
RSX

MULTI-TASKER

MAY 1985 ISSUE

RSX MUL TIT ASKER

Table of Contents

On-Line Fool Analyzer Patch
The RSX System Manager

Recovering from Disk Disasters. Part I
The Bag of Tricks: MACR0-11
Opening FCS Files-11 by Wildcard from

Your FORTRAN Program
RSX Menu Item Submission Form

...,
:..

4
10

19
27

RSX MULTITASKER

On-Line Pool Analyzer Patch

Scott Snadow, chair RSX OCLUG
General Dynamics

P.O. Box 2507
Mail Zone 4-68

Pomona, CA 91769
<714> 620-7511 X4779

I have a "little patch" to a.
tth~ On-lini:t Pool Analyzer);
been updated since the V3.2
flourishing.)

popular RSX-llM DECUS program, OPA
I believe that the llM version hasn't
days <although the M+ version is

As a base. start with the Spring '83 RSX SIG Tape, UIC C370,210J.
There, you will find a submission by Rick Webster, which uses SLP
to apply patches to J. Neeland's original OPA submission on an
earlier tape (a "virgin" copy of Neeland's OPA is in the same
account as Webster's patches, so you DON'T need to track down the
earlier tape; Webster names the virgin copy OPA.VGN>.

I found only one difference between V4.0 a.nd V4.l, as far as OPA is
concerned: the VCB <Volume Control Block) grew slightly in V4.l.
Because the change to OPA was so small, I didn't want to create
another submission <"Snadow's OPA"?>; but here's the changes that
I made:

I edited OPA.VGN:

l> Find the line
MOV

and change it to:
#VCBSTG,Rl ;MARK WITH '<VCB -

MOV #VCBSTG,Rl ;MARK WITH I <VCB
CNOTE: I'm only changing the comment, adding extra spaces>

2) Find the line (near the end)
VCBSTG: .ASCIZ l<VCB - I

and change it to:
VCBSTG: .ASCIZ l<VCB I

<NOTE: I'm just adding one extra space on each side of the "-")

The other change that is necessary CI don't recall if it appeared
in 4.0 or 4.1> is that devices can now be mounted /FOREIGN, just
like in M+. If a device IS mounted /FOREIGN, OPA will usually
crash your system. The fix for this is also small:

2

RSX MULTITASKER

li Find the section of code

10$:
BEQ
BIT
BEQ
BITB
BNE

BIT #DV.MNT,U.CWliRO> ;CHECK IF DEVICE IS LEGAL FILES-11
NOWB ;NOT IF NOT MOUNTABLE
#DV.Fll.U.CWl<ROl
NOWB ;NOT IF NOT FILES-11
#US.MNT.U.STS<RO) ;BUT IS IT ACTUALLY MOUNTED?
NOWB ;NO IF BIT ON!

and add the following two lines. immediately following the above code:

bitb #us.for,u.stslrO) ;But is it mounted foreign?
bne nowb ;Yes if bit on!

2> Find the section of code

TSTUCB:
BNE
JMP

10$:
BNE
JMP

20$:
BEQ
JMP

30$:

BIT
10$
NXTDEV
BIT
20$
.NX'TDEV
BITB
30$
NXTUNT
MOV

#DV.MNT.U.CWl<R2> ;IS THIS DEVICE MOUNTABLE?
;Yes - branch
:IF NOT. GO TRY FOR ANOTHER DEVICE

#DV.Fll,U.CWl<R2l ;IS IT FILES-11?
;Yes, branch
:IF NOT, GO TRY FOR ANOTHER DEVICE

#US.MNT.U.STSCR2> :OKAY. IS IT ACTUALLY MOUNTED
;Yes. branch
:IF NO. CHECK THE NEXT UNIT

U.VCBCR2).R0 ;AHA!. GOT ONE. GET ADDRESS OF VCB

Change the label on the last line 130$:) to 40$. and insert
the following 3 lines just before the NEW line 40$:

30$:
beq
jmp

bitb
40$
nxtunt

#us.for.u.stsir2> ;But is it mounted foreign?
;Branch if no.
;If foreign, check next unit.

Then. go ahead and run OPABLD.CMD.

3

RSX MULTITASKER

The RSX System Manager

Recovering From Disk Disasters, Part I

Let's face it. At one time or another. we have all deleted files
that we wish we hadn't. A good number of requests I get from users
of RSX deal with recovering deleted files. This month, I will
discuss what happens when a Files-11 file is deleted and describe
two methods which have been implemented to recover deleted files.

1.0 HOW THE FILES-11 ACP DELETES FILES

When PIP <or DCL DELETE) is called to delete a file, or when a file
is deleted from a program (FCS DELET$ or RMS $ERASE calls>, two
operations occur. First. the directory entry for the file in the
User File Directory !UFD> is located and then removed. Next, the
Files-11 ACP is called with the IO.DEL function to actually mark
the file as deleted and release the allocated file space. In
detail, the IO.DEL operation performs the following operations:

1. Validate the file ID passed in the IO.DEL QIO.

2. Release the blocks allocated by the file. The retrieval
pointers in the file header are scanned. and the bits in
the bitmap file corresponding to the logical blocks used by
the file are marked free.

3. Invalidate the file header. This is done by clearing the
words containing the file ID and the file header checksum.

4. Update the file header bitmap to make the file header
available.

The mechanism used by the ACP to delete files actually makes file
recovery straightforward. After all, pertinent file information is
still intact in the header, including identification, file
ownership and protection, record attributes, and the mapping to the
logical blocks used by the file. Additionally, deleted file
headers are easy to recognize by the zeros stored in the file ID
and checksum words. The trick then. is to "undo" or ignore what
the ACP has done.

4

RSX MULTITASKER

2.0 RECOVERING DELETED FILES

Assuming a desired file has been deleted. and there is no
satisfactory backup copy, a user has to act quickly in order to
recover the file. This is because the file header and the blocks
used by the file are available for use by other tasks when creating
and extending files. In fact. once the file header has been
reused. there is little the user can do. except for performing a
block by block scan of the volume [lJ.

To my knowledge. at least three programs have been written to
recover deleted files: two have been published in the Multi-Tasker
(2, 3J. Unfortunately. I do not have access to a copy of the
December. 1980 issue containing P. G. Hansell's UNDELETE program.

Note that in the following descriptions, when a UIC is specified
for a deleted file. it refers to the owner of the deleted file.
which is not necessarily the same as the directory which previously
contained the file. The file owner UIC is determined when the file
is created, or when a PIP operation using the "/FO" switch is made.

2.1 Method 1: "In-Place" UNDELETE Program

One way to recover deleted files is by using an "in-place" recovery
method. This means the deleted file is resurrected on the volume
which it resides. preserving the original file header and the
allocated blocks. This program, called UNDELETE and written by
Larry Baker, works as follows:

1. Open the volume's index file for write access
must be mounted with the /UNL switch>, and
block to get the location and size parameters
header section of the index file.

<the volume
read the home
for the file

2. Obtain a file specification from the user. including UIC,
filename, extension, and version. By default. all deleted
files on the volume are recovered. The syntax is similar
to SRD's filename selection criteria. where "?" matches any
single character, and "*" matches any number of characters.

3. Proceed sequentially through the index file.
deleted file headers <zeros in the file ID
words>. For every deleted file header. see
qualifies under the selection criteria.

looking for
and checksum

if the file

4. If the file qualifies, re-validate the file
restoring the file ID word in the header and
the checksum. Rewrite the file header and mark
as being used in the file header bitmap. Go
previous step.

5

header by
recomputing
the header
back to the

RSX MULTITASKER

When UNDELETE exits. the recovery job is only partially completed.
The blocks used by the file are still marked as being free, and the
file is "lost." since it is not contained in any directory. The
next step is to run VFY, first to rebuild the storage allocation
bitmap, and second to enter the lost file in UFD [l.3J.

When the VFY /UPDATE pass is run, the recovered files will show up
as having all of their blocks marked free. This is the normal
behaviour. Problems can occur if blocks from the recovered files
have already been allocated by other files. This is where things
can get pretty ugly. VFY will start printing messages about
multiply allocated blocks, and will automatically perform an
additional pass over the volume, doubling the time to execute VFY.
Furthermore, the only remedy for multiply allocated blocks is to
manually delete one of the files that shares blocks.

After updating the storage allocation bitmap, a VFY lost file scan
is executed. All recovered files <along with any other lost files>
will be entered in the [l.3J UFD. Finally, it is best advised to
run another VFY verification pass to make sure the index file and
the bitmap file agree on the number of blocks that are either free
or allocated.

Although we have used UNDELETE several times to save our necks. the
program does have its disadvantages:

1. No users or tasks can create or write files on the volume
until the entire operation completes, including the VFY
phase.

2. Performing a "wild-card" UNDELETE can be a nightmare, since
files that were deleted long before can be resurrected,
which will cause tremendous problems with the file block
allocation checks when VFY is run.

3. The operation is time-consuming. Anyone who has large disk
drives knows how long it takes VFY to perform a
verification scan on a large volume <sometimes 45 minutes
on an RM05).

4. UNDELETE cannot handle multi-header files. I do not know
what would happen if a multi-header file was processed
using UNDELETE. I imagine VFY would try to process the
first extension header. would find .it deleted, and end up
making a mess of everything.

6

RSX MULTITASKER

2.2 Method 2: Kirkman's UND Utility

The second method of file ~ecovery is very straightforward. Since
the information in the file header is nearly complete, a program
can process the logical block map of the deleted file, read the
deleted blocks <using logical block 1/0), and write them to another
volume. The file attributes of the deleted file can also be read
and stored with the new file.

The detailed flow of UND. written by Richard Kirkman. is as
follows:

1. Obtain a command line of the form

outdev: = indev: [ggg,mmmJ

Where "outdev:" and "indev:" are different disk. volumes.
and "[ggg,mmmJ" specifies the UIC of the owner of the
deleted file<s>. Note that all deleted files owned bv this
UIC will be recovered. so plenty of free space on the
output volume may be required.

2. Open the index and bitmap files. and point to the first
header in the index file.

3. Read a file header. If the file header is deleted <zeros
in the file ID and checksum words>. and the file owner
matches the UIC on the command line. then open a new file
on the output volume and copy the contents of the deleted
file to the output file. UND checks the bitmap file to see
if any of· the contents of the file have been reallocated
and possibly reused. If so. a warning message is
displayed.

4. If there are more file headers. go back to the previous
step; otherwise. exit.

UND is a powerful little utility. It is even helpful as a Files-11
learninq aid to show how the index file is orqanized and how the
logical-blocks on a volume are organized into coherent files.
However. there are a few minor problems:

1. There is no support for recovery of multi-header files.
Only the first file header of a file is processed.
Therefore, if a large file is recovered using UND. the user
must verify that all of the data was transferred.

2. All deleted files on the volume corresponding to the input
UIC will be recovered. This is not a serious problem for
small Ce.g. RL02> volumes. However, I can imagine what
might happen if UND was used on an RP06 or RP07 with a
directory that has a high level of file creations and

7

RSX MULTITASKER

deletions.

All of these complaints are minor, of course. The following
section will address the problems and provide some solutions.

The most recent version of UND that I am aware of can be found on
the Spring 1983 RSX SIG tape in UIC [370,210]. This version was
originally written by Richard Kirkman, modified by John Hayes, and
further modified and submitted by Rick Webster of Caterpillar
Tractor Company.

3.0 MODIFICATIONS TO KIRKMAN'S UND

I am presently in the process of modifying UND to provide more
functionality and to eliminate some of its annoying features.
Although I cannot make any commitments at this time, I intend to
submit these modifications to the Spring 1984 SIG tape in UIC
[307.20].

3.1 Support For Multi-Header Files

Adding support for multi-header files is relatively
straightforward. especially when the source files for the Files-11
ACP are available. After copying the blocks mapped by the first
file header, UND checks to see if an extension header exists; if
so, the current index file position is saved, all of the file's
extension headers are processed, and the index file position is
restored.

The only serious error that can occur while recovering a
multi-header file is if one of the extension headers has been
reused. If this happens, UND will print an error message and abort
the file recovery.

3.2 Better UIC And Filename Selection

Support for the .. ,.. .. wildcard in the UIC specification, along with
"*" and "?" wildcards in the filename and file type fields will
provide more control over selection of deleted files.
Additionally .. an explicit or "*" version number can be supplied.

8

RSX MULTITASKER

3.3 More Switches

Even though "we want to stamo out switches in your lifetime," UND
could use at least three.

"/HELP" is self-explanatory <even though DEC utilities have never
heard of it l.

"/LIST" prints out the filenames of all files that qualify under
the selection criteria. without actually recoverincr the files.
This would be useful if there is a limited amount of free space on
the output volume.

"/CONFIRM" causes a prompt to be issued to the terminal when a file
which is a candidate for recovery is found. The standard
responses, "Y" for Yes, "N" for No. "Q" for Quit, and "G" for Go
are included.

4.0 SUMMARY

Tools for recovering deleted files should be required only when a
few recently created files are mistakenly deleted. This typically
happens when a well-meaning user types a command of the form
''PIP *.*;*/DE" and immediately notices the error.

Frequent reliance on these tools indicates a
management: insufficient user training,
procedures, or plain carelessness.

problem in
infrequent

system
backup

In future articles, we will explore some of these issues. and
tackle some more frightening examples of disk disasters.

Next month: Customizing printer flag pages and other enhancements
to the queue manager.

References:

[lJ Doran, Chris, "Last-Ditch
Multi-Tasker, Vol. 15. No.

[2] Kirkman, Richard,
Multi-Tasker, Vol.

"UND. a
15, No.

Method for File
7, February 1982, pp.

Recovery,"
41-43.

Program to Undelete
l, July 1981, pp. 12-18.

Files,"

9

RSX MULTITASKER

[3] Hansell. P. G.. "UNDELETE Procrram for RSX
Multi-Tasker. Vol. 14. No. 1. December 1980.

Disks."

[4] Digital Equipment Corporation.
Specification." Multi-Task.er.
pp. 42-76.

"Files-11 On-Disk Structure
Vol. 15, No. 9, April 1982,

Please send questions. comments. ideas and submissions for this
column to the following address:

Gary Maxwe lJ.
U.S.G.S. MIS 977
345 Middlefield Road
Menlo Park. CA 94025

The Bag of Tricks: Macro-11

Bruce R. Mitchell
Machine Intelligence and Industrial Magic

PO Box 601
Hudson. WI 54016

This column covers MACR0-11 bag-of-tricks routines. as stated in
previous issues of the Multi-Tasker. All MACRO programmers are
encouraged to submit their favorite routines to the Multi-Tasker so
that these useful. interesting, or just plain bizarre tricks can be
put out before the SIG in general for the admiration and
edification of all.

In this month's column. we have something which none of us really
need, since we all write perfect code - a routine to do prettified
dumps when the host program loses it entirely.

When a MACRO program loses it and does an IOT. odd address trap, or
whatever. we get back a generally interesting but not very readable
message from the terminal which dumps all the registers at the time
the fatal error occurred. This is neat for those who understand
what it's telling them, but not so neat for the poor sucker out in
the field who doesn't know an APR from his mother.

10

RSX MULTITASKER

This routine gives dumps of ALL the information available when a
task goes bonkers. In particular, the walkbacks from memory
protect violations are a beautiful thing to see there is much
useful information there.

It should be noted that this routine makes memory references, in
some cases, PSECT-base relative through use of the variable SVTK.
Normally SVTK should be equated to the entry point of the program
so that any errors occurring in the main are made relative to the
base of the code area. This eliminates the need for a map when
such an error occurs, since the address of the instruction is then
the same as it was on the assembly listingl

It should also be noted that a DIR$ ICONCK must be issued in the
mother program if this is not done, the trap catching routines
will never be calledl

This routine was written from scratch, and there is no claim to it
being beautiful or even very nice. It dumps all registers even if
some of them are not valid for the particular trap which occurred.
However, it suits most uses, since the responsible programmer will
know if the extended registers are valid or not from the message
printed before the dump began.

Because the author tends to separate data and code structures in
his programs, the labels have been made so that the data and code
can be readily separated within a single source file.

This is an interesting "subroutine", since it never returns. It
dies a gory death, assuming that the error was fatal, which is
probably true in most cases. Bold programmers could perhaps use
the saved SRO, SRl ... etc to attempt error recovery.

Macro to load a CO: print QIO DPB and execute the DPB

. Ml\CP.O CPR INT STRING

MOV
MOV
DIR$

.ENDM

.PAGE

.SBTTL

#STRING, CONOUT+Q.IOPL
#STRING'L, CONOUT+Q.IOPL+2
#CON OUT

Directive Parameter Blocks

Exit to RSX with error status

EXERR: EXSTs EX$ERR

11

: Begin CPRINT macro

End CPRINT macro

RSX MULTITASKER

Marktime DPBs

MARKTM: MRKT$ MKEFN, 5, 2

QIO DPBs

CONOUT: QIOW$ IO.WVB. COLUN, COEFN., IOSTAT •• <O, 0, 40>

Specify SST vector table DPBs

ICONCK: SVTK$ ICNTBL. ICTBLN

Wait for event flag DPBs

WAITFR: WTSE$ MKEFN

.PAGE

.5BTTL Messages and Strings

Messages for invoking terminal or system console

S24:
S24L =
S35:
S35L =
S36:
S36L =
S37:
S37L =

538:
S38L =

539:
S39L =

S40:
S40L =
$41:
S41L =
S42:
S42L =

.ASCII \SVTK-F-SSF, Specify SST vector table <SVTK$> failed\
- S24

.ASCII \SVTK-F-SCO. SST error - Odd address or nonexistent memory\
- S35

.ASCII \SVTK-F-SCl, SST error - Memory protect violation\
- S36

.ASCII \SVTK-F-SC2, SST error - T-bit trap or breakpoint CBPT>\
- S37

.ASCII \SVTK-F-SC3, SST error - I/O trap <IOT)\
- S38

.ASCII \SVTK-F-SC4, SST error - Reserved instruction\
- S39

.ASCII \SVTK-F-SCS. SST error - Non-RSX emulator trap <EMT>\
- S40

.ASCII \SVTK-F-SC6, SST error - TRAP instruction\
- $41

.ASCII \SVTK-F-SC7. SST error - Floating point exception\
- S42

12

R!:1~'{ MULTITASKER

543: .ASCII \ Program counter <PC) : \
S43A: .BLKB 6
S43L = - S43

544: .ASCII \ Processor status word < PSW> : \
S44A: .BLKB 6
S44L = - S44

S45: .ASCII \ Memory protect status register < SRO l : \
S45A: .BLKB 6
5451 = - S45

546: .ASCII \ Virtual PC of faulting instruction < SR2 l: \
S46A: .BLKB 6
S46L = - 546

S47: .ASCII \ Instruction backup register (SRl l :
S47A: .BLKB 6
S47L = - S47

S48: .ASCII \ Instruction operand lower byte: \
S48A: .BLKB 6
S48L = - S48

S49: . ASCII \ Program counter. SVCODE PSECT relative:
549A: .BLKB 6
S49L = - S49

S50: .ASCII \ Virtual PC (SR2 > . SVC ODE PSECT relative: \

S50A: .BLKB 6
SSOL = - S50

S51: .ASCII \ Directive status word ($DSWl : \
S51A: .BLKB 6
S51L - S51

S52: .ASCII \ Processor general register 0 <RO l : \
S52A: .BLKB 6
S52L - S52

S53: .ASCII \ Processor qeneral register l <Rl): \
S53A: .BLKB 6
553L = - S53

S54: .ASCII \ Processor sreneral register 2 (R2 > : \
S54A: .BLKB 6
S54L = - S54

S55: .ASCII \ Processor general register 3 < R3 l : \
S55A: .BLKB 6
S55L = - S55

556: .ASCII \ Processor general register 4 (R4 l : \

13

RSX MULTITASKER

S56A: .BLKB 6
S56L = - S56

S57: .ASCII \ Processor general register 5 <R5l: \
S57A: .BLKB 6
S57L = . - S57

• EVEN

.PAGE

.SB'ITL Tables

SST Internal Consistency Error Vector Table

Form: Service routine vectored on SST

ICNTBL:
.WORD
.WORD
.WO:({D
.WORD
.WORD
.WORD
.WORD

ICTBLN = •

. PAGE

.WORD SSTOOO
SSTOOl
SST002
SST003
SST004
SST005
SST006
SST007
- ICNTBL

= Odd address trap
Memory protect violation
T-bit or BPT
IOT
Reserved instruction
Non-RSX EMT
TRAP
Floating point exception

.SB'ITL Individual Variables

SDSW: .WORD 0 SST storage word
SIOP: .WORD 0 SST storage word
SRO: .WORD 0 SST storage word
SRl: .WORD 0 SST storage word
SR2: .WORD 0 SST storage word
SSRO: .WORD 0 SST storage word
SSRl: .WORD 0 SST storage word
SSR2: .WORD 0 SST storage word

.PAGE

.SB'ITL SSTOOx Internal SST Error Handling

sssssssss sssssssss TrTTrITlTI' 0000000 0 0000000 0
sssssssss s-ssssssss Tl"l"I'1TITrr 00000000 00000000

SS SS 'IT 00 000 00 000
SS SS 'IT 00 0 00 00 0 00
ssssssss ssssssss Tr 00 0 00 00 0 00
ssssssss SSS SS SSS Tr 00 0 00 00 0 00

SS SS 'IT 00 0 00 00 0 00

14

for $DSW

for RO
for Rl
for R2

xx xx
xx xx

xx xx

RSX MULTITASKER

SS SS TI' 00 0 00 00 0 00 xx xx
SS SS TI' 00 0 00 00 0 00 xx xx
SS SS TI' 000 00 000 00 xx xx

ssssssss ssssssss TI' 00000000 00000000 xx XX.
; ssssssss ssssssss TI' 0 0000000 0 0000000 xx

; SSTOOx - Internal Consis.tency Failure SST Vector Service Routines

These routines are vectored on occurrence of a normally fatal error
during task execution. This type of error usually occurs only on

xx

a programming failure, so walkback and cleanup routines here are more
angled toward finding and fixing a problem than just getting out
cleanly.

Inputs: Depends on trap executed

Outputs: None

Register dispositions: RO, Rl, R2 modified

Variable dispositions: SRO. SRl, SR2, SDSW, SSRO, SSRl, SSR2,
; SIOP modified

Odd address or nonexistent memory addressing error vector

SSTOOO: MOV
CPR INT S35
BR SSTDMP

Memory protect

SSTOOl: MOV
MOV CSP>+,
HOV CSP>+,
HOV <SP)+,
CPR INT S36
BR SSTDMP

$DSW, SDSW

violation vector

$DSW. SDSW
SSRl
SSR2
SSRO

; Save the DSW
"-F-SCO, SST error Odd address
Go hit common dump code

; Save the DSW
Pop instruction backup register
Pop virtual PC of faultinq instr'n
Pop memory protect status-register
"-F-SCl. SST error - Memory prot
Go hit common dump code

T-bit trap or breakpoint trap <BPT> vector

SST002:
CPR INT
BR

HOV
S37
SSTDMP

$DSW. SDSW

I/O trap CIOT> vector

SST003: HOV $DSW, SDSW
CPRINT 538

; Save the DSW
"-F-SC2, SST error - T-bit trap
Go hit common dump code

; Save the DSW
"-F-SC3, SST error - IIO trap <IOT)"

15

RSX MULTITASKER

BR SSTDMP

Reserved instruction vector

SST004:
CPR INT
BR

MOV
S39
SSTDMP

$DSW, SDSW

Non-RSX EMT vector

SST005:
MOV
ASR
CPR INT
BR

MOV $DSW, SDSW
<SPl+, SIOP
SIOP
S40
SSTDMP

TRAP vector

SST006:
MOV
ASR
CPR INT
BR

MOV $DSW, SDSW
<SP>+, SIOP
SIOP
S41
SSTDMP

Floating point exception vector

SST007: MOV $DSW, SDSW
CPRINT S42

Debugging dump section

SSTDMP:
MOV
MOV
MOV
MOV
CALL
CPR INT

MOV
MOV
SUB
CALL
CPR INT

MOV
MOV
CALL
CPR INT

MOV RO, SRO
Rl, SRl
R2, SR2
#S43A, RO
<SP> , Rl
$CBOMG
S43

#S49A, RO
(SP), Rl
#SVTK, Rl
$CBOMG
S49

#S44A, RO
2 <SP> , Rl
$CBOMG
S44

Go hit common dump code

; Save the DSW
"-F-SC4, SST errbr Reserved
Go hit common dump code

: Save the DSW
Pop instruction operand off stack
Shift down one bit
"-F-SC5, SST error - Non-RSX
Go hit common dump code

; Save the DSW
Pop instruction operand off stack
Shift down one bit
"-F-SC6, SST error - TRAP instruction"
Go hit common dump code

; Save the DSW
"-F-SC7, SST error - Floating

, Save RO
Save Rl
Save R2
Load target field address
Load faulting PC for printing
Convert binary to octal magnitude

Program counter <PC): xxxxxx"

Load target field address
Load faulting PC for printing
Make the PC relative to the base
Convert binary to octal magnitude
"Program counter, MLCODE ... "

Load target field address
Load faulting PSW for printing
Convert binary to octal magnitude
"Processor status <PSW>: xxxxxx"

16

()

(,II

(J

RSX MULTITASKER

MOV #S51A, RO
MOV SDSW, Rl
CALL $CBOMG
CPR INT S51

MOV #S52A. RO
MOV SRO, Rl
CALL $CBOMG
CPR INT S52

MOV #S53A. RO
MOV SRl, Rl
CALL $CBOMG
CPR INT S53

MOV #S54A, RO
MOV SR2, Rl
CALL $CBOMG
CPR INT S54

MOV #S55A. RO
MOV R3. Rl
CALL $CBOMG
CPR INT S55

MOV #S56A. RO
MOV R4, Rl
CALL $CBOMG
CPR INT S56

MOV #S57A, RO
MOV R5, Rl
CALL $CBOMG
CPR INT S57

MOV #S45A, RO
MOV SSRO, Rl
CALL $CBOMG
CPR INT S45

MOV #S47A, RO
MOV SSRl, Rl
CALL $CBOMG
CPR INT S47

MOV #S46A, RO
MOV SSR2, Rl
CALL $CBOMG
CPR INT S46

MOV #S50A, RO
MOV SSR2, Rl
SUB #SVTK, Rl

Load target field address
Load faulting $DSW for printing
Convert binary to octal magnitude

17

Directive status word ... "

Load target field address
Load faulting RO for printing
Convert binary to octal magnitude

Processor general register

Load target field address
Load faulting Rl for printing
Convert binary to octal magnitude

Processor general register

Load target field address
Load faulting R2 for printing
Convert binary to octal magnitude

Processor general register

Load target field address
Load faulting R3 for printing
Convert binary to octal magnitude

Processor general register

Load target field address
Load faulting R4 for printing
Convert binary to octal magnitude

Processor general register

Load target field address
Load faulting RS for printing
Convert binary to octal magnitude

Processor general register

Load target field address
Load SRO for Printinq
Convert binary to octal magnitude

Memory protect status ... "

Load target field address
Load faulting SRl for printing
Convert binary to octal magnitude
"Instruction backup register

Load target field address
Load faulting SR2 for printing
Convert binary to octal magnitude

''Virtual PC of faulting ... "

Load target field address
Load faulting SR2 for printing
Make the PC relative to the base

RSX MULTITASKER

CALL
CPR INT

MOV
MOV
CALL
CPR INT

$CBOMG
sso

#S48A, RO
SIOP, Rl
$CBOMG
S48

Convert binary to octal maqnitude
" "Virtual PC <SR2>. SVCODE

Load target field address
Load faulting operand for printing
Convert binary to octal magnitude

Instruction operand lower

Wait 5 seconds for all I/O to clear. then exit with error status

DIR$
DIR$

DIR$

#MARKTM
#WAITFR

#EXERR

Set a 5 second marktime
• Wait for marktime to expire

Exit with error status

Opening FCS Files By Wildcard

From Your FORTRAN Program

Mark Chatterton
General Mills

9000 Plymouth Ave. N.
Minneapolis, MN 55427

(612)-540-3490

This article describes a series of FORTRAN callable FCS interface
routines which allow a FORTRAN program to open files by wildcard.
After specifying a wildcard string, the main program uses
successive open and close operations to work its way through the
series of files matching the wildcard specification .. At any time,
the program may also reset itself to start over at the beginning of
the wildcard list.

My department runs a DEC PDP-11 to do real-time applica- tions
development. Unfortunately, the rest of building uses an IBM 4341
to do virtual-time data processing and office automation type
things. One bit of software running on the IBM allows IBM users to
exchange notes, phone messages, and insults via their CRTs <not

18

RSX MULTITASKER

unlike an electronic mail system>. For a time we were mercifully
spared of this high-tech pest- ering, but eventually people
demanded that we be included in the fun and games.

In order to accomplish note passing from the IBM to the DEC, we
used DEC's 2780 emulator package. This package allows ASCII file
transfers to and from IBM. When a new file arrives from the IBM.
the software dequeues it, places it into a designated ac- count on
the DEC machine. and names it PUNCH.something. You end up with an
account full of files called PUNCH.001, PUNCH.002. etc. Some of
these files are note files which must be copied over to the proper
person on the DEC machine. To handle this, we wrote a receiver
program that opens all the files of the form "PUNCH.*-:*-", checks to
see if they are notes, and passes them along to the addressee.

The mainline code for the receiver was done in FORTRAN. which has
no provisions for wildcard file specs. So, with F77DBG. USEROPEN,
and FCS manual in hand. we groped about until we came up with some­
thing that seemed to work.

The routines I've included contain four entry points called WLDINI,
WLDOPN, WLDRST, and WLDNAM. The following types of wild- cards are
supported by these routines:

TEST.DAT:*­
TEST.*:*­
.DAT;­
·•*

The procedures will not work with the following types:

*-.DAT
TEST.*­
·

Wildcard UIC's will not work. What follows is an explanation of
what each subroutine does and how to call them:

WLDINI:

Use this routine to set up the wildcard name string you want. The
calling sequence is:

CALL WLDINI CDEV,DEVSZ,UIC,UICSZ.FIL,FILSZ>

Where:

DEV is the ASCII device name. like 'DL3:' or 'DK2:'.
DEVSZ is the length in bytes of the DEV string.

19

RSX MULTITASKER

I,.. .DAT;* I.

UIC is the ASCII UIC string, like '[5.4J' or '[l,2J'.
UICSZ is the length in bytes of the UIC string.
FIL is the ASCII file name, like 'TEST.DAT;*' or

FILSZ is the length in bytes of the FIL string.

If you leave out any of these fields, the standard defaults will
take effect.

Once you have set up the name using WLDINI. you are ready to do an
open operation using WLDOPN.

Examples:

CALL WLDINI < 'DL2:' ,4,'[l,2J' ,5,'*.CMD;*' ,7)
Sets up to open all .CMD files in [l.2J,on DL2:.

CALL WLDINI (, , , , I,... CMD; *I , 7)
Sets up to open all .CMD files in your current account
on your SY: disk.

WLDOPN:

WLDOPN will be used as a USEROPEN routine in your OPEN statement.
It will take control from the FORTRAN OTS. find the next file that
matches the string you set up with WLDINI. and open the file for
read/write.

WLDOPN is an external procedure. so it must be declared in an
EXTERNAL statement at the beginning of your program.

An important point: FORTRAN syntax requires you to include a file
name in your OPEN statement using the FILE= keyword. It doesn't
matter what you put here, since WLDOPN will use the string set up
by WLDINI. The file name you use does not even have to exist.
HOWEVER - FORTRAN will assiqn LUNs accordinq to the name it finds
in the FILE= keyword. It-is reccommended: therefore, that you at
least give FORTRAN the proper device in your FILE= keyword. In
this way the OTS will assign the LUN correctly and you'll have one
less thing to worry about.

The next time you execute the same OPEN statement. you will get the
next file that matches your wildcard string and so on. When there
are finally no more such files left, the next OPEN command will
return a No-Such-File error to the OTS.

I have included an example of all this at the end of this section.

WLDRST:

20

RSX MULTITASKER

Use WLDRST to reset your program back to the beginning of the list
of wildcard files at any time. The next time you do an OPEN after
calling WLDRST, you will start over at the top of the series of
files that matches your wildcard string. You get the same effect
by calling WLDINI again, but with more overhead.

WLDNAM:

Use this routine to find out the actual name of the currently open
file. Calling sequence is:

CALL WLDNAM <DEVSTR.DEVNUM,FILNAM,FILTYP.VERl

Where:
DEVSTR = Two byte buffer to receive ASCII device name.
DEVNUM One word buffer to recieve binary unit number.
FILNAM = Three word buffer to receive Rad-50 file name.
FILTYP = One word buffer to receive Rad-50 file type.
VER = One word buffer to receive binary version number.

You may leave out whatever fields you aren't interested in.

EXAMPI;.E PROGRAM

This sample program will open all .DAT files in the current account
on DL3: and print the names of the files on the screen. It will
then do a reset, and reopen the files again. this time printing the
first line of each file onto the screen.

C**
c

Program Sample
c
C Instructions for building:
c
C >F77 SAMPLE=SAMPLE
C >MAC WLDOPN=WLDOPN
C >TKB SAMPLE/CP/FP=SAMPLE.WLDOPN,LB:[l,1JF770TS/LB
c
C De,clare wildcard character strinqs. NAME will be used as the filename
C in our OPEN statement. The equiv.alence is used so that FORTRAN will
C assign the LUN to the correct device for us.
c

Character Dev*4, Fil*7, Name*20
Equivalence <Dev. Name)
Integer DevSz. FilSz

Data Dev. DevSz /'DL3:' .4/
Data Fil. FilSz /'*.DAT:*' ,71
Data Name(5:l /'BOGUS.FIL'/

21

lDevice to look on.
!Wildcard string.
!Bogus name for FORTRAN

RSX MULTITASKER

c
C Set up buffers for WldNam call and Rad50 conversion.
c

c

Integer Re1Fil(3l, RelTyp, RelVer
Character*3 ChrFilC4l

C Define input buffer for read operation
c

Character InLine*80
c
C Declare WLDOPN as external
c

External WldOpn
C***
c
C Start executable code.
c
C Trap No-Such-File errors
c

Call Errset <29,.True.,.False.,.True.,.False.l
c
C Use WLDINI to set up the wildcard string.
c

Call Wldini <Dev,DevSz,,,Fil,FilSz>
c
C Open next file in line
c
50 Open <Unit=l, File=Name, Status='Old', UserOpen=WldOpn, Err=500l
c
C Find out what file we've actually opened, and print it to TI:
c

Call WldNam C,,RelFil,RelTyp,RelVer>

Call R50Asc <3.RelFilCl),ChrFil<l>l
Call R50Asc <3,RelFil<2l,ChrFilC2ll
Call R50Asc <3,RelFil(3),ChrFilC3ll
Call R50Asc <3,RelTyp,ChrFil<4>>

Write (5,100) ChrFil, RelVer
100 Format CX,3A,'.',A,';',I3>
c
C Now close the file and try for the next one
c

Close <l>
Goto 50

C***
c

!Get file name info

!Translate file name
from Rad50

! to ASCII
!Do file type too.

!Write info to screen

c
c
c
c

If we get here we had an open error. Error #29 <no such file)
is OK (just means we got to end of wildcard list>.
Exit on other errors.

500 Call ErrSns <I> !Retreive error number
If CI .Ne. 29) Stop ' Open error on file.'

22

RBX MULTITA5KER

Write (5,*> '*** Done with pass one *""'
c
C Reset the file pointer to top of wildcard list
c

Call WldRst
c
C Open next file in line
c
600 Open <Unit=l, File=Name, Status='Old', UserOpen=WldOpn, Err=lOOO>
c
C Read first line in the file and print it on screen.
c

Read (1,650) InLine !Read the-first line
650 Format CA)

Write (5,*> InLine !Write it to screen
c
C Now close the file and try for the next one
c

Close Cl)
Goto 600

C***
c
c
c
c

If we get here we had an open error. Error #29 Cno such file>
is OK (just means we got to end of wildcard list>. Exit on other errors.

1000 Call ErrSns CI) !Retreive error number
If CI .Ne. 29> Stop '-Open error on file.
Write CS,*> '*** Done with pass two ***'
Call Exit
End

What follows is the source code for the wildcard open routines.
Good luck in using them, and I hope they turn out as useful for you
as they have for us .

. TITLE WLDOPN

.LIST TTM

.NLIST SEQ,BIN

.MCALL EXIT$S,FDOF$L,QIOW$S,OFID$U

FDOF$L ;Define FDB offsets

DEVICE:
DIRECT:
FILNAM:

.BLKW

.BLKW

.BLKW

3
5
9

23

;Device name
;Search directory
:File name here

RSX MULTITASKER

DS:

FLAG:
STAT:
NEXT:

FDBADD:

WLDINI::
MOV
MOV

CLEAR:
SOB

DEV:
BGT
CMP
BEQ
MOV
MOV
MOV
MOV
MOV

DEVl:
SOB

UIC:
BGT
CMP
BEQ
MOV
MOV
MOV
MOV
MOV

UICl:
SOB

FIL:
BGT
CMP
BEQ
MOV
MOV
MOV
MOV
MOV

FILl:
SOB

.BLKW

.BLKW

.BLKW

.BLKW

.BLKW

#DS,RO
#6,Rl

6

1
l
1

1

CLR <RO>+
Rl,CLEAR

CMP #L@R5
IN IDUN
#-1, 2 <RS l
UIC
#DEVICE,RO
#DEVICE,DS+2
2<R5l,Rl
@4<R5l ,R2
R2,DS
MOVB <Rll+,(ROl+
R2,DEV1

CMP #3,@RS
IN IDUN
#-l,6<R5l
FIL
#DIRECT,RO
#DIRECT,DS+6
6<R5 l ,Rl
@10 <RS l ,R2
R2,DS+4
MOVB <Rll+,(ROl+
R2,UIC1

CMP #5,@RS
IN IDUN
:#:-1, 12 <RS)
IN IDUN
#FILNAM,RO
:#:FILNAM,DS+l2
12 <RS l ,Rl
@14(R5l ,R2
R2,DS+l0
MOVB <Rll+,(ROl+
R2,FIL1

INIDUN: CLR FLAG
RETURN

;Dataset descriptor

;First time flag
;Saved status
:Saved pointer to next file

:Saved pointer to fdb

;Get addres of dataset desc.
;Loop counter

:Clear Dataset desc.
;Until done

;Done yet ?
:Branch if not
;Device name present ?
;Branch if yes
;Destination address
:Address into DS
:Source address
;Number of bytes to move
:Length into DS

;Copy next byte
;Until done

:Done yet ?
;Branch if not
;UIC present ?
;Branch if yes
;Destination address
;Address into DS
;Source address
;Number of bytes to move
;Length into DS

;Copy next byte
;Until done

:Done yet ?
;Branch if not
;File name present ?
;Branch if yes
;Destination address
;Address into DS
;Source address
;Number of bytes to move
;Length into DS

;Copy next byte
;Until done

;Clear first time through flag

24

R!:lX MULTITASKER

WLDOPN::
MOV
MOV
MOV
ADD
MOV
CLR

CALL

TST
BEQ

MOV
MOV

FIND:
CALL
BCS

OFID$U

DONE:

MOV
MOV
CLR
CLR

RETURN

WLDRST::
CLR
RETURN

WLDNAM::
MOV
ADD

CMP
BGT
CMP
BEQ
MOV
MOV

DEVNUM:
BGT
CMP
BEQ
MOV
MOV

2<R5l,RO
RO.FDBADD
RO,Rl
#F.FNB.Rl
#DS.R2
R3

.PARSE

FLAG
FIND

STAT .N. STAT<Rl)
NEXT .N. NEJ<.'T(Rl l

INC FLAG
.FIND
DONE

RO

MOV F. ERR<RO l .RO

N.STAT<Rll .STAT
N. ND.'T<Rl) , NEXT
N. STAT<Rl>
N. NEXT<Rl l

FLAG

FDBADD.RO
#F.FNB,RO

#l .@R5
NAMDUN
#-1. 2 <R5)
DEVNUM
2 <RS l ,Rl
N. DVNM<RO l. <Rl >

CMP #2.@RS
NAMDUN
#-l.4\R5)
FLNAME
4 (R5 l .Rl
N. UNIT<RO). <Rl l

25

;Get FDB address
;Save it for WLDNAM routine
;Copy FDB address
;Get name block address
;Point to DS
;Clear pointer to default

file name block

:Set up file name stuff

:First time through ?
;Branch if yes

;Restore status
;Restore pointer to next file

;Indicate not first
;Find the file
;IE.NSF indicates end

:Open file for processing

:Return error code for main

:Save status
:Save pointer to next file
:Clear these two fields
:So FCS doesn't get confused.

:Return to main routine

;Clear first time flag

;Get FDB address
:Point to file name block

:Done yet ?
;Branch if yes
:Want device name ?
;Branch if not
:Get device name buffer add.
:Copy device name to user

:Done yet ?
;Branch if yes
:Want device number ?
;Branch if not
:GEt device # buffer add.
:Copy device # to user

RSX MULTI TASKER

FLNAME: CMP #3,@R5 :Done yet ?
BGT NAMDUN ;Branch if yes
CMP #-L6(RS > ;Want file name ?
BEQ FILTYP :Branch if not
MOV 6(RS) ,Rl ;Get file name buffer addr
MOV RO,R2 ;Copy FNB addr into R2
ADD #N.FNAM.R2 :Point R2 to file name info
MOV <R2)+,(Rl)+ :Copy 1st word
MOV <R2)+,<Rl)+ ;Copy 2nd word
MOV (R2) '<Rll :Copy 3rd word

FILTYP: CMP #4,@R5 ;Done yet ?
BGT NAMDUN ;Branch if yes
CMP #-LlO(RSJ :Want the file type ?
BEQ VER :Branch if not
MOV 10 <RS) ,Rl :Get file type buffer addr.
MOV N. FTYP<RO) ,(Rl > :Copy type to user

VER: CMP #5,@RS :Done yet ?
BGT NAMDUN :Branch if yes
CMP #-L 12 <R5 > :Want the version ?
BEQ NAMDUN :Branch if not
MOV 12 <RS> ,Rl :Get version buff er addr
MOV N.FVER<RO), <Rll :Copy version to user

NAMDUN: RETURN
.END

26

-
I
I

~
I
I
I
I
I
I

MULTITASKER

RSX Menu Item Submission Form

Operating System: RSX-llM RSX-llM+ Micro-RSX VAX-RSX POS-RSX

Describe the capability you would like to see available. Be as
specific as possible. Please don't assume we know how it's done on
the XYZ system. Explain how the capability would be useful and ·
give an example of its use. If you wish, suggest a possible
implementation of your request

Return forms to: Allen Jay Bennett
State Systems, Inc.
2004 Inverway Ct.
Kalamazoo. Michigan 49003

27

Printed in the U.S.A.

"The Following are trademarks of Digital Equipment Corporation"

ALL-IN-1 Digital logo RSTS
DEC EduSystem RSX
DECnet IAS RT
DEC mate MASS BUS UNIBUS
DECsystem-1 0 PDP VAX
DECSYSTEM-20 PDT VMS
DEC US P/OS VT
DECwriter Professional Work Processor
DIBOL Rainbow

Copyright eDECUS and Digital Equipment Corporation 1985
All Rights Reserved

The information in this document is subject to change w ithout notice

and should not be construed as a commitment by Digital Equipment
Corporation or DEC US. Digital Equipment Corporation and DEC US assume

no responsibility for any errors that may appear in this document.

POLICY NOTICE TO ALL ATTENDEES OR CONTRIBUTORS "DECUS
PRESENTATIONS, PUBLICATIONS, PROGRAMS, OR ANY OTHER
PRODUCT WILL NOT CONTAIN TECHNICAL DATA/INFORMATION
THAT IS PROPRIETARY, CLASSIFIED UNDER U.S. GOVERNED BY
THE U.S. DEPARTMENT OF STATE'S INTERNATIONAL TRAFFIC IN
ARMS REGULATIONS (/TAR). "

DEC US and Digital Equipment Corporation make no representation that

in the interconnection of products in the manner described herein will

not infringe on any existing or future patent rights nor do the de­

scriptions contained herein imply the granting of licenses to utilize any

software so described or to make, use or sell equipment constructed in

accordance with these descriptions.

It is assumed that all articles submitted to the editor of th is newsletter

are with the authors' permission to publish in any DECUS publication.
The articles are the responsiblity of the authors and, therefore, DEC US,

Digital Equipment Corporation, and the editor assume no responsibility

of liability for articles or information appearing in the document. The
views herein expressed are those of the authors and do not necessarily

express the views of DECUS or Digital Equipment Corporation.

[Ql
DECUS

- DECUS SUBSCRIPTION SERVICE
DIGITAL EQUIPMENT COMPUTER SOCIETY
249 NORTHBORO ROAD. (BP02)
MARLBORO. MA 01752

STATUS CHANGE

Please notify us immediately to guarantee continu ing
receipt of DECUS literature. Allow up to six weeks for
change to take effect.

) Change of Address
) Please Delete My Membership Record

(I Do Not Wish To Remain A Member)

DECUS Membership No:----------
Name: ________________ _

Company:---------------­

Address:----------------

State/Country:---- - -------- ­

Zip/Postal Code:-------------

Mail to: DECUS • ATTN: Subscription Service
249 Northbor•
Marlboro, Ma

Affix mail ing label

here. If label is not

available, print old

address here. Include

name of installation,

company, university,

etc.

Bulk Rate
U.S. Postage

PAID
Permit No. 18

Leominster , MA
01453

