
Program Product

SC28-6478-4
File No. 8370-24

....... ~-----... -------- -.. --.-.--- -- -~-------------- y-

Program Product

SC28-6478-4
File No. S370-24

IBM DOS/VS COBOL
Compiler and Library
Programmer's Guide

Program Numbers: 5746-CB1 (Complier and Library)
5746·LM4 (Library)

Release 3

--------- -------- - ---- - - ----------_ .. -

Fifth Edition (May 1981)

This is a major revision of, and make ob olete, SC28-64 78-3, a d its technical newsletters,
SN20-9310 and SN20-9322.

This edition applies to Release 3 of DOS/VS COBOL, Program Products 5746-CBl (Compiler
Library) and 5746-LM4 (Library), and to any subsequent releases until otherwise
indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Amendments" following the
preface. Specific changes are indicated by a vertical bar to the left of the change. These bars will
be deleted at any s~bsequent republication of the page affected. Editorial changes that have no
technical significance are not noted.

Changes are periodically made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370 and
4300 Processors Bibliography, GC20-0001, for the editions that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM publications should
be made to your IBM representative or to the IBM branch office serving your locality.

Comments may be addressed to IBM Corporation, P.O. Box 50020, Programming Publishing,
San Jose, California U.S.A. 95150. IBM may use or distribute any of the information you
supply in any way it believes appropriate without incurring any obligation whatever. You may,
of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1973, 1979, 1981

EFACE

This publication describes how to
mpile a COBOL program using the Program
oduct IBt1 DOS/VS COBOL Compiler. It also
scribes how to link edit the resulting
ject module, and execute the program.
cluded is a description of the output
om each of these three steps: compile,
nk edit, and execute. This publication
plains features of the DOS/VS Compiler and
brary, and available options of the
lerating system.

This publication is logically and
lnctionally divided into four parts:

Part I contains information on job
Introl language, library usage, and the
Lterpretation of output. It is designed
ir programmers who run COBOL programs
impiled on the DOS/VS Compiler, under the
1M Disk Operating System/Virtual Storage
:tended (DOS/VSE).

Part II contains information on file
~ganization, file label handling, and
~cord formats. It is reference material
)r language features that are primarily
rstem-dependent. Part II is supplemental
lformation on the use of the language as
)ecified in the publication

IBt1 VS COBOL for DOS/VSE, GC26-3998,

ld its companion,

IBt1 VS COBOL for DOS/VSE Reference
Format and Reserved Word Summary,
GX26-3709.
Part III contains information on

~ogramming techniques useful to the
~ogrammer running COBOL programs compiled
1 the DOS/VS· Compiler. Topics such as
)ding considerations, table handling
)nsiderations, and formatting data are
)vered in Part III.

Part IV contains error determination .
lformation. This part covers such topics
3 program debugging and program testing.

Diagnostic messages generated by the
)S/VS Compiler and Library and their
:companying documentation can also be found
n this publication.

Information on installing the DOS!VS
~mpiler and Library can be found in the
~llowing pUblication:

IBIi DOS/VS COBOL Compiler and Library,
Installation Reference r1aterial,
SC28-6479

Wider ranging and more detailed
iscussions of DOS/VSE are given in the
ollowing publications:

Introduction to DOS/VSE, GC33-5370

DOS/VSE System Generation, GC33-5377

DOS/VSE System Management Guide,
GC33-5371
DOS/VSE Data Management Concepts,
GC24-5138

DOS/VSE Macro User's Guide, GC24-5139

DOS/VSE Macro Reference, GC25-5140

DOS/VSE System Utilities, GC33-5381

DOS/VSE Messages, GC33-5379

DOS/VSE Advanced Functions: System
Control Statements, SC33-6095

IBU Virtual !lachine/System Product:
CMS User's Guide, SC19-6210

Using the VSE/VSAM Space Management for
SN1 Feature, SC24-5192

Using VSE/VSAl1 Commands and Hacros,
S':24-5144

VSE System Data t1anagement, GC24-5209

The following publications provide
detailed information on the IBM 3886
Optical Character Reader:

IBM 3886 Optical Character Reader
General Information Manual,
GA21-9l46

IBM 3886 Optical Character Reader Input
Document Design and Specifications,
GA2l-9l48

DOS~lanninq Guide for the IBM 3886
Optical Character Reader~del-1,
GC2l-5059

The following publications provide
information on the IBH DOS/VS Sort/!1erge
Program Product, Program Number 5746-SM2:

DOS/VS Sort/r1erge Program Product Design
Objectives, GC33-4027

DOS/VS Sort/Herge Version 2 General
Information, GC33-4043

DOS/VS Sort/Berge Version 2 Programmer's
Guide, SC33-4044

DOS/VS Sort/Berge Version 2 Installation
and Reference !1aterial, SC33-4045

The titles and abstracts of related
publications are listed in IBn System/370
and 4300 Processors Bibliography, GC20-0001.

INDUSTRY STANDARDS

The DOS/VS COBOL Compiler and Library,
Release 3, is designed according to the
specifications of the following industry
standards, as understood and interpreted by
IBr1 as of llay 1980:

• American National Standard (ANS) COBOL,
X3.23-1974

American National Standard (ANS) COBOL,
X3.23-1974, is identical to (ISO)
International Standard 1989-1978 COBOL,
approved in February 1978 by the
International Organization for
Standardization.

2 NUC 1,2 (Nucleus)
2 TBL 1,2 (Table Handling
2 SEQ 1,2 (Sequential 1-0) except the
following:

the OPTIONAL phrase of the SELECT
clause is treated as documentation.
the reversed phrase of the OPEN
statement does not cause file
positioning.
the EXTEND phrase of the OPEN
statement is not supported.

2 REL 0,2 (Relative I-O)
2 INX 0,2 (Indexed 1-0)
2 SRT 0,2 (Sort-Merge)
2 SEG 0,2 (Segmentation)
2 LIB 0,2 (Library) except for the

multiple library facility.
DEB 0,2 (Debug)
IPC 0,2 (Inter-Program Communication)

• The December 1975 Federal Information
Processing Standard (FIPS) PUB 21-1, Low
Intermediate level

• American National Standard (ANS) COBOL,
X3.23-1968

American National Standard (ANS) COBOL,
X3.23-1968 is identical to ISO 1989-1972.
All processing modules are supported.

NOTES

Any reference in this manual to the book
IBM DOS Full American National Standard
COBOL should be assumed to mean a reference
to IBM VS COBOL for DOS/VSE. Any reference
in this manual to VS COBOL for DOS/VS should
be assumed to read VS COBOL for DOS/VSE.

Summary of Amendments Number 7

Date of Publication: 4 September 1981

Form of Publication: TNL SN20-9347 to SC28-6478-3

New: Programming Function

DOS/VS COBOL Release 3 supports American National Standard COBOL,
X3.23-1974, with certain exceptions noted under "Features of the Program
Product DOS/VS Compiler." References to new features of the language
have been added throughout the book.

Maintenance: Operating System Restriction

DOS/VS COBOL Release 3 runs only under DOS/VSE with Advanced
Function Release 3. Deletions of material pertaining only to earlier
releases of DOS have been made throughout this book.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments Number 6

Date of Publication: 28 December 1979

Form of Publication: TNL SN20-9310 to SC28-6478-3

New: Programming Function

Support for VSE/VSAM Space Management for SAM feature is provided
with DOS/VSE Advanced Functions, Release 2, and up.

Maintenance: Documentation

Clarifications and eorrections have been made in various areas of the text.

Summary of Amendments

Date of Publication: 15 February 1979

Form of Publication: Revision SC28-6478-3

New: Programming Function

Support for fIxed block devices is provided under DOS/VSE with
VSE/ Advanced Function, Release 1.

Maintenance: Documentation
ClarifIcations and corrections have been made in various areas
of the text.

Editorial changes that have no technical significance are not noted here.

Number 5

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments

Form of Publication: TNL SN20-9235 to SC28-6478-0, -1,-2

New: Programming Function

Support has been added for the 3330-11 Disk Storage and 3350
Direct Access Storage devices.

Maintenance: Documen ta tion

Minor technical changes and additions have been made to
the text.

Summary of Amendments

Date of Publication: December 3, 1976

Form of Publication: TNL SN20-9180 to SC28-6478-0, -1,-2

IBM DOS/VS COBOL

Maintenance: Documentation

Minor technical changes and additions have been made to
the text.

Editorial changes that have no technical significance are not noted here.

Number 4

Number 3

Specific changes to the text made as of this publishing datc are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the pagc affected.

Summary of Amendments Number 2

Date of Publication: January 9, 1976

Form of Publication: SN20-9141 to SC28-6478-0, -1

Support has been added to run DOS/VS COBOL under control of VM/370 CMS Release 3.

DOS/VS COBOL programs can be compiled in CMS and then executed in a DOS virtual machine, or
under a DOS system.

The following restrictions apply to execution of DOS/VS COBOL programs in CMS:

1. Indexed ftles (DTFIS) are not supported. Various clauses and statements are therefore invalid:
RECORD KEY, APPLY CYL-OVERFLOW, NOMINAL KEY, APPLY MASTER/CYL-INDEX,
TRACK-AREA, APPLY CORE-INDEX, and START.

2. Creating direct files is restricted as follows:
-For U or V recording modes, access mode must be sequential.
-For ACCESS IS SEQUENTIAL, track identifier must not be modified.

3. None of the user label-handling functions are supported. Therefore, the label-handling format of
USE is invalid. The data-name option of the LABEL RECORDS clause is invalid.

4. There is no Sort or Segmentation feature.
S. ASCII-encoded tape files are not supported.
6. Spanned records (S-mode) processing is not available. This means that the S-mode default (block

size smaller than record size) cannot be specified, and· that the RECORDING MODE IS S clause
cannot be specified.

In addition, multitasking, multipartition operation, and teleprocessing functions are not supported
when executing under CMS.

For a more detailed description of VM/370 CMS for DOS/VS COBOL, see IBM VM/370 CMS User's
Guide for COBOL, order number SC28-6469.

Summary of Amendments

Date of Publication: March 22, 1-974

Form of Publication: TNL SN28-1063 to SC28-6478-0

New: Addi tiona! Compiler Capabilities

Lister feature
Execution Statistics and
Verb summary feature

SORT-OPTION

Maintenance: Documentation Only

Minor technical changes and corrections.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Number 1

'EA'l'URES OF THE PROGHAH PRODUCT DOS/VS
:OMPILER 7
[Btl Restrictions . 7

?ART I . . . 9

[NTRODUCTION • • • • • • • • 11
~ontrol Program • • • • • • • • • 11

Supervisor • • • • • • • 11
Job Control Processor • • • • • 11
Initial Program Loader 11

Processing Programs . • • • • 11
System Service Programs • • • .. 11
Application Programs • • • • • 12
IBM-supplied processing programs .. 12
Data Management • • • • • • • • • 12

Multiprogramming • • • • • .. • • • 12
Background vs. Foreground Programs 12

JOB DEFINITION • • • .. 13
Job steps • .. • • •

Compilation Job Steps .. • .. •
Multiphase Program Execution ..

• 13
13

• 13
14 Types of Jobs

Job Definition Statements
Other Job Control Statements

JOB PROCESSING ..
Compilation
Editing
Phase Execution

Multiphase Programs

• • 15
16

• 17
• 17

17
18

• 18

PREPARING COBOL PROGRAMS FOR PROCESSING 19
Assignment of Input/Output Devices .. 19
Job Control • • • 22

Job Control Statements 22
Comments in Job Control Statements .. 22
Statement Formats • • 22
Sequence of Job Control Statements .. 23

Description and Formats of Job
Control Statements •

JOB Statement
• • .• .. 23
• 23

ASSGN Statement • .. • 24
CLOSE Statement • 26.3
DATE Statement
TLBL Statement •

• • 26.3

DLBL Statement
EXTENT Statement •
LISTIO St'atement .
MTC Statement
OPTION Statement .
PAUSE Statement
RESET Statement
R.STRT Statement
UPSI Statement .
EXEC Statement .

27
.. 28

28.1
• • • • 31

• 31
· 32

• • • 34
• 34
• 3 L~ • 1

• • 35
· 35

ICBL Statement -- COBOL Option
Control Statement

LST Statement -- Lister Option
Hutually Exclusive Options . . .

· . 36
· 40

· . 40. 1

CONTEN'IS

Changing the Installation Defaults. 40.1
Significant Characters for Various
Options • • . • . • • 40.1

Job Control Commands ••••••••• 40.2
Linkage Editor Control Statements ••• 40.2

Control Statement Placement • • • • 41
PHASE Statement 41
INCLUDE Statement 42
ENTRY Statement .. 42
ACTION Statement .. 42

Autolink Feature • .. • • . 43
Relocating Loader Feature 43

LIBRARIAN FUNCTIONS
Planning the Libraries • ..
Librarian • • • •
Core Image Library • ..

45
45

• 45
45

Cataloging and ~etieving Program
Phases -- Core Image Library • • .. • 45

Relocatable Library • • • 46
Maintenance Functions .. • • 46

Cataloging a Module -- Relocatable
Library • • .. • • • .. 46

47 Source Statement Library ..
Maintenance Functions • • • • •

Cataloging a ~ook -- Source
Statement Library •

• 48

48
Updating Books -- Source Statement
Library .. • • • • • • • • • • 50
UPDATE Function -- Invalid Operand
Defaults • • • • u .. 52

The Procedure Library
MAINT, Procedure Library

. . • . 53

Catalog
PSERV, Procedure Library.
Calling Cataloged Procedures . .

Private Libraries
Determining the Location of the
L~braries
Source Language Considerations .

Extended Source Program Library

. • 53
• . • 53
· . . 54
· . . 54
· . . 55

· 55
• 56

57 Facility
Reformatted Source Deck • • • . 57

INTERPRETING OUTPUT
Compiler Output

Object Module

59
59

• 69
Linkage Editor Output

Comments on the Phase Map
Linkage Editor Messages
DOS ANS COBOL Unresolved
References .. • • .. •

.. .. • • • 69

COBOL Execution Output
Operator Messages

External

• 71
71

71
• 72

.. • 72
STOP Statement • ..
ACCEPT Statement

System Output

• • • 73

CALLING AND CALLED PROGRAMS
Linkage • .. • ..

Linkage In A Calling Program • ..

• • 73
• 73

• 75
.. • 75

75

Linkage In A Called Program
Entry Points • • • • • • • _ • • • •
Correspondence of Arguments and
Parameters • • • • • • • • • •

• 76
• 76

• 77
Link Editing Without Overlay ••
Assembler Language Subprograms •

Register Use • • • • • •

• • 77

Save Area • • • • • • •
Argument List •••••• • •
File-Name and Procedure-Name
Arguments •••• • • •

In-Line Parameter List •
Lowest Level Program •• • •

• 78
• 78
• 79
• 79

• 79
81

• 81
Overlays • • • • • • • • • • • • 81
Special Considerations When Using
Overlay structures • • • • • • • _ •

Assembler Language Subroutine for
Accomplishing Overlay •• • • • • •
Link Editing with Overlay ••••
Job Control for Accomplishing Overlay

81

• 82
83
84

USING THE SEGMENTATION FEATURE . . . • . 89
LANGLVL Option and Reinitialization . • 89

I Operation • .. . 90
Output From a Segmented Program. • 91

Compiler Output . . •• 91
Linkage Editor Output . • . •. • 92

Cataloging a Segmented Program . • • 92
Determining the Priority of the Last
Segment Loaded into the Transient
Area • • • . • · 92

Sort in a Segmented Program · 93
Using the PERFOIDl Statement in a
Segmented Program . . • . . • 93

PART II · 95

PROCESSING COBOL FILES ON MASS STORAGE
DEVICES . • . • • 97

. • 97 I Device Independence
File Organization • • • •

Sequential Organization
Direct Organization
Indexed Organization • • •

Data Manaqement Concepts • •
Sequential Organization (DTFSD)

97
97

• 97
97
98

VSAM Space Management for SAM
Processing a Sequentially Organized

• • 99
• 99

File • • • • • • • • • • • • •
Direct Organization (DTFDA)

Accessing a Directly Organized
ACTUAL KEY Clause • • • •

Randomizing Techniques • • •
Actual Track Addressing

• 99
• • • • 99
File .100.1

.101

.102

Considerations for Specific Devices .116
Randomizing for the 2311 Disk Drive 116
Randomizing for the 2321 Data Cell .117

Indexed Organization (DTFIS) •• 118
Prime Area. • • •••• 118
Indexes • • • • • • .119

Track Index • • • • .119
Cylinder Index • • • • • .119
Master Index. • .119

Overflow Area •• 119
Cylinder Overflow Area. • .119
Independent Overflow Area •• 119
Adding Records to an Indexed File .120

Accessing an Indexed File (DTFIS) •• 121
Key Clauses •••• • ••••• 121
Improving Efficiency • ~ •••••• 122

PROCESSING 3540 DISKETTE UNIT FILES .• 123
File Processing•••••••. 123

ICOBOL Language Considerations .•. 123
DTFDU . . • . . • • . • . . • . . • • . 124

Job Control Requirements. ..124
DLBL Statement 125
EXTENT Statement.125
3540 File 125

VIRTUAL STORAGE ACCESS METHOD (VSN1) .• 127
File Organization .•.•.. 127

Key-Sequenced Files ...•.. 127
Entry-Sequenced Files •• 127
Relative Record Files .•• 128

Data Organization ..•.... 120
Data Access . . . • . . • . .128
VSMl Catalog. . . • . • . • .128
File and Volume Portability .••••• 130
Service Programs.••• 130
Device Support. • . .. 130
Security.• . .• 130
Error Processing . . . •130
VSAH Messages • 130
Access Method Services . .130

Functional Commands . . . • . .130
The DEFINE Command. • •. 130
Functions of the DEFINE Command .. 130.1
Specification of the DEFINE Command 131
Definipg a VSNl Master Catalog:
DEFINE MASTERCATALOG 131
Defining a User Catalog: DEFINE
USERCATALOG132
Defining a VSAM Data Space: DEFINE
SPACE . . . •132
Defining a VSNl File133
Defining a Relative Record File .134.1
Defining an Entry-Sequenced File .. 134.1
File Processing Techniques .134.1
Current Record Pointer. • .• .134.1

Error Handling. . . . • . • • •. .136
Record Formats for VSN1 Files .136
Initial Loading of Records into a
File.137
File Status Initialization .. 137
Opening a VSAM File •• 137

Writing Records into a VSAM File .•. 139
Entry-Sequenced File
Considerations for the WRITE
Statement •
Key-Sequenced File Considerations

.139

for the WRITE Statement 139
Relative Record File Considerations
for the WRITE Statement•. 139
Rewriting Records on a VSAM File .140

Entry-Sequenced File
Considerations for the REWRITE
Statement . • • . . •
Key-Sequenced File Considerations

. 140

for the REWRITE Statement ..••. 140
Reading Records on a VSAM File .140

Entry-Sequenced File
Considerations for the READ
Statement •
Key-Sequenced File Considerations

.140

for the READ Statement .••••.. 140

Relative Record File Considerations
for the READ Statement

READ NEXT Statement
READ Statement . . .

· 140
. 140

sing the START Verb
DELETE Statement . .
COBOL Language Usage with VSAM .
Creating a VSAM File
Retrieving a VSAM File
Job Control Language for a VSAM

· 141
• • 1 L~ 1

· 141
· . 141

· 141
· .143

F i 1 e 1 4 L~ • 1
DLBL Statements for Alternate I
Indexes144.1
Converting Non-VSAM Files to VSAM
Files144.1
Using ISAM Programs to Process VSAM
Files144.2

)ETAILED FILE PROCESSING CAPABILITIES .145
~OBOL VSAM Control Blocks 145
)TF Tables.150
Pre~DTF Switch 155

~rror Recovery for Non-VSN1 Files ... 155
FILE STATUS Key156
Use After Standard Error 156. 1

Jolume and File Label Handling. • .162
Tape Labels • • • • • • • .162

Volume Labels • .. • • .162
Standard File Labels. • .162
User Standard Labels 162
Nonstandard Labels. • • ••• 162

Label Processing Considerations ••• 165
Sample Programs 166

Mass Storage File Labels. • •• 174
Volume Labels 174
Standard File Labels. • • .174
User Labels ••••• .174

Label Processing Considerations .174
Files on Mass Storage Device
Opened as Input • • • • •. •• • • .. 174
Files on Mass storage Devices
Opened as Output.. • • • • .175

Unlabeled Files _ ••• _ ... 175

PROCESSING ASCII TAPE FILES .. 177
Specifying ASCII File Processing 177
File Handling _ • .. • • _ .. 177
Operational Considerations. • .178
Obtaining an ASCII Collating Sequence'
on a Sort • • • • • .178

RECORD FORMATS FOR NON-VSAM FILES
Fixed-length (Format F) Records
Undefined (Format U) Records

.179
• • •• 179

• .180
Variable-Length Records 180

APPLY WRITE-ONLY Clause
Spanned (Format S) Records ..

S-Mode Capabilities • • • ..
Sequentially Organized S-Mode Files

.183
• .. 183
• .. 184

on Tape or Mass Storage Devices .185
Source Language Considerations. _ .185
Processing Sequentially Organized
S-Mode Files • • • .. • • • • • • .. .185

Directly Organized S-Mode Files ••• 187
Source Language Considerations ••• 187
Processing Directly Organized
S-Mode Files • • • .. .188

PART III • 189

PROGRAMMING TECHNIQUES • .. • •
Coding Considerations for DOS/VSE. ..
General Considerations

• .191
• .. 191
... 191

COpy _ • • • .. • •
Syntax Checking • .. • .. • • • • ..

• • .191
.191

Formatting the Source Program
Listing 191

Environment Division 192
RESERVE Clause. • • • .. .192
APPLY WRITE-ONLY Clause •••• 192

Data Division .. 193
Storage Considerations 193
Overall Considerations.. • • ~ u .. 193

FD Entries. • .193
Prefixes. • • .193
Level Numbers • .193

File Section. • • 194
RECORD CONTAINS Clause 194
BLOCK CONTAINS Clause .194

Working-Storage Section 194
Separate Modules 194
Locating the Working-Storage
Section in Dumps. • • • • • .194
REDEFINES Clause. • .. • • .194
PICTURE Clause. _ .196
USAGE Clause. • • • • • .197
SYNCHRONIZED Clause •• 200
special Considerations for DISPLAY
and COMPUTATIONAL Fields.. • .200
Data Formats in the Computer ... _ .200

Procedure Division ..•..••.... 202
Modularizing the Procedure Division .202

Main-Line Routine .. 203
Processing Subroutines 203
Collating Sequences .. 203
Intercepting I/O Errors ... 203
Errors that May Escape Detection .. 203
Input/Output Subroutines. . .. 203

Overall Considerations • ~ .. 204
OPTIMIZE Option ••• 204

Intermediate Results. • .. 204
Intermediate Results and Binary
Data Items. • • • • .204
Intermediate Results and COBO~
Library Subroutines .204
Intermediate Results Greater Than
30 Digits204
Intermediate Results and
Floating-point Data Items ... 204
Intermediate Results and the ON
SIZE ERROR Option204

Exponentiation • • • .204.1
Optimization Based on Execution 204.1
Frequency 204.1

Procedure Division Statements . . .204.1
COHPUTE Statement . .204.1
IF Statement. .205
MOVE Statement. 205
NOTE Statement. 205
Perform Statement 205

READ INTO and \vRITE FRon· Options . . .205
WRITE ADVANCING with LINAGE, FOOTING,
and END-OF-PAGE ... 206

START Statement206
STRING Statement. . .206
TRZ\.NSFORH Statement . .206
UNSTRING Statement. . ..• 206

USING 'l'HE SORT/MERGE FEATURE . . .
Sort/Merge Job Control Requirements

.207
· .207

Sort Input and Output Control
Statements.207
SORT-OPTION Clause 208

Sort Diagnostic Messages209
Linkage With the Sort/Merge Feature •• 209

Completion Codes •••••••••• 209
Cataloging a Sort Program •• 209

Checkpoint/Restart During a Sort •••• 210
Using Sort in a Multiphase Environment .210

USING THE REPORT WRITER FEATURE
REPORT Clause in a File

• .211

_ 211 Description CFO) Entry ..
Summing Techniques •
Use of SUM • • • • •

• • • • • .211
• • • • • 211

SUM Routines • • _ • • • • • • .212
.213 Output Line Overlay

Page Breaks 213
. . .21 LI·

Page Format .. 214
WITH CODE Clause . .
Control Footings and
NEXT GROUP Clause
Floating First Detail
Report Writer Routines

TABLE HANDLING CONSIDERATIONS
Subscripts • • •
Index-names

• 214
• ... 215

• .215

• .217
• ' •• 217
, •• _ 217

Index Data Items • • • • •
OCCURS Clause

...... 217

DEPENDING ON Option
OCCURS Clause with the DEPENDING
option • . • • • • _ • • _

SET Statement
SEARCH Statement • • • • • •
SEARCH ALL Statement
Building Tables

PART IV

ON

• .217
.217

.218
• _ 221

_ 224
.. _ 224

.225

• .227

LISTER FEATURE220.1
Overall Operation of the Lister .. 223.1

I Programming Considerations.. . .220.1
The Listing •• • • • • • • .228.2
The Output Deck ... • .. • • • .228.2
Reformatting of Identification and
Environment Divisions - 228.2
Data Division Reformatting ••• - -228.2
Procedure Division Reformatting •• 228.3
Summary Listing - •• 228.3

The Source Listing. - • .228.3
General Appearance. • ••••• 220.3
Format Conventions. • ••• _ -228.3
Type Indicators •••• • .228.4

The Summary Listing • - - - .228.5
General Appearance. • .228.5

The Output Deck 228.5
Using the Lister ••• - •• - • .228.5

Options • • • • • • -228.5
Programming Considerations ... 228.6

SYMBOLIC DEBUGGING FEATURES _ .229
Use of the Symbolic Debugging Features .229

Statement Number Option .229
Flow Trace Option • • • • • • .229
Symbolic Debug Option •••• • .229

Object-Time Control Cards 230
Overall Considerations. • • .232
Sample Program -- Testrun •• 232

Debugging TESTRUN ••• 233

PROGRAl1 CHECKOUT
Syntax-Checking Compilation
Identification of Program Versions .

Debug Language
Debugging Lines
Declarative Procedures--Use for
Debugging
TRACE, EXHIBIT, and ON ...

Flow of Control • • ft •

Displaying Data Values During
Execution • • • _ .. • • • • • •
Testing a Program Selectively

Testing Changes and Additions to

· .247
.247

• .247
• .247
· .247

.247
· .247
.. .. 248

.248.1

.250

Programs . • .. • • 250
Dumps •••• • • • • .. • • • .251

How to Use a Dump • • ... • • • .251
Errors That Can Cause a Dump. • .252
Locating a DTF •••••• 252
Locating Data ••• 253

EXECUTION STATISTICS.. • 260
Obtaining Execution Statistics 260

Debugging and Testing .260
Optimization Methods 260

Resequencing the Program. • • .260
Insight into SYMDMP output. .. .260
Common Expression Elimination .260
Backward Movement .260
Unrolling • • • • .260
Jamming • • • • • • • • • • .260
Unswitching •• 260
Incorporating Procedures Inline •• 260
Tabling • • • • • • • .260
Efficiency Guidelines •• • .. .260

Diagnostic Messages • • • • .260
Working with Diagnostic Messages ••• 260
Generation of Diagnostic Messages •• 260

Linkage Editor Output •• 261
Execution Time Messages ••••• 261
Recording Program Status. • .262

RERUN Clause. • • • • ••••• 262
Taking a Checkpoint 262

Restarting a Program. .263

APPENDIX A: SAMPLE PROGRAM OUTPUT .265

APPENDIX B: STANDARD TAPE FILE LABELS .279

APPENDIX C: STANDARD MASS STORAGE
DEVICE LABELS • • • •• • •• 281

APPENDIX D: TRACK FORMATS FOR
DIRECT-ACCESS STORAGE DEVICES .287

APPENDIX E: COBOL LIBRARY SUBROUTINES .289
Input/Output Subroutines •••• _ •• 289

Printer Spacing 289
Tape and Sequential Disk Labels •• 289
CLOSE WITH LOCK Subroutine. • .289
WRITE Statement Subroutines .289
READ Statement Subroutines. .289
REWRITE Statement Subroutines .290
DISPLAY (EXHIBIT and TRACE)
Subroutines • • • • • • • • • .290
ACCEPT and STuP (literal) Statement
Subroutines • •• • • • • _ .290
CLOSE Subroutine.. .. • . .. • • .290
Multiple File Tape Subroutine .290

Tape Pointer Subroutine • • _ •
Input/Output Error Subroutines _
Disk Extent Subroutines
3886 OCR Subroutine

• .290
• .290

.• 290

.290
VSAM Subroutines • • • • • • • • • • 290

• • .. • • 291 Auxiliary Subroutines
ASCII Support Subroutines .. • u • •

Separately Signed Numeric
.291

Subroutine • • • • • • • • •
Conversion Subroutines • • • •
Arithmetic Verb Subroutines • • ...
Sort/Merge FeatUre Interface Routine
Checkpoint (RERUN) Subroutine

• 291
• 291
• 293
.293
.293

Segmentation Feature Subroutine
Other Verb Routines • • • • • .. _

Compare Subroutines • • • ..
MOVE Subroutines • • • • • • •
TRANSFORM Subroutine •
Class Test Subroutine
SEARCH Subroutine
Main Program or Subprogram
Subroutine • • • • • • • • •

Object-Time Debugging Subroutines
Debug Control Subroutine • ..
Statement Number Subroutine
Flow Trace Subroutine
Symbolic Debug Subroutines ..

.293
• .293

.293

.294

.294
' •• 294
• .294

• .294
• .294
• .294

.294

.295

.295
Object-Time Execution Statistics
Subroutines • • • • • • .. • .. • • • • 295

COUNT Initializ~tion Subroutine •• 295
COUNT Frequency Subroutine ••••• 295
COUNT Termination Subroutine. .295
COUNT Print Subroutine .295

Optimizer Subroutines •• • • .295
GO TO ••• DEPENDING ON Subroutine .295
Optimizer DISPLAY Subroutine •••• 296

Transient Subroutines ...•.... 296
Symbolic Debug Subroutines 296
SYMDMP Error Message Subroutine .. 296

Object-Time Options Subroutine .. 296
STRING Subroutine .296
UNSTRING Subroutine .• 296
INSPECT Subroutine 296
SAM I/O Subroutine. . . .296
GETCORE Subroutine 296
Alternate Collating Sequence Compare

.296 Subroutine•. '
Segmentation Subroutine
GO TO DEPENDING ON Subroutine
Date, Day, and Time Subroutine

..• 296

USE-FOR-DEBUGGING Subroutine .
Error Message Subroutine . .
Error Message Print Subroutine .
Reposition Tape Subroutine

APPENDIX F: SYSTEH AND SIZE
CONSIDERATIONS • .

• .296
· .296.1
· .296.1
· .296.1
• .296.1

.296.1

.297
Minimum Machine Requirements for the
Compiler. • . .297

Workfile Definition in VSNI Space .297
Source Program Size Considerations .. 297

Compiler Capacity•.... 297
Effective Storage Considerations .. 298

Execution Time Considerations •. 299
Hultiprogramming Considerations ... 300
Sort Feature Considerations .. 300

APPENDIX G: COlIMUNICATION REGION . • .301
Program Communication .301

APPENDIX H: SNIPLE JOB DECKS ... 303
Direct Files.304

Creating a Direct File304
Retrieving and Updating a Direct
File • • • • • • • • • • • .304

• .305 Indexed Files • • • • • • •
Creating an Indexed File •
Retrieving and Updating an Indexed

• .305

File. • • • • • • • • • • • .306
Files Used in a Sort Operation. .306

Sorting an Unlabeled Tape File .306

APPENDIX I: DIAGNOSTIC MESSAGES •• 307
Compile-Time Messages ••••• 307
Operator Messages • • .. • •• • .307
Object-Time Messages • • • • • • .309

COBOL Object Program Unnumbered
Messages. • • • • • • • • • • • .318

APPENDIX J: COBOL 3886 OPTICAL
CHARACTER READER SUPPORT 319

3886 OCR Processing • .319
Implementing an OCR Operation •• 319

Document Design _ ••••••••• 319
Document Description.. • • _ •• 320
COBOL Support ,.320
File Description •. • _ • • 320
Record Description. • .320
Procedural Code 321
JCL Considerations ••••• 321
Subprogram Interface.. • 321

Statements for Invoking 3886 I/O
Functions • .. • • .324

OPEN Function (Equivalent to OPEN
Macro) • • • • • • • .. • • • .. • •
CLOSE Function (Equivalent to DOS
CLOSE Macro) • • • • .. • • •
READ Function (Equivalent to DOS
READ and WAITF Macros) •••• _ •
READO Function (Equivalent to DuS
READ Macro)
WAIT Function (Equivalent to DOS
WAITF Macro) • • • • _ • • • • • •
MARKL Function (Equivalent to DOS
CNTRL Macro with LMK Option) • • •
MARKD Function (Equivalent to DOS
CNTRL Macro with DMK Option) •••
EJECT Function (Equivalent to DOS
CNTRL Macro, with ESP Option)
SETDV (Set Device by Loading a
Format Record) Function
(Equivalent to DOS SETDEV Macro) •
COBOL 3886 Library Routine • _ ...

Processing Tapes from the OCR 3886,
Model 2 • • • .. • • • • • _ • • • _

LIHITS OF DOS/VS COBOL

.324

.324

• 324

.324

.324

.324

.325

.325

• 325
• 325

.326

I APPENDIX K:
COI1PILER · .332

INDEX .333

ILLUSTRATIONS

TABLES

Table 1. Job Control Statements • 16
Table 2. Symbolic Names, Functions,
and Permissible Device Types • • • • _ • 21
Table 3. Significant Characters for
Various Options ••••••• 40.1
Table 4. Glossary Definition and
Usage ••• • • • • • • • • • • • 65
Table 5. Symbols Used in the Listing
and Glossary to Define
Compiler-Generated Information 66
Table 6. System Message
Identification Codes • • • • • • • • _ • 73
Table 7. Conventional Use of Linkage
Registers • • • • • • • • • • • • • • • 78
Table 8. Save Area Layout and Word
Contents • • • • • • • • • _ • • • • 79
Table 9. Recording Capacities of Mass
Storage Devices _ _ • _ • • _ • 97

I Table 9.1 File Organization and Access
Methods 97
Table 10. Partial List of Prime
Numbers ••••••• _ • • • • .105
Table 11. File Status Values and
Error Handling _ • •• •• • • .136.1
Table 12. File Status ~ey values at
OPEN •••••••••••••••••• 138
Table 13. File Status at Action
Request Time _ • • • • • • • • • .138
Table 14. COBOL Statements for
Creating a VSAM File •• __ • • .141
Table 15. COBOL Statements for
Retrieving a VSAM File. _ • • • .143
Table 16. Fields preceding DTFMT and
DTFSD •••••••• _ •••• _ .151
Table 17. Fields preceding DTFDA --
ACCESS IS RANDOM -- Actual Track
Addressing ••••••••••••••• 151
Table 18. Fields Preceding DTFDA --
ACCESS IS RANDOM -- Relative Track
Addressing • • • • • • • • • • • • • • .152
Table 19. Fields Preceding DTFDA --
ACCESS IS SEQUENTIAL -- Actual Track
Addressing ••••••••••••••• 153

Table 20. Fields Preceding DTFDA --
ACCESS IS SEQUENTIAL -- Relative Track
Addressing ••••••• _ •••• _ •• 154
Table 21. Fields Preceding DTFIS .154
Table 22. Fields Preceding DTFDU ••• 155
Table 23. Meaning of Pre-DTF Switch •• 155
Table 24. Errors Causing an Invalid
Key Condition ••••••••••••• 156.1
Table 25. Meaning of Error Bytes for
GIVING Option of Error Declarative
(part 1 of 2) ••• _ • _ • • • • .157
Table 26. Location and Meaning of
Error Bits for DTFMT • • • • • .• .159
Table 27. Location and Meaning of
Error Bits for DTFSD • • • • • • • .159
Table 28. Location and Meaning of
Error Bits for DTFDA _ •• _ • • • .160
Table 29. Location and Meaning of
Error Bits for DTFIS •••••• _ ••• 160
Table 30. Location and Meaning of
Error Bits for DTFDU •• _ ••• _ .161
Table 31. Data Format Conversion
(Part 1 of 2) .•••• __ • • • .198
Table 32. Relationship of PICTURE to
Storage Allocation ••• _ • • • • .202
Table 33. Rules for the SET Statement .223
Table 34. Individual Type Codes Used
in SYMDMP output • • • • • • • • • •• .234
Table 35. Functions of cuBOL Library
Conversion Subroutines. _ ••••• _ .292
Table 36. Functions of CuBOL ·Library
Arithmetic Subroutines. • • • • .293
Table 37. OCR Status Key Values and
User Actions •••• _ • • • .322
Table 38. possible Status Key Values,
By Operation • • • • • • • • • • • _ • .322
Table 39. User Responses to Status Key 323
Table 40. CALL Statements for
Invoking 3886 I/O Functions •••••• 326

FIGURES

'igure 1. Sample Structure of Job Deck Figure 30. Permissible Specifications
:or Compiling, Link Editing, and for the First Eight Bytes of the
~xecuting a Main Program and Two Actual Key102
;ubprograms 13 Figure 31. Creating a Direct File
~igure 3. How the PUB Table is Using Method B (Part 1 of 4) • .107
;canned 25.4 Figure 32. Creating a Direct File
~igure 3.1 Device Specifications with Relative Track Addressing Using
Eor Tapes ~ 25.5 Method B (Part 1 of 4) • .112
'igure 4. Sample Label and File Figure 33. Formats of Blocked and
~xtent Information for Mass Storage Unblocked Records • • • • _ . ~ .118
~iles • • • • • • • • • • • • • _ • 30 Figure 34. Adding a Record to a Prime
~igure 5. Job Definition -- Use of rrack. • • . • • • • • • • • .120
:he Librarian 41 Figure 35. VSAM Data Organization •• 129
~igure 6. Options Available During Figure 36. Defining a VSAM Master
~ink-Editing ••••••••••• 44 Catalog • • • • • • • • • • • • • .131
~igure 7. The Relative Location of Figure 37. Defining a VSAM Data Space 132
:he Four System Libraries • • • • • 56 I Figure 38. Defining a Key-sequenced
~igure 8. Sample Coding to Calculate Suballocated VSM1 File with Both
~ICA • • .. • • • • • • • • • • 58 Primary and Alternate Keys 133
~igure 9. Altering a program from Figure 39. Standard Tape File Label
the Source Statement Library Using and TLBL Card (Showing Maximum
[NSERT and DELETE Cards 58 Specifications) ••••••• • .163
~igure 10. Effect of INSERT and Figure 40. Standard Tape File Label
DELETE Cards • • • • 58 and TLBL Card (Showing Minimum
~igure 11. Examples of Compiler Requirements)
Output (Part 1 of 4) • • • .. 60 Figure 41. Standard,-tJser Standard,

• .164

~igure 12. A Program that Produces and Volume Labels ••.•••••••• 165
COBOL Compiler Diagnostics 69 Figure 42. Nonstandard Labels ••••• 165
Figure 13. Linkage Editor Output • 70 Figure 43. Processing an Unlabeled
Figure 14. Output from Execution Job Multifile Volume (Part 1 of 2) .168
Step • • • • • • • • • • • 72 Figure 44. Reading a Multivolume File
Figure 15. Calling and Called with Standard Labels; Creating a
Programs • 75 Multifile Volume with Standard Labels
Figure 16. Example of Data Flow Logic (Part 1 of 2) 170
in a Call Structure • • • • • • • 78 Figure 45. Creating an Unlabeled
Figure 17. Sample Linkage ~outines Multivolume File (Part 1 of 2) .172
Used with a Calling Subprogram • . • 80 Figure 46. Fixed-Length (Format F)
Figure 18. Sample In-line Parameter Records .. • • . • • • • • • • • .179
List 81 Figure 47. Undefined (Format U)
Figure. 19. Sample Linkage Routines Records •.• _ _ • . .180
Used with a Lowest Level Subprogram 81 Figure 48. Unblocked V-Mode Records .180
Figure 20. Example of an Assembler Figure 49. Blocked V-Mode Records ... 181
Language Subroutine for Accomplishing Figure 50. Fields in Unblocked V-Mode
Overlay •• • • • • • • .. • • • • • 82 Records 182
Figure 21. Flow Diagram of overlay Figure 51. Fields in Blocked V-Mode
Logic • • • • • • • .. • .. • 84 Records............ .182
Figure 22. Job Control for Figure 52. First Two Blocks of
Accomplishing Overlay •• • • 84 VARIABLE-FILE-2 ,183
Figure 23. Calling Sequence to Obtain Figure 53.. Control Fields of an
Overlay Between Three COBOL S-Mode Record 184
Subprograms (part 1 of 3) • 85 Figure 54. One Logical Record
Figure 24. Segmenting the Program Spanning Physical Blocks 185
SAVECORE • 89 Figure 55,. First Four Blocks of
Figure 25. Storage Layout for SAVECORE 91 SPAN-FILE • • .• .. • • • ... •• .186
Figure 26. Compiler output for Figure 56. Advantage of S-Mode
SAVECORE . • • • • .. • • 92 Records Over V-Mode Records .186
Figure 27. Link Editing a Segmented Figure 57. Direct and Sequential
Program •• • .. • • • • ... • • .. • 94 Spanned Files on a Mass Storage Device 187
Figure 28. Location of Sort Program Figure 58. Treatment of Varying
in a Segmentation Structure ... • • 94 Values in a Data Item of PICTURE S9 •• 202
Figure 29. Structures of the Actual
Key _ •..•• _ ••• _ •• 102

Figure 58.1. Using the STRING
Statement . • .. . • .. . •. 206
Figure 58.2. Using the UNSTRING
Statement . • .. • •206
Figure 59. Sample of GROUP INDICATE
Clause and Resultant Execution Output .213
Figure 60. Format of a Report Record
When the CODE Clause is Specified .214
Figure 61. Activating the NEXT GROUP
Clause .•.••........•.. 21 5 .
Figure 62. Calculating Record Lengths
When Using the OCCURS Clause with the
DEPENDING ON Option•.... 220
Figure 63. Table Structure in virtual
Storage••.•.... 221

Figure 64. Using the Symbolic
Debugging Features to Debug the
Program TESTRUN (Part 1 of 12) 235

IFigure 64.1. Program with USE FOR
DEBUGGING247
Figure 65. Sample Output of EXHIBIT
Statement with the CHANGED NNIED
Option249
Figure 66. Sample Dump Resulting from
Abnormal Termination (Part 1 of 6) ... 254
Figure 67. Track Format. . . • .288
Figure 68. Communication Region in
the Supervisor.. 302
Figure 69. Sample OCR Program (Part
of 5) ..•...327

FEATURES OF THE PROGRAM PRODUCT DOS/VS COMPILER

The DOS/VS COBOL Release 3 Compiler is
lesigned and implemented to execute under
)OS/VSE with Advanced Function Release 3
Lnd later. It may also be used with CMS/DOS
tnder VM/SP, with restrictions.

The compiler and library are designed
lccording to the specifications of the
:ollowing industry standards, as understood
md interpreted by IBH as of May 1980:

American National Standard COBOL,
X3.23-1974 (except for the restrictions
noted below)~ which is compatible with
and identical to International
Organization for Standardization/Draft
International Standard (ISO/DIS) 1989~
COBOL.

The restrictions place support for ANS
COBOL X3.23-1974 at the Federal
Information Processing Standard low
intermediate level.

American National Standard COBOL,
X3.23-1968, which is compatible with and
identical to ISO/R 1989-1972 Programming
Language COBOL.

[BM Restr ictions

Some elements of American National
3tandard COBOL, X3.23-1974, are not included
Ln DOS/VS COBOL. These elements are:

I The Communication Hodule.

I The Report writer Module.

I Full support of the OPTIONAL phrase in
the SELECT clause of SEQUENTIAL 1-0
Level 2. (The OPTIONAL phrase is
treated as documentation; the function
is provided by a control statement of
the operating system.)

I The OPEN EXTEND statement for SEQUENTIAL
1-0.

I Level 2 of the Inter-Program
Communication module.

I Level 2 of the DEBUG module.

I The multiple library facility of LIBRARY
Level 2. (Level 2 language is supported
as documentation.)

rhe DOS/VS COBOL Compiler includes the
Eollowing features:

• Object Code:

(1) Optimized Object Code -- saves
space in object program generated
code and global tables. The space
saved depends on the number of
referenced procedure-names and
branches, and on 01-level data
names.

(2) Double-Buffered ISAM -- allows
faster sequential processing of
indexed files.

(3) The MOVE Statement and Comparisons
-- when a MOVE statement or a
comparison involves a one-byte
literal, generated code for the
move and the comparison saves
object program space and
compilation time.

(4) DISPLAY Routines -- the DISPLAY
routine has been split into
subsets for efficient object
program code.

Alphabetized Cross-Reference Listing
(SXREF) -- for reference to user
specified names in a program.

• Debugging Facilities:

(1) Symbolic Debug Feature -- which
provides a symbolic formatted dump
at abnormal termination, or a
dynamic dump during program
execution.

(2) Flow Trace Option -- a formatted
trace can be requested for a
variable number of procedures
executed before abnormal
termination.

(3) Statement Number Option -
identifies the COBOL statement
being executed at abnormal
termination.

(4) Expanded CLIST and SYM -- for
detailed information about the
Data Division and Procedure
Division.

(5) Relocation Factor -- can be
requested to be included in
addresses on the object code
listing, for easier debugging.

Features of the Program Product DOS/VS Compiler 7

(6) Working-Storage Location and Size
-- when CLIST and SYM are in
effect, the starting address and
size of Working-Storage are
printed.

(7) Syntax-Check Feature -- optionally
provides a quick scan of the
source program without producing
object code. Syntax checking can
be conditional or unconditional.

(8) WHEN-cm1PILED Special Register -
makes the date-and-time-compiled
constant carried in the object
module available to the object
program. This special register is
a programmer aid that provides a
means of associating a compilation
listing with both the object
program and the output produced
at execution time.

• Device Support -- any tape or disk that
is compatible with devices previously
supported by DOS/VS COBOL can be
specified. For example, all IBM mass
storage facilities with model numbers
of the form 33xx are supported.

• ASCII Support -- allows creation and
retrieval of tape files written in the
American National Standard Code for
Information Interchange (ASCII).

• VSAM (Virtual Storage Access Method)
Support -- provldes fast storage and
retrieval of records, password
protection, centralized and simplified
data and space management, advanced
error recovery facilities, plus system
catalog. COBOL supports indexed (key
sequenced) files with primary and
alternate indexes, sequential (entry
sequenced) files, and relative-record
files. Records can be fixed or variable
in length.

• FIPS (Federal Information Processing
Standard) Flagger -- issues messages
identifying nonstandard elements in a
COBOL source program. The FIPS Flagger
makes it possible to ensure that COBOL
clauses and statements in a DOS/VS
COBOL source program conform to the
Federal Information Processing
Standard.

8

At system generation time, no flagging,
NOLVL (which is the system generation
default), or flagging at a specified
FIPS level, LVL=A/B/C/D, can be
specified as the installation default
option. At compile time, the programmer
can override any of these options by
specifying another level of FIPS
flagging; if NOLVL is specified, however
the option is ignored and the default
LVL option is used. Through the
LANGLVL option, the programmer can
specify flagging for either the 1972
FIPS or the 1975 FIPS.

• Lister -- provides a specially
formatted source listing with embedded
cross-references for increased
intelligibility and ease of use. A
reformatted source deck is available as
an option.

• Generic Key Facility for ISAM Files
sequential record retrieval can be
requested using a search argument
comprised of a user-specified number of
high-order characters <generic portion)
of the NOMINAL KEY. The user need not
specify a full or exact search key.
This feature is supported via the START
verb.

• MERGE Support -- combines from two to
eight identically sequenced files on a
set of specified keys and makes records
available, in merged order, to an
output procedure or a sequential output
file.

• Verb profiles -- facilitates
identifying and locating verbs in the
COBOL source program. Options provide
a verb summary or a verb
cross-reference listing which includes
the verb summary.

• Execution-time statistics -- maintains
a count of the number of times each
verb in the" COBOL source progr<1m is
executed during an individual program
execution.

PART I

INTRODUCTION--~)

JOE DEFINITION--~~

JOB PROCESSING---+)

PREPARING COBOL PROGRAMS FOR PROCESSING--------------------~~

LIBRARIAN FUNCTIONS--~)

INTERPRETING OUTPOT--~~

CALLING AND CALLED PROGRAMS--------------------------------~)

USING THE SEGMENTATION FEATURE----------------------------~)

9

An IBH COBOL program may be processed by
e IBM DOS/VSE System. Under control of
e operating system, a set of COBOL source
atements is translated to form a module.
order to be executed, the module in turn

st be processed to form a phase. The
asons for this will become clear later.
r now it is sufficient to note that the
ow of a COBOL program through the
erating system is from source statements

module to phase.

The DOS/VS System consists essentially
a control prooram and a number of
Qcessi~rog£ams, and g,ata~~gment.

NTROL PROGRAM

The components of the control program
e: the supervisor, Job Control
ocessor, and the Initial Program Loader.

PERVISOR

The main function of the Supervisor is
provide an orderly and efficient flow of

bs through the operating system. (A job
some specified unit of work, such as the

'ocessing of a COBOL program.) The
pervisor loads into the computer the
.ases that are to be executed. During
ecution of the program, control usually
ternates between the Supervisor and the
'ocessing program. The Supervisor, for
.ample, handles all requests for
,put/output operations.

IB CONTROL PROCESSOR

The primary function of the Job Control
:ocessor is the processing of job control
:atements. Job control statements
~scribe the jobs to be performed and
)ecify the programmer's requirements for
lch job. Job control statements are
~itten by the programmer using the job
)ntrol language. The use of job control
:atements and the rules for sp&cifying
1em are discussed later.

INITIAL PROGRAM LOADER

The Initial Program Loader (1PL) routine
loads the Supervisor into storage when
system operation is initiated. Detailed
information about the Initial Program
Loader need not concern the COBOL
programmer. Anyone interested in this
material, however, can find it in the
publication DOS/VS~tem Mana£~ni-Guide.

PROCESSING PROGRAMS

The processing programs include the
COBOL compiler, service programs, and
application programs.

SYSTEM SERVICE PEOGRAMS

The system service programs provide the
functions of generating the system,
creating and maintaining the library
sections, and editing programs into disk
residence before execution. The system
service programs are:

1. Linkage Editor. The Linkage Editor
processes modules and incorporates
them into phases. A single module can
be edited to form a single phase, or
several modules can be edited or
linkeg, together to form one executable
phase. Moreover, a module to be
processed by the Linkage Editor may be
one that was just created (during the
same job) or one that was created in a
previous job and saved.

The programmer instructs the Linkage
Editor to perform these functions
through job control statements. In
addition, there are several linkage
editor control statements.
Information on their use is given
later.

2. Librarian. The Librarian consists of
a group of programs used for
generating the system, maintaining and
reorganizing the disk library areas,
and providing printed and punched

Introduction 11

output from the libraries. The system
libraries are: the core image
library, the relocatable library, the
source statement library, and the
procedure library. In addition, the
Librarian supports private core image,
relocatable, and source statement
libraries. Detailed information on
the Librarian is given later.

APPLICATION PROGRAMS

Application programs are usually
programs written .in a higher-level
programming language (e.g., COBOL). All
application programs within the Disk
Operating System/Virtual storage are
executed under the supervision of the
control program.

IBM-SUPPLIED PROCESSING PROGRAMS

The following are examples of
IBM-supplied processing programs:

1. Language translators, e.g., DOS/VS
COBOL, which translate source programs
written in various languages into
machine (or object) language.

2. Sort/Merge

3. utilities

DATA MANAGEMENT

A third important class of components is
data management routines. These are
available for inclusion in problem programs
to relieve the programmer of the detailed
programming associated with the transfer of
data between programs and auxiliary
storage.

MULTIPROGRAMMING

Multiprogramming refers to the ability
of the system to control more than one
program concurrently by interleaving their
execution. This support is referred to as
fixed partitioned multiprogramming, since

12

the virtual address space is divided into a
fixed number of partitions. Each program
occupies a contiguous area of storage. The
amount of virtual storage allocated to
programs to be executed may be determined
when the system is generated, or it may be
determined by the operator when the program
is loaded into storage for execution.

BACKGROUND VS. FOREGROUND PROGRAMS

There are two types of problem programs
in multiprogramming: background and
foreground. Background and foreground
programs are initiated by the Job Control
Processor from batched-job input streams.

Background and foreground programs
initiate and terminate independently of one
another. Neither is aware of the other's
status or existence.

The system is capable of concurrently
operating one background program and four
foreground programs. Priority for CPU
processing is controlled by the Supervisor
with foreground programs normally having
priority over background programs. Control
is taken away from a high priority program
when that program encounters a condition
that prevents continuation of processing,
until a specified event has occurred.
Control is taken away from a lower pr~ority
program when an event for which a higher
priority program was waiting has been
completed. Interruptions are received and
processed by the Supervisor.

In a multiprogramming environment, the
DOS/VS COBOL compiler can execute either in
the background or the foreground. In
systems that support the batched-job
foreground and private core image library
options, the Linkage Editor can execute in
any foreground partition as well as in the
background partition. To execute the
DOS/VS COBOL compiler for the linkage
editor in any foreground partition, a
private core-image library is required.
Additional information on executing the
compiler and Linkage Editor in the
foreground is contained in "Appendix F:
System and Size Considerations." COBOL
program phases can be executed as either
background or foreground programs.

A job is a specified unit of work to be
:rformed under control of the operating
stem. A typical job might be the
'ocessing of a COBOL program -- compiling
turce statements, editing the module
:oduced to form a phase, and then
:ecuting the phase. Job definition the
:ocess of specifying the work to be done
lring a single job -- allows the
:ogrammer considerable flexibility. A job
~n include as many or as few job~tep~ as
le programmer desires.

)B STEPS

A job step is exactly what the name
lplies -- one step in the processing of a
>b. Thus, in the job mentioned above, one
>b step is the compilation of source
:atements; another is the link editing of
module; another is the execution of a

lase. In contrast to a job definition,
le definition of a job step is fixed.
ich job step involves the execution of a
rogram, whether it be a program that is
irt of the Disk Operating System/Virtual
torage or a program that is written by the
rogrammer. A compilation requires the
(ecution of the DOS/VS COBOL compiler.
Lmilarly, an editing implies the execution
E the Linkage Editor Finally, the
(ecution of a phase is the execution of
~e problem program itself.

~ilation Job Steps

The compilation of a COBOL program may
ecessitate more than one job step (more
han one execution of the DOS/VS COBOL
ompiler). In some cases, a COBOL program
onsists of a main program and one or more
ubprograms. To compile such a program, a
eparate job step must be specified for the
ain program and for each of the
ubprograms. Thus, the DOS/VS COBOL
ompiler is executed once for the main
rogram and once for each subprogram. Each
xecution of the compiler produces a
odule. The separate modules can then be
ombined into one phase by a single job
tep -- the execution of the Linkage
ditor.

For a COBOL program that consists of a
ain program and two subprograms,
ompilation and execution require five

JOB DEFINITION

steps: (1) compile (main program), (2)
compile (first subprogram), (3) compile
(second subprogram), (4) link edit (three
modules combined into one phase), and (5)
execute (phase). Figure 1 shows a sample
structure of the job deck for these five
job steps. Compilation and execution in
three job steps -- compile, link edit, and
execute -- is applicable only when the
COBOL source program is a single main
program.

III JOB PROG1
I •
I •
I •
1// EXEC FCOBOL
I {source deck - main program)
1/*
I •
I .
I •
1// EXEC FCOBOL
I {source deck - first subprogram)
1/*
I •
I •
I •
III EXEC FCOBOL
I {source deck - second subprogram)
1/*
I •
I •
I •
1// EXEC LNKEDT
I •
I •
I •
III EXEC

Figure 1. Sample structure of Job Deck
for Compiling, Link Editing,
and Executing a Main Program
and Two Subprograms

The execution of a COBOL program has
thus far been referred to as the execution
of a phase. It is possible, however, to
organize a COBOL program so that it is
executed as two or more phases. Such a
program is known as a multiphase program.

By definition, a Eh~ is that portion
of a program that is loaded into virtual
storage by a single operation of the
Supervisor. A COBOL program can be

Job Definition 13

executed as a single phase only if there is
an area of virtual storage available to
accommodate all of it. A program that is
too large to be executed as a single phase
must be structured as a multiphase program.
The technique that enables the programmer
to use subprograms that do not fit into
virtual storage (along with the main
program) is called ~lay.

The number of phases in a COBOL program
has no effect on the number of job steps
required to process that program. As will
be seen, the Litikage Editor can produce one
or more phases in a single job step.
Similarly, both single-phase and multiphase
programs require only one execution job
step. Phase execution is the execution of
all phases that constitute one COBOL
program.

Detailed information on overlay
structures, as well as information on using
the facilities of the operating system to
create multiple phases and to execute them,
can be found in the chapter "Calling and
Called Programs."

TYPES OF JOBS

A typical job falls into one of several
categories. A brief description of these
categories follows; a complete discussion
is found in the chapter "Preparing COBOL
Programs for Processing."

Compile-Only: This type of job involves
only the execution of the COBOL compiler.
It is useful when checking for errors in
COBOL source statements. A compile-only
job is also used to produce a module that
is to be further processed in a subsequent
job.

A compile-only job can consist of one
job step or several successive job steps.

Edit-Only: This type of job involves only
the execution of the Linkage Editor. It is
used primarily to combine modules produced
in previous compile-only jobs, and to check
that all cross references between modules
have been resolved. The programmer can
specify that all modules be combined to
form one phase; or he can specify that some
modules form one phase and that others form
additional phases. The phase output
produced as the result of an edit-only job
can be retained for execution in a
subsequent job.

14

Compil~and Edit: This type of job
combines the functions of the compile-only
and the edit-only jobs. It requires the
execution of both the COBOL compiler and
the Linkage Editor. The job can include
one or more compilations, resulting in one
or more modules. The programmer can
specify that the Linkage Editor process any
or all of the modules just produced; in
addition, he can specify that one or more
previously produced modules be included in
the linkage editor processing.

Execute-Only: This type of job involves
the execution of a phase (or mUltiple
phases) produced in a previous job. Once a
COBOL program has been compiled and edited
successfully, it can be retained as one or
more phases and executed whenever needed.
This eliminates the need for recompiling
and re-editing every time a COBOL program
is to be executed.

Edit and Execute: This type of job
combines the functions of the edit-only and
the execute-only jobs. It requires the
execution of both the Linkage Editor and
the resulting phase(s).

Compile, Edit, and Execute: This type of
job combines the functions of the compile
and edit and the execute-only jobs. It
calls for the execution of the COBOL
compiler, the Linkage Editor, and the
problem program; that is, the COBOL program
is to be completely processed.

When considering the definition of his
job, the programmer should be aware of the
following: if a job step is cancelled
during execution, the entire job is
terminated; any remaining job steo~
skipped. Thus, in a compile-edit-and
execute job, a failure in compilation
precludes the editing of the module(s) and
phase execution. Similarly, a failure in
editing precludes phase execution.

For this reason, a job usually should
(but need not) consist of related job steps
only. For example, if two independent
single-phase executions are included in one
job, the failure of the first phase
execution precludes the execution of the
second phase. Defining each phase
execution as a separate job would prevent
this from happening. If successful
execution of both phases can be guaranteed
before the job is run, however, the
programmer may prefer to include both
executions in a single job.

3 DEFINITION STATEMENTS

Once the programmer has decided the work
be done within his job and how many jOb
~ps are required to perform the job, he
~ then define his job by writing job
ntrol statements. Since these statements
~ usually punched in cards, the set of
b control statements is referred to as a
b deck. In addition to job control
~tements, the job deck can include input
ta for a program that is executed during
job step. For example, input data for
e COBOL compiler the COBOL program to
compiled -- can be placed in the job

ek.

The inclusion of input data in the job
ek depends upon the manner in which the
stallation has assigned input/output
vices. Job control statements are read
om the unit named SYSRDR (system reader),
ich can be either a card reader, a
gnetic tape unit, or a disk extent.
put to the processing programs is read
om the unit named SYSIPT (system input),
ich also can be either a card reader, a
gnetic tape unit, or a disk extent. The
stallation has the option of assigning
ther two separate devices for these units
ne device for SYSRDR, a second device for
SIPT) or one device to serve as both
SRDR and SYSIPT. If two devices have
en assigned, the job deck must consist of
ly job control statements; input data
st be kept separate. If only one device
s been assigned, input data must be
cluded within the job deck.

There are four job control statements
at are used for job definition: the JOB
atement, the EXEC statement, the
d-of-data statement (/*), and the
d-of-job statement (/&). In this
apter, the discussion of these job
ntrol statements is limited to the
.nction and use of each statement. The
les for writing each statement are given

the chapter "Preparing COBOL Programs
,r Processing."

The JOB statement indicates the
:ginning of control information for a job.
le specified job name is stored in the
)mmunications region of the corresponding
lrtition and is used by job accountin~ and
) identify listings produced during
:ecution of the job.

The JOB statement may be omitted, in
lich case the job name NONAME is stored in
le communications region. If the JOB
:atement is present, it must contain a job
~e; otherwise, an error condition occurs.

The JOB statement is always printed in
positions 1 through 72 on SYSLST and
SYSLOG. The time-of-day and date are also
printed. The JOB statement causes a skip
to a new page before printing is started on
SYSLST.

When a JOB statement is encountered, the
JOD control program stores the job name
from the JOB statement into the
communications region. If the /& statement
was omitted, the next JOB statement will
cause control to be transferred to the
end-of-job routine to simulate the /&
statement.

The EXEC statement requests the
execution of a program. Therefore, one
EXEC statement is required for each job
step within a job. The EXEC statement
indicates the program that is to be
executed (for example, the COBOL compiler,
the Linkage Editor). As soon as the EXEC
statement has been processed, the program
indi6ated by the statement begins
execution.

The end-of-data statement, also referred
to as the /* (slash asterisk) statement,
defines the end of a program's input data.
When the data is included within the job
deck (that is, SYSIPT and SYSRDR are the
same device), the /* statement immediately
follows the input data. For example, COBOL
source statements would be placed
immediately after the EXEC statement for
the COBOL compiler; a /* statement would
follow the last COBOL source statement.

Note: For an input file on a 5425 MFCU,
the /* card must be followed by a blank
card.

When input data is kept separate (that
is, SYSIPT and SYSRDR are separate
devices), the /* statement immediately
follows each set of input data on SYSIPT.
For example, if a job consists of two
compilation job steps, an editing job step,
and an execution job step, SYSIPT would
contain the source statements for the first
compilatiQn followed by a /* statement, the
source statements for the second
compilation followed by a /* statement, any
input data for the Linkage Editor followed
by a /* statement, and perhaps some input
data for the problem program followed by a
/* statement.

The end-of-job statement, also referred
to as the /& (slash ampersand) statement,
defines the end of the job. A /& statement
must ap~ear as the last statement in the
job deck.

Job Definition 15

OTHER JOB CONTROL STATEMENTS

The four job definition statements form
the framework of the job deck. There are a
number of other job control statements in
the job control language; however, not all
of them must appear in the job deck. The
job control statements are summarized
briefly in Table 1.

The double slash preceding each
statement name identifies the statement as
a job control statement. Most of the
statements are used for data management
creating, manipulating, and keeping track
of data files. (Data files are externally
stored collections of data from which data
is read and onto which data is written.)

16

Table 1. Job Control statements

~-----r----------------'
I Statement Function I
~----------------------~
II ASSGN Inputloutput assignments. :

II CLOSE Closes a logical unit assigned l
to magnetic tape.

II DATE Provides a date for the
Communication Region.

II DLBL Disk file label information
and VSN1 file processing.

II EXEC Execute program.

II EXTENT Disk file extent.

II JOB Beginning of control
information for a job.

II LISTIO Lists inputloutput
assignments.

II MTC Controls operations on
magnetic tape.

II OPTION Specifies one or more job
control options.

II PAUSE Creates a pause for operator
intervention.

II RESET Resets inputloutput
assignments to standard
assignments.

II RSTRT Restarts a checkpointed
program.

II TLBL

II UPSI

II VOL

II ZONE

1*

1&

Tape label information.

Sets user-program switches.

Diskltape label information.

Sets the zone for the date.

End-of-data-file or
end-of-job-step.

End-of-job.

* Comments. L _____ L _________________ J

This chapter describes in greater detail
e three types of job steps involved in
Dcessing a COBOL program. Once the
ader becomes familiar with the
formation presented here, he should be
le to write control statements by
ferring only to the next chapter,
reparing COBOL Programs for Processing."

MPILATION

Compilation is the execution of the
BOL compiler. The programmer requests
mpilation by placing in the job deck an
EC statement that contains the program
. me FCOBOL, the name of the DOS/VS COBOL
mpiler. This is the EXEC FCOBOL
.atement. If the compiler is loaded
om a user program, that program must be
cataloged phase. The name of the phase
.st have as its first four characters
'COB' .

Input to the compiler is a set of COBOL
urce statements, consistinq of either a
in program or a subprogram: Source
atements must be punched in Extended
nary-Coded-Decimal Interchange Code
BCDTC). The COBOL source statements are
ad from SYSIPT. The job deck is read
om SYSRDR. If SYSRDR and SYSTPT are
signed to the same unit, the COBOL source
atements should be placed after the EXEC
OBOL statement in the job deck.

Output from the COBOL compiler is
pendent upon the options specified when
e system is generated. This output may
clude a listing of source statements
actly as they appear in the input deck.
e source listing is produced on SYSLST.
addition, the module produced by the

,mpiler may be written on SYSLNK, the
nkage editor input unit, and punched on
SPCH. separate Data and/or Procedure
vision maps, a symbolic cross-reference
.st, and diagnostic messages can also be
oduced. The format of compiler output is
.scussed and illustrated in the chapter
nterpreting Output."

The programmer can override any of the
Impiler options specified when the system
.s generated, or include some not
'eviously specified, by using the OPTION
Introl statement in the compile job step.
Impiler options are discussed in detail in
,e chapter "Preparing COBOL Programs for
·ocessing. n

JOB PROCESSING

EDITING

Editing is the execution of the Linkage
Editor. The programmer requests editing by
placing in the job deck an EXEC statement
that contains the program name LNKEDT, the
name of the Linkage Editor. This is the
EXEC LNKEDT statement.

Input to the Linkage Editor consists of
a set of linkage editor control statements
and one or more modules to be edited.
These modules include any of the following:

1. Modules that were compiled previously
in the job and placed at that time on
the linkage editor input unit, SYSLNK •

2. Modules that were compiled in a
previous job and saved as module
decks. The module decks must be
placed on SYSIPT. Linkage editor
control statements are read from
SYSRDR.

3. Modules that were compiled in a
previous job step and cataloged in the
relocatable library. The relocatable
library is a collection of frequently
used routines in the form of modules,
that can be included in a program
phase via the INCLUDE control
statement in the linkage editor job
step.

Output from the Linkage Editor consists
of one or more phases. A phase may be an
entire program or it may be part of an
overlay structure (multiple phases) •

A phase produced by the Linkage Editor
can be executed immediately after it is
produced (that is, in the job step
immediately following the linkage editor
job step), or it can be executed later,
either in a subsequent job step of the same
job or in a subsequent job. In either of
the latter cases, the phase to be executed
must be cataloged in the core image libary.
such a phase can be retrieved in the
execute job step by specifying the phase
name in the EXEC statement, where phase
name is the name under which it was
cataloged. Otherwise, the phase output is
retained only for the duration of one job
step following the linkage editor job step.
That is, if the module that was just link
edited is to be executed in the next job
step, it need not have been cataloged. An
EXEC statement will cause the phase to be
brought in from the temporary part of the

Job Processing 17

core image library and will begin
execution. However, the next time such a
module is to be executed, the linkage
editor job step is required since the phase
was not cataloged in the core image
library.

If a private core image library is
assigned, output from the Linkage Editor is
placed in the private core image library
(either permanently or temporarily) rather
than in the resident system core image
library. When execution of a program is
requested and a private core image library
is assigned, this library is searched first
for the requested phase name and then the
system core image library is searched.

In addition to the phase, the Linkage
Editor produces a phase map on SYSLST.
Linkage editor diagnostic messages are also
printed on SYSLST. If the NOMAP option of
the linkage editor ACTION control statement
is specified, no phase map is produced and
linkage editor diagnostic messages are
listed on SYSLST, if assigned. Otherwise,
the diagnostic messages are listed on
SYSLOG. The contents of the phase map are
discussed and illustrated in the chapter
"Interpreting Output."

Linkage editor control statements direct
the execution of the Linkage Editor.
Together with any module decks to be
processed, they form the linkage editor
input deck, which is read by the Job
Control Processor from SYSIPT and written
on SYSLNK.

There are four linkage editor control
statements: the ACTION statement, the
PHASE statement, the ENTRY statement, and
the INCLUDE statement. These statements
are discussed in the next chapter.

PHASE EXECUTION

Phase execution is the execution of the
problem program, for example, the program
written by the COBOL programmer. If the
program is an overlay structure (multiple
phase), the execution job step actually
involves the execution of all the phases in
the program.

18

The phase(s) to be executed must be
contained in the core ima~-1ibrary. The
core image library is a collection of
executable phases from which programs are
loaded by the Supervisor. A phase is
written in the temporary part of the core
image library by the Linkage Editor at the
time the phase is produced. It is
permanently retained (cataloged) in the
core image library, if the programmer has
so requested, via the CATAL option in the
OPTION control statement.

The programmer requests the execution of
a phase by placing in the job deck an EXEC
statement that specifies the name of the
phase. However, if the phase to be
executed was produced in the immediately
preceding job step, it is not necessary to
specify its name in the EXEC statement.

MULTIPHASE PROGRAMS

A COBOL program can be executed as a
single phase as long as there is an area of
virtual storage available to accommodate
it. This area, known as the E£obl~
proqr~g~, must be large enough to
contain the main program and all called
subprograms. When a program is too large
to be executed as a single phase, it must
be structured as a multiphase program.

The overlay structure available to the
COBOL programmer for multiphase programs is
known as root phase overlay, and is used
primarily for programs of three or more
phases. One phase of the program is
designated as the root phase (main program)
and, as such, remains in the problem
program area throughout the execution of
the entire program. The other phases in
the program -- subordinate phas~ -- are
loaded into the problem program area as
they are needed. A subordinate phase may
overlay any previously loaded subordinate
phase, but no subordinate phase may overlay
the root phase. One or more subordinate
phases can reside simultaneously in storage
with the root phase.

Use of the linkage editor control
statements needed to effect overlay are
discussed in the chapter "Calling and
Called Programs."

This chapter provides information about
eparing COBOL source programs for
Impilation, link editing, and execution.

SIGNMENT OF INPUT/OUTPUT DEVICES

Almost all COBOL programs include
put/output statements calling for data to
read from or written into data files

ored on external devices. COBOL programs
not reference input/output devices by

eir actual physical address, but rather
their symbolic names. Thus, a COBOL

ogram is dependent on the device type but
t on the actual device address. Using
AM, it is not even dependent on the
vice type. The COBOL programmer need
ly select the symbolic name of a device
om a fixed set of symbolic names. At
ecution time, as a job control function,
e symbolic name is associated with an
tual physical device. The standard
signment of physical addresses to
rnbolic names may be made at system
neration time. However, job control
atements and operator commands can alter
e standard device assiqnment before
ogram execution. This-is discussed later
this chapter.

Using DOS/VS, a logical unit may also be
signed to another logical unit or a
neral device class or soecific device
~e. For more information on this, see
S/VS system Manaqement Guide and DOS/VS
stem Control Statements.

The symbolic names are divided into two
asses: system logical units and
oqrammer loqical units.

PREPARING COBOL PROGRAMS FOR PROCESSING

The system logical units are used by the
control program and by IBM-supplied
processing programs. SYSIPT, SYSLST,
SYSPCH, and SYSLOG can be implicitly
referenced by certain COBOL procedural
statements. Two additional naroes, SYSIN
and SYSOUT, are defined for background
program assignments. The names are valid
only to the Job Control Processor, and
cannot be referenced in the COBOL program.
SYSIN can be used when SYSRDR and SYSIPT
are the same device; SYSOUT must be used
when SYSLST anj SYSPCH are assigned to the
same magnetic tape unit. A complete
discussion of the assignment of the logical
unit SYSCLB can be found in the publication
DOS/VS System Control statements.

Progra~mer logical units are those in
the range SYSOOO through SYS240 (depending
on the number of partitions in the system)
and are referred to in the COBOL source
language ASSIGN clause.

A COBOL programmer uses the source
langua~e ASSIGN clause to assign a file
used by his problem program to the
appropriate symbolic name. Although
symbolic names may be assigned to physical
devices at system generation time, the
programmer may alter these assignments at
execution time by means of the ASSGN
control statement. However, if the
programmer wishes to use the assignments
made at system generation time for his own
data files in the COBOL program, ASSGN
control statements are unnecessary.

Table 2 is a complete list of symbolic
names and their usage.

Preparing COBOL Programs for Processing 19

,Ie 2. Symbolic Names, Functions, and Permissible Device Types

'mbolic
Lme

:SRDR

:SIPT

~SPCH

~SLST

(SLOG

CSLNK

(SRES

CSCLB

rSSLB

rSRLB

(SIN

(SOUT

{Smax

rSVIS

{SCAT

rSREC

i i

I Function I
I I
I I
IInput unit for control statements or commands. I
I I
I I
I I
I I
IInput unit for programs. I
I I
I I
I I
I I
IMain unit for punched output. I
I I
I I
I I
I I
IMain unit for printed output. I
I I
I I
I I
I I
IReceives operator messages and logs in job control I
Istatements. I
I I
I I
IInput to the Linkage Editor. I
I I
I I
IContains the operating system, the core image I
Ilibrary, relocatable library, source statement I
Ilibrary, and procedure library. I
I I
IA private core image library. I
I I
IA private source statement library. I
I I
IA private relocatable library. I
I I
IMust be used when SYSRDR and SYSIPT are assigned tol
Ithe same disk extent. May be used when they are I
Isame disk extent. May be used when they are I
lassigned to the same card reader or magnetic tape. I
I I
IThis name must be used when SYSPCH and SYSLST are I
lassigned to the same magnetic tape unit. It must I
Ibe assigned by the operator ASSGN command. I
I I
IThese units are available to the programmer as workl
Ifiles or for storing data files. They are called I
lE£ogrammer logical units as opposed to the above- I
Imentioned names which are always referred to as I
Isystem logical units. The largest number of I
Iprogrammer logical units available in the system isl
1240 (SYSOOO through SYS240, depending on number of I
I partitions) • The value of SYSmax is determined by I
Ithe distribution of the programmer logical units I
lamong the partitions. I
I I
IHolds virtual storage page data set. I
I I
IHolds the VSAM catalog. I
I I
ILogs error records. I
I I

Permissible
Device Types

Card reader
Magnetic Tape unit
Disk extent
3540 diskette

Card reader
Magnetic tape unit
Disk extent
3540 diskette

Card punch
Magnetic tape unit
Disk. extent
3540 diskette

Printer
Magnetic tape unit
Disk extent
3540 diskette

Printer keyboard
Printer
Display operator

I
I

consolel

Disk extent

Disk extent

Disk extent

Disk extent

Disk extent

Disk
Magnetic tape unit
Card reader
~540 Diskette

Magnetic tape unit

Any unit

Disk extent

Disk extent

Disk extent

I

Preparing COBOL Programs for Processing 21

JOB CONTROL

The Job Control Processor for the Disk
Operating System/Virtual storage prepares
the system for execution of programs in a
batched job environment. Input to the Job
Control Processor is in the form of job
control statements and job control
commands.

JOB CONTROL STATEMENTS

Job control statements are designed for
an SO-column punched card format. Although
certain restrictions must be observed, the
statements are essentially free form. Job
control statements conform to these rules:

1. Name. Two slashes (II) identify the
statement as a job control statement.
They ~st be in columns 1 and 2. At
least one blank immediately follows
the second slash.

Exceptions: The end-of-job statement
contains /& in columns 1 and 2; the
end-of-data-file statement contains /*
in columns 1 and 2; the comment
statement contains * in column 1 and a
blank in column 2.

2. Operation. This identifies the
operation to be performed. It can be
up to eight characters long. At least
one blank follows its last character.

3. Operand. This may be blank or may
contain one or more entries separated
by commas. The last term must be
followed by a blank, unless its last
character is in column 71.

4. Comments. Optional programmer
comments must be separated from the
operand by at least one space.

Continuation cards are not recognized by
the Job Control Processor. For the
exception to this rule, see the
descriptions of the DLAB and TPLAB
statements.

All job control statements are read from
the device identified by the symbolic name
SYSRDR.

Comments in Job Control Statements

Comment statements (i.e., statements
preceded by an asterisk in column 1
followed by a blank) may be placed anywhere

22

in the job deck. The remainder of the card
may contain any character from the EBCDIC
set. Comment statements are designed for
communication with the operator;
accordingly, they are written on the
console output unit, SYSLOG, in addition to
being written on SYSLST. If followed by a
PAUSE control statement, the comment
statement can be used to r~guest operator
action.

Statement Formats

The following notation is used in the
statement formats:

1. All upper-case letters represent
specifications that are to appear in
the actual statement exactly as shown
in the statement format. For example,
JOB in the operation field of the JOB
statement should be punched exactly as
shown.

2. All lower-case letters represent
generic terms that are to be replaced
in the actual statement. For example,
jobname is a generic term that should
be replaced by the name that the
programmer is giving his job.

3. Hyphens are used to join two or more
words in order to form a single
generic term. For example,
device-address is one generic term.

4. Brackets are used to indicate that a
specification is optional and is not
always required in the statement. For
example, [type] indicates that the
programmer's replacement for the
generic term, type, mayor may not
appear in the statement, depending on
the programmer's requirements.

5. Braces enclosing stacked items
indicate that a choice of one item
~i be made by the programmer. For
example:

~~;G I
ALL
SYSxxx

indicates that either SYS, PROG, ALL,
or SYSxxx must appear in the actual
statement.

6. Brackets enclosing stacked items
indicate that a choice of one item
may, but need not, be made by tne
programmer. For example:

[
, ISS']
,ALT

indicates that either, ISS' or ,ALT
but not both, may appear in the actual
statement, or the specification can be
omitted entirely.

7. All punctuation marks shown in the
statement formats other than hyphens,
brackets, and braces must be punched
as shown. This includes periods,
commas, and parentheses. For example,
, [date] means that the specification,
if present in the statement, should
consist of the programmer's
replacement for the qeneric term date
preceded by the comma with no
intervening space. Even if the date
is omitted, the comma must be punched
as shown.

8. The ellipsis (•••) indicates where
repetition may occur at the
programmer's option. The portion of
the format that may be repeated is
determined as follows:

a. Scanning right to left, determine
the bracket or brace delimiter
imm~diately to the left of the
ellipsis.

b. Continue scanning right to left
and determine the logically
matching bracket or brace
delimiter.

c. The ellipsis applies to the words
and punctuation between the pair
of delimiters.

eguence of Job Control Statements

The job deck for a specific job always
leains with a JOB statement and ends with a
'&., (end-of- job) statement. A specific job
:onsists of one or more job steps. The
leginning of a job step is indicated by the
.ppearance of an EXEC statement. When an
:XEC statement is encountered, it initiates
,he execution of the job step, which
. ncludes all preceding control statements
lp to, but not including, a previous EXEC
:tatement.

The only limitation on the sequence of
:tatements within a job step is that which
.s discussed here for the label information
:tatements.

The label statements must be in the
order:

or

DLBL
EXTENT (one for each area or file in

the volume)

'I'LBL

and must immediately precede the EXEC
statement to which they apply.

DESCRIPTION AND FOR~mTS OF JOB CONTROL
STATEMENTS

This section contains descriptions and
formats of job control statements.

Job control statements, with the
exception of /*, /&, and ~, contain two
slashes in columns 1 and 2 to identify
them.

JOB Statement

The JOB control statement indicates the
beginning of control information for a job.
The JOB control statement is in the
fcllowing format:

r---,
III JOB jobname I L ___ J

jobname
is a programmer-defined name
consisting of from one to eight
alphanumeric characters. Any user
comments can appear on the JOB control
statement followinq the jobname
(through column 71). The time of day
and date appear in columns 73 to 100
when the JOB statement is printed on
SYSLST. The time of day and date are
also printed in columns 1 through 28 on
the next line of SYSLOG .

If a job is restarted, the jobname
must be identical to that used when
the checkpoint was taken.

Note: The JOB statement resets the effect
of all previously issued OPTION and ASSGN
control statements.

Preparing COBOL Programs for Processing 23

ASSGN STATEMENT

The ASSGN (Assign Logical Name) command
or statement assigns a logical I/O unit to
a physical device. Multiple logical units
are allowed to be assigned to one physical
unit within the same partition. Only DASD
can be assigned to (be shared by) several
partitions concurrently.

The job control statement is temporary.
It remains in effect only until the next
change in assignment or until the end of
the job, whichever occurs first. At the
completion of a job, a temporary assignment
is automatically restored to the permanent
assignment for the logical unit.

The job control command is permanent.
It remains in effect until the next
permanent assignment, whichever occurs
first. A CLOSE command for a system
logical unit on disk or diskette also
removes a permanent assignment. See also
the description of the TEr1P/PER11 operands.

Operation Mandatory Operands Optional Operands

[/I) ASSGN

1

f~~dress_1i5t)1 [!~~~J [.VOL-no.)[.SHR) for disks

SYSxxx. ~ leEPM1 [.VOL-no.) for disk-
SYSyyy .PERM~ ette

dev~ce-cla55 1r.55 TTEMP] (.VOL-no.) for tapes
device-type IlAL r!I!ERM

I[H11[.TEMPl
.H2j .PERMj

r.TEMPl
L,PERMj

for 2560.
5424/5

for any
other
device

SYSxxx
Represents the symbolic unit name. It
can be one of the following:

SYSRDR
SYSIPT
SYSIN
SYSPCH
SYSLST
SYSOUT
SYSLNK
SYSLOG
SYSSLB
SYSRLB
SYSCLB
SYSnnn

SYSCAT, SYSREC, and SYSDHP can only be
assigned with the DEF command at IPL
time.

Restrictions: The type of device assignment
is restricted under certain conditions:

1.

24

If one of the system logical units
SYSRDR, SYSIPT, SYSLST, or SYSPCH is
assigned to a disk device or diskette,
the assignment must be permanent and
follow the DLBL and EXTENT statements.

2. If SYSRDR and SYSIPT are to be assigned
to the same disk device or diskette,
SYSIN must instead be assigned and this
assignment must be permanent.

3. SYSOUT is only valid for a tape unit
and must be assigned permanently.

4. SYSLOG can only be assigned permanently.

5. SYSCLB requires a permanent assignment.

6. If SYSIPT is assigned to a tape unit,
it should be a single file and a single
volume.

7. The SYSLOG assignment is retricted when
IPL was done from either a 125D or
3277/3278 Hodel 2A device. You may not
assign SYSLOG to a 125D if IPL was done
from a 3277/3278 Model 2A and vice
versa. Also, you may not assign SYSLOG
to a 3278 with a message area of 16
lines if IPL was done from a 3277 or a
3278 with a message area of 20 lines.

8.

9.

10.

SYSLOG cannot be assigned to a console
printer (3284, 3286, 3287, 3288).

It is not possible to change the
assignment of SYSLOG while a
foreground partition is active.

If a system logical unit is assigned
to a tape, DASD, or diskette, the unit
must be closed (using the CLOSE
command) before it can be reassigned.

11. When SYSOUT is assigned, the magnetic
tape device must not be the permanent
assignment of either SYSLST or SYSPCH.
Before assigning a tape drive to a
system output unit (SYSOUT, SYSLST,
SYSPCH), all previous assignments of
this tape drive to any system input
units and to any programmer units

12.

13.

cuu

(input or output) must be permanently
unassigned. The assignment of SYSOUT
must always be permanent.

If SYSLNK is assigned to one or more
foreground partitions, SYSCLB must also
be assigned to the same partition(s).
Whenever the DLBL and EXTENT
information for SYSCLB changes, SYSCLB
must be reassigned.

A programmer logical unit cannot be
assigned to SYSLST if SYSLST has been
assigned to tape or disk before.

Indicates the channel and unit number:

c channel number
uu unit number

lddress-list)

A

GN

You can specify a list of up to seven
device addresses in the form cuu,
separated by commas and enclosed in
parentheses. In this case, the system
searches only the PUB entries
referenced in the address list for a
free unit, starting with the first
specified device address. Once a free
unit is found, it is assigned to
SYSxxx for the job in which the
assignment is made.

For disks, if SHR is apecified, the
first unit in the list is assigned,
even if previously assigned. (See
Figure 3.)

PUB Table Search Order

Physical Device TAPE 2400T9 (380. 381.
Unit Type 183.284)

181 2400T9 1 1

182 2400T9 2 2

183 2400T9 3 3 3

281 2400T7 4

282 2400T7 5
283 2400T9 6 4

284 2400T9 7 5 4

380 3410T9 8 1

381 3410T9 9 2

382 3420T9 10

383 3420T9 11

Figure 3. How the PUB Table is Scanned

Indicates that the logical unit is to
be unassigned. Any operation attempted
on an unassigned device cancels the job.

·The IGN option unasssigns the specified
logical unit, and ignores any
subsequent logical IOCS command (OPEN,

·GET, etc.), issued for that unit. This
allows you to disable a logical unit
that is used in a program without
removing the code for that unit. You
can then execute the program as if the
unit did not exist. This may be
especially helpful when debugging a
program.

The IGN option is not valid for
SYSRDR, SYSIPT, SYSIN, and SYSCLB.
The IGN option can be made temporary
by specifying the Till1P option.

When using ASSGN IGN for associated
files, all logical units of the
associated files must be assigned IGN.

SYSyyy
This may be any system or programmer
logical unit, except SYSCAT and SYSDMP
(see SYSxxx, above). If this operand
is specified, SYSxxx is assigned to
the same device to which SYSyyy is
currently assigned. This type of
specification is particularly helpful
because the specification of
SYSxxx,SYSyyy is considerably shorter
than the full specification.

Examples:
II ASSGN SYS001,2314,PERM,

VOL=RAFT01,SHR
II ASSGN SYS003,SYS001
II ASSGN SYSLNK, SYS001

device-class
In this case, the specification of
READER, PRINTER, PUNCH, TAPE (not for
8809), DISK, CKD, FBA, or DISKETTE is
allowed for the devices listed further
below. Do not, however, use a generic
assignment for a dummy device to be
used as input or output device in a
VSE/PoWER-supported partition. The
system searches the PUB table for the
first unassigned unit within the
specified device-class and assigns it
to SYSxxx (see Figure 3).

This type of specification might be
used if the exact configuration of the
installation is not known or not
important. However, if a configuration
consists of mixed device types of the
same device-class, such as 3330s and
3340s, then either device-type or
address-list should be used. If your
installation includes DASD drives with
and without the Fixed Head Feature,
such as the 3348 Model 70F Data Module
or the 3344 Direct Access Storage, do
not use device-class or device-type.
Instead, use cuu (or address-list) to
specify the drives with the feature,
so as to avoid job cancellation.

If a configuration includes FBA and
CKD DASD devices, specification of
DISK will assign any disk device (FBA
or CKD) to the logical unit SYSxxx.
The parameters CKD and FBA permit more
detailed specification of the disk
device to be selected.

The specific device types to which each
device class applies are listed below.

READER
1442N1, 2501, 2520B1, 2540R, 2560,
2596, 3504, 3505, 3525RP, 5425

PRINTER
PRT1, 1403, 1403U, 1443, 3203, 3211,
38 00 , 3800 B , 3800 C , 3800 BC , 5203 , 5203 U

Preparing COBOL Programs for Processing 25

PUNCH
1442N1, 1442N2, 2520B1, 2520B2, 2520B3,
2540P, 2560, 2596, 3525P, 3525RP, 5425

TAPE
2400T7, 2400T9, 3410T7, 3410T9, 3420T7,
3420T9

DISK
2311, 2314, 3330, 3330B, 3340, 3340R,
3350, 3375, FBA

CKD
2311, 2314, 3330, 3330B, 3340, 3340R,
3350, 3375

FBA
FBA (refers to the 3310 and 3370 Direct
Access Storage Devices)

DISKETTE
3540

device-type

26

This can be any supported device as
shown under the device-class
specification, including the 8809. Do
not, however, use this specification
for a dummy device to be used as input
or output device in a VSE/POWER
supported partition. The system
searches the PUB table of the specified
device-type for the first free unit.
When a free unit is found, it is
assigned to SYSxxx (see Figure 3).

Use this specification if you are
interested only in the specific type of
device, and not in the physical unit.
For disks, if SHR is specified, the
first unit of the specified device-type
is assigned, even if previously
assigned. If your installation
includes DASD drives with and without
the Fixed Head Feature, such as 3348
Model 70F Data Module or the 3344
Direct Access Storage, do not use
device-class or device-type. Instead,
use cuu (or address-list) to specify
the drives with the feature, so as to
avoid job cancellation.

For a 3800 printing subsystem, you can
use assignment by device codes as
follows:

5S

Specified code is valid for

3800 3800B 3800C 3800BC

3800 X X X X',2
3800B X X'
3800C X X2

3800BC X

The job cannot use the additional character generation
storage feature.

2 The job cannot use the Burster-Trimmer-Stacker feature.

Specification of the device class
PRINTER may select a 3800 from a list
of printers; however, the existence
of the two optional hardware features
(the Burster-Trirnrner-Stacker and
additional character generation
storage) cannot be assumed.

Figure 3 shows an example of how the
PUB table is scanned with 3 different
types of tape specifications in the
ASSGN statement/command.

Device specifications used to specify
mode settings for magnetic tapes (see
Figure 3.1). If ss is not specified
at IPL time, the system assumes:

90 for 7-track tapes
CO for 9-track tapes (2400,3410 series)
DO for 9-track tapes (3420 series)
60 for the 9-track 8809 Magnetic Tape

Unit

For 800 BPI single-density 9-track
tapes, a specification of C8 reduces
the time required to OPEN an output
file.

The standard mode is entered in the
PUB table at IPL time. If the mode
setting (different from, or the same
as, the standard mode) is specified in
a temporary ASSGN statement, it becomes
the current mode setting and is
entered as such in the PUB table.
This mode stays in effect until a
subsequent assignment with a new mode
or until EOJ. When the current job
ends, the standard mode is restored in
the PUB table, provided the unit was
not unassigned during the job. The
mode specification in a permanent ASSGN
becomes the standard mode. If ss is
not specified for a new job, the mode
is the same as the standard mode or the
mode specified in the last permanent
assignment.

~LT

Density Parity Convert Translate ss
(bpi) Feature

200 odd on off 10
200 odd off off 30
200 odd off on 3B
200 even off off 20
200 even off on 2B

556 odd on off 50
556 odd off off 70
556 odd off on 7B
556 even off off 60
556 even off on 6B

BOO odd on off 90
BOO odd off off BO
BOO odd off on BB
BOO even off off AO
BOO even off on AB

BOO single-density 9-track tapes CB

800 dual-density 9-track tapes C8

1600 single-density 9-track tapes CO

1600 dual-density 9-track tapes CO

6250 single/dual density, 9-track DO

1600 3420 Models 4, 6, and 8 CO

1600 Streaming: high speed and long gap 90

(for 8809) Streaming: high speed and short gap 30

Start-Stop: low speed and long gap 50

Start-Stop: low speed and short gap 60

Figure 3.1. Device Specifications for Tapes

Indicates an alternate magnetic tape
unit that is used when the capacity of
the original assignment is reached.
This operand can only be specified by
programs using logical laCS. The
specifications for the alternate unit
ar~ the same as those of the original
unlt. The characteristics of the
alternate unit must be the same as
those of the original unit. The
original assignment and an alternate
assignment must both be permanent or
both be temporary assignments.
Hultiple alternates can be assigned
to a symbolic unit. When SYSIPT is
assigned to a magnetic tape device,
the file may not be multivolume.

The system does not adjust the tape
mode (ss) of the alternate unit to
that of the original unit. Therefore
if tape modes are different, it is '
advisable to first assign the units
with equal tape modes and then to
reassign with the ALT operand.

H1

H2

PERM
TEMP

Using multivolume tape files without
specifying ALT mode can cause
performance degradation, because the
first tape has to be rewound and
unloaded before the next tape can be
mounted.
If the original unit is reassigned,
the alternate unit must also be
reassigned. The ALT operand is
invalid for SYSRDR, SYSIPT, SYSIN,
SYSLNK, SYSCLB, AND SYSLOG.

Indicates that input hopper 1 will be
used for input on the 2560, 5424, or
5425. If neither H1 nor H2 is
specified, H1 is assumed.

Indicates that input hopper 2 will be
used for input on the 2560, 5424, or
5425. Note that hopper specifications
are significant only for device
independent files associated with the
logical units SYSIPT, SYSRDR, SYSIN,
and SYSPCH. In all other cases they
are invalid.

If both hoppers are used, they must be
assigned to the same partition.

Indicates whether the assignment should
be permanent (PERM) or temporary (TEMP).
It is thus possible to override the II
specification or omission.

VOL=no.
Specifies the volume serial number of
the device required. This option may
be specified only for tapes, disks, and
diskettes.

If VOL is specified, the system
searches for the first unit in the
requested sequence and, if the unit is
ready (for a tape, if it is at load
point and not already assigned), checks
the volume label to see if the required
volume is mounted. If not, the next
unit is checked, and so on until the
proper,volume seria1 number is found
or untll the end of the specified
sequence is reached. The requested
volume must be mounted on the unit
specified in the message 1T50A MOUNT
volser ON X'cuu'.

If a volume serial number specified
for a disk device does not match the
actual volume serial number, the system
notifies the operator and allows
correction of the assignment statement.

Preparing COBOL Programs for processing 26.1

SHR

26.2

Note: In a mixed device configuration,
specification of TAPE,VOL or DISK,VOL
may cause the system to issue a request
for a volume to be mounted on the first
device that becomes available. Thus,
the system may request a 9-track tape
to be mounted on a device that can only
accommodate 7-track tapes. Likewise, a
request may be issued for a 2316 disk
pack to be mounted on a 3330 or 3340.
Therefore, the parameter device-type or
address-list should be used in a mixed
device environment.

This option can be specified only for
disk devices and is meaningful only in
combination with address-list, device
class, and·device-type (see
corresponding discussions). It means
that the unit can be assigned to a
disk device which is already assigned.
If the option is not specified, the
system assigns the unit to a disk
device not yet assigned. Therefore,
unless a private device is required,
it is recommended that the SHR
operand be used in combination with
generic assignments.

OSE Statement

The CLOSE control statement is used to
ose either a system or programmer loqical
it assigned to tape. As a result of the
OSE control statement, a standard
d-of-volume label set is written and the
pe is rewound and unloaded. The CLOSE
atement applies only to a temporarily
signed logical unit, that is, a logical
it for which an ASSGN control statement
s been specified within the same job.
e format of the CLOSE control statement
as follows:

--,
I

,UA I
[

, X' cuu" [,X' ss']] I

I CLOSE SYSxxx ,IGN I
,ALT I __ J

The logical unit can optionally be
assigned to another device, unassigned,
switched to an alternate unit.

Note that when SYSxxx is a system
gical unit, one of the optional
rameters must be specified. When closing
programmer logical unit, no optional
rameter need be specified.

Sxxx
may only be used for magnetic tape and
may be specified as SYSPCH, SYSLST,
SYSOUT, or SYSOOO through SYS240 6

depending on the number of partitionsq

~ (ReI. 35 and up)
r:
:::uu'

sst

specifies that after the logical unit
is closed, it will be assigned to the
channel and unit specified. (See
"ASSGN Control Statement" for an
explanation of ·cuu'.) When
reassigning a system logical unit, the
new unit will be opened if it is
either a mass storage device or a
magnetic tape at load point.

represents device specification for
mode settings on 7-track and 9-track
tape. (See "ASSGN Control Statement"
for an explanation of 'ss'.) If X'ss'
is not specified, the mode settings
remain unchanged.

specifies that the logical unit is to
be closed and unassigned.

IGN

ALT

specifies that the logical unit is to
be closed and unassigned with the
ignore option. This operand is
invalid for SYSRDR, SYSIPT, or SYSIN.

specifies that the logical unit is to
be closed and an alternate unit is to
be opened and used. This operand is
valid only for system logical output
units (SYS?CH, SYSLST, or SYSOUT)
currently assigned to a rragnetic tape
unit.

DATE Statement

The DATE control statement contains a
date that is put in the Corrmunication
Region of the Supervisor. A coroplete
description of the fields of the
Communication Region is given in "Appendix
G: Communication Region." The DATE
statement is in one of the following
formats:

r---,
III DATE rom/dd/yy I
~---~
III DA~E dd/mm/yy I L ___ J

where:
mm
dd
yy

month (Ol to 12)
day (01 to 31)
year (00 to 99)

The format to be used is the format
selected when the system was generated.

When the DATE statement is used, it
applies only to the current job being
executed. The Job Control Processor does
not check the operand except to ensure that
its length is eight characters. If no DATE
statement is specified in the current job,
the Job Control Processor supplies the date
qiven in the last SET command. The SET
command is discussed in detail in the
publication DOSIVS System Control
Statements.

A DATE statement should be included in
every job deck that has as one of its job
steps the execution of a COBOL program that
utilizes the special register CURRENT-DATE,
if the date desired is other than that
designated in the previous SET command.

The DATE statement should be used at
compile time so that the DATE-CCMPILED
paraaraph is accurate and the WHEN-COMPILED
special register is effective.

Preparing COBOL Programs for processing 26.3

BL statement

The TLBL control statement contains file
bel information for tape label checking'
d writing. This statement replaces the
Land TPLAB statement combination used
, previous versions of the system. (The
'stern continues to support those state~
:nts.)

Under DOS/VSE VSE/Advanced Functions,
le TLBL statement is not required.

The format of the TLBL statement follows:

'/ TLBL filename,
[, 'file-identifier'] [,date]
[,file-serial-number]
[,volume-sequence-number]
[,file-sequence-number]
[,generation-number]
[,version-number]

.lename
identifies the file to the control
program. It can be from three to
seven characters in length. If the
following SELECT sentence appears in a
COBOL program:

SELECT NEWFILE ASSIGN TO
SYS003-UT-2400-S-0UTFILE

the filename operand on control
statements for this file must be
OUTFILE. If the SELECT clause were
coded:

SELECT NEWFILE ASSIGN TO
SYS003-UT-2400-S

the filename operand on the control
statement for the file must be SYS003.

rile-identifier'

ate

consists of from 1 to 17 characters,
contained within apostrophes,
indicating the name associated with
the file on the volume. This operand
may contain embedded blanks. If this
operand is ~mitted on output files,
the filename will be used. If this
operand isomitted on input files, no
checking will be done.

consists of from one to six
characters, in the format yy/ddd,
indicating the expiration date of the
file for output or the creation date
for input. (The day of the year may
consist of from one to three
characters.) For output files, a one
to four character retention period
(d-dddd) may be specified. If this

operand is omitted, a O-day retention
period will be assumed for output
files. For input files, no checking
will be done if this operand is
omitted or if a retention period is
specified.

file-serial-number
consists of from one to six characters
indicating the volume serial number of
the first (or only) reel of the file.
If fewer than six characters are
specified, the field will be
right-justified and padded with zeros.
If this operand is omitted on output
files, the volume serial number of the
first (or only) reel of the file will
be used. If the operand is omitted on
input files, no checking will be done.

volume-sequence-number
consists of from one to four
characters in ascending order for each
volume of a multivolume file. This
number is incremented automatically by
OPEN and CLOSE routines as required.
If this operand is omitted on output
files, BCD 0001 will be used. If
omitted on input files, no checking is
done.

file-sequence-number
consists of from one to four
characters in ascending order for each
file of a multifile volume. This
number is incremented automatically by
OPEN and CLOSE routines as required.
If this operand is omitted on output
files, BCD 0001 will be used. If it
is omitted on input files, no checking
will be done.

generation-number
consists of from one to four numeric
characters that modify the
file-identifier. If this operand is
omitted on output files, BCD 0001 is
used. If it is omitted on input
files, no checking will be done.

version-number
consists of from one to two numeric
characters that modify the generation
number. If this operand is omitted on
output files, BCD 01 will be used. If
it is omitted on input files, no
checking will be done.

Note: If a tape file with standard labels
is opened two different ways in the same
COBOL program, and that file resides on a
multifile volume, the programmer should use
two separate TLBL cards with different
filenames specified on each.

Preparing COBOL Programs for Processing 27

DLBL Statement

The DLBL control statement contains file
label information for mass storage label
checking and writing. The DLBL control
statement, in conjunction with the EXTENT
statement, replaces the VOL, DLAB, and
XTENT combination used in previous versions
of the Disk Operating System. The DLBL
statement has the following format:

I / / DLBL filename, ['fi1e-ID'] ,[date]
I ,[codes] [,DSF]
I [,BUFSP=n] [,CAT=filename]
J [,BLKSIZE=n] [,CISIZE=n]
I [,DISP=m] [,RECORDS=n] [,RECSIZE=n]
I

filename
identifies the file to the control
program. It can be from three to
seven characters long. If the
following SELECT sentence appears in a
COBOL program:

SELECT INFILE ASSIGN TO
SYS005-DA-2314-A-INPUTA

the filename operand on control
statements for this file must be
INPUTA. If the SELECT sentence is
coded:

SELECT INFILE ASSIGN TO
SYS005-DA-2314-A

the filename operand on control
statements for the file must be
SYS005.

'file-identifier'

date

28

is the name associated with the file
on the volume. This can consist of
from 1 to 44 alphanumeric characters
contained within apostrophes,
including the file-identifier and, if
used, generation-number and version
number of generation. If fewer than
44 characters are used, the field is
left-justified and padded with blanks.
If this operand is omitted, filename
will be used.

consists of from one to six characters
indicating either the retention period
of the file in the format d through
dddd (0-9999), or the absolute
expiration date of the file in the
format yy/ddd. When the d through
dddd format is used, the file is
retained for the number of days
specified as dddd. For example, if
date is specified as 31, the file will
be retained a month from the day of
creation. When the yy/ddd format is
used, the file is retained until the
day (ddd) in the year (yy) specified.
For example, if date is specified as

codes

90/200, the file will be retained
through the 200th day of the year 1990.

If date is omitted when the file is
created, a 7-day retention period is
assumed. If this operand is present
for a file opened as INPUT or I-O, it
is ignored.

is a 2 to 4 character field indicating
the type of file label, as follows:

SD
DA

ISC

ISE

DU
VSAM

Seguential Disk
Direct Access
Indexed Sequential using Load
Create
Indexed Sequential using Load
Extension, Add, ,or Retrieve
3540 Diskette
VSAM file

If code is omitted, SD is assumed.

BLKSIZE=n
specifies the number of bytes in a
physical record. n must be less
than 32,768. This parameter is
valid for the 3330-11 and 3350 devices
only, and its use is limited to
sequential files. If specified, it
overrides the BLKSIZE specification
in the definition of the file (DTF).
It permits reblocking of existing
files to a new physical record size
when they are" transferred to a
3330-11 or 3350 device, without
requiring recompilation of the DTF.
If the BLKSIZE parameter is not
specified in the DLBL statement, the
new files are assumed to have the
blocksize specified in the DTF. This
parameter is not valid for the compiler
workfiles.

For further information, see DOS/VS
System Control Statements.

CISIZE=n
specifies the control interval size
for SAM files on fixed block devices,
and improves space allocation on such
devices. The size specified must
be a multiple of the value specified
in the BLKSIZE=n operand. This
operand is valid only for a DLBL
statement with the code SD. It is
not valid for compiler workfiles.

RECORDS=n,RECSIZE=n
used for SAM files in VSAM space.
For details, see DOS/VSE System
Control Statements.

For all parameters not described here,
see DOS/VSE System Control Statements,
or DOS/VSE Advanced Functions: System
Control Statements.

"Appendix n: Sample Job Decks" contains
~lustrations of DLBL statement usage.

See the section "Processing 3540
Lskette Unit Files" for the use of DLBL
trds for 3540 and the section "Virtual
corage Access Method" for use of DLBL
trds - for VSAM.

lCTENT Statement:.

The EXTENT control statement defines
tch area (or extent) of a DASD file -- a

file assigned to a mass storage device.
One or more EXTENT control statements must
follow each DLBL statement.

The EXTENT control statement replaces
the XTENT statement used in previous
versions of the Disk Operating System. For

Preparing COBOL Programs for Processing 28.1

)re information on the XTENT statement,
~e DO~VS-2Ystem Control statements.

The format of the EXTENT control
~atement is:

i

'/ EXTENT [symbolic-unit],[serial-number]1
,[type],[sequence-number] I
,[relative-track],[number-of-tracks] I
,[split-cylinder-track],[B=bins] I

rmbolic-uni t
. is a 6-character field indicating the

symbolic unit (SYSxxx) of the volume
for which this extent is effective.
If this operand is omitted, the
symbolic unit of the preceding EXTENT
statement will be used. When
specified, symbolic-unit may be any
SYSxxx assigned to the device type
indicated in the SELECT sentence for
the file. For example, if the
following coding appears in a COBOL
program:

SELECT OUTFILE ASSIGN TO
SYS004-DA-2314-A

the symbolic unit in the EXTENT
control statement can by any SYSxxx
assigned to a 2314 disk pack. The
symbolic unit operand is not required
for an IJSYSxx filename, where xx is
IN, PH, LS, RS, SL, or RL. If SYSRDR
or SYSIPT is assigned, this operand
must be included.

:!rial-number

Y'pe

consists of from one to six characters
indicating the volume serial number of
the volume for which this extent is
effective. If fewer than six
characters are used, the field will be
right-justified and padded with zeros.
If this operand is omitted, the volume
serial number of the preceding EXTENT
control statement will be used. If no
serial number was provided in the
EXTENT control statement, the serial
number will not be checked and it will
be the programmer's responsibility if
files are destroyed as a result of
mounting the incorrect volume.

consists of one character indicating
the type of the extent, as follows:

1 Data area (no split cylinder)
2 Overflow area (for an indexed

file)
4 Index area (for an indexed file)
8 Data area (split cylinder)

If this operand is omitted, 1 is
assumed.

sequence-number
consists of from one to three
characters containing a decimal number
from 0 to 255 indicating the sequence
number of this extent within a
multi-extent file. Extent sequence 0
is used for the master index of an
indexed file. If the master index is
not used, the first extent of an
indexed file has the sequence number
1. The extent sequence number for all
other types of files begins with o.
If this operand is omitted for the
first extent of ISAM files, the extent
will not be accepted. For SD or DA
files, this operand is not required.
For DA files this operand should be
specified when using more than one
EXTENT for a file. Direct files can
have up to five extents. Indexed
files can have up to eleven data
extents (nine prime, one cylinder
index, one separate overflow).

relative-track
consists of from one to five
characters indicating the sequential
number of the track, relative to zero,
where the data extent is to begin. If
this field is omitted on an ISAN file, tI
the extent will not be accepted. This
field is not required for DA input.or
for SD input files (the extents froIT-
the file labels will be used).

For fixed block devices, this operand
is a number from 2 to 2,147,483,645
that specifies the physical block
at which the extent should start.

Formulas for converting actual to
relative track addresses (RT) and
relative track to actual for the DASD
devices follow.

Actual to Relative:

2311 10 x cylinder number + track

number = RT

2314 20 x cylinder number + track

or number = RT

2319

'3330 19 x cylinder number + track

number = RT

3340 12 x cylinder number + track

number = RT

3350 30 x cylinder number + track

number = RT

Preparing COBOL Programs for Processing 29

Relative to Actual:

2311 RT quotient is cylinder
10 remainder is track

2314 RT = quotient is cylinder,
or 20 remainder is track

2319

13330 RT quotient is cylinder,
19 remainder is track

3340 RT quotient is cylinder,
12 remainder is track

3350 RT quotient is cylinder,
30 remainder is track

number-of-tracks
consists of from one to five
characters indicating the number of
tracks to be allocated to the file.
For SD input files, this field may be
omitted. The number of tracks for a
split cylinder file must be a multiple
of the number of cylinders specified
for the file and the number of tracks
specified for each cylinder.

For fixed block devices, this operand
is a number from 1 to 2,147,483,645
that specifies the number of physical
blocks in the extent.

split-cylinder-track

bins

consists of from one to two
characters, with a value of 0 through
19, indicating the upper track number
for the split cylinder in SD files.

consists of from one to two characters
identifying the .2321 bin that the
extent was created for, or on which
the extent is currently located. If
the field is one character, the
creating bin is assumed to be zeron

There is no need to specify a creating
bin for SD or ISAM files. If this
operand is omitted, bin 0 is assumed
for both bins. If the operand is
included and positional operands are
omitted, only one comrra is required
preceding the keyword operand. If any
operands preceding the bin
specification are omitted, one comma
for each operand is acceptable, but
unnecessary.

Figure 4 shows examples of using the
DLBL statement in conjunction with the
EXTENT statement. "Appendix H: Sample Job
Decks" contains illustrations of EXTENT
statement usage.

r---,
IDirect file:
I The following DLBL and EXTENT statements describe a direct file occupying 840
I tracks, beginning on relative track 10.
I II DLBL MASTER,,75/001,DA
I II EXTENT SYS015,111111,1,0,10,840
IIndexed file:
I The following DLBL and EXTENT statements describe an indexed file on a 2314
loccupying 100 tracks, beginning on relative track 1100. The first EXTENT allocates a
120-track cylinder index. The second EXTENT allocates a 80-track data area.
I II DLBL MASTER,,75/001,ISC
I II EXTENT SYS015,111111,4,1,1100,20
I II EXTENT SYS015,111111,1,2,1120,80 l ___ --________________________________ J

Figure 4. Sample Label and File Extent Information for Mass Storage Files

30

STIO Statement

The LISTIO control statement causes the
stem to print a list of input/output
signments on SYSLST. The format of the
STIO control statement is:

--,
SYS I
PROG I
BG I
Fl I
F2 I
F3 I
F4 I

'/ LISTIO ALL I
SYSxxx I
UNITS I
DOWN I
UA I
cuu I
X'cuu' I
ASSGN (ReI. 35 and up) I . ______________ ~ _________________________ J

YS

RaG

'1

'2

~3

~LL

causes the physical units assigned to
all system logical units to be listed.

causes the physical units assigned to
all background programmer logical
units to be listedn

lists the physical units assigned to
all logical units of the background
partition.

causes the physical units assigned to
all foreground-one logical units to be
listed.

causes the physical units assigned to
all foreground-two logical units to be
listed.

causes the physical units assigned to
all foreground-three logical units to
be listed.

causes the physical units assigned to
all foreground-four logical units to
be listed.

causes the physical units assigned to
all logical units to be listed.

SYSxxx

Ui:UTS

DOWN

UA

causes the physical units assigned to
the logical unit specified to be
listed.

causes the logical units assigned to
all physical units to be listed.

causes all physical units specified as
inoperative to be listed.

causes all physical units not
currently assigned to a logical unit
to be listed.

cuu (Release 35 and up)
or

X'cuu U

causes the logical units assigned to
the physical unit specified to be
listed.

ASSGN
causes all system and program
units assigned to the current
to be listed.

logical ~
partition~

MTC Statement

The MTC control statement controls 2400
and 3400 series magnetic tape operations.
The format is as follows:

r---------------------------------------,
: / / MTC opcode, {~~~~~~} [,nn] ~.
I cuu '
~---------------------------------------~

opcode
specifies the operation to be
performed. opcode can be chosen from
the following:

BSF Backspace to taperrark

BSrt Backspace to interrecord gap

ERG Erase gap (write blank tape)

FSF Forward space to ta~emark

FSR Forward space to interrecord
gap

RUN -- Rewind and unload

Preparing COBOL Programs for Processing 31

REW
WTM

Rewind
Write tapemark

SYSxxx
represents any logical unit assigned
to magnetic tape upon .which the MTC
control statement is to operate.

X'cuu'

[, nnJ

represents any physical unit assigned
to magnetic tape upon which the MTC
control statement is to operate.

is the decimal number (01 through 99)
which, if specified~ ~epresents the
number of times the operation is to be
performedu If nn is omitted, the
operation is performed once.

OPTION Statement

The OPTION control statement is used to
specify one or more of the options of the
Job Control Processor. The format of the
OPTION statement is:

r---,
1// OPTION optionl[,option2J... I L ___ J

The order in which the selected options
appear in the operand field is arbitrary.
Options are reset to the standard
established at system generation time upon
encountering the next JOB statement or the
/& statement.

The options are:

LOG

NOLOG

DUMP

32

causes the listing of columns 1
through 80 of all control statements
on SYSLST. If LOG is not the standard
established at system generation time,
control statements are not listed
until a LOG option is encountered.
Once a LOG option statement is read,
logging continues from job step to job
step until a NOLOG option is
encountered or until either the JOB or
/& control statement is encountered.

suppresses the listing of all control
statements on SYSLST until a LOG
option is encountered, or unti~ either
the JOB or /& control statement is
encountered.

causes a dump of the registers and
virtual storage to be printed on
SYSLST in the case of an abnormal
program termination (such as a program
check). Using the compiler SYMDMP,
FLOW, or STATE features, it may not be
necessary to use this option.

NODUMP

LINK

suppresses the DUMP option.

indicates that the object module is to
be link edited. When the LINK option
is used, the output of the COBOL
compiler is written on SYSLNK. The
LINK option must always precede an
EXEC LNKEDT statement in the job deck.
(CATAL also causes the LINK option to
be set.) LINK is not acceptable to
the Job Control Processor operating in
the foreground unless the private core
image library option is supported and
a private core image library is
assigned.

NOLINK

DECK

suppresses the LINK option. The COBOL
compiler can also suppress the LINK
option if the program contains an
error that would preclude the
successful execution of the program,
or if SYNTAX is in effect, or if
CSYNTAX is in effect and an E-Ievel
error is encountered.

causes the COBOL compiler to punch an
object module on SYSPCH. If both DECK
and LINK are specified, the output of
the compiler is written on both SYSPCH
and SYSLNK.1

NODECK

LIST

suppresses the DECK option. The DECK
option is also suppressed if SYNTAX is
in effect, or if CSYNTAX is in effect
and E-Ievel errors exist.

causes the compiler to write the COBOL
source statements orr SYSLS!. If
lister is in effect, the LIST option
is overridden; LISTER causes a listing
regardless of whether LIST or NOLIST
is specified.

NOLIST

LISTX

suppresses the LIST option.

causes the COBOL compiler to write a
Procedure Division map on SYSLST. In
addition, global tables, literal
pools, register assignments, and
procedure block assignments will be
provided. You may want to use the CBL

1The //option card options pertaining to
the compiler will be suppressed if the
"LISTER ONLY" option of lister is in
effect. Otherwise, when "LISTER AND
COMPILE" is in effect, the options
specified will be in effect for
compilation.

option CLIST (condensed list) in place
of this.1

,ISTX

:F

suppresses the LISTX option, as do the
same conditions as cause DECK to be
suppressed.

causes the COBOL compiler to write a
symbolic cross-reference list on
SYSLST. You may want to use the CBL
option SXREF in place of this, or the
lister cross-reference information for
large COBOL programs.

~REF

3YM

;:{S

suppresses the XREF option. SXREF
also suppresses XREF, as do the same
conditions as cause DECK to be
suppressed.

causes the COBOL compiler to write a
Data Division map on SYSLST. In
addition, global tables, literal
pools, register assignments, and
procedure block assignments will be
provided. 1

suppresses the SYM option.

causes the COBOL compiler to write the
diagnostic messages related to the
source program on SYSLST.1

E:RRS
suppresses the ERRS option. It does
not suppress FIPS messages.

SPARM=' [AI NA] [D I ND]
specifies COBOL execution-time options.
Eight characters may appear between
quotation marks to the right of the
equal sign. The following key
characters specify COBOL execution-time
options as indicated:

• D specifies the DEBUG option.

• ND specifies NODEBUG.

Even though the debugging facility
was specified for compilation, it
will not be used during execution
unless D is specified as an
execution-time option. D is the

'he /Ioption card options pertaining to
.he compiler will be suppressed if the
LISTER ONLY" option of lister is in
~ffect. Otherwise, when "LISTER ANV
:OMPILE" is in effect, th~options
;pecified will be in effect for
:ompila tion.

default and specifies that the
debugging facility is to be used.

• A specifies AIXBLD.

• NA specifies NOAIXBLD.

If the source program opens a VSAM
file for output, and if Access
Method Services is to be invoked
at execution time to build an
alternative index for that file,
then AIXBLD must be specified.
NOAIXBLD is the default; it
bypasses Access Method Services
at I.execution and assumes that the
alternate index has been created
previously.

The programmer may use the eight
SYSPAru1 characters for whatever
purpose desired (for example, input
to an assembler language routine). Be
aware, however, that the COBOL object
program will recognize D, ND, A, and
NA appearing anywhere in the SYSPARM
bytes, and treat them as object-time
option indicators.

The results of both D and ND, or A
and NA, appearing in the SYSPARM field
are unpredictable.

Note: The compiler will take the first
occurrence of a character; it will not try
to resolve conflicting specifications.

CATAL
causes the cataloging of a phase or
program in thL core image library upon
completion of a linkage editor job
step. CATAL also causes the LINK
option to be set. CATAL is not
accepted by the Job Control Processor
operating in a batched-job foreground
environment unless the orivate core
image library option is· supported and
a private core image library is
assigned.

STDLABEL
causes the standard label track to be
cleared and all DASD or tape labels
submitted after this point to be
written on the standard label track.
This option is reset to the USRLABEL
option at end-of-job or end-of-job
step. All file definition statements
submitted after the STDLABEL option
are available to any program in any
area until another set of standard
file definition statements is
submitted. S~DLABEL is not accepted
by the JOD Control Processor operating
in a batched-job foreground
environment. All file definition
statements following OPTION STDLABEL

Preparing COBOL Programs for Processing 33

are included in the standard file
definition set until one of the
following occurs:

• End-of-job step

• End-of-job

• OPTION USRLABEL is specified

• OPTION PARSTD is specified

USRLABEL
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the user
label track.

PARSTD
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the
partition standard label track. The
PARSTD option is reset to the USRLAEEL
option at end-of-job or end-of-job
step. All file definition statements
submitted after the PARSTD option will
be available to any progra~ in the
current partition until another set of
partition standard file definition
statements is submitted. All file
definition statements sub~itted after
OPTICN PARSTD will be included in the
standard file definition set until one
of the following occurs:

• End-of-job step

• End-of-job

• OPTION USRLABEL is specified

• OPTION STDLABEL is specified

For a given filenaroe, the sequence of
search for label information during an
OPEN is the USRLABEL area, followed by
the PARSTD area, followed by the
STDLABEL area.

Note: If NCLINK and NODECK are requested
on the OPTION control statement and either
SYMDMP or OPT is specified on the CBL card,
the SYIvlDMP or OPT specification is ignored ..

The options specified in the OPTION
statement remain in effect until a
contradictory option is encountered or
until a JOB control statement is read. In
the latter case, the options are reset to
the standard that was established at system
generation time.

Any assignment for SYSLNK, after the
occurrence of the OPTION statement, cancels
the LINK and CATAL options. These two

34

options are also canceled after each
occurrence of an EXEC statement with a
blank operand.

PAUSE statement

The PAUSE control statement allows for
operator intervention between job steps.
The format of the PAUSE control statement
is:

r---
III PAUSE [comments] L _____________________________ ~ __________ _

The PAUSE control statement is effectiv
just before the next input control
statement in the job deck is read. The
PAUSE control statement always prints on
SYSLOG and SYSLST.

An example of this statement is:

II PAUSE SAVE SYS004, SYSOOS, MOUNT
NEW TAPES

This sample statement instructs the
operator to save the output tapes and moun1
two new tapes.

When the PAUSE statement is encountered
by the Job Control Processor, processing i~
stopped in the partition until a response
is given. The endlenter key causes
processing to continue.

RESET Statement

The RESET control statement resets
input/output assignments to the standard
assignments. The standard assignments are
those specified at system generation time
plus any modifications made by the operator
by means of the ASSGN command without the
TEMP option. The RESET command is
discussed in detail in the publication
DOS/VSE Advanced Function System Control
Statements. The format of the RESET
statement is:

f~~-:::::---f~~~~~1----------------------1
L ___ J

SYS
resets all system logical units to
their standard assignments.

\LL

resets all prograrrITer logical units to
their standard assignments.

resets all system and programmer
logical units to their standard
assignments.

3YSxxx
resets the logical unit specified to
its standard assignment.

~STRT statement

A restart facility is available for
:heckpoint programs. A programmer can use
:he source language RERUN clause in his
?rogram to cause checkpoint records to be
~ritten. This allows sufficient
information to be stored so that program
=xecution can be restarted at a specified
?oint. The checkpoint information includes
the registers, tape positi~ing
information, a dump of virtual storage, and
~ restart address.

The restart facility allows the
programmer to continue execution of an
interrupted job at a point other than the
beginning. The procedure is to submit a
group of job control statements including a
RSTRT control statement. The format is as
follows:

r---,
1// RSTRT SYSxxx,nnnn[,fi1ename] I L ___ J

SYSxxx
is the symbolic unit name of the 2400,
3410, 3420, 2311, 2314, 2319, 3330,
3340, 3350, or fixed block devices
checkpoint file used for restarting.
This unit must have been assigned
previously.

Preparing COBOL Programs for Processing 34.1

mn
is the identification of the
checkpoint record to be used for
restarting. This serial number
consists of four characters. It
corresponds to the checkpoint
identification used when the
checkpoint was taken. The serial
number is supplied by the checkpoint
routine.

.lename
is the symbolic name of the disk
checkpoint file used for restarting.
It must be identical to the SYSxxx of
the system-name specified in the
RERUN clause.

When a checkpoint is taken, the
Impleted checkpoint is noted on SYSLOG.
:starting can be done from any checkpoint
~ord, not just the last. The jobname
lecified in the JOB statement must be
.entical to the jobname used when the
leckpoint was taken. The proper
Iput/output device assignments must
ecede the RSTRT control statement.

Assignment of input/output devices to
mbolic unit names may vary from the
.itial assignment. Assignments are made
Ir restarting jobs in the same manner as
signments are made for normal jobs.

See the chapter "Program Checkout" for
rther details on taking checkpoints and
starting a program for which checkpoints
ve been taken.

SI Statement

The UPSI control statement allows the
ogrammer to set program switches that can
tested by problem programs at execution

me. The UPSI control statement has the
llowing format:

--,
/ UPS I nnnnnnnn I __ J

nnnnnn
consists of from one to eight
characters of 0, 1, or X. positions
containing 1 are set to 1; positions
containing X are unchanged.
Unspecified rightmost positions are
assumed to be X.

The UPSI byte is the 24th byte in the
Communication Regicn of the Supervisor. A
complete description of the fields of the
Communication Region is given in "Appendix
G: Communication Region." The Job Control
Processor clears the UPSI byte to binary
zeros before reading control statements for
each job. when the UPSI control statement
is read, the Job Control Processor sets
these bits to the programmer's
specifications. Any combination of the
eight bits can be tested in the COBOL
source program at execution time by means
of the source language switches UPSI-O
through UPSI-7.

EXEC Statement

The EXEC statement (Execute Program or
Procedure) indicates the end of control
information for a job step and the
beginning of execution of a program, in
which case it must be the last command or
statement processed before a job step is
executed.

// EXEC [[PGM=]programname] [,REAL] [,SIZEJ
[PROC=procedurename]

PGM=programname

REAL

represents the name of the program in
the core iwage library to be executed.
The program name corresponds to the
first or only phase of the program in
the library. The program name can be
one to eight alphaITIeric characters
(0-9, A-Z, #, $, @). The first
character must not be numeric.

If the program to be executed has just
been processed by the linkage editor,
the program name is omitted and the
PGM keyword cannot be used.

indicates that the job step started by
EXEC will be executed in real mode.
If REAL is not specified the job step
is always executed in virtual ITIode.
REAL cannot be specified for progra~s
using VSAM, the 3886, for ISAM
programs using the ISAM interface
program or, for programs compiled with
the CBL option count.

SIZE=size
Size can be nK, AUTO or (AUTO, nK).

(a) If specified with REAL, it indicates
the size of that part of the real
partition that will be needed by the
job step's associated EXEC. The
remaining part of the real partition
is given to the page pool.

Preparing COBOL Programs for Processing 35

If SIZE is omitted and REAL is
specified, the whole real partition is
used by the job step.

In DOS/VSE and up, if the COBOL
compiler is executed in a real
partition, a SIZE parameter must be
specified. Also, make sure there is
enough real GETVIS space available.

(b) If used without REAL, it specifies
that the virtual partition to be used
by the job step is divided into two
parts: the lower part with a size of
nK will contain the program initiated
with EXEC; the upper part serves as
additional storage pool for other
modules (for example, VSAM) required
by the program in that partit{on. The
program reserves the upper storage
part for its needs by issuing GETVIS
macros with the required amount of
storage as parameter; it releases the
storage by issuing FREEVIS macros.

GO

36

If SIZE is omitted, the whole virtual
partition is used for the job
initiated with EXEC.

SIZE (without REAL) must always be
specified for VSAM programs or for
ISAM programs using the ISAM Interface
Program (IIP), as well as for 3886
processing" and for programs compiled
with the CBL option count.

If you specify SIZE=AUTO, the system
automatically uses the information in
the core image directory to calculate
the size of the program to be loaded.
If you specify SIZE=(AUTO,nK). The
system adds nK bytes to the calculated
length ..

The following restrictions apply to n:

• n must not be larger than the size
of the partition it refers to.

• n must be greater than zero.

• if n is not a mUltiple of 2, n+l is
used

Note: If you specify SIZE=AUTO, a
part of the 'parti tion is allocated
to the page pool. The storage space
left is not sufficient for the
compiler program. Thus you should not
specify SIZE=AUTO in an EXEC FCOBOL
statement (for more detailed
information, refer to System Control
Statements).

Note: If CBL option SYMDMP is used,
see Appendix F: "System and Size
Considerations."

may be used when the EXEC statement
invokes the compiler, to indicate that
the compiled program should be link
edited and executed after completion.

PROC=procedurename
represents the name of the procedure to
be retrieved from the procedure library.
The procedure name can be from one to
eight alphanumeric characters, the
first of which must be alphabetic.

For more information on cataloged
procedures, as well as the use of
overwrite statements and the rules that
apply to temporary procedure
modification, refer to the VSE System
Data Management and the chapter
"Librarian Functions" in this book.

CBL STATEI1ENT -- COBOL OPTION CONTROL
STATEl1ENT

Although some options for compilation
are specified either at system generation
time or in the OPTION control statement,
the COBOL compiler provides an additional
statement, the CBL statement, for the
specification of compile-time options
unique to COBOL.

The CBL statement must be placed between
the EXEC FCOBOL statement and the first
statement in the COBOL program. The CBL
statement cannot be continued. However, if
specification of options will continue past
column 71, multiple CBL statements may be
used.

The options shown in the following format
may appear in any order. No comments should
~ppear in the operand field. Underscoring
indicates the default case. To change the
defaults for your installation, see
"Changing ·the Installation Defaults."

---------------------------~

CBL [~g~DV] [: ~~gi~] G BUF=nnnn]

r,CATALR] [,CLIST] f,COUNT]
~NOCATALR ,NOCLIST ~NOCOUNT

r, FLAGE] G FLOW [=nn]] r, LANGLVL (1)]
~FLAGW ~LANGLVL(2)

r, LIB]
~NOLIB

GPMAP=h]

f, STATE]
~NOSTATE

r, SXREF]
~NOSXREF

[
,LVL=AI BI C I DJ
, NOLVL

r, SEQ J
~m>SEQ

~
OPTIMIZE J

,OPT
,NOOPTIr1IZE
,NOOPT

G SPACEn]

f,STXIT] r,SUPMAP]
~ NOSTXIT ~ NOSUPMAP

GSYMDMP[=filenam~J

r: ~~~~:X] ~ ~~~~gNC]
~NOSYNTAX

r, VERB J
~NOVERB

f, VERBREF] r, VERBSUr1 1 f, ZWB 1
~NOVERBREF ~NOVERBSUMJ ~NOZWBJ L __________________________ ~

BL

DV
OADV

must begin in column 2 (column 1 must
be blank) and be followed by at least
one blank.

indicates whether or not records for
files with WRITE ... ADVANCING need
reserve the first byte for the control
character. ADV specifies that the
first byte need not be reserved.

Notes:

A file described with a LINAGE clause
will always be treated as if ADV were
specified, even if NOADV is in effect
for the compilation.

A file described with a REPORTS clause
will always be treated as if NOADV had
been specified.

A file described with APPLY WRITE-ONLY
will always be treated as if NOADV had
been specified.

~POST

!UOTB
----QUOTE indicates to the compiler that

the double quotation marks (") should
be accepted as the character to
delineate literals; APOST indicates
that the apostrophe (') should be
accepted instead. The compiler will
generate the specified character for
the figurative constant QUOTE(S).

IUF=nnnnn
the BUF option specifies the amount of
storage to be assigned to each
compiler work file buffer.

Under DOS/VSE Advanced Functions,
Release 2 and up, if compiler
workfiles are defined in VSAM space,
the BUF option must not be specified.

nnnnn is a decimal number from 512 to
32,767. If this option is not
specified, 512 is assumed. The BUF
option should be used to specify an
optional blocksize (which will depend
on the device type) for the workfiles.
Usually, a larger blocksize will
enhance the performance of the
compiler. However, for any given BUF
specification, the compiler space
requirements (over 64K) are increased
by a factor of 6x (nnnnnn-512).

~ATALR

mCATALR
causes the compiler to generate CATALR
card images on the SYSPCH file if
OPTION DECK is in effect during
compilation. This will allow
cataloging of the compiler produced

object modules into the relocatable
library. The module names in the
CATALR cards adhere to the same rules
as the phase names in the compiler
produced PHASE cards according to the
segmentation and sort phase naming
conventions (see the sections on Sort
and Segmentation Features).

CLIST
NOCLIST

indicates that a condensed listing is
to be produced. The condensed listing
will contain only the address of the
first generated instruction for each
verb in the Procedure Division. In
addition, global tables, literal
pools, register assignments, and
procedure block assignments will be
provided. The CLIST option overrides
the LISTX or NOLISTX options. The
LISTX or NOLISTX options are either
established at system generation time
or specified in the OPTION control
statement.

COUNT
NOCOUNT

FLAGE
FLAGW

generates code to produce verb I
execution summaries at the end of
problem program execution. Each verb
is identified by procedure-name and by
statement number, and the number of
times it was used is indicated. In
addition, the percentage of verb
execution for each verb with respect
to the execution of all verbs is
given. A summary of all executable
verbs used in a program and the number
of times they are executed is provided.
COUNT implies VERB.

Note: If COUNT and STXIT are desired,
then either STXIT must be requested in
the program unit requesting COUNT, or
the program unit requesting COUNT must
be entered before the program unit
requesting STXIT. See the chapter
entitled "Execution Statistics" for
additional information on the COUNT
option.

-----determines which diagnostics the
compiler will list. FLAGW indicates
that all diagnostics will be listed
(severity levels W, C, E, and D).

FLAGE indicates that only those
diagnostics with severity levels C, E,
and D will be listed. This has no
effect on FIPS messages.

FLOW [=nnJ
provides the programmer with a formatted
trace (i.e., a list containing the
program identification and statement
numbers) corresponding to a variable
number of procedures executed prior to

prepar1ng COBOL Programs for Processing 37

an abnormal termination. The value "nn"
may range from 0 through 99. If "nn" is
not specified, a value of 99 is assumed.
FLOW and STXIT, and FLOW and OPT are
mutually exclusive options, i.e., only
one may be in effect during a given
compilation. In addition, FLOW and
STXIT are mutually exclusive at
execution time. Additional
information on the flow trace option
can be found in the chapter "Symbolic
Debugging Features."

LANGLVL(1)
LANGLVL(2)

specifies whether the 1968 or the 1974
American Natioiial Standard COBOL
definition is to be used when compiling
those source elements whose meaning has
changed. LANGLVL(1) tells the compiler
to use the 1968 ANS standard (X3.23-1968)
if the compiler encounters any of those
source elements whose definition has
changed; this interpretation would be
the one that was used by Release 2 of
the compiler. LANGLVL(2) tells the
compiler to use .the 1974 ANS standard
(X3.23-1974) when encountering any of
those redefined elements. LANGLVL(2)
is the default.

(

Generally speaking, the language level
supported by the Release 3 compiler
includes all of that supported by
Release 2. The Release 3 compiler
will accept not only source programs
written in the new (1974) language, but
also source programs that were_or are
written in the older (1968) language.
However, the superset relationship
between the new and the older languages
is not absolute; there are a few
exceptions--elements whose meaning has
changed because of ANS redefinition.
It is only these few elements that are
controlled by the LANGLVL option.

LIB
NOLIB
-----indicates that BASIS and/or COpy

statements are in the source program.
If either COpy or BASIS is present,
LIB must be in effect. If COpy and/or
BASIS statements are not present, use of
the NOLIB option yields more efficient
compiler processing.

LVL=AIBlcID
NOLVL
-----indicates whether the compiler should

identify COBOL clauses and statements
in a DOS/VS COBOL source program that
do not conform to the Federal
Information Processing Standard.

Under DOS/VSE Advanced Function,
Release 3 and up, if compiler workfiles
are defined in VSM1 space, the LVL option

38

and the LST lister statement should not
both be specified for the same
compilation.

FIPS recognizes four language levels in
LANGLVL(1) and LANGLVL(2): low, low
intermediate, high-int~rmediate, and ful
The FIPS Flagger provides four levels of
flagging from low (A) to high (D) to con
to the four levels of the FIPS

The FIPS Flagger needs a disk workfile
to be assigned to SYS006.

OPTIr1IZE
OPT
NOOPTHUZE
NOOPT
-----OPTIr1IZE (OPT) causes optimized object

code to be generated by the compiler.
The more efficient code generated
considerable reduces the amount of space
required by the object program. If
neither LINK nor DECK is specified in
the OPTION statement, then optimized
code is not generated by the compiler.

This option cannot be used if either the
symbolic debug option (SYHDr1P), the
statement number option (STATE), or the
flow trace option (FLOw~nnJ) is
requested.

PMAP=h

SEQ
NOSEQ

enables the programmer to request a
relocation factor "h". If the PMAP
option is specified, the relocation
factor is included in the addresses of
the object code listing. The
relocation factor "h" is a hexadecimal
number of from one to eight digits.
If the PMAP option is not specified,
the relocation factor is assumed to be
zero. When PMAP is specified in a
segmented program, the listing for
segments of priority higher than the
segment limit (49, if the SEGHENT
LIMIT clause is not specified), ~ill
not be relocated. The PMAP option
has meaning only when LISTX or CLIST
and/or SYH (for the location of
WORKING-STORAGE) is in effect.

indicates whether or not the compiler
is to check the sequence of source
statements. If SEQ is specified and
a statement is not in sequence, it is
flagged. If the lister feature is
invoked, the source statements are
resequenced automatically before the
sequence check is performed.

SPACEn
indicates the type of spacing to be
used on the output listing. n can be
specified as either 1 (single-spacing),
2 (double spacing), or 3 (triple

spacing). If the SPACEn option is
omitted, single spacing is provided.
Single spacing is always in effect if
the lister feature is invoked.

,\TE
3TATE
-----sTATE provides the programmer \¥i th

information about the statement being
executed at the time of an abnormal
termination of a job. It identifies

XIT

the program containing the statement and
provides the number of the statement and
of the verb being executed. STATE and
STXIT, STATE and SYHDHP, and STATE and
OPT are mutually exclusive options,
i.e., no more than one may be in effect
during a given compilation. (However,
the facilities provided by STATE
automa tically exist with Syr1Dl1P.) In
addition, STATE and STXIT are mutually
exclusive at execution time. Additional
information on the statement number
option can be found in the chapter
"Symbolic Debugging Features."

STXIT
---enables a USE AFTER STANDARD ERROR

declarative to receive control when an
input/output error occurs on a unit
record device. The use of STXIT
precludes the use of SYMDrlP, STATE, and
FLOW in the compiler program and in any
other program link-edited with the
compiler program, and vice versa.

PHAP
SUPMAP

causes the CLIST and LISTX options to
be suppressed if an E-level diagnostic
message is produced by the compiler.
For the DECK option, refer to OBJECT
HODULE in the chapter "Interpreting
Output."

REF
ISXREF

causes the compiler to write an
alphabetically-ordered cross-reference
list on SYSLST. You may want to use
the lister cross-reference information
in place of this option for large COBOL
program, to decrease run time.

'!1DHP [=filenameJ
indicates to the compiler that
execution-time dumps might be
requested for the program currently
being compiler. If dumps are desired,
the programmer must provide the
required control cards at execution
time. For storage considerations at
execution time, see Appendix F:
"System and Size Considerations."

Use of the symbolic debug option
necessitates the presence of an
additional work file, SYS005, at
compile time. Under DOS/VSE Advanced
Functions, Release 2 and up, workfile
SYS005 mus"t not be specified in VSAM
space. The "filename" parameter
enables the programmer to specify a
name for the SYS005 file that he can
retain. If no filename is specified,
IJSYS05 will be used. When several
COBOL programs are link edited
together, the "filename" parameter
enables each to have a unique SYMDMP
name. Compile and execution must be
done in the same job stream. The
SYS005 file is deleted at end of job.
For a tape file, only unlabeled tapes
may be used, and the filename in the
SYMDMP=filename parameter is ignored.

SYMDMP and STXIT,' Sy;r1DMP, ,and S,TA:TE,
and SYMDMP and OPT are mutually,
exclusive options, i.e., no more than
one may be in effect during a given
compilation. (However, the facilities
provided by STATE are automatically
included with SYMDMP.) In addition,
SYMDHP and STXIT are mutually
exclusive at execution-time.
Additional information on the symbolic
debug option and the required
execution-time control statements can
be found in the chapter "Symbolic
Debugging Features."

If NODECK and NOLINK are requested on
the OPTION control statement and either
SYMDMP or OPT is specified on the CBL
statement, the SYMDMP or OPT
specification is ignored.

SYNTAX
CSYNTAX
NOSYNTAX

indicates whether the source text is to
be scanned for syntax errors only and
appropriate error messages are to be
generated. For conditional syntax
checking (CSYNTAX), a full compilation
is produced so long as no messages
exceed the C level. If one or more
E-level or higher severity messages are
produced, the compiler generates the
messages but does not generate object
text.

Notes:

1. When the SYNTAX option is in effect,
all of the following compile-time
options are suppressed:

OPTION control statement: LINK,
DECK, XREF

Preparing COBOL Programs for Processing 39

CBL statement: SXREF, CLIST,
COUNT, VERBREF, VERBSUM

2. When CSYNTAX is requested and one
or more D- or E-Ievel messages
occur, then the preceding options
are suppressed and the CBL option
FLAGE is made active.

3. Unconditional syntax checking is
assumed if all of the following
compile-time options are specified:

OPTION control statement: NOLINK,
NOXREF, NODECK

CBL statement: SUPMAP (and CLIST,
SXREF, VERBSUM, and VERB REF are
not specified)

4. Some compiler diagnostics do not
appear when SYNTAX or CSYNTAX is
in effect. These are listed in
"Execution Statistics."

5. When you specify NOSYNTAX none of
these things happen.

I TRUNC
NOTRUNC

applies only to COMPUTATIONAL receiving
fields in MOVE statements and arithmetic
expressions. If TRUNC is specified,
extra code is generated to truncate the
final intermediate result of the
arithmetic expression, or the sending
field in the MOVE statement, to the
number of digits specified in the
PICTURE clause of the COMPUTATIONAL
receiving field. If NOTRUNC is
specified, the compiler assumes that the
data being manipulated conforms to
PICTURE and USAGE specifications. The
compiler then generates code to
manipulate the data based on the size
of the field in storage (halfword, etc.).
TRUNC conforms to the American National
Standard, while NOTRUNC leads to more
efficient processing. This will
occassionally cause dissimilar results
for various sending fields because of
the different code generated to perform
the operation.

VERB
NOVERB

indicates whether procedure-names and
verb-names are to be listed with the
associated code on the object-program
listing. VERB has meaning only if
LISTX, CLIST, VERBSUH, VERBREF, COUNT
or READY TRACE is in effect. NOVERB
yields more efficient compilation.

VERBREF
NOVERBREF

40

provides a cross reference of all verbs
used in the program. This option
provides the programmer with a quick

index to any verb used in the program.
VERBREF implies VERB and VERBSUM.

VERB SUM
NOVERBSUM

ZWB
NOZWB

provides a brief summary of verbs used
in the program and a count of how
often each verb was used. This option
provides the user with a quick search
for specific types of statements
VERBSUM implies VERB.

-----determines if the compiler will
generate code to strip the sign when
comparing a signed external decimal
field to an alphanumeric field. If
ZWB is in effect, the signed external
decimal field is moved to an
intermediate field and has its sign
stripped before being compared to the
alphanumeric field. ZWB conforms to
the ANS standard, while NOZWB allows
the user to test input numeric fields
for SPACES to prevent abnormal
termination.

I LST Statement -- LISTER Option

The LST statement is used to invoke the
lister, a portion of the compiler that
processes programs written in American
National Standard COBOL to produce a
reformatted source code listing containing
embedded cross-reference information, and
uniform indenti~g conventions.

Under DOS/VSE Advanced Functions, Release
3 and up, if compiler workfiles are defined
in VSAM space, the LVL option and the LST
lister statement should not both be
specified for the same compilation.

The LST option card can be placed
anywhere between the EXEC statement and the
first statement of the COBOL program. It
may be placed between any other compiler
option cards. The options shown in the
following format may appear in any order.
Underscoring indicates the default.

r---,
I I
I[DECK,] [COPYPCH,] [LSTCOMP,] fPROC=lcol~1
I NODEC~ NOCOPYPCH LSTONLY L 2colJI
I I L ___ J

LST
must begin in column 2 (column 1 must
be blank) and be followed by at least
one blank.

DECK
NODECK

indicates whether an updated source
deck is to be produced as a result of
the lister reformatting and/or the
update BASIS library.

COPYPCY
NOCOPYPCH

will punch updated and reformatted copy
libraries as a permanent part of the
source when DECK is specified. When no
updated source deck is requested, an
updated and reformatted COpy library
will be punched out.

LSTONLY
LSTCotlP

when LSTONLY is specified, the program
will not be compiled, but a reformatted
listing will be produced along with a
deck if DECK has been specified.
LSTCOMP will provide a source listing
and will compile the program as part
of the job step. LSTCOMP does not
suppress CLIST.

PROC=1col
2col
will list the Procedure Division either
single- or double-column format. At
least 132 print positions for the
double-column format.

For more details on the lister program,
see the chapter entitled "Using the Lister
Feature. II

Mutually Exclusive Options

In some of the preceding descriptions of
the CBL card options, restrictions have been
placed on the use of one option in
conjunction with others. It should be noted
that if these restrictions are violated, the
compiler ignores all but the last of the
conflicting options specified. For this
reason, if after a CBL statement is
cod.ed the programmer decides to use a .. " N

option that is mutually exclusive with an
option on the original CBL card, a new CBL
card can be added rather than changing the
original card ..

Changing the Installation Defaults

In order to change the compiler default
options to suit your installation, a new
member, C.CBLOPTNS, must be added to the
source statement library. This module must

contain CBL option cards specifying the
desired defaults. Resultant defaults may
be overridden at compilation tirre by
supplying a CBL card in the compiler input
stream.

Significant Characters for Various options

The DOS/VS COBOL compiler selects the
valid options for processing by looking for
three significant characters of each key
option word. When the keyword is identified,
it is checked for the presence or absence of
the prefix NO, as appropriate. The programmer
can make the most efficient use of the CBL card
by using the significant characters instead of
the entire option. Table 3 lists the
significant characters for each option.

Table 3. Significant Characters for
Various Options

Significant
Option Characters

SEQ SEQ
FLAGE(W) LAG,LAGW
BUF BUF
SPACE ACE
PMAP PMA
SUPMAP SUP
CLIST CLI
TRUNC TRU
APOST APO
QUOTE QUO
SXREF SXR
STATE STA
FLOW FLO
LIB LIB
SYMDMP SYM
OPTIMIZE OPT
SYNTAX SYN
CSYNTAX CSY
VERB VER
ZWB ZWB
LVL LVL
COUNT COU

Significant
Option Characters

VERBSUM VERBSUM
VERBREF VERBREF
STXIT STX
DECK DEC
COPYPCH COP
LSTCOMP STC
LSTONLY STO
PROC PRO

Note: SYM on the CBL card should not be
confused with SYM on the OPTION card.

Preparing COBOL Programs for Processing 40.1

JOB CONTROL COMMANDS

Job control commands are distinguished
from job control statements by the absence
of II blank in positions 1 through 3 of
each command. They permit the operator to
adjust the system according to day-to-day
operating conditions. This is particularly
true in the area of device assignment,
where the operator may need to
(1) communicate to the system that a device
is unavailable, or (2) designate a
different device as the standard for a
given symbolic unit. Therefore, these
commands normally are not a part of the
regular job deck for a job. Job control
commands tend to be effective across jobs,
whereas job control statements are confined
within a job.

Job control commands are discussed in
detail in the publication DOS/VS System
Control Statements.

LINKAGE EDITOR CONTROL STATEMENTS

Object modules used as input to the
Linkage Editor must include linkage editor
control statements. There are four linkage
editor control statements: PHASE, INCLUDE,
ENTRY, and ACTION.

Linkage editor control statements
initially enter the system through the
device assigned to SYSRDR as part of the
input job stream. PHASE and INCLUDE
statements may also be present on SYSIPT or
in the relocatable library. All four
statements are verified for operation
(INCLUDE, ACTION, ENTRY, or PHASE) and are
copied to SYSLNK to become input when the
Linkage Editor is executed.

Linkage editor control statements must
be blank in position 1 of the statement.

.The operand field is terminated by the
first blank position. It cannot extend
beyond column 72.

The Linkage Editor is executed as a
distinct job step. Figure 5 shows how the
linkage editor function is performed as a
job step in three kinds of operations.

1. Catalog Programs in Core Image
Library. The linkage editor function
is performed immediately preceding the

40.2

operation that catalogs programs into
the core image library. When the
CATAL option is specified, programs
edited by the Linkage Editor are
cataloged in the core image' library by
the Librarian after the editing

function is performed. The sequence
of this operation is shown in Part A
of Figure 5. Note that the input for
the LNKEDT function could contain
modules from the relocatable library
instead of, or in addition to, those
modules from the card reader, tape
unit, or mass storage unit extent
assigned to SYSIPT. This is
accomplished by naming the module(s)
to be copied from the relocatable
library in an INCLUDE statement.

2. Load-and-Execute. The sequence of
this operation is shown in Part B of
Figure 5. Specifying OPTION LINK
causes the Job Control Processor to
open SYSLNK, and allows the Job
Control Processor to place the object
module(s) and linkage editor control
statements on SYSLNK. As with the
catalog operation, the input can
consist of object modules from the
relocatable library instead of, or in
addition to, those modules from the
card reader, tape unit, or disk extent
assigned to SYSIPT. This is accom
plished by specifying the name of the
module to be included in the operand
of an INCLUDE statement. After the
object modules have been edited and
placed in the core image library, the
program is executed. The blank
operand in the EXEC control statement
indicates that the program that has
just been link edited and temporarily
stored in the core image library is to
be executed.

3. Compile-and-Execute. Source modules
can be compiled and then executed in a
single sequence of job steps. In
order to do this, the COBOL compiler
is directed to write the object module
directly on SYSLNK. This is done by
using the LINK option in the OPTION
control statement. Upon completion of
this output operation, the linkage
editor function is performed. The
program is link edited and temporarily
stored in the core image library.
The sequence of this operation is
shown in Part C of Figure 5.

In each of the operations described in
Figure 5, if a private core image library
is assigned, output from the Linkage Edito
will be placed (either permanently or
temporarily) in the private core image
library rather than in the system core
image library. If the Linkage Editor is
executed in a batched-job foreground
partition, a private core image library
must be assigned. Private core image
libraries are a system generation option.

....------ EXEC FCOSOl -----.., OPTION CATAl
PHASE PROGA, *

I
I
I 1-4------- INCLUDE

{object module}
----------.,~l~---------EXECPROGA----------~'~I

ENTRY
EXEC lNKEDT

@ lOAD AND EXECUTE

~----- EXEC FCOSOl

Cor.
'Storage
execution

OPTION LINK I
INCLUDE I
{object module} I

~----------------------------ENTRY --------------------------~II
EXEC lNKEDT
EXEC

OPTION liNK
EXEC FCOSOl

t4----------------------------- ENTRY
EXEC lNKEDT
EXEC

Core
Storage
Execution

I
I
I
I

.1

Lgure 5. Job Definition -- Use of the Librarian

)ntrol Statement Placement

The placement of linkage editor control
~atements is subject to the following
lIes:

l. The ACTION statement must be the first
linkage editor control statement
encountered in the input stream;
otherwise, it is ignored.

2. The PHASE statement must precede each
object module that is to begin a
phase.

3. The INCLUDF statement must be
specified for each object module that
is to be included in a program phase.

~. A single ENTRY statement should follow
the last object module when multiple
object modules are processed in a
single linkage editor run.

ACTION and E~TRY statements, when
present, must be on SYSRDR. PHASE and
INCLUDE statements may be present on
SYSRDR, SYSIPT, or in the relocatable
library.

PHASE Statenlent

The PHASE statement must be specified if
the output of the Linkage Editor is to
consist of more than one phase or if the
program phase is to be cataloged in the
core image library. Each object module
that begins a phase must be preceded by a
PHASE statement. Any object module not
preceded by a PHASE statement will be
included in the current phase.

The statement provides the Linkage
Editor with a phase name and an origin
point for the phase. The PHASE statement
is in the followin~ format:

r---,
I PHASE naIT.e,origin[,NOAUTO] I L ___ J

preparing COBOL Programs for Processing 41

name
is the symbolic name of the phase. It
is the name under which the program
phase is to be cataloged. This name
does not have to be the name specified
in the PROGRAM-ID paragraph in the
Identification Division of the source
program and, in the case of
segmentation and/or sort, it should
not be the same. It must consist of
from one to eight alphanumeric
characters. Phases that are to be
executed in a segmentation and/or sort
structure should have phase names of
from five to eight alphanumeric
characters, the first four of which
should be the same. An asterisk
cannot be used as the first character
of a phase name. If no phase name is
specified, a dummy phase name of
PHASE*** is used and execution stops
at end of compilation. The job is
then cancelled.

origin
indicates to the Linkage Editor the
starting address of this specific
phase. An asterisk may be used as an
origin specification to indicate that
this phase is to follow the previous
phase. This origin specification
format of the PHASE statement covers
all applications that do not include
setting up overlay structures. See
the chapter "Calling and Called
programs" for information on the PHASE
statement for overlay applications.

NOAUTO
indicates that the Automatic Library
Look-Up (AUTOLINK) feature is
suppressed for both the private
relocatable library and the system
relocatable library. (The use of
NOAUTO causes the AUTOLINK process to
be suppressed for that phase only.)
The AUTOLINK feature is discussed
later in this chapter.

INCLUDE Statement

The INCLUDE statement must be specified
for each object module deck or object
module in the relocatable library that is
to be included in a program phase. The
format of the INCLUDE statement is as
follows:

r---,
I INCLUDE [module-name] [,Cnamelist)] 1 L ___ J

The INCLUDE statement has two optional
operands. When both operands are used,
they must be in the prescribed order. When
the first operand is omitted and the second

42

operand is used, a comma must precede the
second operand.

module-name
must be specified when the object
module is in the relocatable library.
It is not specified when the module to
be included is in the forro of a card
deck being entered from SYSIPT.
module-name is the naree under which
the module was cataloaed in the
library, and must consist of from one
to eight alphanumeric characters.

{name list)
causes the Linkage ·Editor to construct
a phase from the control sections
specified in the list. Since control
sections are of no interest to the
COBOL programmer, users interested in
this option should refer to the
description of the INCLUDE statement
in the publication DOS/VS System
Control Statements.

ENTRY Statement

The ENTRY statement is required only if
the programmer wishes to provide a specific
entry point in the first phase produced by
the Linkage Editor. When no ENTRY
statement is provided, the Job Control
Processor writes an ENTRY staterrent with a
blank o~erand on SYSLNK to ensure that an
ENTRY statement will be present to halt·
link editing. The transfer address will be
the load address of the first phase. The
ENTRY statement is described further in the
publication DOS/VS System Control
Statements.

ACTION Statement

The ACTION statement.is .used to indicate
linkage editor options. When used, the
statement must be the first linkage editor
statement in the input stream. The format
of the ACTION statement is as follows:

r--,
1 CLEAR

·1 MAP
1 NOMAP
1 NOAUTO
I NOREL
I ACTION CANCEL
I BG
I Fl
1 F2
I F3
1 F4 L __ _

AR
indicates that the entire temporary
portion of the core image library will
be set to binary zero before the
beginning of the linkage editor
function. CLEAR is a time-consuming
function and should be used only when
necessary.

indicates that SYSLST is available for
diagnostic messages. In addition, a
storage map is output on SYSLST.

AP
indicates that SYSLST is unavailable
when performing the link edit
function. The mapping of storage is
not performed, and all linkage editor
diagnostic messages are listed on
SYSLOG.

UTO
suppresses the AUTOLINK function for
both the private and system
relocatable libraries during the link
editing of the entir~ program.
AUTOLINK is discussed later in this
chapter.

CEL
causes an automatic cancellation of
the job if any of the linkage editor
errors 2100I through 21701 occur.
These diagnostic messages can be found
in the publication DOS/VS System
control Statements.

F1, F2, F3, and F4

EL

are options used to link edit a
program for execution in a partition
other than that in which the link edit
function is taking place. See the
publication DOS/VS System Control
Statements.

suppresses the relocating loader.

Link editing for a specific address is
performed.

AUTOLINK FEATURE

If any references to external-names are
still unresolved after all modules have
been read from SYSLNK, SYSIPT, and/or the
relocatable library, AUTOLINK collects each
unresolved external reference from the
phase. It then searches the private
relocatable library (if SYSRLB has been
assigned) and the system relocatable
library for module names identical to the
unresolved names and includes these modules
in the program phase. This feature should
not be suppressed (via PHASE or ACTION
statements) in linkage editor job steps
which include COBOL subroutines cataloged
in the relocatable library. See the
chapter "Calling and Called Programs" for
additional details.

RELOCATING LOADER FEATURE

The relocating loader feature allows
users to load single-phase and multi-phase
programs at any valid problem program
address in the system. Under this option,
the linkage editor catalogs relocatable
phases into the core image library, and the
relocating loader in the supervisor assigns
the absolute machine addresses that are
necessary for program execution. This
means the user need retain only one copy of
the program in the core image library.

The relocating loader is an optional
feature, and must be specified at system
generation time.

Figure 6 illustrates options available
during link-editing.

Preparing COBOL Programs for Processing 43

Figure 6. options Available During Link-Editing

44

LINKAGE EDITOR
PRODUCES

RELOCATABLE
PHASES

Yes

System retains flexibility of
loading in any partition.

Program may be included in
job stream for any partition
when program is loaded.

Default: Program runs
in virtual mode.

Option: User may specify
execution in associated
real partition.

YES

NO

LINKAGE-EDITING FOR A
SPECI FIC PARTITION

- Default: Addresses will be
adjusted for the specified
virtual partition.

- Option: User may
specify Ii nki ng for
the associated real
partition.

This supervisor cannot
load relocatable phases.
The user should specify
ACTION=NOREL at
link-edit time, or generate
another supervisor with
relocating loader.

DOS/VS supports four libraries: the
Ire image library, the relocatable
.brary, the source statement library, and
.e procedure library. The core image,
~locatable, and source statement libraries
~ classified as system libraries and
'ivate libraries. The procedure library
:ists only as a system library. The
'stem residence device (SYSRES) contains
,e system libraries. Private libraries
:n be contained on separate disk packs.
.ese libraries are discussed under
'rivate Libraries" in this chapter.
:ecutable programs (core image format) are
~ored in the core image library;
~locatable object modules are stored in
le relocatable library; source language
lutines are stored in the source statement
.brary; catalogued procedures are stored
L the procedure library.

. ANNING THE LIBRARIES

The components of the DOS/VS system are
Lipped in three system libraries: the
Ire image library, the relocatable
.brary, and the source statement library.
fourth library -- the procedure library

. is available but it does not contain any
lformation when the system is shipped.
)st programs and procedures developed and
ied by your installation will also be
:ored in these libraries. In addition to
Le system libraries, DOS/VS supports
~ivate libraries which you can use to
.ther sUbstitute for or supplement the
)rresponding system libraries.

Planning the size, contents, and
)cation of these libraries according to
le needs of your installation is an
)sential part of the system generation
:ocedure. such detailed planning will
lsure that:

• No disk space is wasted by components
not required in your installation.

• The libraries are large enough to allow
for future additions.

• The libraries are accessed by the
system with maximum efficiency.

LIBRARIAN PUNCTIONS

LIBRARIAN

The Librarian is a group of programs
that perform three major functions:

1. Maintenance

2. Service

3. Copy

Maintenance functions are used to
catalog (that is, add), delete, or rename
components of the four libraries, condense
libraries and directories, set a condense
limit for an automatic condense function,
reallocate directory and library extents,
and update the source statement and
procedure libraries.

The copy function is used either to
completely or selectively copy the disk on
which the system resides. Service
functions are used to translate information
from a particular library to printed
(displayed) or punched output •

Only the catalog maintenance function of
the Librarian is discussed in this
publication for the four system libraries.
In addition, the update function of the
source statement library is discussed. A
complete description of librarian functions
can be found in the publication DOS/VS
system Control statements.

CORE IMAGE LIBRARY

The core image library may contain any
number of programs. Each program consists
of one or more separate phases. Associated
with the core image library is a core image
directory which contains a unique
descriptive entry for each phase in the
core image library. These entries in the
core image directory are used to locate and
retrieve phases from the core image
library.

Cataloqina and Retieving Program Phases -
Core Image Library

If a program is to be cataloged in the
core image library, the job control
statement 1/ OPTION with the CATAL option

Librarian Functions 45

must be specified prior to the first
linkage editor control card, and must
precede the first PHASE card of the program
to be cataloged. Upon successful
completion of the linkage editor job step,
output from the Linkage Editor is placed in
the core image library as a permanent
member. The program phase is cataloged
under the name specified in the PHASE
statement.

If a phase in the core image library is
to be replaced by a new phase having the
same name, only the catalog function need
be used. The previously cataloged phase of
the same name is implicitly deleted from
the core image directory by the catalog
function, and the space it occupies in the
library can later be released by the
condense function.

Note: The necessary ASSGN control
statements must follow the // JOB control
statement if the current assignments are
not the following:

1 • SYSRDR -- Card reader, tape unit, or
disk extent

2. SYSIPT -- Card reader, tape unit, or
disk extent

3. SYSLST -- Printer, tape unit, or disk
extent

4. SYSLOG Printer keyboard

5. SYSLNK Disk extent

The following is an example of
cataloging a single phase, FOURA, into the
core image library. (The program phase
FOURA can be executed in the next job step
by specifying the // EXEC statement with a
blank name field.)

// JOB CATALOG
// OPTION CATAL

PHASE FOURA,*
INCLUDE

{object deck}
/*
// LBLTYP TAPE
// EXEC LNKEDT
// EXEC
/&

To compile, link edit, and catalog the
phase FOURA into the core image library in
the same job, the following job deck could
be used:

// JOB CATALOG
// OPTION CATAL

PHASE FOORA,*
// EXEC FCOBOL

46

{source deck}
/*
// EXEC LNKEDT
/*
/&

When the phase is executed in a
subsequent job, the EXEC statement that
calls for execution must specify FOURA,
i.e., the name by which the phase has been
cataloged.

// JOB EXJOB
// EXFC FOllRA
/&

Phases can be in either non-relocatable
or relocatable format. The non-relocatable
phases are loaded at the addres~ computed
at link-edit time into a real or virtual
partition. The load addresses and address
constants of relocatable phases can be
modified by the relocating loader. These
phases can be loaded at a virt~al address
different from the one for which it was
link-edited.

RELOCATABLE LIBRARY

The relocatable library contains any
number of modules. Each module is a
complete object deck in relocatable format.
The purpose of the relocatable library is
to allow the programmer to maintain
frequently used routines in residence and
combine them with other modules without
recompiling.

Associated with the relocata~le library
is the relocatable directory. The
directory contains a uniaue, descriptive
entry for each module in the relocatable
library. The entries in the relocatable
directory are used to locate and retrieve
modules in the relocatable library.

MAINTENANCE FUNCTICNS

To request a maintenance function for
the relocatable library, the following
control statement is used:

/ / EXEC MP.INT

Cataloging a Module -- Relocatable Library

The catalog function adds a module to
the relocatable library. A module in the
relocatable library is the output of a
complete COBOL compilation.

The catalog function implies a delete
nction. Thus, if a module exists in the
locatable library with the same name as a
dule to be cataloged, the module in the
brary is deleted by deleting reference to
in the relocatable directory.

The CATALR control statement is required
I add a module to the relocatable library.
Ie format of the CATALR control statement

--,
CATALR module-name (,v.m] 1 . __ J

Idule-name

m

is the name by which the module is
known to the control program. The
module-name consists of from one to
eight characters , the first of which
must not be an asterisk.

specifies the change level at which
the module is to be cataloged. y may
be any decimal number from 0 through
127. ~ may be any decimal number from
o through 255. If this operand is
omitted, a change level of 0.0 is
assumed. A change level can be
assigned only when a module is
cataloged.

All control statements required to
ltalog an object module must be read from
~SIPT.

)te: If SYSRDR and/or SYSIPT are assigned
) a tape unit, the MAINT program assumes
lat the tape is positioned to the first
lput record~ The tape is not rewound at·
le end of the job. If a tape mark is
)und, MAINT assumes end-of-j6b.

The following is an example of compiling
source program and cataloging the
~sultant module in the relocatable
Lbrary. The job deck is read from SYSIPT.

, JOB NINE
, OPTION DECK
, EXEC J?COBOL

{source deck}

, PAUSE PLACE DECK AFTER CATALR CARD
, EXEC M1UNT
C~.TALR l'~OD9

(punched deck goes here)

In the above ~xample, as a result of the
)mpile step, the object module is written

on SYSPCH. The next job step catalogs the
object module (MOD9) into the relocatable
library. Since the object module must be
cataloged from SYSIPT, a message to the
operator instructs him to place the object
module on SYSIPT behind the CATALR
statement.

The following is an example of
cataloging two previously created object
modules in the relocatable library:

// JOB EIGHT
// EXEC MAINT

CATALR MOD8A

/*
/&

{object deck}
CATALR MOD8B

{object deck}

An additional capability of the system
permits a programmer to compile a program
and to catalog it to the system
relocatable, or private relocatable,
library in one continuous run. The
programmer inserts a CATALR statement in
his job control input stream preceding the
compiler execute statement. The CATALR
statement will be written on the SYSPCH
file (tape or ~ass storage device) ahead of
the compiler output when OPTION DECK is in
effect. The programmer then reassigns the
SYSPCH file as SYSIPT and executes the I
MAINT program to perform the catalog
function. The output of the corrpilation
(on tape or mass storage device) may be
cataloged immediately or it may be
cataloged at some later timed It can also
be held after cataloging as backup of the
compilationo

The preceding method is recorrmended for
single-module object decks. In programs
for which the compiler produces multimodule
object decks (when'segmentation and/or SORT
are being used), it is necessary to use the
CBL card CATALR option. This option causes
a CATALR card to precede each object
module.

SOURCE STATEMENT LIBRARY

The source statement library contains
any number of booksd Each book in the
source statement library is composed of a
sequence of source language statements.
The purpose of the source statement library
is to allow the COEOL prograrrrrer to
initiate the compilation of a book into the
source program by using the COPY statement
or BASIS card.

Librarian Functions 47

Each book in the source statement
library is classified as belonging to a
specific sublibrary. Sublibraries are
defined for three programming languages:
Assembler, PL/I, and COBOL. Individual
books are classified by sublibrary names.
Therefore, books written in each of these
languages may have the same name.

Associated with the source statement
library is a source statement directory.
The directory contains a unique descriptive
entry for each book in the source statement
library. The entries in the source
statement directory are used to locate and
retrieve books in the source statement
library.

MAINTENANCE FUNCTIONS

To request a maintenance function for
the source statement library, the following
control statement must be used:

// EXEC MAINT

Cataloging a Book -- Source statement
Library

The CATALS control statement is required
to add a book to a sublibrary of the source
statement library.

A book added to a sublibrary of the
source statement library is removed by
using the delete function. When a book
exists in a sublibrary with the same name
as a book to be cataloged in that
sublibrary, the existing book in the
sublibrary is deleted. The following is
the format of the CATALS control statement:

r---,
I CATALS sublib.library-name[,v.m[,C]] I l ___ J

The operation field contains CATALS.

sublib

48

represents the sublibrary to which a
book is to be cataloged and can be:

Any alphanumeric character (0-9, A-Z,
#, $, and @) representing source
statement libraries. The characters
A, B, C, D, E, F, P, and Z have
special uses:

A and E are used for the Assembler
sublibrary

B is used for the VTAM network library

C is used for the COBOL sublibrary

D is used for
sublibrary

the alternate copy

F is used for the alternate macro
sublibrary

P is used for the PL/I sublibrary

Z is used for sample programs supplied
by IBM

The sublib qualifier is required. If
omitted, the operand will be flagged as
invalid and no processing will be done on
the book.

library-name

v.m

C

represents the name of the book to be
cataloged. The library-name consists
of from one to eight alphanumeric
characters, the first of which must be
alphabetic. It is the name the
programmer uses to retrieve the book
when using the source language COpy
statement or BASIS card.

specifies the change level at which
the book is to be cataloged. ~ may be
any decimal number from 0 through 127;
m may be any decimal number from 0
through 255. If this operand is
omitted, a change level of 0.0 is
assumed. The vom operand becomes part
of the entry in the directory for the
specified book. Its value is
incremented each time an update is
performed on the book.

indicates that change level
verification is required before
updates are accepted for this book.

See the UPDATE control statement,
iscussed later in this chapter, for its
~lationship to the v.m and C operands of
he CATALS control statement.

In addition to the CATALS control
tatement, a control statement of the
ollowing form must precede and follow the
ook to be cataloged:

BKEND [sublib.library-name],[SEQNCE],
[count],[CMPRSD]

All operand entries are optional. When
sed, the entries must be in the prescribed
rder and need appear only in the oKEND
tatement preceding the book to be
ataloged.

The first entry in the operand field is
dentical to the operand of the CATALS
ontrol statement.

E:QNCE

ount

specifies that columns 76 to ao of the
card images constituting the book are
to be checked for ascending sequence
numbers. If an error is detected in
the sequence checking, an error mes
sage is printed. The error can be
corrected, and the book can be
recataloged.

speciiies the number of card images in
the book. When the £ouni operand iB
used, the card input is counted,
beginning with preceding B~END
statement and including the subseguent
BKEND statement. If an error is
detected in the card count, an error
message is printed. The error can be
corrected, and the book can be
reca taloged •

:MPRSD
indicates that the book to be
cataloged in the library is in
compressed format as a result of
CMPRSD having been specified when
performing a PUNCH or DSPCH service
function. These fUnctions are
described in the publication DOS/VS
~stem Control statements.

Card input for the catalog function is
~rom ~hE device assigned to SYSIPT. The
:ATALS control statement is also read from
~he device assigned to SYSIPT.

Frequently used Environment Division,
lata Division, and Procedure Division
~ntries can be cataloged in the COBOL
;ublibrary of the source statement library.
~ book in the so~rce statement library
light consist, for example, of a file

description of the Data Division or a
paragraph of the Procedure Division.

The following is an example of
cataloging a file description in the COBOL
sublibrary of the source statement library.

II JOB ANYNAME
II EXEC MAINT

CATALS C.FILEA
BKEND C.FILEA

1*
1&

BKEND

BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDAFD
DATA RECORD IS RECA.

I
For information on retrieving a cataloged
book, see "Programming Techniques."

Note that the library entry does not
include FD or the file-name. It begins
with the first clause that is actually to
follow the file-name. This is true for all
options of the COpy statement. P.owever,
data entrie~ in the library may have a
level number (01 or 77) identical to the
level number of the data-name that precedes
the copy statement. In this case, all
information about the library data-name is
copied from the library and all references
to the l;.brary data-name are replaced by
the data-name in the program if the
REPLACING option is specified. The change
is made only for this program. The entry
as it appears in the library remains
unchanged. For example, assume the
following data entry is cataloged under the
library-name DATAR,

01 PA1~ILE USAGE IS DISPLAY.
02 CALC PICTUnE 99.
02 GRADE PICTURE 9

OCCURS 1 DE~ENDING ON CALC OF
PAYFILE.

and the following statement is written in a
COBOL source module:

01 GROSS COpy DATAR REPLA:ING PAYFILE
BY GROSS.

The compiler interpretE this ~s:

01 GROSS USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9

OCCURS 1 DEPENDING ON CALC OF
GROSS.

Librarian Functions 49

Note also that the library-name is used
to identify the book in the library. It
has no other use in the COBOL program.

Text catalog£d in the source statement
library must conform to COBOL margin
restrictions.

The COBOL COpy statement is discussed in
detail in the section "Extended Source
Program Library Facility."

Updatin~ks -- Source statement LibraIY

The updat~ function is used to make
changes to properly identified statements
wittin a book in the source stdtement
library. Stat~ments are identifi~d in the
identification field, columns 73 through
80, which is fixed in format as follows:

Columns 73-76 Progrum identification
which must be constant
throughout the book.

Columns 77-80 Sequence number of the
statement within the
book.

One or more source statements may be
added to, deleted from, or replaced in a
book in the library without the necessity
of replacing the entire book. The update
function also provides these facilities:

1. Resequencing statements within a book
in the source statement library

2. Changing the change level (v.rn) of the
book

3. Adding or removing the change level
requirement

4. Copyin~ a book with optional retention
of the old book with a new name (for
backup purposes)

The UPDATE control statern~nt is used for
the update function and has the followinq
format:

-,
UPDATE sublib.library-narnt,[s.book1],1

[v.m],[nn] I
________________ . ____ --1

The operation field contains UPDATE.

sublib

50

represents the sublibrary that
contains the book to be updated. It
may be any of the characters 0 through
9, A through Z, #, $, or m.

s.bookl

v.m

nn

provides a temporary update option.
The old book is renamed s.boo]U.and
the updated book is named
sublib.library-na!£. ~ indicates the
sublibrary that contains the old,
renamed book. It may be one of the
characters 0 throuah 9, A through Z,
#, $, or w. If this operand is not
specified, the old bookAis deleted.

represents the change level of the
book to be updated. y may be any
decimal number from 0 through 127; m
may be any decimal number from 0
through 255. This operand must be
present if change level verification
is to be performed. U~e of the
optional entry C in the CATALS control
statement at the time the book is
cataloaed in the library determines
whethe~ chanqe level ve~ification is
reauired before updating. If the
directory entry specifies that change
level verification is not required
before updating, the change level
operand in the UPDATE control
statement is ignored.

If the change level is verified, the
change level in the book's directory
entry is increased by 1 by the system
for verification of the next update.
If ~ is at its maximum value and an
update is processed, m is reset to a
and the value of y is increased by 1.
If both v and m are at their maximum
values dnd an update is processed,
both v and m are reset to o.

represents the resequencing status
reauired for the update. nn may be a
1- or 2-character decimal number from
1 through ,0, or it may be the word
Nu. If nn is a decimal number, it
represents the increment that will be
used in reseguoncing·the statements in
the book. If nn is NO, the statements
will not be resequenced. Jf nn is not
specified, the statements will be
reseguenced with an increment of 1.
When a book is resequenced, the
sequence number of thefirst statement
is 0000. Por example, if a buok is
cataloged in the source statement
library with sequence numbErs ranging
from 0010 through 1001 with increments
of 5 for each statement:

and nn is not specified when the
update function is performEd, the book
is resequenced with numbers 0000,
0001, 0002, •.• etc.

and NO is specified, insertions,
deletions, and/or replacements are
made with no effect on the original
sequence numbers.

and llll is specified as 2, the book is
resequenced with numbers 0000, 0002,
0004, ••• etc., regardless of the
original sequencing of the book in the
library or the sequence numbers of the
added or replacement cards.

The UPDATE control statement is followed
r ADD, DEL (delete), and/or REP (replace)
ontrol statements as required, followed by
~e terminating END statement. The ADD,
EL, REP, and END statements are identified
s update control statements by a right
arenthesis in the first position (column 1
n card format). This is a variation from
he general librarian control statement
ormat; thus, it clearly identifies these
ontrol statements as part of the update
unction.

DD Statement: The ADD statement is used
or the addition of source statements to a
ook. The format is:

) ADD seq-no

ADD indicates that source statements
ollowing this statement are to be added to
he book.

eq-no
represents the sequence number of the
statement in the book after which the
new statements are to be added. It
may be any decimal number consisting
of from one to four characters.

EL Statement: The DEL statement causes
he deletion of source statements from the
ook. The format is:

DEL first-seq-no[,last-seq-no]

DEL indicates that statements are to be
eleted from the book.

irst-seq-no
ast-seq-no

represent the sequence numbers of the
first and last statements of a section
to be deleted. Each number may be a
decimal number consisting of from one
to four characters. If last-seq-no is
not specified, the statement
represented by first-seq-no is the
only statement deleted.

REP Statement: The REP statement is used
when replacement of source statements is
required in a book. The format is:

) REP first-seq-no[,last-seq-no]

REP indicates that source statements
following this statement are to replace
existing statements in a book.

first-seq-no
last-seq-no

represent the sequence numbers of the
first and last statements of a section
to be replaced. Each number may be a
decimal number consisting of from one
to four characters. Any number of new
statements can be added to a book when
a section is replaced. (The number of
statements added need not equal the
number of statements being replaced.)

Sequence number 9999 is the highest
number acceptable for a statement to be
updated. If the book is so large that
statement sequence numbers have "wrapped
around" (progressed. from 9998, 9999, to
0000,0001), it will notne possible to
update statements 0000 and 0001.

END Statement: This statement indicates
the end of updates for a given book. The
format is:

) EN D [v. m [, C]]

v.m

c

represents the change level to be
assigned to the book after it is
updated; y may be any decimal number
from a through 127. m may be any
decimal number from 0 through 255.
This operand provides an additional
means of specifying the change level
of a book in the library. (The other
method is through the use of the ~
operand in the CATALS statement.)

indicates that change level
verification is required before any
subsequent updates for a given book.

If ~m is specified and £ is omitted,
the book does not require change level
verification before a subsequent update.
This feature removes a previously specified
verification requirement for a particular
book.

If both optional operands are omitted,
the change level in the book's directory
entry is increased as a result of the

Librarian Functions 51

I

update, and the verification requirement
remains unchanged.

Control Statement Placement: Control
statement input for the update function,
read from the device assigned to SYSIN,
must be in the following order:

1. The JOB control statement.

2. The ASSGN control statements, if the
current assignments are not those
required. The ASSGN control
statements that can be used are SYSIN,
SYSLST, and SYSLOG.

3. The EXEC MAINT control statement.

4. The UPDATE control statement.

5.) ADD,) DEL, or } REP statements with
appropriate source statements.

6. } END statement.

7. The /* control statement.

8. The /& control statement, which is the
last control statement of the job.

The source statement library can also be
updated by using the DELETE and INSERT
cards. These are discussed in "Extended
Source Program Library Facility" in this
chapter, and in the publication IBM DOS
Full American National Standard COBOL.

UPDATE Function -- Invalid Operand Defaults

UPDATE Statement:

1. If the first or second operand is
invalid, the statement is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their validity.

2. If change level verification is
required and the incorrect change
level is specified, the statement is
flagged, the book is not updated, and
the remaining control statements are
checked to determine their validity.

3. If the resequencing operand is
invalid, resequencing is done in
increments of 1.

52

ADD, DEL, or REP Statements:

1. If there is an invalid operation or
operand in an ADD, DEL, or REP
statement, the statement is flagged,
the book is not updated, and the
remaining control statements are
checked to determine their validity.
All options of the UPDATE and END
statements are ignored.

2. The second operand must be greater
than the first operand in a DEL or REP
statement. If not, the statement is
considered invalid and is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their validity. All options
of the UPDATE and END statements are
ignored.

3. All updates to a book between an
UPDATE statement and an END statement
must be in ascending sequential order
of statement sequence numbers. The
first operand of a DEL or REP
statement must be greater than the
last operand of the preceding control
statement. The operand of an ADD
statement must be equal to or greater
than the last operand of the preceding
control statement. Consecutive ADD
statements must not have the same
operand. If these conditions are not
met, the default is the same as for
items 1 and 2.

END Statement: If the first operand of the
END statement is invalid, the statement is
flagged, both operands are ignored, and the
book is updated as though no operands were
specified. If the second operand is
invalid, the statement is flagged, the
operand is ignored, and the book is updated
as though the second operand were not
specified.

Out-of-Seguence Updates: If the source
statements to be added to a book are not in
sequence or do not contain sequence
numbers, the book is updated, and a message
indicating the error appears following the
END statement. If the resequencing option
has been specified in the UPDATE statement,
the book is sequenced by the specified
value, and subsequent updating is possible.
If the resequencing option is not
specified, the book is resequenced in
increments of 1, and subsequent updating
will be possible. If the resequencing
option NO is specified, the book will be
out of sequence, and subsequent updating
may not be possible.

he Procedure Library

The procedure library is a new system
ibrary that may be used to store -- in
ard image format --

• Frequently used sets, procedures, of
job control and linkage editor
statements <basic support).

• Procedures additionally containing
inline SYSIPT data, especially control
statements for system utility and
service programs (extended support).
The inline SYSIPT data must be
processed under control of the
device-independent sequential IOCS or
by IBM-supplied service programs and
language translators.

The procedure library is part of SYSRES,
)0 the maintenance and service functions
ivailable for the other DOS/VS libraries
~ill also support the procedure library.

Cataloged procedures may be included in
:he job control input stream by a job
:ontrol statement and temporarily modified
Jy overwrite statements. For more details
In cataloged procedures, see DOS/vS System
:ontrol Statements.

~AINTt PROCEDURE LIBRARY

To request a maintenance function for
the procedure library, use the following
EXEC control statement:

// EXEC MAINT

One or more of the maintenance functions
(catalog, delete, rename, condense, set
condense limit, or reallocate) can be
requested within a single run. Any number
of procedures within the procedure library
can be acted upon in this run. Further,
one or more of the maintenance functions
for either of the other three libraries
(core image, source statement, or
relocatable) can be requested within this
run, for the same MAINT program maintains
all four libraries.

catalog

The control statement required to add a
procedure to the procedure library is the
CATALP statement. Any number of procedures
may be cataloged in a single run. Each
procedure must immediately follow the
respective CATALP statement.

statement Format:

CATALP procedurename[,VM=v.ro] [,EOP=yy]
NO

,DATA=YES

Each control statement in the procedure
library should have a unique identity •
This identity is required to modify the job
stream at execution time. Therefore, when
cataloging, identify each control statement
in columns 73-79 <blanks may be embedded) •

procedurename
represents the name of the procedure
to be cataloged. The procedurename
consists of one to eight alphameric
characters~ the first of which must be
alphabetic. It must not be ALL.

VM=v.m
specifies the change level at which
the procedure is to be cataloged. v
may be any decimal number from 0-127.
m may be any decimal number from
0-255. If this operand is omitted, a
change level of 0.0 is assumed.

A change level can be assigned only
when a procedure is cataloged. The
change level is displayed and punched
by the service functions.

EOP=yy
specifies a two-character
end-of-procedure delimiter. The EOP
parameter can be any corobination of
characters except /*, /&, //; it must t
not contain a blank or a comma. The
system assumes /+ as default
end-of-procedure delimiter. Otherwise
you can omit the EOP parameter.

DATA=YES
specifies that a procedure contains
SYSIPT inline data.

These procedures can only be executed
in the extended procedure support.

A procedure to be cataloged into the
procedure library may consist of Job
Control and linkage editor stateroents and,
if the supervisor was generated with the
SYSFIL option, additional control
statements for IBM-supplied control and
service programs and data processed under
control of the device-independent
sequential IOCS. The end of a procedure is
indicated by the /+ end-of-procedure
delimiter or by the end-of-procedure
delimiter as specified in the EOP
parameter.

If SYSIN is assigned to a tape unit, the
MAINT program assumes that the tape is
positioned to the first input record. The
tape is not rewound at the end of job.

Librarian Functions 53,

control statement input for the catalog
function, read from the properly assigned
device (usually SYSIN), is:

1. the JOB control statement, followed by

2. the ASSGN control statements~ if the
current assignments are not those
required. The ASSGN statements that
can be used are SYSIN, SYSLST, and
SYSLOG. The ASSGN statements are
followed by

3. the EXEC MAINT control statement,
followed by

4. the CATALP control statement{s),
followed by

5. the module to be cataloged, followed
by

6. the /* control statement if other job
steps are to follow, or

7. the /& control statement~ which is the
last control statement of the job.

For example:

// JOB CATPROC

ASSGN control statements,
if required

// EXEC MAINT
CATALP PROCA,EOP=AA,DATA=YES

control statements

SY3IPT inline data

/* END OF SYSIPT DATA

control statements

AA Elm OF PROCEDURE

The following restrictions apply when
you catalog procedures to the procedure
library:

1. A cataloged procedure cannot contain
control statements or SYSIPT data for
more than one job.

2. If the cataloged control statements
include the JOB statement, you must
not have a JOB statement when you
retrieve the procedure through the

54

EXEC statement. Conversely, if the
JOB statement is not cataloged, a JOB
statement must precede the EXEC
statement that retrieves the
procedure.

3. A cataloged procedure must not include
any of the following control
statements because they are not
accepted when the procedure is
processed:

// ASSGN SYSRDR,X'cuu'
// RESET SYS
// RESET ALL
// RESET SYSRDR
// CLOSE SYSRDR,X'cuu' [// ASSGN SYSIPT,X'CUU']
// RESET SYSIPT only if SYSIPT

data is
included

// CLOSE SYSIPT,X'cuu'

4. Cataloged procedures cannot be nested~
that is, a cataloged procedure cannot
contain an EXEC statement that invokes
another cataloged procedure.

Note: Maintenance cannot be performed in
the background partition on the procedure
library while a foreground partition is
using the library.

PSERV, PROCEDURE LIBRARY

To request a service function for the
procedure library, use the following EXEC
control statement:

// EXEC PSERV

One or more of the three service
functions can be requested within a single
run. Any number of procedures within the
procedure library can be acted upon in this
run.

CALLING CATALOGED PROCEDURES

A cataloged procedure is called by a job
that appears in the input stream or via an
operator command. The job must consist of
a JOB statement and an EXEC statement that
specifies the cataloged procedure name.
For example:

// EXEC PROC=VCOBCLG

The programmer can write cataloged
procedures which incorporate job control he
used frequently_ For example, the
programmer may wish to catalog a procedure

)r compiling, link-editing, and executing
program. It is particularly useful for

)mpiling in a low-priority test partition
) which no card reader has been assigned.
5ing cataloged procedures, the operator
in execute via the EXEC statement a
italoged procedure from the console.

~IVATE LIBRARIES

Private libraries are desirable in the
~stem to permit some libraries to be
~cated on a disk pack other than the one
sed by SYSRES.

Private libraries are supported for the
ore image library, the relocatable
ibrary, and the source statement library,
n the 2311, 2314, 2319, 3330, 3340, fixed
lock devices, and mass storage devices.
owever, the following restrictions apply:

1. The private library must be on the
same type of disk device as SYSRES;
the private core-image library can be
on a type of device other than the one
SYSRES is on.

2. Reference may be made to a private
core image library only if SYSCLB is
assigned. If SYSCLB is assigned, the
system core image library cannot be
changed.

3. Reference may be made to a private
relocatable library only if SYSRLB is
assigned. If SYSRLB is assigned, the
system relocatable library cannot be
changed.

4. Reference may be made to a private
source statement library only if
SYSSLB is assigned. If SYSSLB is
assigned, the system source statement
library cannot be changed.

5. Private libraries cannot be
reallocated.

6. The COpy function is not effective for
private libraries except when they are
being created.

An unlimited nu~ber of private libraries
is possible. However, each must be
distinguished by a unique file
identification in the DLBL statement for
the library. No more than one private
relocatable library and one private source
statement library may be assigned in a
given job.

The creation and maintenance of private
libraries is discussed in the publication
DOS/vS System Control Statements.

Determinino the Location of the Libraries

Having decided which libraries you want
in your system, you must determine where on
the available devices these libraries are
to be placed. All system libraries must
reside in the SYSRES extent of the system
disk pack in a predefined sequence (Figure
7). Although it is theoretically possible
to have private libraries on the system
pack (outside the SYSRES extent), this is
not recommended because it involves
increased movement of the disk arm.

Librarian Functions 55

..... end of SYSR ES extent

Figure 1. The Relative Location of the Four System Libraries

The directory area for each library is
not shown in the Figure 1. By definition w
all system libraries reside on the system
residence file (SYSRES). If you have
additional disk drives~ you can define
private core image, relocatable w and/or
source statement libraries on the extra
volumes. These volumes must be of the same
type as the SYSRES pack. The system
relocatable and system source statement
libraries can be removed from SYSRES and
established as private libraries; the
system core image libraryw however w must
always be present on SYSRES. It can be
supplemented but not replaced by a private
core image library. The procedure library
is supported only as a system library; you
cannot create a private procedure library.

56

SOURCE LANGUAGE CONSIDERATIONS

To use the private source statement
library for COPY, BASIS, INSERT, and
DELETE(see "Extended Source Program Library
Facility" for further details)w the ASSGN w
DLBLw and EXTENT control state~ents that
define this private library must be present
in the job deck for compilation (unless
they are permanently set up by the
installation). When present, a search for
the book is made in the private library.
If it is not there w the system library is
searched. If the state~ents for the
private library are not present, the system
library is searched. A prograrrmer may
create several private libraries~ but only
one private library can be used in a given
job.

TENDED SOURCE PROGRAM LIBRARY FACILITY

A complete program may be included as an
try in the source statement library by
ing the catalog function. This program
n then be retrieved by a BASIS card and
mpiled in a subsequent job.

The following control statements would
used to catalog the program SAMPLE as a

10k in the COBOL sublibrary of the source
. atement library:

, JOB CATALOG
, EXEC MAINT

CATALS C.SAMPLE
BKEND C.SAMPLE

{source program}

BKEND

When compiling a program that has been
~taloged in the COBOL sublibrary of the
Jurce statement library, a BASIS card
rings in an entire source program. The
Jllowing control statements could be used
J compile the cataloged program SAMPLE:

I JOB PGMl
I OPTION LOG,DECK,LIST,LISTX,ERRS
I EXEC FCOBOL
CBL LIB
BASIS SAMPLE

*
&

INSERT or DELETE cards may follow the
ASIS card if the user wishes to modify the
ook SAMPLE before it is processed by the
ompiler. The original source program must
. ave been coded with sequence numbers in
~olumns 1 through 6 of each source card.

The INSERT statement will add new source
itatements after the specified sequence
lumbers. The DELETE statement will delete
:he statements indicated by the sequence
lumbers, or will delete more than one
;tatement when the first and last sequence
lumbers to be deleted are specified,
;eparated by a hyphen. Source program
~ards may follow a DELETE card for
Lnsertion before the card following the
Last one deleted. The sequence numbers in
~olumns 1 through 6 are used to update
~OBOL source statements at compilation
:ime, and are in effect for the one run
Jnly.

Assume that a company runs its payroll
9rogram each week as a source program taken

from the source statement library. The
name of the program is PAYROLL. During a
particular year, the old age insurance tax
(FICA) is deducted at the rate of 4-2/5%
each week for all personnel until earnings
exceed $7800. The coding to accomplish
this is shown in Figure 8.

NOw, however, due to a change in the old
age tax laws, tax is to be taken out until
earnings exceed $10800 and a new percentage
is to be placed. The programmer can code
these changes as shown in Figure 9 .

The altered program will contain the
coding shown in Figure 10.

Reformatted Source Deck

By specifying the DECK option on the LST
card, a new COBOL source deck can be
produced that reflects the reformatted
source listing. This deck may be saved in
a BASIS library, used directly as input to
the compiler, or punched onto cards.
Because of reformatting, the new deck may
contain more cards than the original, but
the difference is not great enough to cause
any appreciable increase in compilation
time. The output deck differs from the
listing as follows:

1. References, footnotes, and blank lines
are omitted.

2. Literals will be repositicned, if
needed, to assure proper continuation.

3. Statement numbers are converted to
card numbers •

a~ The statement number is multiplied
by 10, and leading zeros are added
as necessary to fill columns 1
through 6.

b. Comment and continuation cards are
numbered one higher than the
preceding card.

c. Statement-beginning cards are
given the higher of the two
numbers produced by the first two
rules.

The use of this feature avoids having to
resequence cards for permanent updating
after they have been tested by temporary
updating using the BASIS feature; it also
avoids the errors incurred during that
resequencing process.

Librarian Functions 57

r---,
1000730 IF ANNUAL-PAY GREATER THAN 7800 GO TO PAY-WRITE. 1
1000735 IF ANNUAL-PAY GREATER THAN 7800 - BASE-PAY GO TO LAST-FICA. 1
1000740 FICA-PAYR. COMPUTE FICA-PAY = BASE-PAY * .044 1
1000745 MOVE TAX-PAY TO OUTPUT-TAX. I
1000750 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-EASE. I
1000755 ADD BASE-PAY TO ANNUAL-PAY. 1
1 1
1 1
1 1
1000850 STOP RUN. I L ___ J

Figure 8. Sample Coding to Calculate FICA

r-------------------------------------~---,
1// JO'B PGM2 1
1// OPTION LOGIJDECKIJLIST,LISTX,ERRS 1
1// EXEC FCOBOL 1
1 CBL QUOTE, LIB 1
IBASIS PAYROLL 1
IDELETE 000730-000740 1
1000730 IF ANNUAL-PAY GREATER THAN 10800 GO TO PAY-WRITE. I
1000735 IF ANNUAL-PAY GREATER THAN 10800 - BASE-PAY GO Tu LAST-TAX. 1
1000740 TAX-PAYR. COMPUTE TAX-PAY = BASE-PAY * .'0585 1
1/* 1 L ___ J

Figure 9. Altering'a Program from the Source Statement Library Using INSERT and DELETE
Cards

r---,
1000730 IF ANNUAL-PAY GREATER THAN 10800 GO TO PAY-WRITE. 1
1000735 IF ANNUAL-PAY GREATER THAN 10800 - BASE-PAY GO TO LAST-TAX. 1
1000740 TAX-PAYR. COMPUTE TAX-PAY = BASE-PAY* .0585. 1
1000750 MOVE TAX-PAY TO OUTPUT-TAX. 1
1000760 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE. 1
1000770 ADD BASE-PAY TO ANNUAL-PAY. 1
I 1
1 1
1 1
1000850 STOP RUN. 1 L ___ J

Figure 10. Effect of INSERT and DELETE Cards

58

The DOS/VS COBOL compiler, COBOL object
)dule, Linkage Editor, and other system
)mponents can produce output in the form
E printed listings, punched card decks,
Lagnostic or informative messages, and
~ta files directed to tape or to mass
torage devices. This chapter gives the
)rmat of and describes this output. The
~me COBOL program is used for each
~ample. "Appendix A: sample Program
~tput" shows the output formats in the
~ntext of a complete listing generated by
he sample program.

OMPILER OUTPUT

The output of the compilation job step
ay include:

• A printed listing of the job control
staterr,ents

• A printed listing of the statements
contained in the source program

• A glossary of compiler-generated
information about data

• Global tables, register assignments,
and literal pools

• A printed listing of the object code

• A condensed listing containing only the
relative address of the first generated
instruction for each verb

• Compiler statistics

• Compiler diagnostic messages

• Cross-reference listings

• System messages

• An object module

• FIPS diagnostic messages

The presence or absence of the
~bove-mentioned types of compiler output is
letermined by options specified at system
jeneration time. These options can De
)verridden or additional options specified
~t compilation time by using the OPTION
~ontrol statement and the CBL card.

INTERPRETING OUTPUT

The level of diagnostic message printed
depends upon the FLAGW or FLAGE option of
the CBL card.

All output to be listed is written on
the device assigned to SYSLST. If SYSLST
is assigned to a magnetic tape, COBOL will
treat the file as an unlabelled tape. Line
spacing of the source listing is controlled
by the SPACEn option of the CBL card and by
SKIP 1/2/3 and EJECT in the COBOL source
program. (The lister feature ignores these
commands.) The number of lines per page
can be specified in the SET corrrr.and. In
addition, a listing of input/output
assignments can be printed on SYSLST by
using the LISTIO control staterr.ent.

On each page of the output, there is a
header which contains the PROGRAM-ID, date
and time of compilation" as well as an
indication of the modification level of the
compiler which produced this listing.

Figure 11 contains the compiler output
listing shown in "Appendix A: Sample
Program Output." Each type of output is
numbered, and each format within each type
is lettered. The text below and that
following the figure is an explanation of
the figure.

The listinq of the~b control
statements associated with this job
step. These statements are listed
because the LOG option was specified
at system generation time.

Compiler options. The CBL card, if
specified, is printed on SYSLST unless
the LIST option is suppressed.

The source module listing. The
statements in the source program are
listed exactly as submitted except
that a compiler-generated card number
is listed to the left of each line.
This is the number referenced in
diagnostic messages and in the object
code listing. It is also the number
printed on SYSLST as a result of the
source lanquage TRACE statement (if
NOVERB is in effect)u The source
module is not listed when the NOLIST
option is specified.

Interpreting Output 59

1/ JOB TESTR26 A=SK22,0=460
1/ OPTION LINK,LOG,NODECK,LISTX,LIST,SYM,ERRS JCD
// EXEC FCOBOL,SIZE=128K

1 IBM DOS/VS COBOL ~ REL 3.0 PP NO. 5746-CBl

CBL LANGLVLCl),APOST,SXREF,LVL=A,OPT
00001 100010 IDENTIFICATION DIVISION.
00002 100020 PROGRAM-ID. TESTRUN.
00003 100030 AUTHOR. PROGRAMMER NAME.
00004 100040 INSTALLATION. NEW YORK PROGRAMMING CENTER.
00005 100050 DATE-WRITTEN. JULY 12, 1968.
00006 100060 DATE-COMPILED. 02/25/81
00007 100070 REMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR
00008 100080 COBOL USFR!l. TT CREATFS AN OllTPIIT FTl F. I\ND REA05 JT I\flCK AS
00009 100090 l~pur.
00010 100100 ENVIRONMENT DIVISION.
00011 100110 CONFIGURATION SECTION.
00012 100120 SOURCE-COMPUTER. IBM-370-H50.
00013 100130 OBJECT-COMPUTER. IBM-370-H50.
00014 100140 INPUT-OUTPUT SECTION.
00015 100150 FILE-CONTROL.
00016 100160 SELECT FILE-l ASSIGN TO SYS001-UT-3330-S-SAMPLl.
00017 .100110 S~ FlLE-2 ASSIGN TO SYS003-DA-3330-S-SAMPL2.

100530 PROCEDURE DIVISION.
100540 BEGIN.

00057
00058
00059
00060
00061

100550* NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
100560* AND INITIALIZES COUNTERS.
100570 STEP-I. OPEN OUTPUT FILE-I. MOVE ZERO TO KOUNT NOMBER.

00074 100700 STEP-5. CLOSE FILE-I. OPEN INPUT FILE-2.
00075 100710* NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES OUT
00076 100720* EMPLOYEES WITH NO DEPENDENTS.
00077 100730 STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-8.
00078 100740 STEP-7. IF NO-OF-DEPENDENTS IS EQUAL TO '0' MOVE 'Z' TO
00079 100750 NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO
00080 100760 STEP-6.
00081 100770 STEP-8. CLOSE FILE-2.
00082 100780 STOP RUN.

CD CD CD ® CD CD
INTRNL NAME LVL SOURCE NAME BASE DISPL INTRNL NAME

DNM=1-148 FD FILE-l DTF=Ol DNM=1-148
DNM=1-179 01 RECORD-l BL=l 000 DNM=1-179
DNM=1-200 02 FIELD-A BL=1 000 DNM=1-200
DNM=I-217 FD FILE-2 DTF=02 DNM=I-217
DNM=1-248 01 RECORD-2 BL=2 000 DNM=I-248
DNM=1-269 02 FIELD-A BL=2 000 DNM=I-269
DNM=I-289 77 KOUNT BL=3 000 DNM=I-289
DNM=I-304 77 NOMBER BL=3 002 DNM=I-304
DNM=1-320 01 FILLER BL=3 008 DNM=I-320
DNM=I-339 02 ALPHABET BL=3 008 DNM=I-339
DNM=1-357 02 ALPHA BL=3 008 DNM=I-357
DNM=1-375 02 DEPENDENTS BL=3 022 DNM=I-375
DNM=I-395 02 DEPEND BL=3 022 DNM=I-395
DNM=1-411 01 WORK-RECORD BL=3 040 DNM=I-411
DNM=1-435 02 NAME-FIELD BL=3 040 DNM=I-435
DNM=I-455 02 FILLER BL=3 041 DNM=I-455
DNM=I-474 02 RECORD-NO BL=3 042 DNM=I-474
DNM=2-000 02 FILLER BL=3 046 DNM=2-000
DNM=2-019 02 LOCATION BL=3 047 DNM=2-019
DNM=2-037 02 FIL L ER BL=3 04A DNM=2-037
DNM=2-056 02 NO-OF-DEPENDENTS BL=3 04B DNM=2-056
DNM=2-082 02 FILLER BL=3 04D DNM=2-082
DNM=2-101 01 RECORDA BL=3 058 DNM=2-101
DNM=2-121 02 A BL=3 058 DNM=2-121
DNM=2-132 02 B BL=3 058 DNM=2-132

Figure 11. Examples of Compiler Output (Part 1 of 5)

60

CD
DEFINITION

OS OCL20
OS 20C

OS OCL20
OS 20C
OS IH
OS IH
OS OCL52
DS 26C
OS lC
OS 26C
OS lC
OS OCL20
OS lC
DS lC
DS 4C
DS lC
OS 3C
OS lC
DS 2C
OS 7C
OS OCL4
OS 4C
OS 4P

® CD
USAGE R 0 Q M

DTFSD F
GROUP
DISP
DTFSD F
GROUP
DISP
COMP
COMP
GROUP
DISP
DISP R 0
DISP

CD DISP R 0
GROUP
DISP
DISP
DISP-NM
DISP
DISP
DISP
DISP
DISP
GROUP
DISP-NM
COMP-3 R

MEMORY MAP

TGT

SAVE AREA
SWITCH
TALLY
SORT SAVE
ENTRY-SAVE
SORT CORE SIZE
NSTD-REElS
SORT RET
WORKING CELLS
SORT FILE SIZE
SORT MODE SIZE
PGT-VH TBL
TGT-VN TBL
SORTAB ADDRESS
LENGTH OF VN TBL
LNGTH OF SORTAB
PGM ID
A(INIT1)
UPSI SWITCHES
DEBUG TABLE PTR
CURRENT PRIORITY
TA LENGTH
PRBll CELL PTR
UNUSED

CD

COUNT TABLE ADDRESS
VSAM SAVE AREA ADDRESS
UNUSED
COUNT CHAIN ADDRESS
UNUSED
DBG R14SAVE
UNUSED
UNUSED
DBG RllSAVE
PCS LIT PTR
DBG INF PTR
OVERflOW CELLS
BL CElLS
DTFADR CEllS
FIB CELLS
TEMP STORAGE
TEI1P S TORAGE-2
TEMP STORAGE-3
TEMP STORAGE-4
BLL CELLS
VLC CEllS
SBL CElLS
IHDEX CELLS
SUBADR CELLS
OHCTl CEllS
PFMCTl CELLS
PFMSAV CELLS
VN CELLS
SAVE AREA =2
SAVE AREA =3
XSASW CELLS
XSA CELLS
PARAM CELLS
RPTSAV I.REA
CHECKPT CTR
IOPTR CElLS
DEBUG TABLE

LITERAL POOL (HEX) 0

00828

00828
00870
00874
00878
0087C
00880
00884
00886
00888
009B8
009BC
009CO
009C4
009C8
009CC
009CE
009DO
00908
0090C
009E4
009E8
009E9
009EC
009FO
009F4
009F8
009FC
00A04
00A08
OOAlC
00A20
00A24
00A28
00A2C
00A30
00A40
00A40
00A4C
00A54
00A58
00A60
00A60
00A60
00A60
00A64
00A64
00A64
00A64
00A6C
00A6C
00A6C
00A70
00A74
00A74
00A74
00A74
00A74
00A78
00A78
00A78
00A78

OOABO (LIT+O) 00000000 00000001 00010000 0000001A 00040014 00280028
00AC8 (LIT+24) 00000000 COOOOOOO

DISPLAY LITERALS CBCD)

OOADO (l Tl+32) 'WORK-RECORD'

PGT CD
DEBUG LIHKAGE AREA
OVERFLOW CELLS
VIRTUAl CEllS
PROCEDURE HAME CELLS
GENERATED HAME CELLS
SUBDTF ADDRESS CELLS
VNI CELLS
LITERALS
DISPLAY LITERALS
PROCEDURE BLOCK CELLS

00A80

00A80
OOA80
OOA84
OOA98
OOA98
OOAA8
OOAA8
OOABO
OOADO
OOADC

Figure 11. Examples of Compiler Output (Part 2 of 5)

Interpreting Output 61

REGISTER ASSIGNMENT

}CD REG 6 BL =3
REG 7 BL =1
REG 8 BL =2

WORKING-STORAGE STARTS AT LOCATION 00100 FOR A LENGTH OF 00060. ~
PROCEDURE BLOCK ASSIGNMENT ~

PBL = REG 11

P8L =1 STARTS AT LOCATION OOOAEO STATEMENT 61

CD ® CD CD CD
58 *BEGIN

OOOAEO
61 *STEP-l

PN=02 EQU M

OOOAEO PN=03 EQU IE
61 OPEN OOOAEO START EQU IE

OOOAEO 58 BO C 05C L 11,05C(0,12) PBL=1
000AE4 58 10 0 224 L 1,224(0,13) DTF=1
000AE8 41 20 1 OFO LA 2,OFO(0,1)
OOOAEC 02 EF 2 000 1 000 MVC 000(240,2),000(1)
000AF2 58 10 0 224 L 1,224(0,13) DTF=1
000AF6 4B 10 C 040 SH 1,040(0,12) LIT+16
OOOAFA 94 BF 1 000 NI OOO(1),X'BF'
OOOAFE 58 20 0 218 L 2,218(0,13) BL =1
000B02 58 00 0 224 L 0,224(0,13) OTF=1
000B06 05 10 BALR 1,0
000B08 50 00 008 ST 0,008(0,1)
OOOBOC 45 10 1 OOE BAL 1,00E(0,1)
000B10 00000000 DC X'OOOOOOOO'
000B14 0410 DC X'0410'
000B16 58 FO C 008 L 15,008(0,12) V(ILBOSIOO)
000B1A 05 EF BALR 14,15
000B1C 50 20 0 218

®
ST 2,218(0,13) BL =1

000B20 58 70 0 218 L 7,218(0,13) BL =1
61 MOVE 000B24 02 01 6 000 C 030 MVC 000(2,6),030(12) ONM=I-289 LIT+O

000B2A 02 01 6 002 C 030 MVC 002(2,6),030(12) DNM=I-304 LIT+O
65 *STEP-2

000B30 PN=04 EQU IE
65 ADD 000B30 48 30 C 036 LH 3,036(0,12) LITH

000B34 4A 30 6 000 AH 3,000(0,6) ONM=I-289
000B38 4E 30 0 230 CVO 3,230(0,13) TS=OI
000B3C 07 05 0 230 D 230 XC 230(6,13),230(13) TS=OI TS=OI

CD 000B42 94 OF D 236 NI 236(13),X'OF' TS=01+6
000B46 4F 30 D 230 CVB 3,230(0,13) TS=OI
000B4A 40 30 6 000 STH 3,000(0,6) ONM=I-289

65 ADD 000B4E 48 30 C 036 LH 3,036(0,12) LITH
000B52 4A 30 6 002 AU 3,002(0,6) ONM=I-304
000B56 4E 30 D 230 CVD 3,230(0,13) TS=OI
000B5A 07 05 D 230 D 230 XC 230(6,13),230(13) TS=OI TS=OI
000B60 94 OF D 236 NI 236(13),X'OF' TS=01+6
000B64 4F 30 D 230 CVB 3,230(0,13) TS=OI
000B68 40 30 6 002 STH 3,002(0,6) OtlM=I-304

65 MOVE 000B6C 41 40 6 008 LA 4,008(0,6) ONM=I-357
000B70 48 20 6 000 LH 2,000(0,6) DNM=I-289
000B74 4C 20 C 036 MH 2,036(0,12) LITH
000B78 lA 42 AR 4,2
000B7A 58 40 C 034 S 4,034(0,12) LITH
000B7E 50 40 0 23C ST 4,23C(0,13) SBS=l
000B82 58 EO 0 23C L 14,23C(0,13) SBS=1
000B86 02 00 6 040 E 000 MVC 040(1,6),000(14) ONM=I-435 ONM=I-357

67 MOVE 000B8C 41 40 6 022 LA 4,022(0,6) ONM=I-395
000B90 48 20 6 000 LH 2,000(0,6) ONM=I-289
000B94 4C 20 C 036 MH 2,036(0,12) LITH
000B98 lA 42 AR 4,2

000B9A 5B 40 C 034 S 4,034(0,12) LIT 4
000B9E 50 40 D 240 ST 4,240(0,13) SBS 2
000BA2 58 FO D 240 L 15,240(0,13) SBS 2
000BA6 02 00 6 04B F 000 MVC 04B(I,6),000(15) ONM 2-56 DNM=I-395
OOOBAC 92 40 6 04C MVI 04C(6),X'40' ONM 2-56+1

68 MOVE OOOBBO 48 30 6 002 LH 3,002(0,6) ONM 1-304
000BB4 4E 30 D 230 CVD 3,230(0,13) TS= 1
000BB8 F3 31 6 042 D 236 UNPK 042(4,6),236(2,13) DNM 1-474 TS=07
OOOBBE 96 FO 6 045 01 045(6),X'FO' DNM 1-474+3

Figure 1 1 • Examples of Compiler Output (Part 3 of 5)

62

000090 95 00 E 000 CLI 000Cl4),X'00'
000094 47 70 F OA2 BC 7,OA2(0,15)
000098 96 10 0 048 01 048(13) ,X' 10' SWT+O
00009C 92 FF E 000 MVI 000(14),X'FF'
OOOOAO 47 FO F OAC BC 15,OAC(0,15)
0000A4 98 CE F 03A lM 12,14,03A(15)
0000A8 90 EC 0 OOC STM 14,12,00C(13)
OOOOAC 18 50 lR 5,13
OOOOAE 98 9F F OBA lM 9,15,OBA(15)
0000B2 91 10 0 048 TM 048(13),X'10' SWT+O
0000B6 07 19 BCR 1,9

CD 0000B8 07 FF BCR 15,15
OOOOBA 07 00 BCR 0,0
OOOOBC 0000007C AOCOH l4(IHIT3)
OOOOCO 00000000 ADCOH l4(IHITl>
0000C4 00000000 ADCON l4(INITl>
0000C8 00000A80 AOCOH l4 (PGT)
OOOOCC 00000828 ADCOH l4 (TGT>
000000 OOOOOAEO AOCOH L4(START)
000004 00000D62 ADCOH l4(IHIT2)
0000D8 C3D6C2D6F2F6FOFO DC X'C3D6C2D6F2F6FOFO'
OOOOEO E3C5E2E309E4D540 DC X'E3C5E2E3D9E4D540'
0000E8 00000000 DC X'OOOOOOOO'
OOOOEC FOF261F2F561F8Fl DC X'FOF261F2F561F8Fl'
0000F4 FIF74BF2F64BFIF7 DC X'FIF74BF2F64BFIF7'

STATJSTICS SOURCE RECORDS = 82 DATA ITEMS = 25 PROC OIV SZ = 29
STATISTICS PARTITIOH SIZE = 130952 LIHE COUHT = 56 BUFFER SIZE = 2048
OPTIOHS IH EFFECT PMAP RElOC ADR NOHE SPACIHG 1 FLOW HOHE
OPTIOHS IH EFFECT LISTX APOST SYM HOCATALR LIST LIHK HOSTXIT LIB) ® *OPTIOHS IH EFFECT* HOCLIST FLAGW ZWB HOSUPMAP XREF ERRS SXREF OPT
OPTIOHS IH EFFECT HOSTATE TRUHC SEQ HOSYMDMP HODECK VERB HOSYHTAX LVL=A
OPTIOHS IH EFFECT lAHGL VLC 1) HOCOUHT AOV HOVERBSUM HOVERBREF
LISTER OPTIOHS HOHE

Figure 11. Examples of Compiler Output (Part 4 of 5)

Interpreting Output 63

DATA NAMES

A
ALPHA
ALPHABET
B
DEPEND
DEPENDENTS
FIELD-A
FIELD-A
FIL E-l
FILE-2
KOUNT
LOCATION
NAME-FIELD
NO-OF-DEPENDENTS
NOMBER
RECORD-NO
RECORD-l
RECORD-2
RECORDA
WORK-RECORD

®
PROCEDURE NAMES

BEGIN
S TEP-l
STEP-2
STEP-3
STEP-4
STEP-5
STEP-6
STEP-7
STEP-8

CARD ERROR MESSAGE

0®®
00055
00065
00065

1
LINE
00006
00024
00032
00040
00042
00050
00053
00056
00059
00060
00058
00062
00063
00064
00065
00065
00069
00069
00069
00071
00072
00073
00075
00076
00077
00078
00078
00079
END OF

ILA2190I-W
ILA5011I-W
ILA5011I-W

ILA8
ILA8 It

ILA8003I-W
ILA8002I-W
ILA8002I-W
ILA8002I-W
ILA8002I-W
ILA8002I-W
ILA8003I-W
ILA8002I-W
ILA8002I-W
ILA8002I-W
ILA8002I-W
ILA8002I-W
IL48002I-W
ILA8002I-W
ILA8003I-W
ILA8003I-W
ILA8003I-W
ILA8002I-W
ILA8003I-W
ILA8003I-W
ILA8002I-W
ILA8002I-W
ILA8002I-W
ILA8002I-W
ILA8003I-W
ILA8002I-W
ILA8002I-W
ILA8002I-W
COMPILATION

DEFN REFERENCE

000055
000041 000065
000040
000056
000044 000067
000042
000027
000035
000016 000061 000069 000074
000017 000074 000077 000081
000037 000061 000065 000067 000071
000050
000046 000065
000052 000067 000078
000038 000061 000065 000068

® 000048 000068
000026 000069
000034 000077
000054
000045 000069 000077 000079

DEFN REFERENCE

000058
000061
000065 000071
000069 000071
000071
000074
000077 000079
000078
000081 000077

PICTURE CLAUSE IS SIGNED, VALUE CLAUSE UNSIGNED. ASSUMED POSITIVE.
HIGH ORDER TRUNCATION MIGHT OCCUR.
HIGH ORDER TRUNCATION MIGHT OCCUR. l®

FEDERAL INFORMATION PROCESSING STANDARDS (FIPS) DIAGNOSTIC MESSAGES
MESSAGE

DATE-CO~lPILED PARAGRAPH NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
RECORDING MODE IS CLAUSE NON-STANDARD AT ALL LEVELS.
RECORDING MODE IS CLAUSE NON-STANDARD AT ALL LEVELS.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
SPACES NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
COMPUTATIONAL-3 NON-STANDARD AT ALL LEVELS.
* COMMENT LINE NON-STANDARD AT ALL LEVELS. * COMMENT LINE NON-STANDARD AT ALL LEVELS.
ZERO SENTENCES IN PARAGRAPH NON-STANDARD AT ALL LEVELS. * COMMENT LINE NON-STANDARD AT ALL LEVELS.
* COMMENT LINE NON-STANDARD AT ALL LEVELS. * COMMENT LINE NON-STANDARD AT ALL LEVELS.
COMMA OR SEMICOLON AS PUNCTUATION NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
COMMA OR SEMICOLON AS PUNCTUATION NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
UPON OPTION OF DISPLAY STATEMENT NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
UPON CONSOLE OPTION OF DISPLAY STATEMENT IS NON-STANDARD AT ALL LEVELS.
FROM OPTION OF WRITE STATEMENT NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
UNTIL OPTION OF PERFORM STATEMENT NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL. * COMMENT LINE NON-STANDARD AT ALL LEVELS. * COMMENT LINE NON-STANDARD AT ALL LEVELS. * COMMENT LINE NON-STANDARD AT ALL LEVELS. * COMMENT LINE NON-STANDARD AT ALL LEVELS.
INTO OPTION OF READ STATEMENT NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
EXHIBIT STATEMENT NON-STANDARD AT ALL LEVELS.

Figure 11. Examples of Compiler Output (Part 5 of 5)

64

®

The following notations may appear on
the listing:

C Denotes that the statement was inserted
with a COPY statement.

** Denotes that the card is out of
sequence. NOSEQ should be specified on
the CBL card if the sequence check is
to be suppressed.

I Denotes that the card was inserted with
an INSERT or BASIS card.

If DATE-COMPILED is specified in the
Identification Division, any sentences in
that paragraph are replaced in the listing
by the date of compilation. It is printed
in one of the following formats depending
upon the format chosen at system generation
time.

DATE-COMPILED. month/day/year or

DATE-COMPILED. day/month/year

64

Glossary. The glossary is listed
when the SYM option is specified.
The glossary contains information
about names in the COBOL source
program.

® and(!) The internal-name
generated by the compiler.
This name is used in the
compiler object code listing
to represent the name used in
the source program. It is
repeated in column F for
readability.

A normalized level number.
This level number is
determined by the compiler as
follows: the first level
number of any hierarchy is
always 01, and increments for
other levels are always by
one. Only level numbers 03
through 49 are affected;
level numbers 66, 77, and 88,
and FD, SD, and RD indicators
are not changed.

The data-name that is used in
the source module.

Note: The following Report Writer
internally-generated data-names
can appear under the SOURCE NAME
column:

CTL.LVL Used to coordinate
control break
activities.

GRP.IND Used by coding for GROUP
INDICATE clause.

TER.COD Used by coding for
TERMINATE clause.

FRS.GE~ Used by coding for
GENERATE clause.

-nnnn Generated report record
associated with the file
on which the report is
to be printed,.

RPT.RCD Build area for print
record.

CTL.CHR First or second position
of RPT.RCD. Used for
carriage control
character.

RPT.LIN Beginning of actual
information which will
be displayed. Second or

CODE
CELL

E.nnnn

S.nnnn

N.nnnn

third position of
RPT,.RCD.

Used to hold code
specified.

Name generated from
COLUMN clause in
02-level statement.

Used for elementary
level with SUM clause,
but not with data-name.

Used to save the total
number of lines used by
a report group when
relative line numbering
is specified.

@ and(§) For data-names, these columns
contain information about the
address in the form of a base and
displacement. For file-names~ the
column contains information about
the associated DTF or FIB (for
VSAM). An indication is also
given here if the FD is invalid.

This column defines storage for
each data item. It is represented
in assembler-like terroinology_
Table 4 refers to information in
this column.

Usage of the data-name. For FD
entries, either VSAM is specified~
or the DTF type is identified
(e.g., DTFDA). For group items
containing a ~SAGE clause~the
usage type is printed. For group
items that do not contain a USAGE
clause, GROUP is printed. For
elementary items, the information
in the USAGE clause is printed.

Inter~reting Output 64.1

Jle 4. Glossary Definition and Usage
---------------------------T-----------------------T----------------------------------,

Type I Definition I Usage I
---------------------------+-----------------------+----------------------------------~
Group Fixed-Length I DS OCLN I GROUP
Alphabetic I DS NC I DISP
Alphanumeric I DS NC I DISP
Alphanumeric Edited I DS NC I AN-EDIT
Numeric Edited I DS HC I NM-EDIT
Index-Name I DS lH I INDEX-NM
Group Variable-Length I DS VLI=N I GROUP
Sterling Report I DS NC I RPT-ST
External Decimal I DS NC I DISP-NM
External Floating-Point I DS NC I DISP-FP
Internal Floating-Point I DS iF I COMP-l

I DS lD I COMP-2
Binary I DS lH, iF, OR 2F I COMP
Internal Decimal I DS NP I COMP-3
Sterling Non-Report I DS NC I DISP-ST
Index-Name I BLANK I INDEX-NAME
File (FD) I BLANK I DTF TYPE
Condi tion (88) I BLANK I BLANK
Report Definition (RD) I BLANK I BLANK
Sort Definition (SD) I BLANK I BLANK

---------------------------~-----------------------~----------------------------------~
lote: Under the definition column, N = size in bytes, except in group variable-length I
Ihere it is a variable cell number. I . __ J

@ A letter under column:

R - Indicates that the data-name
redefines another data-name.

o - Indicates that an OCCURS
clause has been specified for
that data-name.

Q - Indicates that the data-name
is or contains the DEPENDING
ON object of the OCCURS
clause.

M - Indicates the record format.
This field is not applicable
to VSAM. The letters which
may appear under column Mare:

F - fixed-length records

U - undefined records

V - variable-length records

S - spanned records

The location and length of WORKING
S'I'ORAGE are noted here when CLIST,
SYM or LSTX is specified, except under
the same conditions as noted below.

Global tables and literal pool:
Global tables and the literal pool are
listed when the CLIST, SYM, or LISTX
option is specified, unless SUPMAP is
specified and an E-level error is

encountered, or CSYNTAX is specified
and an E-Ievel error is encountered.
A global table contains easily
addressable information needed by the
object program for execution. For
example, in the Procedure Division
output coding (3), the address of the
first instruction under STEP-l (OPEN
OUTPUT FILE-i) is found in the
PROCEDURE NAME CELLS portion of the
Program Global Table (PGT).

®

The Task Global Table (TGT). This
table is used to record and save
information needed during the
execution of the object program.
This information includes
switches, addresses, and work
areas.

The Literal Pool. This lists all
literals used in the program, with
duplications removed. These
literals include those specified
by the programmer (e.g., MOVE
"ABC" TO DATA-NAME) and those
generated by the compiler (e.g.,
to align decimal points in
arithmetic computations). The
literals are divided into two
groups: those that are referenced
by instructions (marked "LITERAL
POOL") and those that are
parameters to the display object
time subroutine (marked "DISPLAY
LITERALS").

Interpreting Output 65

66

@ The Program Global Table (PGT).
This table contains literals and
the addresses of procedure-names,
generated procedure-names~ and
procedure block locators
referenced by Procedure Division
instructions.

Register assignment: This lists the
permanent register assigned to each
base locator in the object program.
The remaining base locators are given
temporary register assignments but are
not listed. Register assignments are
listed when CLIST, SYM~ or LISTX is
specified. and output is not overridden
by the same conditions as above.

procedure block assignments:
Procedure block assignments are
printed when OPT is specified. The
procedure block assignments give the
location within the object program for
each block of code addressed by
register 11.

Object code listing. The object code
listing is produced when the LISTX
option is specified, unless SUPMAP is
also specified and an E-level error is
encountered, or unless CSYNTAX is
specified and an E-level error is
encountered. The actual object code
listing contains:

®

@

The compiler-generated card
number. This number identifies
the COBOL statement in the source
deck which contains the verb that
generates the object code found in
column C. When VERB is specified,
the actual verb or paragraph-name
is listed with the generated card
number.

The relative location, in
hexadecimal notation, of the
object code instruction in the
module.

The actual object code instruction
in hexadecimal notation.

The procedure-name number. A
number is assigned only to
procedure-names referred to in
other Procedure Division
statements.

The object code instruction in the
form that closely resembles
assembler language. (Displacements
are in hexadecimal notation.)

® Compiler-generated information
about the operands of the
generated instruction. This
includes names and relative
locations of literals. Table 5
refers to information in this
column.

Table 5. Symbols Used in the Listing and
Glossary to Define
Compiler-Generated Information

r----------T------------------------------,
I Symbol I Meaning I
~----------+------------------------------~
IDNM SOURCE DATA NAME I
ISAV SAVE AREA CELL I
ISWT SWITCH CELL I
ITLY TALLY CELL I
IWC WORKING CELL I
ITS TEMPORARY STORAGE CELL I
IVLC VARIABLE LENGTH.CELL I
ISBL SECONDARY BASE LOCATOR I
IBL BASE LOCATOR I
IBLL BASE LOCATOR FOR LINKAGE I
I SECTION
ION ON COUNTER
IPFM PERFORM COUNTER
IPSV PERFORM SAVE
IVN VARIABLE PROCEDURE NAME
ISBS SUBSCRIPT ADDRESS
IXSW EXHIBIT SWITCH
IXSA EXHIBIT SAVE AREA
IPRM PARAMETER
IPN SOURCE PROCEDURE NAME
IPBL Procedure Block Locator
IGN GENERATED PROCEDURE NAME
IDTF DTF ADDRESS
IFIB File Information Elock
I (for VSAM)
IVNI VARIABLE NAME INITIALIZATION
JLIT LITERAL
ITS2 TEMPORARY STORAGE
I (NON-ARITHMETIC)
IRSV REPORT SAVE AREA
ISDF Secondary DTF Pointer
ITS3 TEMPORARY STORAGE
I (SYNCHRONIZATION)
ITS4 TEMPORARY STORAGE
I (SYNCHRONIZATION)
IINX I INDEX CELL
IV (BCDNAME)\ ADDRESS CONSTANT
IVIR \ VIRTUAL
IOVF I Overflow Cell I L __________ i ______________________________ J

Statistics: The compiler statistics
list the options in effect for this
run, the number of Data Division
statements specified, and the
Procedure Division size. Each level
number is counted as one statement in
the Data Division. The Procedure
Division size is approximately the
number of verts in the Procedure
Division.

An indicator is also given here if
dictionary spill occurred during
compilation. If spill occurred, the
amount of storage assigned to the
compiler may be increased for better
performance. Statistics are not
listed if SYNTAX (or CSYNTAX and an
E-level or higher error occurred) was
in effect.

Cross-reference dictionary: The
cross-reference dictionary is produced
when the XREF or SXREF option is
specified. It is suppressed if
CSYNTAX is in effect and an E-Ievel
error is encountered. It consists of
two parts:

The cross-reference dictionary for
data-names consists of data-names
followed by the generated card
number of the statement which
defines each data-name, and the
generated card number of state
ments on which the referenced
statement begins. For MOVE
CORRESPONDING, the data items
actually moved are referenced.
Report Writer data-names, with
the exception of data-names in
the form "-nnn", are defined
with the generated card number
of their respective RD's.

The cross-reference dictionary for
procedure-names consists of the
procedure-names followed by the
generated card number of the
statement where each
procedure-name is used as a
section-name or paragraph-name,
and the generated card number of
statements where each
procedure-name is referenced.

A reference will appear to a procedure
name if there is a reference to a
logically equivalent procedure-name; a
reference will also appear to a
procedure name, if, in a segmented
program, an implied branch to a
segment entry is made.

If XREF is specified, the names are
~resented in the order in which they
appear in the source program. If
SXREF is specified~ the names are
presented alphabetically. The number
of references appearing in the
cross-reference dictionary for a given
name is based upon the number of times
the name is referenced in the code
generated by the compiler.

Since a SEARCH verb results in the
examination of the individual elements

in the named table, the XREF or SXREF
for a SEARCH will reference the
element name for the table rather than
the table itself. LISTER could
provide the source cross-reference
material that might be desired.

Diagnostic messages: The diagnostic
messages associated with the
compilation are always listed. The
format of the diagnostic rressage is:

@

Compiler-generated card number.
This is the number of a line in
the source program related to the
error.

Message identification. The
message identification for the
DOS/VS COBOL compiler always
begins with the symbols ILA.

The severity level. There are
four severity levels as follows:

(W) Warning
This level indicates that an
error was made in the source
program. However, it is not
serious enough to interfere
with the execution of the
program. These warning
messages are listed only if
the FLAGW option is specified
in the CBL card or chosen at
system generation time.

(C) Conditional
This level indicates that an
error was made but the
compiler usually rrakes a
corrective assumption. The
statement containing the error
is retained. Execution can be
attempted.

(E) Error
This level indicates that a
serious error was made.
Usually the compiler makes no
corrective assuroption. The
statement or option containing
the error is dropped.
compilation is completed, but
execution of the program
shoul'd not be attempted.

(D) Disaster
This error indicates that a
serious error was rrade.
Compilation is not completed.
Results are unpredictable. If
this is a compiler error, the
job will terminate via the

Interpreting Output 67

@

CANCEL macro and produce a
dump.

The message text. The text
identifies the condition that
caused the error and indicates the
action taken by the compiler.

Since Report Writer generates a
number of internal data items and
procedural statements, some error
messages may reflect internal
names. In cases where the error
occurs mainly in these generated
routines, the error messages may
indicate the card number of the RD
entry for the report under
consideration. In addition, there
are errors that may indicate the
number of the card upon which the
statement containing the error
ends rather than the card upon
which the error occurs. Internal
name formats for Report Writer are
discussed under "Glossary"
(heading 4, item C). Statement
numbers are generated when a verb
or procedure name is encountered.

The COBOL compile-time message that follows
serves as an example of the format of COBOL
compiler messages:

CARD ERROR MESSAGE

00055 ILA2190-~'1 PICTURE CLAUSE IS SIGNED,
VALUE CLAUSE UNSIGNED.
ASSUHED POSITIVE.

68

• The code "00055" at the left is the
card number of the statement in which
the error has occurred. (Some errors
may not be discovered until information
from various sections of the program is
combined. For this reason, the source
card number in the error message may
not be exact.)

• ILA identifies this as a DOS/VS COBOL
compiler message.

• The numeral "2190" represents the
identifying number of the message; the
first digit of this identifier
indicates the phase in which the error
was detected. In this case the message
was generated by phase 1.

• The symbol "I" means that this is a
message to the programmer for his
action.

• "WIt (warning) is a level of severity in
the error codes descriced in item C.

The message text is usually composed of
two sentences. The first descrices the
error; the second describes what the
compiler has done as a result of the error.

~ote: By specifying a PROGRAM-ID of ERRMSG
~n any source program, the user can
generate a complete listing of compiler
diagnostics and problem determination aids.
(See Figure 12.> In this case, a normal
compilation never takes place. Only a list
of all error messages and problem
determination information is produced. The
link option is reset if it was in effect.

Some messages are not given if CSYNTAX
or SYNTAX is in effect. See "Program
Checkout" for the list of these messages.

FIPS Diagnostic Messages: The
diagnostic messages associated with
FIPS are listed separately from the
compiler diagnostic messages, with a
header identifying them as FIPS
diagnostics. The format of the FIPS
diagnostic messages is:

Compiler-generated line number.
This is the nureber of a line in
the source prog~am containing a
nonstandard element.

(§) Message identification. The
messaae identification for FIPS
diagnostic messages always begins
with the symbols lLA. The
identifying numbers of the
messages will always be 8001,
8002, 8003, or 8004, where:

1 indicates an extension to a
certain level of the FIPS

2 indicates an extension to all
levels of the FIPS

3 indicates an extension to one
or all levels of the FIPS, or
an unusual condition;

4 indicates that there are no
FIPS diagnostic messages.

~he severity level. All FIPS
diagnostic messages have a
severity level of W (warning).
This level indicates that
something in the source program
does not conform to the FIPS, but
the compilation of the program
will not ce interrupted.

The message text. The text
identifies the condition or
element that does not conform to
the FIPS. The FIPS level is also
designated.

1/ JOB
1/

ERRORMSG User information
EXEC FCOBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. ERRMSG.
REMARKS. COMPILATION OF THIS PROGRAM WILL RESULT IN ALL COMPILER

DIAGNOSTICS BEING PRODUCED. NO OBJECT MODULE AND NO COMPILE
TIME STATISTICS ARE PRODUCED.

ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

* THE SAME RESULTS CAN BE ACHIEVED BY CHANGING THE PROGRAM-ID OF
* ANY PROGRAM TO 'ERRMSG'.

STOP RUN.

igure 12. A Program that Produces COBOL Compiler Diagnostics

BJECT MODULE

The object module contains the external
rmbol dictionary, the text of the program,
ld the relocation dictionary. It is
)llowed by an END statement that marks the
ld of the module. For additional
lformation about the external symbol
lctionary and the relocation dictionary,
~e the publication DOS/VS System control
catements.

An object deck is punched if the DECK
?tion is specified, unless an E-level
Lagnostic message is generated. The
)ject module is written on SYSLNK if the
[NK option is specified, unless an E-level
Lagnostic message is generated. No deck
i punched if CSYNTAX is in effect and
-level errors are encountered, or if
rNTAX is in effect.

CNKAGE EDITOR OUTPUT

The output of the link edit step may
lclude:

• A printed listing of the job control
statements

• A map of the phase after it has been
processed by the Linkage Editor

• Diagnostic messages

• A listing of the linkage editor control
statements

• A phase which may be assigned to the
core image library

Any diagnostic messages associated with
the Linkage Editor are automatically
generated as output. The other forms of
output may be requested by the OPTION
control statement. All output to be listed
is printed on the device assigned to
SYSLST.

Figure 13 is an example of a linkage
editor output listing. It shows the job
control statements and the phase map. The
different types of output are numbered and
each type to be explained is lettered. The
text following the figure is an explanation
of the figure.

Interpreting Output 69

.JOE SAMPLE DOS LINKAGE EDITOR DIAGNOS'IIC OF INPUT C!)
REL
I.JFFBZZN
ILEDDSPO
I.JJCPDV
ILBDDSSO

AC'!ION TAKEN MAP
LIST AUTOLINK
LIST AU'IOLINI<
LIST AUTOLINK
LIS'! AU1'OLINK
LIST INCLUDE
LIST AUTOLINK
LIS'! AUTOLINK
LIS'! AUTOLINK
LIST ENTRY

IJJCPDV
ILBDIMLO
ILBDNNSO
ILBDSAEO

® ® CD
PHASE XFR-AD LOC9RE

PHASE··· 07D878 07D878

• UNREFER~NCED SYMBOLS

CD
002 UNRESOLVED ADDRESS CONS'!ANTS

® CD
HICORE DSK-AD

07F1FF 05F OF

Figure 13. Linkage Editor Output

70

CD ®
ESD 'l'YPE LABEL

CSEC'I TES'IRUN

CSECT IJFFEZZN
ENTRY IJ£FZZZN
ENTRY IJFFBZZZ
ENTRY IJFFZZZZ

CSECT lLBDSAEO
ENTRY ILEDSAEl

CSECT ILBDMNSO

CSEC'I ILBDIMLO

CSECT ILBDDSPO
ENTkY ILBLJDSPl

CSECT ILBDDSSO
ENTRY ILBDDSSl
ENTRY ILBDDSS2
ENTRY ILBDDSS3
ENTRY ILBDDSS4
ENTRY lLBDDSS5
ENTRY ILbOOSS6
ENTRY ILBDOSS7
ENTRY ILbDOSS8

CSECT l.JJCPOV
ENTRY IJJCPOVl
ENTRY I.J.JCPDV2

WXTRN STXITPSW
WX'!RN ILBDDBG2

® (0
LOADED REL-FR

07D878 07D876 RELOCATAELl:.

07E1C8 07E1C8
07E1Ce
07E1C8
07E1C8

07F078 07F078
07FOCO

07F070 07F070

07F018 07F018

07E578 07.1:.578 CD 07E978

07ECFO 07EC.fO
07EF50
07EF48
07F008
07EDlb
07EOC2
07EE22
07EOEC
07E046

07EAA8 07EAA8
07EAA8
07EAA8

) The job control statements. These
statements are listed because the LOG
option is specified.

Disk linkage editor diagnostic message
of input. The ACTION statement is not
required. If the MAP option is
specified, SYSLST must be assigned.
If the statement is not used and
SYSLST is assigned, MAP is assumed and
a storage map and any error diagnostic
messages are considered output on
SYSLST.

Map of virtual storage. A phase map
is printed when MAP is specified (or
assumed) during linkage editor
processing. The following information
is contained in the storage map:

@

@

®

®

The name of each phase. This is
the name specified in the phase
statement.

The transfer address of each
phase.

The lowest virtual storage
location of each phase. '

The highest virtual storage
location of each phase.

The hexadecimal disk address where
the phase begins in the core image
library.

The names of all CSECT's belonging
to a phaseu

All defined entry points within a
CSECT. If an entry point is not
referenced, it is flagged with an
asterisk (*).

The address where each CSECT is
loaded.

The relocation factor of each
CSECT.

The number of unresolved weak
external references. This
indication need not concern the
programmer. An unresolved weak
external reference does not cause
the Linkage Editor to use the
automatic library call mechanism.
Instead, the reference is left
unresolved, and the load module is
marked as executable. The number
of unresolved address constants
will not necessarily be the same
as the number of unreferenced
symbols listed in the Linkage
Editor output.

Comments on the Phase Map

The severity of linkage editor
diagnostic messages may affect the
production of the phase map. Since various
processing options affect the structure of
the phase, the text of the phase map will
sometimes provide additional information.
For example, the phase may contain an
overlay structure. In this case, a map
will be listed for each segment in the
overlay structure.

Linkage Editor Messages

The Linkage Editor may generate
informative or diagnostic messages. A
complete list of these messages is included
in the publication DOS/VS System Control
Statements.

DOS ANS COBOL Unresolved External
References

When the Linkage Editor encounters a
weak external reference (WXTRN),
autolinking is suppressed and the V-type
address constant is either resolved from
those modules included into the load module
or it remains unresolved. Unresolved
WXTRNs will not cause the Linkage Editor to
cancel the link step if ACTION CANCEL is in
effect.

The DOS/VS COBOL object time subroutine
library utilizes WXTRNs not only as address
constants but also as switches to determine
at object time whether certain options are
in effect. It is a very convenient feature
which can lead to tight and efficient code.

Unresolved WXTRNs are normally
intentional but unresolved EXTRNs are
normally unintentional and an error.

Any of the following unresolved WXTRNs
may appear when link editing an object
module produced by an ANS COBOL compiler:

STXITPSW
ILBDDBG2
ILBDADRl
ILBDDBGO
SORTEP
ILBDSTNO
ILBDFLWO

ILBDFLW2
ILBDSRTO
ILBDRELO
ILBDTEFO
ILBDDSSl
ILBDDSS3
ILBDVOC1

ILBDMRGO
ILBDFLW3
ILEDTCOO
ILBDTCOl
ILBDDEG7
ILBDDBG8
ILBDTC30

Interpreting Output 71

COBOL EXECUTION OUTPUT

The output generated by program
execution (in addition to data written on
output files) may include:

• Data displayed on the console or on the
printer

• Diagnostic messages to the programmer

• Messages to the operator

• System informative messages

• SYMDMP, STATE, FLOW, and/or COUNT
output

• System diagnostic messages

• A system dump

Appendix I contains the full list of
execution time diagnostic messages.

A dump and system diagnostic messages
are generated automatically during program
execution only if the program contains
errors that cause abnormal termination.

SYMDMP output is generated upon request,
or upon abnormal termination. STATE and
FLOW output are generated upon abnormal
termination. The output of these features

II ASSGN
/1 EXEC

SYS008,X ' 483'"1 CD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
wORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECOHD
WORK-RECORD
WORK-RECOHD
wORK-RECORD
WORK-RECORD
wORK-RECORD
WORK-RECORD
wORK-RECORD
WORK - RECO"KD
WORK-RECORD
WORK-RECORD
WORK-RECORD

A 0001 NYC Z
B 0002 NYC 1
C 0003 NYC 2
D 0004 NYC 3
E 0005 NYC 4
F 0006 NYC Z
G 0007 NYC 1
H 0008 NYC 2
I 0009 NYC 3
J 0010 NYC 4
K 0011 NYC Z
L 0012 NYC 1
M 0013 NYC 2
N 0014 NYC 3
o 0015 NYC 4
P 0016 NYC Z
Q 0017 NYC 1
R 0018 NYC 2
S 0019 NYC 3
T 0020 NYC 4
U 0021 NYC Z
V 0022 NYC 1
W 0023 NYC 2
X 0024 NYC 3
Y 0025 NYC 4
Z 0026 NYC Z

Figure 14. Output from Execution Job Step

72

is discussed in the chapter entitled
"Symbolic Debugging Features".

COUNT output is generated upon normal or
abnormal termination of the program.
Output from this feature is described in
the chapter "Execution Statistics".

Figure 14 is an example of output from
the execution job step. The following text
is an explanation of the illustration.

Job control statements. These
statements are listed because the LOG
option is specified.

Program output on printer. The
results of exe"cution of the EXHIBIT
NAMED statement appear on the program
listing.

Console output. Data is printed on
the console output unit as a result of
the execution of DISPLAY UPON CONSOLE.

OPERATOR MESSAGES

The COBOL phase may issue operator
messages. In the message, XX denotes a
system-generated 2-character numeric field
that is used to identify the program
issuing the message.

BG
BG A 0001 NYC 0
BG B 0002 NYC 1
BG C 0003 NYC 2
BG D 0004 NYC 3
BG E 0005 NYC 4
BG F 0006 NYC 0
BG G 0007 NYC 1
BG H 0008 NYC 2
BG r 0009 NYC 3
BG J 0010 NYC 4
BG K 0011 NYC 0
BG L 0012 NYC 1
9G ~"1 a013 ~~YC 2 CD ts(~ N UU14 NYC 3
BG 0 0015 NYC 4
BG P 0016 NYC 0
BG Q 0017 NYC 1
BG R 0018 NYC 2
BG S 0019 NYC 3
3G T 0020 NYC 4
BG U 0021 NYC 0
BG V 0022 NYC 1
BG W 0023 NYC 2'
BG X 002:+ NYC 3
BG Y 00'25 NYC 4
BG Z 0026 NYC 0
BG EOJ SAMPLE

OO.56.19,DURATION 00.03.42

~OP Sta tement

The following message is generated by
le STOP statement with the literal option:

(Cli0A STOP 'literal V

cplanation: This message is issued at the
~ogrammer's discretion to indicate
)ssible alternative action to be taken by
le operator.

)erator Response: Follows the
lstructions given both by the message and
1 the job request form supplied by the
:ogrammer. If the job is to be resumed r

Lt the end/enter key.

:CEPT Statement

The following message is generated by an
:CEPT statement with the FROM CONSOLE
?tion:

{ CiliA "AWAITING REPLY"

~planation: This message is issued by the
aject program when operator intervention
:; required ..

aerator Response: Enter the reply and hit
he end/enter key. (The contents of the
=xt field should be supplied by the
rogrammer on the job request form.)
lphabetic characters may be entered lower
:lse.

SYSTEM OUTPUT

Informative and diagnostic messages may
appear in the listing during the execution
of the object program.

Each of these messages contains an
identification code in the first column of
the message to indicate the portion of the
operating system that generated the
message. Table 6 lists these codes w
together with identification for each.

Table 6. System Message Identification
Codes

r----T------------------------------------,
ICodel Identification I
~----+------------------------------------~
I 0 I An on-line console message from I
I] the Supervisor I
r----+------------------------------------~
I 1 I A ~essage from the Job Control I
I I Processor I
r----+------------------------------------~
I 2 I A message from the Linkage Editor I
r----+------------------------------------~
I 3 I A message from the Librarian I
r----+------------------------------------~
I 4 I A message from LIOCS I
r----t------------------------------------~
I 7 I A message from the Sort program I
~----+------------------------------------~
I C I A message from COBOL object-time I
I I subroutines I L ____ ~ ____________________________________ J

Interpreting Output 73

This chapter describes the accepted
lkage conventions for calling and called
)grams and discusses linkage methods when
Lng an assembler language program. In
lition, this chapter contains a
scription of the overlay facility which
~bles different called programs to occupy
a same area in virtual storage at
Eferent times. It also contains a
ggested assembler language program to be
ed in conjunction with the overlay
ature.

A COBOL source program that passes
ntrol to another program is a calling
Q[~. The program that receives control
om the calling program is referred to as
called program. Both programs must be
mpiled (or assembled) in separate job
eps, but the resulting object modules
st be link edited together in the same
ase.

A called program can also be a calling
ogram; that is, a called program can, in
rn, call another program. In Figure 15
,r instance, program A calls program B;
'ogram B calls program C. Therefore:

. A is considered a calling program by

~ . B is considered a called program by A

B

I. B is considered a calling program by C

~ . C is considered a called program by B

A B C
i i i

ICalling ICalled I Called
I program Iprogram I program
lof B I lof A I lof B
I 1->1 1-->1
1 1 ICalling I I
1 I Iprogram 1 1
I I lof C I I

I

i.gure 15. Calling and Called Programs

By convention, a called program may call
J an entry point in any other program,
~cept one on a higher level ~n the "path"
E that program. That is, A may call to an
ntry point in B or C, and B may call C;
owever, C should not call A or B.
nstead, C transfers control only to B by
ssuing the EXIT PROGRAM or GOBACK
tatements in COBOL (or its equivalent in
nother language). B then retu~ns to A.

CALLING AND CALLED PROGRAMS

Compiler-generated switches, e.g., ON
and ALTER, are not reinitialized upon each
entrance to the called program, that is,
the program is in its last executed state.

!Qig: It is necessary for an American
National Standard COBOL program to know
whether it is the main or the called
program. For this reason, any non-American
National Standard COBOL program calling an
American National Standard program must
first call the subroutine ILBDSETO. The
function of this subroutine is to set a
switch to XtFFf in subroutine ILBDMNSO,
which is the indication to the COBOL
program that it is a called program.
Standard linkage conventions should be
observed when calling ILBDSETO; there are
no parameters to be passed.

LINKAGE

Whenever a program calls another
program, linkage must be established
between the two. The calling program must
state the entry point of the called program
and must specify any arguments to be
passed. The called program must have an
entry point and must be able to accept the
arguments. Further, the called program
must establish the linkage for the return
of control to the calling program.

LINKAGE IN A CALLING PROGRAM

A calling COBOL program must contain the
following statement at the point where
another program is to be called:

j

ICALL literal-1 [USIN.§. identifier-l
1 [identifier-2] •••]

literal-1
is the name specified as the
program-name in the PROGRAM-ID
paragraph of the called program, or
the name of the entry point in the
called program. When the called
program is to be entered at the
beginning of the Procedure Division,
literal-1 is the name of the program
being called. When the called program
is to be entered at some point other
than the beginning of the Procedure

Calling and Called Programs 75

Division,· literal-1 should not be the
same as the name specified in the
PROGRAM-ID paragraph of the called
program. Since the program-name in
the PROGRAM-ID paragraph produces an
external reference defining an entry
point, this entry point name would not
be uniquely defined as an external
reference.

If the first character of PROGRAM-ID
is numeric, the correspondence
algorithm is as follows:

o becomes J
1-9 become A-I

Since the system does not include the
hyphen as an allowable character, the
hyphen is converted to zero if it
appears as the second through eighth
character of the name.

identifier-1 [identifier-2] •••
are the arguments being passed to the
called program. Each identifier
represents a data item defined in the
File, Working-Storage, or Linkage
Section of the calling program and
should contain a level number 01 or
77. When passing identifiers from the
File Section, the file should be open
before the CALL statement is executed.
If the called program is an assembler
language program, the arguments may
represent file-names and procedure
names in addition to data-names. If
no arguments are to be passed, the
USING option is omitted.

LINKAGE IN A CALLED PROGRAM

A called COBOL program must contain two
sets of statements:

1. One of the following statements must
appear at the point where the program
is entered.

76

If the called program is entered at
the first instruction in the Procedure
Division and arguments are passed by
the calling program:

I
IPROCEDURE DIVISION [USING
I identifier-1 [identifier-2] •••].
I

If the entry point of the called
program is not the first statement of
the Procedure Division:

ENTRY literal-1 [USING identifier-1
[identifier-2] •••] L---____________________________________ ~

literal-1
is the name of the entry point in
the called program. It is the
same name that appears in the
CALL statement of the program
that calls this program.

literal-1 must not be the name of
any other entry point or
program-name in the run unit.

identifier-1 [identifier-2] •••]
are the data items representing
parameters. They correspond to
the.arguments of the CALL
statement of the calling program.
Each data item in this parameter
list must be defined in the
Linkage Section of the called
program and must contain a level
number of 01 or 77.

2. Either of the following statements
must be inserted where control is to
be returned to the calling program:

I EXIT PROGRAM.
~------------------------.----------~
I GOBACK.

Both the EXIT PROGRAM and GOBACK
statements cause the restoration of
the necessary registers, and return
control to the point in the calling
program immediately following the
calling sequence. .

ENTRY POINTS

Each time an entry point is specified in
a called program, an external-name is
defined. An external-name is a name that
can be referenced by another program that
has been separately compiled or assembled.
Each time an entry name is specified in a
calling program, an external reference·is
defined. An external reference is a symbol
that is defined as an external-name in
another separately compiled or assembled
program. The Linkage Editor resolves
external-names and external references, and
combines calling and called programs into a
format suitable for execution together,
i.e., as a single phase.

te: Several different entry points may
defined in one COBOL source module.

fferent CALL statements in any module of
e phase may specify the same entry point,
t each definition of an entry point must

unique in the same phase.

RRESPONDENCE OF ARGUMENTS AND PARAMETERS

The number of identifiers in the
gument list of the calling program should
the same as the number of identifiers in

e parameter list of the called program.
the number of identifiers in the

:gument list of the calling program is
:eater than the number of identifiers in
Ie parameter list of the called program,
Ily those specified in the parameter list
: the called program may be referred to by
Le called program. There is a one-for-one
.rrespondence. The correspondence is
)sitional and not by name. An identifier
lst not appear more than once in the same
iING clause.

Only the address of an argument is
lssed. Consequently, both the identifier
lat is an argument and the identifier that
~ the corresponding parameter refer to the
ime location in storage. The pair of
ientifiers need not be identical, but the
~ta descriptions must be equivalent. For
cample, if an argument is a level-77
~ta-name representing a 30-character
tring, its corresponding parameter could
Lso be a level-77 data-name representing a
~aracter string of length 30, or the
~rameter could be a level-01 data item
ith subordinate items representing
haracter strings whose combined length is
D.

Although all parameters in the ENTRY
tatement must be described with level
umbers 01 or 77, there is no such
estriction made for arguments in the CALL
tatement. An argument may be a qualified
ame or a subscripted name. When a group
tem with a level number other than 01 is
pecified as an argument, proper boundary
ord alignment is required if subordinate
tems are described as COMPUTATIONAL,
OMPUTATIONAL-1, or COMPUTATIONAL-2. If
he argument corresponds to an 01-level
arameter, doubleword alignment is
equired.

INK EDITING WITHOUT OVERLAY

Assume that a COBOL main program
:COBMAIN), at one or more points in its
. ogic executes CALL statements to COBOL
.rograms SUEPRGA, SUBPRGB, SUBPRGC, and

SUBPRGD. Also assume that the module sizes
for the main program and subprograms are:

Rroqra!!!,.
COBMAIN
SUBPRGA
SUBPRGB
SUBPRGC
SUBPRGD

Module Size
(in bytes)

20,000
4,000
5,000
6,000
3,000

Through the linkage mechanism, all
called programs plus COBMAIN must be link
edited together to form one module of
38,000 bytes. Therefore, COBMAIN would
require 38,000 bytes of storage in order to
be executed. No overlay structure need be
specified at link edit time if 38,000 bytes
of virtual storage are available.

The following is an example of the job
control statements needed to link edit
these calling and called programs without
specifying an overlay structure. The
source decks for COBMAIN and SUBPRGA are
included in the job deck, whereas SUBPRGB,
SUBPRGC, and SUBPRGD are in the relocatable
library.

II JOB NOVERLAY
II OPTION LINK,LIST,DUMP

ACTION MAP
PHASE EXAMP1, *
INCLUDE

{object module COBMAIN}
1*

INCLUDE SUBPRGB
INCLUDE SUBPRGC
INCLUDE SUBPRGD
INCLUDE

{object module SUBPRGA]
1*

ENTRY
II EXEC LNKEDT
II EXEC

{data for program]
1*
1&

Figure 16 is an example of the data flow
logic of this call structure where all the
programs fit into virtual storage •

Calling and Called Programs 77

Execute
LNKEDT

Linkage
Editor

~- - -}Storage

Layout

Figure 16. Example of Data Flo, Logic in a
Call structure

Note: For the example given, it is assumed
that SYSLNK is a standard assignment. The
flow diagram illustrates how the various
program segments are link edited into
storage in a sequential arrangement.

ASSEMBLER LANGUAGE SUBPROGRAMS

A main program written in COBOL can call
programs written in other languages that
use the same linkage conventions. Whenever
a COBOL program calls an assembler language
program, certain conventions and techniques
must be used.

There are three basic ways to use
assembler-written called programs with a
main program written in COBOL:

1. A COBOL main program or called program
calling an assembler-writtem program.

2. An assembler-written program calling a
COBOL program.

3. An assembler-written program calling
another assembler-written program.

18

From these combinations, more
complicated structures can be formed.

In a COBOL program, the expansions of
the CALL and GOBACK or EXIT PROGRAM
statements provide the save and return
coding that is necessary to establish
linkage between the calling and called
programs in accordance with the linkage
conventions of the system. Assembler
language programs must be prepared in
accordance with the same linkage
conventions. These conventions include:

1. Using the proper registers to
establish linkage.

2. Reserving, in the calling program, a
storage area for items contained in
the argument list. This storage area
can be referenced by the called
program.

3. Reserving, in the calling program, a
save area in which the contents of the
registers can be saved.

REGISTER USE

The Disk Operating System has assigned
functions to certain registers used in
linkages. Table 1 shows the conventions
for using general registers as linkage
registers. The calling program must load
the address of the return point into
register 14, and it must load the address
of the entry point of the called program
into register 15.

Table 1. Conventional Use of Linkage
Registers

i i

IReg.IReg.
INo. IName
I I I
I 1 IArgumentl
I Ilist I
, I register I
I I I
113 I Save I
I larea I
, I register I
'I ,
'I ,
" ,
I' I
114 ,Return (
I , register 1
'I 1
I 1 ,
'I ,
'I ,
115 'Entry I
1 'point I
1 1 register I

Function

Address of the argument I
list passed to the called I
program. I ,
Address of the area re- ,
served by the calling pro-,
gram in which the contents I
of certain registers are ,
stored by the called ,
program. 1 ,

inl , Address of the location
the calling program to
which control is returned
after execution of the
called program.

,
1 ,
1

Address of the entry pointl
in the called program. I

I

rE AREA

A calling assembler language program
it reserve a save area of 18 words,
Jinning on a fullword boundary, to be
~d by the called program for saving
Jisters; it must load the address of this
~a into register 13. Table 8 shows the
~out of the save area and the contents of
:h word.

A called COBOL program does not save
Dating-point registers. The programmer
responsible for saving and restoring the

ntents of these registers in the calling
ogram.

hIe 8. Save Area Layout and Word
Contents

--,
REA This word is a part of the
(word 1) standard linkage convention

established under the DOS/VS
System. The word must be
reserved for proper
addressing of the subsequent
entries. However, an
assembler subprogram may use
the word for any desired
purpose ..

I
• REA+4 IThe address of the previous
(word 2) Isave area, that is, the save

larea of the subprogram that
Icalled this one.
I

~REA+8 IThe address of the next save
(word 3) I area, that is, the save area

lof the subprogram to which
Ithis subprogram refers.
I

~REA+12 IThe contents of register 14,
(word 4) Ithat is, the return address.

I
~REA+16 IThe contents of register 15,

(word 15) Ithat is, the entry address.
I

~REA+20 IThe contents of register o.
(word 6) I

I
AREA+24 IThe contents of register 1.

(word 7) I
I
I
I
I

AREA+68 IThe contents of register 12.
(word 18) I

I

ARGUMENT LIST

The argument list is a group of
contiguous fullwords, beginning on a
fullword boundary, each of which is an
address of a data item to be passed to the
called program. If the program is to pass
arguments, an argument list must be
prepared and its address loaded into
register 1. The high-order bit of the last
argument, by convention, is set to 1 to
indicate the end of the list.

Any assembler-written program must be
coded with a detailed knowledge of the data
formats of the arguments being passed.
Most coding errors occur because of the
data format discrepancies of the arguments.

If one programmer writes both the
calling program and the called program, the
data format of the arguments should not
present a problem when passed as
parameters. However, when the programs are
written by different programmers, the data
format specifications for the arguments
must be clearly defined for the programmer.

The linkage conventions used by an
assembler program that calls another
program are illustrated in Figure 16. The
linkage should include:

1. The calling sequence •

2. The save and return routines.

3. The out-of-line parameter list. (An
in-line parameter list may be used.)

4. A save area on a fullword boundary.

FILE-NAME AND PROCEDURE-NAME ARGUMENTS

A calling COBOL program that calls an
assembler-language program can pass
file-names and procedure-names, in addition
to data-names, as identifiers. In the
actual identifier-list that the compiler
generates, the procedure-name is passed as
the address of the procedure. For a file,
the address of the DTF is passed, and the
user must ensure that the file is already
open. A VSAM file-name may not be passed.

Care must be taken when using these
options. The user must be thoroughly
familiar with the generated coding for each
option and statement, as well as the
structure of the object program.

Calling and Called Programs 79

deckname START 0

*
* ENTRY name1

EXTRN name2
USING name'1, 15

* SAVE ROUTINE
name 1 STH 14,r1,12(13)

*
*
*

*
*
*
*
*
*
*
*

LR r3,15
DROP 15
USING name1,r3
LR r2,13

LA 13,AREA

ST 13,8 (r~)

INITIATES PROGRAM ASSEMBLAGE AT FIRST
AVAILABLE LOCATION. ENTRY POINT TO THE
PROGRAM.

THE CONTENTS OF REGISTERS 14, 15, AND
o THROUGH r1 ARE STORED IN THE SAVE
AREA OF THE CALLING PROGRAM (PREVIOUS
SAVE AREA) • r 1 IS ANY NUMBER FROM 0 THROUGH 12.

WHERE r3 AND r2 HAV~ BEEN SAVED
LOADS REGISTER 13, WHICH POINTS TO THE
SAVE AREA OF THE CALLING PROGRAM, INTO
ANY GENERAL REGISTER, r2' EXCEPT 0 AND 13.
LOADS THE ADDRESS OF THIS PROGRAM'S
SAVE AREA INTO REGISTER 13.
STORES THE ADDRESS OF THIS PROGRAM'S SAVE
AREA INTO WORD 3 OF THE SAVE AREA OF THE
CALLING PROGRAM.
STORES THE ADDRESS OF THE PREVIOUS SAVE
AREA (I.E., THE SAME AREA OF THE CALLING
PROGRAM) INTO WORD 2 OF THIS PROGRAM'S
SAVE AREA.

AREA

* prob 1

RESERVES 18 WORDS FOR THE SAVE AREA
THIS IS LAST STATEMENT OF SAVE ROUTINE.

{User-written program statements}

BC
DS

15,prob1
18F

L 15,VCON INDICATE COBOL PROGRAM IS
BALR 14,15 A SUBPROGRAM

* CALLING SEQUENCE
LA 1,ARGLST
L 15,ADCON
BALR 14,15

*
{Remainder of user-written program statements}

RETURN ROUTINE
L 13,4 (13)

*
*
*
*
*
*

LM

L

MVI

BCR
VCON DC
ADCON DC
* PARAMETER
ARGLST DC

DC

DC
DC

2,r 1,28(13)

14,12(13)

12 (13) , X' FF '

15,14
V (ILBDSETO)
A (name 2)

LIST
AL4(arg 1)
AL4 (arg 2)

X'80'
AL3 (argn)

LOADS THE ADDRESS OF THE PREVIOUS SAVE
AREA BACK INTO REGISTER 13.
THE CONTENTS OF REGISTER 2 THROUGH r1 ARE
RESTORED FROM THE PREVIOUS SAVE AREA.
LOADS THE RETURN ADDRESS, WHICH IS IN
WORD 4 OF THE CALLING PROGRAM'S SAVE AREA,
INTO REGISTER 14.
SETS FLAG FF IN THE SAVE AREA OF THE
CALLING PROGRAM TO INDICATE THAT CONTROL
HAS RETURNED TO THE CALLING PROGRAM.
LAST STATEMENT IN RETURN ROUTINE

CONTAINS THE ADDRESS OF SUBPROGRAM

FIRST STATEMENT IN PARAMETER AREA SETUP

FIRST BYTE OF LAST ARGUMENT SETS BIT 0 TO 1
LAST STATEMENT IN PARAMETER AREA SETUP L ___ , ____________ ~

Figure 17. Sample Linkage Routines Used with a Calling Subprogram

80

ADCON DC A (prob 1)

LA 14,RETURN
L 15,ADCON
CNOP 2,4
BALR 1,15
DC AL4 (arg 1)

DC AL4 (arg 2)

DC X'80'
DC AL3 (argn)

RETURN EQU *
gure 18. Sample In-line Parameter List

-Line Parameter List

The assembler programmer may establish
in-line parameter list instead of an

t-of-line list. In this case, he may
bstitute the calling sequence and
,rameter list illustrated in Figure 18 for
,at shown in Figure 17.

IWEST LEVEL PROGRAM

If an assembler called program does not
Lll any other program (i.e., if it is at
le lowest level), the programmer should
lit the save routine, calling sequence,
ld parameter list shown in Figure 17. If
le assembler called program uses any
~gisters, it must save them. Figure 19
Llustrates the appropriate linkage
)nventions used by an assembler program at
le lowest level.

deckname START
ENTRY

USING
name STH

o
name

*,15
1 4 , r .1 , 1 2 (13)

User-written program statements

LM 2,r1'28 (13)
MVI 12(13),X'PP'
BCR 15,14

I~:
lin the
Ishould
I called

If registers 13 and/or 14 are usedl
called subprogram, their contents I
be saved and restored by the I
subprogram. I

Figure 19. Sample Linkage Routines Used
with a Lowest Level Subprogram

OVERLAYS

I

If a program is too large to be contained
in the number of bytes available in virtual
storage, it can still be executed by means
of an overlay structure. An overlay
structure permits the re-use of storage
locations previously occupied by another
program. In order to use an overlay
structure, the programmer must plan the
program so that one or more called programs
need not be in storage at the same time as
the rest of the program phase. The
programmer should reassess, when moving to
VSE, whether programs that used to require
an overlay structure still do. ,Programs
with an overlay structure must be compiled
with the LANGLVL(1) option of the CBL
statement.

See IIUsing the Segmentation Feature ll for
information on the overlay structure.

SPECIAL CONSIDERATIONS WHEN USING OVERLAY
STRUCTURES

There are three areas of special concern
to the programmer who decides to use the
overlay feature. These problems concern
the use of the assembler language
subroutine, proper link editing, and job
control statements.

Calling and Called Programs 81

I

ASSEMBLER LANGUAGE SUBROUTINE FOR
ACCOMPLISHING OVERLAY

The CALL statement is used for "direct"
linkage; that is, the assistance of the
Supervisor is not required (as it is when
loading or fetching a phase). There are no
COBOL statements that will generate the
equivalent of the LOAD or FETCH assembler
macro instructions. For this reason, one
must call an assembler program to effect an
overlay of a COBOL program. This routine
must be link edited as part of either a
root phase or permanently resident phase.

2. It can be used for assembler overlays
if the programmer has a desired entry
point in his END card and the first
statement at that entry point is 'STH
14,12,12(13) '.

3. This subroutine can be used for a
COBOL program which contains an ENTRY
statement immediately following the
Procedure Division header. It will
not work with a COBOL subprogram
compiled with a Procedure Division
USING statement or for entry points in
a COBOL subprogram which appear
anywhere other than as the first
instruction of the Procedure Division.
A suggested technique for diverse
entry points is a table look-up using
V-type constants.

The sample oVerlay subroutine shown in
Figure 20 is governed by the following
restrictions:

1. The example is a suggested technique,
and is not the only technique.

r
STMNT SOURCE STATEMENT

0001 OVERLAY START 0
0002 ENTRY OVRLAY
0003 * AT ENTRY TIME
0004 * R1=POINTER TO ADCON LIST OF USING ARGUMENTS
0005 * FIRST ARGUMENT IS PHASE OR SUBROUTINE NAME
0006 * MUST BE 8 BYTES
0007 * R13=ADDRESS OF SAVE AREA
0008 * R14=RETURN POINT OF CALLING PROGRAM
0009 * R15=ENTRY POINT OF OVERLAY PROGRAM
0010 * AT EXIT
0011 * R1=POINTER TO SECOND ARGUMENT OF ADCON LIST
0012 * OF USING ARGUMENTS
0013 * R14=RETURN POINT OF CALLING PROGRAM--NOT THIS PROG
0014 * R15=ENTRY POINT OF PHASE OR SUBPROGRAM,
0015 * 0016 USING *,15
0017 OVRLAY STM 0,1,SAVE SAVE WORK REGS
0018 L 1,0(1) POINT R1 TO PHASE NAME
0019 CLC CORSUB,O (1) IN CORE?
0020 BE SUBIN YES,BR
0021 MVC CORSUB (8) ,0 (1) SET CURRENT PHASE
0022 SR 0,0
0023 SVC 4 LOAD PHASE
0024 SEARCH1 LA 1,4(1) STEP SEARCH POINT
0025 CLC 0(3,1) ,=C"COB' END OF INIT1?
0026 BNE SEARCH1 NO, LOOP
0027 S 1, =F '8' POINT TO "START" ADCON
0028· L 1,0(1) LOAD "START"
0029 LOOP LA 1,2 (1) ~NCREMENT TO ENTRY POINT
0030 CLC 0(2,1) ,=X'90EC'
0031 BNE LOOP
0032 ST 1,ASUB SAVE ENTRY ADDRESS
0033 SUBIN LM O,l,SAVE RELOAD WORK REGS
0034 LA 1,4 (1) POINT TO PARAMETERS
0035 L lS,ASUB
0036 BR' 15 BRANCH TO ENTRY POINT
00'37 CORSUB DS OCL8
OQ38 DC 8X'FF'
0039 ASUB DS F
0040 SAVE DS 2F
0041 END

Figure 20. Example of an Assembler Language Subroutine for Accomplishing Overlay

82

ote: Care should be taken with the
echnigues used in statements 0019 and
020. Only when the COBOL program is
oaded are altered GO TO statements
·einitialized. A better technique would be
. 0 load the called programs each time they
.re reg uired •

The examples given in Figures 20, 21, and
~2 require that all overlay modules be linked
:ogether. To permit linkage to and return
:rom modules, compiled and link edited
;eparately, the following changes to
~igure 20 are necessary:

~eplace lines 25 through 28

CLC COBCON, 20 (1) END OF INIT?
BNE SEARCH1 NO, LOOP
LR 0,1 SAVE ADDR ADCON INIT1
L 1,0(1) GET INIT1 ADDR
MVC NOP+3(1) ,139(1) GET DISP OF VIRT CELL
LR 1,0 RESTORE ADDR OF ADCON INIT1
L 1,4(1) GET ADDR OF PGT

IP L 1,0 (1) LOAD ADDR OF ILBDMNSO
MVI O(l),X'FF' SET 'CALLED PROGR' FLAG
LR 1,0 RESTORE ADDR OF ADCON INITl
L 1,12 (1) LOAD 'START' ADDRESS

Insert after line 38

COBCON DC CL3'COB '

LINK EDITING WITH OVERLAY

In a linkage editor job step, the
programmer specifies the overlay points in
a program by using PHASE statements. In
the Working-Storage Section, a level-01 or
level-77 constant must be created for each
phase to be called at execution time.
These constants have a PICTURE of X(8) and
a VALUE clause containing the same name as
that appearing on the PHASE card for that
segment in the link edit run.

In addition, each argument to be passed
to the called program must have an entry in
the Linkage Section. Remember, also, that
the ENTRY statement should nQi refer to the
program-name. (Use of the program-name
will result in incorrect execution.)

When more than one subprogram in the
overlay structure requires the same COBOL
subroutine, the II EXEC LNKEDT statement
must be preceded by INCLUDE cards for each
of these subroutines. The names of these
subroutines can be determined by reguesting
LISTX at compile time.

When preparing the control cards for the
Linkage Editor, the programmer should be
certain to include the assembler language
subroutine with the main (root) phase.

Also, to achieve maximum overlay, the phase
names for the called programs should be
different from the names of the called
programs-specified in the PROGRAM-ID
paragraphs •

Figure 21 is a flow diagram of the
overlay logic. The PHASE cards indicate
the beginning address of each phase. The
phases OVERLAIC and OVERLAID will have the
same beginning address as OVERLAYB. The
sequence of events is:

1. The main program calls the overlay
routine.

2. The overlay routine fetches the
particular COBOL subprogram and places
it in the overlay area.

3. The overlay routine transfers control
to the first instruction of the called
program.

4. The called program returns to the
COBOL calling program (not to the
assembler language overlay routine).

If OVERLAYB were known to be in storage,
the CALL statement would be:

I

CALL "OVERLAYB" USING PARAM-1, PARAM-2. I

But when using the assembler language
overlay routine (OVRLAY), it becomes:

CALL "OVRLAY" USING PROCESS-LABEL,
PARM-1, PARM-2.

where PROCESS-LABEL contains the
external-name OVERLAYB of the called
program.

,

However, the ENTRY statement of the
called program is the same for both cases,
i.e., ENTRY "OVERLAYB" USING PARAM-1,
PARAM-2, whether it is called indirectly by
the main program through the overlay
program or called directly by the main
program.

Note: An ENTRY which is to be called by
OVRLAY must precede the first executable
statement in the called program.

Calling and Called Programs 83

COBOL
Main or Root

Overlay Routine

Overlay Area

Figure 21. Flow Diagram of Overlay Logic

// JOB OVERLAYS
// OPTION LINK

PHASE OVERLAY,ROOT
// EXEC FCOBOL

{COBOL Source for Main Program MAINLINE}
/*
// EXEC ASSEMBLY

JOB CONTROL FOR ACCOMPLISHING OVERLAY

The job control statements required to
accomplish the overlay illustrated in
Figure 21 are shown in Figure 22. The
PHASE statements specify to the Linkage
Editor that the overlay structure to be
established is one in which the called
programs OVERLAYB, OVERLAYC, and OVERLAYD
overlay each other when called during
execution.

Note: The phase name specified in the
PHASE card must be the same as the value
contained in the first argument for CALL
"OVRLAY", i.e., PROCESS-LABEL, COMPUTE-TAX,
etc., contain OVERLAYB, OVERLAYC,
respectively, which are the names given in
the PHASE card.

It is the programmer's responsibility to
write the entire overlay, i.e., the COBOL
main (or calling) program and an assembler
language subroutine (for which a sample
program is given in this chapter) that
fetches and overlays the called programs.
A calling sequence to obtain an overlay
structure between three COBOL subprograms
is illustrated in Figure 23.

[Source deck for Assembler Language Routine OVERLAY)
/*

PHASE OVERLAYB,*
// EXEC FCOBOL

{COBOL Source for Called Program OVERLAYB}
/*

PHASE OVERLAYC,OVERLAYB
// EXEC FCOBOL

{COBOL Source for Called Program OVERLAYC}
/*

PHASE OVERLAYD,OVERLAYC
// EXEC FCOBOL

{COBOL Source for Called Program OVERLAYD}
/*
// EXEC LNKEDT
// EXEC
/*
/&

Figure 22. Job Control for Accomplishing Overlay

84

COBOL Program Maill-lRoot or Main ProgramL

IDENTIFICATION DIVISION.
PROGRAM-ID. MAINLINE.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.
71 PROCESS-LABEL PICTURE IS X(8) VALUE IS "OVERLAYB".
77 PARAM-1 PICTURE IS X.
11 PARAM-2 PICTURE IS XX.
17 COMPUTE-TAX PICTURE IS X(8) VALUE IS "OVERLAYC".

01 NAMET.
02 EMPLY-NUMB PICTURE IS 9(5).
02 SALARY PICTURE IS 9(4)V99.
02 RATE PICTURE IS 9(3)V99.
02 HOURS-REG PICTURE IS 9(3)V99.
02 HOURS-OT PICTURE IS 9(2)V99.

01 COMPUTE-SALARY PICTURE IS X(8) VALUE IS "OVERLAYD".
01 NAMES.

02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.

CALL "OVRLAY" USING PROCESS-LABEL, PARAM-1, PARAM-2.

CALL "OVRLAY" USING COMPUTE-TAX, NAMET.

CALL "OVRLAY" USING COMPUTE-SALARY, NAMES.
I •

I •
I •

~igure 23. Calling Seguence to Obtain Overlay Between Three COBOL Subprograms (Part 1 of
3)

Calling and Called Programs 85

COBOL Subprogram B

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAY1.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 PARAM-10 PICTURE X.
01 PARAM-20 PICTURE XX.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVERLAYB" USING PARAM-10, PARAM-20.

GOBACK.

COBOL Subprogram C

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAY2.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 NAMEX.
02 EMPLY-NUMBX PICTURE IS 9(5).
02 ,SALARYX PICTURE IS 9 (4) V99.
02 RATEX PICTURE IS 9(3)V99.
02 HOURS-REGX PICTURE IS 9(3)V99.
02 HOURS-OTX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVERLAYC" USING NAKEX.

GOBACK.

Figure 23. Calling Sequence to Obtain Overlay Between Three COBOL Subprograms
(Part 2 of 3)

86

COBOL Subprogram D

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAY3.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION
01 NAMES.

02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVERLAYD" USING NAMES.

GOBACK.

~igure 23. Calling Sequence to Obtain Overlay Between Three COBOL Subprograms
(Part 3 of 3)

Calling and Called Programs 87

Although Release 3 of the DOS/VS COBOL
)mpiler accepts a source program containing
~gmentation specifications, it does not
~oduce an actual overlay structure unless
\NGLVL(1) is specified. Using LANGLVL(2) ,
t combines all segments into one single
Jject program in segment order, and allows
1e paging of the VS operating system to
=rform any overlay. The absence of actual
)BOL-performed overlay is usually not a
roblem in the DOS/VSE environment, because
~equate main storage is available for even
he largest programs.

The LANGLVL compile option chosen by the
ser affects the degree and manner of
einitialization COBOL performs on
ndependent segments because there is a
ifference between the 1968 and 1974
merican National Standard (ANS) definitions.
or further details, consult the language
anual, IBM VS COBOL for DOS/VSE.

,ANGLVL OPTION AND REINITIALIZATION

Because there is a difference between
:he 1968 and 1974 ANS definitions, the
~ANGLVL compile option chosen by the user
tffects the degree and manner of
~einitialization COBOL will perform on
Lndependent segments. For further details,
~onsult the language manual, IBM VS COBOL
Eor DOS/VSE.

COBOL segmentation permits the user to
5ubdivide logically and physically the
~rocedure Division of a COBOL object
program. All source sections which contain
the same segment-number in their section
headers will be considered at object time
to be one segment. Since segment-numbers
can range from 00 through 99, it is
possible to subdivide any object program
into a maximum of 100 segments.

Program segments may be of three types:
fixed permanent, fixed overlayable, and
independent as determined by the
programmer's assignment of segment numbers.

USING THE SEGMENTATION FEATURE

Segmentation of a program would be used
when virtual storage is limited. In a real
storage system, the following would apply:

1. Fixed segments are always in real
storage during the execution of the
entire program, that is, they cannot
be overlayed except when the system
itself is executing another program,
in which case fixed segments may be
"rolled out."

2. Fixed overlayable segments may be
overlayed during program execution,
but any such overlaying is transparent
to the user, that is, they are
logically identical to fixed segments,
but physically different from them.

3. Independent segments may be overlayed,
but such overlaying will result in the
initialization of that segment.
Therefore, independent segments are
logically different from fixed
permanent/fixed overlayable segments,
and physically different from fixed
segments.

In a virtual storage system, all
logically "fixed" segments, that is, fixed
permanent and fixed overlayable, are
treated the same. They are both "paged in
and out" as required for execution.

In the same manner, independent segments
are paged in and out; when they are paged
in, however, they are brought back in the
initial state.

In DOS/VS COBOL, segments that are
overlayed are not actually "paged out".
All the variable data items associated with
the segment are contained in one segment,
which is considered the root ~egment. When
a segment is "paged in", all the fields
which must be reinitialized are contained
in the root segment. Thus no fields in
other than the root segment are modified.

The program SAVECORE could be segmented
as illustrated in Figure 24.

Using the Segmentation Feature 89

I

IIDENTIFICATION DIVISION.
I
IPROGRAM-ID. SAVECORE.
I •
t· •
IENVIRONMENT DIVISION.
I
I OBJECT-COMPUTER. IBM-370.
I SEGMENT-LIMIT IS 15.
I .
I .

DATA DIVISION.

PROCEDURE DIVISION.
SECTION-1 SECTION 8.

SECTION-2 SECTION 8.

SECTION-3 SECTION 16.

SECTION-4 SECTION 8.

SECTION-5 SECTION 50.

SECTION-6 SECTION 16.

SECTION-7 SECTION 50.

Figure 24. Segmenting the Program SAVECORE

Assuming that 12K of virtual storage is
available for the program SAVECORE, Figure
25 shows the manner in which storage would
be utilized. It is apparent from the
illustration that SECTION-3, SECTION-6, and
SECTION-7 cannot be in storage at the same
time, nor can SECTION-3, SECTION-5 and
SECTION-7 be in storage simultaneously.

sections in the permanent segment
(SECTION-1, SECTION-2, and SECTION-4) are
those which must be available for reference
at all times, or which are referenced
frequently. They are distinguished here by
the fact tnat they have been assig~ed
priority numbers less than the segment
limit.

Sections in the overlayable fixed
segment are sections which are less
frequently used. They are always made
available in the state they were in when
last used. They are distinguishable here
by the fact that they have been assigned
priority numbers greater than the segment
limit but less than 49.

Sections in the independent segment can
overlay, and be overlaid by, either an
overlayable fixed segment or another
independent segment. Independent segments

90

are those assigned priority numbers greater
than 49 and less than 100, and they are
always given contrql in their initial
state.

OPERATION

Execution of the object program begins
in the root segment. The first segment in
the permanent segment is considered the
root segment. If the program does not
contain a permanent segment, the compiler
generates a dummy segment which will
initiate the execution of the first
overlayable or independent segment. All
global tables, literals, and data areas are
part of the root segment. Called object
time subroutines are also part of the root
segment. When CALL statements appear in a
segmented program, subprograms are loaded
with the fixed portion of the main program
as if they had a priority of zero.

Segmented programs must not be called by
another program (segmented or not
seqmented). If a segmented program calls a
subprogram, the CALL statement may appear
in any segment. However, the object module
associated with the subprogram must be
included in the root segment prior to the
execut~on of the main program. This can be
accomp]ished in either of two ways as
follows:

1. Produce object decks for both programs
and place the one for the subprogram
in the root segment:

PHASE,ROOT
ESD card for the root segment

{object deck for the main program)

{object deck for the subprogram)

followed by a II EXEC LNKEDT and a~
EXEC.

2. Catalog the object module for the
subprogram in the relocatable library
prior to link editing the main
program. Insert an INCLUDE card for
the subprogram and an ENTRY card for
the root ohase into the linkage editor
control cards for the root phase of
the main program. The ENTRY card will
cause the linkage editor to pass
control to the main program at
execution time. The Linkage Editor
will search the relocatable library
for the subprogram and include it with
the root phase.

fixed portion
(12K)

5K

data-buffers, global
table, etc., (1K)

SECTION-1 (2K)

SECTION-2 (2K)

SECTION-4 (2K)

SECTION-3 (3K)

permanent segment
(segment limit < 15)

SECTION-5 (2K)

SECTION-6 (2K) SECTION -7 (1K)

---------.....- -------- -------........""..- ---
SECTION-3 and SECTION-6 SECTION-5 and SECTION-7 are

independent segments are overlayable fixed segments
(14 < segment limit < 50) (49 < segment limit < 100)

Lgure 25. Storage Layout for SAVECORE

GTPUT FROM A SEGMENTED PROGRAM

DMPILER OUTPUT

The output produced by the compiler is
n overlay structure consisting of multiple
bject modules preceded by linkage editor
ontrol statements. segments whose
riority is greater than the segment limit
or 49, if no SEGMENT-LIMIT clause is
pecified) consist of executable
nstructions only.

The compiler generates each segment as a
eparate object module preceded by a PHASE
ard. The names appearing on these PHASE
ards (segment-names) conform to the
ollowing naming conventions:

1. The name of the root segment is the
same as the program-name specified in
the PROGRAM-ID clause.

2. The name of each overlayable and
independent segment is a combination
of the program-name and the priority
number of the segment. These names
are formed according to the following
rules:

a. If the program-name is 6, 7, or 8
characters in length, the
segment-name consists of the first
6 characters of program-name plus
the 2-character priority number.

b. If the program-name is less than 6
characters in length, the priority
number is appended after the
program-name.

c. Since the system expects the first
character of PROGRAM-ID to be
alphabetic, the first character,
if numeric, is converted as
follows:

o -> J
1-9 -> A-I

The hyphen is converted to zero if
it appears as the second through
eighth character.

d. When DECK is specified, the
punched object deck is sequenced
according to segments. Columns
73-74 contain the first two
characters of the program-id,
columns 75-76 contain the priority
number of the segment, and columns
77-80 contain the sequence number

Using the Segmentation Feature 91

of the card. The priority of the
root segment is punched as 00.

e. When the compiler option CATALR is
in effect, the PHASE card for each
segment is preceded by a CATALR
card with the same name. This
will enable direct cataloging of
the compiler-produced object
module into the relocatable
library from which a load module
may be link edited into the
core-image library.

Note: Single-digit priority numbers
are preceded by a zero.

Warning: In order to avoid duplicate
names, the programmer must be aware of the
above naming conventions. If the last two
characters of an 8-character PROGRAM-iO are
numeric, these same two characters may not
appear in the source program as a segment
number.

Figure 26 is an illustration of the
compiler output for the skeleton program
shown in Figure 24.

PRASE SAVECORE,ROOT

{object module for the root segment
(sections with priority-numbers less
than the segment limit) including any
programs called by SAVECORE}

,PHASE SAVEC016,*

{object module for segments with a
priority of 16 (two sections)}

PHASESAVEC050,SAVEC016

{object module for segments with a
priority of 50 (two sections)}

igure 26. Compiler output for SAVECORE

LINKAGE EDITOR OUTPUT

Figure 27 is an illustration of the
input to the Linkage Editor and the phase
map produced by the Linkage Editor
resulting from the compilation and editing
of the segmented program BIGJOB. The
following text is an explanation of the
figure.

Ci) PHASE card generated by the compiler
for the root segment BIGJOB.

92

®

CD

®

AOTOLINK card for the Segmentation
subroutine.

PHASE cards generated by the compiler
for segments of priority 10, 47-50, 60,
62, and 63.

Control card generated for the Sort
Feature. This card is explained in
"Sort in a Segmented Program."

Location of the entry point CURSEGM.
Item 5 is explained in "Determining the
Priority of the Last Segment Loaded
into the Transient Area."

Load address of phase BIGJOBOO. Item 6
is explained in "Sort in a Segmented
Program."

Note: If the CATALR option of the CBL card
is specified, the compiler generates CATALR
cards in front of PHASE cards.

Cataloging a segmented Progra~

When the CATAL option is used to catalog
a segmented program, the following points
should be observed:

1. To avoid duplicate names, the
programmer must be aware of the naming
conventions used by the compiler (see
"Compiler Output") because a
segment-name may be the sam~ as a
phase-name already existing in the
core image library.

2. Since the PHASE card is generated by
the compiler, the programmer must not
specify a PHASE card for· the program.

To invoke a previously cataloged
segmented program, the programmer must use
the following control statement:

, // EXEC name

where ~ is the program-name specified in
the PROGRAM-IO clause.

Oetermining the Priority of the Last
Segment Loaded into the Transient Area

If a segmented program is abnormally
terminated during execution, and the SYMOMP
option has been specified, the CURRENT
PRIORITY cell in the Task Global Table
contains the priority of the last segment
loaded into the transient area. If SYMDMP
has not been specified, the priority of
this segment can be determined as follows:

I.

In the map of vi~tual storage
generated by the Linkage Editor, under
the column LABEL, look for the name
'CURSEGM' (see item 5 in Figure 27).

Associated with this label, in the
column LOADED, is an address.

At this location is stored the
priority (one byte) of the segment
current in the transient area. If
this byte is X'OO', no segment has
been loaded into the transient area.
This indicates that the error causing
the dump occurred in the root segment.

)RT IN A SEGMENTED PROGRAM

If a segmented program contains a SORT
:atement, the sort program will be loaded
love the largest overlayable or
ldependent segment as shown in Figure 28.

The compiler. accomplishes this by
:oviding the following control statement
t the end of the overlay structure:

PHASE BIGJOBOO,transient area + L

lis card is illustrated in Figure 27, item
The ~alue of "L" in the figure is

t002F2' which is the length of the longest
~gment, BIGJOB47, rounded to the next
tlfword boundary. Note that Linkage
litor relocates the phase BIGJOBOO to the
~xt doubleword boundary (see Figure 27,
tem 6).

sing the PERFORM Statement in a Sp~mented
rogram

When the PERFORM statement is used in a
~gmented program, the programmer should be
~are of the following:

• A PERFORM statement that appears in a
section whose priority-number is less
than the seqment limit can have within
its range only (a) sections with
priority-numbers less than 50, and (b)
sections wholly contained in a single
segment whose priority-number is
greater than 49.

Note: As an extension to American
National Standard COBOL, DOS/VS COBOL
allows sections with any
priority-number to fall within the
range of a PERFORM statement.

• A PERFORM statement that appears in a
section whose priority-number is equal
to or greater than the segment limit
can have within its range only (a)
sections with the same priority-number
as the section containing the PERFORM
statement, and (b) sections with
priority-numbers that are less than the
segment limit.

Note: As an extension to American
National Standard COBOL, DOS/VS COBOL
allows sections with any
priority-number to fall within the
range of a PERFORM statement.

• When a procedure-name in a permanent
segment (priority-number less than
segment limit) is referred to by a
PERFORM statement in an independent
segment (priority-number greater than
49), the independent segment is
reinitialized upon exit from the
PERFORM. When a PERFORM statement
in the overlay able-fixed segment
(priority-number greater than segment
limit and less than 50) refers to a
procedure-name in a permanent segment,
the overlayable-fixed segment is not
reinitialized upon exit from the
PERFORM.

Using the Segmentation Feature 93

i

IJOB BIGJ DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT
I
I
IACTION TAKEN MAP

BIGJOB,ROOT~
I
ILIST

I •
I •
I •
ILIST
LIST

LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST

I
I

ROOT

Figure

PHASE

AUTOLINK
AUTOLINK

ILBDSEMO~
ILBDSRTO

PHASE BIGJOB10,*
PHASE BIGJOB47.BIGJOB10!
PHASE BIGJOB48,BIGJOB41
PHASE BIGJOB49,BIGJOB48
PHASE BIGJOB50,BIGJOB49 ~
PHASE BIGJOB60,BIGJOB50
PHASE BIGJOB62,BIGJOB60
PHASE BIGJOB63,BIGJOB62
PHASE BIGJOBOO,BIGJOB63+xr002F2'~

PH.ASE XFR-AD LOCORE HICORE DSK-AD

BIGJOB 003000 003000 0075A3 64 04 1

BIGJOB10 0075A8 0075A8 0075E9 64 09 2
BIGJOB47 0075A8 0075A8 007899 65 00 1
BIGJOB48 0075A8 0075A8 0075DB 65 00 2
BIGJOB49 0075A8 0075A8 0075D3 65 01 1
BIGJOB50 0075A8 0075A8 0075F1 65 01 2
BIGJOB60 0075A8 0075A8 0076ED 65 02 1
BIGJOB62 0075A8 0075A8 0075D1 65 02 2
BIGJOB63 0075A8 0075A8 007621 65 03 1
BIGJOBOO 0078AO 0078AO 0018A1 65 03 2

27. Link Editing a Segmented Program

i

ESD TYPE

CSECT

CSECT
* ENTRY
CSECT

CSECT
CSECT
CSECT
CSECT
CSECT
CSECT
CSECT
CSECT
CSECT

LABEL

BIG JOB

ILBDSEMO
CURSEGM
ILBDSRTO

BIGJOB10
BIGJOB47
BIGJOB48
BIGJOB49
BIGJOB50
BIGJOB60
BIGJOB62
BIGJOB63
ILBDDUMO

LOADED REL-FR

003000 003000

006268 006268
00637D • ®
006B38 006B38

0015A8 0015A8
0075A8 0015A8
0075A8 0015A8
0075A8 0075A8
0075A8 0075A8
0075A8 0075A8
0075A8 0075A8
0075A8 0015A8

® 0078AO 0078AO

ROOT I Including COBOL subroutines and called programs

{i
I

TRANSIENT I
L AREA I Overlayable and independent segments

I I
ISORT PROGRAM I , i

L = length of the largest segment in bytes.

Figure 28. Location of Sort Program in a Segmentation structure

94

PART II

PROCESSING COBOL FILES ON MASS STORAGE DEVICES----~. ~

PROCESSING 3540 DISKETTE FILES---------------------+)

VSAM--~)

DETAILED FILE PROCESSING CAPABILITIES--------------~)

PROCESSING ASCII TAPE FILES------------------------~~

RECORD FORMATS------------------------------------~)

95

PROCESSING COBOL PILES ON MASS STORAGE DEVICES

A mass storage device is one on which
cords can be stored in such a way that
e location of anyone record can be
termined without extensive searching.
cords can be accessed directly rather
an serially.

The recording surface of a mass storage
~vice is divided into many tracks. A .
'ack is defined as a circumference of the
~cording surface. The number of tracks
~r recording surface and the capacity of a
'ack for each device are shown in Table 9.

Lble 9. Recording Capacities of Mass
storage Devices

)evice Capacity

! 311 200 tracks per surface; 3625
bytes per track.

~314 , 200 tracks per surface; 7294
D19 bytes per track.

3330 404 tracks per surface; 13030
bytes per track.

3330-11* 808 tracks per surface; 13030
bytes per track.

3340 348 tracks per surface; 8368
N.odel 35 bytes per track.

3340 696 tracks per surface, 8368
l10del 70 bytes per track.

3350 555 tracks per surface; 19069
bytes per track.

3375** 959 tracks per surface; 35616
bytes per track.

*In the COBOL ASSIGN statement, the 3330-11
is specified as 333B.

*In the COBOL ASSIGN statement, the 3375 is
specified as 3330, 3340, 3350, or 333B.

Eacn device has some type of access
echanism through which data is transferred
o and from the device. The mechanisms are
ifferent for each device, but each
echanism contains a number of read/write
eads that transfer data as the recording
urfaces rotate past them. Only one head
an transfer data (either reading or
riting) at a time.

,EVICE INDEPENDENCE

Under DOS/VSE with Advanced Function, a
iser may specify one disk device in the
~BOL program, and use that or any other

supported disk device at execution time by
specifying the appropriate ASSIGN, DLBL,
and EXTENT statements.

For non-VSN1 files, the COBOL compiler
requires a device code to be used in the
ASSIGN TO statement in the source program.
~his code does not entirely restrict the
type of device that may be used; the device
assigned at execution time may be of any
other compatible type. For example, a 3350
can be used at execution time, even though
the source program contained the device
code 3330.

FILE ORGANIZATION

Records in a file must be logically
organized so that they can be
retrieved efficiently for processing. Four
methods of organization for mass storage
devices are supported by the DOS/VS
COBOL compiler: sequential, direct,
relative, and indexed. See Table 9.1 for
a graphic description of which method of
organization is supported by which access
method.

Table 9. 1. File Organization and Access
r1ethods

VSAM SAM ISN1 DN1

Sequential X X

Direct X

Relative X
Indexed X· X

SEQUENTIAL ORGANIZATION

In a sequential file, records are
organized solely on the basis of their
successive physical location in the file.
The records are read or updated in the same
order in which they appear.

Individual records cannot be located
quickly. Records usually cannot be deleted
or added unless the entire file is
rewritten. This organization is used when
most of the records in the file are
processed each time the file is used.

DIRECT ORGANIZATION

A file with direct organization is
characterized by some predictable
relationship between the key of a record

Processing COBOL Files on Mass Storage Devices 97

and the address of that record on a mass
storage device. This relationship is
established by the programmer.

Direct organization is generally used
for files where the time required to locate
individual records must be kept to an
absolute minimum, or for files whose
characteristics do not permit the use of
sequential or indexed organization.

This organization method has
considerable flexibility. The accompanying
disadvantage is that although the Disk
Operating System/Virtual Storage provides
the routines to read or write a file of
this type, the programmer is largely
responsible for the logic and programming
required to locate the key of a record and
its address on a mass storage device.

Note: Direct organization is not supported
on fixed block devices.

INDEXED ORGANIZATION

An indexed file is similar to a
sequential file in that rapid sequential
processing is possible. The indexes
associated with an indexed file also allow
quick retrieval of individual records
through random access. l1oreover, a
separate area of the file is set aside for
additions; this eliminates the need to
rewrite the entire file when adding
records, a process that would usually be
necessary with a sequentially organized
file. Although the added records are not
physically in key sequence, the indexes
are constructed in such a way that the
added records can be quickly retrieved
in key sequence, thus making rapid
sequential access possible.

In this method of organization, the
system has control over"the location of the
individual records. Since the
characteristics of the file are known, most
of the mechanics of locating a particular
record are hangled by the system.

Note: Indexed organization is not supported
on fixed block devices.

DATA MANAGEMENT CONCEPTS

The data management facilities of the
Disk Operating System Virtual storage are
provided by a group of routines that are
collectively referred to as the
Input/Output Control System (IOCS). A
distinction is made between two types of
routines:

1. Physical IOCS (PIOCS) -- the physical
input/output routines included in the
Supervisor. PIOCS is used by all

98

programs run within the system. It
includes facilities for scheduling
input/output operations, checking for
and handling error conditions related
to input/output devices, and handling
input/output interruptions to maintain
maximum input/output speeds without
burdening the programmer's problem
program.

2. Logical IOC~OCS) -- the logical
input/output routines linked with the
programmer's problem program. These
routines provide an interface between
the programmer's file processing
routines and the PIOCS routines.

LIOCS performs those functions that a
programmer needs to locate and access
a logical record for processing. A
logical rg£ord is one unit of
information in a file of similar
units, for example, one employee's
record in a master payroll file, one
part-number record in an inventory
file, or one customer account record
in an account file. One or more
logical records may be included in one
physical record. LIOCS refers to the
routines that perform the following
functions:

a. Blocking and deblocking records

b. Switching between input/output
areas when two areas are specified
for a file

c. Handling end-of-file and
end-of-17olume conditions

d. Checking and writing labels

A brief description of functions
performed by LIoes and their relationship
to a COBOL program follows.

Whenever COBOL imperative-statements
(READ, WRITE, REWRITE, etc.) are used in a
program to control the input/output of
records in a file, that file must be

. defined by a DT'F (~efine Ihe rile) or, for
VSAM, an ACB (Access Method Control Block) •
A DTP or ACB is created for each file
opened in a COBOL program from information
specified in the Environment Division, FD
entry, and input/output statements in the
source program. The DTF for each file is
part of the object module that is generated
by the compiler. The ACB is generated at
object time. They describe the
characteristics of the logical file,
indicate the type of processing to be used
for the file, and specify the storage areas
and routines used for the file. Purther
and more detailed onformation in VSAM is to
be found in the chapter "VSAM."

One of the constants in the DTF table is
he address of a logic module that is to be
sed at execution time to process that
ile. A logic module contains the coding
ecessary to perform data management
unctions reguired by the file such as
locking and deblocking, initiating label
hecking, etc.

Generally, these logic modules are
ssembled separately and cataloged in the
elocatable library under a standard name.
t link edit time, the Linkage Editor
earches the relocatable library using the
irtual reference to locate the logic
odule. The logic module is then included
s part of the program phase. Note that
ince the Autolink feature of the Linkage
ditor is responsible for including the
ogic modules, the COBOL 'programmer need
ot specify any INCLUDE statements.

The type of DTF table prepared by the
~ompiler depends on the organization of the
'ile and the device to which it is
,ssigned. The DTFts used for processing
'iles assigned to mass storage devices are
,s follows:

DTFSD -- Sequential organization,
~eguential access

DTFDA -- Direct organization,
sequential or random access

DTFIS -- Indexed organization,

Processing COBOL Files on Mass Storage Devices 98.1

Page of SC28-6478-3, As Updated 28 Dec 1979, By TNL SN20-9310

For a 3540 diskette unit, the DTP is
TFDU. More detail on this is given in the
hapter "Processing 3540 Diskette unit
iles ."

The remainder of this chapter provides
nformation about preparing programs which
rocess files assigned to mass storage
evices. Included are general descriptions
f the organization, the COBOL statements
hat must be specified in order to build
he correct DTF tables, and coding
xamples.

EQUENTIAL OBGANIZATION-1QTFSQL

In a sequential file on a mass storage
evice, records are written one after
nother -- track by track, cylinder by
ylinder -- at successively higher
ddresses.

Records may be fixed-length, spanned, or
ariable-length, blocked or unblocked, or
ndefined. Since the file is always
ccessed sequentially, it is not formatted
ith keys.

Processing a sequentially organized file
or selected records is inefficient. If it
s done infrequently, the time spent in
ocating the records is not significant.
he slowest way is to read the records
:equentially until the desired one is
ocated. On the average, half of the file
ust be read to locate one record.

Additions and deletions require a
:omplete rewrite of a sequentially
Irganized file on a mass storage device.
equential organization is used on mass
:torage devices primarily for tables and
ntermediate storage rather than for master
iles.

Sequentially organized files formatted
rith keys cannot be created using DTFSD.
ITPDA may be used to create and access
:sequentially or randomly) such files.

ISAM SPACE MANAGEMENT FOR SAM

Under DOS/VSE Advanced Functions, Release
2 and up, sequential files on mass storage
ievices can be defined explicitly or
implicitly in VSAM space.

BXPLICIT DEFINITION: Use Access Method
Services to DEFINE a VSAM sequential file
with the required RECORDSIZE. Supply a
DLBL statement for the file, specifying
~SAM. No EXTENT statement is needed.

IMPLICIT DEFINITION: Supply a DLBL
statement for the file, specifying VSAM,
as well as the RECORDS and RECSIZE
parameters. The volume can be specified
through an EXTENT statement or through a
default model fora VSAM sequential file.

For detailed information, see the Using
the VSE/VSAM Space Management for SAM
Feature manual.

COBOL RESTRICTIONS: For VSAM-managed
sequential files, there are the following
restrictions on COBOL source programs:

User labels are ignored.

Spanned records are not supported.

Forced-end-of-volume (FEOVD) issued
by the CLOSE UNIT statement is
ignored.

PROCESSING A SEQUENTIALLY ORGANIZED FILE

To create, retrieve, or update a DTFSD
file, the following specifications should
be made in the source program:

ENVIRONMENT DIVISION

Required clauses:

SELECT [OPTIONAL] file-name

ASSIGN TO SYSnnn- {::}

Optional clauses:

RESERVE Clause
FILE-LIMIT Clause
ACCESS MODE IS SEQUENTIAL
PROCESSING MODE IS SEQUENTIAL
BERUN Clause
SAME Clause
APPLY WRITE~ONLY Clause . (create only)
APPLY WRITE-VERIFY Clause (create or

update only)

Invalid clauses:

ACCESS MODE IS RANDOM
ACTUAL KEY Clause
NOMINAL KEY Clause
RECORD KEY Clause
TRACK-AREA Clause
MULTIPLE FILE TAPE Clause

Processing COBOL Files on Mass Storage Devices 99

Page of SC28-6478-3, As Updated 28 Dec 1979, By TNL SN20-9310

APPLY EXTENDED-SEARCH Clause
APPLY CYL-OVERFLOW Clause

{
MASTER-INDEX}

APPLY· Clause
CYL-INDEX

APPLY CORE-INDEX Clause

DTFSD files may be opened as INPUT,
OUTPUT, or 1-0. When creating such a file,
an INVALID KEY condition occurs when the
file limit has been reached and an attempt
is made to place another record on the mass
storage device. The file limit is
determined from the EXTENT control
statements.

When aDTFSD file is opened as OUTPUT,
each WRITE statement signifies the creation
of a new record. When opened as 1-0, each
WRITE statement signifies that the record
iust read is to be rewritten.

At open time, the DTFSD is saved behind
the DTF (+240). When the file is closed,
the original DTFSD is restored fro~ the
save area for subsequent open statements.

DIRECT ORGANIZATION (DTFDA)

With direct organization, there is a
definite relationship beteween the key of a
record and its address. This relationship
permits rapid access to any record if the
file is carefully organized. The
programmer develops a record address that
ranges from zero to some maximum by
converting a particular field in each
record to a track address. Each byte in
the address is a binary number. To
reference a particular record, the
programmer must supply both the track
address and the identifier that makes each
record unique on its track. Both the track
address and the identifier are supplied by
the programmer in the ACTUAL KEY clause.
This will be discussed in detail later in
this chapter.

With direct organization, records may be
fixed length, spanned or undefined. The
records must be unblocked. RO (record
zero) of each track is used as a capacity
record. It contains the address of the
last record written on the track, and is
used by the system to determine whether a
new record will fit on the track. The
capacity records are updated by the system
as records are added to the file. The
capacity records do not account for
deletions: as far as the system is
concerned, once a track is full it remains
full (even if the programmer deletes
records) until the file is reorganized.

100

Often, more records are converted to a
given track address than will actually fit
on the track. These surplus records are
known as overflow records and are usually
written into a separate area known as an
overflow area.

As already noted, the programmer has an
unlimited choice in deciding where records
are to be located in a directly organized
file. The logic and programming are his
responsibility.

When creating or making additions to the
file, the programmer must specify the
location for a record (track address) and
the identifier that makes each recorq on
the track unique. If there is space'~n the
track, the system writes the record and
updates the capacity record. If the
specified track is full, a standard error
condition occurs, and the programmer may
specify another track address in his USE
AFTER STANDARD ERROR declarative routine.

In the case of one maximum size record
per track (when spanned records are not
specified), the data length plus the length
of the symbolic key cannot exceed the
following values:

2311 -- 3605 bytes
2314, 2319 -- 7249 bytes
2321 1984 bytes
3330 12974 bytes
3340 8293 bytes
3350 18987 bytes

When reading or updating the file, the
programmer must supply the track address
and the unique identifier on the track for
the specific record being sought. The
system locates the track and searches that
track for the record with the specified
identifier. If the record is not found,
COBOL indicates this to the programmer by
raising an INVALID KEY condition. Only the
track specified by the p~ogrammer is
searched. If EXTENDED-SEARCH is applied,
the search for a specified record key begins
on the track specified and continues until
one of two conditions occurs:

1. The record is found.

2. The end of the specified cylinder
is reached.

In the second case, the INVALID-KEY option
,of the READ or REWRITE is executed. To
ensure file integrity, the upper limit of
each extent of a file using EXTENDED-SEARCH
must be the last track of a cylinder.

Error recovery from a DTFDA file is
described in detail in the chapter
"Detailed File Processing Capabilities."

Page of SC28-6478-3, As Updated 28 Dec 1979, By TNL SN20-9310

ACCESSING A DIRECTLY ORGANIZED FILE

A directly organized file (DTPDA) may be
accessed either sequentially or randomly.

ACCESSING A DIRECTLY ORGANIZED FILE
SEQUENTIALLY: When reading a direct file
sequentially, records are retr~ved in
logical sequence; this logical sequence
corresponds exactly to the physical
sequence of the records. To retrieve a
DTPDA file sequentially, the following
specifications are made in the source
program:

ENVIRONME~T DIVISION

Required clauses:

SELECT [OPTIONAL] file-name

ASSIGN TO SYSnnn-DA-

optional clauses:

PILE-LIMIT Clause

2311
2321
2314
2319
3330
333B
3340
3350

ACCESS MODE IS SEQUENTIAL
PROCESSING MODE IS SEQUENTIAL
ACTUAL KEY Clause
RERUN Clause
SAME Clause

Invalid clauses:

ReSERVE Clause
ACCESS MODE IS RANDOM
NOMINAL KEY Clause
RECORD KEY Clause
TRACK-AREA Clause
MULTIPLE FILE TAPE Clause
APPLY WRITE-ONLY Clause

Processing COBOL Files on Mass Storage Devices 100.1

APPLY CYL-OVERFLOW Clause
APPLY EXTENDED- SEARCH Clause
APPLY WRITE-VERIFY Clause

APPLY Clause
{

MASTER-INDEX}

CYL-INDEX

APPLY CORE-INDEX Clause

When DTFDA records are retrieved
equentially, the file may be opened only
s INPUT. The AT END condition occurs when
he last record has been read and execution
f another READ is attempted.

Note that in the ASSIGN clause, an A
ust be specified for files with actual
rack addressing, and a ~ must be specified
or files with relative track addressing.

CCESSING A DIRECTLY ORGANIZED FILE
ANDOMLY: To create a directly organized
ile randomly, the following specifications
re made in the source program:

NVIRONMENT DIVISION

eauired clauses:

SELECT file-name

ASSIGN TO SYSnnn-DA-

ACCESS MODE IS RANDOM
ACTUAL KEY Clause

Iptional clauses:

FILE-LIMIT Claus~

2311

f 2321

2314 {A} 2319

3330j- D
333B
3340
3350

PROCESSING MODE IS SEQUENTIAL
RERUN Clause
SAME Clause
APPLY WRITE-VERIFY Clause

:nvalid clauses:

RESERVE Clause
ACCESS MODE IS SEQUENTIAL
NOMINAL KEY Clause
RECORD KEY Clause
TRACK-AREA Clause
MULTIPLE FILE TAPE Clause
APPLY WRITE-ONLY Clause
APPLY EXTENDED-SEARCH Clause
APPLY WRITE-VERIFY Clause
APPLY CYL-OVERFLOW Clause

{

MASTER-INDEX}
APPLY , Clause

CYL-INDEX

APPLY CORE-INDEX Clause

Note that in the ASSIGN clause, an A
must be specified for files with actual
track addressing, and a Q must be specified
for files with relative track addressing.

To retrieve or update a directly
organized file randomly, the following
specifications must be made in the source
program.

ENVIRONMENT DIVISION

Required clauses:

SELECT file-name

ASSIGN TO SYSnnn-DA-

ACCESS MODE IS RANDOM
ACTUAL KEY Clause

2311
2314
2321
2319
3330
333B
3340
3350

Note that in the ASSIGN clause an A must
be specified for files with actual trick
addressing, a Q must be specified for files
with relative track addressing, a Q must be
specified for files with actual track
addressing when the REWRITE statement is
used, and W must be specified for files
with relative track addressing when the
REWRITE statement is used.

The optional and invalid clauses are the
same as those specified previously for
creating a directly organized file.

Exception: APPLY EXTENDED-SEARCH is
optional when retrieving or updating a
directly organized file randomly.

ACTUAL KEY CLAUSE

Note that the ACTUAL KEY clause is
required for DTFDA files when ACCESS IS
RANDOM, is optional for DTFDA files when
ACCESS IS SEQUENTIAL, and is not used for
DT'FSD files.

The actual key consists of two
components. One component expresses the
track address at which the record is to be
placed for an output operation, or at which
the search is to begin for an input
operation. The track address can be
expressed either as an actual address or as
a relative address, depending upon the
addressing scheme chosen when the file was
created. The other component is associated
with the record itself and serves as its
unique identifier. The structures of both
actual keys are shown in Figure 29.

Processing COBOL Files on Mass Storage Devices 101

Byte

I Byt.e ,

, Actual Key
I I

IActual Track ,Record
IAddress
I

1 8 9

I Actual Key
I I

1 Relative IRecord
ITrack Address 1
I ,

1 4 5

Identifierl ,
I

263

Identifier,
I
I

258

Figure 29. Structures of the Actual Key

The format of the ACTUAL KEY clause is:

ACTUAL KEY ![data-name

When actual track addressing is used,
data-name may be any fixed item from 9
through 263 bytes in length. It must be
defined in the Working-Storage, File, or
Linkage Section. The first eight bytes are
used to specify the actual track address.
The structure of these bytes and
permissible specifications for the mass
storage devices are shown in Figure 30.
The programmer may select from 1 to 255
bytes for the record identifier portion of
the actual key field.

Note: If a SEEK statement is used when
retrieving a direct file randomly, actual
track addressing is required.

When relative track addressing is used,
data-name may be any fixed item from 5

Pack Cell

M B B

0 1 2

1 2311 1 0-221 I 0 1 0
I I , 1
I 2314 1 0-221 1 0 I 0
I I I I
I 2.":s21 I 0-221 I 0 1 0-9
I 1 I 1
I 3330 1 0-221 I 0 I 0 , I -4- I
I 3330-11 I 0-221 I 0 I 0
I I I I
I 3340 Model 351 0-221 I 0 1 0
.. 1 I ,
I 3340 Model 701 0-221 I 0 I 0
I 1 , ,
1 3350 I 0-221 I 0 I 0
I I I I
Figure 30. Permissible Specifications for
102

1
1
1 ,
I
1
I ,
I
I
I
1
1
r
I
I

through 258 bytes in length. It must be
defined in the File Secti6n, the Working
Storage Section, or the Linkage Section.
The first four bytes of data-name are the
track identifier. The identifier is used
to specify the relative track address for
the record and must be defined as an
8-integer binary data item whose maximum
value does not exceed 16,777,215. The
remainder of data-name, which is 1 through
254 bytes in length, is the record
identifier. It represents the symbolic
portion of the key field used to identify a
particular record on a track.

C

3

0

0

For a complete discussion of the ACTUAL
KEY clause, see the publication IBM DOS
Full American National Standard COBOL.

Randomizing Techniques

One method of determining the value of
the track address portion of the field
defined in the ACTUAL KEY clause is
referred to as indirect addressing.
Indirect addressing generally is used when
the range of keys for a file includes a
high percentage of unused values. For
example, employee numbers may range from
000001 to 009999, but only 3000 of the
possible 9999 numbers are currently
assigned. Indirect addressing is also used
for nonnumeric keys. Key, in this
discussion, refers to that field of the
record being written that will be converted
to the track address portion.

Indirect addressing signifies that the
key is converted to a value for the actual
track address by using some algorithm
intended to limit the range of addresses.

I

Cylinder Head 1 Record
I

C H E , R
1
1 ,

4 5 6 , 7
1

0-199 0 0-9 1 0-255
I

0-199 0 0-19 I 0-255
-+-

I
1 ,
~

0-19 0-9 0-4 0-19 1 0-255 ,
0-403 0 0-18 1 0-255

I
0-807 0 0-18 I 0-255

I
0-347 0 0-11 I 0-255 ,
0-695 0 0-11 I 0-255

1
0-554 0 0-29 I 0-255

I I
the First Eight Bytes of the Actual Key

lch an algorithm is called a randomizing
~chniqug. Randomizing techniques need not
roduce a unique address for every record
ld, in fact, such techniques usually
roduce synonyms. Synonyms are records
lose keys randomize to the same address.

Two objectives must be considered in
?lecting a randomizing technique:

1. Every possible key in the file must
randomize to an address within the
designated range.

2. The addresses should be distributed
evenly across the range so that there
are as few synonyms as possible.

Note that one way to minimize synonyms
s to allocate more space for the file than
s actually required to contain all the
ecords. For example, the percentage of
ocations that are actually used might be
0% to 85% of the allocated space.

When actual track addressing is used,
he first eight bytes of the ACTUAL KEY
ield can be thought of as a IIdiscontinuous
inary address." This is significant to
he programmer because he must keep two
onsiderations in mind. First, the
ylinder and head number must be in binary
otation, so the results of the randomizing
ormula must be in binary format. Second,
he address is "discontinuous" since a
athematical overflow from one element
e.g., head number) does not increment the
djacent element (e.g., cylinder number).

'IVISION/REMAINDER METHOD: One of the
implest ways to indirectly address a
.irectly organized file is by using the
.i vision/remainder method. (For a
.iscussion of other randomizing techniques,
:ee the publication Introduction to IBM
lirect Access Storage Devices and
Irqanization Methods, Order No.
,C20-1649.)

1. Determine the amount of locations
required to contain the data file.
Include a packing factor for
additional space to eliminate
synonyms. The packing factor should
be approximately 20% of the total
space allocated to contain the data
file.

2. Select, from the prime number table,
the nearest prime number that is less
than the total of step 1. A Erime
numb~ is a number divisible only by
itself and the integer 1. Table 10 is
a partial list of prime numbers.

3. Clear any zones from the first eight
bytes of the actual key field. This

can be accomplished by moving the key
to a field described as COMPUTATIONAL.

4. Divide the key by the prime number
selected.

5. Ignore the quotient; utilize the
remainder as the relative location
within the data file.

6. (For actual track addressing only)
Locate the beginning of the space
available and manipulate the relative
address, to the actual device address
if necessary.

For example, assume that a company is
planning to create an inventory file on a
2311 disk storage device. There are 8000
different inventory parts, each identified
by an 8-character part number. Using a 20%
packing factor, 10,000 record positions are
allocated to store the data file.

Metho~: The closest prime number to
10,000, but under 10,000, is 9973. Using
one inventory part number as an example, in
this case #25DF3514, and clearing the zones
we have 25463514. Dividing by 9973 we get
a auotient of 2553 and a remainder of 2445.
24~5 is the relative location of the record
within the data file corresponding to part
number 25DF3514. Th~ record address can be
determined from the relative location as
follows:

1. (For actual track addressing only)
Determine the beginning point for the
data file (e.g., cylinder 100, track
0) •

2. Determine the number of records that
can be stored on a track (e.g., twelve
per track on a 2314 disk pack,
assuming each inventory record is 200
bytes long) •

Because each data record contains
non-data components, such as a count
area and interrecord gaps, track
capacity for data storage will vary
with record length. As the number of
separate records on a track increases,
interrecord gaps occupy additional
byte positions so that data capacity
is reduced. Track capacity formulas
provide the means to determine total
byte requirements for records of
various sizes on a track. These
formulas can be found in the
publications IBM Component
Descriptions, Order Nos. GA26-5988
and GA26-3599.

3. Divide the relative number (2445) by
the number of records to be stored on
each track.

Processing COBOL Files on Mass Storage Devices 103

4. (For actual track addressing only)
The result, qdotient = 203, is now
divided into cylinder and head
designation. Since the 2311 disk pack
has ten heads, the quotient of 203 is
divided by 10 to show:

,Cylinder or CC = 20
Head or HH = 03 (high-order zero

added)

4B. (For relative track addressing only)
The result, quotient = 203, now
becomes the track identifier of the
actual key.

Method B: utilizing the same example,
another approach will also provide the
relative track address:

104

1. The number of records that may be
contained on one track is twelve.
Therefore, if 10,000 record locations
are to be provided, 834 tracks must be
reserved.

2. The prime number nearest, but less
than 834, is 829.

3. Divide the zone-stripped key by the
prime value. (In the example,
25463514 divided by 829 provides a
quotient of 30715 and a remainder of
779. The remainder is the relative
address.)

~able 10. Partial List of Prime Numbers Table 10. Partial List of Prime Numbers
(Part 1 of 2) (Part 2 of 2)

I I

A B I A B I
(Num ber) (Nearest Prime Numberl (Number) (Nearest Prime Numberl

Less Than A) I Less Than A} I , I
500 499 5600 5591
600 ~99 5700 5693
700 691 5800 5791
800 797 5900 5897
900 887 6000 5967

1000 997 6100 6091
1100 1097 6200 6199
1200 1193 6300 6299
1300 1297 6400 6397
1400 1399 6500 6491
1500 1499 6600 6599
1600 1597 6700 6691
1700 1699 6800 6793
1800 1789 6900 6899
1900 1889 7000 6997
2000 1999 7100 7079
2100 2099 7200 7193
2200 2179 7300 7297
2300 2297 7400 7393
2400 2399 7500 7499
2500 2477 7600 7591
2600 2593 7700 7699
2700 2699 7800 7793
2800 2197 7900 1883
2900 2897 8000 7993
3000 2999 8100 8093
3100 3089 8200 8191
3200 3191 8300 8297
3300 3299 8400 8389
3400 3391 8500 8467
3500 3499 8600 8599
3600 3593 8700 8699
3700 3697 8800 8793
3800 3197 8900 8899
3900 3889 9000 8899
4000 3989 9100 9091
4100 4099 9200 9199
4200 4177 . 9300 9293
4300 4291 9400 9397
4400 4397 9500 9497
4500 4493 9600 9587
4600 4597 9700 9697
4700 4691 9800 9791
4800 4799 9900 9887
4900 4889 10,000 9973
5000 4999 10,100 10,099
5100 5099 10,200 10,193
5200 4197 10,300 10,289
5300 5297 10,400 10,399
5400 4399 10,500 10,499
5500 5483 10,600 10,597

Processing COBOL Files on Mass Storage Devices 105

4. (For actual track addressing only) To
convert the relative address to an
actual device address, divide the
relative address by the number of
tracks in a cylinder. The quotient
will provide the cylinder number and
the remainder will be the track
number. For example, the 2311 disk
pack would utilize 779 as:

Cylinder or CC = 77
Track or HH = 9

Figure 31 is a sample COBOL program
which creates a direct file with actual
track addressing using Method Band
provides for the possibility of synonym
overflow. Synonym overflow will occur if a
record randomizes to a track that is
already full. The following description
highlights the features of the example.
Circled numbers on the program listing
correspond to the numbers in the text.

106

The value 10 is added to TRACK-1 to
ensure that the problem program does
not write on cylinder o. Cylinder 0
must be reserved for the Volume Table
of Contents.

• Since the prime number used as a
divisor is 829, the largest possible
remainder will be 828. Adding 10 to
TRACK-1 adjusts the largest possible
remainder to 838.

If synonym overflow occurs, control is
given to the error procedure
declarative specified in the first
section of the Procedure Division.
The declarative provides that:

• Any record which cannot fit on a
track (i.e., tracks 0 through 8 of
any cylinder) will be written in the
first available position on the
following track(s).

• Any record which cannot fit within a
single cylinder will be written on
cylinder 84 (i.e., the cylinder
overflow area) •

• If a record cannot fit on either
cylinders 1 through 83, or on
cylinder 84, the job is terminated.

The standard error condition "no room
found" is tested before control is
given to the synonym routine. Other
standard error conditions as well as
invalid key conditions result in job
termination.

ERROR-COND is the identifier which
specifies the error condition that
caused control to be qiven to the
error declarative. ERROR-COND is
printed on SYSLST whenever the error
declarative section is entered.
TRACK-ID and C-REC are also printed on
SYSLST. They are printed before the
execution of each WRITE statement.
This output has been provided in order
to facilitate an understanding of the
logic involved in the creation of
D-FILE.

The first twelve records which
randomize to cylinder 002 track 8 are
actually written on track 8.

The next twelve records which
randomize to cylinder 002 track 8 are
adjusted by the SYNONYM-ROUTINE and
written on cylinder 002 track 9.

The next twelve records which
randomize to cylinder 002 track 8 are
adjusted by the SYNONYM-ROUTINE and
written on cylinder 84 track 0 (i.e.,
the overflow cylinder) •

The last two records which randomize
to cylinder 002 track 8 are adjusted
by the SYNONYM-ROUTINE and written on
cylinder 84 track 1 (i.e., the
overflow cylinder) •

/ / JOB ME.'1'HODBA
~;. OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

1 IBM DOS VS COBOL

IDENTIFICATION DIVISION.
PROGRA!-1-ID. METhOD-B.
ENVIRONt'.ENT DIVISI,)N.
CONFIGURATION SE;CTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

REL 1.0

SELECT D-FILE ASSIGN SYS015-DA-2314-A-MASTBR
ACCESS IS RANDOM
ACTUAL KEY IS ACT-KEY.
SELECT C-FILE ASSIGN TO SYS007-UR-2540~-S.

DATA DIVISION.
FILE SECTION.
FD D-FILE

LABEL RECORDS ARE STANDARD.
01 D-REC.

02 PART-NUM PIC XeS).
02 NUM-ON-HAND PIC 9(4).
02 PRICE PIC 9(5)V99.
02 FILLER PIC X(lS1).

FD C-FILE
LABEL RECORDS ARE OMI'l'TED.

01 C-REC.
02 PART-NUM PIC xes).
02 NUM-ON-HAND PIC 9(4)9.
02 PRICE PIC 9(5)V99.

WORKING-STORAGE SECTION.
77 HD PIC 9 VALUE ZERO.
77 SAVE PIC S9(S) COMP SYNC.
77 QUOTIENT PIC S9(5) COMP SYHC.
01 ERROR-COND.

02 FILLER PIC 99 VALUE ZERO.
02 ERR PIC 9 VALUE; ZERO.
02 FILLER PIC 9(5) VALUE ZERO.

01 TRACK-1 PIC 9999.
01 TRACK-ID REDEFINES TRACK-1.

02 CYL PIC 999.
02 HEAD PIC 9.

01 KEY-1.
02 M PIC S999 COMP SYNC VALUE ZEROES.
02 BB PIC S9 COMP SYNC VALUE ZERO.
02 CC PIC S999 COMP SYNC.
02 HH PIC S999 COMP SYNC.
02 R PIC X VALUE LOW-VALUE.
02 REC-ID PIC xes).

01 KEY-2 REDEFINES KEY-1.
02 FILLER PIC X.
02 ACT-KEY PIC X(16).

PP NO. 5746-CBl

~igure 31. Creating a Direct File Using Method B (Part 1 of 4)

OS.47.44 10/04/73

Processing COBOL Files on Mass Storage Devices 107

IBM DOS VS COBOL REL 1.0 PP NO. 5746-CBl

PROCEDURE DIVISION.
DECLARATIVES.
ERROR- PROCEDURE SEC'l'ION. USE AJi'TER STANDARD ERROR l'ROCEDURE

ON D-FILE GIVING ERROR-COND.

ERROR-ROUTINE.
EXHIBI'l' NAJI"ED ERROR-COND.

IF ERR = 1 GO TO SYNONYM-ROUTI.-iE
DISPLAY 'OTHER STANDARD ERROR'

GO TO :C;OJ.
SYNONYM-ROUTINE.

ELSE
REC-ID

IF CC = 84 AND HD = 9 DISPLAY 'OVERF'LOW AREA FULL'
GO TO EOJ.

n' CC = 84 ADD 1 TO HD GO TO ADJUST-HD.
IF HH = 9 GO TO END-CYLINDER.
ADD 1 TO HfI.
GO '1'0 WRITi::S.

END-CYLIND.t:R.
MOVE 84 TO CC.

ADJUST-HD.
MOVE HD TO HH.
GO TO WRITES.

END DECLARATIVES.
FILE-CREATION SECTION.

OPEN INPUT C-FILE
OUTPUT D-FILE.

READS.
READ C-FILE AT END GO TO EOJ.
MOVE CORRESPONDING C-REC TO D-REC.
MOVE PART-NUM OF C-REC TO REC-ID SAVE.
DIVIDE SAVE BY 829 GIVING QUOTIENT REMAIND:t.R
ADD 10 TO TRACK-1.
MOVE CYL TO CC.
MOVE HEAD TO HH.

WRITES.
EXHIBIT NAMED TRACK-ID C-REC CC fIH.
WRITE D-REC INVALID KEY GO TO INVALID-KEY.
GO TO READS.

INVALID-KEY.

EOJ.
DISPLAY 'INVALID KEY' aEC-ID.

CLOSE C-FILE D-FILE.
STOP RUN.

// LBLTYP NSD(01)
// EXEC LNKEDT

Figure 31. Creating a Direct File Using Method B (Part 2 of 4)

108

08.47.44 10/04/7~

IBM DOS VS COBOL REL 1.0 PP NO.5746-CB1 08.417.44 10/04/73

// ASSGN SYS007,X'OOC'
/I ASSuN SYS015,X'231'
/I DLBL MAST~R,,99/365,DA
II EXTL~T SYS015,111111,1,0,20,840
1/ f.XLC

T~ACK-ID 0010 C-REC 82900000 CC 001 Hri 000
TRACK-ID 0011 C-REC 82900001 CC 001 riB 001
T.i<ACK-ID 0028 C-REC 8290001801 CC 002 HB 008
TRACK-ID 0028 C-REC 8290001802 CC 002 liri 008
TRACK-ID 0028 C-REC 8290001803 CC 002 HH 008
TRACK-ID 0028 C-REC 8290001804 CC 002 HH 008

CD TRACK-IlJ 0028 C-REC 8290001805 CC 002 HH 008
TRACK-ID 0028 C-REC 8290001806 CC 002 HH 008
TP.ACK-ID 0028 C-REC 8290001807 CC 002 HH 008
TRACK-ID 0028 C-REC 8290001808 CC 002 riH 008
TRACK-ID 0028 C-REC 8290001809 CC 002 HH 008
TRACK-ID 0028 C-REC 8290001810 CC 002 Hri 008
TRACK-ID 0028 C-REC 8290001811 CC 002 Hri 008
TRACK-ID 0028 C-REC 8290001812 CC 002 HH 008
TRACK-ID 0028 C-REC 8290001813 CC 002 Htl 008
TrtACK-ID 0028 C-REC 8290001814 CC 002 11H 008
TkACK-ID 0186 C-REC 290001815 CC 018 Ha 006
TRACK-ID 0186 C-REC 290001816 CC 018 HH 006
TRACK-ID 0028 C-REC 8290001817 CC 002 Hri 008
TRACK-ID 0028 C-REC 8290001818 CC 002 HB 008
TRACK-ID 0028 C-REC 8290001819 CC 002 htl 008
TRACK-ID 0028 C-REC 8290001820 CC 002 Bri 008 CD 'l'RACK-ID 0028 C-REC 8290001821 CC 002 Htl 008
TkACK-ID 0028 C-REC 8290001822 CC 002 HH 008
TRACK-ID 0028 C-REC 8290001823 CC 002 ritl 008
ERROR-carlO :;: 00100000
TRACK-ID = 0028 C-REC 8290001823 CC 002 Htl 009
TRACK-ID = 0028 C-REC 8290001824 CC 002 riH 008
BR~OR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001824 CC 002 HH 009

~igure 31. Creating a Direct File Using Method B (Part 3 of 4)

Processing COBOL Files on Mass storage Devices 109

IBM DOS VS COBOL REL 1.0 PP NO. 5746-CB1 08,47.44 10/04/73

TRACK-ID = 0028 C-REC 8290001825 CC 002 HB 008
ERROR-COf-m = 00100000
TRACK-ID = 0028 C-REC 8290001825 CC 002 BH 009
TRACK-ID = 0028 C-REC 8290001826 CC 002 BH 008
ERROR-COND = 00100000
TRACK-ID 0028 C-REC 8290001826 CC 002 HH 009
TRACK-ID 0011 C-REC 8290001827 CC 001 hH 001
TRACK-ID = 0011 C-REC 8290001828 CC 001 HH 001
TRACK-ID = 0011 C-REC 8290001829 CC 001 HH 001
TRACK-ID = 0028 C-REC 8290001830 CC 002 HE 008
EHROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001830 CC 002 tiH 009
TRACK-ID = 0028 C-REC 8290001831 CC 002 HH OOB
ERROR-COND =·00100000
'I'i{ACK-ID = 0028 C-REC 8290001831 CC 002 HH 009 CD TRACK-ID = 0028 C-REC 8290001832 CC 002 Hd 008
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001832 CC 002 HH 009
TRACK-ID = 0028 C-REC 8290001833 CC 002 Btl 008
ERRoR-corm = 00100000
TRACK-ID = 0028 C-REC 8290001833 CC 002 !iH 009
TRACK-ID = 0028 C-REC 8290001834 CC 002 HH 008
ERiWR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001834 CC 002 tiH 009
TRACK-ID = 0028 C-REC 8290001835 CC 002 HH 008
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001835 CC 002 HH 009
TRACK-ID = 0028 C-REC 8290001836 CC 002 HH 008
E!{ROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001836 CC 002 HH 009
TRACK-ID = 0028 C-REC 8290001837 CC 002 HB 008

! ERROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001837 CC 002 HB 009 CD TRACK-ID = 0028 C-REC 8290001838 CC 002 Hd 008
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001838 CC 002 riH 009

Figure 31. Creating a Direct File Using Method B (Part 4 of 4)

110

Figure 32 is a sample COBOL program
hich creates a direct file with relative
~ack addressing using Method B. The
ample program provides for the possibility
f synonym overflow. Synonym overflow will
ccur if a record randomizes to a track
hich is already full. The following
iscussion highlights some basic features.
ircled numbers on the program listing
orrespond to numbers in the text.

Since the prime number used as a
divisor is 829, the largest possible
remainder will be 828.

If synonym overflow occurs, control is
given to the USE AFTER STANDARD ERROR
declarative specified in the first
section of the Procedure Division.
The declarative provides that any
record that cannot fit on the track to
which it randomizes will be written on
the first subsequent track available.

The standard error condition "no room
found" is tested before control is
given to the SYNONYM-ROUTINE. other
standard error conditions as well as
invalid key conditions result in job
termination (EOJ).

ERROR-COND is the identifier which
specifies the error condition that

®

caused control to be given to the
error declarative. ERROR-COND is
printed on SYSLST whenever the error
declarative section is entered.
TRACK-ID and C-REC are also printed on
SYSLST before execution of each WRITE
statement. This output has been
provided in order to facilitate an
understanding of the logic involved in
the creation of D-FILE.

The first twelve records which
randomize to relative track 18 are
actually written on relative track 18.

The next twelve records which
randomize to relative track 18 are
adjusted by the SYNONYM-ROUTINE and
are actually written on relative track
19.

The next twelve records which
randomize to relative track 18 are
adjusted by the SYNONYM-ROUTINE and
are actually written on relative track
20.

The last two records which randomize
to relative track 18 ~re ~djusted by
the SYNONYM-ROUTINE and are actually
written on relative track 21.

processing COBOL Files on Mass Storage Devices 111

/ / JOB ME'I'HODilR
, b'l, OP'IION NODECK,LINK,LIST,LISTX,SYM,i.RdS
// EXEC :FeOBOL

1 IBM DOS VS COBOL

eBL (JUO'I'L
IDENTIFICA'I'ION DIVISIOli.
PROGRAM-ID. METHODB.
ENVIRONl'..EtlT DIVISION.
COllFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJEC'I-COl-'JPUTEi{. IBM-370.
INPUT-OUTPUT SBCTION.
FILE-CONTROL.

REL 1. 0

SELECT D-FILE ASSIGN TO SYS01S-DA-2314-D-MASTE~
ACCESS IS RANDOM
ACTUAL KEY IS ACT-KEY.
SELECT C-FILE ASSIGN TO SYS007-UR-2540R-S.

DATA DIVISION.
FILE SECTION.
FD D-FILE

LABEL RECORDS ARE STANDARD.
01 D-REC.

05 PART-NUM PIC X(S).
05 NOM-ON-HAND PIC 9(4).
05 PRICE PIC 9(S)V99.
05 FILLER PIC X(1S1).

FD C-FILE
LABEL RECORDS JI.RE OX-lITTED.

01 C-l<EC.
05 PAkT-NUh PIC X(S).
OS NUM-ON-HAND PIC 9(4).
05 PRICE PIC 9(S)V99.
05 FILLER PIC X(61l.

WORKING-STORAGE SECTIOrl.
77 SAVE PIC S9(8) COMP SYNC.
77 QUOTIEN'I' PIC S9(S) COMP SY.'iC.
01 AC'r-KEY.

02 'lRACK-ID PIC 59(S) COMP SYNC.
02 RLC-ID PIC X(S).

01 ERHOR-COND.
02 FILLER PIC 99 VALUE ZERO.
02 ERR PIC 9 VALUE ZERO.
02 FILLER PIC 9(5) VALUE ZERO.

PP NO. 5746-CB1 OS.40.53 10/04/73

Figure 32. Creating a Direct File with Relative Track Addressing Using Method B (Part 1
of 4)

112

IBM DOS VS COBOL

PROCEDURE DIVISION.
DECLARhTIVES.

REL 1.0 PP NO. 5746-CB1

ERROR-PROCEDURE SECTION. USE AFTER STANDARD ERROR PROCEDURE
. ON D-FILE GIVING EaRoa-COHD.

ERROR-ROUTINE.
EXHIBIT N~JED ERROR-COND. }
IF BRR = 1 GO TO SY~ONYM-ROUTI~EELSE (!)

DISPLAY "OTHER STANDARD ERROR n R~C-ID
(,0 TO EOJ.

SYNONYM-ROUTINE.
IF 'I'RACK-IV IS LESS THAN 834, ADD 1 '1'0 TRACK-Hi. GO 'I'O

WRITES.
END DECLARA'I'!VI:.S.

OPELI INPUT C-FILE·

OUTPUT D-FILE.
READS.

READ C-FILE AT !:.ND GO TO EOJ.
MOVE CORRESPo(mnIG C-itEC TO D-REC.
MOVE PART-NUM OF C-REC 'IOREC-ID~ SAVE.
DIVIDE: SAVE BY 829 GIVING QUOTIENT RENil.INDEk

WRITES.
EXHIBIT NAMED TrtACK-ID C-R£C.
WRITE D-REC INVALID KEY GO TO INVALID-KEY.
GO TO READS.

INVALID-KEY.

EOJ.

// LBL'I'YP L~SD(Ol)

// E.XEC LNKEDT

DISPLAY "INVALID KEY II REC-ID.

CLOS!:. C-FILE D-FILE.
STOP RUN.

TRhCl\-ID. } CD

08.40.53

Figure 32. Creating a Direct File with Relative Track Addressing Using Method B
(Part 2 of 4)

10/04/73

Processing COBOL Files on Mass Storage Devices 113

IBM DOS VS COBOL REL 1.0 PP NO. 5746-CB1 08.40.53

II ASSGJ SYS007,X'OOC'
II ASSGN SYS015,X'231'
II DLBL MASTER,,99/365,DA
II EXT~Nr SYS015,111111,1,0,20,840
II EXEC

THACK-ID 00000000 C-REC 82900000
TRACK-ID 00000001 C-REC 82900001
TRACK-ID 00000018 C-REC 8290001801
TRACK-ID 00000018 C-REC 8290001802
TRACK-ID 00000018 C-REC 8290001803
TRACK-ID 00000018 C-REC 8290001804
TRACK-ID 00000018 C-REC 8290001805 CD TH.ACK-ID 00000016 C-REC 8290001806
TRACK-lD 00000018 C-RI:;C 8290001807
TRACK-ID 00000018 C-REC 8290001808
T«ACK-ID 00000016 C-REC 8290001809
TKACK-ID 00000018 C-REC 8290001810
TRACK-ID 00000018 C-REC 8290001811
Tt<ACK-ID 00000018 C-REC 8290001812
TRACK-ID 00000018 C-RJ::C 8290001813
T~ACK-lD 00000018 C-REC 8290001814
TRACK-ID 00000018 C-REC 8290001815
TRACK-ID 00000018 C-REC 8290001816
TRACK-ID 00000018 C-REC 8290001817
TRACK-ID 00000018 C-REC 8290001818
TRACK-ID 00000018 C-REC 8290001819
TRACK-ID 00000018 C-REC 8290001820
TRACK-ID 00000018 C-REC 8290001821 CD ERRoR-corm = 00100000
TRACK-ID = 00000019 C-REC 8290001821
TRACK-ID = 00000018 C-REC 8290001822
Ji;RROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001822
TRACK-ID = 00000018 C-REC 8290001823
ERROR-CONI) = 00100000
TRACK-ID = 00000019 C-REC 8290001823
TRACK-ID = 00000018 C-REC 8290001824
ERROR-corlO = 00100000
TRACK-ID = 00000019 C-REC 8290001824

Figure 32. Creating a Direct File with Relative Track Addressing Using Method B
(Part 3 of 4)

114

10/04/73

IBM DOS VS COBOL REL 1.0 PP NO. 5746-CB1 08.40.53 10/04/73

TRACK-ID =
ERROR-COND
TrlACK-ID =
TRACK-ID =
ERRoR-corm
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-IiJ =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COtlO
TRACK-ID =
TRACK-ID =
ERROR-COiW
TKACK-ID =
TRACK-ID =
ERkOR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TkACK-ID =
ERROR-Cmm
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-Calm
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID .::
TRACK-ID =
ERROR-corw
TRACK-ID =
TRACK-ID =
ERRoR-corm
TRACK-IU =

Figure 32.

00000018 C-REC 8290001825
= 00100000
00000019 C-REC 8290001825
00000018 C-REC 8290001826
= 00100000
00000019 C-REC 8290001826
00000018 C-REC 8290001827
= 00100000
00000019 C-REC 8290001827
00000018 C-RBC 8290001828
= 00100000
00000019 C-REC 8290001828
00000018 C-REC 8290001829
= 00100000
00000019 C-REC 8290001829
00000018 C-REC 8290001830
= 00100000 CD 00000019 C-RE:::: 8290001830
00000018 C-REC 8290001831
= 00100000
00000019 C-REC 8290001831
00000018 C-rlEC 8290001832
= 00100000
00000019 C-REC 8290001832
00000018 C-REC 8290001833
= 00100000
00000019 C-REC 8290001833
00000018 C-REC 8290001834
= 00100000
00000019 C-REC 8290001834
00000018 C-REC 8290001835
= 00100000
00000019 C-REC 8290001835
00000018 C-REC 8290001836
= 00100000
00000019 C-REC 8290001836

I 00000018 C-REC 8290001837
= 00100000 (j) 00000019 C-REC 8290001837
00000018 C-REC 8290001838
= 00100000
00000019 C-REC 8290001838

Creating a Direct File with Relative Track Addressing Using Method E
(Part 4 of 4)

Processing COBOL Piles on Mass storage Devices 115

ACTUAL TRACK ADDRESSING CONSIDERATIONS FOR
SPECIFIC DEVICES

Randomizing for the 2311 Disk Drive

When randomizinq for the 2311 Disk
Drive, it is possible to circumvent the
discontinous binary address by coding the
randomizing formula in decimal arithmetic
and then converting the results to binary.
This can be done by setting aside a decimal
field with the low-order byte reserved for
the head number, and the high-order bytes
reserved for the cylinder number. A
mathematical overflow from the head number
will now increment the cylinder number and
produce a valid address. The low-order
byte should then be converted to binary and
stored in the HH field, and the high-order
bytes converted to binary and stored in the
CC field of the actual key field.

RandoJr.i.zing to the 2311 Disk Drive
should present no significant problems if
the programmer using direct organization is
completely aware that the cylinder and head
number give him a unique track number. To
illustrate, the 2311 could be thought of as
consisting of tracks numbered as follows:

Cylinder 0 Cylinder 1 Cylinder 2
---, ---, ---,

Track 1 0 110 120
Numb~rs --f --f --f

1 1 1
---t --i --f

1 1 1
--f ---t --f

1 1 1
--f --f --f

1 1 1
--f --f --f

1 1 1
--f ---t --f

1 1 1
--f --f --f

1 9 119 129

If the randomizing formula resulted in
an address of cylinder 001, head 9:

Cylinder
Number

001

Head
Number

9

this would be a reference to track 19.
This fact allows the programmer to ignore
the discontinuous cylinder and head number.
If his formula resulted in an address of
0020, this would result in accessing
cylinder 2, head 0, the location of-track
20.

116

The programmer can make another use of
this decimal track address. He may wish to
reserve the last track of each cylinder for'
synonyms. If this is the case, he is in
effect redefining the cylinder to consist
of nine tracks rather than ten tracks. The
231'1 cylinder could then be th ough t of as
consisting of track numbers, as follows:

Cylinder 0 Cylinder 1 Cylinder 2
---, ---, , ---,

Track , 0 19 118
Numbers --f --f --f

1 1 119
--f --f ----i

1 1 120
--f --f --f

1 1 1
--f --f --f,

1 1 1
--f --f --f

1 1 1
--f --f --f

1 1 1
--f --f --f

1 8 117 126

If the programmer randomizes to relative
track number 20, he can access it by
dividing the track address by the number of
tracks (9) in a cylinder. The quotient now
becomes the cylinder number, and the
remainder becomes the head number.

2 = cylinder number

9) 0020
18

2 = head number

To simplify randomizing, an algorithm
must be developed to generate a decimal

. track address~ This track address can then
be converted to a binary cylinder number
and head number. In addition, tracks can
be reserved by dividing the t~ack address
by the number of tracks in a cylinder. The
same concepts will hold true for devices
such as the 2314, 3330, or 3340. For
example, an algorithm can be developed
using 20 tracks per cylinder and dividing
by the closest prime number less than 20.

This page intentionally left blank

processing COBOL Files on Mass Storage Devices 117

INDEXED ORGANIZATION (DTFIS)

An indexed file is a sequential file
with indexes that permit rapid access to
individual records as well as rapid
sequential processing. Error recovery from
a DTFIS file is described in detail in the
chapter "Advanced Processing Capabilities."
An indexed file has three distinct areas:
a prime area, indexes, and an overflow
area. Each area is described in detail
below.

Unblocked Records

i

IKEY NUMBERI

A
I
I
I

COUNT KEY

A
I
I
I

DATA

1\ , ,
I

PRIME AREA

When the file is first created, or when
it is subsequently reorganized, records are
written in the prime area. until the prime
area is full, additions to the file may
also be written there. The prime area may
span multiple volumes. Note that the last
track of the prime area may not be used by
the COBOL programmer. .

The records in the prime area must be
formatted with keys, and must be positioned
in key sequence. The records may be
blocked or unblocked. If records are
blocked, each logical record within the
block contains its key, and the key area
for the block contains the key of the
highest record in the block. The Disk
Operating System virtual Storage permits
fixed-length records only. Figure 33 shows
the formats of blocked and unblocked
records on a track.

COUNT KEY DATA

I I '--Logical record (key embedded)
I
I
I
I
I
'--Highest

Blocked Records

I i
IKEY NUMBER,

1\
I
I
I
I ,
I
I , ,
I
'--Highest

I ,
'--Key of logical record

key on track

COUNT KEY DATA DATA DATA

key on track

1\ ,
I
I
I
I
I
I
L-Key

A ,
I
I
'--Logical records with embedded keys

of last logical record in block

Figure 33. Formats of Blocked and Unblocked Records

118

NDEXES

There are three possible levels of
ndexes for a file with indexed
rganization: a track index, a cylinder
,ndex, and a master index. They are
:rea ted and written by the system when the
ile is created or reorganized.

'rack Index

This is the lowest level of index and is
llways present. There is one track index
:or each cylinder in the prime area. It is
llways written on the first track of the
:ylinder that it indexes.

The track index contains a pair of
~ntries for each prime data track in the
=ylinder: a normal entry and an overflow
~ntry. The normal entry contains the home
tddress of the prime track and the key of
:he highest record on the track. The
)verflow entry contains the highest key
tssociated with that track and the address
)f the lowest record in the overflow area.
[f no overflow entry has yet been made, the
lddress of the lowest record in the
)verflow area is the dummy entry X'FF'.

:::ylinder Index

The cylinder index is a higher level of
index and is always present. Its entries
~oint to track indexes. There is one
cylinder index for the file. It is written
on the device specified in the APPLY
CYL-INDEX clause. If this clause is not
specified, the cylinder index is written on
the same device as the prime area.

tiaster Index

The master index is the highest level
index and is optional. It is used when the
cylinder index is so long that searching it
is very time consuming. It is sugge~ted
that a master index be requested when the
cylinder index occupies more, than four
tracks. (A master index consists of one
entry for each track of the cylinder
index.)

The DOS/VS System permits one level of
master index for the file and requires that
it be written immediately before the
cylinder index. If a master index is
desired, the APPLY MASTER-INDEX clause must

be specified in the source program. When
this clause is specified, the cylinder
index is placed on the same device as the
master index.

Note: The indexes are terminated by a
dummy entry containing a key composed of
all ones (bits). To avoid any possibility
of ~rrors, the user should not specify a
key of all ones (HIGH VALUES) for any of
his records.

OVERFLOW AREA

There are two types of overflow areas:
a cylinder overflow area and an independent
overflow area. Either or both may be
specified for an indexed file. Records are
written in the overflow area(s) as
additions are made to the file.

Cylinder Overflow Area

A certain number of whole tracks are
reserved in each cylinder for overflow
records from the prime tracks in that
cylinder. The programmer may specify the
number of tracks to be reserved by means of
the APPLY CYL-OVERFLOW clause. If he
specifies 0 as the number of tracks in this
clause, no cylinder overflow area is
reserved. If the clause is omitted, 20% of
each cylinder is reserved for overflow.
For the 3330, three tracks of each cylinder
will be reserved for overflow. For the
3340, two tracks of each cylinder will be
reserved for overflow. v-Jhen an ISM~, file
has been created with the APPLY CYL-OVERFLOW
clause all FD's, which use the same file,
must specify the same number of cylinder
overflow tracks.

Independent Overflow Area

Overflow records from anywhere in the
prime area are placed in a certain number
of cylinders reserved soley for this
purpose. The size and location of the
independent overflow area can be specified
if the programmer includes the proper job
control EXTENT cards. The area must,
however, be on the same mass storage device
type as the prime area.

A suggested approach is to have cylinder
overflow areas large enough to contain the
average number of overflow records caused
by additions and an independent overflow
area to be used as the cylinder overflow
areas are filled.

Processing COBOL Files on Mass Storage Devices. 119

PRIME DATA AREA

Trac~-1!Q.:.

I I , I I I I I r----,
0001 1000011 1000031 1000091 1000101 1000111

'------l

" " I I
I I
1 1

New record t 1
I

original record moved up I

I I I I I I r----,
0002 1000161 1000171 1000251 1000271

'------l

OVERFLOW AREA

I I

1000141

1\

I
l~-----Record removed from Track 0001

Figure 34. Adding a Record to a Prime Track

Adding Records to an Indexed File

A new record added to an indexed file is
placed into a location on a track in the
prime area determined by the value of its
key field. If records in the file were
placed in precise physical sequence, the
addition of a new record would require the
shifting of all records with keys higher
than that of the one inserted. However,
indexed organization allows a record to be
inserted into its proper position on a
track, with the shifting of only the
records on that track. Any records for
which there is no space on that track are
then placed in an overflow area, and become
overflow records. Overflow records are
always fixed-length, unblocked records,
formatted with keys.

As records are added to the overflow
area, they are no longer in key sequence.
The system ensures, however, that they are
always in logical sequence.

Figure 34 illustrates the addition of a
record to a prime track.

The new record (00010) is written in its
proper sequential location on the prime
track. The rest of its prime records are

120

moved up one location. The bumped record
(00014) is written in the first available
location in the overflow area. The record
is placed in the cylinder overflow area for
that cylinder, if a cylinder overflow area
exists and if there is space in it;
otherwise, the record is placed in the
independent overflow area. The first
addition to a track is always handled in
this manner. Any record that is higher
than the original highest record on the
preceding track, but lower than the
original highest record on this track, is
written on the prime track. Record 00015,
for example, would be written as the first
record on track 0002, and record 00027
would be bumped into the overflow area.

Subsequent additions are written either
on the prime track where they belong or as
part of the overflow chain from that track.
If the addition belongs between the last
prime record on a track and a previous
overflow from that track (as is the case
with record 00013), it is written in the
first available location in the overflow
area on an empty track, or on a track whose
first record has a numerically lower key.

If the addition belongs on a prime track
lS would be the case with record 00005),
: is written in its proper sequential
)cation on the prime track. The bumped
~cord (record 00011) is written in the
rerflow area.

A record with a key higher than the
lrrent highest key in the file is placed
1 the last prime track containing data
~cords. If that track is full, the record
~ placed in the overflow area.

:CESSING AN INDEXED FILE (DTFIS)

An indexed file may be accessed both
~quentially and randomly.

:CESSING AN INDEXED FILE SEQUENTIALLY: An
~dexed file may only be created
=guentially. It can also be read and
~dated in the sequential access mode. The
)llowing specifications may be made in the
)urce program.

~VIRONMENT DIVISION

eguired clauses:

SELECT [OPTIONAL] file-name

ASSIGN TO sYsnnn-DA-\~!~~!- I
2319
3330
3340

RECORD KEY Clause
NOMINAL KEY Clause (when reading, if the

START statement is used)

ptional clauses:

FILE-LIMIT Clause
ACCESS MODE IS SEQUENTIAL
PROCESSING MODE IS SEQUENTIAL
RERUN Clause
SAME Clause
APPLY WRITE-VERIFY Clause (create and

update)
APPLY CYL-OVERFLOW Clause (create)

{

MASTER-INDEX}
APPLY Clause

CYL-INDEX

RESERVE Clause

Invalid clauses:

ACCESS MODE IS RANDOM
ACTUAL KEY Clause
TRACK-AREA Clause
MULTIPLE FILE TAPE Clause
APPLY WRITE-ONLY Clause
APPLY EXTENDED-SEARCH Clause
APPLY CORE-INDEX Clause

ACCESSING AN INDEXED FILE RANDOMLY: A
randomly-accessed indexed file may be read,
updated, or added to. The following
specifications may be made in the source
program:

ENVIRONMENT DIVISION

Reauired clauses:

SELECT [OPTIONAL] file-name

ASSIGN TO SYSnnn-DA- \~!l~! -I
2319
3330
3340

ACCESS IS RANDOM
NOMINAL KEY Clause
RECORD KEY Clause

Optional clauses:

FILE LIMIT Clause
PROCESSING MODE IS SEQUENTIAL
TRACK-AREA Clause
RERUN Clause
SAME Clause
APPLY WRITE VERIFY Clause
APPLY CYL-OVERFLOW Clause
APPLY CORE-INDEX Clause

{

MASTER-INDEX}
APPLY

CYL-INDEX

Invalid clauses:

RESERVE Clause

Clause

ACCESS MODE IS SEQUENTIAL
ACTUAL KEY Clause
~ULTIPLE FILE TAPE Clause
APPLY EXTENDED-SEARCH Clause

Key Clauses

When creating an indexed file, the only
key clause required is the RECORD KEY
clause. The data-name specified in this
clause is the name of the field within the
record that contains the key. Keys must be
in ascending numerical order when creating
an indexed file.

Processing COBOL Files on Mass Storage Devices 121

If a START statement is used when
retrieving an indexed file sequentially,
the NOMINAL KEY clause is required.

When accessing an indexed file randomly,
both the NOMINAL KEY and RECORD KEY clauses
are required. When reading the file, the
data-name specified in the NOMINAL KEY
clause is the key of the record which is
being retrieved. The data-name specified
in the RECORD KEY clause is the name of the
field within the record that contains this
key.

When adding records to an indexed file,
the data-name specified in the NOMINAL KEY
clause is the key for the record being
written and is used to determine its
physical location. The data-name specified
in the RECORD KEY clause specifies the
field in the record that contains the key.

Note: If an INVALID KEY exit is taken on a
START statement, the key value in the
NOMINAL KEY data-name should be corrected

122

and another START statement issued to
ensure correct retrieval of blocked
records.

Improving Efficiency

When processing an indexed file, the
following source language Environment
Division clauses may be used to improve
efficiency:

TRACK-AREA Clause
APPLY CORE-INDEX Clause

For additional details, see the
publication IBM DOS Full American National
Standard COBOL.

The DOSjVS Compiler supports 3540
Lskette unit file management. This device
5 quite different from standard direct
:cess devices as it does not access data
lndomly. The medium used for reading and
citing is a diskette which can be easily
liled from one location to another.

Data can be recorded on the 3540
lskette in two ways:

1. Keypunching on the diskette via the
3740 processing device.

2. writing sequential data sets on the
diskette via the 3540 Diskette unit
attached to a System/370.

DOS/VS COBOL processing applies only to
he processing of data on the diskette by
he 3540 Diskette unit.

For the use of system files on diskette,
ee DOS/VS System Management Guide.

ILE PROCESSING

File processing for the 3540 is
eguential only. Only fixed-length
hysical records can reside on the
iskette. Logical blocking of records is
n available function and will be discussed
. n the section entitled "Cobol Language
:onsiderations."

The system interfaces with the COBOL
Ibject module through DTFDU, (generated as
lart of the object module) , and DUMOD logic
lodules (used to perform actual 1-0
~rocessing). The generated DTFDU will
;orrespond to a DTFDU generated by the
ITFDU macro (described in DOS/VS Supervi§Q£
Lnd 1-0 Macros) with the exceptions
;pecified later in this section.

The physical considerations of the 3540
Liskette include:

• The diskette is divided into character
sectors with each sector containing 128
characters.

• Each record may occupy no more than one
sector, and may be from 1 to 128
characters long.

• Each record in a file must be the same
size.

PROCESSING 3540 DISKETTE UNIT PILES

• Blocking factors can be only 1, 2, 13,
or 26 records.

Files may be extended to additional
diskettes if one diskette is too small.
This is done automatically by LIOCS if DLBL
and EXTENT cards are provided for
additional processing. There is no user
program control to force end of volume for
this device.

File labels exist on the 3540 Diskette
for each file, but no user control or
processing of these labels is provided by
the DOS/VS system. Label management will
be handled strictly by LIOCS. The user
will only have to provide the name for the
file in the DLBL control card.

COBOL LANGUAGE CONSIDERATIONS

ENVIRONMENT DIVISION

The following format of the SELECT
statement applies to the 3540:

Required clauses:

SELECT [OPTIONAL] file-name

ASSIGN TO SYsnnn~ir3540-S[-name]

Sort work files may not be assigned to
the 3540. A 3540 may not be a checkpoint
device •

Optional clauses:

RESERVE clause
ACCESS MODE IS SEQUENTIAL Clause
PROCESSING MODE IS SEQUENTIAL clause
RERUN ON system-name EVERY integer

RECORDS OF file-name
(System-name cannot specify 3540;

file-name can refer to 3540 file;
checkpoint records cannot be taken on
a diskette, but a diskette can be used
to control when checkpoints are
taken.)

SAME clause
PILE LIMIT clause

Invalid Clauses:

APPLY WRITE-ONLY clause (only
fixed-length records allowed)

APPLY WRITE-VERIFY clause (function not
supported)

ACCESS MODE IS RANDOM clause
ACTUAL KEY clause

Processing 3540 Diskette Unit Files 123

NOKINAL KEY clause
RECORD KEY clause
TRACK-AREA clause
MULTIPLE FILE TAPE clause
RERUN clause (see restrictions above)
APPLY EXTENDED-SEARCH clause
APPLY CYL-OVERFLOW Clause

{

MASTER-INDEX}
APPLY clause

CYL-INDEX

APPLY CORE-INDEX clause

DATA DIVISION

The following restrictions apply to the
FD and record description for a 3540 file:

• Recording mode must be F.

• Label records must be standard.

• RECORD CONTAINS clause cannot specify
more than 128 characters, or "integer-1
to integer-2" CHARACTERS.

• The BLOCK CONTAINS clause must specify
the RECORDS option only. Blocking is
permitted for the most efficient usage
of the 3540. If this clause is
specified, only 1, 2, 13, or 26, will
be accepted as the blocking factor.
Any other number will cause a
diagnostic.

• In the record description, a maximum of
128 characters will be allowed for a
3540 file.

• The record description for a 3540 file
must not include any items with the
OCCURS DEPENDING ON clause, as variable
records are not allowed.

Procedure Division
Considerations

Special

• OPEN Statement. 3540 files may be
opened for input or output only. Since
updating is not permitted for a 3540
file, OPEN 1-0 is not allowed.

• Only one 3540 file per diskette may be
open simultaneously.

• The REVERSED and NO REWIND options of
the OPEN statement are not valid for a
3540 file.

• WRITE Statement. The INVALID KEY
option may not be used for a 3540 file.
If the end of the diskette is reached
and additional diskette information has
not been supplied via additional EXTENT
control cards, the operator will be

124

queried to either supply an EXTENT
through the console or cancel the job.

• Standard errors can be handled in a USE
AFTER STANDARD ERROR Declarative. Two
types of errors will cause control to
return:to an error declarative for 3540
files:

.1. Data check

2. Equipment {check

If the GIVING option is specified, byte
1 will indicate a data check, and byte
2 will indicate an equipment check.

In either case, the error procedure is
used to continue processing or to close
the file. If processing continues and
the file is blocked, the remaining
records in the block after the record
causing the error may be lost when the
next READ or WRITE statement is
executed.

If no error declarative is specified, a
message will be issued describing the
type of error, and the job will be
canceled.

• CLOSE Statement. When a CLOSE
statement is executed for a 3540 file,
the present diskette will be fed out
into the output hopper. CLOSE UNIT may
not be used as no forced end-of-volume
support is included for the 3540
Diskette unit. CLOSE NO REWIND may not
be used. The LOCK option will be
supported for 3540 files.

The compiler will generate DTFDU with
the following defaults:

1. No write protection

2. Feed = yes

3. Volume sequencing will be checked.

4. No read/write security.

Job Contro~uirements

Normal job control DLBL and EXTENT
statements for the 3540 are shown below.

,BL Statement

le format of the DLBL statement is:

I DLBL filename,['file-ID'],[date],[code]

Ll~ -- is a unique filename of 3 to 7
laracters identical to the symbolic name
: the DTF that identifies the file.
Ipported in the same way as for current
~vices. This corresponds to the "name"
Leld of system-name in the SELECT
tatement if specified, or to SYSnnn in the
,stem-name.

file-ID' -- only the first 8 characters
III be used. Supported in the same manner
5 for current devices.

~te -- provides the expiration date for
le file. Supported in the same way as for
lrrent devices.

)de -- is a field indicating the type of
ile label. DU for diskette unit is
~pported. It is supported in the same way
5 for current devices.

XTENT Statement

The format of the EXTENT statement is:

I EXTENT [symbolic-unit],
[serial-number],[1]

ymbolic unit -- indicates the symbolic
nit (SYSxxx) of the volume for which the
xtent is effective. It is supported in
he same way as for current devices.

erial number -- indicates the volume
erial number of the volume for which this
xtent is effective. It is supported in
he same way as for other devices. The
erial number is optional. If omitted, the
olume that is mounted is assumed to be the
orrect volume.

~ -- indicates the type of extent. A
t11 indicates 'data area.' No other types
are supported.

3540 File

The following DLBL and EXTENT statements
describe a file that resides on a 3540
diskette.

II DLBL MASTER,,75/001,DU
/1 EXTENT SYS015,111111,1

in the following example, the program
CREATES creates a diskette (DU) file named
SALES that is to be retained until the end
of 1975. The file comprises up to three
diskettes. The diskettes have the volume
serial numbers 111111, 111112, and 111113,
and are mounted on the drive assigned to
the symbolic device name SYS005.

/1 JOB EXAMPLE
II ASSGN SYS005,X'060'
/1 DLBL SALES,'ANNUAL',75/365,DU
/1 EXTENT SYS005,111111,1
II EXTENT SYS005,111112,1
/1 EXTENT SYS005,111113,1
// EXEC CREATE
IS

The COBOL statements which correspond to
this are:

SELECT SALES-FILE ASSIGN
TO SYS005-DA-3540-S-SALES.

FD SALES -FILE
RECORDING MODE IS F
LABEL RECORDS ARE STANDARD
RECORD CONTAINS 80 CHARACTERS.

01 DISKETTE-RECORD.
02

Processing 3540 Diskette Unit Files 125

VSN1 is a high-performance access method
)r direct or sequential processing of
Lxed and variable length records on direct
:cess devices. It has more functions,
~nerally better performance, better data
1tegrity and security, improved data
cganization, and is easier to use and
)ntrol than the DOS/VS DAM and ISN-1
:cess methods.

VSAM files can be processed only by the
SAM file processing technique. The
rogrammer can convert SN1 and ISN·1 files
J VSAM files by using the method described
~ the section entitled "Converting
In-VSAM Files to VSN1 Files." The
Jllowing topics related to VSN1 are
iscussed in this chapter:

VSN1 File processing
Access Method Services
Error Handling

ILE ORGANIZATION

COBOL allows access to the three major
ypes of VSAM files ("files" in DOS; "data
ets" in OS): entry-sequenced files, key-'
equenced files, and relative record files.
he primary difference among the three is
he order in which their data records are
tored and retrieved.

Records are stored in an entry-
equenced file without respect to the
onterits of the records. The sequence is
etermined by the'order in which the
ecords are presented for inclusion in the
ile: that is, their entry sequence. New
ecords are stored at the end of the file.
ecords can be retrieved sequentially only,
hat is, in the order in which they were
tored in the file.

Records are stored in a key-sequenced
ile in key sequence: that is, in the
rder defined by the collating sequence of
he primary key field in each record. Each
ecord has a unique value in the primary
ey field, such as employee number or
nvoice number. VSN1 uses the key
ssociated with each record to insert or
etrieve a record in the file. The order
f retrieval can be random or sequential.

Records are stored in a relative record
ile in relative record number sequence.
he file may be described as a string of
ixed-length slots, each of which is
dentified by a number that gives its

VIRTUAL STORAGE ACCESS METHOD (VSAM)

position relative to the first such slot.
New records are inserted either
sequentially in the next available slot,
where they assume that relative record
number, or according to a relative record
number that the programmer specifies.
Records may be retrieved either
sequentially or by specific relative
record number.

KEY-SEQUENCED FILES

Like ISN1 files, key-sequenced files
are ordered according to a user defined
key field in each record. That is, they
are ordered according to the collating
sequence of the key field in each record.
Each record has a unique value in the key
field, such as employee number or invoice
number. VSN1 uses the key associated with
each record to insert a new record in the
file or to retrieve a record from the file.
The order of access can be random or
sequential. Key-sequenced files, however,
can generally be processed faster than
ISN1 files because VSAM has a more
efficient index and does not use chained
record overflow.

Multiple indexing is also available.
This means that a record may have both a
primary key and up to 253 alternate, or
secondary, keys. An alternate key may be
any field in the data record that has a
fixed length and position. (In spanned
records, the alternate key must be in the
first control interval.) Alternate keys
serve the same function in accessing data,
but allow the user additional flexibility
in processing. In contrast to the primary
key, values of these alternate keys need
not be unique.

When a key-sequenced file is created,
certain portions can be left empty, that
is, free space can be distributed
throughout the file. This free space is
used when inserting new records or
lengthening existing records. This
eliminates the need for overflow chains
and overflow areas; it also minimizes
data movement. Thus performance does
not degrade substantially as records
are added and the file does not have to
be reorganized as often as an ISAM file.
VSAM reclaims space when a record is
deleted or shortened, and the space
released becomes free space.

Virtual storage Access Method (VSAM) 127

The index of a key-sequenced VSM1 file
is more efficient than an ISAM index
because it generally requires less direct
access space and less updating of index
entries. Space is saved in three ways:
by eliminating redundant key information
(key compression), by having fewer keys
in the index than there are records in
the file(non-dense index), and by
blocking index records. A shorter index
requires less time to search and update.
Updating is infrequent, because index
entries are not usually modified when
records are added to or deleted from
the file.

A key-sequenced file is defined in
COBOL by specifying:

SELECT file-name ASSIGN TO
SYSnnn -class -device -name
ORGANIZATION IS INDEXED
RECORD KEY IS ...

ENTRY-SEQUENCED FILES

Records are stored in entry-sequenced
files in the order they are presented for
inclusion on the file (that is, their
entry-sequence), and without respect to the
contents of the records. No keys are
recognized and, consequently, no indexes
are built. The order of records is fixed;
they are not moved. Thus, free space is
not distributed throughout the file and new
records are placed at the end. Records
cannot be shortened, deleted, or
lengthened. Since there is no index, the
user must access the file sequentially (in
the order the records were written).

An entry-seguenced file is defined in
COBOL by specifying:

SELECT file-name ASSIGN TO
SYSnnn[-class][-device]-AS[-name]
ORGANIZATION IS SEQUENTIAL ••••

RELATIVE RECORD FILES

A relative record file has no index. In
its string of fixed-length slots, only the
relative record number--a number from 1 to n,
where n is the maximum number of records that
can be-stored in the file--identifies the
record. Each record occupies one slot, and
is stored and retrieved according to the
relative record number of that slot. The
record's contents and entry sequence are
unimportant.

Records in a relative record file are
grouped in control intervals, just as they
are in an entry-sequenced' or key-sequenced
file. Each control interval contains the

128

same number of slots. The size of each
slot is the record length specified by the
user when the file is defined.

A relative-record file is defined in
COBOL by specifying:

SELECT file-name ASSIGN TO
SYSnnn [-class] [-device] ~name]
ORGANIZATION IS RELATIVE. . .

DATA ORGANIZATION

Th~ data organization of ISAM is based
on the physical units of disk cylinder and
disk track, while the data organization of
VSAM is based on logical units called
control intervals and control areas. A
control interval is the unit of
direct-access storage that is transferred
to and from virtual storage. It can
contain one or more records in one or more
blocks. Each entry in the lowest index
level of a key-sequenced VSAM file points
to a control interval. Free space in a
key-sequenced file is distributed in terms
of the percent of total space. A per
centage of each control interval can be
free space and some control intervals can
be entirely free space. Indexes are also
organized in control intervals. Each
contains a single index record which can
have many index entries. A control area
is a group of control intervals. V SAM.
data organization provides for device
independence by reducing the programmer's
concern about the physical characteristics
of the data and the index. Figure 35
illustrates VSAM data and index structure.

DATA ACCESS

Key sequenced files can be accessed
either sequentially, or directly by key.
The key used can be either the full key or
a generic key (any front part of the full
key) .

The COBOL user can retrieve, add,
update or delete records from a VSM1 file
by means of the READ, WRITE, REWRITE and
DELETE verbs. Also, by means of the START
verb, any record in the file can be
located and sequential retrieval begun
from that record.

VSAM CATALOG

VSAM keeps central control over the
creation, access, and deletion of files and
over the management of direct-access
storage space allocated to those files.
This is done by keeping information on file
and space characteristics in one place, the

VSAM catalog. The catalog, which is unique
to VSA~, makes it easier to (1) keep track
of files and available direct-access
space, (2) write job control statements to
create and process VSAM files, and (3) move
VSAM files to other DOS/VSE systems or to
OS/VS systems. There can be more than one
VSAM catalog. However, only one catalog
at a time can be connected to the system.
Each catalog can keep track of VS~1 files
on many volumes; it is not necessary to
mount a volume to determine whether or
not it has space available for a VSAM file.

Virtual Storage Access Method (VSM1) 128.1

~ure 35 shows the structure of the
ta and index in a VSM1 file. It
es not represent accurate propor
Jns in terms of the number of
~ords in a control interval, etc.

the example, if the user ~"anted to

1) ~ew records are physically
lnserted where they logically
belong with only local record
movement required. Thus, new
records are retrieved in the
same fashion as are old records.

j a record whose record key was 1048,
logically belongs between records

24 and 1068. This is where VSM~
~ld insert the record physically.

2) Since the index pointers are
non-dense (one for each control
interval rather than one for
each record), the insertion of
the record requires no change e record with key 1068 would be"

ved over in the control interval
king up free space, to make room
~ the new record. This movement
records is cone in core before any

iting takes place.

is example illustrates several
ints:

to the index. "

3) Record movement for insertion
deletion, and updating takes '
place in storage, before any
I/O takes place, thus improving
data integrity.

Index
Records

r-----,r- - - -,- - --

Figure 35. VSAM Data Organization

I ___ __ -1.. __ _

Data records
collected into
control intervals

Note: The numbers
represent RECORD KEY
values for the records

Virtual Storage Access Method (VSAM) 129

FILE AND VOLDrm PORTABILITY

A significant feature of VSM1 is that
files can be moved from one DOS/VSE
system to another or to an OS/VS system.
This is possible because VSAM data format
is identical under both DOS/VSE and
OS/VS.

SERVICE PROGRM1S

VSAM has an extensive service program
package, called Access Method Services,
which can be used to:

• Define, print, copy , or
reorganize VSAM files.

• Add, alter, delete, or print catalog
entries.

• Convert ISAM and SAM files to VSAM
files.

• Export and import files from one
system to another.

DEVICE SUPPORT

I VSAM files can be written on 2314, 3330,
3340, 3350, 3375, and fixed block devices.

SECURITY

Through COBOL, access to the file can be
restricted by use of the PASSWORD clause in
the SELECT statement.

ERROR PROCESSING

VSAM provides exits to a user-supplied
routine to handle I/O and/or logical errors
or exeception conditions. This is done in
COBOL via the USE AFTER STANDARD ERROR
declarative and the INVALID KEY and AT END
clauses. A STATUS KEY may be specified,
and the details of the condition
determined.

VSAM MESSAGES

Like other access methods, VSAM issues
messages to the operator, if for example,.
the incorrect volume is mounted, etc.
These messages are described in DOS/VSE
Hessages. VSA~1 Access Method Services also
issues messages to the programmer which ar~

Idocumented in Using VSE/VSAM Commands and
Macros. COBOL issues VSM1 messages to

130

the operator and/or programmer. These are
listed in "Appendix I: Diagnostic
Messages."

I ACCESS METHOD SERVICES

Access Method Services is a utility
program. A number of user-entered commands
either modal or functional, initiate the
Access Method Services programs. The
functional commands invoke the desired
Access Method Services function while the
modal commands control the sequence of
execution of the functional commands. In
this chapter, only certain commands and

I
parameters are discussed. For complete
details on the use of commands, see Using
VSE/VSAM Commands and Macros. -----

FUNCTIONAL Cm1MANDS

The functional commands DEFINE, ALTER,
and DELETE, create,. Irtodify, and remove
VSAM catalogs and files. r~ISTCAT lists the
contents of a VSM1 qatalog. REPRO and
PRINT reproduce files either as new files
or as printed output. H1PORT and EXPORT
transfer files from one system to another.
BLDINDEX builds alternate indexes for
VSAM key-sequenced files. VERIFY provides
a file recovery service for VSM1 files by
verifying that the end of the file indicated
in the catalog is the same as the actual
file end.

The DEFINE Command

The DEFINE command must be used to
define:

1. Master catalog: catalog in which all
VSAM files must be entered.

2. User catalog (optional): catalog in
which VSM1 files may be entered.

3. Data space (optional): space that
is to be used by VSM1.

4. VSM·1 clusters: files that are to be
processed by VSAM.

5. Any alternate indexes.

6. Any alternate paths.

In order to process a VSAM file, the
above must be done in the order indicated.
Therefore it is necessary to fully
understand the DEFINE command, its objects,
its functions, and its specification.

Functions of the DEFINE Command

An object, in VSMl terminology, is:

• A VSAM catalog

• A VSAM file (key-sequenced, entry
sequenced, or relative record)

• A VSM1 data space

• A VSAM key-sequenced file alternate
index

• A VSAM key-sequenced file path

Files must be introduced to the system
and defined as entries in either the master
or user catalog. Non-VSM1 files may also
be cataloged in a VSM1 catalog. All VSMl
and non-VSAH files are introduced to the
system with the DEFINE command.

Virtual Storage Access Hethod (VSM1) 130.1

SAM files must be cataloged in a VSAM
atalog. Non-VSAM files may also be cata
Jged in a VSAM catalog. All VSAM files
~e introduced to the system through the
I!:FINE command.

There are two steps in the creation of
~ object: defining the object in the
atalog, and generating the contents of
hat object. The DEFINE command simply
akes an entry in the catalog, it does not
~nerate any content.

pecification of the DEFINE Command

The DEFINE command has the following
ormat:

DEFINE object parameters

The definable objects are as follows:

l\STERCATALOG
The VSAM master catalog is to be defined.

SERCATALOG
A VSM1 user catalog is to be defined.

PACE
A VSAM data space is to be defined.

LUSTER
A file is to be defined.

LTERNATEINDEX
An alternate index for a key-sequenced
file is to be defined and have space
allocated.

z\'TH
Establish the relationship between an
alternate index and its file (base
cluster) .

)NVSAM
A file not having the VSAM file
organization is to be cataloged in a
VSAM catalog.

)r each file there is an associated valid
:q::ameter list.

Definin0 a VSAM Master Catalog: DEFINE
MASTERCATALOG

The DEFINE HASTERCATALOG command must be
used to set up the master catalog. It is
the first Access Method Services command
used since without a master catalog other
objects cannot be defined. Defining a
master catalog is somewhat different from
defining a file. When the user defines a
file, space need not necessarily be
allocated as part of the define operation.
However, the process of defining a catalog
always involves the allocation of space for
that catalog. Entries for both the master
catalog itself and the volume containing
the data space automatically cre-ated are
placed in the master catalog.

The following is an example of defining
a VSAM master catalog.

III JOB
III DLBL
III EXTENT
III EXEC
I DEFINE
I
I
I
1/*
1/&

DEFINE A VSAM CATALOG
IJSYSCT,'VSAMCAT'"VSAM
SYSCAT,321940,1,,100,250
IDCAMS,SIZE=26K
MASTERCATALOG(NAME(VSAMCAT)
VOLUME (3219L~0) TRACKS (250) -
FILE (IJSYSCT) UPDATEPW(SECRET)
READPW(NOSECRET»

Figure 36. Defining a VSAM Master Catalog

The DLBL statement must be used to
specify the filename and the code which
identifies VSAM. The filename must be
specified as IJSYSCT.

The logical unit in the EXTENT statement
must be SYSCAT. The user must decide which
volumes and which extents will contain the
catalog. Note that the VOLUMES parameter
and the space allocation parameter
(CYLINDERS, TRACKS, or RECORDS) must be
included in the DEFINE command, and must
agree with the information in the EXTENT
statement. If the CYLINDERS parameter is
used, each extent must begin on a cylinder
boundary.

The following parameters were used in
the above example:

NAME (VSAMCAT)
The name of the VSAM master catalog
is VSAMCAT. All future references to
the catalog are made using this name.

Virtual Storage Access Method (VSAM) 131

VOLUME (321940)
The volume serial number on which the
catalog is to reside is 321940.

TRACKS (250).
The number of tracks allocated to the
catalog is 250. This must agree with
the information on the EXTENT card.

Note that every key-sequenced file
requires three catalog entries: one
each for the cluster, data component,
and index component. Every
entry-sequenced file requires two
catalog entries: one for the cluster
and one for the data component.

FILE (IJSYSCT)
This parameter identifies the
filename of the DLBL statement
that specifies the device and
volume for allocation. The
filename must be specified as
IJSYSCT.

UPDATEPW (SECRET)
The update level password is SECRET.
This is an optional parameter.
Hm.,rever, if any file which is
cataloged in the VSM1 catalog is to
be password protected, the catalog
itself must also be password
protected.

READPW (NOSECRET)
The read level password is NOSECRET.
This is an optional parameter. If
specified, all reading of the catalog
requires this password.

There are 4 levels of password pro
tection for a VSAM catalog or file. They
are: master level (this is the highest
level of protection), the CI level (this is
a special case and should not be used with
COBOL), the update level and the read level
(the lowest level of protection).

If password protection is not speci
fied at a higher level, but is specified at
a lower level, then the lower level pass
word becomes the passwora for the higher
levels which are not specified. If
password protection is not specified for
the lowest level (read level) then there is
no password protectiun for that lowest
level or for the higher levels which
are not specified.

So in the example, SECRET is the mas
ter level password as well as the update
level password, since the master level
password was not specified.

The update level password of the
catalog is required in order to change
the content of the catalog, for example to
DEFINE or DELETE a file in that catalog.

132

Defining a User Catalog: DEFINE USERCATALOG.

The DEFINE USERCATALOG command sets up
user catalogs. When a user catalog is
defined, a data space to contain the catalog
is automatically created. An entry for the
volume containing the data space is placed
in the user catalog being defined. Entries
for the user catalog being defined are
placed in the master catalog and in the
user catalog itself.

The parameters that may be used with
DEFINE USERCATALOG are the same as those
described for DEFINE MASTERCATALOG with one
exception: There is an additional parameter
that may be used with DEFINE USERCATALOG.

CATALOG (mastercatname/password)
This parameter specifies the name and
password of the master catalog that
contains the entry for the user catalog
being defined. This parameter is
required only when the master catalog is
password protected.

For mastercatname, the name of the master
catalog is substituted.

For password, the update or higher level
password is substituted.

Defining a VSAM Data Space: DEFINE SPACE

VSM1 data space is space which is
owned and managed by VSAM. When space on a
volume is defined in a VSAM catalog then
that volume is said to be owned by that
VSAM catalog. This means that no other
VSM1 catalog can own space on that volume.
It does not mean that there can be no
non-VSN~ space on the volume.

VSAM data space can contain the
records for one file or for many files,
but all the files occupying a VSAM data
space must be cataloged in the same VSAM
catalog as is the space.

Since the process of defining VSAM
data space necessarily requires the allo
cation of space, JCL is required for ex-
tent information. .

Figure 37 is an example of defining a
VSAM data space:

i

III JOB
III ASSGN
III DLBL
III EXTENT
III EXEC

DEFINE A VSAM DATA SPACB
SYS001,X'130'
VPILENM",VSAM
SYS001,321942,1,,800,400
IDCAMS,SIZE=26K

1 DEFINE
I

SPACE (FILE (VFILENM)
TRACKS (400)

I VOLUMES (321942))
I CATALOG (VSAMCAT/SECRET)
1/*
1/& L-__ ~

Figure 37. Defining a VSAM Data Space

The DLBL state~ent must be used to
specify the filename and the code which
identifies VSAM files. The filename
(VFILENM) -is the same as the FILE parameter
and connects the job control statements to
the DEFINE command. The EXTENT statement
must be used to specify the symbolic unit
name, the volume serial number, and the
space parameters. The VOLUMES parameter
and the space allocation parameter
(CYLINDERS, TRACKS, or RECORDS) must be
included in the DEFINE command, and must
agree with the information in the EXTENT
statements. If the CYLINDERS parameter is
used, each extent must begin on a cylinder
boundary.

The following parameters were used in
Figure 37.

FILE (VFILENM)
This required parameter identifies the
filename of a DLBL statement that
specifies the devices and volumes to
be used for space allocation.

TRACKS (400)
This parameter specifies the amount
of space to be allocated in terms of
tracks. The number used to specify
the tracks to be allocated to the
data space must agree with the
information in the extent statements.

VOLUMES (321942)
This required parameter specifies the
volumes to contain the data spaces.
If more than one volume is specified,
each volume will contain a data space
of the same size. Note that the
VOLUMES parameter must agree .with the
information in the EXTENT statements.
The volume serial number of the
volume(s) containing the data space(s)
is substituted for volser.

Virtual Storage Access Method (VSAM) 132.1

~ATALOG (VSAHCAT/SECRET)
Th.is is a required parameter if the
master catalog is password protected.
It specifies the name of the catalog
which is to own the space, and the
update password for that catalog.

)efining a VSAl1 File

The DEFINE CLUSTER command establishes
:he primary keys for the records. If only
)rimary keys are to be used, then only this
)EFINE CLUSTER command is needed. If
llternate keys are also to be used (as in
:his example), they are established with
:he DEFINE ALTERNATE INDEX and DEFINE PATH
~ommands. In addition (after the base
~luster is filled with records), a follow
)n job must be run to specify the BLDINDEX
:onunand. (See Using VSE/VSAM Commands and
1acros.)

~ote: This command cannot be used to add
~rds to the VSAM file.

VSAl1 files can be sub-allocated or
lnique. A sub-allocated file is one which
is defined using space from one or more
existing data spaces. For such a file,
)LBL and EXTENT statements are not
~equired. Label processing is not
performed since information needed to set
~p the file is in the DEFINE command, and
information about the data spaces to be
used for the file is in the VSAl1 catalog.

A unique VSM1 file is one which occupies
data space uniquely allocated to it, not to
be shared by other files. The data and the
index of a key-sequenced unique file must
occupy separate data spaces; each requires
DLBL and EXTENT statements.

Figure 38 is an example of defining a
suballocated key-sequenced file with an
alternate index and its path.

II JOB
VI EXEC

DEFINE

DEFINE

DEFINE

DEFINE
IDCANS, SIZE=26K
CLUSTER (NAME (MSTRFILE)
VOLUr1E(231942)

RECORDSIZE(40 55)
RECORDS9100,10)
FREESPACE (10 5)

SUBALLOCATION
INDEXED

KEYS(8 2)
UPDATEPW(WRITEFL)
ATTEMPTS(O))
CATALOG (VSAMCAT/SECRET)
SHAREOPTIONS(2)
ALTERNATE INDEX (NAl1E(ALTX)
RELATE (HSTRFILE)
RECORDS(100,10)
KEYS(6 15) UNIQUEKEY
ATTEMPTS(O))
CATALOG (VSAMCAT/SECRET)
SHAREOPTIONS(2)
PATH (NAME (PATHX)
PATHENTRY(ALTX)
UPDATE)
CATALOG (VSAMCAT/SECRET)

Figure 38. Defining a Key-Sequenced Sub
Allocated VSAH File with Both
Primar.y and Alternate Keys

The following parameters are used in
Figure 38.

• NAME (HSTRFILE) -- This parameter is
required and specifies the name to be
given to the file being defined •

• VOLUME (231942) -- This required
parameter is used to specify the
volume on which the defined object is
to be placed.

• RECORDS (primary [secondary]) -- This
parameter specifies the amount of
space to be suballocated in terms of
the number of records the space is to
hold.

• RECORDSIZE (size1 size2) -- This
required parameter s~ecifies the length
attributes of the logical records in
the file. The size specified can be
from 1 to 32,761. size1 is the average
length of all logical records. size2
is the maximum length of any logical
record.

Virtual storage Access Method (VSAM) 133

134

• FREESPACE (percent 1 [percent 2]) -
This parameter specifies the percen
tage of space that is to be reserved
during initial and subsequent alloca
tions. percent 1 specifies the amount
of unused space to be left in each
control interval. percent 2 specifies
the amount of unused control intervals
be left in each control area.

Note: This parameter is valid for
key-sequenced files only.

• UNIQUE/SUBALLOCATION -- This ~arameter
specifies whether the object ~s
allocated a space of its own, or
whether a portion of an already defined
VSAM data space is suballocated to the
object.

UNIQUE
specifies that the object being
defined is allocated a space of its
own. An object with the UNIQUE
attribute appears in the VTOC of
its volume under its own name.

SUBALLOCATION
specifies that a portion of an
already defined VSAM data space is
suballocated to the object. Objects
with the SUBALLOCATION attribute do
not appear in the VTOC. Only the
name of the data space that
contains the object appears there.
If the object has the SUBALLOCATION
attribute, there must be a VSAM
data space defined on the volume on
which the object is being defined.

• INDEXED/NONINDEXED This parameter
specifies the type of cluster being
defined.

INDEXED
specifies that the cluster being
defined is for a key-sequenced
file. This is the default.

NON INDEXED
specifies that the cluster being
defined is for an entry-seguenced
file.

• KEYS (length position) -- This
parameter specifies the length and the
starting position of the key field
within each logical record. (Position
o is the first byte in the logical
record.) The key field with this
specified length, and starting in the
specified position, is in all logical
records in a key-sequenced file. -The
sum of length and position must be
equal to or less than the length of the
logical record.

• UPDATEPW (password) -- This parameter
specifies the. update level password
for the file being defined. The
update level pass'word permits input
and output operations (READ, START,
DELETE, WRITE, REWRITE) against the
logical records of the file.

Note that this file has no read-level
protection and that its master level
password is WRITEFL .

• ATTEMPTS (count) -- This parameter
specifies the maximum number of times
the operator can try to enter the
password in response to a prompting
message. Count can be any number from
a through 7. The value a prevents any
password prompting.

• CATALOG (catalog name/password) -- This
parameter specifies the catalog and its
update level password that is to
contain the entries for the cluster.

• SHAREOPTIONS(2) -- This parameter must
be used for DEFINE CLUSTER or DEFINE
ALTERNATEINDEX.

• RELATE -- This parameter specifies the
name of the base cluster, as given in
the (NM1E(name)) field of the DEFINE
CLUSTER for this file. This is a
required parameter.

• UNIQUEKEY/NONUNIQUEKEY -- This
parameter specifies whether each
alternate key points to only one data
record or to more than one. If to
more than one, then NONUNIQUEKEY must
contain the WITH DUPLICATES phrase in
the associated ALTERUATE RECORD KEY.
A specification of UNIQUEKEY requires
that the COBOL program not have such a
WITH DUPLICATES phrase.

• UPGRADE -- This parameter specifies
that this alternate index is to be
kept up to date when its base cluster
is modified. This is a required
parameter.

• PATHENTRY -- This parameter specifies
the name of the alternate index, as
given in the (NM1E(name)) field for
the related DEFINE ALTERNATEINDEX.
This is a required parameter.

• UPDATE -- This parameter specifies that
the base cluster's upgrade set is to be
allocated when the path is opened.
This allows updating of alternate
indexes (see UPGRADE above), and is a
required parameter.

~DDITIONAL PARN1ETERS: Additional
parameters are valid for DEFINE CLUSTER,
~LTERNATEINDEX, and PATH. Complete details
on the use of these parameters are in
Using VSE/VSAM·Commands and Macros.

Defining a Relative Record File

Defining a relative record file is
similar to defining a key-sequenced file.
With the following modifications, the
DEFINE CLUSTER portion of Figure 38 could
be used to define a relative record file:

1. Change INDEXED to NUMBERED.

2. Remove the KEYS parameter.

3. Remove the FREESPACE parameter.

4. Change the RECORDSIZE parameter so that
the average and maximum value
specifications are the same.

Defining an Entry-Sequenced File

Defining an entry-sequenced file is
similar to defining a key-sequenced file.
With the following modifications, the
DEFINE CLUSTER portion of Figure 38 could
be used to define an entry-sequenced file:

1. Change INDEXED to NONINDEXED.

2. Remove the KEYS parameter.

3. Remove the FREESPACE parameter.

File Processing Techniques

The COBOL has three different file
processing techniques available:
sequential, random, and a combination to be
used is specified through the ACCESS clause
of the SELECT statement.

Entry-Sequenced File Processing. An
entry-sequenced file can only be processed
sequentially; therefore, since the default
is sequential, the ACCESS clause need not
be specified.

Key-Sequenced or Relative Record File
Processing: A key-sequenced or relative
record file can be processed sequentially,
randomly, or both sequentially and
randomly. To process sequentially, ACCESS
IS SEQUENTIAL is specified. To process
randomly, ACCESS IS RANDOM is specified.
To process both sequentially and randomly,
ACCESS IS DYNM1IC is specified.

ACCESS IS DYNAMIC provides the greatest
flexibility since all the capabilities of
both sequential and random processing are
supported. Processing can be switched
from sequential to random and vice-versa
as many times as desired. '

CUrrent Record Pointer

The current record pointer (CRP), a
conceptual pointer, is applicable only to
key-sequenced files. The current record
pointer indicates the next record to be
accessed by a sequential request; the CRP
has no meaning for random processing. The
CRP is affected only by the OPEN, START and
READ statements, it is not used or affected
by the WRITE, REWRITE, or DELETE
statements. The following are examples of
how the CRP is affected by various COBOL
sta temen ts •

Example 1:

Assuming a file has records with keys
from 1 to 10, if the sequence of I/O
operations on the file with ACCESS IS
DYNAMIC and opened 1-0 ia:

MOVE 7 TO RECORD-KEY
READ filename
HOVE LI4 TO RECORD-KEY
lvRITE record -name'
READ filena.me NEXT RECORD

the READ NEXT reads record 8 if the
previous READ was successfu1. If the
prev~ous READ was not successful, the
STATUS KEY will be set to 94 (No Current
Record Pointer) when the READ NEXT is
attempted. This occurs independently of
the successful intervening WRITE.

Virtual Storage Access Method (VSM1) 134.1

\

Generally, the last request on a file
Lich establishes a CRP (OPEN, READ, or
~ART) must have been successful in order
)r a sequential read to be successful.

'ample 2:

In this example, ACCESS IS SEQUENTIAL is
lecified; therefore, records are retrieved
L ascending key sequence starting at the
)sition indicated by the CRP. (Assume
Lis file has records with keys from 1 to
) .)

PEN INPUT filename

.aVE 10 TO RECORD-KEY

TART filename

tEAD filename

10VE 5 TO RECORD-KEY

:;TART filename

:mAD filename

READ filename

(CRP is at first
record on the
file)

(CRP is now at
record 10)

(record 10 is
read)

(CRP is now at
record 5)

(record 5 is read
CRP is set to
record 6)

(record 6 is read
CRP is set to
record 7)

Note that the CRP can be changed randomly
through the use of the START statement.
~ll reading is then done sequentially from
that point. In this example, if the START
request for record key 5 had failed with
no record found (File Status=23), the
three READ statements following would have
failed with no current record pointer
(File Status=94).

Example 3:

In this example ACCESS IS DYNAMIC is
specified. Therefore, records are accessed
randomly if READ is specified and
sequentially if READ NEXT is specified.
(Assume this file has records with keys
from 1 to 44.)

OPEN INPUT (CRP is set to first
record on file)

MOVE 5 TO RECORD-KEY

READ filename

READ filename
NEXT RECORD
(or indent a couple
of spaces)

Hove 41 TO RECORD-KEY

READ filename
NEXT RECORD
(or indent a couple
of spaces)

(record 5 is read, CRP
is set to record 6)

(record 6 is read, CRP
is set to record 7)

(record 7 is read, CRP
is set to record 8)

The last READ---NEXT RECORD does not read
record 41 even though the record key field
contained 41. This is true because a
sequential read does not use the contents
of the record key to determine which record
to read, it uses the position of CRP as
established by a previous request. If the
last READ had been a random read (no NEXT)
then record 41 would have been read.

Example 4:

In this updating example, ACCESS IS
DYNAMIC is specified; the REWRITE statement
does not affect the CRP. (Assume this file
has records with keys from 1 to 44.)

OPEN 1-0

HOVE 10 TO RECORD-KEY

(eRP is at first
record on file)

READ filename (record 10 is read,

MOVE 44 TO RECORD-KEY

REWRITE record-name

READ filename
NEXT RECORD

MOVE 74 TO RECORD-KEY

REWRITE

READ NEXT

CRP is set at record
11)

(record 44 is updated,
CRP is set at record 11)

(record 11 is ,read, CRP
is set at record 12)

(fails, record not
found in this file)

(record 12 is read,
CRP is set at record 13)

Note that although the last REWRITE failed,
the following READ NEXT was successful.

Virtual Storage Access Method (VSAM) 135

Example 5:

In this example, ACCESS IS DYNAMIC is
specified for a key-sequenced file with an
alternate record key, AIXKEY, defined.
Assume that the file contains eight records
whose primary and alternate key values are
as follows:

Record

1st
2nd
3rd
4th
5th
6th
7th
8th

OPEN 1-0

Primary

5
10
15
20
25
30
35
40

(set record key to 10)

Key Alternate Key

100
70
80
85
75
50
95
55

(CRP is set to the
first record of file
and the key of
reference is the
primary key)

READ (without KEY clause)
Read second record;
set CRP to third
record)

(set alternate key to 50)
READ KEY IS AIXKEY

READ NEXT

(the key of
reference is the
alternate key; read
sixth record; set
CRP to eighth record)

(the key of
reference remains the
alternate key; read
eighth record; set
CRP to second record)

(set primary key to 45
and alternate key to 90)
WRITE (write ninth record;

CRP remains at second
record; the key of
reference also remains
the alternate key)

READ NEXT

READ NEXT

136

(read first record;
CRP is set so that
the next sequential
read results in the
AT END condition)

(The AT END conditon
is raised; CRP is
undefined)

ERROR HANDLING

All errors on a VSAM file, whether logic
errors caused by the COBOL programmer (for
example, reading an unopened file), or 1-0
errors on the external storage media,
return control to the COBOL program. The
contents of FILE STATUS indicate the status
of the last request on the file. It is
strongly recommended that all files have a
file status associated with them, and that
the COBOL programmer check the contents of
FILE STATUS after each request.

Table 11 describes the actions taken for
all the combinations of AT END, INVALID
KEY, and error declaratives for each value
of FILE STATUS.

~: Return is always to NEXT STATEMENT
unless the request that caused the error
contained an AT END or INVALID KEY clause.
By omitting both the AT END and INVALID KEY
clauses and the USE ERROR/EXCEPTION for the
file, any type of error for the file can be
intercepted by checking the FILE STATUS
data name following each I/O request
(including OPEN and CLOSE) for the file.
This will simplify the exception~condition
handling in the COBOL program.

Record Formats for VSAM Files

For VSAM files, processing is
independent of whether or not the records
on a file are fixed-length (t~at is, all
records in the file are the same length)
or of variable-length format.

Thus for example, the considerations
which are discussed in "Record Formats For
Non-VSAM Files" generally do not apply_

However, the following points should
be considered:

• For record handling purposes, the
records are considered to be
fixed-length when

1. All the records in the file are the
same size (or there is only one
record description) •

2. No record contains an OCCURS clause
with the DEPENDING ON option.

Otherwise, the records are
considered to be variable length.

• For variable length records, without
OCCURS DEPENDING ON clauses, the
following applies:

lIe 11. File status Values and Error Handling

I No USE Declarative I USE Declarative I
I-- , I , ,
I INo AT END or I INo AT END or I

Lrst CharacterlAT END or INVAL~DII~VALID KEY IAT END or INVALID IINVALID KEY I
FILE STATUS IKEY clause I clause IKEY clause I clause I

I I I I I
o IReturn to next IReturn to next IReturn to next IReturn to next I

Isentence I sentence Isentence I sentence I
I I I I ,

1 I Return to AT END IReturn to next IReturn to AT END IReturn to next I
I address I sentence I address Isentence after USEI
I I I Ideclarative is I
I I I lexecuted I
I I J I ,

2 IReturn to INVALIDIReturn to next I Return to INVALID IReturn to next I
IKEY address I sentence IKEY address Isentence after USEI
, , , Ideclarative is I
I , I I executed ,

------------+I--------------~I-------------4I--------------~I~------------~
3 IWrite message andlWrite message IReturn to next IReturn to next I

Ireturn to next land return to Isentence after USElsentence after USEI
Isentence Inext sentence Ideclarative is Ideclarative is I
, , ,executed ,executed I
I I I I I

9 IReturn to next IReturn to next IReturn to next IReturn to next I
I sentence I sentence Isentence after USElsentence after USEI
I I Ideclarative is Ideclarative is I
I I lexecuted I executed I
, , I I ,

Virtual Access Storage Method (VSM1) 136.1

When a READ INTO statement is used, the
size of the longest record for the file
is moved to the input area. Coding
considerations for records with the
OCCURS DEPENDING ON option are
discussed in "Table Handling
Considerations."

litial Loading of Records into a File

A non-loaded file is one which has
een defined but has never contained
,ny records. An unloaded file is one
'hich has contained records but from
rhich all records have been deleted.
~ loaded file is one which contains
:-ecords.

Initial loading is the process of
~iting records into a non-loaded file.

It is strongly recorr.mended that initial
Jading of records into a key-sequenced
ile be done sequentially. If the initial
oading is done randomly, performance wi!l
e slower, not only for the initial loading
~ocess, but also for all processing done
n that file later on. Random loading of
ecords does not reserve free space in the
ile; therefore, the file will be
ynamically reorganized when any subsequent
ecords are inserted.

~he following table illustrates which OPEN
)ptions are allowed for each file state.

, FILE 1 , 1 , ,STATE 1
, 1 , 1

OPEN
,

1 , , 1
OPTION , INON-LOADED UNLOADED LOADED ,

,I ------------.----------- --------- -------

INPUT NO YES YES

OUTPUT YES NO NO

1-0 NO YES YES

EXTEND YES YES YES
1

---~

From this table it can be seen that opening
a file with the OUTPUT option is valid only
when the file is new (has never contained
any records). Also, opening a file with
the INPUT or 1-0 option is valid only when
the file is not new. If such a file
contains no records (is in the unloaded
state) the first READ request results in
an AT END condition (if ACCESS IS
SEQUENTIAL) or an INVALID KEY condition
(if ACCESS IS RANDOM or DYNAMIC).

File Status Initialization

The value of uz' in Status Key 1 is
reserved for the programmer's use. This
permits his determining whether a request
was made against his file. For example, if
he initializes Status Key 1 to the value Z
before attempting to OPEN his file he can
then determine if his program actually
attempted the OPEN by checking the contents
of Status Key 1. If it is Z, the OPEN
statement was not executed; if it is a
value other than Zn the statement was
executed. This same technique can be used
for any request against the file (CLOSE,
READ, etc.) to determine if such a request
was attempted in his program.

opening a VSAM File

If any of these rules are violated, the
file is not opened and the FILE STATUS key
is set to the appropriate value. Refer to
Table 12 for FILE STATUS key values at open
time. Table 13 describes file status at
action request time.

A loaded file can be opened EXTEND,
INPUT, or 1-0. If such a file is
opened EXTEND and it is a key-sequenced
file, the first record to be added must
have its record key higher than the
highest record key on the file when
it was opened. If it is not higher, ~
logic error results, and the FILE
STATUS key is equal to 92. For an
entry-sequenced file, the records are

,added after the last record.

Since the USE declarative is executed
only for files that are in open status, the
only OPEN error which can cause the USE
DECLARATIVE to be invoked is trying to open
a file which is already in the open status.
This is a logic error and causes file
status to be set to 92. The open status of
the file is not affected. However, if the
file is defined as ACCESS IS DYNAMIC, the
illegal OPEN statement causes the current
record pointer to be undefined.

Virtual Storage Access Method (VSAM) 137

Table 12. File Status Key Values at OPEN
r-------------T---, I File status I Probable Cause I
~-------------+---~
I 30 I I-O error I
~-------------+--~----------------~
I .91 I Incorrect password. Either an incorrect password was specified or a I
I I required password was not specified. If a file is opened OUTPUT, I
I I EXTEND, or I-O, the UPDATE password is required. I
~-------------+---~---------1
,92 , Logic error caused by opening an opened file, or by opening a locked ,
I J file. ,
~-------------+-------------------------------------~----------------------------~------1
,93 , Resource not available. Caused by insufficient virtual storage, or the ,
, I file is not available for the type of processing requested. 1 ,

~-----------~-+---1
I 95 I Invalid or incomplete information in the ASSGN card, or the file was not,
I I found in the catalog. 2 I
~-----~-------+---~
I 96 , Missing DLBL card ,
~-------------~---------------------------------------~---------------------------------1
1Indicates that the file was already opened by someone else and opening it for this
request would violate the share options specified for the file.

--~

2FILE STATUS 95 can also be caused by the following:
- an attempt to open a key-sequenced file as if it were an entry-sequenced file or

vice versa.

- an attempt ·:!:o open a non-loaded file with the INPUT or I-O option.

- an attempt to open OUTPUT a file not in the non-loaded state.

- record key length or displacement specification that does not match what was
specified when the file was defined. L ___ J

Table 13. File Status at Action Request Time
r--------------~----T---,
I File status I Probable Cause ,
~-------------------+---1

00 Successful

10

21

22

23

24

30

~
, 92
I
I 93
I
I
I 94
I

key-sequenced
file only

A sequential READ statement encountered EOF.

A request was issued to change the record key during execution of
a REWRITE statement, or a sequence error occurred for a
sequentially-accessed key-sequenced file.

A request was issued to add a record whose record key was a
duplicate of a record already on the file.

Either a READ statement was issued for a record whose record key
does not match any record on the file, or a REWRITE or DELETE
statement was issued for a record not on the file.

A request was issued to write a record beyond the
externally-defined boundaries of the file.

An I-O error occurred.

A request was issued to write a record beycnd the
externally-defined boundaries of an entry-sequenced file.

A logic error occurred. (See Note below.)

Resource not available. Insufficient virtual storage or volume,
extent unavailable, or data already in exclusive control.

No current record pointer for a sequential READ statement.

I 99 Abnormal termination- (~ubroutine error). • I ___________________ ~ ___________________________ ~----------------------------___________ J

138

~: File Status = 92 can be caused by
Le following:

• Any request issued against an unopened
file.

• Any request issued which is not allowed
for the OPEN option; for example,
issuing a READ statement for a file
opened OUTPUT, or a REWRITE statement
for a file opened INPUT.

• Any attempt to write or rewrite a
record longer than the maximum record
size specified when the file was
defined.

• Any action taken on a file after EOF
has been encountered (entry-sequenced
or key-sequenced file). If EOF is
encountered on a key-sequenced file, a
STAR~ or a READ statement can be issued
to reset the CRP and continue
processing. For example, a
key-sequenced file with ACCESS IS
SEQUENTIAL specified:

OPEN
READ
READ
READ
START
READ

successful
BOF encountered
logic error
reset CRP
successful

or, a key-sequenced file with ACCESS IS
DYNAMIC specified:

OPEN
READ NEXT
READ NEXT
READ NEXT
READ
READ NEXT

successful
EOF'encountered
logic error
reset CRP (random READ)
successful

• An attempt to rewrite when ACCESS IS
SEQUENTIAL has been specified if the
preceding action was not a successful
READ operation.

• An attempt to delete when ACCESS IS
SEQUENTIAL was specified if the
preceding action was not a successful
READ operation (key-sequenced file
only) •

• An attempt to read with improper
length specified.

WRITING RECORDS INTO A VSAM FILE

The COBOL WRITE statement is used to add
a record to a file. (Existing records in
the file are not replaced with this
statement.) The record to be written must
not be larger than the maximum record size
specified when the file was defined.

Entry-Sequenced File Considerations for the
WRITE Statement

Entry-sequenced file records are written
sequentially. If the file is not opened
OUTPUT or EXTEND, FILE STATUS is set to 92
and the record is not written.

Key-Sequenced File Considerations for the
WRITE Statement

When ACCESS IS SB~2UENTIAL is specified,
the file must be opened OUTPUT or EXTEND.
If not, the WRITE statement is not executed
and FILE STATUS is set to 92.

The records must be written is ascending
key sequence. If the file is opened EXTEND,
the record keys of the records to be added
must be higher than the highest record key
on the file when it was opened. The
following example shows the action and
resultant FILE STATUS when a file containing
records whose keys are 2,4,6,8, and 10 is
opened EXTEND. (Refer to Table 13
explanations of FILE STATUS values at action
request time.)

ACTION FILE STATUS
WRITE (record key 8) 92
WRITE (record key 9) 92
WRITE (record key 12) 00
v-lRITE (record key 11) 21
WRITE (record key 6) 21

Note that the first two WRITE requests
result in a logic error (FILE STATUS=92)
because their key values are not higher than
the highest key on the file when it was
opened. Once a successful WRITE has taken
place all subsequent WRITE requests are
handled as though the file were opened OUTPUT.
This is why the WRITE of record key 6 causes
a sequence error, not a logic error.

If many records are to be added to a file,
it is strongly recommended that sequential
access be used. Performance is improved both
for the process of adding the records and for
later retrieval of them.

When ACCESS IS RANDOM or ACCESS IS DYNMUC
is specified, the file must be opened 1-0 or
OUTPUT. If not, the WRITE statement is not
executed and FILE STATUS is set to 92. The
records can be written in any order.

RELATIVE RECORD FILE CONSIDERATIONS FOR
THE WRITE STATEHENT

For a sequential request, the first
record written ha$ relative record number
one, the second two, the third three, and
so on. If a RELATIVE KEY data item was
included by the user in the file control
entry statement, the relative record number
of the record just written is placed in the
da.ta item.

Virtual Storage Access Method (VSAM) 139

REWRITING RECORDS ON A VSAM PILE

The COBOL REWRITE statement is used to
replace eXisting records on the file.

Entry-Seggenced File Considerations for the
REWRITE statement

For successful REWRITE statement
execution, the file must be opened 1-0.
The record to be rewritten must first be
read by the COBOL program, then updated by
the REWRITE statement. (The length of the
record being rewritten cannot be chanqed.)
If there was no preceding READ statement,
or if the preceding READ statement was not
successful (EOF was reached), the REWRITE
statement is not executed and FILE STATUS
is set to 92.

Key-Sequenced File Considerations for the
REWRITE Statement

For successful REWRITE statement
execution, the file must be opened 1-0.
The length of the record can be changed,
but the value of the record key cannot be
changed.

When ACCESS IS SEQUENTIAL is specified,
the record to be rewritten must first be
read by the COBOL program, then updated by
the REWRITE statement. The REWRITE
statement is not successful if the
preceding statement for the file was not a
successful READ of this record. This
causes file status to be set to 92.

When ACCESS IS RANDOM or ACCESS IS
DYNAMIC is specified, the record does not
need to be read by the COBOL pro~ram. The
record is updated by moving its key to
the record key field and doing the REWRITE.

READING RECORDS ON A VSAM FILE

The COBOL READ statement is used to
access records on a file. If the file is
not opened INPUT or 1-0, the READ statement
is not executed and FILE STATUS is set to
92.

Entry-Sequenced File Considerations for the
READ Statement

Records are read sequentially, in the
order in which they were written.

Key-Sequenced File Considerations for the
READ Statement

When ACCESS IS SEQUENTIAL is specified,
records are read sequentially, beginning at
the position of the current record pointer.
If the current record pointer is undefined
when the READ is executed, FILE STATUS is
set to 94. The following example shows

140

successful and unsuccessful READ and START
executions. (Assume this file has records
with keys 1 through 8 and 20.)

OPEN 1-0 CRP at first record on
filename file

READ (first record on file is
file name read)

r-~OVE 10 TO
RECORD-KEY

START (fails-no record found)
file name

READ (fails-no CRP)
file name

MOVE 20 TO
RECORD-KEY

START
file name

READ
file name

(successful)

(record 20 is read)

When ACCESS IS RANDOM is specified,
records are read in the order specified by
the program. To read records whose record
key is 10, move 10 to the RECORD KEY field
in the record area and issue a READ
statement.

When ACCESS IS DYNAMIC is specified,
records can be read randomly or
sequentially. The READ NEXT statement is
used for sequential accessing, and the READ
statement is used for random accessing.

RELATIVE RECORD FILE CONSIDERATIONS FOR THE
READ STATEBENT

If a RELATIVE KEY data item was specified
for a sequential READ, the relative record
number of the record just read is placed in
the data item.

READ NEXT Statement

Records are read sequentially beginning
at the position of the current record
pointer. If the current record pointer is
not defined when the READ NEXT statement is
issued, FILE STATUS is set to 94 as a result
of the READ. The current record pointer is
considered undefined if the preceding START
or READ statement was not successful.

For details on the effect of COBOL
statements on the position on the current
record pointer, refer to the section
entitled "Current Record Pointer."

AD Statement

The READ statement reads records
ndomly using the value placed in the
cord key field.

ING THE START VERB

The START statement is only valid for
iy-sequenced files but not when ACCESS IS
.NDOM is specified or when the file is
lened OUTPUT or EXTEND.

In some of the preceding examples, the
~ART verb was used to position the CRP.
len the READ (for ACCESS IS SEQUENTIAL)
ld READ NEXT (for sequential processing
len ACCESS IS DYNAMIC) retrieves the
~cord pointed to by the CRP as established
r the START.

~ample :

05 RECORD-KEY.
10 GEN11.

15 GEN12 PIC 99.
15 GEN13 PIC 99.

10 GEN14 PIC9.

n this example, GEN12, GEN11, or
ECORD-KEY could be used as the data-name
n the "KEY IS relational data-name" option
f the START statement. The lengths would
e 2, 4, and 5 respectively. GEN13 and
EN14 could not be used as they are not in
he leftmost part of RECORD-KEY.

Assume that the value of RECORD-KEY is
1472:

• START filename KEY = GEN11 would
position the CRP to the first record on
the file whose key has 0147 as the
first 4 characters.

• START file-name KEY> GEN12 would
position the CRP to the first record in
the file whose key has the first two
characters greater than 01.

IELETE Statement

The DELETE is valid only for a
:ey-sequenced File. The same
:onsiderations discussed under
'Key-Sequenced File Considerations for the
~EWRITE Statement" apply to the DELETE
;tatement.

COBOL Lanquage Usage with VSAM

The COBOL language statements which are
directly related to VSAM processing are in
the section "DOS/VS COBOL Considerations"
in the publication IEM DOS Full American
National Standard COBOL. The following
paragraphs are intended only.to highlight
and summarize the basic language statements
used in writing a VSAM-file:pr~cessing
COBOL program.

A COBOL programmer can use VSN~ in three
basic ways: -to create a file, to retrieve
a file, and to update a file. However,
prior to processing a VSAM file, it is an
absolute necessity that the previouEly
discussed Access Method Services functions
be performed. Most significant to the
COBOL programmer is whether the file is
defined as an entry-sequenced ~ile or as a
key-sequenced file.

Creating a VSAM File

The minimum COBOL language statements
required to create a VSAM file are
summarized in Table 14.

Table 14. COBOL Statements for Creating a
VSAM File

r------------r-----------------,-------------~
I , ,
IEntry-SeguencedIKey-Sequencedl
I File I File I

I I I ,
I Environment I SELECT I SELECT I
I Division IASSIGN IASSIGN I
I I IORGANIZATION I
I I I IS INDEXE~ I
I I I RECORD KEY I
I I I I
IData IFD entry IFD entry I
I Division ILABEL RECORDS ILABEL RECORDS I
I I I ,
I Procedure IOPEN OUTPUT IOPEN OUTPUT I
I Division I or I or I
I IOPEN EXTEND IOPEN EXTEND I
I ,WRITE ,WRITE I
, , CLOSE ,CLOSE ,
~ ___________ ~ _______________ -L--__________ ~

Tne following discussion illustrates the
steps wnich must be taken to create an
entry-sequenced file. Assume the VSAM
catalog and VSAM data space have been
created as previously illustrated. The
next thing a user must do is define the
entry in the catalog for the VSAM file.

/ / ,-TOB DEFINE FILE
/ / EXEC IDCAMS, SIZE=1 OOK

/*

DEFINE CLUSTER (llAME (TRANFILE)
VOLUME(321942) RECORDS(50 5)
RECORDSIZE(80 80) READPW(R0104) -
UPDATEPW(W0104) ATTEMPTS (0)
NONINDEXED SUBALLOCATION)

CATALOG (VSAHCAT/SECRET)

Virtual Storage Access Method (VSAM) 141

The meaning of the parameters is:

NAJ.\:1E
(TRANFILE)

VOLUME
(321942)

RECORDS
(50 5)

RECORDSIZE
(80 80)

READPW
(R0104)

UPDATEPW
(W0104)

ATTEMPTS (0)

NON INDEXED

SUBALLOCATION

CATALOG
(VSAMCAT/
SECRET)

This is the data set name.

This is the volume on which
the space for the data set
resides.

Primary allocation is for
50 records, secondary
allocation is for 5 record&

The average and maximum
record size is 80 characters.

The password R0104 must be
supplied to open the file
with the INPUT option.

The password W0104 must be
supplied to open the file
with the OUTPUT, EXTEND or
I-O option.

The operator is not to be
prompted for the password
when the file is opened.

The file is an entry
sequenced file.

Space for this file is to
be suballocated from exist
ing VSAM data space on the
volume.

The name of the catalog into
which this file is cataloged
is VSAMCAT and its update
password is SECRET.

Note: When the user gains update access
to the file (by supplying the update level
of the password) he has also gained read
access. In general, when a user gains
access to a file at a given level of
protection, he has gained access to that
file for all lower levels. This means that
the above file could be opened INPUT by
supplying the update level of the password
However, it could not be opened OUTPUT, •
EXTEND or I-O by supplying the read level
password.

142

The COBOL program to access such a file
would include the following statements.

FILE-CONTROL.

DATA
FILE
FD

01

SELECT VSAMSEQ
ASSIGN TO SYS010-AS-TESTFL
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL
PASSWORD IS VSAMPW
FILE STATUS IS STATKE~ ,

DIVISIONI
SECTION.
VSAMSEQ

LABEL RECORDS ARE OMITTED.
VSAMREC.
05 FIELD1
05 FIELD2

PICTURE X(8).
PICTURE X(72).

WORKING-STORAGE SECTION.
77 STATKEY
77 VSAMPW

PROCEDURE DIVISION.
BUILD-PASSWORD.

PICTURE 99.
PICTURE X(5).

PERFORM PASSWORD-BUILDER.
PERFORM PASSWORD-SCRAMBLER.

OPEN OUTPUT VSAMSEQ.
IF STATKEY NOT = 0

GO TO ERROR-HANDLER.
BUILD-A-RECORD.

WRITE VSAMREC.
IF STATKEY NOT = 0

GO TO ERROR-HANDLER.

GO TO BUILD-A-RECORD.

In this sample program the routines
PASSWORD-BUILDER and PASSWORD-SCRAMBLER
construct the update level password so
that the file can be opened OUTPUT. These
routines can be written in such a way
that they are difficult to follow, thus
improving security.

Page of SC28-6478-3, As Updated 28 Dec 1979, By TNL SN20-9310

)te that the FILE-STATUS is checked
Eter each request on the fi~e: Thi~
lsures that unexpected cond~t~ons w~ll
~ detected.

JCL needed to execute the program is le

I
I
I
I
I

JOB
ASSGN
DLBL
EXTENT
EXEC

SYS010 x'130'
TESTFL,'TRANFILE'"VSAM
SYS010,321942
program-name,SIZE=nnnk

lCample 2:

This example shows the creation of a
)BOL key-sequenced VSA! file. This
rogram performs the same function as
lCample 1 except that now a key-sequenced
ile is being created. The records in the
ile "INREC" are in ascending key order.

JENTIFICATION DIVISION.

~VIRONMENT DIVISION.

~PUT-OUTPUT SECTION.
rLE-CONTROL.

SELECT INREC
ASSIGN TO SYS005-UR-2540R-CARDIN.

SELECT OUTREC
ASSIGN TO SYS010-0UTftAST
ORGANIZATION IS INDEXED
RECORD KEY IS ARG-1
FILE STATUS IS CHK3.

I'lTA DIVISION.
ILE SECTION.
o INREC LABEL RECORDS ARE OMITTED

DATA RECORD IS INMASTER
1 INMASTER PIC X(SO}.
o OUTREC LABEL RECORDS ARE STANDARD

DATA RECORD IS OUTMASTER.
1 OUTMASTER.

05 FILLER PIC X.
05 ARG-1 PIC XXX.
05 REM PIC X (76) •

)RKING-STORAGE SECTION.
7 CHK1 PIC XX.
7 CHK2 PIC XX.
7 CHK3 PIC XX.
~OCEDURE DIVISION.
~RA1.

MOVE "ZZ" TO CHK1 CHK2 CHK3.
OPEN INPUT INREC OUTPUT OUTREC.
MOVE CHK3 TO CHK1.
IF CHK1 = 119211 GO TO CHKRTN1.
IF CaK1_.NO~ = "00 II GO TO CHKRTN2 ~

PARA2.
READ INREC INTO OUTMASTER

AT END GO TO PARA4.
PARA3.

WRITE OUTMASTER.
MOVE CHK3 TO CHK2.
IF CHK2 NOT = 1100" GO TO CHKRTN1.
GO TO PARA2.

PARA4.
CLOSE INREC OUTREC.
IF CHK~ NOT = "00" GO TO CHKRTN2.

FINIT.
STOP RUN.

CHKRTN1.
CLOSE INREC OUTREC.

CHKRTN2.
DISPLAY II ERROR. STATUS KEYS AREII

CHK1 CHK2 CHK3.
GO TO FINIT.

Note that in this example any Status Key
return other than 00 causes transfer of
control to CHKRTN 1 or CHKRTN2. These
routines can determine the exact cause of
the error by checking the Status Key •. Once
the cause is determined, instructions can
be issued according to the user's desired
response to each type of error.

Retrieving a VSAM File

The minimum COBOL language statements
required to retrieve a VSAM file are
summarized in Table 15.

Table 15. COBOL Statements for Retrieving
a VSAM Pile

I I

I I I
I Entry-Seguenced I Key-Sequenced I
I File I File I

I I I ,
IEnvironmentlSELECT I SELECT I
J Division IASSIGN IASSIGN I
I I IORGANIZATION I
I I , IS INDEXED ,
I I IRECORD KEY J

I I I I
IData IPD entry IPD entry I
I Division ILABEL RECORDS ILABEL RECORDS I
I , I r
I Procedure ,OPEN INPUT IOPEN INPUT I
I Division IREAD ••• IREAD I
I I AT END I I
I ICLOSE I CLOSE I
I , , I

The following examples show the
retrieval of records from VSAM files.

Example 3:

This example shows the retrieval of
records from the entry-sequenced file

Virtual Storage Access Method (VSAM) 143

Page of SC28-6478-3, As Updated 28 Dec 1979, By TNL SN20-9310

created in example 1. The records are then
printed.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION.
FILE-CONTROL

SELECT INREC
ASSIGN TO SYS010-AS-INMAST
FILE STATUS IS CHK3.
SELECT PREC
ASSIGN TO SYSOOS-UR-1403-S-PRNTR

DATA DIVISION.
PILE SECTION.
PD INREC LABEL RECORDS ARE STANDARD

DATA RECORD IS INMASTER.
01 INMASTER PIC X(80} •
FD PREC LABEL RECORDS ARE OMITTED

DATA RECORD IS POUT.
01 POUT PIC X (80) •
WORKING-STORAGE SECTION.
77 CHK1 PIC XX.
77 CHK2 PIC XX.
77 CHK3 PIC XX.
PROCEDURE DIVISION.
PARA1.

MOVE "ZZ" TO CHK1 CHK2 CHK3.
OPEN INPUT INREC OUTPUT PREC.
MOVE CHK3 TO CHK1.
IF CHK1 = "92" GO TO CHKRTN1.
IF CHK1 NOT = "OO"GO TO CHKRTN2.

PARA2.
READ INREC INTO POUT

AT END GO TO PARA4.
MOVE CHK3 TO CHK2.
IF CHK2 NOT = ''~O'' GO TO CHKRTN1.

PARA3.
WRITE POUT.
GO TO PARA2.

PARA4.
CLOSE INREC PREC.
IF CHK3 NOT = "'00" GO TO CHKRTN2.

FINIT.
STOP RUN.

CHKRTN1.
CLOSE INREC PREC.

CHKRTN2.
DISPLAY."ERROR. STATUS KEYS ARE"

CHK1 CHK2 CHK3
GO TO FINIT.

Note that in this example any Status Key
return other than 00 causes transfer of
control to CHKRTN1 or CHKRTN2. These
routines can determine the exact catise of
the error by checking the Status Key. Once
the cause is determined, instructions can
be issued according to the user's desired
response to each type of error.

144

Example 4:

This example shows the retrieval of
records from the key-sequenced file created
in example 2. Note that in the Procedure
Division there is a switch from sequential
processing to random processing; this is
permitted since ACCESS IS DYNAKIC is
specified in the ENVIRONMENT Division.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INREC
ASSIGN TO SYS010-INMAST
ORGANIZATION IS INDEXED
A'CCESS IS DYNAMIC

RECORD KEY IS ARG-1
FILE STATUS IS CHK4.

SELECT PREC
ASSIGN TO SYSOOS-UR-1403-S-PRINTR

DATA DIVISION.
FILE SECTION.
PD INREC LABEL RECORDS ARE STANDARD

DATA RECORD IS INMASTER.
01 INMASTER.

05 PILLER PIC X.
05 ARG-1 PIC xxx.
05 ARG-2 PIC xx.
05 ARG-3 PIC xx.
05 PILLER PIC X(72).

FD PREC LABEL RECORDS ARE OMITTED
~ATA RECORD IS POUT.

01 POUT PIC X (80) •
WORKING-STORAGE SECTION.
77 CHK1 PIC XX.
77 CHK2 PIC XX.
77 CHK3 PIC XX.
77 CHK4 PIC XX.
PROCEDURE DIVISION.

MOVE "ZZ" TO CHK1 CHK2 CHK3 CHK4.
OPEN INPUT INREC OUTPUT PREC.
MOVE CHK4 TO CHK1.
IF CHK1 = "92" GO TO CHKRTN1.
IF CHK1 NOT = ''~O'' GO TO CHKRTN2.

PARA2.
MOVE "003" TO ARG-1.
START INREC.
MOVE CHK4 TO CHK2.
IF CHK2 NOT = "00" GO TO CHKRTN1.

PARA3.
READ INREC NEXT RECORD

AT END GO TO PARA4.
MOVE CHK4 to CHK3.
IF CHK3 NOT = ''~O'' GO TO CHKRTN1.
IF ARG-2 IS = "02" GO TO PARA4.
IF ARG-3 IS NOT = "73" GO TO PARA3.
WRITE POUT FROM INMASTER.
GO TO PARA3.

.RA4.
MOVE "101" TO ARG-l.
READ INREC INVALID KEY GO TO CHKRTN 1 •
WRITE POUT FROM INMASTER.
MOVE "103" TO ARG-1.
READ INREC INVALID KEY GO TO CHKRTN1.
WRITE POUT FROM INMASTER.

\RA5.
CLOSE INREC PREC.

IF CHK4 IS NOT = "00" GO TO CHKRTN2.
[NIT.

STOP RUN.
:IKRTN1.

CLOSE INREC PREC.
rIKRTN2.

DISPLAY "ERROR. STATUS KEYS ARE"
CHK1 CHK2 CHK3 CHK4.

GO TO FINIT.

ote that in this example any Status Key
eturn other than 00 causes transfer of
ontrol to CHKRTN1 or CHKRTN2. These
outines can determine the exact cause of
he error by checking the Status Key. Once
he cause is determined, instructions can
e issued according to the user's desired
esponse to each type of error.

'ob Control Language for a VSAM File

Jct is simplified for VSAM since all
rSAM files must be cataloged through Access
lethod Services.

The JCL to execute the program in
~xample 1 is

'/ JOB
'/ ASSGN
'/ DLBL
'/ EXTENT
'/ EXEC

SYS010,X'233'
OUTMAST, 'PAYFILE' , ,VSAM .
SYS010,VSAMVOL
EXAMPLE,SIZE=50K

The volume on which the VSAM file was
jefined is mounted at address 233, the
~olume ID is VSAMVOL, and the file was
given the name PAYFILE when it was
defined. The SIZE parameter is required
the EXEC card for VSAM programs.

DLBL STATEMENTS FOR ALTERNATE INDEXES

on

When alternate indexes are used in the
COBOL program, the user must specify not
only a DLBL statement for the base cluster,
but also one DLBL statement for each.
alternate path. The name for the base
cluster is the external-name declared in
the COBOL program. However, no language
mechanism exists to explicitly declare
names for alternate paths in the program.
Therefore, the following convention has
been established and must be adhered to by
the user.

The name for each alternate path is to be
formed by concatenating its base cluster
name with an integer--beginning with 1 for
the path associated with the first alternate
record defined for that file in the COBOL
program, and being incremented by 1 for each
path associated with each successive
alternate record definition for ~hat file.
For example, if a base cluster's name were
ABCD, then the name for the alternate path
of the first alternate record key defined
would have to be ABCD1; the name for the
alternate path of the second alternate
record key defin~d would have to be ABCD2;
and so on.

If the combination of base cluster name
and sequence number exceeds seven characters,
the base cluster portion of the name must be
truncated at the right to reduce the
concatenated result to eight characters.
For example, if a base cluster's name is
ABCDEF, then the first alternate path's name
should be ABCDEF1, the tenth should be
ABCDE 10, and so forth.

The following example shows the
connection between a program using two
alternate indexes and the required
statements. The base cluster is named XYZ,
and the first alternate index' pathname is
PATHONE and the other's PATHTWO.

FILE-CONTROL
SELECT filename ASSIGN TO SYS001-ABCD
RECORD KEY IS whatever
ALTERNATE RECORD KEY IS CITY
ALTERNATE RECORD KEY IS PRICE

The key CITY relates to the alternate
index whose pathname is PATHONE, and the key
PRICE relates to the alternate index whose
pathname is PATHTWO.

Converting Non-VSMl Files to VSAM Files

ISAM files can be converted to VSru1
files so that they may be processed by a
COBOL program using VSM1. The conversion
is done through Access Method Services.

Essentially, the conversion process
consists of defining a VSAM file as the
target for the file being converted. Then
through the appropriate JCL and the REPRO
command, the conversion is accomplished.

For a complete description of the
conversion process, see Using VSE/VSAM
Commands and Macros and VSE System Data
Management.

Virtual Storage Access Method (VSAM) 144.1

Using ISMl Programs to Process VSMl Files

Once the file is converted, the
programmer can process the new VSrul file
with the old ISAM program by converting the
ISAM JCL to VSM1 JCL. For more details on

I this procedure, see VSE System Data
Management.

144.2

The following topics are discussed
within this chapter:

COBOL VSAM Control Blocks

DTF Tables

Error Recovery for Non-VSAM Files

Volume and File Label Handling

COBOL VSAM CONTROL BLOCKS

The compiler generates a File
Information Block (FIB) frorr. information in

DETAILED FILE PROCESSING CAPABILITIES

the Environment Division (SELECT, RERUN,
and SAME statements) and the Data Division
(FD and associated records). The File
Control Block (FCB) is generated
dynamically at execution time by the VSAM
library sUbroutines. The user may wish to
refer to fields in these blocks for
debugging. The format of the VSAM control
block (Access Method Control Block -- ACP)
is not given here, as the knowledge of its
contents is not needed by the COBOL user.

Pages 146-149 deleted.

Detailed File Processing Capabilities 145

DTF TABLES

Whenever COBOL imperative-statements
(READ, WRITE, REWRITE, etc.) are used in a
program to control the inpu~ and/or output
of records in a file, that file must be
defined by a DTF. A DTF is created by the
compiler for each file opened in a COBOL
program from information specified in the
Environment Division, FD entry, and
input/output statements in the source
program. The DTF for each file is part of
the object module that is generated by the
compiler. It describes the characteristics
of the logical file, in~icates the type of
processing to be used for the file, and
specifies the storage areas and routines
used for the file.

The DTF's generated for the permissible
combinations of device type and COBOL file
processing technique are as follows:

DTFCD Card reader, punch -
organization and access
sequential

DTFPR Printer -- organization and
access sequential

150

DTFMT Tape -- organization and access
sequential

DTFSD Mass storage device -
organization and access
sequential

DTFDA Mass storage device -
organization direct, access
sequential or random

DTFIS Mass storage device -
organization indexed, access
sequential or random

DTFDU 3540 diskette -- organization and
access sequential

Because of their limited interest for
the COBOL programmer, the contents and
location of the fields of each of the DTF
types are not discussed in this
publication. However, there are certain
fields which immediately precede the
storage area allocated for the DTF which
are pertinent. These fields are provided
on the listing in hexadecimal if an
abnormal termination occurs and the SYMDMP
option is in effect. The SYMDMP option is
described in detail in the chapter
"Symbolic Debugging Features." Fields
preceding the DTF are described below.

For magnetic tape files (DTFMT) or
sequentially organized files on mass
storage devices (DTFSD), a 26-byte Pre-DTF
is reserved in front of the DTF. The
fields of the Pre-DTF are shown in Table
16. If any option is not specified, the
field will contain binary zeros.

When actual track addressing is used for
files with direct organization and random
access (DTFDA), a variable-length Pre-DTF
is reserved. The fields of the Pre-DTF are
shown in Table 23. If any option is not
specified, the field will contain binary
zeros.

When relative track addressing is used
for files with direct organization and
random access (DTFDA), a variable-length
Pre-DTF is reserved. The fields of the
Pre-DTF are shown in Table 18. If any
option is not specified, the field will
contain binary zeros.

'able 16. Fields preceding DTFMT and DTFSD
i I

2 bytesl Length of nonstandard label, if present 1
I I

1 byte I Number of reels (as specified in the ASSIGN clause) when file is opened l 1
I I

1 byte I Number of reels remaining (i.e., file not completely read) 1 I
I I

2 bytesl Maximum record length if records are variable, blocked and APPLY WRITE-ONLY isl
1 not specified. 1

r-------4I---~,
1 1 REEL 1
14 bytesl Address of label declarative with BEGINNING option I
1 I UNIT I
I 1 ,
1 1 REEL I
14 bytesl Address of label declarative with ENDING option I
1 1 UNIT I
~·------41--~-------------------------~1
14 bytesl Address of label declarative with ENDING FILE option I
~·------41---~1
14 bytesl Address of label declarative with BEGINNING FILE option I
J J I
11 byte I Switch -- FF if closed WITH LOCK; otherwise, the switch is used as shown in 1
I I Table 23 I
~I------~I--~
13 bytesl Address of USE AFTER STANDARD ERROR declarative 1
, I

t DTFMT/DTFSD ~
~ l
I
IlFor INPUT files with nonstandard labels only.
I

Table 17. Fields Preceding DTFDA -- ACCESS IS RANDOM -- Actual Track Addressing
I

19-263
Ibytes
I
18 ,
12
I
14
I
14
I
14 ,
11
I
~
13
I

bytesl
I

bytesl
I

bytesl
1

bytesl
1

bytesl
1

byte I
1
1

bytesl
I

ACTUAL KEYl

SEEK Address 2

Error bytes 3

Address of file extent information

Address of label declarative with ENDING FILE option

Address of label declarative with BEGINNING FILE option

Switch -- FF if closed WITH LOCK; otherwise the switch is used as shown in
Table 23

Address of USE AFTER STANDARD ERROR declarative

DTFDA

IlACTUAL KEY specified in last executed WRITE statement
12 In the form MBBCCHHR
13 This area is reserved by the Supervisor and assigned the name ERRBYTE. For a
I complete discussion, refer to the publication DOS/VS Supervisor and I/O Macros,
I Order No. GC24-5037.
I

Detailed File Processing capabilities 151

Table 18. Fields Preceding DTFDA -- ACCESS IS RANDOM -- Relative Track Addressing
I

15-258 1 1
Ibytes IACTUAL KEYI 1
I 1 ,
14 byteslSEEK address 2 1
I 1 ,
13 byteslLast extent used 3 1
I 1 I
11 byte INot used 1
I 1 ,
12 byteslError bytes 4 (

~------+I--~I
11 byte (Index to last extent used in the Disk Extent Table 1
I 1 I
13 byteslAddress of Disk Extent Table in the DTF I
~------~I--41
14 byteslAddress of label declarative with ENDING FILE option 1
~------~I--·----------·----------4'
14 byteslAddress of label declarative with BEGINNING FILE option 1
I 1 I
11 byte ISwitch -- FF if closed WITH LOCK; otherwise the switch is used as shown in 1
1 (Table 23 1
1 1 I
13 byteslAddress of USE AFTER STANDARD ERROR declarative 1
, I I

f DTFDA {

1
1
(lACTUAL KEY specified in the last executed WRITE statement
12 In the form TTTR
13 In the form TTT
I~This area is reserved by the DOS/VS Supervisor and assigned the
1 complete discussion, refer to the publication DOsIVS Supervisor

152

name ERRBYTE. For a
and I/O Macros.

When actual track addressing is used for
files with direct organization and
sequential access (DTFDA), a 31-byte
~re-DTF is reserved. The fields of the
~re-DTF are shown in Table 19. If any
)ption is not specified, the field will
contain binary zeros.

When relative track addressing is used
for files with direct organization and
sequential access (DTFDA), a 31-byte

Pre-DTF is reserved. The fields of the
Pre-DTF are shown in Table 20. If any
option is not specified, the field will
contain binary zeros.

For files whose organization is indexed,
eight bytes are reserved preceding the DTF,
as shown in Table 21. The fields preceding
the DTFDU for the 3540 are shown in Table
22.

Table 19. Fields Preceding DTFDA -- ACCESS IS SEQUENTIAL -- Actual Track Addressing
i i
18 byteslSEEK address 1

I 1
15 byteslIDLOC2
I 1
12 byteslError bytes 3

I 1
14 byteslAddress of file extent information
I 1
14 by tes 1 Address of label declarative with ENDING FILE option
I 1
14 byteslAddress of label declarative with BEGINNING FILE option
I I
11 byte ISwitch -- FF if closed WITH LOCK; otherwise the switch is used as shown in
1 ITable 23
I 1
13 byteslAddress of USE AFTER STANDARD ERROR declarative
I I

DTFDA

11In the form MBBCCHHR
12Address (returned by the system) of next record in the form CCHHR
13 This area is reserved by the DOS/VS Supervisor and assigned the name ERRBYTE. For a
I complete discussion, refer to the publication DOS/VS Supervisor and 1/0 Macros.

Detailed File Processing Capabilities 153

Table 20. Fields Preceding DTFDA -- ACCESS IS SEQUENTIAL -- Relative Track Addressing
Iii

14 byteslSEEK address 1 1
I I ,
13 byteslLast extent used 2 1
I I ,
11 byte INot used I
1 1 I
14 bytesiIDLOC3 1
I 1 ,
11 byte INot used 1
I 1 I
12 byteslError bytes 4 1
I 1 1
11 byte IIndex to the last extent used in the Disk Extent Table 1
I 1 ,
13 byteslAddress of Disk Extent Table in the DTF I
I I I
14 byteslAddress of label 'declarative with ENDING FILE option I
I 1 1
14 byteslAddress of label declarative with BEGINNING FILE option 1
I 1 1
11 byte ISwitch -- FF if closed with LOCK; otherwise the switch is used as shown in 1
1 1 Table 23 I
~------+I---~'
13 byteslAddress of USE AFTER STANDARD ERROR declarative I
, 1

~ DTFDA ~
1
I
IIIn the form TTTR
12 In the form TTT
13 Address (returned by the system) of the next record in the form
14 This area is reserved by the DOS/VS Supervisor and assigned the
1 complete discussion, refer to the publication DOS/yS Supervisor

Table 21. Fields preceding DTFIS

TTTR
name ERRBYTE.
and 1/0 Macros.

For a

iii

12 byteslUnused 1
1 1 ,
12 bytes I Displacement of record key within record I
I I ,
11 byte ISwitch -- FF if closed WITH LOCK; otherwise the switch is used as shown in I'
I 1 Table 23 1
I 1 I
13 byteslAddress of USE AFTER STANDARD ERROR declarative 1
I t f . DTFIS . ~

154

(

rable 22. Fields preceding DTFDU
i I

14 byteslUnused
I 1
11 byte IDTF switch -- FF if closed with LOCK
1 1
13 byteslAddress of USE AFTER STANDARD ERROR declarative ,
} DTFDU

Some files can be opened several
different ways in one COBOL program.

For DTFCD and DTFPR, only one DT? will
be generated for each file.

For DTFMT, a maximum of three DTF's may
be needed -- one each for OPEN INPUT, OPEN
INPUT REVERSED, and OPEN OUTPUT.

For DTFSD, a maximum of three DTF's may
be needed -- one each for OPEN INPUT, OPEN
OUTPUT, and OPEN 1-0 statements.

For DTFIS and DTFDA, only one DTF is
needed.

PRE-DTF SWITCH

When used, this switch provides
communication between the executing program
and its input/output subroutines at
execution time. The entire byte may be set
to X'FF' to indicate that the file was
closed WITH LOCK and cannot be reopened.
Otherwise the switch is used as shown in
Table 23.

ERROR RECOVERY FOR NON-VSAMFILES

COBOL allows the programmer to handle
input/output errors through:

• The FILE STATUS clause

• The INVALID KEY cla~se for certain
source language state~ents

• The USE AFTER STANDARD ERROR
declarative sentence

I

{

Table 23. Meaning of Pre-DTF Switch
I

Bit 1 Meaning, if ON
1

o I Not used.
1

1 ITurned ON when DTFDA or DTFSD
lare opened 1-0.
I

filesl
I
I

2 IThis bit is ON to indicate
Ibeginning of volume user label
Iprocessing. The bit is set OFF
Iwhen a file is opened to indicate
Ito the user label processing
Isubroutine (ILBDUSLO) that
Ibeginning-of-file user labels are
Ito be processed. That subroutine
Isets the bit ON after beginning
lof-file processing to indicate that
lall sub~equent calls for this
Isubroutine are for beginning-of
Ivolume user .label processing.
I I

3 IFor output files with variable- I
Ilength blocked records, this bit isl
Iturned OFF when a file is opened I
land ON for all WRITE's after the I
Ifirst. I
I I

4 ITurned ON for spanned record I
Iprocessing on a DTFDA file. I
I I

5-61Not used. I
I I

ILBDIMLO-Indicator for Rel. 2.51
higher (see note below). i ,

Note: This bit is set by Rel. 2.5 ILBDIMLO
ana-tested by transient $$BFCMUL. If this
bit is not oh, exit is taken immediately,
because PUB pointer in DTF-8 is incorrect.

Detailed File Processing Capabilities 155

FILE STATUS KEY

The FILE STATUS clause may be specified
for SAM files in order to provide a means
of testing the success of individual I/O
operations and determining more closely the

STATUS KEY 1

Value Meaning

a Successful completion

specific nature of an error condition when
it arises. SM1 FILE STATUS may be used
alone, or in conjunction with the error
declarative procedure (described below).
In the latter case, the FILE STATUS key is
set by COBOL before the error declarative
is given control.

STATUS KEY 2

Value Meaninq

a No further information II __ ~

3

9

156

At end (no next logical record,
or an OPTIONAL file not available
at OPEN time)

Permanent error (data check,
parity check, transmission error)

Other errors

a No further information

a No further information

4 Space not found to add requested
output record; for example, file's
extents could be exhausted

a OPEN or CLOSE failed (OPEN
failure could result from missing
DD card)

2 Logic error; for example, attempt
to open a file already open,
attempt to open a file previously
closed with a lock, attempt to
close a file already closed or
never successfully opened,
attempt to read/write/rewrite on

. an unopened file or a file opened
in the wrong mode (e.g., WRITE on
file opened INPUT), attempt to
read after end-of-file has been
reached

Input/output errors caused by the program can be recovered from
irectly by the procedure specified in the INVALID KEY clause. That
s, when the system determines that an invalid key condition exists,
ontrol is returned to the programmer at the imperative-statement
pecified in the INVALID KEY clause. An invalid key condition can
ccur on files with direct or indexed organization and on sequentially
rganized disk files. The errors that cause an invalid key condition
re shown in Table 24.

ible 24. Errors Ca\1.sing an Invalid Key Condition
i i

Orqanization, ACCESS , OPEN I-O Verb, Condition , , ,
Sequential , [SEQUENTIAL] , OUTPUT WRITE , End of extents reached. , , ,
Direct , [SEQUENTIAL] , OUTPUT WRITE I Track address outside file

I I I
Direct I RANDOM I INPUT READ , No record found.

I .. ,
I , OUTPUT WRITE I Track address outside file
I I I
I , 1-0 READ I Track address outside file
I I REWRITE I
I I ,

Indexed I [SEQUENTIAL] I INPUT START I No record found.
I I I-O I
I I f

extents.

extents.

extents.

I I OUTPUT WRITE , Duplicate record; sequence check.
I I I
I RANDOM I INPUT READ I No record found.
I l- I
I I 1-0 REWRITE I
I l-
I I I-O WRITE

SE AFTER STANDARD ERROR

Other input/output errors cause the job
o be cancelled unless the programmer has
pecified a USE AFTER STANDARD ERROR
eclarative. Control is transferred to
his declarative section if the system
etermines that a "standard" error has

I
I Duplicate record.

occurred during input/output processing.
In this declarative section, the programmer
may interrogate the COBOL error bytes if
the GIVING option of the USE AFTER STANDARD
ERROR declarative sentence has been
specified. The meaning of these bytes for
a specified combination of device type and
file processing technique is shown in
Table 25.

Detailed Fil@ Processing Capabilities 156.1

able 25. Meaning of Error Byte~ for GIVING Option of Error Declarative (Part 1 of 2)
iii I

I I I 11/0 I I I
Device I Organization I ACCESS IOPEN IVerb I Condition IBytel Result

I I I I I I
Dnit I Sequential I[SEQUENTIAL]I I I Input/output 1 IFile must be closed
record I I I I I error (and job must be

Tape

DASD

DASD

DASD

I I I I I I terminated.
I I I I I I
Sequential [SEQUENT1AL]IINPUT IREAD IWrong length 2 ISkip block if

Sequential

I Direct
I
I
I
I
I
I
I
I
I
Direct

I I I record I return is made to
I I I I non-declarative
(I ((portion.
I I I I
I I I Pari ty error 1 (Skip block if
I I I I return is made to
I I I I non-declarative
I I I I portion.
I I 1 I

10UTPUTIWRITEIAll exceptional conditions are handled
I I I by the system.

I I I 1 I

[SEQUENT1AL]IINPUT IREAD IWrong length 2 ISkip block if
11-0 I I record I return is made to
I I I I non-declarative
I I 1 I portion.
I I I~----------~--~I-----------------~
I I I Pari ty error 1 I Skip block if
I I I I return is made to
I (I I non-declarative
I I I (portion.
I I I I
10UTPUTIWRITEIParity error 1 IBad block written.
11-0 I ~I ------------------~---_+I-------------·-----------1
I I (Wrong length 2 IBad block written.
I I I record I

I I I I I
I[SEQUENTIAL]IINPUT IREAD IWrong length 2 IReturn to statement
I I I I record I after READ.
I I I ~I--------------+----~I----------------------~
I I I IData check in 1 IReturn to statement
I I I I count area I after READ.
I I I ~I ----------~I~--~I-------------------~
I I I IData check fori 4 IReturn to statement
I I I (key and/or I I after READ.
(I I I data I I
I I I I I

RANDOM IINPUT (READ ISame as ACCESS SEQUENTIAL (above).
11-0 I I
f- I I
10UTPUT WRITElwrong length IReturn to next
I I record I statement; bad
I I I block written.
I ~(------------~--~I------------------~
I (Data check in 1 IReturn to next
I I count area I statement; bad
I I I block written.
I I I I
I IData check fori 4 IReturn to next
I I key and/or I I statement; bad
I I data I I block written.
I I I I
I INo room found I 3 IReturn to next
I I I I statement.
" I

Note: If no USE AFTER STANDARD ERROR ro tine is specified and one of the above con
ditions occurs, the programmer is notified of the condition and the job is cancelled.

Detailed File Processing Capabilities 157

I

Table 25. Meaning of Error Bytes for GIVING Option of Error Declarative (Part 2 of 2)
_ri-------ri------------ri------------ir-----~Ir-----~r-------------~I.---~i.----------------~~i

I I I I 11/0 I I . I
IDevice I Organization I ACCESS 10PEN IVerb Condition IBytel Result I
I I I I I I I t
IDASD Direct RANDOM I/O REWRITEIWrong length 2 IReturn to next 1
I 1 record 1 statement; bad 1
1 1 1 block written. I-
I rl------------+---,I--- I
I IData check in 1 IReturn to next I
I I count area I statement; bad I
I I I block written. I
I I I ,
I IData check in 4 IReturn to next I
I I key and/or I statement; bad 1
I I data I block written. 1
I I I I I I I

DASD Indexed I[SEQUENTIAL]IINPUT IREAD IDASD error 1 IReturn to next I
11-0 IREWRITEI , statement; bad 1
, I ,Wrong length 2 I block read or I
I I I record I written. I
I ~ I I t
I ISTART IDASD error 1 IContinued pro- I
I I I I cessing of file I
I I I I permitted. 1
I I I I I
OUTPUT WRITE IDASD error 1 IReturn to next I

I I statement; bad I
IWrong length 2 I block written. I
I record I I
I I I
IPrime data 3 IFile must be I
I area full I closed. I
1 I I I
ICylinder indexl 4 IFile must be 1
,full 1 1 closed. 1
~I------------+I--~I--- ,
IMaster index 1 5 IFile must be 1
I full 1 1 closed. 1

I I 'I 1
DASD Indexed RANDOM IINPUT IREAD IDASD error I 1 ,Return to next I

1 I-O 1 REWRITE I 1 I statement; bad 1
I I IWrong length 1 2 , block read or ,
I 1 1 record 1 1 written. 1
~I ------~1~-----41----------------~1---+1 1
11-0 IWRITE IDASD error 1 1 IReturn to next ,
, 1 I 'I statement; bad I
1 1 IWrong length 1 2 1 block written. 1
1 1 1 record 1 1 ,
I I' 'I 1
1 1 10verflow area 1 6 IFiles must be 1
1 I I full 1 I closed. ,

I I I I I I 1 I 1
13540 I Sequential 1 Sequential IINPUT IREAD IData check 1 1 IReturn to next 1
I I I I I I 1 1 sta temen t • 1
I I I I I I I I I
I I I 10UTPUTIWRITE IEquipment 1 2 IBad block read or I
I 1 1 I I I check , written up until I
I I I I I I I bad physical ,
I I , 'I I I record. I
I I I
INote: If no USE AFTER STANDARD ERROR routine is specified and one of the above con- 1
Iditions occurs, the programmer is notified of the condition and the job is cancelled. ,
I i

158

If the programmer includes a USE AFTER
TANDARD ERROR routine without specifying
he GIVING option, he must call an
. ssembler language routine within the
.eclarative if he wishes to interrogate the
~rror bits -- set either in the DT? (DTFMT,
ITFSD, or DTFIS) or in the fields preceding
.he DTF (DTFDA).

Interrogation of these error bits should
be made to the locations shown in Tables
26, 27, 28, 29, and 30 •

Note: The byte and bit displacement in
Tables 26, 27, 28, 29, and 30 is relative
to zero.

'able 26. Location and Meaning of Error Bits for DTFMT
i

OPEN Verb Condition Byte* Bit , ,
INPUT READ Wrong length record 3 1 , ,

Parity error 2 6 , ,
OUTPUT WRITE Wrong length record 3 1 ,

I I
Parity error 2 6 ,

I
,

,*Within the DTF. ,
I

~able 27. Location and Meaning of Error Bits for DTFSD
i I , OPEN Verb , Condition Byte* Bit
I ,
IINPUT, 1-0 READ , Wrong length record 3 1 , I
I I Parity error 2 6
I- ,
,OUTPUT, 1-0 WRITE I Parity error 2 6

• '*Within the DTF.

Detailed File Processing Capabilities 159

t

Table 28. Location and Meaning of Error Bits for DTFDA
i

ACCESS I OPEN Verb Condition Byte* Bit
I I
I [SEQUENTIAL] I INPUT READ Wrong length record 0 1
I
I Data check in count area 1 0
I
I Data check in key or data 1 3
I
I No record found 1 2 or 4
I

RANDOM INPUT, 1-0 READ Same as sequential

OUTPUT WRITE Wrong length record 0 1

No room found 0 4

Data check in count area 1 0

Data check in key or data 1 3

1-0 REWRITE Wrong length record 0 1

Data check in count area 1 0

Data check in key or data 1 3

No record found 1 2 or 4
I
I*Within error bytes preceding DTF. See the section "DTF Tables" for the location of
I these bytes. ,

Table 29. Location and Meaning of Error Bits for DTFIS
i

ACCESS I OPEN Verb Condition Byte* Bit
I I
[SEQUENTIAL] I INPUT, 1-0 READ DASD error 30 0

I
I Wrong length record 30 1
I
I OUTPUT WRITE DASD error 30 0
I
I Wrong length record 30 1
I
I Prime data area full 30 2
I
I Cylinder index full 30 3
I
I Master index full 30 4

I I
RANDOM I INPUT, 1-0 READ DASD error 30 0

I REWRITE
I
I Wrong length record 30 1
I
I 1-0 WRITE DASD error 30 0
I
I Wrong length record 30 1
I
I Overflow area full 30 6 ,

I*Within the DTF.
L

160

ible 30. Location and Meaninq of Error Bits for DTFDU

ACCESS

Sequential

OPEN

Input

Output

Verb

READ

WRITE

The following should be considered when
rocessing tape input files:

1. Two types of errors are returned to
the programmer: wrong length record
and parity check. The COBOL error
bytes, if requested, are set to
reflect the error condition and
control is transferred to the USE
AFTER STANDARD ERROR declarative
sentence. The error block is made
available at data-name-2 of the GIVING
option, if specified.

If a parity error is detected when a
block of records is read, the tape is
backspaced and reread 100 times before
control is returned to the programmer.
If the error persists, the block is
considered an error block and is added
to the block count found in the DTF
table.

Condition Byte* Bit

Data check 3 3

Equipment check 2 2

2. Normal return (to the non-declarative
portion) from a USE AFTER STANDARD
ERROR declarative section is through
the invoked IOCS subroutine. Thus,
the next sequential block is brought
into storage permitting continued
processing of the file. (The error
block is bypassed.) A return through
the use of a GO TO statement does not
bring the next block into storage;
therefore, it is impossible to
continue processing the file.

The processing of a sequential disk file
opened as input is the same as the previous
discussion of tape files, except that the
disk block is reread ten times before being
considered an error block.

COBOL cannot handle nested errors on
sequential files. If errors occur within

,an error declarative, results are
unpredictable.

Detailed File Processing Capabilities 161

I

VOLUME AND FILE LABEL HANDLING

TAPE LABELS

Among the several types of tape labels
allowed under the Disk Operating System
Virtual Storage are: volume labels,
standard file labels, user standard labels,
and nonstandard labels. Unlabeled files
are also permitted. The description of
each type of label follows.

Volume Labels

A volume label is used whenever standard
file labels are used. Logical IOCS
requires a volume label with VOL1 as its
first four characters on every standard or
user standard labeled file. VOL2-VOLS are
also allowed, but must be written by
the programmer and are only used by as.

Standard File Labels

A standard file label is an SO-character
label created when an output file is opened
or closed, in part by IOCS using the TLBL
control statement. The first three
characters are HDR (header), EOV
(end-of-volume), or EOF (end-of-file). The
fourth character is a 1, indicating the
first of a possible eight labels. The
remainder of the label is formatted into
fields describing the file. Labels 2
through a in this field are bypassed on
input, and are not created on output under
the Disk Operating System Virtual Storage.

162

The contents of the fields of a standard
file label are described in "Appendix B:
Standard Tape File Labels." The
relationship between the TLBL statement and
a standard file label is shown in Figures
39 and 40.

User Standard Labels

A user standard label is an aO-character
label having UHL (user header label) or UTL
(user trailer label) in the first three
positions. The fourth position contains a
number 1 through 8 which represents the
relative position of the user label within
a group of user labels. The contents of
the remairiing 76 positions are entirely up
to the programmer. User labels, if
present, follow HDR, EOV, or BOF standard
labels. On multivolume files, they may
also appear at beginning-of-volume. User
header labels are resequenced starting with
one (UHL1) at the beginning of a new
volume. Figure 41 shows the positioning of
user labels on a file.

Nonstandard Labels

A nonstandard label may be any length.
The contents of a nonstandard label is
entirely programmer-dependent. It is the
COBOL programmer's responsibility either to
process or bypass nonstandard labels on
input and to create them on output.
Nonstandard label processing is not
permitted on ASCII files. Figure 42 shows
the positioning of nonstandard labels on a
file.

t-zj
1--"

I.Q

~
H
CD

W
\0

en
rt"
PJ
~
PI
PJ
H
PI

1-3
PJ

'"C
CD

t-zj
I-J.
t-'
CD

~
PJ
0-
CD
t-'

PJ
~
PI

1-3
~
OJ
~

n
t::t PJ
(1) H
rt" PI
PJ
~.

t-' [J')
(1) ::r
PI 0

~
t-zj ~.
~. ~
t-' 1.0
(1)

~
t"d PJ
H ><
0 1--"
n 51
(1) ~
en 51
til
~. [J')

~ '"C
I.Q (1)

n
n ~.

PJ Hl
'"C ~.

PJ n
0- PJ
1--" rt"
t-' ~.

~. 0
rt" ~
I-J. til
(1)

til

~

'" W

Standard Tape File Label

r
label Identifier

r File label Number

00

I I I
IHORil'
:E 0 F: :
:E OV: :
'-v-'
Supplied
by lacs

/

File Identifier

Version Number

/1 . E" E Fil~ E Vol. File E G~ner E ~
~ Ol?flr- File Name E () File-ID Date E Senal E Seq. Seq. E atlon E .:

System Code

.!i3
{ Reserved

for A. S. A.}

:0:0 0 0 0 0 0:00 S / TO S / 3 6 0 b b:b b b b b b

r
b

: : (In HROI) : : I
I I I I I
I I I I I

Supplied by lacs
on output

{:l atlon 0 ;:) 0 No. 0 No. No. 0 No. 0 QI

- > Notes:
00000000000000 DO 000000000000000

l120ll122lll15l>lJ2IISJOll1211 " "101I121l11~16JJlIHIC tv\aximum size TLBL fields
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 are shown.

22 2 2 2 2 2 2 2 2 2 2 2 2 222222222222222 • Any field (except Ident,

33333333333333 333333333333333 Operation, and Date)
. -- may be from 1 position to

4 44 44 44 44 4 44 44 44 4 44 44 .. 44 44 4 44 th ° h lacs e maxI mum sown.
55555555555555 555555555555555 fills in the remaining

66666666666666 666666666666666 positions of the label field.

7 7 7 7 7 7 1 7 1 7 1 7 i 7 7 1 7 1 7 7 7 7 7 7 7 1 7 7 1 • Id ent and a perot ion must
be as shown.

8 8 ~ S 8 883686 e 8 B 38 e 8 S 8 8 a 8888 & 8 8 • Date may be 4- 6 positions;

9999~~9~qqS99 ·9S9999999999959 Retention period, 1-4.
,~.; l::.:- ~: .':liI2';'141SIEIlUlill~l1212~242;2g.,~.nliJJll:l.313~3fo3;J8l961j':42.(J44~464)404!1:.a~tS2~J~~5i5/~5'5051U61""5f.i'1"'!I};'1 :i.1J'41\7;I1"?r''1ao 2 If fO Id ° ° ed hOf h

IBM 50.!1 a Ie IS omltt ,S Itt e / It LBlj OTF 1 following comma and fields
Blank Name L- 8-5 punch-----.J to the left.

Dote - yy/d or yy/dd or yy/ddd {on Input or Output}
Retention Period - d-dddd {on Output only}

•

lacs supplies a default value
for the label field on output.

3 No comma fo Ilows the last
field used.

-' I'1;j

'"
-'= I.Q

~
t1
(1)

-'=
0

rn
rt
III
='
P.
III
t1
p.

8
III
"d
(1)

I'Ij
I-'
(1)

t-4
III
t::J"
(1)
I-'

III
I:'
p.

1-3
~
b:I
t:-t

n
III
t1
p.

-rn
::7
0
a:
='

I.Q

:3:
I:'
a
~
a
to
(1)

J.Q
~
t1
(1)
a
(1)

=' r+
~

Standard Tape File Label

r Label Identifier

r- File Lobel Number

(!) 0(3 ~e
File Identifier System Code

(Reserved
for A. S. A.)

\H 0 R : 1 ! OTF Name
lE 0 F: :

: b b b b b b b b b b! Volume
: : Serial

!ooo 1:0001:000
o 0 0
I I 0

'E Ovo I
I I 0 : l Num~ I I 0

I I I

~

Supplied
by loes

Job Control TLBL Card

tf Ilo!,"," II Fn. Neme
~ atlon
:E

0000 000000 OOOOOoooooOaOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoot60000000000
I 2 l 4 5 I 7 I , la II 12 Ill4 IS ~1!~~~~~»U~N~an~~»~~~.n~He~UU"u.~uU~~gU~~~~Y~~hUaM~"Ug n~nnnH~~nnn~

111111 111

222222 222122222222 22222222212

333333 333 ~

On input, no values
are suppl ied and no
checking is performed.

444444 444 ~.

555555 555

666666 666

'777777 77777777177717777777777777771777777777777777777777777777777777777

888888 888888888968888888888888888888888888.8.888888 ••• 888 ••••••••••••••

999999 999
1 2 3 4 5 I 1 1 • II II 12 13 If 15 1& :; .. 11 ~ 21 22 23 24 25 ZS 21 a n JII 31 U JJ 34 15 J5 17 JI JI 40 41 42 a "45 41 47 41 41 Y 51 52 U ~» Y S1 ••• 1112 a M 15 • 11 •• 1111 n n 14 J5 ~ n 71 71 •

lit LBj
Blank

OTF
Name

LABEL PROCESSING CONSIDERATIONS

Label considerations for VSAM are
discribed in the chapter "Virtual storage
Access Method (VSAM)".

The labels which may appear on tape are
shown in Figures 40 and 41. The compiler
allows the programmer to work with files

Load Point Marker
I
I
V R N N R N N P P R
i i iii i i j iii iii i

containing all the previously mentioned
labels as well as with unlabeled files.

If user standard labels are to be
created or checked in the COBOL program,
the USE AFTER BEGINNING/ENDING LABELS
declarative sentence and the LABEL RECORDS
clause with the data-name option must be
specified.

R R N N P P R R N NP P R

iii I Ii' I iii I Iii iii

t--'
I

IVIVI-IVIHIHI-IHIUI-IUI I I IEIEI-IEIUI-IUI IHIHI-IHIUI-IUI I
IOIOI-IOIDIDI-IDIHI-IHITI ITIOIOI-IOITI-ITITIDIDI-IDIHI-IHITI

I ILILI-ILIRIRI-IRILI-ILIMI FILE #1IMIFIFI-IFILI-ILIMIRIRI-IRILI-ILIMI FILE #2
I 11121-1811121-18111-181 I I 11121-18111-181 11121-18111-181 I
~' ____ ~'~'~'~'-L'-L'~'~'~'~'~'~'~I~ _______ ' I I I t I I I , , I I I I I I I ,

End of Tape Marker
I
I
V R R N N P P R R
iii iii i I Iii i

Y IEIEI-IEIUI-IUI I I
FILE #2 ITIOIOI-IOITI-ITITITI

IMIVIVI-IVILI-ILIMIMI
I 11121-18111-181 I I
I I I I , , , I I I I

Notes: R Required, processed by IOCS.
N = Permitted, but not written or checked, by IOCS and not available to

programmer.
P Processed by IOCS and available to user.

igure 41. Standard, User Standard, and Volume Labels

Load Point Marker
I
I
V 0
i i

f--l
I

I I

ILl
I A I

I I

ILl
IAI

I

I
I

I IBI-IBIT I
I lEI IEIM I
I ILl-ILl I
I I S I IS I I
I I , I I t

R C

I I I I I

I ILl ILl I
I IAI I A I I
ITIBI-IBITI

FILE #1IMIEI IEIMI
I ILl-ILl I
I lSI IS I I
I I I I I I

Notes: R
o
C

Required, processed by IOCS.
Optional.
Written by COBOL compiler.

Figure 42. Nonstandard Labels

Detailed File Processing Capabilities 165

Header labels are written or read when
the file is opened or when a volume switch
occurs. Trailer labels are written when
the physical end of the reel is reached, or
when a CLOSE REEL or CLOSE file-name is
issued. Trailer labels are read on each
reel except the last when a tapemark is
reached. Por the last reel (i.e., EOP
labels), trailer labels are not read until
the file is closed.

For multivolume input files with
nonstandard labels, the programmer must
specify the integer-1 option of the source
language ASSIGN clause, where integer-1 is
the number of reels in the file. This
number can be overridden at execution time
by storing a nonzero integer in the special
register NSTD-REELS before opening the
file. The number of reels is then
available to the programmer while the file
is opened both in the special register
NSTD-REELS and in the field reserved for
this purpose which precedes the DTF table
for DTFMT (see "DTF Tables" in this
chapter). In addition, the number of reels
remaining after each volume switch can also
be found in the field reserved for this
purpose which precedes the DTF table for
DTFMT.

When processing a multivolume file with
nonstandard labels (i.e., when the
data-name option of the LABEL RECORDS
clause is specified), if the programmer
wishes to stop reading or writing before
the physical end of a reel is reached, he
must set a switch in the appropriate
declarative section. In the Procedure
Division, he can either CLOSE REEL or CLOSE
FILE depending on the switch setting.
Volume switching is done by LIOCS when
CLOSE REEL is executed.

1

Note: An unlabeled multivolume tape file
should not be CLOSE WITH LOCK between two
reels.

Sample Programs

Figure 43 illustrates the manner in
which unlabeled input files on a multifile
volume are processed by a COBOL program.
The input volume contains four files, only
three of which are being used by the
program. This unused file, which resides
between the first and third file on the
volume, must be bypassed during file
processing. The program creates a single
multivolume file with standard labels.

166

All input files residing on the same
volume are assigned to the same
symbolic unit.

®

®

The second file on the input reel is
not used in this program and is
bypassed through use of the POSITION
option of the MULTIPLE FILE TAPE
clause.

The first and second input files are
closed by the execution of the CLOSE
statement with the NO REWIND option,
leaving the tape positioned in
mid-reel for the next OPEN.

All volumes with the exception of the
last volume of the multivolume output
file are closed by a close statement
with the REEL option. Volume
switching is performed as noted in
step@ •

The second and third input files
processed by the program are opened by
an OPEN statement with the NO REWIND
option.

At job completion, a standard CLOSE is
issued to reposition the tapes of the
closed files at their physical
beginnings.

An LBLTYP control statement is
included because a tape file requiring
label information is to be processed.

Alternate assignments have been made
for SYS011. Because these alternate
assignments are in the sequence in
which the ASSGN statements are
submitted, the first volume of the
output file will be on tape drive 282,
the second on 283, and the third on
181. When the first CLOSE OUT-PUT
REEL statement is executed, a standard
EOV label is written on the volume
assigned to drive 282 and the reel is
rewound and positioned at its physical
beginning. The next WRITE RECO
statement executed will then be
written on the volume mounted on drive
283.

Although the file OUT-PUT consists of
multiple volumes, only one TLBL
control statement need be submitted.

Figure 44 is a sample program that
illustrates the manner in which the
multivolume file created in Figure 43 is
read as an input file. The sample program
also creates a multifile volume with
standard labels.

All output files residing on the same
volume are assigned to the same
symbolic unit.

The name field of the system-name in
the ASSIGN clause is specified. This
is the external-name by which the file

is known to the system. When
specified, it is the name that appears
in the filename field of the DLBL or
TLBL job control statements.

Por the multivolume input file IN-PUT,
the AT END option of the READ
statement applies only to the last
volume containing the BOP label. Por
prior volumes containing BOV labels,
automatic volume switching will take
place as indicated in the ASSGN
control statements pertaining to the
file IN-PUT.

The first and second file written on
the volume are closed using the NO
REWIND option of the CLOSE statement.
This option leaves the tape positioned
in mid-reel following the BOF label of
the file just closed.

At job's completion, a standard CLOSE
is issued to reposition the tapes of
the closed files at their physical
beginning.

A LBLTYP control statement is included
because tape files requiring label
information are being processed.

There are three TLBL control
statements for the volume assigned to
SYS013, one for each file referenced
on the volume. The filename field of
the TLBL control statements for these
files contains the names used in the
ASSIGN clauses of the COBOL source
program, not the programmer logical
unit name.

Alternate assignments have been made
for SYS012 to handle the multiple
volumes of the file IN-PUT.

Figure 45 illustrates the creation of an
unlabeled multivolume file. The number of
output volumes is determined dynamically
during program execution. The program's
input consists of the labeled multifile
volume created in Figure 44.

All input files residing on the same
volume are assigned to the same
symbolic unit.

o

The name field of the system-name of
the ASSIGN clause is specified. These
names will appear on the TLBL control
statements that refer to these files.

The MULTIPLE FILE TAPE clause is not
required for the multifile volume
because each file is being processed
in the sequence in which it appears on
the reel. A rewind will not be
executed for any file on the reel
except for that processed last.

The CLOSE statement for files IN-PUT-1
and IN-PUT-2, and the OPEN statement
for files IN-PUT-2 and IN-PUT-3, use
the NO REWIND option. This leaves the
tape positioned in mid-reel for the
multifile volume1s next OPEN
statement.

When it has been determined from the
input data that a new output reel is
required for the multivolume output
file, a CLOSE OUT-PUT REEL statement
is executed, processing is halted, and
a message is issued to the operator
which requests a new volume to be
mounted.

At job1s completion, a standard CLOSE
is issued to reposition the tapes of
the closed file at their physical
beginning.

An LBLTYP control statement is
included because tape files requiring
label information are being processed.

There are three TLBL control
statements for the volume assigned to
SYS014, one for each file referenced
on the volume. The filename field of
the TLBL control statements for these
files contains the names used in the
ASSIGN clauses of the source program
and not the programmer logical unit
names.

Only one tape drive is assigned to the
multivolume file OUT-PUT. Therefore,
each time a volume is closed,
processing must be halted and the
operator informed to mount ~ew tape.
This is illustrated in step~.

Detailed File Processing Capabilities 167

// JOB SAMPLE
* UNLABELED MULTIFILE VOLUME TO MULTIVOLUME FILE WITH STANDARD LABELS
// OPTION LOG,DUMP,LINK,LIST,LISTX,XREF,SYM,ERRS,NODECK
// EXEC FCOBOL

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
000380
000390
000400
000410
000420
000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE-1.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL ..

SELECT INPUT1 ASSIGN TO SYS010-UT-3410-S-FILE1.} It\
SELECT INPUT2 ASSIGN TO SYS010-UT-3410-S-FILE2. \!;
SELECT INPUT3, ASSIGN TO SYS010-UT- 34'19-s-FILE3.
SELECT OUT-PUT ASSIGN TO SYS011-UT-3410-S.

I-O-CONTROL.
MULTIPLE FILE TAPE CONTAINS INPUTl POSITION 1 }

INPUT2 POSITION 3
4

• (!)
INPUT3 POSITION

DATA DIVISION.
FILE SECTION.
FD INPUT1

RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED.

01 RECl PIC X(80).
FD INPUT2

RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED.

01 REC2 PIC X(80).
FD INPUT3

RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED.

01 REC3 PIC X(80).
FD OUT-PUT

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 RECO PIC X(80).
PROCEDURE DIVISION.

OPEN INPUT INPUT1 OUTPUT OUT-PUT.
READ1.

READ INPUT1 INTO RECO AT END GO TO CLOSE1.
A. WRITE RECO.
B. GO TO READ1.
CLOSE1.

CLOSE INPUT1 WITH NmEWIND.(!)
C. CLOSE OUT-PUT REEL. 4
D. OPEN INPUT INPUT2 WI NO REWIND.C!)
READ2.

READ INPUT2 INTO RECO AT END GO TO CLOSE2.
PERFORM A.
GO TO READ2.

CLOSE2.
CLOSE INPUT2 WITH NO REWIND. (!)
PERFORM C.
OPEN INPUT INPUT3 WITH NO REWIND. C!)

Figure 43. Processing an Unlabeled Multifile Volume (Part 1 of 2)

168

READ3. 000540
000550
000560
000570
000580
000590
000600

READ INPUT3 INTO RECO AT END GO TO CLOSE3.
PERFORM A._
GO TO READ3.

CLOSE3.
CLOSE INPUT3 OUT-PUT. CD
STOP RUN.

II LBLTYP TAPE (])
II EXEC LNKEDT

II ASSGN SYS010,X'281'
II ASSGN SYSOll,X'282'
II ASSGN SYS011,X'283.,ALT} CD
II ASSGN SYS011,X'181 1 ,ALT 8
II TLBL SYS011,'MULTI-VOL FILE',99/214
II EXEC CD

Figure 43. Processing an Unlabeled Multifile Volume (Part 2 of 2)

Detailed File Processing Capabilities 169

// JOB SAMPLE
* LABELED MULTIVOLUME FILE TO LABELED MULTIFILE VOLUME
// OPTION LOG,DUMP,LINK,LIST,LISTX,XREF,SYM,ERRS,NODECK
// EXEC FCOBOL

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
000380
000390
000400
000410
000420
000430
000440
000450

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE-2.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IN-PUT ASSIGN TO SYS012-UT-3410-S.
SELECT OUT-PUT1 ASSIGN TO SYS013-UT-3410-S-FILE1.}
SELECT OUT-PUT2 ASSIGN TO SYS013-UT-3410-S-FILE2. CI)
SELECT OUT-PUT3 ASSIGN TO SYS013-UT-3410-S-FILE3.

DATA DIVISION. .
FILE SECTION.
FD IN-PUT

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 IN-REC.
05 FILLER PIC X(4).
05 CODA PIC X.
05 FILLER PIC X(6}.
05 CODB PIC X.

88 SW-FIL1 VALUE "9".
88 SW-FIL2 VALUE "8".

05 FILLER PIC X(68}.
FD OUT-PUT1

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 OUT-REC1 PIC XC80}.
FD OUT-PUT2

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 OUT-REC2 PIC X (80) •
FD OUT-PUT3

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 OUT-REC3 PIC XC80}.
WORKING-STORAGE SECTION.
77 TAPE-NUMBER PIC 9 VALUE O.
PROCEDURE DIVISION.

OPEN INPUT IN-PUT OUTPUT OUT-PUT1.

Figure 44. Reading a Multivolume File with Standard Labels; Creating a Multifile Volume
with Standard Labels (Part 1 of 2)

170

)00460
)00470
)00480
)00490
)00500
~00510
000520
000530
000540
000550
000560
000570
000580
000590
000600
000610
000620
000630
000640
000650
000660
000670
000680
000690

READ-IN.
READ IN-PUT AT END GO TO END-OF-JOB. (!)

A. MOVE IN-REC TO OUT-REC1.
WRITE OUT-REC1.
IF SW-FIL1 NEXT SENTENCE ELSE G~O READ-IN.
CLOSE OUT-PUT1 WITH NO REWIND. \!J
OPEN OUTPUT OUT-PUT2.
ADD 1 TO TAPE-NUMBER.

B. PERFORM READ-IN.
MOVE IN-REC TO OUT-REC2.
WRITE OUT-REC2.
IF SW-FIL2 NEXT SENTENCE ELSE G~O B.
CLOSE OUT-PUT2 WITH NO REWIND. \!J
OPEN OUTPUT OUT-PUT3.
ADD 1 TO TAPE-NUMBER.

C. PERFORM READ-IN.
MOVE IN-REC TO OUT-REC3.
WR ITE OUT-R EC3 •
GO TO C.

END-OF-JOB.
CLOSE IN-PUT.
IF TAPE-NUMBER
IF TAPE-NUMBER

D. STOP RUN.

o CLOSE OUT-PUT 1 GO TO D. } f4\
1 CLOSE OUT-PUT2 ELSE CLOSE OUT-PUT3. ~

II LBLTYP TAPE ~
II EXEC LNKEDT

II
II
II
II
II
II
II
II
II

ASSGN SYS018,X'283'
TLBL FILE1,'MULTI-FILE1 VOLI} ®
TLBL FILE2,'MULTI-FILE2 VOL' 6
TLBL FILE3,'MULTI-FILE3 VOL'
ASSGN SYS012,X'281'
ASSGN SYS012,X'282' ,ALT} CD
ASSGN SYS012,X'181',ALT
TLBL SYS012,'MULTI-VOL FILE'
EXEC

Figure 44. Reading a Multivolume File with Standard Labels; creating a Multifile Volume
with Standard Labels (Part 2 of 2)

Detailed File Processing Capabilities 171

// JOB SAMPLE
* LABELED MULTIFILE VOLUME TO UNLABELED MULTIVOLUME FILE
// OPTION LOG,DUMP,LINK,LIST,LISTX,XREF,SYM,ERRS,NODECK
// EXEC FCOBOL

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
000380
000390
000400
000410
000420
000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530
000540
000550

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE-3.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IN-PUT-1 ASSIGN TO SYS014-UT-3410-S-FILE1.}
SELECT IN-PUT-2 ASSIGN TO SYS014-UT-3410-S-FILE2. (!)
SELECT IN-PUT-3 ASSIGN TO SYS014-UT-3410-S-FILE3.
SELECT OUT-PUT ASSIGN TO SYS015-UT-3410-S.

DATA DIVISION.
FILE SECTION.
FD IN-PUT-1

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 IN-REC1 PIC X(80).
FD IN-PUT-2

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 IN-REC2 PIC X (80) •
FD IN-PUT-3

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 IN-REC3 PIC X(80).
FD OUT-PUT

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS OMITTED.

01 OUT-REC.
05· FILLER PIC X (4) •
05 CODA PIC X.

88 HI VALUE "9".
05 FILLER PIC X(6}.
05 CODB PIC X.

88 LO VALUE "8".
05 FILLER PIC X(68).

PROCEDURE DIVISION.
OPEN INPUT IN-PUT-1 OUTPUT OUT-PUT.

IN-1.
READ IN-PUT-1 INTO OUT-REC AT END.GO TO CLOSE1.

TESTER.
IF HI AND LO PERFORM CLOSE-OUT ELSE WRITE OUT~REC.®

A. GO TO IN-1.
CLOSE1.

CLOSE IN-PUT-1 WITH NO REWIND. } f,;'\
OPEN INPUT IN-PUT-2 WITH NO REWIND. \!J

IN-2.
READ IN-PUT-2 INTO OUT~REC AT END GO TO CLOSE2.
PERFORM TESTER.
GO TO IN-2.

Figure 45. Creating an Unlabeled Multivolume File (Part 1 of 2)

172

(

CLOSE2. 000560
000570
000580
000590
000600
000610
000620
000630
000640
000650
000660
000670
000680

CLOSE IN-PUT-2 WITH NO REWIND. } f2\
OPEN INPUT IN-PUT-3 WITH NO REWIND. \:J

IN-3.
READ IN-PUT-3 INTO OUT-REC AT END GO TO CLOSE3.
PERFORM TESTER.
GO TO IN-3.

CLOSE-OUT.
CLOSE OUT-PUT REEL. } f,;\
STOP "REMOVE TAPE ON SYS015 AND MOUNT NEW TAPE". ~

CLOSE3.
CLOSE IN-PUT-3 OUT-PUT. (!)
STOP RUN.

1/ LBLTYP TAPE CD
1/ EXEC LNKEDT

1/ ASSGN SYS014,X'283 1

// TLBL FILE1,IMULTI-FILE1
1/ TLBL FILE2,'MULTI-FILE2
1/ TLBL FILE3, 'MULTI-FI~3
1/ ASSGN SYS015,X·282'\.!j
1/ EXEC

VOL' }
VOL' ®
VOLI

Figure 45. Creating an Unlabeled Multivolume File (Part 2 of 2)

Detailed File Processing Capabilities 173

Page of SC28-6478-3, As Updated 28 Dec 1979, By TNL SN20-9310

MASS STORAGE FILE LABELS

The IBM Disk Operating System/Virtual
Storage provides postive identification and
protection of all files on mass storage
devices by recording labels on each volume.
These labels ensure that the correct volume
is used for input, and that no current
information is destroyed on output.

The mass storage labels always include
one volume label for each volume and one or
more file labels for each logical file on
the volume. There may also be ~ser header
labels and user trailer labels.

Volume Labels

The volume label is an SO-byte data
field preceded by a 4-byte key field. Both
the key field and the first four bytes of
the data field contain the label identifier
VOLle IOCS creates a standard volume label
for every volume processed by the Disk
Operating System/Virtual Storage. It is
always the third record on cylinder 0,
track O. The format and contents of a
standard volume label can be found in the
publication DOS/VS Disk Labels.

Standard File Labels

A standard file label identifies a
particular logical file, gives its
location(s) on the mass storage device, and
contains information to prevent premature
destruction of current files. A standard
file label for a file located on a mass
storage device is a 140-character label
created (OPEN/CLOSE OUTPUT) in part by IOCS
using the DLBL control statement. The
fields contained within the label follow
three standard formats.

1. Format 1 is used for all logical
files. The contents of the fields of
a Format 1 label is discussed in
"Appendix C: Standard Mass Storage
Device Labels. 1I

2. Format 2 is required for indexed
files. The contents of the fields of
a Format 2 label can be found in the
publication DOS/VS Disk Labels.

3. Format 3 is required if a logical file
uses more than three extents of any
volume. The contents of the fields of
a Format 3 label can be found in the
publication DOS/VS Disk Labels.

User Labels

The programmer can include additional
labels'to further define his file. These

174

labels are referred to as user standard
labels. They cannot be specified for'
indexed files.

Under DOS/VSE Advanced Functions,
Release 2 and up, for sequential mass
storage files defined in VSAM space, user
labels are ignored.

A u~er label is'an 80-character label
containing UHL (user header label) or UTL
(user trailer label) in the first three
character positions. The fourth position
contains a number 1 through 8 which
represents the relative position of the
user label within a group of user labeis.
The contents of the remaining 76 positions
is entirely up to the programmer. User
header and trailer labels are written on
the first track of the first extent of each
volume allocated by the programmer for the
file. User header labels are resequenced
starting with one (UHL1) at the beginning
of each new volume.

LABEL PROCESSING CONSIDERATIONS

Files on Mass Storage Device Opened as
Input

1. Standard labels checked

a. The volume serial numbers in the
volume labels are compared to the
file serial numbers in the EXTENT
card.

b. Fields 1 through 3 in Format 1
label are compared to the
corresponding fields in the DLBL
card.

c. Each of the extent definitions in
the Format 1 and Format 3 labels
is checked against the limit
fields supplied in the EXTENT
card.

2. User labels checked

a. If user header labels are
indicated for directly or
sequentially organized files, they
are read as each volume of the
file is opened. After reading
each label, the OPEN routine
branches to the programmer's label
routine if the appropriate USE
AFTER STANDARD LABEL PROCEDURE
declarative is specified in the
source program. The LABEL RECORDS
clause with the data-name option
must be specified in the Data
Division. The programmer's label
routine then performs any
processing required.

b. If user trailer labels are
indicated on a sequential file,
they are read after reaching the
end of the last extent on each
volume when the file is closed,
provided end-of-file has been
reached. Trailer labels are
processed by the programmer's
label routine if the appropriate
USE AFTER STANDARD LABEL PROCEDURE
declarative is specified in the
source program. The LABEL RECORDS
clause with the data-name option
must be specified in the Data
Division.

iles on Mass Storage Devices Opened as
utput

1. Standard labels created

a. The volume serial numbers in the
volume labels are compared to the
file serial numbers in the EXTENT
card.

b. The extent definitions in all
current labels on the volume are
Checked to determine whether any
extend into those defined in the
EXTENT card. If any overlap, the
expiration date is checked against
the current date in the
Communication Region of the
Supervisor. If the expiration
date has passed, the old labels
are deleted. If not, the operator
is notified of the condition.

c. The new Format 1 label is written
with information supplied in the
DLBL card. If an indexed file is
being processed, the DTFIS routine
supplies information for the
Format 2 label.

d. The information in the EXTENT card
is placed in the Format 1 labels
and, if necessary, in the
additional Format 3 labels.

2. User header labels created.

a. If user header labels are
indicated by the presence of the
appropriate USE AFTER STANDARD
LABEL PROCEDURE declarative and
the LABEL RECORDS clause with the
data-name option, the programmer's
label routine is entered to
furnish the labels as each volume
of the file is opened. This can
be done for as many as eight user
header labels per volume. As each
label is presented, IOCS writes it
out on the first track of the
first extent of the volume.

b. If user trailer labels are
indicated by the pre~ence of the
appropriate USE AFTER STANDARD
LABEL PROCEDURE declarative and
the LABEL RECORDS clause with the
data-name option, the programmer's
label routine is entered to
furnish the labels when the end of
the last extent on each volume is
reached. This can be done for as
many as eight user trailer labels.
The CLOSE statement must be issued
to create trailer labels for the
last volume of a sequential file
or for a direct file.

UNLABELED FILES

When a multivolume tape file is opened
as INPUT and integer as specified in the
ASSIGN clause is greater than 1, the
compiler will generate the following
message to the operator:

C126D IS IT EOF?

The operator must respond either with N if
it is not the last reel, or with Y if it is
the last reel. If it is end-of-file,
control passes to the imperative-statement
specified in the AT END phrase of the READ
statement; if it is not end-of-file,
processing of the next volume is initiated.

If the integer specified in the ASSIGN
clause is not greater than 1, control
always passes at end-of-volume to the
imperative-statement specified in the AT
END phrase of the READ statement.

Detailed File Processing Capabilities 175

(

The IBM DOS/VS COBOL Compiler and
ibrary support the American National
tandard Code for Information Interchange
ASCII) as well as EBCDIC. This support
llows the user at object time to accept
nd create magnetic tapes in accordance
ith all of the following standards:

• American National Standard Code for
Information Interchange, X3.4-1968.

• American National Standard Magnetic
Tape Labels for Information
Interchange, X3.27-1969.

• American National Standard Recorded
Magnetic Tape for Information
Interchange (800 CPI, NRZI),
X3.22-1967.

SPECIFYING ASCII FILE PROCESSING

If a program will process an ASCII
(American National Standard Code for
Information Interchange) SAM file, the user
nust identify it as such in one of two ways.
Jne technique is to use the CODE-SET phrase
~f the COBOL FD statement to reference an
alphabet-name that was defined as STANDARD-1
(which is equivalent to ASCII). The other
technique is to use the COBOL ASSIGN clause,
with assignment-name having the following
format:

SYSnnn-UT-device-C [-buffer offse~~name]

where:

C is an organization code that specifies
that an ASCII-encoded sequential file is to
be processed, or that an ASCII-collated sort
is to be performed.

name is a field of 1 to 8 characters that
specifies the system-recognized name of the
file. If specified, it is this external
name that appears in the name field of the
DLBI, or TLBL control statement.

If this ASSIGN technique is used, LANGLVL(1)
must be specified.

Buffer offset is a two-character field that
serves to indicate the size of the block
prefix. A block prefix, if present,
precedes each physical record and is not
accessible to the COBOL programmer. This
entry may only be present for ASCII tape
files and is only required if a non-zero

PROCESSING ASCII TAPE FILES :

block prefix exists. For output files,
buffer offset may be specified as 00 for F,
U, or D-mode records, or as 04 for D-mode
records only. A buffer offset of 04 on
output means that the block prefix will
contain the length of each physical record.
For input files, buffer offset may be in
the range 00 through 99.

. FILE HANDLING

In processing ASCII files, the supported
record formats are fixed, undefined, and
variable. A variable-length record on an
ASCII file is known as a D-format record.
ASCII support does not extend to spanned
records. Record formats are discussed in
detail in the chapter "Record Formats."

For an ASCII file that contains a buffer
offset field, the following considerations
apply:

• If the BLOCK CONTAINS clause with the
RECORDS option is specified, or if the
BLOCK CONTAINS clause is omitted, the
compiler compensates for the buffer
offset field.

• If the BLOCK CONTAINS clause with the
CHARACTERS option is specified, the
programmer must include the buffer
offset as part of the physical record.

Labels on ASCII files are processed as
are the existing DOS/VS standard and user
standard labels.

Nonstandard label procedures, however, are
not supported. Therefore, USE BEFORE
STANDARD LABEL PROCEDUREs are not permitted
for ASCII files. ASCII files on unlabeled
tapes are supported. These unlabeled tapes
may contain data in any of the supported
record formats. A complete discussion of
tape file labels can be found in the
chapter "Advanced Processing Capabilities."

The ASCII option (organization code C in
the ASSIGN clause) must not be specified
for a file on which checkpoints are to be
written.

processing ASCII Tape Files 177

Diagnostic messages associated with
ASCII file handling are provided. At
compile time, E-level messages are issued
for files whose record descriptions contain
data formats that are inconsistent with
ASCII conversion. At object time, a
message is issued if an invalid sign
configuration is present during
translation, and the job will be
terminated ..

OPERATIONAL CONSIDERATIONS

It should be noted that· ASCII support
causes translation from ASCII to EBCDIC on
input and from EBCDIC to ASCII on output.
Translation occurs automatically and is
transparent to the COBOL programmer. Since
an ASCII file is assumed to contain only
ASCII characters, standard character
sUbstitution occurs when untranslatable
configurations are present. The character
X'1A' is substituted for invalid EBCDIC
configurations during translation. An
invalid ASCII configuration (high-order bit.
on) translates to the character X'3F'.

OBTAINING AN ASCII COLLATING SEQUENCE ON A
SORT

If an ASCII collated sort is desired or
numeric sort keys contain a sign in the

178

form of a leading overpunch or separate
character, a Program Product IBM DOS/VS
S'ort/Merge program must be used. If sort
files reside on a 3330 or 3340 device, the
Sort program that supports these devices is
required. The Program Product IBM DOS/VS
Tape and Disk Sort/Merge, Program Number
5746-SM1 is designed specifically for use
with a DOS/VS system.

To obtain an ASCII collated sort, the
system-name in the ASSIGN clause·for the
sort work files should contain a C in the
organization field. The class field may be
specified as either UT or DA. (Since ASCII
support causes translation from ASCII to
EBCDIC on input, sort work files are not
restricted to tapes.)

Note that for an ASCII collated sort,
the buffer offset field is not permitted.

I The ASCII collating sequence is listed
in the publication IBM VS COBOL for DOS/VSE.

Logical records for files which are not
;AM files may be in one of four formats:
. xed-Iength (format F), variable-length
:ormat V) , undefined (format U), or
)anned (format S). All of these formats
:e not supported for all access methods.
·mode files must contain records of equal
~ngths. Files containing records of
lequal lengths must be V-mode, S-mode, or
·mode. Files containing logical records
lat are longer than physical records must

S-mode.

The record format is specified in the
~CORDING MODE clause in the Data Division.
: this clause is omitted, the compiler
~termines the record format from the
~cord descriptions associated with the
.le. If the file is to be blocked, the
.OCK CONTAINS clause must be specified in
le Data Division.

The prime consideration in the selection
a record format is the nature of the file

:self. The programmer knows the type of
lput a program will receive and the type of
Itput it will produce. The selection of a
!cord format is based on this knowledge as
!ll as an understanding of the type of
lput/output devices on which the file is
~itten and of the access method used to
!ad or write the file.

Coding considerations for non-fixed
~ngth records are discussed in the chapter
~able Handling Considerations."

[XED-LENGTH (FORM~ RECORDS

Format F records are fixed-length
!cords. The programmer specifies format F
!cords by including RECORDING MODE IS F in
le file description entry in the Data
Lvision. If the clause is omitted and
)th of the following are true:

• All records in the file are the same
size

• BLOCK CONTAINS [integer-1 TO]
integer-2 ••• does not specify
integer-2 less than the length of the
maximum level-01 record

le compiler determines the recording mode
> be F. All records in the file are the
tme size if there is only one record
~scription associated with the file and it
)ntains no OCCURS clause with the

RECORD FORMATS FOR NON-VSAM FILES

DEPENDING ON option, or if multiple record
descriptions are all the same length .

The number of logical records within a
block (blocking factor) is normally
constant for every block in the file. When
fixed-length records are blocked, the
programmer specifies the BLOCK CONTAINS
clause in the file description entry in the
Data Division.

In unblocked format F, the logical
record constitutes the block. The BLOCK
CONTAINS clause is unnecessary for
unblocked records.

Format F records are shown in Figure 46.
The optional control character, represented
by C, is used for stacker selection and
carrier control. When carrier control or
stacker selection is desired, the WRITE
statement with the ADVANCING or POSITIONING
option is used to write records on the
output file. In this case, one character
position must be included as the first
character of the record. This position will
be automatically filled in with the carrier
control or stacker select character. The
type of carrier control character to be used
is determined by the compiler. When only
AFTER is specified, ASA control characters
are used. When only BEFORE is specified,
machine control characters are used. When
both BEFORE and AFTER are used, machine
control characters are used. The carrier
control character never appears when the
file is written on the printer or punched
on the card punch.

<

<

Logical Record

c Data

Blocked Records

Logical
Record

Logical
Record

·--------Fixed Length

Logical
Record

._---->

Unblocked Record

Logical Record

·--------Fixed Length ._---->

Figure 46. Fixed-Length (Format F) Records

Record Formats for Non-VSAM Files 179

UNDEFINED (FORMAT U) RECORDS

Format U is provided to permit the
processing of any blocks that do not
conform to F or V formats. Format U
records are shown in Figure 47. The
optional control character C, as discussed
under "Fixed-Length (Format F) Records,"
may be used in each logical record.

The programmer specifies format u
records by including RECORDING MODE IS U in
the file description entry in the Data
Division. U-mode records may be specified
only for directly organized or standard
sequential files.

If the RECORDING MODE clause is omitted,
and BLOCK CONTAINS [integer-1 TO]
integer-2 ••• does not specify integer-2
less than the maximum level-01 record, the
compiler determines the recording mode to
be U if the file is directly organized and
one of the following conditions exist:

• The FD entry contains two or more
level-01 descriptions of different
lengths.

• A record description contains an OCCURS
clause with the DEPENDING ON option.

• A RECORD CONTAINS clause specifies a
range of record lengths.

Each block on the external storage media
is treated as a logical record. There are
no record-length or block-length fields.

Note: When a READ INTO statement is used
for a U-mode file, the size of the longest
record for that file is used in the MOVE
statement. All other rules of the MOVE
statement apply.

Logical Record

C Data

Format U Record

Logical Record

Figure 47. Undefined (Format U) Records

VARIABLE-LENGTH RECORDS

There are two types of variable-length
record: D-format and V-format. AD-format
record is a variable-length record on an

180

ASCII tape file. D-format records are
processed in the same manner as V-format
records on tape files.

The programmer specifies format V
records by including RECORDING MODE IS V in
the file description entry in the Data
Division. V-mode records may only be
specified for standard sequential files.
If the RECORDING MODE clause is omitted and
BLOCK CONTAINS [integer-1 TO] integer-2 •••
does not specify integer-2 less than the
maximum level-01 record, the compiler
determines the recording mode to be V if
the file is standard sequential and one of
the following conditions exists:

• The FD entry contains two or more level
01 descriptions of different lengths.

• A record description contains an OCCURS
clause with the DEPENDING ON option.

• A RECORD CONTAINS clause specifies a
range of record lengths.

V-mode records, unlike U-mode or F-mode
records, are preceded by fields containing
control information. These control fields
are illustrated in Figures 48 and 49.

The first four bytes of each block
contain control information (CC):

LL -- represents two bytes designating
the length of the block (including
the 'CC' field).

BB -- represents two bytes reserved for
system use.

The first four bytes of each logical
record contain control information (cc):

11 -- represents two bytes designating
the logical record length
(including the 'cc' field).

bb -- represents two bytes reserved for
system use.

For unblocked V mode records (see Figure
45) the data portion + CC + cc constitute
the block.

4 4 variable
<--bytes-><--bytes--><------bytes------->

LL I BB
\ !

'CC'

I
IH

11 I bb
!

'cc'

Data

Figure 48. Unblocked V-Mode Records

1st
Logical Record

2nd
Logical Record

3rd
Logical Record

~ -iii i Iii

LL BB 11 bb DATA-1 I 11 I bb I DATA-2 11 I bb I DATA-3
, I

ICC'
(block control

bytes)
cc

(record control
bytes)

'igure 49. Blocked V-Mode Records

For blocked V-mode records (see Figure
~9) the data portion of each record + the
:c of each record + CC constitute the
llock.

The control bytes are automatically
)rovided when the file is written and are
lot communicated to the programmer when the
:ile is read. Although they do not appear
Ln the description of the logical record
)rovided by the programmer, the compiler
1ill allocate input and output buffers
lhich are large enough to accomodate them.
Jhen variable-length records are written on
lnit record devices, control bytes are
leither printed nor punched. They appear,
lowever, on other external storage devices
lS well as in buffer areas of storage.
7-mode records moved from an input buffer
:0 a working-storage area will be moved
lithout the control bytes.

~ote: When a READ INTO statement is used
:or a V-mode file, the size of the longest
~ecord for that file is used in the MOVE
,tatement. All other rules of the MOVE
5tatement apply.

~xample 1:

Consider the following standard
5equential file consisting of unblocked
l-mode records:

~D VARIABLE-FILE-l
RECORDING MODE IS V

)1

BLOCK CONTAINS 35 TO 80 CHARACTERS
RECORD CONTAINS 27 TO 72 CHARACTERS
DATA RECORD IS VARIABLE-RECORD-l
LABEL RECORDS ARE STANDARD.

VARIABLE-RECORD-l.
05 FIELD-A PIC X(20).
05 FIELD-B PIC 99.
05 FIELD-C OCCURS 1 TO 10 TIMES

DEPENDING ON
FIELD-B PIC 9 (5) •

The LABEL RECORDS clause is always
required. The DATA RECORD(S) clause is
never required. If the RECORDING MODE
clause is omitted, the compiler determines
the mode as V since the record associated
with VARIABLE-FILE-l varies in length
depending on the contents of FIELD-B. The
RECORD CONTAINS clause is never required.
The compiler determines record sizes from
the record description entries. Record
length calculations are affected by the
following:

• When the BLOCK CONTAINS clause with the
RECORDS option is used, the compiler
adds four bytes to the logical record
length and four more bytes to the block
length.

• When the BLOCK CONTAINS clause with the
CHARACTERS option is used" the
programmer must include each cc + CC in
the length calculation (see Figure 49).
In the definition of VARIAELE-FILE-1,
the BLOCK CONTAINS clause specifies 8
more bytes than does the record
contains clause. Four of these bytes
are the logical record control bytes
and the other four are the block
control bytes.

Assumming that FIELD-B contains the
value 02 for the first record of a file and
FIELD-B contains the value 03 for the
second record of the file, the first two
records will appear on an external storage
device and in buffer areas of storage as
shown in Figure 50.

If the file described in Example 1 had a
blocking factor of 2, the first two records
would appear on an external storage medium
as shown in Figure 51.

Record Formats for Non-VSAM Files 181

1st Block 2nd Block

~ -- ~--------.... ----------~ I iii i, Iii ii, iii i i

I0040IBBI0036IbbIFIELD-AI02IFIELD-CIFIELD-CI0045IBBIOO41IbbIFIELD-AI03IFIELD-CIFIELD-CIFIELD-CI
I " " " I "'" I I , I I

Note: Lengths appear in decimal notation for illustrative purposes.

Figure 50. Fields in Unblocked V-Mode Records

I 1st Record 2nd Record
I ~ ~_

l, I ~ I I I I I I Iii I , I i

110081IBBI0036IbbIFIELD-AI02IFIELD-CIFIELD-C10041IbbIFIELD-AI03IFIELD-CIFIELD-CIFIELD-CI
I' I , " iiI , i ,

I
I Note: Lengths appear in decimal notation for illustrative purposes.
I
I

Figure 51. Fields in Blocked V-Mode Records

Example 2:

If VARIABLE-FILE-2 is blocked, with
space allocated for three records of
maximum size per block, the following FD
entry could be used when the file is
created:

FD VARIABLE-FILE-2
RECORDING MODE IS V
BLOCK CONTAINS 3 RECORDS
RECORD CONTAINS 20 TO 100 CHARACTERS
DATA RECORDS ARE VARIABLE-RECORD-1,
VARIABLE-RECORD-2
LABEL RECORDS ARE STANDARD.

01 VARIABLE-RECORD-1.
05 FIELD-A PIC X(20).
05 FIELD-B PIC X(80).

01 VARIABt.:E-RECORD-2.
05 FIELD-X PIC X(20).

As mentioned previously, the RECORDING
MODE, RECORD CONTAINS, and DATA RECORDS
clauses are unnecessary. By specifying

182

that each block contains three records, the
programmer allows the compiler to provide
space for three records of maximum size
plus additional space for the required
control bytes. Hence, 316 character
positions are reserved by the compiler for
each output buffer. If this size is other
than the maximum, the BLOCK CONTAINS clause
with the CHARACTERS option should be
specified.

Assuming that the first six records
written are five 100-character records
followed by one 20-character record, the
first two blocks of VARIABLE-FILE-2 will
appear on the external storage device as
shown in Figure 52.

The buffer for the second block is
truncated after the sixth WRITE statement
is executed since there is not enough space
left for a maximum size record. Hence,
even if the seventh WRITE to
VARIABLE-FILE-2 is a 20-character record,
it will appear as the first record in the
third block. This situation can be avoided
by using the APPLY WRITE-ONLY clause when
creating files of variable-length blocked
records.

Page of SC2~-6478-3, As Updated 28 Dec 1979, By TNL SN20-9310

1st Block
~ --Iii iii iii iii

13161BBI1041bbiDatal1041bbiDatal1041bbiDatai
, , , " , " , I I I

2nd Block

..- ~ --iii iii i -----,

12361BBI1041bbiDatal1041bbiDatal241bbiDatai
, , I " , , ,

Note: Lengths appear in decimal notation for illustrative purposes.

igure 52. First Two Blocks of VARIABLE-FILE-2

PPLY WRITE-ONLY Clause

The APPLY WRITE-ONLY clause is used to
ake optimum use of buffer and external
torage space when creating a standard
equential file with blocked V-mode
ecords.

Suppose VARIABLE-FILE-2 is being created
ith the followi~g pD entry:

D VARIABLE-FILE-2
RECORDING MODE IS V
BLOCK CONTAINS 316 CHARACTERS
RECORD CONTAINS 20 TO 100 CHARACTERS
DATA RECORDS ARE VARIABLE-RECORD-l,
VARIABLE-RECORD-2
LABEL RECORDS ARE STANDARD.

11 VARIABLE-RECORD-l.
05 FIELD-A PIC X(20}.
05 pIELD-B PIC X(80).

11 VARIABLE-RECORD-2.
05 FIELD-X PIC X (20) •

The first three WRITE statements to the
ile create one 20-character record
ollowed by two 100-character records.
ithout the APPLY WRITE-ONLY clause, the
uffer is truncated after the third WRITE
tatement is executed, since the maximum
ize record no longer fits. The block is
ritten as shown below:

i , iii i I I I I i

2361bbl241bbiDatall041bbiDatall041bbiDatai
__ ~~~ __ ~~~ ___ ~ __ ~ __ ~ ____ ~ __ ~ __ ~ ___ J

Using the APPLY WRITE-ONLY clause will
:ause a buffer to be truncated only when
.he next record does not fit in the buffer.
'hat is, if the next three WRITE statements
.0 the file specify VARIABLE-RECORD-2, the
.lock will be created containing six
.oqical records, as shown below:

II j 1 II l---r II \

308!bb!24!bb!Data!104!bb!Data! 104!bb!Data ~

!Qig: When using the APPLY WRITE-ONLY
clause, records must not be constructed in
buffer areas. An intermediate work area
must be used with a WRITE PROM statement.

If an APPLY WRITE-ONLY clause is specified
for a file and an OCCURS DEPENDING ON clause
is specified within a record description of
the file, the object of the OCCURS DEPENDING
ON clause should not be defined within the
record description for the file.

SPANNED (FORMAT S) RECORDS

A spanned record is a logical record
that may be contained in one or more
physical blocks. Format S records may be
specified for direct files and for standard
sequential files assigned to magnetic tape
or to mass storage devices

Under DOS/VSE Advanced Functions,
Release 2 and up, for a sequential mass
storage file defined in VSAMspace,
spanned records are not supported.

When creating files with S-mode records,
if a record is larger than the remaining
space in a block, a segment of the record
is written to fill the block. The
remainder of the record is stored in the
next block or blocks, as required.

When retrieving a file with S-mode
records, only complete records are made
available to the programmer.

Spanned records are preceded by fields
containing control information. Figure 53
Lllustrates the control fields.

BDF (Block Descriptor Field) :

LL -- represents 2 bytes designating the
length of the physical block
(including the block descriptor
field itself).

BB -- represents 2 bytes reserved for
system use.

Record Formats for Non-VSAM Piles 183

SDF (Segment Descriptor Field) :

11 -- represents 2 bytes designating the
length of the record segment
(including the segment descriptor
field itself).

bb -- represents 2 bytes reserved for
system use.

Note: There is only one block descriptor
field at the beginning of each physical
block. There is, however, one segment
descriptor field for each record segment
within the block.

Each segment of a record in a block,
even if it is the entire record, is
preceded by a segment descriptor field.
The segment descriptor field also indicates
whether the segment is the first, the last,
or an intermediate segment. Each block
includes a block descriptor field. These
fields are not described in the Data

. Division; provision is automatically made
for them. These fields are not available

·to the programmer.

A spanned blocked file may be described
as a file composed of physical blocks of
fixed length established by the programmer.
The logical records may be either fixed or
variable in length and that size may be
smaller, equal to, or larger than the
physical block size. There are no required
relationships between logical records and
physical block sizes.

A spanned unblocked file may be
described as a file composed of physical
blocks each containing one logical record
or one segment of a logical record. The
logical records may be either fixed or
variable in length. When the physical
block contains one logical record, the
length of the block is determined by the
logical record size. When a logical record
has to be segmented, the system always
writes the largest physical block possible.
The system segments the logical record when
the entire logical record cannot fit on the

. track.

Figure 54 is an illustration of blocked
spanned records of SFILE. SFILE is
described in the Data Division with the
following file description entry:

FD SFILE
RECORD CONTAINS 250 CHARACTERS
BLOCK CONTAINS 100 CHARACTERS

Figure 54 also illustrates the concept
of record segments. Note that the third
block contains the last 50 bytes of REC-1
and the first 50 bytes of .REC-2. Such
portions of logical records are called
record segments. It is therefore correct
to say that the third block contains the
last segment of REC-1 and the first segment
of REC-2. The first block contains the
first segment of REC-1 and the second block
contains an intermediate segment of REC-1.

S-MODE CAPABILITIES

Formatting a file in the S-mode allows
the programmer to make the most efficient
use of external storage while organizing
data files with logical record lengths most
suited to his needs.

1. Physical record lengths can be
designated in such a manner as to make
the most efficient use of track
capacities on mass storage devices.

2. The programmer is not required to
adjust logical record lengths to
maximum physical record lengths and
their device-dependent variants when
designing his data files.

3. The programmer has greater flexibility
in transferring logical records across
DASD types.

Spanned record processing will support
the 2400, 3410, 3420 tape series, the 2311,
2314, 2319, 3330, and 3340 disk storage
devices, and the 2321 data cell drive •

(--4 bytes---> <--4 bytes--~ <----------------Variable bytes------------·------>

LL BB 11 bb Data Record or Segment
" I I ,

BDF SDF

Figure 53. Control Fields of an S-Mode Record

184

<--------100 bytes------->

REC-l G

<--------100 bytes------->

REC-l G

<-50 bytes-> <-50 bytes->

REC-1 REC-2

1st Block 2nd Block 3rd Block

Lgure 54. One Logical Record Spanning Physical Blocks

~QUENTIALLY ORGANIZED S-MODE FILES ON TAPE
~ MASS STORAGE DEVICES

When the spanned format is used for
~FMT or DTFSD files, the logical records
ly be either fixed or variable in length
ld are completely independent of physical
~cord length. A logical record may span
lysical records. A physical record may
)ntain one 'or more logical records and/or
~gments of logical records.

)urce Language Considerations

The programmer specifies S-mode by
~scribing the file with the following
lauses in the file description (FD) entry
E his COBOL program:

• BLOCK CONTAINS integer-2 CHARACTERS

• RECORD CONTAINS [integer-1 TO]
integer-2 CHARACTERS

• RECORDING MODE ISS

The size of the physical record must be
pecified using the BLOCK CONTAINS clause
ith the CHARACTERS option. Any block size
iy be specified. Block size is
~dependent of logical record size.

The size of the logical record may be
pecified by the RECORD CONTAINS clause.
E this clause is omitted, the compiler
ill determine the maximum record size from
~e record descriptions under the FD.

Format S may be specified by the
ECORDING MODE IS S clause. If this clause
s omitted, the compiler will set the
ecording mode to S if the BLOCK CONTAINS
nteger-2 CHARACTERS clause was specified
nd either:

1. integer-2 is less than the largest
fixed-length level-Ol FD entry

2. integer-2 is less than the maximum
length of a variable level-Ol FD entry
(i.e., an entry containing one or more
OCCURS clauses with the DEPENDING ON
option) •

When the spanned recording mode is being
used, each logical record is processed in a
work area, not in the buffer. Logical
records are always aligned on a double-word
boundary. Therefore, the programmer is not
required to add inter-record slack bytes
for alignment purposes.

Except for the APPLY WRITE-ONLY clause,
all the options for a variable file apply
to a spanned file.

Processing Sequentially Organized S-Mode
Files

Suppose a file has the following file
description entry:

FD SPAN-FILE
BLOCK CONTAINS 100 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS DATAREC.

01 DATAREC.
05 PIELD-A PIC X(100).
05 FIELD-B PIC X (50) •

Figure 55 illustrates the first four
blocks of SPAN-FILE as they would appear on
external storage devices (i.e., tape or
mass storage) or in buffer areas of virtual
storage.

Note:

1. The RECORDING MODE clause is not
specified. The compiler determines
the recording mode to be S since the
block size is less than the record
size.

2. The length of each physical block is
100 bytes, as specified in the BLOCK
CONTAINS clause. All required control
fields, as well as data, must be
contained within these 100 bytes.

3. No provision is made for the control
fields within the level-01 entry
DATAREC.

Record Pormats for Non-VSAM Files 185

I

4 4
<-bytes-><-bytes-><
i i i

ILL IBB III bb

1st

4 4

92
bytes

DATAREC

Block

92

4 4 58 4 30
------------> <-bytes-><-bytes-><---bytes---><-bytes-><--bytes--->

(1)
iii

ILL IBB III bb
, I

DATAREC (1) III
i

2nd Block

i ,

bb I DATAREC (2) I ,

4 4 28 4 60
<-bytes-><-bytes->< bytes ------------> <-bytes-><-bytes-><--bytes---><-bytes-><~--bytes---->I
j i i r-~r-~---r--~r---------.----------------~ iii i I .1
ILL IBB III , bb DATAREC (2) ILL IBB III bb IDATAREC (2) 111 bb DATAREC (3) II

, iii

I
3rd Block 4th Block I

Figure 55. First Four Blocks of SPAN-FILE

r---,--,
I RECORDING KODE IS V RECORDING KODE IS S
I

r--~------' r-----.
150 150 G I 150 100 G I 150 150 150 50 G 100 100 150

Rl R2 R3 R4 R5 Rl R2 R3 R4 R5

INotg: The enclosed diagrams are for illus rative purposes
laccount the space required for control fields.

only. Neither takes into

Figure 56. Advantage of S-Mode Records Over V-Mode Records

The preceding discussion dealt with
S-mode records which were larger than the
physical blocks that contained them. It is
also possible to have S-mode records which
are equal to or smaller than the physical
blocks that contain them. In such cases,
the RECORDING MODE clause must specify S
(if so desired) since the compiler cannot
determine this by comparing block size and
record size.

One advantage of S-mode records over
V-mode r~cords is illustrated by a file
with the following characteristics:

1. RECORD CONTAINS 50 TO 150 CHARACTERS

2. BLOCK CONTAINS 350 CHARACTERS

3. The first five records written are
150,150,150,100, and 150 characters
in length.

186

For V-mode records, buffers are
truncated if the next logical record is too
large to be completely contained in the
block (see Figure ~6). This re~ults in
more phys~cal blocks ~nd more inter-record
gaps on the external ~torage device.

Note: For V-mode records, buffer
truncation occurs:

1. When the maximum level-01 record is
too large.

2. If APPLY WRITE-ONLY or SAME RECORD
AREA is specified and the actual
logical record is too large.

For S-mode records, all blocks are 350
bytes long and records that are too large
to fit entirely into a block will be
segmented. This results in more efficient
use of external storage devices since the

I ,

1mber of inter-record gaps are minimized
~igure 56) •

With the exception of the last block,
le actual physical block size will always
ill between the limits of specified block
Lze and four bytes less than the specified
Lock size, depending on whether or not the
~sidual space of an incomplete block in
le buffer is sufficient to add a segment
~ngth field and at least one byte of data.
lat is, specified block size - 4 ~ actual
lock size $ specified block size.

The last block may be short when an
lcomplete block remains in the buffer at
['OSE time.

A second advantage of S-mode processing
~er that of V-mode is that the programmer
s no longer limited to a record length
~at does not exceed the track capacity of
~e mass storage device selected. Records
~y span track, cylinders, and extents, but
:>t volumes.

DTFMT and DTFSD spanned records differ
rom other formats because of an allocation
E an area of storage known as the "logical
acord area." If logical records span
~ysical blocks, COBOL will use this
ogical record area to assemble complete
:>gical records. If logical records do not
pan blocks (i.e., they are contained
ithin a single physical block) the logical
acord area is not used. Regardless, it is
:>mplete logical records that are made
vailable to the programmer. Both READ and
RITE statements should be thought of as
~nipulating complete logical records and
:>t record segments.

Sequential File

DIRECTLY ORGANIZED S-MODE FILES

When S-mode is used for a directly
organized file, only unblocked records are
permitted. Logical records may be either
fixed or variable in length. A logical
record will span physical records if, and
only if, it spans tracks. A physical
record will contain only one logical record
or a segment of a logical record, or
segments of two logical records and/or
whole logical records. Records may span
tracks, cylinders, and extents, but not
volumes.

Source Language Considerations

The programmer specifies S-mode by
describing the file with the following
clauses in the file description (FD) entry
of his COBOL program:

• BLOCK CONTAINS integer-2 CHARACTERS

• RECORD CONTAINS [integer-1 TO] integer-2
CHARACTERS

• RECORDING MODE IS S

The size of a logical record may be
specified by the RECORD CONTAINS clause.
If this clause is omitted, the compiler
will determine the maximum record size from
the record descriptions under the FD.

The spanned format may be specified by
the RECORDING MODE IS S clause. If this
clause is omitted, the compiler will set
the recording mode to S if the BLOCK
CONTAINS integer-2 CHARACTERS clause was

Direct File

,..------.. .

R1 R2 R3 ••• 1st track ••• R1 I G R2 G R3

R3 ••• 2nd track ••• R3

r------,
R3 R4· ••• 3rd track ••• R3 G I R4

'-------'

••• 4th track... R4

igure 57. Direct and Sequential Spanned Files on a Mass Storage Device

Record Formats for Non-VSAM Files 187

specified and integer-2 is less than the
greatest logical record size. This is the
only use of the BLOCK CONTAINS clause. It
is otherwise treated as comments.

The physical block size is determined by
either:

1. The logical record length, or

2. The track capacity of the device being
used.

If, for example, the track capacity of a
mass storage device is 3625 characters, any
record smaller than 3625 characters may be
written as a single physical block. If a
logical record is greater than 3625
characters, the record is segmented. The
first segment may be contained in a
physical block of up to 3625 bytes, and the
remaining segments must be contained in
succeeding blocks. In other words, a
log~cal record will span physical blocks
if, any only if, it spans tracks.

Figure 57 illustrates four
variable-length records (R1, R2, R3, and
R4) as they would appear in direct and
sequential files on a mass storage device.
In both cases, control fields have been
omitted for illustrative purposes. For
both files, assume:

1. BLOCK CONTAINS 3625 CHARACTERS (track
capacity = 3625)

2. RECORD CONTAINS 500 TO 5000 CHARACTERS

In the sequential file, each physical
block is 3625 bytes in length and is
completely filled with logical records.
The file consists of three physical blocks,
occupies three tracks, and contains no
inter-record gaps.

In the direct file, the physical blocks
vary in length. Each block contains only

188

one logical record or one record segment.
Logical record R3 spans physical blocks
only because it spans tracks. The file
consists of seven physical blocks, occup~es
more than three tracks, and contains three
inter-record gaps.

Processing Directly Organized S-Mode Files

When processing directly organized
files, there are two advantages spanned
format has over the other record formats:

1. Logical record lengths may exceed the
length restriction of the track
capacity of the mass storage device.
If, for example, the track capacity of
a mass storage device is 2000 bytes,
the length of each logical record for
formats other than spanned is, by
necessity, restricted to the track
capacity.

Note: Even when the spanned format is
used, the COBOL restriction on the
length of logical records (i.e., a
maximum length of 32,767 characters)
must be adhered to.

2. For formats other than spanned, only
complete logical records can be
written on any single track. This
means that if a track has only 1000
unoccupied bytes and the programmer
attempts to add a record of 1100 bytes
to this track, an INVALID KEY
condition will occur. When the
spanned format is used, a 1000 byte
segment wIll be written on the
specified track, and the remainder
will be written on the next track.
The segmenting is transparent to the
programmer.

PART III

PROGRAMMING TECHNIQUES---.. ~

USING THE SORT FEATURE---.~

USING THE REPORT WRITER FEATURE--------------------------------------~. ~

TABLE HANDLING CONSIDERATIONS--+~

189

This chapter describes techniques and
Lnts for better COBOL programming.

)DING CONSIDERATIONS FOR DOS/VSE

These suggestions will aid DOS/VSE
fficiency:

• If a short subprogram is referenced
only once or twice <and is not an
exception condition routine), then its
code should be incorporated in the
calling program, if convenient.

Subprograms and frequently used
subroutines should be loaded near the
programs which use them. This can be
done via linkage editor control
statements.

• Segmentation in many cases is no longer
necessary or desirable.

• Data items of constant value should be
grouped together. Data items whose
values vary during execution should
also be grouped together and should be
separate from those of constant value,
if feasible.

• FDs for files that will be opened at
the same time should be grouped
together.

• The most frequently referenced data
items should be placed in the beginning
of the working Storage Section.

• The COBOL Procedure Division should be
organized generally as follows:

- All frequently used paragraphs or
sections should be located near the
routines that use them.

- All infrequently used paragraphs or
sections should be grouped together
and apart from frequently used
routines. The COUNT option can be
used as an aid in this process.

• Avoid initializing data areas until
just before they are needed.

• Reference data in the order in which it
is stored.

• Use the OPTIMIZE feature if possible.

PROGRA~~ING TECHNIQUES

Note: When OPT is in effect, the
generated code is more suitable for
running under VS, as the addressing
scheme is designed to reduce possible
page faults.

Further, the procedure is divided into
4K-byte blocks, each of which is
assigned a PBL. Since these blocks
correspond to two pages each, the user
may get some idea of the inter-page
relationships in the program (although
the first is not page aligne~). The
statement range for each PBL is given
on the compiler output listing. This
should help the user rearrange the
program if desired.

• The ~EDEFINES clause should be used for
its alternate grouping and alternate
description capabilities rather than
for werely saving space. Although it
will save virtual space, it can lead to
coding errors if not used carefully.

GENERAL CONSIDERATIONS

COpy

The COpy statement permits the programmer
to include stored source statements in any
of the four divisions. If the programmer
wishes to retrieve the member, CFILEA, the
statement:

FD FILEA COpy CFILEA

is written to the compiler. The compiler
translates this instruction to read:

FD FILEA
BLOCK CONTAINS 20 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE-OUT.

CFILEA itself does not appear in the
statement. CFILEAis a name identifying
the entries. It acts as a header record
but is not ~tselfretrieved. The compiler
source listing, however, prints the COpy
statement as a comment as the programmer
wrote it.

The COpy statement permits the programmer
to include previously stored source
statements into any portion of the program.

Assume a procedure named DOWORK was
stored with the following statements:

Progra~rring Techniques 191

COMPUTE QTY-ON-HAND =
TOTAL-USE-NUMBER-ON-HAND.

rlOVE QTY-ON-HAND TO PRINT-AREA.

To retrieve the stored member, DOWORK, the
programmer writes:

paragraph-name. COpy DOWORK.

SEQ should not be used with COpy.

The statements included in the DOWORK
procedure will immediately follow the
paragraph-name, replacing the words COpy
DOWORK.

The SUPPRESS option of the COPY
statement will be ignored if LISTER or FIPS
is requested.

Results are unpredictable if a CURRENCY
SIGN IS = is specified (only allo~ed with
LANGLVL(1» and a PICTURE character string
is part of pseudo-text and contains a
floating currency sign.

In order for the text copied to have a D
inserted in column 7 (debugging line
indicator), the D must appear on the first
line of the COpy statement itself. A copy
statement itself can never be a debugging
line; if it contains a D and WITH DEBUGGING
mode is not specified, the COpy statement
will nevertheless be processed.

No more than 150 COPY-REPLACING pair~ may
be specified in a source program. If this
limit is exceeded, a diagnostic message is
issued by the compiler, ~nd COpy statements
over the limit are ignored.

SYNTAX CHECKING

The first several compilations of a
program should use the CSYNTAX or SYNTAX
feature to save compilation time.

192

Formatting the Source Program Listing

The lister feature increases
significantly the usability of the source
program listing, not only by producing
cross-reference information, but by
formatting the listing to aid logic tracing
There are four statements that can be coded
in any or all of the four divisions of a
source program: SKIP1, SKIP2, SKIP3, and
EJECT. These statements provide the
programmer with the ability to control the
spacing of a source listing and thereby
improve its readability. These statements
should not be used when the lister feature
is used.

ENVIRONMENT DIVISION

RESERVE Clause

When using an additional buffer to
process standard sequential or indexed
files, care must be taken to ensure that
the buffer is filled before the execution
of each WRITE or REWRITE statement.

APPLY WRITE-ONLY Clause

To make optimum use of buffer and
external storage space allocated when
creating a standard sequential file with
blocked V-mode records, the programmer
should use the APPLY WRITE-ONLY clause
for the file. Using this clause causes a
buffer to be truncated only when the next
record does not fit in the buffer. (If
APPLY WRITE-ONLY is not specified, the
buffer is truncated when the maximum
size record will not fit in the space
remaining in the buffer.)

,TA DIVISION

'ORAGE CONSIDERATIONS

The amount of storage used for all FD
ltries, the WORKING STORAGE SECTION, and
~PORT SECTION must not exceed I Mb, since
le compiler can only handle a maximum of
i5 for BL-CELLS. One BL-CELL is assigned
)r each file or for 4096, whichever
)mes first.

vERALL CONSIDERATIONS

D Entries

File Description (FD) entries for the
ost active files should appear first,
ince the COBOL compiler assigns registers
o files until it runs out of registers"
nd then reuses the last registers for all
ubsequent files. This does not apply when
PT is in effect, since in that case the
ompiler will determine the frequency of
sage and assign registers accordingly.

'refixes

Assign a prefix to each level-Ol item in
program, and use this prefix on every

ubordinate item (except FILLER) to
ssociate a file with its records and work
reas. For example, MASTER is the prefix
,sed here:

'ILE SECTION.
'D r-'lASTER-INPUT-FILE

jl MASTER-INPUT-RECORD.

lORKING-STORAGE SECTION.
)1 MASTER-WORK-AREA.

05 MASTER-PAYROLL PICTURE 9(3).
05 MASTER-SSNO PICTURE 9(9).

If files or work areas have the same
:ields, use the prefix to distinguish
)etween them. For example, if three files
ill have a date field, instead of DATE,
)AT, and DA-TE, use MASTER-DATE,
)ETAIL-DATE, and REPORT-DATE. Using a
lnique prefix for each level-Ol item and
~ll subordinate fields makes it easier for
~ programmer unfamiliar with the program to
find fields in the program listing; and to
know which fields are logically part of the
same record or area.

When using the MOVE statement with the
CORRESPONDING option and referring to
individual fields, redefine or rename

"corresponding" names with the prefixed
unique names. This technique eliminates
excessive qualifying. For example:

01 MST-WORK-AREA.
05 SAME-NAMES. (***)

10 LAST-NAME PIC •••
10 FIRST-NAME PIC .••
10 PAYROLL PIC •••

05 DIFF-NAMES REDEFINES SAME-NAMES.
10 MST-LAST-NAME PIC •••
10 MS~-FIRST-NAME PIC ..•
10 MST-PAYROLL PIC •••

01 RPT-WORK-AREA.
05 SAME-NAMES. (***)

10 PAYROL~ PIC •••
10 FILLER PIC •••
10 FIRST-NAME PIC .••
10 FILLER PIC ••.
10 LAST-NAME PIC •.•

PROCEDURE DIVISION.

IF MST-PAYROLL IS EQUAL TO HDQ-PAYROLL
AND MST-LAST-NAME
IS NOT EQUAL TO PRrtV-LAST-NAME
MOVE CORRESPONDING
t-1ST-WORK-AREA
TO RPT-WORK-AREA.

Note: Fields marked *** above must have
exactly the same names for their
subordinate fields to be considered
"corresponding." The same names must not
be the redefining ones or they will not be
considered to correspond.

Level Numbers

The programmer should use widely
incremented level numbers such as 01, 05,
10, 15, etc., instead of 01, 02, 03, 04,
etc., ln order to allow space for future
insertions of group levels. For
readability, indent level numbers. (The
lister feature does this automatically,
even if the original source program does
not follow such indenting practices.)

Note that when using the SYMDMP option,
level numbers appear "normalized" in the
symbolic dump produced. For example, a
group of data items described as:

01 RECORDA.
05 FIELD-A.

10 FIELD-Al PIC X.
10 FIELD-A2 PIC X.

Prograrorr:ing Techniques 193

will appear as follows in SYMDMP output:

01 RECORDA •••
02 FIELD-A •••
03 FIELD-Al •••
03 FIELD-A2 •••

Use level number 88 for codes. Thus, if
the codes must be changed, the Procedure
Division coding for tests need not be
changed.

FILE SECTION

RECORD CONTAINS Clause

The programmer should use the RECORD
CONTAINS clause with the integer CHARACTERS
option in order to save himself, as well as
any future programmer, the task of counting
the data record description positions. In
addition, the compiler can then diagnose
errors if the data record description
conflicts with the RECORD CONTAINS clause.

BLOCK CONTAINS Clause

If a block prefix exists on an ASCII
file and the BLOCK CONTAINS clause is used
in the COBOL program, the length of the
block prefix must be included in the BLOCK
CONTAINS clause.

WORKING-STORAGE SECTION

Separate Modules

In a large program, the programmer may
wish to plan ahead for breaking the
programs into separately compiled modules~
as follows:

1. When using separate modules, an
attempt should be made to combine
entries 'of each Working-Storage
Section into a single level-Ol record
(or a single level-Ol record for each
32K bytes). Logical record areas can
be indicated by using levei-02, -03,
etc~~ entries. A CALL statement with
the USING option is more e~ficient
when a single item is passed than when
many level-Ol and/or -77 items are
passed. When this method is employed~
mistakes are more easily avoided.

194

2. Areas which do not contain VALUE
clauses should be separated from areas
that do contain VALUE clauses. VALUE
clauses (except for level-88 items)
are invalid in the Linkage Section.

3. When the Working-Storage Section
consists of one level-Ol item without
any VALUE clauses, the COpy statement
can easily be used to include the item
as the description of a Linkage
section in a separately compiled
module.

4. See the chapter "Using the
Segmentation Feature" for information
on how to modularize the Procedure
Division of a COBOL prograw; VS coding
considerations should also be taken
into account.

Locating the Working-Storage Section in
Dumps

If the SYMDMP option is not used for
program debugging, a method of locating the
Working-Storage section of a program in
object-time dumps is to include the two
following statements as the first and last
Working-Storage statements, respectively,
in the program.

77 FILLER PICTURE X(44}, VALUE "PROGRAM
XXXXXXXX WORKING-S~ORAGE BEGINS HERE".

01 FILLER PICTURE X(42), VALUE "PROGRAM
XXXXXXXX WORKING-STORAGE ENDS HERE".

These two nonnumeric literals will
appear in all dumps of the program,
delimiting the Working-Storage Section.
The program-name specified in the
PROGRAM-ID clause should replace the
XXXXXXXX in the literal.

The location and length of
Working-Storage is given in the compiler
output when SYM, LISTX, or CLIST is in
effect.

REDEFINES Clause

REUSING DATA AREAS: Virtual storage can be
used more efficiently by writing different
data descriptions for the same data area.
For example, the coding that follows shows
how the same area can be used as a work
area for the records of several input files
that are not processed concurrently.
Caution should be exercised when using this
procedure, as it can lead to programming
errors.

)RKING-STORAGE SECTION.
1 WORK-AREA-FILE1.

(largest record description for FILE1)

WORK-AREA-FILE2 REDEFINES
WORK-AREA-FILE1.

(largest record description for FILE2)

LTERNATE GROUPINGS AND DESCRIPTIONS:
rogram data can often be described more C

fficiently by providing alternate
roupings or data descriptions for the same
ata. For example, a program references
oth a field and its subfields, each of
hich is more efficiently described with a
ifferent usage. This can be done by using
he REDEFINES clause as follows:

01 PAYROLL-RECORD.
05 EMPLOYEE-RECORD PICTURE X(28).
05 EMPLOYEE-FIELD REDEFINES

EMPLOYEE-RECORD.
10 NAME PICTURE X(24).
10 NUMBERX PICTURE S9(5) COMP.

05 DATE-RECORD PICTURE X (10) •

The following illustrates how a table
(TABLEA) can be initialized by having
different data descriptions for the same
data:

05

05

VALUE-A.
10 Al PICTURE S9(9) COMPUTATIONAL

VALUE IS ZEROES.
10 A2 PICTURE S9(9) COMPUTATIONAL

VALUE IS 1.

10 A100 PICTURE 59(9) COMPUTATIONAL
VALUE IS 99.

TABLEA REDEFINES VALUE-A
PICTURE S9(9) COMPUTATIONAL
OCCURS 100 TIMES.

Note: caution should be exercised when
redefining a subscript. If the value of
the redefining data item is changed in the
Procedure Division, a new calculation for
the subscript is performed only if a new
paragraph is entered.

programming Techniques 195

PICTURE Clause

DECIMAL-POINT ALIGNMENT: Procedure
Division operations are most efficient when
the decimal positions of the data items
involved are aligned. If they are not, the
compiler generates instructions to align
the decimal positions before any operations
involving the data items can be executed.

I This is referred to as scaling.

Assume, for example, that a program
contains the following instructions:

WORKING-STORAGE SECTION.
77 A PICTURE S999V99.
77 B PICTURE S99V9.

PROCEDURE DIVISION.

ADD A TO B.

Time and internal storage space are
saved by defining Bas:

77 B PICTURE S99V99.

If it is inefficient to define B
differently, a one-time conversion can be
done, as explained in "Data Format
Conversion" in this chapter.

FIELDS OF UNEQUAL LENGTH: When a data item
is moved to another data item of a
different length, the following should be
considered:

• If the items are external decimal
items, the compiler generates
instructions to insert zeros in the
high-order positions of the receiving
field, when it is the larger •

• If the items are nonnumeric, the
compiler may generate instructions to
insert spaces in the low-order
positions of the receiving field (or
the high-order positions if the
JUSTIFIED RIGHT clause is specified).
This generation of extra instructions
can be avoided if the sending field is
described with a length egual to or
greater than the receiving field.

SIGN USAGE: The presence or absence of a
plus or minus sign in the description of an
arithmetic field often can affect the
efficiency of a program. The following
paragraphs discuss some of the
considerations.

Decimal Items: The sign position in an
internal or external decimal item can
contain:

196

1. A plus or minus sign. If S is
specified in the PICTURE clause, a
plus or minus sign is inserted when
either of the following. conditions
prevail:

a. The item is in the Working-Storage
Section and a VALUE clause has
been specified.

b. A value for the item is assigned
as a result of an arithmetic
operation during execution of the
program.

If an external decimal item is
punched, printed, or displayed, an
overpunch will appear in the low-order
digit. In EBCDIC, the configuration
for low-order zeros normally is a
nonprintable character. Low-order
digits of positive values will be
represented by one of the letters A
through I (digits 1 through 9) ;
low-order digits of negative values
will be represented by one of the
letters J through R (digits 1 through
9) •

2. A hexadecimal F. If S is not
specified in the PICTURE clause, an F
is inserted in the sign position when
either of the following conditions
prevail:

a. The item is in the working-storage
Section and a VALUE clause has
been specified

b. A value for the item is developed
during the execution of the
program.

An F is treated as positive, but is
not an overpunch~

3. An invalid configuration. If an
internal or external decimal item
contains an invalid configuration in
the sign position, and if the item is
involved in a Procedure Division
operation, the program will be
abnormally terminated.

Note: If the SIGN clause is used and it
specifies that the sign is LEADING, more
object code will be generated when that
data item is used with a verb. The
additional code is needed to move the sign
character to the TRAILING position before
performing the operation.

. Unsigned items (items for which no S has
been specified) are treated as absolute
values. Whenever a value (signed or
unsigned) is stored in or moved in an

lementary move to an unsigned item, a
exadecimal F is stored in the sign
osition of the unsigned item. For
xample, if an arithmetic operation
nvolves signed operands and an unsigned
esult field, compiler-generated code will
nsert an F in the sign position of the
esult field when the result is stored.

For internal and external decimal items
sed as input, it is the programmer's
esponsibility to ensure that the input
ata is valid. The compiler does not
enerate a test to ensure that the
onfiguration in the sign position is
alid.

When a group item is being moved, the
ata is moved without regard to the level
tructure of the group items involved. The
lossibility exists that the configuration
.n the sign position of a subordinate
.umeric item may be destroyed. Therefore,
:aution should be exercised in moving group
.tems with subordinate 'numeric fields or
rith other group operations such as READ or
,CCEPT.

USAGE Clause

DATA FORMAT CONVERSION: Operations
involving mixed, elementary numeric data
formats require conversion to a common
format. This usually means that additional
storage is used and execution time is
increased. The code generated must often
move data to an internal work area, perform
any necessary conversion, and then execute
the indicated operation. Often, too, the
result may have to be converted in the same
way. Table 31 indicates when data
conversion is necessary.

If it is impractical to use the same
data formats throughout a program, and if
two data items of different formats are
frequently used together, a one-time
conversion can be effected. For example,
if A is defined as a COMPUTATIONAL item and
B as a COMPUTATIONAL-3 item, A can be moved
to a work area that has been defined as
COMPUTATIONAL-3. This move causes the data
in A to be converted to COMPUTATIONAL-3.
Whenever A and B are used in a Procedure
Division operation, reference can be made
to the work area rather than to A. When
this technique is used, the conversion is
performed only once, instead of each time
an operation is performed.

Programming Techniques 197

Table 31. Data Format Conversion (Part 1 of 2)
i

I I
I I
I I Bytes
IUsage I Required
, I
I DISPLAY 11 per digit
I (external I (except for
I decimal) I V)
I I
I I
, I
I I
I I
I I
IDISPLAY 11 per
I (external I character
, floating I (except for
I point) I V)
I I
ICOMP-3 1 per 2
I (internal digits plus
I decimal) 1 byte for
I low-order
I digit and
I sign
I
I
I
r
I
I
I
I I

COMP 2 if 1SNS4
(binary)

198

4 if 5SNS9

8 if 10SNS18
where N is
the number of
9's in the
picture

i

I
IBoundary I
I Alignment I Typical

Osage I Required
I

No

No

No

IInput from
Icards, output
Ito cards,
I listings
I
I
I ,
I
IInput from
Icards, output
Ito cards,
,listings
I
Input to a
report item

Arithmetic
fields

Work areas

I I
Halfword Subscripting

Fullword Arithmetic
fields

Fullword

converted
I for
I Arithmetic
I Operations
I
I Yes
I
I
I
I
I
I
I
I
I Yes ,
I ,
I
Sometimes
when a
small
COMP-3 item
is used
with a
small COMP
item

Sometimes
for both
mixed and
unmixed
usages

Special
Characteristics

May be used for numeric
fields up to 18 digits
long.

Fields over 15 digits
require extra instruc
tions if used in
computations.

Converted to COMP-2
format via COBOL library
subroutine.

Requires less space than
DISPLAY.

convenient form for
decimal alignment.

Can be used in arithmetic
computations without
conversion.

Fields over 15 digits
require a subroutine when
used in computations.

Rounding and testing for
the ON SIZE ERROR
condition are cumbersome
if calculated result is
greater than 9 (9) •

Extra instructions are
generated for computa
tions if the SYNCHRONIZED
clause is not specified.

Fields of over nine
digits require additional
handling.

lble 31. Data Format Conversion (Part 2 of 2)

Jsage

I I
I IBountary I
I Bytes IAlignmentl
I Required IRequired I
I I I

Typical
Usage

4 (short- I Fullword Fractional

Converted
I for
IArithmetic
I Operations
I

No

Special
Characteristics

:OMP-1
(internal
floating
point)

precision) I exponentiation
Tends to produce less
accurate results if more
than 17 significant
digits are required and
if the exponent is
large.

I
I
I
I
I
I
I
I
I
I
I
I
I

Extra instructions are
generated for computa
tions if the SYNCHRONIZED
clause is not specified.

Requires floating-point
feature.

COMP-2 18
(internal I
floating I
point) I

I

(long- IDouble-
precision) Iword

I
I
I

I Fractional I
I exponentiation I
Iwhen addition-I
lal precision I
lis required I

No Same as COMP-1.

I

The following seven cases ~how how data
;onversions are handled on mixed elementary
Ltems for names, data comparisions, and
lrithmetic operations. Moves without the
:ORRESPONDING option to and from group
ltems, as well as comparisons involving
~roup items, are done without conversion.

Numeric DISPLAY to COMPUTATIONAL-3:

To Move Data: Converts DISPLAY data to
COMPUTATIONAL-3 data.

To Compare Data: Converts DISPLAY data to
COMPUTATIONAL-3 data.

To Perform Arithmetic Operations: Converts
DISPLAY data to COMPUTATIONAL-3 data.

Numeric DISPLAY to COMPUTATIONAL:

To Move Data: Converts DISPLAY data to
COMPUTATIONAL-3 data and then to
COMPUTATIONAL data.

To Compare Data: Converts DISPLAY to
COMPUTATIONAL or converts both DISPLAY and
COMPUTATIONA~ data to COMPUTATIONAL-3 data.

To Perform Arithmetic Oper~tions: Converts
DISPLAY data to COMPUTATIONAL-3 or
COMPUTATIONAL data.

COMPUTATIONAL-3 to COMPUTATIONAL:

To Move Data: Moves COMPUTATIONAL-3 data
to a work area and then converts
COMPUTATIONAL-3 data to COMPUTATIONAL data.

To Compare Data: Converts COMPUTATIONAL
data to COMPUTATIONAL-3 or vice versa,
depending on the size of the field.

To Perform Arithmetic Operations: Converts
COMPUTATIONAL data to COMPUTATIONAL-3 or
vice versa, depending on the size of the
field.

COMPUTATIONAL to COMPUTATIONAL-3:

To Move Data: Converts COMPUTATIONAL data
to COMPUTATIONAL-3 data in a work area, and
then moves the work area.

To Compare Data: Converts COMPUTATIONAL to
COMPUTATIONAL-3 data or vice versa,
depending on the size of the field~

To Perform Arithmetic Operations: Converts
COMPUTATIONAL to COMPUTATIONAL-3 data or
vice versa, depending on the size of the
field.

Programming Techniques 199

COMPUTATIONAL to Numeric DISPLAY:

To Move Data: Converts COMPUTATIONAL data
to COMPUTATIONAL-3 data and then to DISPLAY
data.

To Compare Data: Converts DISPLAY to
COMPUTATIONAL or both COMPUTATIONAL and
DISPLAY data to COMPUTATIONAL-3 data,
depending on the size of the field.

To Perform Arithmetic Operations:
Depending on the size of the field,
converts DISPLAY data to COMPUTATIONAL
data, or both DISPLAY and COMPUTATIONAL
data to COMPUTATIONAL-3 data in which case
the result is generated in a
COMPUTATIONAL-3 work area and then
converted and moved to the DISPLAY result
field.

COMPUTATIONAL-3 to Numeric DISPLAY:

To Move Data: Converts COMPUTATIONAL-3
data to DISPLAY data.

To Compare Data: Converts DISPLAY data to
COMPUTATIONAL-3 data. The result is
generated in a COMPUTATIONAL-3 work area
and is then converted and moved to the
DISPLAY result field.

Numeric DISPLAY to Numeric DISPLAY:

To Perform Arithmetic Operations: Converts
all DISPLAY data to COMPUTATIONAL-3 data.
The result is generated in a
COMPUTATIONAL-3 work area and is then
converted to DISPLAY and moved to the
DISPLAY result field.

Internal Floating-point to Any Other: When
an item described as COMPUTATIONAL-1 or
COMPUTATIONAL-2 (internal floating-point)
is used in an operation with another data
format, the item in the other data format
is always converted to internal floating
point. If necessary, the internal
floating-point result is then converted to
,the format of the other data item.

SYNCHRONIZED Clause

As illustrated in Table 31,
COMPUTATIONAL, COMPUTATIONAL-1 and
COMPUTATIONAL-2 items have specific
boundary alignment requirements. To ensure
correct alignment, either the programmer or
the compiler may have to insert slack bytes
or the compiler must generate extra
instructions to move the item to a
correctly aligned work area when reference
is made to the item.

200

The SYNCHRONIZED clause may be used at
the elementary level to specify the
automatic alignment of elementary items on
their proper boundaries, or at the 01 level
to synchronize all elementary items within
the group. For COMPUTATIONAL items, if the
PICTURE is in the range of S9 through
S9(4), the item is aligned on'a halfword
boundary. If the PICTURE is in the range
of S9(5) through S9(18), the item is
aligned on a fullword boundary. For
COMPUTATIONAL-1 items, the item is aligned
on a fullword boundary. For
COMPUTATIONAL-2 items, the item is aligned
on a doubleword boundary. The SYNCHRONIZED
clause and slack bytes are fully discussed
in the publication IBM System/360 Disk
Operating System: Full American National
Standard COBOL.

Special Considerations for DISPLAY and
COMPUTATIONAL Fields

NUMERIC DISPLAY FIELDS: Zeros are not
inserted into numeric DISPLAY fields by the
instruction set. When numeric DISPLAY data
is moved, the compiler generates
instructions that insert any necessary
zeros into the DISPLAY fields. When
numeric DISPLAY data is compared, and one
field is smaller than the other, the
compiler generates instructions to move the
smaller item to a work area where zeros are
inserted.

COMPUTATIONAL FIELDS: COMPUTATIONAL fields
can be aligned on either a halfword or
fullword boundary. If an operation
involves COMPUTATIONAL fields of different
lengths, the halfword field is
automatically expanded to a fullword field.
Therefore, mixed halfword and fullword
fields require no additional operations.

COMPUTATIONAL-l AND COMPUTATIONAL-2 FIELDS:
If an arithmetic operation involves a
mixture of short-precision and
long-precision fields, the compiler
generates instructions to expand the
short-precision field to a long-precision
field before the operation is executed.

COMPUTATIONAL-3 FIELDS: The compiler does
not have to generate instructions to insert
high-order zeros for ADD and SUBTRACT
statements that involve COMPUTATIONAL-3
data. The zeros are inserted by the
instruction set.

Data Formats in the Computer

The following examples illustrate how
the various COBOL data formats appear in
the computer in EBCDIC (Extended

inary-Coded-Decimal Interchange Code)
ormat. More detailed information about
hese data formats appear in the
ublication IBM System/370 Principles of
.E,eration.

umeric DISPLAY (External Decimal) :
:uppose the value of an item is -1234, and
.ts PICTURE and USAGE clauses are:

PICTURE 9999 DISPLAY.

or

PICTURE S9999 DISPLAY.

~he item appears in the computer in the
:ollowing forms, respectively:

F1 F2 F3 I F4
I I

Byte

F1 F2 F3 I D4 I
I I

Byte

Hexadecimal F is treated arithmetically as
positive; hexadecimal D represents a minus
sign.

COMPUTATIONAL-3 (Internal Decimal) :
Suppose the value of an item is +1234, and
its PICTURE and USAGE clauses are:

PICTURE 9999 COMPUTATIONAL-3.

or

PICTURE S9999 COMPUTATIONAL-3.

The item appears internally in the
following forms, respectively:

01 23 I 4F I
I I

Byte

01 23 I 4C I
I I

Byte

Hexadecimal F is treated arithmetically as
positive; hexadecimal C represents a plus
sign.

Note: Since the low-order byte of an
internal decimal number alway~ contains a
sign field, an item with an odd number of
digits can be stored more efficiently than
an item with an even number of digits.

Note that a leading zero is inserted in the
above example.

COMPUTATIONAL (Binary): Suppose the value
of an item is 1234, and its PICTURE and
USAGE clauses are:

PICTURE S9999 COMPUTATIONAL.

The item appears internally in the
following form:

0000 0100 1101 0010

1
Sign

position

A 0 in the sign position indicates that
the number is positive. Negative numbers
are represented in two's complement form;
thus, the sign position of a negative
number will always contain a 1.

For example -1234 would appear as
follows:

1111 1011 0010 1110

.t
S~gn

Position

Binary Item Manipulation: A binary item is
allocated storage ranging from one halfword
to two fullwords, depending on the number
of 9's .in its PICTURE. Table 32 is an
illustration of how the compiler allocates
this storage. Note that it is possible for
a value larger than that implied by the
PICTURE clause to be stored in the item.
For example, PICTURE S9(4} implies a
maximum value of 9,999, although it could
actually hold the number 32,767.

Because most binary items are
manipulated according to their allotted
storage capacity, the programmer can ignore
this situation. For the following reasons,
however, he must be careful of his data:

1. When the ON SIZE ERROR option is used,
the size test is made ,on the basis of
the maximum value allowed by the
picture of the result field. If a
size error condition exists, the value
of the result field is not altered and
control is given to the imperative
statements specified by the error
option.

Programming Techniques 201

Table 32. Relationship of PICTURE to Storage Allocation

I PICTURE Maximum Working Value Assigned storage
I
IS9 through S9(4)
I

32,767 One halfword

IS9(5) through S9(9) 2,147,483,647 One fullword
I
I S9 (10) through S9 (18) 9,223,372,036,854,775,807 Two fullwords

Note: If TRUNC option is used and data is moved to decimal receiving field, then
maximum working value for 89(10) through 89(18) PICTURE is 2,147,483,647,999,999,999.

2. When a binary item is displayed or
exhibited, the value used is a
function of the number of 9 1 s
specified in the PICTURE clause.

3. When the actual value of a positive
number is significantly larger than
its picture value, a value of 1 could
appear in the sign position of the
item, causing the item to be treated
as a negative number in subsequent
operations.

Figure 58 illustrates three binary
manipulations. In each case, the result
field is an item described as PICTURE S9
COMPUTATIONAL. One halfword of storage has
been allocated, and no ON SIZE ERROR option
is involved. Note that if the ON SIZE
ERROR option had been specified, it would
have been executed for cases Band C.

COMPUTATIONAL-lor COMPUTATIONAL-2
(Floating-point): Suppose the value of an
item is +1234 and that its USAGE is
COMPUTATIONAL-1, the item appears
internally in the following form:

101100 001110100 1101 0010 0000 0000 00001
I ,

S 1 7 8 31

S is the sign position of the number.

o in the sign position indicates that
the sign is plus.

1 in the sign position indicates that
the sign is minus.

Case
Hexadecimal Result of

Binary Calculation
Decimal

Equivalent

A 0008 8

B OOOA 10

C C350 50000

Bits 1 through 7 are the exponent
(characteristic) of the number.

Bits 8 through 31 are the fraction
(mantissa) of the number.

This form of data is referred to as
floating point. The example illustrates
short-precision floating-point data
(COMPUTATIONAL-1). In long-precision
(COMPUTATIONAL-2), the fraction length is
56 bits. (For a detailed explanation of
floating-point representation, see the
publication IBM System/370 Principles of
Operation.)

PROCEDURE DIVISION

The Procedure Division of a program can
often be made more efficient or easier to
debug by using some of the techniques
described below.

MODULARIZING THE PROCEDURE DIVISION

Modularization involves organizing the
Procedure Division into at least three
functional levels: a main-line routine,
processing subroutines, and input/output
subroutines. When the Procedure Division
is modularized, programs are easier to
maintain and document. In addition,
modularization makes it simple to break
down a program using the segmentation
feature, resulting in 'a more efficient
segmented program. Virtual storage
implications should be taken into

Actual Decimal Value
in Halfword of Storage

+8

+10

-15536

DISPLAY or
EXHIBIT Value

8

o

6

Figure 58. Treatment of Varying Values in a Data Item of PICTURE S9

202

:onsideration when rearranging the
Irocedure Division. The COUNT option is
lseful in determining _a rearrangement
;cheme.

1ain-Line Routine

The main-line routine should be short
lnd simple. and should contain all the
~ajor logical decisions of the program.
~his routine controls the order in which
,econd-Ievel subroutines are executed. All
,econd-Ievel subroutines should be invoked
:rom the main-line routine by PERFORM
:;tatements.

?rocessinq Subroutines

Processing subroutines should be broken
lown into as many functional levels as
~ecessary, depending on the complexity of
the program. These must be completely
closed subroutines, with one entry point
and one exit point. The entry point should
be the first statement of the subroutine.
rhe exit point should be the EXIT
statement. Processing subroutines can
PERFORM only lower level subroutines;
return to the higher level subroutine
(processing subroutine) must be
accomplished by a GO TO statement that
references the EXIT statement.

Collating Sequences

The combination of the PROGRAH COLLATING
SEQUENCE clause and the SPECIAL NN1ES
alphabet-name clause(s) offers the
programmer flexibility in establishing or
altering the collating sequence used in the
following operations: the various forms of
non-numeric comparisons, HIGH/LOW-VALUE,
SEARCH ALL, and SORT/MERGE. The alphabet
used may be EBCDIC (denoted as NATIVE,
which is also the default), ASCII (denoted
as STANDARD-1), or one or more programmer-
defined alternations of the EBCDIC sequence.

The alphabet identified through the
PROGRN1 COLLATING SEQUENCE clause will be
used for all occurrences of non-numeric
compares, HIGH/LOW-VALUE, and SEARCH ALL.
However, each separate SORT/MERGE operation
can override that general specification by
including its own COLLATING SEQUENCE clause.

For SAM files, the CODE-SET clause of
the FD statement can be used to identify
the flle as being elther EBCDIC or ASCII·

Intercepting I/O Errors

COBOL offers a variety of techniques the
programmer can employ to intercept and
handle I/O error situations. Use of these t
techniques (INVALID KEY, USE AFTER ERROR/
EXCEPTION, and FILE STATUS) gives a
programmer not only the power to prevent
abnormal termination, but also flexibility
in the response. FILE STATUS--valid for
VSAM and SAM files--can be used separately
or in combination with one of the other two
techniques. COBOL automatically fills in
the key field immediately after every I/O
operation, so that the program can be
designed to examine it and take action
accordingly. (If FILE STATUS is specified
but not interrogated by a program after an
I/O operation, results are unpredictable.)

Errors That May Escape Detection

If a logic error occurs .. be.caus~ the
user attempts a READ or WRITE against an
unopened file, an associated USE ERROR
declarative will not get control. If such
an error occurs when the file has been
closed but not reopened, the wrong USE
ERROR declarative may get control. However,
such a situation can be circumvented by
using FILE STATUS to test for successful
open before performing the READ/WRITE.

Input/Output Subroutines

The input/output subroutines should be
the lowest level subroutines, since all
higher level subroutines have access to
them. There should be one OPEN subroutine
and one CLOSE subroutine for the program,
and only one functional (READ or WRITE)
subroutine for each file. Having one READ
or WRITE subroutine per file has several
advantages:

1. Coding can be added to count records
on a file, transform blanks into
zeros, check for 9 a s padding, etc.

2. Input and output files can be
reformatted without changing the logic
of the program.

3. DEBUG statements can be added during
testing to create input or to DISPLAY
formatted output, instead of having to
create a test file.

Prograreming Techniques 203

OVERALL CONSIDERATIONS

OPTIMIZE Option

If the OPTIMIZE option is in effect, the
number of procedure blocks in a program
cannot exceed 255. A procedure block is
equivalent to approximately 4096 bytes of
Procedure Division code.

If the COUNT option is in effect, the
number of verb blocks in a program cannot
exceed 32,767. A verb block consists of a
set of verbs in which any verb (excluding
ABEND) in the block is executed if and only
if all verbs in the block are executed.
The average program Procedure Division
contains approximately three verbs per verb
block.

INTERMEDIATE RESUL~S

The compiler treats arithmeti~ statements
as a succession of operations and sets up
intermediate result fields to contain the
results of these operations. Examples of
such statements are the arithmetic
statements and statements containing
arithmetic expressions. See the appendix

I "Intermediate Results" in IBM VS COBOL for
DOS/VSE for a description of the algorithms
used by the compiler to determine the
number of places reserved for intermediate
result fields.

Intermediate Results and Binary Data Items

If an operation involving binary
operands requires an intermediate result
greater than 18 digits, the compiler
converts the operands to internal decimal
before performing the operation. If the
result field is binary, the result will be
converted from internal decimal to binary.

If an intermediate result will not be
greater than nine digits, the operation is
performed most efficiently on binary data
fields.

Intermediate Results and COBOL Library
Subroutines

If a decimal multiplication operation
requires an intermediate result greater
than 30 digits, a COBOL library subroutine

204

is used to perform the multiplication. The
result of this multiplication is then
truncated to 30 digits.

A COBOL library subroutine is used to
perform division if:

1. The divisor (scaled or not) is equal
to or greater than 15 digits.

2. The length of the divisor (scaled or
not) plus the length of the scaled
dividend is greater than 16 bytes.
The lengths of the operands are in
decimal internally.

3. The scaled dividend is greater than 30
digits4 (A scaled dividend is a
number that has been rrultiplied by a
power of ten in order to obtain the
desired number of decimal places in
the quotient.) .

Intermediate Results Greater Than 30 Digits

Whenever the number of digits in a
decimal intermediate result is greater than
30, the field is truncated to 30 digits. A
waining mess~ge will be ~enerated during
compilation, and program flow will not be
interrupted at execution time. This
truncation may cause a result to be
incorrect.

If binary or internal decimal data is in
agreement with its data description, no
interrupt can occur because of an overflow
condition in an intermediate result. This
is due to the truncation described in the
preceding paragraph.

If the possibility exists that an
intermediate result field may exceed 30
digits, truncation can be avoided by the
specification of floating-point operands
(COMPUTATIONAL-lor COMPUTATIONAL-2);
however, accuracy may not be maintained.

Intermediate Results and Floating-point
Data Items

If a floating-point operand has an
intermediate result field in which exponent
overflow occurs, the job will be abnormally
terminated.

Intermediate Results and the ON SIZE ERROR
Option

The ON SIZE ERROR option applies only to
the final calculated results and not to
intermediate result fields.

EXPONENTIATION

When the exponent is not a literal, one
of the following three subroutines is
invoked, depending on the base and the
exponent:

1. If the base is not a floating-point
item and the exponent is an integer
item, a call to the subroutine
ILBDAPRO is generated and the
exponentiation is executed in packed
decimal arithmetic.

2.

When the expcnent is an integer literal,
one of the following applies:

1. If the base is a floating-point item,
a call to the subroutine ILBDGPWO is
generated and the exponentiation is
executed in floating-point arithmetic.

2. If the base is not a floating-point
item, an in-line loop is generated to
perform the exponentiation unless the
maximum possible result exceeds 30
digits, in which case a call to the
subroutine ILBDXPRO is generated. In
either case, the exponentiation is
executed in packed decimal arithmetic.

Optimization Based on Execution Freguency

If the base is a floating-point iterr.
and the exponent is an integer item,
call to the subroutine ILBDGPWO is
generated and the exponentiation is
executed in floating-point arithmetic.

Additional optimization techniques may
be used based on execution frequency

a statistics. These techniques are discussed
in the chapter entitled "Execution
Statistics".

3. If the exponent is a floating-point
item or has a PICTURE specifying
decimal places, a call to the
subroutine ILEDFPWO is generated and
the exponentiation is executed in
floating-point arithmetic. The base
is always treated as a positive
number, regardless of sign and the
answer will always be a positive
number. Caution should therefore
be exercised when using non-integer
exponents.

PROCEDURE DIVISION STATEMENTS

CO~PUTE Statement

The use of the COMPUTE statement
generates more efficient code than does the
nse of individual arithmetic statements,
since the compiler can keep track of
internal work areas and does not have to
store the results of intermediate
calculations. It is the programmerus
responsibility, however, to ensure that the
data is defined with the level of
significance required in the answer.

Programming Techniques 204.1

statement

Nested and compound IF statements should
~ avoided as the logic is difficult to
~bug •

:lVE Statement

Performing a move operation for an item
onger than 256 bytes requires the
eneration of more instructions than are
equired for a move operation for an item
f 256 bytes or less.

For fields longer than 512 bytes, a MOVE
ONG (MVCL) instruction is generated unless
he first byte of the receiving field is
sed as a byte of the sending field. In
his case, the object-time subroutine
LBDVMOO is called to perform the move.

When a MOVE statement with the
ORRESPONDING option is executed, data
tems are considered as "corresponding"
n1Y if their respective data-names are the
arne, including all implied qualification
p to, but not including, the data-names
sed in the MOVE statement itself.

'or example:

11 AA
05 BB

10 CC
10 DD

05 EE
10 FF

01 XX
05 BB

10 CC
10 DD

05 YY
10 FF

~he statement MOVE CORRESPONDING AA TO XX
rill result in moving CC, and DD, but not
'F, since FF of EE does not correspond to
'F of YY.

The compiler assumes that the data being
loved conforms to PICTURE and USAGE
;pecifications. If it does not, dissimilar
~esults will occasionally occur because of
:he different code generated for various
>ending and receiving fields. This fact is
lost apparent when the sending field is
:OMPUTATIONAL, the value in the item
~xceeds the number of digits specified in
:he PICTURE clause, and the option NOTRUNC
Ls in effect.

~ote: The other rules for MOVE
:ORRESPONDING, of course, must still be
5atisfied.

~OTE Statement

When the NOTE statement is the first
statement in a paragraph, it will cause the

whole paragraph to be treated as part of
the NOTE. Programmer errors can be avoided
by using the asterisk (*) in place of the
NOTE statement.

PERFORM Statement

PERFORM is a useful statement if the
programmer adheres to the following rules:

1. Always execute the last statement of a
series of routines being operated on
by a PERFORM statement. When
branching out of the routine, make
sure control will eventually return to
the last statement of the routine,
which should be an EXIT statement.
Although no code is generated, the
EXIT statement allows a programmer to
immediately recognize the extent of a
series of routines within the range of
a PERFORM statement.

2. Always either PERFORM routine-name
THRU routine~name-exit, or PERFORM
section-name. A PERFORM
paragraph-name can create problems for
the programmer trying to maintain the
program. For example, if one
paragraph must be broken into two
paragraphs, the programmer must
examine every statement to determine
whether this paragraph is within the
ranqe of the PERFORM statement. As a
result, all statements referencing the
paragraph-name must be changed to
PERFORM THRU statements.

3. A PERFORM statement containing
embedded PERFORMs or PERFORM VARYING
with one or more AFTER options causes
the compiler to generate complex code.
If a series of simple PERFORM
statements can accomplish the same
function, the programmer would be wise
to substitute these since more
efficient code is generated.

IREAD INTO and WRITE FROM Options

Always use READ INTO and WRITE FROM, and
process'all files in the Working-Storage
Section for the following reasons:

1. Debugging is much simpler.
Working-Storage areas are easier to
locate in a dump than are buffer
areas. And, if files are blocked, it
is much easier to determine which
record in a block was being processed
when the abnormal termination
occurred.

Programming Techniques 205

I

2. Trying to access a record-area after
the AT END condition has occurred (for
example, AT END HOVE HIGH-VALUE TO
INPUT-RECORD) can cause problems if
the record area is defined only in the
File Section.

Note: The programmer should be aware that
additional time is used to execute the move
operation involved in each READ INTO or
WRITE FROM instruction.

WRITE ADVANCING with LINAGE, FOOTING, and
END-OF-PAGE

The features LINAGE, WITH FOOTING, and
END-OF-PAGE imperative-statement give the
programmer added flexibility and control in
physical seguential (SAM) outp~t op_erations.
When these features are used in combination
with the BEFORE/AFTER ADVANCING nn LINES
clause of the WRITE statement, however,
care must be exercised. In the discussion
below, notice that END-OF-PAGE imperatives
are executed after WRITEs, and the LINAGE
COUNTER may be pointing to the next logical
page (instead of to the current footing
area) when the imperative gains control.

For ADVANCING nn LINES, COBOL first
calculates the sum of LINAGE-COUNTER and nn.
(For ADVANCING PAGE, see Case 2 below.)
Subsequent actions depend on the size of
this value, as follows:

Case 1--If advance would be within the
current logical page body (i.e.,
value is not greater than the
established LINAGE value):

a. The WRITE takes place (either
before or after advancing nn
lines, as specified in the
program) .

b. LINAGE-COUNTER is incremented

Case 2--If advance would go beyond the
current logical page body (i.e.,
established LINAGE value): .

a. A new value is established for
LINES-AT-TOP.

b. The WRITE take~ place before or
after (as specified by the
program) the device is
positioned to the first line of
the next logical page.

c. LINAGE-COUNTER is set to 1.

d. New values are established for
LINAGE, FOOTING, and
LINES-AT-BOTTOM

e. The END-OF-PAGE imperative is
executed (if one was specified).

Files using LINAGE are treated as if the
ADV compile option had been specified.

START Statement

For a sequentially-accessed ISAM file,
the START statement must be executed before
the READ statement for a given record if
either of the following is true:

• Processing begins with other than the
first record;

• Processing continues with a record
other than the next sequential record.

There are two ways to use the START
statement to begin processing a segment of a
specified key. The programmer may indicate
either Method 1, to begin at a specific
NOMINAL KEY that matches a RECORD KEY within
the file, or Method 2, to start within the
first record in a specific generic key class.

by nn. METHOD 1

c. If FOOTING was specified, and START file-name
the advance falls within the
footing area (that is, greater INVALID KEY imperative-statement
than or equal to the
established FOOTING value), the
END-OF-PAGE imperative is
executed (if one was specified.)

206

lETHOD 2

START file-name

KEY IS { EQU~ TO) identifier

INVALID KEY imperative-statement

"here

Eile-name
is defined by a file description entry in
the Data Division.

identifier
contains the generic key value for the
request and may be any data item whose
length is less than or equal to that of
the RECORD KEY.

Note: For ISM1, results are unpredictable
with the generic key facility with binary
key if the low-order byte of the search
argument is binary zero.

STRING Statement

The STRING statement combines two or more
subfields into a single field. When this.
statement is executed, characters from the
sending items are transferred to the
receiving item in the same way that moves
from alphanumeric to alphanumeric items are
effected. The example in Figure 58.1
illustrates the use of the STRING statement
options. For a discussion of the formats
possible with the STRING statement, see IBM
VS COBOL for DOS/VSE.

,
I
I
I
I

S T ~ I N G S N n F L ~ , S DEL r M I ,. F. D E 'i D L M T R

SNnrLD& DELIMITED UY SIZE

TRANSFORM Statement

\
The TRANSFOru1 statement generates more

efficient code than the EXAMINE REPLACING
BY statement when only one character is
being transformed. The TRANSFORM statement,
however, uses a 256-byte table.

UNSTRING Statement

The UNSTRING statement separates
contiguous data in a sending field, placing
it in multiple receiving fields. The
example in Figure 58.2 illustrates the use
of the UNSTRING statement options available
to the user.

For a discussion of the formats possible
with the UNSTRING statement, see IBM VS
COBOL for DOS/VSE.

---------,

I
I

..
•

Combille ddtd ln SNDF'LD~ up to the d!~limiter indicated by DLMTR wit.h all the data
in annth~r s~nding field (as indicatMd by the SIZE option of the STRING

I '"
I
I
I
I
I •
I
I
I
I
I II.

I ..
L __

sta b.'''' ~n t.) •

INT0 RCDFLD1 ~ITH POINTER POINTR

rlac\.~ tht' r<.>:.~ult· In RC(lFLDl b~qiIl"ing at th(.~ relative location dpsi<;1r,-lt0d
by P0TN'fR •

ON 0VERFLOW GO TO OVEPFLO~2.

If RC:H'LD1 L, not lat'<Jp. en·)uqh to accommod.ltf' the combineti 1atd-fit~ld~" or
if thp ot'iqin~l contents of tbp. pointer fLeld Wp.r~ lens than 1, ~xpcut~ a user
writtt'n checl<i~lg routine called OVERPLOW2 •

Figure 58.1. Using the STRING Statement

DOS/VS COBOL Programmer's Guide

J

206.1

r-
J UNSTRING SNDFLD
I
I * Separate the data in the sending area.
I
I DELIMITED BY DLMTR1
I OB SPACES
J OR ALL 'E'
J INTO RCFLD
I
I * When the character. or set of characters, marking the end of a section of the
I • sending area is found, move the isolated data into the data-receiving f~~ld.
f
I DELIMITER IN DELIM-IN
I
I • Move the delimiter found into the delimiter-receiving area DELIM-IN.
I
I COUNT IN COUNT-IN
I
I * specify in COO NT-IN the numb~r of characters placed in the RCFLD
I * data-receiving field •

• I WITH POINTER POUNTR

'--

* rndicate the relative position in the SNDFLD sending area of the first
* character to be examined. At the end of the operation. POINTR contains a value
• equal to the initial value plus the number of characters examined in the sending
• field.

TALLYING IN TALLY-IN

• Record the number of data-receiving areas acted upon. At the end of the
• operation, TALLY-IN will contain a value equal to the initial value plus the
• number of receiving areas acted upon.

ON OV EBFLOW
DISPLAY 'OVERFLOW CONDITION'
GO TO CHECK-ROUTINE.

• If the data-receiving fields cannot accommodate the data being sent, or if
• the original value of the pointer was less than 1 or greater than the size of the
• sending field, execute a user-written checkin~ routine.

Figure 58.2 Using the UNSTRING Statement

206.2

To use the Sort/Merge feature,
:atements are written in the COBOL source
~ogram. These statements are described in
3M VS COBOL for DOS/VSE. The Sort/Merge
lblications listed in the Preface of this
lnual contain infor~ation on the Sort/
:!rge feature.

When a SORT or MERGE statement is used
1 a program, the compiler generates
Lnkages between the program, modules in
le subroutine library, and the Sort/l1erge
=ogram. The name of Sort/Merge called by
)BOL is "SORT" and the user must include
1e proper product on the option.

Additional job control statements must
: included in the execution step of the
)b to describe the files used by the Sort/
:rge program. These statements are
:scribed under "Sort/Merge Job Control
=quirements."

~te: The Checkpoint/Restart feature can
= activated during a sorting operation by
pecifying the RERUN statement.

ORT/I1ERGE JOB CONTROL REQUIREHENTS

Three types of files can be defined for
he Sort program in the execution job step:
nput, output, and work. Two types of
iles can be defined for the Merger program
n the execution job step: input
.nd output.

;ORT INPUT AND OUTPUT CONTROL STATEMENTS

When the USING and/or GIVING options are
:pecified, the compiler generates dummy
:nput and/or Output Procedures. Hence, the
ob control requirements for files named as
Iperands of USING and GIVING are the same
lS those for files used as input to or
lutput from the sorting operation in these
)rocedures.

The following job control statements are
:equired for files used as input to or
)utput from the sorting operation:

ASSGN

:ollowed by

VOL

DLBL
EXTENT

TLBL

USING THE SORT/MERGE FEATURE

The symbolic unit to which each sort
input or output file is assigned in the
source language ASSIGN clause is specified
in an ASSGN control statement.

Note: ASSGN control statements are
required only if the input/output devices
used in an application have not been
previously assigned the appropriate
symbolic names.

If an input file contains standard
labels, a TLBL or DLBL statement is
required. The symbolic name of the device
from which the input file is to be read
must also be included on this statement.

One EXTENT control statement is required
to define the limits of each area of a mass
storage device from which an input file
will be read. EXTENT statements must
include the symbolic unit name of the
device containing the extent.

If the output file is to use standard
labels, a TLBL or DLBL statement is
required.

One EXTENT control statement must be
used to define the limits of each area of a
mass storage device onto which the output
file is written. The symbolic name of the
output unit must appear on this statement.

Note: Because the USING and GIVING options
generate dummy input and/or output
procedures, the rules on pooling of files
in the DOS Sort/Merge Version 2 Programmer's
Guide do not apply.

A SIZE parameter is needed in the EXEC
statement when sorting a VSNl file. The
SIZE parameter must be in the format

SIZE=(AUTO,nK)

to take into account the fetching of the
sort module during execution and VSN1
storage requirements.

SORT-OPTION Clause

The SORT-OPTION clause is a means of
specifying the options that have been
selected for the associated sort/merge
operation that cannot be specified via the
SORT special registers. For details on the
format, validity check, COBOL-SORT
interface, see DOS Sort/Merge Version 2

Using the Sort/Merge Feature 207

Programmer's Guide. For messages generated
by the Sort/Merge feature, completion codes,
and cataloging a Sort program, see DOS
Sort~lerge Version 2 Diagnostics.

Page 208.1 through 208.4 deleted.

208

IRT DIAGNOSTIC MESSAGES

The messages generated by the Sort/Merge
~ature are listed in the sort publications
~ferenced in the preface.

CNKAGE WITH THE SORTIMERGE FEATURE

To initiate a sort or merge operation,
le COBOL object program includes the
lject time subroutines ILBDSRTO and
~BDMRGO and transfers control to them.

If the INPUT PROCEDURE option of the
)RT statement is specified in the source
cogram, exit E15 of the Sort/Merge program
5 used. At this exit, the record released
~ the programmer is passed to the
~rt/Merge program. Since a dummy Input
cocedure will be generated by the compiler
nen the USING option is specified, records
n the USING file are also passed to the
ort/Merge program at exit E15. Records in
he USING file of a Merge operation are
assed at exit E32.

If the OUTPUT PROCEDURE option of either
le SORT or l1ERGE statement is specified,
{it E35 of the Sort/Herge program is used.
t this exit, the record returned by the
Jrt/Herge program is passed to the
rogrammer. Since a dummy Output Procedure
3 generated by the compiler when the
IVING option is specified, records are
lso returned at exit E35 and written on
:1is file.

ompletion Codes

The Sort/Merge program returns a
'ompletion code upon termination and this
:ode is stored in the COBOL speclal
'egister SORT-RETURN. The codes are:

o -- Successful completion o£
Sort/Merge

02 Invalid OPEN -- USING file

04 Permanent I/O error ~- USING file

06 Invalid OPEN -- GIVING file

08 Permanent I/O error
file

GIVING

10 Boundary violation -- GIVING file

12 Duplicate or out of sequence key
-- GIVING file

16 -- Unsuccessful completion of
Sort/Merge

Successful Completion: When a Sort/Merge
application has been successfully executed,
a completion code of zero is returned and
the sort operation terminates.

Unsuccessful Completion: If the Sort
program encounters an error during
execution that will not allow it to
complete successfully, it returns a
completion code of 16 and terminates. (A
possible error is an uncorrectable
input/output error.) The sort publications
contain a detailed description of the
conditions under which this termination
will occur.

The user may test the SORT-RETURN
register for successful termination of the
sort operation, as shown in the following
example:

SORT SALES-RECORDS ON ASCENDING KEY,
CUSTOMER-NUMBER, DESCENDING KEY DATE,
USING FN-1, GIVING FN-2.

IF SORT-RETURN NOT EQUAL TO ZERO, DISPLAY
"SORT UNSUCCESSFUL" UPON CONSOLE, STOP
RUN.

Cataloging a Sort Program

When the CATAL option is used to catalog
a sort program, the following should be
observed:

• To avoid duplicate names when selecting
a catalog name for his program, the
programmer must be aware of the naming
convention used by the compiler to
generate the name of the dummy phase
into which the phases of the Sort/Merge
program will subsequently be loaded.

Naming Convention: The compiler generates
the phase card for the dummy phase using
the following convention:

• If the PROGRAM-ID name is 6, 7, or 8
characters in length, the dummy phase
name consists of the first 6 characters
plus 2 zero characters.

• If the PROGRAM-ID name is less than 6
characters in length, the name is
padded with zeros to 8 characters.

Using the Sort/Merge Feature 209

• Since the system expects the first
character of PROGRAM-ID to be
alphabetic, the first character, if
numeric, is converted as follows:

o -> J
1-9 -> A-I

The hyphen is converted to zero if it
appears as the second through eighth
character.

CHECKPOINT/RESTART DURING A SORT

The CheckpointjRestart Feature is
available to the programmer using the COBOL
SORT statement. The programmer uses the
RERUN clause to specify that checkpoints
should be taken during program execution.
The control statement requirements for
taking a checkpoint are discussed in the
section entitled "Program Checkout."
CheckpointjRestart is not available during
a merge operation.

The system-name specified in the RERUN
clause as the sort checkpoint device must
not be the same as any system-name used in
the source language ASSIGN clause, but
follows the same rules of formation.

210

I The RERUN clause is fully described in
;the publication IBM VS COBOL for DOS/VSE.

USING SORT IN A MULTIPHASE ENVIRONMENT

When the Sort program is invoked in a
multiphase environment, the following
should be noted:

1. It is the programmer's responsibility
to ensure that the COBOL program
containing the SORT statement is the
highest phase in storage.

2. If two programs are compiled, link
edited, and executed together, only
one program may use the Sort feature.
If both programs require Sort, the
programs can be compiled separately
and then the decks must be organized
so that the dummy phase cards for Sort
are both together at the end of the
deck before they are link edited and
executed.

3. If Debug and Sort are used together,
the Debug modules must be included
in the root phase.

:PORT Clause in a File Description (FD)
Itry

A given report-name may appear in a
Iximum of two file description entries.
Ie file description entries need not have
Ie same characteristics, but both must be
:andard sequential. If the same
!port-name is specified in two file
!scription entries, the report will be
:itten on both files. For example:

NIRONMENT DIVISION.
SELECT FILE-l ASSIGN SYS005-UR-1403-S.
SELECT FILE-2 ASSIGN SYS001-UT-2400-S.

~TA DIVISION.
) FILE-l RECORDING MODE F

RECORD CONTAINS 121 CHARACTERS
REPORT IS REPORT-A.

FILE-2 RECORDING MODE V
RECORD CONTAINS 101 CHARACTERS
REPORT IS REPORT-A.

For each GENERATE statement, the records
)r REPORT-A will be written on FILE-l and
[LE-2, respectively. ~he records on
[LE-2 will not contain columns 102 through
21 of the corresponding records on FILE-i.

The Report Writer feature forces the
OADV option.

lmming Technigues

Execution time of an object program can
= decreased by keeping in mind that Report
riter source coding is treated as though
he programmer had written the program in
OBOL without the Report writer feature.
herefore, a complex source statement or
eries of statements will generally be
Kecuted faster than simple statements that
erform the same function. The followina
Kample shows two coding techniques for ihe
eport section of the Data Division.
ethod 2 uses the more complex statements.

D ••• CONTROLS ARE YEAR MONTH WEEK DAY.

USING THE REPORT WRITER FEATURE

Method 1:

01 TYPE CONTROL FOOTING YEAR.
02 SUM COST.

01 TYPE CONTROL FOOTING MONTH.
02 SUM COST.

01 TYPE CONTROL FOCTING WEEK.
02 SUM COST ..

01 TYPE CONTROL FOCTING ADAY.
02 SUM COST.

Method 2:

01 TYPE CONTROL FOOTING YEAR.
02 SUM A.

01 TYPE CONTROL FOOTING MONTH.
02 A SUM B.

01 TYPE CONTROL FOCTING WEEK.
02 B SUM C.

01 TYPE CONTROL FOCTING ADAY.
02 C SUM COST.

Method 2 will execute faster. One
addition will be performed for each day,
one more for each week, and one for each
month. In Method 1, four additions will be
performed for each day.

Use of SUM

Unless each identifier is the name of a
SUM counter in a TYPE CONTROL FOOTING
report group at an equal or lower position
in the control hierarchy, the identifier
must be defined in the File, Working
Storage, or Linkage Sections as well as in
a TYPE DETAIL report group as a source item
or no summing will occur. A SUM counter is
algebraically incremented just before
presentation of the TYPE DETAIL report
group in which the item being suromed
appears as a source item or the item being
summed appeared in a SUM clause that
contained an UPON option for this DETAIL
report group. 'Ihis is known as SOURCE-SUM
correlation. In the following example,
SUBTOTAL is incremented only when DETAIL-l
is generated.

Using the Report Writer Feature 211

FILE SECTION.

02 NO-PURCHASES PICTU~E 99.

REPORT SECTION ..
01 DETAIL-1 TYPE DETAIL.

02 COLUMN 30 PICTURE 99 SOURCE
NO-PURCHASES.

01 DETAIL-2 TYPE DETAIL.

01 ADAY TYPE CONTROL FOOTING
LINE PLUS 2.

02 SUBTOTAL COLUMN 30 PICTURE 999
SUM NO-PURCHASES.

01 MONTH TYPE CONTROL FOOTING
LINE PLUS 2 NEXT GROUP
NEXT PAGE.

SUM Routines

A SUM routine is generated by the Report
writer for each DETAIL report group of the
report. The operands included for summing
are determined as follows:

1. The SUM operand(s) also appears in a
SOURCE clause(s) for the DETAIL report
group.

2. The UPON detail-name option was
specified in the SUM clause. In this
case, all the operands are included in
the SUM routine for only that DETAIL
report group, even if the operand
appears in a SOURCE clause in other
DETAIL report groups ..

When a GENERATE detail-name statement is
executed, the SUM routine for that DETAIL
report group is executed in its logical
sequence.. When GENERATE report-name
statement is executed and the report.
contains more than one DETAIL report group,
the SUM routine is executed for each one.
The SUM routines are executed in the

212

sequence in which the DETAIL report groups
are specified ..

The following two examples show the SUM
routines that are generated by the Report
Writer. Example 1 illustrates how operands
are selected for inclusion in the routine
on the basis of simple SOURCE-SUM
correlation. Example 2 illustrates how
operands are selected when the UPON
detail-name option is specified.

Example 1: The following statements are
coded in the Report Section:

01 DETAIL-1 TYPE DE
02 ••• SOURCE A.

01 DETAIL-2 TYPE DE
02 ••• SOURCE B.
02 ••• SOURCE C.

01 DETAIL-3 TYPE DE
02 ••• SOURCE B.

01 TYPE CF
02 SUM-CTR-1 ••• SUM A, B~ C.

01 TYPE CF
02 SUM-CTH-2 SUM B ..

A SUM routine is generated for each
DETAIL report group, as follows:

SUM-ROUTINE FOR DETAIL-1

REPORT-SAVE
ADD A TO SUM-CTR-1.

REPORT-RETURN

SUM-ROUTINE FOR DETAIL-2

REPORT-SAVE
ADD B TO SUM-CTR-1 ..
ADD C TO SUM-CTR-1.
ADD B TO SUM-CTR-2.

REPORT-RETURN

SUM-ROUTINE FOR DETAIL-3

REPORT-SAVE
ADD B TO SUM-CTR-1 ..
ADD B TO SUM-CTR-2.

REPORT-RETURN

<' • , .

~ample 2: This example uses the same
)ding as Example 1, with one exception:
Le UPON detail-name option is used for
IM-CTR-1, as follows:

TYPE CF •••
02 SUM-CTR-1 ••• SUM A, B, C

UPON DETAIL-2.

The following SUM routines would then be
~nerated instead of those shown in the
cevious example:

JM Routine for DETAIL-1

REPORT-SAVE
REPORT-RETURN

JM Routine for DETAIL-2

REPORT-SAVE
ADD A TO SUM-CTR-1.
ADD B TO SUM-CTR-1.
ADD C TO SUM-CTR-1.
ADD B TO SUM-CTR-2.

REPORT-RETURN

OM Routine for DETAIL-3

REPORT-SAVE
ADD B TO SUM-CTR-2.

REPORT-RETURN

utput Line overlay

The Report Writer output line is created
sing an internal REDEFINES specification,
ndexed by integer-1. No check is made to
revent overlay on any line. For example:

02 COLUMN 10 PICTURE X(23)
VALUE "MONTHLY SUPPLIES REPORT".

02 COLUMN 12 PICTURE X(9)
SOURCE CURRENT-MONTH.

length of 27 in column 10, followed by a
pecification for column 12, will cause
ield overlay when this line is printed.

age Breaks

The Report Writer page break routine
'perates independently of the routines that
re executed after any control breaks .
'except that a page break will occur as the
'esult of a LINE NEXT PAGE clause). Thus,
. he programmer should be aware of the
'ollowing facts:

1. A Control Heading is not printed after
a Page Heading except for first
generation. If the programmer wishes
to have the equivalent of a Control

Heading at the top of each page, he
must include the information and data
to be printed as part of the Page
Heading. Since only one Page Heading
may be specified for each report, he
should be selective in considering his
Control Heading because it will be the
same for each page, and may be printed
at inappropriate times (see "Control
Footings and Page Format" in this
chapter) •

2. GROUP INDICATE items are printed after
page and control breaks. Figure 56
contains a GROUP INDICATE clause and
illustrates the execution output.

REPORT SECTION.

01 DETAIL-LINE TYPE IS DETAIL LINE
NUMBER IS PLUS 1.
02 COLUMN IS 2 GROUP INDICATE

PICTURE IS A(9) SOURCE IS
MONTHNAME OF RECORD-AREA (MONTH).

(Execution
I

Output)

\JANUARY
\
\
\ PURCHASES
I
\JANUARY
\
I

Figure 59.

15 AOO •••
A02 •••

AND COST •••

21 A03 •••
A03 •••

Sample of GROUP INDICATE Clause
and Resultant Execution Output

WITH CODE Clause

When more than one report is being
written on a file and the reports are to be
selectively written, a unique 1-character
code must be given for each report. A
mnemonic-name is specified in the RD-level
entry for each report and is associated
with the code in the Special-Names
paragraph of the Environment Division.

Note: If a report is written with the CODE
option, the report should not be written
directly on a printer device •

This code will be written as the first
character of each record that is written on
the file. When the programmer wishes to
write a report from this file, he needs

Using the Report Writer Feature 213

only to read a record, check the first
character for the desired code, and have it
printed if the desired code is found. The
record should be printed starting from the
third character, as illustrated in Figure
60.

i I i

I I Control I
ICode ICharacterlRecord ~ i
1 2 3 n

Figure 60. Format of a Report Record When
the CODE Clause is Specified

The following example shows how to
create and print a report with a code of A.
A Report Writer program contains the
following statements:

ENVIRONMENT DIVISION.

SPECIAL-NAMES. "A" IS CODE-CHR-A
"B" IS CODE-CHR-B.

DATA DIVISION.

REPORT SECTION.
RD REP-FILE-A CODE CODE-CHR-A •••

RD REP-FILE~B CODE CODE-CHR-B •••

A second program could then be used to
print only the report with the code of A,
as follows:

DATA DIVISION.
FD RPT-IN-FILE

RECORD CONTAINS 122 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS RPT-RCD.

01 RPT-RCD.
05 CODE-CHR PICTURE X.
05 PRINT-PART.

10 CTL-CHR PICTURE X.
10 RECORD-PART PICTURE X(120).

FD PRINT-FILE

214

RECORD CONTAINS 121 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS PRINT-REC.

01 PRINT-REC.
05 FILLER

PROCEDURE DIVISION.

PICTURE X(121).

LOOP. READ RPT-IN-FILE AT END
GO TO CONTINUE.

CONTINUE.

IF CODE-CHR = "A"
WRITE PRINT-REC FROM PRINT-PART
AFTER POSITIONING CTL-CHR LINES.
GO TO LOOP.

Control Footings and Page Format

Depending on the number and size of
Control Footings (as well as the page depth
of the report), all of the specified
Control Footings may not be printed on the
same page if a control break occurs for a
high-level control. When a page condition
is detected before all required Control
Footings are printed, the Report Writer
will print the Page Footing (if specified),
skip to the next page, print the p~ge
Beading (if specified) and then continue to
print Control Footings.

If the programmer wishes all of his
Control Footings to be printed on the same
'page, he must format his page in the
RD-Ievel entry for the report (by setting
the LAST DETAIL integer to a sufficiently
low line number) to allow for the necessary
space.

NEXT GROUP Clause

Each time a CONTROL FOOTING report group
with a NEXT GROUP clause is printed, the
clause is activated only if the report
group is associated with the control that
causes the break. 'This is illustrated in
Figure 61.

RD EXPENSE-REPORT CONTROLS ARE FINAL,
MONTH, ADAY

01 TYPE CONTROL FOOTING DAY
LINE PLUS 1 NEXT GROUP
NEXT PAGE.

01 TYPE CONTROL FOOTING MONTH
LINE PLUS 1 NEXT GROUP
NEXT PAGE.

(Execution Output)

EXPENSE REPORT

January 31 ••••••••• 29.30
(Output for CF ADAY)

January total ••••• 131.40
(Output for CF MONTH)

Lgure 61. Activating the NEXT GROUP
Clause

)te: The NEXT GROUP NEXT PAGE clause for
~Control Footing DAY is not activated.

Loatinq First Detail

The first presentation of a body group
~H, PF, CH, CF, DE) that contains a

relative line as its first line will have
its relative line spacing suppressed; the
first line will be printed on either the
value of FIRST DETAIL or INTEGER PLUS 1 of
a NEXT GROUP clause from the preceding
page. For example:

1. If the following body group was the
last to be printed on a page

01 TYPE CF NEXT GROUP NEXT PAGE

then this next body group

01 TYPE DE LINE PLUS 5

would be printed on value of FIRST
DETAIL (in PAGE clause) •

2. If the following body group was the
last to be printed on a page

01 TYPE CF NEXT GROUP LINE 12

and after printing, line-counter
then this next body group

01 TYPE DETAIL LINE PLUS 5

40,

would be printed on line 12 + 1 (i.e.,
line 13).

Report Writer Routines

At the end of the analysis of a report
description (RD) entry, the Report Writer
routines are generated, based on the
contents of the RD. Each routine
references the compiler-generated card
number of its respective RD.

Using the Report Writer Feature 215

lbscripts

If a subscript is represented by a
)nstant and if the subscripted item is of
.xed length, the location of the
lbscripted data item within the table or
Lst is resolved during compilation.

If a subscript is represented by a
ita-name, the location is resolved at
cecution time. The most efficient format
1 this case is COMPUTATIONAL, with a
[CTURE size less than five integers.

The value contained in a subscript is an
lteger which represents an occurrence
~ber within a table. Every time a
Ibscripted data-name is referenced in a
~ogram, the compiler generates up to 16
lstructions to calculate the correct
Lsplacement. Therefore, if a subscripted
ita-name is to be processed extensively,
)ve the subscripted item to an
lsubscripted work area, do all necessary
~ocessing, and then move the item back
lto the table. Even when subscripts are
~scribed as COMPUTATIONAL, subscripting
ikes time and storage.

ldex-names

Index-names are compiler-generated
:ems, one fullword in length, assigned
~orage in the TGT (Task Global Table). An
1dex-narne is defined by the INDEXED BY
Lause. The value in an index-name
~presents an actual displacement from the
~ginning of the table that corresponds to
1 occurrence number in the table. Address
ilculation for a direct index requires a
~ximum of four in~tructions; address
~lculation for a relative index requires a
=w more. Therefore, the use of
1dex-names in referencing tables is more
Eficient than the use of subscripts. The
se of direct indexes is faster than the
5e of relative indexes.

Index-names can only be referenced in
~e PERFORM, SEARCH, and SET statements.

~dex Data Items

Index data items are compiler-generated
torage positions, one fullword in length,

TABLE HANDLING CONSIDERATIONS

that are assigned storage within the COBOL
program area. An index data item is
defined by the USAGE IS INDEX clause. The
programmer can use index data items to save
values of index-naroes for later reference.

Great care must be taken when setting
values of index data items. Since an index
data item is not part of any table, the
compiler is unable to change any
displacement value contained in an
index-name when an index data item is set
to the value of an index-name or another
index data item. See the SET statement
examples later in this chapter.

Index data items can only be referenced
in SEARCH and SET statements.

OCCURS Clause

If indexing is to be used to reference a
table element and the Format 2 <SEARCH ALL)
statement is also used, the KEY option must
be speci£.ied in the OCCURS clause. A table
element is represented by the subject of an
OCCURS clause, and is equivalent to one
level of a table. The table element must
then be ordered upon the key(s) and
data-name(s) specified. .

DEPENDING ON Option

If a data item described by an OCCURS
clause with the DEPENDING ON data-name
option is followed by nonsubordinate data
items, a change in the value of data-name
during the course of program execution will
have the following effects:

1. The size of any group described by or
containing the related OCCURS clause
will reflect the new value of
data-name.

2. Whenever a MOVE to a field containing
an OCCURS clause with the DEPENDING ON
option is executed, the MOVE is done
on the basis of the current contents
of the object of the DE~ENDING ON
0ption.

3. The location of any nonsubordinate
items following the item described
with the OCCURS clause will be
affected by the new value of

Table Handling Considerations 217

I

data-name. If the programmer wishes
to preserve the contents of these
items, the following procedure can be
used: prior to the change in
data-name, move all nonsubordinate
items following the variable item to a
work area; after the change in -
data-name, move all the items back.

Note: The value of data-name may change
because a move is made to it or to the
group in which it is contained; or the
value of data-name may change because the
group in which it is contained is a record
area that has been changed by execution of
a READ statement.

For example, assume that the Data
Division of a program contains the
following coding:

01 ANYRECORD.
05 A PICTURE S999 COMPUTATIONAL-3.
05 TABLEA PICTURE S999 OCCURS 100

TIMES DEPENDING ON A.
05 GROUPB.

Subordinate data items.
End of record.

GROUPB items are not subordinate to TABLEA,
which is described by the OCCURS clause.
Assuming that WORKB is a work area with the
Same data structure as GROUPB, the
following procedural coding could be used:

MOVE GROUPB TO WORKB

Calculate a new value of A

MOVE WORKB TO GROUPB

The preceding statements can be avoided
by placing the OCCURS clause with the
DEPENDING ON option at the end of the
record.

Note: data-name can also change because of
a change in the value of an item that
redefines or renames it. In this case, th~
group size and the location of
nonsubordinate items as described in the
two preceding paragraphs cannot be
determined.

OCCURS CLAUSE WITH THE DEPENDING ON OPTION

If a record description contains an
OCCURS clause with the DEPENDING ON option,
the record length is variable. This is
true for records described in an FD as well
as in the Working-Storage section. A
previous chapter discussed four different
record formats of non-VSAM files. Three of
them, V-mode, U-mode, and S-mode, as well

218

as VSAM files v may contain one or more
OCCURS clauses with the DEPENDING ON
option.

This section discusses some factors that
affect the manipulation of records
containing OCCURS clauses with the
DEPENDING ON option. The text indicates
whether the factors apply to the File or
Working-Storage sections, or both.

The compiler calculates the length of
V-mode records containing the OCCURS clause
with the DEPENDING ON option at three
different times, as follows (the first and
third applies to FD entries only; the
second to both FD and Working-Storage
entries):

1. When a file is read and the object of
the DEPENDING ON option is within the
record.

2. When the object of the DEPENDING ON
option is changed as a result of a
move to it or any item within-its
group. (The length is not calculated
when a move is made to an item which
redefines or renames it.)

For instance, before a group item
with an OCCURS DEPENDING ON clause
in it can be moved from an I/O
area to working storage, or vice
versa, the object of the DEPENDING
ON clause must be moved separately
from the I/O area to the corresponding
area in working storage (or from
working storage to the I/O area) to
force initial calculation of the
receiving field's length.

If the object of the DEPENDING ON
option is changed outside of the
COBOL program, to ensure correct
length, a dummy move of the
DEPENDING ON object must be made
upon return to the COBOL program.

3. For an output file, after the record
is written, the length is set to
maximum to enable a full mcve of the
next record to the buffer.
Immediately after the move, the
correct length is recalculated as in
item 2.

Consider the following example:

WORKING-STORAGE SECTION.

77
77

01

CONTROL-1
WORKAREA-1

PIC 99.
PIC 9(6)V99.

SALA~Y-HISTORY.

05 SALARY OCCURS 0 TO 10 TIMES
DEPENDING ON
CONTROL-1 PIC 9(6)V99.

The Procedure Division statement MOVE
5 TO CONTROL-1 will cause a recalculation
of the length of SALARY-HISTORY. MOVE
SALARY (5) TO WORKAREA-1 will not cause
the length to be recalculated.

The compiler permits the occurrence of
more than one level-01 record, containing
the OCCURS clause with the DEPENDING ON
option, in the same FD entry (see Figure
62). For non-VSAM files, if the BLOCK
CONTAINS clause is omitted, the buffer size
is calculated from the longest level-01
record description entry. In Figure 62,
the buffer size is determined by the
description of RECORD-1 (RECORD-1 need not
be the first re.cord description under the
FD).

During the execution of a READ
statement, the length of each level-Ol
record description entry in the FD will be
calculated (see Figure 62). The length of
the variable portion of each record will be
the product of the numeric value contained
in the object of the DEPENDING ON option
and the length of the subject of the OCCURS
clause. In Figure 62, the length of
FIELD-l is calculated by multiplying the
contents of CONTROL-l by the length of
FIELD-l; the length of FIELD-2, by the
product of the contents of CONTROL-2 and
the length of FIELD-2; the length of
FIELD-3 by the contents of CONTROL-3 and
the length of FIELD-3.

Since the execution of a READ statement
makes available only one record type (i.e.,
RECORD-l type, RECORD-2 type, or RECORD-3
type~, two of the three record descriptions
in Figure 62 will be inappropriate. In
such case·s, if the contents of the object
of the DEPENDING ON option does not conform
to its picture, th~length of the
corresponding record will be unpredictable.
For the contents of an item to conform to
its picture:

• An item described as USAGE DISPLAY must
contain external decimal data.

• An item described as USAGE
COMPUTATIONAL-3 must contain internal
decimal data.

• An item described as USAGE
COMPUTATIONAL must contain binary data.

• An item described as signed must
contain signed data.

• An item described as unsigned must
contain unsigned data.

The following example illustrates the
length calculations made by the system when
a READ statement is executed:

FD

01 RECORD-l.
05 A PIC 99.
05 B PIC 99.
05 C PIC 99 OCCURS 5 TIMES

DEPENDING ON A.

01 RECORD-2.
05 D PIC XX.
05 EPIC 99.
05 F PIC 99.
05G PIC 99 OCCURS 5 TIMES

DEPENDING ON F.

WORKING-STORAGE SECTION.

01 TABLE-3.
05 H PIC99 OCCURS 10 TIMES DEPENDING

ON B.

01 TABLE-4.
05 I PIC99 OCCURS 10 TIMES DEPENDING

ON E.

When a record is read, lengths are
determined as follows:

1. The length of C is calculated using
the contents of field A. The length
of RECORD-l=A+B+C.

2. The length of G is calculated using
the contents of field F. The length
of RECORD-2=D+E+F+G.

3. The length of TABLE-3 is calculated
using the contents of field B.

4. The length of TABLE-4 is calculated
using the contents of field E.

The programmer should be aware of
several characteristics of the previously
cited length calculations. The follbwing
example illustrates a group item (i.e.,
REC-l) whose subordinate items contain an
OCCURS clause with the DEPENDING ON option
and the object of that DEPENDING ON option.

WORKING-STORAGE SECTION.
01 REC-l.

05 FIELD-l PIC 9.
05 FIELD-2 OCCURS 5 TIMES DEPENDING ON

FIELD-l PIC X(S).

Table Handling Considerations 219

r---,
FD INPUT-FILE

DATA RECORDS ARE RECORD~l'RECORD-2 RECORD-3.

01 RECORD-l.
05 CONTROL-l PIC 99.
05 FIELD-l OCCURS 0 TO 10 TIMES DEPENDING ON CONTROL-l PIC 9(5).

01 RECORD-2.
05 CONTROL-2 PIC 99.
05 FIELD-2 OCCURS 1 TO 5 TIMES DEPENDING ON CONTROL-2 PIC 9(4).

01 RECORD-3.
05 FILLER PIC XX.
05 CONTROL-3 PIC 99.
05 FIELD-3 OCCURS 0 TO 10 TIMES DEPENDING ON CONTROL-3 PIC X (4) '.

Figure 62. Calculating Record Lengths When Using the OCCURS Clause with the DEPENDING ON
Option

01 REC-2.
05 REC-2-DATA PIC X(50).

The results of executing a MOVE to the
group item REC-l will be affected by the
following:

• The length of REC-1 may have been
calculated at some time prior to the
execution of this MOVE statement.
The user should make sure that REC-I
reflects the correct length.

• The length of REC-I may never have been
calculated at all, and the result of the
MOVE will be unpredictable.

• After the move, since the contents of
FIELD-1 have been changed~ an attempt
will be made to recalculate the length
of REC-l. Correct recalculation,
however~ will only be made if the new
contents of FIELD-l conform to its
picture (i.e.~ USAGE DISPLAY must
contain an external decimal item, USAGE
COMPUTATIONAL-3 must contain an
internal decimal item and USAGE
COMPUTATIONAL must contain a binary
item. An item described as signed must
contain signed data, and an item
described as unsigned must contain
unsigned data). In the preceding
example, if FIELD-l does not contain an
external decimal item, the length of
REC-l will be unpredictable.

Note: According to the COBOL description,
FIELD-2 can occur a maximum of five times.
If, however, FIELD-l contains an external
decimal item whose value exceeds five, the

220

length of REC-l will still be calculated.
One possible consequence of this invalid
calculation will be encountered if the
programmer attempts to initialize REC-l by
moving zeros or spaces to it. This
initialization would inadvertently delete
part of the adjacent data stored in REC-2.

The following discussion applies to
updating a record containing an OCCURS
clause with the DEPENDING ON option and at
least one other subsequent entry. In this
case, the subsequent entry is another item
containing an OCCURS clause with the
DEPENDING ON option.

WORKING-STORAGE SECTION.
01 VARIABLE-REC.

05 FIELD-A PIC X(lO).
05 CONTROL-l PIC 99.
05 CONTROL-2 PIC 99 •
05 VARY-FIELD-1 OCCURS 10 TIMES

DEPENDING ON CONTROL-1 PIC X(5).
05 TEMP.

06 VARY-FIELD-2 OCCURS
10 TIMES DEPENDING ON
CONTROL-2 PIC X(9).

01 STORE-VARY-FIELD-2.
05 VARY-FLD-2 OCCURS 10 TIMES

DEPENDING ON CONTROL-2 PIC X(9).

Assume that CONTROL-l contains the value
5 and VARY-FIELD-l contains 5 entries.

In order to add a sixth field to
VARY-FIELD-l the following steps are
required:

MOVE TEHP TO STORE-VARY-FIELD-2.
ADD 1 TO CONTROL-l.
MOVE 'additional field' TO VARY-FIELD-l

(CONTROL-l).
MOVE STORE-VARY-FIELD-2 TO TEMP.

:T Statement

The SET statement is used to assign
Llues to index-names and to index data
~ems.

When an index-name is set to the value
a literal, identifier, or an index-name

~om another table element, it is set to an
:tual displacement from the beginning of
le table that corresponds to the
:currence number indicated by the second
~erand in the statement. The compiler
~rforms the necessary calculations. If an
ldex-name is set to another index-name for
le same table, the compiler need make no
)nversion of the actual displacement value
)ntained in the second operand.

However, when an index data item is set
~ another index data item or to an
~dex-name, or when an index-name is set to
~ index data item, the compiler is unable
~ change any displacement value it finds,
ince an index data item is not part of any
able. Thus, no conversion of values can
ake place. Remember this to avoid making
rogramming errors.

For example, suppose that a table has
een defined as:

B (1)

A

B (2)

rc (1, 1)

l (1, 2)

~CC (2, 1)

l (2, 2)

(1, 1, 1)

(1, 1, 2)

(1, 1, 3)

(1, 2, 1)

(1,2,2)

(1, 2, 3)

(2,1,1)

(2, 1, 2)

(2, 1, 3)

(2, 2, 1)

(2, 2, 2)

(2, 2, 3)

igure 63. Table structure in Virtual storage

01 A.
05 B OCCURS 2 INDEXED BY 11, 15.

10 C OCCURS 2 INDEXED BY 12, 16.
15 D OCCURS 3 INDEXED EY 13, 14.

20 EPIC X(20).
20'F PIC 9(5).

The table appears in storage as shown in
Figure 63.

Suppose that a reference to D (2, 2, 3)
is necessary. The following ~ethod is
incorrect:

SET 13 TO 2.
SET INDX-DATA-I~M TO 13.
SET 13 UP BY 1.
SET 12, 11 TO INDX-DATA-ITM.
MOVE 0 (11, 12, 13) TO WORKAREA.

The value contained in 13 after the first
SET statement is 25, which represents the
beginning point of the second occurrence of
D. When the second SET statement is
executed, the value 25 is placed in
INDX-DATA-ITM, and the fourth SET statement
moves the value 25 into 12 and 11. The
third SET statement increases the value in .
13 to 50. The calculation for the address
D (11, 12. 13) would then be as follows:

(address of D (1, 1~ 1» + 25 + 25 + 50
= (address of 0 (1, 1, 1» + 100

This is not the address of D(2, 2, 3 >..

I

E F I
r--------------------r-~

E F ,
I

E F I
r-------------------~-~

E F , ,
E F I

r--------------------r-~
E

E

E

E

E

E

E

F I
I

F I
t

F I
I

F I ,
F I

I
F I

I
F I

Byte
o

25

50

75

100

125

150

175

200

225

250

275

300

Table Handling Considerations 221

I

The following method will find the
correct address:

SET I3 TO 2.
SET I2, Il TO I3.
SET I3 UP BY 1.

In this case, the first SET statement
places the value 25 in I3. Since the
compiler is able to calculate the lengths
of Band C# the second SET statement places
the value 75 in I2, and the value 150 in
Il. The third SET statement places the
value 50 in I3. The correct address
calculation will be:

222

(address of D (1, 1,1» + 150 + 75 + 50
= (address of D (1, 1, 1» + 275

The rules for the SET staterrent are
shown in Table 33.

Use care when setting the value of
index-names associated with tables
described as DCCURS DEPENDING ON. If the
table entry length is changed, the value
contained within the index-name will become
invalid unless anew SET statement corrects
it.

~le 33. Rules for the SET Statement
-----------------T----------------------T---------------------T-----------------------,

sending I J I I
I Index-name I Index data item I Identifier or Literal I
----------------------+--~------------------+-----------------------~

ndex-name J Set to value I Move without I Set to value corre- I
J corresponding to I conversion I sponding to occurrence I
I occurrence number1 I I number I

-----------------+----------------------+---------------------+-----------------------~
ndex data item I Move without I Move without I Illegal I

I conversion I conversion I . I
-----------------+----------------------+---------------------+-----------------------~
dentifier I Set to occurrence I Illegal I Illegal I

I number represented I I I
I by index-name I I I

-----------------~----------------------~---------------------~-----------------------~
If index-names refer to the same table element, move without conversion. I ______________________________________ ~ ___ J

Table Handling Considerations 223

SEARCH Statement

Only one level of a table (a table
element) can be referenced with one SEARCH
statement. Note that SEARCH statements
cannot be nested, since an imperative
statement must follow the WHEN condition,
and the SEARCH statement is itself
conditional.

To write a series of statements that
will search the 3-dimensional table defined
in the discussion of the SET statement, the
programmer could write:

77 COMPARAND1 PIC XeS).
77 COMPARAND2 PIC 9(5).

01 A.
02 B OCCURS 2 INDEXED BY 11 IS.

03 C OCCURS 2 INDEXED BY 12 16.
04 D OCCURS 3 INDEXED BY 13 14.

05 EPIC xes).
05 F PIC 9(5).

(Initialize COMPARAND1 and COMPARAND2)

PERFORM SEARCH-TEST1 THRU SEARCH-EXIT1
VARYING 11 FROM 1 BY 1
UNTIL 11 IS GREATER THAN 2.
AFTER 12 FROM 1 BY 1
UNTIL 12 IS GREATER THAN 2.

ENTRY-NOENTRYI.
GO TOERROR-RECOVERYI.

SEARCH-TEST1.
SET 13 TO 1.
SEARCH D WHEN E (11, 12, 13) =

COMPARANDl AND F (I1, 12, 13) =
COMPARAND2

SET IS TO 11
SET 16 TO 12
SET 12 TO 3
SET 11 TO 3
ALTER ENTRY-NOENTRY1 TO PROCEED

TO ENTRY-PROCESSING1.
SEARCH-EXIT1. EXIT.

ERROR-RECOVERY1.

ENTRY-PROCESSING1.

224

MOVE E (IS, 16, 13) TO OUTAREA1.
MOVE F (IS, 16, 13) TO OUTAREA2.

The PERFORM statement varies the indexes
(11 and 12) associated with table elements
Band C; the SEARCH statement varies index
13 associated with table element D.

The values of 11 and 12 that satisfy the
WHEN conditions of the SEARCH statement are
saved in IS and 16. 11 and 12 are then
both set to 3, so that upon return from the
SEARCH statement, control will fall through
the·PERFORM statement to the GO TO
statement.

Subsequent references to the desired
occurrence of table elements E and F make
use of the index-names IS and 16 in which
the correct value was saved.

Since a SEARCH verb results in the
examination of the individual elements
in the named table, the XREF or SXREF
for a SEARCH will reference the element
name for the table rather than the table
itself. LISTER could provide the source
cross-reference material that might be
desired.

Format 1 SEARCH statements perform a
serial search of a table. If it is certain
that the "found" condition is beyond some
intermediate point in the table, the
index-names can be set at that point and
only that part of the table be searched;
this speeds up execution. If the table is
large and must be searched from the first
occurrence to the last, Format 2 (SEARCH
ALL) is more efficient than Format 1, since
it uses a binary search technique; however,
the table must then be ordered.

In Format 1, the VARYING option allows
the programmer to:

• Vary an index-name other than the first
index-name stated for this table
element. Thus, with two SEARCH
statements, each using a different
index-name, more than one value can be
referenced in the same table element
for comparisons, etc.

• Vary an index-name from another table
element. In this case, the first
index-name specified for this table is
used for the SEARCH, and the index-name
specified in the VARYING option is
incremented at the same time. Thus,
the programmer can search two table
elements at once.

SEARCH ALL Statement

The SEARCH ALL statement is used to
search an entire table for an item without
having to write a loop procedure. For
example, a programmer-defined table may be
the following:

01 TABLE.
05 ENTRY-IN-TABLE OCCURS 90 TIMES

ASCENDING KEY-l,KEY-2
DESCENDING KEY-3
INDEXED BY INDEX-l.
10 PART-l PICTURE 9(2).
10 KEY-l PICTURE 9(5).
10 PART-2 PICTURE 9(6).
10 KEY-2 PICTURE 9(4).
10 PART-3 PICTURE 9(33).
10 KEY-3 PICTURE 9(5).

A search of the entire table can be
initiated with the following instruction:

SEARCH ALL ENTRY-IN-TABLE AT END GO TO
NOENTRY WHEN KEY-l (INDEX-l) = VALUE-l
AND KEY-2 (INDEX-l) = VALUE-2 AND KEY-3
(INDEX-l) = VALUE-3 MOVE PART-l
(INDEX-1) TO OUTPUT-AREA.

The preceding instructions will execute
a search on the given array TABLE, which
contains 90 elements of 55 bytes and 3

keys. The primary and secondary keys
(KEY-l and KEY-2) are in ascending order
whereas the least significant key (KEY-3)
is in descending order. If an entry is
found in which the three keys are equal to
the given values (i.e., VALUE-i, VALUE-2,
VALUE-3), PART-l of that entry will be
moved to OUTPUT-AREA. If matching keys are
not found in any-of the entries in TABLE,
the NOENTRY routine is entered.

If a match is found between a table
entry and the given values, the index
(INDEX-l) is set to a value corresponding
to the relative position within the table
of the matching entry. If no match is
found, the index remains at the setting it
had when execution of the SEARCH ALL
statement began.

Note: It is more efficient to test keys in
order of significance (i.e., KEY-l should
be specified before KEY-2 in the WHEN
statement). The WHEN statement can only
test for equality, and only one side of the
equation may be a key.

In Format 2, the SEARCH ALL statement,
the table must be ordered on the keyes)
specified in the OCCURS clause. Any key
may be specified in the WHEN condition, but
all preceding data-names in the KEY option

Table Handling Considerations 224.1

In Format 1, the WHEN condition can be
ly relation condition and there can be
)re than one. If multiple WHEN conditions
re stated, the implied logical connective
5 OR -- that is, if anyone of the WHEN
~nditions is satisfied, the imperative
tatement following the WHEN condition is
Kecuted. If all conditions are to be
atisfied before exiting from the SEARCH,
he compound wHEN condition with AND as the
ogical connective must be written.

:EARCH ALL Statement

The SEARCH ALL statement is used to
;earch an entire table for an item without
laving to write a loop procedure. For
~xample, a programmer-defined table may be
:.he following:

01 TABLE.
05 ENTRY-IN-TABLE OCCURS 90 TIMES

ASCENDING KEY-l q KEY-2
DESCENDING KEY-3
INDEXED BY INDEX-1.
10 PART-l PIC~URE 9(2).
10 KEY-1 PICTURE 9(5).
10 PART-2 PICTURE 9(6)~
10 KEY-2 PICTURE 9(4).
10 PART-3 PICTURE 9(33).
10 KEY-3 PICTURE 9(5).

A search of the entire table can be
initiated with the following instruction:

SEARCH ALL ENTRY-IN-TABLE AT END GO TO
NOENTRY WHEN KEY-l (INDEX-i) = VALUE-l
AND KEY-2 (INDEX-i) = VALUE-2 AND KEY-3
(INDEX-i) = VALUE-3 MOVE PART-l
(INDEX-i) TO OUTPUT-AREA.

The preceding instructions will e~ecute
a search on the given array TABLE, which
contains 90 elements of 55 bytes and 3
keys. The primary and secondary keys
(KEY-l and KEY-2) are in ascending order
whereas the least significant key (KEY-3)
is in descending order. If an entry is
found in which the three keys are equal to
the given values (i.e., VALUE-l, VALUE-2,
VALUE-3), PART-l of that entry will be
moved to OUTPUT-AREA. If matching keys are
not found in any of the entries in TABLE,
the NOENTRY routine is entered.

If a match is found between a table
entry and the given values, the index
(I~DEX-l) is set to a value corresponding
to the relative position within the table
of the matching entry. If no match is
found, the index remains at the setting it
had when execution of the SEARCH ALL
statement began.

Note: It is more efficient to test keys in
order of significance (i.e., KEY-l should
be specified before KEY-2 in the WHEN
statement). The WHEN statement can only
test for equality, and only one side of the
equation may be a key.

In Format 2, the SEAHCtl ALL ~1:cl1:t::lIIt::U~,

the table must be ordered on the keyes)
specified in the OCCURS clause. Any key
may be specified in the WHEN condition, but
all preceding data-names in the KEY option
must also be tested. The test must be an
"equal to" (=) condition, and the KEY
data-name must be either the subject or
object of the condition, or the name of a
conditional variable with which the tested
condition-name is associated. The WHEN
condition can also be a compound condition,
formed from one of the simple conditions
listed above, with AND as the only logical
connective. The KEY data item and the item
with which it is compared must be
compatible, as given in the rules of the
relation test.

Compilation is faster if keys are tested
in the SEARCH statement in the same order
as they appear in the KEY option.

Note that if KEY entries within the
table do not contain valid values, then the
results of the binary search will be
unpredictable.

Building Tables

When reading in data to build an
internal table:

1. Check to make sure the data does not
exceed the space allocated for the
table.

2. If the data must be in sequence, check
the sequence ..

3. If the data contains the subscript
that determines its position in the
table, check the subscript for a valid
rang~.

4. If.a fixed-length table is defined
larger (for example, 150 entries)
than the actual data supplied
(for example, 100 data entries),
then the table must be initialized
to high value for ascending search
or low value for descending search.

When testing for the end of a table, use
a named value giving the item count, rather
than using a literal. Then, if the table
must be expanded, only one value need be
changed, instead of all references to a
literal ..

Table Handling Considerations 225

(

PART IV

LISTER FEATURE --~.

SY~1BOLIC DEBUGGING FEATURES ------------------------------------~)

PROGRAM CHECKOUT

EXECUTION STATISTICS--~

227

(

This chapter describes the lister
ature. It optionally produces
formatted source listings with embedded
oss-referencing information. Topics
scussed in this chapter include:

• Overall operation of the lister feature

• The output source listing

• The output summary listing

• The optional reformatted output deck

• Using the lister feature

Features of the new source listing
lclude:

• Standard indentation for all Data
Division level numbers to show group
structure, and for all IF statements
and the like in the Procedure Division
to show program logic.

• Alignment of PICTURE and VALUE clauses
to highlight OCCURS and REDEFINES
clauses.

• Two-way, embedded cross-references to
eliminate indirect "lookups" (via a
separate conventional SXREF listing).

• Reference letters to show the type of
reference, indicate overall usage of a
program item, and reduce the need to
look up each reference.

• Footnotes on Procedure Division pages
to show the definition of referenced
data items, thereby eliminating more
"lookups".

• Two-column procedure Division pages to
compact the listing and further reduce
page turning.

• Cross-reference summary to show how,
and how much, FD's and Procedure
Division section's reference each
other.

• Optional reformatted and renumbered
source deck for manual use or for
updating the BASIS library.

LISTER FEATURE

OVERALL OPERATION OF THE LISTER

The lister accepts source programs
written in American National Standard COBOL
and analyzes the source staterrents to
establish inter-statement references, as
well as the type of action resulting from
the reference such as redefinition~
interrogation, open/close, etc. After
scanning the source statements, the lister
performs all information transfers
necessary for cross-referencing. Finally,
the lister composes and prints the
reformatted source code.

This reformatted source output follows
indenting conventions imposed by the lister
to increase readability, and contains cross
references between data items and Procedure
Division statements, between PERFORM
statements and paragraph names, etc.
Optionally, the lister produces a new
source deck that matches the output listing
except that the embedded cross-reference
information is omitted.

Thus, the lister can be used to process
source decks to produce uniformity of
indenting and highlighting of IFs, GO TOs,
etc., or it can be used simply to obtain a
cross-referenced source listing as
permanent documentation of a production
program, or as an" aid in program analysis
and debugging. Various options permit
printing the Procedure Division listing in
two columns to conserve space, and
inclusion of BASIS and COpy statements.

PROGRM1MING CONS IDERATIONS

The lister is designed to operate most
efficiently on syntactically correct COBOL
source, and does not have the expanded
error handling of the full compiler. It is
therefore highly recommended that programs
first be compiled using the SYNTAX option,
and syntax errors corrected before invoking
the lister feature. If the lister function
is used and there are syntactical errors,
lister processing will be terminated. The
listing produced by LISTER will be
reformatted for that portion of the program
that was syntactically correct. If LSTC0l1P
was specified, the SOURCE option will be
forced on.

Further notes: Since lister reformats the
user's COBOL program, compilation of the

Lister Feature 228.1

program, if LSTCOMP is in effect, will be
different from a nonlister compilation of
the same program. For example:

1. Lister sequence numbers may be
different.

2. SKIP/EJECT cards will have no
functional value with LISTER.

3. BASIS card will·be dropped from the
lister listings.

4. FIPS messages will be based on the
reformatted lister listings.

5. Suppress option of COpy will have no
effect.

6. Sequence checking will not take place
for a lister run.

7. Copy statements will not be
reformatted. However, those which
begin in columns 8 through 11 will be
indented to column 8 in the lister
output, and those which begin in
columns 12 through 72 will be indented
to column 12.

The Listing

The reformatted output listing is
divided into four parts:

1. A one-page introduction which
describes briefly lister codes.
conventions, uses

2. The Identification and Environment
divisions

3. Detailed, cross-referenced~
reformatted Data and Procedure
divisions

4. The summary listing

These are described briefly below, and
in greater detail in subsequent sections.

The Output Deck

The deck produced optionally by the
lister may be saved either in card form or
in a BASIS library. This output reflects
tile output listing, except that
cross-reference information is omitted, and
that card numbers replace statement
numbers. The output deck is described in
detail in a subsequent section of this
chapter.

228.2

Reformatting of Identification and
Environment Divisions

The lister reformats the Identification
Division statements only by imposing
indenting conventions. Statements are
indented two spaces. statements with
continuations are indented four spaces.

Environment Division statements are
reformatted by imposing indenting
conventions and by appending
cross-reference information to SELECT
statements in the FILE CONTROL section.
Thus, in reading the FILE CONTROL section,
you receive direct references to the FILE
DESCRIPTION statements in the Data
Division.

Data Division Reformattinq

The lister reformats the Data Division
statements principally by imposing
indenting conventions on them. In
addition, it aligns PICTURE, VALUE, and
other clauses vertically to improve
readability and facilitate visual checking.
This alignment generally highlights
REDEFINES and OCCURS clauses, for example.
All indenting is with respect. to the left
margin, which contains the statement
number. The indenting conventions are:

• FDs are not indented

• For LEVEL 01 items, the indent is two
spaces

• For LEVEL 02 items, indent is four
spaces

Level 03 and lower items are each
indented two from the last higher level
item. Using this convention, the overall
structure of each file and group item is
irrrmediately apparent when reading the
listing. Level 77 items are not indented.

The most striking change in the
appearance of the Data Division listing is
the addition, at the right of each
statement, of cross references that
identify the statement number of each Data
Division or Procedure Division statement
that redefines, changes, reads, tests, or
otherwise refers to the data item. When
the number of such references is too great
to fit on the line, the lister prints as
many on the line as there is space for, and
prints the remainder as a footnote at the
bottom of the page.

rocedure Division Reformatting

The lister reformats the Procedure
ivision by applying indenting conventions
~ nested IFs, GO TOs, etc., and by
?pending cross references to sections and
aragraphs, where appropriate, to indicate
hat the procedure is PERFORMed by another
r similar action. It also appends
eferences to the Data Division so that the
ata item being acted upon can be found
uickly. Six codes are used in the
rocedure Division:

A ALTER
B (ALTER) to PROCEED TO
E INPUT or OUTPUT procedure for

Sort/Merge
G GO TO
P PERFORM
T (PERFORM) THRU

ummary Listing

The summary listing provides an overall
iew of the relationship among FDs, RDs,
nd SDs in the program. The entry for each
~ these major parts of the program
onsists of a title line showinq the
tatement number and the name of the file,
ecord" or section and a series of counts
by reference type) for each of the
~ategories "intra", "from", and "to".
ntra references are those within the
:ection, file, or record, such as REDEFINES
.nd PERFORM operations.

~HE SOURCE LISTING

;eneral Appearance

In looking at the source listing of the
[dentification, Environment~ or Data
)ivisions, you will find that the pages may
:)e considered as having three "columns".
rhe leftmost contains a statement number,
)r is blank if the line is either a comment
)r a continuation of the preceding
~tatement or line. The second column
:ontains the reformatted COBOL statements.
rhe third (not present in the Procedure
)ivision) contains references to or from
~ther statements in the s9urce program.

Thus, each line of the output listing
contains a numbered source statement or its
continuation, and a reference or series of
references to all other statements in the
source program that refer to it. If the
series of references is too long to file on tI
the line, the lister prints as many as will
fit, followed by a letter indicating a
footnote. The footnote contains the
remainder of the references. .

The source listing of the Procedure
Division is normally printed in
double-column format, with each column
divided as described above. This format
also approximately doubles the span of
logic that can be seen on one page or one
facing-page spread.

Another characteristic of the source
listing is that regardless of whether the
source code follows indentation
conventions, the lister indents statements
according to their type, and according to
hierarchy~ where applicable. This feature
of the lister makes file and record
structure immediately visible, and also
helps to identify groups of related
statements such as IF/ELSE and nesting of
IFs.

Format Conventions

New statements are indented from the
left margin, which contains the statement
number. The lister treats as new
statements

• Division headers

• Section headers

• paragraph names

• Level numbers

• Verbs

• ELSE statements

• OTHERWISE statements

• AT END statements (only when following
SEARCH statements)

Indentation of the new statement is made
according to the following rules:

1. Data Division

• FDs and Level 77 items are not
indented

Lister Feature 228.3

• Level 01 items are indented two
spaces in the FILE SECTION or REPORT
SECTION and are not indented in the
LINKAGE or WORKING-STORAGE sections

• Each subsequent lower level within
an 01 item is indented two spaces
more than the preceding higher level

2. Procedure Division

• section names are not indented

• paragraph names are indented two
spaces

• Unconditionally-executed verbs are
indented four spaces

• Verbs executed under a single
condition such as IF or AT END are
indented six spaces

• The first IF statement in a nest of
IF statements is indented two
spaces; subsequent nes~~~ IF
statements are indented an
additional two spaces at each level

• ELSE statements are indented to the
same position as the IF statement to
which they refer

3. Continuation lines (in all divisions)
are indented six spaces with respect
to the first line of the continued
statement

Word spacing within a statement and on
continuation lines is usually one space.
Within the Data Division, however, PICTURE
and VALUE clauses are aligned as nearly as
possible into columns so that they may be
found and compared easily.

Words are not split at the end of a
statement or continuation line unless the
word to be split is a nonnumeric literal
that will not fit on a single continuation
line.

References appear to the right of tht
statement or continuation line. References
following paragraph names appear
immediately to the right of the name,
separated by a blank. References following
other types of statements appear as far to
the right as possible depending on the
number of blanks available on the line.
Each reference consists of a statement
number and a type indicator.. References in
series are separated by commas, and are in
ascending order.

228.4

Within the Data Division, a reference
may also be an alphabetic footnote
indicator. The footnote contains a series
of references to REDEFINES and Procedure
Division statements that refer to that data
item.

Within the Procedure Division, the
reference may also be a footnote indicator,
but the footnote is different in
appearanceg In the Procedure Division, the
footnote is actually anon-page replica of
the Data Division statement referred to by
the footnoted statement. This replica is
complete with all other references to the
data item from other portions of the
program. To conserve space in the listing,
the lister does not repeat a footnote if it
appears at the bottom of either of the two
preceding pages.

Type Indicators

As mentioned above, a reference consists
of a statement number and a type indicator.
The type indicator provides immediate
information as to what is being done by the
statement referred to.

Two sets of type indicators are used by
the lister, one for the Data Division, and
one for the Procedure Division. within the
Data Division, the type indicators are:

U Data item unchanged (used as a
source field)

C Data item changed (such as ADD or
MOVE)

E Data item referred to by Environment
Division statement (SELECT) or by
Procedure Division input/output
operation (READ, WRITE)

D Data item REDEFINED or RENAMEd

Q Queried by IF, WHEN, or UNTIL

R Referred to by a READ statement

W Referred to by a WRITE, GENERATE,
DISPLAY, or similar statement

X Used as an index, subscript, or
object of a DEPENDING ON statement

within the Procedure Division, the type
indicators are:

A ALTER
B (ALTER) TO PROCEED TO
E INPUT or OUTPUT procedure (Sort or

Merge feature)
G GO TO
P PERFORM
T (PERFORM) THRU

HE SUMMARY LISTING

The summary listing is useful both as an
nalysis and as a troubleshooting aid.
?ing the summary.listi~g, the data areas
cst referred to, the proc~dures that
eference them most often and the nature of
hose references can be ascertained
:uickly. The number of references to
,ndefined symbols and the number of
.ncorrectly coded COBOL words can also be
,scertained.

;eneral Appearance

Each division or section header, and
~ach FD, RD, or SO begins a new entry in
:he summary listing. The entry consists of
:he header line and, beginning on the next
.ine, the total number of each kind of
~eference to that section from within
.tself (INTRA), and from outside itself
(FROM). These references are followed by
3imilar information for references the
3ection makes to others outside itself
(TO) •

~HE OUTPUT DECK

By specifying the DECK option on the LST
~ard, a new COBOL source deck can be
?roduced that reflects the reformatted
50urce listing. This deck may be saved in
~ BASIS library (used directly as input to
the compiler) or punched onto cards.
3ecause of reformatting, the new deck may
:ontain more cards than the original, but
the difference is not great enough to cause
~ny appreciable increase in compilation
time. The output deck differs from the
listing as follows:

1. References, footnotes, and blank lines
are omitted.

2. Literals will be repositioned, if
needed, to assure proper continuationo

3. Statement numbers are converted to
card numbers.

a. The statement number is multiplied
by 10, and leading zeros are added
as necessary to fill columns 1
through 6.

b. Comment and continuation cards are
numbered one higher than the
preceding card.

c. statement-beginning cards are
given the higher of the two
numbers produced by the first two
rules.

The new deck will permanently process
all the BASIS INSERT and DELETE cards, and
thus can be used to permanently update the
Source Statement Library. This avoids
having to resequence the update cards after
they have been tested, and avoids the
errors incurred during that resequencing
process.

USING THE LISTER

Options

The format and contents of the listings
and deck produced by the lister are
determined by the options specified on the
LST card. The LIST card may be placed
anywhere between the EXEC statement and the
first statement of the COBOL program. It
may be placed between any other compiler
option cards.

Two format options determine the
dimensions and layout of the source and
summary listings.

PROC=lcol
2col
specifies that the source listing of
the Procedure Division will be printed
in either single or double column
format. At least 132 print positions
are required for double column format.

Three options pertain to the output
deck:

DECK
NODECK

indicates whether an updated source
deck is to be produced as a result of
the lister reformatting and/or the
update basis library.

COPYPCH
NOCOPYPCH

will punch updated and reformatted
copy libraries as a permanent part of
the source when DECK is specified, and
will punch out an updated and
reformatted copy library when no
updated source deck is requested.

Lister Feature 228.5

LSTONLY
LSTCOMP

The LSTONLY option will give a
reformatted listing and a deck, if
DECK was specified, but will not
compile the program. LISTCOMP will
in addition to listing the source '
also compile the program as part ~f
the job step.

PROGRAMMING CONSIDERATIONS

The lister is designed to operate most
efficiently on syntactically correct COBOL
source, and does not have the expanded
error handling of the full compiler. It is
therefore highly recommended that the user
programs first be compiled using the SYNTAX
option, and syntax errors corrected before
invoking the lister feature. If the lister
function is used and there are syntactical
errors, the formatting may be
unpredictable, and performance can be
significantly impacted.

Unusual termination of lister can occur if
the source program contains:

• Too many (approximately 80 or more)
consecutive (*) comment cards.

• Too many (approximately 100 or more)
consecutive blank cards.

228.6

Further notes: Since Lister reformats the
users COBOL prograro, compilation of the
program, if LSTCOMP is in effect will be
different from a non-lister compilation of
the same program. For example:

1. Lister sequence numbers may be
different

2. SKIP/EJECT cards will have no
functional value with LIS~ER

3. BASIS card will be dropped from the
Lister listings

4. FIPS messages will be based on the
reformatted Lister listings.

5. Suppress option of COpy will have no
effect

6. Sequence checking will not take place
for a Lister sum.

7. The Insert card indicator for BASIS
will not be indicated on a lister
listing.

A programmer using IBM DOS/vS COBOL
1der the DOS/VS System, has several
:thods available to him for testing and
~bugging his programs. Use of the
imbolic debugging features is the easiest
~d most efficient method for testing and
=bugging and is described in detail in
his chapter.

The chapter entitled "Program Checkout"
ontains information useful for testing and
ebugging programs run without the symbolic
ebugging features. It also contains
nformation on compile-time debugging
eatures, linkage editor and execution-time
iagnostics as well as a description of
aking checkpoints and restarting programs.

The chapter entitled "Execution
tatistics" also contains information
elpful in testing and debugging programs
un both with and without the symbolic
,ebugging features.

ISE OF THE SYMBOLIC DEBUGGING FEATURES

There are three symbolic debugging
lptions available to the programmer for
)bject-time debugging: the statement
lumber option, the flow trace option, and
:he symbolic debugging option. None of
:hese features require source language
:odingi rather they are requested via the
~BL card at compile time. Operation of the
~ymbolic debug option is dependent upon
~xecution-time control cards. Figure 9
Lllustrates the output generated for each
)f these features.

STATEMENT NUMBER OPTION

The statement number option facilitates
debugging by providing the programmer with
information about the statement being
executed at the time of an abnormal
termination of a job. It identifies the
program containing the statement and
provides the number of the statement and of
the verb being executed.

This feature is requested at compile
time via the STATE option of the CBL card.
Note that STATE and STXIT, STATE and
SYMDMP, and STATE and OPT are mutually
exclusive options at compile-time and STATE
and STXIT are mutually exclusive in an

SYMBOLIC DEBUGGING FEATURES

execution-time run unit. The CBL card is
discussed in detail in the chapter
"Preparing COBOL Programs for processing."

FLOW TRACE OPTION

The flow trace option provides the
programmer with the facility for receiving
a formatted trace (i.e., a list containing
the program identification and statement
numbers) corresponding to a variable number
of procedures executed prior to an abnormal
termination. The number of procedures to
be traced is specified by the programmer.
If the FLOw option is specified and the
number of procedures is not specified, a
trace of 99 procedures is provided.

A flow trace is printed only in the
event of an abnormal termination. It is
requested at compile time via the FLOW
option of the CBL card. In a subprogram
structure, once a FLOW specification has
been made on a program, the subprograms for
which a trace is desired should specify
FLOW=O. The FLOW=O specification enables
subprograms to utilize the table space
reserved previously for the trace;
additional table space need not be
allocated.

FLOW and STXIT, and FLOW and OPT are
mutually exclusive options at compile-time
and FLOW and STXIT are mutually exclusive
in an execution-time run unit. The CBL
card is discussed in the chapter "preparing
COBOL Programs for Processing."

SYMBOLIC DEBUG OPTION

The symbolic debug option produces a
symbolic formatted dump of the object
program's data area when the program
abnormally terminates. It also enables the
programmer to request dynamic dumps of
specific data-names at strategic points
during program execution. If two or more
COBOL programs are link edited together and
one of them terminates abnormally, the
program causing termination and any callers
compiled with the symbolic aebug option, up
to and including the main program, will be
given a formatted dump. If any called
program contains the SYMDMP option, the
main program must be an ANS COBOL program.

Symbolic Debugging Features 229

Another feature of SYMDMP is that a
check is made for a subscript which points
out of the program area and for the length
of a variable-length move out of the data
area. If these address limits are reached,
message C170I is issued and an abend dump
is given.

The abnormal termination dump consists
of the following parts:

1. Abnormal termination message,
including the number of the statement
and of the verb being executed at the
time of an abnormal termination.

2. Selected areas in the Task Global
Table.

3. Formatted dump of the Data Division
including:

(a) for an SD, the statement number,
the sort-file-name, the type~ and
the sort record.

(b) for an FD, the statement number,
the file-name, the type, SYSnnn,
DTF status, the contents of the
Pre-DTF and DTF in hexadecimal,
and the fields of the record.

for a VSAM file, the file-name,
whether the file is open or
closed, file organization, type of
access, type of last input-output
statement, the current contents of
the FILE STATUS word, as well as
the record fields.

(c) for an RD, the statement number,
the report-name, the type, the
report line~ and the contents of
PAGE-COUNTER and LINE-COUNTER if
present.

Cd) for an index-name, the name, the
type, and the occurrence number in
decimal.

Note: For DTFDA when ACCESS IS
RANDOM, the actual key is not provided
in the Pre-DTF.

The symbolic debug option is requested
at compile time via the SYMDMP option of
the CBL card. Note that SYMDMP and STXIT,
SYMDMP and STATE, and SYMDMP and OPT are
mutually exclusive options at compile time
and SYMDMP and STATE and STXIT are mutually
exclusive in a single execution-time run
unit. The CBL card is discussed in the
chapter "Preparing COBOL Programs for
Processing."

Operation of the symbolic debug option
is dependent on object-time control cards

230

placed in the input stream. These cards
are discussed below.

Object-Time Control Cards

The operation of the symbolic debug
option is determined by two types of
control cards:

program-control card -- required if
abnormal termination and/or dynamic
dumps are requested.

Line-control card -- required only if
dynamic dumps are requested.

Syntax Rules: The fields of both the
program-control card and the line-control
card must conform to the following rules:

1. Control cards are essentially free
form, i.e., parameters coded on these
cards can start in any column.
However, parameters may not extend
beyond column 71.

2. Each parameter except the last must be
immediately followed by a comma.

3. No commas are needed to account for
optional parameters that are not
specified.

4. All upper-case letters represent
specifications that are to appear in
the actual statement exactly as shown.

5. All lower-case letters represent
generic terms that are to be replaced
in the actual statement.

6. Brackets are used to indicate that a
specification is optional and is not
always required in the statement.

7. Brackets enclosing stacked items
indicate that a choice of one item
may, but need not, be made by the
programmer.

8. Braces enclosing stacked items
indicate that a choice of one item
must be made by the prograrrmer.

9. All punctuation marks and special
characters shown in the statement
formats other than hyphens, brackets,
braces, and underscores, must be
punched exactly as shown. This
includes commas, parentheses, and the
equal sign.

10. Underscoring indicates the default
case.

~tinuation Cards: To continue either the
Jgram-control card or the line-control
~d, a nonblank character must be coded in
lumn 72 of the continued card.

Symbolic Debugging Features 230.1

ndividual keywords and data-names cannot
Ie split between cards.

ontrol Statement Placement: The placement
f the control cards in the input stream
ust be as follows:

1. If a main program is compiled with the
SYMDMP option, the control cards must
precede the programmer's data, if any,
in the input stream:

// EXEC

/*
/&

{Control Cards}

{Programmer's Data}

If the main program is compiled
without the SYMDMP option, but at
least one subprogram has been
compiled with the SYMDMP option,
then two alternatives exist:

a. If all data card files have
reached EOF before the
subroutine compiled with
SYMDMP is called, then the
following sequence should
be used:

II

1*

1*
1&

EXEC
{programmer's Data for

Main Program}

{control cards}

b. If calls to the subroutine
compiled with SYMDMP are
interspersed with reading
of card files, then a dummy
subroutine, consisting of
only an EXIT PROGRAM
statement and compiled with
the SYMDMP option, should be
called as the first statement
of the main program. The
placement of control cards is
as follows:

II

1*

1*
/&

EXEC
{control cardS}

{Programmer's Data}

oqram-Control Cards: A program-control
rd must be present at execution time for
y program requesting a SYMDMP service.
ogram-control cards have the following
rmat: .

program-id,nnn

,SD[=filename]
,MT[=filename]

,ENTRY
, NOENTRY

,(HEX)
, (NOHEX)

program-id

nnn

is a one through eight character COBOL
program-name. This program-name must
be the name of a COBOL program
compiled with the SYMDMP option. This
parameter is required and must appear
first on the program-control card.

is a 3-digit integer representing the
programmer logical unit assigned to
the dictionary file produced at
compile time (i.e., the SYS005 file.)
This parameter is required and must
follow the "program-id". This value
must be the same as the one specified
in the ASSGN control statement for the
dictionary file at execution time.

SD[=filename]
M'l' [=filename]

SD must be specified if the symbolic
unit indicated by "nnn" is a disk
file; MT must be specified if it is a
tape file. "filename" is the name of
the dictionary file produced at
compile time. For a tape file, the
"filename" parameter is ignored. For
a disk file, if "filename" is not
specified, IJSYS05 will be used.
"filename" may be from one to seven
characters in length. If "filename"
is specified on the CBL card for a
disk file, "filename" must also be
specified on the program-control card
and these names must be identical.

ENTRY
NO ENTRY

ENTRY is used to provide a trace of a
program-name when several programs are
link edited together. Each time the
program whose PROGRAM-ID rratches the
"program-id" parameter is entered~ its
name is displayed.

(HEX)
(NOHEX)
-----refers to the format of the Data

Division area provided in the abnormal
termination dump. If HEX is
specified, level-01 items are provided
in hexadecimal. Items subordinate to
level-01 items are printed in EBCDIC,
if possible. Level-77 iteres are
provided both in EBCDIC and
hexadecimal. If HEX is not specified,
items subordinate to level-01 items
and level-77 items are provided in
EBCDIC. If unprintable, hexadecimal
notation is provided.

Symbolic Debugging Features 231

Note: Parentheses are required.

Line-Control Cards: Line-control cards
have the following format:

line-num [, (verb-num)] [, ON n] [, m] L, k]

1
[, (HEX)] ~ , (NOHEX) , ALL

,(HEX)
{[, (NOHEX)],name1 [THRU name2] ••• }

line-num
corresponds to the generated card
number prior to which the dump is
desired. The dump is given before the
first or only verb on that lineu This
parameter is required and must be the
first on the line-control card.

verb-num
indicates the position of the verb on
the specified statement before whose
execution a dynamic dump is given.
When "verb-num" is not specified, 1 is
assumed; when specified, "verb-num"
must follow line-num and may not
exceed 15.

ON n [,m] [,k]
is equivalent to the COBOL statement
ON n AND EVERY m UNTIL k. This option
limits the requested dynamic dumps to
specified times. For example, "ON nIt
would result in one dump, given the
nth time "line-num" is reached during
execution. "ON n,m" would result in a
dump the first time at the nth
execution of "line-num" and thereafter
at every mth execution until
end-of-job.

(HEX)
(NOHEX)
-----refers to the format of the Data

Division areas provided in the dynamic
dump. If HEX is specified, level-01
items are provided in hexadecimal.
Items subordinate to level-01 items
are printed in EBCDIC~ if possible.
Level-77 items are printed both in
EBCDIC and hexadecimal. If HEX is not
specified, items subordinate to
level-01 items and level-77 items are
provided in EBCDIC. If unprintable,
hexadecimal notation is provided.
Note that if "namel" is specified and
it represents a group item and HEX has
not been specified~ neither the group
nor the elementary items in the group
will be provided in hexadecimal.

232

name1 [THRU name2]

ALL

represents selected areas of the Data
Division to be dumped. With the THRU
option, a range of data-names
appearing consecutively in the Data
Division is dumped. "name1" and
"name2" may be qualified but not
subscripted. If the programmer wishes
to see a subscripted item, specifying
the name of the item without the
subscript results in a dump of of
every occurrence of that item.

results in a dump of everything that
would be dumped in the event of an
abnormal termination. The purpose of
ALL is to allow the programmer to
receive a formatted dump at normal
end-of-job. To do this, the generated
statement number of the line on which
a STOP RUN, EXIT PROGRAM, or GOBACK
statement appears must be specified as
the "line-num" parameter.

OVERALL CONSIDERATIONS

The end-of-file control card, slash
asterisk (/*) must end the symbolic debug
control card data set. If a run unit
includes one or more programs that have
been compiled with the SYMDMP option and no
symbolic dump is required at execution
time, the input data set must nevertheless
be provided, although in this case it
consists only of the end-of-file (/*) card.

If no executable output is produced as a
result of the compilation (NOLINK, NODECK),
any symbolic debugging options specified
are suppressed.

SAMPLE PROGRAM -- TESTRUN

Figure 64 is an illustration of a
program that utilizes the symbolic
debugging features. In the following
description of the program and its output,
letters identifying the text correspond to
letters in the program listing.

Because the SYMDMP option is requested
on the CBL card, the logical unit
SYS005 must be assigned at compile
time.

The CBL card specifications indicate
that an alphabetically ordered
cross-reference diction?ry, a flow

trace of 10 procedures, and the
symbolic debug option are being
requested.

An alphabetically ordered
cross-reference dictionary of
data-names and procedure-names is
produced by the compiler as a result
of the SXREF specification on the CBL
card.

The file assigned at compile time to
SYS001 to store SYMDr.1P information is
assigned to SYS003 at execution time.

The SYMDMP control cards ~laced in the
input stream at execution time are
printed along with any diagnostics.

The first card is the
program-control card where:

(a) TESTRUN is the PROGRAM-ID.
(b) 5 is the logical unit to which

the SYMDMP file is assigned.
(c) SD indicates that the SYMDMP

file is on sequential disk.
(d) (HEX) indicates the format of

the abnormal termination dump.

Symbolic Debugging Features 232.1

)

)

)

)

)

)

The second card is a line-control
card which requests a (HEX)
formatted dynamic dump of KOUNT,
NAME-FIELD, NO-OF-DEPENDENTS, and
RECORD-NO prior to the first and
every fourth execution of
generated card number 70.

The third card is also a
line-control card which requests a
(HEX) formatted dynamic dump of
WORK-RECORD and B prior to the
execution of generated card number
78.

The type code combinations used to
identify data-names in abnormal
termination and dynamic dumps are
defined. Individual codes are
illustrated in Table 34.

The dynamic dumps requested by the
first line-control card.

The dynamic dumps requested by the
second line-control card.

Program interrupt information is
provided by the system when a program
terminates abnormally.

The statement number information
indicates the number of the verb and
of the statement being executed at the
time of the abnormal termination. The
name of the program containing the
statement is also provided.

A flow trace of the last 10 procedures
executed is provided because FLOW=10
was specified on the CBL card.

) Selected areas of the Task Global
. Table are provided as part of the
abnormal termination dump.

)

For each file-name, the generated card
number, the file type, SYSnnn, the DTF
status, and the fields of the Pre-DTF
and DTF in hexadecimal are provided.

The fields of records associated with
each FD are provided in the format
requested on the program-control card.

The contents of the fields of the
Working-Storage Section are provided
in the format requested on the
program-control card.

The value associated with each of the
possible subscripts are provided for
data items described with an OCCURS
clause.

® Asterisks appearing within the EBCDIC
representation of the value of a given
field indicate that the type and the
actual content of the field conflict.

Note: When using the SYMDMP option, level
numbers appear "normalized" in the symbolic
dump produced. For example, a group of
data items described as:

01 RECORDA.
05 FIELD-A.

10 FIELD-Al PIC X.
10 FIELD-A2 PIC X.

will appear as follows in SYMDMP output:

01 RECORDA •••
02 FIELD-A ••.
03 FIELD-Al •.•
03 FIElD-A2 •••

Debugging TESTRUN

1.

2.

Referring to~e statement number
information ~ provided by the
symbolic debug option, it is learned
that the abend occurred during the
execution of the first verb on card
80.

Generated card number 80 contains the
statement COMPUTE E = B + 1.

3. Verifying the contents of B at the
t~· e of the abnormal termination

R it can be seen that the usage of
B numeric packed) conflicts with the
value contained in the data area
reserved for E (numeric display).

4. The abnormal termination occurred
while trying to perform an addition on
a display item.

More complex errors may require the use
of dynamic dumps to isolate the problem
area. Line-control cards are included in
TESTRUN merely to illustrate how they are
used and the output they produce.

Symbolic Debugging Features 233

Table 34. Individual Type Codes Used in
SYMDMP Output

r----------T------------------------------,
I Code I Meaning I
~----------+------------------------------~

A Alphabetic I
B Binary J
D Display I
E Edited I
* Subscripted Item I
F Floating Point I
N Numeric I
P Packed Decimal I
S Signed I
OT Overpunch sign Trailing]
OL overpunch Sign Leading I
SL Separate Sign Leading I
ST Separate Sign Trailing I L __________ ~ ______________________________ J

234

II JOB TESTR23 A=SK22,0=460
II OPTIOH LIHK,LOG,HODECK.LISTX,LIST,SYM.ERRS CD II ASSGH SYSLST,X'OOE' ~~~ ________________ __
II ASSGH SYS005,SYSRES
IT201 SYS005 HAS BEEH ASSIGHED TO X'144'
II EXEC FCOBOL.SIZE=128K

1 IBM DOS/VS COBOL REL 3.0 0
CBL SXREF,TRUNC,VERB,ADV,LIB,OPT,APOST
CBL LANGLVL(2),APOST,SXREF,FLOW=10,SYMDMP,SEQ 4 8

00001 100010 IDENTIFICATIOH DIVISIOH.
00002 100020 PROGRAM-ID. TESTRUH.
00003 100030 AUTHOR. PROGRAMMER NAME.
00004 100040 IHSTALLATION. HEW YORK PROGRAMMING CENTER.
00005 100050 DATE-WRITTEH. JULY 12. 1968.
00006 100060 DATE-COMPILED. 02/25/81

PP NO. 5746-CB1

00007 100070 REMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR
00008 100080 COBOL USERS. IT CREATES AN OUTPUT FILE AHD READS IT BACK AS
00009 100090 IHPUT.
00010 100100 ENVIROHMENT DIVISION.
00011 100110 COHFIGURATIOH SECTIOH.
00012 100120 SOURCE-COMPUTER. IBM-370-H50.
00013 lC0130 OBJECT-COMPUTER. IBM-370-H50.
00014 100140 INPUT-OUTPUT SECTIOH.
00015 100150 FILE-CONTROL.
00016 100160 SELECT FILE-1 ASSIGN TO SYS001-UT-3330-S-SAMPLl.
00017 100170 SELECT FILE-2 ASSIGH TO SYS003-DA-3330-S-SAMPL2.
00018 100180 DATA DIVISION.
00019 100190 FILE SECTIOH.
00020 100200 FD FILE-1
00021 100210 LABEL RECORDS ARE STAHDARD
00022 100220 BLOCK COHTAINS 5 RECORDS
00023 100225 RECORD CONTAIHS 20 CHARACTERS
00024 . 100230 RECORDING MODE IS F
00025 100240 DATA RECORD IS RECORD-I.
00026 100250 01 RECORD-I.
00027 100260 02 FIELD-A PICTURE IS X(20).
00028 100270 FD FILE-2
00029 100280 LABEL RECORDS ARE STANDARD
00030 100290 BLOCK CONTAINS 5 RECORDS
00031 100300 RECORD CONTAINS 20 CHARACTERS
00032 100310 RECORDING MODE IS F
00033 100320 DATA RECORD IS RECORD-2.
·00034 100330 01 RECORD-2.
00035 100340 02 FIELD-A PICTURE IS X(20).

,00036 100350 WORKING-STORAGE SECTION.
I 00037 100370 77 KOUHT PICTURE S99 COMP SYNC.

00038 100371 77 NOMBER PICTURE S99 COMP SYNC.
00039 100375 01 FILLER.
00040 100380 02 ALPHABET PICTURE X(26) VALUE 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
00041 100395 02 ALPHA REDEFINES ALPHABET PICTURE X OCCURS 26 TIMES.
,00042 100405 02 DEPENDENTS PICTURE X(26) VALUE '0123401234012340123401234
'00043 100410- '0'.
00044 100420 02 DEPEHD REDEFINES DEPEHDEHTS PICTURE X OCCURS 26 TIMES.

17.09.34 02/25/81

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUN (Part 1 of
12)

Symbolic Debugging Features 235

IBM OOS VS COBOL REL 3.0 PP NO. S746-CBl

00045
00046
00047
00048
00049
00050
00051

00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073

. 00074
00075
00076
00077
00078
00079
00080
00081
00082
00083

100440
100450
100460
100470
100480
100490
100500

01 WORK-RECORD.
02 NAME-FIELD PICTURE X.
02 FILLER PICTURE X VALUE SPACE.
02 RECORD-NO PICTURE 9999.
02 FILLER PICTURE X VALUE SPACE.
02 LOCATION PICTURE AAA VALUE 'NYC'.
02 FILLER PICTURE X VALUE SPACE.

100510 02 NO-OF-DEPENDENTS PICTURE XX.
100520 02 FILLER PICTURE X(7) VALUE SPACES.
100522 01 RECORDA.
100524 02 A PICTURE S9(4) VALUE 1234.
100526 02 B REDEfINES A PIC S9(7) COMPUTATIONAL-3.
100530 PROCEDURE DIVISION.
100540 BEGIN.
100550* NOTE THAT THE FOLLOWING OPENS THE OUTPUT fILE TO BE CREATE~
100560* AND INITIALIZES COUNTERS.
100570 STEP-I. OPEN OUTPUT fILE-I. MOVE ZERO TO KOUHT HOMBER.
100580* HOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE
100590* CONTAINED IN THE'FILE, WRITES THEM ON TAPE, AND DISPLAYS
100600* THEM ON THE CONSOLE.
100610 STEP-2. ADD 1 TO KOUNT, ADD 1 TO NOMBER, MOVE ALPHA (KOUNT) TO
100620 NAME-FIELD.
100630 MOVE DEPEND (KOUNT) TO NO-Of-DEPENDENTS.
100640 MOVE NOMBER TO RECORD-NO.
100650 STEP-3. DISPLAY WORK-RECORD UPON CONSOLE.
100660 WRITE RECORD-l FROM WORK-RECORD.
100670 STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL KOUNT IS EQUAL TO 26.
100680* NOTE THAT THE FOLLOWING CLOSES OUTPUT AND REOPENS IT AS
100690* INPUT.
100700 STEP-5. CLOSE FILE-I. OPEN INPUT FILE-2 .
100710* NOTE THAT THE fOLLOWING READS BACK THE fILE AND SINGLES OUT
100720* EMPLOYEES WITH NO DEPENDENTS.
100730 STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-8.
100735 COMPUTE B = B + 1.
100740 STEP-7. IF NO-OF-DEPENDENTS IS EQUAL TO '0' MOVE 'Z' TO
100750 NO-OF-DEPEHDENTS. EXHIBIT NAMED WORK-RECORD. GO TO
100760 STEP-6.
100770 STEP-8. CLOSE FILE-2.
100780 STOP RUN.

17.09.34 02/25/81

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUH
(Part 2 of 12)

236

IBM DOS VS COBOL REL 3.0 PP NO. 5746-CBl 17.09.34

INTRNL NAME LVL SOURCE NAME BASE DISPL INTRHL NAME DEFIHITIOH USAGE

DNM=1-148 FD FILE-1 DTF=01 DHM=1-148 DTFSD
DHM=1-179 01 RECORD-1 BL=1 000 DHM=1-179 OS OCL20 GROUP
DHM=1-200 02 FIELD-A BL=1 000 DHM=1-200 OS 20C DISP
DNM=1-217 FD FILE-2 DTF=02 DtIM=1-217 DTFSD
DHM=1-248 01 RECORD-2 BL=2 000 DHM=1-248 OS OCL20 GROUP
Dtm=1-269 02 FIELD-A BL=2 000 DHM=1-269 OS 20C DISP
DNM=1-289 77 KOUHT BL=3 000 DNM=1-289 OS 1H COMP
DNM=1-304 77 NOMBER BL=3 002 DHM=1-304 OS 1H COMP
DNM=1-320 01 FILLER BL=3 008 DHM=I-320 OS OCL52 GROUP
DNM=1-339 02 ALPHABET BL=3 008 DHt1=1-339 OS 26C DISP
DHM=1-357 02 ALPHA BL=3 008 DHM=I-357 OS 1C DISP
DHM=I-375 02 DEPEHDENTS BL=3 022 DHM=I-375 OS 26C DISP
DHM=1-395 02 DEPEHD BL=3 022 OHM 1-395 OS 1C DISP
DHM=I-411 01 WORK-RECORD BL=3 040 DIIM 1-411 OS OCL20 GROUP
DHM=I-435 02 HAME-FI ELD BL=3 040 Dm1 1-435 OS lC DISP
DHM=I-455 02 FILLER BL=3 041 OHM 1-455 OS lC DISP
DHM=1-474 02 RECORD-HO BL=3 042 OHM 1-474 OS 4C DISP-HM
DHM=2-000 02 FILLER BL=3 046 DNM 2-000 OS 1C DISP
DNM=2-019 02 LOCATIOH BL=3 047 DtH1 2-019 OS 3C DISP
DHM=2-037 02 FILLER BL=3 04A OIlM 2-037 OS lC OISP
DHM=2-056 02 HO-OF-DEPEHDEHTS BL=3 04B OHM 2-056 OS 2C DISP
DHM=2-082 02 FILLER BL=3 040 OHM 2-082 OS 7C DISP
DHM=2-101 01 RECORDA BL=3 058 OHM 2-101 OS OCL4 GROUP
DHM=2-121 02 A BL=3 058 OHM 2-121 OS 4C DISP-NM
DNM=2-132 02 B BL=3 058 OHM 2-132 OS 4P COMP-3

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUN
(Part 3 of 12)

02/25/81

R 0 Q M

F

F

R 0

R 0

R

Symbolic Debugging Features 237

IBM DOS VS COBOL

TGT

SAVE AREA
SWITCH
TALLY

MEMORY MAP

SORT SAVE
ENTRY-SAVE
SORT CORE SIZE
NSTD-REELS
SORT RET
WORKING CELLS
SORT FILE SIZE
SORT MODE SIZE
PGT-VN TBL

.TGT-VN TBL
SORTAB ADDRESS
LENGTH OF VN TBL
LNGTH OF SORTAB
PGM 10
ACINITl)
UPSI SLoHTCHES
DEBUG TABLE PTR
CURRENT PRIORITY
TA LENGTH
PROCEDURE BLOCKl PTR
UNUSED
COUNT TABLE ADDRESS
VSAM SAVE AREA ADDRESS
UNUSED
COUNT CHAIN ADDRESS
UNUSED
DBG Rl4SAVE
UllUSED
UNUSED
DBG RllSAVE
PCS LIT PTR
DBG INF PTR
OVERFLOW CELLS
BL CELLS
DTFADR CELLS
FIB CELLS
TEMP STORAGE
TEMP STORAGE-2
TEMP STORAGE-3
TEt1P STORAGE-4
BLL CELLS
VLC CELLS
SBL CELLS
INDEX CELL S
SUBADR CELLS
ONCTL CELLS
PFMCTL CElLS
PFr1SAV CELLS
VN CELLS
SAVE AREA =2
SAVE AREA =3
XSASW CElLS
XSA CELLS
PARAM CElLS
RPTSAV AREA
CHECKPT eTR
IOPTR CELLS
DEBUG TADLE

00828

00828
00870
00874
00878
0087C
00880
00884
00886
00888
009B8
009BC
009CO
009C4
009C8
009CC
009CE
00900
00908
009DC
009E4
009E8
009E9
009EC
009FO
009F4
009F8
009FC
00A04
00A08
OOAlC
00A20
00A24
00A28
00A2C
00A30
00A44
00A44
00A50
00A58
00A58
00A60
00A60
00A60
00A60
00A64
00A64
00A64
00A64
00A6C
00A6C
00A6C
00A70
00A74
00A74
00A74
00A74
00A74
00A78
00A78
00A78
00A78

REL 3.0 PP NO. 5746-CBl 17.09.34 02/25/81

Pigure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUH
(Part 4 of 12)

238

IBM DOS VS COBOL REL 3.0 PP NO. 5146-CBl 17.09.34 02/25/81

LITERAL POOL (HEX)

00AE8 <L IT +0) 00000001 001AICOO 00040014 00280000 COOOOOOO

DISPLAY LITERALS (BCD)

OOAFC <L TL+20) 'WORK-RECORD'

REGISTER

REG 6
REG 7
REG 8

PGT

DEBUG LINKAGE AREA
OVERFLOW CELLS
VIRTUAL CELLS
PROCEDURE NAME CELLS
GENERATED NAME CELLS
SUBDTF ADDRESS CELLS
VNI CELLS
LITERALS
DISPLAY LITERALS
PROCEDURE BLOCK CELLS

ASSIGNMENT

BL =3
BL =1
BL =2

00A88

00A88
00A90
00A90
OOABC
OOACC
00AE4
00AE4
00AE8
OOAFC
00B08

WORKING-STORAGE STARTS AT LOCATION 00100 FOR A LENGTH OF 00060.

58 MBEGIH
000B08 START EQU * 000B08 58 FO C 018 L 15,018CO,12)
OOOBOC 05 1F BALR 1,15
OOOBOE 003A DC X'003A'

61 MSTEP-1
15,018(0,12) 000BI0 58 FO C 018 L

000B14 05 1F BALR 1, 15
000B16 0030 DC X'003D'

61 OPEN 000B18 58 FO C 01C L 15,01CCO,12)
OOOBIC 05 EF BALR 14,15
000B1E 58 10 D 228 L 1,228(0,13)
000B22 41 20 1 OFO LA 2,OFO(0,l)
000B26 02 EF 2 000 1 000 MVC 000C240,2),000(1)
000B2C 58 10 0 228 L 1,228(0,13)
000B30 4B 10 C 068 SH 1,068(0,12)
000B34 94 BF 1 000 NI OOO(l),X'BF'
000B38 58 20 D 21C L 2,21CCO,13)
000B3C 58 00 D 228 L 0,228(0,13)
000B40 07 00 BCR 0,0
000B42 05 10 BALR 1,0

MSTATISTICSM SOURCE RECORDS = 83 DATA ITEMS = 25 PROC DIV SZ =
MSTATISTICSM PARTITION SIZE = 130952 LINE COUNT = 56 BUFFER SIZE =
MOPTIONS IH EFFECTM PMAP RELOC' ADR = HOHE SPACING 1 FLOW =
MOPTIOHS IN EFFECTM L1STX APOST SYM NOCATALR LIST L1HK
MOPTIOHS IN EFFECTM NOCLIST FLAGW ZWB HOSUPI1AP NOXREF ERRS
MOPTIONS IH EFFECTM HOSTATE TRUHC SEQ SYMDMP NOOECK VERB
MOPTIONS IN EFFECTM LAHGLVU2) NOCOUHT AOV HOVERBSUM HOVERBREF
MLISTER OPTIOHSM HONE

V(ILBDFLWl)

V(ILBDFLW1)

V(ILBDDBG4)

DTF=1

OTF=1
LIT+8

BL =1
OTF=1

30
2048

10
NOSTXIT

SXREF
HOSYHTAX

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUN
(Part 5 of 12)

LIB
HOOPT
HOLVL

Symbolic Debugging Features 239

IBM DOS VS COBOL

DATA NAMES

A
ALPHA
ALPHABET
B
DEPEND
DEPENDENTS
FIElD-A
FIELD-A
FllE-l
FllE-2
KOUNT
LOCATION
NA~tE-FI EL 0
NO-OF-DEPENDENTS
NOMBER
RECORD-NO
RECORD-l
RECORD-2
RECORDA
WORK-RECORD

PROCEDURE NAMES

BEGIN
S TEP-l
STEP-2
STEP-3
STEP-4
STEP-5
STEP-6
S TEP-7
STEP-8

CARD ERROR MESSAGE

DEFN

000055
000041
000040
000056
000044
000042
000027
000035
000016
000017
000037
000050
000046
000052
000038
000048
0000~6
000034
000054
000045

DEFN

000058
000061
000065
000069
000071
000074
000077
000079
000082

REL 3.0 PP NO. 5746-CBl

CROSS-REFERENCE DICTIONARY

REFERENCE

000065

000078
000067

000061 000070 000074
000074 000077 000082
000061 000065 000067 000071

000065
000067 000079
000061 000065 000068
000068
000070
000077

000069 000070 000077 000080

REFERENCE

000071
000071

000080

000077

00055
00065
00065

llA2l90I-W
llA5011I-~~
llA50llI-W

PICTURE CLAUSE IS SIGNED. VALUE CLAUSE UNSIGNED. ASSUMED POSITIVE.
HIGH ORDER TRUNCATION MIGHT OCCUR.
HIGH ORDER TRUNCATION MIGHT OCCUR.

END OF COMPILATION

// EXEC LNKEDT

JOB TESTR23 02/25/81 5746-XE8 REL 1.3 LINKAGE EDITOR DIAGNOSTIC OF INPUT
ACTION TAKEN MAP
FOLLOWING LIBRARIES ARE ACTIVE FOR THIS RUN
LIBR. TYPE SEQ.NO FIL ENAME VOLID

TARGET Cll 0 IJSYSCL DOSAF3
SEARCH RLB 1 IJSYSRL DOSAF3
SEARCH RLB 2 IJSYSRS DOSAF3

** MODULE IJGFIEWZ V.3 M.5 AUTOLNKD FROM LIB. NO. 1
** MODULE IJGFOEWZ V.3 M.5 AUTOLNKD FROM LIB.NO. 1
** MODULE ILBDADRO V.3 M.5l AUTOLNKD FROM LIB.NO. 1
** MODULE ILBDDBGO V.3 M.51 AUTOLNKD FROM LIB.NO. I
LIST INCLUDE IJJCPDV
** MODULE IJJCPDV V.3 M.5 INCLUDED FROM LIB.NO.
** MODULE ILBDDSPO V.3 M.5l AUTOLNKD FROM LIB.NO.
** MODULE ILBDDSSO V.3 M.5l AUTOLNKD FROM LIB.NO.
LIST INCLUDE IJJCPDV
** MODULE IJJCPDV V.3 M.5 INCLUDED FROM LIB.NO. 1
** MODULE ILBDFLWO V.3 M.51 AUTOLNKD FROM LIB.NO. 1
** MODULE ILBDMNSO V.3 M.52 AUTOLNKD FROM LIB.NO. 1 lEM MODULE ILBDSAEO V.3 M.52 AUTOLNKD FROM LIB.NO. 1
lE* MODULE ILBDSIOO V.3 M.52 AUTOLNKD FROM LIB.NO. 1
*M MODULE ILBDCLKO V.3 M.5l AUTOLNKD FROM LIB.NO. 1 lEM MODULE ILBDCMMO V.3 M.51 AUTOLNKD FROM LIB.NO. 1
lE* MODULE ILBDTC20 V.3 M.51 AUTOLNKD FROM LIB.NO. I
LIST ENTRY

17.09.34 02/25/81

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUN
(Part 6 of 12)

240

IBM DOS VS COBOL REL 3.0

PHASE XFR-AD LOCORE HI CORE DSK-AD LABEL
PHASEMMM 028078 028078 02C6F3 30E 10 02

TESTRUN
IJGFIEWZ

MIJGFIZWZ
MIJGFIZZZ
MIJGFIEZZ

IJGFOEllZ
MIJGFOZWZ
MIJGFOZZZ
MIJGFOEZZ

IlBDADRO
lEIlBDADR1

IJJCPDV
+IJJCPDV1
MIJJCPDV2

IlBDDBGO
+IlBDDBG5
+IlBDDBG4
+IlBDDBG7
+IlBDDBG2
MIlBDDBG1
MIlBDDBG3
MIlBDDBG6
+STXITPSW
MSORTEP
+IlBDDBG8

IlBDDSPO
+ILBDDSP1

ILBDDSSO
+ILBDDSS1
+ILBDDSS2
+IlBDDSS3
+ILBDDSS4
+IlBDDSS5
+ILBDDSS6
+ILBDDSS7
+IlBDDSS8

IlBDFLWO
+ILBDFLW1
+IlBDFLW2
MIlBDFLW3

IlBDMHSO
IlBDPRMO
IlBDSAEO

+ILBDSAE1
IlBDSIOO

+IlBDSI01
IlBDCLKO
IlBDCMMO

+IlBDCMM1
IlBDTC20

UNRESOLVED EXTERNAL REFERENCES WXTRH
WXTRN

02125/81 PHASE XFR-AD LOCORE HICORE DSK-AD LABEL
WXTRU
WXTRN
WXTRN
WXTRN
WXTRN
WXTRN
WXTRH

010 UNRESOLVED ADDRESS COHSTANTS
// DlBl SAMPll,'TRFIlE',O,SD ~
I~ EXTENT SYS001,,1,0,5700,76 D
II DLBL SAMPL2.'TRFILE',0.SD
II EXTENT SYS003,,1,0.5700,76
II EXEC ,SIZE=128K

PP NO. 5746-CBl 17 . 09 • 3 II 02/25/3 1

LOADED REl-FR OFFSET INPUT
RELOCATABLE

028078 028078 000000 SYSLNK
028FE8 028FE8 000F70 IJGFIEWZ
028FE8
028FE8
028FE8
029298 029298 001220 IJGFOEWZ
029298
029298
029298
029588 029588 001510 IlBDADRO
029594
0296 E8 0296E8 001670 IJJCPDV
0296E8
0296E8
0299E8 0299E8 001970 ILBDDBGO
029F8E
02A012
02A060
029D26
029B88
02A008
02A022
02AOF8
02A2A8
02A034
02A550 02A550 002408 IlBDDSPO
02A960
02AA98 02AA98 002A20 IlBDDSSO
02ACE8
02ACE4
02ADAO
02AABC
02AB6C
02ABBE
02AB94
02AAEC
02ADBO 02ADBO 002D38 ILBDFLWO
02AE70
02AF9A
02AF6A
02B2AO 02B2AO 003228
02B2BO 02B2AO 003238
02B418 02B418 0033AO
02B45E
02B6C8 02B6C8 003650
02B6CC
02C1A8 02C1A8 004130
02C1F8 02C1F8 004180
02ClFC
02C600 02C600 004588

IlBDSTHO
ILBDSRTO

LOADED REl-FR OFFSET
ILBDTEF3
ILBDTCOO
IlBDTC01
IlBDVBll
IlBDSPAO
IlBDSPA1
IlBDTC30

TES00950
TES00960
TES00970
TES00980
TES00990

IlBDMHSO
IlBDMHSO
IlBDSAEO

IlBDSIOO

IlBDCLKO
IlBDCMMO

IlBDTC20

INPUT

Pigure64. Using the Symbolic Debugging Features to Debug the Program TESTRUN
(Part 7 of 12)

Symbolic Debugging Featu'res 241

IBM DOS VS COBOL REL 3.0 PP NO. 5746-CBl

~
SYMDMP CONTROL CARDS

TESTRUN,005,SD,(HEX) 2 70,ON 1,4,(HEX),KOUNT,NAME-FIELD,NO-OF-DEPENDENTS,RECORD-NO } CD 3 78,(HEX),WORK-RECORD,B
NO ERRORS FOUND !N CONTROL CARDS

TESTRUN
LOC

028178

0281B8
0281C3
0281BA

TESTRUN
LOC

028178

0281B8
0281C3
0281BA

TESTRUN
LOC

028178

0281B8
0281C3
0281BA

AT CARD 000070
CARD LV NAME

000037 77 KOUNT

000046 02 NAME-FIELD

CODE
A
AN
ANE
o
DE
F
FD
NB
NB-S
NO
ND-OL
ND-OT
ND-SL
ND-ST
NE
NP
NP-S
I(

000052 02 NO-OF-DEPENDENTS
000048 02 RECORD-NO

AT CARD 000070
CARD LV NAME

000037 77 KOUNT

000046 02 NAME-FIELD
000052 02 NO-OF-DEPENDENTS
000048 02 RECORD-NO

AT CARD 000070
CARD LV NAME

000037 77 KOUNT

000046 02 NAME-FIELD
000052 02 NO-OF-DEPENDENTS
000048 02 RECORD-NO

CD
TYPE CODES USED IN SYMDMP OUTPUT

MEANING
ALPfiABETIC
ALPHANUMERIC
ALPHANUMERIC EDITED
DISPLAY (STERLING NONREPORT)
DISPLAY EDITED (STERLING REPORT)
FLOATING POINT (COMP-1/COMP-2)

.FLOATING POINT DISPLAY (EXTERNAL FLOATING POINT)
NUMERIC BINARY UNSIGNED (COMP)
NUMERIC BINARY SIGNED
NUMERIC DISPLAY UNSIGNED (EXTERNAL DECIMAL)
NUMERIC DISPLAY OVERPUNCH SIGN LEADING
NUMERIC DISPLAY OVERPUNCH SIGN TRAILING
NUMERIC DISPLAY SEPARATE SIGN LEADING
NUMERIC DISPLAY SEPARATE SIGN TRAILING
NUMERIC EDITED
NUMERIC PACKED DECIMAL UNSIGNED (COMP-3)
NUMERIC PACKED DECIMAL SIGHED
SUBSCRIPTED

TYPE VALUE
NB-S +01

(HEX) 0001
AN A
AN 0
NO 0001

TYPE VALUE
NB-S +05

(HEX) 0005
AN E
AN 4
NO 0005

TYPE VALUE
NB-S +09

(HEX) 0009
AN I
AN 3
NO 0009

17.09.34 02/25/81

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRON
(Part· 8 of 12)

242

tBM DOS VS COBOL REL 3.0 PP NO. 5746-CBl 17.09.34 02/25/81

TE5TRUN AT CARD 000070
LOC CARD LV HAME TYPE VALUE

028178 000037 77 KOUHT HB-5 +13
(HEX) OOOD

0281B8 000046 02 NAME-FIELD AH M
0281C3 000052 02 HO-OF-DEPENDEHT5 AU 2
0281BA 000048 02 RECORD-HO HD 0013

TESTRUN AT CARD 000070
LOC CARD LV HAME TYPE VALUE

028178 000037 77 KOUHT HB-S +17
(HEX) 0011

0281B8 000046 02 NAME-FIELD AH Q
0281C3 000052 02 HO-OF-DEPENDENT5 AH 1
0281BA 000048 02 RECORD-HO HD 0017

TE5TRUN AT CARD 000070
LOC CARD LV HAME TYPE VALUE

028178 000037 77 KOUHT HB-S +21
(HEX) 0015

0281B8 000046 02 HAME-FIELD AH U
0281C3 000052 02 HO-OF-DEPEHDEHTS AN 0
0281BA 000048 02 RECORD-HO HD 0021

TESTRUN AT CARD 000070
LOC CARD LV HAME TYPE VALUE

028178 000037 77 KOUHT NB-S +25
(HEX) 0019

0281B8 000046 02 NAME-FIELD AN Y
0281C3 000052 02 HO-OF-DEPENDEHT5 AH 4
0281BA 000048 02 RECORD-HO NO 0025

• ® TESTRUN AT CARD 000078
LOC CARD LV NAME TYPE VALUE

000045 01 WORK-RECORD
0281B8 (HEX) C140FOFO FOF140D5 E8C340FO 40404040 40404040
0281B8 000046 02 HAME-FIELD AH A
0281B9 000047 02 ~IL L ER AN
0281BA 000048 02 RECORD-HO HD 0001
0281BE 000049 02 FILLER AN
0281BF 000050 02 LOCATION A HYC
0281C2 000051 02 FILLER AN
0281C3 000052 02 HO-OF-DEPEHDEHT5 AN
0281C5 000053 02 FILLER AN
028100 000056 02 B NP-S *1*2*3*

(HEX) F1F2F3C4

Figure 64. Using the Syabolic Debugging Features to Debug the Program TESTRUN
(Part 9 of 12)

Symbolic Debugging Features 243

IBM DOS VS COBOL REL 3.0 PP NO. 5746-CBl 17.09.34 02/25/81

COBOL ABEND DIAGNOSTIC AIDS

lAST PSW ADDR BEFORE ABEND DOO?8EI0 CD
PROGRAM TESTRUN CD INTERRUPT CODE 07

LAST CARD NUMBER/VERB NUMBER EXECUTED -- CARD NUMBER 000078/VERB NUMBER 01.
FlOW TRACE

000065 000069 000065 000069 000065 000069 000074 000077 ~
DATA DIVISION DUMP OF TESTRUN ~

TESTRUN 000065 000069

CD
TASK GLOBAL TABLE
SAVE AREA

SWITCH
TALLY
SORT-SAVE
ENTRY-SAVE
SORT-CORE-SIZE
NSTD-REELS
SORT-RETURN
WORKING CELLS

SORT-FIl E-SIZE
SORT-MODE-SIZE
PGT-VN TBl
TGT-VN TBl
SORTAB ADDR
VN TBl lENGTH
SORUB lENGTH
PROGRAM-ID
A(INIT1)
UPS I-SWITCHES
TGT-DBG TABLE
CURRENT PRIORITY
TRANSIENT AREA lENGTH
PROCEDURE-BLOCK
UNUSED
COUNT TABLE ADDRESS
VSAM SAVE AREA
UNUSED
COUNT CHAIN ADDRESS
UNUSED
OVERFLOW CELLS

Bl CEllS
DTFADR CELLS
FIB CELLS
TEMP STORAGE
BLL CELLS
VlC CEllS

lOC
0288AO
0288CO
0288EO
0288E8
0288EC
0288FO
0288F4
0288F8
0288FC
0288FE
028900
028920
028940
028960
028980
0289AO
0289CO
0289EO
028AOO
028A20
028A30
028A34
028A38
028A3C
028A40
028A44
028A46
028A48
028A50
028A54
028A5C
028A60
028A61
028A64
028A68
028A6C
028A70
028A74
028A7C
028A80
028A94
028AB4
028ABC
028AC8
(NONE)
028ADO
028AD8
(NONE)

SBl CEllS (NONE)
INDEX CEllS (NONE)
OTHER (SEE MEMORY MAP) 028ADC

028AFC

VALUE
00000000 00000000 0002B200 40028DFO
0000001A 00028460 40028F12 00028178
40028EI0 00028BOO
3C12804B
00000000
00000000
00028B80
00000000
0000
FFFF
00100014 50028DBC 4002BC74 8002BC80
40028F12 00028178 0002877C 00028838
5002B6DA 00028508 00028508 00028508
40404040 40404040 40404040 40404040
40404040 40404040 40404040 40404040
0000001A 01000050 00028CA8 0002A550
000281B3 40028F12 00028178 00028768
00028BOO 00000000 00000000 00000000
0002AA98 00028CBC 0002A550 00000000
000019A8 0002A710 00029B50 0002BA70
00000000
00000000
00028B5C
00028AE8
00000228
0004
125C
TESTRUN
00028078
00000224 000002AO
00000250
00
000000
0000133A
000011AA
00001118
00001098
00001506 000011EA
00000000
00001266 000012A2 0000165E 00000000
FOFOFOFO FOFOFOFO FOFOFOFO 00000000
00285C29 E3C8F2F2
0002877C 00028838 00028178
00028280 00028508

00000000 0000026C
00000000

00028EOA 40028EOC 00028508 00028838
0002877C 00028838 00028ECA 00028078

00028508 000285F8 0000001A 00028508
00028ECA 00028078 40028CC2 00028BOO
000285F8 0000001A 08FOF040 40404040
40404040 40404040 40404040 40404040
40404040 4040FFFF FF032A5E 00028CBA
000281B3 00028CBC 0000001A 0000001A
00028838 00028ECA 00028078 40028CC2
00000000 00000000 00020000 00028CBA
00000000 00000000 00000000 00000000

FOFOFOFO
00000000 00000000 00028D70 F8001CIC

DATA DIVISION DUMP OF TESTRUN

00028199 000281B3 00028D18 00028D18
E2E340C6

00000D7C OAOOOEEC 00000E38 7FOIE3C5

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUB
(Part 10 of 12)

244

[8M OOS VS COBOL REL 3.0 PP NO. 5746-CBl 17.09.34 02/25/81

®
DATA DIVISION DUMP OF TESTRUN

LOC CARD LV NAME TYPE VALUE
000016 FD FIlE-1 STANDARD SEQUENTIAL ASSIGNED TO SYS001, CLOSED

028268 PRE-DTF 00000014 00000000 00000000 00000000 00000000 04000000
028280 DTFSD 00008204 00000101 000282E8 00000000 04029298 2048E2C1 D4D7D3F1 400400.00
0282AO 00000000 00000800 00000000 000286FO 80000000 00000000 00000000 OOOOFFOO
0282CO 00000064 00000000 37040063 FFFFFFFF FF0032E6 58210058 000286F8 00000014
0282EO 0002875B 8A02B418 070282BA 40000006 310282BC 40000005 080282FO 00000000
028300 10028760 0000006C 310282BC 40000005 08028308 00000000 1E028318 30000001
028320

®
40404040 404040C3 D6D9D9C5 C3E340C4 C1E3C140 40404040 40404040 40D9C5D4

028340 C1D9D2E2 40404040 40404040 40404040 40404040 40404040
000026 01 RECORD-1

02877C (HEX) D840FOFO F1F740D5 E8C340F1 40404040 40404040
02877C 000027 02 FIELD-A

®
AN Q 0017 NYC 1

000017 FD FIlE-2 STANDARD SEQUENTIAL ASSIGNED TO SYS003, OPEN INPUT
0284FO PRE-DTF 00000014 00000000 00000000 00000000 00000000 04000000
028508 DTFSD 00008204 OC000103 00053D80 00000000 0429A800 204EE2C1 D4D7D3F2 40050000
028528 00000000 00028020 00000000 40028700 80000000 0000012F 00120000 012COOOO
028548 0202BAF4 03FF0012 38840063 012COOOO 0102B45E 58210058 00028838 00000014
028568 0002889B 8E02B418 07028542 40000006 31028544 40000005 08028578 00000000
028588 06028838 00000064 D6C640E3 C5E2E360 40400230 00000004 00000040 D5E3C9E2
0285A8

®
40C4C9E2 E3D9C9C2 E4E3C9D6 D540C3D6 C2D6D340 F7F44040 40404040 40404040

0285C8 40404040 40404040 40404040 40404040 40404040 40404040
000034 01 RECORD-2

028838 (HEX) C140FOFO FOF140D5 E8C340FO 40404040 40404040
028838 000035 02 FIElO-A AN A 0001 NYC 0
028178 000037 77 KOUHT HB-S +26

(HEX) 001A
02817A 000038 77 HOMBER

CD
HB-S +26

(HEX) 001A
000039 01 FILLER

028180 (HEX) CIC2C3C4 C5C6C7C8 C9010203 04050607 D8D9E2E3 E4E5E6E7
028198 E8E9FOF1 F2F3F4FO F1F2F3F4 FOF1F2F3 F4FOF1F2 F3F4FOFI
0281BO F2F3F4FO
0281~0 000040 02 ALPHABET AH ABCDEFGHIJKLMHOPQRSTUVWXYZ

000041 02 ALPHA lEAH ® <5U8ll 028180 Q ~ A
028181 B
028182 3 C
028183 4 0
028184 5 E
028185 6 F
028186 7 G
028187 8 H

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUN
(Part 11 of 12)

Symbolic Debugging Features 245

IBM DOS VS COBOL REL3.0 PP NO. 5746-CBl 17.09.34 02/25/81

DATA DIVISION DUMP OF TESTRUN
LOC CARD LV NAME TYPE VALUE

028188 9 I
028189 10 J
02818A 11 K
02818B 12 L
02818C 13 M
02818D 14 N
02818E 15 0
02818F 16 P
028190 17 Q
028191 18 R
028192 19 S
028193 20 T
028194 21 U
028195 22 V
028196 23 W
028197 24 X
028198 25 Y
028199 26 Z
02819A 000042 02 DEPENDENTS AN 01234012340123401234012340

000044 02 DEPEND lEAN
®CSU81l 02819A Q ~ 0

02819B 1
02819C 3 2
02819D 4 3
02819E 5 4
02819F 6 0
0281AO 7 1
0281Al 8 2
0281A2 9 3
0281A3 10 4
0281A4 11 0
0281A5 12 1
0281A6 13 2

'0281A7 14 3
0281A8 15 4
0281A9 16 0
0281AA 17 1
0281AB 18 2
0281AC 19 3
0281AD 20 4
0281AE 21 0
0281AF 22 1
0281BO 23 2
0281B1 24 3
0281B2

~~ 0 4
0281B3 0

000045 01 WORK-RECORD P
DATA DIVISION DUMP OF TESTRUN

LOC CARD LV NAME TYPE VALUE
0281B8 (HEX) C140FOFO FOF140D5 E8C340FO 40404040 40404040
0281B8 000046 02 NAME-FIELD AN A
0281B9 000047 02 FILLER AN
0281BA 000048 02 RECORD-NO ND 0001
0281BE 000049 02 FILLER AN
0281BF 000050 02 LOCATION A NYC
0281C2 000051 02 FILLER AN
0281C3 000052 02 NO-OF-DEPENDENTS AN
0281C5 000053 02 FILLER 0 AN

000054 01 RECORDA
0281DO (HEX) FIF2F3C4
028100 000055 02 A 0"D-01 +1234
028100 000056 02 B R NP-S lE1*2*3lE

END OF COBOL DIAGNOSTIC AIDS

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUH
(Part 12 of 12)

246

A programmer using the DOS/VS COBOL
:ompiler and Library has several methods
~vailable for testing and debugging
~rograms. Use of the symbolic debugging
features is the easiest and most efficient
method for testing and debugging and is
described in detail in the chapter "Symbolic
Debugging Features. II Using the execution
statistics feature is another method for
testing, debugging, and optimizing a
program, and is described in the chapter
"Execution Statistics.1:

This chapter contains information useful
for testing and debugging programs run
without the symbolic debugging features.
It also contains information on linkage
editor and execution-time diagnostics as
well as a description of taking checkpoints
and restarting programs.

SYNTAX-CHECKING COl-1PILATION

The compiler checks the so~rce text for
syntax errors and then generates the
appropriate error messages. With the
syntax-checking feature, the programmer can
request a compilation either conditionally,
with object code produced only if no
messages or just w- or C-Ievel messages are
generated~ or unconditionally, with no
object code produced regardless of message
level.

Selected test cases run with the
syntax-checking feature have resulted in a
compilation-time saving of as much as 70%,
For a discussion of the syntax-checking
options, SYNTAX and CSYNTAX, see the
section "CBL Statement -- COBOL Option
Control Card."

IDENTIFICATION OF PROGRAM VERSIONS

One problem a programmer may have during
checkout is associating a particular
compilation listing with the object deck
from that compilation and the output and/or
dump from a particular run. To aid in
this, the following facilities can be used:

1. Specify a DATE-COMPILED paragraph as
part of the Environment Division.
This is replaced by the actual date of
compilation on the source listing
(OPTION LIST).

PROGRAl-l CHECKOUT

2. The date and time of compilation are
given in the header line of the
compilation listing.

3. The date and time of compilation are
punched into the object deck and will
be found beginning at relative
location X'EC· in the dump of the
object module.

4. By moving the special register WHEN
COMPILED to an output record, the user
may flag his output to identify it
with a particular compilation. WHEN
CGr1PILED is described more fully in
IBt1 VS COBOL for DOS/VSE.

DEBUG LANGUAGE

The COBOL debugging language is designed
to assist the COBOL programmer in producing
an error-free program in the shortest
possible time. The following sections
discuss the use of the debug language and
other methods of program checkout.

DEBUGGING LINES

The user can include debugging lines (any
COBOL statement with a D in column 7), in a
program to assist in locating logic errors.
Through inclusion of the WITH DEBUGGING MODE
source clause (essentially a compile-time
switch), the statements are made part of the
object code and will be executed in line
with the rest of the program. Removal of
the WITH DEBUGGING HODE clause causes
debugging lines to be treated as comments
only; they will not be executed. A program
containing debugging lines must by
syntactically correct in both these modes.
(The execution-time opti0n DEBUG/NODEBUG
has no control over debugging lines; it
only affects USE fOR DEBUGGING declaratives-
as explained below).

DECLARATIVE PROCEDURES--USE FOR DEBUGGING

The USE FOR DEBUGGING feature provides
the user with the ability to create personal
procedures to examine the internal status of
a program during its execution. The USE
FOR DEBUGGING statement identifies which
program elements it wishes -to -mcmitcn<
COBOL then gives the associated procedure
control when these elements are referenced
during execution. The procedure also is
given access to the DEBUG-ITEH special

Program Checkout 247

register -;- which has been automatically
filled with the pertinent current status
information.

The USE FOR DEBUGGING procedures can be
controlled by two switches:

• WITH DEBUGGING MODE source clause for
compiler-time

WITH DEBUGGING 110DE indicates that the
procedures are to be compiled as
executable code; if WITH DEBUGGING
l10DE is omitted, the procedures are
treated only as comments.

• DEBUG/NODEBUG option for execution-time

Specification of the DEBUG option at
execution time indicates that the
procedures compiled into the code are
in fact to be executed; if NODEBUG is
specified, the procedures are bypassed.

The general rules for USE FOR DEBUGGING
declarative procedures and the DEBUG-ITEM
special register can be found in IBM VS
COBOL for DOS/VSE. The following
considerations also apply:

1. Including USE FOR DEBUGGING declarative
procedures and a WITH DEBUGGING MODE
clause precludes the use of the SYMDMP
and TEST options. If SYHDMP and/or
TEST is specified in such a case, they
will be rejected.

2. The DEBUG-ITEM special register is
variable in length, and depends on the
size of the character string it is to
contain. This length cannot exceed 32K
bytes.

3. Procedures performed from a USE FOR
DEBUGGING declarative will never cause
invocation of another USE FOR DEBUGGING
declarative.

Figure 64.1 shows an elementary example of
USE FOR DEBUGGING.

It contains a debugging phrase
(encircled 1) and a simole declarative
(encircled 2). In this-example, the
programmer wishes to temporarily trap
certain input items (ALPHA Ds and Ms)
and boost their index values by one so
that they become Es and Ns (encircled 3).

By removing the WITH DEBUGGING MODE
clause from the CONFIGURATION SECTION and
recompiling, the programmer can disable
the debugging declarative--even though
the declarative statements are left in the
source program.

243

TRACE, EXHIBIT, AND ON

Three additional debugging language
statements are TRACE, EXHIBIT, and ON. Any
one of these statements can be used as
often as necessary. They can be interspersed
throughout a COBOL source program, or they
can be contained in a packet in the input
stream to the compiler.

IDENTIFICATION ... IVISION.
PROGRAM-IO. TE~TDBUG.

AUTHOR. PROGRAMMER NAME.
INSTAllATION. PALJ ALTO DEVELOPMENT CENTER.

DA ¥~!~o~~lng~'liE:UGgs 19~~. 1976.

RI:~M~t 'u~~H/r~A~A~A~~~ i~E~U¥~~P~~L~S A~DS~~:~~ ~~oiU~ ~~R
INPUT.

I
ENVI RONMENT 01 V, SI UN.

G) COgg~~~~~~8~:HI~~: J01B~:ng..rn~ DEBUGGING MODE.
INPUT-OUTPUT Si: .. TJON.
FI lE-CONTROL.

SHECT FIlE-1 ASSIGN TO UT-Z400-S-SAMPLE.
SELECT FILE-2 ASSIGN TO UT-ZltOO-S-SAMPLE.

~t[~ ~UHA~~'
FO FILE-1

LABEL kECOR ... S ARE OMITTED
BLOCK CDNTA' NS 100 CHARACTERS
~~€2~gl~~N~~h~~ I~O FCHARACTERS
DATA RECORD IS RECORD-I.

01 RECORD-1.
02 FJELD-A PICJURE IS X1201.

-0 FILE-2
LABEL RECURuS ARE OMITTED

Ug5~Dcg~M1~~5S 2~EE~:Rlc TERS
RECORDI NG M ... DI: IS F
DATA RECORD IS RECORD-Z.

01 RECORD-2.
02 FlfLD-A PICTURE IS XIZOI.

WORK I NG-S TURAGE SECTION.
77 KOlt" PII.TURE S99 COMP SYNC.
77 NOMBER PI'TURE 599 COMP SYNC.

01 FILLER.

8~ ~t&~~BH ... nf~~~E At~~~tE¥A~~fT~~~C~E:;g~~~KL~:a~?~~T ~W"XYl".
2~H?EPENDENrs PICTURE XI261 VALUE .0123lt01i3lt01Z340iZ3lt01Z34

02 DEPEND ReDEfiNES DEPENDENJS PICTURE X OCCURS 26 TIMES.
01 WORK-RECQR

02 NAME-FIELD PICTURE X.
02 FILLER P!CJJRE X VALUE IS SPACE.
02 RECORD-N ... PICTURE 9999.
02 fILLER P!CTURE X VALUE IS SPACE.
02 LOCAflON PICTURE AU VA~UE IS "NYC".
8~ ~J~~~D~;~~gMT~ ~nV5R~SX~~ACE.
02 fILLER P,CTURE XI1J VALUE IS SPACES.

PROCEDURE DIVIS,ON.
DECLARAT IVES.

,...., DEdUG-SECTION ScCJlON. .

\!I ~~E A~~~A ~~~~~~~N~ ?~" S~~P~~~ _
MOVE ALPHA (KOUNT+1) TO NAllE-FIELD ••

END DECLARATlVE~ •.
BEGIN.

NOTE THAT ThE fOLLOWING OPENS THE OUTPUT FILE TO Sf :RUTED
AND I NI TIAL.zE~ COUNTERS.

STEP-1. OPEN OU1PUJ filE-I. MOVE ZERO TO KDUNT NOM8ER.

~gMAI~M I~EJ~~L~?~~~Gw~HWfH~~T~~Nt~~t T~~DRblg~~iY10 eE
THEM ON TH~ CONSOLE.

STEP-2. ACD 1 T ... KUUNT, ADD 1 TO NOMBER, MOVE ALPHA CKOUNTI TO
NAllE-FIELD~
STEP-2A
HOVE DEPENO (KOUNT) TO NO-OF-DEPENDENTS.

STEP-3. DISpLAYWOkK-RECORD UPON CONSJLE. 'WRITE ItECDItD-l FROM
WORK-RECORD.

STEPN~hP~~~VR~n~T~~ltO~~~~ U~~E~ M~UbTKf~~TRMp~2~AhTfs26.
INPUT.

STEPNghc~~H ~~~EfblL~~i~GI~~~~lA~~K2jHE filE AND SINGLES OUT

STEP~~~L~ll5SFm~2NREg~~N~~~~SWORK-RECDRD AT END GO TO STEP-a.
STEP-7. IF ND-Dl--OEPENDENTS IS EQUAL TO "0" MOVE HZ· TO

NO-OF-DEPEN"ENJS. EXHIBIT NAMED WORK-RECORD. GO TO
STEP-6.

STEP-B. CLOSE f,LE-2.
STOP RUN.

m~:~~Eg~g : ~ 8gg~ ~~€ f
hO~K-I!ECORD • C 0003 NYC Z

~
.C~K-RECORC. E OOO~ NYC 3
IoGRK-KECORO • I: DUOS NYC 4
IoO~ K-RECORD • f 0006 NYC Z

tH~:~~Eg:8 : ~ gge~ ~~~ ~
CD~IoORK-kECORD • 1 0009 NYC 3 he ~ K-RECORD • J 0010 NYC ~

hGRK-ilECORD • K 0011 NYC Z

~~=~::~€g~8 : ~ 8gB ~~€ !
~g~~:~~~g~g : ~ 88t~ ~~€ ~
WORK-oIECOKD • P ODIe. NYC I
,WRK-kECORD • II (J017 NYC
hORK-RECORD • R 0018 NYC
IoGRK-KECORO • S 0019 NYC 3
~C~K-RECORC • T 0020 NYC 4
hC~K-RECORD • U 0021 NYC Z

~g~~:i~~g~g : ~ ggU ~~ i
100RK-RECORO • Y 0025 NYC ~
loCRK-RECORe • l. 0026 NYC l.

Figure 64.1. Program with USE FOR
DEBUGGING

program checkout may not be desired
Eter testing is completed. A debug packet
~n be removed after testing to eliminate
ne extra object program coding generated
~r the debug statements.

The output produced by the TRACE and
XHIBIT statements is listed on the system
ogical output device (SYSLST).

The following discussions describe
ethods of using the debug language.

'LOW OF CONTROL

The READY TRACE statement causes the
:ompiler-generated card numbers for each
iection-name and paragraph-name to be
lisplayed. These card numbers are listed
)n SYSLST at execution time when control
lasses to these sections and paragraphs.
[ence, the output of the READY TRACE
itatement appears as a list of card
lumbers. If VERB is specified, the actual
)aragraph-names and names of the verbs will
)e listed.

To reduce the length of the list and the
:ime taken to generate it, a trace can be
5topped with a RESET TRACE statement. The
~EADY TRACE/RESET TRACE combination is
1elpful in examining a particular area of
~he program where the flow of control is
jifficult to determine, e.g., code consists
~f a series of PERFORM statements or nested
~onditional statements. The READY TRACE
statement can be coded so that the trace
begins before control passes to that area.
The RESET TRACE statement can be coded so
that the trace stops when the program has
passed beyond the area.

Use of the ON statement with the TRACE
statement allows conditional control of the
tracing. When the COBOL compiler
encounters an ON statement, it creates a
counter which is incremented during
execution, whenever control passes through
that ON statement. For example, if an
error occurs when a specific record is
processed, the ON statement can be used to
isolate the problem record. The statement
should be placed where control passes
through it only once for each record that
is read. When the contents of the counter
equal the number of the record (as
specified in the ON statement), a trace can
be taken on that record. The following
example shows a method in which the 200th
record could be selected for a TRACE
statement.

Col.
1 Area A

RD-REC.

DEBUG RD-REC
PARA-NM-l. ON 200 READY TRACE.

ON 201 RESET TRACE.

If the TRACE statement were used without
the ON statement, every record would be
traced.

An example of a common program error is
failing to break a loop or unintentionally
creating a loop in the program. If many
iterations of the loop are required before
it can be determined that a program error
exists, the ON statement can be used to
initiate a trace after the expected number
of iterations has been completed.
Note: If an error occurs during
compilation of an ON statement, the
diagnostic message may refer to the
previous statement number.

DISPLAYING DATA VALUES DURING EXECUTION

A programmer can display the value of a
data item during program execution by using
the EXHIBIT statement. The EXHIBIT
statement has three options:

1. EXHIBIT NAMED -- Displays the names
and values of the data-names listed in
the statement.

2. EXHIBIT CHANGED -- Displays the value
of the data-names listed in the
statement only if the value has
changed since the last execution of
the statement.

3. EXHIBIT CHANGED NAMED -- Displays the
names and the values of the data-names
only if the values have changed since
the last execution of the statement.

Data values can be used to check the
accuracy of the program. For example,
using EXHIBIT NMIED, the programmer can
display specified fields from records,
compute the calculations, and compare
these calculations with the output from
the program. The coding for a payroll
problem might be:

Program Checkout 248.1

Col.
1 Area A

DEBUG

GROSS-PAY-CALC.
COMPUTE GROSS-PAY =
RATE-PER-HOUR * (HRSWKD
+ 1.5 * OVERTIMEHRS).

NET-PAY-CALC.

NE~-PAY-CALC

SAMPLE-1. ON 10 AND
EVERY 10 EXHIBIT NAMED
RATE-PER-HOUR, HRSWKD,
OVERTIMEHRS, GROSS-PAY.

This coding will cause the values of the
four fields to be listed for every tenth
data record before net pay calculations are
made. The output could appear as:

RATE-PER-HOUR = 4.00 HRSWKD = 40.0
OVERTIMEHRS = 0.0 GROSS-PAY = 160.00

RATE-PER-HOUR = 4.10 HRSWKD = 40.0
OVERTIMEHRS = 1.5 GROSS-PAY = 173.23

RATE-PER-HOUR = 3.35 HRSWKD = 40.0
OVERTIMEHRS = 0.0 GROSS-PAY = 134.00

Note: Decimal points are included in this
example for clarity, but actual printouts
depend on the data description in the
program.

248.2

The preceding was an example of checking
t regular intervals (every tenth record) •
check of any unusual conditions can be

ade by using various combinations of COBOL
tatements in the debug packet. For
xample:

IF OVERTIMEHRS GREATER THAN 2.0
EXHIBIT NAMED PAYRCDHRS •••

In connection with the previous example,
.his statement could cause the entire pay
"ecord to be displayed whenever an unusual
:ondition (overtime exceeding two hours) is
~ncountered •

The EXHIBIT statement with the CHANGED
)ption also can be used to monitor
:onditions that do not occur at regular
Lntervals. The values of data-names are
Listed only if the value has changed since
:he last execution of the statement. For
~xample, suppose the program calculates
?ostage rates to various cities. The flow
)f the program might be:

STATE :. 01 CITY 01 RAIL 10 BUS = 14 TRUCK

CITY = 02

CITY 03 BUS = 06 AIR = 15

CITY = 04 RAIL = 30 BUS = 25 TRUCK = 28 AIR

STATE = 02 CITY = 01 TRUCK 25

CITY 02 TRUCK 20 AIR = 30

i i

IREAD INPUT 1
1 DATA FOR 1<-- B
1 CITY 1 ,

i
,

1
1
V

CALCULATE
RATE FOR

CITY
i

1
1
V

EXHIBIT
CHANGED

i

1
I
V

<§;? NO
CITY :3>B

YES
1
I
I
V

12 AIR 20

34

Figure 65. Sample Output of EXHIBIT Statement With the CHANGED NAMED Option

Program Checkout 249

The EXHIBIT statement with the CHANGED
option in the program might be:

EXHIBIT CHANGED STATE CITY RATE

The output from the EXHIBIT statement
with the CHANGED option could appear as:

01 01 10
02 15
03
04 10

02 01
02 20
03 15
04

03 01 10

The first column contains the code for a
state, the second column contains the code
for a city, and the third column contains
the code for the postage rate. The value
of a data-name is listed only if it has
changed since the previous execution. For
example, since the postage rate to city 02
and city 03 in state 01 are the same, the
rate is not printed for city 03.

The EXHIBIT statement with the CHANGED
NAMED option lists the data-name if the
value has changed. For example, the
program might calculate the cos~ of various
methods of shipping to different cities.
After the calculations are made, the
following statement could appear in the
program:

EXHIBIT CHANGED NAMED STATE CITY RAIL
BUS TRUCK AIR

The output from this statement could appear
as shown in Figure 65. Note that a
data-name and its value are listed only if
the value has changed since the previous
execution.

TESTING A PROGRAM SELECTIVELY

A debug packet allows the programmer to
select a portion of the program for
testing. The packet can include test data
and can specify operations the programmer
wants to be performed. When the testing is
completed, the packet can be removed. The
flow of control can be selectively altered
by the inclusion of debug packets, as
illustrated in the following example of
selective testing of B:

250

r
I
I
I

i

I

I
I
L

START

A

I

I
V

B

C

I

I
V

STOP
RUN

i

I
V

r
I DEBUG
I PACKET
I FOR A

i

I
V

DEBUG
PACKET
FOR C

In this program, A creates data, B
processes it, and C prints it. The debug
packet for A simulates test data. It is
first in the program to be executed. In
the packet, the last statement is GO TO B,
which permits A to be bypassed. After B is
executed with the test data, control passes
to the debug packet for C, which contains a
GO TO statement that transfers control to
the end of the program, bypassing C.

TESTING CHANGES AND ADDITIONS TO PROGRAMS

If a program runs correctly, and changes
or additions might improve its efficiency,
a debug packet can be used to test changes
without modifying the original source
program.

If the changes to be incorporated are in
the middle of a paragraph, the entire

~ragraph with the changes included must be
~itten in the debug packet. The last
tatement in the packet should be a GO TO
tatement that transfers control to the
ext procedure to be executed.

There are usually several ways to
erform an operation. Alternative methods
an be tested by putting them in debug
ackets.

The source program library facility can
e used for program checkout by placing a
ource program in a library (see the
hapter "Librarian Functions"). Changes or
dditions to the program can be tested by
sing the BASIS card and any number of
NSERT and DELETE cards. Such changes or
,dditions remain in effect only for the
,uration of the run.

A debug packet can also be used in
:onjunction with the BASIS card to debug a
Irogram or to test deletions or additions
~o it. The debug packet is inserted in the
.nput stream immediately following the
!ASIS card and any INSERT or DELETE cards.

If a serious error occurs during
~xecution of the problem program, the job
Ls abnormally terminated; any remaining
steps ~re bypassed; and a program phase
lump is generated. The programmer can use
the dump for program checkout. (However,
~ny pending transfers to an external device
nay not be completed. For example, if a
READY TRACE statement is in effect when the
job is abnormally terminated, the last card
number may not appear on the external
device.) In cases where a serious error
occurs in other than the problem program
(for example, Supervisor), a dump is not
produced. Note that program phase dumps
can be suppressed if the NO DUMP option
of the OPTION control statement has been
specified for the job, or if NODUMP was
specified at system generation time. and
is not overridden by the DUMP option for
the current job.

HOW TO USE A DUMP

When a job is abnormally terminated due
to a serious error in the problem program,
a message is written on SYSLST which
indicates the:

1. Type of interrupt (for example,
program check)

2. Hexadecimal address of the instruction
that caused the interrupt

3. Condition code

4. Reason for the interrupt (for example,
data exception)

The instruction address can be compared
to the Procedure Division map. The
contents of LISTX provide a relative
address for each statement. The,load
address of the module (which can be
obtained from the map of virtual storage
generated by the Linkage Editor) must be
subtracted from the instruction address to
obtain the relative instruction address as
shown in the Procedure Division map. The
PMAP=nnnnnn CBL option can be used to
relocate LISTX addresses so that this
calculation need not be done. If the
interrupt occurred within the COBOL
program, the programmer can use the error
address and LIST X to locate the specific
statement in the program which caused a
dump to be taken. Examination of the
statement and the fields associated with it
may produce information as to the specific
nature of the error.

Figure 66 is a sample dump which was
caused by a data exception. Invalid data
(i.e., data which did not correspond to its
usage) was placed in the numeric field B as
a result of redefinition. The following
discussion illustrates the method of
finding the specific statement in the
program which caused the dump. Letters
identifying the text correspond to letters
in the program listing.

o
I

The program interrupt occurred at HEX
LOCATION 28C04~ This is indicated in
the SYSLST message printed just before
the dump.

The linkage editor map indicates that
the program was loaded into address
28078. This is determined .by
examining the load point of the
control section TESTRUN. TESTRUN is
the name assigned to the program
module by the source coding:

PROGRAM-ID. TESTRUN.

The specific instruction that caused
the dump is located by subtracting the
load address from the interrupt
address (that is, subtracting 28070
from 28C04). The result, B8C, is the
relative interrupt address and can be
found in the object code listing. In
this case the instruction in question
is an AP (add decimal).

Program Checkout 251

The left-hand column of the object
code listing gives the compiler
generated card number associated with
the instruction. It is card 67. As
seen in the source listing, card 67
contains the COMPUTE statement.

Additional details about reading a dump
are found in the chapter "Interpreting
Output."

ERRORS THAT CAN CAUSE A DUMP

A dump can be caused by one of many
errors. Several of these errors may occur
at the COBOL language level while others
can occur at the job control level.

The following are examples of COBOL
language errors that can cause a dump:

1. A GO TO statement with no
procedure-name following it may have
been improperly initialized with an
ALTER statement. The execution of
this statement will cause an invalid
branch to be taken and results will be
unpredictable.

2. Moves of or arithmetic calculations
using numeric fields that have not
been properly initialized.

For example, neglecting to initialize
the object of an OCCURS clause with
the DEPENDING ON option, or
referencing data fields prior to the
first READ statement may cause a
program interrupt and a dump.

3. Invalid data placed in a numeric field
as a result of redefinition.

4. Input/output errors that are
nonrecoverable.

5. Items with subscripts whose values
exceed the defined maximum value can
destroy machine instructions when
moved.

6. Attempting to execute an invalid
operation code through a system or
program error.

7. Generating an invalid address for an
area that has address protection.

8. Subprogram linkage declarations "that
are not defined exactly as they are
stated in the calling program.

9. Data or instructions can be modified
by entering a subprogram and
manipulating data incorrectly. A

252

COBOL subprogram can acquire invalid
information from the main program,
e.g., a CALL statement using a
procedure-name and an ENTRY statement
using a data-name.

10. An input file contains invalid data
such as a blank numeric field or data
incorrectly specified by its data
description.

The compiler does not generate a test
to check the sign position for a valid
configuration before the item is used
as an operand. The programmer can
test for valid data by means of the
numeric class test and, by using the
TRANSFORM statement, convert it to
valid data under certain conditions.

For example, if the units position of
a numeric data item described as USAGE
IS DISPLAY contained a blank, the
blank could be transformed to a zero,
thus forcing a valid sign.

11. Division by zero without an ON SIZE
ERROR clause will cause a data
exception.

LOCATING A DTF

One or more DTFls are generated by the
compiler for each file opened in the COBOL
program. All information about that" file
is found within the DTF or in the fields
preceding the DTF. See the chapter
"Detailed processirig Capabilities" for the
type of information available and its
location.

A particular DTF may be located in an
execution-time dump as follows: "

1. Determine the order of the DTF address
cells in the TGT from the DTF numbers
shown for each file-name in the
glossary.

Note: Since the order is the same as
the FD's in the Data Division, the
order can be determined from the
source program if the SYH option was
not used (i.e., no glossary was
printed) •

2. Find the relative starting address of
the block of DTF cells from the TGT
listing in the Memory Map.

3. Calculate the absolute starting
address of the block by adding the
hexadecimal relocation factor for the
beginning of the object module as
given in the linkage editor MAP.

~. Allowing one fullword per DTF cell,
count off the cells from the starting
address found in step 3, using the
order determined in step 1 to locate
the desired DTF cell.

5. If more than one DTF is generated for
a file, the above procedure should be
followed using the PGT and the SUBDTF
cells rather than the TGT and the
DTFADR cells.. The order of multiple
DTF·s in storage is dependent on the
OPEN option as follows:

a .• INPUT

b. OUTPUT

c. I-O or INPUT REVERSED

The following discussion illustrates the
lethod of finding the DTFs in the sample
)rogram in Figure 66. Letters identifying
~he text refer to letters in the program
.isting.

~ The DTF for FILE-l precedes the DTF
for FILE-2.

DTFADR CELLS begin at relative
location A4C.

Since the relocation factor is 28078,
the DTFADR CELLS begin at location
28AC4 in the dump.

The DTF for FILE-l begins at location
28280, and the DTF for FILE-2 begins
at location 28508.

LOCATING DATA

The location assigned to 'a given
data-name may similarly be found by using
the BL number and displacement given for
that entry in the glossary, and then
locating the appropriate one fullword BL
cell in the TGT. The hexadecimal sum of
the glossary displacement and the contents
of the cell should give the relative
address of the desired area. This can then
be converted to an absolute address as
described above.

Since the problem program in Figure 66
interrupted because of a data exception,

the programffier should locate the contents
of field B at the time of the interrupt.
This can be done as follows:

Locate data-name B in the glossary.
It appears under the column headed
SOURCE-NAME. Source-name B has been
assigned to base locator 3 (i.e4,
BL =3) with a displacement of 058.
The sum of the value of base locator 3
and the displacement value 50 is the
address of data-name B.

The Register Assignment table lists
the registers assigned to each base
locator. Register 6 has been assigned
to BL =3.

The contents of the 16 general
registers at the time of the interrupt
are displayed at the beginning of the
dump. Register 6 contains the address
00028178.

The location of data-name B can now be
determined by adding the contents of
register 6 and the displacement value
58. The result, 281DO, is the address
of the leftmost byte of the 4-byte
field B.

Note: Field E contains F1F2F3C4.
This is external decimal
representation and does not correspond
to the USAGE COMPUTATIONAL-3 defined
in the source listing.

The location assigned to a given
data-name may also be found by using
the BL CELLS pointer in the TGT Memory
Map. Figure 64 indicates that the BL
cells begin at location 28AB8 (add A40
to the load point address, 28078. of
the object module). The first four
bytes are the first BL cell, the
second four bytes are the second BL
cell, etc. Note that the third BL
cell contains the value 28178. This
is the same value as that contained in
register 6.

~ Note: Some program errors may destroy
the contents of the general registers
or the BL cells. In such cases.
alternate methods of locating the
DTF's are useful.

Program Checkout 253

~~ JOB TESTR25 A=SK22,0=460
~~ OPTION LINK,LOG,NODECK,LISTX,lIST,SYM,ERRS
/~ ASSGN SYSLST,X'OOE'
~~ EXEC FCOBOL,SIZE=128K

1 IBM DOS~VS COBOL REL 3.0 PP NO. 5746-CBl
CBL SXREF,TRUNC,VERB,ADV,LIB,OPT,APOST
CBL LANGLVL(2),APOST

00001 IDENTIFICATION DIVISION.
00002 PROGRAM-ID. TESTRUN.
00003 AUTHOR. PROGRAMMER NAME.
00004 INSTALLATION. NEW YORK PROGRAMMING CENTER.
00005 DATE-WRITTEN. JULY 12, 1968.
00006 DATE-COMPILED. 02/25/81
00007 REMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR
00008 COBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK AS
00009 INPUT.
00010 ENVIRONMENT DIVISION.
00011 CONFIGURATION SECTION.
00012 SOURCE-COMPUTER. IBM-370-H50.
00013 OBJECT-COMPUTER. IBM-370-H50.
00014 INPUT-OUTPUT SECTION.
00015 FILE-CONTROL.
00016 SELECT FILE-1 ASSIGN TO SYS001-UT-3330-S-SAMPL1.
00017 SELECT FILE-2 ASSIGN TO SYS003-DA-3330-S-SAMPL2.
00018 DATA DIVISION.
00019 FILE SECTION.
00020 FD FILE-1
00021 LABEL RECORDS ARE STANDARD
00022 BLOCK CONTAINS 5 RECORDS
00023 RECORD CONTAINS 20 CHARACTERS
00024 RECORDING MODE IS F
00025 DATA RECORD IS RECORD-I.
00026 01 RECORD-I.
00027 02 FIELD-A PICTURE IS X(20).
00028 FD FILE-2
00029 LABEL RECORDS ARE STANDARD
00030 BLOCK CONTAINS 5 RECORDS
00031 RECORD CONTAINS 20 CHARACTERS
00032 RECORDING MODE IS F
00033 DATA RECORD IS RECORD-2.
00034 01 RECORD-2.
00035 02 FIELD-A PICTURE IS X(20)~
00036 WORKING-STORAGE SECTION.
00037 77 KOUNT PICTURE S99 COMP SYNC.
00038 77 NOMBER PICTURE S99 COMP SYNC.
00039 01 FILLER.
00040 02 ALPHABET PICTURE X(26) VALUE 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
00041 02 ALPHA REDEFINES ALPHABET PICTURE X OCCURS 26 TIMES.
00042 02 DEPENDENTS PICTURE X(26) VALUE '0123401234012340123401234
00043 '0'.
00044 02 DEPEND REDEFINES DEPENDENTS PICTURE X OCCURS 26 TIMES.
00045 01 WORK-RECORD.
00046 02 NAME-FIELD PICTURE X.

17.12.40 02/25/8r

Figure 66. Sample Dump Resulting from Abnormal Termination (Part 1 of 7)

254

IBM DOS VS COBOL

00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
000S3

Figure 66.

REL 3.0

02 FILLER PICTURE X VALUE SPACE.
02 RECORD-NO PICTURE 9999.
02 FILLER PICTURE X VALUE SPACE.
02 LOCATION PICTURE AAA VALUE 'NYC'.
02 FILLER PICTURE X VALUE SPACE.
02 NO-OF-DEPENDENTS PICTURE XX.
02 FILLER PICTURE X(7) VALUE SPACES.

01 RECORDA.
02 A PICTURE S9(4) VALUE 1234.

PP NO. 5746-Csl

02 B REDEFINES A PIC S9(7) COMPUTATIONAL-3.
PROCEDURE DIVISION.
BEGIN.

NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
AND INITIALIZES COUNTERS.

STEP-I. OPEN OUTPUT FILE-I. MOVE ZERO TO KOUNT NOMBER.
NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE
CONTAINED IN THE FILE, WRITES THEM ON TAPE, AND DISPLAYS
THEM ON THE CONSOLE.

STEP-2. ADD 1 TO KOUNT, ADD 1 TO NOMBER, MOVE ALPHA (KOUNT) TO
NAME-FIELD. ®
COMPUTE B = B + 1. .. 0
MOVE DEPEND (KOUNT) TO NO-OF-DEPENDENTS.
MOVE NOMBER TO RECORD-NO.

STEP-3. DISPLAY WORK-RECORD UPON CONSOLE. WRITE RECORD-l fROM
WORK-RECORD.

STEP-4. PERfORM STEP-2 THRU STEP-3 UNTIL KOUNT IS EQUAL TO 26.
NOTE THAT THE fOLLOWING CLOSES OUTPUT AND REOPENS IT AS
INPUT.

STEP-5. CLOSE fILE-I. OPEN INPUT fILE-2.
NOTE THAT THE FOLLOWING READS BACK THE fILE AND SINGLES OUT
EMPLOYEES WITH NO DEPENDENTS.

STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-So
STEP-7. If NO-Of-DEPENDENTS IS EQUAL TO '0' MOVE 'Z' TO

NO-Of-DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO
STEP-6.

STEP-So CLOSE fILE-2.
STOP RUN.

17.12.4002/25/81

Sample Dump Resulting from Abnormal Termination (Part 2 of 7)

Program Checkout 255

IBM DOS VS COBOL

INTRNL NAME LVL SOURCE NAME

FD FIlE-l
01 RECORD-l
02 FIELD-A
FD FIlE-2
01 RECORD-2
02 FIELD-A
77 KOUNT
77 NOMBER
01 FILLER
02 ALPHABET
02 ALPHA
02 DEPENDENTS
02 DEPEND
01 WORK-RECORD
02 NAME-FIELD
02 FILLER
02 RECORD-NO
02 FILLER
02 LOCATION
02 FILLER

REL 3.0

DNM=1-148
DNM=1-179
DNM=1-200
DNM=1-217
DNM=1-248 .
DNM=1-269
DNM=1-289
DNM=1-304
DNM=1-320
DNM=1-339
DNM=1-357
DNM=1-375
DNM=1-395
DNM=1-411
DNM=I-435
DNM=I-455
DNM=I-474
DNM=2-000
DNM=2-019
DNM=2-037
DNM=2-056
DNM=2-082
DNM=2-101
DNM=2-121
DNM=2-132

02 NO-OF-DEPENDENTS
02 FILLER

02 A J 02 B

01 RECORDA CD
MEMORY MAP

TGT

SAVE AREA
SWITCH
TALLY
SORT SAVE
ENTRY-SAVE
SORT CORE SIZE
NSTD-REELS
SORT RET
WORKING CELLS
SORT FIl E SIZE
SORT MODE SIZE
PGT-VN TBL
TGT-VN TBL
SORTAB ADDRESS
LENGTH OF VN TBL
LNGTH OF SORUB
PGM ID
A(IHITl>
UPSI SWITCHES
DEBUG TABLE PTR
CURRENT PRIORITY
TA LENGTH
PRB L1 CEL L PTR
UNUSED
COUNT TABLE ADDRESS
VSAM SAVE AREA ADDRESS
UtlUSED
COUNT CHAIN ADDRESS
UNUSED
DBG R14SAVE
UtlUSEO
UNUSED
OBG Rll SAVE
PCS LI T PTR
DBG ItIF PTR
OVERFLOW CELLS ®
BL CELLS
DTFADR CELLS
FIB CELLS
TH1P STORAGE
TEf1P STORAGE-2
TEr1P S TORAGE-3
H~1P S 1 ORAGE-4
BLL CELLS
VLC CELLS
SSl CELLS
INDEX CELLS
SUBA!)R CEL l S
Ot/CTL CELLS
PFMCTl CELLS
PFMSAV CEL L S
VN CELLS
SAVE AREA =2
SAVE AREA =3
XSASIoJ CELLS
XSA CellS
PARAM CEL L S
RPTSAV AREA
CHECKrT CTR
IOPTR CELLS
DEBUG TABLE

00828

00828
00870
00874
00878
0087C
00880
00884
00886
00888
009B8
009BC
009CO
009C4
009C8
009CC
009CE
00900
00908
0090C
009E4
009E8
009E9
009EC
009FO
009F4
009F8
009FC
00A04
00A08
OOAIC
00A20
00A24
00A28
00A2C
00A30
00A40
00A40 CD 00A4C
00A54
00A5B
00A60
00A60
00A60
00A60
00A64
00A64
00A64
00A64
OOA6C
00A6C
DOMC
00A70
OOfl74
00A74
00fl74
001\74
00A74
00A78
OOA78
OOA78
OOA78

PP NO. 5746-CBl

BASE OISPl INTRNL NAME

DTF 01 ONM 1-148
Bl 1 000 DtlM 1-179
Bl 1 000 DtIM 1-200

DTF 02 ONM 1-217
Bl 2 000 Dtm 1-248
BL 2 000 ONM 1-269
BL 3 000 DNM 1-289
BL 3 002 OtiM 1-304
BL 3 008 ONM 1-320
Bl 3 008 01'11'1 1-339
BL 3 008 DtlM 1-357
BL 3 022 OtiM 1-375
BL 3 022 DtIM 1-395
Bl 3 040 ONM 1-411
BL 3 040 ONM 1-435
Bl 3 041 ONM 1-455
BL 3 042 ONM 1-474
BL 3 046 ONM 2-000
BL 3 047 ONM 2-019
BL 3 04A OtiM 2-037
BL 3 04B ONM 2-056
Bl 3 04D DNt1 2-082
Bl 3 058 ONM 2-101
Bl 3 058 DtlM 2-121
BL 3 058 ONM 2-132

17.12.40 02/25/81

DEFINITION

OS OCL20
OS 20C

OS OCl20
OS 20C
OS IH
OS IH
OS OCL52
OS 26C
OS lC
OS 26C
OS lC
OS OCl20
OS lC
OS lC
OS 4C
OS lC
OS 3C
OS lC
OS 2C
OS 7C
OS OCl4
DS 4C
OS 4P

USAGE

OTFSD
GROUP
OISP
DTFSO
GROUP
OISP
COMP
COtlP
GROUP
OISP
OISP
OISP
OISP
GROUP
OISP
OISP
OISP-NM
OISP
OISP
OISP
OISP
OISP
GROUP
DISP-tlM
COMP-3

R 0 Q M

R 0

R 0

R

F

F

Pigure 66. Sample Dump Resulting from Abnormal Termination (Part 3 of 7)

256

IBM DOS VS COBOL REL 3.0 PP NO. 5746-CBl 17.12.40 02/25/81

REGISTER ASSIGHMEHT

REG 6 BL ~l® REG 7 BL
REG 8 BL =2

65 ADD 000B30 48 30 C 036 LH 3,036(0.12) LITH
000B34 4A 30 6 000 AH 3,000(0,6) OH~1=1-289
000B38 4E 30 0 230 CVO 3,230(0,13) TS=01
000B3C 07 05 0 230 D 230 XC 230(6,13),230(13) TS=-01 TS=01
000B42 94 OF D 236 HI 236(13).X'OF' T5=01+6
000B46 4F 30 D 230 CVB 3.230(0,13) T5=01
000B4A 40 30 6 000 5TH 3,000(0,6) DIH1=1-289

65 ADD 000B4E 48 30 C 036 Lli 3,036(0,12) LI T +6
000B52 4A 30 6 002 AH 3,002(0.6) OIH1=1-304
000B56 4E 30 0 230 CVO 3,230(0,13) T5=01
000B5A 07 05 0 230 o 230 XC 230(6,13).230(13) TS=01 TS=01
000B60 94 OF 0 236 HI 236(13),X'OF' TS=01+6
000B64 4F 30 0 230 CVB 3,230(0,13) TS=01
000B68 40 30 6 002 5TH. 3,002(0.6) ONt1=1-304

65 MOVE 000B6C 41 40 6 008 LA 4,008(0,6) OHM=1-357
000B70 48 20 6 000 LH 2,000(0.6) OHM=1-289
000B74 4C 20 C 036 MH 2,036(0,12) LIT+6
000B78 lA 42 AR 4,2
000B7A 5B 40 C 034 5 4,034(0.12) LIT 4
000B7E 50 40 0 23C ST 4,23C(0,13) SBS 1
000B82 58 EO 0 23C L 14,23C(0,13) SBS 1
000B86 02 00 6 040 E 000 MVC 040(1,6),000(14) OHM 1-435 ONM=I-357

67 COMPUTE OOOBac FA 30 6 058 C 03D AP 058(4,6),030(1,12) OHM 2-132 LIT+13

CD

Figure 66. Sample Dump Resulting from Abnormal Termination (Part 4 of 7)

Program Checkout 257

// EXEC LNKEDT

PHASE XFR-AD LOCORE HICORE
PHASEMMM 028078 028078 02B3F3

UNRESOLVED ADCON AT OFFSET 0002A3B8

010 UNRESOLVED ADDRESS CONSTANTS
// DLBL SAMPLl.'TRFILE'.O.SD
// EXTENT SYSOOl •• l.0,5700,76
// DLBL SAMPL2,'TRFILE',0.SD
// EXTENT SYS003,,1,0,5700,76
// EXEC .SIZE=128K

DSK-AD
30E 10 02

LABEL

TESTRUN

IJGFIEWZ
MIJGFIZI.JZ
MIJGFIZZZ
MIJGFIEZZ

I JGFOHJZ
*IJGFOZI.JZ
MIJGFOZZZ
*IJGFOEZZ

IlBDDSPO
+IlBDDSPI

IJJCPDV
+IJJCPDVI
*IJJCPDV2

IlBDDSSO
+IlBDDSSl
+IlBDDSS2
+IlBDDSS3
+IlBDDSS4
+IlBDDSS5
+IlBDDSS6
+IlBDDSS7
+IlIlDDSS8
IlBD~lNSO
IlBDPRf10
IlBDSAEO

+IlBDSAEl
IlBDSIOO

+IlBDSIOl
IlBDCLKO
IlBDCt1r10

+IlBDCMMl
IlBDTC20
WXTRtl
WXTRN
WXTRN
WXTRN
WXTRN
WXTRN
WXTRN
WXTRN
WXTRN
WXTRN
WXTRN

LOADED REL-FR OFFSET INPUT
RElOCATABLE

028078 028078 000000 SYSLNK

028EAO 028EAO 000E28 IJGFI EWZ
028EAO
028EAO
028EAO
029150 029150 001008 IJGFOEWZ
029150
029150
029150
029440 029440 0013C8 IlBDDSPO
029850
029988 029988 001910 IJJCPDV
029988
029988
029C88 029C88 OOlCIO IlBDDSSO
029ED8
029ED4
029F90
029CAC
029D5C
029DAE
029D84
029CDC
029FAO 029FAO 001F28 IlBDMNSO
029FBO 029FAO 001F38 IlBDf'lNSO
02A118 02A118 0020AO IlBDSAEO
02A15E
02A3C8 02A3C8 002350 IlBDSIOO
02A3CC
02AEA8 02AEA8 002E30 IlBDCLKO
02AEF8 02AEF8 o 02E8 0 IlBDCf'lMO
02AEFC
02B300 02B300 003288 IlBDTC20
STXITPSI~
ILBDDBG2
ILBDVBll
IL BDSPAO
ILBDSPAI
!LBDTCOO
!LBDTCOI
ILBDDBGO
ILBDDBG7
ILIlDDBG8
ILBDTC30

Figure 66. sample Dump Resulting from Abnoraal Teraination (Part 5 of 7)

258

®

OS031 PROGRAM CHECK INTERRUPTION - HEX LOCATION 028C04 - CONDITION CODE 2 - DATA EXCEPTI
OSOOI JOB TESTR25 CMICEL ED

CD OS071 PROBLEM PROGRAM PSW 0310200000028COA
TESTR25 02/25/81 17.15.10 CPUIO=FF02113330330000

ENDING TASK REGS

GR O-F 8002A980 00028280 00000001 00000001 00028180 50028E50 00028178 000286F8
00028838 000280F8 00028078 00028B58 00028AF8 000288AO 00028180 4002A974

FP REG 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
CR O-F 81)800C60 00000000 FFFFFFFF FFFFFFFF 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 AFOOOOOO 00000200

COMREG BG AOOR IS 000270

SYSCOM ADDRESS IS 000334

PUBTAB ADDRESS IS 001300

PUBOWN ADDRESS IS 0014E2

PUB2 ADDRESS IS 02522C

LUBTAB BG AOOR IS 00009C

OIBTAB BG AOOR IS 00187C

PIBTAB ADDRESS IS 00001C

PIB2 ADDRESS IS OOOCBC

SMCB SVA AOOR IS 010738

SMCB BG AOOR IS 010AAO

SMCB F4 AOOR IS 0109FO

SMCB F3 AOOR IS 010940

SMCB F2 AOOR IS 010890 CD SMCB F1 AOOR IS 0107EO

000000 0030A700 00000000 00300400 00000000 00000000 00000270 03002000 0002BOE8 IE
000020 03000000 00224008 030FOOOO 000067E0 00000000 00000000 030FOOOO 000067EO IE
028000 07C8C1E2 C55C5C5C 03102000 00028COA 000280F8 00028078 00028B58 00028AF8
028020 000288AO 00028180 4002A974 8002A980 00028280 00000001 00000001 00028180
028040 50028E50 00028178 000286F8 00028838 00009192 07069560 00000000 00000000
028060 00000000 00000000 00000000 00000000 00000000 00000000 05F00700 900EFOOA
028080 47FOF082 00028078 00028078 00047FFF 00000048 001l07FF 00000000 00000000
0280AO 000280EO 4027F002 07C8C1E2 00000000 00047FFF 00028078 00048800 4027F1BC
0280CO 00000000 00000000 00000000 00000000 00000000 00000000 00028178 000286F8
0280EO 00028838 000280F8 00028078 00028078 00028AF8 000288AO 00000000 58COFOC6
028100 58EOC004 5800FOCA 9500EOOO 4770FOA2 961000(.8 92FFEOOO 47FOFOAC 98CEF03A
028120 90ECOOOC 1850989F FOBA9110 00480719 07FF0700 000280F8 00028078 00028078
028140 00028AF8 000288AO 00028B58 0002800E C306C206 F2F6FOFO E3C5E2E3 09E40540
028160 00000000 FOF261F2 F561 F8Fl FlF74BFl 24BF4FO 00000000 00010001 03404040
028180 C1C2C3C4 C5C6C7C8 C9010203 04050607 809E2E3 E4E5E6E7 E8E9FO F 1 F2F3F4FO
0281AO FIF2F3F4 FOFIF2F3 F4FOFlF2 F3F4FOFl 2F3F4FO FOt=OFOFO C140FOFO FOF04005
0281CO E8C340Cl C1404040 40404040 FOFOFOFO iFiF2F3C4! FOFOFOFO 00000000 00000000
0281EO 00000000 --SAME--
028200 05EF0700 OOOOAOOO 00000000 00000218 00000001 00000014 02100000 05000000
028220 00000000 00048890 50028B94 50028B94 00000000 00000000 0002A844 0002A844
028240 0002A592 0002A6A4 00000000 00000000 00000000 50028B94 00028108 00000000
028260 00000000 00000000.00000014 00000000 00000000 00000000 00000000 0(.000000
028280 I~OO082~4 ~~~goall 0004C200 00000000 0529A800 204CE2Cl 040703F1 40050003
0282AO 26000000 00028000 00000000 400286FO 80000000 0000012F 00120000 012COOOO
0282CO 00000064 03FF0012 37040063 012COOOO 000032E6 58210058 000286F8 00000014
0282EO 0002875B 8A02Al18 070282BA 40000006 310282BC 40000005 080282FO 00000000
028300 10028760 0000006C 310282BC 40000005 08028308 00000000 1E028318 30000001

~
028320

~~g~M~~ ~~~~i~~~' 2~2~2~~~ C3E340C4 CIE3C140 40404040 40404040 4009C504
028340 40404040 40404040 40404040 40E3C5E2 E3C5C440
028360 4 404040 0 0 040 40404040 4040C6C1 00008204 00000101 000282E8 00000000
028380 04029150 2048E2Cl 040703F1 40040000 00000000 00000800 00000000 000286FO
0283AO 80000000 00000000 00000000 OOOOFFOO 00000064 00000000 37040063 FFFFFFFF
0283CO FF0032E6 58210058 000286F8 00000014 0002875B 8A02A118 070282BA 40000006
0283EO 310282BC 40000005 080282FO 00000000 10028760 0000006C 310282BC 40000005
028400 08028308 00000000 lE028318 30000001 40404040 404040C3 060909C5 C3E340C4
028420 C1E3C140 40404040 40404040 4009C504 C10902E2 40404040 40404040 40404040
028440 40404040 40404040 40E3C5E2 E3C5C440 40404040 40404040 40404040 4040C6C1
028460 00000000 --SAME--
028480 00000000 00000000 05EF0700 OOOOAOOO 00000000 0000021C 00000001 00000014
0284AO 00000000 05000000 00000000 00000000 00000000 00000000 00000000 00000000
0284CO 0002A844 0002A844 0002A844 0002A844 00000000 00000000 00000000 00000000
0284EO 00028460 00000000 00000000 00000000 00000014 00000000 00000000 ·00000000
028500 o 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 10 0 0 0 8 2 0 4 000001031 00028570 00000000 04028EAO 204AE2C1
028520 040703F2 40040000 00000000 00000800 00000000 00028700 80000000 00000000

Figure 66. Sample Dump Resulting from Abnormal Termination (Part 6 of 7)

Program Checkout 259

028540 00000000 OOOOFFOO 00000000 00000000 38040063 FFFFFFFF FF02A15E 58210058
028560 00028838 00000014 0002889B 8E02A118 07028542 40000006 31028544 40000005
028580 08028578 00000000 06028838 00000064 06C640E3 C5E2E360 40400230 00000004
0285AO 00000040 05E3C9E2 40C4C9E2 E309C9C2 E4E3C906 0540C306 C2060340 F7F4(.040
0285CO 40404040 --SAME--
028600 40404040 40404040 C5090906 09E240C5 05C306E4 05E3C509 C5C44040 40404040
028620 40404040 --SAME--
028640 40404040 40404040 40C606D9 4006C6C6 C9C3C9C1 0340E4E2 C540D6D5 03E84040
028660 40(.04040 40404040 4040C9C2 0460F3F7 F04B4040 40404040 4040(.040 4040405C
028680 40F8FOF4 FOF361C6 C3C3E3E2 61F7F7C3 F3F2E361 C9C20440 6040DIC1 40404040
0286AO 40404040 40404040 40404040 40404040 4040C306 07E809C9 C7C8E340 F1F9F7F4
0286CO 40606060 60606060 60606060 60606060 60606060 60606060 60606060 60606060
0286EO 60606060 --SAME--
028720 60606060 60606060 60606060 60606060 60606060 60606060 00000000 00000000
028740 00000000 --SAME--
028760 05EF0700 00002000 50000000 00000218 00000001 00000078 00000000 00000000
028780 00000000 --SAME--
0287AO 00000000 00000000 00000000 00000000 00000000 00000000 00028738 00000000
0287CO 00000000 --SAME--
0287EO 00008000 00000102 00028808 00000000 0002B240 08340909 00028819 00000000
028800 07004120 EOOOOOOO 09028899 20000078 00028380 00000000 00000000 00000000
028820 000001F8 00000000 00000000 00000000 00000000 00000000 00008204 00000102
028840 000288AO 00000000 0602B7C8 205A08E2 E2FOF5C1 40040000 00000000 00000800
028860 00000000 00028F70 80000000 00000000 00000000 OOOOFFOO 00000000 00000000
028880 FFOOO063 FFFFFFFF FF02F7A6 07000700 00028FE4 00000103 0002904B 8C02F760
0288AO 00000000 00000000 0002A040 70028E2A 00029FBO 00028078 00028078 00047FFF
0288CO 00000048 001107FF 00000000 00000000 000280EO 4027F002 000280F8 00028078
0288EO 00028078 00028AF8 3112804B 00000000 00000000 00028B58 00000000 00000000
028900 04108908 50028B94 4002A974 8002A980 00028280 000286F8 00000048 00028280
028920 50028E50 00028178 000286F8 00028838 000280F8 00028078 00028B58 00028AF8
028940 5002A30A 00028280 00028280 00028280 000286F8 00000048 02FOF04B 00000000
028960 oboooooo 00000000 00000000 00000000 00000000 0002B118 00000000 00000000
028980 00000000 OOOOFFOO 00000000 00000000 3004004F FFFFFFFF FF032A5E 58210058
0289AO 0002B178 00000050 0002B1C7 8E032A18 07028982 40000006 31028984 40000005
0289CO 080289B8 00000000 0602B178 00000050 0702894A 00000006 00000000 50HOOC8
0289EO 00000000 --SAME--
028A20 000019A8 0002A710 00029850 0002BA70 00000000 00000000 00028B20 00028AF~
028A40 00000228 0004125C E3C5E2E3 09E40540 00028078 00000224 000002AO 00000250
028A60 00000000 00028B54 000011AA 00001118 00001098 00001506 000011EA 00000AA8

® 8A80 00001266 000012A2 0000165E 00000000 FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO
02 0000000 00000000 00000000 00028070 F8001C1C 00285C29 m0028tF8 000288i8
028ACO 00028178 000282 o 28 00028508 00000000 0000001C 00000 00 000281 a
028AEO 05 00 0 00 00028C 00000D7C OAOOOEEC 00000E38 00029AF8 00029FAO
028BOO 3C8 00029440 0002B300 0002A3CC 00028CAO 00028CAO 00028060 00028064
028 00028CA6 00051600 00000000 00000001 00010000 001C001A 00040014 00280028

B40 00000000 COOOOOOO E6060902 6009C5C3 0609C48C 00028B58 58BOC05C 58100224
028B60 412010FO 02EF2000 10005810 02244B10 C04094BF 10005820 02185800 02240510
028B80 50001008 4510100E 00028280 ·041058FO C00805EF 50200218 58700218 02016000
028BAO C0300201 6002C030 4830C036 4A306000 4E300230 07050230 0230940F 02364F30
028BCO 02304030 60004830 C0364A30 60024E30 02300705 02300230 940F0236 4F300230
028BEO 40306002 41406008 48206000 4C20C036 1A425B40 C0345040 023C58EO 023C0200
028COO 6040EOOO FA306058 C0304140 60224820 60004C20 C0361A42 5B40C034 50400240
028C20 58F00240 0200604B FOO09240 604C4830 60024E30 0230F331 60420236 96F06045
028C40 58FOCOOC 051FOO02 00000014 00000220 0040FFFF 02137000 60405810 02245820
028C60 02184830 C0421841 4B40C044 58404000 02034054 C01C0203 4050C018 96804050
028C80 58F04068 05EF1841 4B40C040 91404000 4710B148 50200218 58700218 47FOB148
028CAO 58100248 07F10203 02440248 4100B15C 50000248 48306000 49JOC03E 4780B16C
028CCO 47FOB050 02030248 02445800 02240510 50001008 4510100E 00000000 001458FO
028CEO C00805EF 58100224 412010FO 02EF1000 20005810 02284120 10F002EF 20001000
028000 58100228 4B10C040 94BF1000 58000228 07000510 50001008 45101~OE 00000000
028020 001058FO C00805EF 58100228 18414B40 C0445840 40000203 4054C024 4IFOB208
028040 50F04050 947F4050 58F04060 05EF5020 021C5880 021C0213 60408000 47FOB20C
028060 47FOB252 95F0604B 4770B224 9540604C 4770B224 92E9604B 9240604C 5810C04C
028080 5010024C 4120024C 58FOCOOC 051F8001 1000000B OC000050 00000000 00140[)00

Figure 66. Sample Dump Resulting from Abnormal Termination (Part 7 of 7)

Program Checkout 259.1

EXECUTION STATISTICS

The DOS/VS COBOL ~ompiler provides
several methods for testing, debugging, and
optimizing programs. Use of the symbolic
debugging features is an efficient method
for testing and debugging a program. and is
described in the chapter "Symbolic
Debugging Features". The chapter entitled
"Program Checkout" contains information
useful for testing and debugging programs
without the symbolic debugging features.
The OPT option, described in the chapter
"Preparing COBOL Programs for Processing",
is an efficient method for automatically
optimizing a program.

This chapter describes execution
statistics -- how they may be obtained,
some sample output, and some uses of the
output.

OBTAINING EXECUTION STATISTICS

Execution statistics are invoked via the
CBL card at compile time. No source
language coding changes are required. The
execution frequency statistics option,
COUNT, facilitates testing, debugging, and
optimizing by providing the programmer with
verb counts at the following times.

• STOP RUN

• GOBACK in the main program

• Abnormal termination of a job

When COUNT is specified, the following
items should be taken into account:

1. If COUNT and STXIT are desired, either
STIXIT must be requested in the
program unit requesting COUNT, or, the
program unit requesting COUNT must be
entered before the program unit
requesting STIXIT.

2. When COUNT is specified, the compiler
divides the program into blocks of
verbs. When the statistics are
printed, the last block of verbs
executed in each program unit is
indicated. If the program abnormally
terminates, the statement causing the
abnormal termination can be determined
(by using the symbolic debugging
features, for example). The
programmer should then subtract one
from the verb count for each verb
flagged which follows the abending
verb.

260

3. To obtain execution statistics if
COUNT is requested for one of many
program units, either all programs
must be compiled by at least DOS/VS
Release 2 compiler, or the program
must terminate in a program unit
compiled on at least a DOS/VS COBOL
Release 2 compiler" or the program
must terminate in at least a DOS/VS

,COBOL library Release 2 subroutine.

4. If COUNT is requested, the user must
specify the SIZE parameter on his load
module ~XEC card. The dynamic space
required for COUNT is approximately
512 bytes plus 80 bytes per program
unit being monitored, and four bytes
per count block (see the compiler
output statistics). The requirements
for each program unit are rounded to
the next 128-byte boundary.

5. The OTHERWISE verb is treated as if
the user coded the ELSE verb.

Debugging and Testing

The execution statistics clearly
identify the following areas of the
program:

• Untested and weakly tested areas of the
program

• The last blocks entered and executed

• possible sources of unnecessary code

• The most heavily used parts of the
program; that is, those parts most
susceptible to changes.

OPTIMIZATION METHODS

Based on execution frequency and timer
statistics, the following types of
optimization can be implemented by the
user:

• Resequencing the program

• Insight into SYMDMP

• Common expression elimination

• Backward movement

• Unrolling

• Jamming

• Unswitching

• Incorporating procedures inline

• Tabling

• Efficiency guidelines

Note, however, that each optimization
technique can result in more inefficient
code if the statistics used in optimizing
the program are not representative of the
normal program flow. In addition, it is
recommended that any optimization methods
implemented be documented in the program.

Resequencing the Proqram

The COBOL Procedure Division should be
organized as follows:

1. All frequently-used paragraphs or
sections should be located near the
routines that use them.

2. All infrequently-used paragraphs or
sections should be grouped together
and apart from frequently-used
routines.

3. The most frequently-referenced data
items should be placed in the
beginning of the working-Storage
sections.

Insight into SYMDMP Output

The area where dynamic. symbolic dumps
are to be used can be pointed to by the
execution statistics. Knowledge of what
area of code .is executed and how often it
is . executed sh'ould give the user
information on what sections should be
further investigate~. '

Common Expression Elimination

This technique is designed to eliminate
unnecessary arithmetic calculations. An
arithmetic expression calculation is
considered unnecessary if it represents a
value calculated elsewhere that will always
be used without modification. One such
example would be an arithmetic expression
whose operands are not redefined or
reevaluated, but the expression is
recalculated.

Backward Movement

This technique facilitates woving
calculations and other operations from an
area of code frequently executed to an area
less frequently executed. For example, an
expression calculated within a PERFORMed
procedure (using a Format 2, 3, or 4
PERFORM statement) which always yields the
same value for that PERFORM statement could
be calculated in-line or in another
procedure which would be PERFORMed just
prior to the regularly PERFORMed procedure.
Another example might be an expression
which is calculated in many procedures
which are often PERFORMed in succession.
This expression could be removed from all 41
the procedures and calculated just once
prior to the procedures.

unrolling

Procedures which are frequently executed
may be expanded so that the statements
within the procedure are repeated, with
slight modification, to reduce the
procedure overhead. For example,

PERFORM YEARLY-GROSS-CALC VARYING
WEEK-NO
FROM 1 BY 1 UNTIL WEEK-NO
GREATER THAN 52.

YEARLY-GROSS-CALC.
ADD GROSS-SALARY (WEEK-NO) TO
YEARLY-GROSS

could be replaced by

PERFORM YEARLY-GROSS-CALC VARYING
WEEK-NC
FROM 1 BY 4 UNTIL WEEK~NO
GREATER ,THAN 52.

YEARLY-GROSS-CALC.

ADD GROSS-SALARY (WEEK-NO)"
GROSS-SALARY (WEEK-NO+1),

Execution Statistics 260.1

GROSS-SALARY (WEEK-NO+2), GROSS
SALARY (WEEK-NO+3)
YEARLY-GROSS.

In addition, indexing might be useful in
this example.

Jamming

In some instances, two procedures can be
merged into one procedure, thereby saving
some procedure overhead. An example of
this might be replacing

by

MOVE 0 TO WEEK-NUM.
PERFORM YEARLY-GROSS-CAL 52 TIMES.
MOVE 0 TO WEEK-NUM.
PERFORM YEARLY-NET-CAL 52 TIMES.

YEARLY-GROSS-CAL.
ADD 1 TO WEEK-NUM.
ADD GROSS-SALARY (WEEK-NUM) to
YEARLY-GROSS.

YEARLY-NET-CAL.
ADD 1 TO WEEK-NUM.
ADD NET-SALARY (WEEK-NUM) TO
YEARLY-NET.

MOVE 0 TO WEEK-NUM.
PERFORM YEARLY-CAL 52 TIMES.

YEARLY-CAL.
ADD 1 TO WEEK-NUM.
ADD GROSS-SALARY (WEEK-NUM) to
YEARLY-GROSS.
ADD NET-SALARY (WEEK-NUM) TO
YEARLY-NET.

Unswitching

ProcedUres may contain tests that result
in the same action for any set of
executions of that procedure. In such a
case, the test can be removed from the
procedure and the procedure duplicated.
For example" if "SWITCH" is not changed
within the loop, replace

COUNT=O
PERFORM JOBS-TOTAL-CAL JOB-NUM
TIMES.

JOB-TO'I'AL-CAL.
ADD 1 TO C0UNT.

260.2

by

ADD JOB-COST (COUNT) TO
TOTAL-:-JOB-COST.
IF SWITCH = 0 ADD JOB-EXPENSE
(COUNT) TO 'IOTAL-EXPENSES ELSE

ADD JOB-EXPENSE (COUNT) OVERHEAD TO
TOTAL-EXPENSES.
ADD JOB-INCOME (COUNT) TO
TOTAL-INCOME.
IF SWITCH = 0 ADD JOB-PROFIT (COUNT)
TO TOTAL-PROFITS ELSE
COMPUTE TOTAL-PROFITS.=
TOTAL-PROFITS + JOB-INCOME (COUNT)
- JOB-COST (COUNT) - JOB-EXPENSE
(COUNT) - OVERHEAD.

COUNT = 0
IF SWITCH = 0

PERFORM JOB-TOTAL-CAL-O JOB-NUM
TIMES ELSE
PERFORM JOB-TOTAL-CAL-l JOB-NUM
TIMES.

JOB-TOTAL-CAL-O.
ADD 1 TO COUNT.
ADD JOB-COST (COUNT) TO
TOTAL-JOB-COST.
ADD JOB-EXPENSE (COUNT) TO
TOTAL-EXPENSES.
ADD JOB-INCOME (COUNT) TO
TOTAL-INCOME.
ADD JOB-PROFIT (COUNT) TO
TOTAL-PROFITS.

JOB-TOTAL-CAL-l.
ADD 1 TO COUNT
ADD JOB-COST (COUNT) TO
TOTAL-JOB-COST
ADD JOB-EXPENSE (COUNT), OVERHEAD TO
TOTAL-EXPENSE
ADD JOB-INCOME (COUNT) TO
TOTAL-INCOME
COMPUTE TOTAL-PROFITS =
TOTAL-PROFITS + JOB-INCOME (COUNT)
- JOB-COST (COUNT) - JOB-EXPENSE
(COUNT) - OVERHEAD.

Incorporating ProcedUres Inline

Based on module size, number of
repetitions, modification activities,
future expansion considerations, and
frequency statistics, small procedures can
be moved in-line to minimize overhead
requirements.

Tabling

This technique is designed to replace
many IF statements by one table look-up

(

atement, or by one computed GO TO
atement. For example, if the same
ta-item is tested in many successive IF
atements to set the value of another
ta-item to some constant, and the range
tested values of the original data-item
limited, then a predetermined table of

.lues could be used to assign the value of
Ie second data-item. Similarly, many
Insecutive statements of the form

IF data-\tem-l=some-constant GO TO
some-procedure

)uld be replaced by one computed GO TO
:atement.

:ficiency Guidelines

Based on execution frequency statistics,
1e following types of coding
3efficiencies may be removed.

1. Unaligned decimal places in arithmetic
or numeric comparison operands.

2. Different size operands in moves,
comparisons, or arithmetic operations.

3. Mixed usage in arithmetic or numeric
comparison operands.

4. Display usage in arithmetic operands
or one numeric operand and one display
operand in a comparison.

5. SYNC missing for COMP or COMP-l, -2,
or -4 items.

6. Inefficient COMP type picture; that
is, no sign or more than 9 digits in a
COMP item and no sign, even number of
digits~ or more than 16 digits in
COMP-3 items.

7. Noncomputational subscripts.

)IAGNOSTIC MESSAGES

Diagnostic messages are generated by the
:ompiler and listed on SYSLST when errors
ire found in the source program.

~ote: Diagnostic messages (except FIPS
jiagnostic messages) are suppressed when
the ~OE~RS. optio~ is in~ffect. I

WORKING WITH DIAGNCSTIC MESSAGES

1. Approach the diagnostic messages in
the order in which they a~pear on the
source listing. It is possible to get
compound diagnostic messages.
Frequently, an earlier diagnostic
message indicates the reason for a
later diagnostic message. For
example, a missing quotation mark for
an alphabetic or alphanumeric literal
could involve the inclusion of some
clauses not intended for that
particular literal. This could cause
an apparently valid cla~se to be
diagnosed as invalid because it is not
complete, or because it is in conflict
with something that preceded it.

2. Check for missing or superfluous
punctuation, or other errors of this
type.

3. Frequently, a seemingly meaningless
message is clarified when the valid
syntax or format of the clause or
statement in question is referenced.

4. Statement numbers are generated when a
verb or procedure-name is encountered.

GENERATION OF DIAGNOSTIC MESSAGES

The compiler scans the statement,
element by element~ to determine whether
the words are combined in a meaningful
manner. Based upon the elements that have
already been scanned, there are only
certain words or elements that can be
correctly encountered.

If the anticipated elements are not
encountered, a diagnostic message is
produced. Some errors may not be uncovered
until information from various sections of
the program is combined and the
inconsistency is noted. Errors uncovered
in this manner can produce a slightly
different messaqe format than those
uncovered when the actual source text is
still available. The message that is made
unique through that particular error may
not contain, for example, the actual source
statement .that produced the error.

Errors that appear to be identical are
diagnosed in a slightly different manner,
depending on where they were encountered by
the compiler and how they fit within the
context of valid syntax. For example, a
period missing from the end of the
Working-Storage section header is diagnosed
specifically as a period required. There
is no other information that can appear at

Execution Statistics 260.3

that point. However, if at the end of a
data item description entry, an element is
encountered that is not valid at that
point, such as the digits 02, it is
diagnosed as invalid. Any clauses
associated with the 02 entry which conflict
with the clauses in the previous entry (the
one that contained the missing period), are
diagnosed. Thus, a missing period produces
a different type of diagnostic message in
one situation than in the other.

If an error occurs during compilation of
an ON statement, the diagnostic message may
refer to the previous statement number.

Notes:

• If an E-level diagnostic is generated,
the LINK option is cancelled, and any
linkage editor control statements in
the job stream are invalid. For this
reason, the following message is issued
by the Job control Processor following
the first linkage editor control
statement encountered:

260.4

lSln D STATEMENT OUT OF SEQUENCE.
I

• If a D-level diagnostic is generated
and the error is a compiler error, the
job will terminate via the CANCEL macrc
and produce a dump.

• The following messages will not be"
issued during a SYNTAX-only compilation
or during a CSYNTAX compilation if a
C-level error in the diagnostic number
ILAOxxx to ILA4xxx range was
encountered:

ILA5001I COMPILER ERROR. COMPILATION
ABANDONED.

ILA5002I COMPILER ERROR. COMPILATION
ABANDONED.

ILA5003I DIVISOR IS ZERO. RESULT WILL BE
ALL 9'S.

ILA5004I ALPHANUMERIC SENDING FIELD TOO
BIG. 18 LOW ORDER BYTES USED.

A5005I COMPILER ERROR. COMPILATION
ABANDONED.

A5006I COMPILER ERROR. COMPILATION
ABANDONED.

A50071 COMPILER ERROR. COMPILATION
ABANDONED.

A5008I COMPILER ERROR. COMPILATION
ABANDONED.

A50091 COMPILER ERROR. COMPILATION
ABANDONED.

,A50101 HIGH ORDER TRUNCATION OF THE
CONSTANT DID OCCUR.

,A50111 HIGH OBDER TRUNCATION MIGHT
OCCUR.

.A5012I LOST INTERMEDIATE RESULT
ATTRIBUTES IN 'XINTR' TABLE.
COMPILATION ABANDONED.

.A5013I ILLEGAL COMPARISON OF TWO NUMERIC
LITERALS. STATEMENT DISCARDED.

. A5014I KEY IN SEARCH ALL AT INVALID
OFFSET. STATEMENT DISCARDED •

. A5015I INVALID USE OF SPECIAL REGISTER.
SUBSTITUTING-TALLY •

. A5016I MORE THAN 255 SUBSCRIPT ADDRESS
CELLS USED. PROGRAM CANNOT
EXECUTE CORRECTLY.

.A5017I INVALID ADVANCING OPTION FOR A
DTFCD FILE. USING STACKER1.

.A5018I INTEGER IN POSITIONING OPTION NOT
BETWEEN 0 AND 3. 1 ASSUMED.

.A5019I PUNCH STACKER SELECT SPECIFIED
FOR A DTFPR FILE. USING 'SKIP
TO CHANNEL 1' •

. A5020I IDENTIFIER NAME(S) IN EXHIBIT
EXCEEDS MAXIMUM. TRUNCATED TO
120 CHARACTERS.

.A5021I INTEGER IN ADVANCING OR
POSITIONING OPTION NOT
POSITIVE. POSITIVE ASSUMED.

~A5022I MORE THAN 2-DIGIT INTEGER IN
ADVANCING. OPTION. USING
INTEGER 1.

~A50231 EOP INVALID FOR DOUBLE-BUFFERED
FILE. IGNORED.

~A5024I END-OF-PAGE OPTION REQUESTED FOR
NON-DTFPR FILE. IGNORED.

ILA5025I ADVANCING OR POSITIONING OPTION
ILLEGAL FOR NON-SEQUENTIAL
FILE. IGNORED.

ILA5026I EXHIBIT OPERAND GREATER THAN 256
BYTES. LENGTH OF 256 ASSUMED.

ILA5027I NEGATIVE OR ZERO SUBSCRIPT
INVALID. CHANGED TO POSITIVE
1 •

ILA5028I RESULT FIELD WILL HAVE POSITIVE
SIGN.

ILA5029I STOP RUN GENERATED AFTER LAST
STATEMENT.

ILA5030I INSTEAD OF AN MveL INSTRUCTION,
AN MVC OR A CALL TO AN
OBJECT-TIME SUBROUTINE HAS BEEN
GENERATED BECAUSE THE FIELDS
OVERLAP DESCRUCTIVELY.

ILA5031I AN MVCL INSTRUCTION HAS BEEN
GENERATED FOR A MOVE INVOLVING
AT LEAST ONE LINKAGE SECTION
DATA-NAME. IF THE FIELDS
OVERLAP DESTRUCTIVELY THE MOVE
WILL NOT BE PERFORMED.

In addition, no message of the form
ILA6xxx will be issued •

LINKAGE EDITOR OUTPUT

The Linkage Editor produces diagnostic
messages, console messages, and a storage
map. For a complete description of output
and error messages from the Linkage Editor,
see the publication DOS/yS System Control
Statements. Output resulting from the link
editing of a COBOL program is discussed in
the chapter "Interpreting Output."

EXECUTION TIME MESSAGES

When an error condition that is
recognized by compiler-generated code
occurs during execution, an error message
is written on SYSLST and often SYSLOG.

Messages that normally appear on SYSLOG
are provided with a code indicating from
which partition the message originat~d.

A complete list of execution-time
messages can be found in "Appendix I:
Diagnostic Messages."

Program Checkout 261

RECORDING PROGRAM STATUS

When a program is expected to run for an
extended period of time, provision should
be made for taking checkpoint information
periodically during the run. A checkpoint
is the recording of the status of a problem
program and storage (including input/output
status and the contents of the general
registers). Thus, it provides a means of
restarting the job at an intermediate
checkpoint position rather than at the
beginning, if for any reason processing is
terminated before the normal end of the
program. For example, a job of higher
priority may require immediate processing,
or some malfunction (such as a.power
failure) may occur and cause an
interruption. Checkpoints are taken using
the COBOL RERUN clause.

Restart is a means of resuming the
execution of the program from one of the
checkpoints rather than from the beginning
of the job. The ability to restart is
provided through the RSTRT job control
statement. Full details on using this
statement are in DOS/yS System Control
Statements.

RERUN CLAUSE

The presence of the RERUN clause in the
source program causes the CHKPT macro
instruction to be issued at the specified
interval. When the CHKPT macro instruction
is issued, the following information is
saved:

1. Information for the Restart and other
supervisor or job control routines.

2. The general registers.

3. Bytes 8 through 10, and 12 through 45
of the Communication Region.

4. The problem program area.

5. All file protection extents for files
assigned to mass storage devices if
the extents are attached to logical
units contained in the program for
which checkpoints are taken.

Since the COBOL RERUN clause provides a
linkage to the system CHKPT macro
instruction, any warnings and restrictions
on the use of this macro instruction also
apply to the use of the RERUN clause. See
the publication DOS/VS Supervisor and I/O
Macros for a complete description of the
CHKPT macro instruction.

262

TAKING A CHECKPOINT

In order to take a checkpoint, the
programmer must specify the source language
RERUN clause and must define the file upon
which checkpoint records are to be written
(for example, ASSGN, EXTEND, etc.). Checkpoir
information must be written on a 2311, 2314,

1

2319, 3330, 3340, 3350, or fixed block mass
storage device or on a magnetic tape--either
7- or 9-track. Checkpoint records cannot be
embedded in one of the problem program's
output files, that is, the program must
establish a separate file exclusively for
checkpoint records. Checkpoints cannot be
written on VSAM files.

In designing a program for which
checkpoints are to be taken, the programmer
should consider the fact that, upon
restarting, the program must be able to
continue as though it had just reached that
point in the program at which termination
occurred. Hence, the programmer should
ensure that:

1. File handling is such as to permit
easy reconstruction of the'status of
the system as it existed at the time
of checkpoint was taken. For example,
when multifile reels are used, the
operator should be informed (by
message) as to which file is in use at
the time a checkpoint is to be taken.
He requires this information at
restart time.

2. The contents of files are not altered
between the time of the checkpoint and
the time of the restart. For
sequential files, all records written
on the file at the time the checkpoint
is taken should be unaltered at
restart time. For nonse~ential
filg§, care must be taken to design
the program so that a restart will not
duplicate work that has been completed
between checkpoint time and restart
time. For example, suppose that
checkpoint 5 is taken. By adding an
amount representing the interest due,
account XYZ is updated on a
direct-access file that was opened
with the 1-0 option. If the program
is restarted from checkpoint 5 and if
the interest is recalculated and again
added to account XYZ, incorrect
results will be produced.

If the program is modular in design,
RERUN statements must be included in all
modules that handle files for which
checkpoints are to be taken. (When an
entry point of a module containing a RERUN
statement is encountered, a COBOL
subroutine, ILBDCKPO, is called. ILBDCKPO
enters the files of the module into the

Lst of files to be repositioned.)
~positioning to the proper record will not
:cur for any files that were defined in
)dules other than those containing RERON
tatements. Moreover, a restart from any
iven checkpoint may not reposition other
apes on which checkpoints are stored.
ote, too, that only one disk checkpoint
ile can be used.

ESTARTING A PROGRAM

If the programmer requests checkpoints
n his job by means of the COBOL RERUN
:lause, the following message is given each
,ime a checkpoint is taken:

mnn

OC001 CHKPT nnnn HAS BEEN TAKEN ON
SYSxxx

is the 4-character identification of
the checkpoint record.

To restart a job from a checkpoint, the
:ollowing steps are required:

1. Replace the II EXEC statement with a
II RSTRT statement. The format of the
RSTRT statement is discussed in the

chapter "preparing COBOL Programs Por
Processing." All other job control
statements applicable to the job step
should b~ the same as when the job was
originally run. If necessary, the
channel and unit addresses for the II
ASSGN control statements may be
changed.

2. Rewind all tapes used by the program
being restarted, and mount them on
devices assigned to the symbolic units
required by the program. If
multivolume files are used, mount (on
the primary unit) the reel being used
at the time that the checkpoint was
taken, and rewind it. If multifile
volumes are used, position the reel to
the start of the file referenced at
the time the checkpoint is being
taken.

3.

4.

5.

Reposition any card file so that only
cards not yet read when the checkpoint
was taken are in the card reader.

Execute the job.

A checkpointed program can be
restarted only in the same partition.
The virtual partition must start at
the same location as when the program
was checkpointed and its end address
must not be lower than at that time.
This is because checkpoint dumps
the entire virtual partition.

Program Checkout 263

(

The following is a sample COBOL program
and the output listing resulting from its
compilation, link editing, and execution.
The program creates a blocked, unlabeled,
standard sequential file, writes it out on
tape, and then reads it back in. It also
does a check on tha field called
BO-OF-DEPENDENTS. All data records in the
file are displayed. Those with a zero in
the NO-OF-DEPENDENTS field are displayed
with the special character Z. The records

/1 JOB TESTR26 A=SK22,O=460
II OPTIOH LIHK,LOG,NODECK,LISTX,LIST,SYM,ERRS

II EXEC FCOBOL,SIZE=128K

IBM DOSIVS COBOL

CBL LAHGLVL(l),APOST,SXREF,LVL=A,OPT
00001 100010 IDENTIFICATION DIVISION.
00002 100020 PROGRAM-ID. TESTRUN.
00003 100030 AUTHOR. PROGRAMMER NAME.

REL 3.0

00004 100040 INSTALLATION. NEW YORK PROGRAMMING CENTER.
00005 100050 DATE-WRITTEN. JULY 12, 1968.
00006 100060 DATE-COMPILED. 02/25/81

APPENDIX A: SAMPLE PROGRAM OUTPUT

of the file are not altered from the time
of creation, despite the fact that the
NO-OF-DEPENDENTS field is changed for
display purposes. The individual records
of the file are created using the
subscripting technique.

The output formats illustrated in the
listing are described in the chapter
"Interpreting Output."

PP NO. 5746-CB1 17.26.17 02/25/81

00007 100070 REMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR
00008 1000RO copn1. IISFRS. TT CRF.IITFS AN OIlTPIIT Fnr HII' prfln:. TT Ilf\r,l((I.~,

00009 100090 !NPUI.
I 00010 100100 ENVIRONMENT DIVISION.

00011 100110 CONFIGURATION SECTION.
00012 100120 SOURCE-COMPUTER. IBM-370-H50.
00013 100130 OBJECT-COMPUTER. IBM-370-H50.
00014 100140 INPUT-OUTPUT SECTION.
00015 100150 FILE-CONTROL.
00016 100160 SELECT FILE-1 ASSIGN TO SYS001-UT-3330-S-SAMPl1.
'00017 100170 , SELECT FIlE-2 ASSIGN TO SYS003-DA-3330-S-SAMPL2.
U1TU'I8 100180 DnA 'UTVTSION.
00019 100190 FILE SECTION.
00020 100200 FD FILE-1
00021 100210 LABEL RECORDS ARE STANDARD
00022 100220 BLOCK CONTAINS 5 RECORDS
00023 100225 RECORD CONTAINS 20 CHARACTERS
00024 100230 RECORDING MODE IS F
00025 100240 DATA RECORD IS RECORD-1.
00026 100250 01 RECORD-1.
00027 100260 02 FIELD-A PICTURE IS X(20).
00028 100270 FD FILE-2
00029 100280 LABEL RECORDS ARE STANDARD
00030 100290 BLOCK CONTAINS 5 RECORDS
00031 100300 RECORD COHTAINS 20 CHARACTERS
00032 100310 RECORDING MODE IS F
00033 100320 DATA RECORD IS RECORD-2.
00034 100330 01 RECQRD-2.
00035 100340 02 FIElD-A PICTURE IS X(20).
00036 100350 WORKIHG-STORAGE SECTION.
00037 100370 77 KOUHT PICTURE S99 COMP SYNC.
00038 100371 77 HOMBER PICTURE S99 COMP SYNC.
00039 100375 01 FILLER. ,
00040 100380 02 ALPHABET PICTURE X(26) VALUE 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
00041 100395 02 ALPHA REDEFINES ALPHABET PICTURE X OCCURS 26 TIMES.
00042 100405 02 DEPENDENTS PICTURE X(26) VALUE '0123401234012340123401234
00043 100410- '0'.
00044 100420 02 DEPEND REDEFINES DEPENDENTS PICTURE X OCCURS 26 TIMES.
00045 100440 01 WORK-RECORD.
00046 100450 02 NAME-FIELD PICTURE X.

Appendix A: Sample Program Output 265

00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082

266

IBM DOS VS COBOL REL 3.0 PP NO. 5746-CBl

100460 02 FILLER PICTURE X VALUE SPACE.
100470 02 RECORD-NO PICTURE 9999.
100480 02 FILLER PICTURE X VALUE SPACE.
100490 02 LOCATION PICTURE AAA VALUE 'NYC'.
100500 02 FILLER PICTURE X VALUE SPACE.
100510 02 NO-OF-DEPENDENTS PICTURE XX.
100520 02 FILLER PICTURE X(7) VALUE SPACES.
100522 01 RECORDA.
100524 02 A PICTURE S9(4) VALUE 1234.
100526 02 B REDEFINES A PIC S9(7) COMPUTATIONAL-3.
100530 PROCEDURE DIVISION.
100540 BEGIN.
100550* NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
100560* AND INITIALIZES COUNTERS.
100570 STEP-I. OPEN OUTPUT FILE-I. MOVE ZERO TO KOUHT HOMBER.
100580* NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE
100590* CONTAINED IN THE FILE, WRITES THEM ON TAPE, AND DISPLAYS
100600* THEM ON THE CONSOLE.
100610 STEP-2. ADD 1 TO KOUNT, ADD 1 TO NOMBER, MOVE ~LPHA (KOUNT) TO
100620 NAME-FIELD.
100630 MOVE DEPEND (KOUNT) TO NO-OF-DEPENDENTS.
100640 MOVE NOMBER TO RECORD-NO.
100650 STEP-3. DISPLAY WORK-RECORD UPON CONSOLE. WRITE RECORD-1 FROM
100660 WORK-RECORD.
100670 STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL KOUNT IS EQUAL TO 26.
100680* NOTE THAT THE FOLLOWING CLOSES OUTPUT AtlD REOPENS IT AS
100690* INPUT.
100700 STEP-5. CLOSE FILE-I. OPEN INPUT FILE-2.
100710* NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES OUT
100720* EMPLOYEES WITH NO DEPENDENTS.
100730 STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-8.
100740 STEP-7. IF HO-OF-DEPEHDEHTS IS EQUAL TO '0' MOVE 'Z' TO
100750 NO-OF-DEPEHDENTS. EXHIBIT NAMED WORK-RECORD. GO TO
100760 STEP-6.
100770 STEP-8. CLOSE FILE-2.
100780 STOP RUN.

17.26.17 02/25/8

[BM DOS VS COBOL REL 3.0 PP NO. 5746-CBl 17.26.17 02/25/81

INTRNL NAME LVL SOURCE NAME BASE DISPL INTRNL NAME DEFINITION USAGE R 0 Q M

DNM=1-148 FD FILE-1 DTF 01 DHM=1-148 DTFSD F
DNM=1-179 01 RECORD-1 Bl 1 000 DHM=1-179 OS OCL20 GROUP
DNM=1-200 02 FIELD-A Bl 1 000 DHM=1-200 OS 20C DISP
DHM=1-217 FD FILE-2 DTF 02 DH~1= 1-217 DTFSD F
DHM=1-248 01 RECORO-2 Bl 2 000 DH~1= 1-248 OS OCl20 GROUP
DHM=1-269 02 FIELD-A Bl 2 000 DHM=1-269 OS 20C DISP
DNM=1-289 77 KOUNT BL 3 000 DHM=1-289 OS 1H COMP
DNM=1-304 77 NOt1BER BL 3 002 DHM=1-304 OS 1H Cot1P
DHM=1-320 01 FILLER BL 3 008 DHM=1-320 OS OCL52 GROUP
DHM=1-339 02 ALPHABET BL 3 008 DNM=1-339 OS 26C DISP
DHM=1-357 02 ALPHA BL 3 008 DHM=1-357 DS 1C DISP R 0
DNM=1-375 02 DEPENDENTS BL 3 022 DHM=1-375 OS 26C DISP
OHM=1-395 02 DEPEND BL 3 022 OHM=1-395 DS 1C DISP R 0
DHM=1-411 01 WORK-RECORD BL 3 040 DHM=1-411 OS OCl20 GROUP
ONM=1-435 02 NAME-FIELD BL 3 040 DHM=1-435 OS 1C DISP
DNM=1-455 02 FILLER BL 3 041 OHM=1-455 DS 1C DISP
DHM=1-474 02 RECORD-NO BL 3 042 DNM=1-474 DS 4C DISP-HM
DtlM=2-000 02 FIL L ER BL 3 046 DHM=2-000 DS 1C DISP
DHM=2-019 02 LOCATION BL 3 047 DIIM=2-019 OS 3C DISP
DHM=2-037 02 FILLER BL 3 04A OHM=2-037 DS 1e D~SP
DHM=2-056 02 HO-OF-DEPENDENTS BL 3 04B ONM=2-056 OS 2C DISP
OHM=2-082 02 FILLER BL 3 04D DIIM=2-082 DS 7C DISP
DHM=2-101 01 RECORDA BL 3 058 DtIM=2-101 DS OCL4 GROUP
DHM=2-121 02 A BL 3 058 DHM=2-121 DS 4C OISP-NM
ONM=2-132 02 B BL 3 058 OHM=2-132 OS 4P COMP-3 R

Appendix A: Sample Program Output 267

268

IBM DOS VS COBOL

TGT

SAVE AREA
SWITCH
TAllY
SORT SAVE
ENTRY-SAVE

MEMORY MAP

SORT CORE SIZE
NSTD-REElS
SORT RET
WORKING CellS
SORT FIl E SIZE
SORT MODE SIZE
PGT-VN TBl
TGT-VN TBl
SORTAB ADDRESS
lENGTH OF VN TBl
lNGTH OF SORTAB
PGM 10
A(INITU
UPSI SWITCHES
DEBUG TABLE PTR
CURRENT PRIORITY
TA lENGTH
PRBll CEll PTR
UNUSED
COUNT TABLE ADDRESS
VSAM SAVE AREA ADDRESS
UNUSED
COUNT CHAIN ADDRESS
UNUSED
DnG R14SAVE
UNUSED
UNUSED
DBG RllSAVE
PCS lIT PTR
DBG INF PTR
OVERFLOW CEllS
Bl CellS
DTFADR CEllS
FIB CEllS
TEMP STORAGE
TEI'1P S TORAGE-2
TEMP STORAGE-3
TEMP STORAGE-4
Bll CellS
VlC CEllS
SBl CEllS
INDEX CellS
SUBADR CellS
ONCH CEll S
PH1CH CEllS
PFMSAV CellS
VN CEllS
SAVE AREA =2
SAVE AREA =3
XSASW CEllS
XSA CEllS
PARAM CellS
RPTSAV f.REA
CHECKPT CTR
IOPTR CEllS
DEBUG TABLE

REL 3. a

00828

00828
00870
00874
00878
0087C
00880
00884
00886
00888
009B8
009BC
009CO
009C4
009C8
009CC
009CE
009DO
009D8
009DC
009E4
009E8
009E9
009EC
009FO
009F4
009F8
009FC
00A04
00A08
OOAIC
00A20
00A24
00A28
00A2C
00A30
00A40
o 0A40
00A4C
00A54
00A58
00A60
00A60
00A60
00A60
00A64
00A64
00A64
00A64
00A6C
00A6C
00A6C
00A70
00A74
00A74
00A74
00A74
00A74
00A78
00A78
00A78
00A78

PP NO. 5746-CBl 17.26.17 02/25/81

IBM DOS VS COBOL REL 3.0

LITERAL POOL (HEX)

OOABO (lIT+O)
OOACS (lIT+24)

00000000 00000001 00010000 0000001A 00040014 00280028
00000000 COOOOOOO

DISPLAY LITERALS (BCD)

OOADO (l TL+32) 'WORK-RECORD'

PGT

DEBUG LINKAGE AREA
OVERFLOW CELLS
VIRTUAL CELLS
PROCEDURE NAME CELLS
GENERATED NAME CELLS
SUBDTF' ADDRESS CELLS
VNI CEllS
LITERALS
DISPLAY LITERALS
PROCEDURE BLOCK CELLS

REGISTER ASSIGNMENT

REG 6
REG 7
REG a

BL =3
BL =1
BL =2

00A80

00A80
00A80
OOA84
00A98
00A98
00AA8
00AA8
OOABO
OOADO
OOADe

WORKING-STORAGE STARTS AT LOCATION 00100 FOR A LENGTH OF 00060.

PROCEDURE BLOCK ASSIGNMENT

PBL = REG 11

PBL =1 STARTS AT LOCATION OOOAEO ~TATEMEHT 61

17.26.17 02/2~/81

Appendix A: Sample Program output 269

IBM DOS VS COBOL REL 3.0 PP NO. 5746-CBl 17.26.17 02/25/81

58 1(8EGIN
OOOAEO PN=02 EQU I(

61 I(STEP-l
OOOAEO PN=03 EQU I(

61 OPEN OOOAEO START EQU I(

OOOAEO 58 BO C 05C l 11,05C(0,12) P8l=1
000AE4 58 10 D 224 l 1,224CO,13) DTF=1
000AE8 41 20 1 OFO lA 2,OFO(0,l)
OOOAEC D2 EF 2 000 1 000 MVC 000(240,2),000Cl)
000AF2 58 10 D 224 L 1,224CO,13) DTF=1
000AF6 48 10 C 040 SH 1,040CO,12) LIT+16
OOOAFA 94 BF 1 000 HI OOOCl),X'BF'
OOOAFE 58 20 D 218 L 2,218CO,13) BL =1
000B02 58 00 D 224 L 0,224(0,13) DTF=1
000B06 05 10 BALR 1,0
000B08 50 00 008 5T 0,008CO,1)
OOOBOC 45 10 1 OOE BAl 1,OOECO,1)
000BI0 00000000 DC X'OOOOOOOO'
000B14 0410 DC X'0410'
000B16 58 FO C 008 L 15,008CO.12) V(HBDSIOO)
OOOBlA 05 EF BALR 14,15
OOOBIC 50·20 D 218 5T 2,218(0,13) Bl =1
000B20 58 70 D 218 L 7,218(0,13) BL =1 61 MOVE 000B24 D2 01 6 000 C 030 MVC 000(2,6),030(12) DHM=I-289 LIT+O 000B2A D2 01 6 002 C 030 MVC 002(2,6),030(12) DHM=I-304 LIT+O 65 I(STEP-2
000B30 PH=04 EQU I(

65 ADD 000B30 48 30 C 036 lH 3,036(0,12) LIT+6
000B34 4A 30 6 000 AH 3,000(0,6) DHM=I-289
000B38 4E 30 D 230 CVD 3,230(0,13) T5=01
000B3C D7 05 D 230 D 230 XC 230C6,13),230(13) T5=01 TS=OI 000B42 94 OF D 236 HI 236CI3),X'OF' TS=01+6
000B46 4F 30 D 230 CVB 3,230CO,13) TS=OI
000B4A 40 30 6 000 5TH 3,000CO,6) DHM=I-289 65 ADD 000B4E 48 30 C 036 LH 3,036CO,12) LIT+6
000B52 4A 30 6 002 Ml 3,002(0,6) DHM=I-304
000B56 4E 30 D 230 CVD 3,230CO,13) T5=01
000B5A D7 05 D 230 D 230 XC 230C6,13),230(13) T5=01 TS=OI 000B60 94 OF D 236 HI 236(13),X'OF' T5=0 1+6
000B64 4F 30 D 230 CVB 3,230(0,13) TS=OI
000B68 40 30 6 002 5TH 3,002(0,6) DtIM=I-304 65 MOVE 000B6C 41 40 6 008 LA 4,008(0,6) DtlM=I-357
000B70 48 20 6 000 LH 2,000(0,6) DNM=I-289
000874 4C 20 C 036 MH 2,036(0,12) LIT+6
000B78 lA 42 AR 4,2
000B7A 58 40 C 034 5 4,034(0,12) LITH
000B7E 50 40 D 23C 5T 4,23C(0,13) ~B~=l
000B82 58 EO D 23C L 14,23C(0,13) S85=1
000B86 D2 00 6 040 E 000 MVC 040(1,6),000(14) DHM=1-435 DHM=I-357

67 MOVE 000B8C 41 40 6 022 LA 4,022(0,6) DHM=1-395
000B90 48 20 6 000 LH 2,000(0,6) Dtm=1-289
000894 4C 20 C 036 ~lH 2,036(0,12) LIT+6
000B98 lA 42 AR 4,2

000B9A 58 40 C 034 5 4,034(0,12) LIT 4
000B9E 50 40 D 240 5T 4,240(0,13) 5B5 2
000BA2 58 FO D 240 l 15,240(0,13) 5B5 2
000BA6 D2 00 6 04B FOOD MVC 04B(I,6),000(15) OtlM 2-56 OHM=I-395
OOOBAC 92 40 6 04C MVI 04C(6),X'40' DHM 2-56+1

68 MOVE OOOBBO 48 30 6 002 LH 3,002(0,6) DHf'l 1-304
000BB4 4E 30 0 230 CVD 3,230(0,13) TS= 1
000BB8 F3 31 6 042 o 236 UHPK 042(4,6),236(2,13) DHM 1-474 TS=07
OOOBBE 96 FO 6 045 01 045(6),X'FO' DHM 1-474+3

270

IBM DOS VS COBOL REL 3.0 PP NO. 5746-CBl 17.26.17 02/25/81

69 *STEP-3
000BC2 PH=05 EQU IE

69 DISPLAY 000BC2 58 FO C OOC L 15,00C(0,12) V(lLBOOSPO)
000BC6 05 IF BALR 1,15
000BC8 0002 DC X'0002'
OOOBCA 00 DC X' 00'
OOOBCB 000014 DC X'000014'
OOOBCE 00000220 DC X'00000220' BL =3
000B02 0040 DC X'0040'
000B04 FFFF DC X'FFFF'

69 WRITE 000B06 D2 13 7 000 6 040 MVC 000(20,7),040(6) DHM=1-179 OHM=I-411
OOOBOC 58 10 D 224 L 1,224(0,13) OTF=l
OOOBEO 58 20 0 218 L 2,218(0,13) BL =1
000BE4 48 30 C 042 LH 3,042(0,12) LlT+18
000BE8 18 41 LR 4,1
OOOBEA 4B 40 C 044 SH 4,044(0,12) L IT+20
OOOBEE 58 40 4 000 L 4,000(0,4)
000BF2 02 03 4 054 C 01C MVC 054(4,4),01C(12) GH=02
000BF8 02 03 4 050 C 018 MVC 050(4,4),018(12) GH=Ol
OOOBFE 96 80 4 050 01 050(4),X'80'
000C02 58 FO 4 068 L 15,068(0,4)
000C06 05 EF BALR 14,15
000C08 18 41 LR 4,1
OOOCOA 4B 40 C 040 SH 4,040(0,12) LlT+16
OOOCOE 91 40 4 000 TM 000(4),X'40'
000C12 'i7 10 B 142 BC 1,142(0,11) GH=02
000C16 50 20 D 218 5T 2,218(0,13) BL =1
000C1A 58 70 0 218 L 7,218(0,13) BL =1
OOOCIE 47 FO B 142 BC 15,142(0,11) GH=02
000C22 GH=Ol EQU *
000C22 GH=02 EQU IE
00OC22 58 10 0 248 L 1,248(0,13) VH=Ol
000C26 07 Fl BCR 15,1
000C28 GH=03 EQU *

71 *STEP-4
000C28 PH=06 EQU *

71 PERFORM 000C28 02 03 D 244 D 248 MVC 244(4,13),248(13) PSV=1 VH=Ol
000C2E 41 00 B 156 LA 0,156(0,11) GH=04
000C32 50 00 o 248 5T 0,248(0,13) VH=OI
000C36 GH=-04 EQU IE
000C36 48 30 6 000 LH 3,000(0,6) OHM=I-289
000C3A 49 30 C 03E CH 3,03E(0,12) LIT+14
000C3E 47 80 B 166 BC 8,166(0,11) GH=05
000C42 47 FO B 050 BC 15,050(0,11) PH=04

000C46 GH=05 EQU *
000C46 02 03 D

74 *STEP-5
248 o 244 MVC 248(4,13),244(13) VH=Ol PSV=l

000C4C PH=07 EQU IE
74 CLOSE 000C4C 58 00 0 224 L 0,224(0,13) DTF=1

000C50 07 DO BCR 0,0
000C52 05 10 BALR 1,0
000C54 50 00 008 ST 0,008(0,1)
000C58 45 10 1 DOE BAL 1,00E(0,1)
000C5C 00000000 DC X'oOOOOOOo'
000C6O 0014 DC X'0014'
000C62 58 FO C 008 L 15,008(0,12) V(lLBD5IOo)
000C66 05 EF BALR 14,15
000C68 58 10 0 224 L 1,224(0,13) OTF=1
000C6C 41 20 1 OFO LA 2,OFo(0,1)
000C7O D2 EF 1 000 2 DOD MVC 000(240,1),000(2)

Appendix A: Sample Program Output 271

IBM OOS VS COBOL RBL 3.0 PP NO. 5746-CBl 17.26.17 02/25/81

74 OPEN 000C76 58 10 D 228 L 1,228(0,13) DTF:2
000C7A 41 20 1 OFO LA 2,OFO(O,l>
000C7E D2 EF 2 000 1 000 MVC 000(240,2),000(1)
000C84 58 10 D 228 L 1,228(0,13) DTF=2
000C88 4B 10 C 040 SH 1,040(0,12) LITt16
000C8C 94 BF 1 000 NI OOO(I),X'BF'
000C90 58 00 D 228 L 0,228(0,13) DTF=2
000C94 07 00 BCR 0,0
000C96 05 10 BALR 1.0
000C98 50 00 008 ST 0,008(0,1>
000C9C 45 10 1 OOE BAL 1,00E(O,1>
OOOCAO 00000000 DC X'OOOOOOOO'
000CA4 0010 DC X'0010'
000CA6 58 FO C 008 L 15,008(0,12) V(IlBDSIOO)
OOOCAA 05 EF BALR 14,15

77 *STEP-6
OOOCAC PN:08 EQU * 77 READ OOOCAC 58 10 D 228 L 1,228(0,13) DTF=2
OOOCBO 18 41 LR 4,1
000CB2 4B 40 C 044 SH 4,044(0,12) L IT+20
000CB6 58 40 4 000 L 4,000(0,4)
OOOCBA D2 03 4 054 C 024 MVC 054(4,4),024(12) GN=07
OOOCCO 41 FO B 204 LA 15,204(0,11) GN=06
000CC4 50 FO 4 050 ST 15,050(0,4)
000CC8 94 7F 4 050 I'll 050(4),X'7F'
OOOCCC 58 FO 4 060 L 15,060(0,4)
OOOCDO 05 EF BALR 14,15
000CD2 50 20 D 21C ST 2,21C(0,13) BL =2
000CD6 58 80 D 21C L 8,21C(O,13) BL =2
OOOCDA D2 13 6 040 8 000 MVC 040(20,6),000(8) DHM:1-411 DNM=1-248
OOOCEO 47 FO B 208 BC 15,208(0,11> GN=07
000CE4 GN=06 EQU IE

77 GO 000CE4 47 FO B 24E BC 15,24E(O,l1> PH=OlO
000CE8 GN=07 EQU *

78 *STEP-7
000CE8 PN=09 EQU *

78 IF 000CE8 95 FO 6 04B CLI 04B(6),X'FO' DNM=2-56

OOOCEC 47 70 B 220 BC 7,220(0,11) GN=08
OOOCFO 95 40 6 04C CLI 04C(6),X'40' DNM=2-56+1
000CF4 47 70 B 220 BC 7,220(0,11) GH=08

78 MOVE 000CF8 92 E9 6 04B MVI 04B(6),X'E9' DNM=2-56
OOOCFC 92 40 6 04C MVI 04C(6),X'40' DNM=2-56+1
OOODOO GN=08 EQU IE

79 EXHIBIT OOODOO 58 10 C 04C L 1,04C(O,12) L IT+28
000D04 50 10 D 24C ST 1,24C(O,13) PRM=l
000D08 41 20 D 24C LA 2,24CCO,13) . PRM=l
OOODOC 58 FO C OOC L 15,OOC(O,12) V(IlBDDSPO)
000D10 05 IF BALR 1, 15
000D12 8001 DC X'8001'
000014 10 DC X'10'
000D15 OOOOOB DC X'OOOOOB'
000D18 OCOOO050 DC X'OCOOO050' L IT+32
OOODlC 0000 DC X'OOOO'
OOODIE 00 DC X' 00'
OOODIF 000014 DC X'000014'
000D22 ODOO0220 DC X'ODOO0220' BL =3
000D26 0040 DC X'0040'
000D28 FFFF DC X'FFFF'

79 GO 000D2A 47 FO B ICC BC 15,lCCCO,11) PN=08

272

IBM DOS VS COBOL REL 3.0 PP NO. 5746-CBl 17.26.17 02/25/81

81 lESTEP-8
000D2E PH=010 EQU IE

81 CLOSE 00002E 58 00 D 228 L 0,228(0,13) OTF=2
000032 05 10 BALR 1,0
000034 50 00 008 ST 0,008(0,1)
000D38 45 10 lODE BAL 1.00E(0,1)
00003C 00000000 DC X'OOOOOOOO'
000040 0014 DC X'0014'
000D42 58 FO C 008 l 15,008(0,12) V(ILBDSIOO)
000046 05 EF BAlR 14,15
000048 58 10 0 228 L 1,228(0,13) OTF=2
00004C 41 20 1 OFO LA 2,OFO(0,1)
000050 D2 EF 1 000 2 000 MVC 000(240,1),000(2)

82 STOP 000056 IB 11 SR 1.1
000058 58 FO C 010 L 15,010(0,12) V(ILBOTC20)
00005C 05 EF BAlR 14,15
00005E OA 0 E SVC 14
000060 OA OE SVC 14
000062 50 DO 5 008 IHIT2 ST 13,008(0,5)
000066 50 50 0 004 ST 5.004(0,13)
000D6A 58 20 C 004 l 2,004(0,12) VIR=l
00006E 95 00 2 000 CLI 000(2),X'00'
000072 07 79 BCR 7,9
000D74 92 FF 2 000 MVI 000(2),X'FF'
000078 96 10 0 048 01 048(13),X'10' SWT+O
00007C 50 EO 0 054 IHIT3 ST 14,054(0,13)
000080 05 FO BAlR 15,0
000082 91 20 D 048 TM 048(1:),X'20' SWT+O
000086 47 EO F 016 BC 14,016(0,15)
00008A 58 00 B 048 L 0,048(0,11)
OOOORE 98 20 B 050 lM 2.13.050(11)
000092 58 EO D 054 L 14,054(0,13)
000096 07 FE BCR 15,14
000098 96 20 D 048 01 048(13),X'20' SWT+O
00009C 91 10 0 048 TM 048Cl3),X'10' SWT+O
OOOOAO 47 EO F 02C BC 14,02C(0,15)
0000A4 58 FO C 004 l 15,004(0,12) VIR=l
0000A8 41 FO F 010 LA 15,010(0,15)
OOODAC 05 EF BAlR 14,15
OOOOAE 41 60 0 004 LA 6,004(0,0)
0000B2 41 10 C 000 lA 1,000(0.12)
0000B6 41 70 C 003 LA 7,003(0,12) VIR=l-l
OOODBA 05 50 BAlR 5,0
OOOOBC 58 40 000 l 4,000(0,1)
OOODCO lE 4B AlR 4,11
0000C2 50 40 1 000 ST 4,000(0,1)
000DC6 87 16 5 000 BXlE 1,6,000(5)
OOODCA 41 10 C 018 LA 1,018(0,12) PH=Ol
OOODCE 41 70 C 02F LA 7,02F(0.12) LIT+0-1
000002 05 50 BALR 5,0
000004 58 40 000 l 4,000(0,1)
000008 IE 4B AlR 4.11
OOOOOA 50 40 1 000 ST 4,000(0.1)
OOOOOE 87 16 5 000 BXlE 1,6,000(5)
0000E2 41 80 0 218 lA 8,218(0,13) QVF=l
0000E6 41 70 D 22F lA 7,22F(0,13) TS=01-1
OOODEA 05 10 BALR 1,0
OOODEC 58 00 8 000 l 0,000(0,8)
OOOOFO IE DB AlR 0,11
0000F2 50 00 8 000 ST 0,000(0,8)
0000F6 87 86 1 000 BXlE 8,6,000(1)
OOOOFA 58 60 D 220 l 6,220(0,13) BL =3
OOOOFE 58 70 D 218 l 7,218(0,13) BL =1
000E02 58 80 0 21C l 8,21C(0,13) Bl =2
000E06 02 03 0 248 C 028 MVC 248(4,13),028(12) VH=Ol VHI=l
OOOEOC 58 FO C 014 l 15,014(0,12) VIR=5
000EI0 05 EF BALR 14,15
000E12 0224 DC X'0224'
000E14 0002 DC X'0002'
000E16 58 EO D 1BO l 14,lBO(0,13)
000E1A 90 6D E 060 STM 6,13,060(14)
000E1E 58 EO 0 054 l 14,054CO,13)
000E22 07 FE BCR 15,14
000000 05 FO IHITI BALR 15,0
000002 07 00 BCR 0,0
000004 90 DE F OoA STM 0,14,00ACI5)
000008 47 FO F 082 BC 15,082(0,15)
OOOOOC 00000000 DC 30F'0'
000084 58 CO F OC6 l 12,OC6(0,15)
000088 58 EO C 004 l 14,004(0,12) VIR=l
00008C 58 DO F OCA l 13,OCA(0,15)

Appendix A: Sample Program Output 273

IBM DOS VS COBOL REL 3.0 PP NO. 5746-CBl 17.26.17 02/25/81

000090 95 00 E 000 CLI 000(14),X'00'
000094 47 70 F OA2 BC 7.0A2(0,15)
000098 96 10 0 048 01 048CI3),X'10' SWT+O
00009C 92 FF E 000 MVI 000CI4),X'FF'
OOOOAO 47 FO F OAC BC IS,OACCO,IS)
00OOA4 98 CE F 03A LM 12.14,03AClS)
0000A8 90 EC 0 OOC STM 14,12,00CCI3)
OOOOAC 18 SO LR S,13
OOOOAE 98 9F F OBA LM 9,15,OBACl5)
0000B2 91 10 0 048 TM 048CI3),X'10' SWT+O
0000B6 07 19 BCR 1,9
0000B8 07 FF BCR 15,15
OOOOBA 07 00 BCR 0,0
OOOOBC 00000D7C ADCON L4CINIT3)
OOOOCO 00000000 ADCON L4CItHTl>
0000C4 00000000 ADCON L4CINITl>
0000C8 00000A80 ADCON L4CPGT>
OOOOCC 00000828 ADCON L4CTGT>
OOOODO OOOOOAEO ADCON L4CSTflRT>
000004 00000D62 ADCON L4CItHT2)
000008 C3D6C2D6F2F6FOFO DC X'C3D6C2D6F2F6FOFO'
OOOOEO E3CSE2E3D9E4DS40 DC X'E3C5E2E3D9E4D540'
0000E8 00000000 DC X'OOOOOOOO'
OOOOEC FOF261F2F561F8Fl DC X'FOF261F2F561F8Fl'
0000F4 FIF74BF2F64BFlF7 DC X'FIF74BF2F64BFIF7'

MSTATISTICSM SOURCE RECORDS = 82 DATA ITEMS = 25 PROC OIV SZ = 29
MSTATISTICS* PARTITION SIZE = 130952 LINE COUNT = 56 BUFFER SIZE = 2048
OPTIONS IN EFFECT PMAP RELOC AOR NONE SPACING 1 FLOW = NONE
OPTIONS IN EFFECT LISTX APOST SYM NOCATALR LIST LINK NOSTXIT LIB
OPTIONS IN EFFECT NOCLIST FLAGW ZWB NOSUPMAP XREF ERRS SXREF OPT
OPTIONS IN EFFECT NOSTATE TRUNC SEQ NOSYMDMP NO DECK VERB NOSYNTAX LVL=A
OPTIOHS IN EFFECT LANGLVl(l> HOCOUNT ADV NOVERBSUM NOVERBREF
LISTER OPTIONS NONE

274

~ 005 VS COBOL

ATA NAMES

LPHA
LPHABET

EPEND
EPEtlDENTS
IElD-A
IELD-A
!lE-1
!lE-2
OUNT

.OCA TION
~AME-FIELD
~O-OF-DEPENDENTS
~OMBER
~ECORD-NO
~ECOP.D-1
~ECORD-2
RECORDA
..JORK-RECORD

PROCEDURE NAMES

BEGIN
STEP-1
STEP-2
STEP-3
STEP-4
S TEP-5
STEP-6
STEP-7
STEP-8

CARD ERROR MESSAGE

00055
00065
00065

1
LINE
00006
00024
00032
00040
00042
00050
00053
00056
00059
00060
00058
00062
00063
00064
00065
00065
00069
00069
00069
00071
00072
00073
00075
00076
00077
00078
00078
00079
END OF

Il A2190 I-W
IlA5011I-W
!lA5011I-W

!lA8
!lA8 It

IlA8003I-W
IlA8002I-W
IlA8002I-W
!lAB002I-W
IlA8002I-W
IlA8002I-W
IlA8003I-W
IlA8002I-W
IlA8002I-W
Il A8 002 I -l~
IlA8002I-W
IlA8002I-W
IlA8002I-W
IlA8002I-W
IlA8003I-W
Il A8 a 0 3 I-W
IlA8003I-W
IlA8002I-W
IlA8003I-W
IlA8003I-W
IlA8002I-W
IlA8002I-W
IlA8002I-W
IlA8002I-W
IlA8003I-W
IlA8002I-W
IlA8002I-W
IlA8002I-W
COMPILATION

REL 3.0 pp NO. S746-CBl 17.26.17 02/25/81

DEFN REFERENCE

000055
000041 000065
000040
000056
000044 000067
000042
000027
000035
000016 000061 000069 000074
000017 000074 000077 000081
000037 000061 000065 000067 000071
000050
000046 000065
000052 000067 000078
000038 000061 000065 000068
0000',8 000068
000026 000069
000034 000077
000054
000045 000069 000077 000079

DEfN REFERENCE

000058
000061
000065 000071
000069 000071
000071
000074
000077 000079
000078
000081 000077

PICTURE CLAUSE IS SIGNED, VALUE CLAUSE UNSIGNED. ASSUMED POSITIVE.
HIGH ORDER TRUNCATION MIGHT OCCUR.
HIGH ORDER TRUNCATION MIGHT OCCUR.

FEDERAL INFORMATION PROCESSING STANDARDS (FIPS) DIAGNOSTIC MESSAGES
MESSAGE

DATE-CO~lPILED PARAGRAPH NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
RECORDING MODE IS CLAUSE NON-STANDARD AT ALL LEVELS.
RECORDING MODE IS CLAUSE NON-STANDARD AT ALL LEVELS.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
SPACES NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
COMPUTATIONAL-3 NON-STANDARD AT ALL LEVELS.
* COMMENT LINE NON-STANDARD AT ALL LEVELS.
* COMMENT LINE NON-STANDARD AT ALL LEVELS.
ZERO SENTENCES IN PARAGRAPH NON-STANDARD AT ALL LEVELS.
* COMMENT LINE NON-STANDARD AT ALL LEVELS. * COMMENT LINE NON-STANDARD AT ALL LEVELS. * COMMENT LINE NON-STANDARD AT ALL LEVELS.
com1A OR SEMICOLON AS PUNCTUATION NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
COMMA OR SEMICOLON AS PUNCTUATION NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
UPON OPTION OF DISPLAY STATEMENT NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
UPON CONSOLE OPTION OF DISPLAY STATEMENT IS NON-STANDARD AT ALL LEVELS.
FROM OPTION OF WRITE STATEMENT NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
UNTIL OPTION OF PERFOR~l STATEMENT NOT SUPPORTED BELOW LOW-INTERMEDIATE lEVEL.
* COMMENT LINE NON-STANDARD AT ALL LEVELS. * COMMENT LINE NON-STANDARD AT ALL LEVELS.
* COM~ENT LINE NON-STANDARD AT ALL LEVELS. * COMMENT LINE NON-STANDARD AT ALL LEVELS.
INTO OPTION OF READ STATEMENT NOT SUPPORTED BELOW LOW-INTERMEDIATE LEVEL.
APOSTROPHE USED AS QUOTE NON-STANDARD AT ALL LEVELS.
APOSTROPHE USED AS QUOTE NOH-STANDARD AT ALL LEVELS.
EXHIBIT STATEMENT NON-STANDARD AT ALL LEVELS.

Appendix A: Sample Program Output 275

IBM DOS VS COBOL

// EXEC LNKEDT

JOB TESTR26
ACTION TAKEN MAP
FOLLOWING LIBRARIES ARE ACTIVE FOR THIS
LIBR.TYPE SEQ.NO FILENAME VOLID

TARGET CIL 0 IJSYSCL DOSAF3
SEARCH RLB 1 IJSYSRL DOSAF3
SEARCH RLB 2 IJSYSRS DOSAF3

** MODULE IJGFIEWZ V.3 M.5 AUTOLNKD
** MODULE IJGFOEWZ V.3 M.5 AUTOlNKD
** MODULE ILBDDSPO V.3 M.S1 AUTOlNKD
** MODULE IJJCPDV V.3 M.5 AUTOlNKD
** MODULE ILBDDSSO V.3 M.S1 AUTOlNKD
LIST INCLUDE IJJCPDV
** MODULE IJJCPDV V.3
** MODULE ILBDMNSO V.3
** MODULE IlBDSAEO V.3
** MODULE ILBDSIOO V.3
** MODULE ILBDCLKO V.3
** MODULE ILBDCMMO V.3
** MODULE ILBDTC20 V.3
LIST ENTRY

M.5
M.52
M.52
M.52
M.51
M.S1
M.S1

INCLUDED
AUTOltlKD
AUTOlNKD
AUTOUIKD
AUTOLNKD
AUTOLNKD
AUTOLNKD

02/25/81 PHASE XFR-AD LOCORE HICORE
PHASE*** 028078 028078 02B3F3

UNRESOLVED EXTERNAL REFERENCES

UNRESOLVED ADCON AT OFFSET 0002A3B8
UNRESOLVED ADCOH AT OFFSET 0OO2A3BC

276

REL 3.0 PP NO. 5746-CBl 17.26.17 02/25/81

LINKAGE EDITOR DIAGNOSTIC OF INPUT

RUN

FROM LIB.NO.
FROM LIB.NO.
FROM LI B . NO.
FROM LI B . NO .
FROM LIB.NO.

FROM LIB .NO. 1
FROM LI B . NO. 1
FROM LIB.NO. 1
FROM LIB.NO. 1
FROM LIB.NO. 1
FROM LIB.NO. 1
FROM LIB.NO. 1

DSK-AD LABEL
30E 10 02

TESTRUN
IJGFlnJZ

*IJGFIZl4Z
*IJGFIZZZ
*IJGFIEZZ

I JGFOHlZ
* IJGFOZL.JZ
*IJGFOZZZ
*IJGFOEZZ

ILBDDSPO
+ILBDDSPI

IJJCPDV
+IJJCPDVI
*IJJCPDV2

ILBDDSSO
+ILBDDSS1
+ILBDDSS2
+ Il BDDSS3
+ILBDDSS4
+ILBDDSSS
+ Jl BDDSS6
+ILBDDSS7
+ILBDDSS8

IL B or~NS 0
IL BDPRMO
ILBDSAEO

+ ILBDSAEI

ILBDSIOO
+ILBDSIOI

ILBDClKO
ILBDCMMO

+ILBDC~'MI
ILBDTC20
WXTRN
t~XTRN
WXTRN
WXTRN
WXTRN
WXTRN
WXTRN
WXTRN
WXTRN
WXTRN
WXTRN

LOADED

028078
028EAO
028EAO
028EAO
028EAO
029150
029150
029150
029150
029440
029850
029988
029938
029988
029C88
029ED8
029ED4
029F90
029CAC
029DSC
029DAE
029D8(.
029CDC
029FAO
029FBO
02A1l8
02A15E

REL-FR OFFSET INPUT
RELOCATABLE

028078 000000 SYSLNK
028EAO 000E28 IJGFIEWZ

029150 001008 IJGFOEWZ

029440 0013C8 ILBDDSPO

029988 001910 IJJCPDV

029C88 OOICIO ILBDDSSO

029FAO 001F28 IlBDMNSO
029FAO 001F38 ILBDMNSO
02A118 0020AO ILBDSAEO

02A3C8 02A3C8 002350 ILBDSIOO
02A3CC
02AEf,8 02AEA8 002E30 ILBDCLKO
02AEF8 02AEF8 002E80 ILBDCMMO
02AEFC
02B300 02B300 003288 ILBDTC20

STXITPSW
IL BDDBG2
IL BDVBLl
ILBDSPAO
ILBDSPA1
IL BDTCO 0
ILBDTC01
ILBDDBGO
IL BDDBG7
ILBDDBG8
ILBDTC30

IBM DOS VS COBOL REL 3.0 PP NO. 5746-CBl 17.26.17 02/25/81

II ASSGN SYS008,X'483'
II l:.X£C

\-IORl<-R:t;COrlD A 0001 NYC Z
\-IORK-RECORD B 0002 NYC 1
\-IORK-RECORD C 0003 NYC 2
\-IORK-RECORD D 0004 NYC 3
\-IORK-HECORD E 0005 NYC 4
\-IORK-RJ::CORD F 0006 NYC Z
wORK-RECORD G 0007 NYC 1
\-IORK-RECORD H 0008 NYC 2
\-IORK-NECORD I 0009 NYC 3
WORK-RECORD ,) 0010 NYC 4
WORK-RECORD K 0011 NYC Z
WORK-RECORD L 0012 NYC 1
toiORK-RECORD M 0013 NYC 2
wORK-RECORD N 0014 NYC 3
WORK-RECORD 0 0015 UYC 4
WORK-RECORD P 0016 NYC Z
WORK-RECORD Q 0017 NYC 1
WORK-RECORD R 0018 NYC 2
WORK-RECORD S 0019 NYC 3
WORK-RECORD T 0020 NYC 4
WORK-RECORD U 0021 I~YC Z
\-IORK-RECORD V 0022 NYC 1
\-IORK-RECORD W 0023 NYC 2
WORK-RECORD X 0024 NYC 3
WORK-R:t;CORD Y 0025 NYC 4
WORK-RECORD Z 0026 NYC Z

EO,) SAMPLE

BG
BG A 0001 NYC 0
BG B 0002 NYC 1
BG C 0003 NYC 2
BG 0 0004 NYC 3
BG E 0005 NYC 4
BG F 0006 NYC 0
BG G 0007 NYC 1
BG H 0008 NYC 2
BG I 0009 NYC 3
BG J 0010 NYC 4
BG K 0011 NYC 0
BG L 0012 NYC 1
BG M 0013 NYC 2
BG N 0014 NYC 3
BG 0 0015 NYC 4
BG P 0016 NYC 0
BG Q 0017 NYC 1
BG R 0018 NYC 2
BG S 0019 NYC 3
BG T 0020 NYC 4
BG U 0021 NYC 0
BG V 0022 NYC 1
BG W 0023 NYC 2
BG X 0024 NYC 3
BG Y 0025 NYC 4
BG Z 0026 NYC 0
BG EOJ SAMPLE

00.56.19,DURATION 00 •. 03.42

Appendix A: Sample Program Output 277

file
LaM I

'Ield Numbe,

FII. ldentlne,

7 8

Venton
NUftlber of
Ge.-ratlon

APPENDIX B: STANDARD TAPE PILE LABELS

10 II 12 13

~he standard tape file label format and contents are as follows:

~ield Name and Length

1. LABEL IDENTIPIER
3 bytes, EBCDIC

2. FILE LABEL NUMBER
1 byte, EBCDIC

3. FILE IDENTIFIER
11 bytes, EBCDIC

4. FILE SERIAL NUMBER
6 bytes, EBCDIC

5. VOLUME SEQUENCE
NUMBER
4 bytes

6. FILE SEQUENCE
4 bytes

7. ~ENERATION TIME
4 bytes

8. VERSION NUMBER OF
GENERATION
2 bytes

Description

Identifies the type of label.
HDR Header (beginning of a data file)
EOP End-of-file (end of a set of data)
EOV End-of-volume (end of the physical reel)

Always a 1.

Uniquely identifies the entire file, may contain
only printable characters. Some other systems
will not accept embedded blanks in the file
identifier.

Uniquely identifies a file/volume relationship.
This field is identical to the volume serial
number in the volume label of the first or only
volume of a multivolume file or a multifile set.
This field will normally be numeric (000001 to
999999), but may contain any six alphanumeric
characters.

Indicates the order of a volume in a given file or
multifile set. The first must be numbered 0001,
and subsequent numbers must be in proper numeric
sequence.

Assigns numeric sequence to a file within a multi
file set. The first must be numbered 0001.

Uniquely identifies the various editions of the
file. May be from 0001 to 9999 in proper numeric
sequence.

Indicates the version of a generation of a file.

Appendix B: Standard Tape File Labels 279

14

Field Name and Length

9. CREATION DATE
6 bytes

10.

11.

12.

13.

14.

280

EXF IRA TION DA TE
6 bytes

FILE SECURITY
1 byte

BLOCK COUNT
6 bytes

SYSTEM CODE
13 bytes

RESERVED
7 bytes

Description

Indicates the year and the day of the year that the
file was created.

position
1
2-3
4-6

Code
ii'laDk
00-99
001-366

Meaning
none
year
day of year

(e.g., January 31, 1973 would be entered as
73031) •

Indicates the year and the day of the year when the
file may become a scratch tape. The format of
this field is identical to field 9. On a
multifile reel processed sequentially, all files
are considered to expire on the same day.

Indicates security status of the file.

o = No security protection.

1 = Security protection. Additional
identification of the file is required before
it can be processed.

Indicates the number of data blocks written in the
file from the last header label to the first
trailer label, exclusive of tapemarks. Count
does not include checkpoint records. This field
is used in trailer labels.

Uniquely identifies the operating system.

Reserved. Should be recorded as blanks.

Option Record Key
Codes Lqth Locotlon , ~- ~

le.rved
:or Futul1l File Secondory
J .. TYIM

fAllocotion

I I 112 1&1 ~I: :a~ ~~ t~ ;;:~I~ :~II I~
R •• rved .J
for Futur. RJord Jock Ke! Leato Set
U .. format Leng th Length Indicotors

APPENDIX C: STANDARD MASS STORAGE DEVICE LABELS

Spoc:e
Remolnlng

~
LostU.d
Trock &
Record On
Thot Tracie

8:1 1 I I~ ~12 ~2

First Extent

Lower Upper
Limit Limit

~III= :1 I I=~ .J L Extent
Extent Type Sequence
Indicator Number

Eldents

Addltlonol Extent Addltionol Extent

Pointer

III I I HS;:l II I I liE I I I I~

~ormat 1: This format is common to all data files on disk.

pield Name and Length

1. FILE NAME
44 bytes, alphanumeric EBCDIC

Description

This field serves as the key portion of the file
label. It can consist of three sections:

1. File ID is an alphanumeric field assigned by
the programmer and identifies the file. It
can be 1 through 35 bytes in length if
'generation and version numbers are used, or 1
through 44 bytes in length if they are not
used.

2. Generation Number. If used, this field is
separated from File ID by a period. It has
the format Gnnnn, where G identifies the
field as the generation number and nnnn (in
decimal) identifies the generation of the
file.

3. Version Number of Generation. If used, this
section immediately follows the generation
number and has the format Vnn, where V
identifies the field as the version of
generation number and nn (in decimal)
identifies the version of generation of the
file.

~: IBM DOS/VS System compares the entire field
against the filename given in the DLBL card. The
generation and version numbers are treated
differently by the IBM OS/VS System.

Appendix C: Standard Mass Storage Device Labels 281

Fields 2 through 33 constitute the DATA portion of the file label.

Field Name and Length

2. FORMAT IDENTIFIER
1 byte, EBCDIC numeric

3. FILE SERIAL NUMBER
6 bytes, alphanumeric EBCDIC

4. VOLUME SEQUENCE NUMBER
2 bytes, binary

5. CREATION DATE
3 bytes, discontinuous binary

6. EXPIRATION DATE
3 bytes, discontinuous binary

7a. EXTENT COUNT
1 byte, binary

7b. BYTES USED IN LAST BLOCK
OF DIRECTORY
1 byte, binary

7c. SPARE
1 byte

8. SYSTEM CODE
13 bytes

9. RESERVED
7 bytes

10. PILE TYPE
2 bytes

282

Descri,E!ion

1 = format 1

Uniquely identifies a file/volume relationship. It
is identical to the volume serial number of the
first or only volume of a multivolume file.

Indicates the order of a volume relative to the
first volume on which the data file resides.

Indicates the year and the day of the year the file
was created. It is of the form YDD, where Y
signifies the year (0-99) and DD the day of the
year (1-366).

Indicates the year and the day of the year the file
may be deleted. The form of this field is
identical to that of field 5.

contains a count of the number of extents for this
file on this volume. If user labels are used,
the count includes the user label track as a
separate extent. This field is maintained by the
Disk Operating System.

Used by IBM Operating System Virtual Storage only
for partitioned (library structure) data sets.
Not used by the Disk Operating System Virtual
Storage.

Reserved for future use.

Uniquely identifies the operating system.

Reserved for future use.

The contents of this field uniquely identify the
type of data file.

Hex
Code
4000

2000

8000

0200

0000

Meaning
Sequential organization

Direct organization

Indexed organization

Library organization

organization not defined in the file
label

ield Name and Length

1. RECORD PORMAT
1 byte

12.

13.

14.

15.

16.

OPTION CODES
1 byte

BLOCK LENGTH
2 bytes, binary

RECORD LENGTH
2 bytes, binary

KEY LENGTH
1 byte, binary

KEY LOCATION
2 bytes, binary

Description

The contents of this field indicate the type of
records contained in the file.

Bit
Position Content
o and 1 --0-1 -

Meaning
Variable-length records

2

3

4

5 and 6

7

10 Fixed-length records

11 Undefined format

o No track overflow

1 File is organized using track
overflow (IBM OS/VS only)

o Unblocked records

1 Blocked records

o No truncated records

1 Truncated records in file

01 Control character ASA code

10 Control character machine code

00 Control character not stated

o Records are written without
keys

1 Records are written with keys

Bits within this field are used to indicate various
options used in building .the file.

Bit
Position

o

1-7

Meaning
If on, indicates data file was created

using write validity check.

Unused.

Indicates the block length for fixed-length
records, or maximum block size for variable
length blocks.

Indicates the record length for fixed-length
records, or the maximum record length for
variable-length records.

Indicates the length of the key portion of the data
records in the file.

Indicates the high-order position of the data
record.

Appendix C: Standard Mass Storage Device Labels 283

Field Name and Length

17. DATA SET INDICATORS
1 byte

18.

19.

20.

21.

284

SECONDARY ALLOCATION
4 bytes, binary

LAST USED TRACK AND
RECORD ON THAT TRACK
5 bytes, discontinuous binary

AMOUNT OF SPACE REMAINING ON
LAST TRACK USED
2 bytes, binary

EXTENT TYPE INDICATOR
1 byte

Description

Bits within this field are used to indicate the
following:

Bit
position --0--

1

2

3

Meaning
If on, indicates that this is the last

volume on which this file normally
resides. This bit is used by the
DOS/VS DTFSR routine only. None of
the other bits in this byte are used
by the DOS/VS.

If on, indicates that the data set
described by this file must remain
in the same absolute location on the
direct-access device.

If on, indicates that block length
must always be a multiple of eight
bytes.

If on, indicates that this data file
is security protected; a password
must be provided in order to access
it.

4-7 Space. Reserved for future use.

Indicates the amount of storage to be requested for
this data file at end-of-extent. This field is
used by IBM OS/VS only. It is not used by DOS/VS
routi:nes.

Indicates the last ~ccupied track in a consecutive
file organization data file. This field has the
format CCHHR. It is all binary zeros if the last
track in a consecutive data file is not on this
volume, or if it is riot consecutive organization.

A count of the number of bytes of available space
remaining on the last track used by this data
file on this volume.

Indicates the type of extent with which the
following fields are associated:

Hex
Code
00

01

02

04

40

80

Meaning
Next three fields do not indicate any

extent.

Prime area (indexed) or consecutive
area, etc., (i.e., the extent
containing the user's data records).

Overflow area of an indexed file.

Cylinder index or master index area of
an indexed file.

User label track area.

Shared cylinder indicator.

ielg Name and Length

2. EXTENT SEQUENCE NUMBER
1 byte, bina~y

3. LOWER LIMIT
4 bytes, discontinuous binary

:4. UPPER LIMIT
4 bytes

~5-28. ADDITIONAL EXTENT
10 bytes

!9-32. ADDITIONAL EXTENT
10 bytes

Description

Indicates the extent sequence in a multi-extent
file.

The cylinder and the track address specifying the
starting point (lower limit) of this extent
component. This field has the format CCHH.

The cylinder and the track address specifying the
end point (upper limit) of this extent component.
This field has the format CCHH.

These fields have the same format as the fields
21 through 24, above.

These fields have the same format as fields 21
through 24, above.

~3. POINTER TO NEXT FILE LABEL The disk address (format CCHHR) of a continuation
WITHIN THIS LABEL SET label is needed to further describe the file. If
5 bytes, discontinuous binary field 9 indicates indexed organization, this

field will point to a Format 2 file label within
this label set. Otherwise, it points'to a Format
3 file label, and then only if the file contains
more than three extent segments. If no
additional file label is pointed to, this field
contains all binary zerds.

A~pendix c: Standard Mass storage Device Labels 285

(

APPENDIX D: TRACK FORMATS FOR DIRECT-ACCESS STORAGE DEVICES

The track format for the 2311, 2314,
:319, 2321, 3330, 3340, and 3350 direct
Lccess storage devices is illustrated in
'igure 67. The names of the fields are
riven in the following discussion.

:ndex Marker: All tracks start with an
.ndex marker. It is a signal to the
lard ware that indicates beginning of the
:rack.

lome Address: The home address, preceded
>y a gap, follows the index marker. The
tome address uniquely identifies each track
>y specifying the cylinder and head number.

rrack Descriptor Record (Reco~: Record
) consists of two parts: a count portion
ind a data portion. The £QYn~rtion is
the same as it is for any other record (see
the following description of count for
record 1. The a-byte data portion is used
to record information used by LIOCS. The
information in the data portion depends on
the data organization (direct or indexed)
that is being used.

For direct organization, this portion in
the form of CCHHR contains the address of
the last record on the track and the number
of bytes remaining on the track. This
information is used to determine whether
there is space for another record on the
track. For indexed organization, the data
portion contains the address of the last
record in the cylinder overflow area and
the number of tracks remaining in the
cylinder overflow area. Record 0 is then
used as the cylinder overflow control
record.

Address Marker: All records after record 0
will be preceded by a 2-byte address
marker. The address marker is a signal to
the hardware that a record is starting.

Data Records: Data records can consist of
a count and data portion for sequential
organization, or a count, key, and data

portion for direct and indexed
organizations.

1. Count Portion. The count portion
contains the identification of each
record, the key length, and the data
length.

a. Identification. Each record is
identified with its cylinder
number, head number, or record
number. The cylinder and head
numbers will be the same as those
of the home address. The record
number will indicate a particular
record on the track. That is, the
first record after record 0 will
be record 1, followed by record 2,
etc. This 5-byte binary field in
the form of CCHHR is often
referred to as the record ID.

b. Key Length. The key length is
specified in an a-bit byte; its
length can range from 0 to 255.
This field will contain a zero if
there is no key.

c. Data Length. The data length is
specified in the 16 bits of the
next two bytes.

Note: It is the count portion
that identifies the presence or
absence of a key, in addition to
indicating the data length. In
this way, each record is unique
and self formatting.

2. Key Portion. The key portion of the
record is normally used to store the
control field of the data record such
as a man number. Direct and indexed
files must have a key portion.

3. Data Portion. The data portion of the
record contains the data record.

Appendix D: Track Formats for Direct-Access storage Devices 287

Note that all records, including the
data record, terminate with a 2-byte cyclic
check. The hardware uses this cyclic check
to ensure that is correctly reread what it
had written. The cyclic check is
cumulative and is appended to each record
when it is written. Upon reading the
record, the cyclic check is again
accumulated and then compared with the
appended cyclic check. If they do not
agree, a data check is initiated.

The first byte of the count portion of
each record and the home address is
reserved for a flag byte. If a track

GcpGCfG~G~GTG! RI - Count I GI RI - Key

Ind.x Home Addre"

Mark.r Add!re.. De!~~~!tor Marker

G- Gap Record

'F~'H ,H,C ,C,

I~

!

Flag I N~::.r I
Cylind.r Cyclic
Number Check

81t, 0 0 0 0 0 0

liyR'l'~Y
Flag Record K.y Data Cyclic

10 Length Length Check

Figure 67. Track Format

288

G
A
P

Number

T
Fint Data

Record

!
G
A
P

becomes defective, a utility program may be
used to transfer the data to an alternate
track. (Cylinders 200 through 202 are
reserved for alternate tracks on the 2321.
Strips 6 through 9 of subcell 19 of each
cell are reserved for alternate tracks on
the 2321.) In this case, a flag bit within
the byte is set ~ to indicate that this is
a defective track and the address of an
alternate track will be placed in the
record ID of record O. Subsequent
references to this defective track will
result in the Supervisor accessing record 0
for the address of the alternate track.

IGI RI - Data IG[Z]G@
I

G

!--L-4~ ~
~~CICI

Key
Data 85 Optional o Varlabl.

2 Variabl. L.ngth
Length

The IBM DOS/VS COBOL Object-Time
:ubroutine Library, Program Number
,746-LM4, is packaged with the DOS/vS COBOL
~ompiler and also available as a separate
Iroduct. It provides subroutines to be
.ink edited with object modules produced by
IOS/VS COBOL Compiler. It also provides
:ubroutines that can be dynamically fetched
luring problem program execution.

There are several major categories of
~OBOL library subroutines:

• Input/output verb routines

• ASCII support routines

• Conversion routines

• Arithmetic verb routines

• Sort/Merge Feature interface routines

• Checkpoint (RERUN) routines

• segmentation Feature routines

• Other verb routines

• Object-time debugging routines

• Object-time execution statistics
routines

• Optimizer routines

• Transient routines

The following sections describe some of
~he more commonly used subroutines.

:NPUT/OUTPUT SUBROUTINES

The input/output subroutines are used
'or the COBOL verbs DISPLAY (TRACE and
:XHIBIT), ACCEPT, STOP (literal), READ,
rRITE, REWRITE, OPEN, CLOSE, DELETE, and
;TART printer spacing, printer overflow,
.nput/output errors, disk formatting and
!xtent handling, and tape and sequential
lisk labels.

APPENDIX E: COBOL LIBRARY SUBROUTINES

Printer Spacing

The ILBDSPAO subroutine is used to
control printer spacing when the WRITE
statement with the BEFORE/AFTER ADVANCING
or POSITIONING option is specified in the
source program.

Tape and Sequential Disk Labels

The ILBDUSLO and ILBDNSLO subroutines
are used when user or nonstandard labels,
respectively, are to be processed (LABEL
RECORDS ARE data-name).

CLOSE WITH LOCK Subroutine

The ILBDCLKO subroutine is given control
on an OPEN if the file is ever closed with
lock in the program. It checks whether the
OPEN statement is used to open a file
previously closed with lock. If the file
was previously closed with lock, it issues
an object-time message and terminates the
current job.

WRITE Statement Subroutines

The ILBDVBLO subroutine is used to write
variable-length blocked records.

The ILBDDIOO s~broutine is used for
writing files with direct organization
(DTFDA) •

The ILBDISMO subroutine is used for
writing files with indexed organization.

READ Statement Subroutines

The ILBDDSRO subroutine is used to read
sequentially the records of a directly
organized file.

The ILBDDIOO subroutine is used to read
randomly the records of a directly
organized file.

Appendix E: COBOL Library Subroutines 289

The ILBDISMO subroutine is used to read
an indexed file.

REWRITE Statement Subroutines

The ILBDDIOO subroutine is used to
update records on a directly organized
file.

The ILBDISMO subroutine is used to
update an indexed file.

DISPLAY (EXHIBIT and TRACE) Subroutines

The ILBDDSPO subroutine formats one or
more operands into printed lines,
performing conversions as needed.

The ILBDOSYO and ILBDASYOsubroutines
open SYSLST and/or SYSPCH and/or SYSIPT if
there are DISPLAY or ACCEPT statements in a
label declarative.

ACCEPT and STOP (literal) Statement
Subroutines

The ILBDACPO subroutine is used to
handle ACCEPT statements for both SYSIPT
and the console, as well as the STOP
(literal) statement. The ILBDACPO
subroutine does not format or convert
operands. For operands greater than 80
characters in length, any remainder in
excess of the nearest multiple of 80 is
ignored when accepting data from SYSIPT.

CLOSE Subroutine

The ILBDCRDO subroutine is given control
when a CLOSE UNIT statement is issued for a
sequential input fiie with direct
organization.

Multiple File Tape Subroutine

The ILBDMFTO subroutine is given control
when a reel contains more than one file and
there are no standard labels.

Tape Pointer Subroutine

The ILBDIMLO subroutine locates the
pointer to the physical tape drive
associated with the logical unit for a
particular tape file.

290

Input/Output Error Subroutines

The ILBDSAEO subroutine is used for
processing input/output errors that occur
on tape and sequential disk.

The ILBDDAEO subroutine is used for
processing input/output errors that occur
on directly organized files.

The ILBDISEO subroutine is called
whenever an input/output error occurs
during the processing an indexed file.

The ILBDABXO subroutine is used to issue
a STXIT macro instruction causing control
to be passed to it if there is an error on
a unit-record device.

Disk Extent Subroutines

The ILBDFMTO subroutine writes record 0
(RO) on each track of each extent of a
directly organized file opened as output,
and writes an end-of-file (EOF) record as
the last record in the file. This
subroutine is called after the file has
been opened.

The ILBDXTNO subroutine stores for
subsequent use the extent information for
directly organized files.

3886 OCR Subroutine

The ILBDOCRO subroutine is used to
perform I/O operations for the 3886 Optical
Character Reader.

VSAM Subroutines

The ILBDINTO subroutine does
initialization for VSAM processing.

The ILBDVOCO performs VSAM open and
close functions.

The ILBDVIOO performs all action
requests for VSAM files (for example, READ,
WRITE, REWRITE, S~ART, DELETE).

These routines may call the Checkpoint
subroutine and $$BCOBRl discussed later in
this chapter.

illxiliary Subroutines

Certain input/output subroutines use
Luxiliary subroutines as follows:

~xiliary
~utine

[LBDMOVO

[LBDIDAO

[LBDTABO

Used By

ILBDSPAO, ILBDNSLO,
ILBDVBLO

ILBDFMTO, ILBDDSRO

ILBDDIOO, ILBDIDAO,
ILBDCKPO

~SCII SUPPORT SUBROUTINES

The subroutine described below handles
functions necessary for files written in
~SCII. Other functions are handled by code
generated by the compiler or by the
subroutine ILBDSPAO.

Separately Signed Numberic Subroutine

The ILBDSSNO subroutine is called to
check the validity of signs described as
TRAILING SEPARATE CHARACTER or LEADING
SEPARATE CHARACTER.

CONVERSION SUBROUTINES

I Six numeric data formats are permitted
in COBOL: three external (jor input and
output) and three internal (for internal
processing).

The three external formats are:

• External or zoned decimal

• External floating-point

• Numeric ~dited

The three internal formats are:

• Internal or packed decimal

• Binary

• Internal floating-point

The conversions from internal decimal to
external decimal, from external decimal to
internal decimal, and from internal decimal
to numeric edited are. performed in-line.
The other conversions are performed by the
COBOL library subroutines shown in Table 35.

Appendix E: COBOL Library Subroutines 291

Table 35. Functions of COBOL Library Conversion Subroutines

Subroutine Name
and Entry Points

ILBDEFL2

ILBDEFL1

ILBDEFLO

ILBDBIDOI

ILBDBID11

ILBDBID21

ILBDBIEOI

ILBDBIE11

ILBDBIE21

ILBDBII02

ILBDBII12

ILBDTEF02

ILBDTEF12

ILBDTEF2

IFBDTEF3

ILBDIDBO

ILBDIDB1

ILBDDCI1

ILBDDCIO

ILBDIFDO

ILBDIFD1

ILBDIFB1

ILBDIFB2 3

ILBDIFB03

ILBDCVBO

I ILBDCVB1
I .

Conversion

From

External floating-point

External floating-point

External floating-point

Binary

Binary

Binary

Binary

Internal decimal

Internal floating-point

Internal decimal

External decimal

Internal decimal

External decimal

Internal floating-point

Internal floating-point

Internal floating-point

Intern~l floating-point

External decimal

External decimal

I
I
I
I
I
I

, I

To

Internal decimal

Binary

Internal floating-point

Internal decimal

External decimal

Internal floating-point

External floating-point

External floating-point

External floating-point

Binary

Binary

Internal floating-point

Internal floating-point

Internal decimal

External decimal

Binary integer and a power
of 10 exponent

Binary

Binary

Binary

liThe entry points used depend on whether the double-precision number is in registers 0
I and 1, 2 and 3, or 4 and 5, respectively. '
12The entry points are for single-precision binary and double-precision binary,
I respectively.
13This entry pOint is used for calls from other COBOL library su~routines.

292

(

[THMETIC VERB SUBROUTINES

Most arithmetic operations are performed
-line. However, involved calculations
th very large numbers, such as decimal
ltiplication of two 30-digit numbers, are
rformed by COBOL library arithmetic
broutines. These subroutine names and
eir functions are shown in Table 36.

RT/MERGE FEATURE INTERFACE ROUTINE

Communication between the sort/Merge
'ogram and the COBOL program is maintained

ILBDSRTO and ILBDMRGO.

iECKPOINT (RERUN) SUBROUTINE

The ILBDCKPO subroutine issues the
leckpoint macro instruction, which will
~ite checkpoint records on a programmer
)ecified tape or disk checkpoint device.
lere are two calling sequences to this
Ibroutine. The first, ILBDCKP1, is
:tivated during initialization when the
~dresses of all files in the program are
ltered in a table. The second, ILBDCKP2,
3 required to take checkpoints during a
Jrting operation.

If RERUN is requested during a sorting
~eration, ILBDSRTO must gather a list of
hysical IOCS files in use by the Sort
rogram every time Sort exits at Ell, E21,
nd E31. ILBDSRTO then calls the
heckpoint subroutine which will take a
heckpoint of all active files.

SEGMENTATION FEATURE SUBROUTINE

The Segmentation Feature requires an
object time subroutine, ILBDSEMO. The
ILBDSEMO subroutine performs the following
functions when segments are needed:

1. Loads and initializes independent
segments not in storage.

2. Loads overlayable segments not in
storage.

3. Initializes independent segments if
the segment is in storage.

4. Branches to desired entry pOints.

OTHER VERB ROUTINES

There are also COBOL library subroutines
for comparisons, the verbs MOVE and
TRANSFORM, and other features of the COBOL
language.

Compare Subroutines

The ILBDVCOO subroutine compares two
operands, one or both of which is variable
in length. Each may exceed 256 bytes.

The ILBDIVLO subroutine is used in
comparisons involving the figurative
constant ALL 'literal', where literal is
greater than one character.

able 36. Functions of COBOL Library Arithmetic Subroutines
---------------T---,
Subroutine NameJ Function I
---------------+---1
ILBDXMUO I Internal decimal multiplication (30 digits * 30 digits = 60 digits) I
---------------+---1
ILBDXDIO I Internal decimal division (60 digits/30 digits = 30 digits) I
---------------+---1
ILBDXPRO I Decimal fixed-point exponentiation I
---------------+---~
ILBDFPWO l Floating-point exponentiation I
.---------------+---1
ILBDGPW01 I Floating-point exponentiation I . _______________ i ___ ~

1The ILBDGPWO entry point is used if the exponent has a PICTURE clause specifying an I
integer. The ILBDFPWO entry pOint is used in all other cases. I . ___ J

Appendix E: COBOL Library Subroutines 293

MOVE Subroutines

The ILBDVMOO subroutine is used when one
or both operands is variable in length and
in-line instructions cannot be generated
(for example, fields overlap, etc). Each
may exceed 256 bytes. The subroutine has
two entry points, depending on the type of
MOVE: ILBDVMOO (left-justified) and
ILBDVMOl (right-justified).

The ILBDANFO subroutine is used to move
the figurative constant ALL 'literal',
where literal is greater than one
character.

The ILBDANEO subroutine is used to
perform a right-or left-justified
alphanumeric edited move.

The ILBDSMVO subroutine handles moves to
right-justified receiving fields either
greater than 512 bytes in length or
variable in length.

TRANSFORM Subroutine

The ILBDVTRO subroutine transforms
variable-length items using the ILBDTRNO
transform table.

Class Test Subroutine
. I

The ILBDCLSO subroutine is used to
perform class tests for variable-length
items and those fixed-length items longer
than 256 bytes.

Note: The following tables are placed in
the library for use by the in-line coding
generated by the compiler and the
subroutines called for by both the class
test and TRANSFORM:

ILBDATBO
ILBDETBO
ILBDITBO
ILBDUTBO
ILBDWTBO

Alphabetic class test
External decimal class test
Internal decimal class test
Unsigned internal decimal
Unsigned external decimal

SEARCH Subroutine

The ILBDSCHO subroutine processes each
search argument key according to type.

294

Main Program or SubproGram Subroutine

The ILBDMNSO subroutine is a 1-byte
switch tested in the code generated for
EXIT PROGRAM, GOBACK. INIT1, and INIT2.

The ILBDSETO subroutine must be called
by a non-American National Standard COBOL
program prior to any call to an American
National Standard COBOL prograro. When
calling ILBDSETO, standard linkage
conventions roust be observed; there are no
parameters to be passed. The ILBDSETO
subroutine sets the 1-byte switch
(ILBDMNSO) to X'FF'. This switch is tested
in the American National Standard COBOL
program to determine whether it is a main
or a called program. The name of this
subroutine can be changed to any name
desired by the COBOL user.

OBJECT-TIME DEBUGGING SUBROUTINES

Three options are available for
object-time debugging. These are the
statement number option (STATE), the flow
trace option (FLOW), and the syrobolic debug
option (SYMDMP). The subroutines for the
first two options provide debugging
information when a program terITinates
abnormally; the subroutines for the third
option provide debugging inforrration either
at abnormal termination or dynamically
during execution of a program. All of the
subroutines are under the control of and
are serviced by the Debug Control
Subroutine (ILBDDBGO). This section
discusses (1) the Debug Control Subroutine,
and (2) the subroutines that are called in
response to each of the three debugging
options.

Debug Control Subroutine

The ILBDDBGO subroutine is included in
the load module whenever the CBL control
card for a program contains at least one of
the debugging options, or when the CBL
control card for a program requests
execution statistics.

Statement Number Subroutine

The ILBDSTNO subroutine provides the
number of the statement and the number of
the verb being executed when abnormal
termination occurs. If abnormal
termination occurs during execution of an
instruction outside of the COBOL program,
the statement number that is provided is
that of the last COBOL instruction
executed.

low Trace Subroutine

Space is allocated at compile time for a
low trace table using the programmer
~ecified number in the FLOW option of the
BL card. (If FLOW=O was specified for a
ubprogram, no space is allocated; rather
he subprogram shares the table space
eserved by that program preceding it in
he calling sequence for which a FLOW
pecification was made.)

Each time the flow trace subroutine
LBDFLWO receives control from the COBOL
rogram, it inserts the executing program's
dentification as well as the card number
f the current procedure into the next
vailable position in the table. When the
nd of the table is reached, subsequent
ntries overlay the first set of entries.
'he procedure is repeated until the end of
he program or until abnormal termination.
. f abnormal termination occurs, the
:ubroutine produces a list of each entry of
.he table, beginning with the earliest
mtry.

>ymbolic Debug Subroutines

The symbolic debug subroutines provide a
:ormatted symbolic dump, either dynamically
it execution time, or at abnormal
:ermination.

The following subroutines perform·
Lnitialization and process debug control
::ards:

ILBDMP10, ILBDMPll, ILBDNP12, ILBDMP13,
ILBDMP14, and either ILBDMPOl or
ILBDMP02.

To provide a dump at abnormal
termination, the following subroutines are
used:

ILBDMP20, ILBDMP21, ILBDMP22, ILBDMP23,
ILBDMP24, ILBDMP25 an'j ILBDMPOl or
ILBDMP02. These subroutines are not
included in the load module at link edit
time; they are loaded dynamically during
program execution.

The ILBDADRO subroutine tests the
validity of an address calculated for a
subscripted identifier or the validity of
the starting and ending addresses of a
variable-length identifier used as the
receiving field in a MOVE statement.

OBJECT-TIME EXECUTION STATISTICS
SUBROUTINES

The object-time execution statistics
subroutines enable the printing of
execution statistics when a program
terminates normally (via STOP RUN or GOBACK
in the main program) and when a program
terminates abnormally. In addition, when
COUNT is requested, the debug control
subroutine (described above) is also
included in the load module.

COUNT Initialization Subroutine

The ILBDTCOO subroutine is called from
the debug control subroutine to get space
for an initialize the table and chains
which service the COUNT options •

COUNT Frequency Subroutine

The ILBDCT10 subroutine maintains the
execution frequency statistics.

COUNT Termination Subroutine

The ILBDTC20 subroutine is included in
all COBOL load modules. It determines if
execution frequency statistics were
requested.

COUNT Print Subroutine

The ILBDTC30 subroutine formats and
prints the execution frequency statistics.

OPTIMIZER SUBROUTINES

GO TO ••• DEPENDING ON Subroutine

The ILBDGDOO subroutine is called only
when the optimization option <OPT) has been
specified. It is used to more efficiently
process GO TO statements with the DEPENDING
ON option in both segmented and
ncnsegmented programs.

Appendix E: COBOL Library Subroutines 295

Optimizer DISPLAY Subroutine

The ILBDDSSO subroutine is used to print
or type certain data types on SYSLST or the
console, respectively.

TRANSIENT SUBROUTINES

The IBM DOS/VS COBOL Object-Time
Subroutine Library includes routines that
are dynamically fetched during program
execution. These routines are as follows:

Symbolic Debug Subroutines

with the exception of ILBDDBGO, the
symbolic debug subroutines described
previously are transient routines.

SYMDMP Error Message Subroutine

The $$BCOBEM subroutine prepares SYMDMP
error messages.

OBJECT-TIME OPTIONS SUBROUTINE

The ILBDPRMO subroutine is invoked to
scan the SYSPARH options and set internal
switches and options accordingly.

STRING SUBROUTINE

The ILBDSTGO routine combines the partial
or complete contents of two or more
subfields into a single field. This routine
transfers characters from the sending
item(s) to the receiving item in the same
way that alphanumeric item(s) are moved
to alphanumeric item(s).

UNSTRING SUBROUTINE

The ILBDUSTO routine separates contiguous
data in a sending field, placing it in
multiple receiving fields.

296

INSPECT SUBROUTINE

The ILBDINSO subroutine performs
operations for the INSPECT statement,
doing specified tallying and replacing.

SM1 I/O SUBROUTINE

The ILBDSIOO subroutine handles the
various I/O requests for COBOL SAM files.

GETCORE SUBROUTINE

The ILBDCHMO subroutine issues the GETVIS
and FREEVIS macro instructions for the COBOL
program or for any COBOL library subroutine
requiring storage additions or deletions.
The subroutine chains together the
information about the storage areas
acquired through the GETVIS macro
instruction and releases this information
from the chain when the FREEVIS macro
instruction is issued for that area of
storage.

ALTERNATE COLLATING SEQUENCE COHPARE
SUBROUTINE

The ILBDACSO subroutine handles the
various forms of nonnumeric comparisons,
using an alternate program collating
sequence (if specified). It also handles
"native" collating sequences.

SEGHENTATION SUBROUTINE

The ILBDSEMO subroutine is included for
LANGLVL(1) and pre-DOS/VS compatibility.
purposes only. It is used to load segments
of a program that are not in main storage
and to pass control from one segment to
the other.

GO TO DEPENDING ON SUBROUTINE

The ILBDGDOO subroutine uses the value
of a particular data-name as an index into
a list of constants for each PN specified
and then transfers control to the proper
PN. If the value of the data-name is
greater than the number of PNs specified,
control returns to the next instruction

after the calling sequence. ILBDGDOO
also handles transfer of control between
segments, and any necessary segment

'reinitialization.

DATE, DAY, AND TIHE SUBROUTINE

The ILBDDTEO subroutine performs three
functions in response to the use of the
special registers: DATE, DAY, and TIME.
The list below indicates the function of
each of the entry points, and the format of
each result in the receiving field of the
specified ACCEPT statement.

ILBDDTE1 year, month, day

ILBDDTE2 year, day

ILBDDTEO hour, minute, second, hundredth
of a second

Error Messaae Subroutine

The $$BCOBER subroutine prepares
input/output error messages.

Error Message Print Subroutine

The $$BCOBRl subroutine prints the error
messages prepared by $$BCOBER and provides
a dump if the DUMP option is in effect.

Reposition Tape Subroutine

The $$BFCMUL subroutine resets the PUB
pointer for a particular (SYSnnn) device to
the same as that saved earlier by the

ILBDTODO performs one function in response subroutine ILBDIMLO.
to the use of the TIME-OF-DAY special
register. It returns the time in the form:
hours, minutes, seconds.

USE FOR DEBUGGING SUBROUTINE

The ILBDBUGO subroutine handles invocation
of USE FO~ DEBUGGING declaratives, including
filling in of the DEBUG-ITEM special
register.

Note: If dynamically fetched subroutines
are required during problem program
execution, the Subroutine Library must be
installea on the object machine. If
dynamically fetched subroutines are not
required during problem program execution,
the object-time subroutines can be link
edited on the source machine; the
Subroutine Library must in this case be
installed on the source machine.

Appendix E: COBOL Library Subroutines 296.1

This appendix contains information
lncerning system and size requirements for
le DOS/VS COBOL compiler, execution time
)nsiderations, and the Sort/Merge Feature.
Iditional information used in estimating
le virtual and auxiliary storage
~quirements is contained in the
Iblication IBM DOS/VS COBOL Compiler and
Lbrary, Installation Reference Material.

CNIMUM MACHINE REQUIREMENTS FOR THE
)MPILER

A System/370 supported by DOS/VS.
A minimum of 60K bytes of virtual
storage is required.

Five work files. The system logical
unit SYSLNK must be assigned to a
single area (extent) on a 2314, 2319,
3330, 3340, 3350, or fixed block mass
storage device. Four programmer logical
units (SYS001 through SYS004) must
reside on 2400, 3410, 3420 tape units,
or on 2314, 2319, 3330, 3340, 3350, or
fixed block mass storage devices. At
least one programmer logical unit as
well as the operating system must
reside on a mass storage device (that
is, a 2311, 2314, 2319, 3330, 3340,
3350, or fixed block mass storage
device). If the three remaining
logical units reside on tape, there
must be a separate tape unit for each
file. If they reside on mass storage
devices, there must be enough space
on those devices. An additional logical
unit, SYS005, must be assigned if the
symbolic debug option (SYMDMP) is
being used. Logical unit SYS006 must
be assigned for the FIPS flagger.

Work file assignments must be made as
follows:

SYSLNK - mass storage device
SYSOOl - mass storage device
SYS002 - mass storage device or tape

unit
SYSOO3 - mass storage device or tape

unit
SYSOO4 - mass storage device or tape

unit
SYS005 - mass storage device or tape

unit
SYSOO6 - mass storage device unit

Note that SYSLNK need only be assigned
at compile time if the CATAL or LINK
option is in effect.

APPENDIX F: SYSTEM AND SIZE CONSIDERATIONS

The filenames for SYSLNK and SYSOOl
through SYS006 on the TLBL or DLBL
statements are IJSYSLN, IJSYS01,
IJSYS02, IJSYS03, IJSYS04, IJSYS05,
and IJSYS06, respectively. If the
"filename" parameter of the SY~DMP
option is specified, this filename is
used instead of IJSYS05 on DLBL
statements.

3. A device, such as a printer keyboard,
for direct operator communication.

4. A device, such as a card reader, for
the job input stream.

5. A device, such as a printer or tape
unit, for system output files.

6. The floating-point arithmetic feature,
if floating-point literals or
calculations are used.

Workfile Definition in VSAM Space

Under DOS/VSE Advanced Functions,
Release 2 and up, workfiles SYSOOl through
SYS004, SYS006, and SYSLNK can be defined
in VSAM space. However, if anyone of the
workfiles SYSOOl through SYS004 or SYS006
is defined in VSAM space, all other workfiles
must be defined on mass storage devices.
Workfile SYS005 should not be defined in
VSAM space.

The BUF parameter of the CBL statement
must not be specified for workfiles
defined in VSAM space.

If workfiles are defined in VSAM
space,' the LST lister statement and the
LVL option for FIPS must not be requested
together for one compilation.

Workfiles can be defined explicitly or
implicitly in VSAM space, as follows:

EXPLICIT DEFINITION: Use access method
services to define a dynamic VSAM sequential
file with a default record size. During
compilation, supply DLBL statements for
SYSOOl through SYS004 and SYS006, specifying
VSAM. No EXTENT statements are needed.

IMPLICIT DEFINITION: During compilation,
supply DLBL statements for SYSOOl through
SYS004 and SYS006, specifying VSAM, and the
RECORDS and RECSIZE parameters. Specify the
volume either through an EXTENT statement or

Appendix F: System and Size Considerations 297

through a default model for a VSAM
sequential file.

For detailed information, see Using the
VSE/VSAM Space Management for SAM Feature
manual.

SOURCE PROGRAM SIZE CONSIDERATIONS

Compiler Capacity

This section contains inforrration which
must be considered in determining the
limitations on the size of a COBOL source
program in a specific virtual storage size.
It also contains information to aid the
programmer in determining how his source
program affects usage of space at
compilation time.

The capacity of the COBOL compiler is
limited by two general conditions: (1) the
total table requirement may be greater than
the space available and (2) the fact that
an individual table (with the exception of
the ADCON and cross-reference tables) nay
need to be longer than 32,767 bytes. If
either of these conditions is met during
compilation, one of the following error
messages will be issued:

lLA0001I-D NO MORE TABLE SPACE
AVAILABLE. COlwjPILATION
ABANDONED.

ILA0003I-D A TABLE HAS EXCEEDED THE
lwmXIMUM SIZE. COMPILATION
ABANDONED.

lLA6007I-D 'I'ABLE HAS EXCEEDED MAXINUM
SIZE. LISTX, OBJECT MODULE,
AND DECK WILL BE INCOMPLETE.
INCREASE PARTITIO.~.

In each case, compilation is terminated.
However, in the first and third cases, or
in the case of overflow of the ADCON or
cross-reference table, the program may be
recompiled with a larger size parameter.

The compiler will accept and compile a 1500
card program in the minimum storage of 64K.
In this-configuration, the minimum size
compiler input/output areas must be
allocated. If both LINK and DECK are
specified, more storage is required for
buffer space, which reduces the space
available to a given program. Within this
configuration, the compiler will accept
programs much larger than 1500 cards; the
specific size limitation for any storage
size depends entirely on the statement mix
in that program, but the limiting factors
are described in the next section.

298

The overall critical limit using the
minimum buffer specification may be
expressed as follows:

2 (number of pn's + gn's + literals +
virtuals) + 8A + S (L + 5D + 8V + 3P) S
14336 + C

where the number of virtuals is the number
of calls to COBOL object-time subroutine
entry points and subprograrrs specified in
CALL statement, and V is the number of
unique such names; also

A = number of entries in the ADCON table
as defined below

S 1 if the Seqmentation Feature is
required and NOOPT is in effect;
otherwise 0

L length of optimized literals

D number of segment discontiguities in
the Procedure Division

P number of PERFORM exits and altered
GO TO statements

C any storage over 64K assigned to the
progrClm

It should be noted that the number of gn's
is reduced when using OPT.

Within this configuration, assuming no
Report Section, the compiler will accept
for example:

300 procedure references assuming an
average procedure-name length of 12
characters

25 OCCURS clauses with the DEPENDING ON
option

10 files, assuming an average of 3
subordinate record entries

Effective storage Considerations

The performance of the compiler is
affected by the amount of storage it is
allocated. The compiler will take
advantage of any extra storage it is
assigned. Furthermore, the use of a BUF
parameter tailored to the work file device
type in use is recommended. The following
CBL parameters positively affect
compile-time performance:

OPT
SYNTAX (CSYNTAX)
NOLIB
BUF

The amount of virtual storage within the
compilerQ s partition and the liITitation on
the size of an individual internal table
are two factors that limit the capacity of
the compiler. The limitation on the size
of internal tables can, in some instances,
be overcome by the spilling over of some
tables onto external devices. However,
spilling over may cEpse a severe
degradation of performance. The storage
limitation should not be reached by any
reasonable use of the language. However,
within a limited storage capacity, excessive
use of certain features and co~bination of
features in the language could make
corrpilation impossible. Some of the
features that significantly affect storage
usage are:

1. ADCON Table

Each entry occupies 8 bytes. This
table is not limited to the maximum

size of 32,767 bytes. Entries are
based on:

• Number of 4096-byte seg~ents in the
Working-Storage Section

• Number of 4096-byte segments in a
file buffer area

• Number of referenced procedure-narres

• Number of implicit procedure-name
references such as those generated
by IF, SEARCH, and GENERATE
statements, ON SIZE ERROR, INVALID
KEY, and AT END options, the OCCURS
clause with the DEPENDING ON option,
USE sentences, and the segmentation
Feature

• Number of files

Appendix F: System and Size Considerations 298.1

The size of this table is
significantly reduced when using OPT.

2. Procedure-Name Table

This table contains the number of
definitions written in a section and
unresolved procedure references.
Procedure references are resolved at
the end of a section if the definition
of the procedure-name is in that
section or a preceding section.
Therefore, forward references beyond a
section impact space.

3. OCCURS DEPENDING ON Table

This table contains an entry for each
unique object of an OCCURS clause with
the DEPENDING ON option. The size of
an entry is (2 + length of name +
length of each qualifier) bytes.

4. Index Table

An entry is made for each INDEXED BY
clause consisting of 11 bytes for each
index.

5. File Table

An entry is made for each file
specified in the program. Each entry
occupies 60 bytes of storage.

6. Report writer Tables

A considerable amount of information
is maintained concerning each RD such
as controls, sums, headings, footings,
routines to be generated, etc. The
contents of the table is increased by
the existence of qualification and
subscripting in the Report Section.
Approximately 30 reports can be
processed, without exceeding the limit
of a table.

7. Operand Table

Entries are made depending on the
number of operands in a statement.
This table could reach its limits by
the use of compound nested IF
statements or GO TO DEPENDING ON
statements with an excessive number of
branch points.

8. Dictionary Table

An entry is made for each
procedure-name and each data-name in
the program. A procedure entry
consists of (7 or 9 + length of name)
bytes. A data entry consists of
(length of name + n) bytes, where Q is
determined by the attributes of the

data item. Some of the features that
contribute to the value n are:

• One byte for each character in a
numeric edited or alphanumeric
edited item PICTURE clause.

• Five bytes for an elerrentary item
with a sterling report PICTURE
clause.

• Three bytes for an item
subordinate to an OCCURS clause.

In the statistics output, an
indication is given if spill of
this table occurred. If spill
occurred, increasing the partition
size assigned to the compiler
should increase performance.

9. Literal Tables

The total length of all literals
(after optimization) may not exceed
32511 bytes. No more than 16255
literals may be specified.

If the segmentation feature is used,
an area corresponding to the total
length of all optimized literals must
be kept free during the time the ADCON
table is being built. Therefore, a
segmented program with literals may
need more storage.

10. Miscellaneous Tables

The existence of the following items
causes entries to be made into tables
and impacts the total space required
for compilation.

• SAME (RECORD) AREA clause
• Subscripting
• Intermediate Arithmetic Results
• Complex Arithmetic Expressions
• Complex Logical Expressions
• APPLY clauses
• Special-Names
• RERUN clauses
• Error messages
• XREF
• Segmentation feature
• VERBSUM/VERBREF

EXECUTION TIME CONSIDERATIONS

The amount of virtual storage must be
sufficient to accomodate at least:

• The selected control program

• Support for the file processing
techniques used

Appendix F: System and Size Considerations 299

• Load module to be executed

• Dynamic storage for VSAM, 3886
processing, and COUNT.

When the OPTIMIZE option is specified,
the number of procedure blocks in the
program cannot exceed 255. A procedure
block is approximately 4096 bytes of
Procedure Division code.

COBOL programs compiled with any of the
symbolic debugging options (STATE, FLOW,
SYMDMP) have different requirements at
execution time than similar programs
compiled without these options. The
following differences should be noted:

• If the SYMDMP option is in effect, the
work file required at compile time
(SYS005) must be present at execution
time.

• The size of the load module will
increase by about 3200 bytes if the
SYMDMP option is in effect. In
addition, since the object-time
subroutine that provides SYMDMP output
is invoked dynamically, the programmer
must provide space in the partition
amounting to S + V. When only an
abnormal termination dump is required,
S = 4000 and V = 0; that is, 4000 extra
bytes must be available. When dynamic
dumps are required, S = 11,000 and V is
approximately 25 * number of line
control cards + 10 * the number of
identifiers specified on these line
control cards.

• The size of the load module will
increase by 4500 + V bytes if the FLOW
option is in effect. V is a variable
factor that depends upon the number
specified by the programmer on the CBL
card. V is calculated using the
formula:

V = 92 + 4 * nn + 8 * P

where "nn" is any number from 0 through
99, and "p" is the number of
procedure-names in the program.

• The size of the load module will
increase by 4600 + V bytes when the
STATE option is in effect. V is
approximately 5 * the number of COBOL
statements in the program.

e When both SYMDMP and FLOW are in
effect, the size of the load module
will increase by the amount it would
for FLOW alone, and the size of the
partition increases by the amount it
would for SYMDMP alone.

300

eo A SIZE parameter must be specified on
the EXEC card for VSAM and 3886
processing and if COUNT is request~d on
the CBL card.

COBOL programs with the execution
frequency option COUNT have the following
additional requirements:

• The size of the load module will
increase by about 6000+V bytes (if any
of the symbolic debugging options are
in effect) to 8900+V bytes (if the
symbolic debugging options are not in
effect). V is calculated using the
formula:

V=(54 * pgm)+(8*nvb)+C7*npr)+«4+sym) *
vbl)+pnl

where

pgm is the number of COPOL program
units being monitored by COUNT

nvb is the number of verbs in the
program units

npr is the number of procedure-names
plus inserted pror.edure-names in the
program

sym is zero unless SYMDMP is in
effect, then it becomes two

vbl is the number of verb bloc~s in
the program (which can be estimated
as 1/3 the number of verbs in the
program)

pnl is the sum of the lengths of the
procedure-names.

e The increase in dynamic storage in
estimated using the formula

D = 512+(72*pgm)+(4 * vbl)

where

pgm is the number of COBOL programs
being monitored by COUNT

vbl is the number of verb blocks ih
the program (which can be estimated
as 1/3 the number of verbs in the
program).

MULTIPROGRAMMING CONSIDERATIONS

In a system which supports the batch-job
foreground (NPARTS = 2 or more) and private
core-image library options, the Linkage
Editor can execute in any foreground
partition (as well as the background

artition) provided a minimum of 14K or 64K
f storage is assigned to the partition.
hen executing in a foreground partition, a
rivate core image library must be
ssigned.

In the multiprogramming environment
escribed above, the COBOL compiler can be
xecuted in any partition having a minimum
If 64 bytes in the following manner:

At system generation time, link edit
the compiler in the background
partition and place it in the system
core image library.

:ORT FEATURE CONSIDERATIONS

The DOS/VS SORT/MERGE Program Product,
)rogram Number 5746-SM1, must be executed
Inder control of DOS/VS. It requires the
:ollowing minimum machine configuration:

1. The DOS/VS SORT/MERGE Program Product
use's 16K bytes ; additional storage is
needed for DOS/VS and for user-written
routines (that is, the COBOL program,
etc.) •

Note: Performance often increases
significantly if 50K is available for
operation of the Sort/Merge program.
At the lOOK level, the performance
could be even higher.

2. Standard instruction set.

3. At least one 2314, 2319, 3330, 3333,
3340, or 3350 work file. (System
residence requirements may necessitate
having an additional disk storage unit
for sorting.)

4. One IBM 1403, 1443, or 3211 printer,
or one IBM operator communication
device (for example, 3215).

5. One IBM 1442, 2501, 2520, 2540, 3505,
3525, or 2560 Card Reader, or one IBM
2400 or 3400 Series Magnetic Tape Unit
(7- or 9-track) assigned to SYSIPT and
SYSRDR.

6. Three IBM 2400 or 3400 Series Magnetic
Tape Units for work files when tape
units are to be used for intermediate
storage.

For specific size, device, and work file
requirements of the other Sort/Merge
products, see the respective Programmer's
Guides as noted in the preface.

Note: If a size parameter is used in the
77EXEC statement, it should be used as
follows:

//EXEC,SIZE=(AUTO,nK)

where nK has to meet specific Sort
storage requirements.

Appendix F: System and Size considerations 300.1

(OGRAM COMMUNICATION

For each partition, the supervisor contains
storage area called the communication region.

le supervisor uses the con~,unication region,
1d your program also can use it. Your
t:'ogram can check the communication region of
1e partition in which your program runs; your
t:'ogram can also modify the user area of this
Dmmunication region.

igure 68 shows the portion of the corrmunication
egion containing information of interest. This
nformation is also described below.

yte(s)

-7

: , 9

.0,11

L2-22

Date

Information

Calendar date. Supplied from system
date whenever the JOB statement is
encountered. The field can be two
forms: mm/dd/yy or dd/mm/yy where
mm is month, dd is day, yy is year.
It can be temporarily overridden by
a DATE statement.

Address of the problem program area.

Address of the beginning of the
problem program area.

User area for communication within
a job step or between job steps.
All 11 bytes are set to zero when
the '//JOB' JOB control statement
is encountered.

Note: The COBOL compiler uses bytes
12 and 13.

C) c..
w Ul

Mo/Day/Yr !D Ul

c.. 0
Used by Problem
Program

Q)

.c.
u

Job Name
(Entered from
Job Control)

or c.. w

Day/Mo/Yr '0 '0
<II

Q) Q)

-0 -0
'0 '0
<{ <{

Byte (s)

23

24-31

32-35

36-39

APPENDIX G: COMMUNICATION REGION

Information

UPSI (user program switch
indicators). Set to binary zero
when the JOB statement for the
job is encountered. Initialized
by UPSI job control statement.

The condition-name associated
with the status of the UPSI
switches can be specified in the
COBOL program via the
Special-Names paragraph of the
Environment Division. The
condition-name associated with
each may be tested in the
Procedure Division of the COBOL
program.

Job name as found in the JOB
statement for the job.

Address of the uppermost byte
of the program area. If the
program was initiated with the
SIZE parameter in the EXEC job
control statement, this address
gives the highest duty of the
area determined by the SIZE
parameter.

If the SIZE parameter was not
specified, the address is the
highest address in the partition
(either real or virtual).

Address of the uppermost byte
of the current phase placed in
the program area by the last
FETCH or LOAD macro in the job.

'" E ~
~<{
.0_
a Q)
~.o

c.. '" _...J
a E

.c. '" ~ ~
OlOl
c a
Q) ~

...Jc..

})
)

:2:
ex:
<!
0-
m
>m
'0

) ~
~
"0

. (<!
Bytes_r------;...J...::-=-~~:..::.....--------=..:22~23::t.::...24:....----~3:.:.1l.:3;:!2~-3::..:5::.J..::::36~~3::.,.9t.:4;,:0_....:.4:::3:£:4::4..:4:::1.5J' 112 115 0 7 8 9 lOll 12

Address of first
byte supplied
in register 1
by COMRG

Figure 68. Communication Region in the Supervisor

Appendix G: Communication Region 301

Byte(s)

40-43

4'4,45
112-115

Information

Highest ending virtual storage
address of the phase among all
the phases having the same first
four characters as the operand
on the EXEC statement. For the
background partition only, job
control builds a phase directory
of these phases. The address
may be incorrect if the program
loads any of these phases above
its link-edited origin address
and the relocating loader is not
used. If the EXEC statement has
no operand, job control places
in this location the ending
address of the phase just
link-edited.

Length of program label area.

Address of SYSPAru1.

The COM-REG special register may be used
to access bytes 12-22 of the communication
region.

302

This appendix illustrates the necessary
Jb control statements and their sequence
Jr five typical programs:

1. Creating a Direct File

2. Retrieving and Updating a Direct File

3. Creating an Indexed File

4. Retrieving and Updating an Indexed
File

5. sorting an Unlabeled Tape File

In all five programs the programmer has
equested the following compiler options
hrough the OPTION control statement:

NODECK -- No punched card output for the
object program is needed.

LINK

LIST

LISTX

SYM

ERRS

The object module is to be
linkage edited.

The COBOL source statements
are to be printed on SYSLST.

A Procedure Division map with
global tables, literal pool,
and register assignments is to
be printed on SYSLST.

A Data Division map is to be
pr~nted on SYSLST.

The diagnostic messages of the
COBOL compiler are to be
printed on SYSLST.

The EXEC FCOBOL statement calls for
execution of the FCOBOL compiler.

By using the CBL card, the programmer
indicates that in this source program the
quotation mark (") is used for nonnumeric
literals.

The ASSIGN clause in the COBOL source
program specifies a system-name with the
following fields:

(Non-VSAM)
SYSnnn-class-device-organization[-name]

(VSAM)
SYSnnn[-class] [-device] [-organization]

[-namel

The ASSGN control statement for a file
must specify the same logical unit as the
SYSnnn field of system-name. The ASSGN
statement assigns the logical unit to a
specific hexadecimal address. The address

APPENDIX H: SAMPLE JOB DECKS

specified must be associated with the
device whose number is given in the device
field of system-name.

The DLBL control statememt for a labeled
file on a mass storage device must contain
the same name as system-name. This is the
name by which the file is known to the
control program. (The name field of
system-name is optional. If name is
omitted, the DLBL statement must specify
the logical unit (SYSnnn) as the
file-name.) The code field of the DLBL
statement must correspond to the class and
orqanization fields of system-name as
follows:

DLBL I ASSIGN I ASSIGN
"code" I "class" I "organization"
--------+-----------+----------------

SD I DA or UT I S
I I
I I
I I
I I
I I
I I

DA I DA I
I I

ISC I DA I
I I

ISE I DA I

AS (entry
sequenced file)

omitted (key
sequenced file)

A or U, D or W

I

I

If SYSnnn is omitted from the first
EXTENT control statement for a file on a
mass storage device, then the logical
unit is determined from the SYSnnn field
of the COBOL system-name; if SYSnnn is
included in the first EXTENT statement
and differs from SYSnnn of the system
name, the EXTENT card specification
overrides the COBOL source specification.
(Subsequent EXTENT statements for the
same file, if they immediately follow
the first, may omit this field.) The
type of the ~xtent must be compatible
with the organization field of system
name as follows:

EXTENT I ASSIGN
"type" I "organization"

--T------------------+---------------
1 I (data area, no I S, A, U, If D, W

I split cylinder) I
I I AS
I I

2 I (overflow area fori I
I indexed file) I
I I

4 I (index area for I I
I indexed file) I
I I

8 I (data area, split I S, A, U, If D, W
I cylinder) I

Appendix H: Sample Job Decks 303

DIRECT FILES

The following two examples illustrate
the job control statements necessary for
programs that create and update a direct
file.

In the COBOL source programs, the
programmer has written:

SELECT DA-FILE ASSIGN TO
SYS015-DA-2311-A-MASTER •••

SELECT CARD-FILE ASSIGN TO
SYS007-UR-2540R-S •••

In the READFILE source program, the
programmer has written:

S~LEC~ PRINT-FILE ASSIGN TO
SYS008-UR-2403-S •••

(Note the relationship between the
system-names in the source programs and the
control statements.)

The LBLTYP statement defines the amount
of storage to be reserved to process labels
for the DA file. The file has one extent.

The EXEC LNKEDT statement causes the
object program to be link edited.

An ASSGN control statement assigns
logical unit SYS007 to the hexadecimal
address OOC -- a 2540R Card Reader.

In the updating program, another ASSGN
statement assigns logical unit SYS008 to
the hexadecimal address OOE -- a 1403
Printer.

The next series of statements identify
the direct file completely.

The ASSGN statement identifies the file
as residing on logical unit SYS015, which
has the hexadecimal address of 192 -- a
2311 Disk Drive.

The DLBL statement specifies the
filename as MASTER, with an expiration date
of the 365th day of 1973, and that the file
has direct organization (DA).

The EXTENT statement specifies that the
file residing on logical unit SYS015 has a
serial number 111111, that the extent is a
data area with no split cylinder and that
this is the first (and only) extent for the
file (type and sequence number 1,0), that
the file begins on relative track 1020
(track 0 of cylinder 102), and that the
file occupies 100 tracks.

304

(Note that in the EXTENT statement, the
relative track number (1020) is not
required for the input DA file of the
updating program, since the system will use
the file labels for this information.)

The EXEC statement begins execution of
the problem program, and is followed by
input data.

The /* statements indicate end-of-data,
the /& statement indicates end-of-job.

Creating a Direct File

// JOB CREATEDA
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

CBL QUOTE

{COBOL source deck}
/*
// LBLTYP NSD(01)
// EXEC LNKEDT
// ASSGN SYS007,X'00C'
// ASSGN SYS015,X'192'
// DLBL MASTER,,74/j65,DA
// EXTENT SYS015,111111,1,0,1020,100
// EXEC

/*
/&

{input data cards}

Retrieving and Updating a Direct File

// JOB READFILE
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

CBL QUOTE

{COBOL source deck}
/*
// LBLTYP NSD{Ol)
// EXEC LNKEDT
// ASSGN SYS007,X'00C'
// ASSGN SYS008,X'00E'
// ASSGN SYS015,X'192'
// DLBL MASTER,,74/365,DA
// EXTENT SYS015,111111,1,0,1020,100
// EXEC

/*
/&

{input data cards}

.NDEXED FILES

The following two examples illustrate
~he job control statements necessary for
)rograms that create and update an indexed
:ile.

In the CREATEIS source program, the
)rogrammer has written:

SELECT IS-FILE ASSIGN TO
SYS015-DA-2314-I-MASTER

ACCESS IS SEQUENTIAL
RECORD KEY IS R~C-ID.

In the RANDIS source program, the
?rogrammer has written:

SELECT IS-FILE ASSIGN TO
SYS015-DA-2314-I-MASTER

ACCESS IS RANDOM
NOMINAL KEY IS KEY-ID
RECORD KEY IS REC-ID.

SELECT PRINT-FILE ASSIGN TO
SYS008-UR-1403-S

RESERVE NO ALTERNATE AREAS.

In both source programs, he has written:

SELECT CARD-FILE ASSIGN TO
SYS007-UR-2540R-S.

I-O-CONTROL.
APPLY MASTER-INDEX TO 2311 ON IS-FILE.

(Note the relationship between the
source program statements and the job
control statements.)

The LBLTYP statement defines the amount
of storage reserved to process labels for
the indexed file. The file has three
extents: a master index extent, a cylinder
index extent, and a data extent.

The EXEC LNKEDT statement causes the
object module to be link edited.

An ASSGN control statement assigns
logical unit SYS007 to the hexadecimal
address OOC -- a 2540R Card Reader.

In the retrieval program, another ASSGN
statement assigns logical unit SYS008 to
the hexadecimal address OOE -- a 1403
Printer.

The next ASSGN statement assigns logical
unit SYS015 to the hexadecimal address 193

a 2314 Disk Drive.

The DLBL statement names the file as
MASTER, and indicates the expiration date
as the 365th day of 1974. In the file
creation program, the file label is indexed
sequential using Load Create (code ISC); in

the retrieval program, the file label is
indexed sequential using Load Extension,
Add or Retrieve (code ISE).

The first EXTENT statement is identified
as a master index (type and sequence
numbers are 4,0), and the relative track is
1800 (the extent begins on cylinder 90
track 0), and the extent is 20 tracks long.

The second EXTENT statement is
identified as a cylinder index (type and
sequence number are 4,1), the relative
track is 1820 (the extent begins on
cylinder 91, track 0), and the extent is 20
tracks long.

(Note that the extents assigned to
master and cylinder indexes must be
contiguous, and that the master index must
precede the cylinder index on the disk
nack. Also note, that if a master index is
not requested, the first extent is that for
the cylinder index, which would be type 4,
sequence number 1.)

The third EXTENT statement is identified
as a data area (type 1) and is the third
extent named for this file. The relative
track is 0020 (the extent begins on
cylinder 1, track 0), and the extent is
1760 tracks long.

End-of-data is indicated with the /*
statement; end-of-job is indicated with the
/& statement.

Creatinq an Indexed File

// JOB CREATEIS
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

CBL QUOTE

{COBOL source deck}
/*
// LBLTYP NSD(03)
// EXEC LNKEDT
// ASSGN SYS007,X'00C'
// ASSGN SYS015,X'193'
1/ DLBL MASTER,,74/365,ISC
1/ EXTENT SYS015,111111,4,O,1800,20
// EXTENT SYS015,111111,4,l,1820,20
// EXTENT SYS015,111111,l,2,0020,1760
// EXEC

/*
/&

{input data card}

Appendix H: Sample Job Decks 305

Retrieving and Updating an Indexed File

// JOB RANDIS
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

{COBOL source deck}
// LBLTYP NSD(03)
// EXEC LNKEDT
// ASSGN SYS007,X'OOC'
// ASSGN SYS008,X'OOE'
// ASSGN SYS015,X'193'
// DLBL ~ASTER,,73/365,ISE
// EXTENT SYS015,111111,4,O,1800,20
// EXTENT SYS015,111111,4,1,1820,20
// EXTENT SYS015,111111,1,2,0020,1760
// EXEC

/*
/&

{input data cards}

FILES USED IN A SORT OPERATION

The following example illustrates the
job control statements necessary for a
program that sorts an unlabeled tape file.

In the COBOL source program, the
programmer has written:

SELECT NET-FILE-IN ASSIGN TO
SYS007-UT-2400-S.

SELECT NET-FILE-OUT ASSIGN TO
SYS008-UT-2400-S.

SELECT NET-FILE ASSIGN TO 3
SYS001-UT-2400-S.

NET-FILE-IN is the input file;
NET-FILE-OUT is the output file; NET-FILE
is the sort work file, which ·utilizes three
tape units.

306

(Note the relationship between the
system-names in the COBOL source program
and the control statements.)

The EXEC LNKEDT statement causes the job
to be link edited.

The first two ASSGN control statements
assign the logical unit SYSO~7 to
hexadecimal address 181, and logical unit
SYS008 to hexadecimal address 182. SYS007
is the sort input file, and SYS008 is the
sort output file.

The last three ASSGN statements assign
logical unit SYSOOl to hexadecimal address
183, logical unit SYS002 to hexadecimal
address 281, and logical unit SYS003 to
hexadecimal address 282. SYS001, SYS002,
and SYS003 are the logical units that must
be used for sort work files. The sort work
files must be assigned to 9-track tape
units. At this installation, 9-track tape
drives are associated with hexadecimal
addresses 183, 281, and 282.

Sorting an Unlabeled Tape File

// JOB SORTCOB
// OPTION NODECK,LINK,LIST,LISTX,SY~,ERRS
// EXEC FCOBOL

CBL QUOTE

{COBOL source deck}
// EXEC LNKEDT
// ASSGN SYS007,X'181'
// ASSGN SYS008,X'1821
// ASSGN SYS001,X'183'
// ASSGN SYS002,X'281'
// ASSGN SYS003,X'282'
// EXEC
/&

APPENDIX I: DIAGNOSTIC MESSAGES

This appendix contains information on how to generate a listing of
compile-time diagnostic messages.

COHPILE-TIME MESSAGES

The user can request a complete listing of the diagnostics generated
by this compiler simply by compiling a program with a PROGRAM-ID of
ERRMSG. For a description of the formats of compiler diagnostics and
information about generating this listing, see the chapter entitled
"Output" in this publication.

OPERATOR MESSAGES

This section lists the messages issued to SYSLOG by the IBM DOS/VS
COBOL Compiler and Library. All of the messages listed are also issued
on SYSLST.

The following messages are issued during compilation on SYSLOG. They
are also printed on SYSLST with the prefix ILA.

I C 1 001

C101I

PARTITION IS LESS THAN 64K

Explanation: At least 64K is required to compile using DOS/VS
COBOL. Probable user error.

System Action: The compilation is terminated.

Programmer Response: Not applicable.

Operator Response: Use the ALLoe command to allocate at least
6,4K to the partition (refer to BUF option). If the problem
recurs, do the following to complete your problem determination
action before calling IBM for programming support.

1. Execute the MAP command and save the output.

2. Have the source deck, control cards, output listing, and
console sheet available.

DEVICE ~OT ASSIGNED - SYSnnn.

Explanation: (nnn is either 001, 002, 003, or 004.) The
specified logical unit is unassigned and must be assigned.
Probable user error.

System Action: The compilation is terminated.

Programmer Response: Not applicable.

Operator Respon§g: Use the ASSGN command to assign a physical
unit (magnetic tape or disk) to the file indicated. If the
problem recurs, do the following to complete your problem
determination action before calling IEM for programming
support:

Appendix I: Diagnostic Messages 307

C102I

C103I

C104I

308

1. Execute the LISTIO command and save the output.

2. Have the source deck, control cards, output listing, and
console sheet available.

UNSUPPORTED DEVICE TYPE - SYSnnn.

Explanation: (nnn is either 001, 002, 003, or 004.) The
specified file must be a tape or disk file for SYS002 through
SYS004. SYS001 should be assigned to disk; however, in small,
simple programs that do not reguire dictionary spill, it is
sometimes possible to compile with the spill file (SYS001)
assigned to tape. If any spill does occur, an input/output
error may occur. Compile-time statistics will say "DICTIONARY
SPILL HAS OCCURRED". No mention is made of dictionary spill in
the compile-time statistics if spill does not occur. Probable
user error.

system Action: The compilation is terminated.

Programmer Response: Not applicable.

Operator ResDonse: Use the ASSGN command to assign the
appropriate physical unit to the file indicated -- SYS001
should be assigned to a magnetic tape or disk unit. If the
problem recurs, do the following to complete your problem
determination action before calling IBM for programming
support:

1. Execute the LISTIO command and save the output.

2. Have the source deck, control cards, output listing, and
console sheet available.

END OF FILE ON SYSIPT.

Explanation: End-of-file was encountered in the initialization
phase; no source statements were found. Probable user error.

System Action: The compilation is terminated.

Programmer Response: Not applicable.

Operator Response: Ensure that a /* card does not precede the
source deck, or add the source deck to the iob stream. If the
problem recurs, do the following to complete your problem
determination action before calling IBM for programming
support:

1. Execute the LISTIO command and save the output.

2. Have the source deck, control cards, output listing, and
console sheet available.

SYS001 FILE NOT ASSIGNED TO DISK

Explanation: In small, simple programs that do not require
dictionary spill, it is sometimes possible to compile with the
spill file (SYS001) assigned to tape. However, if any spill
does occur, an input/output error may occur. Any compilation
which spills the dictionary will contain a message in
compile-time statistics. User error.

system Action: The compilation continues.

Programmer Action: Not applicable.

C105I

C106I

Operator Response: Use the ASSGN command to assign SYSOOl to a
disk unit. If the problem recurs, do the following to complete
your problem determination action before calling IBM for
programming support:

1. Execute the LISTIO command and save the output.

2. Have the source deck, control cards, output listing, and
console sheet available.

W-CANNOT OPEN SYS005 -- SY~DMP IGNORED.

Explanation: The SYMDMP option has been specified, but the
file needed for symbolic debug cannot be opened since SYS005 is
unassigned. Probable user error.

system Action: The SYMDMP option is canceled, and the
compilation continues.

Programmer Response: Not applicable.

Operator Response: Use the ASSGN command to assign SYS005 to a
physical unit. If the problem recurs, do the following to
complete your problem determination before calling IBM for
programming support:

1. Execute the LISTIO command and save the output.

2. Have the source deck, control cards, output listing, and
console sheet available.

SYS006 IS NOT A DISK. NOLVL ASSUMED.

Explanation: The specified logical unit is not assigned to a
disk.

System Action: Compilation continues with NOLVL.

Programmer Response: Not applicable.

operator Response: Use the ASSGN command to assign SYS006 to a
disk unit.

OBJECT-TIME MESSAGES

The following messages are normally issued on SYSLOG.

CllOA

ClllA

STOP literal

Explanation: The programmer has issued a STOP literal
statement in the COBOL source program.

System Action: Awaits operator response.

Programmer Response: Not applicable.

Operator Response: Operator should respond with end-of-block,
or with any character in order to proceed with the program.

AWAITING REPLY

Explanation: This message is issued in connection with the
Full American National Standard COBOL ACCEPT statement.

System Action: Awaits operator response.

Programmer Response: Provide the operator with instructions.

Appendix I: Diagnostic Messages 309

Operator Response: The operator should reply as specified by
the programmer.

The following messages are issued on SYSLOG and SYSLST prior to
cancellation of the job. If the DUMP option is specified, a partial
dump is taken from the problem program origin to the highest storage
location of the last phase loaded. When this occurs, the eight bytes
immediately preceding the DTF are destroyed. The messages have the
form:

C1251

310

CmmmI SYSnnn filename DTFaddress text

where:

nnn is equal to 001 through 255
fIlename is seven or fewer characters and is generated from the

file-name specified in the SELECT sentence.
address is the hexadecimal address of the file's DTF table.
mmm and text correspond as follows:

mmm text
112 DATA CHECK
113 wRONG LENGTH RECORD
114 PRIME DATA AREA FULL
115 CYLINDER INDEX TOO SMALL
116 MASTER INDEX TOO SMALL
117 OVERFLOW AREA FULL
118 DATA CHECK IN COUNT
119 DATA CHECK IN KEY OR DATA
120 NO ROOM FOUND
121 DASD ERROR
122 DASD ERROR WHILE ATTEMPTING TO WRITE

RECORD ZERO
123 FILE CANNOT BE OPENED AFTER CLOSE WITH LOCK
124 CYLINDER AND MASTER INDEX TOO SMALL
125 NO EXTENTS
127 NO EOF RECORD WRITTEN IN PRIME

DATA AREA
128 UNRECOVERABLE I/O ERROR
129 3540 EQUIPMENT CHECK
130 INPUT/OUTPUT ERROR. FILE STATUS SET TO XX

NEAR REL LOC. XXXXXX.
131 USABLE TO OPEN FILE 'SYSnnn'. CANCELING.
132 SIZE NOT SPECIFIED OR INSUFFICIENT GETVIS AREA.
140 INVALID SEPARATE SIGN CONFIGURATION.

Explanation: Condition indicated occurred on SYSnnn.

System Action: The job is cancelled.

Programmer Response: Rerun the job or add a user Declaractive
Section to the Procedure Division of the source program to
handle errors within the program.

If the problem recurs, do the following before calling IBM
for programming support: have source deck, control cards,
compiler output, and console sheet available.

Operator Response: Not applicable.

NO EXTENTS

Explanation: During CLOSE UNIT processing, no extent is found
for the next volume.

System Response: The job is cancelled.

Programmer Response: Rerun job with proper EXTENT (XTENT)
statements.

(

Operator ResE~: Not applicable.

If the problem recurs, do the following before calling IB~
for programming support: have source deck, control cards,
compiler output, and console sheet available.

The following message is issued on SYSLOG:

C126D SYSnnn IS IT EOF?

Where nnn is equal to 001 through 255

Explanation: A tapemark was just read on an unlabeled tape
file described at compilation time as having more than one
reel.

system Action: Awaits response from operator.

Programmer Response: Not applicable.

Operator Response: The operator must respond either with N if
is end of volume, or with Y if it is end of file.

The following messages are issued on SYSLOG and SYSLST:

C127D

C128D

C129I

NO EOF RECORD WRITTEN IN PRIME DATA AREA

Explanation: During CLOSE processing of an ISAM file opened
OUTPUT, no room was found to write EOF record.

Pro~ammer Response: Rerun the job with the proper EXTENT.

If the problem recurs, do the following to complete your
problem determination action before calling IBM for programming
support. Have source deck, control cards, compiler output, and
console sheet available.

Operator Response: Not applicable.

UNRECOVERABLE 1/0 ERROR

Explanation: This is probably a hardware error on tape.

Programmer Responst: Not applicable.

Operator Response: Rerun the job.

If the problem recurs, do the following to complete your
problem determination action before calling IBM for programming
support. Have source deck, control cards, compiler output, and
console sheet available.

VSAM SUBROUTINE ERROR. CANCELING JOB.

Expl~~ion: The subroutine has encountered an unrecoverable
error. This can occur when a VSAM OPEN, CLOSE,or ACTION request
(GET, PUT, etc.) returns an error code from which the subroutine
has no means of recovering, or when one of the VSAM macros (SHOWCB,
GENCB, etc.) returns a non-zero return code. All such conditions
indicate an error found in the subroutines and/or in VSAM.

Action: The program is canceled with a dump.

Programmer Response: Submit an APAR with the dump.

If the problem recurs, do the following before calling IBM
for programming support: have source deck, control cards, and
compiler output available.

Appendix I: Diagnostic Messages 311

C1301

C131I

C1321

C133I

C140I

312

INPUT/OU.TPUT ERROR. FILE STATUS SET TO xx NEAR REL LOC.
XXXXXX".

Explanation: An I/O error has occurred on the file being
accessed by the COBOL statement at or near the relative
location given in the message, and the user has no USE
declarative for that file.

Action: Control returns to COBOL at the statement following
the COBOL request that caused the error.

Programmer Response: If the error occurred on a READ
operation, processing can continue. If the error occurred on a
WRITE operation, there may be a loss of data.

If the problem recurs, do the following before calling IBM
for programming support: have source deck, control cards, and
compiler output available.

UNABLE TO OPEN FILE 'SYSnnn'. CANCELING.

Explanation: The VSAM OPEN or CLOSE request gave a return code
of X'6S' or X'6C' because of invalid time stamos in the VSAM
catalog or VSAM file. The VSAM catalog or file should be
recreated. See DOS/VS Supervisor and I~~ for core
detail on the OPEN/CLOSE return codes.

ActiQll: The job is canceled.

Programmer Response: Recreate the VSAM catalog and/or file.

If the problem recurs, do the following before calling IBM
for programming support: have source deck, control cards, and
compiler output available.

SIZE NOT SPECIFIED OR INSUFFICIENT GETVIS AREA.

Explanation: A GETVIS SVC to obtain GETVIS space
for VSAM control blocks was unsuccessful.

Action: The job is canceled.

Programmer Response: Increase the partition size
and resubmit the job with a SIZE parameter in the
EXEC statement.

Explanation: An identifier specified on the line-control card
cannot be found in the program or is invalid. Level-66 and

SAIl ERROR

INVALID SEPARATE SIGN CONFIGURATION

Explanation: During execution of a COBOL program, an invalid
sign was detected for a separately signed item.

ActiQll: The job is terminated.

Programmer Resp~: Probable user error. Correct program's
input data before reexecuting.

If the problem recurs, do the following before calling IBM
for programming support: have source deck, control cards,
compiler output, and data available.

The following messages (C150I-C170I) are listed on SYSLST. The
messages have the form:

CmmruI {prOgram-id }

card/verb number
text

Messages C1501 through C1621 may appear interspersed among the SYMDMP
control statements at the point at which the error is encountered.
Program-id is provided for all messages except C1501 through C152I. For
these, the card/verb number of the corresponding line-control card is
given instead. The program-id associated with C1501 through C1521 can
be determined from the nearest preceding program-control statement.

Messages C1531 through C1551 may also appear in the dump output if
the error condition is not recognized until dumping has started.

Appendix I: Diagnostic Messages 312.1

C151I

C152I

C153I

level-8S items and items defined under an RD are invalid
requests.

Action: The dump request for this identifier is ignored.

Programmer Response: Probable user error. Before reexecuting,
ensure that no requests have been made on the line-control card
for the dumping of identifiers that have not been defined or
that are invalid.

If the problem recurs, do the following before calling IBM
for progralrming support: have source deck, control cards, and
compiler output available.

CARD NUMBER NOT FOUND

Explanation: The card number specified on the line-control
card is not within range of the Procedure Division.

Action: The line-control card which specifies the nonexistent
card number is skipped.

Programmer Response: Probable user error. Ensure that any
card number specified on a line-control card is within range of
numbers specified for source program before reexecuting.

If the problem recurs. do the following before calling IBM
for programming support: have source deck, control cards, and
compiler output abailable.

VERB NUMBER NOT FOUND

Explanation: The verb number specified on a line-control card
does not exist on the card specified.

Action: The nearest verb number on the card specified is used.

Programmer Response: Probable user error. Correct verb number
specification before reexecuting.

If the problem recurs, do the following before calling IBM
for programming support: have source deck, control cards, and
compiler output available.

NO ROOM TO DUMP.

Explanation: If this message immediately follows a
program-control card. sufficient storage is not available for
the debug subroutine or for the 72 bytes of data required for
each program in the run unit. If this message follows an
abnormal termination message, one or more of the following is
not available in free storage or in the COBOL Procedure
Division: a contiguous block of 4000 bytes, a contiguous block
of 1800 bytes, or a contiguous block of 512 bytes.

Action: No Data Division dump for the indicated program and,
in some instances, no statement number information, is
provided.

Programmer Response: Probable user error. Increase the size
of the partition before reexecuting. See "System
Configuration" for information about storage requirements for
symbolic debugging.

If the problem recurs, do the following before calling IBM
for programming support: have source deckl control cards, and
compiler output available.

Appendix I: Diagnostic Messages 313

C1541

C15S1

C156I

C1S71

314

I/O ERROR ON DEBUG FILE.

Explanation: An input/output error has occurred on the debug
file. Note that such an error may be the result of a file
other than the debug file being mounted on the logical unit
specified.

Action: SYMDMP output is cancelled for the indicated program.

Response: Hardware, operator, or user JCL error. Before
reexecuting, check logical unit number specified on
program-control card against current mounting, as well as the
ASSGN, DLBL, and EXTENT cards of compilation.

If the problem recurs, do the following- before calling IBM
for prograroming support: have source deckl control cards, and
compiler output available.

WRONG DEBUG FILE FOR PROGRAM.

Explanation: The file corresponding to the filename and/or
logical unit number provided on the program-control card is not
the debug file created for this program at compile time.

Action: SYMDMP output is cancelled for the indicated program.

Programmer Response: Probable user error. Before reexecuting,
ensure that the filename and/or logical unit specified on the
program-control card corresponds to that of the debug file
created at compile time.

If the problem recurs, do the following before calling IBtvJ
for prograrr.ming support: have source deck, control cards, and
compiler output available.

NO ROOM FOR DYNAMIC DUr--1P.

Explanation: Sufficient storage is not available to store the
line-control card information during execution.

Action: Dynamic dumping is cancelled for the indicated
program.

Programmer Response: Probable user error. Increase size of
partition or decrease nUIr.ber of line-control cards before
reexecuting.

If the problem recurs, do the following before calling IBl-1
for prograroming support: have source deck, control cards, and
compiler output available.

INVALID FILENAME.

Explanation: If the "filename" parameter is specified for a
disk file on the CBL card at compile time, the same "filename"
must also be specified on the program-control card. "Filename"
may be from one to seven characters in length; the first
character must be a letter.

Action: All SYMDMP output is cancelled for the indicated
program.

Programmer Response: Probable user error. Correct "filename"
specification on the program-control card before reexecuting.

If the problem recurs, do the following before calling IBM
for programming support: have source deck, control cards, and
compiler output available. (

C1581

C1591

C1601

C1611

INVALID LOGICAL UNIT.

Explanation: The logical unit parameter on the program-control
card must be specified, must be an integer between 0 and 244,
and nlust match the one specified in the ASSGN control staterr.ent
for the debug at compile time.

Action: All SYMDMP output is cancelled for the indicated
program.

Programmer ReSDonse: Probable user error. Correct loaical
unit specification on program-control card before reexecuting.

If the problem recurs, do the following before calling IBM
for prograrr,ming support: have source deck, control cards, and
compiler output available.

MISSING PARAMETERS.

Explanation: A non-continued line-control card ends with
(HEX), OF, IN, or THRU. possibly a continuation punch is
missing in column 72.

Action: A HEX or THRU option ending a card is ignored. when a
card ends with OF or IN, the word is ignored and the identifier
that is dumped is the first one encountered whose qualifiers
match those preceding the word OF or IN.

Programmer Response: Probable user error. Check line-control
card for keypunch errors before reexecuting.

If the problem recurs, do the following before calling IBM
for programming support: have source deck, control cards, and
compiler output aVtiilable.

INVALID OPTION.

Explanation: An element used as an optional parameter on a
program-control card is not one of the legal program-control
card options.

Action: The element is ignored.

Programmer Response: Probable user error. Correct syntax of
program-control card before reexecuting.

If the problem recurs, do the following before calling IBM
for programming support: have source deck, control cards, and
compiler output available.

SUBSCRIPTING ILLEGAL.

Explanation: The "name" parameter of the line-control card may
not be subscripted.

Action: The subscripts are ignored. Every occurrence of the
identifier is dumped.

Programmer ReSDonse: Probable user error. Specify the name of
the item without the subscript before reexecuting. This will
result in a dump of every occurrence of the item.

If the problem recurs, do the following before calling IBM
for prograrr.ming support: have source deck, control cards, and
compiler output available.

Appendix I: Diagnostic Messages 315

C1621

C1631

C1641

C1651

316

ON PARAMETER TOO BIG.

Explanation: Neither the n, m, nor k parameter of the ON
option may exceed 32767.

Action: The number is reduced to 32767.

Programmer Response: Probable user error. correct invalid
parameter before reexecuting.

If the problem recurs, do the following before calling IEM
for programming support: have source deck, control cards, and
compiler output available.

FLOW TRACE NON-CONTIGUOUS. MORE THAN 10 PROGRAMS ENCOUNTERED

Explanation: A non-contiguous flow trace will result if FLOW
option is effective in a subprogram structure of more than 10
programs compiled with the FLOW option.

Action: The FLOW trace is terminated upon encountering the
eleventh PROGRAM-ID. Tracing resumes only upon returning to
one of the original ten programs.

Programmer Response: Probable user error. If trace is absent
for a program where it is critical, recompile one or more of
the programs where the flow is non-critical without the FLOW
option and reexecute.

If the problem recurs, do the followin~ before calling IBM
for progra~ming support: have source deck. control cards, and
compiler output available.

FLOW TRACE IN EFFECT BUT NO PROCEDURES TRACED.

Explanation: Abnormal termination has taken place before any
COBOL statement with a procedure-name has been traced.

Action: No tracing is done.

Proqrammer Response: Probable user error. If trace is
desired, recompile the program after inserting additional
procedure-names.

If the problem recurs, do the following before calling IEM
for progromming support: have source deck, control cards, and
compiler output available.

SYMDMP/STATE/FLOW/COUNT INTERNAL ERROR. EXECUTION CANCELLED.

Explanation: Abnormal termination occurred during execution of
one of the debugging subroutines.

Action: The job is cancelled.

Programmer Response: Internal logic error.

If the problem recurs, do the following before calling IB~
for programming support: have source deck, control cards, and
compiler output available.

C1691

Cl101

Cl111

C1121

C1131

STATE OPTION CANCELLED.

Explanation: compiler or logic error has occurred during STATE
option processing. Under certain conditions, this error may
result from other user errors. For example, a loop might
destroy some of the information required by the STATE
subroutines; an invalid branch might cause a non-existent
priority-number to be stored in the TGT, etc.

Action: STATE output is cancelled.

Programmer Response: Probable user error. Possible compiler
error or user error. Correct other known errors (if any)
before attempting reexecution.

If the problem recurs, do the following before calling IBM
for programming support: have source deck, control cards, and
compiler output available.

INVALID ADDRESS.

Explanation: The address calculated for a subscripted
identifier, or a starting or ending address of a
variable-length identifier used as the receiving field in a
MOVE statement is invalid.

Action: A symbolic dump is produced.

Programmer Response: Probable user error. Possible compiler
error or user error. Correct other known errors (if any)
before attempting reexecution.

If, the problem recurs, do the following before calling IBM
for prograRming support: have source deck, control cards, and
compiler output available.

SPACE NOT FOUND FOR THE COUNT CHAIN. CONTINUING.

Explanation: A GETVIS macro was unsuccessful due to lack of
space.

Action: Execution continues. Execution statistics are not
provided for the last indicated program unit.

Programmer Response: Probable user error. Allocate more space
on EXEC card before attempting reexecution.

If the problem recurs, do the following before calling IEM
for programming support: have source deck, control cards, and
compiler output available.

SPACE NOT FOUND FOR THE VERBSUM TABLE. CONTINUING.

Explanation: A GETVIS macro was unsuccessful due to lack of
space.

Action: Execution continues. Verb summary statistics are not
provided for the program.

Programmer Response: Probable user error. Allocate more space
on EXEC card before attempting reexecution.

FREEVIS FAILED. EXECUTION CANCELLED.

Explanation: A FREEVIS macro was unsuccessful.

Action: Execution is terminated.

Appendix I: Diagnostic Messages 317

C175I

Programmer Response: Probable user error. Allocate more space
on EXEC card before attempting reexecution.

If the problem recurs, do the following before calling IBM
for prograrrming support: have source deck, control cards, and
compiler output available.

INVALID COUNT TABLE ENTRY. EXECUTION CANCELLED.

Explanation: A count table entry in the object module is not
one of the following: end-of-table indicator, procedure-id, or
verb-id.

Action: Execution is terminated.

Proarammer aesponse: Probable user error. possible compiler
or user error. Check your program for routines that may have
m6ved data into the count table area. Correct other known
errors (if any) before attempting execution.

If the problem recurs, do the following before calling IBM
for programming support: have source deck, control cards, and
compiler output available.

COBOL OBJECT PROGRAM UNNU~BERED MESSAGES

318

xxx •••

Explanation: This message is written on the console and is
recognizable because it is not preceded by a message code and
action indicator. It is issued by an object program originally
coded in COBOL. ~he message text is supplied by the object
program and may indicate alternative action to be taken.

System Action: The job continues.

Operator Response: Operator response, if any is needed, is
determined by the message text.

APPENDIX J:

This appendix contains information on
he 3886 Optical Character Reader, Model 1*
denotE!d as "the OCRn). Topics discussed
nclude:

3886 OCR processing
COBOL considerations for 3886 OCR

processing.
Status key values
Sample program

This discussion assumes familiarity with
hese IBM 3886 Optical Character Reader
ublications:

IBM 3886 OCR General Information Manual,
Order No. GA21-9146 -- for terminology,
device capabilities, and the formats of
the header and data records.

IBM 3886 OCR Input Document Design and
Specifications, Order No. GA21-9148 -
for document design considerations and
detailed specifications.

:n addition, the applicable portions of the
:ollowing manuals should be referenced:

IBM DOS/VS Suoervisor and IL2-Ma~,
Order No. GC33-5373 -- for describing
documents using the DFR and DLINT
macros.

IBM DOS/VS System Generation, Order
No. GC33-S377

IBM DOS/VS Data Management Guide, Order
No. GC24-S062.

IBM DOS/VS Proqram Planning Guide for
the IbM 3886 Optical Character Reader,
Model 1, Order No. GC21-S0S9

3886 OCR PROCESSING

The 3886 OCR, Model 1 is a general
purpose online device that satisfies a
broad range of data entry requirements.
rhe OCR accepts documents sized from 3
inches by 3 inches to 9 inches by 12
inches. It can read machine-printed

*This device should not be confused with
the 3886, Model 2, an offline Optical
Character Reader with output to tape.
Information is included in this chapter on
processing the tapes produced by the Model
2.

COBOL 3886 OPTICAL CHARACTER READER SUPPORT

alphabetic characters, numeric characters,
and certain special characters in a wide
variety of fonts, as well as hand-printed
numeric characters.

The OCR reads documents one line at a
time, under program control. Additional
features, all under program control,
include:

• document marking

• line marking

• document eject (with stacker selection)

• line reread (for the current line, and
with a different format if desired)

~ote: The OCR cannot read previous lines;
reading can proceed from top to bottom on
the document only.

IMPLEMENTING AN OCR OPERATION

Document Design

The OCR form that will be used for input
should be prepared independently of the
COBOL program. Document design criteria
are described in detail in IBM 3886 Optical
Character Reader, Input Document Design
Guide and Specifications.

The most important aspects of document
design are:

1. The locations of lines which can be
read. These lines are identified by
"timing marks." Lines not associated
with timing marks are always ignored
by the OCR. Note that lines may be
almost anywhere on the document, and
need not be at regular intervals.

2. The location of fields to be read.
Fields, (strings of related
characters) should be identified in
document design. They should be
described using the DFR and DLINT
macros. (See section enti tled
"Document Description".)

3. The form identifier. This field
should be a pre-printed code at a
common location on the first readable
line of each format. This field can
be ignored by programming or DLINIT

Appendix J: COBOL 3886 Optical Character Reader Support 319

specification if desired; it should,
however, be included in the form
design so as to allow for later form
changes or intermixing of forms in
batches without disruption of
operations.

Document Description

Documents are described in the system
with the Define Format Record (DFR) and
Define Line Type (DLINT) macros. These
macros should be coded independently of the
COBOL program.

The DFR macro identifies, by name, a
collection of DLINT macros, and establishes
various default field scanning options for
them. Each different DFR grouping
identifies a different document, or a
largely different way of scanning the same
document (for example, a document in a
different font) •

DFR and DLINT macros, after assembly and
linkage editing, are preserved in load able
form until called for by the application
program.

Each DLINT macro describes the scanning
of a line, by field, in terms of

1. The starting and ending points of
fields on a line (in tenths of an
inch) •

2. The field lengths (in characters) •

3. The font code to be used (OCR-A,
OCR-B, Gothic, or hand-printed
numerics, all with various additional
options) •

4. Field editing (blank fill, blank
suppression, zero fill, left or right
justification, special character
suppression) •

5. Field character delimiters (a
character to end a field scan) •

Note that the DLINT macro may specify
either standard mode or image mode. In
standard mode, all DLINT options are valid,
and the data record is of a fixed format,
according to the field lengths in
characters. In image mode, the field
length and all EDIT keywords are invalid.
The data record begins with 14 parameters,
each two bytes long, indicating the length
of the fields that follow. Because of this
variable format in the data record, it is
recommended that image mode be used only in
applications for which standard mode is
unsuitable.

320

COBOL supports the OCR with a subprogram
(invoked by CALL statements), Data Division

COPY statement library material (to fully
describe the parameter area required by the
subprogram), and Procedure Division COpy
statement library material (to provide
procedures that simplify invocation of the
subprogram) •

The file is described by the Data
Division COpy statement member. (See
sample program for format.) All fields and
codes are included, with descriptive names
and default values. The programmer need
only modify those fields that are not
appropriate for the application.

The file description ("OCR-FILE" in the
COpy statement member) includes all fields
that the programmer must provide to the
subprogram, the OCR-STATUS-KEY returned by
the subprogram, and fields that describe
the header and data records returned by the
device. Note that the file is described
through data records rather than the usual
COBOL FD.

Note: The header and data records are not
constructed under program control and are
not altered after reading. Their contents
are fully described in IBM 3886 Optical
Character Reader General Information
Manual.

The COBOL record descriptions are based
on the DLINT formats, either in image mode
or in standard mode.

If standard mode scanning is specified,
the data record is returned in a fixed
format according to the DLINT macro; that
is, contiguous fields, from left to right,
in the same order as in the DLINT macro,
each with a specified length in bytes. If
image mode scanning is specified, however,
the field lengths are returned at the
beginning of the data record.

The programmer may describe the data
records to be read by the application
program by following the Data Division COpy
statement request with statement(s} of the
form:

05 dataname REDEFINES OCR-DATA-RECORD I

he structure of each record description
hould follow each such statement starting
ith a level number greater than 5. (See
ample program for example.)

rocedural Code

The COBOL source statements control the
ile, read lines, and recover from errors.
he subprogram CALL statement requirements
re described in the Procedure Division
'OPY statement member. This member
'rovides paragraphs which the COBOL
Irogrammer can PERFORM to set the proper
Iperation code, CALL the subprogram, and
lass control to a programmer-supplied
!xception routine if an exception occurs.
'he programmer should COpy these paragraphs
.nto his program.

The programmer must move parameter
.nformation to the file area
(OCR-FILE-CONTROL-AREA), and then issue a
)ERFORM statement for the appropriate
)rocedure.

If an exception occurs, the COpy
~tatement member passes control to the
)rocedure-name OCR-EXCEPTION-ROUTINE. If
>perations are to be retried in this
~outine, the programmer should issue the
ippropriate CALL (not PERFORM) statement
ind test the OCR-STATUS-KEY value
ifterwards.

Return from the OCR-EXCEPTION-ROUTINE
~ould normally be to OCR-CALL-EXIT (after a
successful retry or recovery). Control is
then returned to the invoking PERFORM
statement.

JCL Considerations

Programs using the IBM-supplied 3886
processing subroutines must have a SIZE
parameter specified on the EXEC card and
cannot run in REAL mode. The user must
specify the SIZE parameter equal to the
size of his problem program to free the
remainder of his partition for use as the
page pool. Each opened 3886 file requires
~t least 2K bytes of the page pool.

Subprogram Interface

The IBM-supplied COpy members provide a
data area ('OCR-FILE') and CALL statements
using this area for parameter interface to
the OCR subprogram. The data area has the
following format:

01 OCR-FILE.
05 OCR-FILE-CONTROL-AREA

10 OCR-FILE-ID PIC X(8) VALUE
·SYSnnn'.

(Unique file name; also, must
agree with JCL ASSGN
statement)

10 OCR-FORMAT-RECORD-ID PIC X(8)
VALUE "xxxxxxxx".

(DFR phase name, used for
'OPEN' or "SETDV")

10 OCR-OPERATION PIC X (5) •
("OPEN", "CLOSE", "READ",

"READO", "WAIT", "SETDV",
"MARKL", "MARKD", or "EJECT"
(left justified).

10 OCR-STATUS-KEY PIC 99.
(also referred to as exception

code.)

10 OCR-LINE

15 OCR-LINE-NUMBER PIC 99.
(Line number (0-33) passed

to "MARKL", "READ", or
"EJECT")

15 OCR-LINE-FORMAT PIC 99.
(Line format number (0-63)

passed to "READ")

10 OCR-MARK PIC 99.
(Mark option (1-15) passed to

"MARKL" or "MARKD".)

10 OCR-STACKER PIC 9.
(Pocket number (1-2) passed to

"EJECT" .)

05 OCR-HEADER-RECORD PIC X (20) •
(Header information returned from

"READ" or "WAIT".)

05 OCR-DATA-RECORD PIC X (130) •
(Data record returned from "READ"

or "WAIT".)

(For descriptions of these operations, see
the section "Statements for Invoking 3886
I/O Functions".)

Note: If the CALL statement does not have
one, and only one, parameter following the
USING option, the subprogram will return
control immediately to the user (with a
value of 8 in register 15). No error
indication will be available through COBOL.

Table 37 contains OCR status key values
and their meanings. Table 38 is a guide to
which operations cause status key values 00
through 99. Table 39 supplies the user
responses to status key values.

Appendix J: COBOL 3886 Optical Character Reader Support 321

Table 37. OCR Status Key Values and User Actions

.I
I
I
I
I
I
I
I

Status Key
Code

00

10

3x

9y

!1eaning

Successful completion

End-of-file l

I/O error or related error where: 2
x = 1 Mark Check

= 2 Nonrecovery
3 Incomplete Scan

= 4 Mark Check and Equipment Check
9 Permanent Error

Other
y = 2

3

5
= 9

error where:
logic error, that is, file not open (except OPEN), file already
open (for OPEN), WAIT issued~ but no READO pending, WAIT not
issued for pending READO.
insufficient storage available (OPEN) or failure in stor~ge
release (CLOSE)
invalid parameter (other than operation code)
unrecognizable operation code

IThe end-of-file condition is raised after the listed I/O commands if:
the operator has pressed the END-OF-FILE button, and
no documents remain in the read station, and
no errors are outstanding

If // ASSGN SYSxxx,IGN has been specified, EOF is given only on READ and WAIT
commands. While the end-of-file condition is active, commands (other than CLOSE) are
only checked for validity.

2If any 1-0 errors, or certain system errors occur during the OPEN operation, the job
is canceled by the system.

Table 38. Possible Status Key Values, By Operation
i i i i i

I OCR-OPERATION I I I I
I Value I I I I
I I I I I
10CR-STATOS-KEY I I I I I I I I I ((
(Possible Value 10PEN (CLOSEIREAD IREADOIWAIT IMARKLIMARKDIEJECTISETDVlotherl , I I I I I I I I I I 1

00 X X X X X I X I X X X
I I

10 X X X IX X X
I

31 I X
I

32 X X X X I X X X
I

33 X X I
I

34 X

39 X X X X X X X

92 X X X X X X X X X

93 X

95 X X X X X ,I X
I

99 ,I X
t

322

able 39. User Responses to Status Key

I
I
I
I
I
I
I
I.

status Key

00

10

31

32

33

34

39

92

Meaning I Response
I

Successful (no EOF) IThe operation has completed properly.
I

End-of-file IDo EOP processing and close the file, or have

Mark Check

Nonrecovery Error

Incomplete Scan

Hark Check and
Equipment Check

Permanent Error

Logic error

operator ready 3886 and continue processing. See
Note 1.

Attempt to reread the line, or eject document and
prepare to process next document.

Eject document and prepare to process next document.

Reread the line using a different DLINT, or using an
image-mode DFR.

See Note 2.

See Note 2. One of the following has occurred: .
Command Reject, Bus Out Check, Equipment Check,
Non-Initialized, RCP error, or Invalid Format.

See Note 3. One of the foilowing operation order
errors has occurred:

OPEN issued on file already open
file not open (all operations except OPEN)
WAIT issued but no READO in progress
READO not followed by WAIT

93 Insufficient storage See Note 3. The GETVIS issued by the COBOL

95

99

Invalid parameter

Unrecognizable
operation

subroutine has failed. Check that the SIZE
parameter is large enough.

See Note 3. A parameter required by the last
loperation was invalid (too large, too small, or
Icontained invalid characters).
I
ISee Note 3. The OCR-OPERATION parameter contained
Ian illegal operation code.
I

I~:
1. Serious 1-0 error conditions exist. No more I/O should

after any of these errors are encountered. The program
perform error recovery, and issue a STOP RUN.

be performed on the device
should indicate the error,

2. A serious programmingerror'has occurred, or there is a problem in the program
environment. The program should indicate the error, perform clean~up, and issue a
STOP RUN.

3. WAIT and READ commands return data and header records only for the following
codes: 00,10, 31, and 33. For other codes, the contents of the header and data
record areas are unpredictable.

Appendix J: COBOL 3~86 Optical Character Reader support 323

STATEMENTS FOR INVOKING 3886 I/O FUNCTIONS

OPEN Function (Equivalent to OPEN Macro)

OPEN makes a logical file available to
your program and loads the appropriate
format record into the 3886. The statement
format for OPEN is:

PERFORM OCR-OPEN

The subprogram requires these fields:
OCR-FILE-ID, OCR-oPERATION('OPEN'),
OCR-FORMAT-RECORD-ID

The subprogram will return: OCR-STATUS-KEY

CLOSE Function (Eguivalent to DOS CLOSE
Macro)

CLOSE deactivates any 3886 files used by
your program. These files must be closed
before the program can be terminated. The
statement format for CLOSE is:

PERFORM OCR-CLOSE

The subprogram requires these fields:
OCR-FILE-ID, OCR-OPERATION ('CLOSE')

The subprogram will return: OCR-STATUS-KEY

READ Function (Equivalent to DOS READ and
WAITF Macros)

READ allows one line of data to be read
from the document. The statement format
for READ is:

PERFORM OCR-READ

The subprogram requires these fields:
OCR-PILE-ID, OCR-OPERATION (IREAD'),
OCR-LINE-NUMBER, OCR-LINE-FORMAT

The subprogram will return:
OCR-STATUS-KEY, OCR-HEADER-RECORD,
OCR-DATA-RECORD

Note: The READ function combines the
functions of READO and WAIT. I/O overlap
is not allowed within the issuing task.

324

READO Function (Equivalent to DOS READ
Macro)

READO (read overlapped) initiates the
reading of one li.ne of dat (Lf.~om the
document. WAIT must subseguently be issued
to complete the request. The statement
format for READO is:

PERFORM-OCR-READ-OVERLAPPED

The subprogram requires these fields:
OCR-PILE-ID, OCR-OPERATION ('READO'),
OCR-LINE-NUMBER, OCR-LINE-PORMAT

The subprogram will return: OCR-STATUS-KEY

Note: A successful READO function must be
followed by a WAIT request for that same
OCR-FILE area. No intervening I/O
operations for that file are allowed.

WAIT Function (Equivalent to DOS WAITF
Macro)

WAIT completes the action of the
preceding READ. The statement format for
WAIT is:

PERFORM OCR-READ

The subprogram requires these fields:
OCR-PILE-ID, OCR-OPERATION ('WAIT'),

The subprogram will return:
OCR-STATUS-KEY, OCR-HEADER-RECORD,
OCR-DATA-RECORD

The WAIT function causes the active task
to be placed in the WAIT condition, if
necessary, until the preceding READO
operation is completed. It must be issued
only after a successful READO,with no
intervening commands for that file.

MARKL Function (Equivalent to DOS CNTRL
Macro with LMK Option)

MARKL is used to mark a line on the
document. The statement format for MARKL
is:

PERPORM OCR-MARK-LINE

The subprogram requires these fields:
OCR-FILE-ID, OCR-OPERATION (tMARKL'),
OCR-LINE-NUMBER, OCR-MARK

The subprogram will return: OCR-STATUS-KEY

~RKD Function (Equivalent to DOS CNTRL
!cro with DMK Option)

MARKD is used to mark the document (in
he Page Mark location) •

he statement format for MARKD is:

PERFORM OCR-MARK-DOCUMENT

he subprogram requires these fields:
CR-FILE-ID, OCR-OPERATION ('MARKDI),
'CR-MARK

~e subprogram will return: OCR-STATUS-KEY

~JECT Function (Equivalent to DOS CNTRL
lacro, with ESP Option)

EJECT is used to eject the document into
i specified stacker, with optional
ralidation of its total number of timing
narks. The statement format for EJECT is:

PERFORM OCR-EJECT

rhe subprogram requires these fields:
DCR-FILE-ID, OCR-OPERATION ('EJECT'),
OCR-STACKER, OCR-LINE-NUMBER

The subprogram will return: OCB-STATUS-KEY

SETDV~et Device by Loading a Format
Record) Function (Equivalent to DOS SETDEV
Macro)

SETDV allows format records to be
changed during execution of the program.
The statement format for SETDV is:

PERFORM OCR-SET-DEVICE

The subprogram requires these fields:
OCR-FILE-ID, OCR-OPERATION ('SETDV'),
OCR-FORMAT-RECORD-ID

The subprogram will return: OCR-STATUS-KEY

COBOL 3886 Library Routine

The COBOL 3886 library routine is
invoked in response to the CALL statement.
For the proper execution of this routine
GETVIS=YES must be specified at system
generation. An illegal SVC results if
GETVIS=NO is specified.

Table 40 contains a list of CALL
statements used for invoking 3886 I/O
functions (if the IBM-supplied COpy member
is not used) •

All OCR CALL statements have the format
CALL tILBDOCRO' USING OCR-FILE, where
OCR-FILE is used as follows:

Appendix J: COBOL 3886 Optical Character Reader Support 325

Table 40. CALL Statements for Invoking 3886 I/O Functions
I

I Function
I (OCR-OPERATION) Set by User Subroutine Returns
I
I OPEN OCR-FILE-ID OCR-STATUS-KEY
I OCR-OPERATION
I OCR-FORMAT-RECORD-ID
I
I CLOSE
I
I
I READ
I
I
I
I
I READO
I
I
I
I
I WAIT
I
I
I
I MARKL
I
I
I
I
I MARKD
I
I
I
I
I EJECT
I
I
I
l-
I SETDV

OCR-FILE-ID
OCR-OPERATION

OCR~FILE-ID

OCR-OPERATION
OCR-LINE-NUMBER
OCR-LINE-FORMAT

OCR-FILE-ID
OCR-OPERATION
OCR-LINE-NUMBER
OCR-LINE-FORMAT

OCR-FILE-ID
OCR-OPERATION

OCR-FILE-ID
OCR-OPERATION
OCR-LINE-NUMBER
OCR~MARK

OCR-PILE-ID
OCR-OPERATION
OCR-LINE-NUMBER
OCR-MARK

OCR-FILE-ID
OCR-OPERATION
OCR-LINE-NUMBER
OCR-STACKER

OCR-FILE-ID

OCR-STATOS-KEY

OCR-STATUS-KEY
OCR-HEADER-RECORD
OCR-DATA-RECORD·

OCR-STATUS-KEY

OCR-STATUS-KEY
OCR-HEADER-RECORD
OCR-DATA-RECORD

OCR-STATUS-KEY

OCR-STATUS-KEY

OCR-STATUS-KEY

I OCR-FORMAT-RECORD-ID OCR-STATUS-KEY
I OCR-OPERATION

PROCESSING TAPES FROM THE OCR 3886, HODEL 2

Tape records produced from the IBM 3886,
Model 2 are almost identical in foimat to
the header and data records returned by the
Model 1. The main differences between the
records are:

• Model 2 tapes contain a document
trailer record after the line output
records for each document. The content
of this trailer record differs from
that of line output records.

• The codes used in certain fields of the
header record dif~er~etween the two
models.

326

Because of the similarity, however, the
Data Division COpy statement member defined
for the Model 1 may be tailored to describe
the Hodel 2 tape records. To do this,
punch out the COpy statement member, modify
it according to the installation
requirements, and recatalog it. The COPY
statement member may then be included as a
data record, under. an FD for the input tape
file.

Specific information on the formats and
contents of the Model 2 tape records is
contained in IBM 3886 Optical Character
Reader, General Information Manual.

CEL LIB
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040 C

Figure 69.

**91547000
********* SAM P LEO C R PRO G RAM *********91548000
**91549000

IDENTIFICATION DIVISION 91550000
PROGRAM-ID. SAMPLE

****** THIS PROGRAM IS THE COEOL EQUIVALENT OF THE
* ASSEMBLY LANGUAGE SA~PLF. PROGRAM 'DOCLIS~',
* CONTAINED IN THE DOS/VS PROGRAM PLANNING GUIDE
* FOR THE IBM 3886 OPTICAL CHARACTER READER, MODEL 1
* (ORDER NO. GC21-5059)

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINTER, ASSIGN TO SYS009-UR-1403-S.
DATA DIVISION.
FILE SECTION.
FD PRINTER LABEL RECORDS ARE mH~TED.
01 PRINT-RECORD.

05 FILLER PIC X.
05 PRINT-LINE PIC X(130).

WORKING-STORAGE SECTION.
77 PRINT-CONTROL
77 MSG-PERMANENT-ERROR

'PERMANENT ERROR
77 MSG-~~K-CHECK

PIC 9
PIC X(24)

OCCURRED' •
PIC X (19)

'MARK CHECK OCCURRED'.

VALUE 1-
VALUE

VALUE

77 MSG-~ARK-AND-EQUIP-CHECK PIC X(39) VALUE
'MARK CHECK AND EQUIPMENT CHECK OCCURRED'.

77 MSG-INCOMPLETE-SCAN PIC X(24) VALUE
'INCOMPLETE SCAN OCCURRED'.

77 MSG-NONRECOVERY-ERROR PIC X(26) VALUE
'NONRECOVERY ERROR OCCURRED'.

77 MSG-BAD-DATA FIC X(50) VALUE
'THE FOLLOWING LINE WAS MISREAD. THE LINE HEADER -,

01 MSG-~ERMINA~ION.
05 FILLER PIC X(44) VALUE

'TERMINAL ERROR OCCURRED - OCR-STA'!'US-KEY
05 MSG-TERl-1-STATUS-KEY PIC xx.

01 OCR-FILE COpy ILEDOCRD.
******** ILBDOCRD - OCR DA~'A DESCRIPTION *************************

Sample OCR Program (Part 1 of 5)

91551200
91551400
91551600
91551800
91551900
91552000
91552200
91552400
91552600
91553000
91553200
91553400
91553600
91553800
91553900
91554000
91554200
91555000
91556000
91556100
91556200
91556600
91556700
91556800
91556900
91557000
91557200
91557400
91557600
91557700
91557800
91558100
91558300
91558400

Appendix J: COBOL 3886 Optical Character Reader Support 327

00041 C
00042 C
00043 C
00044 C
00045 C
00046 C
00047 C
00048 C
00049 C
00050 C
00051 C
00052 C
00053 C
00054 C
00055 C
00056 C
00057 C
00058 C
00059 C
00060 C
00061 C
00062 C
00063 C
00064 C
00065 C
00066 C
00067 C
00068 C
00069 C
00070 C
00071 C
00072 C
00073 C
00074 C
00075 C
00076 C
00C77 C
00078 C
00079 C
00080 C
00081 C
00082 C
00083 C
00084 C
00085 C
00086 C
00087 C
00088 C
00089 C
00090 C
00091 C
00092 C
00093 C
00094 C
00095 C
00096 C
00097 C
00098 C
00099 C
00100 C
00101 C
00102 C
00103 C
00104 C
00105 C
00106 C
00107 C
00108 C
00109 C
00110 C
00111 C
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122

**90037000
******** 0 C R 3 8 8 6 F I L E FOR MAT **********90047000
**90057000

*
*
*
*
*

01 OCR-FILE.
05 OCR-FILE-CONTROL-AREA.

10 OCR-FILE-ID
10 OCR-FORMAT-RECORD-ID
10 OCR-OPERATION

88 OCRO-CPEN
88 OCRO-CLOSE
88 OCRO-READ
88 OCRO-READ-OVERLAPPED
88 OCRO-WAIT
88 OCRO-MARK-LINE
88 OCRO-MARK-DOCUMENT
88 OCRO-EJECT
88 OCRO-SETDEV

10 OCR-STATUS-KEY
88 OCRS-SUCCESSFUL
88 OCRS-END-OF-FILE
88 OCRS-IO-ERRORS
88 OCRS-MISC-ERROR
88 OCRS-MARK-CHECK

PIC X(8)
PIC X (8)
PIC X(5)

PIC 99

88 OCRS-NONRECOVERY-ERROR
88 OCRS-INCOMPLETE-SCAN
88 OCRS-MARK-AND-EQUIP-CHECK
88 OCRS-PER¥ANENT-ERROR
88 OCRS-SPECIAL-ERRORS
88 OCRS-LOGIC-ERROR
88 OCRS-RESOURCE-UNAVAILAELE
88 OCRS-INVALID-PARAME'IER
88 OCRS-INVALID-OFERATION

10 OCR-LINE.
15 OCR-LINE-NUMBER
15 OCR-LINE-FORMAT

10 OCR-MARK
10 OCR-STACKER

PIC 99
PIC 99
PIC 99
PIC 9

90067000
90069000

VALUE 'SYS010 '.90077000
VALUE 'FRLGDFR1'.90087000
VALUE 'OPEN '. 90097000
VALUE 'OP~N '. 90107000
VALUE 'CLOS~'. 90117000
VALUE 'READ '. 90127000
VALUE 'RSADO'. 90137000
VALUE 'WAIT' 90147000
VALUE 'MARKL'. 90157000
VALUE 'MA~KD'. 90167000
VALUE 'EJECT'. 90177000
VALUE 'SETDV'. 90187000
VALUB o. 90197000
VALUE 00. 90217000
VALUE 10. 90227000
VALUE 30 THRU 39.90257000
VALUE 30. 90267000
VALUE 31. 90277000
VALUE 32. 90287000
VALUE 33. 90297000
VALUE 34. 90307000
VALUE 39. 90317000
VALUE 90 THRU 99.90317400
VAl·UE 92. 90323000
VALUE 93. 90325000
VALUE 95. 90326000
VALUE 99. 90326200

VALUE 1-
VALUE 1.
VALUE O.
VALUE 1.

90327000
90337000
90347000
90357000
90367000
90377000

******* HEADER AND DATA RECORD AREAS *******
FILLED IN BY SUCCESSFUL 'READ' AND/OR 'WAIT'.
(NO'IE - 'READO' DOES NOT ALTER THESE AREAS)

90387000
90397000
90407000
90417000

05 OCR-HEADER-RECORD
10 OCRH-LINE-NUMBER
10 OCRH-LINE-FORMAT
10 OCRH-LINE-SCAN-COUNT
10 OCRH-LINE-STATUS

88 OCRH-LINE-GOOD
88 OCRH-LINE-BLANK

PIC 99.
PIC 99.
FIC 9.
PIC 9.

88 OCRH-LINE-GROUP-ERASE
88 OCRH-LINE-CRITICAL-ERR
88 OCRH-LINE-NON-CRITICAL-ERR
88 OCRH-LINE-COMBINED-ERR
88 OCRH-LINE-INVALID
88 OCRH-END-OF-PAGE

10 OCRH-FIELD-INFO.

VALUE ZEROS.

VALUE O.
VALUE 1.
VALUE 3.
VALUE 2.
VALUE 4.
VALUE
VALUE
VALUE

6.
7.
5.

15 OCRH-FIELD-STATUS
88 OCRH-FIELD-GCOD

PIC 9 OCCURS 14.

88 OCRH-FIELD-REJECT-CHARS
88 OCRH-FIELD-WRONG-LENGTH
88 OCRH-FIELD-COMEINED-ERR
88 OCRH-FIELD-BtANK
88 OCRH-FIELD-BLANK-SUP

05 OCR-DATA-RECORD.
10 OCR-STANDARD-MODE-RECORD

15 OCR-STANDARD-FIELD-CHAR PIC X
10 OCR-IMAGE-MODE-RECORD

VALUE O.
VALUE 2.
VALUE 4.
VALUE 6.
VALUE 8.
VALUE 4.

OCCURS 130.

REDEFINES OCR-STANDARD-MODE-RECORD.
15 OCR-IMAGE-FIELD-LENGTH PIC 99 OCCURS 14.
15 OCR-IMAGE-FIELD-CHAR PIC X OCCURS 102.

90427000
90437000
90447000
90457000
90467000

********** END OF 3886 DATA DIVISION COPY MEMBER *************
05 NOTICE-OF-PAYMENT-DUE REDEFINES OCR-DATA-RECORD.

90477000
90487000
90497000
90507000
90517000
90527000
90537000
90547000
90557000
90567000
90577000
90587000
90597000
90607000
90617000
90627000
90637000
90647000
90657000
90667000
90677000
90687000
90697000
90699000
91561400
91561600
91561800

10 LINE-1.
15 L1-POLICYHOLDER-NA~E
15 FILLER PIC X(15).

10 LIN.E-2 REDEFI. ~ES LINE-1-
15 L2-CITY-AND-STATE
15 L2-POLICY-NUli;EE~

15 L2-AMOUNT-DUE
15 L2-PAYMENT-VERIFY-CODE

10 LINE-3 REDEFINES LINE-1.

PIC X(20).

PIC X(20).
PIC X(8).
PIC 9(4)V99.
PIC 9.

15 L3-AMOUNT-PAID PIC 9(5)V99.

91561900
91562200
91562400
91562600
91562700
91562800
91563100

Figure 69. Sample OCR Program (Part 2 of 5)

328

00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
001113
00144
001115
00146
001117
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
001711
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192

PROCEDURE DIVISION.
STOP RUN.

Pl0-START.
MOVE 'SYS010' TO OCR-FILE-ID.
MOV~ 'FORMAT' TO OCR-FOR~AT-RECORD-ID.
PERFORM OCR-OPEN.
OPEN OUTPUT PRINTER.

Pl0-HEAD.
, MOVE ALL '*' TO PRINT-LINE.

PERFORM PRINT-ROUTINE.
MOVE 1 '10 OCR-STACKER.

PlO-READ.
PERFORM OCR-READ.
IF OCRS-NONRECOVERY-ERROR, GO TO Pl0-EOP-ERR.
IF OCRH-LINE-GOOD, GO TO Pl0-GOOD.
IF OCRH-LINE-BLANK, GO TO Pl0-GOOD.
IF CCRH-LINE-NON-CRITICAL-ERR, GO '1'0 Pl0-GOOD.
IF OCRH-END-OF-PAGE, GO TO Pl0-EOP.

••••• IF OCRH HAS ANY OTHER CODE, CONSIDER THE DATA AS BAD ••••
Pl0-BAD.

MOVE MSG-EAD-DATA TO PRINT-LINE.
PERFORM PRINT-ROUTINE.
~OVE 2 TO OCR-STACKER.

P10-GOOD.-
MOVE OCR-DATA-RECORD TO PRI~T-LINE.
PERFORH PRINT-ROUTINE.
MOVE 1 TO PRINT-CONTROL.
ADD 1 TO OCR-LINE-NUMBER, OCR-LINE-FORMAT.
IF OCRH-LINE-NUMBER IS LESS THAN 3, GO TO P10-READ.

Pl0-EOP.
MOVE 3 TO OCR-LINE-NUMBER.
PERFORH OCR-EJECT.

Pl0-EOP-ERR.
I-IOVE 1 TO CCR-LINE-NUMEER, OCR-LINE-FO.l{MAT.
I<lOVE 3 TO PRINT-CONTROL.
GO TO Pl0-bEAD.

***** ••• * EXCEPTION PROCESSING ROUTINE *********** •• **
OCR-EXCEPTION-ROUTINE.

IF OCRS-END-OF-FILE, GO TO P20-EOF.
IF OCRS-MARK-CHECK,

MOVE MSG-MARK-CHECK TO PRINT-LINE,
GO TO P20-RETURN.

IF CCRS-NONRECOVERY-ERROR,
~OVE MSG-NONRECOV~RY-bRROR TO PRINT-LINE,
GO TO P20-RETURN.

IF OCRS-INCOMPLETE-SCA~,
MOVE MSG-INCOMPLETE-SCAN '10 PRINT-LINE,
GO TO P20-RETURN.

IF CCRS-MABK-AND-EQUIP-CHECK,
MOVE l-lSG-MARK-AND-EQUIP-CHECK TO OCR-LINE,
GO TO P20-PRINT-EOF.

IF OCRS-PERMANENT-ERROR,
MOVE MSG-PERMANENT-ERROR '10 PRINT-LINE,
GO '10 P20-PRINT-EOF.

•••• * IF NONE OF THE AEOVE ERRORS, GIVE TERMINATION MESSAGE ** •• *
MOVE OCR-STATUS-KEY TO MSG-TERl-J-STATUS-KEY.
MOVE MSG-TERMINATION '1'0 PRIU'I'-LINE.
GO TO P20-PRINT-EOF.

P20-RETURN.
PERFORM PRINT-ROUTINE.
GO '10 OCR-CALL-EXIT.

P20-PRINT-EOF.
PERFORM PRINT-ROU'I'INE •

P20-EOF.
PERFORM OCR-CLOSE.
CLOSE PRINTER.
STOP RUN.

PRINT-ROUTINE.
WRITE PRINT-RECORD AFTER ADVANCING PRINT-CONTROL.

OCR-COPIED-PROCEDURES. COpy ILBLOCRP.

Figure 69. Sample OCR Program (Part 3 of 5)

91563400
91563700
91564000
91S65000
91566000
91567000
91568000
91569000
91570000
91571000
91572000
91573000
915711000
91574200
91575000
91576000
91579000
91580000
91581000
91582000
91583000
91~84000
91584200
91585000
91585200
91585400
91585600
91585800
91585900
91586200
91586300
91586400
91586600
91586700
91586800
91587100
91587300
91587400
91587600
91587700
91587800
91587900
91588100
91588500
91588700
91588900
91589100
91589300
91589500
91589700
91590000
91591000
91592000
91593000
91594000
91595000
91596000
91597000
91598000
91598200
91598400
91600000
91601000
91602000
91603000
91604000
91605000
91607000
91609000
91610000

Appendix J: COBOL 3886 Optical Character Reader support 329

00193 C
00194 C
00195 C
00196 C
00197 C
00198 C
00199 C
00200 C
00201 C
00202 C
00203 C
00204 C
00205 C
00206 C
00207 C
00208 C
00209 C
00210 C
00211 C
00212 C
00213 C
00214 C
00215 C
00216 C
,00217 C
00218 C
00219 C
00220 C
00221 C
00222 C
00223 C
00224 C
00225 C
00226 C
00227 C
00228 C
00229 C
00230 C
00231 C
00232 C
00233 C
00234 C
00235 C
00236 C
00237 C
00238 C
00239 C
00240 C
00241 C
00242 C
00243 C
00244 C
00245 C
00246 C

Figure 69.

330

******* ILBDOCRP - OCR 3886 PROCEDURES
**90757000
******** 0 C R 3 8 8 6 PRO C E D U RES *********90767000
**90777000
* THE 3886 OCR SUBROUTINE USES OCR-FILE FIELDS AS F'OLLOWS 90778000
* 90779000
* ALL OPERATIONS REQUIRE 90780000
* OCR";'FILE-ID = THE UNIQUE NA~E USED TO IDENTIFY THE FILE 90781000
* TO THE SUBROUT'INE AND TO THE SYSTE~ 90782000
* ocR-OPERATION = THE CODE FOR THE REQUESTED OPERATION 90783000
* ALL OPERATIONS RETURN 90784000
* OCR-STATUS-KEY = RETURN CODE FOR VARIOUS OCCURRENCES 90785000
* 90786000
* OCR-OPEN ('OPEN ') ALSO RE~UIRES 90786200
* OCR-FORMAT-RECORD-ID = LIBRARY NAME OF DFR TO LOAD 90786400
* OCR-CLOSE ('CLOSE') REQUIRES NC ADDITIONAL PARAMETERS 90786600
* OCR-READ ('READ ') ALSO REQUIRES 90786800
* OCR-LINE-NUMBER (1-33) = LINE TO READ (ON DOCUMENT) 90786900
* OCR-LINE-FORMAT (1-63) = DLINT NUMBER (IN CUHRENT DFR) 90787900
* AND RETURNS (IF OCRS-SUCCESSFUL) 90788100
* OCR-HEADER-RECORD = HEADER RECORD, AS RET'URNED BY THE 3886 90788300
* OCR-DATA-RECORD = DATA FROM DOCUMENT, . FROM 3886 90788500
* OCR-READ-OVERLAPPED ('READO') EAS SAME REQUIREMENTS AS OCR-READ90788800
* OCR-WAIT ('WAIT ') RETURNS SAME PARAMETERS AS OCR-READ 90789800
* OCR-MARK-LINE ('MARKL') ALSO REQUIRES 90790000
* OCR-LINE-NUMBER (1-33) = LINE TO MARK (ON DOCUMENT) 90790200
* CCR-MARK (1-15) = SUM OF DESIRED MARK CODES (8421) 90790400
* OCR-MARK-DOCUMENT ('MARKD') ALSO REQUIRES 90790600
* OCR-ll,ARK (1-15) = SUM OF DESIRED MARK CODES (8421> 90790700
* OCR-E~ECT ('E~ECT') ALSO REQUIRES 90791700
* OCR-STACKER (1-2) = STACKER TO SELECT (A OR B) 90791900
* OCR-LINE-NUMEER (0-33) = NUMBER OF LINES ON DOCUMENT 90792100
* FOR VALIDATION (IF 0, NO VALIDATION WILL OCCUR) 90792500
* OCR-SET-DEVICE ('SETDV') ALSO REQUIRES 90792600
* OCR-FORMAT-RECORD-ID = LIBRARY NAME OF DFR TO LOAD 90793600
* 90793800
*NOTES- 90794000
* 1. THE TERMS DFR AND DLINT ARE USED TO REFER TO THE EXPAlmED 90794200
* CODE, IN LOADABLE FORM, OF THE RESPECTIVE SYSTEM MACROS. 90794400
* 2. OCR-WAIT ~AY BE REQUESTED AFTER, AND ONLY AFTER, A 90795300
* SUCCESSFUL OCR-READ-OVERLAPPED REQUEST. NO INTERVENING 90795500
* I/O CO~~ANDS WILL BE ALLOWED ON THAT SAME FILE. 90795700
* 3. THE PROCEDURES PROVIDED BEICW AUTOMATICALLY FILL IN 90795900
* THE OCR-OPERATION FIELD, CALL THE SUEROUTINE, AND TEST 90796100
* THE OCR-STATUS-KEY AFTER RETURN. IF ANY EXCEPTICNAL 90796400
* CONDITIONS OCCUR, THEY PASS CONTROL TO THE ROUTINE 90796600
* OCR-EXCEPTION-ROUTINE, WHICH THE PRCGRAMMER MUST PRCVIDE. 90796700
* THE PROGRAMMER MAY AVOID EXCEPTION ROUTINE INVOCATION BY 90797900
* ADDING THE FOLLOWING PHRASE TO THE COpy STATEMENT: 90798100
* REPLACING OCR-EXCEPTION-ROUTINE BY OCR-CALL-EXI'l 90798300
* 4. ALTHOUGH OCR-STATUS-KEY MAY INDICATE THAT' THE DESIRED
* OPERATION WAS SUCCESSFUL, THE VALIDITY OF THE DATA OBTAINED
* SHOULD BE DETERMINED BY TESTING CCRH-LINE-STATUS.
**90798700

Sample OCR Program (Part 4 of 5)

(

00247 C
00248 C
00249 C
00250 C
00251 C
00252 C
00253 C
00254 C
00255 C
00256 C
00257 C
00258 C
00259 C
00260 C
00261 C
00262 C
00263 C
00264 C
00265 C
00266 C
00267 C
00268 C
00269 C
00270 C
00271 C
00272 C
00273 C
00274 C
00275 C
00276 C
00277 C
00278 C
00279 C
00280 C

OCR-3886-PROCEDURES.
OCR-OPEN.

MOVE 'OPEN ' TO OCR-OPERATION OF OCR-FILE.
PERFORM OCR-CALL THRU OCR-CALL-EXI'l.

OCR-CLOSE.
MOVE 'CLOSE' TO OCR-OPERATION OF OCR-FILE.
PERFORM OCR-CALL THRU OCR-CALL-EXIT.

OCR-READ.
MOVE 'READ ' TO OCR-OPERA'I'ION OF OCR-FILE.
PERFORM OCR-CALL THRU OCR-CALL-EXIT.

OCR-READ-OVERLAPPED.
MOVE 'READO' TO OCR-OPERATION OF OCR-FILE.
PERFORM OCR-CALL THRU OCR-CALL-EXIT.

OCR-WAIT.
MOVE 'WAIT ' TO OCR-OPERATION OF OCR-FILE.
PERFO~j OCR-CALL THRU OCR-CALL-EXIT.

OCR-MARK-LINE.
MOVE 'MARKL' TO OCR-OPERAT'ION OF OCR-FILE.
PERFORM OCR-CALL THRU OCR-CALL-EXIT.

OCR-MARK-DOCUMENT.
MOVE 'MARKD' TO OCR-OPERATION OF OCR-FILE.
PERFORM OCR-CALL THRU OCR-CALL-EXIT.

OCR-EJECT.
MOVE 'EJECT' TO OCR-OPERATION OF OCR-FILE.
PERFORM OCR-CALL THRU OCR-CALL-EXIT.

OCR-SET-DEVICE.
MOVE 'SETDV' TO OCR-OPERATION OF OCR-FILE.
PERFORM OCR-CALL 'I'HRU OCR-CALL-EXIT.

OCR-CALL.
CALL 'ILEDOCRO' USING OCR-FILE.
IF NOT OCRS-SUCCESSFUL OF OCR-FILE,

GO TO OCR-EXCEPTION-ROUTINE.
OCR-CALL-EXIT. EXIT.

********** END OF 3886 PROCEDURE DIVISION COPY MEMBER *********

Figure 69. Sample OCR Program (Part 5 of 5)

90799700
90800700
90807000
90817000
90827000
90837000
90847000
90857000
90867000
90877000
90887000
90897000
90907000
90917000
90927000
90937000
90947000
90957000
90967000
90977COO
90987000
90997000
91007000
91017000
91027000
91037000
91047000
91057000
91067000
91077000
91087000
91097000
91107000
91109000

Appendix J: COBOL 3886 optical Character Reader Support 331

APPENDIX K. LII1ITS OF DOS/VS COBOL C0I1PILER

LANGUAGE ELEMENT

Number of literals
Total length of literals

COpy REPLACING ... BY ...
Block size of COpy library

INPUT-OUTPUT SECTION.

FIL E-CONTROL.

SELECT file-name ..•
ALTERNATE KEY data-name
RECORD KEY length
RESERVE integer
ACTUAL KEY data-name

Track-id (byte 1-4

1-0 CONTROL.

RERUN ON system-name
integer RECORDS

SAME <RECORD> AREA
FOR file-name ..•

MULTIPLE FILE .•.
file-name ...

DATA DIVISION.

FILE SECTION.

FD file-name
LABEL data-name ...

BLOCK CONTAINS integer
RECORD CONTAINS integer
Item length
REPORT report-name
#Files for one report
SD file-name
Sort record length

WORKING-STORAGE SECTION.

77 data-name
01-49 data-name
PICTURE character-string

Numeric item digit positions
Num-edit character positions

PICTURE replication ()
Group item size

WORKING-STORAGE, LINKAGE
(other sections) .

Elementary item size
VALUE initialization
OCCURS integer

332

Total # ODD's
Table size
Table element
ASC/DES KEY ..•
Total length
INDEXED BY
Total # indices

LIMIT

16K
32KB (after OPT)

150
16KB

64K-1
253
255
2
259
16MB

32K
16M
255
255
255
255

1MB

1MB

each

Total

64K-1
185

(if no optional
clauses)

32760
32K
32KB
1365
2
64K-1
32K-16B

1MB

1MB
1MB
30
18
127
99999

131KB
32KB
32KB
64KB
32K
64K
32KB
32KB
12
256B
12
64K

LANGUAGE ELEMENT LIMIT

LINKAGE SECTION. 1MB

Total 01 + 77 255

REPORT SECTION. 1MB

RD report-name ... 1365
CONTROLS ident ... 255
PAGE LIMIT integer 999
SUM identifier ... (unequal) 1K
SUM sum-counter ... 1872

PROCEDURE DIVISION.

Procedure + constant area 1M+32K
Paragraph-names 64K
ALTER pn1 TO pn2 64K
GO pn DEPENDING 2031
INSPECT TALLY/REPL i dent 15
MERGE file-name

ASC , DES KEY 12
Total key length 256
USING file-name ... 8

PERFORM 64K
SEARCH ALL WHEN ... 12
SORT file-name

ASC , DES KEY 12
Total key length 256
USING file-name ... 8

Appendix J: COBOL 3886 Optical Character Reader Support 332.1

This ~ndex is supplemented with entries
from the index of IBM VS COBOL for
DOS/VSE. These ent"r:Tesare-rdent',-fi ed by
an-- aster i sk 00.

(Where more than one page reference is
given, the major reference appears
first.)

[specinl Chnract~rs

* (asterisk) 22,205,42
/* (slash asteri 51<) 15
/& (slash ampersand) 15
{ (see braces)
[(see brackets)

(see period)

+
$

/
,
<
>
"

(see ellipsis) *
(see plus sign)
(see currency symbol or dollar
sign)

(see hyphen or minus sign)
(see slash)
(see co'nma)
(see relation condition)
(see relation condition)
(see quotation mark)

A, in PICTURE clause *
abnorm~l termination 251-253
ACCEPT statement 73,*

subt'oul: i nC!s 290
Access ~'ethod Servi ces 130
access methods 97
ACCESS MODE clause *
accessing a direct file 99-117,97

randomly 101
sequentially 100

accessing an indexed
file 118-122,97

randomlY 121~122
sequentially 121

accessing a relative record file 97
accQssing a sequential file 99,97
acknowledgment *
action request time file status

values (VSAM) 138
ACTION statement 42
actual decimal point *
actual key 101-117

actual track addressing 101-110
specific devices 116-118
sample program 106-110

relative track addressing 101-106
sample program 111-115

stt'llctures 102
ACTUAL KEY claUSE! 101-102,*
actual track addressing 101-110,116

specific devices 116-118

sample program 106-110
ADCOH table 298
ADD statement (Librarian) 51,52
adding a record to a prime
track 120

adding records to an indexed
file 119-120,121-122

adding source stCltements to a
book 51

addressing direct files
actual tracl<
addressing 101-110,116-117

sample program 106-110
relative track
addressing 101-106

sample program 111-115
addressing schemes 99-122

direct 99-117
indexed 118-122
sequential 99

ADVANCING option *
advantage of S-mode records

over V-mode records 186
A D V 0 p 'c ion 37
AIXBLD option 33
alignment rules *

PICTURE clause 196
SYUCHRONIZED clause 200
Working-Storage Items 194

ALL literal figurative constant *
alphabetic character *
ALPHABETIC class test *
alphabetic item *
alphabetized cross-reference listing

(SXREF) 37,36,67
alphanumeric character *
alphanumeric edited character *
alphanumeric edited item *
alphanumeric item *

~mVE statement 205
USAGE 197,*

ALl parameter of ASSGH job control
statf!ment 25 1 24

ALTER statement
in a called program 75
GO TO statement *
segmentation *

alternate keys 133
ALTERNATE RECORD KEY clause *
AHD logi cal connect iva 3E
APOST option 37
application programs 12
APPLY clause *

CORE-ItIDEX option 101199,*
CYL-HIDEX option 101,99,*
CYL-OVERFLOW option 101,99,*
EXTENDED-SEARCH option 101,99*
MASTER-INDEX option 109,99 1 *
WRITE-ONLY option 100,99,183,

192,* '
programming technique *
WRITE-VERIFY option 99

Area A and B in reference format *
arguments

passed to a called assembler
language program 79

passed to a called COBOL

Index 333

program 76,77
ar~thmetic expressions *

COMPUTE statement 204
arithmetic operators *
arithmetic statements *

ADD *
CONPUTE 204,*
CORRESPONDING option 205
DIVIDE 1:
1"1UL TIPL Y *
ol1erands *
SUBTRACT *

arithmetic subroutines 293
ASCENDING/DESCENDING KEY opt~on *
ASCII *
ASCII subroutines 291
ASCII tape files 177-178
assembler language routine for

accomplishing overlay 82
assembler language

subprograms 78-81
assembler sublibrary of source

statement library 48
ASSGN control statement 24-25,20
ASSIGN clause 19,*

system dependencies *
assigning storage for compiler work
fi Ie buffer's 36

ass i ~mment of input/output
devices 19-20

assumed decimal point *
asteri sk 00 ~

in job deck 22
in PHASE statement 42

in source program 205
AT END condition *

READ state~ent *
SEARCH statement *

AUTOLINK feature 43
Automatic Library Look-Up

(AUTOLINK) 43
and ACTION control

statement 42,43
and PHASE control

statement 41, (.3
auxiliary subroutines 291

B, in PICTURE clause *
background program 12

label area 301
BASIS statement 57,48 *

used for debugging 250
batched-job mode 12
binary data item 197-202 *

in PICTURE clause 196
intermediate results 203
MOVE state~ent 205
SYNCHRONIZED clause 200,*
USAGE clause 197

BKEND control statement 49
BLANK WHEN ZERO clause *
BLOCK CONTAINS clause 194,*
block descriptor field 183
block~length field

V-mode records 180
block prefix 177

and BLOCK COrnAINS clause 194
blocked records 180,181

334 DOS/VS COBOL Programmer's Guide

BLOCK CONTAINS clause 183
body group *
books in the source statement
library

cataloging 48-49
retrieving 49
updating 49-51

boundary violation *
braces 22,*
bra c 1< e t s 2 2 , 2 3 , *
BUF option 36
buffer *
building tables 225
byte, definition *

CALL statement 75-76,*
in segmented program 90

called program 75,*
calling an assembler language

subprogram 78-82
calling catalognd procedures 54
calling program 75
capacity records 99-100
carriage control character *,179
CATAL option 33,45
cataloged procedures, calling 54
cataloging

a boo'((.8-49
a module 46-47
a program phase 45-46,40,41
a segmented program 92
a sort program 209

CATALP control statEment 53
CATALR control statement 47-48
CATALR option 38
CATALS control statement 48-49
CDl statement 36-40
changing installation defaults 39
character set *
charact~r-string *
characters, significant for various
options 39

checking standard labels 162,174
DLAD control statement 30
DLDL control statement 28
TLDL control statement 27
TPLAB control stat~ment 30
VOL control statement 30

checkpoint/restart during a
sor~t 210

checkpoint subroutine 293,*
checkpointing a COBOL

program 262-263
checkpoints during a sort
operation 210

control statement
requirements 263

CHKPT macro instruction 262
class test subroutine 294
clas:.es of data *
CLIST option 38
CLOSE statement 26,*
CLOSE UNIT subroutine 290
CLOSE WITH LOCK subroutine 28~
COBOL execution output 72
COBOL language usage with

VSAM 141,*
COnOL library subroutines 289-296

COBOL option statement (CBl
statement) 36-39

CO~Ol sublibrary of source statement
1 i brar~' 48

CODal SUPPORT FOR 3886 Optical
Character Reader 320

COBOL VSAM control blocks 145
CODE clause *
CODE-SET clause *
coding for DOS/VSE 191
Collating Sequence *,203
COlU~1N clause *
combined function processing *
comma *

in statement formats 23
commands, job control 40
comments 22,*
comments on the phase map 71
common end point for procedures *
common processing facilities, *
Communication Region 301

DATE control statement 26
comparison rules *
compare ~ubroutines 293
compilation 17,*

foreground 300,12
job steps 13
optlons 36-38,32-33
work files required 297

compile and edit job 14
compile, edit, and execute job 14
compile-only job 14
COf'lPI l E-T Ir1E DEBUGGING PACKET *
compiler capacity 297-298
compiler diagnostic messages 67

generation of 260,307
l'Jorking with 260

compiler directing statements *
compiler-generated statemE!nt number

on diagnostic messages 67
on object code listing 66
on source statements 59

compiler machine requirements 297
compiler messnges 67,260,307
compiler options

CBl statement 36-39,59
OPTION control statement 32-33

compiler output 59-69
from a seg'nented program 91

compiler statistics 66
compiler work files 297
eompletion codes from sort

program 209
computational items

conversions involving 197-200
internal representation 200-202
special consideration 200

COMPUTATIONAL item *
COMPUTATIONAL option *
CDriPUTE statement *

progra~ming technique 204
subroutines 293

compute.r-name *
C Gr'l- REG 3 0 1
condensed object listing 37
condition-name *
condition-name-condition *
conditional expression *
conditional statement *
conditional variable *
Configuration Section *
continuation of

job control statements

DlAB control statement 30
TPLAB control statement 30

line-control statements 230
program-control statements 230

control blocks, COBOL VSAM 145
contro 1 break ~E
control statement, COBOL option 36
CONTROL clause *
control fields

S-mode records 183,184
V-mode records 1BO-181

CONTROL FOOTING report groups *
CONTROL HEADING report groups *
control footings and page format 214
control hierarchy *
control program 11
control sections 42
control statement placement

job control statem~nts 23
linkage editor control
statements 41

symbolic debug control
statements 230-231

UPDATE function 52
conventional use of linkage

registe.rs 78
conversion subroutines 291-292
converting elementary data

items 197-200
converting non-V SAM files to VSAM
files l Ct4

converting track addresses
in a COBOL source program

relative to actual 103,106
in EXTENT control statement

actual to relative 29
relative to relative 29

copy function of Librarian 45
COpy statement 49,H
core image directory 45
core image library

private 55,18,32
and linkage Editor 40,300

system 45-46
and linkage Editor 40,41

correspondence of arguments and
parameters

assembler language
subprograms 79

CODOl subprograms 77
CORRESPOHDING option *
COUNT option 38
counter *
CR, in PICTURE clause *
creating a direct file 101

actual track addressing 101-110,
116-117

san:ple progr~am 106-110
relative track addr9ssing 101-110

sample program 111-115
sample job decks 304,303

creating an indexed file 121
sample job deck 305,303

creating a VSAM file
examples of 141-144
language statements required 141

creating standard mass storage file
labe.ls 175,174

DlAB control statement 30
DLBl control statement 28
PARTSD option 33
STDLABEl option 33

creating standard tape file

Index 335

labels 162,163-166
PARTSD option 33
STDLABEL option 33
TLDl control statement 27
TPLAB control statement 30

creating us~r labels 162,165,174
LISP-LABEL option 33

cross-reference dicti'onary 67
alphabGtically ordered 37
source ordered 33

CSYHTAX option 38
CURRENCY-SIGN clause *
CURRENT-DATE 301,26,*
current record pointer, VSAM 134
cyclic check 288
cylinder index 119
cylinder overflow area 119

D-mode records 177,180
data, locating in a dump 253
data access, VSAM 128
data conversion 197-200,*

DISPLAY statement 198,199
data description clauses

BLANK WHEN ZERO *
data-name ~
FILLER *
JUSTIFIED *
OCCURS *
PICTURES 196,*
REDEFINES 194,*
RENM'lES *
SYNCHRONIZED 200,*
USAGE 197 ,~;
VALUE *

data description entry *
Data Division *

3540 Diskette unit files 124
data e>ctents

direct files 28,30
indexed files 28,30

data fi les 15
data flow logic in a CALL
structure 78

data format conversion 197-200
data formats in the

computer 200-202
data item *
data management 98,112
data manipUlation statoments
data-name *
data-name clau~e *
data organization 128,*
DATA RECORDS clause *
data reference *
data transfer *
DATA control statement 26

and COlnmunication Region 301
DATE-COMPILED 64,*
DEBUG CARD *
debug control subroutine 294
DEBUG option 3
debug pacJr.et 250
debugging language 229-232,247-251
debugging TES1RUH 233
decimal point 196,*

MOVE statement 205
DECIr'1AL-POINT IS CQt'lf1A clause *

336 DOS/VS COBOL Programmer's Gui de

DECK option 32
declaratives *,247
defaults, changing 39
DEFINE command 130-134

DEFINE SPACE 132
DEFIHE CLUSTER 133
DEFINE MASTERCATAlOG 131
DEFINE USERCATAlOG 132

Define The File CDTF) 98
DEL statement 51,52
DELETE statement 51-52,*

used for copying 57
used for debugging 250

DELETE statement, VSAM 141
deleting source statements

for one run only 51
from a book 48

delimiter *
DEPENDING ON option of OCCURS clause

and Table Handling
Feature 217-223

and variable-length
" e cor d s 218'"722 0

description and formats of job
control statements 22-23

DETAIL report group *
determining the location of the
libraries 55

determining the priority of the last
segment loaded into the transient
area 92

device assignment 19-20
duration of effecf 24-25

device support, VSAM 130
diagnostic messages

compiler 67,260,307
execution-time 261
Federal Information Processing
Standard (FIrS) 68

generation of 260
linkage editor 71,261
object time 309-317,260-261
operator 307-309,73,72
sort 209

digit *
direct files 99-118,97

accessing techniques 100,101
ACTUAL KEY clause 101,*
actu~l track addressing 101-110,

116-117
APPLY EXTENDED-SEARCH

clausQ 101,*
ASSIGN clause 100,101,*
BLOCK CONTAINS clause ~
error processing 106,111,*
initiating access 100
invalid key condition *
random access 101,*
READ statement *
recording mode *
relative track
addressing 101-106,111-115

REWRITE statement *
sample job decks 304,303
sequential access 100,*
WRITE statement *

direct indexing *
direct linkage 82
direct organiz~tion

(DTFDA) 99-118,97
disk extent subroutines 290
Diskette input/output unit (3540)
processing 123-125

DISPLAY iterns
conversions involving 197-200
internal format 201
special considera~ions 2~0

DISPLAY statement *
DISPLAY option *
DISPLAY statement subroutines 290
displaying data values during

execution 248
DIVIDE stDtem~nt *
d~vi5ion, COBOL *
division header *
division/rem3ind~r method of.

randomizing 103-106
used to create a direct file

actu~l track
addressing 107-110

relative trackaddre5s~ng 112-114
DLBL control statement 23

alternate indexes 144.1
identifying private libraries 55

document description (OCR) 320
document design (OCR) 319
eos/vs COBOL Unresolved External

Reference.s 71
DIS/VSE iii,7
DTF

creation of 98,150
locating in a dump 252-253

DTF t~ble5 150-155
dummy segment ~9
DlH'lP opt ion 32
dl.lI:'ps

errors that cause 252
hmoJ to use 251
symbolic 229-245
syutem 251-259

dyn~mic access mode *

EBCDIC collating sequence (Extended
Binary Coded Decimal Interchange
Code) iE

edit and execute job 14
editing 17-18,40~42,*
editing character *
edit-only job 14
editor, linkage 11
effective storage 298
EJECT 59,191,325,*
ellipsis (••.) in formats 23,*
END statement 51,52
end-of-data control statement 15
end of file * .
€nd-of-job control statement 15
EUD OF PAGE *,206
entry point in a called

program 76,77
entry-s~quenced files 127

READ st~tcmant 140
REWRITE statement 139
WRITE statement 139

ENTRY statem~nt 76,*,42
in an overlay structure 83

Environment Division *
EQUAL TO *
error conditions *
er~or handling (VSAM) 36

file status values

at OPEN 138
at action re.quest time 138

status key 136,130
error messages, diagnostic

(see messages)
error message subroutine 295
error recovery for non-V SAM
files 155

on unit-record devices 35
using an assembler language

routine 159-161
using error declarative
section 155-153

using INVALID KEY 155,156
errors that can cause a dump 252
errors that msy escape
det~ction 203.1

ERRS option 33
evaluation rules *
EXAl'lINE statement *
EXCEPTION/ERROR *
EXEC control statement 15,35
EXEC FCODOL statement 17,15
EXEC L ItmEDT statement 17,15
execute-only job l~
execut ion flol-! *
execution output 72-73
execution time

considerations 299-300
machine requi remEmts 297-298
IT1eSS<1ges 261

EXHIBIT state~ent 248-249,247,*
subroutine 290

EXIT PROGRAtl statement 76, *
EXIT statFment *
exponent *
exponQntiat~on 204
Extended Binary Coded Decimal

Interchange Cocle
(see EBCDIC) *

extended se~rch 100
EXTEttDED-SEARCU op·ti on of the APPLY
clause 100.
exten~~d source program library
facility 57,*

EXTENT control stat~ment 28-30
external data *'
external decimal items *
external-name 76
external reference 71

unresolved 71
loJeal< 71

F-mode records 179
FCOBOL 17
Features of the DOS/VS Compiler 7
FD entry *
Federal Information Processing

(FIPS) 8,39,*
figurative constant *
file *

entrY-sequenced 127
key-se.quenced 127
relDtive record 127

file control block (FCB) 145,150
FILE-CONTROL entry *
file description (OCR) 320
file information block (FIB) 145

Index 337

file integrity 116
FILE-LIMIT clause *
file-name *

arguments 79
file organization 97-98

DAN 97
direct 99-118,97
indexed 118-122,97-98
ISAM 97
relative 97
SAr'1 97
sequential 99,97
V5Af'l 127,97

file portability (VSAM) 130
file processing for 3540 Diskette
unit files 123

file processing
file retention

direct-access storage devices 28
tnpe devices 27

File Section 194,*
FILE STATUS clause 136,*,155
FILE STATUS key 155
file status values (YSAM)

at OPEN 138
at action request time 138

file table 299
FILLER *
FIPS diagnostic messages 68
FIPS flagger description 39,*,8
fixed-length records 179,*
fixed partitioned
multiprogramming 12

fixed portion of a segmented
pl'ogr'arn 89

FLAGE option 38
FLAm~ option 38
floating first detail 215
floating insertion editing *
floating-point data items and

intermediate results 204
flouting-point numeric literal *
flow diagram of overlay logic 84
FL m,J opt ion 38

description 38,229
restriction with OPT 229,37
restriction with STXIT 38,229

flow trace option
(see FLOW option)

flow trace subroutine 295
FOOTING 206
foreground compilation 300,12
foreground programs 12
format *

statement 22
format F records 179
format notification

job control statements 22-23
symbolic debug control

s'tllte,r.19rd:s 230
format S records 183-188
format U records 180
format V records 180-183
formats of blocked and unblocked

records 118
formul~s for converting actual to
relative track addr~sses 29

formulas for converting relative
to actual track address 29

FRO~l *
full FIPS flagging 39
function-name *
functional commands (YSAM) 130

338 DOS/VS COBOL Programmer's Guide

functions of COBOL library
arithmetic subroutines 293

GENERATE statement *
generation of diagnostic

messages 260
generic terms 22
GETCORE subroutine 296
GIVltlG option of error
declarative 156-158,*

global table 65
glossary 64
GOBACK stat~ment 76
GO TO ..• DEPENDIHG ON subroutine 296
GO TO statement *
GOBACK statement *
group *
GROUP INDICATE clause *
group item *

header label *
high-intermediate FIPS flagging 39
HIGH-VALUE (HIGH-VALUES) figurative
constant *

how to use a dump 251
hyphen in statement formats 22,*

I-a-CONTROL paragraph *
IBM-supplied processing programs 12
Identification Division *
identification field of COBOL source

statemt:Hl'\:s 50
identification of program
versions 247

i den't:i fi er *
IF statement 205,*
IGN parameter of ASSGN job control
statement 25

IlBDCKPO subroutine 263,293
ILBDDur'10 93
IlBD~1NSO 75,294
IlBDSENO subroutine 94,293
ILBDSETO 75,294
IlDDSRTO subroutine 209,293
imperative stat~ments *
implementing ~n OCR operation 319
implicit attribute *
in-line parameter list 81
INCLUDE control statement 42
indentution *
independent overflow area 119
independent segment 89
index data items 217,*
index-names 217-223

PERFORN statement 217
SEARCH statement 217
SET stateme.nt 217,*
value in 217

ndex tuble 299
NDEXED BY option of the OCCURS
clause *
ndex~d file 118-122,*

adding records to 120-121
sample job decks 303,305-306

ndexed organizDtion
(DTFIS) 97-98,118-122,*

improving efficiency when
using 122

ndexes 119
nde-xing *
ndirect addressing 102-106
ndividual type codes used in SYMDMP
O'Jtput 23(.

initial leading of records into a
f1 Ie (VSAftl) 137

[nitial Program Loader (IPL) 11
initialization· *
[NIT lATE statement *
in-line parameter list 81
[nput

comp i Ie,' 17
Job Control Processor 22
Linkage Editor 17,40,41
for a segmented program 92

input files *
INPUT PROCEDURE option 209
input/output control statements for
sort 207

Input/Output Control System
(IOCS) 98

input/output error subroutines 290
input/output verb subroutines 289
Input-Output Section *
input/output statemants *
input phase of sort 209
It~SERT statement 51,52

used for d€bugging 250
inser'·ticn editing *
INSPECT st~tement 296,*
installation defaults, changing 39
integer, description *
intercepting I/O errors 203
inter-record slack bytes *
intermediate results 203-204,*
intermediate storage required for
sort 2(\8

internal data *
internal decimal items *
interpreting output 59-74
interrupts, errors causing 252
intra-record slack bytes *
INVALID KEY 155,*

direct organization 156,99
indexed organization 156
standard sequential
organization 156,99

IOCS 98
IPL (Initial Program Loader) 11

job 13
types 14

job control commands 40
job control considerations

for accomplishing overlay 84
for Optical Character· Reader 321
for sort program 207-208

for symbolic debug 230-232
job control language for VSAM
files 144

job Control Processor 11,22
options 32-33

job control requirements for 3540
Diskette unit files 124

JOn control statement 15,16
job control statemants 22-36

comments in 22
definitlon 13
format notation 22-23
formation of 22
overlay 84
sequence of 23
sort 207-208
symbolic debug option 230-232

job deck 15,23
samples 303-306

job definition statements 17
job identification 13
job step 13
JUSTIFIED clause *

key-sequenced files 127,*
READ statement 140
REWRITE statement 140
WRITE statement 139

key L"or'd *

label area, reserving storage 30
label definition

DlAn control statement 30
DLBL control statement 30
TLBL control st~tement 27
TPLAB control statement 30

label processing 162-175
mass storage file labels 174-175
tape file labels 162-173

label process subroutines 289,290
LABEL RECORDS clause *
LAHGLVl(1) option 38,89
LANGLVL(2) option 38,89
language considerations *

for ASCII tape files 177
for 3540 Diskette unit files 123

lengths, maximum 332-333
level indicator *
level number 193,*
LID option 39
Librarian (.5-58
libraries

core-image 45
planning 45
private 55
procedure 53
relocate 46
source statement 48
system 45

library-name *
library subroutines 289-296
limits of DOS/VS COBOL
compiler 332-333

Index 339

LINAGE 206
line-control statements 231-232
LINE-COUNTER special register *
line overlay (Report Writer) 213
LINK option 32,40,260
linkage 75-77

in a called program 76
in a calling program 75-76
correspondence of arguments and

parameters 77
entrv points 76
with the sort feature 209

linkage conventions 90-93
argument list 79
assembler subprogram 82
i n-l i ne parameter' list 81
lowest level subprogram 81
overlay 83
regi!3ter use 78
save area 79

link editing 17-18,11
in the forground 306,12,32,41
segmented program example 92
with ov~rlay 83
without overlay 77

linkage editor
control statements 40-44
diagnostic of input 71
fields of 40
input deck 18
messuges 71,61
output 69-73,17-18
overlay 83
placement of 41
segmentation 91-94

linkage registers 78
Linkage Section *
linkage with the Sort
Feature 209-210

LIOCS 98
LIST option 32
lister 40,*,228.1
LISTIO control statement 31
list of compiler features 7
LISTX option 32
literal *
literal pool 65
literal tables 299
Loader, Initial Program (IPl) 11
loader, relocating, 43
locating a DTF 252-253
locating data in a dump 253
locating the Working-Storage
Section in dumps 194

location of slack bytes *
locatiori of the libraries,
determining 55

location of thg system libraries 56
lOG option 32
logic module 114
logic, overlay 84
logical connective *
Logical Input/Output Control System

(lIOeS) 98
logical operator *
logical record 98,*

spanning physical blocks 183-1B8
low FIPS flagging 39
low-int~rmediate FIPS flagging 39
LOW-VALUE (LOW-VALUES) figurative
constant *

lower-case words *
lowest level program 81

340 DOS/VS COBOL Programmer's Guide

lST statement 40
lVl option 39

machine considerations 297,300
main-line routine 203
main program or subprogram

subroutine 294,*
MAlIn, procedure Ii br'ary catalog 53
maihtenance function of

Librarian 46-54
mass storage devices 97,*
mass storage files *
mass storage file labels 282-285
master index 119
maximum lengths 332-333,*
maximum sizes 332-333,*
maximum values 332-333,*
MEMORY SIZE clause K
MERGE interface subroutine 293
MERGE statement 207-210,*
messages, diagnostic

compiler 67,260,307
execution-time 261
Federal Information Processing
Standard (FIPS) 68

generation of 260
linkage editor 71,261
object-time 309-317,73,260-261
operator 307-309,73,72
sort 209
VSAN 130

minimum machine requirements 297
minus sign *
mnemonic-name *
mode F records 179
mode U records 180
mode V records 180-183
modification
rnadularizing

the Data Division 194
the Procedure Division 202-203
t·Jhen using the Segmentation

Feature 89
modLlle 1.1

input to Linkage Editor 40,41
MOVE statement 205,*
MOVE statement subroutin~s 294
MOVE to numeric-edited field

subroutine 296
MTC control statement 31
multifile volumes

examples
creating 166-167,170-171
input processing 166,168-169

TLBl control statement 27
multiphase program 18,13,14
MULTIPLE FILE TAPE clause *
multiple indexing 127
multiple phases 41
multiple results *
~lULTIPlY statement *
multiprogramming 12,300
multivolume files *
multivolume tape files

example of creating 167,172-173
with nonstandard labels 166

mutually exclusive CDl
options 39,37-38

name ;>f

naming conventions
used by segmentation 91-92
used by sort 209

nested IF statements M
HEXT GROUP clause 214,*
HOADV options 37
HOAIXBLD option 3
NOAUTO option 42,43
NOCATALR OPTION 38
HOCLIST option 38
HOCOUNT option 38
NODEBUG option 33
HODECK option 32
NODUMP option 32
NOERRS option 33
HOLIB option 39
NOLINK option 32
NOLIST option 32
NOLISTX option 32
HOlOG option 32
NOLVL option 39
NOMAP option 18,43,42
tW ru HAL KEY cia use 121 , 122 , *
noncontiguous data items "
nonnumeric literals *
nonstandard labels 162
nonstandard tape file labels 162

multivolume file 166
ASCII files 177

non-VSAM files, converting to
V S Ar'1 144

H 0 0 P T un Z E OW 0 P T) 0 p t ion 39
NOREL option 42
normalized level numbers 193
NOSEQ option 39
HOSTATE option 39.1
NOSTXIT option 39.1
HOSUPj'1AP option 39.1
HOSXREF option 39.1
HOSYM option 33
NOSYHTAX option 38
NOT logical connective *
NOTE statement 205
NOTRUNC option 37
HOVERB option 39
HOXREF option 33
uoz~m opt ion 40
NS1D-REELS 166
numeric character M
n lJ mer i cit e In *
numeric edited items *
numeric literal *

object code
listing 66

OBJ ECT-COilPUT ER pa ragraph *
object module 69

segmentation 91-92
object program definition *
object-time control statements for

symbolic debugging feature 230

object-time debugging
5ubroutines 294-295

object-time messages 309-317,260,73
obtaining an ASCII collating

sequence on a sort 178
OCCURS clause 217-220,*

DEPENDItlG OH option 217-218
DEPENDING ON table 299
t.Ji th Table H ,,111 dl i ng

Fea'cure 217-220
OCR processing 319
ON statement 248,260,*
ON SIZE ERROR option and

intermediate results 204
OPEN statement *
operands *
operand table 299
opera to r COlllmun i cat ion

ACCEPT statement 73
job control commands 40
PAUSE control statement 34
STOP statement 72

operator intervention between
job steps 34

operator messages 307-309,72
ACCEPT statement 73
STOP statement 72

Optical Ch"racter Reader, 3886
COBOL library =ubroutine 290,325
COBOL support 320
document description 320
document design 319
fil~ description 320
Job Control Language 321
procedural code 321
processing 319
processing tapes from the OCR

3886, Model 2 326
record description 320
sample program 327-331
statements for invoking functions

CLOSE function 324
EJECT function 325
MARKD function 325
MARKL function 324
OPEI'l functi on 324
READ function 324
READO function 324
SETDV function 325
wait function 324

Status Key values
by operation 322
user actions 322
user responses 323

subprogram interface 321
OPTIMIZE (OPT) option

description 39
restriction with FLOW 229,39
restr~i cti on I'li th 1l0LIHK and

tWDECK 39
restriction on number of
procedure blocks 18

optimized object code 38
optimizer DISPLAY subroutine 295
optimizer subroutines 295
or T ION contt'ol statement 32-33

duration of effect 33
OPTIONAL (SELECT clause) 24
opt i onal LoJord *
options available during
link-editing 44

options for compilation
CBL statement 36-39

Index 341

mutually exclusive 39,37-38
OPTION control statement 32-33

order of e.xecution *
ORGANIZATION clause *
organization of files 97-98

direct 98-118,97
indexed 118-122,97-98
s~quential 99,97
VSArl 127

origin point of phase 41
output

COBOL execution 72
compiler 59-74,17
complete sample program 265-278
EXHIBIT statement 248-249
from a seg~ented program 91-94
linkage editor 69-72,17-18
phase execution 72-73
system 73
TRACE statement 247

output file *
output line overlay 213
OUTPUT PROCEDURE option 209
overflow area 119-120
overflow condition *
overlapping data groupings *
overlapping operands M
overlay 14,*

assembler language subroutine 82
co~siderations 81
using Segmentation Feature 89-94
using subprogram linkage 81-87

overlay logic 83
overlay structures 81-87

job control 84
linkage editor 83-84
PHASE statemEnt {tl
provided by Segmentation

Feature 89-94
overlayable fixed segmant 89

p,in PICTURE clauses *
page breaks 213
page bod~' *
PAGE clc'lUse ~E
PAGE COUNTER special register *
PJ\,GE FOOTIUG group *
PAGE HEADING group *
paragraph *
paragraph-name *
parameter list 76,77,79
parentheses M,23
PARTSD option 33
partial list of prime numbers 105
PASSWORD clause 130,13~,*
PAUSE control statement 34
PBL (procedure block locator) 66
pence ~

PERFORM statement 205,*,93
period *,23
permanent segment 89
phase

definition of 11
origin point 41

PHASE control statement 41
segmentation 90,92,93
overla),f 83

phase execution 18

342 DOS/VS COBOL Progr~mmer's Guide

output 72-73
phase mup 71
Physical Input/Output Control System

(PIOCS) 98
ph),fsi cal fi Ie *
PICTURE clause 196-197,*
PIOCS 93
planning the libraries 45
plus sign *
Pf'lAP option 39
pre-DTF switch 155
prefixes 193
preparing COBOL programs for
processing 19

primary keys 133
prime area 118
prime numbers 103,104,105
P R I NT - S l~ I T C H *
printer spacing subroutine 289
priority number 89,90

ALTER statement *
called programs 90,*
description 89,90,*
information for use 39,90,*
PERFORM statement 93,*
section h~ader *
segmant limit 91,*

privat~ core image library 55,18,32
and Linkage Editor 40,300

private libraries 55
private relocatable
library 42-43,55

problem program area 18
procedure block 203
p ,~ 0 c e d 1I r' e b I 0 cI~ 1 0 c q to,' (P B L) 6 6
procedure branching statements *
Procedure Division *,76,202-205
procedure library 53
procedure-name

arguments 79
definition *
table 298

processing 3540 Diskette unit
files 123-125

processing
CODOL files on mass storage
devices 97

direct files 100-101
indexed files 121

programs 11
sequential files 99

ASCII tape files 177-178
tapes from the 3886 OCR,
nodel 2 326

Processor, Job Control 11,22
options 32-33

PROGRAr'l COLLATING SEQUEnCE clause *
program, control 11
program-control state~ents 231
Program Global Table (PGT) 66
PROGftAtt-ID paragraph

and program Ii nl{qge 75-76
and S~gmentation 91-92

Program load~r, Initial (IPL) 11
pr'ogram-nam~ *
program status, recording 262
program switches 35

Communication Region 301
program termination *
program versions,
;d2ntification 247

programmer logical units 19,20
programming techniques 191-206

Data Division 193-202
Environment Division 192
general considerations 191
Procedure Division 202-206

programs
application 12
IBN-supplied 12
processing 11
system service 11

PSERV. procedure library 54
psucdo-text *
PUB table 25.4
punctuation character *

qualification *
quulifie.r *
quotation mark *
QUOTE (QUOTES) figurative

cons'tant *
QUOTE option 37

random access *,101,121-122
randomizing techniques 102-106

for thp. 2311 Disk Drive 116
sample programs 107-110,112-115

RDentry *
READ INTO statement 205
READ NEXT statement (VShM) 140
READ statement *
READ statement (VShM) 140

entry-sequenced files 140
relative record files 140
writing records (WRITE) 140

READ statement subroutines 289
reading records into a VSAM
file 140

READY/RESET TRACE statement *
READY TRACE statement 247-248
receiving item *
record ~E
RECORD CONTAINS clause, VSAM *,194
record description (OCR) 320
record description entry *
record form3ts 179-188

for'mat F 179
format S 183-188
format U 180
format V 180-183
VSAf'l fi les 136

RECORD KEY clause 122,*
record zero (RO) 99
recording capacities of mass storage
devices 97

recording mode *
recording programs status 262
REDEFINES clause 194,*
redefining subscripts 194
references, unresolved e,cb:irftal 71
register assignment 66
register use for linkage 78
relation character *
relation condition *

relational operators *
relationship of PICTURE to storage
allocation 202

relative indexing *
RELATIVE KEY clause H
relative record files 128,97,139
RELEASE statement *
relocatable library 46-47

cataloging a module 46
di rectot'~1 46
INCLUDE statenent 42
maintenance functions 46
privata 42 1 43 1 55

relocating loader feature 43
relocation factor 39
REr-tAIHDER option *
RENM1ES clause *
REP st"tement 51,52
replacing sourc~ statements in

a bool<. 51
REPORT clausa 211,*
report description entry *
report file, definition *
REPORT FOOTIHG report group *
report group *
rEport group description entry *
REPORT HEADING report group *
Report Sect.ion *
Report Writer 211-215,*
Report Writer routines,
gen~ration of 215

Report Writer tables 299
reposition tape subt~olltine 296
RERUN clause *

and RSTRT control
statement 2(,2-263, 3{t

and Sort Feature 210
subroutine 293

RESERVE clause 192,*
reserved !..oJOrd *
RESET control statement 34-35,25
RESET TRACE, statement 248
restarting a checkpointed
program 262-263,34

retrieving a'book from the source
statement library 49

BASIS statement 57
COpy statement 49,57
modifying using INSERT and DELETE

statements 57,58
retrieving a direct file 100

sample job deck 304
retrieving an indexed file 121

s~mple job deck 306
retr i ev i ng a program phase {t5-46
retrieving a VSAM file 143
REWRITE statement *
REl-lRITE statement, VSAM 139

entry-sequenced files 139
key-sequenced files 140

REWRITE statement subroutines 289
root phase 18

in overlay structure 81
root phase overlay 18
root s£:gm~nt 90,91,92

including subprograms 90
ROUNDED opt 1 on in ar'i thmet i c

statemenbs *
RSTRT control statement 34,262-263
rules for the SET statement 223
RO (record zero) 99

Index 343

S, in PICTURE clause. *
S-modQ records 183-188
SAM I/O subrout~n~ 296
SAnE clause *
SAME RECORD AREA clause *
SAME SORT/SORT-MERGE AREA clause *
sample

job decks 303-306
linkage routines used with a
cnlling subprogram 80

label and file extent for mass
storage files 30

OCR progrnm 327-331
program output 265-278
programs

direct file 106-115
file processing *
i ndl~xed fi Ie *
OCR 327-331
report t·,'ri ter *
sort/merge *
symbolic-debugging 235-246
table handling *

save area 79
SD entry *
SEARCH ALL statement 221,*
SEARCH statement ~24-225,*

subroutine 294
section header *
section-name *
segment classification 89
segment descriptor field 184
seg~ent limit 91
segmentation feature 89-94,*

called programs 90
classifying segments 89
control o"f 89
fixed portion 91
independent segments 89,90
operation 90
output from 91
overlavable fixed segments 89
P ERFORI'l statements 93
perma"el'd: segments 89
priority numbers 89
segm~nt limit 89
with sort 93

segmentation subroutine 293
segments 89090
SELECT clause *

ASSGH control statement 28
DLDL control statement 28
EXTENT control statement 28-30
progt'c:lInming technique 181
TLBL control statement 27
VOL control statement 30

SELECT OPTIOHAL clCluse 2 l.,*
semicolon ?:
sentence *
SEPARATE option of SIGN clause *
separately signed numeric
subroutine 291

separator *
SEQ 0 p.~ ion 3 9
sequence number *
sequence of job control

statem'?nts 23
seq~ential access 99,*

ACCESS MODE clause 99

34 f• DOS/VS COBOL Programmer' 5 Gui de

ACTUAL KEY clause 101
description 99
direct files 100
indexed files 121
sequential files 97,99

sequential organization 97,*
sequential disk and tape labels
subroutines 289

sequential file 97,99,*
serial search *
service function of Librarian 45
service programs, system 11
s€'!rv ices, Access t'b lhod 130
SET command 26,59
SET statement 221-222,*

rule=:; 223
severity levels of diagnostic messages 67
SIGH clause 196,*
sign condition *
sign uSuge 196
significant characters for various
options 39

simple insertion editing *
single-program mode 12
size considerations 297,332-333
SIZE ERROR option *
SKIP! 59,191,*
SKIP2 59,191,*
SKIP3 59,191,*
slach: bytes *
slash ampersand (/&) 15
slash asterisk (/K) 15
sort d i 2g1H' st i c messag~s 209
so r' t - f i 1 e *
Sort/Merge Feature 207-210,*

intermediate storage
required 20B

Ii n/<coge 209
machine requirements 300
in a multiphas8 environment 210
in a segmented program 93
obtaining an ASCII collating

sequence 178
performance, improving 208-209
products 207

sort-file *
sort input/output control
statements 207

sort keys, restriction 207,178
sort-option 208.1-208.4

sort/merge interface subroutine 293
sort/merge job control

requirernC!nts 207
sort/merge work files 208
sorting an unlabeled tape
file 306,303

SORT-RETURH 209
sort special registers 209
SORT st.atell1ent *
SOURCE clause *
SOURCE-COMPUTER paragraph *
source program *
source program library 49,*

COpy statement 49,H
extend,ed 57,H

BASIS 57
DELETE and INSERT 57

source statement library 48-52
ca tClI o£1 i ng a bool< {fa

directory 48
maint€nance functions 48
updating books 50

space allocCltion

EXTENT control statement 28-29
XTENT control statement 30

space character M
SPACE (SPACES) f~gurative
constant *

specing of source program
listing 191

SPACEn option 39
spanned records 183-188

on directly organized
files 187-188

on ~equentially orgnnized
files 185-186

and Sort Feature 208
special characters M
special insertion editing M
SPECIAL-NAMES paragraph *
spEcial rc~i~ters M

report ".witer M
sort/merge *,209
s~.fstem *

COn-REG 301,*
CURRENT-OAT 301,*
tIS1D-REELS 166,*
TALLY *
TIME-OF-DAY *

specifications for the first eight
byte~ of the actual key 102

'ss', ASSGN control statement
possible specifications 25

standard COnOl format *
5t~ndard file labels

mass storage 174-175
for~at 1 281-286

multiple volume 166,168-169
tape 162-164,279-280

STANDARD option *
START statement 122,*,206
START statemnnt 141,*,206
STATE option

description 39.1,229
restriction with OPT 39.1,229
restriction with STXIT 39.1,229
restri ct i on wi th SYtlDf'lP 39.1,229

STAT E~lEtn FORt'lA TS
job control 22-23
symbolic debug option 229

statemellt number option
(see STATE option)

stat£ment number subroutine 294
statistics 66
sttltus Key *

OCR 322,323
VSAM 138-139,136,130

STDLABEL option 33
STOP RUN statements *
STOP statement 72,M

subt'outi nes 290
STRING state~Ent 206,*
STRING subroutine 296
structures of the actual key 102
STXIT option 39.1

restriction with STATE 39.1,229
restriction w~th SYi'1DNP 39.1

subordinate phases 18
subprogram interface (OCR) 321
subprogram linkage 75-77,*

CALL 75
ENTRY 76

subprogram structures 75-87
subroutines 289-296
SUbscripts 217,194,*

substitution *
SUBTRACT statement *
SUN clnuse *
sun counter 211,*
SUr'l rout i nes 212-213
summary repo~ting *
summing techniques 211
Supervisor 11
SUPI'1!\P opt ion 39.1
suppress *
suppressing messaaes

FlAGE option 36
NOERRS option 33

switch-stetus condition *
SXREF opt~on

descript~on 39.1
example 67
5uppressing 39.1

SYM ol='tion 33
symbolic debug option

(see SYI1DI"P opt ion)
symbolic debugging features 229-246

F L Ol~ 0 p t ion 22 9
STATE option 229
SYl'lDnp opt ion 229-232

symbolic debugging subroutines 295
symbolic names

of input/output devices 19,20.21
of phases 42

symbols used to define
compiler-generated informat~on 66

SYt'lDI1P option
description 229-230,39.1
restriction with NOLIUK and

NODECK 39.1
restriction with OPT 39.1,229
restriction with STXIT 39.1,229

SYNCHRONIZED clause 200,*
s~'I1onyms 116
syntax ch€clci ng 191 t 247
SYtlTAX option 38
syntax rules

job control statements 22-23
~ymbolic debug control
statements 230

SYSClB 19,21,55
SYSIN 19,21
SYSIPT 19,21
SYSlNK 19,21,40
SYSLOG 19,21
SYSlST 19,21,59
SYSOUT 19,21,2(.
SYSPARI1 33,301
SYSPCH 19,21
SYSRDR 19,21

on same dev~ce as
SYSIPT 15,17,19

SYSRES 19,21,55
S,(SRLB 19,21,55
SYSSLB 19,21,55
system and size
considerations 297-300

system libraries, relative
location 56

system logical units 19
system message identification
codes 73

system-name *
RERUN on a sort file 210

system output 73
system service programs 11-12
SYS~(yy 25.2

Index 345

tClbles 298-299
taking a checkpoint 262
TALLY special register *
tape file labels 279-280
tape pointer subroutine 290
table and sequential di sIt labels
subroutines 289

Task Globfil Table (TOT) 65
TERMINATE statement *
termination of execution *
testing a progrClm selectivelY 250
testing additions and changes to

programs 250-251
TIME spacial register
TIME-OF-DAY special register *
TlDl control statem~nt 26

standard tape file
It'bels 163,164

TRACE statement 247
track 97
track address~s, converting

in a COnOL source program
relative to actual 103,106

in EXTENT control statement
actual to relative 29
relative. to actual 29

track nddressing 99-100
actual 101-110,116-117

sample program 106-110
relative 101~106

sample ~rogram 111-115
TRACK-AREA clause *
track formats for direct-access
storage devices 287-283

track index 119
trailer-lab~l *
trClnsfer of control *
TRANSFORM statement 206,*,294
transient aroa 92
transient subroutines 295-296
translation from ASCII to

EDCDrC 178
TRUNC option 37
truncation *
tr~uth value *
TYPE clause *
type codes used in SYMDMP
output 234

types of jobs 14

U-mode records 180
unary operator *
Undefined records 180
unit, definition *
unit record file *
unlabelod files 175

exomple of multifile volume
processing 166,168-169

eXClmple of multivolume file
creation 167,172-173

sorting 306
unnumbered messages, CODOl
object-time 317

unresolved external references 71

346 DOS/VS COBOL Programmer's Guide

unsigned items 196-197
lJUS TRHIG statement 206, *
UNSTRH~G subroutine 296
UPDATE function 50-53

ADD statement 50 , 51 , 52
control statement placement 52
DEL statement 51
EI~D sto tement 51
invalid operand defaults 52
REP statement 51
UPD~TE statement 50-51

UPDATE stateMent 50-52
updating a book in the sourCQ
statement library 50-52

updating a direct fil~ 101
sample job deck 304

updating an indexed file 120,121
sample job deck 306

upper-case letters 22
UPSI byte 35 ,
UPSI control statement 35

Communication Regi~n 301
UPS I Sl-J itches 301
UPSI-O through UPSI-7 35
USAGE clause 197 , *
USAGE DISPLAY clause *
USAGE IS INDEX *
USE AFTER EXCEPTION sentence *
USE AFTER STANDARD ERROR

sentence 155-156,*
USE BEFORE REPORTING,"sentence *
USE FOR DEBUGGIHG subroutine

feCltures 229
use of symbolic debugging
features 229

USE statement *
use of SUN 211
user labels

mass storage files 174 , 175,
t~pe files 162,165

user program switch indicators 301
user standard labels 162
USING option ,)E

of CALL statement 76
of ENTRY statement 76
on Procedure Division header 76

using ISAM programs to process VSAM
fi le5 1'-.4

using the Report Writer
feature 211-216

using the Sesmentation fenture 89
using the Sort/Merge feature 207
using the START verb (VSAM) 141
USRLABEL option 33
utility data sets

required by compiler 297
required by sort program 300,208

V,in PICTURE clause *
V-mode records 180-183
values, limits 332-333
VALUE clouse *
VALUE OF clause *
variable-length records 180-183
variable length table *
VERB option 39
vertical spacing *
Virtual Storage Access Method (

(!3 e e V S Ar1)
VSAM catalog 128
VSAM messages 130
VOL control stateMent 30
volume *
volume labels *

mass storage 174
tape 162

vol u m gpO r tab i 1 i tv (V S A f'D 130
VSAM (Virtual Storage Access

Method) 127-144,*
Access ~lethod Servi ces 130-131
catalog 128
COBOL language usage with 141
COnOL VSAr1 control blocks 145
converting non-VSAM files 144
creating a VSAM file 141

examples of 141-144
language statements 141

current record pointer 134
data access 128
data orgQnization 128,129
DEFINE command 130-131
DELETE statement 141
device support 130
entry-sequenced files 127-128
error h~ndling 136

file status values
at action request time 138
at OPEN 138

error processing 130
statu5 key 138-139,136

file and volume portability 130
file control block (FCB) 145
file information block (FIB) 145
file organiz~tion 127
file processing techniques 134
file status values

at action request time 138
at OPEH 138

initial loading of records into a
file 137

job control language 144
key-sequenced files 127
messages 130
opening a VSAM file 137
reading records (READ) 140-141

entry-sequenced files 140
key-sequenced files 140
relative record files 140

record formats 136
retrieving a VSAM file 143
rewriting records

(REWRITE) 139-140
entry-sequenced files 139
key-sequenced file 140

security 130
service programs (ACCESS Method
Services) 130

space management restrictions
BUF option 37

LVL option 39
LST statement 40
spanned record 183
SYS005 "Jor\<.fi Ie 39
user labels 174

status key 138-139,136,130
subroutines 290
using ISAM programs to process
VS"~1 fi les l{t4

L.Jorkfi les 297
loJri ting records (I~RITE) 139

entry-sequenced files 139
key-sequenced files 139
relative record files 139

weak external reference 71
L·J HEN - cor 1 P I LED s p e cia I

reg;ster 26,7,*
WITH CODE clause 213-214
WITH DEBUGGING NODE clause *
word *
t·J 0 r k f i 1 e s

required by compiler 297,38
required by sort program 300,208

Working-Storage Section 194,*
WRITE ADVANCING 206,*
WRITE FROM statement 205
WRITE statement *
WRITE statement (VSAM) 139

entry-sequenced files 139
key-sequenced.files 139
relative record files 139

WRITE statement subroutines 289
writing records into a VSAM
file 139

x, in PICTURE clause *
XREF d~ctionary 67
XREF option 33

possible specifications for 2~

z, in PICTURE CLAUSE *
ZERO (ZEROES, ZEROS) figurative
constant *

zoned decimal item *
ZHE option 40

Index 347

SC28·6478·4

------- --- -..------- -~-........ ---
------ - y

SC28-6478-4

r;x,
~
0
0
en -......
< en
(')
0
r;x,
0
r-
(')
0
3
"2.
in
~

OJ
::l a.
c:
0-..,
OJ ..,
-<
"'0 ..,
0

IQ -.
OJ

3
3

'" /I) ..,
",'

c;')
c
0.:
/I)

"'0 ..,
:r ...
/I)
a.
:J

C
en »
til
(')
N
00 en
.".
"-J --...- 00 ----- --- ;:. - ----- -. ------ ------

---~--~. -.-
(!)

