program at
execution time. The Linkage Editor
will search the relocatable library
for the subprogram and include it with
the root phase.

data-buffers, global
table, etc., (1X)

SECTION-1 (2K)

T

|
|
[

L]

|
—

SECTION-2 (2K)

permanent segment

SECTION-U4 (2K)

(segment limit < 15)

fixed portion SECTION-3 (3K)

SECTION-S

|
!
|
|
|
| (2K)
|
|
|
|
|
|
|
|
!

SECTION-7 (1K)

L
|
t
|
+
!
(12K) |
!
|
|
5K |
|
1
|
| SECTION-6 (2K)
SECTION-3 and SECTION-6
are overlayable fixed segments
(14 < segment limit < 50)
igure 25. Storage Layout for SAVECORE

UTPUT FROM A _SEGMENTED PROGRAM a.

OMPILER OUTPUT

The output produced by the compiler is
n overlay structure consisting of multiple
bject modules preceded by linkage editor
ontrol statements. Segments whose
riority is greater than the segment limit c.
or 49, if no SEGMENT-LIMIT clause is
pecified) consist of executable
nstructions only.

The compiler generates each segment as a
eparate object module preceded by a PHASE
ard. The nanmes appearing on these PHASE
ards (segment-names) conform to the
ollowing naming conventions:

1. The name of the root segment is the
same as the program-name specified in
the PROGRAM-ID clause. d.

2. The name of each overlayable and
independent segment is a combination
of the program-name and the priority
numnber of the segment. These names
are formed according to the following
rules:

SECTION-5 and SECTION-7 are
independent segments
(49 < segment limit < 100)

If the program-name is 6, 7, or 8
characters in length, the
segment-name consists of the first
6 characters of program-name plus
the 2-character priority number.

If the program-name is less than 6
characters in length, the priority
number is appended after the
program-name.

Since the system expects the first
character of PROGRAM-ID to be
alphabetic, the first character,
if numeric, is converted as
follows:

0 ->J
1-9 -> A-I

The hyphen is converted to zero if
it appears as the second through
eighth character.

When DECK is specified, the
punched object deck is sequenced
according to segments. Colunns
73-74 contain the first two
characters of the program-id,
columns 75-76 contain the priority
number of the segment, and columns
77-80 contain the segquence number

Using the Segmentation Feature 91

of the card. The priority of the
root segment is punched as 00.

e. When the compiler option CATALR is
in effect, the PHASE card for each
segment is preceded by a CATALR
card with the same name. This
will enable direct cataloging of
the compiler-produced object
module into the relocatable
library from which a load module
may be link edited into the
core-image library. '

Note: Single-digit priority numbers
are preceded by a zero.

Warning: In order to avoid duplicate
names, the programmer must be aware of the
above naming conventions. If the last two
characters of an 8-character PROGRAM-ID are
numeric, these same two characters may not
appear in the source program as a segment
number. '

Figure 26 is an illustration of the
compiler output for the skeleton program
shown in Figure 24.

PHASE SAVECORE,ROOT

{object module for the root segment
(sections with priority-numbers less
than the segment limit) including any
programs called by SAVECORE}

_PHASE SAVECO16,%*
{object module for segments with a
priority of 16 (two sections)}

PHASE SAVECOS50,SRVECO16

{object module for segments with a

L
|
|
|
|
|
|
I
|
|
!
|
|
|
|
|
|
|
| priority of 50 (two sections)}

L
Figure 26. Compiler Output for SAVECORE

LINKAGE EDITOR OUTPUT

Figure 27 is an illustration of the
input to the Linkage Editor and the phase
map produced by the Linkage Editor
resulting from the compilation and editing
of the segmented program BIGJOB. The
following text is an explanation of the
figure.

(:) PHASE card generated by the compiler
for the root segment BIGJOB.

92

AUTOLINK card for the Segmentation
subroutine. '

PHASE cards generated by the compiler
for segments of priority 10, 47-50, 60,
62, and 63.

Control card generated for the Sort
Peature. This card is explained in
"Sort in a Segmented Program."

©® & ©06

Location of the entry point CURSEGHM.
Item 5 is explained in "Determining the
Priority of the Last Segment Loaded
into the Transient Area."

Load address of phase BIGJOB00O. Item 6
is explained in "Sort in a Segmented
Program.”

©)

Note: If the CATALR option of the CBL card
is specified, the compiler generates CATALR
cards in front of PHASE cards.

Cataloging a Segmented Program

When the CATAL option is used to catalog
a segmented program, the following points
should be observed:

1. To avoid duplicate names, the
programmer must be aware of the naming
conventions used by the compiler (see
"Compiler Output") because a
segment-name may be the same as a
phase-name already ex1st1ng in the
core image library.

2. Since the PHASE card is generated by
the compiler, the programmer must not
specify a PHASE card for the program.

To invoke a previously cataloged
segmented program, the programmer must use
the following control statement:

// EXEC name

where name is the program-name specified in
the PROGRAM~ID clause.

Determining the Priority of the Last
Segment lLoaded into the Transient Area

If a segmented program is abnormally
terminated during execution, and the SYMDMP
option has been specified, the CURRENT
PRIORITY cell in the Task Global Table
contains the priority of the last segment
loaded into the transient area. If SYMDMP
has not been specified, the priority of
this segment can be determined as follows:

« In the map of virtual storage
generated by the Linkage Editor, under
the column LABEL, look for the name
'CORSEGM* (see item 5 in Figure 27).

'e Associated with this label, in the
column LOADED, is an address.

}o At this location is stored the
priority (one byte) of the segment
current in the transient area. If
this byte is X'00°', no segment has
been loaded into the transient area.
This indicates that the error causing
the dump occurred in the root segment.

JRT IN A SEGMENTED PROGRAM

If a segmented program contains a SORT
:atement, the sort program will be loaded
»ove the largest overlayable or
idependent segment as shown in Figure 28.

The compiler. accomplishes this by
toviding the following control statement
t the end of the overlay structure:

PHASE BIGJOB(0O,transient area + L

1is card is illustrated in Figure 27, item
. The value of "L" in the figure is
'002F2*' which is the length of the longest
agment, BIGJOB47, rounded to the next
i1l1fword boundary. Note that Linkage

litor relocates the phase BIGJOEOO to the
2xt doubleword boundary (see Figure 27,
tem 6) .

sing the PERFORM Statement in a Seymented
cogram

When the PERFORM statement is used in a
2gmented program, the programmer should be
vare of the following:

s A PERFORM statement that appears in a

section whose priority-number is less
than the segment limit can have within
its range only (a) sections with
priority-numbers less than 50, and (b)
sections wholly contained in a single
segmnent whose priority-number is
greater than 49.

Note: As an extension to American
National Standard COBOL, DOS/VS COBOL
allows sections with any
priority-number to fall within the
range of a PERFORM statement.

A PERFORM statement that appears in a
section whose priority-number is equal
to or greater than the segment limit
can have within its range only (a)
sections with the same priority-number
as the section containing the PERFORM
statement, and (b) sections with
priority-numbers that are less than the
segment limit.

Note: As an extension to American
National Standard COBOL, DOS/VS COROL
allows sections with any
priority-number to fall within the
range of a PERFORM statement.

When a procedure-name in a permanent
segment (priority-number less than
segment limit) is referred to by a
PERFORM statement in an independent
segment (priority-number greater than
49), the independent segment is
reinitialized upon exit from the
PERFORM. When a PERFORM statement

in the overlayable-fixed segment
(priority-number greater than segment
limit and less than 50) refers to a
procedure-name in a permanent segment,
the overlayable-~fixed segment is not
reinitialized upon exit from the
PERFORM,

Using the Segmentation Feature 93

|JOB BIGJ

|
|ACTION TAKEN

MAP

DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT

d

|
|
|
|
|
ILIST PHASE BIGJOB,ROOT<—® |
I 1
le |
l. |
[ILIST AUTOLINK ILBDSEMO |
|LIST AUTOLINK ILBDSRTO |
l. |
l. |
|LIST PHASE BIGJOB10,* |
|LIST PHASE BIGJOBU47,BIGJOB10 |
|LIST PHASE BIGJOBU4S ,BIGJOBU47T |
|LIST PHASE BIGJOB49,BIGJOB4S |
|LIST PHASE BIGJOB50,BIGJOB4Y <—@ i
|LIST PHASE BIGJOB60,BIGJOBS0 |
|LIST PHASE BIGJOB62,BIGJOB60 |
|LIST PHASE BIGJOB63,BIGJOB62 |
ILIST PHASE BIGJOBOO,BIGJOBS3+X'002F2‘4——@ I
[;
F i
PHASE XFR-AD LOCORE HICORE DSK-AD ESD TYPE LABEL LOADED REL-FR
ROOT BIGJOB 003000 003000 0075A3 64 O4 1 CSECT BIGJOB 003000 003000
.
.
.
CSECT ILBDSEMO 006268 006268
* ENTRY CURSEGM 00637D+——(5)
CSECT ILBDSRTO 006B38 006B38
. l
. !
. 1
BIGJOB10 0075a8 O0075A8 O0075E9 64 09 2 CSECT BIGJOB10 O0075A8 0075a8
BIGJOB47 0075A8 O0075A8 007899 65 00 1 CSECT BIGJOBU47 007528 0075a8
BIGJOB4S8 O0075A8 0075A8 0075DB 65 00 2 CSECT BIGJOB48 00758 0075A8
BIGJOB49 0075A8 007528 0075D3 65 01 1 CSECT BIGJOB49 007528 0075A8
I BIGJOB50 0075A8 0075A8 O0075F1 65 01 2 CSECT BIGJOBS0 0075A8 0075A8
BIGJOB60 0075A8 O0075A8 O0076ED 65 02 1 CSECT BIGJOB60 0075r8 0075A8
BIGJOB62 0075A8 0075A8 0075D1 65 02 2 CSECT BIGJOB62 0075a8 0075a8
BIGJOB63 0075A8 0075A8 007621 65 03 1 CSECT BIGJOB63 0075A8 0075A8
BIGJOBOO O0078A0 O0078A0 0078a1 65 03 2 CSECT ILBDDUMO 0078A0_ 0078A0
L -~
Figure 27. 1Link Editing a Segmented Program
r -
1
1
; ROOT] Including COBOL subroutines and called programs
i { ' !
i i TRANSIENT i]
L)} ARERA
I L : . l
iSORT PROGRAM
t 4 I
L = length of the largest segment in bytes.
— J

FPigure 28. Location of Sort Program in a Segmentation Structure

94

PART IT

PROCESSING COBOL FILES ON MASS STORAGE DEVICES ——> @

PROCESSING 3540 DISKETTE FILES

Y

VSAM

Y

7

DETAILED FILE PROCESSING CAPABILITIES

Y

PROCESSING ASCII TAPE FILES

RECORD FORMATS >

95

PROCESSING COBOL FILES ON MASS STORAGE DEVICES

A mass storage device is one on which
cords can be stored in such a way that
e location of any one record can be
termined without extensive searching.
cords can be accessed directly rather
an serially.

The recording surface of a mass storage
'vice is divided into many tracks. A °
‘ack is defined as a circumference of the
:cording surface. The number of tracks
'r recording surface and the capacity of a
‘ack for each device are shown in Table 9.

supported disk device at execution time by
specifying the appropriate ASSIGN, DLBL,
and EXTENT statements.

For non-vVsSAM files, the COBOL compiler
requires a device code to be used in the
ASSIGN TO statement in the source program.
This code does not entirely restrict the
type of device that may be used; the device
assigned at execution time may be of any
other compatible type. For example, a 3350
can be used at execution time, even though
the source program contained the device
code 3330.

tble 9. Recording Capacities of Mass
Storage Devices FILE ORGANIZATION
levice Capacity
Records in file t ical
1311 200 tracks per surface; 3625 orgaiizzd 5; tﬁatltheguianbgeloglca Ly
bytes per track. retrieved efficiently for processing. Four
methods of organization for mass storage
Eglg' 202 tracks per sErface; 7254 devices are supported by the DOS/VS
N ytes per track. COBOL compiler: sequential, direct,
. relative, and indexed. See Table 9.1 for
3330 u0£ tracks pir s;rface, 13030 a graphic description of which method of
ytes per track. organization is supported by which access
3330-11% 808 tracks per surface; 13030 method.
bytes per track.
3340 348 tracks per surface; 8368 Table 3.1 ﬁ;iioggganlzatlon and Access
Model 35 bytes per track.
3340 696 tracks per surface, 8368 vVSaM | SAM | ISAM DAI1
Model 70 bytes per track. S tial X X
equentia
3350 555 tracks per surface; 19069 .)(
bytes per track. Direct :
3375%% 959 tracks per surface; 35616 Relative : X
bytes per track. Indexed X X

*In the COBOL ASSIGN statement, the 3330-11

is specified as 333B.

#¥In the COBOL ASSIGN statement, the 3375 is
specified as 3330, 3340, 3350, or 333B.

Each device has some type of access
echanism through which data is transferred
o and from the device. The mechanisms are
ifferent for each device, but each
echanism contains a number of read/write
eads that transfer data as the recording
urfaces rotate past them. Only one head
an transfer data (either reading or
riting) at a time.

'EVICE INDEPENDENCE

Under DOS/VSE with Advanced Function, a
iser may specify one disk device in the
'OBOL program, and use that or any other

. SEQUENTIAL ORGANIZATION

In a sequential file, records are
organized solely on the basis of their
successive physical location in the file.
The records are read or updated in the same
order in which they appear.

Individual records cannot be located
quickly. Records usually cannot be deleted
or added unless the entire file is
rewritten. This organization is used when
most of the records in the file are
processed each time the file is used.

DIRECT ORGANIZATION

A file with direct organization is
characterized by some predictable
relationship between the key of a record

Processing COBOL Files on Mass Storage Devices 97

and the address of that record on a mass
storage device. This relationship is
established by the programmer.

Direct organization is generally used
for files where the time required to locate
individual records must be kept to an
absolute minimum, or for files whose
characteristics do not permit the use of
sequential or indexed organization.

This organization method has
considerable flexibility. The accompanying
disadvantage is that although the Disk
Operating System/Virtual Storage provides
the routines to read or write a file of
this type, the programmer is largely
responsible for the logic and programming
required to locate the key of a record and
its address on a mass storage device.

Note: Direct organization is not supported
on fixed block devices.

INDEXED ORGANIZATION

An indexed file is similar to a
sequential file in that rapid sequential
processing is possible. The indexes
associated with an indexed file also allow
quick retrieval of individual records
through random access. Moreover, a
separate area of the file is set aside for
additions; this eliminates the need to
rewrite the entire file when adding
records, a process that would usually be
necessary with a sequentially organized
file. Although the added records are not
physically in key sequence, the indexes
are constructed in such a way that the
added records can be quickly retrieved
in key sequence, thus making rapid
sequential access possible.

In this method of organization, the
system has control over the location of the
individual records. Since the
characteristics of the file are known, most
of the mechanics of locating a particular
record are handled by the systenm.

Note: Indexed organization is not supported
on fixed block devices.

DATA_MANAGEMENT CONCEPTS

The data management facilities of the
Disk Operating System Virtual Storage are
provided by a group of routines that are
collectively referred to as the
Input/Output Control System (IOCS). A
distinction is made between two types of
routines:

Physical IOCS_ (PIOCS) -- the physical

input/output routines included in the
Supervisor. PIOCS is used by all

1.

98

programs run within the system. It
includes facilities for scheduling
input/output operations, checking for
and handling error conditions related
to input/output devices, and handling
input/output interruptions to maintain
maximum input/output speeds without
burdening the programmer's problem
program.

Logical TOCS (LIOCS) -- the logical
input/output routines linked with the
programmer's problem program. These
routines provide an interface between
the programmer's file processing
routines and the PIOCS routines.

LIOCS performs those functions that a
programmer needs to locate and access
a logical record for processing. A
logical record is one unit of
information in a file of similar
units, for example, one employee's
record in a master payroll file, one
part-number record in an inventory
file, or one customer account record
in an account file. One or more
logical records may be included in one
physical record. LIOCS refers to the
routines that perform the following

functions:

a. Blocking and deblocking records

b. Switching between input/output
areas when two areas are specified
for a file

c. Handling end-of-file and
end-of-volume conditions

d. Checking and writing labels

A brief description of functions
performed by LIOCS and their relationship
to a COBOL program follows.

Whenever COBOL imperative-statements
(READ, WRITE, REWRITE, etc.) are used in a
program to control the input/output of
records in a file, that file must be
defined by a DTF (Define The File) or, for
VSAM, an ACB (Access Method Control Block).
A DTF or ACB is created for each file
opened in a COBOL program from information
specified in the Environment Division, FD
entry, and input/output statements in the
source program. The DTF for each file is
part of the object module that is generated
by the compiler. The ACB is generated at
object time. They describe the
characteristics of the logical file,
indicate the type of processing to be used
for the file, and specify the storage areas
and routines used for the file. Further
and more detailed onformation in VSAM is to
be found in the chapter "VSAM."

One of the constants in the DTF table is
he address of a logic module that is to be
sed at execution time to process that
ile. A logic module contains the coding
ecessary to perform data management
unctions required by the file such as
locking and deblocking, initiating label
hecking, etc.

Generally, these logic modules are
ssembled separately and cataloged in the
elocatable library under a standard name.
t link edit time, the Linkage Editor
earches the relocatable library using the
irtual reference to locate the logic
odule. The logic module is then included
s part of the program phase. Note that
ince the Autolink feature of the Linkage
ditor is responsible for including the
ogic modules, the COBOL programmer need
ot specify any INCLUDE statements.

The type of DTF table prepared by the
'ompiler depends on the organization of the
‘ile and the device to which it is
.ssigned. The DTF's used for processing
‘iles assigned to mass storage devices are
s follous:

DTFSD -- Seguential organization,
sequential access

DTFDA -- Direct organization,
sequential or random access

DTFIS -- Indexed organization,

Processing COBOL Files on Mass Storage Devices

98.1

Page of SC28-6478-~3, As Updated 28 Dec 1979, By TNL SN20-9310

For a 3540 diskette unit, the DTPF is
TFDU. More detail on this is given in the
hapter "Processing 3540 Diskette Unit
iles.”

The remainder of this chapter provides
nformation about preparing programs which
rocess files assigned to mass storage
evices. Included are general descriptions
f the organization, the COBOL statements
hat must be specified in order to build
he correct DTF tables, and coding
xamples.

EQUENTTAL ORGANIZATION (DTFSD)

In a sequential file on a mass storage
evice, records are written one after
nother -- track by track, cylinder by
ylinder -- at successively higher
ddresses.

Records may be fixed-length, spanned, or
ariable-length, blocked or unblocked, or
ndefined. Since the file is always
ccessed sequentially, it is not formatted
ith keys. ‘

Processing a sequentially organized file
‘or selected records is inefficient. If it
s done infrequently, the time spent in
ocating the records is not significant.

‘he slowest way is to read the records
‘equentially until the desired one is
ocated. On the average, half of the file
ust be read to locate one record.

Additions and deletions require a
omplete rewrite of a sequentially
rganized file on a mass storage device.
equential organization is used on mass
itorage devices primarily for tables and
ntermediate storage rather than for master
iles.

Sequentially organized files formatted
'ith keys cannot be created using DTFSD.
'TFDA may be used to create and access
'sequentially or randomly) such files.

JSAM SPACE MANAGEMENT FOR SAM

Under DOS/VSE Advanced Functions, Release

2 and up, sequential files on mass storage
jevices can be defined explicitly or
implicitly in VSAM space.

EXPLICIT DEFINITION: Use Access Method
Services to DEFINE a VSAM sequential file
with the required RECORDSIZE. Supply a
DLBL statement for the file, specifying
VSAM. No EXTENT statement is needed.

IMPLICIT DEFINITION: Supply a DLBL
statement for the file, specifying VSAM,
as well as the RECORDS and RECSIZE
parameters. The volume can be specified
through an EXTENT statement or through a
default model for a VSAM sequential file.

For detailed information, see the Using
the VSE/VSAM Space Management for SAM
Feature manual.

COBOL RESTRICTIONS: For VSAM-managed
sequential files, there are the following
restrictions on COBOL source programs:

User labels are ignored.
Spanned records are not supported.
Forced-end-of-volume (FEOVD) issued

by the CLOSE UNIT statement is
ignored.

PROCESSING A SEQUENTIALLY ORGANIZED FILE

To create, retrieve, or update a DTFSD
file, the following specifications should
be made in the source program:

ENVIRONMENT DIVISION

Reqguired_clauses:

SELECT [OPTIONAL] file-name

2311
i
uT 2319
ASSIGN TO SYSnnn- - { 3330 »-s
DA 333B
3340
3350
FBAl

Optional clauses:

RESERVE Clause

FILE-LIMIT Clause

ACCESS MODE IS SEQUENTIAL

PROCESSING MODE IS SEQUENTIAL

RERUN Clause

SAME Clause

APPLY WRITE-ONLY Clause .(create only)

APPLY WRITE-VERIFY Clause (create or
update only)

Invalid clauses:

ACCESS MODE IS RANDOM
ACTUAL KEY Clause

NOMINAL KEY Clause

RECORD KEY Clause
TRACK-AREA Clause
MULTIPLE FILE TAPE Clause

Processing COBOL Files on Mass Storage Devices 99

Page of SC28-6478-3, As Updated 28 Dec 1979, By TNL SN20-9310

APPLY EXTENDED-SEARCH Clause
APPLY CYL-OVERFLOW Clause

MASTER-INDEX
APPLY Clause

CYL-INDEX
APPLY CORE-INDEX Clause

DTFSD files may be opened as INPUT,
OUTPUT, or I-O. When creating such a file,
an INVALID KEY condition occurs when the
file limit has been reached and an attempt
is made to place another record on the mass
storage device. The file limit is
determined from the EXTENT control
statements.

When a DTFSD file is opened as OUTPUT,
each WRITE statement signifies the creation
of a new record. When opened as I-0, each
WRITE statement signifies that the record
just read is to be rewritten.

At open time, the DTEFSD is saved behind
the DTF (+240). When the file is closed,
the original DTFSD is restored from the
save area for subsequent open statements.

DIRECT ORGANIZATION_ (DTFDA)

With direct organization, there is a
definite relationship beteween the key of a
record and its address. This relationship
permits rapid access to any record if the
file is carefully organized. The
programmer develops a record address that
ranges from zero to some maximum by
converting a particular field in each
record to a track address. Each byte in
the address is a binary number. To
reference a particular record, the
programmer must supply both the track
address and the identifier that makes each
record unique on its track. Both the track
address and the identifier are supplied by
the programmer in the ACTUAL KEY clause.
This will be discussed in detail later in
this chapter.

With direct organization, records may be
fixed length, spanned or undefined. The
records must be unblocked. RO (record
zero) of each track is used as a capacity
record. It contains the address of the
last record written on the track, and is
used by the system to determine whether a
new record will fit on the track. The
capacity records are updated by the systenm
as records are added to the file. The
capacity records do not account for
deletions: as far as the system is
concerned, once a track is full it remains
full (even if the programmer deletes
records) until the file is reorganized.

100

Often, more records are converted to a
given track address than will actually fit
on the track. These surplus records are
known as overflow records and are usually
written into a separate area known as an
overflow area.

As already noted, the programmer has an
unlimited choice in deciding where records
are to be located in a directly organized
file. The logic and programming are his
responsibility.

When creating or making additions to the
file, the programmer must specify the
location for a record (track address) and
the identifier that makes each record on
the track uniqgue. 1If there is space on the
track, the system writes the record and
updates the capacity record. If the
specified track is full, a standard error
condition occurs, and the programmer may
specify another track address in his USE
AFTER STANDARD ERROR declarative routine.

In the case of one maximum size record
per track (when spanned records are not
specified), the data length plus the length
of the symbolic key cannot exceed the
following values:’

2311 -- 3605 bytes
2314, 2319 -- 7249 bytes
2321 -- 1984 bytes
3330 -~ 12974 bytes
3340 -~ 8293 bytes
3350 -- 18987 bytes

When reading or updating the file, the
programmer must supply the track address
and the unique identifier on the track for
the specific record being sought. The
systemn locates the track and searches that
track for the record with the specified
identifier. If the record is not found,
COBOL indicates this to the programmer by
raising an INVALID KEY condition. Only the
track specified by the programmer is
searched. If EXTENDED-SEARCH is applied,
the search for a specified record key begins
on the track specified and continues until
one of two conditions occurs:

1. The record is found.

2. The end of the specified cylinder
is reached.

In the second case, the INVALID-KEY option

of the READ or REWRITE is executed. To

ansure file integrity, the upper limit of
each extent of a file using EXTENDED-SEARCH
must be the last track of a cylinder.

Error recovery from a DTFDA file is
described in detail in the chapter
"Detailed File Processing Capabilities."

Page of SC28-6478-3, As Updated 28 Dec 1979, By TNL SN20-9310

ACCESSING A DIRECTLY ORGANIZED FILE 2311
2321

1 . 2314 A

A directly organized file (DTFDA) may be 2319 _

accessed either sequentially or randomly. ASSIGN TO SYSnnn-DA- ¢ 3349 o
333B
ACCESSING A DIRECTLY ORGANIZED PILE 3340
SEQUENTIALLY: When reading a direct file 3350

sequentially, records are retrieved in
logical sequence; this logical sequence
corresponds exactly to the physical
sequence of the records. To retrieve a
DTFDA file sequentially, the following

e e . : FILE-LIMIT Clause
specifications are made in the source ACCESS MODE IS SEQUENTIAL

program: PROCESSING MODE IS SEQUENTIAL
ACTUAL KEY Clause
RERUN Clause
SAME Clause

Optional_clauses:

Invalid clauses:

RESERVE Clause
ACCESS MODE IS RANDOM

ENVIRONMENT DIVISION NOMINAL KEY Clause
RECORD KEY Clause
Required clauses: TRACK-AREA Clause
MULTIPLE FPILE TAPE Clause
SELECT [OPTIONAL] file-name APPLY WRITE-ONLY Clause

Processing COBOL Files on Mass Storage Devices 100.1

APPLY CYL-OVERFLOW Clause
APPLY EXTENDED- SEARCH Clause
APPLY WRITE-VERIFY Clause

MASTER-INDEX

APPLY
CYL-INDEX

} Clause

APPLY CORE-INDEX Clause

When DTFDA records are retrieved
equentially, the file may be opened only
s INPUT. The AT END condition occurs when
he last record has been read and execution
f another READ is attempted.

Note that in the ASSIGN clause, an A
ust be specified for files with actual
rack addressinag, and a D must be specified
or files with relative track addressing.

CCESSING A DIRECTLY ORGANIZED FILE
ANDOMLY: To create a directly organized
ile randomly, the following specifications

re made in the source program:

NVIRONMENT DIVISION

equired clauses:

SELECT file-name 2311

2321

2314 |
2319\ _JA
3330

333B
3340
3350

ACCESS MODE IS RANDOM
ACTUAL KEY Clause

ASSIGN TO SYSnnn-DA-

iptional clauses:

FILE-LIMIT Clause

PROCESSING MODE IS SEQUENTIAL
RERUN Clause

SAME Clause

APPLY WRITE-VERIFY Clause

nvalid clauses:

RESERVE Clause

ACCESS MODE IS SEQUENTIAL
NOMINAL KEY Clause :
RECORD KEY Clause

TRACK-AREA Clause

MULTIPLE FILE TAPE Clause
APPLY WRITE-ONLY Clause
APPLY EXTENDED-SEARCH Clause
APPLY WRITE-VERIFY Clause
APPLY CYL-OVERFLOW Clause

MASTER-INDEX
APPLY Clause
CYL-INDEX

APPLY CORE-INDEX Clause

Note that in the ASSIGN clause, an A
must be specified for files with actual
track addressing, and a D must be specified
for files with relative track addressing.

To retrieve or update a directly
organized file randomly, the following
specifications must be made in the source
program.

ENVIRONMENT DIVISION

Required clauses:

2311
2314
2321
2319
ASSIGN TO S¥Snnn-DA 3330
333B
3340

3350

SELECT file-name

GO

ACCESS MODE IS RANDOM
ACTUAL KEY Clause

Note that in the ASSIGN clause an A must
be specified for files with actual track
addressing, a D must be specified for files
with relative track addressing, a U must be
specified for files with actual track
addressing when the REWRITE statement is
used, and W nmust be specified for files
with relative track addressing when the
REWRITE statement is used.

The optional and invalid clauses are the
same as those specified previously for
creating a directly organized file.

Exception: APPLY EXTENDED-SEARCH is
optional when retrieving or updating a
directly organized file randomly.

ECTUAL XEY CLAUSE

Note that the ACTUAL KEY clause is
required for DTFDA files when ACCESS IS
RANDONM, is optional for DTPDA files when
ACCESS IS SEQUENTIAL, and is not used for
DTPSD files.

The actual key consists of two
components. One component expresses the
track address at which the record is to be
placed for an output operation, or at which
the search is to begin for an input
operation. The track address can be
expressed either as an actual address or as
a relative address, depending upon the
addressing scheme chosen when the file was
created. The other component is associated
with the record itself and serves as its
unigue identifier. The structures of both

. actual keys are shown in Figure 29.

Processing COBOL Files on Mass Storadge Devices 101

through 258 bytes in length. It must be

T ¥
| | defined in the File Section, the Working-
| r v | Storage Section, or the Linkage Section.
| | Actual Key]] The first four bytes of data-name are the
{ t : 4 track identifier. The identifier is used
| JActual Track |Record Identifier| | to specify the relative track address for
| {Address | | the record and must be defined as an
! L L 4| 8-integer binary data item whose maximum
|Byte 1 8 9 263 | value does not exceed 16,777,215. The
|] remainder of data-name, which is 1 through
| r - | 254 bytes in length, is the record
| | Actual Key [identifier. It represents the symbolic
| t T 4 | portion of the key field used to identify a
| |Relative |Record Identifier| | particular record on a track.
| ITrack Address| b
| t 1 — For a complete discussion of the ACTUAL
|Byte 1 4 5 258 | KEY clause, see the publication IBM_DOS
L 4 Full American National Standard COBOL.
Figure 29. Structures of the Actual Key
The format of the ACTUAL KEY clause is: Randomizing Technigues
ACTUAL KEY IS data-name
One method of determining the value of
When actual track addressing is used, the track address portion of the field
data-name may be any fixed item from 9 defined in the ACTUAL KEY clause is
through 263 bytes in length. It must be referred to as indirect addressing.
defined in the Working-Storage, File, or Indirect addressing generally is used when
Linkage Section. The first eight bytes are the range of keys for a file includes a
used to specify the actual track address. high percentage of unused values. For
The structure of these bytes and example, employee numbers may range from
permissible specifications for the mass 000001 to 009999, but only 3000 of the
storage devices are shown in Fiqure 30. possible 9999 numbers are currently
The programmer may select from 1 to 255 assigned. Indirect addressing is also used
bytes for the record identifier portion of for nonnumeric keys. Key, in this
the actual key field. discussion, refers to that field of the
record being written that will be converted
Note: If a SEEK statement is used when to the track address portion.
retrieving a direct file randomly, actual
track addressing is required. Indirect addressing signifies that the
key is converted to a value for the actual
When relative track addressing is used, track address by using some algorithm
data-name may be any fixed item from 5 intended to limit the range of addresses.
I L ¥ T L T
i Pack | Cell | Cylinder | Head | Record i
k } 7 t Y t Y 1 —
| M | B 1 B 1 C ! c 1 B E | R
1 1 t } } } } t |
| Byte | | i | | | | |]
| 1 I | | I | | | |
| Device | 0] 1 1 2 | 3 | 4 | 5 6 | 7
k } . + } 1 t t }] 4
I 2311 i 0-221 1 O] 0 (0 | 0-199 | 0] 0-9 | 0-255 |
t } —t + } t } + } -+
[2314 | 0-221 i 0 | o0 | o0 | 0-199 | 0] 0-19 | 0-255 I
t + t } + i t } + 4
| 2321 i 0-221 | 0 } 0-9 | 0-19 | 0-9 I 0-4 | 0-19 | 0-255 |
t } i } t L t t 1 —
] 3330 | 0-221 | O | o | 0-403 [0| 0-18 | 0-255 [
F } } + } + } } —
I 3330-11 l 0-221 o | | 0-807 [ol o-18 | 0-255 |
H f ; f t } f f —
| 3340 Model 35| 0-221 1 0 | 0 | 0-347 | 0| 0-11 | 0-255]
L 4 1] i 1 1 1 4
1 1 T T] 1] T 1 L}
| 3340 Model 70} 0-221 | 0 | 0 | 0-695 | 0] 0-11 | 0-255 |
— 1 t } ! } i —
| 3350 ! 0-221 o | o 0-554 ! ol 0-29 | 0-255 !

Figure 30. Permissible Specifications for the Pirst Eight Bytes of the Actual Key
102

ich an algorithm is called a randomizing
achnique. Randomizing techniques need not
roduce a unique address for every record
1d, in fact, such technigues usually
roduce synonyms. Synonyms are records
10se keys randomize to the same address.

Two objectives must be considered in
2lecting a randomizing technique:

1. Every possible key in the file must
randorize to an address within the
designated range.

2. The addresses should be distributed
evenly across the range so that there
are as few synonyms as possible.

Note that one way to minimize synonyms
s to allocate more space for the file than
s actually required to contain all the
ecords. For example, the percentage of
ocations that are actually used might be
0% to. 85% of the allocated space.

When actual track addressing is used,
he first eight bytes of the ACTUAL KEY
ield can be thought of as a "discontinuous
inary address.™ This is significant to
he programmer because he must keep two
onsiderations in mind. First, the
ylinder and head number must be in binary
otation, so the results of the randomizing
ormula must be in binary format. Second,
he address is M"discontinuous"™ since a
athematical overflow from one element
€.g., head number) does not increment the
djacent element (e.g., cylinder number).

JIVISION/REMAINDER METHOD: One of the
implest ways to indirectly address a
Airectly organized file is by using the
ivision/remainder method. (For a
iscussion of other randomizing techniques,
;ee the publication Introduction to_IEM
iirect Access_Storage Devices and
rganization Methods, Order No.

C20-1649.)

1. Determine the amount of locations
required to contain the data file.
Include a packing factor for
additional space to eliminate
synonyms. The packing factor should
be approximately 20% of the total
space allocated to contain the data
file. '

2. Select, from the prime number table,
the nearest prime nunber that is less
than the total of step 1. A prime
number is a number divisible only by
itself and the integer 1. Table 10 is
a partial list of prime numbers.

3. Clear any zones from the first eight
bytes of the actual key field. This

can be accomplished by moving the key
to a field described as COMPUTATIONAL.

4, Divide the key by the prime number
selected.

5. Ignore the quotient; utilize the
remainder as the relative location
within the data file.

6. (For actual track addressing only)
Locate the beginning of the space
available and manipulate the relative
address, to the actual device address
if necessary.

For example, assume that a company is
planning to create an inventory file on a
2311 disk storage device. There are 8000
different inventory parts, each identified
by an 8-character part number. Using a 20%
packing factor, 10,000 record positions are
allocated to store the data file.

Method A: The closest prime number to
10,000, but under 10,000, is 9973. Using
one inventory part number as an example, in
this case #25DF3514, and clearing the zones
we have 25463514. Dividing by 9973 we get
a guotient of 2553 and a remainder of 2445,

" 2445 is the relative location of the record

within the data file corresponding to part
number 25DF3514. The record address can be
determined from the relative location as

" follows:

1. (For actual track addressing only)
Determine the beginning point for the
data file (e.g., cylinder 100, track
0.

2. Determine the number of records that
can be stored on a track (e.g., twelve
per track on a 2314 disk pack,
assuning each inventory record is 200
bytes long).

Because each data record contains
non-data components, such as a count
area and interrecord gaps, track’
capacity for data storage will vary
with record length. As the number of
separate records on a track increases,
interrecord gaps occupy additional
byte positions so that data capacity
is reduced. Track capacity formulas
provide the means to determine total
byte requirements for records of
various sizes on a track. These
formulas can be found in the
publications IBM_Component
Descriptions, Order Nos.
and GA26-3599.

GA26-5988

3. Divide the relative number (2445) by
the number of records to be stored on
each track.

Processing COBOL Files on Mass Storage Devices 103

4,

4B.

Method B:

(For actual track addressing only) 1.
The result, qdotient = 203, is now

divided into cylinder and head

designation. Since the 2311 disk pack

has ten heads, the guotient of 203 is
divided by 10 to show:

«€ylinder or CC = 20 2.
Head or HR = 03 (high-order zero

added)
(FPor relative track addressing only) 3.

The result, quotient = 203, now
becomes the track identifier of the
actual key.

Utilizing the same exanmple,

another approach will also provide the
relative track address:

104

The number of records that may be
contained on one track is twelve.
Therefore, if 10,000 record locations
are to be provided, 834 tracks must be
reserved.

The prime number nearest, but less
than 834, is 829,

Divide the zone-stripped key by the
prime value. (In the example,
25463514 divided by 829 provides a
quotient of 30715 and a remainder of
779. The remainder is the relative
address.)

table 10.

(Part 1 of 2)

Partial List of Prime Numbers Table 10. Partial List of Prime Numbers

(Part 2 of 2)

I T L] L] 1
A	B		A B	
(Number)	(Nearest Prime Number	}	(Numnber)	(Nearest Prime Number
	Less Than A)]	Less Than 3)	
= = — : q				
500	499	i 5600 } 5591		
600	599		5700	5693
700	691		5800	5791
800	797		5900	5897
900	887		6000	5987]
1000	997		6100	6091 '
1100 i 1097 I	6200 1 6199			

1200	1193]	6300	6299	
1300	1297]	6400	6397	
1400	1399		6500	6491
1500	1499		6600] 6599 "	
1600	1597 I ! 6700 I 6691			
1700	1699]] 6800	6793		
1800	1789	il 6900	6899 1	
1900	1889		7000	6997 1
2000	1999		7100	7079

| 2100 | 2099 | | 7200 | 7193 1
| 2200 | 2179] | 7300 | 7297 [
1 2300 | 2297 | | 7400] 7393 |
2400	2399		7500 } 7499
2500	2477]	7600	7591
2600	2593] 7700	7699
] 2700 1 2699		7800	7793
2800	2797	I 7900	7883
2900	2897 1	8000	7993
3000	2999	i 8100	8093
3100	3089]	8200	8191
3200	3191		8300
3300	3299		8400
3400 i 3391	l 8500	8u67]	
3500	3499]	8600 1 8599	

3600	3593 i	8700	8699	
3700	3697		8800) 8793	
3800	3797		8900	8899
i 3900	3889 1 1 9000 i 8899			
] 4000	3989] 9100	9091	
4100	4099]	9200	9199	
4200	4177]	9300) 9293		
4300 i 4297]	9400] 9397			
4400 1 4397		9500	9497 I	
4500 } 4493		9600	9587]	
4600	4597		9700	9697
4700	4691		9800	9791

| 4800 | 4799 | | 9900 I 9887 |
| 4900 | 4889 i | 10,000 | 9973 [
| 5000 | 4995 | | 10, 100 | 10,099]
| 5100 | 5099 | | 10,200 1 10,193 |
| 5200 1 4197 | | 10,300 | 10,289 l
5300	5297 l	10,400	10,399	
5400 I 4399	! 10,500	10,499		
5500	5483		10,600	10,597
1 L] L . |3)

Processing COBOL Files on Mass Storage Devices 105

4. (For actual track addressing only) To
convert the relative address to an
actual device address, divide the
relative address by the number of
tracks in a cylinder. The guotient
will provide the cylinder number and
the remainder will be the track
number. For example, the 2311 disk
pack would utilize 779 as:

Cylinder or CC = 77
Track or HH = 9

Figure 31 is a sample COBOL progran
which creates a direct file with actual
track addressing using Method B and
provides for the possibility of synonym
overflow. Synonym overflow will occur if a
record randomizes to a track that is
already full. The following description
highlights the features of the example.
Circled numbers on the program listing
correspond to the numbers in the text.

(@) The value 10 is added to TRACK-1 to
ensure that the problem program does
not write on cylinder 0. <Cylinder 0
must be reserved for the Volume Table
of Contents.

e Since the prime number used as a
divisor is 829, the largest possible
remainder will be 828. Adding 10 to
TRACK-1 adjusts the largest possible
remainder to 838.

(:) If synonym overflow occurs, control is
given to the error procedure
declarative specified in the first
section of the Procedure Division.

The declarative provides that:

e Any record which cannot fit on a
track (i.e., tracks 0 through 8 of
any cylinder) will be written in the
first available position on the
following track(s).

e Any record which cannot fit within a
single cylinder will be written on
cylinder 84 (i.e., the cylinder
overflow area).

106

e If a record cannot fit on either
cylinders 1 through 83, or on
cylinder 84, the job is terminated.

The standard error condition "no roon
found® is tested before control is
given to the synonym routine. Other
standard error conditions as well as
invalid key conditions result in Jjob
termination.

ERROR-COND is the identifier which
specifies the error condition that
caused control to be given to the
error declarative. ERROR-COND is
printed on SYSLST whenever the error
declarative section is entered.
TRACK~ID and C-REC are also printed on
SYSLST. They are printed before the
execution of each WRITE statement.
This output has been provided in order
to facilitate an urderstanding of the
logic involved in the creation of
D-FILE.

The first twelve records which
randomize to cylinder 002 track 8 are
actually written on track 8.

The next twelve records which
randomize to cylinder 002 track 8 are
adjusted by the SYNONYM-ROUTINE and
written on cylinder 002 track 9.

The next twelve records which
randomize to cylinder 002 track 8 are
adjusted by the SYNONYM-ROUTINE and
written on cylinder 84 track 0 (i.e.,
the overflow cylinder).

The last two records which randomize
to cylinder 002 track 8 are adjusted
by the SYNONYM-ROUTINE and written on
cylinder 84 track 1 (i.e., the
overflow cylinder).

// JOB METHODBA
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

1 IBM DOS VS COBOL REL 1.0 PP NO. 5746-CB1 08.47.44 10/04/73

IDENTIFICATION DIVISION.
PRCGRAIM-ID. METhOD-B.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL. .
SELECT D-FILE ASSIGN SYS015-DA-2314~A-MASTER
ACCESS IS RANDOM
ACTUAL KEY IS ACT-KEY.
SELECT C-FILE ASSIGN TO SYS007-UR-2540r-S.
DATA DIVISION.
FILE SECTION.

FD D-FILE
LABEL RECORDS ARE STANDARD.
01 D-REC.

02 PART-NUM PIC X(8).
02 NUNM-ON-HAND PIC 9(4).
02 PRICE PIC 9(5)v99.
02 FILLER PIC X(181).

FD C-FILE
LABEL RECORDS ARE OMITTED.
01 C-REC.

02 PART-NUM PIC X(8).
02 NUM-ON-HAND PIC 9(4)9.
02 PRICE PIC 9(5)V99.
WORKING-STORAGE SECTION.
77 BHD PIC 9 VALUE ZERO.
77 SAVE PIC 59(8) COMP SYNC.
77 QUOTIENT PIC S9(5) COMP SYNC.
01 ERROR-COND.
02 FILLER PIC 99 VALUE ZERO.
02 ERR PIC 9 VALUE ZERO.
02 FILLER PIC 9(5) VALUE ZERO.
01 TRACK-1 PIC 9999.
01 TRACK-ID REDEFINES TRACK-1.
02 CYL PIC 999. ’
02 HEAD PIC 9.
01 KEY-1.
02 M PIC S999 COMP SYNC VALUE ZEROES.
02 BB PIC S9 COMP SYNC VALUE ZERO.
02 CC PIC S999 COMP SYNC.
02 HH PIC S999 COMP SYNC.
02 R PIC X VALUE LOW-VALUE.
02 REC-ID PIC X(8).
01 KEY-2 REDEFINES KEY-1.
02 FILLER PIC X.
02 ACT-KEY PIC X(16).

*igure 31. Creating a Direct File Using Method B (Part 1 of 4y

Processing COBOL Files on Mass Storage Devices 107

IBM DOS VS COBOL

REL 1.0 PP NO. 5746-CBl

PROCEDURE DIVISION.
DECLARATIVES.
ERROR-PROCEDURE SECTION. USE AFTER STANDARD ERROR PROCEDURE

ON D-FILE GIVING ERROR-COND.

ERROR-ROUTINE.
EXHIBIT NAMED ERROR-COND.

IF ERR = 1 GO TO SYNONYM-ROUTIWE ELSE (:)
DISPLAY ‘OTHER STANDARD ERROR' REC-ID
GO TO £0J. (:)
SYNONYM-ROUTINE.
IF CC = 84 AND HD = 9 DISPLAY 'OVERFLOW AREA FULL'
GO TO EOJ.

IF CC = 84 ADD 1 TO HD GO TO ADJUST-HD.
IF HH = 9 GO TO END-CYLINDER.
ADD 1 TO HH.
GO TO WRITLS.
END-CYLINDER.
MOVE 84 TO CC.
ADJUST-HD.
MOVE HD TO HH.
GO TO WRITES.
END DECLARATIVES.
FILE-CREATION SECTION.
OPEN INPUT C-FILE
OUTPUT D-FILE.
READS.
READ C-FILE AT END GO TO EOJ.
MOVE ‘CORRESPONDING C~REC TO D-REC.
MOVE PART-NUM OF C-REC TO REC-ID SAVE.
DIVIDE SAVE BY 829 GIVING QUOTIENT REMAINDER TRACK-1.
ADD 10 TO TRACK-1.
MOVE CYL TO CC.
MOVE HEAD TO HH.
WRITES.
EXHIBIT NAMED TRACK-ID C-REC CC HH.
WRITE D-REC INVALID KEY GO TO INVALID-KEY.
GO TO READS.
INVALID-KEY.
DISPLAY *INVALID KEY' REC-ID.
EOJ.
CLOSE C-FILE D-FILE.
STOP RUN. :

®

// LBLTYP NSD(01)

// EXEC LNKEDT

Figure 31.

108

Creating a Direct File Using Method B (Part 2 of 4)

08.47.44

10/04/7:

IBM DOS VS COBOL REL 1.0 PP NO.5746-CBl 08.47.44 lo/04/73

// ASSGN SYsS007,X*'0CC'

// ASSGN SYS015,X°231'

// DLBL MASTER,,99/365,DA

// EXTLAT SYS015,111111,1,0,20,840

// EXEC
TRACK-ID = 0010 C~REC = 82900000 CC = 001 HH = 000
TRACK-ID = 0011 C-REC = 82900001 cC = 001 uH = 001
TRACK-ID = 0028 C-REC = 8290001801 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001802 cC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001803 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001804 cC = 002 BH = 008
TRACK-ID = 0028 C-REC = 8290001805 CC = 002 HH = 008 (:)
TRACK-ID = 0028 C-REC = 8290001806 CcC = 002 HH = 008
TPACK-ID = 0028 C-REC = 8290001807 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001808 CC = 002 AH = 008
TRACK-ID = 0028 C-REC = 8290001809 cC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001810 cC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001811 CC = 002 Hd = 008
TRACK-ID = 0028 C-REC = 8290001812 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001813 cC = 002 HH = 00§
TRACK-ID = 0028 C-REC = 8290001814 CC = 002 uH = 008
TKACK-ID = 0186 C-REC = 290001815 CC = 018 Hd = 006
TRACK-ID = 0186 C-REC = 290001816 cC = 018 HH = 006
TRACK-ID = 0028 C-REC = 8290001817 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001818 cc = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001819 cC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001820 CcC = 002 A4 = 008 (:>
TRACK-ID = 0028 C-REC = 8290001821 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001822 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001823 CC = 002 rd = 008
ERROR-COND = 00100000

TRACK-ID = 0028 C-REC = 8290001823 CC = 002 Hd = 009
TRACK-ID = 0028 C-REC = 8290001824 CC = 002 HH = 008
ERROR-COND = 00100000

TRACK-ID = 0028 C-REC = 8290001824 cC = 002 #HH = 009

*igure 31. Creating a Direct File Using Method B (Part 3 of 4)

Processing COBOL Files on Mass Storage Devices 109

IBM DOS

TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID
TRACK-ID
TRACK-ID
TRACK-ID
TRACK-ID
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR~COND
TRACK-ID =
TRACK-ID =
ERROR~COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR~COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =

Figure 31.

110

VS COBOL

0028 C-REC
= 00100000
0028 C-REC
0028 C-REC
= 00100000
0028 C-REC
0011 C-REC
0011 C-REC
0011 C-REC
0028 C-REC
= 00100000
0028 C-REC
0028 C-REC
='00100000
0028 C-REC
0028 C-REC
= 00100000
0028 C-REC
0028 C-REC
= 00100000
0028 C~REC
0028 C-REC
= 00100000
0028 C-REC
0028 C-REC
= 00100000
0028 C-REC
0028 C-REC
= 00100000
0028 C-REC
0028 C-REC
= 00100000
0028 C-REC
0028 C-REC
= 00100000
0628 C-REC

(LI T It non

8290001825

8290001825
8290001826

8290001826
8290001827
8290001828
8290001829

8290001830

8290001830
8290001831

8290001831
8290001832

8290001832
8290001833

8290001833
8290001834

8290001834
8290001835

8290001835
8290001836

8290001836
8290001837

8290001837
8290001838

8290001838

REL 1.0
CC = 002
CcCc = 002
cCc = 002
CcCc = 002
CcC = 001
cC = 001
CcC = 001
cc = 002
cc = 002
cC = 002
cc = 002
cCc = 002
cc = 002
CcC = 002
CcC = 002
cC = 002
cC = 002
CcC = 002
cc = 002
cC = 002
cC = 002
CC = 002
CC = 002
cc = 002
cC = 002

HH

HH
HH

HH
hH
HE
HH
Hd

HH
HH

HH
Hd

HH
Hd

ad
HH

HH
Bd

HH
HH

gH
HH

HH
Hd

HH

oo (]

i

PP NO. 5746-CBL

008

009
008

009
001
001
001
008

009
008

009
008 ®
009
008

009
008

009
008

009
008

009
008

w | @

009

Creating a Direct Pile Using Method B (Part 4 of 4)

-08.47.44

10/04/73

Figure 32 is a sample COBOL program
hich creates a direct file with relative
rack addressing using Method B. The
ample program provides for the possibility
f =synonym overflow. Synonym overflow will
ccur if a record randomizes to a track
hich is already full. The following
iscussion highlights some basic features.
ircled numbers on the program listing
orrespond to numbers in the text.

3) Since the prime number used as a
divisor is 829, the largest possible
remainder will be 828.

é) If synonym overflow occurs, control is
given to the USE AFTER STANDARD ERROR
declarative specified in the first
section of the Procedure Division.

The declarative provides that any
record that cannot fit on the track to
which it randomizes will be written on
the first subsequent track available.

(:) The standard error condition "no room
found" is tested before control is
given to the SYNONYM-ROUTINE. Other
standard error conditions as well as
invalid key conditions result in job
termination (EOJ).

ERROR-COND is the identifier which
specifies the error condition that

caused control to be given to the
error declarative. ERROR-COND is
printed on SYSLST whenever the error
declarative section is entered.
TRACK-ID and C-REC are also printed on
SYSLST before execution of each WRITE
statement. This output has been
provided in order to facilitate an
understanding of the logic involved in
the creation of D-FILE.

The first twelve records which
randomize to relative track 18 are
actually written on relative track 18.

The next twelve records which
randomize to relative track 18 are
adjusted by the SYNONYM-ROUTINE and
are actually written on relative track
19. ’

The next twelve records which
randomize to relative track 18 are
adjusted by the SYNONYM-ROUTINE and
are actually written on relative track
20.

The last two records which randomize
to relative track 18 -are adjusted by
the SYNONYM-ROUTINE and are actually
written on relative track 21.

Processing COBOL Files on Mass Storage Devices 111

// JQB METHODBR
. £ OPTION NODECK,LINK,LIST,LISTX,SYM,LERRS

// EXEC FCOBOL

1 IBM DOS VS COBOL REL 1.0 PP

CEL QUOTL

Figure 32.

112

IDENTIFICATION DIVISION.
PROGRAM-ID, METHODE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBEM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT D-FILE ASSIGN TO SYS015-DA-2314-D-MASTER
ACCESS IS RANDOM

ACTUAL KEY IS ACT-KEY.

SELECT C-FiLE ASSIGN TO SYS007-UR-2540R-S.

DATA DIVISION.
FILE SECTION.
FD D-FILE

01

FD
01

LABEL RECORDS ARE STANDARD.
D-REC.

05 PART-NUM PIC X(8).

05 NUM-ON-HAND PIC 9(4).
05 PRICE PIC 9(5)V99.

05 FILLER PIC X(181).
C-FILE

LABEL RECORDS RRE OMITTED.
C-KEC.

05 PAKT-NUis PIC X(8).

05 NUM-ON-HAND PIC 9(4).
05 PRICE PIC 9(5)V99.

05 FILLER PIC X(61).

WORKING-STORAGE SECTION.

77
77
01

01

SAVE PIC S9(8) COMP SYNC.
QUOTIENT PIC S9(8) COMP SYuC.
ACT-KEY.

02 TRACK-ID PIC S9(8) COMP SYNC.
02 REC-ID PIC X(8). ’
ERKOR-COND.

02 F1LLER PIC 99 VALUE ZERO.

02 ERR PIC 9 VALUE ZERO.

02 FILLER PIC 9(5) VALUE ZERO.

NO.

5746-CB1

08.40.53 10/04/73

Creating a Direct File with Relative Track Rddressing Using Method B (Part 1
of 4)

IBM DOS VS COBOL -
REL 1.0 PP NO. 5746-CBl 08.40.53 10/04/73

PROCEDURE DIVISION.
DECLARATIVES.
ERROK-PROCEDURE SECTION. USE AFTER STAND.
. ARD E
ON D-FILE GIVING ERROR-COHND. RHOR PROCEDURE
ERKOR-ROUTINE.

EXH;BIT NAMED ERROR-COND.

IF ERR = 1 GO TO SYNONYM~ROUTINE ELSE (:)
DISPLAY "OTHER STANDARD ERROR " REC~ID (:)
GO TO EOJ.

SYNONYM-ROUTINE.
IF TRACK-IU IS LESS THAN 834, ADD 1 70 -ID ¢
RACK-IL , TRACK-IL. GO TO
END DECLARATIVES.
OPEN INPUT C-FILE

OUTPUT D-FILE.
READS.
READ C-FILE AT END GO TO EOJ.
MOVE CORRESPOWDING C-rREC TO D-REC.
MOVE PART-NUM OF C-REC 10 REC-ID, SAVE. (:)
DIVIDE SAVE BY 829 GIVING QUOTIENT REMAINDER TRACK-ID.
WRITES.
EXHIBIT NAMED TRACK-ID C-REC.
WRITE D-REC INVALID KEY GO TO INVALID-KEY.
GO TO READS.
INVALID-KEY.
DISPLAY "INVALID KEY " REC-ID.
EQJ.
CLOSE C-FILE D-FILE.
STOP RUN.

// LBLTYP NSD(01)
// BEXEC LNKEDT

Creating a Direct File with Relative Track Addressing Using Method B

Figure 32.
(part 2 of 4)

Processing COBOL Files on Mass Storage Devices 113

IBM

DOS VS COBOL

// ASSGJd SYS007,X*'o00C*
// ASSGN SYs015,X'231'

// DLBL MAS

TER,,99/365,DA

// EXTeNT S¥YS015,111111,1,0,20,840

// EXEC

TRACK-ID
TRACK-ID
TRACK-ID
TRACK-ID
TRACK-1ID
TRACK-ID
TRACK-ID
TKACK-ID
TRACK-ID
TRACK-1D
TRACK-ID
TRACK-1D
TRACK~1D
TKACK-ID
TKACK-ID
TRACK-ID
TKRACK-ID
TRACK-ID
TRACK-1ID
TRACK-ID
TRACK-1D
TRACK-ID
TRACK-ID
ERROR-CQN
TRACK-ID
TRACK-ID =
ERROR=COND
TRACK-ID
TRACK-ID
ERROR-CON
TRACK-ID
TRACK-ID
ERROR-COND
TRACK-ID =

F LI o | | { T T [O O T T Y (Y (O 1 I [1}

e nan

FPigure 32.

114

00000000 C-REC
00000001 C-REC
00000018 C-RET
00000018 C-REC
00000018 C-REC
00000018 C-REC
00000018 C-REC
00000018 C-REC
00000018 C-REC
00000018 C-REC
00000018 C-REC
00000018 C-REC
00000018 C-REC
00000018 C~REC
00000018 C-REC
00000018 C~REC
00000018 C-REC
00000018 C-REC
00000018 C-REC
00000018 C-REC
00000018 C~REC
00000018 C-REC
00000018 C-REC
= 00100000

00000019 C-REC
00000018 C-REC
= 00100000

00000019 C-REC
00000018 C-REC
= 00100000

00000019 C-REC
00000018 C-REC
= 00100000

00000019 C-REC

[T T T T VI T T 1 O T N 1 O T I (R I T

non

82900000

82900001

8290001801
8290001802
8290001803
8290001804
8290001805
8290001806
8290001807
8290001808
8290001809
8290001810
8290001811
8290001812
8290001813
8290001814
8290001815
8290001816
8290001817
8290001818
8290001819
8290001820
8290001821

8290001821
8290001822

8290001822
8290001823

8290001823
8290001824

8290001824

®

REL 1.0

PP NO.

5746-CBl

08.40.53

Creating a Direct File with Relative Track Addressing Using Method B
(Part 3 of 4)

10/04/73

IBM DOS VS COBOL

TRACK-1D =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-IbL =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COUND
TRACK-ID =
TRACK~ID =
ERROR-COWD
TKACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COWD
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND

TRACK-ID =

Figure 32.

00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00600019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC

nun Hn won nou [t} nn (] "o [} won

8290001825

8290001825
8290001826

8290001826
8290001827

8290001827
8290001828

8290001828
8290001829

8290001829
8290001830

8290001830
8290001831

8290001831
8290001832

8290001832
8290001833

8290001833
8290001834

8290001834
8290001835

8290001835

8290001836

8290001836
8290001837

8290001837
8290001838

8290001838

REL 1.0 PP NO. 5746-CBl 08.40.53

Creating a Direct File with Relative Track Addressing Using Method B
(Part 4 of U4)

Processing COBOL Files on Mass Storage Devices

10/04/73

115

ACTUAL TRACK ADDRESSING CONSIDERATIONS FOR
SPECIFIC DEVICES

Randomizing for the 2311 Disk Drive

When randomizing for the 2311 Disk
Drive, it is possible to circumvent the
discontinous binary address by coding the
randomizing formula in decimal arithmetic
and then converting the results to binary.
This can be done by setting aside a decimal
field with the low-order byte reserved for
the head number, and the high-order bytes
reserved for the cylinder number. 2
mathematical overflow from the head number
will now increment the cylinder number and
produce a valid address. The low-order
byte should then be converted to binary and
stored in the HH field, and the high-order
bytes converted to binary and stored in the
CC field of the actual key field.

Randorg.zing to the 2311 Disk Drive
should present no significant problems if
the programmer using direct organization is
completely aware that the cylinder and head
number give him a unique track number. To
illustrate, the 2311 could be thought of as
consisting of tracks numbered as follows:

Cylinder 0 Cylinder 1 Cylinder 2

o

Track

e | e |
10 120
Numbers

O

Y O O

A O
I O Y

129

If the randomizing formula resulted in
an address of cylinder 001, head 9:

Cylinder | Head
Number | Number
3
¥
001 | 9

this would be a reference to track 19.

This fact allows the programmer to ignore
the discontinuous cylinder and head number.
If his formula resulted in an address of
0020, this would result in accessing
cylinder 2, head 0, the location of track
20.

116

- track address.

The programmer can make another use of
this decimal track address. He may wish to
reserve the last track of each cylinder for
synonyms. If this is the case, he is in
effect redefining the cylinder to consist
of nine tracks rather than ten tracks. The
2311 cylinder could then be thought of as
consisting of track numbers, as follows:

Cylinder 0 Cylinder 1 Cylinder 2
: -] R |
Track | 0 19 |18
Numbers —4 — —
'] | 119
— — —
| I 120
— — —
| | |
- T T
|
— — —
| | |
— — ——1
1 |
— — —
| 8 117 126

If the programmer randomizes to relative
track number 20, he can access it by
dividing the track address by the number of
tracks (9) in a cylinder. The quotient now
becomes the cylinder number, and the
remainder becomes the head number.

2

9)0020
18

2

cylinder number

]

head number

To simplify randomizing, an algorithm
must be developed to generate a decimal
This track address can then
be converted to a binary cylinder number
and head number. In addition, tracks can
be reserved by dividing the track address
by the number of tracks in a cylinder. The
same concepts will hold true for devices
such as the 2314, 3330, or 3340. For
example, an algorithm can be developed
using 20 tracks per cylinder and dividing
by the closest prime number less than 20.

This page intentionally left blank

Processing COBOL Files on Mass Storage Devices 117

INDEXED ORGANIZATION (DTFIS)

An indexed file is a sequential file
with indexes that permit rapid access to
individual records as well as rapid
sequential processing. Error recovery from
a DTFIS file is described in detail in the
chapter "Advanced Processing Capabilities.%w
An indexed file has three distinct areas:

a prime area, indexes, and an overflow
area. Each area is described in detail
below.

“in key seguence.

PRIME AREA

When the file is first created, or when
it is subsequently reorganized, records are
written in the prime area. Until the prime
area is full, additions to the file may
also be written there. The prime area may
span multiple volumes. Note that the last
track of the prime area may not be used by
the COBOL programmer.

The records in the prime area must be
formatted with keys, and must be positioned
The records may be
blocked or unblocked. If records are
blocked, each logical record within the
block contains its key, and the key area
for the block contains the key of the
highest record in the block. The Disk
Operating System Virtual Storage permits
fixed-length records only. Figure 33 shows
the formats of blocked and unblocked
records on a track.

Unblocked Records

F T
|KEY NUMBER| | COUNT | KEY | DATA |
1 L

[

| COUNT | KEY |

-
DATA |
N

A A
| |
|]
| |
|
|
]

L—Highest key on track

Blocked Records

L—logical record (key embedded)

t—Key of logical record

R T 1
COUNT | KEY | DATA |
A 1

1

L L L
|KEY NUMBER| |
L L

DATA | DATA | | |

L L L] 1

A
|
I
i
|
I
(
|

—— e ———— v ——

—Highest key on track

. e . o — o — — — —— — — — T — — —— o —— —— . — " —— A ——— — —— ———— —)

e — N ——

t—Key of last logical record in block

A
I
]
]

t—TLogical records with embedded keys

L e e e e = = e e e o e = e

Figure 33.

118

Formats of Blocked and Unblocked Records

NDEXES

There are three possible levels of
ndexes for a file with indexed
rganization: a track index, a cylinder
ndex, and a master index. They are
reated and written by the system when the
ile is created or reorganized.

'rack Index

This is the lowest level of index and is
tlways present. There is one track index
lor each cylinder in the prime area. It is
\lways written on the first track of the
:ylinder that it indexes.

The track index contains a pair of
:ntries for each prime data track in the
cylinder: a normal entry and an overflow
:ntry. The normal entry contains the home
iddress of the prime track and the key of
he highest record on the track. The
>verflow entry contains the highest key
issociated with that track and the address
>f the lowest record in the overflow area.
[f no overflow entry has yet been made, the
iddress of the lowest record in the
>verflow area is the dummy entry X'FF!'.

cylinder Index

The cylinder index is a higher level of
index and is always present. Its entries
point to track indexes. There is one
cylinder index for the file. It is written
on the device specified in the APPLY
CYL-INDEX clause. If this clause is not
specified, the cylinder index is written on
the same device as the prime area.

Master Index

The master index is the highest level
index and is optional. It is used when the
cylinder index is so long that searching it
is very time consuming. It is suggested
that a master index be requested when the
cylinder index occupies more. than four
tracks. (A master index consists of one
entry for each track of the cylinder
index.)

The DOS/VS System permits one level of
master index for the file and requires that
it be written immediately before the
cylinder index. 1f a master index is
desired, the APPLY MASTER-INDEX clause must

be specified in the source program. When
this clause is specified, the cylinder
index is placed on the same device as the
master index.

Note: The indexes are terminated by a
dumny entry containing a key composed of
all ones (bits). To avoid any possibility
of errors, the user should not specify a
key of all ones (HIGH VALUES) for any of
his records.

OVERFLOW AREA

There are two types of overflow areas:
a cylinder overflow area and an independent
overflow area. Either or both may be
specified for an indexed file. Records are
written in the overflow area(s) as
additions are made to the file.

Cylinder Overflow Area

A certain number of whole tracks are
reserved in each cylinder for overflow
records from the prime tracks in that
cylinder. The programmer may specify the
number of tracks to be reserved by means of
the APPLY CYL-OVERFLOW clause. If he
specifies 0 as the number of tracks in this
clause, no cylinder overflow area is
reserved. If the clause is omitted, 20% of
each cylinder is reserved for overflow.

For the 3330, three tracks of each cylinder
will be reserved for overflow. For the
3340, two tracks of each cylinder will be
reserved for overflow. When an ISAM file
has been created with the APPLY CYL-OVERFLOW
clause all FD's, which use the same file,
must specify the same numbér of cylinder
overflow tracks.

Independent Overflow Area

Ooverflow records from anywhere in the
prime area are placed in a certain number
of cylinders reserved soley for this
purpose. The size and location of the
independent overflow area can be specified
if the programmer includes the proper job
control EXTENT cards. The area must,
however, be on the same mass storage device
type as the prime area.

A suggested approach is to have cylinder
overflow areas largée enough to contain the
average number of overflow records caused
by additions and an independent overflow
area to be used as the cylinder overflow
areas are filled.

Processing COBOL Files on Mass Storage Devices 119

PRIME DATA_AREA

OVERFLOW AREA

—
100014}
1

A
|

o o e o o e - s — e —— —— — o o— - —

Track_No.

| ——| — r a 1 f =
0001 100001 (00003 cens }00009] 100010 100011
— — L J L 1] L -3

A A

| |

| |

| |

New record— |

!

original record moved up -4
— — T) r -
0002 100016} 100017 ceeeececercceccceweass (00025] 100027
—_ 1 —_ (& 3 L]

L _Record removed from

Track 0001

le e e e e e = — > ——— —— — ——— — —— ——— —— ———— — — i o]

Figure 34.

Adding Records to an Indexed File

A new record added to an indexed file is
placed into a location on a track in the
prime area determined by the value of its
key field. If records in the file were
placed in precise physical sequence, the
addition of a new record would require the
shifting of all records with keys higher
than that of the one inserted. However,
indexed organization allows a record to be
inserted into its proper position on a
track, with the shifting of only the
records on that track. Any records for
which there is no space on that track are
then placed in an overflow area, and become
overflow records. Overflow records are
always fixed-length, unblocked records,
formatted with keys.

As records are added to the overflow
area, they are no longer in key sequence.
The system ensures, however, that they are
always in logical sequence.

Figure 34 illustrates the addition of a
record to a prime track.

The new record (00010) is written in its

proper sequential location on the prime
track. The rest of its prime records are

120

Adding a Record to a Prime Track

moved up one location. The bumped record
(00014) is written in the first available
location in the overflow area. The record
is placed in the cylinder overflow area for
that cylinder, if a cylinder overflow area
exists and if there is space in it;
otherwise, the record is placed in the
independent overflow area. The first
addition to a track is always handled in
this manner. Any record that is higher
than the original highest record on the
preceding track, but lower than the
original highest record on this track, is
written on the prime track. Record 00015,
for example, would be written as the first
record on track 0002, and record 00027
would be bumped into the overflow area.

Subsequent additions are written either
on the prime track where they belong or as
part of the overflow chain from that track.
If the addition belongs between the last
prime record on a track and a previous
overflow from that track (as is the case
with record 00013), it is written in the
first available location in the overflow
area on an empty track, or on a track whose
first record has a numerically lower key.

If the addition belongs on a prime track
ts would be the case with record 00005),
: is written in its proper sequential
>cation on the prime track. The bumped
acord (record 00011) is written in the
rerflow area.

A record with a key higher than the
irrent highest key in the file is placed
1 the last prime track containing data
rcords. If that track is full, the record
5 placed in the overflow area.

ZCESSING AN INDEXED FILE (DTFIS)

An indexed file may be accessed both
iquentially and randomly.

CCESSING AN INDEXED FILE SEQUENTIALLY: An
ndexed file may only be created
2quentially. It can also be read and
pdated in the sequential access mode. The
>llow