
CTIX™ OPERATING SYSTEM MANUAL

Vers ion B
Vo lume 1

Specifications Subject to Change.

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Convergent, CT-DBMS, CT-MAIL, CT-Net, CTIX, CTOS,
DISTRIX, Document Designer, The Operator,

AWS, CWS, IWS, MegaFrame, MiniFrame,
MightyFrame, and X-Bus, are trademarks

of Convergent Technologies, Inc.

CTIX is derived from UNIX System V by Convergent
Technologies under license from AT&T. UNIX is a trademark of
AT&T Bell Laboratories.

Material excerpted from the UNIX System V User Reference
Manual, Administrator Reference Manual, and Programmer
Reference Manual is Copyright 1984 by AT&T Technologies.
Reprinted by permission.

This software and documentation is based in par t on the Fourth
Berkeley Software Distribution under license from the Regents of
the University of California.

This manual was prepared on a Convergent Technologies
MegaFrame Computer System and was printed on an Imagen
8/300 Laser Printer.

First Edition (November 1985) B - 0 9 - 00634- 01

Copyright (c) 1985 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. Title to and ownership of the documentation
contained herein shall at all times remain in Convergent
Technologies, Inc., and/or its suppliers. The full copyright
notice may not be modified except with the express written
consent of Convergent Technologies, Inc.

HOW TO USE THIS MANUAL

The CTIX Operating System Manual, Version B, describes the
commands, system calls, libraries, da ta files, and device
interfaces that make up the CTIX Operating System on
MiniFrame Computer Systems and MightyFrame Computer
Systems. Only internal-use and unbundled software products are
excluded. This manual should always be your starting point,
when you need to find the documentation for a CTIX feature
with which you are unfamiliar.

The manual consists of a large number of short entries,
sometimes called "the man pages," after the command which
accesses the entries when they are kept online. Each entry
briefly documents some feature of CTIX. Some features require
longer documentation than an entry in this manual; such features
have an entry that outlines the feature and cross-references the
manual that documents the feature fully. Entries that do not
refer to other manuals are self-contained and are the final word
on the features they describe.

Organization of the manual . The entries are organized into
seven sections in two volumes:

Volume 1:
1. Commands and Application Programs.

Volume 2:
2. System Calls.
3. Subroutines and Libraries.
4. File Formats.
5. Miscellaneous Facilities.
6. Games.
7. Special files.

Within each section, entries are alphabetical by title, except for
an intro entry at the beginning of each section.

Entry Tit le Convent ions . An entry title looks like this
example:

erf(3M)

1 II
Entry Type

Section Number

Name

Name is the name of the entry. Section Number indicates the
section that contains the entry. In this case, the entry is in
Section 3, which is in Volume 2. Entry Type is only on entries
that belong to special categories; refer to the section's intro entry
for an explanation. In this case, a reference to intro(3) would tell
you that er/(3M) describes functions from the Math Library,
which the C compiler does not load by default.

F ind ing t h e e n t r y y o u need. To find out which entry you
need, refer to the following guides:

• The Permuted Index. This indexes each significant word
in each entry's description. It is useful when you only
have a general notion what you're looking for. It is also
useful when you know the name of the command,
function, etc., that you are interested in, but there is no
entry by that name. To simplify its use, a complete
Permuted Index for both volumes is in each volume.

• The Table of Contents. This is a simple list of entries,
by section, together with the entry descriptions. Volume
1 has a Table of Contents for Section 1. Volume 2 has a
Table of Contents for Sections 2 through 7.

• The Table of Related Entries. For Volume 1 only. A
table of entries organized so that related entries are
grouped together.

Section organisat ion. Each section begins with an intro entry,
which provides important general information for that section.

Section 1, Commands and Application Programs, describes
programs intended to be invoked directly by the user or by
command language procedures, as opposed to subroutines, which
are intended to be called by the user's programs. Commands
generally reside in the directory / b i n (for binary programs).
Some programs also reside in / u s r / b i n , to save space in /b in .
These directories are searched automatically by the command
interpreter called the shell. Commands that were not
transported from UNIX System V reside in / u s r / l o c a l / b i n ; this
directory is recommended for locally implemented programs.
Some administrative commands reside in / e t c and various other
places. The / e t c directory is searched automatically if you are
logged in as root; otherwise type out the full path name given
under SYNOPSIS or change the P A T H environment variable to
include the command's directory.

Section 2, System Calls, describes the entries into the CTIX
kernel, including the C language interfaces.

Section 3, Subroutines and Libraries, describes the available
library functions or subroutines. Their binary versions reside in
various system libraries in the directories / l i b and / u s r / l i b . See
intro(3) for descriptions of these libraries and the files in which
they are stored.

Section 4, File Formats, documents the structure of particular
kinds of files; for example, the format of the output of the link
editor is given in a.out(4). Excluded are files used by only one
command (for example, the assembler's intermediate files). In
general, the C language s truct declarations corresponding to
these formats can be found in the directories / u s r / i n c l u d e and
/ usr / inc lude / sys .

Section 5, Miscellaneous Facilities, contains a variety of things.
Included are descriptions of character sets, macro packages, etc.

Section 6, Games, describes the games and educational programs
that reside in the directory / u s r / g a m e s .

Section 7, Special Files, discusses the characteristics of files that
actually refer to input /output devices.

Entry organisat ion. All entries are based on a common
format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly
states its purpose.

The SYNOPSIS part summarizes the use of the program
being described. A few conventions are used, particularly in
Section 1 (Commands):

Boldface strings are literals and are to be typed just as
they appear.

Italic strings usually represent substitutable argument
prototypes and program names found elsewhere in the
manual (they are underlined in the typed version of the
entries).

Square brackets [] around an argument prototype
indicate that the argument is optional. When an
argument prototype is given as "name" or "file", it
always refers to a file name.

Ellipses . . . are used to show that the previous
argument prototype may be repeated.

A final convention is used by the commands themselves.
An argument beginning with a minus - , plus + , or
equal sign = is often taken to be some sort of flag

argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files
whose names begin with - , + , or = .

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where
appropriate.

The FILES part gives the file names that are built into the
program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic
indications that may be produced. Messages that are
intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes
deficiencies. Occasionally, the suggested fix is also
described.

A table of contents and a permuted index derived from that
table precede Section 1. On each index line, the title of the
entry to which that line refers is followed by the appropriate
section number in parentheses. This is important because there
is considerable duplication of names among the sections, arising
principally from commands that exist only to exercise a
particular system call.

If the entries are online, they are available via the catman(1)
command.

HOW TO G E T S T A R T E D

This discussion provides the basic information you need to get
started on CTIX: how to log in and log out, how to communicate
through your terminal, and how to run a program. (See the
CTIX Programmer's Guide for a more complete introduction to
the system.)

Logging in. Most MightyFrame and MiniFrame terminals are
either cluster or 9600 baud asynchronous terminals. An unused
terminal prompts login:.

Most asynchronous terminals have a speed switch that should be
set to the appropriate speed and a half-/full-duplex switch tha t
should be set to full-duplex. When a connection (at the speed of
the terminal) has been established, the system types login : and
you then type your user name followed by the " r e tu rn" key. If
you have a password (and you should!), the system asks for it,
but does not print ("echo") it on the terminal. After you have
logged in, the " re tu rn" , "new-line", and "line-feed" keys will
give exactly the same result.

It is important t ha t you type your login name in lower case if
possible; if you type upper-case letters, CTIX will assume tha t
your terminal cannot generate lower-case letters and tha t you
mean all subsequent upper-case input to be treated as lower case.

When you have logged in successfully, the shell will type a $ to
you. (The shell is described below under How to run a program.)

For more information, consult login(1), which discusses the login
sequence in more detail, and s«3/(l), which tells you how to
describe the characteristics of your terminal to the system.
Profile{4) tells how to have the shell automatically perform
startup tasks when you log in. To log out , type an end-of-file
indication to the shell (ASCII E O T character; the FINISH key on
a Convergent Programmable Terminal, control-d on most
others). The shell terminates and the login: message appears
again.

H o w to c o m m u n i c a t e t h r o u g h your t ermina l . When you
type, the system is gathering your characters and saving them.
These characters will not be given to a program until you type a
" re tu rn" (or "new-line"), as described above in Logging in.

Terminal i npu t /ou tpu t is full-duplex. It has full read-ahead,
which means tha t you can type at any time, even while a
program is typing at you. Of course, if you type during output ,

the output will have interspersed in it the input characters.
However, whatever you type will be saved and interpreted in the
correct sequence. There is a limit to the amount of read-ahead,
but it is generous and not likely to be exceeded unless the system
is in trouble. When the read-ahead limit is exceeded, the system
throws away all the saved characters.

On an input line from a terminal, the character @ "kills" all the
characters typed before it. The BACKSPACE character (control-h
if your terminal lacks a backspace key) erases the last character
typed. Successive uses of BACKSPACE will erase characters back
to, but not beyond, the beginning of the line; @ and
BACKSPACE can be typed as themselves by preceding them with
\ (thus, to erase a \ , you need two BACKSPACES). These default
erase and kill characters can be changed; see stty(1).

The ASCII DC3 (control-s) character can be used to temporarily
stop output. It is useful with CRT terminals to prevent output
from disappearing before it can be read. Output is resumed
when a DC1 (control-q) or a second DC3 (or any other character,
for that matter) is typed. The DC1 and DC3 characters are not
passed to any other program when used in this manner.

The ASCII DEL (a.k.a. "rubout", Programmable Terminal
DELETE key) character is not passed to programs, but instead
generates an interrupt signal, just like the "break", "interrupt",
or "at tention" signal. This signal generally causes whatever
program you are running to terminate. It is typically used to
stop a long printout that you don't want. However, programs
can arrange either to ignore this signal altogether, or to be
notified when it happens (instead of being terminated). The
editor ed(1), for example, catches interrupts and stops what it is
doing, instead of terminating, so that an interrupt can be used to
halt an editor printout without losing the file being edited.

The quit signal is generated by typing the ASCII FS character
(Programmable Terminal CODE-CANCEL, Control-\ on other
terminals). It not only causes a running program to terminate,
but also generates a file with the "core image" of the terminated
process. Quit is useful for debugging.

The system tries to be intelligent as to whether you have a
terminal with the "new-line" function, or whether it must be
simulated with a "carriage-return" and "line-feed" pair. In the
latter case, all input "carriage-return" characters are changed to
"line-feed" characters (the standard line delimiter), and a

"carriage-return" and "line-feed" pair is echoed to the terminal.
If you get into the wrong mode, the stty(l) command will rescue
you.

Tab characters are used freely in programs. If your terminal
does not have the tab function, you can arrange to have tab
characters changed into spaces during output , and echoed as
spaces during input. Again, the stty(i) command will set or reset
this mode. The system assumes that tabs are set every eight
character positions. The taba(l) command will set tab stops on
your terminal, if that is possible.

How t o run a program. When you have successfully logged
on, a program called the shell is listening to your terminal. The
shell reads the lines you type, splits them into a command name
and its arguments, and executes the command. A command is
simply an executable program. Normally, the shell looks first in
your current directory (see The current directory below) for a
program with the given name, and if none is there, then in
system directories. There is nothing special about system-
provided commands except that they are kept in directories
where the shell can find them. You can also keep commands in
your own directories and arrange for the shell to find them there.

The command name is the first word on an input line to the
shell; the command and its arguments are separated from one
another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain
control and type a $ at you to indicate that it is ready for
another command. The shell has many other capabilities, which
are described in detail in ah(1).

T h e current directory. The CTIX file system is arranged in a
hierarchy of directories. When the system administrator gave
you a user name, he or she also created a directory for you
(ordinarily with the same name as your user name, and known as
your login or home directory). When you log in, that directory
becomes your current or working directory, and any file name
you type is by default assumed to be in that directory. Because
you are the owner of this directory, you have full permissions to
read, write, alter, or destroy its contents. Permissions to have
your will with other directories and files will have been granted
or denied to you by their respective owners, or by the system
administrator. To change the current directory use c<i(l).

P a t h names . To refer to files not in the current directory, you
must use a path name. Full path names begin with / , which is
the name of the root directory of the whole file system. After

the slash comes the name of each directory containing the next
sub-directory (followed by a /) , until finally the file name is
reached (e.g., / u s r / a e / f i l e x refers to file filex in directory ae,
while ae is itself a subdirectory of usr; uar springs directly from
the root directory). See intro(2) for a formal definition of path
name.
If your current directory contains subdirectories, the path names
of files therein begin with the name of the corresponding
subdirectory (without a prefixed /) . Without important
exception, a path name may be used anywhere a file name is
required.

Important commands that modify the contents of files are c/?(l),
mv, and rm(l) , which respectively copy, move (i.e., rename), and
remove files. To find out the status of files or directories, use
/.s(l). Use mkdir(l) for making directories and rmdir(l) for
destroying them.

For a fuller discussion of the file system, see the references cited
at the beginning of the INTRODUCTION above. It may also be
useful to glance through Section 2 of this manual, which
discusses system calls, even if you don't intend to deal with the
system at that level.

Writing a program. To enter the text of a source program
into a file, use erf(l), ex(l), or w(l) . After the program text has
been entered with the editor and written into a file (whose name
has the appropriate suffix), you can give the name of that file to
the appropriate language processor as an argument. Normally,
the output of the language processor will be left in a file in the
current directory named a .out (if that output is precious, use
mu(l) to give it a less vulnerable name).

When you have finally gone through this entire process without
provoking any diagnostics, the resulting program can be run by
giving its name to the shell in response to the $ prompt.

If any execution (run-time) errors occur, you will need adb{ 1) to
examine the remains of your program.

Your programs can receive arguments from the command line
just as system programs do; see exec (2).

Surprises. Certain commands provide inter-user
communication. Even if you do not plan to use them, it would
be well to learn something about them, because someone else
may aim them at you. To communicate with another user
currently logged in, write(l) is used; mail(l) will leave a message

whose presence will be announced to another user when he or she
next logs in. The corresponding entries in this manual also
suggest how to respond to these two commands if you are their
target.

When you log in, a message-of-the-day may greet you before the
first $.

C h a n g e s f r o m UNIX S y s t e m V . The CTIX Operating System
Manual, Version B, documents CTIX for MightyFrame and
MiniFrame systems, which is derived f rom UNIX System V,
Release 2.2.

The CTIX Operating System Manual, Version B, also includes
descriptions of the CTIX Internetworking programs and tools.

These are the important changes in UNIX software in CTIX':

The language support provided by the bs, efl, ratfor, sno,
and J77 programs. In their place, Convergent Technologies
can provide the following CTEX languages: GSA high level
COBOL; GSA-certified FORTRAN 77; Pascal; BASIC, with
both a compiler and interpreter and compatible with
Convergent Technologies workstation BASIC.

A terminal name is of the form ttyxxx instead of ttyxx.
RS-232 terminal numbers range from ttyOOO to tty255; RS-
422 terminal numbers range from tty256 to tty511.

There are two changes in terminal defaults. The default
speed for RS-232 terminals is 9600 baud instead of 300 baud.
The default erase character for all terminals is BACKSPACE
(control-h if your terminal lacks a BACKSPACE key) instead
of # .

Ls columnizes its output by default if the standard output is
a terminal, making Is easier to use on video terminals. This
convention and the associated —C option are borrowed from
the Berkeley Software Distribution.

Many Berkeley Software Distribution programs, libraries,
and networking programs are included. See especially the
indispensible head(1), mklost+found(1), more(1), renice(1),
and u/(l). In addition to the A T & T curses (based on
terminfo{ 4)), the Berkeley ocurse library (based on
termcap(4)) is supported.

V

PERMUTED INDEX

/ functions of HP 2640 and
/special functions of HP

special functions o f /
/ functions of DASI

functions of DASI/ 300,
/of DASI 300 and

/ltol3: convert between
comparison. diff3:

TEKTRONIX 4014/
/ for the TEKTRONIX
functions of the DASI/

functions of the DASI
between long integer/

fault,
absolute value.

adb:
abs: return integer
ceiling, remainder,

tiop: terminal
socket, accept:

connection on a socket.
allow/prevent L P /

times o f / touch: update
times, utime: set file

accessibility of a /
numerical/ graphics:

drvalloc, drvbind:
in a / sputl, sgetl:

sadp: disk
common object file

file systems for optimal
locking: exclusive

/endutent , utmpname:
access: determine
or disable process

acctcon2: connect-time
acctprc2: process

shell procedures for
acctwtmp: overview of

/and miscellaneous
diskusg - generate disk

acct: per-process
/search and print process

/merge or add total
/summary from per-process

/manipulate connect
runacct: run daily

process accounting,
accounting file format,

from per-process/
print process/

2621-series terminals. . . . hp(l)
2640 and 2621-series/ . . . hp(l)
300, 300s: handle 300(1)
300 and 300s terminals. , . 300(1)
300s: handle special 300(1)
300s terminals 300(1)
3-byte integers and long / . . 13tol(3C)
3-way differential file . . . diff3(l)
4014: paginator for the . . . 4014(1)
4014 terminal 4014(1)
450: handle special 450(1)
450 terminal, /special . . . 450(1)
a64l, 164a: convert a641(3C)
abort: generate an IOT . . abort(3C)
abs: return integer abs(3C)
absolute debugger adb(l)
absolute value abs(3C)
absolute value/ /f loor, . . . floor(3M)
accelerator interface tiop(7)
accept a connection on a . . accept(2N)
accept: accept a accept(2N)
accept, reject: accept(lM)
access and modification . . touch(l)
access and modification . . utime(2)
access: determine access(2)
access graphical and graphics(lG)
access loadable drivers. . . . lddrv(2)
access long integer data . . sputl(3X)
access profiler sadp(lM)
access routines, ldfcn: . . . ldfcn(4)
access time, /copy dcopy(lM)
access to regions of a / . . . locking(2)
access utmp file entry. . . . getut(3C)
accessibility of a file access(2)
accounting, /enable acct(2)
accounting, acctconl , . . . acctcon(lM)
accounting, acctprcl, . . . acctprc(lM)
accounting, /turnacct: . . . acctsh(lM)
accounting and/ /accton, . acct(lM)
accounting commands. . . . acct(lM)
accounting data by user/ . . diskusg(lM)
accounting file format. . . . acct(4)
accounting file(s) acctcom(l)
accounting files acctmerg(lM)
accounting records acctcms(lM)
accounting records fwtmp(lM)
accounting runacct(lM)
acct: enable or disable . . . acct(2)
acct: per-process acct(4)
acctcms: command summary acctcms(lM)
acctcom: search and acctcom(l)

connect-time/ acctconl, &cctcon2: acctcon(lM)
accounting, acctconl , &cctcon2: connect-time . . . acctcon(lM)

accton, acctwtmp:/ acctdisk, acctdusg acct(lM)
acctwtmp:/ acctdisk, acctdusg, accton acct(lM)
total accounting files, acctmerg: merge or add . . acctmerg(lM)

acctdisk, acctdusg, accton, acctwtmp:/ acct (lM)
process accounting, acctprcl, acctprc2: acctprc(lM)

accounting, acctprcl, acctprc2: process acctprc(lM)
/acctdusg, accton, acctwtmp: overview o f / . . acct(lM)
sin, cos, tan, asin, acos, atan, atan2:/' trig(3M)

kiliall: kill all active processes killall(lM)
sag: system activity graph sag(lG)

sa l , sa2, sadc: system activity report package. . . sar(lM)
sar: system activity reporter sar(l)

SCCS file editing activity, /print current . . sac t (l)
process data and system activity, /report t imex(l)

hopefully interesting, adage, /print a random, . . fortune(6)
adb: absolute debugger. . . adb(l)

acctmerg: merge or add total accounting/ . . . acctmergflM)
putenv: change or add value t o / putenv(3C)

/ se t D A R P A Internet address from node name. . . setaddr(lNM)
/inet_netof: Internet address manipulation/ . . . inet(3N)

setenet: write Ethernet address on disk setenet(lNM)
administer SCCS files, admin: create and admin(l)

admin: create and administer SCCS files. . . . admin(l)
interface, swap: swap administrative swap(lM)

Cave, advent: explore Colossal . . advent(6)
alarm: set a process alarm clock alarm(2)

alarm clock, alarm: set a process alarm(2)
data segment space allocation, /change brk(2)

calloc: main memory allocator, /realloc, malloc(3C)
fast main memory allocator, /mallinfo: malloc(3X)

accept, reject: allow/prevent L P / accept(lM)
running process/ renice: alter priority of renice(l)

sort: sort and/or merge files sort(l)
and link editor output, a.out: common assembler . . a.out(4)

/ t o commands and application programs. . . . intro(l)
maintainer for portable/ ar: archive and library . . . ar(l)

format, ar: common archive file . . ar(4)
number: convert Arabic numerals t o / number(6)
arithmetic/ be: arbitrary-precision bc(l)

maintainer for/ ar: archive and library ar(l)
cpio: format of cpio archive cpio(4)

ar: common archive file format ar(4)
header of a member of an archive file, /archive . . . ldahread(3X)

/convert object and archive files to common/ . . convert(l)
ldahread: read the archive header of a / ldahread(3X)

tar: tape file archiver tar(l)
maintainer for portable archives, /and library . . . ar(l)

cpio: copy file archives in and out cpio(l)
varargs: handle variable argument list varargs(5)

/output of a varargs argument list vprintf(3S)
xargs: construct argument list(s) and/ . . . xargs(l)

/get option letter from argument vector getopt(3C)
expr: evaluate arguments as a n / expr(l)

echo: echo arguments echo(l)

- 2 -

be: arbitrary-precision arithmetic language bc(1)
drill in number facts, arithmetic: provide arithmetic(6)

expr: evaluate arguments as an expression expr(l)
as: assembler as(l)

/and detach serial lines as network interfaces. . . . s lattach(lNM)
/ locate a terminal to use as the virtual s y s t e m / . . . conlocate(lM)

asa: interpret ASA carriage control/ . . . asa(l)
carriage control/ asa: interpret A S A asa(l)

ascii: map of ASCII character set ascii(5)
hd: hexadecimal and ascii Tile dump hd(l)

character set. ascii: map of ASCII ascii(5)
long integer and base-64 ASCII string, /between . . af>41(3C)

atof: convert ASCII string t o / atof(3C)
strings: extract the ASCII text strings in a / . . strings(l)

date / /localtime, gmtime, asctime, tzset: convert . . . ctime(3C)
sin, cos, tan, asin, acoe, atan, &tan2:/ . . trig(3M)

help: ask for help help(l)
editor/ a.out: common assembler and link a.out(4)

as: assembler
assertion, assert: verify program . . . assert(3X)

assert: verify program assertion assert(3X)
setbuf, setvbuf: assign buffering t o a / . . . setbuf(3S)

out the list of blocks associated with/ /print . . bcheck(lM)
commands at a later/ at, batch: execute at (l)

cos, tan, asin, acos, atan, atan2:/ sin, trig(3M)
/ tan , asin, acos, atan, &tan2: trigonometric/ . . . trig(3M)

string t o / atof: convert ASCII atof(3C)
strtod, atof: convert string t o / . . . strtod(3C)

integer, strtol, atol, atoi: convert string to . . . strtol(3C)
string t o / strtol, atol, atoi: convert strtol(3C)

slattach, sldetach: attach and detach serial/ . . s lattach(lNM)
process, wait: await completion of wait(l)

and processing/ awk: pattern scanning . . . awk(l)
ungetc: push character back into input stream. . . ungetc(3S)

backgammon, back: the game of back(6)
back: the game of backgammon back(6)

fine: fast incremental backup finc(lM)
recover files from a backup tape, free: frec(lM)

banner: make posters. . . . banner(l)
modem capability data base, modemcap: smart . . modemcap(5)

terminal capability data base, termcap: termcap(4)
terminal capability data base, terminfo: terminfo(4)

/between long integer and base-64 ASCII string. . . . a641(3C)
/(visual) display editor based on ex vi(l)

proto file; set links based on. / l ists from . . . qlist(l)
deliver portions o f / basename, dirname: basename(l)
at a later time, at, batch: execute commands . at (l)

arithmetic language, be: arbitrary-precision . . . bc(l)
list of blocks/ bcheck: print out the . . . bcheck(lM)

drvload: sys tem/ brc, bcheckrc, rc, powerfail, . . . brc(lM)
copy, bcopy: interactive block . . bcopy(lM)

bdiff: big diff bdiff(l)
cb: C program beautifier cb(1)

jO, j l , jn, yO, y l , yn: Bessel functions bessel(3M)
bfs: big file scanner bfs(l)

/ install object files in binary directories cpset(lM)

- 3 -

fread, fwrite: binary input/output. . . . fread(3S)
table, bsearch: binary search a sorted . . . bsearch(3C)

/tdelete, twalk: manage binary search trees tsearch(3C)
bind: bind a name to a socket. . . bind(2N)

socket, bind: bind a name to a . . . bind(2N)
jack, bj: the game of black . . . bj(6)

bj: the game of black jack bj(6)
bcopy: interactive block copy bcopy(lM)

sum: print checksum and block count of a file s u m (l)
sync: update the super biock. . sync(l)

/print out the list of blocks associated with/ . . bcheck(lM)
number of free disk blocks, df: report df (lM)

manipulate Volume Home Blocks (VHB). libdev: . . . libdev(3X)
powerfail, drvload:/ brc, bcheckrc, rc brc(lM)

segment space/ brk, sbrk: change data . . . brk(2)
sorted table, bsearch: binary search a . . bsearch(3C)

stdio: standard buffered input /output / . . stdio(3S)
setbuf, setvbuf: assign buffering to a stream. . • . setbuf(3S)

mknod: build special file mknod(lM)
vme: VME bus interface vme(7)

between host and network byte order, /values byteorder(3N)
swab: swap bytes swab(3C)

cc: C compiler. . cc (l)
cflow: generate C flowgraph cf low(l)

cpp: the C language preprocessor. . . cpp(l)
includes: determine C language preprocessor/ . . includes(I)

cb: C program beautifier. . . . cb (l)
lint: a C program checker l int(l)

cxref: generate C program/ cxref(l)
ctrace: C program debugger. . . . ctrace(l)

and share strings in C programs, /extract . . . xs tr (l)
cprofile: setting up a C shell environment a t / . . cprofile(4)

cal: print calendar cal(l)
dc: desk calculator dcf 1)

cal: print calendar cal(l)
service, calendar: reminder calendar(l)

system, cu: call another computer . . . cu(lC)
returned by stat system call, stat; data stat(5)

malloc, free, realloc, calloc: main memory/ . . . malloc(3C)
mailoc, free, realloc, calloc, mallopt,/ malloc(3X)

/introduction to system calls and error numbers. . . intro(2)
link and unlink system calls, /unlink: exercise . . . l ink(lM)
requests to an L P / lp, cancel: send/cancel lp(I)

modemcap: smart modem capability data base modemcap(5)
termcap: terminal capability data base termcap(4)
terminfo: terminal capability data base. terminfo(4)
asa: interpret ASA carriage control/ asa(l)

(variant of ex for casual users), /editor . . . edi t (l)
print files, cat: concatenate and cat (l)

catman: create the cat files for the / catman(l)
files for the manual, catman: create the cat . . . catman(l)

advent: explore Colossal Cave advent(6)
beautifier. cb: C program cb(l)

cc: C compiler c c (l)
directory, cd: change working cd(l)

commentary of an S C C S / cde: change the delta . . . cdc(l)

- 4 -

ceiling,/ floor, ceil, fmod, fabs: floor, . . . floor(3M)
/ceil, fmod, fabs: floor, ceiling, remainder,/ floor(3M)

flowgraph. cflow: generate C cflow(l)
delta: make a delta (change) to an S C C S / . . . delta(l)

of running process by changing nice, /priority . . renice(l)
create an interprocess channel, pipe: pipe(2)

terminal's local RS-232 channels, /controlling . . . tp(7)
input/ ungetc: push character back into ungetc(3S)
for/ eqnchar: special character definitions eqnchar(5)
the user, cuserid: get character login name of . . cuserid(3S)

/ fgetc , getw: get character or word from a / . getc(3S)
/ fputc , putw: put character or word on a / . . putc(3S)

ascii: map of ASCII character set ascii(5)
ASA carriage control characters, / interpret . . . asa(l)

toascii: translate characters. /_tolower, . . . conv(3C)
isascii: classify characters, / iscntrl ctype(3C)

tr: translate characters tr(l)
dodisk, lastlogin,/ chargefee, ckpacct, acctsh(lM)

directory, chdir: change working . . . chdir(2)
/f i le system consistency check and interactive/ . . . fsck(lM)

constant-width text / cw, checkcw: prepare cw(l)
mathematical/ eqn, neqn, checkeq: format eqn(l)

lint: a C program checker lint(l)
password/group file checkers, pwck, grpck: . . . pwck(lM)

file systems with label checking, / labelit: copy . . volcopy(lM)
systems processed by / checklist: list of file checklist(4)

documents/ mm, osdd, checkmm: print/check . . . mm(l)
of a file, sum: print checksum and block count . sum(l)

group, chown, chgrp: change owner or . . chown(l)
times: get process and child process t imes times(2)

wait: wait for child process to stop or / . . wait(2)
chmod: change mode. . . . chmod(l)

file, chmod: change mode of . . chmod(2)
group of a file, chown: change owner and . chown(2)

owner or group, chown, chgrp: change . . . chown(l)
directory, chroot: change root chroot(2)

directory for a / chroot: change root chroot(lM)
lastlogin,/ chargefee, ckpacct, dodisk, acctsh(lM)

/iscntrl, isascii: classify characters ctype(3C)
uucp spool directory clean-up. uuclean: uuclean(lM)

screen, clear: clear terminal clear(l)
clri: clear i-node clri(lM)

clear: clear terminal screen. . . . clear(l)
s tatus / ferror, feof, clearerr, fileno: stream . . . ferror(3S)

interpreter) with C-like syntax, / (command . csh(l)
set a process alarm clock, alarm: alarm(2)

cron: clock demon cron(lM)
used, clock: report C P U time . . clock(3C)

ldclose, ldaclose: close a common object / . . ldclose(3X)
close: close a file descriptor. . . . close(2)

descriptor, close: close a file close(2)
fclose, fflush: close or flush a stream. . . . fclose(3S)

clri: clear i-node clri(lM)
cmp: compare t w o files. . . cmp(l)

line-feeds, col: filter reverse col(l)
advent: explore Colossal Cave advent(6)

- 5 -

deltas,
comb:

lines common to t w o /
nice: run a

root directory for a
env: set environment for

rcmd: remote shell
uux: CTK-to-CTDC system

hangups/ nohup: run a
with/ csh: a shell

getopt: parse
executable file for

/ the standard/restricted
a stream to a remote

data and/ timex: time a
stream to a remote

per-process/ acctcms:
system: issue a shell
condition evaluation

time: time a
list(s) and execute

miscellaneous accounting
intro: introduction to

at, batch: execute
graphical and numerical

install: install
useful with graphical
cdc: change the delta

format, ar:
link editor/ a.out:
and archive files to

access routines, ldfcn:
ldopen, ldaopen: open a

/line number entries of a
/ldaclose: close a

/ the file header of a
/of a section of a
/f i le header of a

/of a section of a
/section header of a

/section of a
symbol table entry of a

/symbol table entry of a
/ t o the symbol table of a
/line number entries in a

nm: print name list of
/information for a

/section header for a
/information from a

/retrieve symbol name for
symbol table/ syms:

filehdr: file header for
Id: link editor for

/print section sizes of
/select or reject lines
/report inter-process

comb: combine SCCS . . . comb(l)
combine SCCS deltas. . . . comb(l)
comm: select or reject . . . comm(l)
command at low priority. . nice(l)
command, chroot: change . chroot(lM)
command execution env(l)
command execution rcmd(lN)
command execution uux(lC)
command immune to . . . nohup(l)
(command interpreter) . . . csh(l)
command options getopt(l)
command, path: locate . . path(l)
command programming/ . . sh (l)
command, / for returning . rcmd(3N)
command; report process . . t imex(l)
command, rexec: return . . rexec(3N)
command summary from . . acctcms(lM)
command system(3S)
command, test: tes t (i)
command. t ime(l)
command, /argument . . . xargs(l)
commands, /and acct(lM)
commands and application/ intro(l)
commands at a later/ . . . a t (l)
commands, /access graphics(lG)
commands install(lM)
commands, /network . . . s ta t (lG)
commentary of an S C C S / . cdc(l)
common archive file ar(4)
common assembler and . . a.out(4)
common formats, /object . convert(l)
common object file ldfcn(4)
common object file for/ . . ldopen(3X)
common object file/ ldlread(3X)
common object file ldclose(3X)
common object file ldfhread(3X)
common object file ldlseek(3X)
common object file idohseek(3X)
common object file ldrseek(3X)
common object file ldshread(3X)
common object file ldsseek(3X)
common object file, / a . . ldtbindex(3X)
common object file ldtbread(3X)
common object file ldtbseek(3X)
common object file linenum(4)
common object file nm(l)
common object file reloc(4)
common object file scnhdr(4)
common object file strip(l)
common object file/ ldgetname(3X)
common object file syms(4)
common object files filehdr(4)
common object files ld(l)
common object files s ize(l)
common to two sorted/ . . comm(l)
communication facilities/ . . ipcs(l)

- 6 -

/standard interprocess communication package. . . stdipc(3C)
create an endpoint for communication, socket: . . socket(2N)

diff: differential file comparator diff(l)
cmp: compare two files cmp(l)

an SCCS file, sccsdiff: compare two versions of . . sccsdiff(l)
3-way differential file comparison. diff3: diff3(l)

dircmp: directory comparison dircmp(l)
regular/ regemp, regex: compile and execute regcmp(3X)

/regular expression compile and match / regexp(S)
regular expression compile, regemp: regemp(1)

term: format of compiled term file term(4)
cc: C compiler. cc(l)

tic: terminfo compiler. t ic(lM)
yacc: yet another compiler-compiler yacc(l)

/erfc: error function and complementary error/ . . . erf(3M)
wait: await completion of process. . . . wait(l)

pack, peat, unpack: compress and expand/ . . . pack(l)
symbol table/ ldtbindex: compute the index of a . . . ldtbindex(3X)

cu: call another computer system cu(iC)
files, cat: concatenate and print . . . cat(l)

command, test: condition evaluation tes t (l)
system, config: configure a CTIX . . config(lM)
config: configure a CTIX system. . config(lM)

interface/ ifconfig: configure network ifconfig(lNM)
spooling/ lpadmin: configure the LP lpadmin(lM)

terminal to use as the / conlocate: locate a conlocate(lM)
/wtmpfix: manipulate connect accounting/ fwtmp(lM)

connection on a socket, connect: initiate a connect(2N)
getpeername: get name of connected peer getpeername(2N)

out-going terminal line connection, / a n dial(3C)
accept: accept a connection on a socket. . . accept(2N)

connect: initiate a connection on a socket. . . connect(2N)
part of a full-duplex connection, / s h u t down . . shutdown(2N)

listen: listen for connections on a socket. . . listen(2N)
acctconl, acctcon2: connect-time accounting. . . acctcon(lM)

fsck, dfsck: file system consistency check a n d / . . . fsck(lM)
as the virtual system console, / t o use conlocate(lM)

terminal, console: console consoie(7)
console: console terminal console(7)

math: math functions and constants math(5)
cw, checkew: prepare constant-width text for / . . cw(l)

mkfs: construct a file system. . . . mkfs(lM)
list(s) and/ xargs: construct argument xargs(l)

/ tbl , and eqn constructs deroff(l)
Is: list contents of directory. . . . ls(l)

toe: graphical table of contents routines toc(lG)
csplit: context split csplit(l)

/ interpret ASA carriage control characters asa(l)
ioctl: control device ioctl(2)

fcntl: file control fcntl(2)
init, telinit: process control initialization. init(lM)

msgctl: message control operations msgctl(2)
semctl: semaphore control operations semctl(2)

shmctl: shared memory control operations shmctl(2)
fcntl: file control options fcntl(5)

status inquiry and job control, uustat: uucp . . . uustat(lC)

- 7 -

vc: version
interface, tty:

local RS-232/ tp:
terminals, term:

units:
dd:

to English, number:
floating-point/ atof:
integers/ 13tol. ltol3:

integer and/ a641, 164a:
and archive Hies to /

/gmtime, asctime, tzset:
ecvt, fcvt, gcvt:

scanf, fscanf, sscanf:
archive files/ convert:

strtod, atof:
strtol, atol, atoi:

/htons, ntohl, ntohs:
dd: convert and

bcopy: interactive block
and out. cpio:

optimal access/ dcopy:
label/ volcopy, labelit:

files, cp, In, mv:
rep: remote file

system to CTDC system
CTIX-to-CTIX system file

image file,
core: format of

atan, a tan 2:/ sin,
functions, sinh,

print checksum and block
wc: word

or move files,
cpio: format of

in and out.
archive,

preprocessor,
shell environment at /

files in binary/
clock: report

craps: the game of
craps,

images.
or rewrite an existing/

tmpnam, tempnam:
rewrite an/ creat:

fork:
ctags:

tmpfile:
communication, socket:

channel, pipe:
SCCS files, admin:

the manual, catman:
umask: set and get file

control • vc (l)
controlling terminal t ty(7)
controlling terminal's . . . tp(7)
conventional names for . . . term(5)
conversion program. units(l)
convert and copy a file. . dd (l)
convert Arabic numerals . . number(6)
convert ASCII string to . atof(3C)
convert between 3-byte . 13tol(3C)
convert between long . . . a641(3C)
convert: convert object . . . convert(l)
convert date and time to / . ctime(3C)
convert floating-point/ . . . ecvt(3C)
convert formatted input. . . scanf(3S)
convert object and convert(l)
convert string t o / strtod(3C)
convert string to / strtol(3C)
convert values between/ . byteorder(3N)
copy a file . d d (l)
copy. . . . bcopy(lM)
copy file archives in cpio(l)
copy file systems for dcopy (1M)
copy file systems with . . . volcopy(lM)
copy, link or move cp (l)
copy . rcp(lN)
copy, /uuname: CTIX . . . uucp(lC)
copy, /uupick: public . . . uuto(lC)
core: format of core core(4)
core image file . core(4)
cos, tan, asin, acos, trig(3M)
cosh, tanh: hyperbolic . . . sinh(3M)
count of a file, sum: s u m (l)
count . wc (l)
cp, In, mv: copy, link . . • cp (l)
cpio archive . cpio(4)
cpio: copy file archives . . . cpio(l)
cpio: format of cpio cpio(4)
epp: the C language . . . • cpp(l)
cprofile: setting up a C . . . cprofile(4)
cpset: install object cpset(lM)

. clock(3C)
craps . craps(6)
craps: the game of craps(6)
crash: examine system . . . crash(lM)
creat: create a new file . . . creat(2)
create a name for a / tmpnam(3S)
create a new file or creat(2)
create a new process. . . . fork(2)
create a tags file . ctags(l)
create a temporary file. . tmpfiie(3S)
create an endpoint for . . . socket(2N)
create an interprocess . . . pipe(2)
create and administer . . . admin(l)
create the cat files for . . . catman(l)

. umask(2)
cron: clock demon. cron(lM)

- 8 -

file.
crontab - user

generate C program
optimization/ curses:

generate hashing/
interpreter) with/

remote terminal.
file.

name for terminal,
gmtime, asctime, tzset:/

software,
config: configure a

/uuname: CTIX system to
uucp, uulog, uuname:
print name of current

get name of current
command execution, uux:

uuto, uupick: public
debugger,

computer system.
ttt,

uname: print name of
uname: get name of

gethostname: get name of
editing/ sact: print

in the utmp file of the
getcwd: get path-name of

handling and/
interpolate smooth

login name of the user.
fields of each line o f /

of each line of a / cut:
constant-width text for/

program/
cron: clock

the error-logging
runacct: run

from node/ setaddr: set
Transfer Protocol / ftpd:

server, telnetd:
/user interface to the

Transfer/ tftpd:
/special functions of

/special functions of the
command; report process
smart modem capability

terminal capability
terminal capability

generate disk accounting
access long integer

lock process, text, or
prof: display profile

system call, stat:
brk, sbrk: change

types: primitive system

crontab - user crontab . . crontab(l)
crontab file crontab(l)
cross-reference, cxref: . . cxref(l)
CRT screen handling and curses(3X)
crypt, setkey, encrypt: . . crypt(3C)
csh: a shell (command . . csh(l)
csplit: context split. . . . csplit(l)
ct: spawn getty to a . . . c t (lC)
ctags: create a tags . . . ctags(l)
ctupmiH' n i p — • B-..CHWV inv . • W l̂ IHIUfOO)

ctime, localtime, ctime(3C)
ctinstall: install ctinstall(l)
CTIX system config(lM)
CTIX system copy. . . . uucp(lC)
CTIX system to C T I X / . uucp(lC)
CTIX system, uname: . . uname(l)
CTIX system, uname: . . uname(2)
CTIX-to-CTIX system . . uux(lC)
CTIX-to-CTIX system file/ uuto(lC)
ctrace: C program ctrace(l)
cu: call another cu(lC)
cubic: tic-tac-toe ttt(6)
current CTIX system. . . uname(l)
current CTIX system. . . uname(2)
current host gethostname(3N)
current SCCS file sact(l)
current user, / the s lot . . ttyslot(3C)
current working/ getcwd(3C)
curses: CRT screen . . . curses(3X)
curve, spline: spline(lG)
cuserid: get character . . cuserid(3S)
cut: cut out selected . . . cut(l)
cut out selected fields . . cut(l)
cw, checkcw: prepare . . cw(l)
cxref: generate C cxref(l)

cron(lM)
demon, /terminate . . . errstop(lM)
daily accounting runacct(lM)
D A R P A Internet address . setaddr(lNM)
D A R P A Internet File . . ftpd(lNM)
D A R P A TELNET protocol te lnetd(lNM)
D A R P A T F T P protocol. . t f tp(lN)
D A R P A Trivial File . . . tftpd (1NM)
DASI 300 and 300s / . . . 300(1)
DASI 450 terminal. . . . 450(1)
data and system/ / t ime a t imex(l)
data base, modemcap: . . modemcap(5)
data base, termcap: . . . termcap(4)
data base, terminfo: . . . terminfo(4)
data by user ID. j- . . . diskusg(lM)
data in a / sputl, sgetl: . . sputl(3X)
data in memory, plock: plock(2)
data prof(l)
data returned by stat . . stat(5)
data segment space/ . . . brk(2)
data types types(5)

- 9 -

join: relational database operator jo in(l)
the mkfs(l) proto file database, /using qinstall(l)
tput: query terminfo database tput (l)

/asctime, tzset: convert date and time to string. . . ctime(3C)
date: print and set the date date(l)

date, date: print and set the . . . date(l)
dc: desk calculator dc (l)

for optimal access/ dcopy: copy file systems . . dcopy(lM)
file, dd: convert and copy a . . . dd (l)

adb: absolute debugger a a b (i)
ctrace: C program debugger ctrace(l)

fsdb: file system debugger fsdb(lM)
sdb: symbolic debugger sdb(l)

neqn. /special character definitions for eqn and . . . eqnchar(5)
basename, dirname: deliver portions of path/ . . basename(l)

a file, tail: deliver the last part of . . . tai l (l)
commentary of an SCCS delta, /change the delta . . cdc(l)

SCCS/ delta: make a delta (change) to an delta(l)
SCCS/ ede: change the delta commentary of an . . cdc(l)

rmdel: remove a delta from an SCCS file. . . rmdel(l)
(change) to an SCCS/ delta: make a delta delta(l)
comb: combine SCCS deltas comb(l)

errdemon: error-logging demon errdemon(lM)
mesg: permit or deny messages mesg(l)

nroff/troff, tbl, and/ deroff: remove deroff(l)
system: system description file system(4)

close: close a file descriptor close(2)
duplicate an open file descriptor, dup: dup(2)

dc: desk calculator dc (l)
/sldetach: attach and detach serial lines as/ . . . s lattach(lNM)

of a file, access: determine accessibility . . . access(2)
preprocessor/ includes: determine C language . . . includes(l)

file: determine file type. f i le(l)
drivers: loadable device drivers drivers(7)

for finite width output device, /fold long lines . . . fold(l)
table, master: master device information master(4)

ioctl: control device ioctl(2)
devnm: device name devnm(lM)

/tekset, td: graphical device routines and/ gdev(lG)
devnm: device name devnm(lM)

free disk blocks, df: report number of df (lM)
consistency check/ fsck, dfsck: file system fsck(lM)
out-going terminal line/ dial: establish an dial(3C)

bdiff: big diff bdiff(l)
comparator, diff: differential file diff(l)

differential file/ diff3: 3-way difr3(l)
sdiff: side-by-side difference program sdiff(l)

files, diffmk: mark differences between di f fmk(l)
comparator, diff: differential file diff(l)

diff3: 3-way differential file/ diff3(l)
between files, diffmk: mark differences . . diffmk(l)

directories, dir: format of dir(4)
comparison, dircmp: directory dircmp(l)

object files in binary directories, /install cpset(lM)
dir: format of directories dir(4)

rmdir: remove files or directories, rm, r m (l)

- 10 -

cd: change working directory cd(l)
chdir: change working directory chdir(2)

chroot: change root directory chroot(2)
uuclean: uucp spool directory clean-up uuclean(lM)

dircmp: directory comparison. . . . dircmp(l)
unlink: remove directory entry unlink(2)

chroot: change root directory for a command. . . chroot(lM)
/make a lost+found directory for fsck mklos t+foundf l)

of current working directory, /path-name . . . getcwd(3C)
Is: list contents of directory. Is(l)

mkdir, mkdirs: make a directory mkdir(l)
mvdir: move a directory mvdir(lM)
pwd: working directory name pwd(l)

or / mknod: make a directory, or a special . . . mknod(2)
portions o f / basename, dirname: deliver basename(l)

LP printers, enable, disable: enable/disable . . . enable(l)
acct: enable or disable process/ acct(2)

modes, speed, and line discipline, / type , getty(lM)
sadp: disk access profiler sadp(lM)

user/ diskusg - generate disk accounting data by . . diskusg(lM)
report number of free disk blocks, df: df(lM)

exchangeable disk, dismount: remove . . dismount(l)
disk: general disk driver disk(7)

driver, disk: general disk disk(7)
Ethernet address on disk, setenet: write setenet(lNM)

update: provide disk synchronization. . . . update(lM)
du: summarize disk usage du(l)

accounting data by user/ diskusg - generate disk . . . diskusg(lM)
mount, umount: mount and dismount file system. . . . mount(lM)

disk, dismount: remove exchangeable dismount(l)
/screen-oriented (visual) display editor based o n / . . vi(l)

prof: display profile data prof(l)
hypot: Euclidean distance function hypot(3M)

generate uniformly distributed/ / lcong48: . . . drand48(3C)
/checkmm: print/check documents formatted wi th / . mm(l)
package for formatting documents, / t h e M M macro mm(5)

and/ mmt, mvt: typeset documents, view graphs, . . mmt(l)
chargefee, ckpacct, dodisk, lastlogin,,/ acctsh(lM)

whodo: who is doing what whodo(lM)
/atof: convert string to double-precision number. . . strtod(3C)

ptdl: RS-232 terminal download, tdl, gtdl tdl(l)
lrand48, nrand48,/ drand48, erand48 drand48(3C)

graph: draw a graph graph(lG)
arithmetic: provide drill in number facts. . . . arithmetic(6)

disk: general disk driver disk(7)
sxt: pseudo-device driver sxt(7)

drivers: loadable device drivers drivers(7)
/manage loadable drivers. lddrv(lM)

drvbind: access loadable drivers, drvalloc lddrv(2)
drivers, drivers: loadable device . . drivers(7)

access loadable/ drvalloc, drvbind: lddrv(2)
drivers, drvalloc, drvbind: access loadable . . lddrv(2)

bcheckrc, rc, powerfail, drvload: system/ brc, . . . brc(lM)
usage, du: summarize disk du(l)

parts of an object/ dump: dump selected . . . dump(l)
status information from dump, /error records and . errdead(lM)

- 11 -

and ascii file dump, hd: hexadecimal . . hd(l)
od: octal dump ° d (l)

an object file, dump: dump selected parts of . . . dump(l)
file descriptor, dup: duplicate an open . . . dup(2)

descriptor, dup: duplicate an open file . . . dup(2)
echo: echo arguments echo(l)

echo: echo arguments. . . . echo(l)
convert floating-point/ ecvt, fcvt, gcvt: ecvt(3C)

ed, red: text editor e<l(l)
i j prugra.ui. ciiu, ctcAi, cuuik insb luvauviiB tit * • . cuu^ovf

(variant of ex for/ edit: text editor edit (l)
print current SCCS file editing activity, sact: . . . sact (l)

/(visual) display editor based on ex V>(1)
ed, red: text editor ed(1)

ex: text editor e x (l)
files. Id: link editor for common object . . ld(l)

ged: graphical editor ged(lG)
assembler and link editor output, /common . . a.out(4)

sed: stream editor sed(l)
for casual/ edit: text editor (variant of ex edi t (l)

ldeeprom: load EEPROM ldeeprom(lM)
/user, real group, and effective group IDs getuid(2)

/getegid: get real user, effective user, real/ getuid(2)
split 177, ratfor, or efl files, fsplit: fspl i t (l)

file for a / grep, egrep, fgrep: search a . . . grep(l)
enable/disable L P / enable, disable: enable(l)

process/ acct: enable or disable acct(2)
enable, disable: enable/disable L P / enable(l)

hashing/ crypt, setkey, encrypt: generate crypt(3C)
generate hashing encryption, /encrypt: . . . crypt(3C)

locations in program, end, etext, edata: last . . . end(3C)
/getgrnam, setgrent, endgrent, fgetgrent: ge t / . . getgrent(3C)

host entry, /sethostent, endhostent: get network . . gethostent(3N)
/getnetbyname, setnetent, endnetent: get network/ . . getnetent(3N)

socket: create an endpoint for/ socket(2N)
protocol/ /setprotoent, endprotoent: get getprotoent(3N)

/getpwnam, setpwent, endpwent, fgetpwent: get / . getpwent(3C)
entry, /setservent, endservent: get service . . . getservent(3N)

/pututline, setutent, endutent, utmpname:/ . . . getut(3C)
Arabic numerals to English, /convert number(6)

nlist: get entries from name list. . . . nlist(3C)
linenum: line number entries in a common/ . . . linenum(4)
man, manprog: print entries in this manual. . . . man(l)

/macros for formatting entries in this manual. . . . man(5)
/manipulate line number entries of a common/ . . . ldlread(3X)
a/ /seek to line number entries of a section of . . . ldlseek(3X)

a / /seek to relocation entries of a section of . . . ldrseek(3X)
wtmp: utmp and wtmp entry formats, utmp, . . . utmp(4)

get group file entry, /fgetgrent: getgrent(3C)
get network host entry, /endhostent: gethostent(3N)

endnetent: get network entry, /setnetent, getnetent(3N)
get protocol entry, /endprotoent: . . . getprotoent(3N)

get password file entry, / fgetpwent: getpwent(3C)
endservent: get service entry, /setservent getservent(3N)

access utmp file entry, /utmpname: getut(3C)
object file symbol table entry, /name for common . ldgetname(3X)

- 12 -

/ index of a symbol table entry of a common object/ . ldtbindex(3X)
/an indexed symbol table entry of a common object/ . ldtbread(3X)

write password file entry, putpwent: putpwent(3C)
unlink: remove directory entry unlink(2)

command execution, env: set environment for . . env(l)
environment, environ: user environ(5)

/ set t ing up a C shell environment at login/ . . . cprofile(4)
profile: setting up an environment at login/ . . . profile(4)

environ: user environment environ(5)
execution, env: set environment for command > env(i)

getenv: return value for environment name getenv(3C)
change or add value to environment, putenv: . . . putenv(3C)

inteface, and terminal environment, /terminal . . t set(l)
definitions for eqn and neqn. /character . eqnchar(5)

nroff/troff, tbl, and eqn constructs, /remove . . deroff(l)
format mathematical/ eqn, neqn, checkeq: eqn(l)
character definitions/ eqnchar: special eqnchar(5)

rhosts: remote equivalent users rhosts(4N)
nrand48,/ drand48, erand48, lrand48. drand48(3C)
td: graphical/ hpd, erase, hardcopy, tekset, . . gdev(lG)

function and/ erf, erfc: error erf(3M)
complementary/ erf, erfc: error function and . . erf(3M)

interface, err: error-logging err(7)
records and s ta tus / errdead: extract error . . . errdead(lM)

demon, errdemon: error-logging . . errdemon(lM)
format, errfile: error-log file errfile(4)

sys_nerr:/ perror, errno, sys_errlist perror(3C)
erf, erfc: error function a n d / erf(3M)

/and complementary error function erf(3M)
/sys_nerr: system error messages perror(3C)

/ t o system calls and error numbers intro(2)
errdead: extract error records and s tatus / . . errdead(lM)

matherr: error-handling function. . . matherr(3M)
errfile: error-log file format errfile(4)

errstop: terminate the error-logging demon. errstop(lM)
errdemon: error-logging demon errdemon(lM)

err: error-logging interface. . . . err(7)
a report of logged errors, errpt: process . , , errpt(lM)

hashcheck: find spelling errors, /spellin spell(l)
of logged errors, errpt: process a report . . . errpt(lM)

error-logging demon, errstop: terminate the . . . errstop(lM)
terminal l ine/ dial: establish an out-going . . . dial(3C)

setmnt: establish mount table. . . . setmnt(lM)
loadable drivers, /e tc / lddrv/ lddrv: manage . Iddrv(lM)

locations in / end, etext, edata: last end(3C)
disk, setenet: write Ethernet address on setenet(lNM)

function, hypot: Euclidean distance hypot(3M)
expression, expr: evaluate arguments as an . . expr(l)

test: condition evaluation command. . . . test(l)
/ t ex t editor (variant of ex for casual users) edit(l)

ex: text editor ex(l)
display editor based on ex. /(visual) vi(l)

crash: examine system images. . . crash(lM)
regions of a / locking: exclusive access to locking(2)

execve, execlp, execvp:/ execl, execv, execle, exec(2)
execvp:/ execl, execv, execle, execve, execlp, . . . exec(2)

- 13 -

/execv, execle, execve, execlp, execvp: execute/ . . exec(2)
command, path: locate executable Hie for path(l)

execve, execlp, execvp: execute a file, /execle, . . . exec(2)
/argument list(s) and execute command xargs(l)
later time, at, batch: execute commands at a . . a t (l)

regex: compile and execute regular/ regcmp, . . regcmp(3X)
environment for command execution, env: set env(l)

sleep: suspend execution for an/ s leep(l)
sleep: suspend execution for interval. . . . sleep(3C) l

UlUlllbVl. picpuc CA«VUV1I/1I |PIUIIIt. IIIVII1VUI y

remote shell command execution, rcmd: rcmd(lN)
rexecd: remote execution server rexecd(lNM)

profil: execution time profile. . . . profil(2)
system command execution. /CTIX-to-CTIX . uux(lC)

execlp, execvp:/ execl, execv, execle, execve, exec(2)
execl, execv, execle, execve, execlp, execvp:/ . . exec(2)

/execle, execve, execlp, execvp: execute a file. . . . exec(2)
system/ link, unlink: exercise link and unlink . . l ink(lM)

a new file or rewrite an existing one. /create creat(2)
process, exit, _exit: terminate exit(2)

process, exit, _exit: terminate exit(2)
sqrt: exponential,/ exp, log, loglO, pow, exp(3M)

unpack: compress and expand files, /peat pack(l)
and/ expand, unexpand: expand tabs to spaces, . . . expand(l)

tabs to spaces, and/ expand, unexpand: expand . expand(l)
advent: explore Colossal Cave. . . . advent(6)

/log, loglO, pow, sqrt: exponential, logarithm,/ . . exp(3M)
as an expression, expr: evaluate arguments . . expr(l)

match/ regexp: regular expression compile and . . . regexp(5)
regcmp: regular expression compile regcmp(l)

evaluate arguments as an expression, expr: expr(l)
and execute regular expression, /compile regcmp(3X)
strings in C / xstr: extract and share xstr(l)

and s tatus / errdead: extract error records errdead(lM)
strings in a / strings: extract the ASCII text . . . strings(l)

files, fsplit: split 177, ratfor, or efl fspl i t (l)
floor, ceil, fmod, fabs: floor, ceiling,/ floor(3M)

factor: factor a number factor(l)
factor: factor a number. . . factor(l)

values, true, false: provide truth true(l)
in a machine-independent fashion., /integer data . . . sputl(3X)

fine: fast incremental backup. . . finc(lM)
/mallopt, mallinfo: fast main memory/ malloc(3X)

abort: generate an IOT fault abort(3C)
flush a stream, fclose, fflush: close or . . . fclose(3S)

fcntl: file control fcntl(2)
options, fcntl: file control fcntl(5)

floating-point/ ecvt, fevt, gcvt: convert ecvt(3C)
fopen, freopen, fdopen: open a stream. . . . fopen(3S)

stream status / ferror, feof, clearerr, fileno: ferror(3S)
fileno: stream status / ferror, feof, clearerr ferror(3S)

and statistics for a / ff: list file names f f (lM)
stream, fclose, fflush: close or flush a . . . fclose(3S)

getc, getchar, fgetc, getw: ge t / getc(3S)
/setgrent, endgrent, fgetgrent: get group/ . . . getgrent(3C)

/setpwent, endpwent, fgetpwent: get password/ . . getpwent(3C)

- 14 -

a stream, gets,
a pattern, grep, egrep,

modification/ utime: set
ldfcn: common object

accessibility of a
tar: tape

out. cpio: copy
grpck: password/group
chmod: change mode of

owner ana group of a
diff: differential

3-way differential
fcntl:
fcntl:

rep: remote
CTDC-to-CTDC system

format of core image
umask: set and get

crontab - user crontab
ctags: create a tags

fields of each line of a
using the mkfs(l) proto
dd: convert and copy a

(change) to an SCCS
close: close a

dup: duplicate an open
type.

hexadecimal and ascii
parts of an object

sact: print current SCCS
fgetgrent: get group

fgetpwent: get password
utmpname: access utmp

putpwent: write password
execvp: execute a

/egrep, fgrep: search a
path: locate executable

/open a common object
per-process accounting

ar: common archive
errfile: error-log

intro: introduction to
of a common object

get a version of an SCCS
group: group

object files, filehdr:
ldfhread: read the

/seek to the optional
split: split a

issue identification
a member of an archive

close a common object
of a common object
of a common object
of a common object
of a common object

fgets: get a string from .
fgrep: search a file for
file access and
file access routines. . .
file, access: determine .
file archiver
file archives in and . .
file checkers, pwck, . .
file
file, chown: change . .
file comparator
file comparison. diff3: .
file control
file control options. . .
file copy.
file copy, /public . . .
file, core:
file creation mask. . . .
file
file
file, / c u t out selected
file database, / sof tware
file
file, / m a k e a delta . .
file descriptor
file descriptor
file: determine file . . .
file dump, hd:
file, / d u m p selected . .
file editing activity. . .
file entry, /endgrent,
file entry, /endpwent , .
file entry, / endutent ,
file entry.
file, /execve, execlp, . .
file for a pattern. . . .
file for command. . . .
file for reading
file format, acct: . . .
file format
file format
file formats
file function, /entries
file, get:

file header for common .
file header of a common/
file header of a common/
file into pieces
file, issue:
file, /archive header of
file, /ldaclose:
file, / t h e file header . .
file, / o f a section . . .
file. /f i le header . . .
file, / o f a section . . .

gets(3S)
grep(l)
utime(2)
ldfcn(4)
access(2)
tar(l)
cpio(l)
pwck(lM)
chmod(2)
chown(2)
difT(l)
diff3(l)
fcntl(2)
fcntl(S) i-
rcp(lN)
uuto(lC)
core(4)
umask(2)
crontab(l)
ctags(l)
cut(l)
qinstall(l)
dd(l)
delta(l) i
close(2) '
dup(2)
file(l)
hd(l)
dump(l) 7
sact(l)
getgrent(3C)
getpwent(3C)
getut(3C)
putpwent(3C)
exec(2)
grep(l)
path(l)
ldopen(3X)
acct(4)
ar(4)
errfile(4)
intro(4)
ldlread(3X)
get (l)
group(4)
filehdr(4)
ldfhread(3X)
ldohseek(3X)
split(l)
issue(4)
ldahread(3X)
ldciose(3X)
ldfhread(3X)
ldlseek(3X)
ldohseek(3X)
ldrseek(3X)

- 15 -

of a common object file, /section header ldshread(3X)
of a common object file, /section ldsseek(3X)

entry of a common object file, / o f a symbol table . . ldtbindex(3X)
entry of a common object file, / symbol table ldtbread(3X)
table of a common object file, / t o the symbol ldtbseek(3X)

in a common object file, /number entries . . . l inenum(4)
link: link to a file link(2)

file;/ qlist: print out file lists from proto ql ist(l)
access to regions of a file, /exclusive locking(2)

an ifiie from an object file, mkifiie: make mkifi le(lM)
mknod: build special file mknod(lM)

or a special or ordinary file, /make a directory, . . mknod(2)
ctermid: generate file name for terminal. . . . ctermid(3S)

mktemp: make a unique file name mktemp(3C)
statistics/ ff: list file names and f f (lM)

the format of a text file, newform: change . . . newform(l)
list of common object file, nm: print name n m (l)

null: the null file null(7)
/ the slot in the utmp file of the current/ ttyslotySO)

/processes using a file or file structure fuser(lM)
creat: create a new file or rewrite an/ creat(2)

passwd: password file passwd(4)
subsequent lines of one file, /several files or paste(l)

soft-copy/ pg: file perusal filter for pg (l)
/ftell: reposition a file pointer in a / fseek(3S)

lseek: move read/write file pointer lseek(2)
prs: print an SCCS file prs(l)

read: read from file read(2)
for a common object file, / information reloc(4)

a delta from an SCCS file, rmdel: remove rmdel(l)
bfs: big file scanner bfs (l)

two versions of an SCCS file, sccsdiff: compare . . . sccsdiff(l)
sees file: format of SCCS file sccsfile(4)

for a common object file, /section header scnhdr(4)
/file lists from proto file; set links based/ qlist(l)

i-node. openi: open a file specified by openi(2)
stat, fstat: get file status stat(2)

ASCII text strings in a file, /extract the strings(l)
from a common object file, / information str ip(l)

/us ing a file or file structure fuser(lM)
and block count of a file, /print checksum . . . s u m (l)

synchronous write on a file, swrite: swrite(2)
/name for common object file symbol table entry. . . . ldgetname(3X)

syms: common object file symbol table/ syms(4)
check and/ fsck, dfsck: file system consistency . . . f sck(lM)

fsdb: file system debugger. . . . f sdb(lM)
and statistics for a file system, / f i le names . . f f (lM)

fs: file system format fs(4)
mkfs: construct a file system mkfs(lM)

mount and dismount file system, /umount: . . . mount(lM)
mount: mount a file system mount(2)

ustat: get file system statistics ustat(2)
mnttab: mounted file system table mnttab(4)

umount: unmount a file system umount(2)
system description file, system: system(4)

access/ dcopy: copy file systems for optimal . . dcopy(lM)

- 16 -

by/ checklist: list of file systems processed . . . checklist(4)
volcopy, labelit: copy file systems with label/ . . volcopy(lM)

the last part of a file, tail: deliver tail(l)
format of compiled term file., term: term(4)

create a temporary file, tmpfile: tmpfile(3S)
a name for a temporary file, / t empnam: create . , . tmpnam(3S)
modification times of a file, /update access and . . touch(l)

ftp: file transfer program. . . . f tp (lN)
ftpd: DARPA Internet File Transfer Protocol / . . f tpd(lNM)
tftpd: DARPA Trivia! File Transfer Protocol / , . t f tpd(lNM)

ftw: walk a file tree ftw(3C)
file: determine file type file(l)
TZ: time zone file tz(4)

previous get of an SCCS file, unget: undo a unget(l)
repeated lines in a file, uniq: report uniq(l)

val: validate SCCS file val(l)
write: write on a file write(2)

umask: set file-creation mode mask. . . umask(I)
common object files, filehdr: file header for . . . filehdr(4)
ferror, feof, clearerr, fileno: stream s t a t u s / . . . ferror(3S)

print process accounting file(s). /search and acctcom(l)
or add total accounting files, acctmerg: merge . . . acctmerg(lM)

and administer SCCS files, admin: create admin(l)
concatenate and print files, cat: cat(l)

cmp: compare two files cmp(l)
common to two sorted files, /or reject lines comm(l)

mv: copy, link or move files, cp, In, cp(l)
mark differences between files, diffmk: diffmk(l)

header for common object files, filehdr: file filehdr(4)
find: find files find(l)

catman: create the cat files for the manual catman(l)
tape, free: recover files from a backup frec(XM)

specification in text files, fspec: format fspec(4)
f77, ratfor, or efl files, fsplit: split fsplit(l)

format of graphical files, /string gps(4)
cpset: install object files in binary/ cpset(lM)

preprocessor include files. / C language includes(l)
introduction to special files, intro: intro(7)

editor for common object files. Id: link ld(l)
lockf: record locking on files lockf(3C)

rm, rmdir: remove files or directories r m (l)
/ same lines of several files or subsequent/ paste(l)
compress and expand files, /peat , unpack: pack(l)

pr: print files . pr(l)
sizes of common object files, /print section size(l)
sort: sort and/or merge files . sort(l)

/object and archive files to common formats. . . convert(l)
what: identify SCCS files what(l)

pg: file perusal filter for soft -copy/ pg(l)
greek: select terminal filter greek(l)

nl: line numbering filter nl(l)
line-feeds, col: filter reverse col(l)

device routines and filters. / td : graphical . . . gdev(lG)
tplot: graphics filters tplot(lG)

backup, fine: fast incremental . . . finc(lM)
find: find files find(l)

- 17 -

hyphen:
ttyname, isatty:

for an object / lorder:
/spellin, hashcheck:

utmp file o f / ttyslot:
/fold long lines for

fish: play "Go

v€e: pipe
/convert ASCII string to

/ fcvt , gcvt: convert
/manipulate parts of

floor, ceiling,/
floor, ceil, fmod, fabs:

cflow: generate C
fclose, fflush: close or

ceiling,/ floor, ceil,
for finite width output /

finite width / fold:
open a stream.

process,
accounting file

ar: common archive file
errfile: error-log file

fs: file system
for/ eqn, neqn, checkeq:

newform: change the
inode:

file., term:
file, core:

cpio:
dir:

/primitive string,
sccsfile:

text files, fspec:
object file symbol table

or troff. tbl:
nroff:

archive files to common
introduction to file

utmp and wtmp entry
fscanf, sscanf: convert

varargs/ /vsprintf: print
/fprintf, sprintf: print

/print/check documents
/ t h e macro package for

/ the MM macro package for
this / man: macros for
management, netman:
hopefully interesting,/

formatted/ printf,
putc, putchar,
stream, puts,
input /output ,

a backup tape.

. f ind(l)
find hyphenated words. . hyphen(l)
find name of a terminal. . t tyname(3C)
find ordering relation . . . lorder(l)
find spelling errors. spell(l)
find the slot in the ttyslot(3C)
finite width output / fo ld(l)
Fish" . fish(6)
fish: play "Go Fish". . . . fish(6)
H11K1115. • . • • * • • • • tmm(1 \ .
floating-point number. . . . atof(3C)
floating-point number t o / . ecvt(3C)
floating-point numbers. . frexp(3C)
floor, ceil, fmod, fabs: . . . floor(3M)
floor, ceiling,/ . floor(3M)

. cf low(l)

. fclose(3S)
fmod, fabs: floor, floor(3M)
fold: fold long lines fo ld(l)
fold long lines for fo ld(l)
fopen, freopen, fdopen: . . . fopen(3S)
fork: create a new fork(2)
format, /per-process . . . acct(4)

. errfile(4)
format . fs(4)
format mathematical text . eqn(l)
format of a text file. newform(l)
format of an i-node. inode(4)
format of compiled term . . term(4)
format of core image core(4)
format of cpio archive. . . . cpio(4)
format of directories. . . . dir(4)
format of graphical/ . . . • gps(4)
format of SCCS file. sccsfile(4)
format specification in . . . fspec(4)
format, syms: common . syms(4)
format tables for nroff . . . tb l (l)
format text . nroff(l)
formats, /object and . . . convert(l)
formats, intro: . intro(4)
formats, utmp, wtmp: . . . utmp(4)
formatted input, scanf, . scanf(3S)
formatted output of a . . . vprintf(3S)
formatted output. printf(3S)
formatted with the MM/ . . m m (l)
formatting a permuted/ . mptx(5)
formatting documents. . . . mm(5)
formatting entries in man(5)
form-based network netman(lNM)
fortune: print a random, . . fortune(6)
fprintf, sprintf: print printf(3S)
fputc, putw: p u t / putc(3S)
fputs: put a string on a . puts(3S)
fread, fwrite: binary fread(3S)
free: recover files from . . . frec(lM)

- 18-

df: report number of free disk blocks df(lM)
main memory/ mailoc, free, realloc, calloc: malloc(3C)

mallopt, / malloc, free, realloc, calloc malloc(3X)
stream, fopen, freopen, fdopen: open a . . fopen(3S)

manipulate parts o f / frexp, ldexp, modf: frexp(3C)
free: recover files from a backup tape frec(lM)

/ l ine number information from a common objec t / . . strip(l)
/receive a message from a socket recv(2N)

get character or word from a stream, /ge tw: . . . getc(3S)
fgets: get a string from a stream, gets, gets(3S)

mkifile: make an ifile from an object file mkifile(lM)
rmdel: remove a delta from an SCCS file rmdel(l)

/ ge t option letter from argument vector. . . . getopt(3C)
and status information from dump, /records . . . errdead(lM)

read: read from file read(2)
ncheck: generate names from i-numbers ncheck(lM)

nlist: get entries from name list nlist(3C)
D A R P A Internet address from node name, / s e t . . . setaddr(lNM)

acctcms: command summary from per-process/ acctcms(lM)
/print out file lists from proto file; s e t / qlist(l)

getpw: get name from UID. getpw(3C)
fs: file system format. . . . fs(4)

formatted input, scanf, fscanf, sscanf: convert . . . scanf(3S)
systems processed by fsck. / l ist of file checklist(4)

consistency check and/ fsck, dfsck: file system . . . fsck(lM)
lost+found directory for fsck. /make a mklost+found(l)

debugger, fsdb: file system fsdb(lM)
reposition a file/ fseek, rewind, ftell: fseek(3S)

specification in text / fspec: format fspec(4)
ratfor, or efl files, fsplit: split 177, fsplit(l)

stat, fstat: get file status stat(2)
pointer/ fseek, rewind, ftell: reposition a file fseek(3S)

interprocess/ ftok: standard stdipc(3C)
program, ftp: file transfer f tp(lN)

File Transfer Protocol/ ftpd: D A R P A Internet . . . f tpd(lNM)
ftw: walk a file tree ftw(3C)

/ shut down part of a full-duplex connection. . . . shutdown(2N)
erf, erfc: error function a n d / erf(3M)

and complementary error function, / function erf(3M)
gamma: log gamma function gamma(3M)
Euclidean distance function, hypot: hypot(3M)

of a common object file function, /entries ldlread(3X)
matherr: error-handling function matherr(3M)

prof: profile within a function prof(5)
math: math functions and constants. . . math(5)

jn, yO, y l , yn: Bessel functions. jO, j l bessel(3M)
power, square root functions. / logarithm, . . . exp(3M)

absolute value functions, /remainder, . . . floor(3M)
ocurse: optimized screen functions. ocurse(3X)

/300s: handle special functions of DASI 3 0 0 / . . 300(1)
hp: handle special functions of HP 2640 a n d / . hp(l)

450/ 450: handle special functions of the DASI . . . 450(1)
cosh, tanh: hyperbolic functions, sinh, sinh(3M)

atan2: trigonometric functions, /acos, atan, . . . trig(3M)
processes using a file/ fuser: identify fuser(lM)
input /output , fread, fwrite: binary fread(3S)

- 19 -

manipulate connect/ fwtmp, wtmpfix: f w t m p (l M)
moo: guessing game moo(6)

back: the game of backgammon. . . . back(6)
bj: the game of black jack bj(6)

craps: the game of craps craps(6)
wump: the game of hunt-the-wumpus. . wump(6)

trk: trekkie game trk(6)
intro: introduction to games intro(6)

gamma: log gamma function gamma(3M)
function, gamma: log gamma garnma.(3M)

ecvt, fcvt, gcvt: convert/ ecvt(3C)
ged: graphical editor. . . . ged(lG)

maze: generate a maze maze(6)
abort: generate an IOT fault. . . • abort(3C)
cflow: generate C flowgraph. . . . cf low(l)

cross-reference, cxref: generate C program cxref(l)
data by user/ diskusg - generate disk accounting . . diskusg(lM)

terminal, ctermid: generate file name for . . . ctermid(3S)
crypt, setkey, encrypt: generate hashing/ crypt(3C)

i-numbers. ncheck: generate names from ncheck(lM)
simple lexical/ lex: generate programs for . . . l ex(l)

/seed48, lcong48: generate uniformly/ drand48(3C)
simple random-number generator, rand, srand: . . rand(3C)

stream, gets, fgets: get a string from a gets(3S)
file, get: get a version of an SCCS . . ge t (l)

getsockopt, setsockopt: get and set options o n / . . getsockopt(2N)
ulimit: get and set user limits. . . . ulimit(2)

of the user, cuserid: get character login name . . cuserid(3S)
/getchar, fgetc, getw: get character or word/ . . . getc(3S)

list, nlist: get entries from name . . . nlist(3C)
umask: set and get file creation mask. . . . umask(2)

stat, fstat: get file status stat(2)
statistics, ustat: get file system ustat(2)

SCCS file, get: get a version of an . . . ge t (l)
/endgrent, fgetgrent: get group file entry getgrent(3C)

getlogin: get login name getlogin(3C)
logname: get login name logname(l)

msgget: get message queue msgget(2)
getpw: get name from UID getpw(3C)

peer, getpeername: get name of connected . . . getpeername(2N)
system, uname: get name of current CTIX . uname(2)

host, gethostname: get name of current gethostname(3N)
/setnetent, endnetent: get network entry getnetent(3N)

/sethostent, endhostent: get network host entry. . . gethostent(3N)
unget: undo a previous get of an SCCS file unget(l)

argument/ getopt: get option letter from . . . getopt(3C)
/endpwent, fgetpwent: get password file entry. . . getpwent(3C)

working/ getcwd: get path-name of current . . getcwd(3C)
process times, times: get process and child . . . times(2)

/getpgrp, getppid: get process, process/ getpid(2)
/endprotoent: get protocol entry getprotoent(3N)

user,/ /getgid, getegid: get real user, effective . . . getuid(2)
/setservent, endservent: get service entry getservent(3N)

semget: get set of semaphores. . . . semget(2)
segment, shmget: get shared memory shmget(2)

getsockname: get socket name getsockname(2N)

- 20-

terminal, tty: get the name of the tty(X)
time: get time time(2)

getw: get character or/ getc, getchar, fgetc, getc(3S)
get character or / getc, getchar, fgetc, getw: getc(3S)

current working/ getcwd: get path-name of . getcwd(3C)
getuid, geteuid, getgid, getegid: get real user, / . . . getuid(2)

environment name, getenv: return value for . . getenv(3C)
getegid: ge t / getuid, geteuid, getgid, getuid(2)

real/ getuid, geteuid, getgid, getegid: get getuid(2)
getgrnam, setgrent,/' getgrent, getgrgid, getgrent(3C)
setgrent, / getgrent, getgrgid, getgrnam getgrent(3C)

getgrent, getgrgid, getgrnam, setgrent, / getgrent(3C)
gethostent, gethostbyaddr,/ gethostent(3N)

/gethostbyaddr, gethostbyname,/ gethostent(3N)
gethostbyaddr,/ gethostent, gethostent(3N)

current host, gethostname: get name of . gethostname(3N)
name, getlogin: get login getlogin(3C)

getnetent, getnetbyaddr,/ getnetent(3N)
getnetent, getnetbyaddr, getnetbyname, setnetent , / . getnetent(3N)

getnetbyname,/ getnetent, getnetbyaddr, . . getnetent(3N)
letter from argument/ getopt: get option getopt(3C)

options, getopt: parse command . . getopt(l)
password, getpass: read a getpass(3C)

connected peer, getpeername: get name of . getpeername(2N)
process,/ getpid, getpgrp, getppid: get . . . getpid(2)

getppid: get process,/ getpid, getpgrp, getpid(2)
getpid, getpgrp, getppid: get process,/ . . . getpid(2)

/getprotobynumber, getprotobyname,/ getprotoent(3N)
getprotoent, getprotobynumber,/ getprotoent(3N)

getprotobynumber,/ getprotoent, getprotoent(3N)
UID. getpw: get name from . . . getpw(3C)

getpwnam, setpwent , / getpwent, getpwuid, getpwent(3C)
getpwent, getpwuid, getpwnam, se tpwent , / . . . getpwent(3C)

setpwent , / getpwent, getpwuid, getpwnam, . . . getpwent(3C)
string from a stream, gets, fgets: get a gets(3S)

/getservbyport, getservbyname,/ getservent(3N)
getservent, getservbyport,/ getservent(3N)

getservbyport, / getservent, . * getservent(3N)
name, getsockname: get socket . . getsockname(2N)

get and set options o n / getsockopt, setsockopt: . . . getsockopt(2N)
settings used by getty. /and terminal . . . gettydefs(4)

type, modes, speed, a n d / getty: set terminal getty(lM)
terminal, ct: spawn getty to a remote ct(lC)

terminal settings used/ gettydefs: speed and getty defs(4)
getegid: get real user,/ getuid, geteuid, getgid, . . . getuid(2)

getutline, pututl ine, / getutent, getutid getut(3C)
pututl ine, / getutent, getutid, getutline, getut(3C)

getutent, getutid, getutline, pututline,/ . . . getut(3C)
getc, getchar, fgetc, getw: get character o r / . . . getc(3S)

ctime, localtime, gmtime, asctime, tzset: / . . ctime(3C)
fish: play "Go Fish" fish(6)

longjmp: non-local goto, setjmp setjmp(3C)
string, format o f / gps: graphical primitive . . gps(4)

graph: draw a graph. . . . graph(lG)
graph: draw a graph graph(lG)

sag: system activity graph sag(lG)

- 21 -

graphics: access graphical and numerical/ . . graphics(lG)
/network useful with graphical commands. . . . s ta t (lG)
hardcopy, tekset, td: graphical device/ /erase, . . gdev(lG)

ged: graphical editor ged(lG)
/string, format of graphical files gps(4)

string, format o f / gps: graphical primitive gps(4)
contents routines, toe: graphical table of toc (lG)

gutil: graphical utilities gut i l (lG)
graphical and numerical/ graphics: access graphics(lG)

tplot: graphics filters tp lo t (lG)
plot: graphics interface plot(4)

subroutines, plot: graphics interface plot(3X)
/ typeset documents, view graphs, and slides m m t (l)

/for typesetting view graphs and slides mv(5)
filter, greek: select terminal . . . greek(l)

search a file for a / grep, egrep, fgrep: grep(l)
/effective user, real group, and effective/ . . . getuid(2)

/get process, process group, and parent/ getpid(2)
chgrp: change owner or group, chown, chown(l)

/endgrent, fgetgrent: get group file entry getgrent(SC)
group: group file group(4)

group: group file group(4)
setpgrp: set process group ID setpgrp(2)

id: print user and group IDs and names. . . . id (l)
group, and effective group IDs. /user, real . . . getuid(2)
setgid: set user and group IDs. setuid, setuid(2)

newgrp: log in to a new group newgrp(l)
chown: change owner and group of a file chown(2)

signal to a process or a group of processes, / a . . . kill(2)
/update, and regenerate groups of programs make(l)

file checkers, pwck, grpek: password/group . . . pwck(lM)
signals, ssignal, gsignal: software ssignal(3C)

/or relocate a P T or GT local printer mktpy(l)
terminal download, tdl, gtdl, ptdl: RS-232 td l (l)

hangman: guess the word hangman(B)
moo: guessing game moo(6)

utilities, gutil: graphical gut i l (lG)
processing, shutdown, halt: terminate all shutdown(lM)

of DASI 300/ 300, 300s: handle special functions . . 300(1)
of HP 2640 and/ hp: handle special functions . . hp(l)

of the DASI 450/ 450: handle special functions . . 450(1)
list, varargs: handle variable argument . varargs(5)

curses: CRT screen handling and/ curses(3X)
hangman: guess the word. . hangman(6)

/run a command immune to hangups and quits nohup(l)
graphical/ hpd, erase, hardcopy, tekset, td: gdev(lG)

hinv: hardware inventory hinv(lM)
/hdestroy: manage hash search tables hsearch(3C)

/hashmake, spellin, hashcheck: find spelling/ . . spell(l)
/encrypt: generate hashing encryption crypt(3C)

hashcheck: f ind / spell, hashmake, spellin, spell(l)
manage hash/ hsearch, hcreate, hdestroy: hsearch(3C)

ascii file dump, hd: hexadecimal and hd(l)
hsearch, hcreate, hdestroy: manage hash/ . . hsearch(3C)

object/ senhdr: section header for a common . . . scnhdr(4)
files, filehdr: file header for common object . filehdr(4)

- 22 -

ldfhread: read the file
to the optional file

indexed/named section
/read the archive

help: ask for
file dump, hd:

inventory,
/manipulate Volume

fortune: print a random,
/convert values between
endhostent: get network

get name of current
network,

/special functions of
functions of HP 2640/
tekset, td: graphical/

hdestroy: manage hash/
ntohs: convert values/
convert values/ htonl,

wump: the game of
sinh, cosh, tanh:

words,
hyphen: find

distance function,
accounting data by user

set or shared memory
IDs and names,

set process group
issue: issue

a file or file/ fuser:
what:

id: print user and group
and parent process
and effective group
set user and group
network interface/

file, mkifile: make an
core: format of core

crash: examine system
nohup: run a command

/ C language preprocessor
language preprocessor/

fine: fast
/ tgo to , tputs: terminal
formatting a permuted
ldtbindex: compute the

ptx: permuted
entry/ ldtbread: read an

/ldnshread: read an
o f / /ldnsseek: seek to an

inet_ntoa,/
Internet/ / inet_makeaddr,

/ inet_network, inet_ntoa,
address/ / i n e t j n a o f ,

inet_addr,

header of a c o m m o n / . . ldfhread(3X)
header of a common/ /seek ldohseek(3X)
header of a c o m m o n / / an ldshread(3X)
header of a member of a n / ldahread(3X)
help: ask for help help(l)
help. • • . • • • • • • • help(l)
hexadecimal and ascii . . hd(l)

hinv(lM)
Home Blocks (VHB). . . . libdev(3X)
hopefully interesting,/ . . fortune(6)
host and network b y t e / byteorder(3N)
host entry, / se thostent , gethostent(3N)
host, gethostname: . . . gethostname(3N)
hosts: list of nodes on . . hosts(4N)
HP 2640 and 2621-series/ hp(l)
hp: handle special hp(l)
hpd, erase, hardcopy, . . gdev(lG)
hsearch, hcreate hsearch(3C)
htonl, htons, ntoh!, . . . byteoruer(SN)
htons, ntohl, ntohs: . . . byteorder(3N)
hunt-the-wumpus wump(6)
hyperbolic functions. . . . sinh(3M)
hyphen: find hyphenated . hyphen(l)
hyphenated words. . . . hyphen(l)
hypot: Euclidean hypot(3M)
ID. / - generate disk . . . diskusg(lM)
id. /queue, semaphore . . ipcrm(l)
id: print user and group id(l)
ID. setpgrp: setpgrp(2)
identification file issue(4)
identify processes using fuser(lM)
identify SCCS files. . . . what(l)

id(l)
IDs. /process group, . . . getpid(2)
IDs. /user, real group, . . getuid(2)
IDs. setuid, setgid: . . . setuid(2)
ifconfig: configure ifconfig(lNM)
ifile from an object . . . mkifile(lM)

core(4)
images. crash(lM)
immune to hangups a n d / . nohup(l)
include files includes(l)
includes: determine C . . includes(l)
incremental backup. . . . finc(lM)
independent operations. termcap(3X)
index, /package for . . . mptx(5)
index of a symbol table / . ldtbindex(3X)
index ptx(l)
indexed symbol table . . ldtbread(3X)
indexed/named sect ion/ ldshread(3X)
indexed/named section . . ldsseek(3X)
inet_addr, inet_network, . inet(3N)
i n e t j n a o f , inet_netof: . . inet(3N)
inet_makeaddr,/ inet(3N)
inet_netof: Internet . . . inet(3N)
inet_network, inet_ntoa, / inet(3N)

- 23 -

inet_addr, inet_network, inet_ntoa,/ inet(3N)
inittab: script for the init process inittab(4)
control initialization, init, telinit: process init(lM)

telinit: process control initialization, init init(lM)
/drvload: system initialization shell/ brc(lM)

volume, iv: initialize and maintain . . . iv(l)
a socket, connect: initiate a connection on . . connect(2N)

process, popen, pclose: initiate pipe to / from a . . . popen(3S)
init process, inittab: script for the . . . inittab(4)

clri: clear i-node clri(XM)
i-node. inode: format of an inode(4)

inode: format of an i-node inode(4)
open a file specified by i-node. openi: openi(2)
blocks associated with i-node(s). / the list of . . . bcheck(lM)

/start and stop terminal input and output. rsterm(lM)
convert formatted input, /fscanf, sscanf: . . . scanf(3S)

push character back into input stream, ungetc: . . . ungetc(3S)
fread, fwrite: binary input /output fread(3S)

stdio: standard buffered input /output package. . . . stdio(3S)
fileno: stream status inquiries, /clearerr ferror(3S)
uustat: uucp status inquiry and job control. . . uustat(lC)
software/ qinstall: install and verify qinstall(l)

install: install commands. install(lM)
commands, install: install install(lM)

binary/ cpset: install object files in cpset(lM)
or G T / mktpy, mvtpy: install or relocate a P T . . . mktpy(l)

ctinstall: install software ctinstall(l)
/ se t terminal, terminal inteface, and terminal/ . . . t set (l)

abs: return integer absolute value. . . . abs(3C)
/convert between long integer and base-64/ a641(3C)

/sgetl: access long integer data in a / sputl(3X)
atoi: convert string to integer, strtol, atol, strtol(3C)

/convert between 3-byte integers and long/ 13tol(3C)
3-byte integers and long integers, /between 13tol(3C)

bcopy: interactive block copy. . . . bcopy(lM)
processing/ mailx: interactive message mailx(l)

/consistency check and interactive repair fsck(lM)
/ a random, hopefully interesting, adage fortune(6)

err: error-logging interface err(7)
qic: interface for QIC tape. . . . qic(7)

lp: parallel printer interface lp(7)
mem, kmem: system memory interface mem(7)

/configure network interface parameters. . . . i fconfig(lNM)
plot: graphics interface plot(4)
plot: graphics interface subroutines. . . . plot(3X)

swap administrative interface, swap: swap(lM)
termio: general terminal interface termio(7)

terminal accelerator interface, tiop: tiop(7)
protocol, telnet: user interface to TELNET . . . te lnet(lN)

T F T P / tftp: user interface to the D A R P A . . t f tp (lN)
controlling terminal interface, tty: tty(7)

vme: VME bus interface vme(7)
serial lines as network interfaces, /and detach . . s lattach(lNM)

node/ setaddr: set D A R P A Internet address from . . . setaddr(lNM)
/ i n e t j n a o f , inet_netof: Internet address/ inet(3N)

Protocol/ ftpd: D A R P A Internet File Transfer . . . f tpd(lNM)

- 24 -

and numbers for the
protocols: list of

services: list of
curve, spline:
control / asa:

csh: a shell (command
pipe: create an

ipcs: report
ftok: standard

suspend execution for an
suspend execution for

commands a n d /
file formats,

games,
miscellany,

special files,
subroutines a n d /

sys tem calls and error/
and appl icat ion/ intra:

formats, intro:
intro:

miscellany, intro:
files, intro:

subroutines a n d / intro:
calls and error/ intro:

generate names from
hinv: hardware

abort: generate an
queue, semaphore set or /

inter-process/
/ isdigit , isxdigit,
islower, isdigit , /

/ i sgraph, iscntrl,
terminal, t tyname,

/ i sprint , isgraph,
/ i supper , islower,
, / ispunct, isprint,
isalpha, isupper,

/ i sspace, ispunct,
/ i sa lnum, isspace,
/ i sxdigi t , isalnum,

system:
file, issue:

identif ication file,
i sdigi t , / isalpha,
/ i s lower, isdigit,

news: print news
maintain volume.
Bessel functions.

Bessel funct ions . jO,
bj: the game of black

funct ions . jO, j l ,
database operator.

/nrand48 , mrand48,
processes, killa.ll:

internet, / n a m e s networks(4N)
. protocols(4N)

Internet services . services(4N)
nterpolate s m o o t h sp l ine(lG)
nterpret A S A carriage . . . asa(l)
nterpreter) wi th C- l ike / . . c sh(l)
nterprocess channel • P'Pe(2)
nter-process/ . ipcs(l)
nterprocess/ . stdipc(3C)
nterval. sleep: . s leep(l)
nterval. sleep: . sleep 3C)
ntro: introduct ion to . . . intro(l)
ntro: introduct ion to . . . intro(4)
ntro: introduct ion to . . . intro(6)
ntro: introduct ion to . . . intro(5)
ntro: introduct ion to . . . intro(7)
ntro: introduct ion to . . . intro(3)
ntro: introduct ion to . . . intro(2)
ntroduction to commands • UlUll^l^
ntroduction to file intro(4)
ntroduction to games introfe)
ntroduction to . intro(5)
ntroduction to special . . . intro(7)
ntroduction to . intro(3)
ntroduction to s y s t e m . . . intro(2)
-numbers, ncheck: ncheck(lM)
nventory . h inv(lM)
octl: control device. ioctl(2)
10T fault . abort(3C)
ipcrm: remove a message . . ipcrm(l)
pes: report . ipcs(l)

isalnum, i sspace , / ctype(3C)
isalpha, isupper, . ctype(3C)
isascii: c lass i fy/ . ctype(3C)
isatty: find name of a . . . t tyname(3C)
iscntrl, isascii:/ . ctype(3C)
isdigit, isxdigit , / ctype(3C)
isgraph, iscntrl , / ctype(3C)
islower, isdigit , / . ctype(3C)
isprint, i sgraph, / ctype(3C)
ispunct, i sprint , / ctype(3C)
isspace, i spunct , / ctype(3C)
issue a shell command. . . . system(3S)
issue identification issue(4)

. issue(4)
isupper, islower . ctype(3C)
isxdigit, i sa lnum, / ctype(3C)
items. • . news(l)
iv: initialize and • M l)
jO, j l , jn, yO, y l , yn: bessel(3M)
j l , jn, yO, y l , yn: bessel(3M)

. bj(6)
jn, yO, y l , yn: Bessel bessel(3M)
join: relational . jo in(l)
jrand48, srand48 , / drand48(3C)
kill all active . killall(lM)

- 25 -

process or a group o f / kill: send a signal to a . . . kill(2)
process, kill: terminate a kil l(l)

processes, killall: kill all active kiilall(lM)
interface, mem, kmem: system memory . . . mem(7)

quiz: test your knowledge quiz(6)
between 3-byte integers/ I3tol, ltol3: convert 13tol(3C)

long integer and/ a641, 164a: convert between . . . a641(3C)
/copy file systems with label checking volcopy(lM)

systems wi th / volcopy, labelit: copy file volcopy(lM)
scanning and processing language, awk: pattern . . awk(l)

/arithmetic language bo(l)
cpp: the C language preprocessor. . . . cpp(l)

includes: determine C language preprocessor/ . . . includes(l)
/command programming language sh (l)

/ckpacct, dodisk, lastlogin, monacct,/ acctsh(lM)
ah!: shell layer manager shl (l)

/srand48, seed48, lcong48: generate/ drand48(3C)
common object files. Id: link editor for ld(1)

object file. Idclose, Idaclcse: close a common . . ldclose(3X)
archive header of a / ldahread: read the ldahread(3X)

object file for/ ldopen, ldaopen: open a common . . ldopen(3X)
a common object file. Idclose, ldaclose: close . . . ldclose(3X)

Ideeprom: load EEPROM. . ldeeprom(lM)
parts o f / frexp, ldexp, modf: manipulate . . frexp(3C)

file access routines, ldfcn: common object . . . ldfcn(4)
header of a common/ ldfhread: read the file . . . ldfhread(3X)

symbol name for common/ ldgetname: retrieve ldgetname(3X)
manipulate/ ldlread, ldlinit, ldlitem: ldlread(3X)

ldlread, ldlinit, ldlitem: manipulate l ine/ . . ldlread(3X)
ldlitem: manipulate/ ldlread, ldlinit, ldlread(3X)

to line number entries/ ldlseek, ldnlseek: seek . . . ldlseek(3X)
number entries/ ldlseek, ldnlseek: seek to line ldlseek(3X)

relocation/ ldrseek, ldnrseek: seek to ldrseek(3X)
ldshread, ldnshread: read an/ ldshread(3X)

indexed/named/ ldsseek, ldnsseek: seek to an ldsseek(3X)
optional file header o f / ldohseek: seek to the ldohseek(3X)

common object file for/ ldopen, ldaopen: open a . . ldopen(3X)
to relocation entries/ ldrseek, ldnrseek: seek . . , !drseek(3X)

read an indexed/named/ ldshread, ldnshread: ldshread(3X)
to an indexed/named/ ldsseek, ldnsseek: seek . . . ldsseek(3X)

index of a symbol table/ ldtbindex: compute the . . ldtbindex(3X)
indexed symbol table/ ldtbread: read an ldtbread(3X)

symbol table of a / ldtbseek: seek to the ldtbseek(3X)
getopt: get option letter from argument/ . . . getopt(3C)
for simple lexical/ lex: generate programs . . . lex(l)

programs for simple lexical tasks, /generate . . lex(l)
update, lsearch, lfind: linear search and . . . lsearch(3C)

Volume Home Blocks/ libdev: manipulate libdev(3X)
to subroutines and libraries, / introduction . . intro(3)

relation for an object library, / f ind ordering . . . lorder(l)
ar: archive and library maintainer for/ . . . ar(l)

ulimit: get and set user limits ulimit(2)
/an out-going terminal line connection dial(3C)

/ type, modes, speed, and line discipline get ty(lM)
line: read one line l ine(l)

common object/ linenum: line number entries in a . . linenum(4)

- 26 -

/ldlitem: manipulate line number entries of a / . . ldlread(3X)
/Idnlseek: seek to line number entries of a / . . ldlseek(3X)

strip: strip symbol and line number information/ . strip(l)
nl: line numbering niter. . . . nl(l)

selected fields of each line of a file, / c u t out . . . cut (l)
/requests to an LP line printer lp(l)

lpset: set parallel line printer options. lpset(lM)
lpr: line printer spooler 1 pr(1)

line: read one line line(l)
update, isearch, Ifind: linear search and lsearch(3C)

col: filter reverse line-feeds col(l)
entries in a common/ linenum: line number . . . linenum(4)

/at tach and detach serial lines as network/ s lattach(lNM)
comm: select or reject lines common to t w o / . . . comm(l)

output / fold: fold long lines for finite width fold(l)
head: give first few lines head(l)

uniq: report repeated lines in a file uniq(X)
/f i les or subsequent lines of one file paste(l)

or / paste: merge same lines of several files paste(i)
link, unlink: exercise link and unlink s y s t e m / . . l ink(lM)

object files. Id: link editor for common . . . ld(l)
/ common assembler and link editor output a.out(4)

link: link to a file link(2)
cp, In, mv: copy, link or move files cp(l)

link: link to a file link(2)
link and unlink sys tem/ link, unlink: exercise l ink(lM)

from proto file; set links based on. / l i s ts . . . qlist(l)
checker, lint: a C program lint(l)

directory. Is: list contents of ls(l)
statistics for a / ff: list file names and ff(lM)

get entries from name list, nlist: . nlist(3C)
bcheck: print out the list of blocks/ bcheck(lM)
file, nm: print name list of common object . . . nm(l)

processed b y / checklist: list of file systems checklist(4)
protocols, protocols: list of Internet protocols(4N)

services, services: list of Internet services(4N)
network, hosts: list of nodes on hosts(4N)

by terminal/ ttytype: list of terminal types ttytype(4)
handle variable argument list, varargs: varargs(5)

of a varargs argument list, / formatted output . . vprintf(3S)
on a socket, listen: listen for connections . . . listen(2N)

connections on a / listen: listen for listen(2N)
/construct argument list(s) and execute/ xargs(X)

qlist: print out file lists from proto file;/ . . . qlist(l)
move files, cp, In, mv: copy, link or cp(l)

ldeeprom: load EEPROM ldeeprom(lM)
drivers: loadable device drivers. . . drivers(7)

/e tc / lddrv/ lddrv: manage loadable drivers lddrv(lM)
/drvbind: access loadable drivers. lddrv(2)

asctime, tzset: / ctime, localtime, gmtime ctime(3C)
as t h e / conlocate: locate a terminal to use . . conlocate(lM)

for command, path: locate executable file path(l)
end, etext, edata: last locations in program. . . . end(3C)

data in memory, plock: lock process, text, or plock(2)
files, lockf: record locking on . . lockf(3C)

access to regions of a / locking: exclusive locking(2)

- 27 -

lockf: record
gamma:
newgrp:

exponential,/ exp,
exponential,/ exp, log,

/pow, sqrt: exponential,
process a report of

network, rwho: who is
getlogin: get
iogname: get

cuserid: get character
Iogname: return
passwd: change

a C shell environment at
up an environment at

name of user.
/!64a: convert between

sputl, sgetl: access
3-byte integers and

width output / fold: fold
setjmp,

relation for an object/
mklost+found: make a

nice: run a command at
requests to an LP line/

/requests to an
interface,

disable: enable/disable
/lpmove: start/stop the

reject: allow/prevent
lpadmin: configure the

lpstat: print
LP spooling system.

L P / lpsched, lpshut,
spooler,

start /stop the LP,/
printer options,

start/stop the / lpsched,
information.

drand48, erand48,
directory,

search and update,
file pointer.

3-byte integers/ 13tol,

values, values:
/ long integer data in a

formatting a / mptx: the
formatting/ mm: the MM

typesetting/ mv: a troff
m4:

entries in this / man:
formatted with the MM

mail to users or read

locking on files . lockf(3C)
log gamma function. gamma(3M)
log in to a new group. . . . newgrp(l)
log, loglO, pow, sqrt: exp(3M)
loglO, pow, sqrt: exp(3M)
logarithm, power, square/ . exp(3M)
logged errors, errpt: errpt(lM)
logged in on local rwho(lN)

. getlogin(3C)
• logname(l)

login name of the user. . . . cuserid(3S)
login name of user. logname(3X)
login password . passwd(l)
login: sign on . login(l)
login time, /sett ing up . . . cprofile(4)
login time, / set t ing profile(4)
Iogname: get login name. . . logname(l)
Iogname: return login . . . logname(3X)
long integer and base-64/ . a641(3C)
long integer data in a / . . . sputl(3X)
long integers, /between . 13tol(3C)
long lines for finite fo ld(l)
longjmp: non-local goto. . setjmp(3C)
lorder: find ordering lorder(l)
lost+found directory for/ . . mklos t+found(l)
low priority . nice(l)
lp, cancel: send/cancel . . • 1P(1)

. lp (l)
lp: parallel printer • 1P(7)
LP printers, enable, enable(l)
LP request scheduler and/ . Ipsched(lM)
LP requests, accept, accept(lM)
LP spooling system. lpadmin(lM)
LP status information. . . . lps tat (l)
lpadmin: configure the . . . lpadmin(lM)
lpmove: start /stop the . . . lpsched(lM)
lpr: line printer • lpr(l)
lpsched, lpshut, lpmove: . lpsched(lM)
lpset: set parallel line . . . Ipset(lM)

. lpsched(lM)
lpstat: print LP status . . . lpstat(l)
Irand48, nrand48,/ drand48(3C)
Is: list contents of • l s (l)
lsearch, lfind: linear lsearch(3C)
lseek: move read/write . . . lseek(2)
ltol3: convert between . . . 13tol(3C)
m4: macro processor. . . . m4(l)
machine-dependent values(5)
machine-independent/ . . . sputl(3X)
macro package for mptx(5)
macro package for mm(5)
macro package for mv(5)
macro processor . m4(l)
macros for formatting . . . man(5)
macros, /documents m m (l)
mail, mail, rmail: send . . . mail(l)

- 28 -

to users or read mail,
mail, mail, rmail: send

message processing/
/free, realloc, calloc:

/mallopt, mallinfo: fast
regenerate groups/ make:

iv: initialize and
ar: archive and library

an SCCS file, delta:
mkdir, mkdirs:

special or / mknod:
directory/ mklost+found:

mktemp:
object file, mkifile:

and regenerate groups/
banner:

terminal/ script:
memory/ /calloc, mallopt,

calloc: main memory/
calloc, mallopt,/

/ free, realloc, calloc,
formatting entries in/

entries in this manual,
/ t f ind , tdelete, twalk:

/hcreate, hdestroy:
/e tc / lddrv/ lddrv:

form-based network
window: window

wm: window
shl: shell layer

fwtmp, wtmpfix:
/ ldlinit, ldlitem:

frexp, ldexp, modf:
tables, route: manually

Blocks (VHB). libdev:
/Internet address

in this manual, man,
the cat files for the
print entries in this

entries in this
routing tables, route:

terminal input / rsterm:
set. ascii:

files, diffmk:
set file-creation mode

and get file creation
information/ master:

information table,
expression compile and

constants, math:
constants,

/neqn, checkeq: format
function.

maze: generate a
vax: provide truth /

mail, rmail: send mail mail(l)
mail to users or read . . mail(l)

mailx(l)
main memory allocator. malloc(3C)
main memory allocator. • malloc(3X)
maintain, update, and . make(l)
maintain volume. . . . iv (l)
maintainer for portable/ ar(l)
make a delta (change) to delta(l)
make a directory. • • • • UIKUII 1-L j

make a directory, or a . mknod(2)
make a lost+found . . mklost+found(l)
make a unique file name. • mktemp(3C)
make an ifile from an mkifile(lM)
make: maintain, update, • make(l)

banner(l)
make typescript of . . script(l)
mallinfo: fast main . . malloc(3X)

malloc(3C)
malloc, free, realloc, . . malloc(3X)
mallopt, mallinfo: f a s t / malloc(3X)

man(5)
man, manprog: print . . • man(l)
manage binary search/ • tsearch(3C)
manage hash search/ hsearch(3C)
manage loadable drivers. lddrv(lM)
management, netman: . netman(lNM)
management primitives. window(7)

wm(l)
shl(l)

manipulate connect/ . . fwtmp(lM)
manipulate line number/ ldlread(3X)
manipulate parts o f / . . frexp(3C)
manipulate the routing . route(lNM)
manipulate Volume Home libdev(3X)
manipulation routines. . inet(3N)
manprog: print entries . man(l)
manual, catman: create catman(l)
manual, man, manprog: man(l)
manual, / for formatting • man(S)
manually manipulate the • route(lNM)
manually start and stop rsterm(lM)
map of ASCII character ascii(5)
mark differences between diffmk(l)
mask, umask: umask(l)
mask, umask: set . . . umask(2)
master device master(4)
master: master device • master(4)
match routines, /regular • regexp(5)
math functions and . . math(5)
math: math functions and math(5)
mathematical text for / . • eqn(l)
matherr: error-handling matherr(3M)
maze: generate a maze. . maze(6)
maze . • maze(6)
mc68k, p d p l l , u3b, u3b5, machid(l)

- 29 -

interface, mem, kmem: system memory mem(7)
memcpy, memset: memory/ memccpy, memchr, memcmp, memory(3C)

memset: memory/ memccpy, memchr, memcmp, memcpy, memory(3C)
memory/ memccpy, memchr, memcmp, memcpy, memset: memory(3C)
memccpy, memchr, memcmp, memcpy, memset: memory/ memory(3C)

realloc, calloc: main memory allocator, /free, . . malloc(3C)
/mallinfo: fast main memory allocator malloc(3X)

shmctl: shared memory control/ shmctl(2)
semaphore set or shared memory id. /queue ipcrm(l)

mem, kmem: system memory interface. • • • • • meiu{7)
/memcmp, memcpy, memset: memory operations memory(3C)

shmop: shared memory operations shmop(2)
text, or data in memory, /lock process, . . plock(2)

shmget: get shared memory segment shmget(2)
memchr, memcmp, memcpy, memset: memory/ memccpy, memory(3C)

sort: sort and/or merge files sort(l)
accounting/ acctmerg: merge or add total acctmerg(lM)
several files or / paste: merge same lines of paste(l)

messages, mesg: permit or deny . . . mesg(l)
operations, msgctl: message control msgctl(2)
/recvfrom: receive a message from a socket. . . . recv(2N)

msgop: message operations msgop(2)
mailx: interactive message processing/ mailx(l)

msgget: get message queue msgget(2)
set or/ ipcrm: remove a message queue, semaphore . ipcrm(l)

send, sendto: send a message to a socket send(2N)
mesg: permit or deny messages mesg(l)

sys_nerr: system error messages. /sys_errlist, . . . perror(3C)
directory, mkdir, mkdirs: make a . . . mkdir(l)

directory, mkdir, mkdirs: make a mkdir(l)
system, mkfs: construct a file . . . mkfs(lM)

/software using the mkfs(l) proto file/ qinstall(l)
from an object file, mkifile: make an ifile . . . mkifile(lM)

lost+found directory/ mklost+found: make a . . . mklost+found (l)
file, mknod: build special mknod(lM)

or a special or/ mknod: make a directory, . mknod(2)
file name, mktemp: make a unique . . mktemp(3C)

relocate a P T or G T / mktpy, mvtpy: install or . . mktpy(l)
formatting/ mm: the MM macro package for . . mm(5)

formatted with the MM macros, /documents . mm(l)
print/check documents/ mm, osdd, checkmm: . . . mm(l)

for formatting/ mm: the MM macro package mm(5)
documents, view graphs,/ mmt, mvt: typeset mmt(l)

system table, mnttab: mounted file . . . mnttab(4)
chmod: change mode chmod(l)

umask: set file-creation mode mask umask(l)
chmod: change mode of file chmod(2)

base, modemcap: smart modem capability data . . . modemcap(5)
capability data base, modemcap: smart modem . modemcap(5)

/ set terminal type, modes, speed, and line/ . . getty(lM)
o f / frexp, ldexp, modf: manipulate parts . . frexp(3C)

touch: update access and modification times of a / . . touch(l)
/ set file access and modification times utime(2)
/dodisk, lastlogin, monacct, nulladm,/ acctsh(lM)
execution profile, monitor: prepare monitor(3C)

uusub: monitor uucp network. . . . uusub(lM)

- 30 -

moo: guessing game moo(6)
perusal, more, page: text more(l)
mount: mount a file sy s t em mount(2)

system, mount, umount: mount and dismount file . . mount(lM)
system, mount: mount a file mount(2)

setmnt: establish mount table setmnt(lM)
dismount file system, mount, umount: mount and mount(lM)

table, mnttab: mounted file sys tem mnttab(4)
mvdir: move a directory mvdir(lM)

in, mv: copy, link or move files, cp cp(l)
pointer, lseek: move read/write file lseek(2)

LP request scheduler and move requests, / t h e lpsched(lM)
for formatting a / mptx: the macro package . . mptx(5)

/ lrand48, nrand48, mrand48, jrand48, / drand48(3C)
operations, msgctl: message control . . msgctl(2)

queue, msgget: get message msgget(2)
operations, msgop: message msgop(2)

package for typesetting/ mv: a troff macro mv(5)
files, cp, !n, mv: copy, link or move . . . cp(l)

mvdir: move a directory. . . mvdir(lM)
view graphs, and/ mmt, mvt: typeset documents, . . mmt(l)

relocate a P T or/ mktpy, mvtpy: install or mktpy(l)
from i-numbers. ncheck: generate names . . ncheck(lM)

mathematical text / eqn, neqn, checkeq: format . . . eqn(l)
definitions for eqn and neqn. /special character . . eqnchar(5)
network management, netman: form-based netman(lNM)

/values between host and network byte order byteorder(3N)
/endnetent: get network entry getnetent(3N)

/endhostent: get network host entry gethostent(3N)
hosts: list of nodes on network hosts(4N)

ifconfig: configure network interface/ i fconfig(lNM)
detach serial lines as network interfaces, /and . . s lattach(lNM)
netman: form-based network management. . . . netman(lNM)
is logged in on local network, rwho: w h o rwho(lN)

stat: statistical network useful with / . . . s tat(lG)
uucpd: network uucp server. . . . uucpd(lNM)

uusub: monitor uucp network. uusub(lM)
numbers for the / networks: names and . . . networks(4N)

format of a text file, newform: change the newform(l)
group, newgrp: log in to a new . . newgrp(l)

news: print news items. news(l)
news: print news items. . . news(l)

a process, nice: change priority of . . . nice(2)
process by changing nice, /of running renice(l)

low priority, nice: run a command at . . nice(l)
filter, nl: line numbering nl(l)

name list, nlist: get entries from . . . nlist(3C)
common object file, nm: print name list of . . . nm(l)

Internet address from node name, / s e t D A R P A . setaddr(lNM)
rwhod: node status server rwhod(lNM)

hosts: list of nodes on network hosts(4N)
immune to hangups and/ nohup: run a command . . nohup(l)

setjmp, longjmp: non-local goto setjmp(3C)
/erand48, lrand48, nrand48, mrand48,/ drand48(3C)

nroff: format text nroff(l)
mathematical text for nroff or troff. / format . . . eqn(l)

- 31 -

tbl: format tables for nroff or troff tb l (l)
eqn/ deroff: remove nroff/troff, tbl, and deroff(l)

values/ htonl, htons, ntohl, ntohs: convert byteorder(3N)
htonl, htons, ntohl, ntohs: convert values/ . . . byteorder(3N)

null: the null file null(7)
null: the null file null(7)

/lastlogin, monacct, nulladm, prctmp,/ acctsh(lM)
nl: line numbering filter n l (l)

number: convert Arabic numerals to English number(6)
/access graphical and numerical commands. . . . graphics(lG)
to / convert: convert object and archive files . . . convert(l)

routines, ldfcn: common object file access ldfcn(4)
selected parts of an object file, dump: dump . . dump(l)

/ldaopen: open a common object file for reading. . . . ldopen(3X)
/entries of a common object file function ldlread(3X)

Idaclose: close a common object file. Idclose, ldclose(3X)
file header of a common object file, /read the . . . ldfhread(3X)

of a section of a common object file, /entries ldlseek(3X)
file header of a common object file, /optional . . . ldohseek(3X)

of a section of a common object file, /entries ldrseek(3X)
header of a common object file, /section ldshread(3X)

/section of a common object file ldsseek(3X)
table entry of a common object file, / a symbol . . . ldtbindex(3X)
table entry of a common object file, /symbol ldtbread(3X)

symbol table of a common object file, / t o the ldtbseek(3X)
entries in a common object file, /number linenum(4)

make an ifile from an object file, mkifile: mkifi le(lM)
name list of common object file, nm: print . . . nm(l)

information for a common object file, /relocation . . . reloc(4)
header for a common object file, /section scnhdr(4)

/ from a common object file strip(l)
/symbol name for common object file symbol table/ . . ldgetname(3X)

format, syms: common object file symbol table . . syms(4)
file header for common object files, filehdr: filehdr(4)

cpset: install object files in binary/ . . . cpset(lM)
link editor for common object files. Id: ld(l)

section sizes of common object files, /print s ize(l)
ordering relation for an object library, / f ind lorder(l)

od: octal dump ^ (l)
functions, ocurse: optimized screen . . ocurse(3X)

od: octal dump °<1(1)
file/ ldopen, ldaopen: open a common object . . . ldopen(3X)

i-node. openi: open a file specified by . . . openi(2)
fopen, freopen, fdopen: open a stream fopen(3S)

dup: duplicate an open file descriptor dup(2)
writing, open: open for reading or open(2)

or writing, open: open for reading . . . open(2)
specified by i-node. openi: open a file openi(2)

profiler, prf: operating system prf(7)
/prfdc, prfsnap, prfpr: operating system/ profiler(lM)

memcpy, memset: memory operations, /memcmp, . . . memory(3C)
msgctl: message control operations msgctl(2)

msgop: message operations msgop(2)
semaphore control operations, semctl: semctl(2)
semop: semaphore operations semop(2)

shared memory control operations, shmctl: shmctl(2)

- 32 -

shmop: shared memory operations shmop(2)
strcspn, strtok: string operations, / s trspn string(3C)
terminal independent operations, / tputs : termcap(3X)

relational database operator, join: join(l)
/copy file systems for optimal access t ime dcopy(lM)

/ C R T screen handling and optimization package. . . . curses(3X)
functions, ocurse: optimized screen ocurse(3X)

argument/ getopt: get option letter from getopt(3C)
a / ldohseek: seek to the optional file header of . . . ldohseek(3X)

fcntl: file control options fcntl(o)
stty: set the options for a terminal. . . . s t ty (l)

getopt: parse command options getopt(l)
parallel line printer options. Ipset: set lpset(lM)

/setsockopt: get and set options on sockets getsockopt(2N)
object / lorder: find ordering relation for an . . lorder(l)

/or a special or ordinary file. . mknod(2)
print /check/ mm, osdd, checkmm: mm(l)

dial: establish an out-going terminal l ine/ . . dial(3C)
and link editor output, /assembler a.out(4)

lines for finite width output device, / l ong . . . fold(l)
/print formatted output of a varargs/ vprintf(3S)

sprintf: print formatted output, /fprintf printf(3S)
stop terminal input and output, / s tart and rsterm(lM)

and/ /accton, acctwtmp: overview of accounting . . . acct(lM)
file, chown: change owner and group of a . . . chown(2)

chown, chgrp: change owner or group chown(l)
compress and expand/ pack, peat, unpack: pack(l)

and optimization package, /handl ing curses(3X)
mptx: the macro package for formatting a / . mptx(5)

mm: the MM macro package for formatt ing/ . . mm(5)
view/ mv: a troff macro package for typesetting . . mv(5)

system activity report package. / sa2, sadc: sar(lM)
buffered input /output package, /standard stdio(3S)

communication package, / interprocess . . . stdipc(3C)
more, page: text perusal more(l)

TEKTRONIX 4014/ 4014: paginator for the 4014(1)
options. Ipset: set parallel line printer Ipset(lM)

interface, lp: parallel printer 1 p(7)
network interface parameters, /configure . . i fconfig(lNM)

/process group, and parent process IDs getpid(2)
getopt: parse command options. . • getopt(l)

password, passwd: change login . . . passwd(l)
passwd: password file. . . . passwd(4)

/endpwent, fgetpwent: get password file entry getpwent(3C)
putpwent: write password file entry putpwent(3C)

passwd: password file. passwd(4)
getpass: read a password getpass(3C)

passwd: change login password. passwd(l)
checkers, pwck, grpek: password/group file pwck(lM)

of several files or / paste: merge same lines . . paste(l)
file for command, path: locate executable . . . path(l)

deliver portions of path names, /dirname: . . basename(l)
working/ getcwd: get path-name of current . . . getcwd(3C)

search a file for a pattern, /egrep, fgrep: . . . grep(l)
processing/ awk: pattern scanning and . . . awk(l)

until signal, pause: suspend process . . . pause(2)

- 33 -

and expand files, pack,
to/ from a / popen,

provide truth/ mc88k,
get name of connected

mesg:
package for formatting a

ptx:
file format, acct:

/command summary from
5ys__errlist, sys_nerr:/

soft-copy/ pg: file
more, page: text

for soft-copy/
split: split a file into
interprocess channel.

tee:
popen, pclose: initiate

fish:
text, or data in/

interface,
subroutines,

/ftell: reposition a file
move read/write file

pipe to/from a process,
library maintainer for

/dirname: deliver
banner: make

exp, log, loglO,
/exponential, logarithm,

brc, bcheckrc, rc,

/monacct, nulladm,
/nulladm, prctmp,

text for/ cw, checkcw:
profile, monitor:

cpp: the C language
/determine C language

file, unget: undo a
profiler,

prfld, prfstat,
prfsnap, prfpr:/

/prfstat, prfdc, prfsnap,
prfld, prfstat, prfdc,

prfpr: operating/ prfld,
o f / gps: graphical

types, types:
window management

hopefully/ fortune:
prs:

date:
cal:

count of a file, sum:
editing activity, sact:

manual, man, man prog:
cat: concatenate and

pr:

peat, unpack: compress . pack(l)
pclose: initiate pipe popen(3S)
p d p l l , u3b, u3bS, vax: . . . machid(l)
peer, getpeername: getpeername(2N)
permit or deny messages. . . mesg(l)
permuted index, /macro . . mptx(5)
permuted index • Ptx(l)
per-process accounting . . . acct(4)
per-process accounting/ . acctcms(lM)
if«livi| VIIUV| • ! • • • • . perror'SC^
perusal filter for • P g (l] '
perusal . more(l)
pg: file perusal filter . . . • P«(l)

. spl i t (l)
pipe: create an pipe(2)
pipe fitting . t ee (l)
pipe to / from a process. . popen(3S)
play "Go Fish" . fish(6)
plock: lock process, plock(2)
plot: graphics . plot(4)
plot: graphics interface . . . plot(3X)
pointer in a stream. fseek(3S)
pointer, lseek: . lseek(2)
popen, pclose: initiate . . . popen(3S)
portable archives, /and . «r(l)
portions of path names. . basename(l)
posters . banner(l)
pow, sqrt: exponential,/ . exp(3M)
power, square root / exp(3M)
powerfail, drvload:/ brc(lM)
pr: print files . pr(l)
prctmp, prdaily,/ acctsh(lM)
prdaily, prtacct,/ acctsh(lM)
prepare constant-width . c w (l)
prepare execution monitor(3C)

. cpp(l)
preprocessor include/ . . . includes(l)
previous get of an SCCS . . unget (l)
prf: operating system . . . prf(7)
prfdc, prfsnap, prfpr:/ . . . profiler(lM)
prfld, prfstat, prfdc, profiler(lM)
prfpr: operating sys tem/ . . profiler(lM)
prfsnap, prfpr:/ . profiler(lM)
prfstat, prfdc, prfsnap, . . . profiler(lM)
primitive string, format . gps(4)
primitive system data . . . types(5)
primitives, window: window(7)
print a random . fortune(6)
print an SCCS file. prs(l)
print and set the date. . . . date (l)
print calendar . ca l (l)
print checksum and block . s u m (l)
print current SCCS file . sac t (l)
print entries in this man(l)

. ca t (l)

. pr(l)

- 34 -

o f / /vfprintf , vsprintf: print formatted output . . vprintf(3S)
/fprintf , sprintf: print formatted output . . . printf(3S)

information, lpstat: print LP status lpstat(l)
common object file, nm: print name list of nm(l)

CTEX system, uname: print name of current . . . uname(l)
news: print news items news(l)

from proto file;/ qlist: print out file lists qlist(l)
blocks/ bcheck: print out the list of bcheck(lM)

acctcom: search and print process accounting/ . acctcom(l)
trpt: print protocol trace trpt(lNM)

common object/ size: print section sizes of size(l)
and names, id: print user and group IDs . . id(l)

mm, osdd, checkmm: print/check documents / . . mm(l)
lp: parallel printer interface lp(7)

requests to an LP line printer, / send/cancel . . . lp(l)
a P T or GT local printer, /or relocate mktpy(l)

Ipset: set parallel line printer options. lpset(lM)
lpr: line printer spooler. lpr(l)

enable/disable LP printers, /disable: enab!e(l)
sprintf: print/ printf, fprintf, printf(3S)

run a command at low priority, nice: nice(l)
nice: change priority of a process nice(2)

process/ renice: alter priority of running renice(l)
logged errors, errpt: process a report of errpt(lM)

acct: enable or disable process accounting acct(2)
acctprcl, acctprc2: process accounting acctprc(lM)

/search and print process accounting/ acctcom(l)
alarm: set a process alarm clock alarm(2)

process/ times: get process and child times(2)
/priority of running process by changing/ . . . renice(l)

init, telinit: process control/ init(lM)
/ t i m e a command; report process data and s y s t e m / . t imex(l)

exit, _exit: terminate process exit(2)
fork: create a new process fork(2)

/getppid: get process, process group, and/ getpid(2)
setpgrp: set process group ID setpgrp(2)

group, and parent process IDs. /process . . . getpid(2)
script for the init process, inittab: inittab(4)

kill: terminate a process kill(l)
change priority of a process, nice: nice(2)

kill: send a signal to a process or a group o f / . . . kill(2)
initiate pipe to / from a process, popen, pclose: . . . popen(3S)
/getpgrp, getppid: get process, process group,/ . . getpid(2)

ps: report process status ps(l)
in memory, plock: lock process, text, or data . . . plock(2)

get process and child process times, times: . . . times(2)
wait: wait for child process to stop or / wait(2)

ptrace: process trace ptrace(2)
pause: suspend process until signal pause(2)

await completion of process, wait: wait(l)
/ l ist of file systems processed by fsck checklist(4)

a process or a group of processes. / a signal t o . . . kill(2)
killa.ll: kill all active processes killall(lM)

or file/ fuser: identify processes using a file fuser(lM)
/pattern scanning and processing language awk(l)

halt: terminate all processing, shutdown, . . . shutdown(lM)

- 35 -

/interactive message processing system mailx(l)
m4: macro processor m4(l)

truth value about your processor type, /provide . . machid(l)
data, prof: display profile prof(l)

function, prof: profile within a prof(5)
profile, profil: execution time . . . profil(2)

prof: display profile data prof(l)
prepare execution profile, monitor: monitor(3C)

profil: execution time profile profil(2)
environment at login/ profile: setting up an . . . profi!e(4)

function, prof: profile within a prof(5)
prf: operating system profiler prf(7)

prfpr: operating system profiler, /prfsnap profiler(lM)
sadp: disk access profiler sadp(lM)

/command programming language. . . sh (l)
/using the mkfs(l) proto file database. qinstall(l)
/out file lists from proto file; set l inks/ qlist(l)
/endprotoent: get protocol entry getprotoent(3N)

Internet File Transfer Protocol server. / D A R P A . f t p d (l N M)
telnetd: DARPA TELNET protocol server te lnetd(lNM)

Trivial File Transfer Protocol server. / D A R P A . t f tpd(lNM)
user interface to TELNET protocol, telnet: te lnet (lN)

to the D A R P A T F T P protocol, /interface t f t p (l N)
trpt: print protocol trace trpt (lNM)

Internet protocols, protocols: list of protocols(4N)
list of Internet protocols, protocols: protocols(4N)

update: provide disk/ update(lM)
facts, arithmetic: provide drill in number . . arithmetic(6)

/ p d p l l , u3b, u3b5, vax: provide truth value/ machid(I)
true, false: provide truth values. . . . true(l)

prs: print an SCCS file. . . prs(l)
/prctmp, prdaily, prtacct, runacct, / acctsh(lM)

status, ps: report process ps(1)
sxt: pseudo-device driver. . . . sxt(7)

/uniformly distributed pseudo-random numbers. . . drand48(3C)
/install or relocate a P T or GT local printer. . . mktpy(l)
download, tdl, gtdl, ptdl: RS-232 terminal . . . td l (l)

ptrace: process trace. . . . ptrace(2)
ptx: permuted index. . . . ptx(l)

input stream, ungetc: push character back into . . ungetc(3S)
putw: put character or/ putc, putchar, fputc, putc(3S)
put character or/ putc, putchar, fputc, putw: . . . putc(3S)

value to environment, putenv: change or add . . . putenv(3C)
file entry, putpwent: write password . putpwent(3C)

string on a stream, puts, fputs: put a puts(3S)
/getutid, getutline, pututline, setutent , / getut(3C)

putc, putchar, fputc, putw: put character or/ . . putc(3S)
password/group file/ pwck, grpck: pwck(lM)

name, pwd: working directory . . pwd(l)
tape, qic: interface for QIC . . . qic(7)

qic: interface for QIC tape qic(7)
verify software using/ qinstall: install and qinstall(l)

lists from proto file;/ qlist: print out file qlist(l)
qsort: quicker sort qsort(3C)

tput: query terminfo database. . . tput (l)
msgget: get message queue msgget(2)

- 36 -

ipcrm: remove a message queue, semaphore set or/ . . ipcrm(l)
qsort: quicker sort qsort(3C)

immune to hangups and quits, /run a command . . nohup(l)
knowledge, quiz: test your quiz(6)

random-number/ rand, srand: simple rand(3C)
fortune: print a random, hopeful ly/ fortune(6)

rand, srand: simple random-number generator. . rand(3C)
fsplit: split 177, ratfor, or efl files fsplit(l)

system/ brc, bcheckrc, rc, powerfail, drvload: . . . brc(lM)
command execution, rcmd: remote shell rcmd(lN)

ruserok: routines for/ rcmd, rresvport rcmd(3N)
rep: remote file copy. . . . rcp(lN)

getpass: read a password getpass(3C)
table entry/ ldtbread: read an indexed symbol . . ldtbread(3X)

ldshread, ldnshread: read an indexed/named/ . . ldshread(3X)
read: read from file read(2)

send mail to users or read mail, mail, rmail: . . . mail(l)
line: read one line line(i)

read: read from file read(2)
of a member/ ldahread: read the archive header . . ldahread(3X)

a common/ ldfhread: read the file header of . . . ldfhread(3X)
a common object file for reading, / ldaopen: open . . ldopen(3X)

open: open for reading or writing open(2)
lseek: move read/write file pointer. . . . lseek(2)

memory/ malloc, free, realloc, calloc: main malloc(3C)
mallopt,/ malloc, free, realloc, calloc, malloc(3X)

system, reboot: reboot the reboot(lM)
reboot: reboot the system reboot(lM)

/specify what to do upon receipt of a signal. signal(2)
socket, recv, reevfrom: receive a message from a . . recv(2N)

lockf: record locking on files. . . . lockf(3C)
per-process accounting records, / summary from . . acctcms(lM)

errdead: extract error records and s ta tus / errdead(lM)
connect accounting records, /manipulate . . . fwtmp(lM)
backup tape, free: recover files from a frec(lM)
a message from a / recv, reevfrom: receive . . . recv(2N)

message from a / recv, reevfrom: receive a recv(2N)
ed, red: text editor e d (l)

and execute regular/ regemp, regex: compile . . . regcmp(3X)
expression compile, regemp: regular regcmp(l)

/maintain, update, and regenerate groups o f / . . . make(l)
execute regular/ regemp, regex: compile and regcmp(3X)

expression compile and/ regexp: regular regexp(5)
/exclusive access to regions of a file locking(2)

compile and/ regexp: regular expression regexp(5)
compile, regemp: regular expression regcmp(l)

/compile and execute regular expression regcmp(3X)
requests, accept, reject: allow/prevent LP . . accept(lM)

two / comm: select or reject lines common to . . . comm(l)
lorder: find ordering relation for an object / . . . lorder(l)

operator, join: relational database join(l)
information for a / reloc: relocation reloc(4)

mktpy, mvtpy: install or relocate a P T or G T / . . . mktpy(l)
/Idnrseek: seek to relocation entries of a / . . . ldrseek(3X)

for a common/ reloc: relocation information . . . reloc(4)
/ fabs: floor, ceiling, remainder, absolute/ floor(3M)

- 37 -

calendar:
returning a stream to a

return stream to a
rhosts:
rexecd:

rep:
execution, remd:

ct: spawn getty to a
SCCS file, rmdel:

semaphore set or/ ipcrm:
unlink:

directories, rm, rmdir:
disk/ dismount:
and eqn/ deroff:

of running process b y /
check and interactive

file, uniq: report
clock:

cornrnuiiicatioR j ipes*
disk blocks, df:
errpt: process a

sadc: system activity
timex: time a command;

ps:
a file, uniq:

sar: system activity
fseek, rewind, ftell:

move/ / s tart / s top the LP
reject: allow/prevent LP

scheduler and move
syslocal: special system
lp, cancel: send/cancel
common/ ldgetname:

value, abs:
user. Iogname:

remote command, rexec:
environment/ getenv:

call, stat: data
/ruserok: routines for

col: filter
reposition a / fseek,
/create a new file or
a remote command.

server,
equivalent users,

or directories,
users or read/ mail,

from an SCCS file,
directories, rm,

chroot: change
command, chroot: change
/logarithm, power, square

manipulate the routing/
/ td : graphical device

/rresvport, ruserok:
address manipulation

reminder service. . . .
remote command, /for .
remote command, rexec:
remote equivalent users,
remote execution server,
remote file copy. . . .
remote shell command .
remote terminal. . . .
remove a delta from an
remove a message queue,
remove directory entry,
remove files or
remove exchangeable . .
remove nroff/troff, tbl, .
renice: alter priority . .
repair, /consistency . .
repeated lines in a . . .
report CPU time used. .
p*nni4 intAr.nrnMae . v(v f - •

report number of free
report of logged errors. .
report package. /sa2,
report process data and/
report process status,
report repeated lines in
reporter
reposition a file/ . . .
request scheduler and
requests, accept, . . .
requests. / L P request
requests
requests to an LP line/ .
retrieve symbol name for
return integer absolute .
return login name of . .
return stream to a . . .
return value for
returned by stat system
returning a stream to a /
reverse line-feeds. . .
rewind, ftell:
rewrite an existing one.
rexec: return stream to
rexecd: remote execution
rhosts: remote . . .
rm, rmdir: remove files
rmail: send mail to
rmdel: remove a delta
rmdir: remove files or
root directory. . . .
root directory for a
root functions. . . .
route: manually . . .
routines and filters,
routines for returning a /
routines. /Internet

calendar(l)
rcmd(3N)
rexec(3N)
rhosts(4N)
rexecd(lNM)
rcp(lN)
rcmd(lN)
c t (l C)
rmdel(l)
ipcrm(l)
unlink(2)
rm(l)
d ismount(l)
deroff(l)
renice(l)
f sck(lM)
uniq(l)
clock(3C)
i r\/*c/11 •I V*/
d f (lM)
errpt(lM)
sar(lM)
t imex(l)
p s (l)
uniq(l)
sar(l)
fseek(3S)
lpsched(lM)
accept(lM)
lpsched(lM)
syslocal(2)
1P(1)
ldgetname(3X)
abs(3C)
logname(3X)
rexec(3N)
getenv(3C)
stat(5)
rcmd(3N)
col (l)
fseek(3S)
creat(2)
rexec(3N)
rexecd(lNM)
rhosts(4N)
r m (l)
mai l (l)
rmdel(l)
rm(l)
chroot(2)
chroot(lM)
exp(3M)
route(lNM)
gdev(lG)
rcmd(3N)
inet(3N)

- 38 -

object file access routines, ldfca: common . . ldfcn(4)
compile and match routines, /expression . . . regexp(5)

table of contents routines, /graphical t oc (lG)
manually manipulate the routing tables, route: . . . route(lNM)

routines for/ rcmd, rresvport, ruserok: rcmd(3N)
/terminal's local RS-232 channels tp(7)

tdl, gtdl, ptdl: RS-232 terminal/ tdl(l)
standard/restricted/ sh, rsh: shell, the sh(I)
and stop terminal input/ rsterm: manually start . . . rsterm(lM)

priority, nice: run a command at iow . . . nice(l)
hangups and/ nohup: run a command immune to . nohup(l)

runacct: run daily accounting. . . . runacct(lM)
accounting, runacct: run daily runacct(lM)

/prdaily, prtacct, runacct, shutacct , / acctsh(lM)
/al ter priority of running process b y / renice(l)
rcmd, rresvport, ruserok: routines for/ . . . rcmd(3N)

on local network, rwho: who is logged in . . . rwho(lN)
server, rwhod: node s tatus rwhod(lNM)

activity report/ sa l , sa2, sadc: sys tem = . sar(lM)
activity report/ sa l , sa2, sadc: system sar(lM)

file editing activity, sact: print current SCCS . . sact(l)
report/ sa l , sa2, sadc: system activity sar(lM)

profiler, sadp: disk access sadp(lM)
graph, sag: system activity sag(lG)

reporter, sar: system activity sar(l)
segment space/ brk, sbrk: change data brk(2)

convert formatted/ scanf, fscanf, sscanf: scanf(3S)
bfs: big file scanner bfs(l)

language, awk: pattern scanning and processing . . awk(l)
delta commentary of an SCCS delta, / change the . cdc(l)

comb: combine SCCS deltas comb(l)
a delta (change) to an SCCS file, delta: make . . delta(l)

sact: print current SCCS file edit ing/ sact(l)
get: get a version of an SCCS file. get(l)

prs: print an SCCS file prs(l)
remove a delta from an SCCS file, rmdel: rmdel(l)

two versions of an SCCS file, /compare . . . sccsdiff(l)
sccsfile: format of SCCS file. = sccsfile(4)

a previous get of an SCCS file, unget: undo . . unget(l)
val: validate SCCS file val(l)

create and administer SCCS files, admin: admin(l)
what: identify SCCS files what(l)

versions of an S C C S / sccsdiff: compare two . . . sccsdiff(l)
file, sccsfile: format of SCCS . . sccsfile(4)

/ t h e LP request scheduler and m o v e / lpsched(lM)
for a common object / scnhdr: section header . . . scnhdr(4)

clear: clear terminal screen clear(l)
ocurse: optimized screen functions ocurse(3X)

curses: C R T screen handling and/ . . . curses(3X)
display editor/ vi: screen-oriented (visual) . . . vi(l)

process, inittab: script for the init inittab(4)
of terminal session, script: make typescript . . . script(l)

initialization shell scripts, / sys tem brc(lM)
sdb: symbolic debugger. . . sdb(l)

difference program, sdiff: side-by-side sdiff(l)
grep, egrep, fgrep: search a file for a / grep(l)

- 39 -

bsearch: binary
accounting/ acctcom:

lsearch, lfind: linear
hdestroy: manage hash

twalk: manage binary
common object / scnhdr:
/read an indexed/named
line number entries of a

relocation entries of a
/ t o an indexed/named

object/ size: print

/jrand48, srand48,
ldsseek, ldnsseek
ldlseek, ldnlseek
ldrseek, ldnrseek

file header/ ldohseek
of a common/ ldtbseek

get shared memory
brk, sbrk: change data

common to t w o / comm:
greek:

line of a / cut: cut out
object file, dump: dump

operations, semctl:
semop:

/remove a message queue,
semget: get set of

control operations,
semaphores,

operations,
socket, send, sendto:

process or a / kill:
read mail, mail, rmail:

message to a socket,
an LP line/ lp, cancel:

to a socket, send,
/attach and detach

File Transfer Protocol
rexecd: remote execution

rwhod: node status
DARPA TELNET protocol

File Transfer Protocol
uucpd: network uucp

typescript of terminal
Internet address from/

buffering to a stream,
address on disk,

group IDs. setuid,
/getgrgid, getgrnam,

ge t / /gethostbyname,
non-local goto,

generate hashing/ crypt,
table.

get / /getnetbyname,
group ID.

search a sorted table,
search and print process
search and update. . .
search tables, /hcreate,
search trees, /tdelete,
section header for a
section header of a / . .
section of a common/ / t o
section of a common/ / t o
section of a common/'
section sizes of common
sed: stream editor. .
seed48, lcong48:/
seek to an/
seek to line number/
seek to relocation/ .
seek to the optional
seek to the symbol table
segment, shmget: . -
segment space/ . . .
select or reject lines
select terminal filter. .
selected fields of each
selected parts of an
semaphore control . .
semaphore operations,
semaphore set or shared/
semaphores. . . .
semctl: semaphore .
semget: get set of .
semop: semaphore .
send a message to a
send a signal to a .
send mail to users or
send, sendto: send a
send/cancel requests to
sendto: send a message .
serial lines as network/
server. / D A R P A Internet
server
server
server, telnetd: . . .
server. / D A R P A Trivial
server
session, script: make
setaddr: set DARPA .
setbuf, setvbuf: assign
setenet: write Ethernet
setgid: set user and
setgrent, endgrent,/
sethostent, endhostent
setjmp, longjmp:
setkey, encrypt: .
setmnt: establish mount
setnetent, endnetent:
setpgrp: set process

bsearch(3C)
acctcom(l)
lsearch(3C)
hsearch(3C)
tsearch(3C)
scnhdr(4)
ldshread(3X)
ldlseek(3X)
ldrseek(3X)
lasseek(3X)
s ize(l)
sed(l)
drand48(3C)
ldsseek(3X)
ldlseek(3X)
ldrseek(3X)
ldohseek(3X)
ldtbseek(3X)
sh mget/ 2)
brk(2)
comm(l)
greek(l)
cut (l)
dump(l)
semctl(2)
semop(2)
ipcrm(l)
semget(2)
semctl(2)
semget(2)
semop(2)
send(2N)
kill(2)
mail(l)
send(2N)
1P(1)
send(2N)
s lattach(lNM)
f tpd(lNM)
rexecd(lNM)
rwhod(lNM)
te lnetd(lNM)
t f tpd(lNM)
uucpd(lNM)
script(l)
setaddr(lNM)
setbuf(3S)
setenet(lNM)
setuid(2)
getgrent(3C)
gethostent(3N)
setjmp(3C)
crypt(3C)
se tmnt(lM)
getnetent(3N)
setpgrp(2)

- 40 -

/getprotobyname, setprotoent, / getprotoent(3N)
/getpwuid, getpwnam, setpwent, endpwent , / . . . getpwent(3C)
ge t / /getservbyname, setservent, endservent: . . . getservent(3N)

options on/ getsockopt, setsockopt: get and set . . . getsockopt(2N)
environment/ cprofile: setting up a C shell cprofile(4)

environment a t / profile: setting up an profile(4)
/speed and terminal settings used by get ty gettydefs(4)

and group IDs. setuid, setgid: set user . . . setuid(2)
system, setuname: set name of . . . setuname(lM)

/getutline, pututline, setutent, endutent,/' getut(3C)
buffering to a / setbuf, setvbuf: assign setbuf(3S)
integer data in/ sputl, sgetl: access long sputl(3X)

standard/restricted/ sh, rsh: shell, the sh(l)
xstr: extract and share strings in C / xstr(l)

operations, shmctl: shared memory control . . . shmctl(2)
/queue, semaphore set or shared memory id ipcrm(l)

operations, shmop: shared memory shmop(2)
shmget: get shared memory segment. . . shmget(2)

rcmd: remote shell command execution. = rcmd(lN)
interpreter)/ csh: a shell (command csh(l)

system: issue a shell command system(3S)
cprofile: setting up a C shell environment a t / . . . cprofile(4)

shl: shell layer manager shl(l)
/startup, tumacct: shell procedures for / acctsh(lM)

system initialization shell scripts, /drvload: . . . brc(lM)
sh, rsh: shell, the / 1)

manager, shl: shell layer shl(l)
control operations, shmctl: shared memory . . shmctl(2)

memory segment, shmget: get shared shmget(2)
operations, shmop: shared memory . . . shmop(2)

full-duplex/ shutdown: shut down part of a shutdown(2N)
/prtacct, runacct, shutacct, startup,/ acctsh(lM)

terminate all/ shutdown, halt: shutdown(lM)
of a full-duplex/ shutdown: shut down part . shutdown(2N)

program, sdiff: side-by-side difference . . . sdiff(l)
login: sign on login(l)

suspend process until signal, pause: pause(2)
to do upon receipt of a signal, /specify what . , . signal(2)

do upon receipt of a / signal: specify what to . . . signal(2)
group o f / kill: send a signal to a process or a . . . kill(2)

gsignal: software signals, ssignal, ssignal(3C)
/generate programs for simple lexical tasks lex(l)

generator, rand, srand: simple random-number . . . rand(3C)
acos, atan, atan2:/ sin, cos, tan, asin trig(3M)

hyperbolic functions, sinh, cosh, tanh: sinh(3M)
sizes of common object/ size: print section size(l)

size: print section sizes of common object / . . size(l)
attach and detach/ slattach, sldetach: s lattach(lNM)

detach serial/ slattach, sldetach: attach and slattach(INM)
for an interval, sleep: suspend execution . . sleep(l)

for interval, sleep: suspend execution . . sleep(3C)
view graphs, and slides, /documents mmt(l)
view graphs and slides, / for typesetting . . . mv(5)

the / ttyslot: find the slot in the utmp file of . . . ttyslot(3C)
data base, modemcap: smart modem capability . . modemcap(S)

spline: interpolate smooth curve spline(lG)

- 41 -

accept a connection on a socket, accept: accept(2N)
bind: bind a name to a socket bind(2N)

a connection on a socket, /initiate connect(2N)
endpoint for/ socket: create an socket(2N)

for connections on a socket, listen: listen listen(2N)
getsockname: get socket name getsockname(2N)

receive a message from a socket, recv, recvfrom: . . . recv(2N)
send a message to a socket, send, sendto: . . . send(2N)

get and set options on sockets, /setsockopt: . . . getsockopt(2N)
/Tile perusai niter for soft-copy terminals pg(l)

ctinstall: install software ctinstall(l)
ssignal, gsignal: software signals ssignal(3C)

/install and verify software using t h e / qinstall(l)
sort: sort and/or merge files. . . sort (l)

qsort: quicker sort qsort(3C)
files, sort: sort and/or merge . . sort (l)

tsort: topological sort tsort(l)
lines common to two sorted files, /or reject . . . comm(l)

bsearch: binary search a sorted table. baearch(3C)
change data segment space allocation, /sbrk: . . brk(2)

/unexpand: expand tabs to spaces, and vice versa. . . . expand(l)
terminal, ct: spawn getty to a remote . . c t (lC)

files, fspec: format specification in text fspec(4)
openi: open a file specified by i-node openi(2)

receipt of a / signal: specify what to do upon . . signal(2)
terminal type, modes, speed, and line/ / se t . . . ge t ty (lM)

settings/ gettydefs: speed and terminal gettydefs(4)
spellin, hashcheck:/ spell, hashmake spell(l)

spell, hashmake, spellin, hashcheck: find/ . . spell(l)
/spellin, hashcheck: find spelling errors spell(l)

smooth curve, spline: interpolate spl ine(lG)
pieces, split: split a file into spl i t(l)

csplit: context split csplit(l)
efl files, fsplit: split (77, ratfor, or fspl i t (l)

pieces, split: split a file into spl i t (l)
clean-up. uuclean: uucp spool directory uuclean(lM)

lpr: line printer spooler. lpr(l)
/configure the LP spooling system. lpadmin(lM)

printf, fprintf, sprintf: print formatted/ . . printf(3S)
long integer data in a / sputl, sgetl: access sputl(3X)

exp, log, loglO, pow, sqrt: exponential,/ exp(3M)
/logarithm, power, square root functions. . . . exp(3M)

random-number/ rand, srand: simple rand(3C)
/mrand48, jrand48, srand48, seed48,/ drand48(3C)

scanf, fscanf, sscanf: convert/ scanf(3S)
software signals, ssignal, gsignal: ssignal(3C)

input /output / stdio: standard buffered stdio(3S)
communication/ ftok: standard interprocess . . . stdipc(3C)

sh, rsh: shell, the standard/restricted/ sh (l)
input/ rsterm: manually start and stop terminal . . rsterm(lM)
lpsched, lpshut, lpmove: s tart / s top the L P / lpsched(lM)

/runacct, shutacct, startup, turnacct: shell/ . . acctsh(lM)
stat system call, stat: data returned by . . . stat(5)

status, stat , fstat: get file stat(2)
network useful w i th / stat: statistical s ta t (lG)

stat: data returned by stat system call stat(5)

- 42 -

useful with/ stat: statistical network s ta t (lG)
/ l ist file names and statistics for a file/ f f (lM)

ustat: get file system statistics ustat(2)
dump, /error records and status information from . . errdead(lM)

lpstat: print LP status information lpstat(l)
clearerr, fileno: stream status inquiries, /feof, . . . ferror(3S)
control, uustat: uucp status inquiry and job . . . uustat (lC)

communication facilities status, /inter-process . . . ipcs(l)
ps: report process status ps(l)

rwhod: node status server rwhodf lNM)
stat, fstat: get file status stat(2)

input/output package, stdio: standard buffered . . stdio(3S)
stime: set time stime(2)

for child process to stop or terminate, /wait . . wait(2)
/manually start and stop terminal input and/ . . rsterm(lM)

strncmp, strcpy,/ strcat, strncat, strcmp, . . . string(3C)
/strcpy, strncpy, strlen, strchr, strrchr,/ string(3C)

strcat, strncat, strcmp, strncmp, strcpy,/ . string(3C)
/strcmp, strncmp, strcpy, strncpy, strlen,/ = = string(3C)

/strpbrk, strspn, strcspn, strtok: string/ . . . string(3C)
sed: stream editor sed(l)

fflush: close or flush a stream, fclose, fclose(3S)
freopen, fdopen: open a stream, fopen, fopen(3S)

a file pointer in a stream, /reposition fseek(3S)
character or word from a stream, /getw: get getc(3S)

get a string from a stream, gets, fgets: gets(3S)
character or word on a stream, /putw: put putc(3S)

fputs: put a string on a stream, puts, puts(3S)
assign buffering to a stream, / setvbuf: setbuf(3S)
/ feof , clearerr, fileno: stream status inquiries. . . ferror(3S)

/routines for returning a stream to a remote/ rcmd(3N)
command, rexec: return stream to a remote rexec(3N)

back into input stream, /push character . . ungetc(3S)
and base-64 ASCII string, / long integer a641(3C)

convert date and time to string, /asctime, tzset: . . . ctime(3C)
floating-point number to string, /gcvt: convert . . . ecvt(3C)

gps: graphical primitive string, format o f / gps(4)
gets, fgets: get a string from a stream = s s gets(3S)

puts, fputs: put a string on a stream puts(3S)
/strspn, strcspn, strtok: string operations string(3C)

strtod, atof: convert string to / strtod(3C)
atof: convert ASCII string to floating-point/ . . atof(3C)
/atol , atoi: convert string to integer strtol(3C)

ASCII text strings in a / strings: extract the strings(l)
/extract the ASCII text strings in a file strings(l)
xstr: extract and share strings in C programs. . . . xstr(l)

line number information/ strip: strip symbol and . . . strip(l)
number/ strip: strip symbol and line . . . strip(l)

/strcpy, strncpy, strlen, strchr, strrchr,/ . . . string(3C)
strncmp,/ strcat, strncat, strcmp, string(3C)

strcat, strncat, strcmp, strncmp, strcpy,/ string(3C)
/strcmp, strncmp, strcpy, strncpy, strlen, strchr,/ . . string(3C)

/strlen, strchr, strrchr, strpbrk, strspn,/ string(3C)
/strncpy, strlen, strchr, strrchr, strpbrk,/ string(3C)

/strrchr, strpbrk, strspn, strcspn, strtok:/ . . string(3C)
string to / strtod, atof: convert strtod(3C)

- 43 -

strspn, strcspn, strtok: string/ /strpbrk, . . string(3C)
convert string to / strtol, atoi, atoi: strtol(3C)
using a file or file structure, /processes . . . fuser(lM)

for a terminal, stty: set the options s t ty (l)
another user, su: become super-user or . . su (l)

intro: introduction to subroutines and/ intro(3)
plot: graphics interface subroutines plot(3X)

/of several files or subsequent lines of one / . . paste(l)
block count of a file, sum: print checksum and . . sum(l)

du: summarize disk usage. . . . du (l)
acctcms: command summary from per-process/ . acctcms(lM)

sync: update the super block sync(l)
sync: update super-block sync(2)

user, su: become super-user or another . . . su (l)
interval, sleep: suspend execution for an . . s leep(l)
interval, sleep: suspend execution for . . . sleep(3C)

signal, pause: suspend process until . . . pause(2)
swab: swap bytes swab(3C)

interface, swap: swap administrative swap(lM)
swab: swap bytes. swab(3C)

administrative/ swap: swap swap(lM)
write on a file, swrite: synchronous swrite(2)

driver, sxt: pseudo-device sxt(7)
strip: strip symbol and line number/ . . s tr ip(l)

ldgetname: retrieve symbol name for common/ . ldgetname(3X)
/for common object file symbol table entry ldgetname(3X)

/compute the index of a symbol table entry of a / . . ldtbindex(3X)
common/ /read an indexed symbol table entry of a . . ldtbread(3X)

syms: common object file symbol table format syms(4)
ldtbseek: seek to the symbol table of a common/ . ldtbseek(3X)

sdb: symbolic debugger sdb(l)
symbol table format, syms: common object file . . syms(4)

super-block, sync: update . sync(2)
block, sync: update the super . . . sync(l)

update: provide disk synchronization update(lM)
file, swrite: synchronous write on a . . swrite(2)

interpreter) with C-like syntax, /shell (command . . csh(l)
system/ perror, errno, sys_errlist, sys_nerr: perror(3C)

requests, syslocal: special system . . . syslocal(2)
/errno, sys_errlist, sys_nerr: system error/ . . . perror(3C)

binary search a sorted table, bsearch: bsearch(3C)
object file symbol table entry, / for common . ldgetname(3X)

/ t h e index of a symbol table entry of a common/ . ldtbindex(3X)
/read an indexed symbol table entry of a common/ . ldtbread(3X)

object file symbol table format, /common . . syms(4)
device information table, master: master . . . master(4)

mounted file system table, mnttab: mnttab(4)
/seek to the symbol table of a common object/ . ldtbseek(3X)

toe: graphical table of contents / toc (lG)
setmnt: establish mount table se tmnt(lM)

troff. tbl: format tables for nroff or tb l (l)
manage hash search tables, /hdestroy: hsearch(3C)

manipulate the routing tables, route: manually . . route(lNM)
tabs: set tabs on a terminal tabs (l)
terminal, tabs: set tabs on a tabs(l)

expand, unexpand: expand tabs to spaces, and vice/ . . expand(l)

- 44 -

ctags: create a tags file ctags(l)
part of a file, tail: deliver the last tail(l)

atan2:/ sin, cos, tan, asin, acos, atan trig(3M)
functions, sinh, cosh, tanh: hyperbolic sinh(3M)

tar: tape file archiver. tar(l)
files from a backup tape, free: recover frec(lM)

qic: interface for QIC tape. qic(7)
tar: tape file archiver. . . . tar(l)

for simple lexical tasks, /programs lex(l)
/remove nroff/troff, tbl, and eqn constructs. . . deroff(l)

nroff or troff. tbl: format tables for . . . tbl(l)
/erase, hardcopy, tekset, td: graphical device/ gdev(lG)

binary/ tsearch, tfind, tdelete, twalk: manage . . . tsearch(3C)
terminal download, tdl, gtdl, ptdl: RS-232 . . . tdl(l)

tee: pipe fitting tee(l)
hpd, erase, hardcopy, tekset, td: graphical/ . . . gdev(lG)

4014: paginator for the TEKTRONIX 4014 terminal. 4014(1)
initialization, init, telinit: process control . . . init(lM)

telnetd: DARPA TELNET protocol server. . te lnetd(lNM)
/user interface to TELNET protocol telnet(lN)

to T E L N E T protocol, telnet: user interface te lnet(lN)
protocol server, telnetd: D A R P A T E L N E T . te lnetd(lNM)

for a temporary/ tmpnam, tempnam: create a name . . tmpnam(3S)
tmpfile: create a temporary file tmpfile(3S)

/create a name for a temporary file tmpnam(3S)
for terminals, term: conventional names . term(5)

term: format of compiled term file term(4)
term file., term: format of compiled . . term(4)

capability data base, termcap: terminal termcap(4)
for the TEKTRONIX 4014 terminal, /paginator . . . 4014(1)

of the DASI 450 terminal, / funct ions 450(1)
interface, tiop: terminal accelerator tiop(7)
base, termcap: terminal capability data . . termcap(4)
base, terminfo: terminal capability data . . terminfo(4)
console: console terminal console(7)

spawn getty to a remote terminal, ct: c t (lC)
generate file name for terminal, ctermid: ctermid(3S)
tdl, gtdl, ptdl: RS-232 terminal download. tdl(l)

/terminal inteface, and terminal environment. . . . t set (l)
greek: select terminal filter greek(l)

/ tgetstr , tgoto, tputs: terminal independent/ . . . termcap(3X)
/manually start and stop terminal input a n d / rsterm(lM)

tset: set terminal, terminal inteface, a n d / . . . t set(l)
termio: general terminal interface termio(7)
tty: controlling terminal interface tty(7)

establish an out-going terminal line/ dial: dial(3C)
of terminal types by terminal number, / l ist . . . ttytype(4)

clear: clear terminal screen clear(l)
/make typescript of terminal session script(l)

by / gettydefs: speed and terminal settings used . . . gettydefs(4)
set the options for a terminal, stty: s t ty(l)

tabs: set tabs on a terminal tabs(l)
inteface, and/ tset: set terminal, terminal tset(l)

conlocate: locate a terminal to use as t h e / . . . conlocate(lM)
t ty : get the name of the terminal t ty(l)

isatty: find name of a terminal, ttyname ttyname(3C)

- 45 -

speed, and/ getty: set
ttytype: list of

of DASI 300 and 300s
HP 2640 and 2621-series

tp: controlling
filter for soft-copy

conventional names for
kill:

shutdown, halt:
exit, _exit:

error-logging/ errstop:
child process to stop or

tic:
tput: query

capability data base.
interface,

evaluation command.
quiz:

ed, red:
ex:

ex for casual/ edit:
change the format of a
format specification in
/ format mathematical

/prepare constant-width
nroff: format

plock: lock process,
more, page:

/extract the ASCII
troff: typeset

manage binary/ tsearch,
interface to the D A R P A

the DARPA T F T P /
File Transfer Protocol/

tgetflag, tgetstr, /
tgetent, tgetnum,
tgetstr,/ tgetent,

/ tgetnum, tgetflag,
/tgetflag, tgetstr,

ttt, cubic:
process data and/ timex:

time:
commands at a later
environment at login

for optimal access

profil: execution
an environment at login

stime: set

time: get
/tzset: convert date and

clock: report CPU
TZ:

child process times.

terminal type, modes, . ge t ty (lM)
terminal types b y / . . . t tytype(4)
terminals, / functions . 300(1)
terminals, / functions of • h p (l)
terminal's local RS-232/ . tp(7)
terminals, /f i le perusal • P8(l)
terminals, term: . . .
terminate a process. . . . kil l(l)

terminate process. . . .

terminate, /wait for . . . wait(2)
terminfo compiler. . . .
terminfo database. . . . t p u t (l)
terminfo: terminal . . .
termio: general terminal . termio(7)

test your knowledge. . . . quiz(6)
text editor . ed (l)

text editor (variant of • . edi t (l)
text file, newform: . . . newform(l)

text for nroff or troff. . eqn(l)

text, or data in memory. . plock(2)
text perusal . more(l)
text strings in a file. . .

T F T P protocol, /user . . t f t p (l N)
tftp: user interface to . t f t p (l N)
tftpd: D A R P A Trivial . . t f t p d (l N M)

tgetstr, tgoto, tputs: / . termeap(3X)
tgoto, tputs: terminal/ . . termcap(3X)
tic: terminfo compiler. . . t ic(lM)
tic-tac-toe . t tt(6)
time a command; report . t imex(l)
time a command. . . .
time, /batch: execute . a t (l)
time, / u p a C shell . . . cprofile(4)
time, /copy file systems . dcopy(lM)
time: get time

time, /sett ing up . . .
time. . stime(2)
time: time a command. . . t ime(l)

time to string

times: get process and . times(2)

- 46 -

access and modification
and child process

access and modification
report process data and/

accelerator interface,
temporary file,

a name for a temporary/
/_toupper, _tolower,

contents routines,
/pclose: initiate pipe

/'toiower, _toupper,
_tolower,/ toupper,

tsort:
acctmerg: merge or add

modification times of a /
toupper, toiower,

_toupper, _tolower,/
terminal's local RS-232/

database,
/ tgetstr , tgoto,

characters,
ptrace: process

trpt: print protocol
ftp: file

DARPA Internet File
/ D A R P A Trivial File

/_tolower, toascii:
tr:

ftw: walk a file
manage binary search

trk:
/asin, acos, atan, atan2:

Protocol/ tftpd: D A R P A

constant-width text for
text for nroff or

typesetting view/ mv: a
tables for nroff or

trace,
truth values.

/u3b, u3b5, vax: provide
true, false: provide

twalk: manage binary/
terminal inteface, and/

terminal interface.
terminal,

name of a terminal,
in the utmp file of the /

terminal types b y /
/shutacct , startup,

tsearch, tfind, tdelete,
file: determine file

times of a file, / u p d a t e . touch(l)
times, / ge t process times(2)
times, utime: set file . . . utime(2)
timex: time a command; . t imex(l)
tiop: terminal . tiop (7)
tmpfile: create a tmpfile(3S)
tmpnam, tempnam: create . tmpnam(3S)
toascii: translate/ conv(3C)
toe: graphical table of . . . toc(lG)
to / from a process . popen(3S)

. conv(3C)

. conv(3C)

. tsort(l)
total accounting files. . . . acctmerg(lM)
touch: update access and . . touch(l)
_toupper, _tolower, / conv(3C)

. conv(3C)
• tp(7)

tplot: graphics filters. . . . tplot(lG)
tput: query terminfc tput(l)
tputs: terminal/ . termcap(3X)

. tr(l)

. ptrace(2)

. trpt(lNM)

. ftp (IN)
Transfer Protocol / ftpd: . . f tpd(lNM)
Transfer Protocol / t f tpd(lNM)

. conv(3C)
translate characters. . . . • Ml)

. ftw(3C)
trees, / tdelete , twalk: . . . tsearch(3C)
trekkie game . trk(8)
trigonometric functions. . trig(3M)
Trivial File Transfer t f tpd(lNM)
trk: trekkie game . trk(6)
troff. /checkcw: prepare . . cw(l)
troff. /mathematical . . . eqn(l)
troff macro package for . mv(5)
troff. tbl: format tbl(l)

. troff(l)
trpt: print protocol trpt(lNM)
true, false: provide true(l)
truth value about your / . machid(l)
truth values . true(l)
tsearch, tfind, tdelete, . . . tsearch(3C)

. tset(l)
tsort: topological sort. . . . tsort(l)
t t t , cubic: tic-tac-toe. . . . ttt(S)
tty: controlling . tty(7)
tty: get the name of the • t ty (l)
t tyname, isatty: find ttyname(3C)
ttyslot: find the slot ttyslot(3C)

. ttytype(4)

. acctsh(lM)
twalk: manage binary/ . . . tsearch(3C)
type . file(l)

- 47 -

about your processor
getty: set terminal

/ l ist of terminal
data types,

primitive system data
session, script: make

graphs, and/ mmt, mvt:
troff:

/ t rof f macro package for

t ime/ /gmtime, asctime,
truth/ mc68k, p d p l l ,

mc68k, p d p l l , u3b,
getpw: get name from

limits,
creation mask,

mode mask,
dismount file/ mount,

current CTIX system,
current CTIX system.

ul: do
an SCCS file, unget:

spaces, and/ expand,
get of an SCCS file,

back into input stream.
/lcong48: generate

lines in a file,
mktemp: make a

program,
and unlink sys tem/ link,

entry.
/exercise link and

umount:
expand/ pack, peat,
modification/ touch:

g r o u p s / make: maintain,
lfind: linear search and

synchronization.
sync:
sync:

du: summarize disk
/statistical network

names, id: print
setuid, setgid: set

crontab -
login name of the

real/ /getegid: get real
environ:

disk accounting data by
protocol, telnet:

DARPA T F T P / tftp:
ulimit: get and set

return login name of
/get real user, effective

type, / truth value machid(l)
type, modes, speed, and/ . . g e t ty (lM)
types by terminal/ t tytype(4)
types: primitive system . . types(5)
types, types: types(S)
typescript of terminal . . . script(l)
typeset documents, view . . m m t (l)
typeset text troff (l)
typesetting view graphs/ . . mv(5)
TZ: time zone file tz(4)
tzset: convert date and . . . ctime(3C)
u3b, u3b5, vax: provide . . machid(l)
u3b5, vax: provide truth/ . machid(l)
UID getpw(3C)
ul: do underlining ul(l)
ulimit: get and set user . . ulimit(2)
umask: set and get file . . . umask(2)
umask: set file-creation . . . umask(l)
umount: mount and mount (lM)
umount: unmount a file * . umount(2)
uname: get name of uname(2)
uname: print name of . . . uname(l)
underlining ul(l)
undo a previous get of . . . unget (l)
unexpand: expand tabs to . expand(l)
unget: undo a previous . . . unget (l)
ungetc: push character . . . ungetc(3S)
uniformly distributed/ . . . drand48(3C)
uniq: report repeated . . . uniq(l)
unique file name mktemp(3C)
units: conversion units(l)
unlink: exercise link l ink(lM)
unlink: remove directory . . unlink(2)
unlink system calls l ink(lM)
unmount a file system. . . . umount(2)
unpack: compress and . . . pack(l)
update access and touch(l)
update, and regenerate . . . make(l)
update, lsearch, . . . = . . lsearch(3C)
update: provide disk update(lM)
update super-block sync(2)
update the super block. . . sync(l)
usage d u (l)
useful with graphical/ . . . s ta t (lG)
user and group IDs and . . id(l)
user and group IDs setuid(2)
user crontab file crontab(l)
user, / g e t character cuserid(3S)
user, effective user getuid(2)
user environment environ(5)
user ID. / - generate diskusg(lM)
user interface to T E L N E T . te lnet (lN)
user interface to the t f t p (l N)
user limits. ulimit(2)
user. Iogname: logname(3X)
user, real group, and/ . . . getuid(2)

- 48 -

super-user or another user, su: become s u (l)
utmp file of the current user, / t h e slot in the . . . ttyslot(3C)
write: write to another user write(l)

of ex for casual users), /editor (variant . . edit(l)
/rmail: send mail to users or read mail mail(l)

remote equivalent users, rhosts: rhosts(4N)
wall: write to all users. wall(lM)

/ identify processes using a file or file/ fuser(lM)
/and verify software using the mkfs(l) proto/ . . ninst.aU(l)

statistics, ustat: get file system ustat(2)
gutil: graphical utilities guti l(lG)

and modification times, utime: set file access utime(2)
formats, utmp, wtmp: utmp and wtmp entry . . . utmp(4)

/utmpname: access utmp file entry getut(3C)
/ f ind the slot in the utmp file of the current/ , . ttyslot(3C)

wtmp entry formats, utmp, wtmp: utmp and . . utmp(4)
/setutent , endutent, utmpname: access u tmp/ . . getut(3C)

directory clean-up. uuclean: uucp spool uuclean(lM)
uusub: monitor uucp network uusub(lM)
uucpd: network uucp server uucpd(lNM)

clean-up. uuclean: uucp spool directory uuclean(lM)
job control, uustat: uucp status inquiry and . . uustat(lC)

CTIX system to CTIX/ uucp, uulog, uuname: . . . uucp(lC)
server, uucpd: network uucp . . . uucpd(lNM)

system to CTIX/ uucp, uulog, uuname: CTIX . . . uucp(lC)
CTIX/ uucp, uulog, uuname: CTDC system to . . uucp(lC)

CTIX-to-CTIX/ uuto, uupick: public uuto(lC)
inquiry and job / uustat: uucp status uustat(lC)

network, uusub: monitor uucp uusub(lM)
CTIX-to-CTIX sys tem/ uuto, uupick: public uuto(lC)

command execution, uux: CTIX-to-CTIX system . uux(lC)
val: validate SCCS file. . . val(l)

val: validate SCCS file val(l)
u3b5, vax: provide truth value about your/ /u3b, . . machid(l)

return integer absolute value, abs: abs(3C)
name, getenv: return value for environment . . . getenv(3C)
/remainder, absolute value functions floor(3M)

putenv: change or add value to environment. . . . putenv(3C)
/ntohl , ntohs: convert values between host and/ . byteorder(3N)

machine-dependent/ values: values(5)
false: provide truth values, true true(l)
machine-dependent values, values: values(5)

/ formatted output of a varargs argument list. . . . vprintf(3S)
argument list, varargs: handle variable . . varargs)5)

varargs: handle variable argument list. . . . varargs(5)
edit: text editor (variant of ex for/ edit(l)

mc68k, p d p l l , u3b, u3b5, vax: provide truth value/ . . machid(l)
vc: version control v c (l)

letter from argument vector. / g e t option getopt(3C)
assertion, assert: verify program assert(3X)

qinstall: install and verify software using/ . . . qinstall(l)
tabs to spaces, and vice versa, /unexpand: expand . expand(l)

vc: version control vc(l)
get: get a version of an SCCS file. . . get(l)

sccsdiff: compare two versions of an S C C S / . . . sccsdiff(l)
print/ vprintf, vfprintf, vsprintf: vprintf(3S)

- 49 -

Volume Home Blocks
(visual) display editor/

tabs to spaces, and
/mvt: typeset documents,

/package for typesetting
/ a terminal to use as the

vi: screen-oriented
vme:

file systems with label/
libdev: manipulate

initialize and maintain
vsprintf: print/

vprintf, vfprintf,
of process,

to stop or/ wait:
process to stop or/

ftw:
users.

files.
of a / signal: specify

whodo:
local network, rwho:

who:
system,

what.
/ long lines for finite
primitives, window:

wm:
management primitives.

cd: change
chdir: change

/get path-name of current
pwd:

on disk, setenet:
swrite: synchronous

write:
entry, putpwent:

wall:
write:

user.
open for reading or

utmp, wtmp: utmp and
entry formats, utmp,

connect/ fwtmp,
hunt-the-wumpus.

argument list(s) and/
strings in C programs,

functions. jO, j l , jn,
jO, j l , jn, yO,

compiler-compiler.
jO, j l , jn, yO, y l ,

TZ: time

(VHB). /manipulate libdev(3X)
vi: screen-oriented • v i (l)
vice versa, /expand expand(l)
view graphs, and slides. . m m t (l)
view graphs and slides. . . . mv(5)
virtual system console. . . . conlocate(lM)
(visual) display editor/ . . • v i (l)
V M E bus interface. vme(7)
vme: V M E bus interface. . . vme(7)
volcopy, labelit: copy . . . voIcopy(lM)
Volume Home Blocks/ . . . libdev(3X)
volume, iv: . i v (l)
vprintf, vfprintf, vprintf(3S)

. vprintf(3S)
wait: await completion . . . wa i t (l)
wait for child process . . . wait(2)
wait: wait for child wait(2)
walk a file tree . ftw(3C)
wall: write to all wall'lM^
wc: word count . w c (l)
what: identify SCCS what (l)
what to do upon receipt . signal(2)
who is doing what. whodo(lM)
who is logged in on rwho(lN)
who is on the system. . . . who(l)
who: who is on the who(l)
whodo: who is doing whodo(lM)
width output device. fo ld(l)
window management . . . window(7)
window management. . . . w m (l)
window: window window(7)
wm: window management. . w m (l)
working directory . cd (l)
working directory . chdir(2)
working directory . getcwd(3C)
working directory name. . . pwd(l)
write Ethernet address . . . setenet(lNM)
write on a file . swrite(2)
write on a file . write(2)
write password file putpwent(3C)
write to all users . wall(lM)
write to another user. . . . write(l)
write: write on a file. . . . write(2)
write: write to another . . . write(l)
writing, open: . open(2)
wtmp entry formats. utmp(4)
wtmp: utmp and wtmp . utmp(4)
wtmpfix: manipulate fwtmp(lM)
wump: the game of wump(6)
xargs: construct . xargs(l)
xstr: extract and share . . . xstr(l)
yO, y l , yn: Bessel bessel(3M)
y l , yn: Bessel / . bessel(3M)
yacc: yet another yacc(l)
yn: Bessel functions. bessel(3M)
zone file . tz(4)

- 50 -

TABLE OF CONTENTS

1. Commands and Application P rograms
intro introduction to commands and application programs
300 . . . handle special functions of DASI 300 and 300s terminals
4014 paginator for the TEKTRONIX 4014 terminal
450 handle special functions of the DASI 450 terminal
accept allow/prevent LP requests
acct overview of accounting commands
acctcms . command summary from per-process accounting records
acctcom search and print process accounting file(s)
acctcon connect/time accounting
acctmerg merge or add total accounting files
acctprc process accounting
acctsh shell procedures for accounting
adb . absolute debugger
admin create and administer SCCS files
ar archive and library maintainer for portable archives
as assembler
asa interpret ASA carriage control characters
at execute commands at a later time
awk pattern scanning and processing language
banner make posters
basename deliver portions of path names
be arbitrary-precision arithmetic language
bcheck print out the list of blocks associated with i-node(s)
bcopy interactive block copy
bdiff big diff
bfs big file scanner
brc system initialization shell scripts
cal , , print calendar
calendar reminder service
cat concatenate and print files
catman create the cat files for the manual
cb C program beautifier
cc C compiler
cd change working directory
ede change the delta commentary of an SCCS delta
cflow generate C flowgraph
chmod change mode
chown change owner or group
chroot change root directory for a command
clear clear terminal screen
clri clear i-node
cmp compare two files
col filter reverse line-feeds
comb combine SCCS deltas
comm select or reject lines common to two sorted files

- 1 -

config configure a CTIX system
conlocate . . locate a terminal to use as the virtual system console
convert convert object and archive files to common formats
cp copy, link or move files
cpio copy file archives in and out
cpp the C language preprocessor
cpset install object files in binary directories
crash examine system images
cron clock demon
crontab crontab - user crontab file
csh a shell (command interpreter) with C-like syntax
csplit context split
ct spawn getty to a remote terminal
ctags create a tags file
ctinstall install software
ctrace C program debugger
cu caii another computer system
cut cut out selected fields of each line of a file
cw prepare constant^width text for troff
cxref generate C program cross-reference
date print and set the date
dc desk calculator
dcopy copy file systems for optimal access time
dd convert and copy a file
delta make a delta (change) to an SCCS file
deroff remove nroff/troff, tbl, and eqn constructs
devnm device name
df report number of free disk blocks
diff differential file comparator
diff3 3-way differential file comparison
diffmk mark differences between files
dircmp directory comparison
diskusg diskusg - generate disk accounting data by user ID
dismount remove exchangeable disk
du summarize disk usage
dump dump selected parts of an object file
echo echo arguments
ed text editor
edit text editor (variant of ex for casual users)
enable enable/disable LP printers
env set environment for command execution
eqn format mathematical text for nroff or troff
errdead . . extract error records and status information from dump
errdemon error-logging demon
errpt process a report of logged errors
errstop terminate the error-logging demon
ex text editor
expand expand tabs to spaces, and vice versa
expr evaluate arguments as an expression
factor factor a number

ff list file names and statistics for a file system
file determine file type
fine fast incremental backup
find find files
fold fold long lines for finite width output device
free recover files from a backup tape
fsck file system consistency check and interactive repair
fsdb file system debugger
fsplit split f77, ratfor, or efl files
ftp file transfer program
ftpd DARPA Internet File Transfer Protocol server
fuser identify processes using a file or file structure
fwtmp manipulate connect accounting records
gdev graphical device routines and filters
ged graphical editor
get get a version of an SCCS file
getopt parse command options
getty set terminal type, modes, speed, and line discipline
graph draw a graph
graphics access graphical and numerical commands
greek select terminal filter
grep search a file for a pattern
gutil graphical utilities
hd hexadecimal and ascii file dump
head give first few lines
help ask for help
hinv hardware inventory
hp . handle special functions of HP 2640 and 2621-series terminals
hyphen find hyphenated words
id print user and group IDs and names
ifconfig configure network interface parameters
includes determine C language preprocessor include files
init process control initialization
install install commands
ipcrm . remove message queue, semaphore set or shared memory id
ipes report inter-process communication facilities status
iv initialize and maintain volume
join relational database operator
kill terminate a process
killall kill all active processes
Id link editor for common object files
Iddrv manage loadable drivers
Ideeprom load EEPROM
lex generate programs for simple lexical tasks
line read one line
link exercise link and unlink system calls
lint a C program checker
login sign on
logname get login name
lorder find ordering relation for an object library

lp send/cancel requests to an LP line printer
lpadmin configure the LP spooling system
lpr line printer spooler
lpsched . . start/stop the LP request scheduler and move requests
lpset set parallel line printer options
lpstat print LP status information
Is list contents of directory
m4 macro processor
machid provide truth value about your processor type
mail send mail to users or read mail
mailx interactive message processing system
make maintain, update, and regenerate groups of programs
man print entries in this manual
mesg permit or deny messages
mkdir make a directory
mkfs construct a file system
mkifile make an ifile from an object file
mklost+found make a lost+found directory for fsck
mknod build special file
mktpy install or relocate a PT or GT local printer
mm print/check documents formatted with the MM macros
mmt typeset documents, view graphs, and slides
more text perusal
mount mount and dismount file system
mvdir move a directory
ncheck generate names from i-numbers
netman form-based network management
newform change the format of a text file
newgrp log in to a new group
news print news items
nice run a command at low priority
nl line numbering filter
nm print name list of common object file
nohup run a command immune to hangups and quits
nroff format text
od octal dump
pack compress and expand files
passwd change login password
paste merge same lines of several files or subsequent lines of one file
path locate executable file for command
pg . . file perusal filter for soft-copy terminals
pr print files
prof display profile data
profiler operating system profiler
prs print an SCCS file
ps report process status
ptx permuted index
pwck password/group file checkers
pwd working directory name
qinstall install and verify software using the mkfs(l)

- 4 -

qlist print out file lists from proto file; set links based on
rcmd remote shell command execution
rep remote file copy
reboot reboot the system
regemp regular expression compile
renice alter priority of running process by changing nice
rexecd remote execution server
rm remove files or directories
rmdel remove a delta from an SCCS file
route manually manipulate the routing tables
rsterm manually start and stop terminal input and output
runacct run daily accounting
rwho who is logged in on local network
rwhod node status server
sact print current SCCS file editing activity
sadp disk access profiler
sag system activity graph
sar system activity reporter
sar system activity report package
sccsdiff compare two versions of an SCCS file
script make typescript of terminal session
sdb symbolic debugger
sdiff side-by-side difference program
sed stream editor
setaddr set DARPA Internet address from node name
setenet write Ethernet address on disk
setmnt establish mount table
setuname set name of system
sh . shell, the standard/restricted command programming language
shl shell layer manager
shutdown terminate all processing
size print section sizes of common object files
slattach attach and detach serial lines as network interfaces
sleep . suspend execution for an interval
sort sort and/or merge files
spell find spelling errors
spline interpolate smooth curve
split split a file into pieces
stat statistical network useful with graphical commands
strings extract the ASCII text strings in a file
strip strip symbol and line number information
stty set the options for a terminal
su become super-user or another user
sum print checksum and block count of a file
swap swap administrative interface
sync update the super block
tabs set tabs on a terminal
tail deliver the last part of a file
tar tape file archiver
tbl format tables for nroff or troff

tdl RS-232 terminal download
tee pipe fitting
telnet user interface to TELNET protocol
telnetd DARPA TELNET protocol server
test condition evaluation command
tftp user interface to the DARPA TFTP protocol
tftpd DARPA Trivial File Transfer Protocol server
tic terminfo compiler
time time a command
timex . . time a command; report process data and system activity
toe graphical table of contents routines
touch update access and modification times of a file
tplot graphics filters
tput query terminfo database
tr translate characters
troff typeset text
trpt print protocol trace
true provide truth values
tset . . .set terminal, terminal inteface, and terminal environment
tsort topological sort
tty get the name of the terminal
ul do underlining
umask set file-creation mode mask
uname print name of current CTIX system
unget undo a previous get of an SCCS file
uniq report repeated lines in a file
units conversion program
update provide disk synchronization
uuclean uucp spool directory clean-up
uucp CTIX system to CTIX system copy
uucpd network uucp server
uustat uucp status inquiry and job control
uusub monitor uucp network
uuto public CTIX-to-CTIX system file copy
uux CTIX-to-CTIX system command execution
val validate SCCS file
vc version control
vi screen-oriented (visual) display editor based on ex
volcopy copy file systems with label checking
wait await completion of process
wall write to all users
wc word count
what identify SCCS files
who who is on the system
whodo who is doing what
wm window management
write write to another user
xargs construct argument list(s) and execute command
xstr extract and share strings in C programs
yacc yet another compiler-compiler

TABLE OF RELATED ENTRIES

Administration

Accounting and Profiling
acct . . . overview of accounting and miscellaneous accounting commands
acctcms command summary from per-process accounting records
acctcom search and print process accounting file(s)
acctcon connect-time accounting
acctmerg merge or add total accounting files
acctprc process accounting
acctsh shell procedures for accounting
fwtmp manipulate connect accounting records
prof display profile data
runacct run daily accounting
sar system activity reporter
sar system activity report package

Backups
ff list file names and statistics for a file system
fine fast incremental backup
free recover files from a backup tape
volcopy copy file systems with label checking

Controlling System State
brc system initialization shell scripts
crash examine system images
getty set terminal type, modes, speed, and line discipline
init process control initialization
killa.ll kill all active processes
login sign on
shutdown terminate all processing
wall . write to all users

Disk Management
bcopy interactive block copy
clri clear i-node
dcopy copy file systems for optimal access time
devnm device name
df report number of free disk blocks
fsck file system consistency check and interactive repair
fsdb file system debugger
fuser identify processes using a file or file structure
link exercise link and unlink system calls
mkfs construct a file system
mklost+found make a lost+found directory for fsck
mount mount and dismount file system
mvdir move a directory
ncheck generate names from i-numbers
setmnt establish mount table
sync update the super block

General
conlocate locate a terminal to use as the virtual system console
config configure a CTIX system
cpset install object files in binary directories
cron clock daemon
dismount remove floppy or cartridge disk
errdead extract error records and status information from dump
errdemon error-logging demon
errpt process a report of logged errors
errstop terminate the error-logging daemon
install install commands
iv initialize and maintain volume
mknod build special file
path locate executable file for command
pwck password/group file checkers
rsterm manually start and stop terminal input and output
setuname set name of system
update provide disk synchronization
whodo who is doing what

Interprocess Communication
ipcrm remove a message queue, semaphore set or shared memory id
ipcs report inter-process communication facilities status

Basic File Commands
cat concatenate and print files
chmod change mode
chown change owner or group
dircmp directory comparison
cp copy, link or move files
dd convert and copy a file
file determine file type
find find files
Is list contents of directory
pwd working directory name
mkdir make a directory
rm remove files or directories
umask set file-creation mode mask

Basic General Commands
calendar reminder service
date print and set the date
id print user and group IDs and names
kill terminate a process
Iogname get login name
newgrp log in to a new group
news print news items
passwd change login password
ps report process status
uname print name of system
who who is on the system

Communication Between Systems (uucp)
ct spawn getty to a remote terminal
cu call another computer system

uuclean uucp spool directory clean-up
uucp copy data between computer systems
uustat uucp s tatus inquiry and job control
uusub monitor uucp network
uuto public computer system-to-computer system file copy
uux remote system command execution

Communication Between Users
. . . send mail to users or read mail

interactive message processing system
permit or deny messages

write to another user

mail

mesg
write

Document Format t ing and Checking
col filter reverse line-feeds
cw prepare constant-width text for troff
deroff remove nroff/troff , tbl, and eqn constructs
du summarize disk usage
eqn format mathematical text for nroff or troff
greek select terminal filter
hyphen find hyphenated words
mm print/check documents formatted with the MM macros
mmt typeset documents, view graphs, and slides
nroff format text
ptx permuted index
spell find spelling errors
tbl format tables for nroff or troff
troff typeset text

Internetworking Tools
ftp . f i l e transfer program
ftpd DARPA Internet File Transfer Protocol server
ifconfig configure network interface parameters
mkhosts make node name commands
netman form-based network management
netstat show network status
rcmd remote shell command execution
rep remote file copy
rexecd remote execution server
rlogin remote login
rlogind remote login server
route remove files or directories
rshd remote shell server
ruptime display status of notes on local network
rwho who is loggin in on local network
rwhod node status server
setaddr set D A R P A Internet address from nodename
setenet . write Ethernet address on disk
slattach attach serial lines as network interfaces
sldetach detach serial lines as network interfaces
telnet user interface to TELNET protocol
telnetd D A R P A TELNET protocol server
tftp user interface to the D A R P A T F T P protocol
tftpd DARPA Trivial File Transfer Protocol server
trpt print protocol trace

Mathematics Tools
be arbitrary-precision arithmetic language
dc desk calculator
factor factor a number
spline interpolate smooth curve
units conversion program

Miscellaneous
mar. print entries in this manual
nl line numbering filter
pack compress and expand files
script make typescript of terminal session
su become super-user or another user
wc word count

Offline Storage
cpio copy file archives in and out
tar tape file archiver

Printer Spooling
accept allow/prevent LP requests
enable enable/disable LP printers
lp send/cancel requests to an LP line printer
lpadmin configure the LP spooling system
lpr line printer spooler
lpsched start /stop the LP request scheduler and move requests
Ipset set parallel line printer options
lpstat print LP status information

Program Development
adb absolute debugger
ar archive and library maintainer for portable archives
as mc68010 assembler
cb C program beautifier
cc C compiler
cflow generate C flow graph
epp the C language preprocessor
ctags create a tags file
cxref generate C program cross reference
dump dump selected parts of an object file
fsplit split fortran, ratfor, or efl files
hd hexadecimal and ascii file dump
Id link editor for common object files
lint a C program checker
lorder find ordering relation for an object library
m4 macro processor
make maintain, update, and regenerate groups of programs
nm print name list of common object file
od octal dump
regcmp regular expression compile
size print section sizes of common object files
strings extract the ASCII text strings in a file
strip . strip symbol and line number information from a common object file
time time a command

timex time a command; report process data and system activity
touch update access and modification times of a file
tsort topological sort
xstr extract and share strings in C programs

Source Code Control System
admin create and administer SCCS files
cdc change the delta commentary of an SCCS delta
comb combine SCCS deltas
delta . make a delta (change) to an SCCS file
get get a version of an SCCS file
help ask for help
prs print an SCCS file
rmdel remove a delta from an SCCS file
sact print current SCCS file editing activity
sccsdiff compare two versions of an SCCS file
unget undo a previous get of an SCCS file
val validate SCCS file
vc version control
what identify SCCS files

Terminal Suppor t
300 handle special functions of DASI 300 and 300s terminals
4014 paginator for the T E K T R O N I X 4014 terminal
450 handle special functions of the DASI 450 terminal
asa interpret ASA carriage control characters
clear clear terminal screen
hp handle special functions of HP 2640 and 2621-series terminals
stty set the options for a terminal
tabs set tabs on a terminal
tdl rs232 terminal download
tic terminfo compiler
tset set terminal, terminal inteface, and terminal environment
tty get the terminal's name
wm window management

Text Tools

Browsers, Editors, and Splitters
bfs big file scanner
csplit context split
ed text editor
ex text editor
more text perusal
newform change the format of a text file
pg file perusal filter for soft-copy terminals
split split a file into pieces
vi screen-oriented (visual) display editor based on ex

Comparing Files
bdiff big diff
cmp compare two files
comm select or reject lines common to two sorted files
diff differential file comparator
diff3 3-way differential file comparison

diffmk
sdiff .

. mark differences between files
side-by-side difference program

Customizable Filters and Text Programming Languages
awk pattern scanning and processing language
cut cut out selected fields of each line of a file
fold . fold long lines for finite width output device
grep . search a file for a pattern
join relational database operator
lex generate programs for simple lexical tasks
paste merge same lines of several files or subsequent lines of one file
pr print files
sed stream editor
sort sort and/or merge files
tail deliver the last part of a file
tr translate characters
uniq report repeated lines in a file
yacc yet another compiler-compiler

Graphics and Displays
banner make posters
cal print calendar
graph draw a graph

Using and Programming the Shell
basename deliver portions of path names
chroot change root directory for a command
cd change working directory
echo echo arguments
env set environment for command execution
expr evaluate arguments as an expression
getopt parse command options
line read one line
machid processor type
nice run a command at low priority
nohup run a command immune to hangups and quits
sh shell, the standard/restricted command programming language
sleep suspend execution for an interval
tee pipe fitting
test condition evaluation command
true provide truth values
wait await completion of process
xargs construct argument list(s) and execute command

I N T R O (1)

NAME
intro - introduction to commands and application
programs

DESCRIPTION
This section describes, in alphabetical order, publicly-
accessible commands. Certain distinctions of purpose are
made in the headings:
(1) Commands of general utility.
(1C) Commands for communication with other

systems.
(1G) Commands used primarily for graphics and

computer-aided design.
(1M) Commands for system maintenance and

administration. / ixn /"iivr*^ (liMvij
Commands for the CTIX TCP/IP networking
packages. To use these commands you must
have a special version of the CTIX kernel that
supports TCP/ IP .

COMMAND SYNTAX
Unless otherwise noted, commands described in this
section accept options and other arguments according to
the following syntax:
name [option («)] [cmdargfa)]
where:
name
option

noargletter

argletter

optarg

cmdarg

SEE ALSO
getopt(l), exit(2), wait(2), getopt(3C).
Section 6 of this volume for computer games.
How to Get Started, at the front of this volume.

DIAGNOSTICS
Upon termination, each command returns two bytes of

The name of an executable file.
— noargletter(s) or,
— argletter <> optarg
where < > is optional white space.
A single letter representing an option
without an argument.
A single letter representing an option
requiring an argument.
Argument (character string) satisfying
preceding argletter.
Pa th name (or other command argument)
not beginning with — or, — by itself
indicating the standard input.

- 1 -

INTRO (1)

status, one supplied by the system and giving the cause
for termination, and (in the case of "normal"
termination) one supplied by the program (see wait(2)
and exit(2y). The former byte is 0 for normal
termination; the latter is customarily 0 for successful
execution and non-zero to indicate troubles such as
erroneous parameters, bad or inaccessible data, or other
inability to cope with the task at hand. It is called
variously "exit code", "exit status", or "return code",
and is described only where special conventions are
involved.

BUGS
Regretfully, many commands do not adhere to the
aforementioned syntax.

wAnxi iwnc
I I j u i l 111. VJ u

Some commands produce unexpected results when
processing files containing null characters. These
commands often treat text input lines as strings and
therefore become confused upon encountering a null
character (the string terminator) within a line.

- 2 -

300 (1)

NAME
300, 300s - handle special functions of DASI 300 and
300s terminals

SYNOPSIS
300 [+ 1 2] [- n] [—dt,l,c]
300s [+ 1 2] [- n] [—dt,l,c j

DESCRIPTION
The 300 command supports special functions and
optimizes the use of the DASI 300 (GSI 300 or DTC 300)
terminal; SOOs performs the same functions for the DASI
300s (GSI 300s or DTC 300s) terminal. It converts half-
line forward, half-line reverse, and full-line reverse
motions to the correct vertical motions. It also at tempts
to draw Greek letters and other special symbols. It
permits convenient use of 12-pitch text. It also reduces
printing time 5 to 70%. The 300 command can be used
to print equations neatly, in the sequence:

neqn file . . . | nroff | 300
WARNING: if your terminal has a PLOT switch, make
sure it is turned on before 300 is used.
The behavior of 300 can be modified by the optional flag
arguments to handle 12-pitch text, fractional line
spacings, messages, and delays.
+ 1 2 permits use of 12-pitch, 6 lines/inch text.

DASI 300 terminals normally allow only two
combinations: 10-pitch, 6 lines/inch, or 12-
pitch, 8 lines/inch. To obtain tne 12-pitch, 6
lines per inch combination, the user should
turn the PITCH switch to 12, and use the + 1 2
option.

- n controls the size of half-line spacing. A half-
line is, by default, equal to 4 vertical plot
increments. Because each increment equals
1/48 of an inch, a 10-pitch line-feed requires 8
increments, while a 12-pitch line-feed needs
only 6. The first digit of n overrides the
default value, thus allowing for individual
taste in the appearance of subscripts and
superscripts. For example, nroff half-lines
could be made to act as quarter-lines by using
—2. The user could also obtain appropriate
half-lines for 12-pitch, 8 lines/inch mode by
using the option —3 alone, having set the
PITCH switch to 12-pitch.

3 0 0 (1)

—dt,l,e controls delay factors. The default setting is
—d3,0O,3O. DASI 300 terminals sometimes
produce peculiar output when faced with very
long lines, too many tab characters, or long
strings of blankless, non-identical characters.
One null (delay) character is inserted in a line
for every set of t tabs, and for every
contiguous string of c non-blank, non-tab
characters. If a line is longer than / bytes,
l+(to ta l length)/20 nulls are inserted at the
end of that line. Items can be omitted from
the end of the list, implying use of the default
values. Also, a value of zero for t (c) results
in two null bytes per tab (character). The
former may be needed for C programs, the
latter for files like / e t c / p a s s w d . Because
terminal behavior varies according to the
specific characters printed and the load on a
system, the user may have to experiment with
these values to get correct output. The — d
option exists only as a last resort for those few
cases that do not otherwise print properly.
For example, the file / e t c / p a s s w d may be
printed using - d 3 , 3 0 , 5 . The value - d O , l is a
good one to use for C programs that have
many levels of indentation.
Note that the delay control interacts heavily
with the prevailing carriage return and line-
feed delays. The «tty(l) modes nlO cr2 or nlO
cr3 are recommended for most uses.

The 800 command can be used with the nroff —s flag or
•rd requests, when it is necessary to insert paper
manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must
use the line-feed key to get any response.
In many (but not all) cases, the following sequences are
equivalent:
n r o f f - T 3 0 0 files . . . and nroff files . . . | 300
nroff - T 3 0 0 - 1 2 files . . . and nroff files . . . |
300 +12
The use of S00 can thus often be avoided unless special
delays or options are required; in a few cases, however,
the additional movement optimization of 800 may
produce better-aligned output.

3 0 0 (1)

The neqn names of, and resulting output for, the Greek
and special characters supported by 300 are shown in
greek(5).

SEE ALSO
450(1), eqn(l), graphflG), mesg(l), nroff(l), stty(l) ,
tabs(l), tbl(l), tplot(lG), greek(5).

BUGS
Some special characters cannot be correctly printed in
column 1 because the print head cannot be moved to the
left from there.
If your output contains Greek and/or reverse line-feeds,
use a friction-feed platen instead of a forms tractor;
although good enough for drafts, the latter has a
tendency to slip when reversing direction, distorting
Greek characters and misaligning the first line of text
after one or more reverse line-feeds.

4 0 1 4 (1)

N A M E
4014 - paginator for the TEKTRONIX 4014 terminal

SYNOPSIS
4014 [- t] [- n] [- c N] [- p L j [file]

DESCRIPTION
The output of 4014 is intended for a TEKTRONIX 4014
terminal; 4^14 arranges for 66 lines to fit on the screen,
divides the screen into N columns, and contributes an
eight-space page offset in the (default) single-column
case. Tabs, spaces, and backspaces are collected and
plotted when necessary. TELETYPE Model 37 half- and
reverse-line sequences are interpreted and plotted. At
the end of each page, 4014 waits for a new-line (empty
line) from the keyboard before continuing on to the next
page. In this wait state, the command lemd will send
the cmd to the shell.
The command line options are:
—t Do not wait between pages (useful for directing

output into a file).
—n Start printing at the current cursor position and

never erase the screen.
—cN Divide the screen into N columns and wait after

the last column.
—pL Set page length to L; L accepts the scale factors

i (inches) and 1 (lines); default is lines.
SEE ALSO

pr(l), tc(l), troff(l).

450 (1)

NAME
450 - handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
The 150 command supports special functions of, and
optimizes the use of, the DASI 450 terminal, or any
terminal that is functionally identical, such as the
DIABLO 1620 or XEROX 1700. It converts half-line
forward, half-line reverse, and full-line reverse motions to
the correct vertical motions. It also at tempts to draw
Greek letters and other special symbols in the same
manner as 300(1). Use 450 to print equations neatly, in
the sequence:

neqn file . . . | nroff | 450
WARNING: make sure that the PLOT switch on your
terminal is ON before 450 is used. The SPACING switch
should be put in the desired position (either 10- or 12-
pitch). In either case, vertical spacing is 6 lines/inch,
unless dynamically changed to 8 lines per inch by an
appropriate escape sequence.
Use 4^0 with the nroff — s flag or .rd requests when it is
necessary to insert paper manually or change fonts in the
middle of a document. Instead of hitting the return key
in these cases, you must use the line-feed key to get any
response.
In many (but not all) cases, the use of 450 can be
eliminated in favor of one of the following:

nroff - T 4 5 0 files . . .
or

nroff - T 4 5 0 - 1 2 files . . .
The use of 450 can thus often be avoided unless special
delays or options are required; in a few cases, however,
the additional movement optimization of 450 may
produce better-aligned output .
The neqn names of, and resulting output for, the Greek
and special characters supported by 450 are shown in
greek(5).

SEE ALSO
300(1), eqn(l), graphflG), mesg(l), nroff(l), stty(l),
tabs(l), tbl(l), tplot(lG), greek(5)

BUGS
Some special characters cannot be correctly printed in
column 1 because the print head cannot be moved to the

4 5 0 (1)

left from there.
If your output contains Greek and/or reverse line-feeds,
use a friction-feed platen instead of a forms tractor;
although good enough for drafts, the latter has a
tendency to slip when reversing direction, distorting
Greek characters and misaligning the first line of text
after one or more reverse line-feeds.

A C C E P T (1 M)

NAME
accept, reject - allow/prevent LP requests

SYNOPSIS
/ u s r / l i b / a c c e p t destinations
/ u s r / l i b / r e j e c t [—r[reason]] destinations

DESCRIPTION
Accept allows /p(l) to accept requests for the named
destinations. A destination can be either a printer or a
class of printers. Use Ipstat(l) to find the status of
destinations.
Reject prevents /p(l) from accepting requests for the
named destinations. A destination can be either a
printer or a class of printers. Use lpstat(l) to find the
status of destinations. The following option is useful
with reject.
—r[reason] Associates a reason with preventing Ip

from accepting requests. This reason
applies to all printers mentioned up to the
next —r option. Reason is reported by Ip
when users direct requests to the named
destinations and by lpstat(1). If the — r
option is not present or the — r option is
given without a reason, then a default
reoson will be used.

FILES
/usr /spool / lp/*

SEE ALSO
enable(l), lp(l), lpadmin(lM), lpsched(lM), lpstat(l).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

ACCTSH(IM)

NAME
acctdisk, acctdusg, accton, acctwtmp - overview of
accounting and miscellaneous accounting commands

SYNOPSIS
/ usr / l ib / acc t /acc td i sk
/ u s r / l ib / acc t /acc tdusg [u file] [p file]
/ u s r / l i b / a c c t / a c c t o n [f i le]
/ u s r / l i b / a c c t / a c c t w t m p "reason"

DESCRIPTION
Accounting software is structured as a set of tools
(consisting of both C programs and shell procedures) that
can be used to build accounting systems. Acctsh(1M)
describes the set of shell procedures built on top of the C
programs.
Connect time accounting is handled by various programs
that write records into / e t c / u t m p / , as described in
utmp(4). The programs described in accfcon(lM)
convert this file into session and charging records, which
are then summarized by acctmerg(1M).
Process accounting is performed by the CTIX System
kernel. Upon termination of a process, one record per
process is written to a file (normally / u s r / a d m / p a c c t) .
The programs in acctprc(lM) summarize this data for
charging purposes; acctcms(1M) is used to summarize
command usage. Current process data may be examined
using acctcom(1).
Process accounting and connect time accounting (or any
accounting records in the format described in aec£(4))
can be merged and summarized into total accounting
records by acctmerg (see tacct format in acct(4)).
Prtacct (see aeetsA(lM)) is used to format any or all
accounting records.
Acctdisk reads lines that contain user ID, login name,
and number of disk blocks and converts them to total
accounting records that can be merged with other
accounting records.
Acctdusg reads its standard input (usually from f ind /
- p r i n t) and computes disk resource consumption
(including indirect blocks) by login. If —u is given,
records consisting of those file names for which acctdusg
charges no one are placed in file (a potential source for
finding users trying to avoid disk charges). If - p is
given, file is the name of the password file. This option
is not needed if the password file is / e t c / p a s s w d . (See
rf«'sA:w«ff(lM) for more details.)

ACCTCON(IM)

Accton alone turns process accounting off. If file is
given, it must be the name of an existing file, to which
the kernel appends process accounting records (see
acct(2) and acct(4)).
Acctwtmp writes a utmp(4) record to its standard
output. The record contains the current time and a
string of characters that describe the reason. A record
type of ACCOUNTING is assigned (see utmp(4)). Reason
must be a string of 11 or less characters, numbers, $, or
spaces. For example, the following are suggestions for
use in reboot and shutdown procedures, respectively:

acctwtmp uname > > / e t c /wtmp
acctwtmp "file save" > > /e tc /wtmp

/etc/passwd used for login name to user ID
conversions

/usr / l ib /acct holds all accounting commands listed
in sub-class 1M of this manual

/us r /adm/pacc t current process accounting file
/ e t c /wtmp login/logoff history file

SEE ALSO
acctcms(lM), acctcomfl), acctcon(lM), acctmerg(lM),
acctprc(lM), acctsh(lM), diskusg(lM), fwtmp(lM),
runacct! 1M), acct(2), acct(4), utmp(4).
CTIX Programmer's Guide.
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

FILES

A C C T C M S (1M)

NAME
acctcms - command summary from per-process
accounting records

SYNOPSIS
/ u s r / l i b / a c c t / a c c t c m s [options] files

DPCrDTDTinM
U i J V l i l l i i v / n

Acctcms reads one or more files, normally in the form
described in acct(4). It adds all records for processes
that executed identically-named commands, sorts them,
and writes them to the standard output, normally using
an internal summary format. The options are:
- a Print output in ASCII rather than in the internal

summary format. The output includes command
name, number of times executed, total kcore-
minutes, total CPU minutes, total real minutes,
mean size (in K), mean CPU minutes per
invocation, and "hog factor", characters
transferred, and blocks read and written, as in
acctcom(1). Output is normally sorted by total
kcore-minutes.

- c Sort by total CPU time, rather than total kcore-
minutes.

—j Combine all commands invoked only once under
"***other".

- n Sort by number of command invocations,
- s Any file names encountered hereafter are already

in internal summary format.
—t Process all records as total accounting records.

The default internal summary format splits each
field into prime and non-prime time parts. This
option combines the prime and non-prime time
parts into a single field that is the total of both,
and provides upward compatibility with old style
acctcms internal summary format records.

The following options may be used only with the —a
option.
—p Output a prime-time-only command summary.
- o Output a non-prime (offshift) time only

command summary.
When —p and —o are used together, a combination
prime and non-prime time report is produced. All the
output summaries will be total usage except number of
times executed, CPU minutes, and real minutes which
will be split into prime and non-prime.

A C C T C M S (1 M)

A typical sequence for performing daily command
accounting and for maintaining a running total is:

acctcms file . . . > today
cp total previoustotal
acctcms - s today previoustotal > to ta l
acctcms - a - s today

SEE ALSO
acct(lM), acctcom(l), acctcon(lM), acctmerg(lM),
acctprc(lM), acctsn(lM), fwtmp(lM), runacct(lM),
acct(2), acct(4), utmp(4).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

BUGS
Unpredictable output results if —t is used on new style
internal summary format files, or if it is not used with
old style internal summary format files.

A C C T C O M (1)

NAME
acctcom - search and print process accounting file(s)

SYNOPSIS
acctcom [[options] [file]] . . .

DESCRIPTION
Acctcom reads file, the standard input, or
/ u s r / a d m / p a c c t , in the form described by acct(4) and
writes selected records to the standard output. Each
record represents the execution of one process. The
output shows the COMMAND NAME, USER,
TTYNAME, START TIME, END TIME, REAL
(SECY CPU (SEC), MEAN SIZE(K), and optionally, F
(the fork/exec flag: 1 for fork without exec), S T A T (the
system exit status), HOG FACTOR, K C O R E MIN,
CPU FACTOR, CHARS TRNSFD, and BLOCKS
READ (total blocks read and written).
The command name is prepended with a # if it was
executed with super-user privileges. If a process is not
associated with a known terminal, a ? is printed in the
TTYNAME field.
If no files are specified, and if the standard input is
associated with a terminal or / d e v / n u l l (as is the case
when using & in the shell), / u s r / a d m / p a c c t is read;
otherwise the standard input is read.
If any file arguments are given, they are read in their
respective order. Each file is normally read forward, i.e.,
in chronological order by process completion time. The
file / u s r / a d m / p a c c t is usually the current file to be
examined; a busy system may need several such files of
which all but the current file are found in
/ u s r / a d m / p a c c t ? . The options are:
—a Show some average statistics about the

processes selected. The statistics will be
printed after the output records.

—b Read backwards, showing latest
commands first. This option has no effect
when the standard input is read.

—f Print the fork/exec flag and system exit
status columns in the output.

—h Instead of mean memory size, show the
fraction of total available CPU time
consumed by the process during its
execution. This "hog factor" is computed
as:

(total CPU time)/(elapsed time).

A C C T C O M (1)

- k

—m
—r

- t

—v

—1 line

—u user

- g group

—d mm/dd

—s time

—e time

- S time
- E time

- n pattern

- q

- o of He

- H factor

Print columns containing the I/O counts
in the output.
Instead of memory size, show total kcore-
minutes.
Show mean core size (the default).
Show CPU factor (user time/(system-time
1 UOtl-lJllllC^.

Show separate system and user CPU
times.
Exclude column headings from the output.
Show only processes belonging to terminal
/ d e v / l i n e .
Show only processes belonging to user

that may be specified by: a user ID, a
login name that is then converted to a
user ID, a # which designates only those
processes executed with super-user
privileges, or T which designates only
those processes associated with unknown
user IDs.
Show only processes belonging to group.
The group may be designated by either
the group ID or group name.
Any time arguments following this flag
are assumed to occur on the given month
mm and the day dd rather than during
last 24 hours. This is needed for looking
at old files.
Select processes existing at or after time,
given in the format hr [: min [: sec 1].
Select processes existing at or be

time .
Select processes starting at or after time .
Select processes ending at or before time .
Using the same time for both - S and - E
shows the processes that existed at time.
Show only commands matching pattern
that may be a regular expression as in
ed(1) except that means one or more
occurrences.
Do not print any output records, just
print the average statistics as with the - a
option.
Copy selected process records in the input
data format to of He; supress standard
output printing.
Show only processes that exceed factor,
where factor is the "hog factor" as
explained in option —h above.

before

- 2 -

A C C T C O M (1)

-O sec Show only processes with CPU system
time exceeding sec seconds.

- C sec Show only processes with total CPU time,
system plus user, exceeding sec seconds.

—I chars Show only processes transferring more
characters than chars.

Listing options together has the effect of a logical and.
FILES

/etc/passwd
/usr /adm/pacct
/etc / group

SEE ALSO
ps(l),
acct(lM), acctcmsflM), acctconflM), acctmerg(lM),
acctprc(lM), acctshflMt, fwtmp(lNl), runacct(lM), su(l),
acct(2), acct(4), utmp(4).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

BUGS
Acctcom only reports on processes that have terminated;
use pa(l) for active processes. If time exceeds the
present time and option —d is not used, then time is
interpreted as occurring on the previous day.

A C C T C O N (1M)

NAME
acctconl, acctcon2 - connect-time accounting

SYNOPSIS
/ u s r / l i b / a c c t / a c c t c o n l [options]
/ u sr / l ib / a c c t / acctcon2

DESCRIPTION
Acctconl converts a sequence of login/logoff records
read from its standard input to a sequence of records,
one per login session. Its input should normally be
redirected from / e t c / w t m p . Its output is ASCII, giving
device, user ID, login name, prime connect time
(seconds), non-prime connect time (seconds), session
starting time (numeric), and starting date and time. The
options are:
—p Print input only, showing line name, login

name, and time (in both numeric and date/ t ime
formats).

—t Acctconl maintains a list of lines on which users
are logged in. When it reaches the end of its
input, it emits a session record for each line that
still appears to be active. It normally assumes
that its input is a current file, so that it uses the
current time as the ending time for each session
still in progress. The —t flag causes it to use,
instead, the last time found in its input, thus
assuring reasonable and repeatable numbers for
non-current files.

—1 file File is created to contain a summary of line
usage showing line name, number of minutes
used, percentage of total elapsed time used,
number of sessions charged, number of logins,
and number of logoffs. This file helps track line
usage, identify bad lines, and find software and
hardware oddities. Hang-up, termination of
login(1) and termination of the login shell each
generate logoff records, so that the number of
logoffs is often three to four times the number
of sessions. See tntf(lM) and utmp(4).

—o file File is filled with an overall record for the
accounting period, giving starting time, ending
time, number of reboots, and number of date
changes.

Acctcon2 expects as input a sequence of login session
records and converts them into total accounting records
(see t acc t format in acct(4)).

A C C T C O N (I M)

EXAMPLES
These commands are typically used as shown below.
The file c t m p is created only for the use of acctprc(1M)
commands:
acctconl - t - 1 lineuse - o reboots < w t m p | sort + l n +2
> c t m p
acctcon2 < c t m p j acctmerg >c tacc t

FILES
/e tc /wtmp

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), acctmerg(lM),
acctprc(lM), acctsh(lM), fwtmp(lM|, ini t(lM), logi n 1 ,
runacctflM), acct(2), acct(4), utmp(4).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

BUGS
The line usage report is confused by date changes. Use
wtmpfix (see fwtmp(iM)) to correct this situation.

A C C T M E R G (1 M)

NAME
acctmerg - merge or add total accounting files

SYNOPSIS
/ u s r / l i b / a c c t / a c c t m e r g [options] [file] . . .

DESCRIPTION
Acctmerg reads its standard input and up to nine
additional files, all in the tacc t format (see acct(4)) or
an ASCII version thereof. It merges these inputs by
adding records whose keys (normally user ID and name)
are identical, and expects the inputs to be sorted on
those keys. Options are:
—a Produce output in ASCII version of tacct .
—i Input files are in ASCII version of tacct .
—p Print input with no processing.
—t Produce a single record that totals all input.
—u Summarize by user ID, rather than user ID and

name.
—v Produce output in verbose ASCII format, with more

precise notation for floating point numbers.
The following sequence is useful for making "repairs" to
any file kept in this format:

EXAMPLES
acctmerg - v <f i l e l >f i le2

edit file2 as desired . . .
acctmerg - a <file2 > f i l e l

SEE ALSO
acct(lM), acctcms(lM). acctcomfl), acctcon(lM),
acctprc(lM), acctsn(lM), fwtmp(lM), runacct(lM),
acct(2), acct(4), utmp(4).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

ACCTPRC(1M)

NAME
acctprcl, acctprc2 - process accounting

SYNOPSIS
/ u s r / l i b / a c c t / a c c t p r c l [ctmp]
/ usr / l ib / acc t /acc tprc2

DESCRIPTION
Acctprcl reads input in the form described by acct(4),
adds login names corresponding to user IDs, then writes
for each process an ASCII line giving user ID, login name,
prime CPU time (tics), non-prime CPU time (tics), and
mean memory size (in memory segment units). If ctmp
is given, it is expected to contain a list of login sessions,
in the form described in acctcon(lM), sorted by user ID
and login name. If this file is not supplied, it obtains
login names from the password file. The information in
c tmp helps it distinguish among different login names
that share the same user ID.
Acctprc2 reads records in the form written by acctprcl,
summarizes them by user ID and name, then writes the
sorted summaries to the standard output as total
accounting records.
These commands are typically used as shown below:

acctprcl ctmp < / u s r / a d m / p a c c t | acctprc2
>p tacc t

FILES
/etc/passwd

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), acctcon(lM),
acctmerg(lM), acctsh(lM), cron(lM), fwtmp(lM),
runacctflM), acct(2), acct(4), utmp(4).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

BUGS
Although it is possible to distinguish among login names
that share user IDs for commands run normally, it is
difficult to do this for those commands run from
eron(lM), for example. More precise conversion can be
done by faking login sessions on the console via the
acctwtmp program in aecf(lM).

NOTE
A memory segment of the mean memory size is a unit of
measure for the number of bytes in a logical memory
segment on a particular processor. For example, on
Convergent Technologies systems this measure would be
in 4-kilobyte units.

A C C T S H (I M)

NAME
chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm,
prctmp, prdaily, prtacct, runacct, shutacct, startup,
turnacct - shell procedures for accounting

SYNOPSIS
/ u s r / l i b / a c c t / c h a r g e f e e login-name number
/ u s r / l i b / a c c t / c k p a c c t [blocks]
/ u s r / l i b / a c c t / d o d i s k [-o] [files ...]
/ u s r / l i b / a c c t / l a s t l o g i n
/ u s r / l i b / a c c t / m o n a c c t number
/ u s r / l i b / a c c t / n u l l a d m file
/ usr / l ib / a c c t / p r c t m p
/ u s r / l i b / a c c t / p r d a i l y [-1] [-c] [mmdd]
/ u s r / l i b / a c c t / p r t a c c t file ['heading*]
/ u s r / l i b / a c c t / r u n a c c t [mmdd] [mmdd state]
/ u s r / l i b / a c c t / s h u t a c c t ["reason"]
/ u s r / l i b / a c c t / s t a r t u p
/ u s r / l i b / a c c t / t u r n a c c t on | of f | switch

DESCRIPTION
Chargefee can be invoked to charge a number of units to
login-name. A record is written to / u s r / a d m / f e e , to
be merged with other accounting records during the
night.
Ckpacct should be initiated via cron(1M). It periodically
checks the size of / u s r / a d m / p a c c t . If the size exceeds
blocks, 1000 by default, turnacct will be invoked with
argument switch. If the number of free 512-byte disk
blocks in the / u s r file system falls below 500, ckpacct
will automatically turn off the collection of process
accounting records via the off argument to turnacct.
When at least this number of blocks is restored, the
accounting will be activated again. This feature is
sensitive to the frequency at which ckpacct is executed,
usually by cron.
Dodisk should be invoked by cron to perform the disk
accounting functions. By default, it will do disk
accounting on the special files in / e t c / check l i s t . If the
—o flag is used, it will do a slower version of disk
accounting by login directory. Files specify the one or
more filesystem names where disk accounting will be
done. If files are used, disk accounting will be done on
these filesystems only. If the —o flag is used, files should

A C C T S H (1M)

be mount points of mounted filesystem. If omitted, they
should be the special file names of mountable
filesystems.
Lastlogin is invoked by runacct to update
/ u s r / a d m / a c c t / s u m / l o g i n l o g , which shows the last
date on which each person logged in.
Monacct should be invoked once each month or each
accounting period. Number indicates which month or
period it is. If number is not given, it defaults to the
current month (01-12). This default is useful if monacct
is to executed via cron(lM) on the first day of each
month. Monacct creates summary files in
/ u s r / a d m / a c c t / f i s c a l and restarts summary files in
/ usr / adm / a c c t / s u m .
Nulladm creates file with mode 664 and insures that
owner and group are adm. It is called by various
accounting shell procedures.
Prctmp can be used to print the session record file
(normally / u s r / a d m / a c c t / n i t e / c t m p created by
acctconl (see acctcon(lM)).
Prdaily is invoked by runacct to format a report of the
previous day's accounting data. The report resides in
/usr /adm/acct / sum/rprtmmrfrf where mmdd is the
month and day of the report. The current daily
accounting reports may be printed by typing prdaily.
Previous days' accounting reports can be printed by
using the mmdd option and specifying the exact report
date desired. The - 1 flag prints a report of exceptional
usage by login id for the specified date. Previous daily
reports are cleaned up and therefore inaccessible after
each invocation of monacct. The —c flag prints a report
of exceptional resource usage by command and may be
used on current day's accounting data only.
Prtacct can be used to format and print any total
accounting (tacct) file.
Runacct performs the accumulation of connect, process,
fee, and disk accounting on a daily basis. It also creates
summaries of command usage. For more information,
see runacc<(lM).
Shutacct should be invoked during a system shutdown
(usually in / e t c / s h u t d o w n) to turn process accounting
off and append a "reason" record to / e t c / w t m p .
Startup should be called by / e t c / r c to turn the
accounting on whenever the system is brought up.

A C C T S H (1M)

Turnacct is an interface to accton (see acc<(lM)) to turn
process accounting on or off. The swi tch argument
turns accounting off, moves the current
/ u s r / a d m / p a c c t to the next free name in
/ u s r / a d m / p a c c t i n c r (where incr is a number starting
with 1 and incrementing by one for each additional
p a c c t file), then turns accounting back on again. This
procedure is called by ckpacct and thus can be taken
care of by the cron and used to keep pacct to a
reasonable size.

FILES
/us r /adm/fee accumulator for fees
/us r /adm/pacc t current file for per-process accounting
/ usr /adm/pacct*

used if pacct gets large and during
execution of daily accounting procedure

/ e t c /wtmp login/logoff summary
/usr/ l ib/acct/ptelus.awk

contains the limits for exceptional usage
by login id

/usr/ l ib/acct /ptecms.awk
contains the limits for exceptional usage
by command name

/us r /adm/acc t /n i t e
working directory

/usr / l ib /acct holds all accounting commands listed in
sub-class 1M of this manual

/ us r /adm/acc t / sum
summary directory, should be saved

SEE ALSO
acct(lM), acctcms(lM), acctcom(l). acctcon(lM),
acctmerg(lM), acctprc(lM), cron(lM), diskusg(lM),
fwtmp(lM), runacct(lM), acct(2), acct(4), utmp(4).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

A D B (l)

NAME
adb - absolute debugger

SYNOPSIS
adb [—•w] [objfil [corfil]]

DESCRIPTION
Adb is a genera! purpose debugging program. It may be
used to examine files and to provide a controlled
environment for the execution of CTIX programs.
Objfil is normally an executable program file, preferably
containing a symbol table; if not then the symbolic
features of adb cannot be used although the file can still
be examined. The default for objfil is a .out. Corfil is
assumed to be a core image file produced after executing
objfil; the default for corfil is core.
Requests to adb are read from the standard input and
responses are to the standard output. If the —w flag is
present then both objfil and corfil are created if
necessary and opened for reading and writing so that
files can be modified using adb. Adb ignores QUIT;
INTERRUPT causes return to the next adb command.
In general requests to adb are of the form

[address] [, count] [command] [;]
If address is present then dot is set to address. Initially
dot is set to 0. For most commands count specifies how
many times the command will be executed. The default
count is 1. Address and count are expressions.
The interpretation of an address depends on the context
it is used in. If a subprocess is being debugged then
addresses are interpreted in the usual way in the address
space of the subprocess. For further details of address
mapping see ADDRESSES.

EXPRESSIONS
The value of dot.

+ The value of dot incremented by the current
increment.
The value of dot decremented by the current
increment.

" The last address typed.
integer Hexadecimal by default or if preceded by Ox;

octal if preceded by Oo or 0 0 ; decimal if
preceded by Ot or 0T.

integer .fraction
A 32-bit floating point number.

A D B (l)

'cccc ' The ASCII value of up to 4 characters. A \ may
be used to escape a

< name
The value of name, which is either a variable
name or a 68010/68020 register name. Adb
maintains a number of variables (see
VARIABLES) named by single letters or digits. If
name is a register name, then the value of the
register is obtained from the system header in
corfil. The registers are dO through d7, aO
through a7, ap, pc, cc, sr, and us p.

symbol A symbol is a sequence of upper or lower case
letters, underscores or digits, not starting with a
digit. The value of the symbol is taken from
the symbol table in objfil.
From C, only external variables are available as
symbols. The symbol name is the same as the C
variable name, except tha t an underscore (_) is
prepended to any name tha t is the same as the
name for a register.

(exp) The value of the expression exp.
Monadic operators:

*exp The contents of the location addressed
by exp in corfil.

©exp The contents of the location addressed
by exp in objfil.

— exp Integer negation.
~exp Bitwise complement.

Dyadic operators are left associative and are less binding
than monadic operators.

el + eS Integer addition.
el—eS Integer subtraction.
el*eg Integer multiplication.
el%eS Integer division.
elScei Bitwise conjunction.
el\ e2 Bitwise disjunction.
e i # e l ? El rounded up to the next multiple of

e2.
COMMANDS

Most commands consist of a verb followed by a modifier
or list of modifiers. The following verbs are available.
(The commands ? and / may be followed by *; see

- 2 -

A D B (l)

ADDRESSES for further details.)
?/ Locations starting at address in objfil are

printed according to the format / . dot is
incremented by the sum of the increments for
each format letter (q.v.).

/ / Locations starting at address in corfil are
printed according to the format / and dot is
incremented as for ?.

= / The value of address itself is printed in the
styles indicated by the format / . (For i format ?
is printed for the parts of the instruction that
reference subsequent words.)

A format consists of one or more characters that specify
a style of printing. Each format character may be
preceded by a decimal integer that is a repeat count for
the format character. While stepping through a format,
dot is incremented by the amount given for each format
letter. If no format is given then the last format is used.
The format letters available are as follows:

o 2 Print 2 bytes in octal. All octal
numbers output by adb are preceded by
0.

O 4 Print 4 bytes in octal,
q 2 Print in signed octal.
Q 4 Print long signed octal,
d 2 Print in decimal.
D 4 Print long decimal,
x 2 Print 2 bytes in hexadecimal.
X 4 Print 4 bytes in hexadecimal,
u 2 Print as an unsigned decimal number.
U 4 Print long unsigned decimal,
f 4 Print the 32-bit value as a floating point

number.
F 8 Print double floating point,
b 1 Print the addressed byte in octal,
c 1 Print the addressed character.
C 1 Print the addressed character using the

following escape convention. Character
values 000 to 040 are printed as @
followed by the corresponding character
in the range 0100 to 0140. The
character @ is printed as

s n Print the addressed characters until a
zero character is reached.

S n Print a string using the @ escape
convention. The value n is the length
of the string including its zero

- 3 -

AI)B(1)

terminator.
Y 4 Print 4 bytes in date format (see

e<ime(3C)).
i n Print as machine instructions. The

value n is the number of bytes occupied
by the instruction. This style of
printing causes variables i and 2 to be
set to the offset parts of the source and
destination, respectively,

a 0 Print the value of dot in symbolic form.
Symbols are checked to ensure that they
have an appropriate type as indicated
below.
/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

p 2 Print the addressed value in symbolic
form using the same rules for symbol
lookup as a.

t 0 When preceded by an integer, tabs to
the next appropriate tab stop. For
example, 8 t moves to the next 8-space
tab stop,

p 0 Print a space,
n 0 Print a new-line.
"...* 0 Print the enclosed string.

Dot is decremented by the current
increment. Nothing is printed.

+ Dot is incremented by 1. Nothing is
printed.

- Dot is decremented by 1. Nothing is
printed.

new-line
Repeat the previous command with a count of 1.

[?/]l value mask
Words starting at dot are masked with mask
and compared with value until a match is found.
If L is used then the match is for 4 bytes at a
time instead of 2. If no match is found then dot
is unchanged; otherwise dot is set to the
matched location. If mask is omitted then - 1 is
used.

[?/]w value ...
Write the 2-byte value into the addressed
location. If the command is W, write 4 bytes.
Odd addresses are not allowed when writing to
the subprocess address space.

- 4 -

A D B (l)

[? /]m bl el / i [? /]
New values for (bl, el, f l) are recorded. If less
than three expressions are given then the
remaining map parameters are left unchanged.
If the ? or / is followed by * then the second
segment (bS , eS, }2) of the mapping is changed.
If the list is terminated by ? or / then the file
(objfil or corfil, respectively) is used for
subsequent requests. (So that , for example, / m ?
will cause / to refer to objfil.)

>name
Dot is assigned to the variable or register
named.

! A shell is called to read the rest of the line
following !.

$modifier
Miscellaneous commands. The available
modifiers are:
< / Read commands from the file / and

return.
> / Send output to the file / , which is

created if it does not exist,
r Print the general registers and the

instruction addressed by pc. Dot is set
to pc.

b Print all breakpoints and their
associated counts and commands,

c C stack backtrace. If address is given
then it is taken as the address of the
current frame (instead of fp). If count
is given then only the first count frames
are printed.

e The names and values of external
variables are printed,

w Set the page width for output to address
(default 80).

s Set the limit for symbol matches to
address (default 255).

o All integers input are regarded as octal,
d Reset integer input as described in

EXPRESSIONS.
q Exit from adb.
v Print all non-zero variables,
f Print the 68881 floating-point registers.

A D B (l)

m Print the address map.
'.modifier

Manage a subprocess. Available modifiers are:
be Set breakpoint at address. The

breakpoint is executed coun t -1 times
before causing a stop. Each time the
breakpoint is encountered the command
c is executed. If this command sets dot
to zero then the breakpoint causes a
stop.

d Delete breakpoint a t address.
r Run objfil as a subprocess. If address is

given explicitly then the program is
entered at this point; otherwise the
program is entered at its standard entry
point. The value count specifies how
many breakpoints are to be ignored
before stopping. Arguments to the
subprocess may be supplied on the same
line as the command. An argument
starting with < or > causes the
standard input or output to be
established for the command. All
signals are turned on on entry to the
subprocess.

ca The subprocess is continued with signal
s (see signal(2)). If address is given
then the subprocess is continued at this
address. If no signal is specified then
the signal that caused the subprocess to
stop is sent. Breakpoint skipping is the
same as for r.

ss As for c except that the subprocess is
single stepped count times. If there is
no current subprocess then objfil is run
as a subprocess as for r . In this case no
signal can be sent; the remainder of the
line is treated as arguments to the
subprocess.

k The current subprocess, if any, is
terminated.

VARIABLES
Adb provides a number of variables. Named variables
are set initially by adb but are not used subsequently.
Numbered variables are reserved for communication as
follows.

0 The last value printed.

A D B (1)

1 The last offset part of an instruction
source.

2 The previous value of variable 1.
On entry the following are set from the system header in
the corfil. If corfil does not appear to be a core file,
then these values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
m The "magic" number (0407, 0410, or

0413).
s The stack segment size.
t The text segment size.

ADDRESSES
The address in a file associated with a written address is
determined by a mapping associated with that file. Each
mapping is represented by two triples (bl, el, f l) and
(bS, e2, f2) and the file address corresponding to a
written address is calculated as follows:

bl < address < el => file address = address+fl - bl
otherwise

b2 < address < e2 => file address —address+f2-b2,
otherwise, the requested address is not legal. In some
cases (e.g., for programs with separated I and D space)
the two segments for a file may overlap. If a T or / is
followed by an * then only the second triple is used.
The initial setting of both mappings is suitable for
normal a .out and core files. If either file is not of the
kind expected then, for that file, bl is set to 0, el is set
to the maximum file size and fl is set to 0; in this way
the whole file can be examined with no address
translation.
In order for adb to be used on large files all appropriate
values are kept as signed 32-bit integers.

FILES
/dev/kmem
/dev/swap
a.out
core

SEE ALSO
ptrace(2), a.out(4), core(4).

DIAGNOSTICS
"Adb" when there is no current command or format.
Comments about inaccessible files, syntax errors,

A D B (l)

abnormal termination of commands, etc. Exit status is
0, unless last command failed or returned nonzero status.

BUGS
A breakpoint set at the entry point is not effective on
initial entry to the program.
When single stepping, system calls do not count as an
executed instruction.
Local variables whose names are the same as an external
variable may foul up the accessing of the external.

- 8 -

ADMIN (1)

NAME
admin - create and administer SCCS files

SYNOPSIS
admin f -n] [-ifnamel] J-rrel]
—ff 1 ag[flag-val]]]-dflag[flag-val
-m[mrlist]] [—yfcomment]] [—h

DESCRIPTION
Admin is used to create new SCCS files and change
parameters of existing ones. Arguments to admin, which
may appear in any order, consist of keyletter arguments,
which begin with —, and named files (note that SCCS file
names must begin with the characters s.). If a named
file does not exist, it is created, and its parameters are
initialized according to the specified keyletter arguments.
Parameters not initialized by a keyletter argument are
assigned a default value. If a named file does exist,
parameters corresponding to specified keyletter
arguments are changed, and other parameters are left as
is.
If a directory is named, admin behaves as though each
file in the directory were specified as a named file,
except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are
silently ignored. If a name of — is given, the standard
input is read; each line of the standard input is taken to
be the name of an SCCS file to be processed. Again,
non-SCCS files and unreadable files are silently ignored.
The keyletter arguments are as follows. Each is
explained as though only one named file is to be
processed since the effects of the arguments apply
independently to each named file.

- n This keyletter indicates that a
new SCCS file is to be created.

—i[name] The name of a file from which the
text for a new SCCS file is to be
taken. The text constitutes the
first delta of the file (see —r
keyletter for delta numbering
scheme). If the 1 keyletter is used,
but the file name is omitted, the
text is obtained by reading the
standard input until an end-of-file
is encountered. If this keyletter is
omitted, then the SCCS file is
created empty. Only one SCCS
file may be created by an admin

—t[namej]
] [-alogin] [-elogin]

r -s l files

ADMIN (1)

command on which the i keyletter
is supplied. Using a single admin
to create two or more SCCS files
requires tha t they be created
empty (no —i keyletter). Note
that the — i keyletter implies the
—n keyletter.
The release into which the initial
delta is inserted. This keyletter
may be used only if the —i
keyletter is also used. If the —r
keyletter is not used, the initial
delta is inserted into release 1.
The level of the initial delta is
always 1 (by default initial deltas
are named 1.1).
The name of a file from which
descriptive text for the SCCS file
is to be taken. If the —t keyletter
is used and admin is creating a
new SCCS file (the —n and/or — i
keyletters also used), the
descriptive text file name must
also be supplied. In the case of
existing SCCS files: (l) a - t
keyletter without a file name
causes removal of descriptive text
(if any) currently in the SCCS file,
and (2) a - t keyletter with a file
name causes text (if any) in the
named file to replace the
descriptive text (if any) currently
in the SCCS file.

This keyletter specifies a flag,
and, possibly, a value for the flag,
to be placed in the SCCS file.
Several f keyletters may be
supplied on a single admin
command line. The allowable
flags and their values are:
Allows use of the —b keyletter on
a get(1) command to create
branch deltas.

eil The highest release (i.e.,
"ceiling"), a number less than or
equal to 9999, which may be
retrieved by a je<(l) command for

ADMIN (1)

editing. The default value for an
unspecified c flag is 9999.

{floor The lowest release (i.e., "floor"), a
number greater than 0 but less
than 9999, which may be
retrieved by a get(1) command for
editing. The default value for an
unspecified f flag is 1.
The default delta number (SID) to
be used by a get(1) command.
Causes the "No id keywords
(ge6)" message issued by get(l) or
delta(1) to be treated as a fatal
error. In the absence of this flag,
the message is only a warning.
The message is issued if no SCCS
identification keywords (see
get(1)) are found in the text
retrieved or stored in the SCCS
file. If a value is supplied, the
keywords must exactly match the
given string, however the string /
must contain a keyword, and no ^
embedded newlines.

j Allows concurrent get(1)
commands for editing on the same
SID of an SCCS file. This allows
multiple concurrent updates to
the same version of the SCCS file.

Hist A list of releases to which deltas
can no longer be made (get —e
against one of these "locked"
releases fails). The list has the
following syntax:
< l i s t > : : = < r a n g e > | < l i s t > ,
< r a n g e >
< r a n g e > : : = RELEASE
NUMBER |a
The character a in the list is
equivalent to specifying all
releases for the named SCCS file.

n Causes delta(l) to create a "null"
delta in each of those releases (if
any) being skipped when a delta is
made in a new release (e.g., in
making delta 5.1 after delta 2.7,

d SID

i str

- 3 -

ADMIN (1)

releases 3 and 4 are skipped).
These null deltas serve as "anchor
points" so tha t branch deltas may
later be created from them. The
absence of this flag causes skipped
releases to be non-existent in the
SCCS file, preventing branch
deltas from being created from
them in the future.

qtext User definable text substituted for
all occurrences of the %Q%
keyword in SCCS file text
retrieved by get{ 1).

mmod Module name of the SCCS file
substituted for all occurrences of
the %M% keyword in SCCS file
text retrieved by get(1). If the m
flag is not specified, the value
assigned is the name of the SCCS
file with the leading s. removed.
Type of module in the SCCS file
substituted for all occurrences of
%Y% keyword in SCCS file text
retrieved by j e / (l) .
Causes delta(l) to prompt for
Modification Request (MR)
numbers as the reason for creating
a delta. The optional value
specifies the name of an MR
number validity checking program
(see delta(1)). (If this flag is set
when creating an SCCS file, the m
keyletter must also be used even
if its value is null).
Causes removal (deletion) of the
specified flag from an SCCS file.
The —d keyletter may be specified
only when processing existing
SCCS files. Several —d keyletters
may be supplied on a single
admin command. See the —f
keyletter for allowable flag names.
A list of releases to be
"unlocked". See the —f keyletter
for a description of the 1 flag and
the syntax of a list.

t type

•vpgm

—dflag

Mist

- 4 -

ADMIN (1)

-alogin A login name, or numerical CTEX
system group ID, to be added to
the list of users which may make
deltas (changes) to the SCCS file.
A group ID is equivalent to
specifying all login names common
to that group ID. Several a
keyletters may be used on a single
admin command line. As many
logins, or numerical group IDs, as
desired may be on the list
simultaneously. If the list of users
is empty, then anyone may add
deltas. If login or group ID is
preceded by a ! they are to be
denied permission to make deltas.

—elogin A login name, or numerical group
ID, to be erased from the list of
users allowed to make deltas
(changes) to the SCCS file.
Specifying a group ID is equivalent
to specifying all login names
common to that group ID. Several
e keyletters may be used on a
single admin command line.

—y[comment] The comment text is inserted into
the SCCS file as a comment for
the initial delta in a manner
identical to that of delta(1).
Omission of the —y keyletter
results in a default comment line
being inserted in the form:
date and time created
YY/MM/DD HH-.MM-.SS by login
The —y keyletter is valid only if
the — i and/or —n keyletters are
specified (i.e., a new SCCS file is
being created).

-m[mr/i«(] The list of Modification Requests
(MR) numbers is inserted into the
SCCS file as the reason for
creating the initial delta in a
manner identical to delta(l). The
v flag must be set and the MR
numbers are validated if the v
flag has a value (the name of an
MR number validation program).

- 5 -

ADMIN (1)

Diagnostics will occur if the v flag
is not set or MR validation fails.

—h Causes admin to check the
structure of the SCCS file (see
sccs/ile(5)), and to compare a
newly computed check-sum (the
sum of all the characters in the
SCCS file except those in the first
line) with the check-sum that is
stored in the first line of the SCCS
file. Appropriate error diagnostics
are produced.
This keyletter inhibits writing on
the file, so that it nullifies the
effect of any other keyletters
supplied, and is, therefore, only
meaningful when processing
existing files.

—z The SCCS file check-sum is
recomputed and stored in the first
line of the SCCS file (see - h ,
above).
Note that use of this keyletter on
a truly corrupted file may prevent
future detection of the corruption.

FILES
The last component of all SCCS file names must be of
the form s./i/e-name. New SCCS files are given mode
444 (see chmod(1)). Write permission in the pertinent
directory is, of course, required to create a file. Ail
writing done by admin is to a temporary x-file, called
x.file-name, (see get(l)), created with mode 444 if the
admin command is creating a new SCCS file, or with the
same mode as the SCCS file if it exists. After successful
execution of admin, the SCCS file is removed (if it exists),
and the x-file is renamed with the name of the SCCS file.
This ensures that changes are made to the SCCS file only
if no errors occurred.
It is recommended that directories containing SCCS files
be mode 755 and that SCCS files themselves be mode
444. The mode of the directories allows only the owner
to modify SCCS files contained in the directories. The
mode of the SCCS files prevents any modification at all
except by SCCS commands.
If it should be necessary to patch an SCCS file for any
reason, the mode may be changed to 644 by the owner

- 6 -

ADMIN (1)

allowing use of ed(1). Care must be taken! The edited
file should always be processed by an a d m i n - h to
check for corruption followed by an a d m i n — e to
generate a proper check-sum. Another a d m i n —h is
recommended to ensure the SCCS file is valid.
Admin also makes use of a transient lock file (called
z.file-name), which is used to prevent simultaneous
updates to the SCCS file by different users. See get(1)
for further information.

SEE ALSO
delta(l), ed(l), get(l), help(l), prs(l), what(l) , sccsfile(4).
CTIX Programmer's Guide, Section 9.

DIAGNOSTICS
Use help(1) for explanations.

A R (1)

NAME
ar - archive and library maintainer for portable archives

SYNOPSIS
ar key [posname] afile [name] ...

DESCRIPTION
The Ar command maintains groups of files combined
into a single archive file. Its main use is to create and
update library files as used by the link editor. It can be
used, though, for any similar purpose. The magic string
and the file headers used by ar consist of printable ASCII
characters. If an archive is composed of printable files,
the entire archive is printable.
When ar creates an archive, it creates headers in a
format that is portable across all machines. The
portable archive format and structure is described in
detail in ar{4). The archive symbol table (described in
or(4)) is used by the link editor (M(l)) to effect multiple
passes over libraries of object files in an efficient manner.
An archive symbol table is only created and maintained
by ar when there is at least one object file in the
archive. The archive symbol table is in a specially
named file which is always the first file in the archive.
This file is never mentioned or accessible to the user.
Whenever the ar(l) command is used to create or update
the contents of such an archive, the symbol table is
rebuilt. The s option described below will force the
symbol table to be rebuilt.
Key is an optional —, followed by one character from the
set drqtpmx, optionally concatenated with one or more
of vuaibcls . Afile is the archive file. The names are
constituent files in the archive file. The meanings of the
key characters are:
d Delete the named files from the archive file.
r Replace the named files in the archive file. If

the optional character u is used with r, then
only those files with dates of modification later
than the archive files are replaced. If an
optional positioning character from the set abi is
used, then the posname argument must be
present and specifies that new files are to be
placed after (a) or before (b or i) posname.
Otherwise new files are placed at the end.

q Quickly append the named files to the end of
the archive file. Optional positioning characters
are invalid. The command does not check
whether the added members are already in the

- 1 -

A R (1)

archive. Useful only to avoid quadratic behavior
when creating a large archive piece-by-piece.

t Print a table of contents of the archive file. If
no names are given, all files in the archive are
tabled. If names are given, only those files are
tabled.

p Print the named files in the archive.
m Move the named files to the end of the archive.

If a positioning character is present, then the
posname argument must be present and, as in r,
specifies where the files are to be moved.

x Extract the named files. If no names are given,
all files in the archive are extracted. In neither
case does x alter the archive file.

v Give a verbose file-by-file description of the
making of a new archive file from the old
archive and the constituent files. When used
with t , give a long listing of all information
about the files. When used with x, precede each
file with a name.

c Suppress the message that is produced by
default when afile is created.

1 Place temporary files in the local current
working directory, rather than in the directory
specified by the environment variable TMPDIR
or in the default directory / t m p .

s Force the regeneration of the archive symbol
table even if ar (l) is not invoked with a
command which will modify the archive
contents. This command is useful to restore the
archive symbol table after the strip (1) command
has been used on the archive.

FILES
/ tmp /a r* temporaries

SEE ALSO
convert(l), file(l), ld(l), lorder(l), strip(l), tmpnam(3S),
a.out(4), ar(4).

NOTES
This archive format is new to this release, ar will not
accept archive files in the old format; the convert(l)
command can be used to change an older archive file
into an archive file that is recognized by this ar
command.

AR(1)

BUGS
If the same file is mentioned twice in an argument list, it
may be put in the archive twice.

- 3 -

A S (1)

NAME
as - assembler

SYNOPSIS
as —o objfile] | - n] [-j] [-m] [- R] [-r] [-[bwl]]
[-VJ [- T] sourcefile

DESCRIPTION
The as command translates mc68010 or mc68020
assembly language in sourcefile into object code. The
result is a common object file, suitable for input to the
link editor. The following flags may be specified in any
order:
—o objfile Put the output of the assembly in objfile. By

default, the output file name is formed by
removing the .s suffix, if there is one, from
the input file name and appending a .o suffix.

- n Turn off long/short address optimization. By
default, address optimization takes place.

—j Invoke the long-jump assembler. The address
optimization algorithm chooses between long
and short address lengths, with short lengths
chosen when possible. Often, three distinct
lengths are allowed by the machine
architecture; a choice must be made between
two of those lengths. When the two choices
given to the assembler exclude the largest
length allowed, then some addresses might be
unrepresentable. The long-jump assembler
will always have the largest length as one of
its allowable choices. If the assembler is
invoked without this option, and the case
arises where an address is unrepresentable by
either of the two allowed choices, then the
user will be informed of the error, and
advised to try again using the — j option.

—m Run the m\ macro pre-processor on the input
to the assembler.

- R Remove (unlink) the input file after assembly
is completed.

- r Place all assembled data (normally placed in
the da ta section) into the t e x t section. This
option effectively disables the .data pseudo
operation. This option is off by default.

- [bwl] Create byte (b), halfword (w) or long (1)
displacements for undefined symbols. (An
undefined symbol is a reference to a symbol

A S (1)

whose definition is external to the input file
or a forward reference.) The default value for
this option is long (1) displacements.

—Y Write the version number of the assembler
being run on the standard error output.

—T Truncate symbols to eight characters.
FILES

/usr/tmp/as[l-6]XXXXXX temporary files
(SEE ALSO

ld(l), m4(l), nm(l), strip(l), a.out(4).
WARNING

If the —m (m4 macro pre-processor invocation) option is
used, keywords for m4 (see m^(l)) cannot be used as
symbols (variables, functions, labels) in the input file
since m4 cannot determine which are assembler symbols
and which are real m4 macros.
Use the - b or —w option only when undefined symbols
are known to refer to locations representable by the
specified default displacement. Use of either option
when assembling a file containing a reference to a
symbol that is to be resolved by the loader can lead to
unpredictable results, since the loader may be unable to
place the address of the symbol into the space provided.

BUGS
The .align assembler directive is not guaranteed to work
in the . t ex t section when optimization is performed.
Arithmetic expressions may only have one forward
referenced symbol per expression.

A S A (1)

NAME
asa - interpret ASA carriage control characters

SYNOPSIS
asa [files]

DESCRIPTION
Asa interprets the output of FORTRAN programs that
utilize ASA carriage control characters. It processes
either the files whose names are given as arguments or
the standard input if no file names are supplied. The
first character of each line is assumed to be a control
character; their meanings are:
' ' (blank) single new line before printing
0 double new line before printing
1 new page before printing
+ overprint previous line.
Lines beginning with other than the above characters are
treated as if they began with ' '. The first character of
a line is not printed. If any such lines appear, an
appropriate diagnostic will appear on standard error.
This program forces the first line of each input file to
start on a new page.
To view correctly the output of FORTRAN programs
which use ASA carriage control characters, asa could be
used as a filter thusly:

a.out | asa | lp

and the output, properly formatted and paginated,
would be directed to the line printer. FORTRAN output
sent to a file could be viewed by:

asa file

A T (1)

NAME
at, batch - execute commands at a later time

SYNOPSIS
at time [date] [+ increment]

At and batch read commands from standard input to be
executed at a later time. At allows you to specify when
the commands should be executed, while jobs queued
with batch will execute when system load level permits.
At -r removes jobs previously scheduled with at. The -1
option reports all jobs scheduled for the invoking user.
Standard output and standard error output are mailed to
the user unless they are redirected elsewhere. The shell
environment variables, current directory, umask, and
ulimit are retained when the commands are executed.
Open file descriptors, traps, and priority are lost.
Users are permitted to use at if their name appears in
the file / u s r / I i b / c r o n / a t . a l l o w . If tha t file does not
exist, the file / u s r / l i b / c r o n / a t . d e n y is checked to
determine if the user should be denied access to at. If
neither file exists, only root is allowed to submit a job.
If a t .deny exists and is empty, global usage is
permitted. If at .al low exists and is empty, no usage is
permitted. If at .al low exists, a t .deny is ignored. The
allow/deny files consist of one user name per line.
The time may be specified as 1, 2, or 4 digits. One and
two digit numbers are taken to be hours, four digits to
be hours and minutes. The time may alternately be
specified as two numbers separated by a colon, meaning
hour-.minute. A suffix a m or p m may be appended;
otherwise a 24-hour clock time is understood. The suffix
zulu may be used to indicate GMT. The special names
noon, midnight , now, and next are also recognized.
An optional date may be specified as either a month
name followed by a day number (and possibly year
number preceded by an optional comma) or a day of the
week (fully spelled or abbreviated to three characters).
Two special "days", t o d a y and t omorrow are
recognized. If no date is given, t o d a y is assumed if the
given hour is greater than the current hour and
t o m o r r o w is assumed if it is less. If the given month is
less than the current month (and no year is given), next
year is assumed.

batch
DESCRIPTION

- 1 -

A T (1)

The optional increment is simply a number suffixed by
one of the following: minutes, hours, days, weeks,
months , or years. (The singular form is also accepted.)
Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

At and batch write the job number and schedule time to
standard error.
Batch submits a batch job. It is almost equivalent to
"a t now", but not quite. For one, it goes into a different
queue. For another, "a t now" will respond with the
error message "too late".
At -r removes jobs previously scheduled by at or batch.
The job number is the number given to you previously
by the at or batch command. You can also get job
numbers by typing at -I. You can only remove your own
jobs unless you are the super-user.

EXAMPLES
The at and batch commands read from standard input
the commands to be executed at a later time. 57i(l)
provides different ways of specifying standard input.
Within your commands, it may be useful to redirect
standard output.

This sequence can be used at a terminal:
batch
nroff filename > outfile
< code-D >

(hold down 'code' and depress 'D')
This sequence, which demonstrates redirecting standard
error to a pipe, is useful in a shell procedure (the
sequence of output redirection specifications is
significant):

batch < < !
nroff filename 2 > & 1 > outfile | mail loginid |

To have a job reschedule itself, invoke at from within
the shell procedure, by including code similar to the
following within the shell file:

echo "sh 8hellfile" | at 1900 thursday next week
FILES

/usr/ l ib/cron main cron directory
/usr/l ib/cron/at .allow list of allowed users

A T (1)

/usr / l ib/cron/at .deny list of denied users
/usr/ l ib/cron/queue scheduling information
/usr/spool/cron/at jobs spool area

SEE ALSO
cron(l), kill(l), mail(l), nice(l), ps(l), sh(l).

NOTE
At always runs / b i n / s h , not cah.

DIAGNOSTICS
Complains about various syntax errors and times out of
range.

AWK(1)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [—Fc] [prog] [parameters] [files]

DESCRIPTION
Awk scans each input file for lines tha t match any of a
set of patterns specified in prog. Wi th each pattern in
prog there can be an associated action that will be
performed when a line of a file matches the pattern.
The set of patterns may appear literally as prog, or in a
file specified as —f file. The prog string should be
enclosed in single quotes (') to protect it from the shell.
Parameters, in the form x = . . . y = . . . etc., may be passed
to awk.
Files are read in order; if there are no files, the standard
input is read. The file name — means the standard
input. Each line is matched against the pattern portion
of every pattern-action statement; the associated action
is performed for each matched pattern.
An input line is made up of fields separated by white
space. (This default can be changed by using FS; see
below). The fields are denoted $1, $2, . . . ; $0 refers to
the entire line.
A pattern-action statement has the form:

pattern { action }
A missing action means print the line; a missing pattern
always matches. An action is a sequence of statements.
A statement can be one of the following:

if (conditional) statement
[else statement]

while (conditional) statement
for (expression ; conditional ; expression)

statement
break
continue
{ [statement] . . . }
variable = expression
print [expression-list]

[> expression]
printf format | , expression-list]

[> expression]
next # skip remaining patterns on

this input line
exit # skip the rest of the input

AWK(1)

Statements are terminated by semicolons, new-lines, or
right braces. An empty expression-list stands for the
whole line. Expressions take on string or numeric values
as appropriate, and are built using the operators + , —, *,
/ , % , and concatenation (indicated by a blank). The C
operators + + , — , + = , - = , * = , / = , and % — are
also available in expressions. Variables may be scalars,
array elements (denoted x[i]) or fields. Variables are
initialized to the null string. Array subscripts may be
any string, not necessarily numeric; this allows for a
form of associative memory. String constants are quoted
(")•

The print statement prints its arguments on the
standard output (or on a file if > expr is present),
separated by the current output field separator, and
terminated by the output record separator. The printf
statement formats its expression list according to the
format (see printf(3S)).
The built-in function length returns the length of its
argument taken as a string, or of the whole line if no
argument. There are also built-in functions exp, log,
sqrt, and int. The last truncates its argument to an
integer; substr(s, m, n) returns the n-character
substring of s that begins at position m. The function
sprintf(fmt, expr, expr, . . .1 formats the expressions
according to the printf{3S) format given by fmt and
returns the resulting string.
Patterns are arbitrary Boolean combinations (!, | | , &&,
and parentheses) of regular expressions and relational
expressions. Regular expressions must be surrounded by
slashes and are as in egrep (see grep(l)). Isolated regular
expressions in a pattern apply to the entire line. Regular
expressions may also occur in relational expressions. A
pattern may consist of two patterns separated by a
comma; in this case, the action is performed for all lines
between an occurrence of the first pattern and the next
occurrence of the second.
A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C,
and a matchop is either ~ (for contains) or !~ (for does
not contain). A conditional is an arithmetic expression,
a relational expression, or a Boolean combination of
these.

A W K (1)

The special patterns BEGIN and END may be used to
capture control before the first input line is read and
after the last. BEGIN must be the first pattern, END the
last.
A single character c may be used to separate the fields
by starting the program with:

BEGIN { FS = c }
or by using the —Fc option.
Other variable names with special meanings include NF,
the number of fields in the current record; NR, the
ordinal number of the current record; FILENAME, the
name of the current input file; OFS, the output field
separator (default blank); ORS, the output record
separator (default new-line); and OFMT, the output
format for numbers (default %.8g).

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:

{ print $2, $1 }
Add up first column, print sum and average:

{ s + = $1 }
END { print "sum is", s, " average is",
s/NR }

Print fields in reverse order:
{ for (i = NF; i > 0; - - i) print $i }

Print all lines between start/stop pairs:
/ s t a r t / , / s top /

Print all lines whose first field is different from previous
one:

$1 ! = prev { print; prev = $1 }
Print file, filling in page numbers starting at 5:

/Page / { $2 = n + + ; }
{ print }

command line: awk - f program n = 5 input

A W K (1)

SEE ALSO
grep(l), lex(l), malloc(3X), sed(l).
CTIX Programmer's Guide, Section 16.

BUGS
Input white space is not preserved on output if fields are
involved.
There are no explicit conversions between numbers and
strings. To force an expression to be treated as a
number add 0 to it; to force it to be treated as a string
concatenate the null string (" ") to it.

BANNER (1)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION
Banner prints its arguments (each up to 10 characters
long) in large letters on the standard output .

SEE ALSO
echo(l).

- 1 -

BASENAME (1)

NAME
basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
Basename deletes any prefix ending in / and the suffix
(if present in string) from string, and prints the result on
the standard output. It is normally used inside
substitution marks (v v) within shell procedures.
Dirname delivers all but the last level of the path name
in string.

EXAMPLES
The following example, invoked with the argument
/ u s r / s r c / c m d / c a t . c , compiles the named file and
moves the output to a file named cat in the current
directory:

cc $1
mv a.out v basename $1 .cv

The following example will set the shell variable NAME
to / u s r / s r c / c m d :

NAME= Ndirname /usr / s rc /cmd/ca t .c"
SEE ALSO

sh(l).
BUGS

The basename of / is null and is considered an error.

B C (1)

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
be [- c] [- 1] [file ...]

DESCRIPTION
Be is an interactive processor for a language that
resembles C but provides unlimited precision arithmetic.
It takes input from any files given, then reads the
standard input. The —1 argument stands for the name of
an arbitrary precision math library. The syntax for be
programs is as follows; L means letter a - z , E means
expression, S means statement.
Comments

are enclosed in / * and * / .
Names

simple variables: L
array elements: L J E]
The words "ibase ' \ "obase", and "scale"

Other operands
arbitrarily long numbers with optional sign and
decimal point.
(E)
sqrt (E)

length (E) number of significant decimal digits
scale (E) number of digits right of decimal point

L (E , ... , E)
Operators

(% is remainder; ~ is power)
+ -(- (prefix and postfix; apply to names)"

Statements
E
{ S ; ; S }
if E S
while (E) S
for (E ; E ; E) S
null statement
break
quit

B C (1)

Function definitions
define L (L L) {

auto L, ... , L
S; ... S
return (E)

}
Functions in —1 math library

s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.
The value of a statement that is an expression is printed
unless the main operator is an assignment. Either
semicolons or new-lines may separate statements.
Assignment to scale influences the number of digits to
be retained on arithmetic operations in the manner of
dc(1). Assignments to ihase or obase set the input and
output number radix respectively.
The same letter may be used as an array, a function, and
a simple variable simultaneously. All variables are
global to the program. "Auto" variables are pushed
down during function calls. When using arrays as
function arguments or defining them as automatic
variables empty square brackets must follow the array
name.
Be is actually a preprocessor for dc(1), which it invokes
automatically, unless the —c (compile only) option is
present. In this case the dc input is sent to the standard
output instead.

EXAMPLE
scale — 20
define e(x){

auto a, b, c, i, s
a = 1
b = 1
s = 1
f o r (i = l ; 1 = = 1 ; i++){

B C (1)

a = a*x
b = b*i
c — a /b
if(c = = 0) return(s)
s = s+c

defines a function to compute an approximate value of
the exponential function and

fo r (i= l ; i < = 1 0 ; i + +) e(i)
prints approximate values of the exponential function of
the first ten integers.

FILES
/usr/ l ib/l ib.b mathematical library
/usr /b in /dc desk calculator proper

SEE ALSO
dc(l).
CTIX Programmer's Guide, Section 12.

BUGS
No | | yet.
For statement must have all three E's.
Quit is interpreted when read, not when executed.

B C H E C K (1M)

NAME
bcheck - print out the list of blocks associated with i-
node(s)

SYNOPSIS
/ u s r / l o c a l / b i n / b c h e c k [-» <number>] <special
device >

DESCRIPTION
Bcheck will print out a list of all 1024-byte blocks
associated with each i-node for a filesystem on a
-Cspectal device>. If the -« <number> option is given,
the printout is restricted to the i-node < number>.

EXAMPLES
bcheck /dev/rdsk/cOdOsl

bcheck -i 2 /dev/rdsk/c0d0s3
SEE ALSO

ncheck(lM).

B C O P Y (1M)

NAME
bcopy - interactive block copy

SYNOPSIS
/ e t c / b c o p y

DESCRIPTION
Bcopy copies from and to files starting at arbitrary block
(512-byte) boundaries.
The following questions are asked:

to: (you name the file or device to be copied
to).

offset: (you provide the starting " to" block
number).

from: (you name the file or device to be copied
from).

offset: (you provide the starting " f rom" block
number).

count: (you reply with the number of blocks to
be copied).

After count is exhausted, the f rom question is repeated
(giving you a chance to concatenate blocks at the
t o + o f f s e t + c o u n t location). If you answer f rom with a
carriage return, everything starts over.
Two consecutive carriage returns terminate bcopy.

SEE ALSO
cpio(l), dd(l).

BDIFF(1)

NAME
bdiff - big diff

SYNOPSIS
bdiff filel file2 [n] [-s]

DESCRIPTION
Bdiff is used in a manner analogous to d i f f (l) to find
which lines must be changed in two files to bring them
into agreement. Its purpose is to allow processing of files
which are too large for d i f f . Bdiff ignores lines common
to the beginning of both files, splits the remainder of
each file into n-line segments, and invokes diff upon
corresponding segments. The value of n is 3500 by
default. If the optional third argument is given, and it is
numeric, it is used as the value for n. This is useful in
those cases in which 3500-line segments are too large for
d i f f , causing it to fail. If filel (fileS) is —, the standard
input is read. The optional —s (silent) argument
specifies that no diagnostics are to be printed by bdiff
(note, however, that this does not suppress possible
exclamations by d i f f . If both optional arguments are
specified, they must appear in the order indicated above.
The output of bdiff is exactly tha t of d i f f , with line
numbers adjusted to account for the segmenting of the
files (that is, to make it look as if the files had been
processed whole). Note that because of the segmenting
of the files, bdiff does not necessarily find a smallest
sufficient set of file differences.

FILES
/tmp/bd?????

SEE ALSO
diff(l).

DIAGNOSTICS
Use help (I) for explanations.

B F S (1)

NAME
bfs - big file scanner

SYNOPSIS
bfs [—] name

DESCRIPTION
The Bfs command is ^aJmosty like J cxccpt tlifit it is
read-only and processes much larger files. Files can be
up to 1024K bytes (the maximum possible size) and 32K
lines, with up to 512 characters, including new-line, per
line. Bfs is usually more efficient than ed for scanning a
file, since the file is not copied to a buffer. It is most
useful for identifying sections of a large file where
csplit(1) can be used to divide it into more manageable
pieces for editing.
Normally, the size of the file being scanned is printed, as
is the size of any file written with the -w command. The
optional — suppresses printing of sizes. Input is
prompted with * if P and a carriage return are typed as
in ed. Prompting can be turned off again by inputting
another P and carriage return. Note tha t messages are
given in response to errors if prompting is turned on.
All address expressions described under ed are supported, i
with the exception of finite range constructions (\{..-\}).
In addition, regular expressions may be surrounded with
two symbols besides / and ?: > indicates downward
search without wrap-around, and < indicates upward
search without wrap-around. Since bfs uses a different
regular expression-matching routine from ed, the regular
expressions accepted are slightly wider in scope (see
regcmp (SX)). There is a slight difference in mark names:
only the letters a through z may be used, and all 26
marks are remembered.
The e, g, v, k, n, p, q, w, = , ! and null commands
operate as described under ed, except that the default
command list for g and v is the null command, not p.
Commands such as , + + H — , + + + = , - 1 2 , and
-|-4p are accepted. Note that l , 1 0 p and 1,10 will both
print the first ten lines. The f command only prints the
name of the file being scanned; there is no remembered
file name. The w command is independent of output
diversion, truncation, or crunching (see the
xo, x t and xc commands, below). The following
additional commands are available:

xf file
Further commands are taken from the named
file. When an end-of-file is reached, an

- 1 -

B F S (1)

interrupt signal is received or an error occurs,
reading resumes with the file containing the
xf. The Xf commands may be nested to a
depth of 10.

n List the marks currently in use (marks are set
by the k commnad).

o [/He }
Further output from the p and null
commands is diverted to the named file,
which, if necessary, is created mode 666. If
file is missing, output is diverted to the
standard output. Note that each diversion
causes truncation or creation of the file.

label
This positions a label in a command file.
The label is terminated by new-line, and
blanks between the : and the start of the
label are ignored. This command may also
be used to insert comments into a command
file, since labels need not be referenced.

. , .)xb/regular expression/label
A jump (either upward or downward) is made
to label if the command succeeds. It fails
under any of the following conditions:

1. Either address is not between 1
and $.
2. The second address is less than
the first.
3. The regular expression does not
match at least one line in the
specified range, including the first
and last lines.

On success, . is set to the line matched and a
jump is made to label. This command is the
only one that does not issue an error message
on bad addresses, so it may be used to test
whether addresses are bad before other
commands are executed. Note that the
command

xb/*/ label
is an unconditional jump.
The xb command is allowed only if it is read
from someplace other than a terminal. If it is
read from a pipe only a downward jump is
possible.

B F S (1)

number
Output from the p and null commands is
truncated to at most number characters. The
initial number is 255.

[digit] [spacesJ [value]
The variable name is the specified digit
following the xv. The commands x v 5 1 0 0 or
xv5 100 both assign the value 100 to the
variable 5. The command Xv81 ,100p
assigns the value l , 1 0 0 p to the variable 6.
To reference a variable, put a % in front of
the variable name. For example, using the
above assignments for variables 5 and 6:

l ,%5p
1,%5
%6

will all print the first 100 lines.

8 / % 5 / p
would globally search for the characters 100
and print each line containing a match. To
escape the special meaning of % , a \ must
precede it.

g/" .*\%[cds]/p
could be used to match and list lines
containing printf of characters, decimal
integers, or strings.
Another feature of the xv command is that
the first line of output from a CTIX command
can be stored into a variable. The only
requirement is that the first character of
value be an !. For example:

•w junk
xv5!cat junk
!rm junk
!echo "%5"
xv6!expr %6 + 1

would put the current line into variable 5,
print it, and increment the variable 6 by one.
To escape the special meaning of ! as the first
character of value, precede it with a \ .

B F S (1)

xv7\!date
stores the value !date into variable 7.

xbz label

xbn label
These two commands will test the last saved
return code from the execution of a CTIX
command (! command) or nonzero value,
respectively, to the specified label. The two
examples below both search for the next five
lines containing the string size.

xv55
: 1
/size/
xv5!expr %5 - 1
!if 0%5 ! = 0 exit 2
xbn 1
xv45
: 1
/size/
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz 1

xc [swtfcA]
If switch is 1, output from the p and null
commands is crunched; if switch is 0 it is
not. Without an argument, xc reverses
switch. Initially switch is set for no
crunching. Crunched output has strings of
tabs and blanks reduced to one blank and
blank lines suppressed.

SEE ALSO
csplit(l), ed(l), regcmp(3X).

BFS (1)

DIAGNOSTICS
T for errors in commands, if prompting is turned off.
Self-explanatory error messages when prompting is on.

B R C (1 M)

NAME
brc, bcheckrc, rc, powerfail, drvload - system
initialization shell scripts

SYNOPSIS
/ e t c / b r c
/ e tc /bcheckr c
/ e t c / r c
/ e tc /powerfa i l
/ e t c / d r v l o a d

DESCRIPTION
The brc, bcheckrc, rc, drvload, and powerfail shell
procedures are executed via entries in / e t c / i n i t t a b by
mj't(lM). Execpt for powerfail, they are run when the
system is changed out of SINGLE USER mode. Powerfail
is executed whenever a system power failure is detected.
The brc procedure clears the mounted file system table,
/ e t c / m n t t a b (see mnttab(4)).
The bcheckrc procedure performs all the necessary
consistency checks to prepare the system to change into
multi-user mode. It actually contains two procedures:
an interactive procedure that runs fsck(1M) and sets the
time; and a noninteractive procedure that only checks
the file system. The administrator chooses the
interactive or noninteractive procedure by modifying the
line in bcheckrc that sets the variable C O N S O L E ,
P R E S E N T for interactive, A B S E N T to
noninteractive. If the A B S E N T procedure fails because
of file system problems or because it was interrupted
from the controlling terminal, it switches the system to
state 6, which is normally CTIX Administrator Mode.
On a MightyFrame system bcheckrc also sets the date to
the date currently in the real-time clock.
The rc procedure starts all system daemons before the
terminal lines are enabled for multi-user mode. In
addition, file systems are mounted and accounting, error
logging, system activity logging, and printer spooling (if
the /p (1) system is in use) are activated in this
procedure.
The powerfail procedure is invoked when the system
detects a power failure condition. It calls Aa/<(1M) to
bring down the system gracefully.
The drvload procedure causes any desired device drivers
and swap areas to be loaded into the system. The
system namelist is rebuilt from / u n i x prior to loading

B R C (1 M)

any drivers. This procedure uses Amv(lM) to determine
what hardware exists and then loads the appropriate
drivers.
These shell procedures, in particular re may be used for
several run-level states. The who(l) command may be
used to get the run-level information.

FILES
/unix
/etc/log/confile

SEE ALSO
conlocate(lM), date(l), fsck(lM), halt(l) , hinv(lM),
init(lM), shutdown(lM), who(l), inittab(4), mnttab(4).

C A L (1)

NAME
cal - print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
Gal prints a calendar for the specified year. If a month
is also specified, a calendar just for that month is
printed. If neither is specified, a calendar for the present
month is printed. Year can be between 1 and 9999.
The month is a number between 1 and 12. The calendar
produced is that for England and her colonies.
Try September 1752.

BUGS
The year is always considered to start in January even
though this is historically naive.
Beware that "cal 83" refers to the early Christian era,
not the 20th century.

C A L E N D A R (1)

NAME
calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION
Calendar consults the file calendar in the current
directory and prints out lines that contain today's or
tomorrow's date anywhere in the line. Most reasonable
month-day dates such as "Aug. 24," "august 24,"
"8 /24 ," etc., are recognized, but not "24 August" or
"24/8" . On weekends "tomorrow" extends through
Monday.
When an argument is present, calendar does its job for
every user who has a file calendar in the login directory
and sends them any positive results by mo»7(l).
Normally this is done daily by facilities in the CTIX
operating system.

FILES
/usr/l ib/calprog to figure out today's and

tomorrow's dates
/etc/passwd
/ tmp/ca l*

SEE ALSO
mail(l).

BUGS
Your calendar must be public information for you to get
reminder service.
Calendar's extended idea of " tomorrow" does not
account for holidays.

C A T (1)

NAME
cat - concatenate and print files

SYNOPSIS
cat [- u] [- s] [- v [- t] [-e]] file . . .

DESCRIPTION
Cat reads each file in sequence and writes it on the
standard output. Thus:

cat file
prints the file, and:

cat filel file2 >fi le3
concatenates the first two files and places the result on
the third.
If no input file is given, or if the argument — is
encountered, cat reads from the standard input file.
Output is buffered unless the —u option is specified.
The — s option makes cat silent about non-existent files.
The —v option causes non-printing characters (with the
exception of tabs, new-lines and form-feeds) to be
firinted visibly. Control characters are printed 'X
control-z); the DEL character (octal 0177) is printed T

Non-ASCII characters (with the high bit set) are printed
as M-ar, where x is the character specified by the seven
low order bits.
When used with the —v option, —t causes tabs to be
printed as *I's, and —e causes a $ character to be printed
at the end of each line (prior to the new-line). The —t
and —e options are ignored if the —v option is not
specified.

WARNING
Command formats such as

cat filel file2 >f i le l
will cause the original data in filel to be lost; therefore,
take care when using shell special characters.

SEE ALSO
cp(l), pg(l), pr(l).

CATMAN (1)

NAME
catman - create the cat files for the manual

SYNOPSIS
/ e t c / c a t m a n [- p] [- n] [- w] [sections]

DESCRIPTION
Catman creates the preformatted versions of the on-line
manual from the nroff input files. Each manual page is
examined and those whose preformatted versions are
missing or out of date are recreated. If any changes are
made, catman will recreate the / u s r / l i b / w h a t i s
database.
If there is one parameter not starting with a —, it is
taken to be a list of manual sections to look in. For
example

catman 123
will cause the updating to happen only to manual
sections 1, 2, and 3.
Options:
- n prevents creation of / u s r / l i b / w h a t i s .
—p prints what would be done instead of doing it.
- w causes only the / u s r / l i b / w h a t i s database to be

created. No manual reformatting is done.
FILES

/usr /man/man?/* .* raw (nroff input) manual sections
/usr /man/cat? /* .* preformatted manual pages
/usr/ l ib/makewhatis commands to make whatis

database
SEE ALSO

man(l).

C B (1)

NAME
cb - C program beautifier

SYNOPSIS
cb [- s] [- j] [- 1 leng] [file ...]

DESCRIPTION
Cb reads C programs either from its arguments or from
the standard input and writes them on the standard
output with spacing and indentation that displays the
structure of the code. Under default options, cb
preserves all user new-lines. Under the —s flag cb
canonicalizes the code to the style of Kernighan and
Ritchie in The C Programming Language. The —j flag
causes split lines to be put back together. The —I flag
causes cb to split lines that are longer than leng.

SEE ALSO
cc(l).
The C Programming Language by B. W. Kernighan and
D. M. Ritchie.

BUGS
Punctuation that is hidden in preprocessor statements
will cause indentation errors.

C C (1)

NAME
cc - C compiler

SYNOPSIS
cc [option] ... file ...

DESCRIPTION
Cc is the CTIX Portable C compiler. It accepts several
types of arguments:
Arguments whose names end with .c are taken to be C
source programs. They are compiled, and each object
program is left on the file whose name is that of the
source with .o substituted for .c. The .o file is normally
deleted, however, if a single C program is compiled and
loaded all at one go.
In the same way, arguments whose names end with .s
are taken to be assembly source programs and are
assembled, producing a .o file.
The following options are interpreted by cc. See /<f(l)
for link editor options and cpp(l) for more preprocessor
options.

Display without execution each command that
cc generates.

—c Suppress the link edit phase of the compilation
and force an object file to be produced even if
only one program is compiled.

- p Arrange for the compiler to produce code that
counts the number of times each routine is
called; also, if link editing takes place, replace
the standard startoff routine by one that
automatically calls mon«(or(3C) at the start and
arranges to write out a m o n . o u t file at normal
termination of execution of the object program.
An execution profile can then be generated by
use of prof(l).

—g Cause the compiler to generate additional
information needed for the use of srf6(l).

—O Invoke an object-code optimizer.
- S Compile the named C programs and leave the

assembler-language output on corresponding
files suffixed .s.

- E Run only cpp(l) on the named C programs and
send the result to the standard output.

C C (1)

—P Run only cpp(l) on the named C programs and
leave the result on corresponding files suffixed
A.

—68020 Generate code for the mc68020 processor.
—68881 Generate code for the mc68881 floating-point

coprocessor.
—88010 Generate code for the mc68010 processor.
—68000 Generate code for the mc68000 processor.
— v Verbose. Print pass names as they are

performed.
—T Truncate variable names to eight characters.

Tell the loader to match eight character names
(same as — G in the loader).

—w Tell the linker (Id) not to print warnings about
symbols that partially matched.

The C compiler uses one of three code generators for the
68010, 68020, and 68020/68881. You can select one of
these by two mechanisms. The first is to specify the
number on the command line. The second is to use the
CENVIRON shell variable.
The CENVIRON variable has the following syntax:

CPU=xxxxx,FPU=yyyyy
where CPU indicates the central processor to generate
for and FPU indicates the style of floating-point math to
use. xxxxx may be 68010 or 68020, and yyyyy may be
68881 or SOFTWARE. The FPU parameter may be
deleted; the default is SOFTWARE. The CENVIRON
variable should always be set to the appropriate values
in the .profile or .cshrc files.
The C compiler interprets two shell variables which,
along with the CENVIRON variable, allow cross-
compilation for any CTIX machine:
LIBROOT This variable is a path which is

prepended to normal library names
when searching for a library. See also
ld(1).

INCROOT This variable is a path which is
prepended to the / u s r / i n c l u d e and
/ u s r / i n c l u d e / s y s directories during
include file searches. See also epp(l).

The following options are useful only on systems where
work is being done on the C compiler. CTEX normally
comes with only one version of the compiler, and that

- 2 -

C C (1)

version works in a single pass. The options below
provide for alternative versions of the compiler, including
two-pass versions.
- B string

Construct pathnames for substitute preprocessor,
compiler, assembler and link editor passes by
concatenating string with the suffixes cpp
(preprocessor), cO, (or ccom (compiler first
pass), ccom20, ccom20.81, or comp (see under
FILES below), c l (compiler second pass), c2
(optimizer) (or optim), as (assembler), and Id
(link editor). If string is empty it is taken to be
/ l i b / o .

- t [p012al]
Find only the designated preprocessor, compiler,
assembler and link editor passes in the files
whose names are constructed by a —B option.
In the absence of a —B option, the string is
taken to be / l i b / n . The value —t "" is
equivalent to —tp012.

-Wc,argl[,arg2...}
Hand off the arguments] argi to pass c where c
is one of [p012al] indicating preprocessor,
compiler first pass, compiler second pass,
optimizer, assembler, or link editor, respectively.

- d This option is no longer allowed because of a
conflict of meaning. The - W option must be
used to specify precisely its destination. To
indicate the - d option for the link editor, use
- W l , - d .

Other arguments are taken to be either link editor
option arguments, C preprocessor option arguments, or
C-compatible object programs, typically produced by an
earlier cc run, or perhaps libraries of C-compatible
routines. These programs, together with the results of
any compilations specified, are linked (in the order
given) to produce an executable program with the name
a.out.
Note that modules appear to Id in the same order they
(or their source code versions) appear to cc. Thus a
library or object file should appear in the cc argument
list after any module that refers to it.
The C language standard was extended to include
arbitrary length variable names. The option pair

C C (1)

" - W p , - T - W O , - X T " will cause the current compiler
to behave the same as previous compilers with respect to
the length of variable names.

SEE ALSO
adb(l), cpp(l), as(l), ld(l), prof(l), monitor(3C).
CTIX Programmer 8 Guide, Section 12.
The C Programming Language by B. W. Kernighan and
D. M. Ritchie.

By default, the return value from a C program is
completely random. The only two guaranteed ways to
return a specific value are to explicitly call exit(2) or to
leave the function m a i n () with a " r e t u r n expression;"
construct.

The diagnostics produced by C itself are intended to be
self-explanatory. Occasional messages may be produced
by the assembler or the link editor.

FILES
file.c
file.o
a.out
/ tmp /c tm*
/ l ib/cpp
/lib/ccom
/lib/ccom20
/lib/ccom20.81
/ l ib/optim
/b in /as
/bin/Id
/lib/crtO.o
/lib/mcrtO.o
/lib/libc.a
/ l ib/ l ibp/ l ib/* .a

input file
object file
linked output
temporary
C preprocessor cpp(1)
compiler
68020 compiler
68020/68881 compiler
optional optimizer
assembler, ««(1)
link editor, /</(l)
runtime startoff
profiling startoff
standard C library, see section (3)
profiled versions of libraries

NOTES

DIAGNOSTICS

C D (1)

NAME
cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If direc tovy is not spccificdj tiic value of shell parameter
SHOME is used as the new working directory. If
directory specifies a complete path starting with / , .
directory becomes the new working directory. If neither
case applies, cd tries to find the designated directory
relative to one of the paths specified by the SCDPATH
shell variable. SCDPATH has the same syntax as, and
similar semantics to, the $PATH shell variable. Cd
must have execute (search) permission in directory.
Because a new process is created to execute each
command, cd would be ineffective if it were written as a
normal command; therefore, it is recognized and is
internal to the shell.

SEE ALSO
pwd(l), sh(l), chdir(2).

C D C (1)

NAME
cdc - change the delta commentary of an SCCS delta

SYNOPSIS
cdc —rSID [—m[mrlistj] [—y[comment]] files

DESCRIPTION
Cdc changes the delta commentary, for the SID specified
by the — r keyletter, of each named SCCS file.
Delta commentary is defined to be the Modification
Request (MR) and comment information normally
specified via the delta(1) command (—m and —y
keyletters).
If a directory is named, cdc behaves as though each file
in the directory were specified as a named file, except
that non-SCCS files (last component of the path name
does not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is
read (see WARNINGS); each line of the standard input is
taken to be the name of an SCCS file to be processed.
Arguments to cdc, which may appear in any order,
consist of keyletter arguments and file names.
All the described keyletter arguments apply
independently to each named file:

- r SID Used to specify the SCCS
/Identification (SID) string of a
delta for which the delta
commentary is to be changed.

-m[mrlwt] If the SCCS file has the v flag set
(see arfmm(l)) then a list of MR
numbers to be added and/or
deleted in the delta commentary
of the SID specified by the —r
keyletter may be supplied. A null
MR list has no effect.
MR entries are added to the list
of MRs in the same manner as
that of delta (1). In order to
delete an MR, precede the MR
number with the character ! (see
EXAMPLES). If the MR to be
deleted is currently in the list of
MRs, it is removed and changed
into a "comment" line. A list of
all deleted MRs is placed in the
comment section of the delta
commentary and preceded by a

C D C (1)

comment line stating that they
were deleted.
If —m is not used and the
standard input is a terminal, the
prompt MRs? is issued on the
standard output before the
standard input is read; if the
standard input is not a terminal,
no prompt is issued. The MRs?
prompt always precedes the
comments? prompt (see —y
keyletter).
MRs in a list are separated by
blanks and/or tab characters. An
unescaped new-line character
terminates the MR list.
Note that if the v flag has a value
(see admin(l)), it is taken to be
the name of a program (or shell
procedure) which validates the
correctness of the MR numbers.
If a non-zero exit status is
returned from the MR number
validation program, cdc
terminates and the delta
commentary remains unchanged.

-y[comment] Arbitrary text used to replace the
comment(s) already existing for
the delta specified by the —r
keyletter. The previous
comments are kept and preceded
by a comment line stating tha t
they were changed. A null
comment has no effect.
If —y is not specified and the
standard input is a terminal, the
prompt comments? is issued on
the standard output before the
standard input is read; if the
standard input is not a terminal,
no prompt is issued. An
unescaped new-line character
terminates the comment text.

The exact permissions necessary to modify the
SCCS file are documented in the Source Code
Control System User's Guide. Simply stated, they

C D C (1)

are either (1) if you made the delta, you can
change its delta commentary; or (2) if you own the
file and directory you can modify the delta
commentary.

cdc - r l . 6 -m"bl78-12345 !bl77-54321 b!79-00001"
-ytrouble s.file

adds bl78-12345 and bl79-00001 to the MR list, removes
bl77-54321 from the MR list, and adds the comment
trouble to delta 1.6 of s.file.

cdc - r l . 6 s.file
MRs? !bl77-54321 bl78-12345 bl79-00001
comments? trouble

does the same thing.

If SCCS file names are supplied to the cdc command via
the standard input (— on the command line), then the
—m and —y keyletters must also be used.

admin(l), delta(l), get(l), help(l), prs(l), sccsfile(4).
CTIX Programmer's Guide, Section 9.

EXAMPLES

WARNINGS

FILES
x-file
z-file

SEE ALSO

DIAGNOSTICS
Use help(1) for explanations.

C F L O W (1)

NAME
cflow - generate C flowgraph

SYNOPSIS
cflow [—r] [— ix] [—i_] [—dnum] files

DESCRIPTION
Cflow analyzes a collection of C, YACC, LEX, assembler,
and object files and attempts to build a graph charting
the external references. Files suffixed in .y, .1, .c, and .i
are YACC'd, LEX'd, and C-preprocessed (bypassed for .i
files) as appropriate and then run through the first pass
of lint(1). (The —I, —D, and —U options of the C-
preprocessor are also understood.) Files suffixed with .s
are assembled and information is extracted (as in .o files)
from the symbol table. The output of all this non-trivial
processing is collected and turned into a graph of
external references which is displayed upon the standard
output.
Each line of output begins with a reference (i.e., line)
number, followed by a suitable number of tabs indicating
the level. Then the name of the global (normally only a
function not defined as an external or beginning with an
underscore; see below for the —i inclusion option) a colon
and its definition. For information extracted from C
source, the definition consists of an abstract type
declaration (e.g., char *), and, delimited by angle
brackets, the name of the source file and the line number
where the definition was found. Definitions extracted
from object files indicate the file name and location
counter under which the symbol appeared (e.g., text).
Leading underscores in C-style external names are
deleted.

Once a definition of a name has been printed, subsequent
references to that name contain only the reference
number of the line where the definition may be found.
For undefined references, only < > is printed.
As an example, given the following in file.c:

int i;

main()
{

}

C F L O W (1)

?>
}

i = h();

the command
cflow - i x file.c

produces the output

1 main: int(), <file.c 4 >
2 f: int(), <fi le.c 11 >
3 h: < >
4 i: int, <file.c 1 >
5 g: < >

When the nesting level becomes too deep, the —e option
of pr(l) can be used to compress the tab expansion to
something less than every eight spaces.
The following options are interpreted by cflow:
—r Reverse the "caller:callee" relationship

producing an inverted listing showing the callers
of each function. The listing is also sorted in
lexicographical order by callee.

—ix Include external and static data symbols. The
default is to include only functions in the
flowgraph.

—i_ Include names that begin with an underscore.
The default is to exclude these functions (and
data if -ix is used).

—dnum The num decimal integer indicates the depth at
which the flowgraph is cut off. By default this
is a very large number. Attempts to set the
cutoff depth to a nonpositive integer will be
met with contempt.

DIAGNOSTICS
Complains about bad options. Complains about multiple
definitions and only believes the first. Other messages
may come from the various programs used (e.g., the C-
preprocessor).

SEE ALSO
as(l), cc(l), cpp(l), lex(l), lint(l), nm(l), pr(l), yacc(l).

CFLOW (1)

BUGS
Files produced by lex(l) and yacc(l) cause the reordering
of line number declarations which can confuse cflow. To
get proper results, feed cflow the yacc or lex input.

- 3 -

C H M O D (1)

NAME
chmod - change mode

SYNOPSIS
c h m o d mode files

DESCRIPTION
The permissions of the named files are changed
according to mode, which may be absolute or symbolic.
An absolute mode is an octal number constructed from
the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by

owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by

others
A symbolic mode has the form:

[who] op permission [op permission]
The who part is a combination of the letters u (for user's
permissions), g (group) and o (other). The letter a
stands for ugo, the default if who is omitted.
Op can be + to add permission to the file's mode, — to
take away permission, or = to assign permission
absolutely (all other bits will be reset).
Permission is any combination of the letters r (read), w
(write), x (execute), s (set owner or group ID) and t (save
text, or sticky); u, g, or o indicate that permission is to
be taken from the current mode. Omitting permission is
only useful with = to take away all permissions.
Multiple symbolic modes separated by commas may be
given. Operations are performed in the order specified.
The letter s is only useful with u or g and t only works
with u.
Only the owner of a file (or the super-user) may change
its mode. Only the super-user may set the sticky bit. In
order to set the group ID, the group of the file must
correspond to your current group ID.

CHMOD (1)

EXAMPLES
The first example denies write permission to others, the
second makes a file executable:

chmod o - w file
chmod +x file

SEE ALSO
ls(l), chmod(2).

- 2 -

C H O W N (1)

NAME
chown, chgrp - change owner or group

SYNOPSIS
c h o w n owner file ...
c h g r p group file ...

DESCRIPTION
Chown changes the owner of the files to owner. The
owner may be either a decimal user ID or a login name
found in the password file.
Chgrp changes the group ID of the files to group. The
group may be either a decimal group ID or a group name
found in the group file.
If either command is invoked by other than the super-
user, the set-user-ID and set-group-ID bits of the file
mode, 04000 and 02000, respectively, will be cleared.

FILES
/etc/passwd
/etc/group

SEE ALSO
chown(2), group(4), passwd(4).

C H R O O T (1 M)

NAME
chroot - change root directory for a command

SYNOPSIS
/ e t c / c h r o o t newroot command

DESCRIPTION
The given command is executed relative to the new root.
The meaning of any initial slashes (/) in path names is
changed for a command and any of its children to
newroot. Furthermore, the initial working directory is
newroot.
Notice that:

chroot newroot command > x
will create the file x relative to the original root, not the
new one.
This command is restricted to the super-user.
The new root path name is always relative to the current
root: even if a chroot is currently in effect, the newroot
argument is relative to the current root of the running
process.

SEE ALSO
chdir(2).

BUGS
One should exercise extreme caution when referencing
special files in the new root file system.

C L E A R (1)

NAME
clear - clear terminal screen

SYNOPSIS
c lear

DESCRIPTION
Clear prints the string that clears your terminal's screen.
The program obtains this string from the termcap(5)
database, using the T E R M environment variable to
determine the type of terminal.

FILES
/e tc / termcap terminal capability data base

SEE ALSO
sh(l), termcap(5).

CLRI (1 M)

NAME
clri - clear i-node

SYNOPSIS
/ e t c / c l r i file-system i-number ...

DESCRIPTION
Clri writes zeros on the 64 "bytes occupied by the i-node
numbered i-number. File-system must be a special file
name referring to a device containing a file system.
After clri is executed, any blocks in the affected file will
show up as "missing" in an /scA(lM) of the file-system.
This command should only be used in emergencies and
extreme care should be exercised.
Read and write permission is required on the specified
file-system device. The i-node becomes allocatable.
The primary purpose of this routine is to remove a file
which for some reason appears in no directory. If it is
used to zap an i-node which does appear in a directory,
care should be taken to track down the entry and
remove it. Otherwise, when the i-node is reallocated to
some new file, the old entry will still point to that file.
At that point removing the old entry will destroy the
new file. The new entry will again point to an
unallocated i-node, so the whole cycle is likely to be
repeated again and again.

SEE ALSO
fsck(lM), fsdb(lM), ncheck(lM), fs(4).

BUGS
If the file is open, clri is likely to be ineffective.

C M P (1)

NAME
cmp - compare two files

SYNOPSIS
c m p [- 1] [- s] filel file2

DESCRIPTION
The two files are compared. (If filel is —, the standard
input is used.) Under default options, cmp makes no
comment if the files are the same; if they differ, it
announces the byte and line number at which the
difference occurred. If one file is an initial subsequence
of the other, that fact is noted.
Options:
- 1 Print the byte number (decimal) and the differing

bytes (octal) for each difference.
—s Print nothing for differing files; return codes only.

SEE ALSO
comm(l), diff(l).

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different
files, and 2 for an inaccessible or missing argument.

C O L (l)

NAME
col - filter reverse line-feeds

SYNOPSIS
col (—bfpx]

DESCRIPTION
Col reads from the standard input and writes onto the
standard output. It performs the line overlays implied
by reverse line feeds (ASCII code ESC-7), and by forward
and reverse half-line feeds (ESC-9 and ESC-8). Col is
particularly useful for filtering'multicolumn output made
with the . r t command of nroff and output resulting from
use of the <6/(l) preprocessor.
If the —b option is given, col assumes that the output
device in use is not capable of backspacing. In this case,
if two or more characters are to appear in the same
place, only the last one read will be output .
Although col accepts half-line motions in its input, it
normally does not emit them on output . Instead, text
that would appear between lines is moved to the next
lower full-line boundary. This treatment can be
suppressed by the —f (fine) option; in this case, the
output from col may contain forward half-line feeds
(ESC-9), but will still never contain either kind of
reverse line motion.
Unless the —x option is given, col will convert white
space to tabs on output wherever possible to shorten
printing time.
The ASCII control characters SO (\016) and SI (\017) are
assumed by col to start and end text in an alternate
character set. The character set to which each input
character belongs is remembered, and on output SI and
SO characters are generated as appropriate to ensure
that each character is printed in the correct character
set.
On input, the only control characters accepted are space,
backspace, tab, return, new-line, SI, SO, V T (\013), and
ESC followed by 7, 8, or 9. The V T character is an
alternate form of full reverse line-feed, included for
compatibility with some earlier programs of this type.
All other non-printing characters are ignored.
Normally, col will ignore any unknown to it escape
sequences found in its input; the —p option may be used
to cause col to output these sequences as regular
characters, subject to overprinting from reverse line
motions. The use of this option is highly discouraged

C O L (1)

unless the user is fully aware of the textual position of
the escape sequences.

SEE ALSO
nroff(l), tbl(l).

NOTES
The input format accepted by col matches the output
produced by nroff with either the —T37 or —Tip
options. Use —T37 (and the —f option of col) if the
ultimate disposition of the output of col will be a device
that can interpret half-line motions, and —Tip otherwise.

BUGS
Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on
a line.
Local vertical motions that would result in backing up
over the first line of the document are ignored. As a
result, the first line must not have any superscripts.

COMM(1)

NAME
comb - combine SCCS deltas

SYNOPSIS
c o m b [—o] [—s] [—psid] [—clist] files

DESCRIPTION
Comb generates a shell procedure (see «A(1)) which,
when run, will reconstruct the given SCCS files. The
reconstructed files will, hopefully, be smaller than the
original files. The arguments may be specified in any
order, but all keyletter arguments apply to all named
SCCS files. If a directory is named, comb behaves as
though each file in the directory were specified as a
named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of — is given, the
standard input is read; each line of the input is taken to
be the name of an SCCS file to be processed; non-SCCS
files and unreadable files are silently ignored.
The generated shell procedure is written on the standard
output.
The keyletter arguments are as follows. Each is
explained as though only one named file is to be
processed, but the effects of any keyletter argument
apply independently to each named file.
-pSID The SCCS identification string (SID) of the

oldest delta to be preserved. All older deltas
are discarded in the reconstructed file.

—clist A list (see get(l) for the syntax of a list) of
deltas to be preserved. All other deltas are
discarded.

—o For each ge t —e generated, this argument
causes the reconstructed file to be accessed at
the release of the delta to be created, otherwise
the reconstructed file would be accessed at the
most recent ancestor. Use of the —o keyletter
may decrease the size of the reconstructed SCCS
file. It may also alter the shape of the delta
tree of the original file.

—s This argument causes comb to generate a shell
procedure which, when run, will produce a
report giving, for each file: the file name, size
(in blocks) after combining, original size (also in
blocks), and percentage change computed by:

100 * (original - combined) / original
It is recommended that before any SCCS files

- 1 -

COMB(1)

are actually combined, one should use this
option to determine exactly how much space is
saved by the combining process.

If no keyletter arguments are specified, comb will
preserve only leaf deltas and the minimal number of
ancestors needed to preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file,
comb????? Temporary.

SEE ALSO
admin(l) delta(l), get(l), help(l), prs(l), sh(l),
sccsfile(4).
CTIX Programmer's Guide, Section 9.

DIAGNOSTICS
Use help(l) for explanations.

BUGS
Comb may rearrange the shape of the tree of deltas. It
may not save any space; in fact, it is possible for the
reconstructed file to actually be larger than the original.

COMM(1)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
c o m m [- [123]] filel file2

DESCRIPTION
Coriuvi reads jiltl and filc2, which should be ordered in
ASCII collating sequence (see sort(1)), and produces a
three-column output: lines only in filel; lines only in
filt2; and lines in both files. The file name — means the
standard input.
Flags 1, 2, or 3 suppress printing of the corresponding
column. Thus c o m m —12 prints only the lines common
to the two files; c o m m —23 prints only lines in the first
file but not in the second; c o m m —123 is a no-op.

SEE ALSO
cmp(l), diff(l), sort(l), uniq(l).

CONFIG (1 M)

NAME
config - configure a CTIX system

SYNOPSIS
/ e t c / c o n f i g [- t] [-1 file] [- c file] [- m file]
dfile

DESCRIPTION
Config is a program that takes a description of a CTEX
system, generates a configuration table file, and
generates a hardware interface file. The configuration
table file is a C program defining the configuration
tables for the various devices on the system. The
hardware interface file provides information regarding
the interface between the hardware and device handlers.
The —1 option specifies the name of the hardware
interface file; low.s is the default.
The —c option specifies the name of the configuration
table file; conf.c is the default name.
The —m option specifies the name of the file that
contains all the information regarding supported devices;
/ e t c / m a s t e r is the default name. This file is supplied
with the CTIX system and should not be modified unless
the user fully understands its construction.
The —t option requests a short table of major device
numbers for character and block type devices. This can
facilitate the creation of special files.
The user must supply dfile; it must contain device
information for the user's system. This file is divided
into two parts. The first part contains physical device
specifications. The second part contains system-
dependent information. Any line with an asterisk (*) in
column 1 is a comment.

First P a r t of dfile
Each line contains one field:

devname
where devname is the name of the device (as it appears
in the / e t c / m a s t e r device table).

Second P a r t of dfile
The second part contains two different types of lines.
Note that all specifications of this part are required,
although their order is arbitrary.

1. Root/ pipe device specification
Two lines of three fields each:

CONFIG (1M)

r o o t devname minor
pipe devname minor

where minor is the minor device number (in octal) of the
slice on the Winchester.
Swap device specification
One line tha t contains five fields, and one line that
contains three fields, as follows:

s w a p devname minor swplo nswap
where swplo is the lowest disk block (decimal) in the
swap area and nswap is the maximum number of 1K-
byte disk blocks (decimal) in the swap area. The kernel
sizes the actual swap area size and configures itself for
up to this maximum.
Parameter specification
There are any number of lines of two fields each, chosen
from the following list. Number is decimal. This list is
not complete; parameters not on the list either must not
be changed or have no effect.
buffers number / * number of 1024-byte file system

caching buffers * /
dmmxsz number

/ * max number of pages per
loadable driver * /

inodes number / * max open inodes in system */
files number / * max open files in system * /
nflocks number / * max locks active in system */
mounts number / * max file systems mounted * /
regions number / * total number of regions in system */
procs number / * max processes in system * /
maxproc number

/ * max processes per user ID */
maxfsiz number / * ulimit default in 512-byte blocks */
maxumem number

/ * max number of pages per process */
cbufsize number

/ * console circular buffer size in bytes */
mesg 0 or 1 / * configure for messages */
msgmax number

/ * max chars in a message * /
msgmni number

/ * max active message queues * /

CONFIG (1M)

msgmnb number
/ * max total chars in message

queues • /
msgtql number / * max messages in system */
msgssz number
msgseq number / * msgssz * msgseq = number bytes of

system buffering */'
nlldrv number /* max number of loadable drivers */
sem 0 or 1 / * configure for semaphores */
semmni number / * max active semaphores */
semmns number / * max semaphores in system */
semmsi number / * max semaphores per ID */
semopm number

/ * max operations per semop call */
semume number / * max undo structures per process */
semmnu number

/ * max undo structures in
system */

shmem 0 or 1 / * configure for shared memory */
shmmax number

/ * max bytes in a shared segment */
shmmin number /* min bytes in a shared segment */
shmmni number / * max active shared segments */
shmseg number / * max attached segments per process */
shmbrk number / * gap in pages between data and

shared memory */
debugger 0 or 1 /* configure low-level

kernel debugger * /
Certain parameters if set to 0 will allow the kernel to
autoconfigure. Procs, regions, clists, i-nodes, files, and
buffers are autoconfigurable. The number of procs is
based on the number of users; regions, i_nodes, and files
are based on the number of procs. The number of clists
is based on the number of serial and cluster ports. The
number of buffers is based on the amount of physical
memory. Any or all of these may be overridden.
Maxumem may also be set to 0, in which case it floats
between 1M byte plus one quarter of the total swap
space.

EXAMPLE
To configure a system with the following devices:

Onboard quarter-inch tape
Onboard ST506 disks (root)
Interphase SMD disk controller
RS-232-C (any number of ports)
one parallel line printer
root device is a Winchester (drive 0, section 1)
pipe device is a Winchester (drive 0, section 1)

- 3 -

CONFIG (1M)

swap device is a Winchester (drive 0, section 2),
with a swplo of 1 and an nswap of 8000

number of buffers is 100
number of processes is 100
maximum number of processes per user ID is 25
number of mounts is 6
number of inodes is 100
number of files is 120
number of character buffers is 64
messages are to be included
semaphores are to be included

The actual system configuration would be specified as
follows:

diskonbd
Vsmd3200
serial
qic
console
pip
root diskonbd 01
pipe diskonbd 01
swap diskonbd 02 0 8000
* Comments may be inserted in this manner
buffers 100
procs 100
maxproc 25
mounts 6
inodes 100
files 120
mesg 1
sema 1
clists 64

FILES
/e t c /mas te r default input master device table
low.s default output hardware interface file
conf.c default output configuration table file

SEE ALSO
ldeeprom(lM), master(4).

DIAGNOSTICS
Diagnostics are routed to the standard output and are
self-explanatory.

BUGS
The —t option does not know about devices tha t have
aliases.

CONSOLE(7)

FILES
/dev/console
/etc/log/confile

SEE ALSO
conlocate(lM), syslocal(2).

WARNING
Normal system processing is suspended while the kernel
debugger is active.

5/86 - 2 -

DISK (7)

NAME
disk - general disk driver

SYNOPSIS
^inc lude < s y s / t y p e s . h >
^inc lude < s y s / g d i s k . h >
inc lude < s y s / g d i o c t l . h >

DESCRIPTION
The files
/dev/rdsk/cOdOsO
through
/ d e v / r d s k / c x d x s x
and
/dev/dsk/cOdOsO
through
/ d e v / d s k / c x d x s x
refer to CTIX device names and slices, where cx is the
controller number, da: is the drive number, sz is the slice
number, and i is a hexadecimal digit. An r in the
name indicates the character (raw) interface,
MightyFrame and MiniFrame format a disk with 512-
byte physical sectors. Winchester disks have 17 physical
sectors per track. SMD drives have 33 to 65 physical
sectors per track.
Block input /output uses 1024-byte logical blocks.
Winchester disks have 8 logical blocks on each track,
with the leftover physical block available as an alternate
for a bad block. SMD disks have 16 to 32 logical blocks
on each track, with the leftover physical block available
as an alternate for a bad block.
Logical block zero contains the Volume Home Block,
which describes the disk. The following structure defines
the volume home block.
struct vhbd {

uint magic; / * Mitiframe disk format code * /
int chksum; / * adjustment so 32 bit sum starting

from magic for IK bytes sums to - 1 * /
struct gdswprt dsk; / * specific description of this disk * /
struct partit partab(MAXSLICE);/* partition table * /
struct resdes{ / * reserved area special files * /

daddr_t blkstart; / * start logical block # * /
ushort nblocks; / * length in logical blocks

(zero implies not present) * /
} resmap[8];

/ * resmap consists of the following entries:
* loader area
* bad block table

5/86 - 1 -

CONLOCATE(1M)

NAME
conlocate - locate a terminal to use as the virtual
system console

SYNOPSIS
/ e t c / c o n l o c a t e [— r] [—in] [—t]

DESCRIPTION
Conlocate searches for a terminal to use as the system
console, / d e v / s y s c o n . It scans / e t c / i n i t t a b for
terminals that get a getty(lM) in state 6, and spawns
children to monitor the terminals for attempted logins.
Each child does all the I /O control and login verification
of the getty-login sequence, but only root is actually
permitted to log in. The first terminal to have root log
in has its tty linked to / d e v / s y s c o n . Conlocate then
writes the new virtual system console's communication
options, which have just been set from the values in
/ e t c / g e t t y d e f s , to its own standard output, using
stty(l) —g format.
Conlocate understands the following options:

—r If / d e v / s y s c o n exists and is openable, exit
without scanning for a new one.

—in Scan run level n instead of run level 6.
—t Begin by monitoring for logins on the existing

/ d e v / s y s c o n . If root logs in at that terminal
within 20 seconds, abandon the search for
another console.

FILES
/dev/syscon virtual system console
/e tc / in i t tab definitions of operating states
/etc/gettydefs communication options

SEE ALSO
init (1M), stty(l), gettydefs(4), inittab(4), termio(7).

WARNING
Beware of collision with other processes that might be
trying to open the same terminals, especially gettys
spawned by init.

C O N V E R T (1)

NAME
convert - convert object and archive files to common
formats

SYNOPSIS
convert [—5] infile outfile

DESCRIPTION
Convert transforms input infile to output outfile. Infile
must be different from outfile. The —5 option causes
convert to work exactly as it did for UNIX system release
5.0. Infile may be any one of the following:

1) a pre-UNIX system 5.0 object file or
link-edited (a.out) module (only with the
—5 option),

2) a pre-UNIX system 5.0 archive of object
files or link edited (a.out) modules (only
with the —5 option), or

3) a UNIX system 5.0 archive file (without
the —5 option).

Convert will transform infile to one of the following
(respectively):

1) an equivalent UNIX system 5.0 object
file or link edited (a.out) module (with
the —5 option),

2) an equivalent UNIX system 5.0 archive
of equivalent object files or link edited
(a.out) modules (with the —5 option),
and

3) an equivalent UNIX system 5.0 release
2.0 portable archive containing
unaltered members (without the —5
option).

All other types of input to the convert command will be
passed unmodified from the input file to the output file
(along with appropriate warning messages). When
transforming archive files with the —5 option, the
convert^ 1) command will inform the user that the
archive symbol table has been deleted. To generate an
archive symbol table, this archive file must be
transformed again by convert without the —5 option to
create a UNIX system 5.0 archive file. Then the archive
symbol table may be created by executing the ar(l)
command with the t s option. If a UNIX system 5.0
archive with an archive symbol table is being
transformed, the archive symbol table will automatically
be converted.

CONVERT (1)

FILES
/ tmp/conv*

SEE ALSO
ar(l), arcv(l), a.out(4), ar(4).

C P (1)

NAME
cp, In, mv - copy, link or move files

SYNOPSIS
cp filel [file2 ...1 target
In [- f J filel [file2 ...] target
m v [- f] filel [file2 ...] target

DESCRIPTION
Filel is copied (linked, moved) to target. Under no
circumstance can filel and target be the same (take care
when using sA(l) and csh(l) metacharacters). If target
is a directory, then one or more files are copied (linked,
moved) to that directory. If target is a file, its contents
are destroyed.
If mv or In determines that the mode of target forbids
writing, it will print the mode (see chmod(2)), ask for a
response, and read the standard input for one line (if the
standard input is a terminal); if the line begins with y,
the mv or In occurs, if permissible; if not, the command
exits. No questions are asked and the mv or In is done
when the —f option is used or if the standard input is not
a terminal.
Only mv will allow filel to be a directory, in which case
the directory rename will occur only if the two
directories have the same parent; filel is renamed target.
If filel is a file and target is a link to another file with
links, the other links remain and target becomes a new
file.
When using cp, if target is not a file, a new file is
created which has the same mode as filel except that the
sticky bit is not set unless you are super-user; the owner
and group of target are those of the user. If target is a
file, copying a file into target does not change its mode,
owner, nor group. The last modification time of target
(and last access time, if target did not exist) and the last
access time of filel are set to the time the copy was
made. If target is a link to a file, all links remain and
the file is changed.

SEE ALSO
cpio(l), rm(l), chmod(2).

WARNING
When the destination of a copy is a file that already
exists, cp will try to overwrite it, not remove it; this
preserves the destination files ownership, and so forth. If
the destination file has an ownership you do not want,
remove it before doing the copy.

C P (1)

BUGS
If filel and target lie on different file systems, mv must
copy the file and delete the original. In this case the
owner name becomes that of the copying process and
any linking relationship with other files is lost.
hit will not link across file systems.

- 2 -

CPIO (1)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio —o [acBQv]
cpio — i [BQcdmrtuvfsSbO] [patterns]
cpio —p [adlmuv] directory

DESCRIPTION
Cpio —o (copy out) reads the standard input to obtain a
list of path names and copies those files onto the
standard output together with path name and status
information. Output is padded to a 512-byte boundary.
Cpio — i (copy in) extracts files from the standard input,
which is assumed to be the product of a previous cpio
—o. Only files with names that match patterns are
selected. Patterns are given in the name-generating
notation of sh(\). In patterns, meta-characters ?, *, and
[. . .] match the slash / character. Multiple patterns
may be specified and if no patterns are specified, the
default for patterns is * (i.e., select all files). The
extracted files are conditionally created and copied into
the current directory tree based upon the options
described below. The permissions of the files will be
those of the previous cpio —o. The owner and group of
the files will be that of the current user unless the user is
super-user, which causes cpio to retain the owner and
group of the files of the previous cpio —o.
Cpio —p (pass) reads the standard input to obtain a list
of path names of files that are conditionally created and
copied into the destination directory tree based upon the
options described below.
The meanings of the available options are:
a Reset access times of input files after they have

been copied.
B Input /output is to be blocked 5,120 bytes to the

record (does not apply to the pass option;
meaningful only with data directed to or from
/ d e v / r m t ? ? or raw floppy disks).

Q Input /output is to be blocked 65,536 bytes to
the record. Works like —B option, with which it
is mutually exclusive. The —Q option optimizes
quarter-inch tape access,

d Directories are to be created as needed,
c Write header information in ASCII character

form for portability.

CPIO (1)

p Interactively rename files. If the user types a
null line, the file is skipped,

t Print a table of contents of the input. No files
are created.

u Copy unconditionally (normally, an older file will
not replace a newer file with the same name),

v Verbose: causes a list of file names to be
printed. When used with the t option, the table
of contents looks like the output of an Is —1
command (see /«(l)).

1 Whenever possible, link files rather than copying
them. Usable only with the —p option,

m Retain previous file modification time. This
option is ineffective on directories that are being
copied.

f Copy in all files except those in patterns.
s Swap bytes. Use only with the — i option.
5 Swap halfwords. Use only with the - i option.
b Swap both bytes and halfwords. Use only with

the — i option.
6 Process an old (i.e., UNIX System Sixth Edition

format) file. Only useful with —i (copy in).
EXAMPLES

The first example below copies the contents of a
directory into an archive; the second duplicates a
directory hierarchy:

Is | cpio - o > /dev /mtO
cd olddir
find . - d e p t h -p r i n t | cpio - p d l newdir

The trivial case "find . - d e p t h - p r i n t | cpio - o B
> / d e v / r m t O " can be handled more efficiently by:

find . - cp io /dev/rmtO
SEE ALSO

ar(l), find(l), cpio(4).
NOTES

The — Q option can be used with the —p option to
improve performance, but at the penalty of using more
memory.

BUGS
Pa th names are restricted to 128 characters. If there are
too many unique linked files, the program runs out of
memory to keep track of them and, thereafter, linking
information is lost. Only the super-user can copy special
files.

C P P (1)

NAME
cpp - the C language preprocessor

SYNOPSIS
/ l i b / c p p [option ...] [ifile [ofile]]

DESCRIPTION
Cpp is the C language preprocessor which is invoked as
the first pass of any C compilation using the ec(l)
command. Thus the output of cpp is designed to be in a
form acceptable as input to the next pass of the C
compiler. As the C language evolves, cpp and the rest of
the C compilation package will be modified to follow
these changes. Therefore, the use of cpp other than in
this framework is not suggested. The preferred way to
invoke cpp is through the ce(l) command, since the
functionality of cpp may someday be moved elsewhere.
See m4{l) for a general macro processor.
Cpp optionally accepts two file names as arguments.
Ifile and ofile are respectively the input and output for
the preprocessor. They default to standard input and
standard output if not supplied.
The following options to cpp are recognized:
- P Preprocess the input without producing the line

control information used by the next pass of the
C compiler.

—C By default, cpp strips C-style comments. If the
—C option is specified, all comments (except
those found on cpp directive lines) are passed
along.

- U name
Remove any initial definition of name, where
name is a reserved symbol that is predefined by
the particular preprocessor. The current list of
these possibly reserved symbols includes:
operating system:

ibm, gcos, os, tss, unix
hardware: interdata, p d p l l , u370, u3b,

u3b5, vax, mc68k, mc68000,
mc68010, mc68020

system variants: RES, RT
line(1): lint

—D name
—T>name=def

Define name as if by a ^ d e f i n e directive. If no
= def is given, name is defined as 1. The —D

C P P (1)

option has lower precedence that the —U option.
That is, if the same name is used in both a —U
option and a —D option, the name will be
undefined regardless of the order of the options.

—T Preprocessor symbols are no longer restricted to
eight characters. The —T option forces cpp to
use only the first eight characters for
distinguishing different preprocessor names.
This behavior is the same as previous
preprocessors with respect to the length of names
and is included for backward compatability.

—I dir Change the algorithm for searching for
^include files whose names do not begin with /
to look in dir before looking in the directories on
the standard list. Thus, ^ inc lude files whose
names are enclosed in " * will be searched for
first in the directory of the file with the
^inc lude line, then in directories named in —I
options, and last in directories on a standard list.
For ^ inc lude files whose names are enclosed in
< > , the directory of the file with the ^ inc lude
line is not searched. By default, cpp searches for
the name enclosed in < > in /usr / inc lude;
however, if the shell variable INCROOT is set,
cpp prepends the value of INCROOT to the
standard list. This is particularly useful for
cross-machine compilation.

Two special names are understood by cpp. The name
LINE is defined as the current line number (as a

decimal integer) as known by cpp, and FILE is
defined as the current file name (as a C string) as known
by cpp. They can be used anywhere (including in
macros) just as any other defined name.
All cpp directives start with lines begun by Any
number of blanks and tabs are allowed between the #
and the directive. The directives are:
^ d e f i n e name token-string

Replace subsequent instances of name with
token-string.

d e f i n e name(arg, arg) token-string
Notice that there can be no space between name
and the (. Replace subsequent instances of name
followed by a (, a list of comma-separated set of
tokens, and a) by token-string, where each
occurrence of an arg in the token-string is
replaced by the corresponding token in the

C P P (1)

comma-separated list. When a macro with
arguments is expanded, the arguments are
placed into the expanded token-string
unchanged. After the entire token-string has
been expanded, cpp re-starts its scan for names
to expand at the beginning of the newly created
token-string.

u n d e f name
Cause the definition of name (if any) to be
forgotten from now on.

#inc lude "filename"
^include < filename >

Include at this point the contents of filename
(which will then be run through cpp). When the
<Cfilename > notation is used, filename is only
searched for in the standard places. See the —I
option above for more detail.

l i n e integer-constant "filename"
Causes cpp to generate line control information
for the next pass of the C compiler. Integer-
constant is the line number of the next line and
filename is the file where it comes from. If
"filename" is not given, the current file name is
unchanged.

e n d i f
Ends a section of lines begun by a test directive
(# i f , # i fde f , or # i fndef) . Each test directive
must have a matching #end i f .

i f d e f name
The lines following will appear in the output if
and only if name has been the subject of a
previous ^ d e f i n e without being the subject of
an intervening # u n d e f .

i f n d e f name
The lines following will not appear in the output
if and only if name has been the subject of a
previous ^ d e f i n e without being the subject of
an intervening # u n d e f .

#if constant-expression
Lines following will appear in the output if and
only if the constant-expression evaluates to non-
zero. All binary non-assignment C operators,
the ?: operator, the unary !, and ~ operators
are all legal in constant-expression. The
precedence of the operators is the same as
defined by the C language. There is also a

C P P (l)

unary operator defined, which can be used in
constant-expression in these two forms: def ined
(name) or defined name. This allows the
utility of # i f d e f and # i f n d e f in a # i f directive.
Only these operators, integer constants, and
names which are known by cpp should be used in
constant-expression. In particular, the sizeof
operator is not available.

e l s e Reverses the notion of the test directive which
matches this directive. So if lines previous to
this directive are ignored, the following lines will
appear in the output. And vice versa.

The test directives and the possible # e l s e directives can
be nested.

FILES
/usr/include standard directory for ^ inc lude

files
SEE ALSO

cc(l), m4(l).
DIAGNOSTICS

The error messages produced by cpp are intended to be
self-explanatory. The line number and filename where
the error occurred are printed along with the diagnostic.

NOTES
When new-line characters were found in argument lists
for macros to be expanded, previous versions of cpp put
out the new-lines as they were found and expanded. The
current version of cpp replaces these new-lines with
blanks to alleviate problems that the previous versions
had when this occurred.

C P S E T (1M)

NAME
cpset - install object files in binary directories

SYNOPSIS
cpset [-o] object directory [mode owner group]

DESCRIPTION
Cpset is used to install the specified object file in the
given directory. The mode, owner, and group, of the
destination file may be specified on the command line.
If this data is omitted, two results are possible:

If the user of cpset has administrative
permissions (that is, the user's numerical ID is
less than 100), the following defaults are
provided:

mode - 0755
owner - bin
group - bin

If the user is not an administrator, the default,
owner, and group of the destination file will be
that of the invoker.

An optional argument of —o will force cpset to move
object to OLD object in the destination directory before
installing the new object.
For example:

cpset echo /bin 0755 bin bin
cpset echo /bin
cpset echo /bin/echo

All the examples above have the same effect (assuming
the user is an administrator). The file echo will be
copied into / b i n and will be given 0755 , bin, bin as the
mode, owner, and group, respectively.
Cpset utilizes the file / u s r / s r c / d e s t i n a t i o n s to
determine the final destination of a file. The locations
file contains pairs of pathnames separated by spaces or
tabs. The first name is the "official" destination (for
example: / b in / echo) . The second name is the new
destination. For example, if echo is moved from / b i n to
^/usr/bin, the entry in / u s r / s r c / d e s t i n a t i o n s would

/bin/echo /usr /bin/echo
When the actual installation happens, cpset verifies that
the "old" pathname does not exist. If a file exists at
that location, cpset issues a warning and continues. This

C P S E T (I M)

file does not exist on a distribution tape; it is used by
sites to track local command movement. The procedures
used to build the source will be responsible for defining
the "official" locations of the source.

Cross Generat ion
The environment variable R O O T will be used to locate
the destination file (in the form
$ROOT /usp / src /des t inat ions) . This is necessary in
the cases where cross generation is being done on a
production system.

SEE ALSO
install(lM), make(l).

CRASH (1 M)

NAME
crash - examine system images

SYNOPSIS
/ e t c / c r a s h [system] [namelist]

DESCRIPTION
Crash is an interactive utility for examining an
operating system core image. It has facilities for
interpreting and formatting the various control
structures in the system and certain miscellaneous
functions that are useful when perusing a dump.
The arguments to crash are the file name where the
system image can be found and a namelist file to be
used for symbol values.
The default values are / d e v / k m e m and /unix; hence,
crash with no arguments can be used to examine an
active system. If a system image file is given, it is
assumed to be a system core dump and the default
process is set to be that of the process running at the
time of the crash. This is determined by a value stored
in a fixed location by the dump mechanism.
The system image may be / d e v / k m e m , regular files, or
partition zero of a disk.

COMMANDS
Input to crash is typically of the form:

command [options] [structures to be printed].
When allowed, options will modify the format of the
printout. If no specific structure elements are specified,
all valid entries will be used. As an example, proc — 12
15 3 would print process table slots 12, 15, and 3 in a
long format, while proc would print the entire process
table in standard format.
In general, those commands that perform I/O with
addresses assume hexadecimal on 32-bit machines and
octal on 16-bit machines.
The current repertory consists of:
user [list of process table entries]

Aliases: uarea, u_area, u.
Print the user structure of the named process as
determined by the information contained in the
process table entry. If no entry number is given,
the information from the last executing process
will be printed. Swapped processes produce an
error message.

CRASH (1 M)

trace [—r] [list of process table entries]
Aliases: t .
Generate a kernel stack trace of the current
process. If the —r option is used, the trace
begins at the saved stack frame pointer in kfp.
Otherwise the trace starts at the value of the fp
stored in u_rsav. If no entry number is given,
the information from the last executing process
will be printed.

kfp [stack frame pointer]
Aliases: rB, fp.
Print the program's idea of the start of the
current stack frame (set initially from a fixed
location in the dump) if no argument is given, or
set the frame pointer to the supplied value.

stack [list of process table entries]
Aliases: stk, s, kernel, k.
Format a dump of the kernel stack of a process.
The addresses shown are virtual system data
addresses rather than true physical locations. If
no entry number is given, the information from
the last executing process will be printed.

proc [-jr]] [list of process table entries]
Aliases: ps, p.
Format the process table. The —r option causes
only runnable processes to be printed. The —
alone generates a longer listing.

i -node [—] [list of inode table entries]
Aliases: ino, i.
Format the i-node table. The — option will also
print the i-node data block addresses.

file [list of file table entries]
Aliases: files, f.
Format the file table.

lck Aliases: 1
Print the active and sleep record lock tables;
also verify the correctness of the record locking
linked lists.

m o u n t [list of mount table entries]
Aliases: mnt , m.
Format the mount table.

t t y [type J [-] [list of t ty entries]
Aliases: t erm, pt, gt , ser.
Print the t ty structures. The type argument
determines which structure will be used (such as
p t or ser ; the last type is remembered.) The —

- 2 -

CRASH (1M)

option prints the stty(l) parameters for the given
line.

s ta t Print certain statistics found in the dump.
These include the panic string (if a panic
occurred), time of crash, system name, and the
registers saved in low memory by the dump
mechanism.

var Aliases: tunables, tunable, tune, v.
Print the tunable system parameters.

buf [options] [list of buffer headers]
Aliases: hdr, bufhdr.
Format the system buffer headers. With no
parameters, all buffer headers are shown. With
no options but a list of indexes or addresses, only
the specified buffer headers are shown. With an
option and a single index or address, the chain of
buffer headers beginning at the specified buffer
header is shown. Various option show various
chains:
—a Trace the available chain both ways by

following both the av_forw and av_back
fields in the headers.

—af Trace the available chain by following
the av_forw fields.

- a b Trace the available chain by following
the avjbaek. fields.

—f Trace the chain for the device by
following the b_forw fields. —b Trace
the chain for the device by following the
b_back fields.

— n Follow the b_Jorw, bjback, av_forw, and
avjbaek fields for n headers each.

— Follow the b_Jorw, b_back, av_Jorw, and
avjbaek fields all the way through their
chains.

buffer [format] [list of buffers]
Alias: b.
Print the data in a system buffer according to
format. If format is omitted, the previous
format is used. Valid formats include decimal,
octal, hex, character, byte, directory, i-
node, and •write. The last creates a file in the
current directory (see FILES) containing the
buffer data.

CRASH (1 M)

callout
Aliases: calls, call, c, t imeout , t ime, tout .
Print all entries in the callout table.

region [region table number I region table address]
Prints region table. Region table address must
be of the form Ox

fcal lout
Aliases: fcalls, fcall, fc , f t imeout , f t ime,
f tout .
Print all entries in the fcallout table.

m a p [list of map names]
Format the named system map structures.

n m [list of symbols 1
Print symbol value and type as found in the
namelist file.

t s [list of text addresses]
Find the closest text symbols to the given
addresses.

ds [list of data addresses]
Find the closest data symbols to the given
addresses.

cblk [- J
Format the cblock table. The - option checks
cblock usage.

p m [symbol name or address] [count] [format]
od [symbol name or address] [count] [format]

Aliases: dump, rd.
Dump count data values starting at the symbol
value or address given according to format. Od
dumps virtual addresses; p m dumps physical
addresses. Allowable formats are octal,
longoct, decimal, longdec, character, hex, or
byte.

s h m [- J [list of shared memory header table entries]
Format the shared memory header table. If the
- option is used, also display information about
the last change, the last shmop, and attached
processes.

shminfo
Display the system's shared memory information
structure.

msg [- 1 [list of ipc message queue header table entries]
Format the ipc message queu header table. If
the - option is used, also display information

- 4 -

CRASH (1M)

about the last change, the last msgop, and any
messages on the queue contained in the message
headers.

msginfo
Print the system message information structure,

msgtex t [format]
[list of ipc message queue header table entries]

Print the text of the messages on a queue
according to format. If format is omitted, the
previous format is used.

! Escape to shell.
q Exit from crash.
not i fy [list of notification table entries]

Print a requested notification.
u n o t i f y j list of process table entries]

Print queued notifications for given process.
? [start letter]

Print synopsis of commands. Optional start
letter prints only those commands beginning
with that letter.

pfdat [list of page frame numbers]
Alias: pf
Print information about a physical page of
memory.

pfree [- 1 [list of page frame numbers]
If no options are given, print out number of
pages on free list. With the option '-', print all
pages on free list. Giving a specific page number
simply reports whether that page is on the free
list.

p h a s h [list of hash slots]
Alias: ph
Print hash lists of physical pages. With no
arguments, print all hash lists with their
respective pages.

pregion [list of process table entries]
AJias: prg
Print currently attached regions of a process.

w Print toggle warning. Primarily useful in
tracking virtual to physical address translations.

ALIASES
There are built-in aliases for many of the formats as well
as those listed for the commands. Some of them are:

CRASH (1M)

byte b.
character char, c.
decimal dec, ec.

FORMATS AND FORMAT ALIASES
Here are the standard formats and format aliases:
Format

byte
bytedec
by teoc t
bytehex
character
worddec

wordoc t
wordhex
long dec
Iongoct
longhex
directory
inode
wr i te

Meaning
byte
byte of decimal
byte of octal
byte of hexadecimal
ASCH character
2 bytes

bytes
bytes
bytes
bytes
bytes

directory
inode
write

Aliases
b
b d
b o
bh, bx
char, c
wd , decimal,
dec, e
wo , octal, oct, o
wx, w h
Id, D
lo, O
lx, X, hex, h, x
direct, dir, d
ino, i
w

FILES
/usr/ include/sys/*.h

/dev /kmem
/unix
buf .#

header files for table and structure
information
default system image file
default namelist file
files created containing buffer data

SEE ALSO
mount(lM), nm(l), ps(l), sh(l), s t ty(l) .

C R O N (I M)

NAME
cron - clock demon

SYNOPSIS
/ e t c / c r o n

DESCRIPTION
Cron executes commands at specified dates and times.
Regularly scheduled commands can be specified
according to the instructions found in crontab files; users
can submit their own crontab file via the crontab
command. Commands which are to be executed only
once may be submitted via the at command. Since cron
never exits, it should be executed only once. This is best
done by running cron from the initialization process
through the file / e t c / r c (see tn»f(lM)).
Cron only examines crontab files and a t command files
during process initialization and when a file changes.
This reduces the overhead of checking for new or
changed files at regularly scheduled intervals.

FILES
/usr / l ib /cron

main cron directory
/ usr / l ib/cron/ log

accounting information
/usr /spool /cron

spool area
SEE ALSO

at(l) , crontab(l) , init(lM), sh(lL
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

DIAGNOSTICS
A history of all actions taken by cron are recorded in
/ u s r / l i b / c r o n / l o g .

C R O N T A B (1)

NAME
crontab - user crontab file

SYNOPSIS
crontab [file]
crontab -r
crontab -I

DESCRIPTION
Crontab copies the specified file, or standard input if no
file is specified, into a directory that holds all users'
crontabs. The - r option removes a user's crontab from
the crontab directory. Crontab - 1 will list the crontab
file for the invoking user.
A user is permitted to use crontab if their name appears
in the file / u s r / l i b / c r o n / c r o n . a l l o w . If that file does
not exist, tne file / u s r / l i b / c r o n / c r o n . d e n y is checked
to determine if the user should be denied access to
crontab. If neither file exists, only root is allowed to
submit a job. If cron.deny exists and is emtpy, global
usage is permitted. If cron.allow exists and is empty,
no usage is permitted. If cron.allow exists, cron.deny
is ignored. The allow/deny files consist of one user name
per line.
A crontab file consists of lines of six fields each. The
fields are separated by spaces or tabs. The first five are
integer patterns that specify the following:

minute (0-59),
hour (0-23),
day of the month (1-31),
month of the year (1-12),
day of the week (0-6 with 0=Sunday) .

Each of these patterns may be either an asterisk
(meaning all legal values), or a list of elements separated
by commas. An element is either a number, or two
numbers separated by a minus sign (meaning an
inclusive range). Note that the specification of days may
be made by two fields (day of the month and day of the
week). If both are specified as a list of elements, both
are adhered to. For example, 0 0 1,15 * 1 would run a
command on the first and fifteenth of each month, as
well as on every Monday. To specify days by only one
field, the other field should be set to * (for example, 0 0
* * 1 would run a command only on Mondays).
The sixth field of a line in a crontab file is a string that
is executed by the shell at the specified times. A percent
character in this field (unless escaped by \) is translated

- 1 -

C R O N T A B (1)

to a new-line character. Only the first line (up to a % or
end of line) of the command field is executed by the
shell. The other lines are made available to the
command as standard input.
The shell is invoked from your SHOME directory with
an argO of sh. Users who desire to have their .profile
executed must explicitly do so in the crontab file. Cron
supplies a default environment for every shell, defining
HOME, LOGNAME, S H E L L (= / b i n / s h) , TZ, and
P A T H (= : / b i n : / usr /b in: /usr / loca l / la in) .
NOTE: Users should remember to redirect the standard
output and standard error of their commands! If this is
not done, any generated output or errors will be mailed
to the user.

FILES
/usr/ l ib/cron
/ usr / spool / cron / crontabs
/usr/ l ib /c ron/log
/ usr/lib / cron/cron.allow
/usr/ l ib/cron/cron.deny

SEE ALSO
cron(lM), sh(l).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

BUGS
Crontab runs sh even if your login shell is csh.

main cron directory
spool area
accounting information
list of allowed users
list of denied users

C S H (1)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS
csh [—cefinstvVxX] [arg ...]

DESCRIPTION
Csh is a first implementation of a command language
interpreter incorporating a history mechanism (see
History Subst i tut ions) job control facilities (see Jobs)
and a C-like syntax.
An instance of csh begins by executing commands from
the file .cshrc in the home directory of the invoker. If
this is a login shell, then it also executes / e t c / c p r o f i l e
and commands from the file . login there. It is typical
for users on crt 's to put tset(1) in their .login files.
In the normal case, the shell will then begin reading
commands from the terminal, prompting with '% '.
Processing of arguments and the use of the shell to
process files containing command scripts will be
described later.
The shell then repeatedly performs the following actions:
a line of command input is read and broken into words.
This sequence of words is placed on the command history
list and then parsed. Finally each command in the
current line is executed.
When a login shell terminates, it executes commands
from the file . logout in the user's home directory.
Lexical s tructure
The shell splits input lines into words at blanks and tabs
with the following exceptions. The characters & | ; <
> (form separate words. If doubled in &&, | |,
< < o r > > these pairs form single words. These parser
metacharacters may be made part of other words, or
prevented their special meaning, by preceding them with
\ . A newline preceded by a \ is equivalent to a blank.
In addition strings enclosed in matched pairs of
quotations, or " form parts of a word;
metacharacters in these strings, including blanks and
tabs, do not form separate words. These quotations have
semantics to be described subsequently. Within pairs of

or characters a newline preceded by a \ gives a true
newline character.
When the shell's input is not a terminal, the character #
introduces a comment which continues to the end of the
input line. It is prevented this special meaning when
preceded by \ and in quotations using and .

- 1 -

C S H (l)

C o m m a n d s
A simple command is a sequence of words, the first of
which specifies the command to be executed. A simple
command or a sequence of simple commands separated
by the | character forms a pipeline. The output of each
command in a pipeline is connected to the input of the
next. Sequences of pipelines may be separated by ';'»
and are then executed sequentially. A sequence of
pipelines may be executed without immediately waiting
for it to terminate by following it with an &.
Any of the above may be placed in () to form a simple
command (which may be a component of a pipeline, etc.)
It is also possible to separate pipelines with | I or & &
indicating, as in the C language, that the second is to be
executed only if the first succeeds or fails, respectively.
(See Expressions.)
Jobs
The shell associates a job with each pipeline. It keeps a
table of current jobs, printed by the jobs command, and
assigns them small integer numbers. When a job is
started asynchronously with &, the shell prints a line
which looks like:

[1] 1234
indicating that the jobs which was started
asynchronously was job number 1 and had one (top-
level) process, whose process id was 1234.
The shell maintains a notion of the current and previous
jobs. In output pertaining to jobs, the current job is
marked with a + and the previous job with a —.
Status reporting
This shell learns immediately whenever a process
changes state. It normally informs you whenever a job
becomes blocked so that no further progress is possible,
but only just before it prints a prompt. This is done so
that it does not otherwise disturb your work. If,
however, you set the shell variable notify, the shell will
notify you immediately of changes of status in
background jobs. There is also a shell command notify
which marks a single process so that its s tatus changes
will be immediately reported. By default notify marks
the current process; simply say 'notify' after starting a
background job to mark it.

G S H (l)

Subst i tut ions
We now describe the various transformations the shell
performs on the input in the order in which they occur.
History subst i tut ions
History substitutions place words from previous
command input as portions of new commands, making it
easy to repeat commands, repeat arguments of a
previous command in the current command, or fix
spelling mistakes in the previous command with little
typing and a high degree of confidence. History
substitutions begin with the character ! and may begin
anywhere in the input stream (with the proviso that
they do n o t nest.) This ! may be preceded by a \ to
prevent its special meaning; for convenience, a ! is passed
unchanged when it is followed by a blank, tab, newline,
= or (. (History substitutions also occur when an input
line begins with t- This special abbreviation will be
described later.) Any input line which contains history
substitution is echoed on the terminal before it is
executed as it could have been typed without history
substitution.

Commands input from the terminal which consist of one
or more words are saved on the history list. The history
substitutions reintroduce sequences of words from these
saved commands into the input stream. The size of
which is controlled by the history variable; the previous
command is always retained, regardless of its value.
Commands are numbered sequentially from 1.
For definiteness, consider the following output from the
history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It
is not usually necessary to use event numbers, but the
current event number can be made part of the prompt by
placing ! in the prompt string.
With the current event 13 we can refer to previous
events by event number 111, relatively as in !—2
(referring to the same event), by a prefix of a command
word as in Id for event 12 or Iwri for event 9, or by a
string contained in a word in the command as in !?mic?
also referring to event 9. These forms, without further
modification, simply reintroduce the words of the
specified events, each separated by a single blank. As a

- 3 -

G S H (l)

special case !! refers to the previous command; thus !!
alone is essentially a redo.
To select words from an event we can follow the event
specification by : and a designator for the desired words.
The words of a input line are numbered from 0, the first
(usually command) word being 0, the second word (first
argument) being 1, etc. The basic word designators are:
0 first (command) word
n n 'th argument

{first argument, i.e., 1
last argument

% word matched by (immediately preceding) ?s ?
search

x - y range of words
— y abbreviates 0— y
* abbreviates f—I, or nothing if only one word in

event
x * abbreviates x - $
x - like x * but omitting word '$'
The s separating the event specification from the word
designator can be omitted if the argument selector begins
with a f , $, *, —, or % . After the optional word
designator can be placed a sequence of modifiers, each
preceded by a s. The following modifiers are defined:
h Remove a trailing pathname component, leaving

the head.
r Remove a trailing .xxx component, leaving the

root name.
e Remove all but the extension .xxx part.
s/l/r/

Substitute / for r
t Remove all leading pathname components,

leaving the tail.
& Repeat the previous substitution,
g Apply the change globally, prefixing the above,

e.g., g&.
p Print the new command but do not execute it.
q Quote the substituted words, preventing further

substitutions.
x Like q, but break into words at blanks, tabs and

newlines.
Unless preceded by a 'g' the modification is applied only
to the first modifiable word. With substitutions, it is an
error for no word to be applicable.
The left hand side of substitutions are not regular
expressions in the sense of the editors, but rather strings.
Any character may be used as the delimiter in place of
/ ; a \ quotes the delimiter into the I and r strings. The

- 4 -

C S H (1)

& character in the right hand side is replaced by the
text from the left. A \ quotes 8c also. A null I uses the
previous string either from a / or from a contextual scan
string s in !?«?. The trailing delimiter in the
substitution may be omitted if a newline follows
immediately as may the trailing '?' in a contextual scan.
A history reference may be given without an event
specification, e.g. '!$'. In this case the reference is to the
previous command unless a previous history reference
occurred on the same line in which case this form repeats
the previous reference. Thus !?foo?f !$ gives the first
and last arguments from the command matching ?foo?.
A special abbreviation of a history reference occurs when
the first non-blank character of an input line is a 'J ' .
This is equivalent to !:sf providing a convenient
shorthand for substitutions on the text of the previous
line. Thus f lb t l ib fixes the spelling of lib in the
previous command. Finally, a history substitution may
be surrounded with { and } if necessary to insulate it
from the characters which follow. Thus, after Is —Id
~paul we might do !{l}a to do l s - l d "paula, while !la
would look for a command starting la.

Quotat ions wi th ' and "
The quotation of strings by ' and can be used to
prevent all or some of the remaining substitutions.
Strings enclosed in ' are prevented any further
interpretation. Strings enclosed in may be expanded as
described below.
In both cases the resulting text becomes (all or part of) a
single word; only in one special case (see Command
Substitition below) does a quoted string yield parts of
more than one word; ' quoted strings never do.
Alias subst i tut ion
The shell maintains a list of aliases which can be
established, displayed and modified by the alias and
unaliae commands. After a command line is scanned, it
is parsed into distinct commands and the first word of
each command, left-to-right, is checked to see if it has
an alias. If it does, then the text which is the alias for
that command is reread with the history mechanism
available as though that command were the previous
input line. The resulting words replace the command
and argument list. If no reference is made to the history
list, then the argument list is left unchanged.
Thus if the alias for Is is Is —1 the command Is / u s r
would map to Is —1 /usr , the argument list here being

C S H (l)

undisturbed. Similarly if the alias for lookup was grep
it / e t c / p a s s w d then lookup bill would map to grep
bill / e t c / p a s s w d .
If an alias is found, the word transformation of the input
text is performed and the aliasing process begins again
on the reformed input line. Looping is prevented if the
first word of the new text is the same as the old by
flagging it to prevent further aliasing. Other loops are
detected and cause an error.
Note that the mechanism allows aliases to introduce
parser metasyntax. Thus we can alias print 'pr \ i * |
lpr ' to make a command which pr'» its arguments to the
line printer.
Variable subst i tut ion
The shell maintains a set of variables, each of which has
as value a list of zero or more words. Some of these
variables are set by the shell or referred to by it. For
instance, the argv variable is an image of the shell's
argument list, and words of this variable's value are
referred to in special ways.
The values of variables may be displayed and changed
by using the set and unset commands. Of the variables
referred to by the shell a number are toggles; the shell
does not care what their value is, only whether they are
set or not. For instance, the verbose variable is a toggle
which causes command input to be echoed. The setting
of this variable results from the —v command line
option.
Other operations treat variables numerically. The @
command permits numeric calculations to be performed
and the result assigned to a variable. Variable values
are, however, always represented as (zero or more)
strings. For the purposes of numeric operations, the null
string is considered to be zero, and the second and
subsequent words of multiword values are ignored.
After the input line is aliased and parsed, and before
each command is executed, variable substitution is
performed keyed by $ characters. This expansion can be
prevented by preceding the $ with a ^ except within s
where it a lways occurs, and within s where it never
occurs. Strings quoted by " are interpreted later (see
Command substitution below) so $ substitution does not
occur there until later, if at adl. A $ is passed unchanged
if followed by a blank, tab, or end-of-line.
Input/output redirections are recognized before variable
expansion, and are variable expanded separately.

G S H (l)

Otherwise, the command name and entire argument list
are expanded together. It is thus possible for the first
(command) word to this point to generate more than one
word, the first of which becomes the command name,
and the rest of which become arguments.
Unless enclosed in " or given the sq modifier, the results
of variable substitution may eventually be command and
filename substituted. Within a variable whose value
consists of multiple words expands to a (portion of) a
single word, with the words of the variables value
separated by blanks. When the :q modifier is applied to
a substitution the variable will expand to multiple words
with each word separated by a blank and quoted to
prevent later command or filename substitution.
The following metasequences are provided for
introducing variable values into the shell input. Except
as noted, it is an error to reference a variable which is
not set.
$name
${name)

Are replaced by the words of the value of variable
name, each separated by a blank. Braces insulate
name from following characters which would
otherwise be part of it. Shell variables have names
consisting of up to 20 letters and digits starting
with a letter. The underscore character is
considered a letter.
If name is not a shell variable, but is set in the
environment, then that value is returned (but s
modifiers and the other forms given below are not
available in this case).

$name[selector]
${name[selector]}

May be used to select only some of the words from
the value of name. The selector is subjected to '$'
substitution and may consist of a single number or
two numbers separated by a —. The first word of a
variables value is numbered 1. If the first number
of a range is omitted it defaults to 1. If the last
member of a range is omitted it defaults to
$ # n a m e . The selector * selects all words. It is
not an error for a range to be empty if the second
argument is omitted or in range.

$#name
${#name}

Gives the number of words in the variable. This is
useful for later use in a '[selector]'.

- 7 -

C S H (l)

$0
Substitutes the name of the file from which
command input is being read. An error occurs if
the name is not known.

$number
${number}

Equivalent to $argv[numberj.
$*

Equivalent to $argv[*].
The modifiers sh, :t, :r, sq, and :x may be applied to the
substitutions above as may :gh, sgt, and :gr. If braces {
} appear in the command form then the modifiers must
appear within the braces. The current implementation
allows only one j modifier on each $ expansion.
The following substitutions may not be modified with :
modifiers.
$?name
${?name}

Substitutes the string 1 if name is set, 0 if it is not.
$?0

Substitutes 1 if the current input filename is
known, 0 if it is not.

$$
Substitute the (decimal) process number of the
(parent) shell.

$<
Substitutes a line from the standard input, with no
further interpretation thereafter. It can be used to
read from the keyboard in a shell script.

Command and f i lename subst i tut ion
The remaining substitutions, command and filename
substitution, are applied selectively to the arguments of
builtin commands. This means that portions of
expressions which are not evaluated are not subjected to
these expansions. For commands which are not internal
to the shell, the command name is substituted separately
from the argument list. This occurs very late, after
input-output redirection is performed, and in a child of
the main shell.
Command subst i tut ion
Command substitution is indicated by a command
enclosed in \ The output from such a command is
normally broken into separate words at blanks, tabs and
newlines, with null words being discarded, this text then

C S H (1)

replacing the original string. Within "s, only newlines
force new words; blanks and tabs are preserved.
In any case, the single final newline does not force a new
word. Note that it is thus possible for a command
substitution to yield only part of a word, even if the
command outputs a complete line.
Filename subst i tut ion
If a word contains any of the characters * , ? , [, or { or
begins with the character then that word is a
candidate for filename substitution, also known as
"globbing." This word is then regarded as a pattern, and
replaced with an alphabetically sorted list of file names
which match the pattern. In a list of words specifying
filename substitution it is an error for no pattern to
match an existing file name, but it is not required for
each pattern to match. Only the metacharacters *, ?,
and [imply pattern matching, the characters and {
being more akin to abbreviations.
In matching filenames, the character . at the beginning
of a filename or immediately following a / , as well as the
character / must be matched explicitly. The character *
matches any string of characters, including the null
string. The character T matches any single character.
The sequence (...] matches any one of the characters
enclosed. Within [...], a pair of characters separated by
— matches any character lexically between the two.
The character ~ at the beginning of a filename is used to
refer to home directories. Standing alone, i.e., it
expands to the invokers home directory as reflected in
the value of the variable home. When followed by a
name consisting of letters, digits and — characters the
shell searches for a user with that name and substitutes
their home directory: thus "ken might expand to
/ u s r / k e n and ~ken /chmach to / u s r / k e n / c h m a c h .
If the character " is followed by a character other than a
letter or / or appears not at the beginning of a word, it
is left undisturbed.
The metanotation a{b,c ,d}e is a shorthand for abe ace
ade . Left to right order is preserved, with results of
matches being sorted separately at a low level to
preserve this order. This construct may be nested. Thus
~source / s l / {o ld!s , l s } . c expands to
/ u s r / s o u r c e / s l / o l d H s . c / u s r / s o u r c e / s l / l s . c whether
or not these files exist without any chance of error if the
home directory for source is / u s r / s o u r c e . Similarly
. . / { m e m o , * b o x } might expand to . . / m e m o . . /box

C S H (1)

. . / m b o x . (Note that m e m o was not sorted with the
results of matching *box.) As a special case {,} and {}
are passed undisturbed.
I n p u t / o u t p u t
The standard input and standard output of a command
may be redirected with the following syntax:
< name

Open file name (which is first variable, command
and filename expanded) as the standard input.

< < word
Read the shell input up to a line which is identical
to word. Word is not subjected to variable,
filename or command substitution, and each input
line is compared to word before any substitutions
are done on this input line. Unless a quoting \ , ,

or " appears in word variable and command
substitution is performed on the intervening lines,
allowing \ to quote $, \ , and \ Commands which
are substituted have all blanks, tabs, and newlines
preserved, except for the final newline which is
dropped. The resultant text is placed in an
anonymous temporary file which is given to the
command as standard input.

> name
> ! name
> & name
> & ! name

The file name is used as standard output. If the
file does not exist then it is created; if the file
exists, its is truncated, its previous contents being
lost.
If the variable noclobber is set, then the file must
not exist or be a character special file (e.g., a
terminal or / d e v / n u l l) or an error results. This
helps prevent accidental destruction of files. In
this case the ! forms can be used and suppress this
check.
The forms involving & route the diagnostic output
into the specified file as well as the standard
output. Name is expanded in the same way as <
input filenames are.

> > name
> > & name
> > ! name
> > & ! name

Uses file name as standard output like > but

- 10 -

G S H (l)

places output at the end of the file. If the variable
noclobbcr is set, then it is an error for the file not
to exist unless one of the ! forms is given.
Otherwise similar to > .

A command receives the environment in which the shell
was invoked as modified by the input-output parameters
and the presence of the command in a pipeline. Thus,
unlike some previous shells, commands run from a file of
shell commands have no access to the text of the
commands by default; rather they receive the original
standard input of the shell. The < < mechanism should
be used to present inline data. This permits shell
command scripts to function as components of pipelines
and allows the shell to block read its input.
Diagnostic output may be directed through a pipe with
the standard output. Simply use the form | & rather
than just |.
Express ions
A number of the builtin commands (to be described
subsequently) take expressions, in which the operators
are similar to those of C, with the same precedence.
These expressions appear in the exit, i f , and while
commands. The following operators are available:

| | && | j & = = | = = " r < = > =
< > < < > > + - * / % ! " ()

Here the precedence increases to the right, = = , ! = ,
= ~ , and < = , > = , < , and > , < < , and > > , + ' ,
and - , *, / , and % being, in groups, at the same level.
The = = , ! = , = ~ , and operators compare their
arguments as strings; all others operate on numbers.
The operators = ~ and are like ! = and = = except
that the right hand side is a pattern (containing, e.g., *'s,
T's and instances of [...]) against which the left hand
operand is matched. This reduces the need for use of the
switch statement in shell scripts when all that is really
needed is pattern matching.
Strings that begin with 0 are considered octal numbers.
Null or missing arguments are considered 0. The result
of all expressions are strings, which represent decimal
numbers. It is important to note that no two
components of an expression can appear in the same
word; except when adjacent to components of
expressions which are syntactically significant to the
parser (& |, < , > , (,)) they should be surrounded by
spaces.

- 11 -

C S H (1)

Also available in expressions as primitive operands are
command executions enclosed in { and } and file
enquiries of the form —Iname where / is one of:

r read access
w write access
X execute access
e existence
o ownership
z zero size
f plain file
d directory

The specified name is command and filename expanded
and then tested to see if it has the specified relationship
to the real user. If the file does not exist or is
inaccessible then all enquiries return false, i.e., 0.
Command executions succeed, returning true, i.e., 1, if
the command exits with status 0, otherwise they fail,
returning false, i.e., 0. If more detailed status
information is required then the command should be
executed outside of an expression and the variable status
examined.
Control flow
The shell contains a number of commands which can be
used to regulate the flow of control in command files
(shell scripts) and (in limited but useful ways) from
terminal input. These commands all operate by forcing
the shell to reread or skip in its input and, due to the
implementation, restrict the placement of some of the
commands.
The foreach, switch, and while statements, as well as the
if-then-else form of the if statement require tha t the
major keywords appear in a single simple command on
an input line as shown below.
If the shell's input is not seekable, the shell buffers up
input whenever a loop is being read and performs seeks
in this internal buffer to accomplish the rereading
implied by the loop. (To the extent that this allows,
backward goto's will succeed on non-seekable inputs.)
Builtin commands
Builtin commands are executed within the shell. If a
builtin command occurs as any component of a pipeline
except the last, it is executed in a subshell.

- 12 -

C S H (1)

alias
alias name
alias name wordlist

The first form prints all aliases. The second form
prints the alias for name. The final form assigns
the specified wordlist as the alias of name; wordlist
is command and filename substituted. Name is not
allowed to be alias or un alias.

break
Causes execution to resume after the end of the
nearest enclosing foreach or while. The remaining
commands on the current line are executed.
Multi-level breaks are thus possible by writing
them all on one line.

breaksw
Causes a break from a switch, resuming after the
endsw.

case label:
A label in a switch statement as discussed below.

cd
cd name
chdir
chdir name

Change the shells working directory to directory
name. If no argument is given then change to the
home directory of the user.
If name is not found as a subdirectory of the
current directory (and does not begin with / , . / or
. . /) , then each component of the variable cdpath is
checked to see if it has a subdirectory name.
Finally, if all else fails but name is a shell variable
whose value begins with / , then this is tried to see
if it is a directory.

continue
Continue execution of the nearest enclosing while
or foreach. The rest of the commands on the
current line are executed.

default:
Labels the default case in a switch statement. The
default should come after all case labels.

dirs
Prints the directory stack; the top of the stack is at
the left, the first directory in the stack being the
current directory.

- 13 -

C S H (1)

echo wordlist
echo - n wordlist

The specified words are written to the shells
standard output, separated by spaces, and
terminated with a newline unless the —n option is
specified. Note that this differs from / b i n / e c h o .

else
end
endif
endsw

See the description of the foreach, i f , switch, and
while statements below.

eval arg ...
(As in «A(1).) The arguments are read as input to
the shell and the resulting commandos) executed in
the context of the current shell. This is usually
used to execute commands generated as the result
of command or variable substitution, since parsing
occurs before these substitutions. See tset(l) for an
example of using eval.

exec command
The specified command is executed in place of the
current shell.

exit
exit(expr)

The shell exits either with the value of the status
variable (first form) or with the value of the
specified expr (second form).

foreach name (wordlist)

end
The variable name is successively set to each
member of wordlist and the sequence of commands
between this command and the matching end are
executed. (Both foreach and end must appear
alone on separate lines.)
The builtin command continue may be used to
continue the loop prematurely and the builtin
command break to terminate it prematurely.
When this command is read from the terminal, the
loop is read up once prompting with ? before any
statements in the loop are executed. If you make a
mistake typing in a loop at the terminal you can
rub it out.

glob wordlist
Like echo but no \ escapes are recognized and

- 14 -

C S H (1)

words are delimited by null characters in the
output. Useful for programs which wish to use the
shell to filename expand a list of words.

g o t o word
The specified word is filename and command
expanded to yield a string of the form 'label'. The
shell rewinds its input as much as possible and
searches for a line of the form 'label:' possibly
preceded by blanks or tabs. Execution continues
after the specified line.

history
history n
history —r n

Displays the history event list; if n is given only
the n most recent events are printed. The —r
option reverses the order of printout to be most
recent first rather than oldest first.

if (expr) command
If the specified expression evaluates true, then the
single command with arguments is executed.
Variable substitution on command happens early,
at the same time it does for the rest of the if
command. Command must be a simple command,
not a pipeline, a command list, or a parenthesized
command list. Input /output redirection occurs
even if expr is false, when command is no t
executed (this is a bug).

if (expr) then

else if (expr2) then

else

endif
If the specified expr is true then the commands to
the first else are executed; else if expr2 is true then
the commands to the second else are executed, etc.
Any number of else-if pairs are possible; only one
endif is needed. The else part is likewise optional.
(The words else and endif must appear at the
beginning of input lines; the if must appear alone
on its input line or after an else.)

jobs
jobs —1

Lists the active jobs; given the —1 options lists
process id's in addition to the normal information.

- 15 -

G S H (l)

kill %job
kill -s ig %'}ob ...
kill pid
kill - s ig pid ...
kill - 1

Sends either the TERM (terminate) signal or the
specified signal to the specified jobs or processes.
Signals are either given by number or by names (as
given in /usr/include/signal.h, stripped of the
prefix "SIG"). The signal names are listed by kill
—I. There is no default, saying just kill does not
send a signal to the current job.

limit
limit resource
limit resource maximum-use

Limits the consumption by the current process and
each process it creates to not individually exceed
maximum-use on the specified resource. If no
maximum-use is given, then the current limit is
printed; if no resource is given, then all limitations
are given.
Resources controllable currently include filesize
(the largest single file which can be created).
The maximum-use may be given as a (floating
point or integer) number followed by a scale factor.
The default scale is 'k ' or 'kilobytes' (1024 bytes);
a scale factor of 'm' or 'megabytes' may also be
used.
For both resource names and scale factors,
unambiguous prefixes of the names suffice.

login
Terminate a login shell, replacing it with an
instance of / b i n / l o g i n . This is one way to log off,
included for compatibility with «A(l).

logout
Terminate a login shell. Especially useful if
ignoreeof is set.

nice
nice -f-number
nice command
nice +number command

The first form sets the nice for this shell to 4. The
second form sets the nice to the given number.
The final two forms run command at priority 4 and
number respectively. The super-user may specify
negative niceness by using nice —number

- 16 -

C S H (1)

Command is always executed in a sub-shell, and
the restrictions place on commands in simple if
statements apply.

n o h u p
n o h u p command

The first form can be used in shell scripts to cause
hangups to be ignored for the remainder of the
script. The second form causes the specified
command to be run with hangups ignored. All
processes detached with & are effectively nohup'ed.

not i fy
not i fy %}ob ...

Causes the shell to notify the user asynchronously
when the status of the current or specified jobs
changes; normally notification is presented before a
prompt. This is automatic if the shell variable
notify is set.

onintr
onintr -
onintr label

Control the action of the shell on interrupts. The
first form restores the default action of the shell on
interrupts which is to terminate shell scripts or to
return to the terminal command input level. The
second form onintr — causes all interrupts to be
ignored. The final form causes the shell to execute
a goto/a&e/ when an interrupt is received or a child
process terminates because it was interrupted.
In any case, if the shell is running detached and
interrupts are being ignored, all forms of onintr
have no meaning and interrupts continue to be
ignored by the shell and all invoked commands.

p o p d
p o p d +n

Pops the directory stack, returning to the new top
directory. With a argument ' + n ' discards the n t h
entry in the stack. The elements of the directory
stack are numbered from 0 starting at the top.

p u s h d
p u s h d name
p u s h d +n

With no arguments, pushd exchanges the top two
elements of the directory stack. Given a name
argument, pushd changes to the new directory (a la
cd) and pushes the old current working directory
(as in cwd) onto the directory stack. With a

- 17 -

G S H (l)

numeric argument, rotates the n th argument of
the directory stack around to be the top element
and changes to it. The members of the directory
stack are numbered from the top starting a t 0.

rehash
Causes the internal hash table of the contents of
the directories in the path variable to be
recomputed. This is needed if new commands are
added to directories in the path while you are
logged in. This should only be necessary if you
add commands to one of your own directories, or if
a systems programmer changes the contents of one
of the system directories.

repeat count command
The specified command which is subject to the
same restrictions as the command in the one line if
statement above, is executed count times. I /O
redirections occur exactly once, even if count is 0.

set
set name
set name=word
set name [index] = w o r d
set name=(wordlist)

The first form of the command shows the value of
all shell variables. Variables which have other
than a single word as value print as a
parenthesized word list. The second form sets
name to the null string. The third form sets name
to the single word. The fourth form sets the
index'th component of name to word; this
component must already exist. The final form sets
name to the list of words in wordlist. In all cases
the value is command and filename expanded.
These arguments may be repeated to set multiple
values in a single set command. Note however,
that variable expansion happens for all arguments
before any setting occurs.

setenv name value
Sets the value of environment variable name to be
value, a single string. The most commonly used
environment variables USER, TERM, PATH, and
CDPATH are automatic ally imported to and
exported from the esh variables user, term, path,
and cdpath; there is no need to use setenv for these.

- 18 -

C S H (1)

s h i f t
sh i f t variable

The members of argv are shifted to the left ,
discarding argvflj. It is an error for argv not to be
set or to have less than one word as value. The
second form performs the same function on the
specified variable.

source name
The shell reads commands from name. Source
commands may be nested; if they are nested too
deeply the shell may run out of file descriptors. An
error in a source a t any level terminates all nested
source commands.

s w i t c h (string)
case s t r l :

breaksw

defaul t :

breaksw
e n d s w

Each case label is successively matched, against the
specified string which is first command and
filename expanded. The file metacharacters *, ?,
and [...] may be used in the case labels, which are
variable expanded. If none of the labels match
before a 'default ' label is found, then the execution
begins af ter the default label. Each case label and
the default label must appear at the beginning of a
line. The command breaksw causes execution to
continue after the endsw. Otherwise control may
fall through case labels and default labels as in C.
If no label matches and there is no default ,
execution continues after the endsw.

t i m e
t i m e command

With no argument, a summary of time used by this
shell and its children is printed. If arguments are
given the specified simple command is timed and a
time summary as described under the time variable
is printed. If necessary, an extra shell is created to
print the time statistic when the command
completes.

ul imit —f n
imposes a size limit of n.
—f imposes a size limit of n blocks on files written

- 19 -

C S H (1)

by child processes (files of any size may be read).
With no argument, the current limit is printed.

umask
umask value

The file creation mask is displayed (first form) or
set to the specified value (second form). The mask
is given in octal. Common values for the mask are
002 giving all access to the group and read and
execute access to others or 022 giving all access
except no write access for users in the group or
others.

unalias pattern
All aliases whose names match the specified
pattern are discarded. Thus all aliases are removed
by 'unalias *'. It is not an error for nothing to be
unaliased.

unhash
Use of the internal hash table to speed location of
executed programs is disabled.

unset pattern
All variables whose names match the specified
pattern are removed. Thus all variables are
removed by 'unset *'; this has noticeably
distasteful side-effects. It is not an error for
nothing to be unset.

unsetenv pattern
Removes all variables whose name match the
specified pattern from the environment. See also
the setenv command above and printenv(\).

wait
All background jobs are waited for. If the shell is
interactive, then an interrupt can disrupt the wait,
at which time the shell prints names and job
numbers of all jobs known to be outstanding.

while (expr)

end
While the specified expression evaluates non-zero,
the commands between the while and the matching
end are evaluated. Break and continue may be
used to terminate or continue the loop
prematurely. (The while and end must appear
alone on their input lines.) Prompting occurs here
the first time through the loop as for the foreach
statement if the input is a terminal.

- 20 -

G S H (l)

@
@ name = expr
@ name [index] = expr

The first form prints the values of all the shell
variables. The second form sets the specified name
to the value of expr. If the expression contains < ,
> , &, or I, then at least this part of the expression
must be placed within (). The third form assigns
the value of expr to the index 'th argument of name.
Both name and its index'th component must
already exist. Beware of conflicts between the kill
character and this use of
The operators * = , + = , etc., are available as in
C. The space separating the name from the
assignment operator is optional. Spaces are,
however, mandatory in separating components of
expr which would otherwise be single words.
Special postfix + + and operators increment
and decrement name respectively, i.e., @

Pre-def ined and environment var iables
The following variables have special meaning to the
shell. Of these, argv, cwd, home, path, cdpath, prompt,
shell and status are always set by the shell. Except for
cwd and status this setting occurs only at initialization;
these variables will not then be modified unless this is
done explicitly by the user.
This shell copies the environment variable USER into
the variable user, TERM into term, and HOME into
home, and copies these back into the environment
whenever the normal shell variables are reset. The
environment variable PATH is likewise handled; it is not
necessary to worry about its setting other than in the file
•cshrc as inferior csh processes will import the definition
of path from the environment, and re-export it if you
then change it.
argv Set to the arguments to the shell, it is

from this variable that positional
parameters are substituted, i.e., $1 is
replaced by $argv[l] , etc.

cdpath Gives a list of alternate directories
searched to find subdirectories in chdir
commands.

cwd The full pathname of the current
directory.

- 21 -

C S H (l)

echo

histchars

history

home

ignoreeof

mail

Set when the —x command line option
is given. Causes each command and its
arguments to be echoed just before it is
executed. For non-builtin commands
all expansions occur before echoing.
Builtin commands are echoed before
command and filename substitution,
since these substitutions are then done
selectively.
Can be given a string value to change
the characters used in history
substitution. The first character of its
value is used as the history substitution
character, replacing the default
character !. The second character of its
value replaces the character t in quick
substitutions.
Can be given a numeric value to control
the size of the history list. Any
command which has been referenced in
this many events will not be discarded.
Too large values of history may run the
shell out of memory. The last executed
command is always saved on the history
list.
The home directory of the invoker,
initialized from the environment. The
filename expansion of ~ refers to this
variable.
If set the shell ignores end-of-file from
input devices which are terminals. This
prevents shells from accidentally being
killed by code-D's.
The files where the shell checks for
mail. This is done after each command
completion which will result in a
prompt, if a specified interval has
elapsed. The shell says 'You have new
mail.' if the file exists with an access
time not greater than its modify time.
If the first word of the value of mail is
numeric it specifies a different mail
checking interval, in seconds, than the
default, which is 10 minutes.
If multiple mail files are specified, then
the shell says 'New mail in name' when

- 22 -

G S H (l)

there is mail in the file name.
noclobber As described in the section on

Input/output, restrictions are placed on
output redirection to insure that files
are not accidentally destroyed, and that
> > redirections refer to existing files.

noglob If set, filename expansion is inhibited.
This is most useful in shell scripts
which are not dealing with filenames, or
after a list of filenames has been
obtained and further expansions are not
desirable.

n o n o m a t c h If set, it is not an error for a filename
expansion to not match any existing
files; rather the primitive pattern is
returned. It is still an error for the
primitive pattern to be malformed, i.e.,
echo [still gives an error.

not i fy If set, the shell notifies asynchronously
of job completions. The default is to
rather present job completions just
before printing a prompt.

p a t h Each word of the path variable specifies
a directory in which commands are to
be sought for execution. A null word
specifies the current directory. If there
is no path variable then only full path
names will execute. The usual search
path is ., /b in , and / u s r / b i n , but this
may vary from system to system. For
the super-user the default search path is
/ e t c , /b in , and / u s r / b i n . A shell
which is given neither the - c nor the
—t option will normally hash the
contents of the directories in the path
variable after reading .cshrc, and each
time the path variable is reset. If new
commands are added to these
directories while the shell is active, it
may be necessary to give the rehash or
the commands may not be found.

p r o m p t The string which is printed before each
command is read from an interactive
terminal input. If a ! appears in the
string it will be replaced by the current
event number unless a preceding \ is

- 23 -

G S H (l)

shell

s tatus

t ime

given. Default is or # for the
super-user.
The file in which the shell object code
resides. This is used in forking shells to
interpret files which have execute bits
set, but which are not executable by the
system. (See the description of Non-
builtin Command Execution below.)
Initialized to the (system-dependent)
home of the shell.
The status returned by the last
command. If it terminated abnormally,
then 0200 is added to the status.
Builtin commands which fail return exit
status 1, all other builtin commands set
status 0.
Controls automatic timing of
commands. If set, then any command
which takes more than this many cpu
seconds will cause a line giving user,
system, and real times and a utilization
percentage which is the ratio of user
plus system times to real time to be
printed when it terminates.

verbose Set by the —v command line option,
causes the words of each command to
be printed after history substitution.

Non-built in c o m m a n d execution
When a command to be executed is found to not be a
builtin command, the shell attempts to execute the
command via execv(2). Each word in the variable path
names a directory from which the shell will a t tempt to
execute the command. If it is given neither a —c nor a
- t option, the shell will hash the names in these
directories into an internal table so that it will only try
an exec in a directory if there is a possibility tha t the
command resides there. This greatly speeds command
location when a large number of directories are present
in the search path. If this mechanism has been turned
off (via unhash), or if the shell was given a —c or —t
argument, and in any case for each directory component
of path which does not begin with a / , the shell
concatenates with the given command name to form a
path name of a file which it then attempts to execute.
Parenthesized commands are always executed in a
subshell. Thus (cd ; pwd) ; pwd prints the home

- 24 -

G S H (l)

directory; leaving you where you were (printing this after
the home directory), while cd ; p w d leaves you in the
home directory. Parenthesized commands are most often
used to prevent chdir from affecting the current shell.
If the file has execute permissions but is not an
executable binary to the system, then it is assumed to be
a file containing shell commands and a new shell is
spawned to read it.
If there is an alias for shell then the words of the alias
will be prepended to the argument list to form the shell
command. The first word of the alias should be the full
path name of the shell (e.g., Sshell). Note that this is a
special, late occurring, case of alias substitution, and
only allows words to be prepended to the argument list
without modification.
A r g u m e n t list processing
If argument 0 to the shell is — then this is a login shell.
The flag arguments are interpreted as follows:
—c Commands are read from the (single) following

argument which must be present. Any remaining
arguments are placed in argv.

—e The shell exits if any invoked command terminates
abnormally or yields a non-zero exit status.

—f The shell will start faster, because it will neither
search for nor execute commands from the file
.cshrc in the invoker's home directory.

—i The shell is interactive and prompts for its top-
level input, even if it appears to not be a terminal.
Shells are interactive without this option if their
inputs and outputs are terminals.

—n Commands are parsed, but not executed. This aids
in syntactic checking of shell scripts.

- s Command input is taken from the standard input.
- t A single line of input is read and executed. A \

may be used to escape the newline at the end of
this line and continue onto another line.

—v Causes the verbose variable to be set, with the
effect that command input is echoed after history
substitution.

—x Causes the echo variable to be set, so that
commands are echoed immediately before
execution.

- 25 -

C S H (1)

- V Causes the verbose variable to be set even before
.cshrc is executed.

—X Is to —x as —V is to —v.
After processing of flag arguments if arguments remain
but none of the —c, — i, — s, or —t options was given the
first argument is taken as the name of a file of
commands to be executed. The shell opens this file, and
saves its name for possible resubstitution by $0. Since
many systems use either the standard version 6 or
version 7 shells whose shell scripts are not compatible
with this shell, the shell will execute such a "s tandard"
shell if the first character of a script is not a i.e., if
the script does not start with a comment. Remaining
arguments initialize the variable argv.
Signal handling
The shell normally ignores quit signals. Jobs running
detached (by the & command) are immune to signals
generated from the keyboard, including hangups. Other
signals have the values which the shell inherited from its
parent. The shells handling of interrupts and terminate
signals in shell scripts can be controlled by onintr. Login
shells catch the terminate signal; otherwise this signal is
passed on to children from the state in the shell's parent.
In no case are interrupts allowed when a login shell is
reading the file . logout.

AUTHOR
William Joy. Job control and directory stack features
first implemented by J.E. Kulp of I.I.A.S.A, Laxenburg,
Austria, with different syntax than that used now.

FILES
/etc/cprofile Read by the login shell before .cshrc.

cshrc Read at beginning of execution by each
shell.

login Read by login shell, after . cshrc at
login.

"/.logout Read by login shell, at logout.
/b in/sh Standard shell, for shell scripts not

starting with a
/ tmp/sh* Temporary file for < < .
/etc/passwd Source of home directories for 'name.

LIMITATIONS
Words can be no longer than 1024 characters. The
system limits argument lists to 10240 characters. The
number of arguments to a command which involves

- 26 -

G S H (l)

filename expansion is limited to 1/6 ' th the number of
characters allowed in an argument list. Command
substitutions may substitute no more characters than are
allowed in an argument list. To detect looping, the shell
restricts the number of alias substitutions on a single line
to 20.

SEE ALSO
sh(l), shl(l), access(2), fork(2), pipe(2), umask(2),
wait(2), a.out(5).

NOTES
Csh may not be compatible with some shell commands,
such as af(l), newgrp(1), and t»m(l).
If the first character in an executable file is the file is
interpreted as a csh script. Because # is interpreted as a
comment delimiter by sh, it is recommended that sh
scripts begin with a blank line.

BUGS
Alias substitution is most often used to clumsily simulate
shell procedures; shell procedures should be provided
rather than aliases.
Commands within loops, prompted for by ?, are not
placed in the history list. Csh should parse the control
structure rather recognizing built-in commands. This
would allow control commands to be placed anywhere, to
be combined with and to be used with & and ;
metasyntax.
It should be possible to use the s modifiers on the output
of command substitutions. All and more than one s
modifier should be allowed on $ substitutions.

- 27 -

CSPLIT (1)

NAME
csplit - context split

SYNOPSIS
csplit [—s] [—k] [—f prefix] file argl [. . . argn]

DESCRIPTION
Csplit reads file and separates it into n + 1 sections,
defined by the arguments argl. . . argn. By default
the sections are placed in xxOO . . . xxn (n may not be
greater than 99). These sections get the following pieces
of file:

00: From the start of file up to (but not
including) the line referenced by argl.

01: From the line referenced by argl up to the
line referenced by arg2.

n+1: From the line referenced by argn to the
end of file.

If the file argument is a —, then standard input is used.
The options to csplit are:

—s Csplit normally prints the character
counts for each file created. If the —s
option is present, csplit suppresses the
printing of all character counts.

—k Csplit normally removes created files if
an error occurs. If the —k option is
present, csplit leaves previously created
files intact.

—f prefix If the —f option is used, the created
files are named prefix00 . . . prefixn.
The default is xxOO . . . xxn.

The arguments (argl . . . argn) to csplit can be a
combination of the following:

/rexp / A file is to be created for the section
from the current line up to (but not
including) the line containing the regular
expression rexp. The current line
becomes the line containing rexp. This
argument may be followed by an
optional + or — some number of lines
(e.g., / P a g e / — 5) .

%rexp%
This argument is the same as /rexp/,
except that no file is created for the
section.

CSPLIT (1)

A file is to be created from the current
line up to (but not including) Inno. The
current line becomes Inno .
Repeat argument. This argument may
follow any of the above arguments. If it
follows a rexp type argument, that
argument is applied nurn more times. If
it follows Inno, the file will be split every
Inno lines (num. times) from that point.

Enclose all rexp type arguments tha t contain blanks or
other characters meaningful to the Shell in the
appropriate quotes. Regular expressions may not contain
embedded new-lines. Csplit does not affect the original
file; it is the users responsibility to remove it.

EXAMPLES
csplit - f cobol file ' /procedure
division/' /par5 . / / p a r l 6 . /

This example creates four files, cobolOO . . . cobol03.
After editing the "split" files, they can be recombined as
follows:

cat cobol0[0-3] > file
Note that this example overwrites the original file.

csplit - k file 100 {99}
This example would split the file at every 100 lines, up
to 10,000 lines. The —k option causes the created files
to be retained if there are less than 10,000 lines;
however, an error message would still be printed.

c s p l i t - k prog.c '%main(%' ' / * } / + l ' {20}
Assuming that prog.c follows the normal C coding
convention of ending routines with a } at the beginning
of the line, this example will create a file containing each
separate C routine (up to 21) in prog.c.

SEE ALSO
ed(l), sh(l), regexp(5).

DIAGNOSTICS
Self explanatory except for:

arg - out of range
which means that the given argument did not reference a
line between the current position and the end of the file.

Inno

{num }

C T (1 C)

NAME
ct - spawn getty to a remote terminal

SYNOPSIS
ct [—h] [—•v] [- w n] [—sspeed] telno ...

DESCRIPTION
Ct dials the phone number of a modem that is attached
to a terminal, and spawns a getty process to that
terminal. Telno is a telephone number, with equal signs
for secondary dial tones and minus signs for delays at
appropriate places. If more than one telephone number
is specified, ct will try each in succession until one
answers; this is useful for specifying alternate dialing
paths.
Ct will try each line listed in the file / usr/lib j uucp/L-
devices until it finds an available line with appropriate
attributes or runs out of entries. If there are no free
lines, ct will ask if it should wait for one, and if so, for
how many minutes it should wait before it gives up. Ct
will continue to try to open the dialers at one-minute
intervals until the specified limit is exceeded. The
dialogue may be overridden by specifying the —wn
option, where n is the maximum number of minutes that
ct is to wait for a line.
Normally, ct will hang up the current line, so that that
line can answer the incoming call. The —h option will
prevent this action. If the —v option is used, ct will
send a running narrative to the standard error output
stream.
The data rate may be set with the — s option, where
speed is expressed in baud. The default rate is 300.
After the user on the destination terminal logs out, ct
prompts, R e c o n n e c t ? If the response begins with the
letter n the line will be dropped; otherwise, getty will be
started again and the login: prompt will be printed.
Of course, the destination terminal must be attached to
a modem that can answer the telephone.

FILES
/ usr/lib / uucp/L-devices
/usr /adm/ct log

SEE ALSO
cu(lC), login(l), uucp(lC).

CTAGS (1)

NAME
ctags - create a tags file

SYNOPSIS
c t a g s [—u] [- v] [- w] [—x] name ...

DESCRIPTION
Ctags creates a tags file, tags, from the specified C,
Pascal, and FORTRAN sources. The ez(l) t a g s
command uses a tags file to find specified objects,
functions in this case, in a group of files. Each line of
the tags file contains the function name, the file in which
it is defined, and a scanning pattern used to find the
function definition, with the fields separated by blanks
or tabs.
If a file's name ends with .c or .h , it is searched for C
function and macro definitions. The main function is
treated as a special case, so as to permit multiple
programs in one directory: the t ag is the name of the
file, striped of leading directory names and trailing .c,
with M prepended.
If a file's name does not end with .c or .h, it is searched
for Pascal definitions, then for FORTRAN definitions,
then for C definitions.
These are the options:
—w No warning diagnostics.
—u Update the tags file. (It is usually faster just to

rebuild the tags file.)
—a Append new definitions to the end of the tags file.
—x Process a list of function definitions, with line

numbers and file names.
FILES

tags output tags file
SEE ALSO

ex(l), vi(l).
AUTHOR

Ken Arnold; FORTRAN added by Jim Kleckner; Bill
Joy added Pascal and —x replacing cxref; C typedefs
added by Ed Pelegri-Llopart.

WARNING
Recognition of FORTRAN and Pascal objects is done is a
very simpleminded way. No at tempt is made to deal
with block structure.

C TINS TALL (1)

NAME
ctinstall - install software

SYNOPSIS
/ i n s t a l l / c t i n s t a l l [update | install] [groups ...]

DESCRIPTION
Ctinstall is used to install operating system software and
application software from quarter-inch tape and diskette
media. It must be invoked in single-user mode.
If no arguments are provided to ctinstall, the user will be
prompted for the required information. The option
install is for raw, or first installs; update is for software
updates; groups is any number of group names specified
in the software product's associated proto file.

EXAMPLE
A sample installation session is illustrated here. User
responses are shown in bold type. A carriage return is
implied after all user input.

cd /
h a l t
Ok To Stop Or Reset Processor
/ I n s t a l l / c t i n s t a l l

@(#)ctinstall 1.1

Positioning the Tape for Product Installation.

Update or new installation of ISAM 5.00 ('update' or 'install')?: Instal l

Running fsck on root file system.
If there are any problems the system will re-boot.
After the system is back up re-execute / install /ctinstall in single user mode.

/dev/dsk/cOdOsl
File System: Volume:

** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List
N N N files N N N N blocks N N N N free

Unmounting /usr.

Running fsck on /usr file system.

C T I N S T A L L (1)

/dev /dsk /c0d0s3
File System: Volume:

** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List
N N N files N N N N blocks N N N N free

Re-mounting /usr.

Please enter your group choices for ISAM separated by blanks.
Your choices are:

ISAM

If you'd like all of the groups, type 'all': I S A M

This procedure will install the following ISAM 5.00 group(s) on your system:

ISAM

B E SURE YOU BACK UP ANYTHING YOU H A V E CHANGED
BEFORE PROCEEDING.

Type 'yes' to continue: y e s

Starting to Install Group(s) ISAM.
Installing Group ISAM.

Calculating size required for group ISAM.
Installation will require an additional N N N root Blocks (512 Byte Blocks).
(Currently N N N N 512 Byte blocks are available on root.)
Installation will require an additional N N N /usr Blocks (512 Byte Blocks).
(Currently N N N N 512 Byte blocks are available on /usr.)

Installing required ISAM files.
install/IsamRel
usr/include/isam.h
usr/include/iserc.h
usr/ l ib/ isam/IsamConfig
usr/ l ib/ isam/IsamCreate
usr/ l ib/ isam/IsamProtect
usr/ l ib/ isam/IsamReorg
usr / l ib / i sam/IsamStat
usr/ l ib/ isam/IsamStop
usr / l ib/ isam/IsamTransfer
usr/ l ib/ isam/IxFilter

- 2 -

CTINSTALL (1)

usr/l ib/isam/IxSpec
usr /lib / i sam/isam

Checking permissions, modes and omissions on new ISAM commands.
Completed Installation of Group ISAM.
Rewinding tape.

Installation Complete.

SEE ALSO
qlist(l), qinstail(l).
Release Notice for software product being installed.

BUGS
Ctinstall does not understand mountable file systems
other than / u s r .

C T R A C E (1)

NAME
ctrace - C program debugger

SYNOPSIS
c t r a c e [options] [file]

DESCRIPTION
Ctrace allows you to follow the execution of a C
program, statement by statement. The effect is similar
to executing a shell procedure with the —x option.
Ctrace reads the C program in file (or from standard
input if you do not specify file), inserts statements to
print the text of each executable statement and the
values of all variables referenced or modified, and writes
the modified program to the standard output. You must
put the output of ctrace into a temporary file because
the cc(l) command does not allow the use of a pipe.
You then compile and execute this file.
As each statement in the program executes it will be
listed at the terminal, followed by the name and value of
any variables referenced or modified in the statement,
followed by any output from the statement. Loops in
the trace output are detected and tracing is stopped until
the loop is exited or a different sequence of statements
within the loop is executed. A warning message is
printed every 1000 times through the loop to help you
detect infinite loops. The trace output goes to the
standard output so you can put it into a file for
examination with an editor or the bfs(1) or fa«7(l)
commands.
The only options you will commonly use are:
—f functions Trace only these functions.
—v functions Trace all but these functions.
You may want to add to the default formats for printing
variables. Long and pointer variables are always printed
as signed integers. Pointers to character arrays are also
printed as strings if appropriate. Char, short, and int
variables are also printed as signed integers and, if
appropriate, as characters. Double variables are printed
as floating point numbers in scientific notation. You can
request that variables be printed in additional formats, if
appropriate, with these options:
—o Octal
—x Hexadecimal
—u Unsigned
—e Floating point

C T R A C E (1)

These options are used only in special circumstances:
—1 n Check n consecutively executed statements for

looping trace output, instead of the default of 20.
Use 0 to get all the trace output from loops.

—s Suppress redundant trace output from simple
assignment statements and string copy function
calls. This option can hide a bug caused by use
of the = operator in place of the = = operator.

—t n Trace n variables per statement instead of the
default of 10 (the maximum number is 20). The
Diagnostics section explains when to use this
option.

—P Run the C preprocessor on the input before
tracing it. You can also use the —D, —I, and —U
cc(l) preprocessor options.

These options are used to tailor the run-time trace
package when the traced program will run in an
environment other than CTIX or other UNIX-compatible
systems:
—b Use only basic functions in the trace code, that

is, those in ctype(3C), printf(3S), and string(3C).
These are usually available even in cross-
compilers for microprocessors. In particular, this
option is needed when the traced program runs
under an operating system that does not have
signal(2), fflush(3S), longjmp(3C), or setjmp(3C).

—p V Change the trace print function from the default
of 'printf('. For example, 'fprintf(stderr, ' would
send the trace to the standard error output,

- r f Use file / in place of the runtime, c trace function
package. This lets you change the entire print
function, instead of just the name and leading
arguments (see the - p option).

EXAMPLE
If the file le.c contains this C program:

1 ^include <s td io .h>
2 main() /* count lines in input */
M .
4 int c, nl;
5
6 nl = 0;
7 while ((c = getchar()) ! = EOF)
8 if (c = V J
9 ++n l ;

10 pr intf("%d\n", nl);
11 }

C T R A C E (1)

and you enter these commands and test data:
cc lc.c
a.out
1
(cntl-d),

the program will be compiled and executed. The output
of the program will be the number 2, which is not
correct because there is only one line in the test data.
The error in this program is common, but subtle. If you
invoke ctrace with these commands:

ctrace lc.c >temp.c
cc temp.c
a.out

the output will be:

2 main()
6 nl = 0;

/ * nl = = 0 */
7 while ((c = getchar()) ! = EOF)

The program is now waiting for input. If you enter the
same test data as before, the output will be:

/* c = = 49 or '1' */
8 if (c = ' \n ')

/* c = = 10 or V ' 7
9 ++nl ;

/ * nl = = 1 V
7 while ((c = getchar()) ! = EOF)

/* c = = 10 or ' \ n ' */
8 if (c = V)

/* c = = 10 or ' \ n ' */
9 ++n l ;

/* nl = = 2 */
7 while ((c = getchar()) ! = EOF)

If you now enter an end of file character (cntl-d) the
final output will be:

/* c = = -1 */
10 printf("%d\n", nl);

/ * nl = = 2 */2
return

Note that the program output printed at the end of the
trace line for the nl variable. Also note the r e t u r n
comment added by ctrace at the end of the trace output.
This shows the implicit return at the terminating brace
in the function.

C T R A C E (1)

The trace output shows that variable c is assigned the
value '1' in line 7, but in line 8 it has the value ' \n ' .
Once your attention is drawn to this if statement, you
will probably realize that you used the assignment
operator (=) in place of the equal operator (= =) . You
can easily miss this error during code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire
program file, unless you use the -f or - v options to trace
specific functions. This does not give you statement by
statement control of the tracing, nor does it let you turn
the tracing off and on when executing the traced
program.
You can do both of these by adding ctroff() and ctronQ
function calls to your program to turn the tracing off
and on, respectively, at execution time. Thus, you can
code arbitrarily complex criteria for trace control with if
statements, and you can even conditionally include this
code because ctrace defines the C T R A C E preprocessor
variable. For example:

#ifdef CTRACE
if (c = = '!' && i > 1000)

ctron();
#endif

You can also call these functions from srffc(l) if you
compile with the -g option. For example, to trace all
but lines 7 to 10 in the main function, enter:

sdb a.out
main:7b ctroff()
main: l lb ctronQ
r

You can also turn the trace off and on by setting static
variable tr_ct_ to 0 and 1, respectively. This is useful if
you are using a debugger that cannot call these functions
directly, such as adb (I).

DIAGNOSTICS
This section contains diagnostic messages from both
ctrace and cc(l), since the traced code often gets some
cc warning messages. You can get cc error messages in
some rare cases, all of which can be avoided.

Ctrace Diagnostics
warning: some variables are not traced in this statement

Only 10 variables are traced in a statement to

C T R A C E (1)

prevent the C compiler "out of tree space;
simplify expression" error. Use the - t option to
increase this number.

warning: statement too long to trace
This statement is over 400 characters long.
Make sure that you are using tabs to indent your
code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by # i fdef /#endi f
preprocessor statements in the middle of a C
statement, or by a semicolon at the end of a
^def ine preprocessor statement.

'if... else if' sequence too long
Split the sequence by removing an else from the
middle.

possible syntax error, try -P option
Use the - P option to preprocess the ctrace input,
along with any appropriate -D, -I, and -U
preprocessor options. If you still get the error
message, check the Warnings section below.

Cc Diagnostics
warning: floating point not implemented
warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeof returns 0

Ignore these messages.
compiler takes size of function

See the ctrace "possible syntax error" message
above.

yacc stack overflow
See the ctrace "'if ... else if' sequence too long"
message above.

out of tree space; simplify expression
Use the - t option to reduce the number of traced
variables per statement from the default of 10.
Ignore the "ctrace: too many variables to trace"
warnings you will now get.

redeclaration of signal
Either correct this declaration of signal(2), or
remove it and ^include <s igna l . h> .

WARNINGS
You will get a ctrace syntax error if you omit the
semicolon at the end of the last element declaration in a
structure or union, just before the right brace (}). This
is optional in some C compilers.

- 5 -

C T R A C E (1)

Defining a function with the same name as a system
function may cause a syntax error if the number of
arguments is changed. Just use a different name.
Ctrace assumes that BADMAG is a preprocessor macro,
and that EOF and NULL are ^def ined constants.
Declaring any of these to be variables, e.g. "int EOF;",
will cause a syntax error.

BUGS
Ctrace does not know about the components of
aggregates like structures, unions, and arrays. It cannot
choose a format to print all the components of an
aggregate when an assignment is made to the entire
aggregate. Ctrace may choose to print the address of an
aggregate or use the wrong format (e.g., %e for a
structure with two integer members) when printing the
value of an aggregate.
Pointer values are always treated as pointers to
character strings.
The loop trace output elimination is done separately for
each file of a multi-file program. This can result in
functions called from a loop still being traced, or the
elimination of trace output from one function in a file
until another in the same file is called.

FILES
runtime.c run-time trace package

SEE ALSO
signal(2), ctype(3C), fflush(3S), longjmp(3C), printf(3S),
setjmp(3C), string(3C).

C U (1 C)

NAME
cu - call another computer system

SYNOPSIS
cu —sspeed] [- l l i n e] [- h] [- t] [- d] [- m]
[—o [— e] [—n] telno | s y s t e m n a m e | dir

DESCRIPTION
Cu calls up another computer system or a terminal. It
manages an interactive conversation with possible
transfers of ASCII files.
cu accepts the following options and arguments,
—sspeed

Specifies the transmission speed(110, 150, 300,
600, 1200, 4800, 9600); 300 is the default value.
Most modems are either 300 or 1200 baud.
Directly connected lines may be set to a speed
higher than 1200 baud.

—lline Specifies a device name to use as the
communication line. This can be used to
override searching for the first available line
having the right speed. When the -1 option is
used without the -s option, the speed of a line is
taken from the file / u s r / l i b / u u c p / L - d e v i c e s .
When the -1 and -s options are used
simultaneously, cu will search the L-devices file
to check if the requested speed for the requested
line is available. If so, the connection will be
made at the requested speed; otherwise an error
message will be printed and the call will not be
made. The specified device is generally a directly
connected asynchronous line (e.g., / d e v / t t y a b) ,
in this case a phone number is not required but
the string dir may be use to specify a null acu. If
the specified device is associated with an auto
dialer, a phone number must be provided.

—h Emulates local echo, supporting calls to other
computer systems which expect terminals to be
set to half-duplex mode.

—t Used when dialing an ASCII terminal which has
been set to auto answer. Appropriate mapping
of carriage-return to carriage-return-line-feed
pairs is set.

—d Causes diagnostic traces to be printed.
- e Designates that even parity is to be generated

for data sent to the remote.

C U (1 C)

—o Designates tha t odd parity is to be generated for
data sent to the remote.

—m Designates a direct line which has modem
control.

—II Will request the phone number to be dialed from
the user rather than taking it from the command
line.

t e l n o When using an automatic dialer the argument is
the telephone number with equal signs for
secondary dial tone or minus signs for delays, at
appropriate places.

s y s t e m n a m e
A u u c p system name may be used ra ther than a
phone number; in this case, cu will obtain an
appropriate direct line or phone number from -
/ u s i y l i b / u u c p / L . s y s (the appropriate baud
rate is also read along with phone numbers). Cu
will t ry each phone number or direct line for
s y s t e m n a m e in the L.sys file until a connection
is made or all the entries are tried.

d i r Using d i r insures tha t cu will use the line
specified by the -1 option.

After making the connection, cu runs as two processes:
the transmit process reads data from the s tandard input
and, except for lines beginning with passes it to the
remote system; the receive process accepts da ta f rom the
remote system and, except for lines beginning with
passes it to the standard output . Normally, an
automatic DC3/DC1 protocol is used to control input
from the remote so the buffer is not overrun. Lines
beginning with ~ have special meanings.
The transmit process interprets the following:

terminate the conversation.
escape to an interactive shell on
the local system.

~\cmd . . . run cmd on the local system (via
s h —c).

~$cm</. . . run cmd locally and send its
output to the remote system.

~%cd change the directory on the local
system. N O T E : ~!cd wi l l c a u s e
t h e c o m m a n d t o b e r u n b y a
sub- she l l ; p r o b a b l y n o t w h a t
w a s i n t e n d e d .

C U (1 C)

%take from [to] copy file from (on the remote
system) to file to on the local
system. If to is omitted, the from
argument is used in both places.
copy file from (on local system) to
file to on remote system. If to is
omitted, the from argument is
used in both places.
send the line . . to the remote
system.
transmit a B R E A K to the
remote system.
toggles between DC3/DC1 input
control protocol and no input
control. This is useful in case the
remote system is one which does
not respond properly to the DC3
and DC1 characters.

m e receive process normally copies data from the
remote system to its s tandard output . A line from the
remote that begins with ~ > initiates an output diversion
to a file. The complete sequence is:

'>{>]: file
zero or more lines to be wri t ten to file

Data from the remote is diverted (or appended, if > > is
used) to file. The trailing ~ > terminates the diversion.
The use of ~ % p u t requires s t (y(l) and cat(1) on the
remote side. It also requires that the current erase and
kill characters on the remote system be identical to the
current ones on the local system. Backslashes are
inserted at appropriate places.
The use of ~ % t a k e requires the existence of echo(1) and
ca<(l) on the remote system. Also, s t t y t a b s mode
should be set on the remote system if tabs are to be
copied without expansion.
When cu is used on system X to connect to system Y
and subsequently used on system Y to connect to system
Z, commands on system Y can be executed by using
For example, uname can be executed on Z, X, and Y as
follows:

uname
Z
~!uname

% p u t from [to

% b r e a k

% n o s t o p

- 3 -

C U (1 C)

X
~~!uname
Y
In general, ~ causes the command to be executed on the
original machine, ~~ causes the command to be executed
on the next machine in the chain.

EXAMPLES
To dial a system whose number is 9 201 555 1212 using
1200 baud:

cu -si200 9=2015551212
If the speed is not specified, 300 is the default value.
To login to a system connected by a direct line:

cu -1 /dev/ t tyXX dir
To dial a system with the specific line and a specific
speed:

cu -si200 -1 /dev/ t tyXX dir
To dial a system using a specific line:

cu -1 /dev/culXX 2015551212
To use a system name:

cu YYYZZZ
FILES

/usr/ l ib/uucp/L.sys
/usr/Iib/uucp/L-devices
/usr/spool/uucp/LCK..(tty-device)
/dev/null
/usr / l ib/uucp/modemcap
/usr/lib/uucp/L-dialcodes

SEE ALSO
cat(l), ct(lC), echo(l), stty(l), uname(l), uucp(lC).

DIAGNOSTICS
Exit code is zero for normal exit, non-zero (various
values) otherwise.

BUGS
Cu buffers input internally.
There is an artificial slowing of transmission by cu
during the ~%put operation so that loss of data is
unlikely.

C U T (1)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
c u t - c l i s t [filel file2 ...
c u t - f l i s t f - d c h a r] [- s j [fi lel file2 ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from
each line of a file; in data base parlance, it implements
the projection of a relation. The fields as specified by
list can be fixed length, i.e., character positions as on a
punched card (—c option), or the length can vary from
line to line and be marked with a field delimiter
character like tab (—f option). Cut can be used as a
filter; if no files are given, the standard input is used.
The meanings of the options are:
list A comma-separated list of integer field

numbers (in increasing order), with optional —
to indicate ranges as in the —o option of
nroff/troff for page ranges; e.g., 1,4,7; 1 - 3 , 8 ;
- 5 , 1 0 (short for 1 - 5 , 1 0) ; or 3 - (short for
third through last field).

—c list The list following —c (no space) specifies
character positions (e.g., —cl—72 would pass
the first 72 characters of each line).

—f list The list following —f is a list of fields assumed
to be separated in the file by a delimiter
character (see —d); e.g., — f l , 7 copies the first
and seventh field only. Lines with no field
delimiters will be passed through intact (useful
for table subheadings), unless —s is specified.

—d char The character following - d is the field
delimiter (—f option only). Default is tab.
Space or other characters with special meaning
to the shell must be quoted.

—s Suppresses lines with no delimiter characters in
case of —f option. Unless specified, lines with
no delimiters will be passed through untouched.

Either the —c or —f option must be specified.
HINTS

Use grep(1) to make horizontal "cuts" (by context)
through a file, or paste (1) to put files together column-
wise (i.e., horizontally). To reorder columns in a table,
use cut and paste.

C U T (1)

EXAMPLES
cut - d : — f l ,5 /e tc /passwd mapping of user IDs

to names
n a m e = v w h o am i | cut - f l - d " to set n a m e to

current login name.
DIAGNOSTICS

line too long A line can have no more than 1023
characters or fields.

bad list for c / f option
Missing — c or —f option or
incorrectly specified list. No error
occurs if a line has fewer fields than
the list calls for.

no fields The list is empty.
SEE ALSO

grep(l), paste(l) .

C W (1)

NAME
cw, checkcw - prepare constant-width text for troff

SYNOPSIS
cw [-Ixx] [-rxx] [- fn] [- t] [+ t] [- d]
[files]
checkcw [-lxx] [-rxx] files

DESCRIPTION
Cw is a preprocessor for troff(l) input files that contain
text to be typeset in the constant-width (CW) font.
Text typeset with the CW font resembles the output of
terminals and of line printers. This font is used to
typeset examples of programs and of computer output in
user manuals, programming texts, etc. (An earlier
version of this font was used in typesetting The C
Programming Language by B. W. Kernighan and D. M.
Ritchie.) It has been designed to be quite distinctive (but
not overly obtrusive) when used together with the Times
Roman font.
Because the CW font contains a "non-standard" set of
characters and because text typeset with it requires
different character and inter-word spacing than is used
for "s tandard" fonts, documents tha t use the CW font
must be preprocessed by cw.
The CW font contains the 94 printing ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
!$&0"*+O.,/:;=?[] | -_*~"<>{}#

plus eight non-ASCII characters represented by four-
character troff(1) names (in some cases attaching these
names to "non-standard" graphics):

Character Symbol Troff Name
"Cents" sign i \ (c t

EBCDIC "no t" sign -> \ j n o
Left arrow <— \ (< ~

Right arrow —• \ (- >
Down arrow 1 \ (da

Vertical single quote \ (fm
Control-shift indicator f \ (dg
Visible space indicator • \(sq

Hyphen - \(hy
The hyphen is a synonym for the unadorned minus sign
(-). Certain versions of cw recognize two additional
names: \ (ua for an up arrow and \(lh for a diagonal left-
up (home) arrow.

- 1 -

C W (1)

Cw recognizes five request lines, as well as user-defined
delimiters. The request lines look like troff(l) macro
requests, and are copied in their entirety by cw onto its
output; thus, they can be defined by the user as troff(l)
macros; in fact, the .CW and .CN macros should be so
defined (see HINTS below). The five requests are:
.CW Start of text to be set in the CW font; .CW

causes a break; it can take precisely the same
options, in precisely the same format, as are
available on the cw command line.

. C N End of text to be set in the CW font; .CN causes
a break; it can take the same options as are
available on the cw command line.

•CD Change delimiters and/or settings of other
options; takes the same options as are available
on the cw command line.

.CP argl arg2 argS ... argn
All the arguments (which are delimited like
troff(i) macro arguments) are concatenated,
with the odd-numbered arguments set in the CW
font and the even-numbered ones in the
prevailing font.

.PC argl arg2 argS ... argn
Same as .CP, except that the even-numbered
arguments are set in the CW font and the odd-
numbered ones in the prevailing font.

The .CW and .CN requests are meant to bracket text
(e.g., a program fragment) that is to be typeset in the
CW font "as is." Normally, cw operates in the
transparent mode. In that mode, except for the .CD
request and the nine special four-character names listed
in the table above, every character between .CW and
.CN request lines stands for itself. In particular, cw
arranges for periods (.) and apostrophes (') at the
beginning of lines, and backslashes (\) everywhere to be
"hidden" from fro//(l). The transparent mode can be
turned off (see below), in which case normal troff(l) rules
apply; in particular, lines that begin with . and ' are
passed through untouched (except if they contain
delimiters-see below). In either case, cw hides the effect
of the font changes generated by the .CW and .CN
requests; cw also defeats all ligatures (fi, ff, etc.) in the
CW font.
The only purpose of the .CD request is to allow the
changing of various options other than just at the
beginning of a document.

- 2 -

C W (1)

The user can also define delimiters. The left and right
delimiters perform the same function as the .CW / .CN
requests; they are meant, however, to enclose CW
"words" or "phrases" in running text (see example under
BUGS below). Cw treats text between delimiters in the
same manner as text enclosed by .CW / .CN pairs, except
that , for aesthetic reasons, spaces and backspaces inside
.CW / . C N pairs have the same width as other CW
characters, while spaces and backspaces between
delimiters are half as wide, so they have the same width
as spaces in the prevailing text (but are not adjustable).
Font changes due to delimiters are not hidden.
Delimiters have no special meaning inside .CW / .CN
pairs.
The options are:
-Ixx The one- or two-character string xx becomes the

left delimiter; if xx is omit ted, the left delimiter
becomes undefined, which it is initially.

-rxx Same for the right delimiter. The left and right
delimiters may (but need not) be different.

- f n The CW font is mounted in font position n;
acceptable values for n are 1, 2, and 3 (default is
3, replacing the bold font). This option is only
useful at the beginning of a document.

- t Turn transparent mode o f f .
-(-t Turn transparent mode on (this is the initial

default).
- d Pr in t current option settings on file descriptor 2

in the form of troff(l) comment lines. This
option is meant for debugging.

Cw reads the standard input when no files are specified
(or when - is specified as the last argument), so it can be
used as a filter. Typical usage is:

cw files | troff ...
Checkcw checks tha t left and right delimiters, as well as
the .CW / . C N pairs, are properly balanced. It prints out
all offending lines.

C W (1)

HINTS
Typical definitions of the .CW and .CN macros meant to
be used with the mm(5) macro package:
.de CW
,DS I
,ps 9
.vs 10.5p

.ta 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 9 6 m / 3 u ...

.de CN .ta ,5i l i 1.5i 2i 2.5i 3i ...

.vs
,ps
.DE

At the very least, the .CW macro should invoke the
troff[1) no-fill (.nf) mode.
When set in running text, the CW font is meant to be set
in the same point size as the rest of the text. In
displayed matter, on the other hand, i t can often be
profitably set one point smaller than the prevailing point
size (the displayed definitions of .CW and .CN above are
one point smaller than the running text on this page).
The CW font is sized so that , when it is set in 9-point,
there are 12 characters per inch.
Documents tha t contain CW text may also contain tables
and/or equations. If this is the case, the order of
preprocessing should be: cw, tbl, and eqn. Usually, the
tables contained in such documents will not contain any
CW text, although it is entirely possible t o have elements
of the table set in the CW font; of course, care must be
taken tha t tbl(1) format information not be modified by
cw. At tempts to set equations in the CW font are not
likely to be either pleasing or successful.
In the CW font, overstriking is most easily accomplished
with backspaces: letting < - represent a backspace, d < -
< A (d g yields $ (Because backspaces are half as wide
between delimiters as inside .CW / . C N pairs-see
above- two backspaces are required for each overstrike
between delimiters.)

FILES
/u s r / l i b / fon t / f tCW CW font-width table

SEE ALSO
eqn(l), mmt(l) , tbl(l) , troff(l) , mm(5), mv(5).

WARNINGS
If text preprocessed by cw is to make any sense, it must

- 4 -

C W (1)

be set on a typesetter equipped with the CW font or on a
STARE facility; on the latter, the CW font appears as
bold, but with the proper CW spacing.

Only a masochist would use periods (.), backslashes (), or
double quotes (") as delimiters, or as arguments to .CP
and .PC.
Certain CW characters don't concatenate gracefully with
certain Times Roman characters, e.g., a CW ampersand
(&) followed by a Times Roman comma(,); in such cases,

' * half- and quarter-spaces (\ | and
, one should use _&_V, (rather

BUGS

obtain & , (assuming that _ is

Using cw with nroff is silly.
The output of cw is hard to read.
See also BUGS under troff(1).

- 5 -

C X R E F (1)

NAME
cxref - generate C program cross-reference

SYNOPSIS
cxref [options] files

DESCRIPTION
Cxref analyzes a collection of C files and attempts to
build a cross-reference table. Cxref utilizes a special
version of cpp to include #de f ine ' d information in its
symbol table. It produces a listing on standard output of
all symbols (auto, static, and global) in each file
separately, or with the —c option, in combination. Each
symbol contains an asterisk (*) before the declaring
reference.
In addition to the —D, —I and —U options (which are
identical to their interpretation by cc(l)), the following
options are interpreted by cxref:
—c Print a combined cross-reference of all input

files.
—w < n«m>

Width option which formats output no wider
than < n u m > (decimal) columns. This option
will default to 80 if < n u m > is not specified or
is less than 51.

—o file Direct output to named file.
—s Operate silently; does not print input file

names.
—t Format listing for 80-column width.

FILES
/usr / l ib/xcpp special version of C-preprocessor.

SEE ALSO
cc(l).

DIAGNOSTICS
Error messages are unusually cryptic, but usually mean
that you cannot compile these files, anyway.

BUGS
Cxref considers a formal argument in a # d e f i n e macro
definition to be a declaration of tha t symbol. For
example, a program that ^ inc ludes ctype.h will
contain many declarations of the variable c.

D A T E (1)

NAME
date - print and set the date

SYNOPSIS
d a t e [mmddhhmm[yy]] [+ f o r m a t]
MightyFrame Only:
d a t e [-]

DESCRIPTION
If no argument is given, or if the argument begins with
+ , the current date and time are printed. Otherwise,
the current date is set.
The MightyFrame system has a real-time clock that sets
the current system date. The d a t e — command sets the
system time to that of the real-time clock. If arguments
are given, date changes the time on the real-time clock.
The first mm is the month number; dd is the day
number in the month; hh is the hour number (24 hour
system); the second mm is the minute number; yy is the
last 2 digits of the year number and is optional. For
example:

date 10080045
sets the date to Oct 8, 12:45 AM. The current year is
the default if no year is mentioned. The system operates
in GMT. Date takes care of the conversion to and from
local standard and daylight time.
If the argument begins with + , the output of date is
under the control of the user. The format for the output
is similar to that of the first argument to printf(3S). All
output fields are of fixed size (zero padded if necessary).
Each field descriptor is preceded by % and will be
replaced in the output by its corresponding value. A
single % is encoded by % % . All other characters are
copied to the output without change. The string is
always terminated with a new-line character.
Field Descriptors:

n insert a new-line character
t insert a tab character
m month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/dd /yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH MM SS

DATE (1)

j day of year - 001 to 366
w day of week - Sunday = 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/PM notation

EXAMPLE
date '+DATE: % m / % d / % y % n T I M E :
%H:%M:%S'

would have generated as output:
DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
No permission if you are not the super-user and

you try to change the date;
bad conversion if the date set is syntactically

incorrect;
bad format character if the field descriptor is not

recognizable.
SEE ALSO

printf(3S).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

WARNING
It is a bad practice to change the date while the system
is running multi-user.

D C (1)

NAME
dc - desk calculator

SYNOPSIS
d c [file]

DESCRIPTION
Dc is an arbitrary precision arithmetic package.
Ordinarily it operates on decimal integers, but one may
specify an input base, output base, and a number of
fractional digits to be maintained. (See 6c(l), a
preprocessor for dc that provides infix notation and a C-
like syntax that implements functions. Be also provides
reasonable control structures for programs.) The overall
structure of dc is a stacking (reverse Polish) calculator.
If an argument is given, input is taken from that file
until its end, then from the standard input. The
following constructions are recognized:
number

The value of the number is pushed on the stack.
A number is an unbroken string of the digits 0 - 9 .
It may be preceded by an underscore (_) to input
a negative number. Numbers may contain
decimal points.

+ - / * % '

The top two values on the stack are added (+) ,
subtracted (—), multiplied (*), divided (/) ,
remaindered (%), or exponentiated (*). The two
entries are popped off the stack; the result is
pushed on the stack in their place. Any fractional
part of an exponent is ignored.

sx The top of the stack is popped and stored into a
register named x, where x may be any character.
If the s is capitalized, x is treated as a stack and
the value is pushed on it.

Ix The value in register x is pushed on the stack.
The register z is not altered. All registers start
with zero value. If the 1 is capitalized, register x
is treated as a stack and its top value is popped
onto the main stack.

d The top value on the stack is duplicated.
p The top value on the stack is printed. The top

value remains unchanged. P interprets the top of
the stack as an ASCII string, removes it, and
prints it.

f All values on the stack are printed.

D C (1)

q exits the program. If executing a string, the
recursion level is popped by two. If q is
capitalized, the top value on the stack is popped
and the string execution level is popped by that
value.

x treats the top element of the stack as a character
string and executes it as a string of dc commands.

X replaces the number on the top of the stack with
its scale factor.

[...] puts the bracketed ASCII string onto the top of
the stack.

<x >x =x
The top two elements of the stack are popped and
compared. Register x is evaluated if they obey
the stated relation.

v replaces the top element on the stack by its
square root. Any existing fractional part of the
argument is taken into account, but otherwise the
scale factor is ignored.

! interprets the rest of the line as a CTIX system
command.

c All values on the stack are popped.
i The top value on the stack is popped and used as

the number radix for further input. I pushes the
input base on the top of the stack.

o The top value on the stack is popped and used as
the number radix for further output.

O pushes the output base on the top of the stack.
k the top of the stack is popped, and that value is

used as a non-negative scale factor: the
appropriate number of places are printed on
output, and maintained during multiplication,
division, and exponentiation. The interaction of
scale factor, input base, and output base will be
reasonable if all are changed together.

z The stack level is pushed onto the stack.
Z replaces the number on the top of the stack with

its length.
? A line of input is taken from the input source

(usually the terminal) and executed.
; s are used by be for array operations.

- 2 -

D C (1)

EXAMPLE
This example prints the first ten values of n!:

[lal+dsa*plalO>y]sy
Osal
lyx

SEE ALSO
bc(l).

DIAGNOSTICS
x is unimplemented

where x is an octal number.
stack empty

for not enough elements on the stack to do what
was asked.

Out of space
when the free list is exhausted (too many digits).

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

D C O P Y (1 M)

NAME
dcopy - copy file systems for optimal access time

SYNOPSIS
/ e t c / d c o p y J-sX] [-an] [-d] [-v] [—ffsize[:isize]]
inputfs outputfs

DESCRIPTION
Dcopy copies file system inputfs to outputfs. Inputfs is
the existing file system; outputfs is an appropriately sized
file system, to hold the reorganized result. For best
results inputfs should be the raw device and outputfs
should be the block device. Dcopy should be run on
unmounted file systems (in the case of the root file
system, copy to a new slice). With no arguments, dcopy
copies files from inputfs compressing directories by
removing vacant entries, and spacing consecutive blocks
in a file by the optimal rotational gap. The possible
options are
—sX supply device information for creating an

optimal organization of blocks in a file. The
forms of X are the same as the — s option of
/scfc(lM).

—an place the files not accessed in n days after the
free blocks of the destination file system
(default for n is 7). If no n is specified then
no movement occurs.

—d leave order of directory entries as is (default
is to move sub-directories to the beginning of
directories).

—v currently reports how many files were
processed, and how big the source and
destination freelists are.

—ffsize [lisize]
specify the outputfs file system and inode list
sizes (in blocks). If the option (or :isize) is
not given, the values from the inputfs are
used.

Dcopy catches interrupts and quits and then reports on
its progress. To terminate dcopy send a quit signal, and
dcopy will no longer catch interrupts or quits.

SEE ALSO
fsck(lM), mkfs(lM), ps(l).

D D (1)

NAME
dd - convert and copy a file

SYNOPSIS
d d [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output
with possible conversions. The standard input and
output are used by default. The input and output block
size may be specified to take advantage of raw physical
I /O.
option values
i f = f i l e input file name; standard input is

default
o f = f i l e output file name; standard output is

default
i b s = n input block size n bytes (default 512)
o b s = n output block size (default 512)
b s = n set both input and output block size,

superseding ibs and obs; also, if no
conversion is specified, it is
particularly efficient since no in-core
copy need be done

c b s = n conversion buffer size
s k i p = n skip n input blocks before starting

copy
s e e k = n seek n blocks from beginning of

output file before copying
c o u n t = n copy only n input blocks
c o n v = a s c i i convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
i b m slightly different map of ASCII to

EBCDIC
lease map alphabetics to lower case
ucase map alphabetics to upper case
s w a b swap every pair of bytes
n o e r r o r do not stop processing on an error
s y n c pad every input block to ibs
. several comma-separated conversions

Where sizes are specified, a number of bytes is expected.
A number may end with k, b , or w to specify
multiplication by 1024, 512, or 2, respectively; a pair of
numbers may be separated by x to indicate a product.
Cbs is used only if ascii or ebcdic conversion is
specified. In the former case cbs characters are placed
into the conversion buffer, converted to ASCII, and
trailing blanks trimmed and new-line added before
sending the line to the output. In the latter case ASCII

- 1 -

D D (1)

characters are read into the conversion buffer, converted
to EBCDIC, and blanks added to make up an output
block of size cbs.
After completion, dd reports the number of whole and
partial input and output blocks.

EXAMPLE
This command will read an EBCDIC tape blocked ten
80-byte EBCDIC card images per block into the ASCII file
x :

dd i f= /dev / rmtO o f = x ibs=800 cbs=80
conv=ascii,lease

Note the use of raw magtape. Dd is especially suited to
I /O on the raw physical devices because it allows reading
and writing in arbitrary block sizes.

SEE ALSO
cp(l).

DIAGNOSTICS
f+p blocks in(out) numbers of full and partial
blocks read(written)

BUGS
The ASCII/EBCDIC conversion tables are taken from the
256-character standard in the CACM Nov, 1968. The
ibm conversion, while less blessed as a standard,
corresponds better to certain IBM print train
conventions. There is no universal solution.
New-lines are inserted only on conversion to ASCII;
padding is done only on conversion to EBCDIC. These
should be separate options.

D E L T A (1)

NAME
delta - make a delta (change) to an SCCS file

SYNOPSIS
de l t a [—rSIDl [-s] [-n] [—glist] [-m[mrlist]]
[—y[comment]] [—p] files

DESCRIPTION
Delta is used to permanently introduce into the named
SCCS file changes that were made to the file retrieved by
get(1) (called the g-file, or generated file).
Delta makes a delta to each named SCCS file. If a
directory is named, delta behaves as though each file in
the directory were specified as a named file, except that
non-SCCS files (last component of the path name does
not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is
read (see WARNINGS); each line of the standard input is
taken to be the name of an SCCS file to be processed.
Delta may issue prompts on the standard output
depending upon certain keyletters specified and flags (see
admin(l)) that may be present in the SCCS file (see —m
and —y keyletters below).
Keyletter arguments apply independently to each named
file.

—rSID Uniquely identifies which delta is
to be made to the SCCS file. The
use of this keyletter is necessary
only if two or more outstanding
gets for editing (get —e) on the
same SCCS file were done by the
same person (login name). The
SID value specified with the —r
keyletter can be either the SID
specified on the get command line
or the SID to be made as reported
by the get command (see get(l)).
A diagnostic results if the
specified SID is ambiguous, or, if
necessary and omitted on the
command line.

—s Suppresses the issue, on the
standard output, of the created
delta's SID, as well as the number
of lines inserted, deleted and
unchanged in the SCCS file.

- 1 -

D E L T A (1)

—n Specifies retention of the edited
g-file (normally removed at
completion of delta processing).

—g/tai Specifies a list (see get(1) for the
definition of list) of deltas which
are to be ignored when the file is
accessed at the change level (SID)
created by this delta.

—m[mr/i'af] If the SCCS file has the v flag set
(see admin(1)) then a Modification
Request (MR) number must be
supplied as the reason for creating
the new delta.
If —m is not used and the
standard input is a terminal, the
prompt MRs? is issued on the
standard output before the
standard input is read; if the
standard input is not a terminal,
no prompt is issued. The MRs?
prompt always precedes the
c o m m e n t s ? prompt (see —y
keyletter).
MRs in a list are separated by
blanks and/or tab characters. An
unescaped new-line character
terminates the MR list.
Note that if the v flag has a value
(see admin(1)), it is taken to be
the name of a program (or shell
procedure) which will validate the
correctness of the MR numbers.
If a non-zero exit status is
returned from MR number
validation program, delta
terminates (it is assumed that the
MR numbers were not all valid).

—y\commen([Arbitrary text used to describe the
reason for making the delta. A
null string is considered a valid
comment.
If —y is not specified and the
standard input is a terminal, the
prompt c o m m e n t s ? is issued on
the standard output before the
standard input is read; if the

- 2 -

D E L T A (1)

standard input is not a terminal,
no prompt is issued. An
unescaped new-line character
terminates the comment text.

—p Causes delta to print (on the
standard output) the SCCS file
differences before and after the
delta is applied in a diff (I)
format.

FILES
All files of the form f- file are explained in the "Source
Code Control System User's Guide" in Section 9 of the
CTIX Programmer's Guide. The naming convention for
these files is also described there.
g-file Existed before the execution of delta;

removed after completion of delta.
p-file Existed before the execution of delta;

may exist after completion of delta.
q-file Created during the execution of delta;

removed after completion of delta.
x-file Created during the execution of delta;

renamed to SCCS file after completion of
delta.

z-file Created during the execution of delta;
removed during the execution of delta.

d-file Created during the execution of delta;
removed after completion of delta.

/usr /bin/bdiff Program to compute differences between
the "gotten" file and the g-file.

WARNINGS
Lines beginning with an SOH ASCII character (binary
001) cannot be placed in the SCCS file unless the SOH is
escaped. This character has special meaning to SCCS
(see sccsfile(4). (5)) and will cause an error.
A get of many SCCS files, followed by a delta of those
files, should be avoided when the get generates a large
amount of data. Instead, multiple get/delta sequences
should be used.
If the standard input (—) is specified on the delta
command line, the —m (if necessary) and —y keyletters
must also be present. Omission of these keyletters
causes an error to occur.
Comments are limited to text strings of at most 512
characters.

SEE ALSO
admin(l), bdiff(l), cdc(l), get(l), help(l), prs(l),

- 3 -

D E L T A (1)

rmdel(l), sccsfile(4).
CTIX Programmer's Guide, Section 9.

DIAGNOSTICS
Use help(1) for explanations.

D E R O F F (1)

NAME
deroff - remove nroff / t roff , tbl, and eqn constructs

SYNOPSIS
d e r o f f [—mx] [—w] [files]

DESCRIPTION
Deroff reads each of the files in sequence and removes
all troff(1) requests, macro calls, backslash constructs,
eqn(l) constructs (between .EQ and .EN lines, and
between delimiters), and f6/(l) descriptions, perhaps
replacing them with white space (blanks and blank
lines), and writes the remainder of the file on the
standard output . Deroff follows chains of included files
(.so and .nx troff commands); if a file has already been
included, a .so naming tha t file is ignored and a .nx
naming tha t file terminates execution. If no input file is
given, deroff reads the standard input .
The - m option may be followed by an m , s, or 1. The
—mm option causes the macros be interpreted so tha t
only running text is output (i.e., no text from macro
lines.) The —ml option forces the —mm option and also
causes deletion of lists associated with the m m macros.
If the —w option is given, the ou tpu t is a word list, one
"word" per line, with all other characters deleted.
Otherwise, the output follows the original, with the
deletions mentioned above. In text , a "word" is any
string that contains a t least two letters and is composed
of letters, digits, ampersands (Sc.), and apostrophes (') ; in
a macro call, however, a "word" is a string that begins
with at least two letters and contains a total of at least
three letters. Delimiters are any characters other than
letters, digits, apostrophes, and ampersands. Trailing
apostrophes and ampersands are removed from "words."

SEE ALSO
eqn(l), nroff(l) , tbl(l), t roff(l) , spell(l).

BUGS
Deroff is not a complete troff interpreter, so it can be
confused by subtle constructs. Most such errors result in
too much rather than too little ou tput .
The —ml option does not handle nested lists correctly.

DEVNM (1 M)

NAME
devnm - device name

SYNOPSIS
/ e t c / d e v n m [n a m e s]

DESCRIPTION
Devnm identifies the special file associated with the
mounted file system where the argument name resides.
(As a special case, both the block device name and the
swap device name are printed for the argument name /
if swapping is done on the same disk section as the r o o t
file system.) Argument names must be full path names.
This command is most commonly used by / e t c / r c (see
6re(lM)) to construct a mount table entry for the r o o t
device.

EXAMPLE
The command:

/ e t c /devnm /us r
produces

dsk/c0d0s3 /usr
if / u s r is mounted on / d e v / d s k / c 0 d 0 s 3 .

FILES
/ d e v / d s k / *
/ e t c / m n t t a b

SEE ALSO
brc(lM), se tmnt(lM).

DEVICES (5)

NAME
Devices - configuration file for uucp communications
lines

SYNOPSIS
/ usr / l ib / uucp /Dev ices

DESCRIPTION
/ u s r / l i b / u u c p / D e v i c e s is a text file that contains
configuration specifications for communications devices,
such as modems or direct lines. Each line in the file
describes a single device and how it communicates with a
remote system. Comment lines begin with a pound sign
(#) . The UUCP system uses the
/ u s r / l i b / u u c p / D e v i c e s file in conjunction with the
/ u s r / l i b / u u c p / D i a l e r s file to place a call.
Each line containes five or more fields delimited by
spaces. The first field is the line type as specified in the
/ u s r / l i b / u u c p / S y s t e m s file; for direct lines, the first
field is the name of the remote system.
The remaining fields give the device name; the calling
device indicator (such as for 801 calling units), if used;
the speed, which may be specified as ANY; and the
name of the caller as specified in the
/ u s r / l i b / u u c p / D i a l e r s file. The last field, the name
of the caller, may be followed by a token format
(containing\D or \T) ; pairs of these dialer name/token
format fields can be repeated if more than one dialer
must be used in succession to make the connection. If
no token format is specified, a \ D is used for a dialer
name that references the / u s r / l i b / u u c p / D i a l e r s file; a
\ T is used for internal dialer types such as 801. Unused
fields are replaced by a hyphen (—).

EXAMPLE
The following entry configures a 1200-baud intelligent
modem on device contty for use with UUCP.

ACU contty - 1200 penril
FILES

/usr/ l ib/uucp/Devices
/usr/ l ib/uucp/Dialers
/ usr/ l ib/uucp/Systems

SEE ALSO
uucp(lC), dial(3C), Dialers(5).
MightyFrame Administrator's Reference Manual.

5 /86 - 1 -

D I A L E R S (5)

NAME
Dialers - ACU/modem calling protocols

SYNOPSIS
/ u s r / l i b / u u c p / D ia lers

DESCRIPTION
Dia le r s describes the call-placing protocols for
intelligent modems, ACUs (automatic calling units), and
other serial switched devices such as data switches.
When a connection is requested via the UUCP system,
CTIX looks for a description of the called system in the
/ u s r / l i b / u u c p / S y s t e m s file, where the type of line is
specified for connection to that system. CTIX then
checks the / u s r / l i b / u u c p / D e v i c e s file for a
description of the line, its speed and its Dialers name.
The Dialers name given in the Devices file corresponds
to the first field of the Dia le r s file.
Dia le rs is a text file that contains the dialing script for
the modems that are configured in the Devices file.
Each description begins on a new line and has three or
more fields, delimited by spaces.
The first field of the description is the name of the
modem or device as specified in the Devices file.
The second field specifies the codes used by that
particular modem for secondary dial tone (=) and pause
(-) ; this field enables CTIX to translate from the
standard 801 codes (= and —) to the special characters
used by that particular device.
The remaining fields are the chat script that is necessary
to establish communication with the modem.
The modem chat script is composed of command strings
to the modem and response strings expected in return
from the modem. The strings consist of ASCII and
control characters that are recognized by the individual
modem or device. Spaces delimit the end of a send or
receive sequence. The first string is an expect string.
Several modems and switches are already provided in the
Dia le rs file. Additional devices can be configured by
studying the manufacturers' manuals to determine the
appropriate send/receive sequences for other modems.
In the string sequences of the send/receive fields the
following escape sequences represent control codes:
\ d d d Octal number.
\ c Suppress new line (valid only after \ r or at the

end of a field).

5 /86 - 1 -

DIALERS (5)

\ d Delay (two seconds).
\ D Substitute the telephone number (from the

/ u s r / l i b / u u c p / S y s t e m s file or cw(lC)),
without character translation.

\ e Turn off echo checking.
\ E Turn on echo checking (for slow devices).
\ K Insert a BREAK.
\ n New-line.
\ p Pause (a slight delay of one-quarter to one-half

second).
\ r Carriage return.
\ T Substitute the telephone number (from the

/ u s r / l i b / u u c p / S y s t e m s file or C M (1 C)) , with
character translation. Character translation
interprets the 801 codes in the second field and
expands any symbols found in the
/ u s r / H b / u u c p / D i a l c o d e s file.

Comments delimited by a pound sign (#) , spaces, or
tabs are ignored. Any line terminated by a backslash (\)
continues to the next line.

EXAMPLE
The following example establishes communication with a
Ventel modem:
ventel = & - % "" \ r \ p \ r \ c $ < K \ T % % \ r > \ c ONLINE!

The first field, "ventel," is the name of the modem that
corresponds to a "ventel" caller type in the fifth or
subsequent field of a Devices file entry. The second
field describes the modem's convention for the secondary
dial tone (&) and a pause (%) command. The
remaining fields consist of five strings separated by
spaces. The five strings are interpreted as follows:
1. The first expect string ("") is null.
2. Send to the modem a series of carriage returns to

elicit a prompt.
3. The modem should respond with a dollar sign ($).
4. Send the telephone number (\ T) to the modem.
5. Upon connection the modem should respond with the

string 'ONLINE!'.
FILES

/ usr/l ib/uucp/Devices
/usr/ l ib/uucp/Dialcodes
/ usr/lib / uucp/Systems

5 /86 - 2 -

DIALERS (5)

SEE ALSO
uucp(lC), dial(3C), Devices(5).
MightyFrame Administrator's Reference Manual.

5/86 - 2 -

D F (1M)

NAME
df - report number of free disk blocks

SYNOPSIS
df [- t] [- f] [file-systems j

DESCRIPTION
Df prints out the number of free 512-byte blocks and
free i-nodes available for on-line file systems by
examining the counts kept in the super-blocks; file-
systems may be specified either by device name (e.g.,
/ d e v / d s k / c O d O s l) or by mounted directory name (e.g.,
/usr) . If the file-systems argument is unspecified, the
free space on all of the mounted file systems is printed.
The —t flag causes the total allocated block figures to be
reported as well.
If the —f flag is given, only an actual count of the blocks
in the free list is made (free i-nodes are not reported).
With this option, df will report on raw devices.

FILES
/dev /dsk /*
/ e tc /mnt tab

SEE ALSO
fs(4), mnttab(4).

D I F F (1)

NAME
diff - differential file comparator

SYNOPSIS
diff [- e f b h] filel file2

DESCRIPTION
Diff tells what lines must be changed in two files to
bring them into agreement. If filel (fileS) is —, the
standard input is used. If filel (fileS) is a directory, then
a file in that directory with the name fileS (filel) is used.
The normal output contains lines of these forms:

nl a n3,n4
nl,n2 d nS
nl,n2 c nS,n4

These lines resemble ed commands to convert filel into
file2. The numbers after the letters pertain to fileZ. In
fact, by exchanging a for d and reading backward one
may ascertain equally how to convert file2 into filel. As
in ed, identical pairs, where nl = n2 or nS = n4, are
abbreviated as a single number.
Following each of these lines come all the lines that are
affected in the first file flagged by < , then all the lines
that are affected in the second file flagged by > .
The —b option causes trailing blanks (spaces and tabs) to
be ignored and other strings of blanks to compare equal.
The —e option produces a script of a, c, and d
commands for the editor ed, which will recreate file2
from filel. The —f option produces a similar script, not
useful with ed, in the opposite order. In connection with
—e, the following shell program may help maintain
multiple versions of a file. Only an ancestral file ($l)
and a chain of version-to-version ed scripts ($2,$3,...)
made by diff need be on hand. A "latest version"
appears on the standard output.

(shift; cat $*; echo ' l ,$p') | ed - $1
Except in rare circumstances, diff finds a smallest
sufficient set of file differences.
Option — h does a fast, half-hearted job. It works only
when changed stretches are short and well separated, but
does work on files of unlimited length. Options —e and
—f are unavailable with —h.

FILES
/ t m p / d ?????
/usr / l ib/diffh for - h

DIFF (1)

SEE ALSO
cmp(l), comm(l), ed(l).

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences,
2 for trouble.

BUGS
Editing scripts produced under the —e or —f option are
naive about creating lines consisting of a single period
(•)•

WARNINGS
Missing newline at end of file X

indicates that the last line of file X did not have a
new-line. If the lines are different, they will be
flagged and output; although the output will seem
to indicate they are the same.

D I F F 3 (1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 [—ex3] filel file2 file3

DESCRIPTION
DiffS compares three versions of a file, and publishes
disagreeing ranges of text flagged with these codes:

= = = = = all three files differ
= = = = = 1 filel is different
==——2 fileS is different
= = = = 3 fileS is different

The type of change suffered in converting a given range
of a given file to some other is indicated in one of these
ways:

/ : nl a Text is to be appended after
line number nl in file / , where
/ = 1, 2, or 3.

f t nl , nS c Text is to be changed in the
range line nl to line nS. If nl
= n2, the range may be
abbreviated to nl.

The original contents of the range follows immediately
after a c indication. When the contents of two files are
identical, the contents of the lower-numbered file is
suppressed.
Under the —e option, diff3 publishes a script for the
editor ed that will incorporate into filel all changes
between fileS and fileS, i.e., the changes that normally
would be flagged = = = = and = = = = 3 . Option - x
(—3) produces a script to incorporate only changes
flagged = = = = (= = = = 3) . The following command
will apply the resulting script to filel.

ed - filel < script
FILES

/ tmp/d3*
/usr/lib/diff3prog

SEE ALSO
diff(l).

BUGS
Text lines that consist of a single . will defeat —e.
Files longer than 64K bytes will not work.

DIFFMK (1)

NAME
diffmk - mark differences between files

SYNOPSIS
d i f f m k namel name2 name3

DESCRIPTION
Diffmk compares two versions of a file and creates a
third file that includes "change m a r k " commands for
nroff or troff(l). Namel and nameS are the old and new
versions of the file. Diffmk generates named, which
contains the lines of nameS plus inserted formatter
"change mark" (.mc) requests. When nameS is
formatted, changed or inserted text is shown by | at the
right margin of each line. The position of deleted text is
shown by a single *.
If anyone is so inclined, diffmk can be used to produce
listings of C (or other) programs with changes marked.
A typical command line for such use is:

diffmk old.c new.c tmp; nroff macs tmp | pr
where the file m a c s contains:

.pi 1

.11 77

.nf

.eo

.nc
The .11 request might specify a different line length,
depending on the nature of the program being printed.
The .eo and .nc requests are probably needed only for C
programs.
If the characters | and * are inappropriate, a copy of
diffmk can be edited to change them (diffmk is a shell
procedure).

SEE ALSO
diff(l), nroff(l), troff(l).

BUGS
Aesthetic considerations may dictate manual adjustment
of some output. File differences involving only
formatting requests may produce undesirable output, i.e.,
replacing .sp by .sp 2 will produce a "change mark" on
the preceding or following line of output .

DIR CMP (1)

NAME
dircmp - directory comparison

SYNOPSIS
d i r c m p [—d] [— s] [—-wn] dirl dir2

DESCRIPTION
Dircmp examines dirl and dir2 and generates various
tabulated information about the contents of the
directories. Listings of files that are unique to each
directory are generated for all the options. If no option
is entered, a list is output indicating whether the
filenames common to both directories have the same
contents.
—d Compare the contents of files with the same

name in both directories and output a list telling
what must be changed in the two files to bring
them into agreement. The list format is
described in diff(l).

—a Suppress messages about identical files.
—w n Change the width of the output line to n

characters. The default width is 72.
SEE ALSO

cmp(l), diff(l).

DISK (7)

*
*/

dump area
down load image Tile
Bootable program,
size determined by a.out format. n b l o c k s = l .

char
long

fpulled;
time;

struct gdswprt2 dsk2:
char minires[38];

j* dismounted last time? */
/ * time last came on line * /
/ * Drive specific parameters * /
/ * for future mini/miti frame
enhancements * /

char sysres(292); / * custom system area * /
struct mntnam mntname[MAXSLICE];

/ * names for auto mounting; null
* string means no auto mount
* not used in mitiframe * /

char userres[256j; / * user area * j

struct gdswprt {
char name[6j;
ushort cyls;
ushort heads;
ushort psectrk;
ushort pseccyl;
char flags;
char step;

ushort sectorsz;

struct gdswprt2 {
short wpccyl;

ushort enetaddr[3j;

unchar gapl ;
unchar gap2;
char filler[28j;

};

* printf name * /
* the number of cylinders for this disk * /
* number of heads per cylinder * /
* number of physical sectors per track */
* number of physical sectors per cylinder * /
* floppy density and high tech drive flags * /
* stepper motor rate to controller -

ST506 only * /
/ * size of physical sectors (in bytes) * /

/ * value t o program for R W C / W P C
ST506 only * /
/ * Ethernet station address -
* MiniFrame only * /

/ * Gap size on SMD drives * /

struct partit{
union {

uint strk;
struct {

ushort strk;

} sz;
} old;

/ * start track number (new style) * /

/ * start track # * /
ushort nsecs; / * # logical blocks available to user * /

5/86 - 2 -

DISK (7)

If a volume home block is valid, magic is equal to
VHBMAGIC and the 32-bit sum of the volume home
block's bytes is OxFFFFFFFF (-1) ; chksum is the
adjustment tha t makes the sum come out right.
Dsk describes the peculiarities of the disk, including
deliberate deviations from the system standard.
Dsk.flags the bitwise or of zero or more of the following
constants:
F P D E N S I T Y

FPMDCDENS

H I T E C H

N E W P A R T T A B

R W C P W C

E X C H A N G E A B L E

F O R M A T E X T R A

(MiniFrame only) If on, the
disk is double density; if
off, the disk is single
density.
(MiniFrame only) If off,
F P D E N S I T Y specifies the
density of t he first track; if
on, the first track is single
density regardless of
F P D E N S I T Y
(ST506 only) If on, head
select bit 3 is valid; if off,
reduced write current is
valid.
If off, the old style slice
(partition) table is in use; if
on, the new style slice table
is in use.
(ST506 only) If on, set
reduced wri te current/wri te
precompensation.
H I T E C H selects write
precompensation.
If on, the disk is a floppy
or removable hard disk
cartridge. If off, the disk is
a Winchester.
If on, the SMD drive is
formatted with an extra
sector on each track. (This
sector is ignored by CTIX
but is required for some
disk drives, notably the
Eagle-XP.)

Dsk.step specifies a stepper motor rate for the ST506;
use 14 in this field.

5/86 - 2 -

DISK (7)

Partab divides the disk into slices (partitions).
Fpulled indicates whether an exchangeable disk was
properly removed from the drive. The system sets this
field to 1 when the disk is inserted in the drive. To clear
fpulled, run d«smoMn<(lM); see t ha t entry.
Mntname, minires, and userres are reserved for future
use.
Resmap describes the files that share Slice 0 with the
Volume Home Block. Provision is made for eight such
files, but only five have been assigned slots in resmap.
Each resmap entry gives the starting location (logical
block number) and length (logical blocks). A length of
zero indicates that the file is not provided. The first five
entries in resmap describe:
1. The loader. When the system is reset or turned

on, the boot prom loads the loader into the
loader address and jumps execution to it. The
function of the loader is to search for and load a
program that will boot the system.
On MightyFrame the loader searches the tape,
onboard Winchester disks 0, 1, and 2, and the
VME, in that order. On MiniFrame the loader
searches the tape, the floppy disk, and
Winchester disks 1 and 0, in that order.
On each disk, the loader first checks for a
standalone program. If the disk lacks a
standalone program, the loader checks for a
CTIX kernel, which must be a CTIX executable
object file called / u n i x in the file system in slice
1. When the loader locates an appropriate
program, it preserves the crash dump table,
loads the program it found at the address it was
linked at (0x0 if unknown) and executes it. If no
disk contains an appropriate file, the loader
continues searching until an appropriate disk is
inserted.

2. The bad block table, which always begins at
logical block 1 of the disk. Each logical block in
the bad block table consists of a four-byte
checksum followed by 127 bad block cells. The
checksum is a value that makes the 32-bit sum
of the logical block be OxFFFFFFFF (-1) . A
bad block cell is defined by the following
structure.

5 / 8 6 - 2 -

DISK (7)

s t ruc t bbcell {
ushor t cyl; / * the cylinder of t h e bad block * /
ushor t badblk; / * the physical sector address of

the bad block wi th in the cylinder cyl * j
ushor t altblk; / * t rack number of a l t e rna t e * /
ushor t nxt ind; / * index in to the cell array for next

bad block cell for th i s cylinder * /

};
A single sequence of numbers, starting from zero,
identifies the checksums and cells. In each cell
in use, cyl identifies a cylinder tha t contains the
bad block; badblk physical block offset within
the cylinder of the bad block; altblk identifies
the track that contains the alternate block;
nextind (not used in MightyFrame) identifies the
next cell for a bad block on the same cylinder or
is zero if this is the last one.

3. The dump area. After Reset or Suicide, the
Boot prom dumps processor registers, the
memory map, a crash dump block, and the
contents of physical memory, until it runs out of
room in the dump area.

4. The down load image area. The down load
images are described by a table at the beginning
of the area. The area is described by the
following array.

s t ruc t d ldent {
shor t d_s t r t ;
/ * block displacement f rom down load index * /
shor t d_sz;
/ * # of blocks for th is ent ry * /

};
The image number is the index for dldent.
D_strt is the offset in bytes of the image from
the beginning of the down load image area; d_sz
is the size in bytes of the image.

5. A bootable program, usually a diagnostic. This
is the program the loader considers a substitute
for the / u n i x file. The program must be in
a.out(4) format with magic number 407 or be a
simple memory image.
If the fifth entry in resmap has a zero address
but a nonzero length, the loader looks at the
beginning of slice 1 for the program.

5 / 8 6 - 2 -

DISK (7)

Slice 0 is called the Reserved Area. Only the volume
home block and the files described by resmap can be in
the Reserved Area. A formatted disk used by a working
system certainly has at least one more slice.
Ioctl system calls use the following structure,
s t ruc t gdioctl {

ushor t s ta tus ; / * s t a t u s * /
s t ruc t gdswpr t params; j* descr ipt ion of the disk * /
s t ruc t gdswpr t2 params2; / * more descript ion of the disk * /
shor t ctr l typ; j * the t y p e of disk controller * /
shor t driveno;

};
Status is the bitwise or of the following constants.
VALID_VHB A valid Volume Header Block has been

read.
DRV_READY The disk is on line.
PULLED Last removal of disk from drive was not

preceded by proper dismount.
Params is a gdswprt structure, the same type used in the
volume header block.
Dsktype is equal to
GD_WD1010 for Western Digital 1010 ST506

Controller
GD_WD2010 for Western Digital 2010 ST506

Controller
GD_WD2797 for Western Digital 2797 Floppy Disk

Controller
GD^RAMDISK for RAM Disk Emulator
GD_SMD3200 for Interphase SMD3200 disk controller
CTEX understands the following disk ioctl calls.
ioctl(fd, GDIOCTYPE, 0)

Returns GDIOC if fd is a file descriptor for a
disk special file.

ioctl(fd, GDGETA, gdctl_ptr)
Gdctljptr is a pointer to a gdioctl structure.
Ioctl fills the structure with information about
the disk.

ioctl(fd, GDSETA, gdctl_ptr)
Gdctljptr is a pointer to a gdioctl structure.
Ioctl passes the description of the disk to the
disk driver. This is primarily meant for reading
disks created by other kinds of computers.

5 / 8 6 - 2 -

DISK (7)

ioctl(fd, GDFORMAT, ptr)
Ptr points to formating information. The disk
driver formats a track.

ioctl(fd, GDDISMNT)
Ioctl informs the driver that the user intends to
remove the disk from the drive. When this
system call successfully returns, the driver has
flushed all data in the buffer cache and waited
for all queued transfers to complete. The last
transfer is to write out the Volume Home Block
with the fpulltd flag cleared. Once this call
returns the drive is inaccessible until a new disk
is inserted.

SEE ALSO
iv(l), mknod(lM), ioctl(2).

5/86 - 2 -

DISKUSG (1 M)

NAME
diskusg - generate disk accounting data by user ID

SYNOPSIS
/ u s r / l i b / a c c t / d i s k u s g [options] [files]

DESCRIPTION
Diskusg generates intermediate disk accounting
information from data in files, or the standard input if
omitted. Diskusg outputs lines on the standard output,
one per user, in the following format:

uid login #blocks
where
uid is the numerical user ID of the user.
login is the login name of the user; and
#blocks is the total number of 512-byte disk blocks

allocated to this user.
Diskusg normally reads only the i-nodes of file systems
for disk accounting. In this case, files are the special
filenames of these devices.
Diskusg recognizes the following options:
—s the input data is already in diskusg output

format. Diskusg combines all lines for a
single user into a single line.

- v verbose. Print a list on standard error of
all files that are charged to no one.

—i fnmlist ignore the data on those file systems whose
file system name is in fnmlist. Fnmlist is a
list of file system names separated by
commas or enclose within quotes. Diskusg
compares each name in this list with the
file system name stored in the volume ID
(see labelit(lM)).

—p file use file as the name of the password file to
generate login names, / e t c / p a s s w d is
used by default.

—u file write records to file of files that are
charged to no one. Records consist of the
special file name, the i-node number, and
the user ID.

The output of diskusg is normally the input to acct disk
(see acc<(lM)) which generates total accounting records
that can be merged with other accounting records.
Diskusg is normally run in dodisk (see acctsh(1M)).

DISKUSG (1 M)

EXAMPLES
The following will generate daily disk accounting
information:

for i in si s3; do
diskusg /dev/rdsk/cOdO$i > dtmp.'basename $i' &

done
wait
diskusg -s dtmp.* | sort +0n + 1 | acctdisk > disktacct

FILES
/etc/passwd used for user ID to login name

conversions
SEE ALSO

acct(lM), acctsh(lM), acct(4)
MightyFrame Administrator s Reference Manual.
MiniFrame Administrator's Manual.

DISMOUNT (1) (MiniFrame Only)

NAME
dismount - remove exchangeable disk

SYNOPSIS
dismount [—f]

DESCRIPTION
Dismount must be executed before physical removal of
an exchangeable disk from its drive. For each disk that
is labeled exchangeable (see disk(7)), dismount
syncronizes and unmounts its mounted file systems,
writes out its volume home block, bars further I/O, and
clears its "pulled" flag. The last action prevents a
warning message the next time the disk is placed in the
drive.
Once dismount has been run, the exchangeable disk's
drive is unusable until the dismounted disk is removed.
If a MiniFrame has two kinds of exchangeable disks,
dismount dismounts them both. To restrict dismount to
one disk, specify - f for floppy.

FILES
/ e t c /mnt t ab mounted file system list
/dev /dsk /* disk reserved area

SEE ALSO
fsck(lM), update(l), disk(7).

D U (1)

NAME
du - summarize disk usage

SYNOPSIS
d u [— a r s] [names]

DESCRIPTION
Du gives the number of 512-byte blocks contained in all
files and (recursively) directories within each directory
and file specified by the names argument. The block
count includes the indirect blocks of the file. If names is
missing, . is used.
The optional argument - s causes only the grand total
(for each of the specified names) to be given. The
optional argument —a causes an entry to be generated
for each file. Absence of either causes an entry to be
generated for each directory only.
Du is normally silent about directories that cannot be
read, files that cannot be opened, etc. The —r option
will cause du to generate messages in such instances.
A file with two or more links is only counted once.

BUGS
If the —a option is not used, non-directories given as
arguments are not listed.
If there are too many distinct linked files, du will count
the excess files more than once.
Files with holes in them will get an incorrect block
count.

DRIVERS (7)

NAME
drivers - loadable device drivers

DESCRIPTION
A loadable driver is equivalent to a fixed, linked-in
device driver. It has access to all kernel subroutines and
global data. After it is loaded, i t is effectively part of
the running kernel.
Differences between loadable and ordinary drivers
involve their driver ID, init routine, release routine, and
interrupt processing.

Init Rout ine
Loadable drivers may have an init routine that is
executed when the driver is bound, and a release routine
that is executed when the driver is unbound (see
lddrv(lM) for a description of driver allocation and bind
operations). Init routines check for the existence of
hardware, initialize the hardware, put the interrupt
service routine for the hardware into the interrupt chain,
and do other similar tasks.

Release Rout ine
Release routines make sure the device or driver is idle,
turn off the device, take the interrupt service routine out
of the interrupt chain, and similar tasks. A typical action
for a release routine to take when the device is not idle is
to set an error code in u.u_error and return.

Driver ID
All drivers have a driver ID. Preloaded drivers have a
driver ID of 0. Loaded drivers are given an ID when
they allocate virtual space. The driver ID is
automatically set when the driver is linked. The ID
should never be modified by the driver itself; the ID is
used to identify the driver to the system when making
certain requests.

EXAMPLE
/ * init , release, i n t e r r u p t service rout ines * /
/ * for loadable device xyzzy * /
i n c l u d e < s y s / d r v . h >
d e f i n e X Y Z _ V E C N O 0x60
d e f i n e X Y Z . B U S Y 1

d e f i n e X Y Z _ O P E N 2
in t xyzzint();
extern in t D F L T J D ;
s ta t ic int D r v j d = & D F L T J D ;
int xy_bas e ;
int xy_flags;

/ * i n t e r r u p t vector number * /
!* flags » /

j* i n t e r r u p t service rout ine * /

/* s e t drive ID */

DRIVERS (7)

xy_init()
{

if (set_vec(DrvJd, XYZ_VECNO, xyzzyint) < 0)
{

u.u_error = EBUSY;
return;

}

< d o hardware initialization>

}
xy_release()
{

if (xy_flags & (XY_BUSY | X Y . O P E N))
{

u.u_error = EBUSY;
return;

}

< t u r n off device >

reset_vec (D r v j d , XYZ VECNO);

}
xyzzyint()
{

< clear interrupt >

<proceas interrupt>

}
SEE ALSO

Writing MightyFrame Device Drivers.

5/86 - 2 -

D U M P (1)

NAME
dump - dump selected parts of an object file

SYNOPSIS
dump [—acfghlorst] [—z name] files

DESCRIPTION
The dump command dumps selected parts of each of its
object file arguments.
This command will accept both object files and archives
of object files. It processes each file argument according
to one or more of the following options:
—a Dump the archive header of each

member of each archive file argument.
—g Dump the global symbols in the symbol

table of an archive.
—f Dump each file header.
—o Dump each optional header.
- h Dump section headers.
—s Dump section contents.
—r Dump relocation information.
—1 Dump line number information.
—t Dump symbol table entries.
—z name Dump line number entries for the

named function.
—c Dump the string table.
The following modifiers are used in conjunction with the
options listed above to modify their capabilities.
—d number Dump the section number or range of

sections starting a t number and ending
either at the last section number or
number specified by -|-d.

+ d number Dump sections in the range either
beginning with first section or beginning
with section specified by —d.

—n name Dump information pertaining only to
the named entity. This modifier applies
to —h, — s, —r, —1, and —t.

- p Suppress printing of the headers.
- t index Dump only the indexed symbol table

entry. The - t used in conjunction with
+ t , specifies a range of symbol table
entries.

- 1 -

D U M P (1)

+ t index Dump the symbol table entries in the
range ending with the indexed entry.
The range begins at the first symbol
table entry or at the entry specified by
the —t option.

- u Underline the name of the file for
emphasis.

- v Dump information in symbolic
representation rather than numeric
(e.g., CJ3TATIC instead of 0X02). This
modifier can be used with all the above
options except — s and - o options of
dump.

—z name,number
Dump line number entry or range of
line numbers starting at number for the
named function.

number Dump line numbers starting at either
function name or number specified by
—z, up to number specified by + z .

Blanks separating an option and its modifier are
optional. The comma separating the name from the
number modifying the — z option may be replaced by a
blank.
The dump command attempts to format the information
it dumps in a meaningful way, printing certain
information in character, hex, octal or decimal
representation as appropriate.

SEE ALSO
a.out(4), ar(4).

E C H O (1)

NAME
echo - echo arguments

SYNOPSIS
echo [arg] ...

DESCRIPTION
Echo writes its arguments separated by blanks and
terminated by a new-line on the standard output. It also
understands C-like escape conventions; beware of
conflicts with the shell's use of \ :

\ b backspace
\ c print line without new-line
\ f form-feed
\ n new-line
\ r carriage return
\ t tab
\ v vertical tab
\ \ backslash
\ n the 8-bit character whose ASCII code is

n , an octal number of no more than four
digits, the first of which must be zero.

Echo is useful for producing diagnostics in command
files and for sending known data into a pipe.

SEE ALSO
sh(l).

E D (1)

NAME
ed, red - text editor

SYNOPSIS
ed [-] [file] ...
r e d [-] [file] ...

DESCRIPTION
Ed is the standard text editor. If the file argument is
given, ed simulates an e command (see below) on the
named file; that is to say, the file is read into erf's buffer
so that it can be edited. If multiple file arguments are
given, the % argument of the e command becomes
useful. The optional - suppresses the printing of
character counts by e, r, and w commands, of
diagnostics from e and q commands, and of the ! prompt
after a \shell command. Ed operates on a copy of the
file it is editing; changes made to the copy have no effect
on the file until a w (write) command is given. The
copy of the text being edited resides in a temporary file
called the buffer. There is only one buffer.
Red is a restricted version of ed. It will only allow
editing of files in the current directory. It prohibits
executing shell commands via Ishell command. Attempts
to bypass these restrictions result in an error message
(restricted shell).
Both ed and red support the fspec(4) formatting
capability. After including a format specification as the
first line of file and invoking ed with your terminal in
s t ty —tabs or s t ty t a b 3 mode (see stty(1), the specified
tab stops will automatically be used when scanning file.
For example, if the first line of a file contained:

< :t5,10,15 s72: >
tab stops would be set at columns 5, 10 and 15, and a
maximum line length of 72 would be imposed. NOTE:
while inputting text, tab characters when typed are
expanded to every eighth column as is the default.
Commands to ed have a simple and regular structure:
zero, one, or two addresses followed by a single-
character command, possibly followed by parameters to
that command. These addresses specify one or more
lines in the buffer. Every command that requires
addresses has default addresses, so that the addresses can
very often be omitted.
In general, only one command may appear on a line.
Certain commands allow the input of text. This text is
placed in the appropriate place in the buffer. While ed
is accepting text, it is said to be in input mode. In this

- 1 -

E D (1)

mode, no commands are recognized; all input is merely
collected. Input mode is left by typing a period (.) alone
at the beginning of a line.
Ed supports a limited form of regular expression
notation; regular expressions are used in addresses to
specify lines and in some commands (e.g., s) to specify
portions of a line that are to be substituted. A regular
expression (RE) specifies a set of character strings. A
member of this set of strings is said to be matched by
the RE. The REs allowed by ed are constructed as
follows:
The following one-character RE s match a single
character:
1.1 An ordinary character (not one of those discussed

in 1.2 below) is a one-character RE that matches
itself.

1.2 A backslash (\) followed by any special character
is a one-character RE that matches the special
character itself. The special characters are:
a. ., *, [, and \ (period, asterisk, left square

bracket, and backslash, respectively), which
are always special, except when they appear
within square brackets ([]; see 1.4 below).

b. A (caret or circumflex), which is special at the
beginning of an entire RE (see 3.1 and 3.2
below), or when it immediately follows the
left of a pair of square brackets ([]) (see 1.4
below).

c. $ (currency symbol), which is special at the
end of an entire RE (see 3.2 below).

d. The character used to bound (i.e., delimit) an
entire RE, which is special for that RE (for
example, see how slash (/) is used in the g
command, below.)

1.3 A period (.) is a one-character RE that matches
any character except new-line.

1.4 A non-empty string of characters enclosed in
square brackets ([]) is a one-character RE that
matches any one character in that string. If,
however, the first character of the string is a
circumflex (A), the one-character RE matches any
character except new-line and the remaining
characters in the string. The * has this special
meaning only if it occurs first in the string. The
minus (-) may be used to indicate a range of

- 2 -

E D (1)

consecutive ASCII characters; for example, [0 -9] is
equivalent to [0123450780]. The - loses this
special meaning if it occurs first (after an initial *,
if any) or last in the string. The right square
bracket (]) does not terminate such a string when
it is the first character within it (after an initial A,
if any); e.g., []a—f] matches either a right square
bracket (f) or one of the letters a through f
inclusive. The four characters listed in 1.2.a above
stand for themselves within such a string of
characters.

The following rules may be used to construct REs from
one-character REs:
2.1 A one-character RE is a RE that matches whatever

the one-character RE matches.
2.2 A one-character RE followed by an asterisk (*) is a

RE that matches zero or more occurrences of the
one-character RE. If there is any choice, the
longest leftmost string that permits a match is
chosen.

2.3 A one-character RE followed by \ { m \ } , \ { m , \ } ,
or \ { m , n \ } is a RE that matches a range of
occurrences of the one-character RE. The values of
m and n must be non-negative integers less than
256; \ { w \ } matches exactly m occurrences;
\ { m , \ } matches at least m occurrences; \ { m , n \ }
matches any number of occurrences between m
and n inclusive. Whenever a choice exists, the RE
matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the
concatenation of the strings matched by each
component of the RE.

2.5 A RE enclosed between the character sequences \ (
and \) is a RE that matches whatever the
unadorned RE matches.

2.6 The expression \ n matches the same string of
characters as was matched by an expression
enclosed between and \) earlier in the same
RE. Here n is a digit; the sub-expression specified
is that beginning with the n-th occurrence of \ (
counting from the left. For example, the
expression A \ (. * \) \ l $ matches a line consisting of
two repeated appearances of the same string.

Finally, an entire RE may be constrained to match only
an initial segment or final segment of a line (or both):

ED (1)

3.1 A circumflex (A) at the beginning of an entire RE
constrains that RE to match an initial segment of
a line.

3.2 A currency symbol ($) at the end of an entire RE
constrains that RE to match a final segment of a
line.

The construction ' entire RE $ constrains the entire RE
to match the entire line.
The null RE (e.g., / /) is equivalent to the last RE
encountered. See also the last paragraph before FILES
below.
To understand addressing in ed it is necessary to know
that at any time there is a current line. Generally
speaking, the current line is the last line affected by a
command; the exact effect on the current line is
discussed under the description of each command.
Addresses are constructed as follows:

1. The character . addresses the current line.
2. The character $ addresses the last line of the

buffer.
3. A decimal number n addresses the n-th line of the

buffer.
4. 'x addresses the line marked with the mark name

character x, which must be a lower-case letter.
Lines are marked with the k command described
below.

5. A RE enclosed by slashes (/) addresses the first
line found by searching forward from the line
following the current line toward the end of the
buffer and stopping at the first line containing a
string matching the RE. If necessary, the search
wraps around to the beginning of the buffer and
continues up to and including the current line, so
that the entire buffer is searched. See also the last
paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the
first line found by searching backward from the
line preceding the current line toward the
beginning of the buffer and stopping at the first
line containing a string matching the RE. If
necessary, the search wraps around to the end of
the buffer and continues up to and including the
current line. See also the last paragraph before
FILES below.

E D (1)

7. An address followed by a plus sign (+) or a minus
sign (—) followed by a decimal number specifies
that address plus (respectively minus) the indicated
number of lines. The plus sign may be omitted.

8. If an address begins with + or —, the addition or
subtraction is taken with respect to the current
line; e.g, - 5 is understood to mean .—5.

9. If an address ends with + or —, then 1 is added to
or subtracted from the address, respectively. As a
consequence of this rule and of rule 8 immediately
above, the address — refers to the line preceding
the current line. (To maintain compatibility with
earlier versions of the editor, the character A in
addresses is entirely equivalent to —.) Moreover,
trailing + and — characters have a cumulative
effect, so — refers to the current line less 2.

10. For convenience, a comma (,) stands for the
address pair 1,$, while a semicolon (;) stands for
the pair . ,$.

Commands may require zero, one, or two addresses.
Commands that require no addresses regard the presence
of an address as an error. Commands that accept one or
two addresses assume default addresses when an
insufficient number of addresses is given; if more
addresses are given than such a command requires, the
last one(s) are used.
Typically, addresses are separated from each other by a
comma (,) . They may also be separated by a semicolon
(;) . In the latter case, the current line (.) is set to the
first address, and only then is the second address
calculated. This feature can be used to determine the
starting line for forward and backward searches (see rules
5. and 6. above). The second address of any two-address
sequence must correspond to a line that follows, in the
buffer, the line corresponding to the first address.
In the following list of ed commands, the default
addresses are shown in parentheses. The parentheses are
not part of the address; they show that the given
addresses are the default.
It is generally illegal for more than one command to
appear on a line. However, any command (except e, / ,
r , or w) may be suffixed by 1, n or p, in which case the
current line is either listed, numbered or printed,
respectively, as discussed below under the / , n and p
commands.

E D (1)

(0 »
< t e x t >

The append command reads the given text and
appends it after the addressed line; . is left at
the last inserted line, or, if there were none, at
the addressed line. Address 0 is legal for this
command: it causes the "appended" text to be
placed at the beginning of the buffer. The
maximum number of characters that may be
entered from a terminal is 256 per line (including
the newline character).

(•) c
< t e x t >

The change command deletes the addressed
lines, then accepts input text that replaces these
lines; . is left at the last line input, or, if there
were none, at the first line that was not deleted.

(. , .) d
The rfelete command deletes the addressed lines
from the buffer. The line after the last line
deleted becomes the current line; if the lines
deleted were originally at the end of the buffer,
the new last line becomes the current line.

e file
The edit command causes the entire contents of
the buffer to be deleted, and then the named file
to be read in; . is set to the last line of the
buffer. If no file name is given, the currently-
remembered file name, if any, is used (see the /
command). If % is given in place of a file name,
the next name on the command line argument
list is used. The number of characters read is
typed; file is remembered for possible use as a
default file name in subsequent e, r , and w
commands. If file is replaced by !, the rest of
the line is taken to be a shell («A(1)) command
whose output is to be read. Such a shell
command is not remembered as the current file
name. See also DIAGNOSTICS below.

E file
The i?dit command is like e, except that the
editor does not check to see if any changes have
been made to the buffer since the last w
command.

f file
If file is given, the / ile-name command changes

- 6 -

ED (1)

the currently-remembered file name to file;
otherwise, it prints the currently-remembered
file name.

(1 > $)g/RE/command list
In the global command, the first step is t o mark
every line that matches the given RE. Then, for
every such line, the given command list is
executed with . initially set to that line. A
single command or the first of a list of
commands appears on the same line as the
global command. All lines of a multi-line list
except the last line must be ended with a \ ; a,
«, and c commands and associated input are
permitted; the . terminating input mode may be
omitted if it would be the last line of the
command list. An empty command list is
equivalent to the p command. The g, G, v, and
V commands are not permitted in the command
list. See also BUGS and the last paragraph
before FILES below.

(1,$)G/RE/
In the interactive Global command, the first
step is to mark every line that matches the given
RE. Then, for every such line, that line is
printed, . is changed to that line, and any one
command (other than one of the a, c, i , g, G,
v, and V commands) may be input and is
executed. After the execution of that command,
the next marked line is printed, and so on; a
new-line acts as a null command; an & causes
the re-execution of the most recent command
executed within the current invocation of G.
Note that the commands input as part of the
execution of the G command may address and
affect any lines in the buffer. The G command
can be terminated by an interrupt signal (ASCII
DEL or BREAK).

h
The Aelp command gives a short error message
that explains the reason for the most recent ?
diagnostic.

- 7 -

ED (1)

H
The i /elp command causes erf to enter a mode
in which error messages are printed for all
subsequent T diagnostics. It will also explain the
previous ? if there was one. The H command
alternately turns this mode on and off; it is
initially off.

(•) !
< text >

The insert command inserts the given text
before the addressed line; . is left at the last
inserted line, or, if there were none, at the
addressed line. This command differs from the
a command only in the placement of the input
text. Address 0 is not legal for this command.
The maximum number of characters that may
be entered from a terminal is 256 per line
(including the newline character).

(' '
The ;oin command joins contiguous lines by
removing the appropriate new-line characters. If
exactly one address is given, this command does
nothing.

The marA: command marks the addressed line
with name x, which must be a lower-case letter.
The address 'x then addresses this line; . is
unchanged.

The /ist command prints the addressed lines in
an unambiguous way: a few non-printing
characters (e.g., tab, backspace) are represented
by (hopefully) mnemonic overstrikes, all other
non-printing characters are printed in octal, and
long lines are folded. An / command may be
appended to any other command other than e,
/ , r , or w.

(. , .)ma
The move command repositions the addressed
line(s) after the line addressed by a. Address 0
is legal for a and causes the addressed line(s) to
be moved to the beginning of the file; it is an
error if address a falls within the range of moved
lines; • is left at the last line moved.

(. , .) n
The number command prints the addressed

- 8 -

E D (1)

lines, preceding each line by its line number and
a tab character; . is left at the last line printed.
The n command may be appended to any other
command other than e, / , r , or w.

)P
The print command prints the addressed lines; .
is left at the last line printed. The p command
may be appended to any other command other
than e, f , r , or id; for example, dp deletes the
current line and prints the new current line.

The editor will prompt with a * for all
subsequent commands. The P command
alternately turns this mode on and off; it is
initially off.

The guit command causes ed to exit. No
automatic write of a file is done (but see
DIAGNOSTICS below).

The editor exits without checking if changes
have been made in the buffer since the last w
command.

file
The read command reads in the given file after
the addressed line. If no file name is given, the
currently-remembered file name, if any, is used
(see e and / commands). The currently-
remembered file name is not changed unless file
is the very first file name mentioned since ed
was invoked. Address 0 is legal for r and causes
the file to be read at the beginning of the buffer.
If the read is successful, the number of
characters read is typed; . is set to the last line
read in. If file is replaced by !, the rest of the
line is taken to be a shell («A(1)) command
whose output is to be read. For example, "$r
!ls" appends current directory to the end of the
file being edited. Such a shell command is not
remembered as the current file name.

!
a/RE/replacement / or

s / R E / replacement/g
The substitute command searches each
addressed line for an occurrence of the specified
RE. In each line in which a match is found, all
(non-overlapped) matched strings are replaced

E D (1)

by the replacement if the global replacement
indicator g appears after the command. If the
global indicator does not appear, only the first
occurrence of the matched string is replaced. It
is an error for the substitution to fail on all
addressed lines. Any character other than space
or new-line may be used instead of / to delimit
the RE and the replacement; . is left at the last
line on which a substitution occurred. See also
the last paragraph before FILES below.
An ampersand (&) appearing in the
replacement is replaced by the string matching
the RE on the current line. The special meaning
of & in this context may be suppressed by
preceding it by \ . As a more general feature,
the characters \n, where n is a digit, are
replaced by the text matched by the n-th
regular subexpression of the specified RE
enclosed between \ (and \) . When nested
parenthesized subexpressions are present, n is
determined by counting occurrences of
starting from the left. When the character % is
the only character in the replacement, the
replacement used in the most recent substitute
command is used as the replacement in the
current substitute command. The % loses its
special meaning when it is in a replacement
string of more than one character or is preceded
by a \ .

A line may be split by substituting a new-line
character into it. The new-line in the
replacement must be escaped by preceding it by
\ . Such substitution cannot be done as part of a
g or v command list.

(• » •) * « .
This command acts just like the m command,
except that a copy of the addressed lines is
placed after address a (which may be 0); . is left
at the last line of the copy.

u
The undo command nullifies the effect of the
most recent command that modified anything in
the buffer, namely the most recent a, c, d, g, i,
j, m, r, 8, t, v, G, or 7 command.

(1 , $)v/RE/command list
This command is the same as the global
command g except that the command list is

- 10 -

E D (1)

executed with . initially set to every line that
does not match the RE.

ommand is the same as the interactive
global command G except that the lines that are
marked during the first step are those that do
not match the RE.

The write command writes the addressed lines
into the named file. If the file does not exist, it
is created with mode 666 (readable and writable
by everyone), unless your umask setting (see
sh(1)) dictates otherwise. The currently-
remembered file name is not changed unless file
is the very first file name mentioned since ed
was invoked. If no file name is given, the
currently-remembered file name, if any, is used
(see e and / commands); . is unchanged. If the
command is successful, the number of characters
written is typed. If file is replaced by !, the rest
of the line is taken to be a shell («A(l))
command whose standard input is the addressed
lines. Such a shell command is not remembered
as the current file name.

The line number of the addressed line is typed; .
is unchanged by this command.

Ishell command
The remainder of the line after the ! is sent to
the CTIX System shell («A(l)) to be interpreted
as a command. Within the text of that
command, the unescaped character % is
replaced with the remembered file name; if a !
appears as the first character of the shell
command, it is replaced with the text of the
previous shell command. Thus, !! will repeat the
last shell command. If any expansion is
performed, the expanded line is echoed; . is
unchanged.

(.-(-1) < new-line >
An address alone on a line causes the addressed
line to be printed. A new-line alone is
equivalent to . + l p ; it is useful for stepping
forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed
prints a ? and returns to its command level.

(1 , $)w file

- 11 -

ED (1)

Some size limitations: 512 characters per line, 256
characters per global command list, 64 characters per file
name, and 128K characters in the buffer. The limit on
the number of lines depends on the amount of user
memory: each line takes 1 word.
When reading a file, erf discards ASCII NUL characters
and all characters after the last new-line. Files (e.g.,
a . ou t) that contain characters not in the ASCII set (bit 8
on) cannot be edited by ed.
If the closing delimiter of a RE or of a replacement string
(e.g., /) would be the last character before a new-line,
that delimiter may be omitted, in which case the
addressed line is printed. The following pairs of
commands are equivalent:

s / s l / s 2 s / s l / s 2 / p
g / s l g / s l / p
?sl ?sl?

FILES
/ t m p / e # temporary; # is the process number,
ed.hup work is saved here if the terminal is hung up.

DIAGNOSTICS
? for command errors.
?file for an inaccessible file.

(use the Aelp and Help commands for
detailed explanations).

If changes have been made in the buffer since the last w
command that wrote the entire buffer, ed warns the user
if an at tempt is made to destroy erf's buffer via the e or
q commands: it prints ? and allows one to continue
editing. A second e or q command at this point will
take effect. The — command-line option inhibits this
feature.

SEE ALSO
grep(l), sed(l), sh(l), stty(l), fspec(4), regexp(5).
Other editors: vi(l), ex(l).

WARNINGS AND BUGS
A / command cannot be subject to a g or a v command.
The / command and the ! escape from the e, r, and w
commands cannot be used if the the editor is invoked
from a restricted shell (see «A(1)).
The sequence \ n in a RE does not match a new-line
character.
The / command mishandles DEL.
Characters are masked to 7 bits on input.
Due to export restrictions, encryption features are not
available.

- 12 -

E D I T (1)

NAME
edit - text editor (variant of ex for casual users)

SYNOPSIS
edit [— r] name ...

DESCRIPTION
Edit is a variant of the text editor ex recommended for
new or casual users who wish to use a command-oriented
editor. The following brief introduction should help you
get started with edit. If you are using a CRT terminal you
may want to learn about the display editor vi.

BRIEF INTRODUCTION
To edit the contents of an existing file you begin with
the command "edit name" to the shell. Edit makes a
copy of the file which you can then edit, and tells you
how many lines and characters are in the file. To create
a new file, just make up a name for the file and try to
run edit on it; you will cause an error diagnostic, but do
not worry.
Edit prompts for commands with the character which
you should see after starting the editor. If you are
editing an existing file, then you will have some lines in
edit's buffer (its name for the copy of the file you are
editing). Most commands to edit use its "current line" if
you do not tell them which line to use. Thus if you say
print (which can be abbreviated p) and hit carriage
return (as you should after all edit commands) this
current line will be printed. If you delete (d) the
current line, edit will print the new current line. When
you start editing, edit makes the last line of the file the
current line. If you delete this last line, then the new
last line becomes the current one. In general, after a
delete, the next line in the file becomes the current line.
(Deleting the last line is a special case.)
If you start with an empty file or wish to add some new
lines, then the append (a) command can be used. After
you give this command (typing a carriage return after
the word append) edit will read lines from your terminal
until you give a line consisting of just a " . " , placing
these lines after the current line. The last line you type
then becomes the current line. The command insert (i)
is like append but places the lines you give before,
rather than after, the current line.
Edit numbers the lines in the buffer, with the first line
having number 1. If you give the command "1" then
edit will type this first line. If you then give the
command delete edit will delete the first line, line 2 will

E D I T (l)

become line 1, and edit will print the current line (the
new line 1) so you can see where you are. In general, the
current line will always be the last line affected by a
command.
You can make a change to some text within the current
line by using the subst i tute (s) command. You say
"s/old /new/" where old is replaced by the old
characters you want to get rid of and new is the new
characters you want to replace it with.
The command file (f) will tell you how many lines there
are in the buffer you are editing and will say
"[Modified]" if you have changed it. After modifying a
file you can put the buffer text back to replace the file
by giving a wri te (w) command. You can then leave
the editor by issuing a quit (q) command. If you run
edit on a file, but do not change it, it is not necessary
(but does no harm) to wr i te the file back. If you try to
quit from edit after modifying the buffer without writing
it out, you will be warned that there has been "No
write since last change" and edit will await another
command. If you wish not to wr i t e the buffer out then
you can issue another quit command. The buffer is then
irretrievably discarded, and you return to the shell.
By using the delete and append commands, and giving
line numbers to see lines in the file you can make any
changes you desire. You should learn at least a few
more things, however, if you are to use edit more than a
few times.
The change (c) command will change the current line to
a sequence of lines you supply (as in append you give
lines up to a line consisting of only a "."). You can tell
change to change more than one line by giving the line
numbers of the lines you want to change, i.e.,
"3,5change". You can print lines this way too. Thus
" l ,23p" prints the first 23 lines of the file.
The undo (u) command will reverse the effect of the last
command you gave which changed the buffer. Thus if
you give a subst i tute command which does not do what
you want, you can say undo and the old contents of the
line will be restored. You can also undo an undo
command so that you can continue to change your mind.
Edit will give you a warning message when commands
you do affect more than one line of the buffer. If the
amount of change seems unreasonable, you should
consider doing an undo and looking to see what
happened. If you decide that the change is ok, then you
can undo again to get it back. Note that commands

- 2 -

E D I T (l)

such as write and quit cannot be undone.
To look at the next line in the buffer you can just hit
carriage return. To look at a number of lines hit T)
(control key and, while it is held down D key, then let
up both) rather than carriage return. This will show you
a half screen of lines on a CRT or 12 lines on a hardcopy
terminal. You can look at the text around where you are
by giving the command "z.". The current line will then
be the last line printed; you can get back to the line
where you were before the "z ." command by saying
" " " . The t command can also be given other following
characters " z - " prints a screen of text (or 24 lines)
ending where you are; " z + " prints the next screenful. If
you want less than a screenful of lines, type in "z.12" to
get 12 lines total. This method of giving counts works in
general; thus you can delete 5 lines starting with the
current line with the command "delete 5".
To find things in the file, you can use line numbers if
you happen to know them; since the line numbers change
when you insert and delete lines this is somewhat
unreliable. You can search backwards and forwards in
the file for strings by giving commands of the form
/ t e x t / to search forward for text or Ttext? to search
backward for text. If a search reaches the end of the file
without finding the text it wraps, end around, and
continues to search back to the line where you are. A
useful feature here is a search of the form / ' t e x t / which
searches for text at the beginning of a line. Similarly
/ t e x t $ / searches for text at the end of a line. You can
leave off the trailing / or ? in these commands.
The current line has a symbolic name "." ; this is most
useful in a range of lines as in ".,Sprint" which prints
the rest of the lines in the file. To get to the last line in
the file you can refer to it by its symbolic name "$".
Thus the command "$ delete" or "$d" deletes the last
line in the file, no matter which line was the current line
before. Arithmetic with line references is also possible.
Thus the line " $ - 5 " is the fifth before the last, and
" .+20" is 20 lines after the present.
You can find out which line you are at by doing " . = " .
This is useful if you wish to move or copy a section of
text within a file or between files. Find out the first and
last line numbers you wish to copy or move (say 10 to
20). For a move you can then say "10,20delete a " which
deletes these lines from the file and places them in a
buffer named a. Edit has 26 such buffers named a
through z. You can later get these lines back by doing

E D I T (l)

"put a" to put the contents of buffer a after the current
line. If you want to move or copy these lines between
files you can give an edit (e) command after copying the
lines, following it with the name of the other file you
wish to edit, i.e., "edit chapter2". By changing delete to
yank above you can get a pattern for copying lines. If
the text you wish to move or copy is all within one file
then you can just say "10,20move $" for example. It is
not necessary to use named buffers in this case (but you
can if you wish).

SEE ALSO
ex(l), vi(l).

ENABLE (1)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [—c] [—r[reason]] printers

DESCRIPTION
Enable activates the named printers, enabling them to
print requests taken by /p(l). Use Ipstat(l) to find the
status of printers.
Disable deactivates the named printers, disabling them
from printing requests taken by lp(1). By default, any
requests that are currently printing on the designated
printers will be reprinted in their entirety either on the
same printer or on another member of the same class.
Use lpstat(1) to find the status of printers. Options
useful with disable are:
—c Cancel any requests tha t are currently

printing on any of the designated printers.
—r[reason] Associates a reason with the deactivation

of the printers. This reason applies to all
printers mentioned up to the next —r
option. If the — r option is not present or
the — r option is given without a reason,
then a default reason will be used.
Reason is reported by Ipstat(l).

FILES
/usr /spool/ lp/*

SEE ALSO
lp(l), lpstat(l).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

E N V (1)

NAME
env - set environment for command execution

SYNOPSIS
env [—] [n a m e = v a l u e] ... [command args]

DESCRIPTION
Env obtains the current environment, modifies it
according to its arguments, then executes the command
with the modified environment. Arguments of the form
name—value are merged into the inherited environment
before the command is executed. The — flag causes the
inherited environment to be ignored completely, so tha t
the command is executed with exactly the environment
specified by the arguments.
If no command is specified, the resulting environment is
printed, one name-value pair per line.

SEE ALSO
sh(l), exec(2), profile(4), environ(5).

E Q N (l)

NAME
eqn, neqn, checkeq - format mathematical text for nroff
or troff

SYNOPSIS
eqn [- d x y] [- p n] [- s n] [- f n] [files]
neqn [- d x y] [- p n 1 [- s n] [—fn] [files]
checkeq [files]

DESCRIPTION
Eqn is a troff(1) preprocessor for typesetting
mathematical text on a phototypesetter, while neqn is
used for the same purpose with nroff on typewriter-like
terminals. Usage is almost always:

eqn files | troff
neqn files | nroff

or equivalent.
If no files are specified (or if — is specified as the last
argument), these programs read the s tandard input. A
line beginning with .EQ marks the s tar t of an equation;
the end of an equation is marked by a line beginning
with .EN. Neither of these lines is altered, so they may
be defined in macro packages to get centering,
numbering, etc. It is also possible to designate two
characters as delimiters; subsequent text between
delimiters is then treated as eqn input. Delimiters may
be set to characters x and y with the command-line
argument — dxy or (more commonly) with del im xy
between .EQ and .EN. The left ana right delimiters
may be the same character; the dollar sign is often used
as such a delimiter. Delimiters are turned off by delim
off . All text that is neither between delimiters nor
between .EQ and .EN is passed through untouched.

The program checkeq reports missing or unbalanced
delimiters and . E Q / . E N pairs.
Tokens within eqn are separated by spaces, tabs, new-
lines, braces, double quotes, tildes, and circumflexes.
Braces { } are used for grouping; generally speaking,
anywhere a single character such as x could appear, a
complicated construction enclosed in braces may be used
instead. Tilde (~) represents a full space in the output,
circumflex (~) half as much.
Subscripts and superscripts are produced with the
keywords sub and sup. Thus x sub^j makes Xj,
a sub k sup 2 produces <u2, while ex +y is made with
e sup {x sup 2 + y sup 2). Fractions are made with

E Q N (l)

over: a over b yields sqrt makes square roots:
6 ! 1 over sqrt {ax sup 2+bx+e} results in

vax +bx +c
The keywords f rom and t o introduce lower and upper
limits: lim J^x,- is made with n Q
lim from {n -> inf } sum from 0 to n x sub i. Left
and right brackets, braces, etc., of the right height are
made with left and right:
left [x sup 2 + y sup 2 over alpha right j ~=~ 1
produces

a
Legal characters after left and r ight are braces,
brackets, bars, c and f for ceiling and floor, and " " for
nothing at all (useful for a right-side-only bracket). A
left thing need not have a matching r ight thing.
Vertical piles of things are made with pile, lpile, cpile,
and rpile:
pile {a above b above e}
produces
a
b.
c.
Piles may have arbitrary numbers of elements; lpile
left-justifies, pile and cpile center (but with different
vertical spacing), and rpile right justifies. Matrices are
made with matrix:

matrix { Icol { x sub i above y sub 2 } ccol { 1
above 2 } }

produces
xi 1

y2 2'
In addition, there is rcol for a right-justified column.
Diacritical marks are made with dot, dotdot , hat ,
tilde, bar, vec, dyad, and under: x dot = f(t) bar is
x =/ (t), y dotdot bar ~ = ~ n under is y —n, and
x vec ~=~ y dyad is x* = V-
Point sizes and fonts can be changed with size n or size
± n , roman, italic, bold, and f on t n. Point sizes and
fonts can be changed globally in a document by gsize n
and g font n, or by the command-line arguments — an
and - f n .

E Q N (1)

Normally, subscripts and superscripts are reduced by 3
points from the previous size; this may be changed by
the command-line argument —pn.
Successive display arguments can be lined up. Place
m a r k before the desired lineup point in the first
equation; place l ineup at the place tha t is to line up
vertically in subsequent equations.
Shorthands may be defined or existing keywords
redefined with define:

define thing % replacement %
defines a new token called thing tha t will be replaced by
replacement whenever it appears thereafter. The %
may be any character that does not occur in
replacement.

Keywords such as s u m int (J"), inf (oo), and
shorthands such as > = ' = an<^ '') a r e

recognized. Greek letters are spelled out in the desired
case, as in a lpha (a), or GAMMA (r). Mathematical
words such as sin, cos, and log are made Roman
automatically. Troff(1) four-character escapes such as
\ (d d (t) and \ (b s (0) may be used anywhere. Strings
enclosed in double quotes (" . . . ") are passed through
untouched; this permits keywords to be entered as text,
and can be used to communicate with troff(l) when all
else fails. Full details are given in the manual cited
below.

SEE ALSO
cw(l), mm(l) , mmt(l) , nroff(l), tb l (l) , troff(l) ,
eqnchar(5), mm(5), mv(5).

BUGS
To embolden digits, parentheses, etc., it is necessary to
quote them, as in bold "12.3*.
See also BUGS under trofJ(i).

E R R (7)

NAME
err - error-logging interface

DESCRIPTION
Minor device 0 of the err driver is the interface between
a process and the system's error-record collection
routines. The driver may be opened only for reading by
a single process with super-user permissions. Each read
causes an entire error record to be retrieved and
removed; the record is truncated if the read request is for
less than the record's length.
An appropriate command to the console sends console
information to the error record queue. See consolt(7).

FILES
/dev/error special file

SEE ALSO
errdemon(lM), console(7).

I

E R R D E A D (l M)

NAME
errdead - extract error records and status information
from dump

SYNOPSIS
/ e t c / e r r d e a d [-a[e][f]] [dumpfile] [namelist]

DESCRIPTION
When hardware errors are detected by the system, an
error record that contains information pertinent to the
error is generated. If the error-logging demon
errdemon(1M) is not active or if the system crashes
before the record can be placed in the error file, the error
information is held by the system in a local buffer.
errdead examines a system dump (or memory), extracts
such error records, and passes them to errpt(1M) for
analysis.
Errdead understands the following options:
—a Instead of passing extracted records to

errpt(lM), append them to / u s r / a d m / e r r f i l e ,
provided that the dump corresponds to the
namelist and that the dump is newer than the
error file.

—e Only valid if —a is also specified. Invoke
errdemon(1M) when done. This is normally
done in the rc script (see brc (1M)).

- f Only valid if - a is also specified. Write
extracted records even if the dump is older than
the error file.

The dumpfile specifies the file (or memory) that is to be
examined; if not given, errdead looks for a dump area by
scanning the available disks in the same order as does
the bootstrap ROM The system namelist is specified by
namelist; if not given, / u n i x is used.

FILES
/unix
/usr /b in /er rp t
/usr/tmp/errXXXXXX
/usr /adm/errf i le
/etc/log/confile

DIAGNOSTICS
Diagnostics may come from either errdead or errpt. In
either case, they are intended to be self-explanatory.

SEE ALSO
errdemon(lM), errpt(lM).

system namelist
analysis program
temporary file
repository for error records
console file

ERRDEMON (1M)

NAME
errdemon - error-logging demon

SYNOPSIS
/ u s r / l i b / e r r d e m o n [-n] [-c file] [file]

DESCRIPTION
The error logging demon errdemon collects error records
from the operating system by reading the special file
/ d e v / e r r o r and places them in file. If file is not
specified when the demon is activated,
/ u s r / a d m / e r r f i l e is used. Note that file is created if it
does not exist; otherwise, error records are appended to
it, so that no previous error data is lost. No analysis of
the error records is done by errdemon; that responsibility
is left to errp<(lM). Errdemon can also extract console
records; the —n option disables this, thus forcing all
console reports to stay in a circular buffer in the kernel.
The —c option allows specifying a console file. The
default console file is / e t c / l o g / c o n f i l e . The error-
logging demon is terminated by sending it a software kill
signal (see kill(1)). Only the superuser may start the
demon, and only one demon may be active at any time.

FILES
/dev/error source of error records
/usr/adm/errfi le repository for error records
/etc/log/confile console records
/dev/console

DIAGNOSTICS
The diagnostics produced by errdemon are intended to
be self-explanatory.

SEE ALSO
errpt(lM), errstop(lM), kill(l), err(7).

E R R P T (1 M)

NAME
errpt - process a report of logged errors

SYNOPSIS
errpt [options] [files]

DESCRIPTION
Errpt processes data collected by the error logging
mechanism (errdemon(1M)) and generates a report of
that data. The default report is a summary of all errors
posted in the files named. Options apply to all files and
are described below. If no files are specified, errpt
attempts to use / u s r / a d m / e r r f i l e as file.
A summary report notes the options that may limit its
completeness, records the time stamped on the earliest
and latest errors encountered, and gives the total number
of errors of one or more types. Each device summary
contains the total number of unrecovered errors,
recovered errors, errors unabled to be logged, I /O
operations on the device, and miscellaneous activities
that occurred on the device. The number of times that
errpt has difficulty reading input data is included as
read errors.
Any detailed report contains, in addition to specific error
information, all instances of the error logging process
being started and stopped, and any time changes (via
date\i)) that took place during the interval being
processed. A summary of each error type included in the
report is appended to a detailed report.
A report may be limited to certain records in the
following ways:
—s date

—e date

- a

—d devlist

Ignore all records posted earlier than
date, where date has the form
mmddhhmmyy, consistent in meaning
with the date(l) command.
Ignore all records posted later than
date, whose form is as described
above.
Produce a detailed report that includes
all error types.
A detailed report is limited to data
about devices given in devlist, where
devlist can be one of two forms: a list
of device identifiers separated from
one another by a comma, or a list of
device identifiers enclosed in double
quotes and separated from one another

- 1 -

E R R P T (1 M)

by a comma and/or more spaces.
Errpt is familiar with the block
devices GDT (0 to 15). Additional
identifiers are int, mem, QICO for
1/4-inch tape, and T P O for 1/2-inch
tape, which include detailed reports of
stray-interrupt, and t t y and serial
asynchronous terminals memory-parity
type errors, respectively.

—p n Limit the size of a detailed report to n
pages.

- f In a detailed report, limit the reporting
of block device errors to unrecovered
errors.

Logical blocks in the filesystem are 1024 bytes. Physical
sector numbers are 512-byte blocks.

FILES
/usr/adm/errf i le default error file

SEE ALSO
date(l), errdead(lM), errdemon(lM), errfile(4).

E R R S T O P (1 M)

NAME
errstop - terminate the error-logging demon

SYNOPSIS
/ e t c / e r r s t o p [namelist]

DESCRIPTION
The error-logging demon errdemon (lM) is terminated by
using errstop. This is accomplished by executing ps(l)
to determine the demon's identity and then sending it a
software kill signal (see signal(2)); / u n i x is used as the
system namelist if none is specified. Only the super-user
may use errstop.

FILES
/unix default system namelist

DIAGNOSTICS
The diagnostics produced by errstop are intended to be
self-explanatory.

SEE ALSO
errdemon(lM), ps(l), kill(2). signal(2).

E X (1)

NAME
ex - text editor

SYNOPSIS
f * ["] [- v 1 [- t tag] [- r] [- R]
[-{-command, j [— 1] name ...

DESCRIPTION
Ex is the root of a family of editors: ex and vi. Ex is a
superset of ed, with the most notable extension being a
display editing facility. Display based editing is the
focus of vi.
If you have a CRT terminal, you may wish to use a
display based editor; in this case see v«(l), which is a
command which focuses on the display editing portion of
ex.

FOR ED USERS
If you have used ed you will find that ex has a number
of new features useful on CRT terminals. Intelligent
terminals and high speed terminals are very pleasant to
use with vi. Generally, the editor uses far more of the
capabilities of terminals than ed does, and uses the
terminal capability data base terminfo(4) and the type of
the terminal you are using from the variable TERM in
the environment to determine how to drive your
terminal efficiently. The editor makes use of features
such as insert and delete character and line in its visual
command (which can be abbreviated vi) and which is the
central mode of editing when using vi (1).
Ex contains a number of new features for easily viewing
the text of the file. The z command gives easy access to
windows of text. Hitting *D causes the editor to scroll a
half-window of text and is more useful for quickly
stepping through a file than just hitting return. Of
course, the screen-oriented visual mode gives constant
access to editing context.
Ex gives you more help when you make mistakes. The
undo (u) command allows you to reverse any single
change which goes astray. Ex gives you a lot of
feedback, normally printing changed lines, and indicates
when more than a few lines are affected by a command
so that it is easy to detect when a command has affected
more lines than it should have.
The editor also normally prevents overwriting existing
files unless you edited them so that you do not
accidentally clobber with a write a file other than the
one you are editing. If the system (or editor) crashes, or
you accidentally hang up the phone, you can use the

- 1 -

E X (1)

editor recover command to retrieve your work. This
will get you back to within a few lines of where you left
off.
Ex has several features for dealing with more than one
file at a time. You can give it a list of files on the
command line and use the next (n) command to deal
with each in turn. The next command can also be given
a list of filenames, or a pattern as used by the shell to
specify a new set of files to be dealt with. In general,
filenames in the editor may be formed with full shell
metasyntax. The metacharacter ' % ' is also available in
forming filenames and is replaced by the name of the
current file.
For moving text between files and within a file the editor
has a group of buffers, named a through z. You can
place text in these named buffers and carry it over when
you edit another file.
There is a command & in tx which repeats the last
subst i tute command. In addition there is a confirmed
substitute command. You give a range of substitutions
to be done and the editor interactively asks whether each
substitution is desired.
It is possible to ignore case of letters in searches and
substitutions. Ex also allows regular expressions which
match words to be constructed. This is convenient, for
example, in searching for the word "edi t" if your
document also contains the word "editor ."
Ex has a set of options which you can set to tailor it to
your liking. One option which is very useful is the
autoindent option which allows the editor to
automatically supply leading white space to align text.
You can then use the key as a backtab and space and
tab forward to align new code easily.
Miscellaneous new useful features include an intelligent
join (j) command which supplies white space between
joined lines automatically, commands < and > which
shift groups of lines, and the ability to filter portions of
the buffer through commands such as sort.

INVOCATION OPTIONS
The following invocation options are interpreted by ex:
— Suppress all interactive-user feedback.

This is useful in processing editor
scripts.

— v Invokes vi.

E X (1)

—t tagfR Edit the file containing the tag and
position the editor at its definition.

—r file Recover file after an editor or system
crash. If file is not specified a list of all
saved files will be printed.

—R Readonly mode set. prevents
accidentally overwriting the file.

+ command Begin editing by executing the specified
editor search or positioning command.

—1 LISP mode; indents appropriately for
lisp code, the () {} [[and]] commands
in vi are modified to have meaning for
lisp.

The name argument indicates files to be edited.
Ex States

Command

Insert

Normal and initial state. Input
prompted for by :. Your kill character
cancels partial command.
Entered by a i and c. Arbitrary text
may be entered. Insert is normally
terminated by line having only . on it,
or abnormally with an interrupt.

una
u
unm
ve
vi
w
x
y a
z
!
<
CR &

> D

Visual Entered by vi, terminates with Q
mand names and abbreviations
abbrev ab next n unabbrev
append a number nu undo
args ar unmap
change c preserve pre version
copy CO print P visual
delete d put pu write
edit e quit q xit
file f read re yank
global g recover rec window
insert i rewind rew escape
join j set se lshift
list 1 shell sh print next
map source so resubst
mark m a stop st rshift
move m substitute s scroll

Ex Command Addresses
n line n /pat next with pat
, current Tpat previous with pat
$ last x-n n before x
+ next x through y
- previous 'x marked with x

- 3 -

E X (1)

+ n n forward
% 1 , $

Initializing options
EXINIT
$ H O M E / . e x r c
. / . exrc
set x
set no a:
set x—val
set
set all
set x?

Most useful options
autoindent ai
auto write aw
ignorecase ic
lisp
list
magic
number
paragraphs
redraw
scroll
sect ions
shi f twidth
show match
show mode
s lowopen
window
wrapscan
wrapmargin

Scanning pattern formation

previous context

place set ' s here in environment var.
editor initialization file
editor initialization file
enable option
disable option
give value val
show changed options
show all options
show value of option x

supply indent
write before changing files
in scanning
() { } are s-exp's
print T for tab, $ at end
. [* special in patterns
number lines
macro names which start ..
simulate smart terminal
command mode lines
macro names ...
for < > , and input 'D
to) and } as typed
show insert mode in vi
stop updates during insert
visual mode lines
around end of buffer?
automatic line splitting

nu
para

sect
sw
sm
smd
slow

ws
wm

A beginning of line
$ end of line

any character
\< beginning of word
\> end of word
M , any char in str
t«<r ... not in str
x-y] ... between x and y

» any number of preceding
AUTHOR

Vt and ex are based on software developed by The
University of California, Berkeley, California, Computer
Science Division, Department of Electrical Engineering
and Computer Science.

E X (1)

FILES
/usr/l ib/ex?. ?strings
/usr/lib/ex?.?recover
/usr/l ib/ex?. ?preserve
/ usr/lib / terminfo

error messages
recover command
preserve command
describes capabilities of
terminals
editor startup file
editor startup file
editor temporary
named buffer temporary
preservation directory

$HOME / . eXrc . eXrc
./.exrc
/ tmp/Exnnnnn
/ tmp/Rxnnnnn
/usr/preserve

SEE ALSO
awk(l), ed(l), edit(l), grep(l), sed(l), vi(l), curses(3X),
term(4), terminfo(4).
CTIX Programmer's Guide.

CAVEATS AND BUGS
The undo command causes all marks to be lost on lines
changed and then restored if the marked lines were
changed.
Undo never clears the buffer modified condition.
The z command prints a number of logical rather than
physical lines. More than a screen full of output may
result if long lines are present.
File input /output errors do not print a name if the
command line '—' option is used.
There is no easy way to do a single scan ignoring case.
The editor does not warn if text is placed in named
buffers and not used before exiting the editor.
Null characters are discarded in input files and cannot
appear in resultant files.
Due to export restrictions, encryption features are not
available.

E X P A N D (1)

NAME
expand, unexpand - expand tabs to spaces, and vice
versa

SYNOPSIS
e x p a n d [- t abs top] [- tab l , tab2 , . . . , t abn] [file ...]
u n e x p a n d [- a] [file ... j

DESCRIPTION
Expand processes the named files or the standard input
writing the standard output with tabs changed into
blanks. Backspace characters are preserved into the
output and decrement the column count for tab
calculations. Expand is useful for pre-processing
character files (before sorting, looking at specific
columns, etc.) that contain tabs.
If a single tabstop argument is given then tabs are set
tabstop spaces apart instead of the default 8. If multiple
tabstops are given then the tabs are set at those specific
columns.
Unexpand puts tabs back into the data from the
standard input or the named files and writes the result
on the standard output. By default only leading blanks
and tabs are reconverted to maximal strings of tabs. If
the —a option is given, then tabs are inserted whenever
they would compress the resultant file by replacing two
or more characters.

E X P R (1)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After
evaluation, the result is written on the standard output.
Terms of the expression must be separated by blanks.
Characters special to the shell must be escaped. Note
that 0 is returned to indicate a zero value, rather than
the null string. Strings containing blanks or other
special characters should be quoted. Integer-valued
arguments may be preceded by a unary minus sign.
Internally, integers are treated as 32-bit, 2s complement
numbers.
The operators and keywords are listed below.
Characters that need to be escaped are preceded by \ .
The list is in order of increasing precedence, with equal
precedence operators grouped within { } symbols.
expr \| expr

returns the first expr if it is neither null nor 0,
otherwise returns the second expr.

expr \8c expr
returns the first expr if neither expr is null or 0,
otherwise returns 0.

expr { =, \>, \>=, \<, \< = , != } expr
returns the result of an integer comparison if
both arguments are integers, otherwise returns
the result of a lexical comparison.

expr { +, — } expr
addition or subtraction of integer-valued
arguments.

expr { / , % } expr
multiplication, division, or remainder of the
integer-valued arguments.

expr : expr
The matching operator : compares the first
argument with the second argument which must
be a regular expression. Regular expression
syntax is the same as that of ed(1), except that
all patterns are "anchored" (i.e., begin with *)
and, therefore, * is not a special character, in
that context. Normally, the matching operator
returns the number of characters matched (0 on
failure). Alternatively, the \ (. . . \) pattern

EXPR (1)

symbols can be used to return a portion of the
first argument.

EXAMPLES
1. a = v expr $a + 1 v

adds 1 to the shell variable a.
equal to either "/usr/abc/fi ie" or

, * / \ (. * \) ' \ | $a
returns the last segment of a path name
(i.e., file). Watch out for / alone as an
argument: expr will take it as the
division operator (see BUGS below).

A better representation of example 2.

'For
just "file"
expr $a

expr

expr

/ / $ a : ' . * / \ 0 * \) '
The addition of the / / characters
eliminates any ambiguity about the
division operator and simplifies the
whole expression.

$VAR : '
returns the number of characters in
$VAR.

SEE ALSO
ed(l), sh(l).

EXIT CODE
As a side effect of expression evaluation, expr returns the
following exit values:

0 if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.

DIAGNOSTICS
syntax error for operator/operand errors
non-numeric argument if arithmetic is attempted on

such a string
BUGS

After argument processing by the shell, expr cannot tell
the difference between an operator and an operand
except by the value. If $a is an = , the command:

expr $a = ' = '
looks like:

expr = = =

- 2 -

EXPR (1)

as the arguments are passed to expr (and they will all be
taken as the = operator). The following works:

expr X$a = X =

- 3 -

F A C T O R (1)

NAME
factor - factor a number

SYNOPSIS
f a c t o r [number]

DESCRIPTION
When factor is invoked without an argument, it waits
for a number to be typed in. If you type in a positive
number less than 25 (about 7 .2X10 1 8) it will factor the
number and print its prime factors; each one is printed
the proper number of times. Then it waits for another
number. It exits if it encounters a zero or any non-
numeric character.
If factor is invoked with an argument , it factors the
number as above and then exits.
Maximum time to factor is proportional to y/n and
occurs when n is prime or the square of a prime.

DIAGNOSTICS
" O u c h " for input out of range or for garbage input.

F F (1M)

NAME
ff - list file names and statistics for a file system

SYNOPSIS
/ e t c / f f [options] special

DESCRIPTION
Ff reads the i-list and directories of the special file,
assuming it to be a file system, saving i-node data for
files which match the selection criteria. Output consists
of the path name for each saved i-node, plus any other
file information requested using the print options below.
Output fields are positional. The output is produced in
i-node order; fields are separated by tabs. The default
line produced by / / i s :

path-name i-number
With all options enabled, output fields would be:

path-name i-number size uid
The argument n in the option descriptions that follow is
used as a decimal integer (optionally signed), where + n
means more than n, —n means less than n, and n means
exactly n. A day is defined as a 24 hour period.
- I Do not print the i-node number after each

path name.
—1 Generate a supplementary list of all path

names for multiply linked files.
—p prefix The specified prefix will be added to each

generated path name. The default is ..
-s P r in t the file size, in bytes, after each

path name.
—u Pr in t the owner's login name after each

path name.
—a n Select if the i-node has been accessed in n

days.
—m n Select if the i-node has been modified in n

days.
- c n Select if the i-node has been changed in n

days.
—n file Select if the i-node has been modified

more recently than the argument file.
—i i-node-list Generate names for only those i-nodes

specified in i-node-list.
EXAMPLES

To generate a list of the names of all files on a specified

- 1 -

F F (1M)

file system:

ff - I /dev/rdsk/cOdOsl
To produce an index of files and i-numbers which are on
a file system and have been modified in the last 24
hours:

ff - m - 1 /dev/cOdOsl > / log/incbackup/usr/ tuesday
To obtain the path names for i-nodes 451 and 76 on a
specified file system:

ff - i 451,76 /dev / rdsk /c0dls3
SEE ALSO

finc(lM), find(l), frec(lM), ncheck(lM).
BUGS

Only a single path name out of any possible ones will be
generated for a multiply linked i-pode, unless the —1
option is specified. When —1 is specified, no selection
criteria apply to the names generated. All possible
names for every linked file on the file system will be
included in the output.
On very large file systems, memory may run out before
f f does.

FILE (1)

NAME
file - determine file type

SYNOPSIS
file [— c] [—f ffile] [—m mfile] arg ...

DESCRIPTION
File performs a series of tests on each argument in an
a t tempt to classify it. If an argument appears to be
ASCII, file examines the first 512 bytes and tries to guess
its language. If an argument is an executable a . o u t , file
will print the version stamp, provided it is greater than 0
(see ld{ 1)).
If the - f option is given, the next argument is taken to
be a file containing the names of the files to be
examined.
File uses the file / e t c / m a g i c to identify files tha t have
some sort of magic number, that is, any file containing a
numeric or string constant tha t indicates its type.
Commentary at the beginning of / e t c / m a g i c explains
its format.
The —m option instructs file to use an alternate magic
file.
The —c flag causes file to check the magic file for format
errors. This validation is not normally carried out for
reasons of efficiency. No file typing is done under —c.

SEE ALSO
ar(l) , ld(l) .

F C N T L (5)

NAME
fcntl - file control options

SYNOPSIS
i n c l u d e < fcntl . h >

DESCRIPTION
The fcntl{2) function provides for control over open files.
The include file describes requests and arguments to
fcntl and open(2).

/ * Flag values accessible to open(2) and fcntl(2) * /
/ * (The first three can only be set by open) * /
#def ine 0 _ R D 0 N L Y 0
#def ine 0 _ W R 0 N L Y 1
#def ine 0 _ R D W R 2
#def ine 0 _ N D E L A Y 04 / * Non-blocking I/O */
#def ine O^APPEND 010 / * append

(writes guaranteed at the end) * /
#def ine 0 _ S Y N C 020 j * synchronous write option * /
#def ine OJDIRECT 020000 / * perform direct I /O * /
#def ine 0 _ N 0 D I R E C T 040000 / * disable direct I / O * /

1* Flag values accessible only to open(2) */
#def ine 0 _ C R E A T 00400 j * open with file create

(uses third open arg)*/
#def ine 0 _ T R U N C 01000 / * open with truncation * /
#def ine 0 ^EXCL 02000 / * exclusive open * /

/ * fcntl(2) requests * /
#def ine F _ D U P F D 0 / * Duplicate fildes * /
#def ine F_GETFD 1 / * Get fildes flags * /
#def ine F _ S E T F D 2 / * Set fildes flags * /
#def ine F _ G E T F L 3 / * Get file f lags * /
#def ine F_SETFL 4 / * Set file f lags * /
#def ine F . G E T L K 5 / * Get blocking file locks * /
#def ine F_SETLK 6 / * Set or clear file locks and fail

on busy * /
#def ine F_SETLKW 7 / * Set or clear file locks and wait

on busy * /

/ * file segment locking control structure * /
struct flock {

short l_type;
short l_whence;
long l_start;
long l j e n ; / * if 0 then until EOF * /
int l_pid; / * returned with F_GETLK * /

5 / 8 6 - 1 -

F C N T L (5)

/ * file segment locking types * /
#def ine FJRDLCK 01 / * Read lock » /
#def ine F_WRLCK 02 / * Write lock * /
#def ine F_UNLCK 03 / * Remove locks * /

SEE ALSO
fcntl(2), open(2).

5/86 - 2 -

F I N C (1 M)

NAME
fine - fast incremental backup

SYNOPSIS
f i ne [selection-criteria] file-system raw-tape

DESCRIPTION
Fine selectively copies the input file-system to the
output raw-tape. The cautious will want to mount the
input file-system read-only to insure an accurate backup,
although acceptable results can be obtained in read-write
mode. The tape must be previously labelled by labelit
(see volcopy(1M)). The selection is controlled by the
selection-criteria, accepting only those i-nodes/files for
whom the conditions are true.
It is recommended that production of a fine tape be
preceded by the f f command, and the output of f f be
saved as an index of the tape's contents. Files on a fine
tape may be recovered with the free command.
The argument n in the selection-criteria which follow is
used as a decimal integer (optionally signed), where + n
means more than n , — n means less than n, and n means
exactly n. A day is defined as a 24 hours.

^ —a n

—m n

—c n

—11 file

True if the file has been accessed in n
days.
True if the file has been modified in n
days.
True if the i-node has been changed in
n days.
True for any file which has been
modified more recently than the
argument file.

EXAMPLES
To write a tape consisting of all files from file-system
/ u s r modified in the last 48 hours:

fine - m - 2 /dev/dsk/cOdOsl /dev/rmtO
SEE ALSO

cpio(l), ff(lM), frec(lM), volcopy(lM).

- 1 -

FIND (1)

NAME
find - find files

SYNOPSIS
f ind path-name-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for
each path name in the path-name-list (i.e., one or more
path names) seeking files that match a boolean
expression written in the primaries given below. In the
descriptions, the argument n is used as a decimal integer
where + n means more than n, —n means less than n
and n means exactly n.
—name file

-perm onum

- t y p e c

—links n
—user uname

-group gname

-size n c

—atime n

True if file matches the current file
name. Normal shell argument syntax
may be used if escaped (watch out for
[, ? and *).
True if the file permission flags exactly
match the octal number onum (see
chmod(1)). If onum is prefixed by a
minus sign, more flag bits (017777, see
afa<(2)) become significant and the
flags are compared.
True if the type of the file is c, where
e is b, c, d, p, or f for block special
file, character special file, directory,
fifo (a.k.a. named pipe), or plain file,
respectively.
True if the file has n links.
True if the file belongs to the user
uname. If uname is numeric and does
not appear as a login name in the
/ e t c / p a s s w d file, it is taken as a user
ID.
True if the file belongs to the group
gname. If gname is numeric and does
not appear in the / e t c / g r o u p file, it
is taken as a group ID.
True if the file is n blocks long (512
bytes per block). If n is followed by a
c, the size is in characters.
True if the file has been accessed in n
days. The access time of directories in
path-name-list is changed by find itself.

FIND (1)

—mtime n True if the file has been modified in n
days.

— ctime n True if the file has been changed in n
days.

—exec cmd True if the executed cmd returns a
zero value as exit status. The end of
cmd must be punctuated by an
escaped semicolon. A command
argument {} is replaced by the current
path name.

—ok cmd Like - e x e c except that the generated
command line is printed with a
question mark first, and is executed
only if the user responds by typing y.

—print Always true; causes the current path
name to be printed.

—cpio device Always true; write the current file on
device in cpio (4) format (5120-byte
records).

—newer file True if the current file has been
modified more recently than the
argument file.

—inum n True if the current file is inode
number n.

—depth Always true; causes descent of the
directory hierarchy to be done so that
all entries in a directory are acted on
before the directory itself. This can be
useful when find is used with cp»'o(l)
to transfer files that are contained in
directories without write permission.

(expression) True if the parenthesized expression is
true (parentheses are special to the
shell and must be escaped).

The primaries may be combined using the following
operators (in order of decreasing precedence):
1) The negation of a primary (! is the unary not

operator).
2) Concatenation of primaries (the and operation is

implied by the juxtaposition of two primaries).
3) Alternation of primaries (—o is the or operator).

EXAMPLE
To remove all files named a .out or *.o that have not

FIND (1)

been accessed for a week:
find / \ (- n a m e a.out - o - n a m e '*.o' \)
- a t ime +7 -exec rm {} \ ;

FILES
/etc/passwd, /etc/group

SEE ALSO
chmod(l), cpio(l), sh(l), test(l), st,at(2), cpio(4), fs(4).

- 3 -

F O L D (1)

NAME
fold - fold long lines for finite width output device

SYNOPSIS
fold [-columns] [file ...]

DESCRIPTION
Fold produces a folded version of its input, inserting
newlines so that none of its output lines is wider than
columns. If columns is omitted, folding is done at 80
columns.
If tabs are present in the input, columns should be a
multiple of eight.

SEE ALSO
expand(l)

WARNING
Overstriking can be spoiled by folding.

F R E C (1M)

NAME
free - recover files from a backup tape

SYNOPSIS
/ e t c / f r e c [—p path] [—f reqfile] raw-tape
i-number:name . . .

DESCRIPTION
Free recovers files from the specified raw-tape backup
tape written by volcopy{ 1M) or /mc(lM), given their i-
numbers. The data for each recovery request will be
written into the file given by name.
The —p option allows you to specify a default prefixing
path different from your current working directory. This
will be prefixed to any names that are not fully
qualified, i.e., that do not begin with / or . / . If any
directories are missing in the paths of recovery names
they will be created.
—p path Specifies a prefixing path to be used to

fully qualify any names that do not
start with / or . / .

—f reqfile Specifies a file which contains recovery
requests. The format is i-
number.newname, one per line.

EXAMPLES
To recover a file, i-number 1216 when backed-up, into a
file named junk in your current working directory:

free /dev/rmtO 1216:junk
To recover files with i-numbers 14156, 1232, and 3141
into files / u s r / s r e / e m d / a , / u s r / s r e / e m d / b and
/ u s r / j o e / a . c :

free - p /usr /src /cmd /dev/rmtO 14156:a
1232:b 3141:/usr/joe/a.c

SEE ALSO
cpio(l), ff(lM), finc(lM), volcopy(lM).

BUGS
While paving a path (i.e., creating the intermediate
directories contained in a pathname) free can only
recover i-node fields for those directories contained on
the tape and requested for recovery.

F S C K (1M)

NAME
fsck, dfsck - file system consistency check and
interactive repair

SYNOPSIS

/ e t c / d f s c k [optionsl] filsysl . . . — [options2]
filsys2 . . .

DESCRIPTION
Fsck

Fsck audits and interactively repairs inconsistent
conditions for CTIX system files. If the file system is
consistent, the number of files, number of blocks used,
and number of blocks free are reported. If the file
system is inconsistent, the operator is prompted for
concurrence before each correction is attempted. It
should be noted that some corrective actions will result
in some loss of data. The amount and severity of data
lost may be determined from the diagnostic output. The
default action for each consistency correction is to wait
for the operator to respond yes or no. If the operator
does not have write permission fsck will default to a —n
action. Upon completion fsck reports the number of used
and free 1024-byte blocks and the number of files in the
filesystem.
Modifying a mounted file system requires special
precautions by fsck, because a single sync (2) will undo
all of fsck's repair work. To prevent this, fsck performs
a syslocal{2) RESYNC. The system call forces CTIX to
reread the superblock from the disk.
Fsck has more consistency checks than its predecessors
check, dcheck, fcheck, and icheck combined.
The following options are interpreted by fsck.
—y Assume a yes response to all questions asked by

fsck.
—n Assume a no response to all questions asked by

fsck; do not open the file system for writing.
—bc:s
—s Ignore the actual free list or bit map and

(unconditionally) reconstruct a new one by
rewriting the super-block of the file system. The
file system should be unmounted while this is
done; if this is not possible, care should be taken
that the system is quiescent.

F S C K (1M)

If c:s is given on a standard file system, the free
list is organized with c blocks per cylinder and s
blocks skipped. If csa is omitted, the values
originally specified to mkfs are used. If these
values were not specified, then the value 400:7 is
used.

Sc:s
S Conditionally reconstruct the free list or bit map.

This option is like — s above except that the free
list or bit map is rebuilt only if there were no
discrepancies discovered in the file system. Using
- S will force a no response to all questions asked
by fsck. This option is useful for forcing free list
or bit map reorganization on uncontaminated file
systems.

t If fsck cannot obtain enough memory to keep its
tables, it uses a scratch file. If the —t option is
specified, the file named in the next argument is
used as the scratch file, if needed. Without the —t
flag, fsck will prompt the operator for the name
of the scratch file. The file chosen should not be
on the file system being checked, and if it is not a
special file or did not already exist, it is removed
when fsck completes.

q Quiet fsck. Do not print size-check messages in
Phase 1. Unreferenced f i fos will silently be
removed. If fsck requires it, counts in the
superblock will be automatically fixed and the
free list or bit map salvaged.

D Directories are checked for consistency. Useful
after system crashes. The following
inconsistencies are sought:
• Entries with null names but nonzero i-

numbers.
• Entries that are not padded to full size

with nulls.
• Invalid . and .. entries.
• Names that contain " / " .
• Final blocks that are not cleared past

end-of-file.
f Fast check. Check block and sizes (Phase 1) and

check the free list or bit map (Phase 5). The free
list or bit map will be reconstructed (Phase 6) if it
is necessary.

p Preen file systems only; intended for auto boot.
No operator input is prompted for. Instead, fsck

- 2 -

F S C K (I M)

applies standard fixes whenever the fix doesn't
involve loss of data. Only the following problems
are subject to this kind of fix:

Unreferenced i-nodes.
Link counts in i-nodes too large.
Missing blocks in the free list.
Blocks in the free list also in files.
Counts in the super block wrong.

Any problem not of this type causes fsck to
terminate with an error status. The startup script
that runs fsck (normally / e t c / b c h e c k r c) can
specify the - p option to fsck ana make a normal
boot contingent upon a normal fsck return status.

- b or - B
Resync file system after modifying (if file system
was mounted).

—M Convert file system to new bit map free list
format.

- O Convert file system to old free list format.
Both - M and - O imply - s .
If no file-systems are specified, fsck will read a list of
default file systems from the file / e t c / check l i s t .
Inconsistencies checked are as follows:

1. Blocks claimed by more than one i-node
or the free list.

2. Blocks claimed by an i-node or the free
list outside the range of the file system.

3. Incorrect link counts.
4. Size checks:

Incorrect number of blocks.
Directory size not 16-byte aligned.

5. Bad i-node format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated i-node.
I-node number out of range.

8. Super Block checks:
More than 65536 i-nodes.
More blocks for i-nodes than there
are in the file system.

9. Bad free block list format.
10. Total free block and/or free i-node count

incorrect.

F S C K (1M)

Orphaned files and directories (allocated but
unreferenced) are, with the operator's concurrence,
reconnected by placing them in the l o s t + f o u n d
directory, if the files are nonempty. The user will be
notified if the file or directory is empty or not. If it is
empty, fsck will silently remove them. Fsck will force
the reconnection of nonempty directories. The name
assigned is the i-node number. The only restriction is
that the directory l o s t + f o u n d must preexist in the root
of the file system being checked and must have empty
slots in which entries can be made. The l o s t+ found
directory is normally created by running
mkloat+fovnd(iy[) just after the file system is created
with mkfs (1M).
Checking the raw device is almost always faster and
should almost always be used.

Dfsck
Dfsck allows two file system checks on two different
drives simultaneously, optionsl and optionsB are used
to pass options to fsck for the two sets of file systems. A
— is the separator between the file system groups.
The dfsck program permits an operator to interact with
two /acfc(lM) programs at once. To aid in this, dfsck
will print the file system name for each message to the
operator. When answering a question from dfsck, the
operator must prefix the response with a 1 or a 2
(indicating that the answer refers to the first or second
file system group).
Do not use dfsck to check the root file system.

NOTE
The —b option should nearly always be used.
The raw device should always be used with mounted file
systems.

FILES
/etc/checklist contains default list of file

systems to check,
/etc/checkall optimizing dfsck shell file.

SEE ALSO
clri(lM), init(lM), mklost+found(lM), ncheck(lM),
checklist(4), fs(4).
MiniFrame Administrator's Reference Manual.
MightyFrame Administrator's Reference Manual.

BUGS
I-node numbers for . and . . in each directory should be
checked for validity.

F S C K (1M)

DIAGNOSTICS
The diagnostics produced
self-explanatory.
If —p was specified and
nonzero status is returned.

by fsck are intended to be

preening was inadequate, a

F S D B (I M)

NAME
fsdb - file system debugger

SYNOPSIS
/ e t c / f s d b special [—]

DESCRIPTION
Fsdb can be used to patch up a damaged file system
after a crash. It has conversions to translate block and
i-numbers into their corresponding disk addresses. Also
included are mnemonic offsets to access different parts of
an i-node. These greatly simplify the process of
correcting control block entries or descending the file
system tree.
Fsdb contains several error-checking routines to verify i-
node and block addresses. These can be disabled if
necessary by invoking fsdb with the optional — argument
or by the use of the O symbol. (Fsdb reads the i-size
and f-size entries from the superblock of the file system
as the basis for these checks.)
Numbers are considered decimal by default. Octal
numbers must be prefixed with a zero. During any
assignment operation, numbers are checked for a possible
truncation error due to a size mismatch between source
and destination.
Fsdb reads a block at a time and will therefore work
with raw as well as block I /O. A buffer management
routine is used to retain commonly used blocks of data in
order to reduce the number of read system calls. All
assignment operations result in an immediate write-
through of the corresponding block.
The symbols recognized by fsdb are:

absolute address
i convert from i-number to i-node

address
b convert to byte address
d directory slot offset
+ ,—>*,/ address arithmetic
q quit
> , < save, restore an address
= numerical assignment
= + incremental assignment
=— decremental assignment
= " character string assignment
O error checking flip flop
p general print facilities
f file print facility

F S D B (I M)

F buffer status
X hexadecimal or octal address flip-

flop (default is hexadecimal)
B byte mode
W word mode
D
!

double word mode
escape to shell

The print facilities generate a formatted output in
various styles. The current address is normalized to an
appropriate boundary before printing begins. It
advances with the printing and is left at the address of
the last item printed. The output can be terminated at
any time by typing the delete character. If a number
follows the p symbol, that many entries are printed. A
check is made to detect block boundary overflows since
logically sequential blocks are generally not physically
sequential. If a count of zero is used, all entries to the
end of the current block are printed. The print options
available are:

i print as i-nodes
d print as directories
o print as octal words
e print as decimal words
c print as characters
b print as octal bytes
s or S print as superblock
x print as hexadecimal words
h print as hexadecimal bytes

The f symbol is used to print da ta blocks associated
with the current i-node. If followed by a number, that
block of the file is printed. (Blocks are numbered from
zero.) The desired print option letter follows the block
number, if present, or the f symbol. This print facility
works for small as well as large files. It checks for
special devices and that the block pointers used to find
the data are not zero.
Dots, tabs, and spaces may be used as function
delimiters but are not necessary. A line with just a
new-line character will increment the current address by
the size of the data type last printed. That is, the
address is set to the next byte, word, double word,
directory entry or i-node, allowing the user to step
through a region of a file system. Information is printed
in a format appropriate to the data type. Bytes, words
and double words are displayed with the octal address
followed by the value in octal and decimal. A .B or .D
is appended to the address for byte and double word
values, respectively. Directories are printed as a

- 2 -

FSDB(1M)

directory slot offset followed by the decimal i-number
and the character representation of the entry name. I-
nodes are printed with labeled fields describing each
element.
The following mnemonics are used for i-node
examination and refer to the current working i-node:

m d mode
In link count
u id user ID number
gid group ID number
sz file size
a # data block numbers (0 - 12)
a t access time
m t modification time
m a j major device number
m i n minor device number
si #inodes field in superblock

d in superblock
in superblock

sf #b lks fie
0 sdO s_dinfo

s d l s dinfo in superblock
= B S set a blank superblock with file

system type IK and a magic
number

EXAMPLES
386i prints i-number 386 in an i-node

format. This now becomes the current
working i-node.

l n = 4 changes the link count for the working
i-node to 4.

l n = + l increments the link count by 1.
fc prints, in ASCII, block zero of the file

associated with the working i-node.
2i.fd prints the first 32 directory entries for

the root i-node of this file system.
d5i.fc changes the current i-node to that

associated with the 5th directory entry
(numbered from zero) found from the
above command. The first logical
block of the file is then printed in
ASCII.

512B.p0o prints the superblock of this file
system in octal.

2i .a0b.d7=3 changes the i-number for the seventh
directory slot in the root directory to
3. This example also shows how

F S D B (I M)

d7.nm="name"

a2b.pOd

512.ps

several operations can be combined on
one command line.
changes the name field in the directory
slot to the given string. Quotes are
optional when used with n m if the
first character is alphabetic.
prints the third block of the current i-
node as directory entries.
prints the superblock

SEE ALSO
fsck(lM), dir(4), fs(4).

FSPLIT (1)

NAME
fsplit - split f77, ratfor, or efl files

SYNOPSIS
fsplit options files

DESCRIPTION
Fsplit splits the named file(s) into separate files, with
one procedure per file. A procedure includes blockdata,
function, main, program, and subroutine program
segments. Procedure X is put in file X . f , X.r, or X .e
depending on the language option chosen, with the
following exceptions: main is put in the file MA/N.[efr]
and unnamed blockdata segments in the files
blockdataN.[efr] where ./V is a unique integer value for
each file.
The following options pertain:
- f (default) Input files are f77.
-T Input files are ratfor.
- e Input files are Efl.
—a Strip f77 input lines to 72 or fewer characters

with trailing blanks removed.
SEE ALSO

csplit(l), split(l).

F T P (I N)

NAME
f tp - file transfer program

SYNOPSIS
f t p [- v] [- d] [- i] [- n] [- g] [host]

DESCRIPTION
Ftp is the user interface to the ARPANET standard File
Transfer Protocol. The program copies files to and from
a remote node. It is more general than rcp(lN), because
a File Transfer Protocol server is available under a wider
range of operating systems.
The client node with which ftp is to communicate may
be specified on the command line. If this is done, ftp will
immediately attempt to establish a connection to an FTP
server on that host; otherwise, ftp will enter its command
interpreter and await instructions from the user. When
ftp is awaiting commands, the prompt " f t p > " is
displayed.

COMMANDS
The following commands are recognized by ftp. Each
machine session begins with one or more open
commands and and ends with one or more close or a
single bye command.
! Invoke a shell on the local machine.
append local-file [remote-file]

Append local-file to a file on the remote
machine. If remote-file is left
unspecified, the remote file is named
after the local file. File transfer uses
the current setting for type .
Set the file transfer type to network
ASCII . This is the default type.
Arrange that a bell be sounded after
each file transfer command is
completed.
Set the file transfer type to support
binary image transfer.
Terminate the FTP session with all the
remote servers and exit ftp.

cd remote-directory
Change the working directory on the
remote machine to remote-directory.

close Terminate the FTP session with the
current remote server, and return to the
command interpreter.

ascii

bell

binary

bye

- 1 -

F T P (I N)

copy hostl.filel host2:file2
Copy filel of remote host hostl to file 2
of remote host host2 . Connection to
hostl and host2 must be opened prior to
this command. The current setting for
t y p e must be the same for both remote
servers.

delete remote-file
Delete the file remote-file on the remote
machine.

debug [debug-value]
Toggle debugging mode. If an optional
debug-value is specified, it is used to set
the debugging level. When debugging
is on, ftp prints each command sent to
the remote machine, preceded by the
string " - > " .

dir [remote-directory } [local-file }
Print a listing of the directory contents
in the directory, remote-directory, and,
optionally, place the output in local-
file . If no directory is specified, the
current working directory on the remote
machine is used. If no local file is
specified, output comes to the terminal.

get remote-file [local-file }
Retrieve the remote-file and store it on
the local machine. If the local file
name is not specified, it is given the
same name it has on the remote
machine. The current setting for t y p e
is used while transferring the file.

glob Toggle file name globbing. With file
name globbing enabled, each local file
or pathname is processed for shell
metacharacters. Remote files specified
in mutiple item commands such as
m p u t are globbed by the remote
server. If globbing is disabled, all files
and pathnames are treated literally.

hash Toggle hash-sign (" # ") printing for
each data block transferred. The size of
a data block is 1024 bytes.

help [command 1
Print an informative message about the
meaning of command. If no argument

F T P (I N)

is given, ftp prints a list of the known
commands.

led [directory} Change the working directory on the
local machine. If no directory is
specified, the user's home directory is
used.

Is [remote-directory] [local-file]
Print an abbreviated listing of the
contents of a directory on the remote
machine. If remote-directory is left
unspecified, the current working
directory is used. If no local file is
specified, the output is sent to the
terminal.

mdelete remote-files
Delete the specified files on the remote
machine. If globbing is enabled, the
specification of remote files will first be
expanded using Is.

mdir remote-files local-file
Obtain a directory listing of multiple
files on the remote machine and place
the result in local-file.

m g e t remote-files
Retrieve the specified files from the
remote machine and place them in the
current local directory. If globbing is
enabled, the specification of remote files
will first be expanded using Is.

m k d i r directory-name
Make a directory on the remote
machine.

mis remote-files local-file
Obtain an abbreviated listing of
multiple files on the remote machine
and place the result in local-file.

m p u t local-files Transfer multiple local files from the
current local directory to the current
working directory on the remote
machine.

open host [port 1
Establish a connection to the specified
host FTP server. An optional port
number may be supplied, in which case,
ftp will at tempt to contact an FTP

F T P (I N)

server at that port. If the auto-login
option is on (default), ftp will also
attempt to automatically log the user in
to the FTP server (see below).
Connection to host becomes the current
connection. Note that multiple
connections can be made with the open
command. The current connection can
be changed by using the open
command for an already connected
host.

prompt Toggle interactive prompting (on by
default). Interactive prompting occurs
during multiple file transfers to allow
the user to selectively retrieve or store
files. If prompting is turned off, any
m g e t or m p u t will transfer all files.

put local-file [remote-file]
Store a local file on the remote
machine. If remote-file is left
unspecified, the local file name is used
in naming the remote file. File transfer
uses the current setting for t y p e .

pwd Print the name of the current working
directory on the remote machine.

quit A synonym for bye.
quote argl argS ...

The arguments specified are sent,
verbatim, to the remote FTP server. A
single FTP reply code is expected in
return.

recv remote-file [local-file]
A synonym for get.

remotehelp [command-name }
Request help from the remote FTP
server. If a command-name is specified,
it is supplied to the server as well.

rename [from] [to]
Rename the file from on the remote
machine, to the file to.

rmdir directory-name
Delete a directory on the remote
machine.

send local-file [remote-file]
A synonym for put.

- 4 -

F T P (I N)

sendport

s ta tus
tenex

trace
type [type-name

Toggle the use of PORT commands. By
default, ftp will a t tempt to use a PORT
command when establishing a
connection for each data transfer. If
the PORT command fails, ftp will use
the default data port. When the use of
PORT commands is disabled, no
attempt will be made to use PORT
commands for each data transfer. This
is useful for certain FTP
implementations which do ignore PORT
commands but, incorrectly, indicate
they've been accepted.
Show the current status of ftp.
Set the file transfer type to that needed
to talk to TENEX machines.
Toggle packet tracing.

Set the file transfer type to type-name.
If no type is specified, the current type
is printed. The default type is network
ASCII .

user user-name [password] [account]
Identify yourself to the remote FTP
server. If the password is not specified
and the server requires it, ftp will
prompt the user for it (after disabling
local echo). If an account field is not
specified, and the FTP server requires
it, the user will be prompted for it.
Unless ftp is invoked with "auto-login"
disabled, this process is done
automatically on initial connection to
the FTP server.

verbose Toggle verbose mode. In verbose mode,
all responses from the FTP server are
displayed to the user. In addition, if
verbose is on, when a file transfer
completes, statistics regarding the
efficiency of the transfer are reported.
By default, verbose is on.

? [command] A synonym for help.
Command arguments which have embedded spaces may
be quoted with quote (") marks.

F T P (I N)

FILE NAMING CONVENTIONS
Files specified as arguments to ftp commands are
processed according to the following rules.
1) If the file name " - " is specified, the standard

input (for reading) or standard output (for
writing) is used.

2) If the first character of the file name is the
remainder of the argument is interpreted as a
shell command. Ftp then forks a shell, using
popen(3) with the argument supplied, and reads
(writes) from the stdout (stdin). If the shell
command includes spaces, the argument must be
quoted; e.g. Is -It"". A particularly useful
example of this mechanism is: "dir |more".

3) Failing the above checks, if "globbing" is
enabled, local file names with shell
metacharacters are expanded.

FILE TRANSFER PARAMETERS
The FTP specification specifies many parameters which
may affect a file transfer. The type may be one of
"ascii", "image" (binary), "ebcdic", and "local byte
size" (for PDP-lOs and PDP-20s mostly). Ftp supports
the ASCII and image types of file transfer.
Ftp supports only the default values for the remaining
file transfer parameters: mode, form, and struct.

OPTIONS
Options may be specified at the command line, or to the
command interpreter.
The —v (verbose on) option forces ftp to show all
responses from the remote server, as well as report on
data transfer statistics.
The —n option restrains ftp from attempting "auto-
login" upon initial connection. If auto-login is enabled,
ftp will check the .netrc file in the user's home directory
for an entry describing an account on the remote
machine. If no entry exists, ftp will use the login name
on the local machine as the user identity on the remote
machine, and prompt for a password and, optionally, an
account with which to login.
The —i option turns off interactive prompting during
multiple file transfers.
The —d option enables debugging.
The - g option disables file name globbing.

F T P (I N)

WARNINGS
Many FTP server implementations do not support the
experimental operations such as print working directory.
Aborting a file transfer does not work correctly; if one
at tempts this, the local ftp will likely have to be killed
by hand.

SEE ALSO
rcp(lN).

F T P D (1NM)

NAME
ftpd - DARPA Internet File Transfer Protocol server

SYNOPSIS
/ e t c / f t p d [- d] [-1] [- t t imeout]

DESCRIPTION
Ftpd is the DARPA Internet File Transfer Protocol server
process. It is normally executed by the startup file,
/ e t c / r c .
If the —d option is specified, each socket created will
have debugging turned on (SO_DEBUG). With
debugging enabled, the system will trace all TCP packets
sent and received on a socket.
If the —1 option is specified, each FTP session is logged
on the standard output. This allows a line of the form

/e t c / f tpd - 1 > / tmp/f tp log
to be used to conveniently maintain a log of FTP
sessions.
The FTP server will timeout an inactive session after 60
seconds. If the —t option is specified, the inactivity
timeout period will be set to timeout.
The FTP server currently supports the following FTP
requests; case is not distinguished.
Request Descript ion
ACCT specify account (ignored)
ALLO allocate storage (vacuously)
APPE append to a file
CWD change working directory
DELE delete a file
HELP give help information
LIST give list files in a directory ("Is -lg")
MODE specify data transfer mode
NLST give name list of files in directory ("Is")
NOOP do nothing
PASS specify password
PASV set the server in passive mode
PORT specify data connection port
QUIT terminate session
RETR retrieve a file
RNFR specify rename-from file name
RNTO specify rename-to file name
STOR store a file
STRU specify data transfer structure
TYPE specify data transfer type
USER specify user name
XCUP change to parent of current working directory

- 1 -

F T P D (1 N M)

XCWD change working directory
XMKD make a directory
XPWD print the current working directory
XRMD remove a directory
The remaining FTP requests specified in Internet RFC
765 are recognized, but not implemented.
Ftpd interprets file names according to the "globbing"
conventions used by the shell.
Ftpd authenticates users according to three rules.
1) The user name must be in the password data

base, / etc/passwd, and not have a null
password. In this case a password must be
provided by the client before any file operations
may be performed.

2) The user name must not appear in the file
/etc/ftpusers, if that file exists.

3) If the user name is "anonymous" or " f tp" , an
anonymous f tp account must be present in the
password file (user "f tp") . In this case the user
is allowed to log in by specifying any password;
by convention this is given as the client host's
name.

In the last case, ftpd takes special measures to restrict
the client's access privileges. The server performs a
chroot(2) command to the home directory of the " f t p "
user. In order that system security is not breached, it is
recommended that the " f t p " home directory be
constructed with care; the following rules are
recommended.
IHOME Make the home directory owned by " f t p "

and unwritable by anyone.
$HOME/bin Make this directory owned by the

superuser and unwritable by anyone.
The program /«(l) must be present to
support the list commands. This
program should have mode 111.

$HOME/etc Make this directory owned by the
superuser and unwritable by anyone.
The files passwd(5) and group(5) must be
present for the Is command to work
properly. These files should be mode
444.

$HOME/pub Make this directory mode 777 and owned
by " f tp . " Users should then place files

F T P D (1 N M)

which are to be accessible via the
anonymous account in this directory.

SEE ALSO
ftp(lN).
"File Transfer Protocol," RFC 765 in Internet Protocol
Transition Workbook, March 1982. Network Information
Center, SRI International, Menlo Park, CA 94025.

WARNINGS
There is no support for aborting commands.
The anonymous account is inherently dangerous and
should be avoided when possible.
The server must run as the superuser to create sockets
with privileged port numbers. It maintains an effective
user id of the logged in user, reverting to the superuser
only when binding addresses to sockets. The possible
security holes have been extensively scrutinized, but are
possibly incomplete.

F U S E R (1 M)

NAME
fuser - identify processes using a file or file structure

SYNOPSIS
/ e t c / f u s e r [—ku] files [—] [[—ku] files]

DESCRIPTION
Fuser lists the process IDs of the processes using the files
specified as arguments. For block special devices, all
processes using any file on that device are listed. The
process ID is followed by c, p or r if the process is using
the file as its current directory, the parent of its current
directory (only when in use by the system), or its root
directory, respectively. If the —u option is specified, the
login name, in parentheses, also follows the process ID.
In addition, if the —k option is specified, the SIGKILL
signal is sent to each process. Only the super-user can
terminate another user's process (see kill(2\). Options
may be respecified between groups of files. The new set
of options replaces the old set, with a lone dash canceling
any options currently in force.
The process IDs are printed as a single line on the
standard output, separated by spaces and terminated
with a single new line. All other output is written on
standard error.

EXAMPLES
fuser - k u /dev/dsk/cOdOlsl

When run by the superuser, terminates all
processes that are preventing cartridge file
systems from being unmounted, listing the
process ID and login name of each process as it is
killed.

fuser - u /etc/passwd
Lists process IDs and login names of processes
that have the password file open.

fuser - k u /dev/dsk/cOdOsl - u /etc/passwd
Does both of the above examples in a single
command line.

FILES
/unix for namelist
/dev/kmem for system image
/dev/mem also for system image

SEE ALSO
mount(lM), ps(l), kill(2), signal(2).

F W T M P (1 M)

NAME
fwtmp, wtmpfix - manipulate connect accounting
records

SYNOPSIS
/ u s r / l i b / a c c t / f w t m p [— icl
/ u s r / l i b / a c c t / w t m p f i x [files]

DESCRIPTION
Fwtmp

Fwtmp reads from the standard input and writes to the
standard output, converting binary records of the type
found in w t m p to formatted ASCII records. The ASCII
version is useful to enable editing, via ed(1), bad records
or general purpose maintenance of the file.
The argument — ic is used to denote that input is in
ASCII form, and output is to be written in binary form.

Wtmpf ix
Wtmpfix is not currently available on MiniFrame.
Wtmpfix examines the standard input or named files in
w t m p format, corrects the t ime/date stamps to make
the entries consistent, and writes to the standard output.
A — can be used in place of files to indicate the standard
input. If t ime/date corrections are not performed,
acctconl will fault when it encounters certain date-
change records.
Each time the date is set, a pair of date change records
are written to / e t c / w t m p . The first record is the old
date denoted by the string old t ime placed in the line
field and the flag OLD_TIME placed in the type field of
the < u t m p . h > structure. The second record specifies
the new date and is denoted by the string new t ime
placed in the line field and the flag NEW_TIME placed
in the type field. Wtmpfix uses these records to
synchronize all time stamps in the file.
In addition to correcting t ime/date stamps, wtmpfix will
check the validity of the name field to ensure that it
consists soley of alphanumeric characters or spaces. If it
encounters a name that is considered invalid, it will
change the login name to INVALID and write a
diagnostic to the standard error. In this way, wtmpfix
reduces the chance that acctconl will fail when
processing connect accounting records.

FILES
/e tc /wtmp
/usr / include/utmp.h

F W T M P (1 M)

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), acctcon(lML
acctmerg(lM), acctprc(lM), acctsh(lM), ed(l),
runacct(lM), acct(2), acct(4), utmp(4).

i-

- 2 -

G D E V (1 G)

NAME
hpd, erase, hardcopy, tekset, td - graphical device
routines and filters

SYNOPSIS
hpd [-options] [GPS file . . .]
erase
hardcopy
tekset
t d [-eurn] [GPS file . . .]

DESCRIPTION
All of the commands described below reside in
/ u s r / b i n / g r a f (see graphics (1G)).
hpd Hpd translates a GPS (see jps(4)), to

instructions for the Hewlett-Packard 7221A
Graphics Plotter. A viewing window is
computed from the maximum and minimum
points in file unless the —u or —r option is
provided. If no file is given, the standard
input is assumed. Options are:
cn Select character set n , n between 0 and

5 (see the HP7221A Plotter Operating
and. Programming Manual, Appendix
A).

pn Select pen numbered n, « between 1
and 4 inclusive.

rn Window on GPS region n, n between 1
and 25 inclusive.

sn Slant characters n degrees clockwise
from the vertical.

u Window on the entire GPS universe.
xdn Set x displacement of the viewport's

lower left corner to n inches.
xvn Set width of viewport to n inches.
y d n Set y displacement of the viewport's

lower left corner to n inches.
y v n Set height of viewport to n inches.

erase Erase sends characters to a TEKTRONIX 4010
series storage terminal to erase the screen.

hardcopy When issued at a TEKTRONIX display
terminal with a hard copy unit, hardcopy
generates a screen copy on the unit.

t e k s e t Tekset sends characters to a TEKTRONIX
terminal to clear the display screen, set the

- 1 -

G D E V (I G)

display mode to alpha, and set characters to
the smallest font.

t d Td translates a GPS to scope code for a
TEKTRONIX 4010 series storage terminal. A
viewing window is computed from the
maximum and minimum points in file unless
the —u or — r option is provided. If no file is
given, the standard input is assumed.
Options are:
e Do not erase screen before initiating

display.
r n Display GPS region n, n between 1 and

25 inclusive.
u Display the entire GPS universe.

SEE ALSO
ged(lG), graphics(lG), gps(4).

G E D (I G)

NAME
ged - graphical editor

SYNOPSIS
ged [—euRrn] [GPS file . . .]

DESCRIPTION
Ged is an interactive graphical editor used to display,
construct, and edit GPS files on TEKTRONIX 4010 series
display terminals. If GPS file(s) are given, ged reads
them into an internal display buffer and displays the
buffer. The GPS in the buffer can then be edited. If —
is given as a file name, ged reads a GPS from the
standard input.
Ged accepts the following command line options:

e Do not erase the screen before the initial
display.

rn Display region number n.
u Display the entire GPS universe.
R Restricted shell invoked on use of !.

A GPS file is composed of instances of three graphical
objects: lines, arc, and text. Arc and lines objects have
a start point, or object-handle, followed by zero or more
points, or point-handles. Text has only an object-handle.
The objects are positioned within a Cartesian plane, or
universe, having 64K (-32K to +32K) points, or
universe-units, on each axis. The universe is divided
into 25 equal sized areas called regions. Regions are
arranged in five rows of five squares each, numbered 1 to
25 from the lower left of the universe to the upper right.
Ged maps rectangular areas, called windows, from the
universe onto the display screen. Windows allow the
user to view pictures from different locations and at
different magnifications. The universe-window is the
window with minimum magnification, i.e., the window
that views the entire universe. The home-window is the
window that completely displays the contents of the
display buffer.

COMMANDS
Ged commands are entered in stages. Typically each
stage ends with a < c r > (return). Prior to the final
< c r > the command may be aborted by typing r u b o u t .
The input of a stage may be edited during the stage
using the erase and kill characters of the calling shell.
The prompt * indicates that ged is waiting at stage 1.

Each command consists of a subset of the following

- 1 -

G E D (I G)

stages:
1. Command line

A command line consists of a command
name followed by arguments) followed by
a < c r > . A command name is a single
character. Command arguments are either
option(s) or a file-name. Options are
indicated by a leading —.

2. Text Text is a sequence of characters terminated
by an unescaped < c r > . (120 lines of text
maximum.)

3. Points Points is a sequence of one or more screen
locations (maximum of 30) indicated either
by the terminal crosshairs or by name.
The prompt for entering points is the
appearance of the crosshairs. When the
crosshairs are visible, typing:
sp (space) enters the current location as

a point. The point is identified with
a number.

$n enters the previous point numbered n.
>x labels the last point entered with the

upper case letter x.
enters the point labeled x.
establishes the previous points as the
current points. At the start of a
command the previous points are
those locations given with the
previous command.

= echoes the current points.
$.n enters the point numbered n from the

previous points.
erases the last point entered.
@ erases all of the points entered.

4. Pivot The pivot is a single location, entered by
typing < c r > or by using the $ operator,
and indicated with a *.

5. Destination
The destination is a single location entered
by typing < c r > or by using $.

COMMAND SUMMARY
In the summary, characters typed by the user are printed

- 2 -

G E D (1 G)

in bold . Command stages are printed in italics.
Arguments surrounded by brackets " [] " are optional.
Parentheses "()" surrounding arguments separated by
"or" means that exactly one of the arguments must be
given.

Construct commands:
Arc
Box
Circle
Hardware
Lines
Text

Edit commands:
Delete

Edit

Kopy

Move

Rotate

Scale

[—echo,style,weight] points
[—echo,style,weight] points
[—echo,style,weight] points
[—echo] text points
[—echo,style,weight] points
[—angle,echo,height,mid-point,right-
point,text,weight] text points

(— (universe or view) or points)
-angle,echo,height,style,weight] (—
universe or view) or points)

[—echo,points,x] points pivot
destination
[—echo,points,x] points pivot
destination
[—angle,echo,kopy,x] points pivot
destination
[—echo,factor,kopy,x] points pivot
destination

View commands:
coordinates
erase
new-display
object-handles
point-handles

view

x
zoom

points

(— (universe or view) or points)
(- (labelled-points or universe
or view) or points)
(— (home or universe or region)
or [—x] pivot destination)
[—view] points
[—out] points

- 3 -

G E D (1 G)

Other commands:
quit or Quit
read

set

write
Icommand
?

[—angle,echo,height,mid-point,right-
point ,text w ei ght
file-name [destination]
[—angle,echo,factor,height,kopy,mid-
point,points,
right-point,style,text,weight ,x]
file-name

Options:
Options specify parameters used to construct, edit, and
view graphical objects. If a parameter used by a
command is not specifed as an option, the default value
for the parameter will be used (see set below). The
format of command options is:

— option [, option]
where option is keyletter[value\. Flags take on the values
of true or false indicated by + and — respectively. If no
value is given with a flag, true is assumed.

Object options:
angle n
echo

factorn
heightn

kopy
mid-point

points

right-point

style type

Angle of n degrees.
When true, echo additions to the
display buffer.
Scale factor is n percent.
Height of text is n universe-units
(0 < n < 1280).
When true, copy rather than move.
When true, mid-point is used to
locate text string.
When true, operate on points
otherwise operate on objects.
When true, right-point is used to
locate text string.
Line style set to one of following
types:

so
da
dd
do

solid
dashed
dot-dashed
dotted

- 4 -

G E D (I G)

text

weight type

Area options:
home
out
region n
universe
view

Id long-dashed
When false, text strings are outlined
rather than drawn.
Sets line weight to one of following
types:

n narrow
m medium
b bold

Reference the home-window.
Reduce magnification.
Reference region n.
Reference the universe-window.
Reference those objects currently in
view.
Indicate the center of the referenced
area.

COMMAND DESCRIPTIONS
Construct commands:

Arc and Lines
behave similarly. Each consists of a command line
followed by points. The first point entered is the
object-handle. Successive points are point-handles.
Lines connect the handles in numerical order. Arc
fits a curve to the handles (currently a maximum
of 3 points will be fit with a circular arc; splines
will be added in a later version).

Box and Circle
are special cases of Lines and Arc, respectively.
Box generates a rectangle with sides parallel to the
universe axes. A diagonal of the rectangle would
connect the first point entered with the last point.
The first point is the object-handle. Point-handles
are created at each of the vertices. Circle
generates a circular arc centered about the point
numbered zero and passing through the last point.
The circle's object-handle coincides with the last
point. A point-handle is generated 180 degrees
around the circle from the object-handle.

Text and Hardware
generate text objects. Each consists of a command
line, text and points. Text is a sequence of
characters delimited by < c r > . Multiple lines of

G E D (1 G)

text may be entered by preceding a cr with a
backslash (i.e., \cr). The Text command creates
software generated characters. Each line of
software text is treated as a separate text object.
The first point entered is the object-handle for the
first line of text. The Hardware command sends
the characters in text uninterpreted to the
terminal.

Edi t commands:
Edit commands operate on portions of the display buffer
called defined areas. A defined area is referenced either
with an area option or interactively. If an area option is
not given, the perimeter of the defined area is indicated
by points. If no point is entered, a small defined area is
built around the location of the < c r > . This is useful to
reference a single point. If only one point is entered, the
location of the < c r > is taken in conjunction with the
point to indicate a diagonal of a rectangle. A defined
area referenced by points will be outlined with dotted
lines.
Delete

removes all objects whose object-handle lies within
a defined area. The universe option removes all
objects and erases the screen.

Edi t modifies the parameters of the objects within a
defined area. Parameters tha t can be edited are:

angle angle of text
height height of text
style style of lines and arc
•weight weight of lines, arc, and text.

Kopy (or Move)
copies (or moves) object- and/or point-handles
within a defined area by the displacement from the
pivot to the destination.

Rotate
rotates objects within a defined area around the
pivot. If the kopy flag is true then the objects are
copied rather than moved.

Scale
For objects whose object handles are within a
defined area, point displacements from the pivot
are scaled by factor percent. If the kopy flag is
true then the objects are copied rather than moved.

G E D (1 G)

View commands:
coordinates

prints the location of point{s) in universe- and
screen-units.

erase
clears the screen (but not the display buffer),

new-display
erases the screen then displays the display buffer.

object-handles (or point-handles)
labels object-handles (and/or point-handles) that
lie within the defined area with O (or P) . Point-
handles identifies labeled points when the labelled-
points flag is true.

view moves the window so that the universe point
corresponding to the pivot coincides with the screen
point corresponding to the destination. Options for
home, universe, and region display particular
windows in the universe.

x indicates the center of a defined area. Option view
indicates the center of the screen.

zoom
decreases (zoom out) or increases the magnification
of the viewing window based on the defined area.
For increased magnification, the window is set to
circumscribe the defined area. For a decrease in
magnification the current window is inscribed
within the defined area.

Other commands:
quit or Quit

exit from ged. Quit responds with ? if the display
buffer has not been written since the last
modification.

read inputs the contents of a file. If the file contains a
GPS it is read directly. If the file contains text it is
converted into text object(s). The first line of a
text file begins at destination.

set when given option(s) resets default parameters,
otherwise it prints current default values.

write
outputs the contents of the display buffer to a file.

! escapes ged to execute a CTIX system command.
? lists ged commands.

G E D (I G)

SEE ALSO
gdev(lG), graphics(lG), sh(l), gps(4).

- 8 -

G E T (1)

NAME
get - get a version of an SCCS file

SYNOPSIS
g e t [—rSID]
—aseq-no.l [—kj [•

—tl file . . .

-ccutoffl [—ilistl [—xlistl [—wstring
[-e] [-\\p]\ [-pj [- m] [-n] [- .] [- b

"8

DESCRIPTION
Get generates an ASCII text file from each named SCCS
file according to the specifications given by its keyletter
arguments, which begin with —. The arguments may be
specified in any order, but all keyletter arguments apply
to all named SCCS files. If a directory is named, get
behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last
component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of — is
given, the standard input is read; each line of the
standard input is taken to be the name of an SCCS file to
be processed. Again, non-SCCS files and unreadable files
are silently ignored.
The generated text is normally written into a file called
the g-file whose name is derived from the SCCS file name
by simply removing the leading s.; (see also FILES,
below).
Each of the keyletter arguments is explained below as
though only one SCCS file is to be processed, but the
effects of any keyletter argument applies independently
to each named file.
- r S I D The SCCS identification string (SID) of the

version (delta) of an SCCS file to be retrieved.
Table 1 below shows, for the most useful
cases, what version of an SCCS file is
retrieved (as well as the SID of the version to
be eventually created by delta(1) if the —e
keyletter is also used), as a function of the
SID specified.

- c c u t o f f Cutoff date-time, in the form:
YY[MM[DD[HH[MM[SS]]]j]

No changes (deltas) to the SCCS file which
were created after the specified cutoff date-
time are included in the generated ASCII text
file. Units omitted from the date-time
default to their maximum possible values;
that is, - c 7 5 0 2 is equivalent to
—c750228235959. Any number of non-

G E T (l)

numeric characters may separate the various
2-digit pieces of the cutoff date-time. This
feature allows one to specify a cutoff date in
the form: " - c 7 7 / 2 / 2 0:22:25". Note that
this implies that one may use the %E% and
%\5% identification keywords (see below) for
nested gets within, say the input to a
«end(lC) command:

~!get "~c%E% %U%" s.file
e Indicates that the get is for the purpose of

editing or making a change (delta) to the
SCCS file via a subsequent use of delta(1).
The —e keyletter used in a get for a
particular version (SID) of the SCCS file
prevents further gets for editing on the same
SID until delta is executed or the j (joint edit)
flag is set in the SCCS file (see arfm»n(I)).
Concurrent use of ge t —e for different SIDs is
always allowed.
If the g-file generated by get with an —e
keyletter is accidentally ruined in the process
of editing it, it may be regenerated by re-
executing the get command with the - k
keyletter in place of the —e keyletter.
SCCS file protection specified via the ceiling,
floor, and authorized user list stored in the
SCCS file (see admin(1)) are enforced when
the —e keyletter is used.

b Used with the —e keyletter to indicate that
the new delta should have an SID in a new
branch as shown in Table 1. This keyletter is
ignored if the b flag is not present in the file
(see admin(1)) or if the retrieved delta is not
a leaf delta. (A leaf delta is one that has no
successors on the SCCS file tree.)
Note: A branch delta may always be created
from a non-leaf delta.

ilist A list of deltas to be included (forced to be
applied) in the creation of the generated file.
The list has the following syntax:
< l i s t > : : = < r a n g e > | < l i s t > , < r a n g e >
< range > ::== SID | SID - SID
SID, the SCCS Identification of a delta, may
be in any form shown in the "SID Specified"
column of Table 1. Partial SIDs are
interpreted as shown in the "SID Retrieved"

- 2 -

G E T (1)

column of Table 1.
—xlist A list of deltas to be excluded (forced not to

be applied) in the creation of the generated
file. See the —i keyletter for the list format.

—k Suppresses replacement of identification
keywords (see below) in the retrieved text by
their value. The — k keyletter is implied by
the —e keyletter.

—l[p] Causes a delta summary to be written into an
I-file. If - l p is used then an I-file is not
created; the delta summary is written on the
standard output instead. See FILES for the
format of the l-file.

—p Causes the text retrieved from the SCCS file
to be written on the standard output. No g-
file is created. All output which normally
goes to the standard output goes to file
descriptor 2 instead, unless the —a keyletter
is used, in which case it disappears.

—a Suppresses all output normally written on the
standard output. However, fatal error
messages (which always go to file descriptor
2) remain unaffected.

- m Causes each text line retrieved from the SCCS
file to be preceded by the SID of the delta
that inserted the text line in the SCCS file.
The format is: SID, followed by a horizontal
tab, followed by the text line.

- n Causes each generated text line to be
preceded with the %M% identification
keyword value (see below). The format is:
%M% value, followed by a horizontal tab,
followed by the text line. When both the
—m and —n keyletters are used, the format
is: %M% value, followed by a horizontal tab,
followed by the —m keyletter generated
format.

- g Suppresses the actual retrieval of text from
the SCCS file. It is primarily used to generate
an l-file, or to verify the existence of a
particular SID.

- t Used to access the most recently created
("top") delta in a given release (e.g., - r l) , or
release and level (e.g., — r l . 2) .

- 3 -

G E T (l)

—w string Substitute string for all occurrences of
% W % when jertng the file.

-aseq-no. The delta sequence number of the SCCS file
delta (version) to be retrieved (see sccsfile{5)).
This keyletter is used by the como(1)
command; it is not a generally useful
keyletter, and users should not use it. If both
the —r and —a keyletters are specified, the
—a keyletter is used. Care should be taken
when using the —a keyletter in conjunction
with the —e keyletter, as the SID of the delta
to be created may not be what one expects.
The — r keyletter can be used with the —a
and - e keyletters to control the naming of
the SID of the delta to be created.

For each file processed, get responds (on the standard
output) with the SID being accessed and with the number
of lines retrieved from the SCCS file.
If the —e keyletter is used, the SID of the delta to be
made appears after the SID accessed and before the
number of lines generated. If there is more than one
named file or if a directory or standard input is named,
each file name is printed (preceded by a new-line) before
it is processed. If the — i keyletter is used included deltas
are listed following the notation "Included"; if the —x
keyletter is used, excluded deltas are listed following the
notation "Excluded".

G E T (1)

T A B L E 1. Determination of SCCS Identif ication String

SID* - b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created

nonef no R defaults to mR mR.mL mR.(mL + 1)

nonet yes R defaults to mR mR.mL m R . m L . (m B + l) . l

R no R > mR mR.mL R . l * * *

R no R = mR mR.mL m R . (m L + l)

R yes R > mR mR.mL m R . m L . (m B + l) . l

R yes R = mR mR.mL m R . m L . (m B + l) . l

R -
R < mR and
R does not exist

h R . m L " h R . m L . (m B + l) . l

Trunk s u c c . #
R - in release > R

and R exists
R .mL R.mL.(mB + l) . l

R.L no N o trunk succ. R.L R . (L + 1)

R.L yes N o trunk succ. R.L R.L.(mB + l) . l

R.L -
Trunk succ.
in release > R

R.L R . L . (m B + l) . l

R.L.B no N o branch succ. R.L.B.mS R.L.B.(mS + 1)

R.L.B yes N o branch succ. R.L.B.mS R.L.(mB + l) . l

R.L.B.S no N o branch succ. R.L.B.S R.L.B.(S + 1)

R.L.B.S yes N o branch succ. R.L.B.S R.L.(mB + l) . l

R.L.B.S - Branch succ. R.L.B.S R . L . (m B + l) . l

"R" , "L", "B", and " S " are the "release", "level",
"branch", and "sequence" components of the SID,
respectively; " m " means "maximum". Thus, for
example, "R.mL" means "the maximum level
number within release R"; "R.L.(mB-f l) . l " means
"the first sequence number on the new branch (i.e.,
maximum branch number plus one) of level L
within release R" . Note that if the SID specified is
of the form "R.L", "R.L.B", or "R.L.B.S", each of
the specified components must exist.
" h R " is the highest existing release that is lower
than the specified, nonexistent, release R.
This is used to force creation of the first delta in a
new release.
Successor.
The —b keyletter is effective only if the b flag (see
admin (1)) is present in the file. An entry of
means "irrelevant".
This case applies if the d (default SID) flag is not
present in the file. If the d flag is present in the
file, then the SID obtained from the d flag is

t

- 5 -

G E T (1)

interpreted as if it had been specified on the
command line. Thus, one of the other cases in this
table applies.

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved
from the SCCS file by replacing identification keywords
with their value wherever they occur. The following
keywords may be used in the text stored in an SCCS file:
Keyword
%M%

%l%

%R%
%L%
%B%
%S%
%D%
%H%
%T%
%E%

%G%

%V%

%Y%

%F%
%P%
%d%

%C%

%Z%

%A%

Value
Module name: either the value of the m flag
in the file (see admin(l)), or if absent, the
name of the SCCS file with the leading s.
removed.
SCCS identification (SID)
(%R%.%L%.%B%.%S%) of the retrieved
text.
Release.
Level.
Branch.
Sequence.
Current date (YY/MM/DD).
Current date (MM/DD/YY).
Current time (HH:MM:SS).
Date newest applied delta was created
(YY/MM/DD).
Date newest
(MM/DD/YY).
Time newest

applied

applied

delta was created

delta was created
(HH:MM:SS).
Module type: value of the t flag in the SCCS
file (see arfmm(l)).
SCCS file name.
Fully qualified SCCS file name.
The value of the q flag in the file (see
admin(l)).
Current line number. This keyword is
intended for identifying messages output by
the program such as " this should not have
happened" type errors. It is not intended to
be used on every line to provide sequence
numbers.
The 4-character string @ (#) recognizable by
what(l).
A shorthand notation for constructing what(l)
strings for CTIX system program files.
%W% = %Z%%M% < horizontal-tab > %1%
Another shorthand notation for constructing
w/»a<(l) strings for non-CTIX system program

- 6 -

G E T (1)

files.
%A% = %Z%%Y% %M% %1%%Z%

FILES
Several auxiliary files may be created by get. These files
are known generically as the g-file, l-file, p-file, and z-
file. The letter before the hyphen is called the tag. An
auxiliary file name is formed from the SCCS file name:
the last component of all SCCS file names must be of the
form a.module-name, the auxiliary files are named by
replacing the leading s with the tag. The g-file is an
exception to this scheme: the g-file is named by
removing the s. prefix. For example, s .xyz.c, the
auxiliary file names would be xyz.c, l.xyz.c, p.xyz.c,
and z.xyz.c, respectively.
The g-file, which contains the generated text, is created
in the current directory (unless the —p keyletter is used).
A g-file is created in all cases, whether or not any lines
of text were generated by the get. It is owned by the
real user. If the —k keyletter is used or implied its mode
is 644; otherwise its mode is 444. Only the real user
need have write permission in the current directory.
The l-file contains a table showing which deltas were
applied in generating the retrieved text. The l-file is
created in the current directory if the —1 keyletter is
used; its mode is 444 and it is owned by the real user.
Only the real user need have write permission in the
current directory.
Lines in the l-file have the following format:

a. A blank character if the delta was
applied;
* otherwise.

b. A blank character if the delta was
applied or was not applied and ignored;
* if the delta was not applied and was
not ignored.

c. A code indicating a "special" reason
why the delta was or was not applied:

"I" : Included.
"X": Excluded.
"C" : Cut off (by a - c keyletter).

d. Blank.
e. SCCS identification (SID).
f. Tab character.
g. Date and time (in the form

YY/MM/DD HH:MM:SS) of creation.
h. Blank.

- 7 -

G E T (1)

i. Login name of person who created delta.
The comments and M R data follow on
subsequent lines, indented one horizontal tab
character. A blank line terminates each entry.

The p-file is used to pass information resulting from a
get with an - e keyletter along to delta. Its contents are
also used to prevent a subsequent execution of get with
an —e keyletter for the same SID until delta is executed
or the joint edit flag, j, (see a</mm(l)) is set in the SCCS
file. The p-file is created in the directory containing the
SCCS file and the effective user must have write
permission in that directory. Its mode is 644 and it is
owned by the effective user. The format of the p-file is:
the gotten SID, followed by a blank, followed by the SID
that the new delta will have when it is made, followed
by a blank, followed by the login name of the real user,
followed by a blank, followed by the date-time the get
was executed, followed by a blank and the —i keyletter
argument if it was present, followed by a blank and the
—x keyletter argument if it was present, followed by a
new-line. There can be an arbitrary number of lines in
the p-file at any time; no two lines can have the same
new delta SID.
The z-file serves as a lock-out mechanism against
simultaneous updates. Its contents are the binary (2
bytes) process ID of the command (i.e., get) that created
it. The z-file is created in the directory containing the
SCCS file for the duration of get. The same protection
restrictions as those for the p-file apply for the z-file.
The z-file is created mode 444.

SEE ALSO
admin(l), delta(l), help(l), prs(l), what(l) , sccsfile(4).
CTIX Programmer's Guide, Section 9.

DIAGNOSTICS
Use help(l) for explanations.

BUGS
If the effective user has write permission (either
explicitly or implicitly) in the directory containing the
SCCS files, but the real user does not, then only one file
may be named when the —e keyletter is used.

G E T O P T (1)

NAME
getopt - parse command options

SYNOPSIS
set — v g e t o p t optstring $*v

DESCRIPTION
Getopt is used to break up options in command lines for
easy parsing by shell procedures and to check for legal
options. Optstring is a string of recognized option letters
(see getopt{ZC)\, if a letter is followed by a colon, the
option is expected to have an argument which may or
may not be separated from it by white space. The
special option — is used to delimit the end of the
options. If it is used explicitly, getopt will recognize it;
otherwise, getopt will generate it; in either case, getopt
will place it at the end of the options. The positional
parameters ($1 $2 . . .) of the shell are reset so that each
option is preceded by a — and is in its own positional
parameter; each option argument is also parsed into its
own positional parameter.

EXAMPLE
The following code fragment shows how one might
process the arguments for a command that can take the
options a or b, as well as the option o, which requires an
argument:

set — v getopt abo: $*v

if [$? ! = 0]
then

echo $USAGE
exit 2

fi
for i in $*
do

case $i in
- a | - b) FLAG=$i; shift;;
- o) OARG=$2; shift 2;;
- -) shift; break;;
esac

done
This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd - a - o arg file file
cmd -oa rg - a file file
cmd - a -oa rg — file file

SEE ALSO
sh(l), getopt(3C).

G E T O P T (1)

DIAGNOSTICS
Getopt prints an error message on the standard error
when it encounters an option letter not included in
optstring.

G E T T Y (1M)

NAME
getty - set terminal type, modes, speed, and line
discipline

SYNOPSIS
/ e t c / g e t t y [—h] [—t timeout] line [speed [type
I linedisc J]]
/ e t c / g e t t y - c file

DESCRIPTION
Getty is a program that is invoked by tni'i(lM). It is the
second process in the series, (init-getty-login-shell) that
ultimately connects a user with the CTIX system.
Initially getty generates a system identification message
from the values returned by the uname (2) system call.
Then, if / e t c / i s s u e exists, it outputs this to the user's
terminal, followed finally by the login message field for
the entry it is using from / e t c / g e t t y d e f s . Getty reads
the user's login name and invokes the login(l) command
with the user's name as argument. While reading the
name, getty attempts to adapt the system to the speed
and type of terminal being used.
Line is the name of a t ty line in / d e v to which getty is
to attach itself. Getty uses this string as the name of a
file in the / d e v directory to open for reading and
writing. Unless getty is invoked with the —h flag, getty
will force a hangup on the line by setting the speed to
zero before setting the speed to the default or specified
speed. The —t flag plus timeout in seconds, specifies
that getty should exit if the open on the line succeeds
and no one types anything in the specified number of
seconds. The optional second argument, speed, is a label
to a speed and tty definition in the file / e t c / g e t t y d e f s .
This definition tells getty at what speed to initially run,
what the login message should look like, what the initai
tty settings are, and what speed to try next should the
user indicate that the speed is inappropriate, (by typing
a < break> character). The default speed is 9600 baud.
The optional third argument, type, is a character string
describing to getty what type of terminal is connected to
the line in question. Getty understands the following
types:

none default
v t 6 1 DEC vt61
vtlOO DEC vtlOO
hp45 Hewlett-Packard HP45
clOO Concept 100

The default terminal is none; i.e., any crt or normal
terminal unknown to the system. Also, for terminal type

- 1 -

G E T T Y (1M)

to have any meaning, the virtual terminal handlers must
be compiled into the operating system. They are
available, but not compiled in the default condition.
The optional fourth argument, linedisc, is a character
string describing which line discipline to use in
communicating with the terminal. Again the hooks for
line disciplines are available in the operating system but
there is only one presently available, the default line
discipline, LDISCO.
When given no optional arguments, getty sets the speed
of the interface to 9600 baud, specifies that raw mode is
to be used (awaken on every character), that echo is to
be suppressed, either parity allowed, newline characters
will be converted to carriage return-line feed, and tab
expansion performed on the standard output. It types
the login message before reading the user's name a
character at a time. If a null character (or framing
error) is received, it is assumed to be the result of the
user pushing the "break" key. This will cause getty to
at tempt the next speed in the series. The series that
getty tries is determined by what it finds in
/ e t c / g e t t y d e f s .
The user's name is terminated by a new-line or carriage-
return character. The latter results in the system being
set to treat carriage returns appropriately (see ioetl(2)).
The user's name is scanned to see if it contains any
lower-case alphabetic characters; if not, and if the name
is non-empty, the system is told to map any future
upper-case characters into the corresponding lower-case
characters.
In addition to the standard UNIX system erase and kill
characters (# and @), getty also understands \ b and "U.
If the user uses a \ b as an erase, or code—U as a kill
character, getty sets the standard erase character and/or
kill character to match.
Getty also understands the "s tandard" ESS protocols for
erasing, killing and aborting a line, and terminating a
line. If getty sees the ESS erase character, _, or kill
character, $, or abort character, &, or the ESS line
terminators, / or !, it arranges for this set of characters
to be used for these functions.
Finally, login is called with the user's name as an
argument. Additional arguments may be typed after the
login name. These are passed to login, which will place
them in the environment (see login(1)).

G E T T Y (1M)

A check option is provided. When getty is invoked with
the —c option and file, it scans the file as if it were
scanning / e t c / g e t t y d e f s and prints out the results to
the standard output. If there are any unrecognized
modes or improperly constructed entries, it reports these.
If the entries are correct, it prints out the values of the
various flags. See ioctl{2) to interpret the values. Note
that some values are added to the flags automatically.

FILES
/etc/gettydefs
/etc/issue

SEE ALSO
ct(lC), init(lM), login(l), ioctl(2), gettydefs(4),
inittab(4), tty(7).

BUGS
While getty does understand simple single character
quoting conventions, it is not possible to quote the
special control characters that getty uses to determine
when the end of the line has been reached, which
protocol is being used, and what the erase character is.
Therefore it is not possible to login via getty and type a
, / , !, _, backspace, *U, AD, or & as part of your
login name or arguments. They will always be
interpreted as having their special meaning as described
above.

G E T L O G I N (3 C)

NAME
getlogin - get login name

SYNOPSIS
char *getlogin ();

DESCRIPTION
Getlogin returns a pointer to the login name as found in
/ e t c / u t m p . It may be used in conjunction with
getpwnam to locate the correct password file entry when
the same user ID is shared by several login names.
If getlogin is called within a process that is not attached
to a terminal, it returns a NULL pointer. The correct
procedure for determining the login name is to call
euserid, or to call getlogin and if it fails to call getpwuid.

FILES
/ e t c / u t m p

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS
Returns the NULL pointer if name is not found.

BUGS
The return values point to static data whose content is
overwritten by each call.

G E T N E T E N T (3 N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent,
endnetent - get network entry

SYNOPSIS
^inc lude < n e t d b . h >
s truct netent ""getnetent ()
s truct netent * g e t n e t b y n a m e (name)
char ' n a m e ;
s truct netent * ge tnetbyaddr (net)
long net;
se tnetent (s tayopen)
int s tayopen
endnetent ()

DESCRIPTION
Getnetent, getnetbyname, and getnetbyaddr each return a
pointer to an object with the following structure
containing the broken-out fields of a line in the network
data base, / e t c / n e t w o r k s .
struct netent {

char *n_name; / * official name of net */
char **n_aliases; /* alias list */
int n_addrtype; / * net number type */
long n_net; /* net number */

}»

The members of this structure are:
n_name The official name of the network.
n_aliases A zero-terminated list of alternate names

for the network.
n_addrtype The type of the network number returned;

currently only A F J N E T .
n_net The network number. Network numbers

are returned in machine byte order.
Getnetent reads the next line of the file, opening the file
if necessary.
Setnetent opens and rewinds the file. If the stayopen flag
is non-zero, the network data base will not be closed
after each call to getnetent (either directly, or indirectly
through one of the other getnet calls).
Endnetent closes the file.
Getnetbyname and getnetbyaddr sequentially search from
the beginning of the file until a matching net name or

5/86 - 1 -

G E T H O S T E N T (3 N)

Endhoatent closes the file.
Gethoatbyname and gethostbyaddr sequentially search
from the beginning of the file until a matching host
name or host address is found, or until EOF is
encountered. Host addresses are supplied in network
order.

FILES
/e tc /hosts

SEE ALSO
hosts(4N).
CTIX Internetworking Manual.

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be
copied if it is to be saved. Only the Internet address
format is currently understood.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 - 2 -

G E T H O S T N A M E (3 N)

NAME
gethostname - get name of current host

SYNOPSIS
gethos tname (name, namelen)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the
current processor, as previously set by setuname(llsA).
The parameter namelen specifies the size of the name
array. The returned name is null-terminated unless
insufficient space is provided.

RETURN VALUE
If the call succeeds, a value of 0 is returned. If the call
fails, then a value of - 1 is returned and an error code is
placed in the global location errno.

ERRORS
The following errors may be returned by these calls:
[EFAULT] The name or namelen parameter gave

an invalid address.
[EPERM] The caller was not the super-user.

SEE ALSO
setuname(lM).
CTIX Internetworking Manual.

BUGS
Host names are limited to 9 characters.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 - 1 -

G E T N E T E N T (3 N)

net address is found, or until EOF is encountered.
Network numbers are supplied in host order.

FILES
/e tc /networks

SEE ALSO
networks(4N).
CTIX Internetworking Manual.

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area, so it must
be copied if it is to be saved. Only Internet network
numbers are currently understood. Expecting network
numbers to fit in no more than 32 bits is probably naive.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5 /86

G E T O P T (3)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstr ing)
int argc;
char **argv, *opstring;
extern char *optarg;
extern int optind, opterr;

DESCRIPTION
Getopt returns the next option letter in argv that
matches a letter in optstring. Optstring is a string of
recognized option letters; if a letter is followed by a
colon, the option is expected to have an argument that
may or may not be separated from it by white space.
Optarg is set to point to the start of the option
argument on return from getopt.
Getopt places in optind the argv index of the next
argument to be processed. Because optind is external, it
is normally initialized to zero automatically before the
first call to getopt.
When all options have been processed (i.e., up to the
first non-option argument), getopt returns EOF. The
special option — may be used to delimit the end of the
options; EOF will be returned, and — will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a
question mark (?) when it encounters an option letter not
included in optstring. This error message may be
disabled by setting opterr to a non-zero value.

EXAMPLE
The following code fragment shows how one might
process the arguments for a command tha t can take the
mutually exclusive options a and b, and the options f
and o, both of which require arguments:
main (argc, argv)
int argc;
char **argv;

int c;
extern char *optarg;
extern int optind;

while

G E T P R O T O E N T (3 N)

NAME
getprotoent, getprotobynumber, getprotobyname,
setprotoent, endprotoent - get protocol entry

SYNOPSIS
^inc lude < n e t d b . h >
s truct protoent ""getprotoent ()
s truct protoent ""getprotobyname (name)
char ""name;
s truct protoent ^getprotobynumber (proto)
int proto;
se tprotoent (s tayopen)
int s tayopen
endprotoent ()

DESCRIPTION
Getprotoent, getprotobyname, and getprotobynumber
each return a pointer to an object with the following
structure containing the broken-out fields of a line in the
network protocol data base, / e t c / p r o t o c o l s .
struct protoent {

char *p_name; / * official name of protocol */
char **p_aliases; / * alias list */
long p_proto; /* protocol number */

}»

The members of this structure are:
p_name The official name of the protocol.
p_aliases A zero-terminated list of alternate names for

the protocol.
p_proto The protocol number.
Getprotoent reads the next line of the file, opening the
file if necessary.
Setprotoent opens and rewinds the file. If the stayopen
flag is non-zero, the network data base will not be closed
after each call to getprotoent (either directly, or
indirectly through one of the other getproto calls).
Endprotoent closes the file.
Getprotobyname and getprotobynumber sequentially
search from the beginning of the file until a matching
protocol name or protocol number is found, or until EOF
is encountered.

FILES
/etc/protocols

5 /86 - 1 -

G E T P R O T O E N T (3 N)

SEE ALSO
protocols(4N).
CTIX Internetworking Manual.

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area, so it must
be copied if it is to be saved. Only the Internet
protocols are currently understood.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5 / 8 6 - 2 -

G E T S E R V E N T (3 N)

NAME
getservent, getservbyport, getservbyname, setservent,
endservent - get service entry

SYNOPSIS
^inc lude < n e t d b . h >
s truct servent *getservent ()
s truct servent * g e t s e r v b y n a m e (name, proto)
char ""name, *proto;
s truct servent ""getservbyport (port , proto)
int port; char *proto;
se tservent (s tayopen)
int s tayopen
endservent ()

DESCRIPTION
Getservent, getservbyname, and getservbyport each
return a pointer to an object with the following structure
containing the broken-out fields of a line in the network
services data base, / e t c / s e r v i c e s .
struct servent {

char *s_name; / * official name of service */
char **s_aliases; / * alias list */
long s_port; /* port service resides at */
char *s_proto; /* protocol to use */

} i
The members of this structure are:
s_name The official name of the service.
s_aliases A zero-terminated list of alternate names for

the service.
s_port The port number at which the service resides.

Port numbers are returned in network byte
order.

s_proto The name of the protocol to use when
contacting the service.

Getservent reads the next line of the file, opening the file
if necessary.
Setservent opens and rewinds the file. If the stayopen
flag is non-zero, the network data base will not be closed
after each call to getservent (either directly, or indirectly
through one of the other getserv calls).
Endservent closes the file.
Getservbyname and getservbyport sequentially search
from the beginning of the file until a matching protocol

5 / 8 6 - 1 -

G E T S E R V E N T (3 N)

name or port number is found, or until EOF is
encountered. If a protocol name is also supplied (non-
NULL), searches must also match the protocol.

FILES
/etc/services

SEE ALSO
getprotoent(3N), services(4N).
CTIX Internetworking Manual.

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area, so it must
be copied if it is to be saved. Expecting port numbers to
fit in a 32-bit quantity is probably naive.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5 / 8 6

GRAPH(1G)

NAME
graph - draw a graph

SYNOPSIS
g r a p h [options]

DESCRIPTION
Graph with no options takes pairs of numbers from the
standard input as abscissas and ordinates of a graph.
Successive points are connected by straight lines. The
graph is encoded on the standard output for display by
the tplot(1G) filters.
If the coordinates of a point are followed by a non-
numeric string, that string is printed as a label beginning
on the point. Labels may be surrounded with quotes
in which case they may be empty or contain blanks and
numbers; labels never contain new-lines.
The following options are recognized, each as a separate
argument:
—a Supply abscissas automatically (they are

missing from the input); spacing is given by
the next argument (default 1). A second
optional argument is the starting point for
automatic abscissas (default 0 or lower limit
given by —x).

—b Break (disconnect) the graph after each label
in the input.

—c Character string given by next argument is
default label for each point.

—g Next argument is grid style, 0 no grid, 1
frame with ticks, 2 full grid (default).

- 1 Next argument is label for graph.
—m Next argument is mode (style) of connecting

lines: 0 disconnected, 1 connected (default).
Some devices give distinguishable line styles
for other small integers (e.g., the
TEKTRONIX 4014: 2=do t t ed , 3=dash-dot ,
4=short-dash, 5=long-dash).

—s Save screen, do not erase before plotting,
- x [1] If 1 is present, x axis is logarithmic. Next 1

(or 2) arguments are lower (and upper) x
limits. Third argument, if present, is grid
spacing on x axis. Normally these quantities
are determined automatically.

—y [1] Similarly for y.
—h Next argument is fraction of space for height.
—w Similarly for width.
—r Next argument is fraction of space to move

right before plotting.

- 1 -

G R A P H (1G)

—u Similarly to move up before plotting.
—t Transpose horizontal and vertical axes.

(Option —x now applies to the vertical axis.)
A legend indicating grid range is produced with a grid
unless the — s option is present. If a specified lower limit
exceeds the upper limit, the axis is reversed.

SEE ALSO
graphics(lG), spline(lG), tplot(lG).

BUGS
Graph stores all points internally and drops those for
which there is no room.
Segments that run out of bounds are dropped, not
windowed.
Logarithmic axes may not be reversed.

GRAPHICS (1 G)

NAME
graphics - access graphical and numerical commands

SYNOPSIS
graphics [- r]

DESCRIPTION
Graphics prefixes the path name / u s r / b i n / g r a f to the
current $PATH value, changes the primary shell prompt
to and executes a new shell. The directory
/ u s r / b i n / g r a f contains all of the Graphics subsystem
commands. If the —r option is given, access to the
graphical commands is created in a restricted
environment; that is, $PATH is set to

: / u s r / b i n / g r a f : / r bin: / u s r / rbin
and the restricted shell, rsh, is invoked. To restore the
environment that existed prior to issuing the graphics
command, type E O T (control-d on most terminals). To
logoff from the graphics environment, type quit.
The command line format for a command in graphics is
command name followed by arguments). An argument
may be a file name or an option string. A file name is
the name of any CTIX system file except those beginning
with —. The file name — is the name for the standard
input. An option string consists of — followed by one or
more option(s). An option consists of a keyletter possibly
followed by a value. Options may be separated by
commas.
Tlje graphical commands have been partitioned into four
groups.

Commands that manipulate and plot numerical
data; see stat(1G).
Commands that generate tables of contents; see
toc(lG).
Commands that interact with graphical devices;
see gdeu(lG) and jerf(lG).
A collection of graphical utility commands; see
gutil(lG).

A list of the graphics commands can be generated by
typing what i s in the graphics environment.

SEE ALSO
gdev(lG), ged(lG), gutil(lG), s tat(lG), toc(lG), gps(4).

G R E E K (1)

NAME
greek - select terminal filter

SYNOPSIS
greek [—Tterminal]

DESCRIPTION
Greek is a filter that reinterprets the extended character
set, as well as the reverse and half-line motions, of a
128-character TELETYPE Model 37 terminal (which is
the nroff(1) default terminal) for certain other terminals.
Special characters are simulated by overstriking, if
necessary and possible. If the argument is omitted,
greek attempts to use the environment variable $TERM
(see environ(5)). The following terminals are recognized
currently:

300 DASI 300.
300-12 DASI 300 in 12-pitch.
300s DASI 300s.
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI 450) in 12-

pitch.
2621 Hewlett-Packard 2621, 2640, and

2645.
2640 Hewlett-Packard 2621, 2640, and

2645.
2640,

2645 Hewlett-Packard 2621, 2640, and
2645.

2640,

4014 TEKTRONIX 4014.
hp Hewlett-Packard 2621, 2640, and hp

2645.
tek TEKTRONIX 4014.

FILES
/usr /bin/300
/usr/bin/300s
/usr/bin/4014
/usr /bin/450
/us r /b in /hp

SEE ALSO
300(1), 4014(1), 450(1), eqn(l), hp(l), mm(l), nroff(l),
tplot(lG), environ(5), term(5).

G R E P (1)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [options] expression [files]
egrep [options] [expression] [files]
f g r e p [options] [strings] [files 1

DESCRIPTION
Commands of the grep family search the input files
(standard input default) for lines matching a pattern.
Normally, each line found is copied to the standard
output. Grep patterns are limited regular expressions in
the style of erf(l); it uses a compact non-deterministic
algorithm. Egrep patterns are full regular expressions; it
uses a fast deterministic algorithm that sometimes needs
exponential space. Fgrep patterns are fixed strings; it is
fast and compact. The following options are recognized:
—v All lines but those matching are printed,
—x (Exact) only lines matched in their entirety are

printed (fgrep only).
—c Only a count of matching lines is printed.
—i Ignore upper/lower case distinction during

comparisons.
—1 Only the names of files with matching lines are

listed (once), separated by new-lines.
—n Each line is preceded by its relative line number

in the file.
- b Each line is preceded by the block number on

which it was found. This is sometimes useful in
locating disk block numbers by context.

—s The error messages produced for nonexistent or
unreadable files are suppressed (grep only).

—e expression
Same as a simple expression argument, but useful
when the expression begins with a — (does not
work with grep).

- f file
The regular expression (egrep) or strings list
(fgrep) is taken from the file.

In all cases, the file name is output if there is more than
one input file. Care should be taken when using the
characters $, [, | , f,), and \ in expression, because
they are also meaningful to the shell. It is safest to
enclose the entire expression argument in single quotes / /

Fgrep searches for lines that contain one of the strings
separated by new-lines.

- 1 -

G R E P (1)

Egrep accepts regular expressions as in ed(1), except for
\ (and \) , with the addition of:
1. A regular expression followed by + matches one

or more occurrences of the regular expression.
2. A regular expression followed by ? matches 0 or 1

occurrences of the regular expression.
3. Two regular expressions separated by | or by a

new-line match strings that are matched by
either.

4. A regular expression may be enclosed in
parentheses () for grouping.

The order of precedence of operators is [], then * ? + ,
then concatenation, then | and new-line.

SEE ALSO
ed(l), sed(l), sh(l).

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for
syntax errors or inaccessible files (even if matches were
found).

BUGS
Ideally there should be only one grep, but we do not
know a single algorithm that spans a wide enough range
of space-time tradeoffs.
Lines are limited to BUFSIZ characters; longer lines are
truncated. (BUFSIZ is defined in
/usr / inc lude / s td io .h .)
Egrep does not recognize ranges, such as [a-z], in
character classes.
If there is a line with embedded nulls, grep will only
match up to the first null; if it matches, it will print the
entire line.

GUTIL(1G)

NAME
gutil - graphical utilities

SYNOPSIS
command-name [options] [files]

DESCRIPTION
Below is a list of miscellaneous device independent
utility commands found in / u s r / b i n / g r a f . If no files
are given, input is from the standard input. All output
is to the standard output. Graphical data is stored in
GPS format; see gps(4).

bel - send bel character to terminal
cvrtopt [=sstring istring istring tstring] [args]

- options converter
Cvrtopt reformats args (usually the command
line arguments of a calling shell procedure) to
facilitate processing by shell procedures. An
arg is either a file name (a string not
beginning with a —, or a — by itself) or an
option string (a string of options beginning
with a —). Output is of the form:

— option —option . . . file name(s)
All options appear singularly and preceding
any file names. Options that take values
(e.g., —rl.l) or are two-letters long must be
described through options to cvrtopt.

Cvrtopt is usually used with set in the
following manner as the first line of a shell
procedure:

set — ^cvrtopt —[options] $@v

Options to cvrtopt are:
sstring String accepts string values.
fstring String accepts floating point

numbers as values.
istring String accepts integers as values.
tstring String is a two-letter option name

that takes no value.
String is a one- or two-letter option name.

g d [GPS files 1 - GPS dump
Gd prints a human readable listing of GPS.

g t o p [- M B] [GPS files] - GPS to plot (4)
filter
Gtop transforms a GPS into plot (4)

GUTIL (1 G)

p d

p t o g

commands displayable by plot filters. GPS
objects are translated if they fall within the
window tha t circumscribes the first file unless
an option is given.
Options:
rn translate objects in GPS region n.

translate all objects in the GPS u
universe.

(p/o((5) files] - plot(4) dump
Pd prints a human readable listing of plot(4)
format graphical commands.

L P '
Pto

ot{5) files]
tog transforms

- plot (4) to GPS filter
plot(4) commands into a

quit - terminate session
r e m c o m [files] - remove comments

ftemeom copies its input to its output with
comments removed. Comments are as
defined in C (i.e., / * comment */).

w h a t i s [—o] [names] - brief on-line
documentation
Whatis prints a brief description of each
name given. If no name is given, then the
current list of description names is printed.
The command -whatis \ * prints out every
description.
Option:
o just print command options

y o o file ~ pipe fitt ing
Yoo is a piping primitive tha t deposits the
output of a pipeline into a file used in the
pipeline. Note that , without yoo, this is not
usually successful as it causes a read and
write on the same file simultaneously.

SEE ALSO
graphics(lG), gps(4), plot(4).

- 2 -

H D (1)

NAME
hd - hexadecimal and ascii file dump

SYNOPSIS
/ u s r / I o c a l / b i n / h d file

DESCRIPTION
Hd prints a hexadecimal listing of file, side by side with
an ASCII listing.

SEE ALSO
od(l).

- 1 -

HEAD (1)

NAME
head - give first few lines

SYNOPSIS
head [—count } [file ...]

DESCRIPTION
Head gives the first count lines of each of the specified
files. If no files are specified, head reads the standard
input. If you omit count, head prints the first 10 lines.

SEE ALSO
tail(l).

H E L P (1)

NAME
help - ask for help

SYNOPSIS
help [args]

DESCRIPTION
Help finds information to explain a message from a
command or explain the use of a command. Zero or
more arguments may be supplied. If no arguments are
given, help will prompt for one.
The arguments may be either message numbers (which
normally appear in parentheses following messages) or
command names, of one of the following types:
type 1 Begins with non-numerics, ends in numerics.

The non-numeric prefix is usually an
abbreviation for the program or set of
routines which produced the message (e.g.,
gefl, for message 6 from the get command).

type 2 Does not contain numerics (as a command,
such as get)

type 3 Is all numeric (e.g., 212)
The response of the program will be the explanatory
information related to the argument, if there is any.
When all else fails, try "help stuck".

FILES
/usr / l ib/help directory containing files of

message text.
/usr/ l ib/help/helploc file containing locations of

help files not in
/ 'usr / l ib /he lp .

DIAGNOSTICS
Use help (I) for explanations.

HINV(1M)

NAME
hinv - hardware inventory

SYNOPSIS
/ e t c / h i n v option
/ e t c / h i n v hardware-item

DESCRIPTION
Hinv provides hardware configuration information. It is
used in one of two ways. For the first way, an option is
given and the result is printed on stdovt. The other way
involves asking about a particular hardware item and
hinv existing with 1 if it exists and 0 otherwise.
Option is one of the following:

- p print hardware configuration. Items are
printed one per line.

—c print CPU type
- f print FPU type
—s print system type
—u print maximum number of users
—m print total physical memory in bytes.
Hardware-item is one of the following:
68881 68881 floating-point processor
iop terminal accelerator board
422 422 cluster board
v m e VME interface board
sn RS-232 board n
serial gives number of serial ports present
disks gives number and types of disks present
eeprom VME EEPROM valid for UNIX

BUGS
Hinv does not know about VME cards.

H P (1)

NAME
hp - handle special functions of HP 2640 and 2621-series
terminals

SYNOPSIS
hp [- e] [- m]

DESCRIPTION
Hp supports special functions of the Hewlett-Packard
2640 series of terminals, with the primary purpose of
producing accurate representations of most nroff output.
A typical use is:

nroff - h files . . . | hp
Regardless of the hardware options on your terminal, hp
tries to do sensible things with underlining and reverse
line-feeds. If the terminal has the "display
enhancements" feature, subscripts and superscripts can
be indicated in distinct ways. If it has the
"mathematical-symbol" feature, Greek and other special
characters can be displayed.
The flags are as follows:
—e It is assumed that your terminal has the

"display enhancements" feature, and so maximal
use is made of the added display modes.
Overstruck characters are presented in the
Underline mode. Superscripts are shown in
Half-bright mode, and subscripts in Half-bright,
Underlined mode. If this flag is omitted, hp
assumes that your terminal lacks the "display
enhancements" feature. In this case, all
overstruck characters, subscripts, and
superscripts are displayed in Inverse Video mode,
i.e., dark-on-light, rather than the usual lights
on-dark.

—m Requests minimization of output by removal of
new-lines. Any contiguous sequence of 3 or more
new-lines is converted into a sequence of only 2
new-lines; i.e., any number of successive blank
lines produces only a single blank output line.
This allows you to retain more actual text on the
screen.

With regard to Greek and other special characters, hp
provides the same set as does 300(1), except that "no t "
is approximated by a right arrow, and only the top half
of the integral sign is shown. The display is adequate for
examining output from neqn.

DIAGNOSTICS
"line too long" if the representation of a line exceeds

- 1 -

H P (1)

1,024 characters.
The exit codes are 0 for normal termination, 2 for all
errors.

SEE ALSO
300(1), col(l), eqn(l), greek(l), nroff(l), tbl(l).

BUGS
An "overstriking sequence" is defined as a printing
character followed by a backspace followed by another
printing character. In such sequences, if either printing
character is an underscore, the other printing character
is shown underlined or in Inverse Video; otherwise, only
the first printing character is shown (again, underlined or
in Inverse Video). Nothing special is done if a backspace
is adjacent to an ASCII control character. Sequences of
control characters (e.g., reverse line-feeds, backspaces)
can make text "disappear"; in particular, tables
generated by <6/(1) that contain vertical lines will often
be missing the lines of text that contain the "foot" of a
vertical line, unless the input to hp is piped through
co/(l).
Although some terminals do provide numerical
superscript characters, no attempt is made to display
them.

H Y P H E N (1)

NAME
hyphen - find hyphenated words

SYNOPSIS
h y p h e n [files]

DESCRIPTION
Hyphen finds all the hyphenated words ending lines in
files and prints them on the standard output. If no
arguments are given, the standard input is used; thus,
hyphen may be used as a filter.

EXAMPLE
The following will allow the proofreading of nroff
hyphenation in textfile.

mm textfile | hyphen
SEE ALSO

mm(l), nroff(l).
BUGS

Hyphen cannot cope with hyphenated .italic (i.e.,
underlined) words; it will often miss them completely, or
mangle them.
Hyphen occasionally gets confused, but with no ill effects
other than spurious extra output.

I D (1)

NAME
id - print user and group IDs and names

SYNOPSIS
id

DESCRIPTION
Id writes a message on the standard output giving the
user and group IDs and the corresponding names of the
invoking process. If the effective and real IDs do not
match, both are printed.

SEE ALSO
logname(l), getuid(2).

IFCONFIG (1NM)

NAME
ifconfig - configure network interface parameters

SYNOPSIS
/ e t c / i f c o n f i g interface address] [parameters

DESCRIPTION
Ifconfig is used to assign an address to a network
interface and/or configure network interface parameters.
Ifconfig must be used at boot time to define the network
address of each interface present on a machine; it may
also be used at a later time to redefine an interface's
address. The interface parameter is a string of the form
"name unit" , e.g. "enO", while the address is either a
host name present in the host name data base, hosts (4),
or a DARPA Internet address expressed in the Internet
standard "dot notation".
The following parameters may be set with ifconfig:
up Mark an interface "up" .
d o w n Mark an interface "down". When an

interface is marked "down", the system
will not attempt to transmit messages
through that interface.

trailers Enable the use of a "trai ler" link level
encapsulation when sending (default).
If a network interface supports trailers,
the system will, when possible,
encapsulate outgoing messages in a
manner which minimizes the number of
memory to memory copy operations
performed by the receiver.
Disable the use of a "trailer" link level
encapsulation.
Enable the use of the Address
Resolution Protocol in mapping
between network level addresses and
link level addresses (default). This is
currently implemented for mapping
between DARPA Internet addreses and
lOMb/s Ethernet addresses.

—arp Disable the use of the Address
Resolution Protocol.

Ifconfig displays the current configuration for a network
interface when no optional parameters are supplied.
Only the super-user may modify the configuration of a
network interface.

—trailers

arp

IFCONFIG (1 N M)

DIAGNOSTICS
Messages indicating the specified interface does not exit,
the requested address is unknown, the user is not
privileged and tried to alter an interface's configuration.

SEE ALSO
intro(4N), netstat(l).

I N C L U D E S (1)

NAME
includes - determine C language preprocessor include
files

SYNOPSIS
includes [option ...] file ...

DESCRIPTION
Includes determines the ^ inc lude files necessary to
compile a C language source file using the C language
preprocessor cpp(1). Includes is based on epp(l) and
takes the same options. Multiple source files may be
named on the command line. However, instead of
producing preprocessed code, it produces on standard
output a list of the ^ inc lude file dependencies (directly
or nested) of the named source files.
The output format is suitable for direct use in a makefile
to be used by the make(1) command. For each named
source file, the ^ inc lude files are listed, one per line,
preceded by the name of the source file (with the last
letter of its name changed to the letter 'o'). The two
names are separated by the two characters ". For
example, if source file pgm.c depends only on the
^inc lude file incl.h, then the output of includes for
the source file pgm.c would be:

pgm.o: incl.h
The following options to includes are recognized:
—P This option has no affect.
—C This option has no affect.
—U name

Remove any initial definition of name, where
name is a reserved symbol that is predefined by
the particular preprocessor. The current list of
these possibly reserved symbols includes:

operating system: ibm, gcos, os, tss, unix
hardware: interdata, p d p l l , u370,

u3b, vax, mc68k,
mc68000, mc68010,
m c 6 8 0 2 0

system variants: RES, RT
- D n a m e
—D name=def

Define name as if by a # d e f i n e directive. If no
=def is given, name is defined as 1.

—I dir Change the algorithm for searching for
^inc lude files whose names do not begin with /
to look in dir before looking in the directories on

- 1 -

INCLUDES (1)

the standard list. Thus, ^ inc lude files whose
names are enclosed in " " will be searched for
first in the directory of the ifile argument, then
in directories named in —I options, and last in
directories on a standard list. For ^ inc lude
files whose names are enclosed in < > , the
directory of the ifile argument is not searched.

Two special names are understood by includes. The
name LINE is defined as the current line number
(as a decimal integer) as known by includes, and

FILE is defined as the current file name (as a C
string) as known by includes. They can be used
anywhere (including in macros) just as any other defined
name.
All cpp directives understood by includes start with lines
begun by The directives are:
d e f i n e name token-string

Replace subsequent instances of name
with token-string.

^define name(arg, arg) token-string
Notice that there can be no space
between name and the (. Replace
subsequent instances of name followed
by a (, a list of comma separated
tokens, and a) by token-string where
each occurrence of an arg in the token-
string is replaced by the corresponding
token in the comma separated list.

u n d e f name Cause the definition of name (if any) to
be forgotten from now on.

^include "filename"
^include <filename>

Include at this point the contents of
filename (which will then be run
through includes). When the
Kfilename > notation is used, filename
is only searched for in the standard
places. See the —I option above for
more detail.

l i n e integer-constant "filename"
This directive has no affect.

e n d i f
Ends a section of lines begun by a test
directive (# i f , # i fde f , or # i fndef) .
Each test directive must have a
matching # end i f .

- 2 -

INCLUDES (1)

i f d e f name The lines following will be processed if
and only if name has been the subject
of a previous ^ d e f i n e without being
the subject of an intervening # u n d e f .

i f n d e f name The lines following will not be
processed if and only if name has been
the subject of a previous ^ d e f i n e
without being the subject of an
intervening # u n d e f .

constant-expression
Lines following will be processed if and
only if the constant-expression
evaluates to non-zero. All binary non-
assignment C operators, the ?: operator,
the unary - , !, and ~ operators are all
legal in constant-expression. The
precedence of the operators is the same
as defined by the C language. There is
also a unary operator defined, which
can be used in constant-expression in
these two forms: defined (name) or
defined name. This allows the utility
of # i f d e f and # i f n d e f in a # i f
directive. Only these operators, integer
constants, and names which are known
by includes should be used in constant-
expression . In particular, the sizeof
operator is not available.

e l s e Reverses the notion of the test directive
which matches this directive. So if lines
previous to this directive are ignored,
the following lines will be processed.
And vice versa.

The test directives and the possible # e l s e directives can
be nested.

FILES
/usr/include standard directory for ^include files

SEE ALSO
cc(l), cpp(l), m4(l).

DIAGNOSTICS
The error messages produced by includes are intended to
be self-explanatory. The line number and filename
where the error occurred are printed along with the
diagnostic.

INIT(1M)

NAME
init, telinit - process control initialization

SYNOPSIS
/ e t c / i n i t [0123456SsQq]
/ e t c / t e l i n i t [0123456sSQqabc]

DESCRIPTION
Init

Init is a general process spawner. Its primary role is to
create processes from a script stored in the file
/ e t c / i n l t t a b (see inittab (4)). This file usually has init
spawn getty's on each line that a user may log in on. It
also controls autonomous processes required by any
particular system.
Init considers the system to be in a run-level at any
given time. A run-level can be viewed as a software
configuration of the system where each configuration
allows only a selected group of processes to exist. The
processes spawned by init for each of these run-levels is
defined in the inittab file. Init can be in one of eight
run-levels, 0—6 and S or s. The run-level is changed by
having a privileged user run / e t c / i n i t (which is linked
to / e tc / t e l in i t) . This user-spawned init sends
appropriate signals to the original init spawned by the
operating system when the system was rebooted, telling
it which run-level to change to.
Init is invoked inside the CTIX system as the last step in
the boot process. The first thing init does is to look for
/ e t c / i n i t t a b and see if there is an entry of the type
initdefault (see inittab (4)). If there is, init uses the run-
level specified in that entry as the initial run-level to
enter. If this entry is not in inittab or inittab is not
found, init requests that the user enter a run-level from
the virtual system console. If an S (s) is entered, init
goes into the SINGLE USER level. This is the only run-
level tha t does not require the existence of a properly
formatted inittab file. If / e t c / i n i t t a b does not exist,
then by default the only legal run-level that init can
enter is the SINGLE USER level. In the SINGLE USER
level the virtual console terminal / d e v / s y s c o n is
opened for reading and writing and the command
/ b i n / s u is invoked immediately. To exit from the
SINGLE USER run-level one of two options can be
elected. First, if the shell is terminated (via an end-of-
file), init will reprompt for a new run-level. Second, the
init or telinit command can signal init and force it to
change the run-level of the system. Init always trys to
relink /dev/syscon to a reasonable terminal before

- 1 -

INIT (1 M)

opening it. It invokes eon/oca<e(lM) to do this.
When init prompts for the new run-level, the operator
may enter only one of the digits 0 through 0 or the
letters S or s. If S is entered init operates as previously
described in SINGLE USER mode with the additional
result that / d e v / s y s c o n is linked to the user's terminal
line, thus making it the virtual system console. A
message is generated on the previous system console,
saying where the virtual terminal has been relocated.
When init comes up initially and whenever it switches
out of SINGLE USER state to normal run states, it sets
the ioctl(2) states of the virtual console, / d e v / s y s c o n ,
to those modes saved in the file / e t c / ioc t l . syscon .
This file is written by init whenever SINGLE USER mode
is entered. If this file does not exist when init wants to
read it, a warning is printed and default settings are
assumed.
If a 0 through 6 is entered init enters the corresponding
run-level. Any other input will be rejected and the user
will be re-prompted. If this is the first time init has
entered a run-level other than SINGLE USER, init first
scans inittab for special entries of the type boot and
bootwait. These entries are performed, providing the
run-level entered matches that of the entry before any
normal processing of inittab takes place. In this way any
special initialization of the operating system, such as
mounting file systems, can take place before users are
allowed onto the system. The inittab file is scanned to
find all entries that are to be processed for that run-
level.
Run-level 2 is usually defined by the user to contain all
of the terminal processes and daemons that are spawned
in the multi-user environment.
In a multi-user environment, the inittab file is usually set
up so that init will create a process for each terminal on
the system.
For terminal processes, ultimately the shell will
terminate because of an end-of-file either typed explicitly
or generated as the result of hanging up. When init
receives a child death signal, telling it that a process it
spawned has died, it records the fact and the reason it
died in / e t c / u t m p and if it exists (see wAo(l)). A
history of the processes spawned is kept in / e t c / w t m p
if such a file exists.
To spawn each process in the inittab file, init reads each
entry and for each entry which should be respawned, it

INIT (1M)

forks a child process. After it has spawned all of the
processes specified by the inittab file, init waits for one
of its descendant processes to die, a powerfail signal, or
until init is signaled by init or telinit to change the
system's run-level. When one of the above three
conditions occurs, init re-examines the inittab file. New
entries can be added to the inittab file at any time;
however, init still waits for one of the above three
conditions to occur. To provide for an instantaneous
response the init Q or init q command can wake init to
re-examine the inittab file.
If init receives a powerfail signal (SIGPWR) and is not in
SINGLE USER mode, it scans inittab for special powerfail
entries. These entries are invoked (if the run-levels
permit) before any further processing takes place. In this
way init can perform various cleanup and recording
functions whenever the operating system experiences a
power failure. It is important to note that the powerfail
entries should not use devices that must first be
initialized after a power failure has occurred.
When init is requested to change run-levels (via telinit),
init sends the warning signal (SIGTERM) to all
processes that are undefined in the target run-level. Init
waits 20 seconds before forcibly terminating these
processes via the kill signal (SIGKILL).

Telinit
Telinit, which is linked to /etc/init, is used to direct the
actions of init. It takes a one-character argument and
signals init via the kill system call to perform the
appropriate action. The following arguments serve as
directives to init.

0—6 tells init to place the system in one of
the run-levels 0—6.

a,b,c tells init to process only those
/ e t c / i n i t t a b file entries having the a,
b o r e run-level set.

Q,q tells init to re-examine the
/ e t c / i n i t t a b file.

s,S tells init to enter the single user
environment. When this level change
is effected, the virtual system teletype,
/ d e v / s y s c o n , is changed to the
terminal from which the command
was executed.

A directive to change to run-level 6 receives
special priority. Ordinarily, a run-level change

- 3 -

INIT (1 M)

received while init is re-examining inittab does
not take effect until the re-examination is
complete. But a directive t o change to run-level
6 received while init is waiting on a bootwait
entry is effected as soon as the command in the
bootwait entry finishes. This special case
permits a bootwait command to use telinit to
stop the system initialization process before users
get access to the system. Run-level 6 then
handles the transition to single-user state: see
/etc/profile.

Telinit can only be run by someone who is super-user or
a member of group sys.

F I L E S
/ e tc / in i t t ab
/ e t c / u t m p
/ e tc /wtmp
/etc/ioctl.syscon
/dev/syscon
/dev/sys t ty
/e tc /profile

SEE ALSO
conlocate(lM), getty(lM), login(l), sh(l) , who(l), kill(2),
inittab(4), profile(4), utmp(4).

DIAGNOSTICS
If init finds tha t it is continuously respawning an entry
from / e t c / i n i t t a b more than 10 t imes in 2 minutes, it
will assume tha t there is an error in the command string,
and generate an error message on the system console,
and refuse to respawn this entry until either 5 minutes
has elapsed or it receives a signal from a user init
(telinit). This prevents init f rom eating up system
resources when someone makes a typographical error in
the inittab file or a program is removed tha t is
referenced in the inittab.

INSTALL (1M)

NAME
install - install commands

SYNOPSIS
/ e t c / i n s t a l l [- c dira] [- f dirb] [-!] [- n dire] [—o]
j-s] file [dirx . . .]

DESCRIPTION
Install is a command most commonly used in
"makefiles" (see make(1)) to install a file (updated
target file) in a specific place within a file system. Each
file is installed by copying it into the appropriate
directory, thereby retaining the mode and owner of the
original command. The program prints messages telling
the user exactly what files it is replacing or creating and
where they are going.
If no options or directories (dirx . . .) are given, install
will search a set of default directories (/ b i n , / u s r / b i n ,
/ e t c , / l i b , and / u s r / l i b , in that order) for a file with
the same name as file. When the first occurrence is
found, install issues a message saying that it is
overwriting that file with file, and proceeds to do so. If
the file is not found, the program states this and exits
without further action.
If one or more directories (dirx . . .) are specified after
file, those directories will be searched before the
directories specified in the default list.
The meanings of the options are:

—c dira Installs a new command
the directory specified b,
only if it is not found. If it is
found, install issues a message
saying that the file already exists,
and exits without overwriting it.
May be used alone or with the - s
option.

—f dirb Forces file to be installed in given
directory, whether or not one
already exists. If the file being
installed does not already exist,
the mode and owner of the new
file will be set to 755 and bin,
respectively. If the file already
exists, the mode and owner will be
that of the already existing file.
May be used alone or with the —o
or — s options.

INSTALL (1 M)

—n dire

— o

—8

SEE ALSO
cpset(lM), make(l).

Ignores default directory list,
searching only through the given
directories (dirx . . 7). May be
used alone or with any other
options other than —c and —f.
If file is not found in any of the
searched directories, it is put in
the directory specified in dire.
The mode and owner of the new
file will be set to 755 and b in ,
respectively. May be used alone
or with any other options other
than —c and —f.
If file is found, this option saves
the " found" file by copying it to
OLD/»7e in the directory in which
it was found. This option is
useful when installing a normally
text busy file such as / b i n / s h or
/ e t c / g e t t y , where the existing
file cannot be removed. May be
used alone or with any other
options other than - c .
Suppresses printing of messages
other than error messages. May
be used alone or with any other
options.

- 2 -

I P C R M (l)

NAME
ipcrm - remove a message queue, semaphore set or
shared memory id

SYNOPSIS
ipcrm [options]

DESCRIPTION
Ipcrm, will remove one or more specified messages,
semaphore or shared memory identifiers. The identifiers
are specified by the following options:
—q msqid removes the message queue identifier msqid

from the system and destroys the message
queue and data structure associated with
it.

—m shmid removes the shared memory identifier
skmid from the system. The shared
memory segment and data structure
associated with it are destroyed after the
last detach.

—s semid removes the semaphore identifier semid
from the system and destroys the set of
semaphores and data structure associated
with it.

—Q msgkey removes the message queue identifier,
created with key msgkey, from the system
and destroys the message queue and data
structure associated with it.

—M shmkey removes the shared memory identifier,
created with key shmkey, from the system.
The shared memory segment and data
structure associated with it are destroyed
after the last detach.

—S semkey removes the semaphore identifier, created
with key semkey, from the system and
destroys the set of semaphores and data
structure associated with it.

The details of the removes are described in msgctl(2),
shmctl(2), and semctl{2). The identifiers and keys may
be found by using »pc«(l).

SEE ALSO
ipcs(l), msgctl(2), msgget(2), msgop(2), semctl(2),
semget(2), semop(2), shmctl(2), shmget(2), shmop(2).

IPCRM(l)

NAME
ipcs - report inter-process communication facilities
status

SYNOPSIS
ipcs [options]

DESCRIPTION
Ipcs prints certain information about active inter-process
communication facilities. Without options, information
is printed in short format for message queues, shared
memory, and semaphores that are currently active in the
system. Otherwise, the information that is displayed is
controlled by the following options:
—q Print information about active message

queues.
—m Print information about active shared

memory segments.
—s Print information about active semaphores.
If any of the options —q, —m, or — s are specified,
information about only those indicated will be printed.
If none of these three are specified, information about all
three will be printed.
—b Print biggest allowable size information.

(Maximum number of bytes in messages on
queue for message queues, size of segments
for shared memory, and number of
semaphores in each set for semaphores.)
See below for meaning of columns in a
listing.

—c Print creator's login name and group
name. See below.

—o Print information on outstanding usage.
(Number of messages on queue and total
number of bytes in messages on queue for
message queues and number of processes
attached to shared memory segments.)

—p Print process number information.
(Process ID of last process to send a
message and process ID of last process to
receive a message on message queues and
process ID of creating process and process
ID of last process to attach or detach on
shared memory segments) See below.

—t Print time information. (Time of the last
control operation that changed the access
permissions for all facilities. Time of last
msgsnd and last msgrcv on message
queues, last shmat and last shmdt on

I P C S (l)

shared memory, last semop (2) on
semaphores.) See below,

—a Use all print options. (This is a shorthand
notation for —b, - c , —o, —p, and —t.)

- C corefile Use the file corefile in place of
/ d e v / k m e m .

—N namelist The argument will be taken as the name of
an alternate namelist (/un ix is the
default).

The column headings and the meaning of the columns in
an ipcs listing are given below; the letters in parentheses
indicate the options that cause the corresponding
heading to appear; all means that the heading always
appears. Note that these options only determine what
information is provided for each facility; they do not
determine which facilities will be listed.

ID
KEY

(all)

(3)

MODE (all)

Type of the facility:
q message queue;
m shared memory segment;
s semaphore.

The identifier for the facility entry.
The key used as an argument to
msgget, semget, or shmget to create
the facility entry. (Note: The key of
a shared memory segment is changed
to IPC_PRIVATE when the segment
has been removed until all processes
attached to the segment detach it.)
The facility access modes and flags:
The mode consists of 11 characters
that are interpreted as follows:
The first two characters are:

R if a process is waiting on
a msgrcv;

S if a process is waiting on
a msgsnd;

D if the associated shared
memory segment has been
removed. It will
disappear when the last
process attached to the
segment detaches it;

C if the associated shared
memory segment is to be
cleared when the first
attach is executed;

— if the corresponding
special flag is not set.

- 2 -

IPCS(1)

OWNER

GROUP

CREATOR

CGROUP

CBYTES

QNUM

QBYTES

LSPID

LRPID

STIME

R T I M E

The next 9 characters are interpreted
as three sets of three bits each. The
first set refers to the owner's
permissions; the next to permissions of
others in the user-group of the facility
entry; and the last to all others.
Within each set, the first character
indicates permission to read, the
second character indicates permission
to write or alter the facility entry, and
the last character is currently unused.
The permissions are indicated as
follows:

permission is

permission is

permission is

r if read
granted;

w if write
granted;

a if alter
granted;

— if the indicated permission
is not granted,

all) The login name of the owner of the
facility entry,

all) The group name of the group of the
owner of the facility entry.

a,c) The login name of the creator of the
facility entry.

a,c) The group name of the group of the
creator of the facility entry.

a,o) The number of bytes in messages
currently outstanding on the
associated message queue.

a,o) The number of messages currently
outstanding on the associated message
queue.

a,b) The maximum number of bytes
allowed in messages outstanding on
the associated message queue.

a,p) The process ID of the last process to
send a message to the associated
queue.

a,p) The process ID of the last process to
receive a message from the associated
queue.

a,t) The time the last message was sent to
the associated queue.

a,t) The time the last message was
received from the associated queue.

- 3 -

I P C S (l)

CTIME

N A T T C H

SEGSZ

CPID

LPID

ATIME

DTIME

NSEMS

OTIME

a,t)

a,o)

a,b)

a,p)

a,p)

a,t)

a,t)

a,b)

a,t)

The time when the associated entry
was created or changed.
The number of processes attached to
the associated shared memory
segment.
The size of the associated shared
memory segment.
The process ID of the creator of the
shared memory entry.
The process ID of the last process to
attach or detach the shared memory
segment.

last attach was
associated shared

last detach was
associated shared

The time the
completed to the
memory segment.
The time the
completed on the
memory segment.
The number of semaphores in the set
associated with the semaphore entry.
The time the last semaphore operation
was completed on the set associated
with the semaphore entry.

system namelist
memory
user names
group names

FILES
/unix
/dev/kmem
/etc/passwd
/etc/group

SEE ALSO
msgop(2), semop(2), shmop(2).

BUGS
Things can change while ipca is running; the picture it
gives is only a close approximation to reality.

I N T R O (7)

NAME
intro - introduction to special files

SYNOPSIS
^inc lude < s y s / s o c k e t . h >

/* internetworking only */
i n c l u d e < n e t / r o u t e . h >
^ inc lude < n e t / i f . h >

DESCRIPTION
This section describes various special files that refer to
specific hardware peripherals and CTIX System device
drivers. The names of the entries are generally derived
from names for the hardware, as opposed to the names of
the special files themselves. Characteristics of both the
hardware device and the corresponding CTIX system
device driver are discussed where applicable.

INTERNETWORKING
Entries that describe network protocol use are marked
(7N) . These protocols are available only with a special
version of the CTIX kernel that supports
internetworking. For further information, see the CTIX
Inernetworking Manual.
All network protocols are associated with a specific
protocol-family. A protocol-family provides basic
services to the protocol implementation to allow it to
function within a specific network environment. These
services may include packet fragmentation and
reassembly, routing, addressing, and basic transport. A
protocol-family may support multiple methods of
addressing, though the current protocol implementations
do not. A protocol-family is normally comprised of a
number of protocols, one per «oc£ef(2N) type. It is not
required that a protocol-family support all socket types.
A protocol-family may contain multiple protocols
supporting the same socket abstraction.
A protocol supports one of the socket abstractions
detailed in «oefce<(2N). A specific protocol may be
accessed either by creating a socket of the appropriate
type and protocol-family, or by requesting the protocol
explicitly when creating a socket. Protocols normally
accept only one type of address format, usually
determined by the addressing structure inherent in the
design of the protocol- family/network architecture.
Certain semantics of the basic socket abstractions are
protocol specific. All protocols are expected to support
the basic model for their particular socket type, but
may, in addition, provide non-standard facilities or
extensions to a mechanism. For example, a protocol

5 /86 - 1 -

INTRO (7)

supporting the SOCK_STREAM abstraction may allow
more than one byte of out-of-band data to be
transmitted per out-of-band message.
A network interface is similar to a device interface.
Network interfaces comprise the lowest layer of the
networking subsystem, interacting with the actual
transport hardware. An interface may support one or
more protocol families and/or address formats. The
SYNOPSIS section of each network interface entry gives
a sample specification of the related drivers for use in
providing a system description to the config(iM)
program. The DIAGNOSTICS section lists messages
which may appear on the console and in the system error
log / u s r / a d m / m e s s a g e s due to errors in device
operation.

PROTOCOLS
The system currently supports only the DARPA Internet
protocols fully. Raw socket interfaces are provided to IP
protocol layer of the DARPA Internet, to the IMP link
layer (1822), and to Xerox PUP-1 layer operating on top
of 3Mb/s Ethernet interfaces. Consult the appropriate
manual pages in this section for more information
regarding the support for each protocol family.

ADDRESSING
Associated with each protocol family is an address
format. The following address format is supported:

#define AF_INET 2
/ * internetwork: UDP, TCP, etc. */

ROUTING
The network facilities provide limited packet routing. A
simple set of data structures comprise a "routing table"
used in selecting the appropriate network interface when
transmitting packets. This table contains a single entry
for each route to a specific network or host. A user
process, the routing demon, maintains this data base
with the aid of two socket specific ioctl(2) commands,
SIOCADDRT and SIOCDELRT. The commands allow
the addition and deletion of a single routing table entry,
respectively. Routing table manipulations may only be
carried out by the superuser.

A routing table entry has the following form, as defined
in < n e t / r o u t e . h > :

5/86 - 2 -

INTRO (7)

struct rtentry {
u_long
struct
struct
short
short
u_long
struct

rt_hash;
sockaddr rt_dst;
sockaddr rt_gateway;
rt_flags;
rt_refcnt;
rt_use;
ifnet *rt_ifp;

with rt_flags defined from,

#define RTF_UP 0x1
/* route usable */

#def ine RTF_GATEWAY 0x2
/ * destination is a gateway */

#def ine RTF_HOST 0x4
/ * host entry (net otherwise) */

Routing table entries come in three types: for a specific
host, for all hosts on a specific network, for any
destination not matched by entries of the first two types
(a wildcard route). When the system is booted, each
network interface that is autoconfigured installs a
routing table entry when it wishes to have packets sent
through it. Normally the interface specifies the route
through it is a "direct" connection to the destination
host or network. If the route is direct, the transport
layer of a protocol family usually requests the packet be
sent to the same host specified in the packet. Otherwise,
the interface may be requested to address the packet to
an entity different from the eventual recipient (i.e., the
packet is forwarded).
Routing table entries installed by a user process may not
specify the hash, reference count, use, or interface fields;
these are filled in by the routing routines. If a route is
in use when it is deleted (rt_refent is nonzero), the
resources associated with it will not be reclaimed until
further references to it are released.
The routing code returns EEXIST if requested to
duplicate an existing entry, ESRCH if requested to delete
a nonexistant entry, or ENOBUFS if insufficient
resources were available to install a new route.
User processes read the routing tables through the
/ d e v / k m e m device.
The rt_use field contains the number of packets sent
along the route. This value is used to select among
multiple routes to the same destination. When multiple

5 / 8 6 - 2 -

I N T R O (7)

routes to the same destination exist, the least used route
is selected.
A wildcard routing entry is specified with a zero
destination address value. Wildcard routes are used only
when the system fails to find a route to the destination
host and network. The combination of wildcard routes
and routing redirects can provide an economical
mechanism for routing traffic.

INTERFACES
Each network interface in a system corresponds to a
path through which messages may be sent and received.
A network interface usually has a hardware device
associated with it.
At boot time each interface which has underlying
hardware support makes itself known to the system
during the autoconfiguration process. Once the interface
has acquired its address, it is expected to install a
routing table entry so that messages may be routed
through it. Most interfaces require some part of their
address specified with an SIOCSIFADDR ioctl before
they will allow traffic to flow through them. On
interfaces where the network-link layer address mapping
is static, only the network number is taken from the
ioctl; the remainder is found in a hardware-specific
manner. On interfaces which provide dynamic network-
link layer address mapping facilities (e.g. 10Mb/s
Ethernets), the entire address specified in the ioctl is
used.

The following ioctl calls may be used to manipulate
network interfaces. Unless specified otherwise, the
request takes an ifrequest structure as its parameter.
This structure has the form
struct ifreq {

char ifr_name[l6|;
/ * name of interface (e.g. "ecO") */

union {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
short ifru_flags;

J i f r j f r u ;
#define ifr_addrifr_ifru.ifru_addr

/ * address */
#define ifr_dstaadr ifr_ifru.ifru_dstaddr

/ * other end of p-to-p link */
#define ifr_flagsifr_ifru.ifru_flags

/ * flags */

5/86 - 2 -

I N T R O (7)

SIOCSIFADDR
Set interface address. Following the address
assignment, the "initialization" routine for the
interface is called.

SIOCGIFADpR
Get interface address.

SIO CSIFDSTADDR
Set point-to-point address for interface.

SIO CGIFDSTADDR
Get point-to-point address for interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is
marked down, any processes currently routing
packets through the interface are notified.

SIOCGIFFLAGS
Get interface flags.

SIOCGIFCONF
Get interface configuration list. This request
takes an ifconf structure (see below) as a value-
result parameter. The ifc_len field should be
initially set to the size of the buffer pointed to
by tfc_buf. On return it will contain the length,
in bytes, of the configuration list.

/*
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*/

struct ifconf {
int ifc_len;

/ * size of associated buffer */
union {

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

J ifc_ifcu;
^def ine ifc_buf ifc_ifcu.ifcu_buf

/ * buffer address */
^def ine ifc_req ifc_ifcu.ifcu_req

/ * array of structures returned */
}»

SEE ALSO
config(lM), ioctl(2), socket(2N), intro(7).

5/86 - 2 -

C O N S O L E (7)

NAME
console - console terminal

DESCRIPTION
The special file / d e v / c o n s o l e designates a standard
destination for system diagnostics. The kernel writes its
diagnostics to this file, as does any user process with
messages of systemwide importance. Unless CTIX is
configured with the kernel debugger, console is not
associated with a terminal; console messages are written
to / e t c / l o g / c o n f i l e . If console is associated with a
physical terminal (configured with the kernel debugger),
then console messages appear on that terminal.
Note that inittab(4) does not normally post a getty on
console because it has no source for interactive input.
Console messages are saved in a circular buffer. Reading
console retrieves the messages and removes them from
the buffer.
If CTIX is configured with the kernel debugger (see
eon/«ff(lM)), then ttyOOO is associated with the console.
This means that console messages also go to ttyOOO and
that a Control-B on ttyOOO starts the kernel debugger.
The size of the console circular buffer is configured with
the eon/ig(lM) parameter cbufsz. The default is 4096
bytes.
The following ioctl(2) commands are acceptd:
ioctl(fd, CONERR);

Fd must fee open to console. All console output
is to be duplicated in the error message queue.
See err (7).

ioctl(fd, CONBUF);
Fd must be open to console. No console output
is to be duplicated in the error message queue.
This is the initial condition.

ioctl(fd, CON_SET, port)
Fd must be open to console. Port is the minor
device number of the RS-232 line that will be
the new debugger console; port must be a valid
RS-232 channel. The function returns the
number of the new debugger console port.

ioctl(fd, CON_LOC)
Fd must be open to console. The function
returns the number of the current debugger
console port.

5/86 - 1 -

I V (1)

NAME
iv - initialize and maintain volume

SYNOPSIS
iv — iuostdwlvq special [descriptionfile j

DESCRIPTION
Iv initializes and maintains a disk volume. Special and
descriptionfile specify the disk and a description file for
it; these are described below. Iv does one of five
operations, specified by the following options:
—i Completely initialize a volume. This consists of

five phases:
1. Initialize iV« internal Volume Home

Block, based on descriptionfile and the
disk type. If the disk can support bad
block handling (all types, except floppy
disks on MiniFrame systems), create an
internal Bad Block Table. Put bad
block data from descriptionfile and
volume's existing Bad Block Table (if
any) in internal Bad Block Table.

2. Format medium.
3. Perform a surface check. If the disk can

support bad block handling, add bad
blocks to the Bad Block Table. If the
disk cannot support bad block handling,
the first bad spot causes the disk to be
rejected.

4. Write out the Volume Home Block.
This has the effect of dividing the
volume into slices (partitions).

5. Allocate and write out the files that
share the Reserved Area (slice 0) with
the Volume Home Block. If the disk can
support bad block handling, one of these
files is the Bad Block Table. Other files
are specified in descriptionfile.

—u Update the Volume Home Block. This is the
same as —i, except that the second and third
phases (medium formatting and surface check)
are skipped.

—o Output a Volume Home Block and partition 0 to
any file; requires a descriptionfile. The following
command produces a dump tape:

I V (1)

iv -o /dev/rmtO /usr / l ib / iv /desc . tdump
—s Surface test. Any bad blocks discovered are

added to the bad block table.
—t Tell volume description. Display volume home

block in human-readable form. No description
file is needed. The volume's contents are not
affected.

—d Description file display. A description file that
describes the current state of the volume is
written to the standard output. If the Reserved
Area contains a loader, the loader keyword's
value is written as / u s r / l i b / i v / l o a d e r . If the
Reserved Area contains a down load image area,
the Down Load Area Description lists files whose
names are of the form

/ u s r / l i b / i v / W B X x x . y y y
where xxx is the numeric device identification;
and yyy is 422 if xxx is even, 232 if xxx is odd.

The —f option, equivalent to —u, is provided for
compatibility with older versions of «v. It should not be
used, as it may disappear in future releases.
In addition to the single operation option (—i, —u, —s,
—t, or —d) you can specify any or all of the following
options:
- v Verbose display output . If the display includes

the Volume Home Block, also include the bad
block table.

—1 A normal surface test consists of a single pass
over the disk; —1 specifies ten passes.

—w A normal surface test pass consists of a read
pass; —-w specifies a write pass before each read
pass.

- q Print the size of the disk (in megabytes).
File Pa rame te r s

Special is the character special file for slice zero on the
drive. This name takes the form / d e v / r d s k / c n d f s O ,
where n is the controller number and t is the drive
number.
Description/He is a text file that describes the volume.
It is required by the — i and —u options. The description
file consists of five parts:
• general description
• reserved area description

I V (1)

• bad blocks description
• partition table description
• down load area description
Each description is separated from the next by a line
that contains only a single dollar sign ($). Specifics for
each of the five descriptions are given under separate
headings below.

General Description
Each line in the General Description begins with a
keyword. Some keywords are followed by values; the
value is separated from the keyword by spaces or tabs.
For example:

ecc
cylinders 1024

Each keyword is only used once. Here are the valid
keywords.
t y p e

n a m e

cylinders

heads

sectors

Mandatory, unless the volume is already
initialized in the appropriate format.
Value is disk type: "HD" for onboard
ST506 hard disk, " R D " for RAM disk,
"V3200" for SMD controller, and "FD"
for floppy disk (MiniFrame only).
Mandatory, unless the volume is already
initialized in the appropriate format.
Value is the volume name. Any
characters except spaces or tabs are
permitted in the volume name; the serial
number of the disk is the recommended
volume name. The actual name in the
Volume Home Block is always exactly six
characters; iv right truncates names that
are too long and right pads with nulls
names that are too short.
Mandatory, unless the volume is already
initialized in the appropriate format.
Value is the number of cylinders on the
disk.
Mandatory, unless the volume is already
initialized in the appropriate format.
Value is the number of heads on the disk.
Mandatory, unless the volume is already
initialized in the appropriate format.
Value is the number of physical sectors
per track.

I V (1)

steprate Mandatory for ST506, unless the volume
is already initialized in the appropriate
format. Value is a number tha t is passed
to the disk controller. The normal
steprate for ST506 drives is 14; 0 can be
used for slower drives. See the disk
manufacturer's documentation for further
information.

exchangeable
If this keyword is present, the disk can be
removed from its drive.

hitech (ST506 drives only) If this keyword is
present, the reduced write current line to
the disk is used for head-select bit 3 to
allow more than eight heads.

precomp (ST506 drives only) The value is c/16,
where c is the cylinder at which precom-
pensation should start. See the disk
manufacturer's documentation for further
information.

ecc The disk has been prepared to function in
ECC mode.

enetaddr (MiniFrame only) Ethernet address of the
machine (boot drive only).

g a p l
gap2 Gap size for SMD drives. See the disk

manufacturer's documentation for further
information.

Reserved Area Description
The Reserved Area Description describes the files that
share slice zero with the volume home block. Each line
in the Reserved Area Description consists of a keyword
followed by one or more parameters; one or more tabs or
spaces separates keywords and parameters from each
other. Here are the valid keywords and their meanings.
(A logical block is 1024 bytes long.)
loader Describes the loader area. The first,

mandatory, parameter is the full
pathname of an a.out file to put in the
loader area. The second, optional,
parameter is the size of the loader area
in logical blocks. If the second
parameter is missing, the size of the
a.out file is used.

badblocktable
Describes the bad block table. The first,

- 4 -

I V (1)

mandatory, parameter is the size of the
bad block table in logical blocks. The
second, optional, parameter is only used
when an existing bad block table
contains errors; this parameter is
"empty" to clear the bad block table,
missing otherwise.

d u m p Describes area to contain dump after
crash. The only, mandatory, parameter,
specifies the size of the dump area in
logical blocks.

downloadarea
Describes area to contain system images
for downloading. The only, mandatory,
parameter, specifies the size of the
download area in logical blocks. (The
files actually put in this area are
described separately. See the Down
Load Area Description heading, below.)

program Describes the bootable (standalone)
program area. There are three ways to
specify this area. If there are two
parameters, the program area is
allocated in slice zero; the first
parameter must be the full pathname of
the file to be copied to the program area,
and the second parameter must be the
size of the program area in logical
blocks. If there is one parameter, the
program area is allocated in slice one;
the parameter must be the full
pathname of the file to be copied to the
program area. If no program area is
desired, omit the program line from the
Reserved Area Description.

All lines valid for the Reserved Area Description are
optional. However, the bad block table is mandatory on
a volume which supports bad block handling; the loader
area is mandatory on a volume which is to hold an
operating system; and a dump area is recommended on a
volume which is to hold an operating system.

Bad Block Description
The Bad Block Description explicitly specifies up to 889
bad blocks to be added to the bad block table. Iv
merges specified bad block information with information
already in the bad block table (if there already is one)
and bad block information discovered through the

- 5 -

I V (1)

surface test.
Each bad block entry is a single line. There are two
forms:

a
where a is a sector number;

c h b
where c is a cylinder number, A is a head number, and b
is a byte number. Both forms condemn a single sector,
the second the sector that contains the specified byte.
The last sector on each track serves as a bad block
alternate. Iv chooses the alternates in a way that
minimizes extra seeking for alternate blocks.

Partition Table Description
The Partition Table Description specifies where the slices
(partitions) on the disk are to begin and end. Each line
in the Description specifies the starting logical block of a
slice. Start blocks must be on even boundaries. Except
for overlapping partitions, slices must be listed in
ascending numeric order, and the beginning of a slice
defines the end of the previous slice.
If necessary, overlapping partitions can be specified. A $
following any block number indicates tha t the slice
extends to the end of the disk, beyond the next boundary
number. Any slice with a starting block number that is
larger than its successor must extend to the end of the
disk (and must therefore be followed by the $
parameter).
For example, the following description specifies five
slices; the fifth slice extends from the second slice to the
end of the disk:

0
16
20016
40016 $
16 $

The following example is also possible, although of
doubtful utility:

0
16
20016 $
40016 $
16
30016 $

I V (1)

In this example six slices are specified. The third,
fourth, and sixth slices extend to the end of the disk.
The fifth slice, however, starts at 16 and ends at 30015
(inclusive); it includes all the second slice, but only part
of the third slice.
The first logical block boundary number in the
Description must always be 0. The last slice in the
Description always extends to the end of the disk ($ is
optional).
Note: D o n o t u s e P a r t i t i o n T a b l e D e s c r i p t i o n s
f r o m o t h e r v e r s i o n s of C T I X t h a t s p e c i f y
p a r t i t i o n s b y t r a c k n u m b e r s , r a t h e r t h a n b y
logical b l o c k b o u n d a r i e s .
There can be at most 16 slices on a disk.
It is a fatal error to specify a slice 1 tha t does not leave
enough room in slice 0 for the Volume Home Block and
the slice 0 files.

Down Load Area Descr ip t ion
The Down Load Area Description specifies system images
to be included in the Down Load Area. Each line in the
Description consists of a numeric device identification,
the size of the system image in logical blocks, and the
full pa th name of the file to be copied into the down
load area; the three parts of the line are separated by
one or more spaces or tabs.

EXAMPLES
Here is an example of a disk description file for a
nonbootable disk.

MAXTOR 85 MB disk
type HD
name Serno
cylinders 1024
heads 8
sectors 17
steprate 14
hitech
ecc $

$
0
8 $

$

- 7 -

I V (1)

The following file describes a bootable SMD.
type
name
cylinders
heads
sectors
ecc
gapl
| ap2

badblocktable
dump
downloadarea
loader

V3200
Serno
1489
11
33

16
16

3
1024
300
/ usr/lib/iv/loader

0
1360
17360
25360
45360
85360
125360
165360 $
100
200

/usr/l ib/iv/wsl00.422
/usr/lib/iv/ws200.422

The following file describes a bootable Hitachi drive.
type HD
name Serno
cylinders 823
heads 10
sectors 17
steprate 14
hi tech
ecc
&
badblocktable 1
dump 1024
downloadarea 300
loader /usr/1

$
0
1346
17730
25922

I V (1)

46402 $
100 /us r / l ib / iv /ws l00 .422
200 /us r / l ib / iv / ws200.422 $

The following file describes a drive without a dump area,
type HD
name Serno
cylinders 645
heads 7
sectors 17
steprate 14
precomp 80
hitech
ecc $
badblocktable 1
downloadarea 300
loader /us r / l ib / iv / loader

0
328
12328
18328 $ $
100 / usr / l ib / iv /wsl00.422
200 /usr / l ib/ iv/ws200.422 $

FILES
/ d e v / r d s k / * - disk character special files
/usr / l ib / iv /desc .* - prototype description files.

SEE ALSO
updatef l) , disk(7).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.
"WD2010-05 Winchester Disk Controller" in Storage
Management Products Handbook. Irvine, Calif.: Western
Digital Corp., 1984.

WARNINGS
The —i, —u, and — s operations are dangerous or fatal to
existing volume data. Always precede these operations
with a backup.
When a new bad block is itself an alternate block, iv
may produce messages tha t appear spurious but are
actually correct. If the bad block is already in use as an
alternate, the "added bad block" message can appear

- 9 -

I V (1)

twice for one block.
Do not run m£/«(lM) on an overlapping partition.

- 10 -

ISSUE (4)

NAME
issue - issue identification file

DESCRIPTION
The file / e t c / i s s u e contains the issue or project
identification to be printed as a login prompt. This is an
ASCII file which is read by program getty and then
written to any terminal spawned or respawned from the
/ e t c / i n i t t a b file.

FILES
/etc/issue

SEE ALSO
login(l).

5 /86 - 1 -

L D F C N (4)

NAME
ldfcn - common object file access routines

SYNOPSIS
include < s t d i o . h >
^inc lude < f i l e h d r . h >
^inc lude < l d f c n . h >

DESCRIPTION
The common object file access routines are a collection
of functions for reading an object file tha t is in common
object file form. Although the calling program must
know the detailed structure of the parts of the object file
that it processes, the routines effectively insulate the
calling program from knowledge of the overall structure
of the object file.
The interface between the calling program and the
object file access routines is based on the defined type
LDFILE, defined as s truct ldfile, declared in the header
file ldfcn.h. The primary purpose of this structure is to
provide uniform access to both simple object files and to
object files that are members of an archive file.
The function ldopen(3X) allocates and initializes the
LDFILE structure and returns a pointer to the structure
to the calling program. The fields of the LDFILE
structure may be accessed individually through macros
defined in ldfcn.h and contain the following
information:
LDFILE *ldptr;
TYPE(ldptr)

OPTR(ldptr)

OFFSET(ldptr)

The file magic number, used to
distinguish between archive members
and simple object files.
The file pointer returned by fopen and
used by the standard input/output
functions.
The file address of the beginning of the
object file; the offset is non-zero if the
object file is a member of an archive
file.

HEADER(ldptr) The file header structure of the object
file.

The object file access functions themselves may be
divided into four categories:
(1) functions that open or close an object file

J O I N (l)

NAME
join - relational database operator

SYNOPSIS
jo in [options] filel file2

DESCRIPTION
Join forms, on the standard output, a join of the two
relations specified by the lines of filel and file2. If filel
is —, the standard input is used.
Filel and file2 must be sorted in increasing ASCII
collating sequence on the fields on which they are to be
joined, normally the first in each line.
There is one line in the output for each pair of lines in
filel and file2 that have identical join fields. The
output line normally consists of the common field, then
the rest of the line from filel, then the rest of the line
from file2.
The default input field separators are blank, tab, or
new-line. In this case, multiple separators count as one
field separator, and leading separators are ignored. The
default output field separator is a blank.
Some of the below options use the argument n. This
argument should be a * or a 2 referring to either filel or
fileS, respectively. The following options are recognized:
—an In addition to the normal output, produce a line

for each unpairable line in file n, where n is 1 or
2.

—e s Replace empty output fields by string s.
—jn m Join on the mth field of file n. If n is missing,

use the mth field in each file. Fields are
numbered starting with 1.

—o list Each output line comprises the fields specifed in
list, each element of which has the form n .m,
where n is a file number and m is a field
number. The common field is not printed unless
specifically requested.

—tc Use character c as a separator (tab character).
Every appearance of c in a line is significant.
The character c is used as the field separator for
both input and output.

EXAMPLE
The following command line will join the password file
and the group file, matching on the numeric group ID,
and outputting the login name, the group name and the
login directory. It is assumed that the files have been

- 1 -

J O I N (l)

sorted in ASCII collating sequence on the group ID fields.
join - j l 4 - j 2 3 - o 1.1 2.1 1.6 - t : /etc/passwd
/etc/group

SEE ALSO
awk(l), comm(l), sort(l), uniq(l).

BUGS
With default field separation, the collating sequence is
that of s o r t —b; with —t, the sequence is that of a plain
sort.
The conventions of join, sort, comm, uniq and awk(1)
are wildly incongruous.
Filenames that are numeric may cause conflict when the
-o option is used right before listing filenames.

KILL(1)

NAME
kill - terminate a process

SYNOPSIS
kill [-signo] PID ...

DESCRIPTION
Kill sends signal 15 (terminate) to the specified
processes. This will normally kill processes that do not
catch or ignore the signal. The process number of each
asynchronous process started with & is reported by the
Shell (unless more than one process is started in a
pipeline, in which case the number of the last process in
the pipeline is reported). Process numbers can also be
found by using p«(l).
The details of the kill are described in kill(2). For
example, if process number 0 is specified, all processes in
the process group are signaled.
The killed process must belong to the current user unless
he is the super-user.
If a signal number preceded by — is given as first
argument, that signal is sent instead of terminate (see
signal(2)). In particular "kill - 9 . . ." is a sure kill.

SEE ALSO
ps(l), sh(l), kill(2), signal(2).

KILLALL (1 M)

NAME
killa.ll - kill all active processes

SYNOPSIS
/ e t c / k i l l a l l [signal]

DESCRIPTION
Killall is a procedure used by / e t c / s h u t d o w n to kill all
active processes not directly related to the shutdown
procedure.
Killall is chiefly used to terminate all processes with open
files so that the mounted file systems will be unbusied
and can be unmounted.
Killall sends signal (see kill(l)) to all remaining processes
not belonging to the above group of exclusions. If no
signal is specified, a default of 9 is used.

FILES
/etc/shutdown

SEE ALSO
fuser(lM), kill(l), ps(l), shutdown(lM), signal(2).

L D (1)

NAME
Id - link editor for common object files

SYNOPSIS
Id [—e epsym

- o outfile]
- f fill] [- lx

—u symname
- m - r - s - t
- L dir] [-x] [-Z

—nl f - F l f - v | [- V S num]] -G] [- w j filenames

[- M
I - N

DESCRIPTION
The Id command combines several object files into one,
performs relocation, resolves external symbols, and
supports symbol table information for symbolic
debugging. In the simplest case, the names of several
object programs are given, and Id combines them,
producing an object module that can either be executed
or used as input for a subsequent Id run. The output of
Id is left in a.out. This file is executable if no errors
occurred during the load. If any input file, filename, is
not an object file, Id assumes it is either an ASCII file
containing link editor directives or an archive library.
If any argument is a library, it is searched exactly once
at the point it is encountered in the argument list. Only
those routines defining an unresolved external reference
are loaded. The library (archive) symbol table (see
ar(4)) is searched sequentially with as many passes as are
necessary to resolve external references which can be
satisfied by library members. Thus, the ordering of
library members is unimportant.
The following options are recognized by Id.
—e epsym

Set the default entry point address for the
output file to be that of the symbol epsym.

- f fill Set the default fill pattern for "holes" within an
output section as well as initialized bss sections.
The argument fill is a two-byte constant.

—Ix Search a library named l ibz.a, where x is up to
nine characters. A library is searched when its
name is encountered, so the placement of a —1 is
significant. By default, libraries are located in

/ l i b
and

/ u s r / l i b .
However, if the shell variable LIBROOT is set,
the value of LIBROOT is prepended to / l ib and
/ u s r / l i b before searching the libraries.

L D (1)

m Produce a map or listing of the input /output
sections on the standard output.

o outfile
Produce an output object file by the name
outfile. The name of the default object file is
a .ou t .

r Retain relocation entries in the output object
file. Relocation entries must be saved if the
output file is to become an input file in a
subsequent Id run. The link editor will not
complain about unresolved references, and the
output file will not be executed.

s Strip line number entries and symbol table
information from the output object file.

t Turn off the warning about multiply-defined
symbols that are not the same size.

u symname
Enter symname as an undefined symbol in the
symbol table. This is useful for loading entirely
from a library, since initially the symbol table is
empty and an unresolved reference is needed to
force the loading of the first routine.

x Do not preserve local (non-.globl) symbols in the
output symbol table; enter only external and
static symbols. This option saves some space in
the output file.

Z Do not bind anything to address zero. This
option will allow runtime detection of null
pointers.

L dir Change the algorithm of searching for l i bz . a to
look in dir before looking in /lib.

M Output a message for each multiply-defined
external definition. However, if the objects
being loaded include debugging information,
extraneous output is produced (see the —g option
in cc(l)).

N Put the data section immediately following the
text in the output file. The result is a plain
executable file, indicated by magic number 0407
in the operating system header.

n Put the data section at the next segment
boundary following the text section. The result
is a shared text file, indicated by magic number
0410 in the operating system header.

L D (1)

—z Like —n but permits demand paged execution.
This type of file is indicated by magic number
0413 in the operating system header.
Like — z but takes less disk space and can page
faster into memory. This type is also indicated
by magic number 0413 in the operating system
header. It is distinguished by having virtual text
and data starting addresses tha t are equal to the
file offsets of the text and da ta sections, modulo
4096. The —F option is on by default.
Output a message giving information about the
version of Id being used.

- V S num
Use n u m as a decimal version number
identifying the a . o u t file t h a t is produced. The
version stamp is stored in the optional header.

— G Change the symbol name look-up algorithm as
follows: if two names do not initially match,
then if one of them is exactly eight characters,
then a match is a t tempted only on the first eight
characters. The purpose of this is to allow
compatibility between object modules that have
been created with and the old C compiler and
with the new C compiler, which allows variable
names more than eight characters long. A
warning message is issued in such cases.

- w If —G is used, do not print warnings about
symbols that partially matched.

FILES
/lib/libar.a
/us r / l ib / l ib J:/JR. a
a.out
/lib/ifile.0407
/lib/ifile.0410
/lib/ifile.0413
/lib/ifile.0413-F

SEE ALSO
as(l),cc(l), exit(2), end(3C), a.out(4),ar(4).

CAVEATS
Through its options and input directives, the common
link editor gives users great flexibility; however, those
who use the input directives must assume some added
responsibilities. Input directives and options should
insure the following properties for programs:

- F

- V

libraries
libraries
output file
default —N directive file
default —n directive file
default — z directive file
default —F directive file

L D (1)

C defines a zero pointer as null. A pointer to
which zero has been assigned must not point to any
object. To satisfy this, users must not place any
object at virtual address zero in the data space.

L D D R V (1 M)

NAME
/e tc / lddrv/ lddrv - manage loadable drivers

SYNOPSIS
lddrv [—m master] [—abdqsuv] [devname]
| subdevs]]
lddrv —a [v] [—m master] [—o dfile] devname
i subdevs]
lddrv —d [v —m master devname
lddrv —b v —m master devname
lddrv —u v —m master devname
lddrv —q Jv J —m master J devname
lddrv - s [v f [—m master J

DESCRIPTION
Lddrv allocates/deallocates space for a specified driver,
loads/unloads a specified driver, and returns the status
of specified driver(s).
The v argument prints verbose information on the
screen. The —m option allows overriding the default
master file (/ e t c / m a s t e r) . Use —o dfile to specify the
name of the file that contains the driver's executable
code; if omitted, executable code is placed in the file
devname. The devname argument is the name of the
driver.
Devname must correspond to the first field in the master
file. In addition, the relocatable driver code must be in a
file named devname.o. More than one major device may
be plugged with a single invocation of lldrv by specifying
up to three subdevices.
The options are:
—a Allocate space for and load the driver.
—d Unload the driver and deallocate its space,
- b Load (bind) the driver,
- u Unload the driver.
—q Return the status of a particular loadable driver.
—s Return the status of all loadable drivers.

EXAMPLES
A status report for all drivers could look like:

D E V N A M E ID BLK CHAR SIZE ADDR FLAGS
lipc 0 - 0x5000 Ox3ddOOO ALLOC BOUND
pip 1 6 0x1000 0x3e2000 ALLOC BOUND

L D D R V (I M)

FILES
/etc/master default master file
/e tc /drvtbl loadable driver table
/etc/ lddrv contains Iddrv and loadable drivers

SEE ALSO
syslocal(2), master(4), drivers(7).

LDEEPROM (1M)

NAME
ldeeprom - load EEPROM

SYNOPSIS
ldeeprom [- s < system file >]

DESCRIPTION
Ldeeprom is used to load the electrically erasable
programmable read-only memory on the VME interface
card.
Ldeeprom reads the / e t c / s y s t e m file, generates a VME
description file, and outputs it to the EEPROM.
The — s option can be used to specify a file to be used
instead of the / e t c / s y s t e m file.

SEE ALSO
system(4), vme(7).

L E X (1)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [—rctvn] [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical
analysis of text.
The input files (standard input default) contain strings
and expressions to be searched for, and C text to be
executed when strings are found.
A file lex.yy.c is generated which, when loaded with the
library, copies the input to the output except when a
string specified in the file is found; then the
corresponding program text is executed. The actual
string matched is left in yytext, an external character
array. Matching is done in order of the strings in the
file. The strings may contain square brackets to indicate
character classes, as in [abx—zj to indicate a, b, x, y,
and z; and the operators *, + , and T mean respectively
any non-negative number of, any positive number of,
and either zero or one occurrences of, the previous
character or character class. The character • is the class
of all ASCII characters except new-line. Parentheses for
grouping and vertical bar for alternation are also
supported. The notation r{d,e} in a rule indicates
between d and e instances of regular expression r . It
has higher precedence than |, but lower than *, ?, + ,
and concatenation. The character * at the beginning of
an expression permits a successful match only
immediately after a new-line, and the character $ at the
end of an expression requires a trailing new-line. The
character / in an expression indicates trailing context;
only the part of the expression up to the slash is
returned in yytext, but the remainder of the expression
must follow in the input stream. An operator character
may be used as an ordinary symbol if it is within "
symbols or preceded by \ . Thus [a— zA— Z]+ matches a
string of letters.

Three subroutines defined as macros are expected:
input() to read a character; unput (e) to replace a
character read; and output (c) to place an output
character. They are defined in terms of the standard
streams, but you can override them. The program
generated is named yylexQ, and the library contains a
main() which calls it. The action REJECT on the right
side of the rule causes this match to be rejected and the
next suitable match executed; the function yymoreQ

- 1 -

L E X (1)

accumulates additional characters into the same yytext;
and the function yyless (p) pushes back the portion of
the string matched beginning at p, which should be
between yytext and yytext+yyleng. The macros input
and output use files yy in and y y o u t to read from and
write to, defaulted to s tdin and s tdout , respectively.
Any line beginning with a blank is assumed to contain
only C text and is copied; if it precedes % % it is copied
into the external definition area of the lex.yy.c file. All
rules should follow a % % , as in YACC. Lines preceding
% % which begin with a non-blank character define the
string on the left to be the remainder of the line; it can
be called out later by surrounding it with {}. Note that
curly brackets do not imply parentheses; only string
substitution is done.

The external names generated by lex all begin with the
prefix y y or Y Y .
The flags must appear before any files. The flag —r
indicates RATFOR actions, - c indicates C actions and is
the default, —t causes the lex.yy.c program to be
written instead to standard output, —v provides a one-
line summary of statistics of the machine generated, —n
will not print out the — summary. Multiple files are
treated as a single file. If no files are specified, standard
input is used.
Certain table sizes for the resulting finite state machine
can be set in the definitions section:

EXAMPLE
D
%%

[0-9]

while (inputQ ! = '*');
switch (inputQ)

case ' / ' : break;
case '*': unput('*');
default: go to loop;

L E X (1)

%p n number of positions is n (default 2000)
%n n number of states is n (500)
%t n number of parse tree nodes is n (1000)
% a n number of transitions is n (3000)

The use of one or more of the above automatically
implies the —v option, unless the —n option is used,

SEE ALSO
yacc(l).
CTIX Programmer's Guide, Section 17.

BUGS
The —r option is not yet fully operational.

L I N E (1)

NAME
line - read one line

SYNOPSIS
line

DESCRIPTION
Line copies one line (up to a new-line) from the standard
input and writes it on the standard output. It returns an
exit code of 1 on EOF and always prints at least a new-
line. It is often used within shell files to read from the
user's terminal.

SEE ALSO
sh(l), read(2).

L I N K (I M)

NAME
link, unlink - exercise link and unlink system calls

SYNOPSIS
/ e t c / l i n k filel file2
/ e t c / u n l i n k file

DESCRIPTION
Link and unlink perform their respective system calls or
their arguments, abandoning all error checking. Thesf
commands may only be executed by the super-user, whc
(it is hoped) knows what he or she is doing.

SEE ALSO
rm(l), link(2), unlink(2).

LINT (1)

NAME
lint - a C program checker

SYNOPSIS
l int [option] ... file ...

DESCRIPTION
Lint attempts to detect features of the C program file
that are likely to be bugs, non-portable, or wasteful. It
also checks type usage more strictly than the compilers.
Among the things that are currently detected are
unreachable statements, loops not entered at the top,
automatic variables declared and not used, and logical
expressions whose value is constant. Moreover, the usage
of functions is checked to find functions that return
values in some places and not in others, functions called
with varying numbers or types of arguments, and
functions whose values are not used or whose values are
used but none returned.
Arguments whose names end with .c are taken to be C
source files. Arguments whose names end with .In are
taken to be the result of an earlier invocation of iint with
either the —c or the—o option used. The .In files are
analogous to .o (object) files that are produced by the
ce(l) command when given a .c file as input. Files with
other suffixes are warned about and ignored.
Lint will take all the .c, .In, and llib-lx.ln (specified by
—la:) files and process them in their command line order.
By default, lint appends the standard C lint library
(Hib-lc.ln) to the end of the list of files. However, if the
—p option is used, the portable C lint library (llib-
port. ln) is appended instead. When the —c option is
not used, the second pass of lint checks this list of files
for mutual copatibility. When the —c option is used, the
.In and the the llib-lar.ln files are ignored.
Any number of lint options may be used, in any order,
intermixed with file-name arguments. The following
options are used to suppress certain kinds of complaints:
—a Suppress complaints about assignments of long

values to variables that are not long.
—b Suppress complaints about break statements

that cannot be reached. (Programs produced by
lex or yacc will often result in many such
complaints.)

—h Do not apply heuristic tests that attempt to
intuit bugs, improve style, and reduce waste.

LINT (1)

- u Suppress complaints about functions and
external variables used and not defined, or
defined and not used. (This option is suitable
for running lint on a suDset of files of a larger
program.)

—v Suppress complaints about unused arguments in
functions.

—x Do not report variables referred to by external
declarations but never used.

The following arguments alter lint's behavior:
—lx Include additional lint library llib-lz.ln. For

example, you can include a lint version of the
math library llib-lm.ln by inserting —1m on the
command line. This argument does not suppress
the default use of llib-lc.ln. These line libraries
must be in the assumed directory. This option
can be used to reference local lint libraries and is
useful in the development of multi-file projects.

—n Do not check compatibility against either the
standard or the portable lint library.

—p Attempt to check portability to other dialects
(IBM and GCOS) of C. Along with stricter
checking, this option causes all non-external
names to be truncated to eight characters and
all external names to be truncated to six
characters and one case.

—c Cause lint to produce a .In file for every .c file
on the command line. These .In files are the
product of lint's first pass only, and are not
checked for inter-function compatibility.

—o lib Cause lint to create a lint library with the name
Hib-l/iA .In. The —c option nullifies any use of
the —o option. The lint library produced is the
input that is given to lint's second pass. The —o
option simply causes this file to be saved in the
named lint library. To produce a llib-l/i6.1n
without extraneous messages, use of the —x
option is suggested. The —v option is useful if
the source file(s) for the lint library are just
external interfaces (for example, the way the file
llib-lc is written). These option settings are also
available through the use of "lint commants"
(see below).

The —D, —U, and —I options of cpp(l) and the —g and
—O options of cc(l) are also recognized as separate

LINT (1)

arguments. The —g and — O options are ignored, but, by
recognizing these options, lint's behavior is closer to that
of the ec(l) command. Other options are warned about
and ignored. The pre-processor symbol " l int" is defined
to allow certain questionable code to be altered or
removed for lint. Therefore, the symbol " l int" should be
thought of as a reserved word for all code that is planned
to be checked by lint.
Certain conventional comments in the C source will
change the behavior of lint:

/ *NOTREACHED* /
at appropriate points stops comments
about unreachable code.

! ± \ t A D a t ? n c „ + / J • i i u u u t v j u i t ' r
suppresses the usual checking for
variable numbers of arguments in the
following function declaration. The data
types of the first n arguments are
checked; a missing n is taken to be 0.

/*ARGSUSED*/
turns on the —v option for the next
function.

/•LINTLIBRARY* /
at the beginning of a file shuts off
complaints about unused functions in
this file.

Lint produces its first output on a per-source-file basis.
Complaints regarding included files are collected and
printed after all source files have been processed.
Finally, if the —c option is not used, information
gathered from all input files is collected and checked for
consistency. At this point, if it is not clear whether a
complaint stems from a given source file or from one of
its included files, the source file name will be printed
followed by a question mark.
The behavior of the — c and the —o options allows for
incremental use of lint on a set of C source files.
Generally, one invokes lint once for each source file with
the —c option. Each of these invocations produces a .In
file which corresponds to the .c file, and prints all
messages that are about just that source file. After all
the source files have been separately run through lint, it
is invoked once more (without the - c option), listing all
the .In files with the needed — Ix options. This will print
all the inter-file inconsistencies. This scheme works well
with make(1); it allows make to be used to lint only the

- 3 -

L I N E (1)

source files that have been modified since the last time
the set of source files were linted.

FILES
/usr/ l ib the directory where the lint libraries

specified by the — lx option must
exist

/usr/lib/lint[l2l first and second passes
/usr/lib/llib-ic.l n declarations for C Library functions

(binary format; source is in
/ usr / l i b / llib-lc)

/usr/lib/llib-port.ln declarations for portable functions
(binary format; source is in
/u sr / l ib / l l ib -por t)

/usr/lib/llib-lm.ln declarations for Math Library
functions (binary format; source is
in /usr/Hb/ll i l>-lm)

/usr / tmp/*l int* temporaries
SEE ALSO

cc(l), cpp(l), make(l).
BUGS

exit(2) longjmp(3C), and other functions that do not
return are not understood; this causes various lies.

L O C K F (3 C)

need not be allocated to the file in order to be locked, as
such locks may exist past the end-of-file.
The sections locked with F_LOCK or F_TLOCK may, in
whole or in part, contain or be contained by a previously
locked section for the same process. When this occurs,
or if adjacent sections occur, the sections are combined
into a single section. If the request requires that a new
element be added to the table of active locks and this
table is already full, an error is returned, and the new
section is not locked.
F_LOCK and F.TLOCK requests differ only by the action
taken if the resource is not available. F_LOCK will cause
the calling process to sleep until the resource is available.
F_TLOCK will cause the function to return a - 1 and set
errno to [EACCESS] error if the section is already locked
by another process.
F_ULOCK requests may, in whole or in part, release one
or more locked sections controlled by the process. When
sections are not fully released, the remaining sections are
still locked by the process. Releasing the center section
of a locked section requires an additional element in the
table of active locks. If this table is full, an [EDEADLKj
error is returned and the requested section is not
released.
A potential for deadlock occurs if a process controlling a
locked resource is put to sleep by accessing another
process's locked resource. Thus calls to lock or fcntl scan
for a deadlock prior to sleeping on a locked resource. An
error return is made if sleeping on the locked resource
would cause a deadlock.
Sleeping on a resource is interrupted with any signal.
The alarm(2) command may be used to provide a
timeout facility in applications which require this
facility.

ERRORS
The lockf utility will fail if one or more of the following
are true:

[EBADFj
[EACCESS]

[EDEADLK]

Fildes is not a valid open descriptor.
Cmd is F_TLOCK or F_TEST and the
section is already locked by another
process.
Cmd is F_LOCI< or F.TLOCIC and a
deadlock would occur. Also the cmd is
either of the above or F_ULOCK and

L O C K F (3 C)

the number of entries in the lock table
would exceed the number allocated on
the system. (Note that this differs from
EDEADLOCK.)

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

CAVEATS
Unexpected results may occur in processes that do
buffering in the user address space. The process may
later read/write data which is/was locked. The standard
I /O package is the most common source of unexpected
buffering.

SEE ALSO
close(2), creat(2), fcntl(2), intro(2), open(2), read(2),
write(2).

5/86 - 3 -

LOGIN (1)

NAME
login - sign on

SYNOPSIS
login [name [env-var • • •]]

DESCRIPTION
The login command is used at the beginning of each
terminal session and allows you to identify yourself to
the system. It may be invoked as a command or by the
system when a connection is first established. Also, it is
invoked by the system when a previous user has
terminated the initial shell by typing a cntrl-d to
indicate an "end-of-file." (See How to Get Started at the
beginning of this volume for instructions on how to dial
up initially.)
If login is invoked as a command it must replace the
initial command interpreter. This is accomplished by
typing:

exec login
from the initial shell.
Login asks for your user name (if not supplied as an
argument), and, if appropriate, your password. Echoing
is turned off (where possible) during the typing of your
password, so it will not appear on the written record of
the session.
At some installations, an option may be invoked that
will require you to enter a second "dialup" password.
This will occur only for dial-up connections, and will be
prompted by the message "dialup password:". Both
passwords are required for a successful login.
If you do not complete the login successfully within a
certain period of time (e.g., one minute), you are likely
to be silently disconnected.
After a successful login, accounting files are updated, the
procedure / e t c / p r o f i l e is performed (or / e t c / c p r o f i l e
for csh), the message-of-the-day, if any, is printed, the
user-ID, the group-ID, the working directory, and the
command interpreter (usually sh(l)) is initialized, and
the file .profile (or .cshrc and .login for csh) in the
working directory is executed, if it exists. These
specifications are found in the / e t c / p a s s w d file entry
for the user. The name of the command interpreter is —
followed by the last component of the interpreter's
pathname (i.e., —sh). If this field in the password file is
empty, then the default command interpreter, / b i n / s h
is used. If this field is "*", then a chroot(2) is done to
the directory named in the directory field of the entry.

- 1 -

LOGIN (1)

At that point login is re-executed at the new level which
must have its own root structure, including / e t c / l o g i n
and / e t c / p a s s w d .
The basic environment (see environ(h)) is initialized to:

HOME=your-login-directory
PATH=:/bin: /usr /bin
SHELL=last-field-of-passwd-entry
MAIL=/usr/mail/your-/oi7tn-name
T Z = timezone-specification

The environment may be expanded or modified by
supplying additional arguments to login, either at
execution time or when login requests your login name.
The arguments may take either the form xxx or
xxx=yyy. Arguments without an equal sign are placed in
the environment as

L n = x x x
where n is a number starting at 0 and is incremented
each time a new variable name is required. Variables
containing an = are placed into the environment
without modification. If they already appear in the
environment, then they replace the older value. There
are two exceptions. The variables P A T H and SHELL
cannot be changed. This prevents people, logging into
restricted shell environments, from spawning secondary
shells which are not restricted. Both login and getty
understand simple single-character quoting conventions.
Typing a backslash in front of a character quotes it and
allows the inclusion of such things as spaces and tabs.

FILES
/e tc /u tmp
/e tc /wtmp
/usr /mai l / your-name
/e tc /motd
/etc/passwd
/etc/profile
.profile

SEE ALSO
mail(l), newgrp(l), sh(l), su(l), passwd(4), profile(4),
environ(5).

DIAGNOSTICS
Login incorrect if the user name or the password cannot
be matched.
No shell, cannot open password file, or no directory.
consult your system administrator.
No utmp entry. You must exec "login" from the lowest
level " sh". if you attempted to execute login as a

accounting
accounting
mailbox for user your-name
message-of-the-day
password file
system profile
user's login profile

LOGIN (1)

command without using the shell's exec internal
command or from other than the initial shell.

L O G N A M E (1)

NAME
Iogname - get login name

SYNOPSIS
Iogname

DESCRIPTION
Lo gname returns the contents of the environment
variable SLOGNAME, which is set when a user logs into
the system.

FILES
/ etc /profile

SEE ALSO
env(l), login(l), logname(3X), environ(5).

- 1 -

L O R D E R (1)

NAME
lorder - find ordering relation for an object library

SYNOPSIS
lo rde r file ...

DESCRIPTION
mi * . * 1 • A i * f t

m e input is one or more ouject or uurary arcnive jnes
(see ar(l)). The standard output is a list of pairs of
object file names, meaning that the first file of the pair
refers to external identifiers defined in the second. The
output may be processed by tsort(l) to find an ordering
of a library suitable for one-pass access by ld(1). Note
that the link editor ld(l) is capable of multiple passes
over an archive in the portable archive format (see ar(4))
and does not require that lorder(1) be used when
building an archive. The usage of the lorder{ 1)
command may, however, allow for a slightly more
efficient access of the archive during the link edit
process.
The following example builds a new library from existing
.o files.

ar cr library v lorder *.o | tsortv

FILES
•symref, *symdef temporary files

SEE ALSO
ar(l), ld(l), tsort(l), ar(4).

BUGS
Object files whose names do not end with .o, even when
contained in library archives, are overlooked. Their
global symbols and references are attributed to some
other file.

L P (1)

NAME
lp, cancel - send/cancel requests to an LP line printer

SYNOPSIS
lp [—c] J—ddest] [—m] [—nnumber] [—ooption] [—s]
[- t title] f -w] files
cancel [ids] [printers]

DESCRIPTION
Lp arranges for the named files and associated
information (collectively called a request) to be printed
by a line printer. If no file names are mentioned, the
standard input is assumed. The file name — stands for
the standard input and may be supplied on the
command line in conjunction with named files. The
order in which files appear is the same order in which
they will be printed.
Lp associates a unique id with each request and prints it
on the standard output. This id can be used later to
cancel (see cancel) or find the status (see lpstat(1)) of the
request.
The following options to lp may appear in any order and
may be intermixed with file names:
—c Make copies of the files to be printed

immediately when lp is invoked. Normally,
files will not be copied, but will be linked
whenever possible. If the —c option is not
given, then the user should be careful not to
remove any of the files before the request
has been printed in its entirety. It should
also be noted that in the absence of the —c
option, any changes made to the named
files after the request is made but before it
is printed will be reflected in the printed
output.

—ddest Choose dest as the printer or class of
printers that is to do the printing. If dest is
a printer, then the request will be printed
only on that specific printer. If dest is a
class of printers, then the request will be
printed on the first available printer that is
a member of the class. Under certain
conditions (printer unavailability, file space
limitation, etc.), requests for specific
destinations may not be accepted (see
accept(1M) and lpstat(1)). By default, dest
is taken from the environment variable
LPDEST (if it is set). Otherwise, a default

- 1 -

L P (1)

destination (if one exists) for the computer
system is used. Destination names vary
between systems (see Ipstat(1)).

—m Send mail (see mail(l)) after the files have
been printed. By default, no mail is sent
upon normal completion of the print
request.

-nnumber Print number copies (default of 1) of the
output.

—ooption Specify printer-dependent or class-dependent
options. Several such options may be
collected by specifying the —o keyletter
more than once. For more information
about what is valid for options, see Models
in lpadmin(lWi).

—s Suppress messages from lp(1) such as
"request id is ...".

- t t i t l e Print title on the banner page of the output.
—w Write a message on the user's terminal after

the files have been printed. If the user is
not logged in, then mail will be sent instead.

Cancel cancels line printer requests that were made by
the /p(l) command. The command line arguments may
be either request ids (as returned by lp(l)) or printer
names (for a complete list, use lpstat(l)). Specifying a
request id cancels the associated request even if it is
currently printing. Specifying a printer cancels the
request which is currently printing on that printer. In
either case, the cancellation of a request that is currently
printing frees the printer to print its next available
request.

FILES
/usr /spool / lp /*

SEE ALSO
accept(lM), enable(l), lpstat(l), lpadmin(lM),
lpsched(lM), mail(l).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

LPADMIN (1M)

NAME
lpadmin - configure the LP spooling system

SYNOPSIS
/ u s r / l i b / l p a d m i n —p printer [opt ions]
/ u s r / l i b / l p a d m i n —x dest
/ u s r / l i b / l p a d m i n —d[dest]

DESCRIPTION
Lpadmin configures LP spooling systems to describe
printers, classes and devices. It is used to add and
remove destinations, change membership in classes,
change devices for printers, change printer interface
programs and to change the system default destination.
Lpadmin may not be used when the LP scheduler,
Ipsched(lM), is running, except where noted below.
Exactly one of the —p, —d or —x options must be
present for every legal invocation of lpadmin.
—d[dest\ makes dest, an existing destination, the

new system default destination. If dest is
not supplied, then there is no system
default destination. This option may be
used when lpsehed(1M) is running. No
other options are allowed with —d.

-xdest removes destination dest from the LP
system. If dest is a printer and is the only
member of a class, then the class will be
deleted, too. No other options are allowed
with —x.

—pprinter names a printer to which all of the options
below refer. If printer does not exist then
it will be created.

The following options are only useful with —p and may
appear in any order. For ease of discussion, the printer
will be referred to as P below.
-cclass inserts printer P into the specified class.

Class will be created if it does not already
exist.

—eprinter copies an existing printer's interface
program to be the new interface program
for P .

—h indicates that the device associated with P
is hardwired. This option is assumed when
creating a new printer unless the —1 option
is supplied.

L P ADMIN (1 M)

—iinterface establishes a new interface program for P.
Interface is the pathname of the new
program.

—I indicates that the device associated with P
is a login terminal. The LP scheduler,
Ipsched(lM), disables all login terminals
automatically each time it is started.
Before re-enabling P, its current device
should be established using Ipadmin.

—mmodel selects a model interface program for P.
Model is one of the model interface names
supplied with the LP software (see Models
below).

—r class removes printer P from the specified class.
If P is the last member of the class, then
the class will be removed.

—vdevice associates a new device with printer P.
Device is the pathname of a file that is
writable by the LP administrator, Ip. Note
that there is nothing to stop an
administrator from associating the same
device with more than one printer. If only
the —p and —v options are supplied, then
Ipadmin may be used while the scheduler is
running.

Restrictions.
When creating a new printer, the —v option and one of
the —e, — i or —m options must be supplied. Only one of
the —e, —i or —m options may be supplied. The —h and
—1 keyletters are mutually exclusive. Printer and class
names may be no longer than 14 characters and must
consist entirely of the characters A-Z, a-z, 0-9 and _
(underscore).

Models.
Model printer interface programs are supplied with the
LP software. They are shell procedures which interface
between Ipsched(lM), and devices. All models reside in
the directory / u s r / s p o o l / l p / m o d e l and may be used
as is with Ipadmin - m . Models should have 644
permission if owned by lp and bin, or 664 permission if
owned by bin and bin. Alternatively, LP administrators
may modify copies of models and then use Ipadmin —i to
associate them with printers. The following list describes
the models and lists the options which they may be
given on the lp command line using the —o keyletter:

L P ADMIN (1 M)

d u m b interface for a line printer without special
functions and protocol. Form feeds are
assumed. This is a good model to copy and
modify for printers which do not have models.

1640 DIABLO 1640 terminal running at 1200 baud,
using XON/XOFF protocol. Options:
- 1 2 12-pitch (10-pitch is the default)
—f do not use the ^50(1) filter. The output

has been pre-processed by either 450(1)
or the nroff(l) 450 driving table.

h p Hewlett-Packard 2631A line printer at 2400
baud. Options:
—c compressed print
—e expanded print

p r x Printronix P300 or P600 printer using
XON/XOFF protocol at 1200 baud.

EXAMPLES
1. Assuming there is an existing Hewlett-Packard

2631A line printer named hp2, it will use the h p
model interface after the command:

/usr/ l ib/ lpadmin - p h p 2 - m h p
2. To obtain compressed print on hp2, use the

command:
lp - d h p 2 - o - c files

3. A DIABLO 1640 printer called stl can be added to
the LP configuration with the command:

/usr / l ib/ lpadmin - p s t l - v / d e v / t t y 2 0 - m l 6 4 0
4. An nroffil) document may be printed on tp in any

of the following ways:
nroff - T 4 5 0 files I lp - d s t l - o f
nroff - T 4 5 0 - 1 2 files J lp - d s t l - o f
nroff - T 3 7 files | col | lp - d s t l

5. The following command prints the password file on
stl in 12-pitch:

lp - d s t l - o l 2 /etc/passwd
NOTE: the - 1 2 option to the 1640 model should
never be used in conjunction with nroff(1).

FILES
/usr /spool / lp/*

LP ADMIN (1 M)

SEE ALSO
accept(lM), enable(l), lp(l), lpsched(lM), lpstat(l) ,
nroff(l).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

- 4 -

L P R (1)

NAME
lpr - line printer spooler

SYNOPSIS
lpr [option ...] [name ...]

DESCRIPTION
Lpr causes the named files to be queued for printing on
a line printer. If no names appear, the standard input is
assumed; thus lpr may be used as a filter.
Lpr is a simple alternative to the lp(1) system. The
same system should not use both.
Lpr uses a CTIX demon to manage spooling.
The following options may be given (each as a separate
argument and in any order) before any file name
arguments:
- c Makes a copy of the file to be sent before

returning to the user.
—r Removes the file after sending it.

FILES
/etc/passwd user's identification and

accounting data
/usr / l ib/ lpd line printer daemon
/usr /spool / lpd/* spool area
/e tc / rc initialization for lp or lpr spooling

system
SEE ALSO

MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

LPSCHED (1 M)

NAME
lpsched, lpshut, lpmove - s tar t / s top the LP request
scheduler and move requests

SYNOPSIS
/ u s r / l i b / l p s c h e d
/ u s r / l i b / l p s h u t
/ u s r / l i b / l p m o v e requests dest
/ u s r / l i b / l p m o v e destl dest2

DESCRIPTION
Lpsched schedules requests taken by /p(l) for printing on
line printers.
Lpshut shuts down the line printer scheduler. All
printers that are printing at the time lpshut is invoked
will stop printing. Requests that were printing at the
time a printer was shut down will be reprinted in their
entirety after lpsched is started again. All LP commands
perform their functions even when lpsched is not
running.
Lpmove moves requests that were queued by lp(1)
between LP destinations. This command may be used
only when lpsched is not running.

(The first form of the command moves the named
requests to the LP destination, dest. Requests are
request ids as returned by /p(l). The second form moves
all requests for destination destl to destination destS.
As a side effect, lp(1) will reject requests for destl.
Note that lpmove never checks the acceptance status
(see accepf(lM)) for the new destination when moving
requests.

FILES
/usr /spool / lp/*
/e tc / rc invocation of lpsched

SEE ALSO
accept(lM), enable(l), lp(l), lpadmin(lM), lpstat(l).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

- 1 -

LPSET(IM)

NAME
lpset - set parallel line printer options

SYNOPSIS
lpset [—i indent] [—c columns] [—1 lines]

DESCRIPTION
Lpset sets the translation options for the parallel printer
interface. It is normally run in / e t c / r e . The options set
the indent (- i) , number of columns (- c) , and lines per
page (-1); the interpretation of these options by the
interface is described under lp(7).
With no options, lpset reports the current values.
Initially, the values are: an indent of 4, 132 columns, 66
lines per page.

FILES
/dev/ lp

SEE ALSO
lp(7).

DIAGNOSTICS
Self explanatory, except that "parallel printer not
properly connected" may actually mean that the printer
is in use.

LP ST A T (1)

NAME
lpstat - print LP status information

SYNOPSIS
l p s t a t [options]

DESCRIPTION
Lpstat prints information about the current status of the
LP line printer system.
If no options are given, then lpstat prints the status of
all requests made to /p(l) by the user. Any arguments
that are not options are assumed to be request ids (as
returned by lp). Lpstat prints the status of such
requests. Options may appear in any order and may be
repeated and intermixed with other arguments. Some of
the keyletters below may be followed by an optional list
that can be in one of two forms: a list of items separated
from one another by a comma, or a list of items enclosed
in double quotes and separated from one another by a
comma and/or one or more spaces. For example:

-u "use r l , user2, user3"
The omission of a list following such keyletters causes all
information relevant to the keyletter to be printed, for
example:

lpstat - o
prints the status of all output requests.
—a[list} Print acceptance status (with respect to lp) of

destinations for requests. List is a list of
intermixed printer names and class names.

—c[list] Print class names and their members. List is
a list of class names.

—d Print the system default destination for lp.
—o[list] Print the status of output requests. List is a

list of intermixed printer names, class names,
and request ids.

—p[list] Print the status of printers. List is a list of
printer names.

—r Print the status of the LP request scheduler
—s Print a status summary, including the status

of the line printer scheduler, the system
default destination, a list of class names and
their members, and a list of printers and their
associated devices.

—t Print all status information.

LPSTAT(1)

-u[list] Print status of output requests for users. List
is a list of login names.

-v[list] Print the names of printers and the
pathnames of the devices associated with
them. List is a list of printer names.

FIT T?C
X" l u u u

/usr /spool / lp/*
SEE ALSO

enable(l), Ip(l).

- 2 -

L S (1)

NAME
Is - list contents of directory

SYNOPSIS
Is [— R a d C x m l n o g r t u c p F b q i s f] [names]

DESCRIPTION
For each directory argument, Is lists the contents of the
directory; for each file argument, Is repeats its name and
any other information requested. The output is sorted
alphabetically by default. When no argument is given,
the current directory is listed. When several arguments
are given, the arguments are first sorted appropriately,
but file arguments appear before directories and their
contents.
There are four listing formats:

• Multicolumn format. This is the default
when the standard output is a terminal.
By default this format sorts names down
the page; the —x option controls this.
Choice of multicolumn format is
controlled manually by the - C option.

• Simple (one entry per line) format. This
is the default when the standard output is
not a terminal. Each line consists of a
file name together with whatever
additional information is requested by
options.

• Long format. See the the —1 option.
• Stream format. See the —m option.

The number of columns used in multicolumn and stream
format is taken from an environment variable,
COLUMNS. If this variable is not set, the terminfo
database is used to determine the number of columns,
based on the environment variable TERM. If this
information cannot be obtained, 80 columns are used.
There are an unbelievable number of options:
—R Recursively list subdirectories encountered.
—a List all entries; usually entries whose names

begin with a period (.) are not listed.
—d If an argument is a directory, list only its name

(not its contents); often used with - 1 to get the
status of a directory.

—C Multi-column output with entries sorted down
the columns.

L S (1)

x Multi-column output with entries sorted across
rather than down the page.

m Stream output format.
1 List in long format, giving mode, number of

links, owner, group, size in bytes, and time of
last modification for each file (see below). If the
file is a special file, the size field will instead
contain the major and minor device numbers
rather than a size.

n The same as —1, except that the owner's UID
and group's GID numbers are printed, rather
than the associated character strings.

0 The same as —1, except that the group is not
printed.

g The same as —1, except that the owner is not
printed.

r Reverse the order of sort to get reverse
alphabetic or oldest first as appropriate.

t Sort by time modified (latest first) instead of by
name.

u Use time of last access instead of last
modification for sorting (with the —t option) or
printing (with the - 1 option).

c Use time of last modification of the i-node (file
created, mode changed, etc.) for sorting (—t) or
printing (-1).

p Put a slash (/) after each filename if tha t file is
a directory.

F Put a slash (/) after each filename if tha t file is
a directory and put an asterisk ("•) after each
filename if that file is executable.

b Force printing of non-graphic characters to be in
the octal \ddd notation.

q Force printing of non-graphic characters in file
names as the character (?).

1 For each file, print the i-number in the first
column of the report.

s Give size in 512-byte blocks, including indirect
blocks, for each entry.

f Force each argument to be interpreted as a
directory and list the name found in each slot.
This option turns off —1, - t , —s, and —r, and

- 2 -

L S (1)

turns on —a; the order is the order in which
entries appear in the directory.

The mode printed under the —1 option consists of 10
characters that are interpreted as follows:

The first character is:
a if the entry is a directory;
b if the entry is a block special file;
c if the entry is a character special

file;
p if the entry is a fifo (a.k.a. "named

pipe") special file;
— if the entry is an ordinary file.

The next 9 characters are interpreted as three
sets of three bits each. The first set refers to the
owner's permissions; the next to permissions of
others in the user-group of the file; and the last
to all others. Within each set, the three
characters indicate permission to read, to write,
and to execute the file as a program,
respectively. For a directory, "execute"
permission is interpreted to mean permission to
search the directory for a specified file.
The permissions are indicated as follows:

r if the file is readable;
•w if the file is writable;
x if the file is executable;
— if the indicated permission is not

granted.
The group-execute permission character is given
as s if the file has set-group-ID mode; likewise,
the user-execute permission character is given as
s if the file has set-user-ID mode. The last
character of the mode (normally x or —) is t if
the 1000 (octal) bit of the mode is on; see
chmod(1) for the meaning of this mode. The
indications of set-ID and 1000 bits of the mode
are capitalized (S and T respectively) if the
corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a
total count of blocks, including indirect blocks, is
printed.

FILES
/etc/passwd to get user IDs for Is —1 and Is - o .
/e tc /group to get group IDs for Is -1 and Is - g .

- 3 -

LS(1)

/usr / l ib/ terminfo/*
to get terminal information.

SEE ALSO
chmod(l), find(l).

BUGS
Unprintable characters in file names may confuse the
columnar output options.

- 4 -

M4(1)

NAME
m4 - macro processor

SYNOPSIS
m 4 [options] (files]

DESCRIPTION
M4 is a macro processor intended as a front end for
Ratfor, C, and other languages. Each of the argument
files is processed in order; if there are no files, or if a file
name is - , the standard input is read. The processed
text is written on the standard output.
The options and their effects are as follows:
—e Operate interactively. Interrupts are ignored

and the output is unbuffered.
—s Enable line syne output for the C preprocessor

(#l ine . . .)
—Bi'nf Change the size of the push-back and argument

collection buffers from the default of 4,096.
—Hint Change the size of the symbol table hash array

from the default of 199. The size should be
prime.

—Sint Change the size of the call stack from the
default of 100 slots. Macros take three slots,
and non-macro arguments take one.

—Tint Change the size of the token buffer from the
default of 512 bytes.

To be effective, these flags must appear before any file
names and before any —D or —U flags:
—Dnime [=vo/]

Defines name to val or to null in vol's absence.
—U name

undefines name.
Macro calls have the form:

name(argl,arg2, . . ., argn)
The (must immediately follow the name of the macro.
If the name of a defined macro is not followed by a (, it
is deemed to be a call of that macro with no arguments.
Potential macro names consist of alphabetic letters,
digits, and underscore _, where the first character is not
a digit.
Leading unquoted blanks, tabs, and new-lines are ignored
while collecting arguments. Left and right single quotes
are used to quote strings. The value of a quoted string is

M4(1)

the string stripped of the quotes.
When a macro name is recognized, its arguments are
collected by searching for a matching right parenthesis.
If fewer arguments are supplied than are in the macro
definition, the trailing arguments are taken to be null.
Macro evaluation proceeds normally during the collection
of the arguments, and any commas or right parentheses
which happen to turn up within the value of a nested
call are as effective as those in the original input text.
After argument collection, the value of the macro is
pushed back onto the input stream and rescanned.
M4 makes available the following built-in macros. They
may be redefined, but once this is done the original
meaning is lost. Their values are null unless otherwise
stated,
define the second argument is installed as the

value of the macro whose name is the first
argument. Each occurrence of $n in the
replacement text, where n is a digit, is
replaced by the n-th argument. Argument
0 is the name of the macro; missing
arguments are replaced by the null string;
$ # is replaced by the number of
arguments; $* is replaced by a list of all
the arguments separated by commas; $@ is
like $*, but each argument is quoted (with
the current quotes).

undefine removes the definition of the macro named
in its argument.

defn returns the quoted definition of its
argument(s). It is useful for renaming
macros, especially built-ins.

pushdef like define, but saves any previous
definition.

popdef removes current definition of its
argument(s), exposing the previous one, if
any.

ifdef if the first argument is defined, the value is
the second argument, otherwise the third.
If there is no third argument, the value is
null. The word unix is predefined on CTIX
system versions of m4 •

shift returns all but its first argument. The
other arguments are quoted and pushed
back with commas in between. The

M4(1)

quoting nullifies the effect of the extra scan
that will subsequently be performed.

changequote change quote symbols to the first and
second arguments. The symbols may be up
to five characters long. Changequote
without arguments restores the original
values (i.e., s ') .

changecom

divert

undivert

divnum

dnl

ifelse

incr

change left and right comment markers
from the default # and new-line. With no
arguments, the comment mechanism is
effectively disabled. With one argument,
the left marker becomes the argument and
the right marker becomes new-line. With
two arguments, both markers are affected.
Comment markers may be up to five
characters long.

maintains 10 output streams, numbered
0-9. The final output is the concatenation
of the streams in numerical order; initially
stream 0 is the current stream. The divert
macro changes the current output stream
to its (digit-string) argument. Output
diverted to a stream other than 0 through
9 is discarded.
causes immediate output of text from
diversions named as arguments, or all
diversions if no argument. Text may be
undiverted into another diversion.
Undiverting discards the diverted text.
returns the value of the current output
stream.
reads and discards characters up to and
including the next new-line.
has three or more arguments. If the first
argument is the same string as the second,
then the value is the third argument. If
not, and if there are more than four
arguments, the process is repeated with
arguments 4, 5, 6 and 7. Otherwise, the
value is either the fourth string, or, if it is
not present, null.
returns the value of its argument
incremented by 1. The value of the
argument is calculated by interpreting an
initial digit-string as a decimal number.

- 3 -

M4(1)

deer returns the value of its argument
decremented by 1.

eval evaluates its argument as an arithmetic
expression, using 32-bit arithmetic.
Operators include + , —, *, / ,
(exponentiation), bitwise &., | , and
relationals; parentheses. Octal and hex
numbers may be specified as in C. The
second argument specifies the radix for the
result; the default is 10. The third
argument may be used to specify the
minimum number of digits in the result.

len returns the number of characters in its
argument.

index returns the position in its first argument
where the second argument begins (zero
origin), or - 1 if the second argument does
not occur.

substr returns a substring of its first argument.
The second argument is a zero origin
number selecting the first character; the
third argument indicates the length of the
substring. A missing third argument is
taken to be large enough to extend to the
end of the first string.

translit transliterates the characters in its first
argument from the set given by the second
argument to the set given by the third. No
abbreviations are permitted.

include returns the contents of the file named in
the argument.

sinclude is identical to include, except that it says
nothing if the file is inaccessible.

syscmd executes the CTIX system command given
in the first argument. No value is
returned.

sysval is the return code from the last call to
syscmd.

maketemp fills in a string of XXXXX in its argument
with the current process ID.

m4exit causes immediate exit from m4- Argument
1, if given, is the exit code; the default is 0.

m4wrap argument 1 will be pushed back at final
EOF; example: m4wrap(v cleanup() ')

- 4 -

M 4 (l)

errprint

dumpdef

traceon

traceoff

SEE ALSO

prints its argument on the diagnostic
output file.
prints current names and definitions, for
the named items, or for all if no arguments
are given.
with no arguments, turns on tracing for all
macros (including built-ins). Otherwise,
turns on tracing for named macros.
turns off trace globally and for any macros
specified. Macros specifically traced by
traceon can be untraced only by specific
calls to traceoff.

I V I l I,
CTIX Programmer's Guide, Section 10.

MACHID (1)

NAME
mc68k, p d p l l , u3b, u3b5, vax - provide truth value
about your processor type

SYNOPSIS

mc68k

p d p l l

u3b

u3b5

vax
DESCRIPTION

These commands will return a true value (exit code of 0)
if you are on a processor that the command name
indicates.
The commands that do not apply will return a false
(non-zero) value. These commands are often used within
make(1) makefiles and shell procedures to increase
portability.

SEE ALSO
sh(l), test(l), true(l), false(l), make(l).

MAIL (1)

NAME
mail, rmail - send mail to users or read mail

SYNOPSIS
mail [—epqr] [—f file]
mail [—t] persons
rmail [—t j persons

DESCRIPTION
Mail without arguments prints a user's mail, message-
by-message, in last-in, first-out order. For each message,
the user is prompted with a ?, and a line is read from the
standard input to determine the disposition of the
message:

< new-line > Go on to next message.
+ Same as <new- l ine> .
d Delete message and go on to

next message,
p Print message again.
— Go back to previous message,
s [files] Save message in the named

files (mbox is default),
•w [files] Save message, without its

header, in the named files
(mbox is default).
Mail the message to the
named persons (yourself is
default).
Put undeleted mail back in
the mailfile and stop.
Same as q.
Put all mail back in the
mailfile unchanged and stop.
Escape to the shell to do
command.

* Print a command summary.
The optional arguments alter the printing of the mail:
—e causes mail not to be printed. An exit value of 0

is returned if the user has mail; otherwise, an
exit value of 1 is returned.

—p causes all mail to be printed without prompting
for disposition.

—q causes mail to terminate after interrupts.
Normally an interrupt only causes the
termination of the message being printed.

—r causes messages to be printed in first-in, first-out
order.

m [persons

E O T (control-d)
x

\command

- 1 -

MAIL(1)

—{file causes mail to use file (e.g., mbox) instead of
the default mailfile.

When persons are named, mail takes the standard input
up to an end-of-file (or up to a line consisting of just a .)
and adds it to each person's mailfile. The message is
preceded by the sender's name and a postmark. Lines
that look like postmarks in the message, (i.e.,
"From . . .") are preceded with a > . The —t option
causes the message to be preceded by all persons the
mail is sent to. A person is usually a user name
recognized by login(l). If a person being sent mail is
not recognized, or if mail is interrupted during input, the
file dead.letter will be saved to allow editing and
resending. Note that this is regarded as a temporary file
i n t l m t it. ic rdcrftQti i^ pvppv f i m p n o o r l o ^ ppac in ir t l i o

previous contents of dead.letter.
To denote a recipient on a remote system, prefix person
by the system name and exclamation mark (see
«acp(lC)). Everything after the first exclamation mark
in persons is interpreted by the remote system. In
particular, if persons contains additional exclamation
marks, it can denote a sequence of machines through
which the message is to be sent on the way to its
ultimate destination. For example, specifying a!b!cde as
a recipient's name causes the message to be sent to user
bicde on system a. System a will interpret that
destination as a request to send the message to user cde
on system b. This might be useful, for instance, if the
sending system can access system a but not system b,
and system a has access to system b. Mail will not use
uucp if the remote system is the local system name (i.e.,
iocaisystem iuser).
The mailfile may be manipulated in two ways to alter
the function of mail. The other permissions of the file
may be read-write, read-only, or neither read nor write
to allow different levels of privacy. If changed to other
than the default, the file will be preserved even when
empty to perpetuate the desired permissions. The file
may also contain the first line:

Forward to person
which will cause all mail sent to the owner of the
mailfile to be forwarded to person. This is especially
useful to forward all of a person's mail to one machine in
a multiple machine environment. In order for
forwarding to work properly the mailfile should have
"mail" as group ID, and the group permission should be
read-write.

- 2 -

MAILX (1)

Rmail only permits the sending of mail; UMep(lC) uses
rmail as a security precaution.
When a user logs in, the presence of mail, if any, is
indicated. Also, notification is made if new mail arrives
while using mail.

FILES
/etc/passwd
/usr /mai l /user

$HOME/mbox
SMAIL

/ t m p / m a *
/usr/mail/*.lock
dead.ietter

SEE ALSO
login(l), mailx(l), uucp(lC), write(l).

BUGS
Conditions sometimes result in a failure to remove a lock
file.
After an interrupt, the next message may not be printed;
printing may be forced by typing a p.

to identify sender and locate persons
incoming mail for user; i.e., the
mailfile
saved mail
variable containing path name of
mailfile
temporary file
lock for mail directory
unmailable text

MAILX(1)

NAME
mailx - interactive message processing system

SYNOPSIS
mailx [option«] [n a m e . . .]

DESCRIPTION
The command mailx provides a comfortable, flexible
environment for sending and receiving messages
electronically. When reading mail, mailx provides
commands to facilitate saving, deleting, and responding
to messages. When sending mail, mailx allows editing,
reviewing and other modification of the message as it is
entered.
Incoming mail is stored in a standard file for each user,
called the system mailbox for tha t user. When mailx is
called to read messages, the mailbox is t he default place
to find them. As messages are read, they are marked to
be moved to a secondary file for storage, unless specific
action is taken, so that the messages need not be seen
again. This secondary file is called the mbox and is
normally located in the user's HOME directory (see
"MBOX" (ENVIRONMENT VARIABLES) for a description
of this file). Messages remain in this file until forcibly
removed.

On the command line, options s tart with a dash (-) and
any other arguments are taken to be destinations
(recipients). If no recipients are specified, mailx will
a t tempt to read messages from the mailbox. Command
line options are:

- d

-f [filenamej

- F

—h number

-H

Turn on debugging output . Neither
particularly interesting nor
recommended.
Test for presence of mail. Mailx prints
nothing and exits with a successful
return code if there is mail to read.
Read messages from filename instead of
mailbox. If no filename is specified, the
mbox is used.
Record the message in a file named
after the first recipient. Overrides the
"record" variable, if set (see
ENVIRONMENT VARIABLES).
The number of network "hops" made so
far. This is provided for network
software to avoid infinite delivery loops.
Print header summary only.

MAILX (1)

- l

- n

- N
-r address

-8 subject
-u user

- U

Ignore interrupts. See also "ignore"
(ENVIRONMENT VARIABLES).
Do not initialize from the system
default MaUx.rc file.
Do not print initial header summary.

Pass address to network delivery
software. All tilde commands are
disabled.
Set the Subject header field to subject.
Read user's mailbox. This is only

effective if user's mailbox is not read
protected.
Convert uucp style addresses to internet
standards. Overrides the "conv"
environment variable.

When reading mail, mailx is in command mode. A
header summary of the first several messages is
displayed, followed by a prompt indicating mailx can
accept regular commands (see COMMANDS below).
When sending mail, mailx is in input mode. If no subject
is specified on the command line, a prompt for the
subject is printed. As the message is typed, mailx will
read the message and store it in a temporary file.
Commands may be entered by beginning a line with the
tilde (~) escape character followed by a single command
letter and optional arguments. See TILDE ESCAPES for
a summary of these commands.
At any time, the behavior of mailx is governed by a set
of environment variables. These are flags and valued
parameters which are set and cleared via the set and
unse t commands. See ENVIRONMENT VARIABLES
below for a summary of these parameters.
Recipients listed on the command line may be of three
types: login names, shell commands, or alias groups.
Login names may be any network address, including
mixed network addressing. If the recipient name begins
with a pipe symbol (|), the rest of the name is taken to
be a shell command to pipe the message through. This
provides an automatic interface with any program that
reads the standard input, such as lp(1) for recording
outgoing mail on paper. Alias groups are set by the alias
command (see COMMANDS below) and are lists of
recipients of any type.
Regular commands are of the form

[c o m m a n d] [msglist} [arguments]

MAILX (1)

If no command is specified in command mode, pr int is
assumed. In input mode, commands are recognized by
the escape character, and lines not treated as commands
are taken as input for the message.
Each message is assigned a sequential number, and there
is at any time the notion of a 'current' message, marked
by a ' > ' in the header summary. Many commands take
an optional list of messages (msglist) to operate on,
which defaults to the current message. A msglist is a list
of message specifications separated by spaces, which may
include:

n Message number n.
The current message.
The first undeleted message.

$ The last message.
* All messages.
n—m An inclusive range of message numbers.
user All messages from user.
/ s t r i n g All messages with string in the subject

line (case ignored).
:c All messages of type c, where c is one

of:
d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command
determines whether this type of message
specification makes sense.

Other arguments are usually arbitrary strings whose
usage depends on the command involved. File names,
where expected, are expanded via the normal shell
conventions (see «A(lj). Special characters are
recognized by certain commands and are documented
with the commands below.
At start-up time, mailx reads commands from a system-
wide file (/u sr / l ib /ma i lx /ma i lx . rc) to initialize certain
parameters, then from a private start-up file
($HOME/.mailrc) for personalized variables. Most
regular commands are legal inside start-up files, the most
common use being to set up initial display options and
alias lists. The following commands are not legal in the
start-up file: !, Copy, edit, followup, Followup, hold,
mail, preserve, reply, Reply, shell, and visual. Any
errors in the start-up file cause the remaining lines in the
file to be ignored.

MAILX (1)

C O M M A N D S
The following is a complete list of mailx commands:
\shell- command

Escape to the shell. See "SHELL"
(ENVIRONMENT VARIABLES).

comment
Null command (comment). This may be useful
in .mailrc files.

Print the current message number.

Prints a summary of commands.

alias alias name ...
group alias name ...

Declare an alias for the given names. The names
will be substituted when alias is used as a
recipient. Useful in the .mailrc file.

alternates name ...
Declares a list of alternate names for your login.
When responding to a message, these names are
removed from the list of recipients for the
response. With no arguments, alternates prints
the current list of alternate names. See also
"allnet" (ENVIRONMENT VARIABLES).

cd j directory]
chair [directory]

Change directory. If directory is not specified,
$HOME is used.

copy [filename]
copy msglist] filename

Copy messages to the file without marking the
messages as saved. Otherwise equivalent to the
save command.

Copy
Save the specified messages in a file whose name
is derived from the author of the message to be
saved, without marking the messages as saved.
Otherwise equivalent to the Save command.

MAILX (1)

delete [maj/iaf]
Delete messages from the mailbox. If
"autoprint" is set, the next message after the
last one deleted is printed (see ENVIRONMENT
VARIABLES).

discard \header-field ...]
ignore [header-field ...]

Suppresses printing of the specified header fields
when displaying messages on the screen.
Examples of header fields to ignore are "status"
and "cc." The fields are included when the
message is saved. The Pr in t and Type
commands override this command.

d p [msglisi]
d t [msglist]

Delete the specified messages from the mailbox
and print the next message after the last one
deleted. Roughly equivalent to a delete
command followed by a print command.

echo string ...
Echo the given strings (like ecAo(l)).

edit [msglist[
Edit the given messages. The messages are
placed in a temporary file and the "EDITOR"
variable is used to get the name of the editor
(see ENVIRONMENT VARIABLES). Default
editor is ed(1).

exit
xit

Exit from mailx, without changing the mailbox.
No messages are saved in the mbox (see also
quit).

file [filename]
folder [filename]

Quit from the current file of messages and read
in the specified file. Several special characters
are recognized when used as file names, with the
following substitutions:

% the current mailbox.
%user

the mailbox for use r .
the previous file.

MAILX (1)

& the current mbox.
Default file is the current mailbox.

folders
Print the names of the files in the directory set
by the "folder" variable (see ENVIRONMENT
VARIABLES).

followup [message]
Respond to a message, recording the response in
a file whose name is derived from the author of
the message. Overrides the "record" variable, if
set. See also the Followup, Save, and Copy
commands and "outf older" (ENVIRONMENT
VARIABLES).

Followup [msglist]
Respond to the first message in the msglist,
sending the message to the author of each
message in the msglist. The subject line is taken
from the first message and the response is
recorded in a file whose name is derived from
the author of the first message. See also the
followup, Save, and Copy commands and
"outfolder" (ENVIRONMENT VARIABLES).

from [msglist]
Prints the header summary for the specified
messages.

group alias name ...
alias alias name ...

Declare an alias for the given names,
will be substituted when alias is
recipient. Useful in the .mailrc file.

headers J message]
Prints the page of headers which includes the
message specified. The "screen" variable sets
the number of headers per page (see
ENVIRONMENT VARIABLES). See also the z
command.

help
Prints a summary of commands.

The names
used as a

MAILX (1)

hold [m«j/ta<]
preserve [msglist]

Holds the specified messages in the mailbox.

if «|r
mail-commands
else
mail-commands
endif

Conditional execution, where s will execute
following mail-commands, up to an else or endif,
if the program is in send mode, and r causes the
mail-commands to be executed only in receive
mode. Useful in the .mailrc file.

• L i . _ r:.u i g n o r e Heuuer -y i e iu . . .
discard header-field ...

Suppresses printing of the specified header fields
when displaying messages on the screen.
Examples of header fields to ignore are "status"
and "cc." All fields are included when the
message is saved. The Pr in t and Type
commands override this command.

list
Prints all commands available. No explanation
is given.

mail name ...
Mail a message to the specified users.

mbox [msglist]
Arrange for the given messages to end up in the
standard mbox save file when mailx terminates
normally. See "MBOX" (ENVIRONMENT
VARIABLES) for a description of this file. See
also the exit and quit commands.

next [message]
Go to next message matching message. A
msglist may be specified, but in this case the
first valid message in the list is the only one
used. This is useful for jumping to the next
message from a specific user, since the name
would be taken as a command in the absence of
a real command. See the discussion of msglists
above for a description of possible message
specifications.

MAILX (1)

ripe [msglist] [shell-command]
[msglisti [shell-command]

Pipe the message through the given shell-
command. The message is treated as if it were
read. If no arguments are given, the current
message is piped through the command specified
by the value of the "cmd" variable. If the
"page" variable is set, a form feed character is
inserted after each message (see ENVIRONMENT
VARIABLES).

preserve [msglist]
hold [msglist]

Preserve the specified messages in the mailbox.

Pr in t
Type

msgitsi
msglist

Print the specified messages on the screen,
including all header fields. Overrides
suppression of fields by the ignore command.

print [msglist]
type [msglist]

Print the specified messages. If "crt" is set, the
messages longer than the number of lines
specified by the "crt" variable are paged through
the command specified by the "PAGER"
variable. The default command is pg(1) (see
ENVIRONMENT VARIABLES).

quit
Exit from mailx, storing messages that were read
in mbox and unread messages in the mailbox.
Messages that have been explicitly saved in a file
are deleted.

Reply [ms0/i«fl
Respond [msglist]

Send a response to the author of each message in
the msglist. The subject line is taken from the
first message. If "record" is set to a filename,
the response is saved at the end of that file (see
ENVIRONMENT VARIABLES).

reply [message]
respond [message]

Reply to the specified message, including all
other recipients of the message. If "record" is
set to a filename, the response is saved at the

- 8 -

MAILX (1)

end of that file (see ENVIRONMENT
VARIABLES).

Save [msglist]
Save the specified messages in a file whose name
is derived from the author of the first message.
The name of the file is taken to be the author's
name with all network addressing stripped off.
See also the Copy, followup, and Followup
commands and "outfolder" (ENVIRONMENT
VARIABLES).

save
save

filename]
msglist] filename

Save the specified messages in the given file.
rrt i"l ' . l :p j ± T»I_ -

i n e m e i s c r e a t e u n i t u o e s n u t e x i s t , i i i e
message is deleted from the mailbox when mailx
terminates unless "keepsave" is set (see also
ENVIRONMENT VARIABLES and the exit and
quit commands).

set
set name
set name=string
set name= number

Define a variable called name. The variable
may be given a null, string, or numeric value.
Set by itself prints all defined variables and
their values. See ENVIRONMENT VARIABLES
for detailed descriptions of the mailx variables.

shell
Invoke an interactive shell (see also "SHELL"
(ENVIRONMENT VARIABLES)).

size [msglist]
Print the size in characters of the specified
messages.

source filename
Read commands from the given file and return
to command mode.

top [msglist]
Print the top few lines of the specified messages.
If the "toplines" variable is set, it is taken as the
number of lines to print (see ENVIRONMENT
VARIABLES). The default is 5.

MAILX (1)

t o u c h [msglist]
Touch the specified messages. If any message in
msglist is not specifically saved in a file, it will
be placed in the mbox upon normal termination.
See exit and quit.

l y p e .msgtiv*.
P r i n t msglist

Print the specified messages on the screen,
including all header fields. Overrides
suppression of fields by the ignore command.

type [msglist]
print [msglist]

Pr in t the specified messages. If "crt" is set, the
messages longer than the number of lines
specified by the "crt" variable are paged through
the command specified by the "PAGER"
variable. The default command is pg(I) (see
ENVIRONMENT VARIABLES).

undelete [maj/»«f]
Restore the specified deleted messages. Will
only restore messages deleted in the current mail
session. If "autoprint" is set, the last message of
those restored is printed (see ENVIRONMENT
VARIABLES).

u n s e t name ...
Causes the specified variables to be erased. If
the variable was imported from the execution
environment (i.e., a shell variable) then it cannot
be erased.

version
Prints the current version and release date.

visual [msglist]
Edit the given messages with a screen editor.
The messages are placed in a temporary file and
the "VISUAL" variable is used to get the name
of the editor (see ENVIRONMENT VARIABLES).

wr i te [msglist] filename
Write the given messages on the specified file,
minus the header and trailing blank line.
Otherwise equivalent to the save command.

- 10 -

MAILX (1)

Exit from mailx, without changing the mailbox.
No messages are saved in the mbox (see also
quit).

Scroll the header display forward or backward
one screen-full. The number of headers
displayed is set by the "screen" variable (see
ENVIRONMENT VARIABLES).

TILDE E S C A P E S
The following commands may be entered only from input
mode, by beginning a line with the tilde escape character

G - - " " NTL A \ T V N ? \ T T T r A T>T A T>T T7»OA F ^ j. o e e escape | £ i i v v m u i > i v i r , i n v r u v i n - o i j l i b j lor
changing this special character.

shell-command
Escape to the shell.

Simulate end of file (terminate message input).

mail-command

mail-command
Perform the command-level request. Valid only
when sending a message while reading mail.

Print a summary of tilde escapes.

~ A
Insert the autograph string "Sign" into the
message (see ENVIRONMENT VARIABLES).

~a
Insert the autograph string "sign" into the
message (see ENVIRONMENT VARIABLES).

~b name ...
Add the names to the blind carbon copy (Bcc)
list.

~c name ...
Add the names to the carbon copy (Cc) list.

xit
exit

r , l l
z m - i

- 1 1 -

MAILX (1)

d
Read in the dead.letter file. See "DEAD"
(ENVIRONMENT VARIABLES) for a description
of this file.

e
Invoke the editor on the partial message. See
also "EDITOR" (ENVIRONMENT VARIABLES).

f [msglist]
Forward the specified messages. The messages
are inserted into the message, without alteration.

h
Prompt for Subject line and To, Cc, and Bcc
lists. If the field is displayed with an initial
value, it may be edited as if you had just typed
it.

i string
Insert the value of the named variable into the
text of the message. For example, ~A is
equivalent to '~i Sign.'

m [msglist]
Insert the specified messages into the letter,
shifting the new text to the right one tab stop.
Valid only when sending a message while reading
mail.

P
Print the message being entered.

q
Quit from input mode by simulating an
interrupt. If the body of the message is not null,
the partial message is saved in dead.letter. See
"DEAD" (ENVIRONMENT VARIABLES) for a
description of this file.

r filename
~< filename
~< \shell-command

Read in the specified file, ff the argument
begins with an exclamation point (!), the rest of
the string is taken as an arbitrary shell

- 12 -

MAILX (1)

command and is executed, with the standard
output inserted into the message.

~s string ...
Set the subject line to string.

"A „ b rtu/ft& .. .
Add the given names to the To list.

~v
Invoke a preferred screen editor on the partial
message. See also "VISUAL" (ENVIRONMENT
VARIABLES).

w filename
Write the partial message onto the given file,
without the header.

~x
Exit as with ~q except the message is not saved
in dead.letter.

shell-command
Pipe the body of the message through the given
shell-command. If the shell-command returns a
successful exit status, the output of the
command replaces the message.

E N V I R O N M E N T V A R I A B L E S
The following are environment variables taken from the
execution environment and are not alterable within
mailx.

HOME=directory
The user's base of operations.

MAILRC=/t7ename
The name of the start-up file. Default is
$HOME/.mailrc.

The following variables are internal mailx variables.
They may be imported from the execution environment
or set via the set command at any time. The unse t
command may be used to erase variables.

allnet
All network names whose last component (login
name) match are treated as identical. This
causes the msglist message specifications to
behave similarly. Default is noallnet. See also

- 13 -

MAILX (1)

the alternates command and the "metoo"
variable.

append
Upon termination, append messages to the end
of the mbox file instead of prepending them.
Default is no append.

askcc
Prompt for the Cc list after message is entered.
Default is noaskcc.

asksub
Prompt for subject if it is not specified on the
command line with the —a option. Enabled by
default.

autoprint
Enable automatic printing of messages after
delete and undelete commands. Default is
noautoprint .

bang
Enable the special-casing of exclamation points
(!) in shell escape command lines as in f«(l).
Default is nobang.

c m d = shell- command
Set the default command for the pipe command.
No default value.

conv=convers ion
Convert uucp addresses to the specified address
style. The only valid conversion now is internet,
which requires a mail delivery program
conforming to the RFC822 standard for
electronic mail addressing. Conversion is
disabled by default. See also "sendmail" and the
—U command line option.

crt—number
Pipe messages having more than number lines
through the command specified by the value of
the "PAGER" variable (pg(1) by default).
Disabled by default.

- 14 -

MAILX (1)

D E A D = file name
The name of the file in which to save partial
letters in case of untimely interrupt or delivery
errors. Default is $HOME/dead.letter.

debug
L'n nVtl/i iTAitVv/\«A /J 1 n <rvt Aet I aci f/\w /J A V\ 11 r* r* n u i i a u i c v c i u u o c u i a ^ u w o v i v o tv/i u ^ u u g g n i g .
Messages are not delivered. Default is
nodebug.

dot
Take a period on a line by itself during input
from a terminal as end-of-file. Default is nodot .

EDITOR=shell-command
The command to run when the edit or ~e
command is used. Default is ed(l).

e s c a p e = c
Substitute c for the ~ escape character.

folder=directory
The directory for saving standard mail files.
User specified file names beginning with a plus
(+) are expanded by preceding the filename with
this directory name to obtain the real filename.
If directory does not start with a slash (/),
$HOME is prepended to it. In order to use the
plus (+) construct on a mailx command line,
"folder" must be an exported sh environment
variable. There is no default for the "folder"
variable. See also "outfolder" below.

header
Enable printing of the header summary when
entering mailx. Enabled by default.

hold
Preserve all messages that are read in the
mailbox instead of putting them in the standard
mbox save file. Default is nohold.

ignore
Ignore interrupts while entering messages.
Handy for noisy dial-up lines. Default is
noignore.

- 15 -

MAILX (1)

ignoreeof
Ignore end-of-file during message input. Input
must be terminated by a period (.) on a line by
itself or by the commana. Default is
noignoreeof. See also "dot" above.

keep
When the mailbox is empty, truncate it to zero
length instead of removing it. Disabled by
default.

keepsave
Keep messages that have been saved in other
files in the mailbox instead of deleting them.
Default is no keepsave.

MBOX=/t'/enome
The name of the file to save messages which
have been read. The xit command overrides this
function, as does saving the message explicitly in
another file. Default is $HOME/mbox.

m e t o o
If your login appears as a recipient, do not delete
it from the list. Default is nometoo .

LISTER—shell-command
The command (and options) to use when listing
the contents of the "folder" directory. The
default is /«(1).

onehop
When responding to a message that was
originally sent to several recipients, the other
recipient addresses are normally forced to be
relative to the originating author's machine for
the response. This flag disables alteration of the
recipients' addresses, improving efficiency in a
network where all machines can send directly to
all other machines (i.e., one hop away).

outfolder
Causes the files used to record outgoing
messages to be located in the directory specified
by the "folder" variable unless the pathname is
absolute. Default is nooutfolder. See "folder"
above and the Save, Copy, followup, and
Followup commands.

- 16 -

MAILX (1)

page
Used with the pipe command to insert a form
feed after each message sent through the pipe.
Default is nopage.

PAGER=shell-command
The command to use as a filter for paginating
output. This can also be used to specify the
options to be used. Default is p?(l) .

prompt=«<rtnj
Set the command mode prompt to string.
Default is "? ".

quiet
Refrain from printing the opening message and
version when entering mailx. Default is
noquiet.

record= f i l ename
Record all outgoing mail in filename. Disabled
by default. See also "outfolder" above.

save
Enable saving of messages in dead.letter on
interrupt or delivery error. See "DEAD" for a
description of this file. Enabled by default.

screen=nu mber
Sets the number of lines in a screen-full of
headers for the headers command.

sendmail=shell-command
Alternate command for delivering messages.
Default is ma«V(l).

sendwait
Wait for background mailer to finish before
returning. Default is nosendwait .

SHELL=shell-command
The name of a preferred command interpreter.
Default is «A(1).

show to
When displaying the header summary and the
message is from you, print the recipient's name
instead of the author's name.

- 17 -

MAILX (1)

s ign=string
The variable inserted into the text of a message
when the ~a (autograph) command is given. No
default (see also ~i (TILDE ESCAPES)).

Sign ^string
The variable inserted into the text of a message
when the ~A command is given. No default (see
also "i (TILDE ESCAPES)).

toplines=num6er
The number of lines of header to print with the
t op command. Default is 5.

VJSVAL=shell-command
The name of a preferred screen editor. Default
is vt(l).

FILES
$HOME/.mailrc personal start-up file
$HOME/mbox secondary storage file
/usr /mai l /* post office directory
/usr/lib/mailx/mailx.help* help message files
/usr/lib/mailx/mailx.rc global start-up file
/tmp/R[emqsx]* temporary files

SEE ALSO
mail(l), pg(l), ls(l).

BUGS
Where shell-command is shown as valid, arguments are
not always allowed. Experimentation is recommended.
Internal variables imported from the execution
environment cannot be unset .
The full internet addressing is not fully supported by
mailx. The new standards need some time to settle
down.
Attempts to send a message having a line consisting only
of a " . " are treated as the end of the message by mail(1)
(the standard mail delivery program).

- 18 -

M A K E (1)

NAME
make - maintain, update, and regenerate groups of
programs

SYNOPSIS
make f—f makefile]
[-el [-ml f - t l f - d - q

- i] [-k l [-»1 [-r l f -n l [-b l
names

DESCRIPTION
The following is a brief description of all options and
some special names:
- f makefile Description file name. Makefile is assumed

to be the name of a description file. A file
name of — denotes the standard input. The
contents of makefile override the built-in
rules if they are present.

—p Print out the complete set of macro
definitions and target descriptions.

—i Ignore error codes returned by invoked
commands. This mode is entered if the
fake target name . IGNORE appears in the
description file.

- k Abandon work on the current entry, but
continue on other branches that do not
depend on that entry.

—s Silent mode. Do not print command lines
before executing. This mode is also entered
if the fake target name .SILENT appears in
the description file.

—r Do not use the built-in rules.
—n No execute mode. Print commands, but do

not execute them. Even lines beginning
with an @ are printed.

- b Compatibility mode for old makefiles.
—e Environment variables override assignments

within makefiles.
- m Print a memory map showing text, data,

and stack. This option is a no-operation on
systems without the getu system call.

- t Touch the target files (causing them to be
up-to-date) rather than issue the usual
commands.

—d Debug mode. Print out detailed
information on files and times examined.

MAKE(1)

—q Question. The make command returns a
zero or non-zero status code depending on
whether the target file is or is not up-to-
date.

.DEFAULT If a file must be made but there are no
explicit commands or relevant built-in rules,
the commands associated with the name
.DEFAULT are used if it exists.

.PRECIOUS
Dependents of this target will not be
removed when quit or interrupt are hit.

•SILENT Same effect as the — s option.
•IGNORE Same effect as the — i option.
Make executes commands in makefile to update one or
more target names. Name is typically a program. If no
—f option is present, makefile, Makefi le , s .makefile,
and s .Makefi le are tried in order. If makefile is —, the
standard input is taken. More than one — makefile
argument pair may appear.
Make updates a target only if its dependents are newer
than the target. All prerequisite files of a target are
added recursively to the list of targets. Missing files are
deemed to be out of date.
Makefile contains a sequence of entries that specify
dependencies. The first line of an entry is a blank-
separated, non-null list of targets, then a :, then a
(possibly null) list of prerequisite files or dependencies.
Text following a $ and all following lines that begin with
a tab are shell commands to be executed to update the
target. The first line that does not begin with a tab or
begins a new dependency or macro definition. Shell
commands may be continued across lines with the
< b a c k s l a s h > < n e w - l i n e > sequence. Everything printed
by make (except the initial tab) is passed directly to the
shell as is. Thus,

echo a \
b

will produce
ab

exactly the same as the shell would.
Sharp (#) and new-line surround comments.
The following makefile says that p g m depends on two
files a .o and b.o, and that they in turn depend on their
corresponding source files (a.c and b.c) and a common

- 2 -

M A K E (1)

file incl.h:
pgm: a.o b.o

cc a.o b.o - o pgm
a.o: incl.h a.c

cc - c a.c
b.o: incl.h b.c

cc - c b.c
Command lines are executed one at a time, each by its
own shell. The first one or two characters in a command
can be the following: —, — o r If @ is present,
printing of the command is suppressed. If — is present,
make ignores an error. A line is printed when it is
executed unless the —s option is present, or the entry
.SILENT: is in makefile, or unless the initial character
sequence contains a The —n option specifies printing
without execution; however, if the command line has the
string $(MAKE) in it, the line is always executed (see
discussion of the MAKEFLAGS macro under
Environment). The —t (touch) option updates the
modified date of a file without executing any commands.
Commands returning non-zero status normally terminate
make. If the — i option is present, or the entry
.IGNORE: appears in makefile, or the initial character
sequence of the command contains - . the error is
ignored. If the —k option is present, work is abandoned
on the current entry, but continues on other branches
that do not depend on that entry.
The —b option allows old makefiles (those written for
the old version of make) to run without errors. The
difference between the old version of make and this
version is that this version requires all dependency lines
to have a (possibly null or implicit) command associated
with them. The previous version of make assumed, if no
command was specified explicitly, that the command was
null.
Interrupt and quit cause the target to be deleted unless
the target is a dependent of the special name
•PRECIOUS.

Environment
The environment is read by make. All variables are
assumed to be macro definitions and processed as such.
The environment variables are processed before any
makefile and after the internal rules; thus, macro
assignments in a makefile override environment
variables. The —e option causes the environment to
override the macro assignments in a makefile.

M A K E (1)

The MAKEFLAGS environment variable is processed by
make as containing any legal input option (except —f,
—p, and —d) defined for the command line. Further,
upon invocation, make "invents" the variable if it is not
in the environment, puts the current options into it, and
passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input
options. This proves very useful for "super-makes". In
fact, as noted above, when the —n option is used, the
command $(MAKE) is executed anyway; hence, one can
perform a make - n recursively on a whole software
system to see what would have been executed. This is
because the —n is put in MAKEFLAGS and passed to
further invocations of $(MAKE). This is one way of
debugging all of the makefiles for a software project
without actually doing anything.

Macros
Entries of the form stringl = string2 are macro
definitions. StringS is defined as all characters up to a
comment character or an unescaped new-line.
Subsequent appearances of %(stringl [:substl =[subst2]])
are replaced by string2. The parentheses are optional if
a single character macro name is used and there is no
substitute sequence. The optional :substl=subst2 is a
substitute sequence. If it is specified, all non-overlapping
occurrences of substl in the named macro are replaced
by subst2. Strings (for the purposes of this type of
substitution) are delimited by blanks, tabs, new-line
characters, and beginnings of lines. An example of the
use of the substitute sequence is shown under Libraries.

Internal Macros
There are five internally maintained macros which are
useful for writing rules for building targets.

The macro $* stands for the file name part of the
current dependent with the suffix deleted. It is
evaluated only for inference rules.

$@ The $@ macro stands for the full target name of
the current target. It is evaluated only for
explicitly named dependencies.

$ < The $ < macro is only evaluated for inference rules
or the .DEFAULT rule. It is the module which is
out-of-date with respect to the target (i.e., the
"manufactured" dependent file name). Thus, in
the .c.o rule, the $ < macro would evaluate to the
,c file. An example for making optimized .o files
from .c files is:

MAKE(1)

.c.o:
cc - c - O $*.c

or:
.c.o:

cc - c - O $ <
$? The $7 macro is evaluated when explicit rules from

the makefile are evaluated. It is the list of
prerequisites that are out of date with respect to
the target; essentially, those modules which must
be rebuilt.

$ % The $ % macro is only evaluated when the target is
an archive library member of the form lib(file.o).
In this case, $@ evaluates to lib and $ % evaluates
to the library member, fiie.o.

Four of the five macros can have alternative forms.
When an upper case D or F is appended to any of the
four macros, the meaning is changed to "directory pa r t "
for D and "file par t" for F. Thus, $(@D) refers to the
directory part of the string $@. If there is no directory
part, . / is generated. The only macro excluded from this
alternative form is $?. The reasons for this are
debatable.

Suffixes
Certain names (for instance, those ending with .o) have
inferable prerequisites such as .c, .s, etc. If no update
commands for such a file appear in makefile, and if an
inferable prerequisite exists, that prerequisite is compiled
to make the target. In this case, make has inference
rules which allow building files from other files by
examining the suffixes and determining an appropriate
inference rule to use. The current default inference rules
are:

.c ,c~ .sh .sh~ .c.o ,c~.o .c~.c .s.o .s~.o .y.o
.y~.o .l.o r . o

.y.c ,y~.c .l.c .c.a .c~.a .s~.a .h~.h
The internal rules for make are contained in the source
file rules.c for the make program. These rules can be
locally modified. To print out the rules compiled into
the make on any machine in a form suitable for
recompilation, the following command is used:

make - f p - 2 > / d e v / n u l l < / d e v / n u l l
The only peculiarity in this output is the (null) string
which printf(3S) prints when handed a null string.

M A K E (1)

A tilde in the above rules refers to an SCCS file (see
sccsfile(4)). Thus, the rule .c~.o would transform an
SCCS C source file into an object file (.o). Because the
s. of the SCCS files is a prefix, it is incompatible with
make's suffix point-of-view. Hence, the tilde is a way of
changing any file reference into an SCCS file reference.
A rule with only one suffix (i.e., .c:) is the definition of
how to build x from x.c. In effect, the other suffix is
null. This is useful for building targets from only one
source file (e.g., shell procedures, simple C programs).
Additional suffixes are given as the dependency list for
.SUFFIXES. Order is significant; the first possible name
for which both a file and a rule exist is inferred as a
prerequisite. The default list is:

.SUFFIXES: .o .c .y .1 .s
Here again, the above command for printing the internal
rules will display the list of suffixes implemented on the
current machine. Multiple suffix lists accumulate;
•SUFFIXES: with no dependencies clears the list of
suffixes.

Inference Rules
[The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o - o pgm

a.o b.o: incl.h
This is because make has a set of internal rules for
building files. The user may add rules to this list by
simply putting them in the makefile.
Certain macros are used by the default inference rules to
permit the inclusion of optional matter in any resulting
commands. For example, CFLAGS, LFLAGS, and
YFLAGS are used for compiler options to ee(l), /ex(l),
and yacc(1), respectively. Again, the previous method
for examining the current rules is recommended.
The inference of prerequisites can be controlled. The
rule to create a file with suffix .o from a file with suffix
•c is specified as an entry with .c.o: as the target and no
dependents. Shell commands associated with the target
define the rule for making a .o file from a .c file. Any
target that has no slashes in it and starts with a dot is
identified as a rule and not a true target.

Libraries
If a target or dependency name contains parentheses, it
is assumed to be an archive library, the string within
parentheses referring to a member within the library.

- 6 -

M A K E (l)

Thus lib(file.o) and $(LIB)(file.o) both refer to an
archive library which contains file.o. (This assumes the
LIB macro has been previously defined.) The expression
$(LIB)(filel.o file2.o) is not legal. Rules pertaining to
archive libraries have the form .XX.a. where the XX is
the suffix from which the archive member is to be made.
An unfortunate byproduct of the current implementation
requires the XX to be different from the suffix of the
archive member. Thus, one cannot have lib(file.o)
depend upon file.o explicitly. The most common use of
the archive interface follows. Here, we assume the
source files are all C type source:

lib: lib(filel.o) lib(file2.o) lib(file3.o)
@echo lib is now up-to-date

.c.a:
$(CC) - c $(CFLAGS) $ <
ar rv $@ $*.o
rm - f $*.o

In fact, the .c.a rule listed above is built into make and
is unnecessary in this example. A more interesting, but
more limited example of ail archive library maintenance
construction follows:

lib: lib(filel.o) lib(file2.o) lib(file3.o)
$(CC) - c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $? @echo lib is now up-to-date

.c.a:;
Here the substitution mode of the macro expansions is
used. The $? list is defined to be the set of object file
names (inside lib) whose C source files are out-of-date.
The substitution mode translates the .o to .c.
(Unfortunately, one cannot as yet transform to .c~;
however, this may become possible in the future.) Note
also, the disabling of the .c.a: rule, which would have
created each object file, one by one. This particular
construct speeds up archive library maintenance
considerably. This type of construct becomes very
cumbersome if the archive library contains a mix of
assembly programs and C programs.

FILES
[Mm]akefile and s.[Mm]akefile

SEE ALSO
cc(l), cd(l), lex(l), sh(l), yacc(l), printf(3S), sccsfile(4).

BUGS
Some commands return non-zero status inappropriately;
use —i to overcome the difficulty. File names with the

M A K E (1)

characters = : @ will not work. Commands that are
directly executed by the shell, notably ed(1), are
ineffectual across new-lines in make. The syntax
(l ibff i le l .o fi le2.o file3.o) is illegal. You cannot build
lib(file.o) from file.o. The macro $ (a: .o=.c~) does not
work.

M A N (1)

NAME
man, manprog - print entries in this manual

SYNOPSIS
man [options] [section] titles
/ u s r / l i b / m a n p r o g file

DESCRIPTION
Man locates and prints the entry of this manual named
title in the specified section. (For historical reasons, the
word "page" is often used as a synonym for "entry" in
this context.) The title is entered in lower case. The
section number may not have a letter suffix. If no
section is specified, the whole manual is searched for
title and all occurrences of it are printed. Options and
their meanings are:

Typeset the entry in the default format
(8 . 5 " X l l ") .
Typeset the entry in the small format
(6 ' r x9") .
Display the typeset output on a Tektronix
4014 terminal using fc (1).
Same as - T 4 0 1 4 .
Print the typeset output on a Versatec
printer; this option is not available at all
sites.
Format the entry using nroff and print it on
the standard output (usually, the terminal);
term is the terminal type (see term(5) and
the explanation below); for a list of
recognized values of term, type help
term2. The default value of term is 450.
Print on the standard output only the path
names of the entries, relative to / u s r / m a n ,
or to the current directory for —d option.
Search the current directory rather than
/ u s r / m a n ; requires the full file name (e.g.,
cu. lc , rather than just cu).
Indicates that the manual entry is to be
produced in 12-pitch. May be used when
$TERM (see below) is set to one of 300,
300s, 450, and 1620. (The pitch switch on
the DASI 300 and 300s terminals must be
manually set to 12 if this option is used.)
Causes man to invoke col(1); note that
eo/(l) is invoked automatically by man
unless term is one of 300, 300s, 450, 37,
4000a, 3 8 2 , 4 0 1 4 , t e k , 1820, and X.

- t

- T 4 0 1 4

- T t e k
- T v p

—T(erm

- d

12

- c

MAN(1)

—y Causes man to use the non-compacted
version of the macros.

The above options other than —d, —c, and —y are
mutually exclusive, except that the — s option may be
used in conjunction with the first four —T options
above. Any other options are passed to troff, nroff, or
the man (5) macro package.
When using nroff, man examines the environment
variable $TERM (see environ(5)) and attempts to select
options to nroff, as well as filters, tha t adapt the output
to the terminal being used. The —Tterm option
overrides the value of $TERM; in particular, one should
use —Tip when sending the output of man to a line
printer.
Section may be changed before each title.
As an example:

man man
would reproduce on the terminal this entry, as well as
any other entries named man that may exist in other
sections of the manual, e.g., man(5).
If the first line of the input for an entry consists solely of
the string:

'\» x
where x is any combination of the three characters c, e,
and t , and where there is exactly one blank between the
double quote (") and x, then man will preprocess its
input through the appropriate combination of cw(1),
egn(l) (neqn for nroff) and tbl(1), respectively; if eqn or
neqn are invoked, they will automatically read the file
/ u s r / p u b / e q n c h a r (see eqnchar(5)).
The man command executes manprog that takes a file
name as its argument. Manprog calculates and returns a
string of three register definitions used by the formatters
identifying the date the file was last modified. The
returned string has the form:

—rd day —rmmonth —ryyear
and is passed to nroff which sets this string as variables
for the man macro package. Months are given from 0 to
11, therefore month is always 1 less than the actual
month. The man macros calculate the correct month. If
the man macro package is invoked as an option to
nroff /troff (i.e., nroff -man file), then the current
day/month/year is used as the printed date.

M A N (l)

FILES
/usr /man/u_man/man[l-8] directories for source

files
/usr /man/local /man[l-8] /* local additions
/usr/ l ib/manprog calculates modification

dates of entries
SEE ALSO

cw(ll, eqn(l), nroff(l), tbl(l), tc(l), troff(l) , environ(5),
man(5), term(5).

BUGS
All entries are supposed to be reproducible either on a
typesetter or on a terminal. However, on a terminal
some information is necessarily lost.

M E S G (1)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [n] [y]

DESCRIPTION
Mesg with argument n forbids messages via write (1) by
revoking non-user write permission on the user's
terminal. Mesg with argument y reinstates permission.
All by itself, mesg reports the current state without
changing it.

FILES
/dev/ t ty*

SEE ALSO
write(l).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on
error.

MKDIR (1)

NAME
mkdir, mkdirs - make a directory

SYNOPSIS
m k d i r dirname ...
m k d i r s dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777 (possibly
altered by umask(1)). Standard entries, ., for the
directory itself, and for its parent, are made
automatically.
Mkdir requires write permission in the parent directory.
Mkdirs creates the specified directory by using mkdir, as
well as all nonexistent parent directories. All diagnostics
are those of mkdir. If no directories are made, mkdir is
silent and has an exit status of 0.

SEE ALSO
sh(l), rm(l), umask(l).

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were
successfully made; otherwise, it prints a diagnostic and
returns non-zero.

M K F S (1M)

NAME
mkfs - construct a file system

SYNOPSIS
/ e t c / m k f s special [—O] blocks[:i-nodes]
[gap blocks/cyl]
/ e t c / m k f s special [—O 1 proto [gap blocks/cyl]
/ e t c / m k f s special

DESCRIPTION
Mkfs constructs a file system by -writing on the special
file according to the directions found in the remainder of
the command line. The command waits 10 seconds
before starting to construct the file system. If the second
argument is given as a string of digits, mkfs builds a file
system with a single empty directory on it. The size of
the file system is the value of blocks interpreted as a
decimal number. This is the number of physical (512-
byte) disk blocks the file system will occupy. The boot
program is left uninitialized. If the optional number of i-
nodes is not given, the default is the number of logical
blocks divided by 4 (rounded down); i-nodes are
allocated in groups of 16.
If the second argument is a file name that can be
opened, mkfs assumes it to be a prototype file proto, and
will take its directions from that file. The prototype file
contains tokens separated by spaces or new-lines. The
first token is the name of a file to be copied onto block
zero as the bootstrap program. The second token is a
number specifying the size of the created file system in
physical disk blocks. Typically it will be the number of
blocks on the device, perhaps diminished by space for
swapping. The next token is the number of i-nodes in
the file system. The maximum number of i-nodes
configurable is 65500. The next set of tokens comprise
the specification for the root file. File specifications
consist of tokens giving the mode, the user ID, the group
ID, and the initial contents of the file. The syntax of the
contents field depends on the mode.
The mode token for a file is a 6-character string. The
first character specifies the type of the file. (The
characters —bed specify regular, block special, character
special and directory files respectively.) The second
character of the type is either u or — to specify set-user-
id mode or not. The third is g or — for the set-group-id
mode. The rest of the mode is a three digit octal
number giving the owner, group, and other read, write,
execute permissions (see chmod(l)).

M K F S (1 M)

Two decimal number tokens come after the mode; they
specify the user and group IDs of the owner of the file.
If the file is a regular file, the next token is a pathname
whence the contents and size are copied. If the file is a
block or character special file, two decimal number
tokens follow which give the major and minor device
numbers. If the file is a directory, mkfs makes the
entries . and .. and then reads a list of names and
(recursively) files specifications for the entries in the
directory. The scan is terminated with the token $.
A sample prototype specification follows:

/stand /diskboot
4872 110
d - - 7 7 7 3 1
usr d — 7 7 7 3 1

sh 755 3 1 /b in / sh
ken d — 7 5 5 6 1 $
bO b — 6 4 4 3 1 0 0
cO c—644 3 1 0 0 $

$
In both command syntaxes, the rotational gap and the
number of blocks/cyl can be specified. The default gap
size is 7. The default blocks/cylinder is 400. The
default will be used if the supplied gap and blocks/cyl
are considered illegal values or if a short argument count
occurs.
The —O option makes a file system with a free list
instead of a bit map.
Special must be a disk slice. The third form of the mkfs
command extracts the slice size from the volume home
block and creates a file system the same size; this third
option cannot be used where there are overlapping
partitions. The number of i-nodes is the number of
logical blocks divided by 4. Optimal values for gap size
and blocks/cylinder are calculated; these may not be 7
and 400.

SEE ALSO
chmod(l), dir(4), fs(4).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

BUGS
If a prototype is used, there is no way to specify links or
cluster size.

MKHOSTS (1 N M)

NAME
mkhosts - make node name commands

SYNOPSIS
/ etc / m k h o s t s

DESCRIPTION
Mkhosts makes the simplified forms of the rcwiu(lN) and
rlogin(IN) commands. For each node listed in
/ e t c / h o s t s , mkhosts creates a link to
/ u s r / l o c a l / b i n / r c m d in / u s r / h o s t s . Each link's
name is the same as the node's official name in
/ e t c / h o s t s .

SEE ALSO
rcmd (IN), rlogin(lN).

MKIFILE (1 M)

NAME
mkifile - make an ifile from an object file

SYNOPSIS
mkif i le a . o u t ifile

DESCRIPTION
— - — — j ;t:i. _ 1: iviKtjtt^ tai^co a n u u j c t b u i i m u i c a n u w i i u c o i l l iy«ic a l i n e

of the form
symbol = 0 xvalue

For each external symbol in the object module this ifile
can be used as an argument to ld(1) as an absolute
symbol table against which other modules may be linked.
Mkifile is used with loadable drivers to provide the
symbols for the currently running CTIX.

SEE ALSO
ld(l), lddrv(lM), ldeeprom(lM).

M K L O S T + F O U N D (1 M)

NAME
mklost+found - make a lost+found directory for fsck

SYNOPSIS
/ etc / m k l o s t + f o u n d

DESCRIPTION
A directory iost+found is created in the current
directory and a number of empty files are created therein
and then removed so that there will be empty slots for
fsck(M). This command should be run immediately after
first mounting a newly created file system.

SEE ALSO
fsck(lM), mkfs(lM)

BUGS
Should be done automatically by mkfs.

MKNOD(1M)

NAME
mknod - build special file

SYNOPSIS
/ e t c / m k n o d name c | b major minor
/ e t c / m k n o d name p

DESCRIPTION
Mknod makes a directory entry and corresponding i-node
for a special file. The first argument is the name of the
entry. In the first case, the second is b if the special file
is block-type (disks, tape) or c if it is character-type
(other devices). The last two arguments are numbers
specifying the major device type and the minor device
(e.g., unit, drive, or line number), which may be either
decimal or octal.
The assignment of major device numbers is specific to
each system. They have to be dug out of the system
source file conf.c.
Mknod can also be used to create fifo's (a.k.a. named
pipes) (second case in SYNOPSIS above).

SEE ALSO
mknod(2).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

M K T P Y (l)

NAME
mktpy, mvtpy - install or relocate a P T or GT local
printer

SYNOPSIS
/ u s r / l o c a l / b i n / m k t p y [namel [name2 [tty]]]
/ u s r / l o c a l / b i n / m v t p y name tty n

DESCRIPTION
To install a P T or GT local printer initially, the system
administrator must use the lpadmin(l) command. The
administrator must use the - 1 flag to ensure that the
spooling system knows that the printer is attached to a
login terminal. If this is not done, the printers will be
attached to random devices at boot time, and behavior is
undefined.
Mktpy is used to inform the lp(1) spooling system of the
location of a printer that is attached to a P T or GT and
to enable (1) the printer to accept print requests. Mktpy
installs a printer on an RS-422 terminal's local port.
Mvtpy updates a mktpy installation by changing the
device association when the terminal's device number
changes. The device number may change each time the
system or the terminal is powered off and on.
The mktpy command accepts the names of one or two
printers as arguments. If no arguments are given, it will
prompt for the name of two printers. As an argument,
the null string " must be used in the first argument
position if only one printer exists and is attached to the
second port. In response to a prompt, a < c r > indicates
that no printer is attached to the indicated port.
If mktpy is run and the indicated printer is already
attached to another tty device, the location of that
printer is not changed and a warning message is printed.
If the command is being executed to inform the system
of a printer attached to a terminal other than the
terminal from which the command is being run, then the
printers must be specified as arguments (with a null
string, if necessary, as a place holder). The tty line to
which the printer's host terminal is attached must be
specified as the third argument.
The mvtpy command is most commonly used when a P T
or GT has been powered off and then on again and the
tty number of the P T or G T has changed. The system
needs to be informed of the tty line that should receive
the print requests. Before running mvtpy, the new tty
number must be determined. Namel is the name of the
printer, nameS is the t ty number of the new tty, and n is

- 1 -

MKTPY(1)

the port on the P T or GT to which the printer is
attached; n must be either 1 or 2. Mvtpy processes these
arguments and issues an lpadmin(1) command to move
the specified printer to the indicated t ty line. Diagnostics
are from lpadmin.
For the convenience of users, a m k t p y login is provided.
The mktpy login executes mktpy for the terminal where it
is executed and prompts for printer names.

EXAMPLES
To install two printers on the same tty:

mktpy DIABLO EPSON
To install a printer on the second port of another tty:

mktpy " QUME tty256
To tell the system that the t ty number of the terminal
to which a printer is attached has changed:

mvtpy QUME tty260
NOTES

Only PTs or GTs that are on cluster lines can have
printers attached to the serial ports. GTs have two
serial ports and PTs have one serial port. Printers
attached to PTs are considered to be attached to the
first port. For each terminal / d e v / t t y n n n on the
system, two other character special files exist,
/ d e v / t p a n n n and / dev / tpbnnn . These devices refer
to the first and second serial ports respectively on the
matching terminal.

FILES
/dev / t tynnn Name of t ty
/ dev / tpa First serial port of /dev / t ty nnn
/dev / tpb Second serial port of /dev/ t tynnn
/ tmp/mkt[l2]* Temporary files to hold printer

status for mktpy
/ t m p / m v t * Temporary file to hold printer

status for mvtpy
/ d e v / t p / *

SEE ALSO
accept(l), disable(l), enable(l), lp(l), lpadmin(l),
lpsched(l), reject(l), tp(7).

DIAGNOSTICS
Generally self explanatory. "LP doesn't know xxxx" if
the printer has not been created yet. Check spelling of
printer name or see system administrator.

M K T P Y (1)

WARNINGS
The command

mktpy " " ttyxxx
has no effect; it does not prompt for input.
Printing to the second port of a P T is not recommended.

MM(1)

NAME
mm, osdd, checkmm - print/check documents formatted
with the MM macros

SYNOPSIS
m m [options] [files]
osdd [options] [files]
checkmm [files]

DESCRIPTION
Mm can be used to type out documents using nroff and
the MM text-formatting macro package. It has options
to specify preprocessing by <6/(1) and/or neqn (see
negn(l)) and postprocessing by various terminal-oriented
output filters. The proper pipelines and the required
arguments and flags for nroff and MM are generated,
depending on the options selected.
Osdd is equivalent to the command m m —mosd. For
more information about the OSDD adapter macro
package, see mosd(5).
Options for mm are given below. Any other arguments
or flags (e.g., —rC3) are passed to nroff or to MM, as
appropriate. Such options can occur in any order, but
they must appear before the files arguments. If no
arguments are given, mm prints a list of its options.
—Tterm Specifies the type of output terminal; for a list

of recognized values for term, type help
term2. If this option is not used, mm will
use the value of the shell variable $TERM
from the environment (see profile(4) and
environ(5)) as the value of term, if $TERM is
set; otherwise, mm will use 450 as the value
of term. If several terminal types are
specified, the last one takes precedence.

— 12 Indicates that the document is to be produced
in 12-pitch. May be used when $TERM is set
to one of 300, 300s, 450, and 1620. (The
pitch switch on the DASI 300 and 300s
terminals must be manually set to 12 if this
option is used.)

—c Causes mm to invoke eo/(l); note that co/(l)
is invoked automatically by mm unless term is
one of 300, 300s, 450, 37, 4000a, 382,
4 0 1 4 , t e k , 1620, and X.

—e Causes mm to invoke neqn; also causes neqn
to read the / u s r / p u b / e q n c h a r file (see
eqnehar(5)).

- 1 -

MM(1)

- t Causes mm to invoke <6/(1).
—E Invokes the - e option of nroff.
—y Causes mm to use the non-compacted version

of the macros (see mm(5)).
As an example (assuming that the shell variable $TERM
is set in the environment to 450), the two command
lines below are equivalent:

mm - t - r C 3 - 1 2 ghh*
tbl ghh* | nroff - c m - T 4 5 0 - 1 2 - h - r C 3

Mm reads the standard input when — is specified instead
of any file names. (Mentioning other files together with
— leads to disaster.) This option allows mm to be used
as a filter, e.g.:

cat dws j mm -
Checkmm is a program for checking the contents of the
named files for errors in the use of the Memorandum
Macros, missing or unbalanced neqn delimiters, and
. E Q / . E N pairs. Note: The user need not use the
checkeq program (see neqn(l)). Appropriate messages
are produced. The program skips all directories, and if
no file name is given, standard input is read.

HINTS
1. Mm invokes nroff with the —h flag. With this

flag, nroff assumes that the terminal has tabs set
every 8 character positions.

2. Use the —olist option of nroff to specify ranges
of pages to be output. Note, however, that mm,
if invoked with one or more of the —e, —t, and
— options, together with the —olist option of
nroff may cause a harmless "broken pipe"
diagnostic if the last page of the document is not
specified in list.

3. If you use the —s option of nroff (to stop
between pages of output), use line-feed (rather
than return or new-line) to restart the output.
The — s option of nroff does not work with the
—c option of mm, or if mm automatically
invokes eo/(l) (see —c option above).

4. If you lie to mm about the kind of terminal its
output will be printed on, you'll get (often
subtle) garbage; however, if you are redirecting
output into a file, use the —T37 option, and
then use the appropriate terminal filter when
you actually print that file.

- 2 -

MM(1)

SEE ALSO
col(l), env(l), neqn(l), greek(l), nroff(l), tbl(l),
profile(4), mm(5), term(5).

DIAGNOSTICS
mm "mm: no input file" if none of the arguments

is a readable file and mm is not used as a
filter.

checkmm "Cannot open filename" if file(s) is
unreadable. The remaining output of the
program is diagnostic of the source file.

M M (5)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
m m [options] [files]
n r o f f —mm [options] [files]
n r o f f —cm [options] [files]

DESCRIPTION
This package provides a formatting capability for a very
wide variety of documents. It is the standard package
used by the BTL typing pools and documentation
centers. The manner in which a document is typed in
and edited is essentially independent of whether the
document is to be eventually formatted at a terminal or
is to be phototypeset. See the references below for
further details.
The —mm option causes nroff and troff(1) to use the
non-compacted version of the macro package, while the
—cm option results in the use of the compacted version,
thus speeding up the process of loading the macro
package.

FILES
/usr / l ib / tmac/ tmac .m pointer to the non-

compacted version of
the package

/usr/ l ib/macros/mm[nt] non-compacted
version of the package

/usr/lib/macros/cmp.[nt].[dt].m compacted version of
the package

/usr/l ib/macros/ucmp.[nt].m initializers for the
compacted version of
the package

SEE ALSO
mm(l), mmt(l) , nroff(l).
MM-Memorandum Macros by D. W. Smith and J. R.
Mashey.
Typing Documents with MM by D. W. Smith and E. M.
Piskorik.

I

M M T (l)

NAME
mmt, mvt - typeset documents, view graphs, and slides

SYNOPSIS
m m t [options] [files]
m v t [options] [files]

DESCRIPTION
These two commands are very similar to mm(1), except
that they both typeset their input via troff (I), as
opposed to formatting it via nroff; mmt uses the MM
macro package, while mvt uses the Macro Package for
View Graphs and Slides. These two commands have
options to specify preprocessing by <6/(1) and/or eqn{ 1).
The proper pipelines and the required arguments and
flags for troff(1) and for the macro packages are
generated, depending on the options selected.
Options are given below. Any other arguments or flags
(e.g., —rC3) are passed to troff{l) or to the macro
package, as appropriate. Such options can occur in any
order, but they must appear before the files arguments.
If no arguments are given, these commands print a list of
their options.

Causes these commands to invoke eqn(1);
also causes eqn to read the
/ u s r / p u b / e q n c h a r file (see eqnchar(5)).
Causes these commands to invoke <6/(1).
Directs the output to a Versatec printer; this
option is not available at all sites.
Directs the output to a Tektronix 4014
terminal via the <c(l) filter.
Same as —T4014.
Invokes the —a option of troff (I).
Causes mmt to use the non-compacted
version of the macros (see mm (5)). No effect
for mvt.

These commands read the standard input when — is
specified instead of any file names.
Mvt is just a link to mmt.

HINT
Use the —olist option of troff{ 1) to specify ranges of
pages to be output. Note, however, that these
commands, if invoked with one or more of the —e, —t,
and — options, together with the —olist option of troff(l)
may cause a harmless "broken pipe" diagnostic if the
last page of the document is not specified in list.

- t
—Tvp

- T 4 0 1 4

- T t e k
— a
- y

- 1 -

MMT(1)

SEE ALSO
env(l), eqn(l), mm(l). tbl(l), tc(l), troff(l), profile(4),
environ(5), mm(5), mv(5).

DIAGNOSTICS
"mfmvjt: 110 input file" if none of the arguments is a
readable file and the command is not used as a filter.

M O R E (1)

NAME
more, page - text perusal

SYNOPSIS
more [— cdflsu] [— n } [-j-ltnenumber }
[+/pattern] [name ...]
r „ r 1 r _ 1 r i / l r i / . . u i p a g e [— C u I i S U j [—7i j [t i j [- r / p u n e r n J
[name ...]

DESCRIPTION
More and page display text a screenful at a time. Page
clears the screen before each screenful; otherwise page
and more are identical. Henceforth we refer just to
more.
When the screen is full, more prints the string
" — M o r e — " . If input is a file, more indicates how
much of the file has been read. To display the next
screenful, type a space. To display a list of commands,
type an "h" .
More treats underlining and form feeds (*L) specially;
otherwise it passes along its input unmodified. If your
terminal has an underline mode or some other standout
mode, more uses this mode to display underlined text. If
a file begins with a form feed, more clears the screen
before displaying the file. Subsequent form feeds cause
more to pause.
If the standard output is not a terminal, more does not
pause between screenfuls.
To make more pause in the middle of a screenful, type
QUIT (normally code- \) . Some text is lost when you do
this, and you may terminate whatever program is piping
to more.
These are the options.
— n Display n lines instead of a screenful.
—c Avoid scrolling. More begins each screenful at

the top of the screen and erases each line as it is
needed.

—d Prompts user with "Hit space to continue,
Rubout to abort" at the end of each screenful.

—f Count file lines, rather than screen lines.
—1 No special treatment for form feeds.
—s Suppress all but one of each sequence of blank

lines. Useful with nroff.
—u No special handling of underlining.

M O R E (1)

-\-linenvmber
Begin displaying the file at line number I.

+/pattern
Search for pattern and begin displaying the file
two lines before it. Pattern is a regular
expression; it follows the same rules as does a
search in ex(l).

If the program is invoked as page, then the screen is
cleared before each screenful is printed (but only if a full
screenful is being printed), and k - 1 rather than k - 2
lines are printed in each screenful, where k is the number
of lines the terminal can display.
To supply options automatically, put the options in the
M O R E environment variable. Here's an example for
the Bourne Shell:

MORE = '-s -d '
More looks at the T E R M environment variable to find
what kind of terminal you're using and at the
T E R M C A P environment variable to find how the
terminal works. If T E R M C A P is not set, more
examines /e tc / t ermeap .
More resets terminal modes. This permits character (as
opposed to line) commands and limits echoing of
commands.
More looks in the environment variable MORE to pre-set
any flags desired. For example, if you prefer to view
files using the - c mode of operation, the csh command
setenv MORE -c or the sh command sequence
MORE— '-e' ; export MORE would cause all invocations
of more , including invocations by programs such as man
and msgs , to use this mode. Normally, the user will
place the command sequence which sets up the MORE
environment variable in the .cshrc or .profile file.
If more is reading from a file, rather than a pipe, then a
percentage is displayed along with the —More— prompt.
This gives the fraction of the file (in characters, not
lines) that has been read so far.
Other sequences which may be typed when more pauses,
and their effects, are as follows (» is an optional integer
argument, defaulting to 1) :
i < s p a c e >

display t more lines, (or another screenful if no
argument is given)

M O R E (1)

*D display 11 more lines (a "scroll"). If i is given,
then the scroll size is set to t .

d same as *D (code-D)
t z same as typing a space except that t , if present,

becomes the new window size.
s s skip i lines and print a screenful of lines
» f skip « screenfuls and print a screenful of lines
q or Q Exit from more.
= Display the current line number.
v Start up the editor vi at the current line.
h Help command; give a description of all the

more commands.
t' /expr search for the «-th occurrence of the regular

expression expr. If there are less than i
occurrences of expr, and the input is a file
(rather than a pipe), then the position in the file
remains unchanged. Otherwise, a screenful is
displayed, starting two lines before the place
where the expression was found. The user's
erase and kill characters may be used to edit the
regular expression. Erasing back past the first
column cancels the search command.

i n search for the »-th occurrence of the last regular
expression entered.

' (single quote) Go to the point from which the
last search started. If no search has been
performed in the current file, this command goes
back to the beginning of the file.

Icommand
invoke a shell with command. The characters
'% ' and '!' in "command" are replaced with the
current file name and the previous shell
command respectively. If there is no current file
name, '%' is not expanded. The sequences
" \ % " and "\!" are replaced by "%" and "!"
respectively.

i :n skip to the «-th next file given in the command
line (skips to last file if n doesn't make sense)

» :p skip to the »-th previous file given in the
command line. If this command is given in the
middle of printing out a file, then more goes
back to the beginning of the file. If i doesn't
make sense, more skips back to the first file. If

MORE(1)

more is not reading from a file, the bell is rung
and nothing else happens.

:f display the current file name and line number.
:q or :Q

exit from more (same as q or Q).
(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not
necessary to type a carriage return. Up to the time
when the command character itself is given, the user
may hit the line kill character to cancel the numerical
argument being formed. In addition, the user may hit
the erase character to redisplay the —More—(xx%)
message.
At any time when output is being sent to the terminal,
the user can hit the quit key (normally code- \) . More
will stop sending output, and will display the usual —
More— prompt. The user may then enter one of the
above commands in the normal manner. Unfortunately,
some output is lost when this is done, due to the fact
that any characters waiting in the terminal's output
queue are flushed when the quit signal occurs.
The terminal is set to noeeho mode by this program so
that the output can be continuous. Wha t you type will
thus not show on your terminal, except for the / and !
commands.
If the standard output is not a teletype, then more acts
just like cat, except that a header is printed before each
file (if there is more than one).
A sample usage of more in previewing nroff output
would be

nroff - m s 4-2 doc.n | more -s
AUTHOR

Eric Schienbrood, minor revisions by John Foderaro and
Geoffrey Peck

FILES
/e tc / te rmcap Terminal data base
/usr/l ib/more.help Help file

SEE ALSO
csh(l), man(l), script(l), sh(l), termcap(4), environ(5).

M O U N T (1 M)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
/ e t c / m o u n t [special directory [— r]]
/ e t c / u m o u n t special

DESCRIPTION
Mount announces to the system tha t a removable file
system is present on the device special. The directory
must exist already; it becomes the name of the root of
the newly mounted file system.
These commands maintain a table of mounted devices.
If invoked with no arguments, mount prints the table.
The optional last argument indicates that the file is to
be mounted read-only. Physically write-protected and
magnetic tape file systems must be mounted in this way
or errors will occur when access times are updated,
whether or not any explicit write is attempted.
Umount announces to the system that the removable file
system previously mounted on device special is to be
removed.

FILES
/ e t c /mnt t ab mount table

SEE ALSO
setmnt(lM), mount(2), mnttab(4).

DIAGNOSTICS
Mount issues a warning if the file system to be mounted
is currently mounted under another name.
Umount complains if the special file is not mounted or if
it is busy. The file system is busy if it contains an open
file or some user's working directory.

BUGS
Some degree of validation is done on the file system;
however, it is generally unwise to mount garbage file
systems.

MVDIR(1M)

NAME
mvdir - move a directory

SYNOPSIS
/ e t c / m v d i r dirname name

DESCRIPTION
Mvdir moves directories within a file system. Dirname
must be a directory; name must not exist unless it is a
directory. Name may be a subset of dirname, provided
the directory is not moved onto itself (m v d i r / x / y / x is
possible, but / x / y cannot be moved to / x / y / z) .
Only super-user can use mvdir.

SEE ALSO
mkdir(l).

N C H E C K (1 M)

NAME
ncheck - generate names from i-numbers

SYNOPSIS
/ e t c / n c h e c k [— i numbers] [—a] [— s] [file-
system]

DESCRIPTION
Ncheck with no argument generates a path-name vs. i-
number list of all files on a set of default file systems.
Names of directory files are followed by / . . The —i
option reduces the report to only those files whose i-
numbers follow. The - a option allows printing of the
names . and which are ordinarily suppressed. The —s
option reduces the report to special files and files with
set-user-ID mode; it is intended to discover concealed
violations of security policy.
A file system may be specified.
The report is in no useful order, and probably should be
sorted.

SEE ALSO
bcheck(lM), fsck(lM), sort(l).

DIAGNOSTICS
When the file system structure is improper, ?? denotes
the "paren t" of a parentless file and a path-name
beginning with ... denotes a loop.

NETMAN (1NM)

NAME
netman - form-based network management

SYNOPSIS
/ e t c / n e t m a n

DESCRIPTION
Netman helps the system administrator monitor and
configure the network. It is a form- and menu-based
program that can run on a wide variety of terminals.
Netman arranges for the installation and removal of
servers, modifies system and personal network
configuration files, and displays network information.
Any user can use netman, but if not run by the
superuser, certain privileged options will not appear on
the "Administration" menu.
Netman requires that the TERM environment variable be
set to the terminal's type. TERM is used as an index
into / e t c / t e r m c a p (see termeap(4)) and
/ u s r / l i b / k m a p (see kmap(4)).
Netman displays a series of pop-up windows. It explains
keyboard usage for each window as needed, but it is
worth knowing some standard keys in advance. The
following table gives basic function keys, their
alternatives for terminals without labeled function keys,
and their standard meanings:

Key Alternate Meaning
I Return Move selection cursor down

or to next item. Wraps from
end to beginning.

| (none) Move selection cursor up or
to previous item. Wraps
from beginning to end. In
text windows, scroll down
text.

Next Line Feed Next window. If selection
cursor present, choose
selected option. If no
selection cursor, return to
previous window. In text
windows, scroll up text.

Cancel Control-X Return to previous window.
Use this to cancel an option
you've already selected. If
you Cancel the "Network
Management" window,
netman terminates.

N E T M A N (1 N M)

Help ESC ? Print help window for
current window.

An invalid keystroke prints a window showing which
keystrokes are valid for the current window.
At any time, the interrupt character (normally generated
by the Delete key) terminates netman.
Here is the hierarchy of windows:
N e t w o r k Management

Machine s ta tus
• Displays status of network

nodes.
Network Users

• Displays users on various
network nodes. The display is
actually a menu: you can
choose a user and display the
processes he or she is running.

Adminis trat ion
• Modify configuration of the

network.
A d d an Equivalent User

• Declare another user
equivalent to yourself.

Delete an Equivalent User
• Remove a user from

your list of equivalent
users. Use the arrow
keys to step through the
list or use the Bound
key to display the
complete list.

A d d an Equivalent Machine
• Declare another node

equivalent to yours: a
user on the other
machine is equivalent to
a user with the same
name on your machine.
Only the superuser has
access to this option.

Delete an Equivalent Machine
• Remove a node from

your list of equivalent
nodes. Use the arrow

NETMAN (1 N M)

keys to step through the
list or use the Bound
key to display the
complete list. Only the
superuser has access to
this option.

A d d a New N e t w o r k Service
• Turn a server on.

Choose from the
Remote Login Server
(supports Woji'n(lN)),
the Remote Command
Server (support
remrf(lN) and rcp(lN)),
Remote Status Server
(supports rwho (IN) and
netstat(lN)), the
TELNET Protocol
Server (supports
telnetfIN)), or the File
Transfer Protocol Server
(supports / tp(lN)).
Only the superuser has
access to this option.

R e m o v e a Current N e t w o r k Service
• Turn a server off.

Converse of "Add a
Current Network
Service."

A d d a New Host
• Add to the list of nodes

known to the local
node. See /loafs (4N) for
an explanation of the
various fields.

Change a Host E n t r y
• Change or delete the

description of one of the
nodes on the network.

N e t w o r k Interface Stat ist ics
• List statistics for local node's

interface with network.
Active Connect ions
Ne twork Interfaces
Memory U s a g e
Rout ing Tables
Protocol Stat ist ics

- 3 -

N E T M A N (1 N M)

FILES
/e tc / rc
/ etc/hosts
/etc /hosts.equiv.
$HOME / . rhosts

NETSTAT(IN)

NAME
netstat - show network status

SYNOPSIS
nets ta t [—Aaimnrs] [interval } [system] [core }

DESCRIPTION
The netstat command symbolically displays the contents
of various network-related data structures. The options
have the following meanings:
—A show the address of any associated protocol

control blocks; used for debugging
—a show the state of all sockets; normally sockets

used by server processes are not shown
—i show the state of interfaces which have been

auto-configured (interfaces statically configured
into a system, but not located at boot time are
not shown)

—m show statistics recorded by the memory
management routines (the network manages a
"private share" of memory)

- n show network addresses as numbers (normally
netstat interprets addresses and attempts to
display them symbolically)

—s show per-protocol statistics
—r show the routing tables
The arguments system and core allow substitutes for the
defaults / u n i x and / d e v / k m e m .
If an interval is specified, netstat will continuously
display the information regarding packet traffic on the
configured network interfaces, pausing interval seconds
before refreshing the screen.
There are a number of display formats, depending on the
information presented. The default display, for active
sockets, shows the local and remote addresses, send and
receive queue sizes (in bytes), protocol, and, optionally,
the internal state of the protocol.
Address formats are of the form "host.port" or
"network.port" if a socket's address specifies a network
but no specific host address. When known, the host and
network addresses are displayed symbolically according
to the data bases / e t c / h o s t s and / e t c / n e t w o r k s ,
respectively. If a symbolic name for an address is
unknown, or if the —n option is specified, the address is
printed in the Internet "dot format"; refer to rAosto (4N)

- 1 -

N E T S T A T (I N)

for more information regarding this format. Unspecified,
or "wildcard," addresses and ports appear as "*".
The interface display provides a table of cumulative
statistics regarding packets transferred, errors, and
collisions. The network address (currently Internet
specific) of the interface and the maximum transmission
unit ("mtu") are also displayed.
The routing table display indicates the available routes
and their status. Each route consists of a destination
host or network and a gateway to use in forwarding
packets. The flags field shows the state of the route
" U " if "up"), and whether the route is to a gateway
"G") . Direct routes are created for each interface

attached to the local host. The refcnt field gives the
current number of active uses of the route. Connection-
oriented protocols normally hold on to a single route for
the duration of a connection, while connectionless
protocols obtain a route then discard it. The use field
provides a count of the number of packets sent using
that route. The interface entry indicates the network
interface utilized for the route.
When netstat is invoked with an interval argument, it
displays a running count of statistics related to network
interfaces. This display consists of a column
summarizing information for all interfaces, and a column
for the interface with the most traffic since the system
was last rebooted. The first line of each screen of
information contains a summary since the system was
last rebooted. Subsequent lines of output show values
accumulated over the preceding interval.

SEE ALSO
hosts(4), networks(4), protocols(4), services(4).

N E W F O R M (1)

NAME
newform - change the format of a text file

SYNOPSIS
n e w f o r m [—s] [—1 tabspee] [—o tabspee] [—bnl [—en]
[- p n] [- a n] [- f] [-cchar] [- In] [f i les]

DESCRIPTION
Newform reads lines from the named files, or the
standard input if no input file is named, and reproduces
the lines on the standard output. Lines are reformatted
in accordance with command line options in effect.
Except for —s, command line options may appear in any
order, may be repeated, and may be intermingled with
the optional files. Command line options are processed
in the order specified. This means that option sequences
like "—el5 -160" will yield results different from "-160
—el5". Options are applied to all files on the command
line.
—itabspee Input tab specification: expands tabs to

spaces, according to the tab specifications
given. Tabspee recognizes all tab
specification forms described in ta6«(l). In
addition, tabspee may be — , in which
newform assumes that the tab specification is
to be found in the first line read from the
standard input (see fspec(4)). If no tabspee is
given, tabspee defaults to —8. A tabspee of
—0 expects no tabs; if any are found, they are
treated as —1.

—otabspee Output tab specification: replaces spaces by
tabs, according to the tab specifications
given. The tab specifications are the same as
for —itabspee. If no tabspee is given, tabspee
defaults to —8. A tabspee of —0 means that
no spaces will be converted to tabs on output.
Set the effective line length to n characters.
If n is not entered, —1 defaults to 72. The
default line length without the —1 option is 80
characters. Note that tabs and backspaces
are considered to be one character (use — i to
expand tabs to spaces).
Truncate n characters from the beginning of
the line when the line length is greater than
the effective line length (see —In). Default is
to truncate the number of characters
necessary to obtain the effective line length.
The default value is used when —b with no n

- I n

—bn

N E W F O R M (1)

is used. This option can be used to delete the
sequence numbers from a COBOL program as
follows:

newform -11 - b 7 file-name
The —11 must be used to set the effective line
length shorter than any existing line in the
file so that the — b option is activated.

en Same as —bn except that characters are
truncated from the end of the line.

ck Change the prefix/append character to k.
Default character for k is a space.

pn Prefix n characters (see —ck) to the beginning
of a line when the line length is less than the
effective line length. Default is to prefix the
number of characters necessary to obtain the
effective line length.

an Same as —pn except characters are appended
to the end of a line.

f Write the tab specification format line on the
standard output before any other lines are
output. The tab specification format line
which is printed will correspond to the format
specified in the last — o option. If no —o
option is specified, the line which is printed
will contain the default specification of —8.

s Shears off leading characters on each line up
to the first tab and places up to 8 of the
sheared characters at the end of the line. If
more than 8 characters (not counting the first
tab) are sheared, the eighth character is
replaced by a * and any characters to the
right of it are discarded. The first tab is
always discarded.
An error message and program exit will occur
if this option is used on a file without a tab
on each line. The characters sheared off are
saved internally until all other options
specified are applied to that line. The
characters are then added at the end of the
processed line.
For example, to convert a file with leading
digits, one or more tabs, and text on each
line, to a file beginning with the text, all tabs
after the first expanded to spaces, padded
with spaces out to column 72 (or truncated to

- 2 -

NEWFORM(1)

column 72), and the leading digits placed
starting at column 73, the command would
be:

newform - s - i - 1 - a - e file-
name

DIAGNOSTICS
All diagnostics are fatal.
usage: . . . Newform was called with a

bad option.
not -s format There was no tab on one line.
can't open file Self-explanatory.
internal line too long A line exceeds 512 characters

after being expanded in the
internal work buffer.

tabspee in error A tab specification is
incorrectly formatted, or
specified tab stops are not
ascending.

tabspee indirection illegal A tabspee read from a file (or
standard input) may not
contain a tabspee referencing
another file (or standard
input).

EXIT CODES
0 - normal execution
1 - for any error

SEE ALSO
csplit(l), tabs(l), fspec(4).

BUGS
Newform normally only keeps track of physical
characters; however, for the — i and —o options, newform
will keep track of backspaces in order to line up tabs in
the appropriate logical columns.
Newform will not prompt the user if a tabspee is to be
read from the standard input (by use of —i— or —o—).
If the —f option is used, and the last —o option specified
was —o—, and was preceded by either a —o— or a
—i—, the tab specification format line will be incorrect.

- 3 -

N E W G R P (1)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp [-] [group]

DESCRIPTION
Newgrp changes a user's group identification. The user
remains logged in, and the current directory is
unchanged, but calculations of access permissions to files
are performed with respect to the new real and effective
group IDs. The user is always given a new shell,
replacing the current shell, by newgrp, regardless of
whether it terminated successfully or due to an error
condition (i.e., unknown group).
Exported variables retain their values after invoking
newgrp; however, all unexported variables are either
reset to their default value or set to null. System
variables (such as PSl , PS2, PATH, MAIL, and HOME),
unless exported by the system or explicitly exported by
the user, are reset to default values. For example, a user
has a primary prompt string (P S l) other than $
(default) and has not exported P S l . After an invocation
of newgrp , successful or not, their P S l will now be set
to the default prompt string $. Note that the shell
command export (see sh{ 1)) is the method to export
variables so that they retain their assigned value when
invoking new shells.
With no arguments, newgrp changes the group
identification back to the group specified in the user's
password file entry.
If the first argument to newgrp is a —, the environment
is changed to what would be expected if the user
actually logged in again.
A password is demanded if the group has a password and
the user does not, or if the group has a password and the
user is not listed in / e t c / g r o u p as being a member of
that group.

FILES
/etc/group system's group file
/etc/passwd system's password file

SEE ALSO
csh(l), login(l), sh(l), group(4), passwd(4), environ(5).

BUGS
There is no convenient way to enter a password into
/ e t c / g r o u p . Use of group passwords is not encouraged,
because, by their very nature, they encourage poor

N E W G R P (1)

security practices. Group passwords may disappear
the future.

NEWS (1)

NAME
news - print news items

SYNOPSIS
n e w s [- a] [—n] [- s] [items]

DESCRIPTION
News is used to keep the user informed of current
events. By convention, these events are described by
files in the directory / u s r / n e w s .
When invoked without arguments, news prints the
contents of all current files in / u s r / n e w s , most recent
first, with each preceded by an appropriate header.
News stores the "currency" time as the modification
date of a file named .news_t ime in the user's home
directory (the identity of this directory is determined by
the environment variable $HOME); only files more
recent than this currency time are considered "current ."
The —a option causes news to print all items, regardless
of currency. In this case, the stored time is not changed.
The —n option causes news to report the names of the
current items without printing their contents, and
without changing the stored time.
The —s option causes news to report how many current
items exist, without printing their names or contents,
and without changing the stored t ime. It is useful to
include such an invocation of news in one's .profile file,
or in the system's / e t c / p r o f i l e .
All other arguments are assumed to be specific news
items tha t are to be printed.
If a delete is typed during the printing of a news item,
printing stops and the next item is started. Another
delete within one second of the first causes the program
to terminate.

FILES
/e tc /prof i le
/u s r /news /*
S H O M E / .news_ti me

SEE ALSO
profile(4), environ(5).

NICE (1)

NAME
nice - run a command at low priority

SYNOPSIS
n ice [—increment] command [arguments]

DESCRIPTION
Nice executes command with a lower CPU scheduling
priority. If the increment argument (in the range 1-19)
is given, it is used; if not, an increment of 10 is assumed.
The super-user may run commands with priority higher
than normal by using a negative increment, e.g., — 1 0 .

SEE ALSO
nohup(l) , nice(2).

DIAGNOSTICS
Nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

N L (1)

NAME
nl - line numbering filter

SYNOPSIS
nl [—htype] [-btype] [-f type] f - v s t a r t #] [—iincr] f - p]
[-lnum] [—ssep] [-wwidth] [-nformat] [—ddelim] file

DESCRIPTION
Nl reads lines from the named file or the standard input
if no file is named and reproduces the lines on the
standard output. Lines are numbered on the left in
accordance with the command options in effect.
Nl views the text it reads in terms of logical pages. Line
numbering is reset at the start of each logical page. A
logical page consists of a header, a body, and a footer
section. Empty sections are valid. Different line
numbering options are independently available for
header, body, and footer (e.g., no numbering of header
and footer lines while numbering blank lines only in the
body).
The start of logical page sections are signaled by input
lines containing nothing but the following delimiter
character(s):

Line contents Start of
\ : \ : \ : header
\ : \ : body
\ : footer

Unless optioned otherwise, nl assumes the text being
read is in a single logical page body.
Command options may appear in any order and may be
intermingled with an optional file name. Only one file
may be named. The options are:
—btype Specifies which logical page body lines are to

be numbered. Recognized types and their
meaning are: a, number all lines; t, number
lines with printable text only; n, no line
numbering; pstring, number only lines that
contain the regular expression specified in
string. Default type for logical page body is t
(text lines numbered).

-htype Same as - b t y p e except for header. Default
type for logical page header is n (no lines
numbered).

—ftype Same as —htype except for footer. Default for logical page footer is n (no lines

- 1 -

N L (1)

numbered).
—p Do not restart numbering at logical page

delimiters.
—\startjf Start# is the initial value used to number

logical page lines. Default is 1.
—imcr Incr is the increment value used to number

logical page lines. Default is 1.
—ssep Sep is the character(s) used in separating the

line number and the corresponding text line.
Default sep is a tab.

-wwidth Width is the number of characters to be used
for the line number. Default width is 6.

—nformat Format is the line numbering format.
Recognized values are: In, left justified,
leading zeroes suppressed; rn, right justified,
leading zeroes supressed; rz, right justified,
leading zeroes kept. Default format is rn
(right justified).

—\num Num is the number of blank lines to be
considered as one. For example, —12 results
in only the second adjacent blank being
numbered (if the appropriate —ha, —ba,
and/or - f a option is set). Default is 1.

—dxx The delimiter characters specifying the start
of a logical page section may be changed
from the default characters (\:) to two user-
specified characters. If only one character is
entered, the second character remains the
default character (:). No space should appear
between the —d and the delimiter characters.
To enter a backslash, use two backslashes.

EXAMPLE
The command:

nl - v l O - i lO - d ! + filel
will number filel starting at line number 10 with an
increment of ten.

SEE ALSO
pr(l).

The logical page delimiters are !+.

- 2 -

NLIST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
^inc lude < n l i s t .h>
int nlist (file-name, nl)
char *file-name;
s truct nlist *nl;

DESCRIPTION
Nlist examines the name list in the executable file whose
name is pointed to by file-name, and selectively extracts
a list of values and puts them in the array of nlist
structures pointed to by nl. The name list nl consists of
an array of structures containing names of variables,
types and values. The list is terminated with a null
name; that is, a null string is in the name position of the
structure. Each variable name is looked up in the name
list of the file. If the name is found, the type and value
of the name are inserted in the next two fields. The
type field will be set to 0 unless the file was compiled
with the - g option. If the name is not found, both
entries are set to 0. See a.out(4) for a discussion of the
symbol table structure.

This function is useful for examining the system name
list kept in the file /un ix . In this way programs can
obtain system addresses that are up to date.

NOTES
The < n l i s t . h > header file is automatically included by
< a . o u t . h > for compatability. However, if the only
information needed from < a . o u t . h > is for use of nlist,
then including < a . o u t . h > is discouraged. If
< a . o u t . h > is included, the line "#unde f n_name" may
need to follow it.

SEE ALSO
a.out(4).

DIAGNOSTICS
All value entries are set to 0 if the file cannot be read or
if it does not contain a valid name list.
Nlist returns - 1 upon error; otherwise it returns 0.

5 / 8 6 - 1 -

OCURSE(3X)

NAME
ocurse - optimized screen functions

SYNOPSIS
^ i n c l u d e < o c u r s e . h >

DESCRIPTION
Ocurse is the old Berkeley curses library that uses
termcap(4).
These functions optimally update the screen.
Each curses program begins by calling initscr and ends
by calling endwin.
Before a program can change a screen, it must specify
the changes. It stores changes in a variable of type
W I N D O W by calling curses functions with the variable
as argument. Once the variable contains all the changes
desired, the program calls wrefresh to write the changes
to the screen.
Most programs need only a single W I N D O W variable.
Ocurse provides a standard W I N D O W variable for this
case and a group of functions tha t operate on it. The
variable is called stdscr; its special functions have the
same names as the general functions minus the initial w.

Ken Arnold. Screen Updating and Cursor Movement
Optimization: A Library Package. Berkeley, Calif.:
University of California.
stty(2), setenv(3), termcap(4).

FILES
/usr/ include/ocurse.h header file
/usr / l ib/ l ibocurse.a curses library
/usr / l ib / l ib termcap.a termcap library, used by curses

SEE ALSO

FUNCTIONS

box(win,vert,hor)

addch(ch)
addstr(str)

Add a character to stdscr.
Add a string to stdscr.
Draw a box around a window.
Set cbreak mode.
Clear stdscr.
Set clear flag for scr.
Clear to bot tom on stdscr.
Clear to end of line on stdscr.
Delete a character.
Delete a line.
Delete win.

crmode()
clear()
clearok(scr,boolf)

deleteln()
delwin(win)

5/86 - 1 -

N M (1)

NAME
nm - print name list of common object file

SYNOPSIS
n m [-o] [-x] [-h] [-v] [-n] [-e] [- f] [-u] [- V]
[—T] file-names

DESCRIPTION
The nm command displays the symbol table of each
common object file file-name. File-name may be a
relocatable or absolute common object file; or it may be
an archive of relocatable or absolute common object
files. For each symbol, the following information will be
printed:
N a m e The name of the symbol.
Value Its value expressed as an offset or an address

depending on its storage class.
Class Its storage class.
T y p e Its type and derived type. If the symbol is an

instance of a structure or of a union then the
structure or union tag will be given following
the type (e.g., struct-tag). If the symbol is an
array, then the array dimensions will be given
following the type (eg., char[n][m]). Note
that the object file must have been compiled
with the —g option of the ec(l) command for
this information to appear.

Size Its size in bytes, if available. Note that the
object file must have been compiled with the
—g option of the ec(l) command for this
information to appear.

Line The source line number at which it is defined,
if available. Note that the object file must
have been compiled with the —g option of the
cc(l) command for this information to appear.

Section For storage classes static and external, the
object file section containing the symbol (e.g.,
text, data or bss).

The output of nm may be controlled using the following
options:
—o Print the value and size of a symbol in octal

instead of decimal.
—x Print the value and size of a symbol in

hexadecimal instead of decimal.

N M (1)

—h Do not display the output header data.
—v Sort external symbols by value before they are

printed.
—n Sort external symbols by name before they are

printed.
—e Print only external and static symbols.
—f Produce full output. Print redundant symbols

(.text, .data and .bss), normally suppressed.
—u Print undefined symbols only.
—V Print the version of the nm command

executing on the standard error output.
—T By default, nm prints the entire name of the

symbols listed. Since object files can have
symbols names with an arbitrary number of
characters, a name that is longer than the
width of the column set aside for names will
overflow its column, forcing every column
after the name to be misaligned. The —T
option causes nm to truncate every name
which would otherwise overflow its column
and place an asterisk as the last character in
the displayed name to mark it as truncated.

Options may be used in any order, either singly or in
combination, and may appear anywhere in the command
line. Therefore, both n m name —e — v and n m — ve
n a m e print the static and external symbols in name,
with external symbols sorted by value.

FILES
/usr/tmp/nm??????

CAVEATS
When all the symbols are printed, they must be printed
in the order they appear in the symbol table in order to
preserve scoping information. Therefore, the —v and —n
options should be used only in conjunction with the - e
option.

SEE ALSO
as(l), cc(l), ld(l), a.out(4), ar(4).

DIAGNOSTICS
"nm: name: cannot open"

if name cannot be read.
"nm: name: bad magic"

if name is not an appropriate common object
file.

N M (1)

"nm: name: no symbols"
if the symbols have been stripped from name.

- 3 -

N O H U P (1)

NAME
nohup - run a command immune to hangups and quits

SYNOPSIS
n o h u p command [arguments]

DESCRIPTION
Nohup executes command with hangups and quits
ignored. If output is not re-directed by the user, both
standard output and standard error are sent to
n o h u p . o u t . If n o h u p . o u t is not writable in the current
directory, output is redirected to $ H O M E / n o h u p . o u t .

EXAMPLE
It is frequently desirable to apply nohup to pipelines or
lists of commands. This can be done only by placing
pipelines and command lists in a single file, called a shell
procedure. One can then issue:

nohup sh file

and the nohup applies to everything in file. If the shell
procedure file is to be executed often, then the need to
type sh can be eliminated by giving file execute
permission. Add an ampersand and the contents of file
are run in the background with interrupts also ignored
(see «A(1)):

nohup file &

An example of what the contents of file could be is:

tbl ofile | eqn | nroff > nfile
SEE ALSO

chmod(l), nice(l), sh(l), signal(2).
WARNINGS

nohup commandl; command2
nohup applies only to commandl

nohup (commandl; command2)
is syntactically incorrect.

Be careful of where standard error is redirected. The
following command may put error messages on tape,
making it unreadable:

nohup cpio - o <list > / d e v / r m t / l m &
while

nohup cpio - o <l is t > / d e v / r m t / l m 2>errors&

puts the error messages into file errors.

- 1 -

N R O F F (1)

N A M E
nroff - format text

SYNOPSIS
nroff [options] [files]

DESCRIPTION
Nroff formats text contained in files (standard input by
default) for printing on typewriter-like devices and line
printers.
An argument consisting of a minus (—) is taken to be a
file name corresponding to the standard input. The
options, which may appear in any order, but must
appear before the files, are:
—olist Print only pages whose page numbers appear

in the list of numbers and ranges, separated
by commas. A range N—M means pages N
through M; an initial —N means from the
beginning to page N\ and a final N— means
from N to the end. (See BUGS below.)

—nN Number first generated page N.
—sN Stop every N pages. Nroff will halt after

every N pages (default N— 1) to allow paper
loading or changing, and will resume upon
receipt of a line-feed or new-line (new-lines do
not work in pipelines, e.g., with mm(l)). This
option does not work if the output of nroff is
piped through eo/(l). When nroff halts
between pages, an ASCII BEL is sent to the
terminal.

—raN Set register a (which must have a one-
character name) to N .

—i Read standard input after files are exhausted,
- q Invoke the simultaneous input-output mode of

the .rd request,
- z Print only messages generated by . t m

(terminal message) requests.
—mname r repend to the input files the non-compacted

(ASCII text) macro file
/ u s r / l i b / t m a c / t m a c . n a m e .

- cname r repend to the input files the compacted
macro files
/usr / l ib /macros /cmp. [nt] . [dt] .name and
/ u s r / l i b / m a c r o s / u c m p . [n t l . name.

—kname Compact the macros used in this invocation of
nroff, placing the output in files [dt].name in
the current directory

—Tname Prepare output for specified terminal. Known
names are 37 for the (default) TELETYPE

- 1 -

N R O F F (1)

FILES

Model 37 terminal, t n 3 0 0 for the GE
TermiNet 300 (or any terminal without half-
line capability), 300s for the DASI 300s, 300
for the DASI 300, 450 for the DASI 450, lp for
a (generic) ASCII line printer, 382 for the
DTC-382, 4000A for the Trendata 4000A,
832 for the Anderson Jacobson 832, X for a
(generic) EBCDIC printer, and 2631 for the
Hewlett Packard 2631 line printer.

—e Produce equally-spaced words in adjusted
lines, using the full resolution of the particular
terminal.

—h Use output tabs during horizontal spacing to
speed output and reduce output character
count. Tab settings are assumed to be every
8 nominal character widths.

—un Set the emboldening factor (number of
character overstrikes) for the third font
position (bold) to n, or to zero if n is missing.

/usr / l ib /suf tab suffix hyphenation tables
/ t m p / t a $ # temporary file
/usr / l ib / tmac/ tmac.* standard macro files and pointers
/usr / l ib/macros/* standard macro files
/us r / l ib / t e rm/* terminal driving tables for nroff

SEE ALSO
col(l), cw(l), eqn(l), greek(l), mm(l), tbl(l), troff(l),
mm(5).

BUGS
Nroff believes in Eastern Standard Time; as a result,
depending on the time of the year and on your local time
zone, the date that nroff generates may be off by one
day from your idea of what the date is.
When nroff is used with the —olist option inside a
pipeline it may cause a harmless "broken pipe"
diagnostic if the last page of the document is not
specified in list.

O D (l)

NAME
od - octal dump

SYNOPSIS
o d [- b c d o s x f] [file] [[+]offset[.][b]]

DESCRIPTION
Ou dumps file in one or more formats as selec ted by the
first argument. If the first argument is missing, —o is
default. The meanings of the format options are:
—b Interpret bytes in octal.
— c Interpret bytes in ASCII. Certain non-graphic

characters appear as C escapes: n u l l = \ 0 ,
backspace=\b , fo rm-feed=\ f , new- l ine=\n ,
r e t u r n = \ r , t a b = \ t ; others appear as 3-digit octal
numbers.

—d Interpret words in unsigned decimal.
—o Interpret words in octal.
—s Interpret 16-bit words in signed decimal,
—x Interpret words in hexadecimal.
— f Interpret bytes in hexadecimal with ASCII listing

at side.
The file argument specifies which file is to be dumped.
If no file argument is specified, the standard input is
used.
The offset argument specifies the offset in the file where
dumping is to commence. This argument is normally
interpreted as octal bytes. If . is appended, the offset is
interpreted in decimal. If b is appended, the offset is
interpreted in blocks of 512 bytes. If the file argument is
omitted, the offset argument must be preceded by + .
Dumping continues until end-of-file.

SEE ALSO
dump(l), hd(l) .

P A C K (1)

NAME
pack, peat, unpack - compress and expand files

SYNOPSIS
p a c k [—] [— f] name . . .
p e a t name . . .
u n p a c k name . . .

DESCRIPTION
Pack a t tempts to store the specified files in a compressed
form. Wherever possible (and useful), each input file
name is replaced by a packed file name.z with the same
access modes, access and modified dates, and owner as
those of name. The -f option will force packing of
name . This is useful for causing an entire directory to
be packed even if some of the files will not benefit. If
pack is successful, name will be removed. Packed files
can be restored to their original form using unpack or
peat.
Pack uses Huffman (minimum redundancy) codes on a
byte-by-byte basis. If the — argument is used, an
internal flag is set tha t causes the number of times each
byte is used, its relative frequency, and the code for the
byte to be printed on the standard output . Additional
occurrences of — in place of name will cause the internal
flag to be set and reset.
The amount of compression obtained depends on the size
of the input file and the character frequency distribution.
Because a decoding tree forms the first part of each .z
file, it is usually not worthwhile to pack files smaller
than three blocks, unless the character frequency
distribution is very skewed, which may occur with
printer plots or pictures.
Typically, text files are reduced to 60-75% of their
original size. Load modules, which use a larger character
set and have a more uniform distribution of characters,
show little compression, the packed versions being about
90% of the original size.
Pack returns a value tha t is the number of files that it
failed to compress.
No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;
the file cannot be opened;
no disk storage blocks will be saved by packing;

- 1 -

P A C K (1)

a file called name.i already exists;
the .z file cannot be created;
an I /O error occurred during processing.

The last segment of the file name must contain no more
than 12 characters to allow space for the appended .z
extension. Directories cannot be compressed.
Peat does for packed files what ca<(l) does for ordinary
files, except that peat can not be used as a filter. The
specified files are unpacked and written to the standard
output. Thus to view a packed file named name.z use:

peat name.z
or just:

peat name
To make an unpacked copy, say nnn, of a packed file
named name.z (without destroying name.z) use the
command:

peat name > n n n
Peat returns the number of files it was unable to
unpack. Failure may occur if:

the file name (exclusive of the .z) has more than
12 characters;
the file cannot be opened;
the file does not appear to be the output of
pack.

Unpack expands files created by pack. For each file
name specified in the command, a search is made for a
file called name.z (or just name, if name ends in .z). If
this file appears to be a packed file, it is replaced by its
expanded version. The new file has the .z suffix stripped
from its name, and has the same access modes, access
and modification dates, and owner as those of the
packed file.
Unpack returns a value that is the number of files it was
unable to unpack. Failure may occur for the same
reasons that it may in peat, as well as for the following:

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

SEE ALSO
cat(l).

PASSWD (1)

NAME
passwd - change login password

SYNOPSIS
p a s s w d [name]

DESCRIPTION
This command changes or installs a password associated
with the login name.
Ordinary users may change only the password which
corresponds to their login name.
Passwd prompts ordinary users for their old password, if
any. It then prompts for the new password twice. The
first time the new password is entered passwd checks to
see if the old password has "aged" sufficiently. If
"aging" is insufficient the new password is rejected and
passwd terminates; see passwd(4).
Assuming "aging" is sufficient, a check is made to insure
that the new password meets construction requirements.
When the new password is entered a second time the two
copies of the new password are compared. If the two
copies are not identical the cycle of prompting for the
new password is repeated for at most two more times.
Passwords must be constructed to meet the following
requirements:

Each password must have at least six characters.
Only the first eight characters are significant.
Each password must contain at least two
alphabetic characters and at least one numeric
or special character. In this case, "alphabetic"
means upper and lower case letters.
Each password must differ from the user's login
name and any reverse or circular shift of that
login name. For comparison purposes, an upper
case letter and its corresponding lower case letter
are equivalent.
New passwords must differ from the old by at
least three characters. For comparison purposes,
an upper case letter and its corresponding lower
case letter are equivalent.

One whose effective user ID is zero is called a super-user;
see »<i(l), and ««(1). Super-users may change any
password; hence, passwd does not prompt super-users for
the old password. Super-users are not forced to comply
with password aging and password construction
requirements. A super-user can create a null password

- 1 -

PASSWD (1)

by entering a carriage return in response to the prompt
for a new password.

F I L E S
/etc/passwd - password file
/etc/opasswd - password file before password was
changed

SEE ALSO
login(l), id(l), su(l), passwd(4).

P A S T E (1)

NAME
paste - merge same lines of several files or subsequent
lines of one file

SYNOPSIS
paste filel file2 . . .
paste - d list filel file2 . . .
paste - s [- d list] filel file2 . . .

DESCRIPTION
In the first two forms, paste concatenates corresponding
lines of the given input files filel, fileS, etc. It treats
each file as a column or columns of a table and pastes
them together horizontally (parallel merging). If you
will, it is the counterpart of ca<(l) which concatenates
vertically, i.e., one file after the other. In the last form
above, paste replaces the function of an older command
with the same name by combining subsequent lines of
the input file (serial merging). In all cases, lines are
glued together with the tab character, or with characters
from an optionally specified list. Output is to the
standard output, so it can be used as the start of a pipe,
or as a filter, if — is used in place of a file name.
The meanings of the options are:
—d Without this option, the new-line characters of

each but the last file (or last line in case of the
—s option) are replaced by a tab character. This
option allows replacing the tab character by one
or more alternate characters (see below).

list One or more characters immediately following
—d replace the default tab as the line
concatenation character. The list is used
circularly, i.e., when exhausted, it is reused. In
parallel merging (i.e., no —s option), the lines
from the last file are always terminated with a
new-line character, not from the list. The list
may contain the special escape sequences: \ n
(new-line), \ t (tab), \ \ (backslash), and \ 0
(empty string, not a null character). Quoting
may be necessary, if characters have special
meaning to the shell (e.g., to get one backslash,
use - d » \ \ \ \ -).

- s Merge subsequent lines rather than one from
each input file. Use tab for concatenation,
unless a list is specified with —d option.
Regardless of the list, the very last character of
the file is forced to be a new-line.

P A S T E (1)

May be used in place of any file name, to read a
line from the standard input. (There is no
prompting).

EXAMPLES

Is | paste - d " " -

Is | paste - - - -

paste - s - d " \ t \ n" file

list directory in one
column
list directory in four
columns
combine pairs of lines
into lines

SEE ALSO
grep(l), cut(l), pr(l).

DIAGNOSTICS
line too long

Output lines are restricted to 511 characters.
too many files

Except for — s option, no more than 12 input
files may be specified.

PATH(1)

NAME
path - locate executable file for command

SYNOPSIS
p a t h [-options] command

DESCRIPTION
Path is a quick way to discover which executable file is
behind a shell command. It searches each directory
mentioned in your P A T H environment variable until it
finds an executable file called command.
Any options specified are passed to /«(l).

WARNING
The shell («A(1)) hashes the location of certain
commands. Therefore, path and type (shell built-in)
may give different results.

SEE ALSO
ls(l).

P G (1)

NAME
pg - file perusal filter for soft-copy terminals

SYNOPSIS
f>g [—number] [—p string] [—cefns] [-|-linenumber]
+/pattern/] [files...]

DESCRIPTION
The pg command is a filter which allows the examination
of files one screenful at a time on a soft-copy terminal.
(The file name - and/or NULL arguments indicate that
pg should read from the standard input.) Each screenful
is followed by a prompt. If the user types a carriage
return, another page is displayed; other possibilities are
enumerated below.
This command is different from previous paginators in
that it allows you to back up and review something that
has already passed. The method for doing this is
explained below.
In order to determine terminal attributes, pg scans the
terminfo(4) data base for the terminal type specified by
the environment variable TERM. If TERM is not
defined, the terminal type d u m b is assumed.
The command line options are:
- number

An integer specifying the size fin lines) of the
window that pg is to use instead of the default.
(On a terminal containing 24 lines, the default
window size is 23).

—p string
Causes pg to use string as the prompt. If the
prompt string contains a "%d" , the first
occurrence of " % d " in the prompt will be
replaced by the current page number when the
prompt is issued. The default prompt string is

—c Home the cursor and clear the screen before
displaying each page. This option is ignored if
c l ea r_sc reen is not defined for this terminal
type in the terminfo(4) data base.

—e Causes pg not to pause at the end of each file.
—f Normally, pg splits lines longer than the screen

width, but some sequences of characters in the
text being displayed (e.g., escape sequences for
underlining) generate undesirable results. The
- / o p t i o n inhibits pg from splitting lines.

P G (1)

—n Normally, commands must be terminated by a
< newline > character. This option causes an
automatic end of command as soon as a
command letter is entered.

—s Causes pg to print all messages and prompts in
standout mode (usually inverse video).

+linenumber
Star t up at linenumber.

+/pattern /
Start up at the first line containing the regular
expression pattern.

The responses tha t may be typed when pg pauses can be
divided into three categories: those causing further
perusal, those tha t search, and those tha t modify the
perusal environment.
Commands which cause further perusal normally take a
preceding address, an optionally signed number
indicating the point from which further text should be
displayed. This address is interpreted in either pages or
lines depending on the command. A signed address
specifies a point relative to the current page or line, and
an unsigned address specifies an address relative to the
beginning of the file. Each command has a default
address that is used if none is provided.
The perusal commands and their defaults are as follows:
(+l)<newline > or <blank>

This causes one page to be displayed. The
address is specified in pages.

(+1) 1 With a relative address this causes pg to
simulate scrolling the screen, forward or
backward, the number of lines specified. With
an absolute address this command prints a
screenful beginning at the specified line.

(+1) d or *D
Simulates scrolling half a screen forward or
backward.

The following perusal commands take no address.
. or Typing a single period causes the current page of

text to be redisplayed.
$ Displays the last windowful in the file. Use with

caution when the input is a pipe.
The following commands are available for searching for
text patterns in the text. The regular expressions
described in erf(l) are available. They must always be

- 2 -

PG(1)

terminated by a <new/«ne>, even if the - n option is
specified.
i/pattern/

Search forward for the i th (default « = 1)
occurrence of pattern. Searching begins
immediately after the current page and
continues to the end of the current file, without
wrap-around.

t 'pattern*
i? pattern!

Search backwards for the «th (default i = l)
occurrence of pattern. Searching begins
immediately before the current page and
continues to the beginning of the current file,
without wrap-around. The * notation is useful
for Adds 100 terminals which will not properly
handle the ?.

After searching, pg will normally display the line found
at the top of the screen. This can be modified by
appending m or b to the search command to leave the
line found in the middle or at the bottom of the window
from now on. The suffix t can be used to restore the
original situation.
The user of pg can modify the environment of perusal
with the following commands:
m Begin perusing the «th next file in the command

line. The i is an unsigned number, default value
is 1.

»p Begin perusing the tth previous file in the
command line. « is an unsigned number, default
is 1.

tw Display another window of text. If t is present,
set the window size to i.

s filename
Save the input in the named file. Only the
current file being perused is saved. The white
space between the s and filename is optional.
This command must always be terminated by a
< newline > , even if the - n option is specified.

h Help by displaying an abbreviated summary of
available commands.

q or Q Quit pg.
!command

Command is passed to the shell, whose name is

P G (1)

taken from the SHELL environment variable. If
this is not available, the default shell is used.
This command must always be terminated by a
< newline > , even if the - n option is specified.

At any time when output is being sent to the terminal,
the user can hit the quit key (normally control-\) or the
interrupt (break) key. This causes pg to stop sending
output, and display the prompt. The user may then
enter one of the above commands in the normal manner.
Unfortunately, some output is lost when this is done, due
to the fact that any characters waiting in the terminal's
output queue are flushed when the quit signal occurs.
If the standard output is not a terminal, then pg acts
just like caf(l), except that a header is printed before
each file (if there is more than one).

EXAMPLE
A sample usage of pg in reading system news would be

news | pg -p "(Page %d):"
NOTES

While waiting for terminal input, pg responds to
BREAK, DEL, and * by terminating execution.
Between prompts, however, these signals interrupt pg's
current task and place the user in prompt mode. These
should be used with caution when input is being read
from a pipe, since an interrupt is likely to terminate the
other commands in the pipeline.
Users of Berkeley's more will find tha t the z and f
commands are available, and that the terminal / , *, or ?
may be omitted from the searching commands.

FILES
/usr/ l ib / terminfo / *

Terminal information data base
/ tmp/pg*

Temporary file when input is from a pipe
SEE ALSO

crypt(l), ed(l), grep(l), more(l), terminfo(4).
BUGS

If terminal tabs are not set every eight positions,
undesirable results may occur.
When using pg as a. filter with another command that
changes the terminal I /O options (e.g., crypt(l)),
terminal settings may not be restored correctly.

- 4 -

P R (1)

NAME
pr - print files

SYNOPSIS
pr [options] [files j

DESCRIPTION
Pr prints the named files on the standard output. If file
is —, or if no files are specified, the standard input is
assumed. By default, the listing is separated into pages,
each headed by the page number, a date and time, and
the name of the file.
By default, columns are of equal width, separated by at
least one space; lines which do not fit are truncated. If
the —s option is used, lines are not truncated and
columns are separated by the separation character.
If the standard output is associated with a terminal,
error messages are withheld until pr has completed
printing.
The below options may appear singly or be combined in
any order:
+ k Begin printing with page k (default is 1).
—k Produce ^-column output (default is 1). The

options —e and —i are assumed for multi-column
output.

—a Print multi-column output across the page.
—m Merge and print all files simultaneously, one per

column (overrides the —k, and —a options).
—d Double-space the output.
—eck Expand input tabs to character positions & + 1,

2*k+l, 3*k+l, etc. If k is 0 or is omitted,
default tab settings at every eighth position are
assumed. Tab characters in the input are
expanded into the appropriate number of spaces.
If c (any non-digit character) is given, it is
treated as the input tab character (default for c
is the tab character).

—ick In output, replace white space wherever possible
by inserting tabs to character positions Jfc + 1,
2**4-1, 3** + l , etc. If Jt is 0 or is omitted,
default tab settings at every eighth position are
assumed. If c (any non-digit character) is given,
it is treated as the output tab character (default
for c is the tab character).

P R (1)

—nek Provide fc-digit line numbering (default for k is
5). The number occupies the first fc+1 character
positions of each column of normal output or
each line of —m output. If c (any non-digit
character) is given, it is appended to the line
number to separate it from whatever follows
(default for c is a tab).

—wk Set the width of a line to k character positions
(default is 72 for equal-width multi-column
output, no limit otherwise).

—ok Offset each line by k character positions (default
is 0). The number of character positions per line
is the sum of the width and offset.

—Ik Set the length of a page to k lines (default is 66).
—h Use the next argument as the header to be

printed instead of the file name.
—p Pause before beginning each page if the output

is directed to a terminal (pr will ring the bell at
the terminal and wait for a carriage return).

—f Use form-feed character for new pages (default is
to use a sequence of line-feeds). Pause before
beginning the first page if the standard output is
associated with a terminal.

—r Print no diagnostic reports on failure to open
files.

—t Print neither the five-line identifying header nor
the five-line trailer normally supplied for each
page. Quit printing after the last line of each
file without spacing to the end of the page.

—sc Separate columns by the single character c
instead of by the appropriate number of spaces
(default for c is a tab).

EXAMPLES
Print f i l e l and file2 as a double-spaced, three-column
listing headed by "file list":

pr - 3 d h "file list" filel file2
Write filel on file2, expanding tabs to columns 10, 19,
28, 37, . . . :

pr - e 9 - t <f i le l >fi le2
FILES

/dev / t ty* to suspend messages
SEE ALSO

cat(l).

- 2 -

PROTOCOLS (4 N)

NAME
protocols - list of Internet protocols

DESCRIPTION
The file / e t c / p r o t o c o l s lists known DARPA Internet
protocols. Each line describes a single protocol and
consists of the following blank separated fields:

name number aliases ...
where
name is the official name of the protocol.
number is the protocol number.
aliases . . . is a blank-separated list of local aliases for

the protocol.
The routines which search this file ignore comments
(portions of lines beginning with #) and blank lines.
Protocol names and numbers are specified by the SRI
Network Information Center. Do not change this file
unless you are familiar with DARPA Internet internals.

FILES
/etc/protocols

SEE ALSO
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 - 1 -

RELOC(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
^include < r e l o c . h >

DESCRIPTION
Object files have one relocation entry for each
relocatable reference in the text or data. If relocation
information is present, it will be in the following format.
struct reloc

long r_vaddr ;
/* (virtual) address of reference */

long r_symndx ;
/ * index into symbol table */

short r_type ; /* relocation type */
} <

* All generics
* reloc. already performed to symbol in the same section
*/ #define R_ABS 0

•Motorola Processors 68000, 68010, and 68020 *
*

#define R_DIR24 04
#define R_REL24 05
^def ine R_OPTl6 014
#define RJND24 015
#define RJND32 016
#define R_RELBYTE 017
#define R_RELWORD 020
#define R_RELLONG 021
#define R_PCRBYTE 022
#define R_PCRWORD 023
#define R_PCRLONG 024

As the link editor reads each input section and performs
relocation, the relocation entries are read. They direct
how references found within the input section are
treated.

P R O F (1)

NAME
prof - display profile data

SYNOPSIS
prof [- tcan] [-ox] [-g] [-*] [—h] [- s] [- m mdata]
[prog]

DESCRIPTION
Prof interprets a profile file produced by the
monitor^3C) function. The symbol table in the object
file prog (a .out by default) is read and correlated with a
profile file (mon.out by default). For each external text
symbol the percentage of time spent executing between
the address of that symbol and the address of the next is
printed, together with the number of times that function
was called and the average number of milliseconds per
call.
The mutually exclusive options t , c, a, and 11 determine
the type of sorting of the output iines:
—t Sort by decreasing percentage of total time

(default).
—c Sort by decreasing number of calls.
—a Sort by increasing symbol address.
—n Sort lexically by symbol name.
The mutually exclusive options o and x specify the
printing of the address of each symbol monitored:
—o Print each symbol address (in octal) along with

the symbol name.
—x Print each symbol address (in hexadecimal)

along with the symbol name.
The following options may be used in any combination:
—g Include non-global symbols (static functions).
—z Include all symbols in the profile range (see

monitor(3C)), even if associated with zero
number of calls and zero time.

—h Suppress the heading normally printed on the
report. (This is useful if the report is to be
processed further.)

—s Print a summary of several of the monitoring
parameters and statistics on the standard error
output.

—m mdata
Use file mdata instead of m o n . o u t as the input
profile file.

PROF(1)

A program creates a profile file if it has been loaded with
the —p option of cc(l). This option to the cc command
arranges for calls to monitor(3C) at the beginning and
end of execution. It is the call to monitor at the end of
execution that causes a profile file to be written. The
number of calls to a function is tallied if the —p option
was used when the file containing the function was
compiled.
The name of the file created by a profiled program is
controlled by the environment variable PROFDIR. If
PROFDIR does not exist, "mon.out" is produced in the
directory current when the program terminates. If
PROFDIR = string, "string/pid.progname" is produced,
where progname consists of argv[0] with any path prefix
removed, and pid is the program's process id. If
PROFDIR = nothing, no profiling output is produced.
A single function may be split into subfunctions for
profiling by means of the MARK macro (see prof(5)).

FILES
mon.out for profile
a.out for namelist

SEE ALSO
cc(l), exit(2), profil(2), monitor(3C), prof(5).

WARNING
The times reported in successive identical runs may show
variances of 20% or more, because of varying cache-hit
ratios due to sharing of the cache with other processes.
Even if a program seems to be the only one using the
machine, hidden background or asynchronous processes
may blur the data. In rare cases, the clock ticks
initiating recording of the program counter may "beat"
with loops in a program, grossly distorting
measurements.
Call counts are always recorded precisely, however.

BUGS
Only programs that call exit{2) or return from main will
cause a profile file to be produced, unless a final call to
monitor is explicitly coded.
The use of the —p option cc(l) to invoke profiling
imposes a limit of 600 (300 on the PDP-11) functions that
may have call counters established during program
execution. For more counters you must call monitor(3C)
directly. If this limit is exceeded, other data will be

PROF(1)

overwritten and the mon.out file will be corrupted.
The number of call counters used will be reported
automatically by the prof command whenever the
number exceeds 5/6 of the maximum.

PROFILER (1M)

NAME
prfld, prfstat, prfdc, prfsnap, prfpr - operating system
profiler

SYNOPSIS
/ e t c / p r f l d [namelist]
/ e t c / p r f s t a t on
/ e t c / p r f s t a t off
/ e t c / p r f d c file [period [off_hour]]
/ e t c / p r f s n a p file
/ e t c / p r f p r file [cutoff [namelist]]

DESCRIPTION
Prfld, prfstat, prfdc, prfsnap, and prfpr form a system of
programs to facilitate an activity study of the CTIX
operating system. A kernel configured with kernel
profiling must be used.
Prfld is used to initialize the recording mechanism in the
system. It generates a table containing the starting
address of each system subroutine as extracted from
namelist.
Prfstat is used to enable or disable the sampling
mechanism. Profiler overhead is less than 1% as
calculated for 500 text addresses. Prfstat will also reveal
the number of text addresses being measured.
Prfdc and prfsnap perform the data collection function
of the profiler by copying the current value of all the
text address counters to a file where the data can be
analyzed. Prfdc will store the counters into file every
period minutes and will turn off at off_hour (valid values
for off_hour are 0 - 2 4) . Prfsnap collects data at the
time of invocation only, appending the counter values to
file.
Prfpr formats the data collected by prfdc or prfsnap.
Each text address is converted to the nearest text symbol
(as found in namelist) and is printed if the percent
activity for that range is greater than cutoff.

FILES
/dev/prf interface to profile data and text
addresses
/unix default for namelist file

SEE ALSO
prf(7).

P R S (l)

NAME
prs - print an SCCS file

SYNOPSIS
prs f-d[dataspec]] [-r[SID]] [-e] [-1] [-c[date-time]]
[-a] files

DESCRIPTION
Prs prints, on the standard output , parts or all of an
SCCS file (see sccsfile (4)) in a user-supplied format. If a
directory is named, prs behaves as though each file in
the directory were specified as a named file, except that
non-SCCS files (last component of the path name does
not begin with s.), and unreadable files are silently
ignored. If a name of — is given, the standard input is
read; each line of the standard input is taken to be the
name of an SCCS file or directory to be processed; non-
SCCS files and unreadable files are silently ignored.
Arguments to prs, which may appear in any order,
consist of keyletter arguments, and file names.
All the described keyletter arguments apply
independently to each named file:

—6[dataspec\ Used to specify the output data
specification. The dataspec is a
string consisting of SCCS file data
keywords (see DATA KEYWORDS)
interspersed with optional user
supplied text.
Used to specify the 5CCS
/identification (SID) string of a
delta for which information is
desired. If no SID is specified, the
SID of the most recently created
delta is assumed. - e and —1
keyletters. The format for the
date is: m m / d d / y y [hh:mm:ss].
Requests information for all deltas
created earlier than and including
the delta designated via the —r
keyletter or the date given by the
—c option.
Requests information for all deltas
created later than and including
the delta designated via the —r
keyletter or the date given by the
—c option.
[—cjcutoff]] Cutoff date-time, in

-r[SID]

—e

- 1

P R S (l)

the form:

YY[MM[DD[HH[MM[SS]]]]]

—c[date-time] Units omitted f rom the date-time
default to their maximum possible
values; tha t is, —c7502 is
equivalent to - c 7 5 0 2 2 8 2 3 5 9 5 9 .
Any number of non-numeric
characters may separate the
various 2-digit pieces of the cutoff
date in the form:

" - C 7 7 / 2 / 2 9:22:25".

—a Requests printing of information
for both removed, i.e., delta type
= R, (see rmdel(l)) and existing,
i.e., delta type = D, deltas. If
the —a keyletter is not specified,
information for existing deltas
only is provided.

DATA KEYWORDS
Data keywords specify which parts of an SCCS file are to
be retrieved and output . All parts of an SCCS file (see
8ccsfile(4)) have an associated da ta keyword. There is
no limit on the number of times a d a t a keyword may
appear in a dataspee.
The information printed by pre consists of: (I) the user-
supplied text; and (2) appropriate values (extracted from
the SCCS file) substi tuted for the recognized data
keywords in tne order of appearance in the dataspee.
The format of a da ta keyword value is either Simple (S),
in which keyword substitution is direct, or Multi-line
(M), in which keyword substitution is followed by a
carriage return.
User-supplied text is any text other than recognized data
keywords.
A tab is specified by \ t and carriage re turn/new-line is
specified by \ n . The default da ta keywords are:

":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:"

PRS (1)

TABLE 1. SCCS Files Data Keywords
evwordData Item File Section Value Format

:Dt: Delta information Delta Table See below* S

:DL: Delta line statistics
ft :Li:/:Ld:/:Lu: S

:Li: Lines inserted by Delta
tt nnnnn S

:Ld: Lines deleted by Delta nnnnn S

:Lu: Lines unchanged by Delta
ft nnnnn S

:DT: Delta type
ft D or R S

:I: SCCS ID string (SID)
tt :R>.tLi.:B:.:S: S

:R: Release number " nnnn s
:L: Level number

ft nnnn s
:B: Branch number

tt nnnn s
:S: Sequence number tt nnnn s
:D: Date Delta created

tt Dy:/:Dm:/:Dd s
:Dy: Year Delta created

ft nn s
:Dm: Month Delta created

tt nn s
:Dd: Day Delta created

tt nn s
:T: Time Delta created

n :Th:::Tm:::Ts: s
:Th: Hour Delta created

rt nn s
:Tm: Minutes Delta created nn s
:Ts: Seconds Delta created nn s

:P: Programmer who created Delta
ft logname s

:DS: Delta sequence number nnnn s
:DP: Predecessor Delta seq-no. nnnn s

:DI: Seq-no. of deltas inch, excl., ignored
tt :Dn:/:Dx:/:Dg: s

:Dn: Deltas included (seq #)
tt :DS: :DS: . . . s

:Dx: Deltas excluded (seq #)
tt :DS: :DS: . . . s

:Dg: Deltas ignored (seq #)
ft :DS: : D S : . . . s

:MR: MR numbers for delta
M

text M
:C: Comments for delta tt text M

:UN: User names User Names text M
:FL: Flag list Flags text M
:Y: Module type flag

tt text s
:MF: MR validation flag yes or no s

:MP: MR validation pgm name text s
:KF: Keyword error/warning flag yea or no s
:KV: Keyword validation string text s
:BF: Branch flag yea or no s
:J: Joint edit flag yea or no s

:LK: Locked releases
n R-. ... s

:Q: User defined keyword
tt text s

:M: Module name
M text s

:FB: Floor boundary :R: s
:CB: Ceiling boundary

tt :R: s
:Ds: Default SID :I: s
:ND: Null delta flag

m yea or no s
:FD: File descriptive text Comments text M

:BD: Body Body text M
:GB: Gotten body

H text M
:W: A form of u/Aaf(l) string N / A :Z::M:\t:I: s

- 3 -

P R S (l)

:A: A form of uiAa<(l) string
:Z: what (I) string delimiter
:F: SCCS file name

:PN: SCCS file path name

N / A :Z::Y: :M: :I::Z: S
N / A 0(#) S
N / A text S
N / A text S

* :Dt: = :DT: :I: :D: :T: :P: :DS: :DP:

E X A M P L E S
prs -d"Users and/or user IDs for :F: are:\n:UN:"
s.file

may produce on the standard output:

prs - d " Newest delta for pgm :M:: :I: Created :D:
By :P:" - r s.file

may produce on the standard output:
Newest delta for pgm main.c: 3.7 Created
77/12/1 By cas

As a special case:
prs s.file

may produce on the standard output:
D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bl78-12345
bl79-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the " D " type. The only
keyletter argument allowed to be used with the special
case is the - a keyletter.

FILES
/tmp/pr?????

SEE ALSO
admin(l), delta(l), get(l), help(l), sccsfile(4).
CTIX Programmer's Guide, Section 9.

DIAGNOSTICS
Use help(l) for explanations.

Users and/or user IDs for s.file are:
xyz
131
abc

P S (1)

NAME
ps - report process status

SYNOPSIS
ps [options]

DESCRIPTION
Ps prints certain information about active processes.
Without options, information is printed about processes
associated with the current terminal, or under window
management, processes associated with the current
window. The output consists of a short listing
containing only the process ID, terminal identifier,
cumulative execution time, and the command name.
Otherwise, the information that is displayed is controlled
by the selection of options.
Options using lists as arguments can have the list
specified in one of two forms: a list of identifiers
separated from one another by a comma, or a list of
identifiers enclosed in double quotes and separated from
one another by a comma and/or one or more spaces.
The options are:
—e Print information about all processes.
—d Print information about all processes,

except process group leaders,
—a Print information about all processes,

except process group leaders and processes
not associated with a terminal.

—f Generate a full listing. (Normally, a short
listing containing only process ID, terminal
(" t ty") identifier, cumulative execution
time, and the command name is printed.)
See below for meaning of columns in a full
listing.

—1 Generate a long listing. See below.
—c corefile Use the file corefile in place of

/ d e v / k m e m .
—s swapdev Use the file swapdev in place of

/ d e v / s w a p . This is useful when
examining a corefile) a swapdev of
/ d e v / n u l l will cause the user block to be
zeroed out.

—n namelist The argument will be taken as the name of
an alternate system namelist file in place
of examining the running system.

—t termlist Restrict listing to data about the processes
associated with the terminals given in
termlist. Terminal identifiers may be
specified in one of two forms: the device's

- 1 -

P S (1)

file name (e.g., t t y 0 0 4) or if the device's
file name starts with t t y , just the digit
identifier (e.g., 004) .

—p proclist Restrict listing to data about processes
whose process ID numbers are given in
proclist.

- u uidlist Restrict listing to data about processes
whose user ID numbers or login names are
given in uidlist. In the listing, the
numerical user ID will be printed unless the
- f option is used, in which case the login
name will be printed.

—g grplist Restrict listing to data about processes
whose process groups are given in grplist.

The column headings and the meaning of the columns in
a ps listing are given below; the letters f and 1 indicate
the option (full or long) tha t causes the corresponding
heading to appear; all means tha t the heading always
appears. Note tha t these two options determine only
what information is provided for a process; they do not
determine which processes will be listed.
F (1) Flags (octal and additive) associated

with the process:
1 in core;
2 system process;
4 locked in core (e.g., for

physical I/O);
10 being swapped;
20 being traced by another

process;
40 another tracing flag.

S (1) The state of the process:
0 non-existent;
S sleeping;
W waiting;
R running;
1 intermediate;
Z terminated;
T stopped;
X growing.

UID (f,l) The user ID number of the process
owner; the login name is printed under
the —f option.

PID (all) The process ID of the process; it is
possible to kill a process if you know
this da tum.

PPID (f,l) The process ID of the parent process.

PS(1)

C (f,l)
PRI (1)

Nl (1)

SZ (1)

RSZ (1)

WCIIAN (1)

STIME
T T Y

TIME

CMD

(3 the
real

Processor utilization for scheduling.
The priority of the process; higher
numbers mean lower priority.
Nice value; used in priority
computation.
The size in pages (4K bytes) of the
core image of the process.
The resident size in pages (4K bytes)
of the core image of the process.
The event for which the process is
waiting or sleeping; if blank, the
process is running.
Starting time of the process.
The controlling terminal for
process. The t prefix implies a
terminal; the 8 prefix implies a shell
layer; and the p prefix implies a
virtual terminal.
The cumulative execution time for the
process.
The command name; the full
command name and its arguments are
printed under the —f option.

A process that has exited and has a parent, but has not
yet been waited for by the parent, is marked
< defunct > .
Under the —f option, ps tries to determine the command
name and arguments given when the process was created
by examining memory or the swap area. Failing this,
the command name, as it would appear without the —f
option, is printed in square brackets.

11)

(all)

(all)

FILES

SEE

/unix
/dev /mem
/dev/swap
/etc/passwd
/dev

ALSO
acctcom(l), kill(l), nice(l).

system namelist
memory
the default swap devices
supplies UID information
searched to find terminal (" t ty") names

BUGS
Things can change while ps is running; the picture it
gives is only a close approximation to reality. Some data
printed for defunct processes are irrelevant.

PTX(1)

NAME
ptx - permuted index

SYNOPSIS
ptx [options] [input [output]]

DESCRIPTION
Ptx generates the file output that can be processed with
a text formatter to produce a permuted index of file
input (standard input and output default). It has three
phases: the first does the permutation, generating one
line for each keyword in an input line. The keyword is
rotated to the front. The permuted file is then sorted.
Finally, the sorted lines are rotated so the keyword
comes at the middle of each line. Ptx output is in the
form:

.xx "tail" "before keyword" "keyword and after"
"head"

where .xx is assumed to be an nroff or troff(1) macro
provided by the user, or provided by the mptxy5) macro
package. The before keyword and keyword and after
fields incorporate as much of the line as will fit around
the keyword when it is printed. Tail and head, at least
one of which is always the empty string, are wrapped-
around pieces small enough to fit in the unused space at
the opposite end of the line.
The following options can be applied:
—f Fold upper and lower case letters for sorting.
—t Prepare the output for the phototypesetter.
—w n Use the next argument, n, as the length of

the output line. The default line length is
72 characters for nroff and 100 for troff.

—g n Use the next argument, n, as the number of
characters that ptx will reserve in its
calculations for each gap among the four
parts of the line as finally printed. The
default gap is 3.

—o only Use as keywords only the words given in the
only file.

—i ignore Do not use as keywords any words given in
the ignore file. If the — i and —o options are
missing, use / u s r / l i b / e i g n as the ignore
file.

—b break Use the characters in the break file to
separate words. Tab, new-line, and space
characters are always used as break

- 1 -

P T X (l)

characters.
—r Take any leading non-blank characters of

each input line to be a reference identifier
(as to a page or chapter), separate from the
text of the line. Attach that identifier as a
5th field on each output line.

The index for this manual was generated using ptx.
FILES

/bin/sort
/usr/ l ib/eign
/ usr / l ib / tmac/ tmac .ptx

SEE ALSO
nroff(l), troff(l), mm(5), mptx(5).

BUGS
Line length counts do not account for overstriking or
proportional spacing.
Lines that contain tildes (~) are botched, because ptx
uses that character internally.

P W C K (1M)

NAME
pwck, grpck - password/group file checkers

SYNOPSIS
/ e t c / p w c k [file]
/ e t c / g r p c k [file]

DESCRIPTION
Pwck scans the password file and notes any
inconsistencies. The checks include validation of the
number of fields, login name, user ID, group ID, and
whether the login directory and optional program name
exist. The criteria for determining a valid login name is
derived from passwd(4). The default password file is
/ e t c / p a s s w d .
Grpck verifies all entries in the group file. This
verification includes a check of the number of fields,
group name, group ID, and whether all login names
appear in the password file. The default group file is
/ e t c / g r o u p .

FILES
/ etc/group
/etc/passwd

SEE ALSO
group(4), passwd(4).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

DIAGNOSTICS
Group entries in / e t c / g r o u p with no login names are
flagged.

P W D (1)

NAME
pwd - working directory name

SYNOPSIS
p w d

DESCRIPTION
Pwd prints the path name of the working (current)
directory.

SEE ALSO
cd(l).

DIAGNOSTICS
"Cannot open .." and "Read error in .." indicate
possible file system trouble and should be referred to
your system administrator.

QINSTALL(1)

NAME
qinstall - install and verify software using the mkfs(l)
proto file database

SYNOPSIS
/ u s r / l o c a l / b i n / q i n s t a l l -c [- e s o i m] proto root
/ u s r / l o c a l / b i n / q i n s t a l l —g [—p prefix] [— t #]
root
/ u s r / l o c a l / b i n / q i n s t a l l —r [—q] proto root
trom_rfile to_rfile

DESCRIPTION
Qinstall is used to package software on distribution
media, to install software, and to verify the correctness
of the installation. Output from qinstall goes to
standard output. Root must be a full pathname or " ." .
The following options are recognized by qinstall:
- V output additional, verbose messages to stderr.
—c check whether files under root match files in

proto for owner and permission. This option is
used primarily to verify the correctness of an
installation, but it is also used in the software
distribution packaging process.
—o print omissions from root.
—s set permissions and owners to be correct

if incorrect
—e print extra files not found in proto
—i ignore differences in special files
—m check mounted file systems as well

- g generate a proto file from root. This option is
used in the software distribution packaging
process.
—p add specified prefix to path names
—t specify number of tabs to indent

—r replace file to_rfile in root with contents of
from_rfile, keeping permissions as in proto.
To_rfile path must be a full path name as in the
proto file, and will be offset with root. Multiple
f rom/ to pairs may be specified. This option is
used to install customizable software.
—q query before replace. Options are to

replace to_rfile with from_rfile, to save
from_rfile, to ignore to_rfile, to perform
an sdiff(\) between the two files or to
replace to_rfile with the previous diff.

- 1 -

QINSTALL (1)

EXAMPLE
A sample proto file created with the - g option follows,
(qinstall - g . > . . /proto)

/mkboot
0 0
d - - 7 7 7 2 2
install d—775 0 0

IsamRel 444 0 0 / install /IsamRel
t

usr d—775 2 2
include d — 7 7 5 2 2

iserc.h 444 2 2 /usr/include/iserc.h
isam.h 444 2 2 /usr/ include/ isam.h
*

lib d - - 7 7 5 2 2
isam d — 7 7 5 2 2

IsamConfig
IsamCreate
IsamProtect
IsamReorg
IsamStai
IsamStop
IsamTransfer
IxFilter
IxSpec
isam
$

libisam.a
$

$
$

SEE ALSO
qlist(l), ctinstall(l), mkfs(l).

BUGS
Qinstall invoked with the —m option on an inconsistent
file system produces error messages of the form
"filename: cannot s ta t" .

755 2 2 /usr / l ib / i sam/IsamConf ig
755 2 2 /usr / l ib / i sam/IsamCreate
755 2 2 /usr / l ib / i sam/IsamProtect
755 2 2 /usr / l ib / i sam/IsamReorg
755 2 2 /usr / l ib / i sam/IsamStat
755 2 2 /usr / l ib / i sam/IsamStop
755 2 2 /usr/ l ib/ isam/IsamTransfer
755 2 2 /usr/ l ib/ isam/IxFi l ter
755 2 2 /usr / l ib / i sam/IxSpec
755 2 2 /usr / l ib / i sam/ i sam

444 2 2 /usr/ l ib/ l ibisam.a

QLIST(l)

NAME
qlist - print out file lists from proto file; set links based
on lines in proto file.

SYNOPSIS
/ u s r / l o c a l / b i n / q l i s t - m [- d dir] [- o] [- p
prefix] proto
/ u s r / l o c a l / b i n / q l i s t - 1 dir [- p prefix] proto
/ u s r / l o c a l / b i n / q l i s t — s proto root

DESCRIPTION
Qlist is used in the distribution software packaging
process and in the software installation process. It makes
lists of files from proto files created by qinstall(1). Lists
are based on the files' group identifiers and types. Qlist
also sets links based on lines in the proto file during
software installation.
Qlist understands extended proto files, in which a line
beginning with :L indicates that the first file named is a
link to the second file. Other lines beginning with s are
comments. The last field on a line in an extended proto
file is a group identifier of 9 or fewer characters, such as
" W P " for the Word Processor product. The following
symbols appearing immediately after the group identifier
designate the file's type and have the following
meanings:

designates a customizable file, such as
/ e t c / p a s s w d . This type of file is one which
the user may or may not want to install over his
existing version. This type of file can be
installed with the -rq option of qinstall(l).

— designates a zero-length file. The specified file
should not be used when updating an existing
system; rather, it should be used for raw, or first
installs only.

@ implies an update but no query from qinstall(l).
This symbol is used for files required by the
installation tools for installation and for possible
text busy files.

< designates an optional file, or a file requiring
special installation such as a hardware
configuration-dependent file. Its associated
special installation scripts are GROUP.opt and
GROUP.ins, where GROUP represents the group
name.

< id designates a file of the above category which has
special installation scripts named GROUPid.opt,

Q L I S T (l)

GROUPid.ins, where GROUP represents the
group name. Id can be 5 or fewer characters.
The total number of characters in GROUP and
id must be 10 or fewer.

The following options are recognized by qlist:
—V output additional, verbose messages to stderr.
—m make file lists from proto file. This option is

used in packaging software.
- o print files in no group
—d use dir as location for file lists
—p use prefix when printing (default = . /)
File lists output with the - m option for group
" W P " are named as follows:

+ WP.cust
— WP.noup
@ WP.noqu
< WP.fopt , WP.flst
< id WP.fopt , WPid.lst
t h e rest W P

—1 list files in directory dir from proto file to stdout.
—p use prefix when printing (default = . /)

—s set links in root directory which are indicated by
sL lines in proto file. Root must be a rooted path
name or " ." . This option is used in software
installations.

EXAMPLE
A sample extended proto file follows. Note that the files
D o c u m e n t and Gloss are really links to the file
Admin, as indicated by :L at the beginning of these
lines. Also note that the lines ending in < designate
optionally installed, or specially installed files.

/mkboot
0 0
d - - 7 7 7 2 2
install d

WPRel
$

oa d
.Key d — 7 5 5 0 0

Admin
:L Document

- 2 -

- - 7 7 5 0 0
444 0 0 / insta l l /WPRel WP

- - 7 7 5 0 0

— 444 2 2 / o a / . K e y / A d m i n CTDCOA
/ o a / K e y / A d m i n CTDCOA

QLIST (1)

Gloss
$

.Document
Recruit
$

.Gloss
Sample
$

Centronix
ImagenDriver
SerialDriver
abs_rel
ctospool
def_wp
spoolstat
wp_def
wp_edit
wp_merge
wp_print
wp_review
wpp_band
wpp_canprt
wpp_diablo
wpp_imagen
wpp_laser
wpp_necspin
wpp prtsh %

/ oa / .Key /Admin CTIXOA

d - - 7 7 5 0 0
666 2 2 /oa / .Document /Recrui t WP

d - - 7 7 5 0 0
666 2 2 /oa / .Gloss /Sample WP

555 2 2 /oa/Centronix W P < sys
555 2 2 /oa / ImagenDriverWP< sys
555 2 2 /oa/SerialDriyer W P < sys
555 2 2 /oa/abs_rel W P < propt
555 2 2 /oa/ctospool WP
555 2 2 / oa /de f_wp W P < propt
555 2 2 /oa/spoolstat WP
555 2 2 /oa /wp_def W P < propt
555 2 2 /oa /wp_edi t WP
555 2 2 /oa/wp_merge WP
555 2 2 /oa /wp_print WP
555 2 2 /oa/wp_review WP
555 2 2 /oa /wpp_band W P < propt
555 2 2 /oa /wpp_canprt WP
555 2 2 /oa /wpp_diablo W P < propt
555 2 2 /oa/wpp_imagen W P < propt
555 2 2 /oa/wpp_laser W P < propt
555 2 2 /oa/wpp_necspin W P < propt
555 2 2 /oa/wpp_prtsh WP

SEE ALSO
qinstall(l), ctinstall(l).

- 3 -

RAND(3C)

NAME
rand, srand - simple random-number generator

S Y N O P S I S
int rand ()
vo id srand (seed)
unsigned seed;

D E S C R I P T I O N
Rand uses a multiplicative 3qpngruential random-number
generator with period 2 tha t returns successive
pseudo-random numbers in the range from 0 to 2 — 1.
Srand can be called at any time to reset the random-
number generator to a random starting point. The
generator is initially seeded with a value of 1.

N O T E
The spectral properties of rand leave a great deal to be
desired. Drand48(3C) provides a much better, though
more elaborate, random-number generator.

S E E A L S O
drand48(3C).

RCMD (3N)

NAME
rcmd, rresvport, ruserok - routines for returning a
stream to a remote command

SYNOPSIS
rcmd (ahost, inport, locuser, remuser , cmd, fd2p);
char ** ahost;
unsigned short inport;
char "locuser, *remuser, *cmd;
int *fd2p;
rresvport (port);
int ""port;
ruserok (rhost , superuser, ruser, luser);
char ' r h o s t ;
int superuser;
char ""ruser, ""luser;

DESCRIPTION
Rcmd is a routine used by the super-user to execute a
command on a remote machine using an authentication
scheme based on reserved port numbers. Rresvport is a
routine which returns a descriptor to a socket with an
address in the privileged port space. Ruserok is a
routine used by servers to authenticate clients requesting
service with rcmd. All three functions are present in the
same file and are used by the r«A</(lNM) server (among
others).
Rcmd looks up the host *ahost using getnamehost(ZN),
returning - 1 if the host does not exist. Otherwise *ahost
is set to the standard name of the host and a connection
is established to a server residing at the well-known
Internet port inport.
If the call succeeds, a socket of type SOCK_STREAM is
returned to the caller and given to the remote command
as stdin and stdout. If fd2p is non-zero, then an
auxiliary channel to a control process will be set up, and
a descriptor for it will be placed in *fd2p. The control
f.roc ess will return diagnostic output from the command
unit 2) on this channel and will also accept bytes on this

channel as being CTIX signal numbers, to be forwarded
to the process group of the command. If fd2p is 0, then
the stderr (unit 2 of the remote command) will be made
the same as the stdout and no provision is made for
sending arbitrary signals to the remote process, although
you may be able to get its attention by using out-of-
band data.
The protocol is described in rsW(lNM).

5 /86 - 1 -

RCMD (3N)

The rresvport routine is used to obtain a socket with a
privileged address bound to it. This socket is suitable
for use by rcmd and several other routines. Privileged
addresses consist of a port in the range 0 to 1023. Only
the super-user is allowed to bind an address of this sort
to a socket.
Ruserok takes a remote host's name, as returned by a
gethostent(3N) routine, two user names and a flag
indicating if the local user's name is the super-user. It
then checks the files / e t c / h o s t s . e q u i v and, possibly,
.rhosts in the current working directory (normally the
local user's home directory) to see if the request for
service is allowed. A 1 is returned if the machine name
is listed in the hosts .equiv file or if the host and remote
user name are found in the . rhosts file; otherwise
ruserok returns 0. If the superuser flag is 1, the checking
of the host .equiv file is bypassed.

SEE ALSO
rlogin(lC), rcmd(lC), rexec(3N), rexecd(lNM),
rlogind(lNM), rshd(lNM)

BUGS
There is no way to specify options to the socket call
which rcmd makes.

5 / 8 6

R E G C M P (3 X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char *regcmp (s tr ing l [, s tr ing2, . . .], (char *)0)
char *str ingl , *string2, . . .;
char *regex (re, subject[, retO, . . .])
char *re, *subject, *retO, . . .;
extern char * loc i ;

DESCRIPTION
Regcmp compiles a regular expression and returns a
pointer to the compiled form. Malloc(3C) is used to
create space for the vector. It is the user's responsibility
to free unneeded space so allocated. A NULL return
from reacmp indicates an incorrect argument.
Regcmp(l) has been written to generally preclude the
need for this routine at execution time.
Regex executes a compiled pattern against the subject
string. Additional arguments are passed to receive
values back. Regex returns NULL on failure or a pointer
to the next unmatched character on success. A global
character pointer loci points to where the match
began. Regcmp and regex were mostly borrowed from
the editor, erf(l); however, the syntax and semantics
have been changed slightly. The following are the valid
symbols and their associated meanings.
[] * .* These symbols retain their current meaning.
$ Matches the end of the string; \ n matches a

new-line.
— Within brackets the minus means through.

For example, [a— z] is equivalent to
[abed . . .xyz]. The — can appear as itself
only if used as the first or last character. For
example, the character class expression [] —]
matches the characters] and —.

+ A regular expression followed by + means one
or more times. For example, [0 - 9] + is
equivalent to [0—9][0—9]*.

{ m } { m , } {m,u}
Integer values enclosed in { } indicate the
number of times the preceding regular
expression is to be applied. The value m is
the minimum number and u is a number, less
than 256, which is the maximum. If only m is
present (e.g., {m}), it indicates the exact
number of times the regular expression is to be

- 1 -

R C P (I N)

NAME
rep - remote file copy

SYNOPSIS
/ u s r / I o c a l / b i n / r c p [- r] filel [file2 . . .] target

DESCRIPTION
Rep copies files between two nodes. Rep works like the
cp command (see cp(l)), with some extensions but
without an option to specify PILF cluster size.
Filel is copied to target. If target is a directory, one or
more files are copied into that directory; the copies have
the same names as the originals.
File and directory names follow a convention which is an
extension of the normal CTIX convention. Names take
one of three forms:

host.user'.path
host'.path
path

where
host is the name of the system which contains

or will contain the file. If no host is
specified (the simple path form of the
name), the system on which the
command is executed is assumed.

user is the name of a user on the specified
system. If no user is specified (the
host.path and path forms of the name),
the user on the remote system whose
name is the same as the user who
executed the rep command is used.
Access to the file system is as if by the
specified user who has just logged in.
Created files belong to the specified user
and the specified user's group (taken
from the password file). File and
directory modifications can only occur if
the specified user has permission to do
them. If path does not begin with a slant
(/) , it is assumed to be relative to the
specified user's home directory.
To use a user name on a remote system,
the remote system must have declared it
"equivalent" to your user name. See
r/»osf«(4N).

R C P (I N)

path is a conventional CTIX/UNIX path name.
Path can include file name generation
sequences (*, ?, [•••]); it may be
necessary to quote these to prevent their
expansion on the local system.

An exclamation point (!) is allowed in place of the colon.
The — r (recursive) option copies directory hierarchies. If
a file specified for copying is a directory and —r is
specified, the entire hierarchy under it is copied. When
—r is specified, target must be a directory.
When — r is not specified, copying directories is an error.
Note that a third system (not the source or target system
of the copy) can execute rep.

EXAMPLES
The following examples are executed on system alpha, by
user fred. Alpha is networked to beta and gamma.
The first example copies list from fred's home directory
on alpha to fred's home directory on beta.

rep list beta:list
The next example copies a directory hierarchy. The
original is rooted at sre in fred's home directory on beta.
The copy is to be rooted in sre in the working directory.

rep - r betarsrc .
Finally, fred copies a file from diane's home directory on
beta to / u s r / t m p on gamma; the copy on gamma is to
belong to karl. Both diane and karl must have
previously declared fred on alpha equivalent to their own
user names; see rAo«<s(4N).

rep beta.diane:junk gamma.karl : /usr/ tmp
Note that junk is not placed in karl's home directory
because the path part of the name begins with a slash.

FILES
/etc/hosts.equiv
SHOME/. rhosts

REQUIREMENTS
Both nodes involved in the copy must be running the
raW(lNM) server.

DIAGNOSTICS
Most diagnostics are self-explanatory. "Permission
denied" means either that the remote user does not have
permission to do what you want or that the remote user
is not equivalent to you.

R C P (I N)

WARNINGS
If a remote shell invoked by rep has output on startup,
rep will get confused. This is never a problem with
aA(l), because it is not called as a login shell.
The - r option doesn't work correctly if the copy is
purely local. Use cpio{ 1), instead.

REBOOT(1M)

NAME
reboot - reboot the system

SYNOPSIS
/ etc / reboot

DESCRIPTION
Reboot issues a syslocal(2) call to ask the system to wait
for the disks to become quiescent and then to reboot the
system. The reboot procedure is identical to power-on
reset except that the system will not t ry to take a crash
dump.
Only super-user is allowed to execute reboot.

R E G C M P (1)

NAME
regemp - regular expression compile

SYNOPSIS
regemp [—] files

DESCRIPTION
Regemp, in most cases, precludes the need for calling
regcmp(3X) from C programs. This saves on both
execution time and program size. The command regemp
compiles the regular expressions in file and places the
output in file A. If the — option is used, the output will
be placed in file.c. The format of entries in file is a
name (C variable) followed by one or more blanks
followed by a regular expression enclosed in double
quotes. The output of regemp is C source code.
Compiled regular expressions are represented as extern
char vectors. File A files may thus be included into C
programs, or file.c files may be compiled and later
loaded. In the C program which uses the regemp
output, regex(abc ,line) will apply the regular expression
named abc to line. Diagnostics are self-explanatory.

In the C program that uses the regemp output,
regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

EXAMPLES
name " ([A- Za - z] [A- Za - zO- 9_] *)$0
telno

SEE ALSO
regcmp(3X).

RENICE(l)

NAME
reniee - alter priority of running process by changing
nice

SYNOPSIS
/ e t c / r e n i c e pid [priority]

DESCRIPTION
Renice can be used by the super-user to alter the priority
of a running process. By default, the nice of the process
is made 19, which means that it will run only when
nothing else in the system wants to. This can be used to
nail long running processes that are interfering with
interactive work.
Renice can be given a second argument to choose a nice
other than the default. Negative nices can be used to
make things go very fast.

FILES
/unix
/dev/kmem

SEE ALSO
nice(l).

BUGS
If you make the nice very negative, then the process
cannot be interrupted. To regain control you must put
the nice back (e.g., to 0).

- 1 -

REXEC(3N)

NAME
rexec - return stream to a remote command

SYNOPSIS
rexec (ahost , inport, user, passwd, cmd, fd2p);
char ** ahost;
unsigned short inport;
char '•user, •passwd, *cmd;
int *fd2p;

DESCRIPTION
Rexec looks up the host *ahost using getnamehost{3N),
returning - 1 if the host does not exist. Otherwise *ahost
is set to the standard name of the host. If a user name
and password are both specified, then these are used to
authenticate to the foreign host; otherwise the
environment and then the user's .netrc file in his home
directory are searched for appropriate information. If all
this fails, the user is prompted for the information.
The port inport specifies which well-known DARPA
Internet port to use for the connection; it will normally
be the value returned from the call "getnameserv("exec",
"tcp")" (see getservent(SN)). The protocol for
connection is described in rexeca(lNM).
If the call succeeds, a socket of type SOCK_STREAM is
returned to the caller, and given to the remote command
as stdin and stdout. If fd2p is non-zero, then a auxiliary
channel to a control process will be set up, and a
descriptor for it will be placed in *fd2p. The control
process will return diagnostic output from the command
(unit 2) on this channel and will also accept bytes on this
channel as being CTIX signal numbers, to be forwarded
to the process group of the command. If fd2p is 0, then
the stderr (unit 2 of the remote command) will be made
the same as the stdout and no provision is made for
sending arbitrary signals to the remote process, although
you may be able to get its attention by using out-of-
band data.

SEE ALSO
rcmd(3N), rexecd(lNM).

BUGS
There is no way to specify options to the socket call
which rexec makes.

5 / 8 6 - 1 -

SCANF (3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
^inc lude < s t d i o . h >
int scanf (format [, pointer] . . .)
char *format;
int fscanf (stream, format [, pointer] . . .)
FILE *stream;
char *format;
int sscanf (s, f ormat [, pointer] . . .)
char *s, *format;

DESCRIPTION
Scanf reads from the standard input stream stdin.
Fscanf reads from the named input stream. Sscanf
reads from the character string s. Each function reads
characters, interprets them according to a format, and
stores the results in its arguments. Each expects, as
arguments, a control string format described below, and
a set of pointer arguments indicating where the
converted input should be stored.
The control string usually contains conversion
specifications, which are used to direct interpretation of
input sequences. The control string may contain:
1. White-space characters (blanks, tabs, new-lines, or

form-feeds) which, except in two cases described
below, cause input to be read up to the next non-
white-space character.

2. An ordinary character (not %), which must match
the next character of the input stream.

3. Conversion specifications, consisting of the character
% , an optional assignment suppressing character *,
an optional numerical maximum field width, an
optional 1 (ell) or h indicating the size of the
receiving variable, and a conversion code.

A conversion specification directs the conversion of the
next input field; the result is placed in the variable
pointed to by the corresponding argument, unless
assignment suppression was indicated by *. The
suppression of assignment provides a way of describing
an input field which is to be skipped. An input field is
defined as a string of non-space characters; it extends to
the next inappropriate character or until the field width,
if specified, is exhausted. For all descriptors except [and
c, white space leading an input field is ignored.

R L O G I N (I N)

NAME
rlogin - remote login

SYNOPSIS
/ u s r / l o c a l / b i n / r l o g i n node j - e c] [—1 name]
/ u s r / h o s t s / n o d e [—ec] [—1 name]

DESCRIPTION
Rlogin connects you to a login shell executing on node.
The second, simplified form of the command is
equivalent to the first, but is only available if
mkhosts (lNM) was previously run by the system
administrator. By default, rlogin uses the same user
name on the remote node that the user is using on the
local node. The remote login program will not require a
password if the remote node has declared the two users
equivalent (see r/iosto(4N)).
Rlogin attempts to configure the remote "terminal" in a
convenient way. The TERM environment variable on the
remote shell is automatically set to match its value on
the local shell which ran rlogin. Echoing takes place at
the remote node. Flow control on XON/XOFF and
flushing of input and output on interrupts are handled
properly.
Close the connection by hanging up on rlogin, by logging
out of the remote node, or by typing (tilde-period)
at the beginning of a line. The hangup and the tilde-
period command both cause a hangup on the remote
"terminal." To send an input line beginning with tilde to
the remote node, begin the line with two tildes.
Rlogin understands the following options.

—ec Use the character c instead of tilde as
the escape character. There must not
be a space between e and c on the
command line. A c-period at the
beginning of an input line closes the
connection, and ec at the beginning of
an input line sends a single c.

—1 user Login as user on the remote system.
User's password is not required
provided that the local user name is
on user's list of "equivalent" user
names. See rhosts(4N).

SEE ALSO
rcmd(lN).

RLOGIND(1NM)

NAME
rlogind - remote login server

SYNOPSIS
/ e t c / r l o g i n d

DESCRIPTION
Rlogind is a network server which supports remote logins
by programs such as rlogin(IN). It is normally executed
by the startup file, / e t c / r c .
Rlogind enforces an authentication procedure based on
equivalence of user names (see r/to«te(4N)). This
procedure assumes all nodes on the network are equally
secure.

SEE ALSO
rlogin(lN), rhosts(4N).

RM(1)

NAME
rm, rmdir - remove files or directories

SYNOPSIS
r m [—fri] file ...
rmdir dir ...

DESCRIPTION
Rm removes the entries for one or more files from a
directory. If an entry was the last link to the file, the
file is destroyed. Removal of a file requires write
permission in its directory, but neither read nor write
permission on the file itself.
If a file has no write permission and the standard input
is a terminal, its permissions are printed and a line is
read from the standard input. If tha t line begins with y
the file is deleted, otherwise the file remains. No
questions are asked when the —f option is given or if the
standard input is not a terminal.
If a designated file is a directory, an error comment is
printed unless the optional argument —r has been used.
In that case, rm recursively deletes the entire contents of
the specified directory, and the directory itself.
If the — i (interactive) option is in effect, rm asks
whether to delete each file, and, under —r, whether to
examine each directory.
Rmdir removes entries for the named directories, which
must be empty.

SEE ALSO
unlink(2).

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the
file .. merely to avoid the antisocial consequences of
inadvertently doing something like:

r m - r .*

- 1 -

RMDEL (1)

NAME
rmdel - remove a delta from an SCCS file

SYNOPSIS
r m d e l -rSID files

DESCRIPTION
Rmdel removes the delta specified by the SID from each
named SCCS file. The delta to be removed must be the
newest (most recent) delta in its branch in the delta
chain of each named SCCS file. In addition, the
specified must not be that of a version being edited for
the purpose of making a delta (i. e., if a p-file (see
get(l)) exists for the named SCCS file, the specified
must not appear in any entry of the p-file).
If a directory is named, rmdel behaves as though each
file in the directory were specified as a named file,
except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are
silently ignored. If a name of — is given, the standard
input is read; each line of the standard input is taken to
be the name of an SCCS file to be processed; non-SCCS
files and unreadable files are silently ignored.
The exact permissions necessary to remove a delta are
documented in the Source Code Control System User
Guide. Simply stated, they are either (1) if you make a
delta you can remove it; or (2) if you own the file and
directory you can remove a delta.

FILES
x.file
z.file

SEE ALSO
delta(l
CTIX i

a(l), get(l), help(l), prs(l), sccsfile(4).
IX Programmer's Guide, Section 9.

DIAGNOSTICS
Use help(l) for explanations.

ROUTE (1NM)

NAME
route - manually manipulate the routing tables

SYNOPSIS
/ e t c / r o u t e [— f] [command destination gateway
[metric] j

DESCRIPTION
Route is a program used to manually manipulate the
network routing tables. It accepts two commands: add,
to add a route; and delete, to delete a route.
All commands have the following syntax:

/ e t c / r o u t e command destination gateway [metric]
where destination is a host or network for which the
route is " to" , gateway is the gateway to which packets
should be addressed, and metric is an optional count
indicating the number of hops to the destination. If no
metric is specified, route assumes a value of 0. Routes to
a particular host are distinguished from those to a
network by interpreting the Internet address associated
with destination. If the destination has a "local address
pa r t " of INADDR_ANY, the route is assumed to be to a
network; otherwise, it is presumed to be a route to a
host. If the route is to a destination connected via a
gateway, metric should be greater than 0. All symbolic
names specified for a destination or gateway are looked
up first in the host name database; see /»o«te(4N). If this
lookup fails, the name is then looked for in the network
name database; see ne<u;orjfc«(4N).
Route uses a raw socket and the SIOCADDRT and
SIOCDELRT ioctrs to do its work. As such, only the
super-user may modify the routing tables.
If the —f option is specified, route will "flush" the
routing tables of all gateway entries. If this is used in
conjunction with one of the commands described above,
the tables are flushed prior to the command's
application.

DIAGNOSTICS
"add node: g a t e w a y node f lags hex-flags"
The specified route is being added to the tables. The
values printed are from the routing table entry supplied
in the ioctl call.
"delete node', g a t e w a y node f lags hex-flags"
As above, but when deleting an entry.
"node node done"
When the —f flag is specified, each routing table entry
deleted is indicated with a message of this form.

R O U T E (1 N M)

"not in table"
A delete operation was attempted for an entry which
wasn't present in the tables.
"routing table overf low"
An add operation was attempted, but the system was
low on resources and was unable to allocate memory to
create the new entry.

SEE ALSO
intro(4), netman(lNM).

RSHD(INM)

NAME
rshd - remote shell server

SYNOPSIS
/ e t c / r s h d

DESCRIPTION
Rshd is the network server for programs such as
rcmrf(lN) and rep (IN) which need to execute a
noninteractive shell on remote machines. It is normally
executed by the s tar tup file, / e t c / r c .
Rshd enforces an authentication procedure based on
equivalence of user names (see rhosts(4 n)). This
procedure assumes all nodes on the network are equally
secure.

SEE ALSO
rcmd(lN), rcp(lN).

RSTERM (1M)

NAME
rsterm - manually start and stop terminal input and
output

SYNOPSIS
/ e t c / r s t e r m number device

DESCRIPTION
Rsterm manually exercises the s tar t /s top features of the
terminal driver. (For a discussion of s tar t /s top features,
see the STOP and START characters and EXON, IXANY,
and IXOFF flags under termio(7).) Rsterm requires two
parameters:

number A number specifying the action:
0 Suspend output, as if the terminal

had sent a STOP character to the
system.

1 Resume output, as if the terminal
had sent a START character to the
system.

2 Block input by sending the
terminal a STOP character, as if
the terminal had nearly filled the
terminal's input queue.

S Unblock input by sending the
terminal a START character, as if
the system had nearly emptied the
terminal's input queue.

device The special file for the terminal.
Normally, STOP is the ASCII XOFF character,
Control-S, and START is the ASCII XON character,
Control- Q.
Operation 2 (resume output) is the most used. Use it
when a terminal (a printer for example) has sent a STOP
character and cannot be made to send a START
character.
Rsterm is one way to clear up a terminal. Another way
is to kill all processes associated with the terminal: this
momentarily closes the special file, returning all terminal
modes to their initial state. See kill (I).
You must be superuser to run rsterm.

FILES
/dev/tty??? - terminal devices

SEE ALSO
kill(l), termio(7).

- 1 -

RUNACCT(1M)

NAME
runacct - run daily accounting

SYNOPSIS
/ u s r / l i b / a c c t / r u n a c c t [mmdd [state]]

DESCRIPTION
Runacct is the main daily accounting shell procedure. It
is normally initiated via cron(lM). Runacct processes
connect, fee, disk, and process accounting files. It also
prepares summary files for prdaily or billing purposes.
Disk block counts are reported for 512-byte blocks.
Runacct takes care not to damage active accounting files
or summary files in the event of errors. It records its
progress by writing descriptive diagnostic messages into
active. When an error is detected, a message is written
to / d e v / c o n s o l e , mail (see mail(l)) is sent to
r o o t and adm, and runacct terminates. Runacct uses a
series of lock files to protect against re-invocation. The
files lock and l o c k l are used to prevent simultaneous
invocation, and l a s tdate is used to prevent more than
one invocation per day.
Runacct breaks its processing into separate, restartable
states using s tate f i l e to remember the last state
completed. It accomplishes this by writing the state
name into s tatef i le . Runacct then looks in s ta te f i l e to
see what it has done and to determine what to process
next. States are executed in the following order:
SETUP Move active accounting files into

working files.
WTMPFIX Verify integrity of w t m p file, correcting

date changes if necessary.
C O N N E C T l Produce connect session records in

c t m p . h format.
CONNECT2 Convert c t m p . h records into t a c c t . h

format.
PROCESS Convert process accounting records into

t a c c t . h format.
MERGE Merge the connect and process

accounting records.
FEES Convert output of chargefee into

t a c c t . h format and merge with connect
and process accounting records.

DISK Merge disk accounting records with
connect, process, and fee accounting
records.

- 1 -

RUNACCT(1M)

MERGETACCT
Merge the daily total accounting records
in daytacct with the summary total
accounting records in
/ u s r / a d m / a c c t / s u m / tacct.

CMS Produce command summaries.
USEREXIT Any installation-dependent accounting

programs can be included here.
CLEANUP Cleanup temporary files and exit.
To restart runacct after a failure, first check the ac t ive
file for diagnostics, then fix up any corrupted data files
such as pacct or wtmp. The lock files and l a s t d a t e
file must be removed before runacct can be restarted.
The argument mmdd is necessary if runacct is being
restarted, and specifies the month and day for which
runacct will rerun the accounting. Entry point for
processing is based on the contents of s ta tef i le ; to
override this, include the desired state on the command
line to designate where processing should begin.

EXAMPLES
To start runacct:
nohup runacct 2 > /usr /adm/acct /n i te / fd2log &
To restart runacct:
nohup runacct 0601 2 > > /usr/adm/acct/ni te/fd21og &
To restart runacct at a specific state:
nohup runacct 0601 MERGE 2 > >
/usr /adm/acct /ni te / fd2log &

FILES
/e tc /wtmp
/usr /adm/pacct*
/usr /s rc /cmd/acct / tacct .h
/usr /s rc /cmd/acct /c tmp.h
/usr /adm/acct /n i te /ac t ive
/us r /adm/acc t /n i te /day tacct
/usr / adm / acct/nite/lock
/usr /adm/acc t /n i te / lockl
/usr /adm/acc t /ni te/ lastdate
/us r /adm/acc t /n i te / statefile
/usr/adm/acct/nite/ptacct*.mm</rf

SEE ALSO
acct(lM), acctcms(lM), acctcomfll, acctconflM),
acctmerg(lM), acctprc(lM), acctsn(lM), cron(lM),
fwtmp(lM), mail(l), acct(2), acct(4), utmp(4).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

RUNACCT(1M)

BUGS
Normally it is not a good idea to restart runacct in the
SETUP state. Run SETUP manually and restart via:

runacct mmdd WTMPFDC
If runacct failed in the PROCESS state, remove the last
ptacct file because it will not be complete.

- 3 -

RUPTIME(IN)

NAME
ruptime - display status of nodes on local network

SYNOPSIS
/ u s r / l o c a l / b i n / r u p t i m e [- a] [— 1] [- t] [- u]

DESCRIPTION
Ruptime displays status information for nodes on the
local network. For each node, a line is printed
displaying: the node name; whether the node is up (a
node is considered "down" if its ruj/iod(lNM) server has
not broadcast in five minutes); the time the node has
been up in days, hours, and minutes; the number of
logged-in users logged who have used their keyboards in
the last hour; and the load (average number of jobs in
the run queue) for the last one minute, five minutes, and
15 minutes.
When no options are specified, the status lines are sorted
by node name.
Here are the options:

—a Count all logged-in users, including idle
ones.

—1 Sort status lines by load average.
—t Sort status lines by time node has been

up.
—u Sort status lines by number of users.

REQUIRMENTS
Each node to be listed must be running the rtoAorf(lMN)
server, which broadcasts a status packet once a minute.
The local node must also be running this server to
maintain data files.

FILES
/usr/spool/rwho/whod.* data files

SEE ALSO
rwho(lN).

R W H O (I N)

N A M E
rwho - who is logged in on local network

SYNOPS IS
/ u s r / l o c a l / b i n / r w h o [—a]

D E S C R I P T I O N
Rwho lists users logged in on machines on the local
network in a format similar to that of u>Ao(l). Without
options, only users who have typed in the last hour are
listed. For each user listed, rwho displays the user name;
the node name; and the date and time the user logged in.
If the user has not typed in the last minute, rwho also
displays the user's idle time in hours and minutes.
Rwho understands the following option:

—a List all users on active nodes (users idle
for more than an hour are listed).

If information from a node is more than five minutes old,
the node is assumed to be down and its users are not
listed.

R E Q U I R E M E N T S
Each node to be listed must be running the rwhod (1MN)
server, which broadcasts a status packet once a minute.
The local node must also be running this server to
maintain the data files.

F I LES
/usr/spool/rwho/whod.* information about other

nodes
SEE A L S O

ruptime(lN), rwhod(lNM).

RWHOD (1NM)

NAME
rwhod - node status server

SYNOPSIS
/ e t c / r w h o d

DESCRIPTION
Rwhod collects and distributes information about nodes
on the local network, including the local node. It is
normally executed by the startup file, / e t c / r c . It
performs four chores once a minute:

• Gathers information about the local
node.

• Broadcasts information about the local
node for the benefit of rwhod servers
running on other nodes.

• Collects information broadcast by rwhod
servers on other nodes.

• Maintains network status files, using
information gathered by this and the
other rwhod servers.

The files maintained by rwho have names of the form
/ u s r / s p o o l / r w h o / w h o d . n a m e , where name is the
name of the host whose status is in the file. Each status
file begins with the header of the following form:

struct whod {
char wd_vers; /* version number */
char wd_type; /* type number */
char wd_fill; /* ignored */
int wd_sendtime;/* time this packet sent */
int wd_recvtime; /* time this packet received */
char wd_hostname[32];

/* name of originating node */
int wd_loadav[3];

/* load averages
(see rwho(lN)) */

int wd_boottime;
/* boot time of originating
node */

}>
The node name of a system is printed by the uname (1)
command. The remainder of the file consists of user
records:

struct outmp {
char out_line[8]; /* terminal name */

- 1 -

RWHOD(1NM)

char out_name[8]; / * user name */
int out_ltime; /* login time */
int out itime; /* idle t ime */

};
Rwho performs an nliet(3) on / u n i x every 10 minutes in
case that file is not the current system image,
Rwho transmits and receives messages at the port
indicated in the "rwho" service specification. See
aert;«ee«(4N).

FILES
/ usr/spool / rwho/whod. *

WARNINGS
Death of this server makes other nodes think that this
node is down.

SACT (1)

NAME
sact - print current SCCS file editing activity

SYNOPSIS
sact files

DESCRIPTION
Sact informs the user of any impending deltas to a
named SCCS file. This situation occurs when get(1) with
the —e option has been previously executed without a
subsequent execution of delta(1). If a directory is named
on the command line, sact benaves as though each file in
the directory were specified as a named file, except that
non-SCCS files and unreadable files are silently ignored.
If a name of — is given, the standard input is read with
each line being taken as the name of an SCCS file to be
processed.
The output for each named file consists of five fields
separated by spaces.

Field 1 specifies the SID of a delta that
currently exists in the SCCS file to
which changes will be made to make
the new delta.

Field 2 specifies the SID for the new delta to
be created.

Field 3 contains the Iogname of the user who
will make the delta (i.e., executed a
get for editing).

Field 4 contains the date that get - e was
executed.

Field 5 contains the time tha t get —e was
executed.

SEE ALSO
delta(l), get(l), unget(l).

DIAGNOSTICS
Use help(1) for explanations.

S A D P (1 M)

NAME
sadp - disk access profiler

SYNOPSIS
sadp [- t h] [- d device[- drive]] s [n]

DESCRIPTION
Sadp reports disk access location and seek distance, in
tabular or histogram form. It samples disk activity once
every second during an interval of s seconds. This is
done repeatedly if n is specified. Cylinder usage and
disk distance are recorded in units of 8 cylinders.
The valid value of device is disk. Drive specifies the
disk drives and it may be:

a drive number in the range supported by
device,
two numbers separated by a minus (indicating
an inclusive range),

or
a list of drive numbers separated by commas.

Up to 8 disk drives may be reported. The - d option
may be omitted, if only one device is present.
The —t flag causes the data to be reported in tabular
form. The —h flag produces a histogram on the printer
of the data. Default is —t.

EXAMPLE
The command:

sadp - d disk - 0 900 4
will generate 4 tabular reports, each describing cylinder
usage and seek distance of disk drive 0 during a 15-
minute interval.

FILES
/dev/kmem

SEE ALSO
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

S A G (1 G)

NAME
sag - system activity graph

SYNOPSIS
sag [options]

DESCRIPTION
Sag graphically displays the system activity data stored
in a binary data file by a previous aar (l) run. Any of
the sar data items may be plotted singly, or in
combination; as cross plots, or versus time. Simple
arithmetic combinations of data may be specified. Sag
invokes sar and finds the desired data by string-
matching the data column header (run sar to see what is
available). These options are passed through to sar :
—s time Select data later than time in the form

hh [:mm]. Default is 08:00.
—e time Select data up to time. Default is 18:00.
—i sec Select data at intervals as close as possible to

sec seconds.
—f file Use file as the data source for sar. Default is

the current daily data file
/ usr / adm / s a / s a dd.

Other options:
—T term Produce output suitable for terminal term.

See tplot{ 1G) for known terminals. If term is
vpr, output is processed by vpr —p and
queued to a Versatec printer. Default for term
is STERM.

—x spec x axis specification with spec in the form:
"name [op name] . . . [lo hi]"

—y spec y axis specification with spec in the same form
as above.

Name is either a string that will match a column header
in the sar report, with an optional device name in square
brackets, e.g., r+"w/s[dsk—1], or an integer value. Op
is - | — * or / surrounded by blanks. Up to five names
may be specified. Parentheses are not recognized.
Contrary to custom, + and - have precedence over

* and / . Evaluation is left to right. Thus
A / A + B * 100 is evaluated (A/(A+B))*100, and
A + B / C + D is (A+B)/(C+D). Lo and hi are
optional numeric scale limits. If unspecified, they are
deduced from the data.
A single spec is permitted for the x axis. If unspecified,
time is used. Up to 5 spec's separated by ; may be

- 1 -

SAG(1G)

given for — y. Enclose the - x and — y arguments in "
if blanks or \ < C R > are included. The -y default is:
- y ' % U B T 0 100; %usr + % s y s 0 100;

%uar + %sys + %wio 0 100"
EXAMPLES

To see today's CPU utilization:
sag

To see activity over 15 minutes of all disk drives:
T S = v date + % H : % M -
sar - o tempfile 60 15
T E = v date + % H : % M -
sag - f tempfile - s $TS - e $TE - y "r+w/s[dsk]"

FILES
/usr /adm/sa /sadd daily data file for day dd.

SEE ALSO
sar(l), tplot(lG).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

S A R (l)

NAME
sar - system activity reporter

SYNOPSIS
sar [—ubdycwaqvmprAC J [—o file] t [n J
sar [—ubdycwaqvmprAC] [— s time] [— e time]
[- i sec] [- f file f

DESCRIPTION
Sar, in the first instance, samples cumulative activity
counters in the operating system at n intervals of t
seconds. If the —o option is specified, it saves the
samples in file in binary format. The default value of n
is 1. In the second instance, with no sampling interval
specified, sar extracts data from a previously recorded
file, either the one specified by —f option or, by default,
the standard system activity daily data file
/usr /adm/sa/sarfrf for the current day dd. The
starting and ending times of the report can be bounded
via the — s and —e time arguments of the form
hh [:mm[:««]]. The — i option selects records at see
second intervals. Otherwise, all intervals found in the
data file are reported.
In either case, subsets of data to be printed are specified
by option:
- u Report CPU utilization (the default):

%usr, %sys, %wio, %idle - portion of time
running in user mode, running in system mode, idle
with some process waiting for block I/O, and
otherwise idle.

—b Report buffer activity:
bread/s, bwrit/s - transfers per second of data
between system buffers and disk or other block
devices;
lread/s, lwrit/s - accesses of system buffers;
%rcache, %wcache - cache hit ratios, e. g., 1 -
bread/lread;
pread/s, pwrit/s - transfers via raw (physical)
device mechanism,

- d Report activity for each block device, e. g., disk or
tape drive. When data is displayed, the device
specification dsk- is generally used to represent a
disk drive. The device specification used to
represent a tape drive is machine dependent. The
activity data reported is:
%busy, avque - portion of time device was busy
servicing a transfer request, average number of
requests outstanding during that time;
r+w/s , blks/s - number of data transfers from or

- 1 -

S A R (l)

to device, number of bytes transferred in 512-byte
units;
avwait, avserv - average time in ms. that transfer
requests wait idly on queue, and average time to be
serviced (which for disks includes seek, rotational
latency and data transfer times).
r» j mrm r i ' • • • .

y nepori i n aevice activity:
rawch/s, canch/s, outch/s - input character rate,
input character rate processed by canon, output
character rate;
rcvin/s, xmtin/s, mdmin/s - receive, transmit and
modem interrupt rates,

c Report system calls:
scall/s - system calls of all types;
sread/s. swrit/s, fork/s. exec/s - specific system
calls;
rchar/s, wchar/s - characters transferred by read
and write system calls,

w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s - number of
transfers and number of 512-byte units transferred
for swapins and swapouts (including initial loading
of some programs);
pswch/s - process switches,

a Report use of file access system routines:
iget/s, namei/s, dirblk/s.

q Report average queue length while occupied, and
% of time occupied:
runq-sz, %runocc - run queue of processes in
memory and runnable;
swpq-sz, %swpocc - swap queue of processes
swapped out but ready to run.

v Report status of process, i-node, file, record lock
and file header tables:
proc-sz, inod-sz, file-sz, lock-sz, fhdr-sz -
entries/size for each table, evaluated once at
sampling point;
ov - overflows that occur between sampling points
for each table,

m Report message and semaphore activities:
msg/s, sema/s - primitives per second,

p Report paging activity:
vflt /s , pflt /s , pgfil/s, rclm/s -number of address
translation faults, protection faults, page ins from
file system and pages reclaimed occurring per
second.

r Report free swap and memory space:
freemem - number of free pages of memory;
freeswp - number of free blocks of swap space; the

- 2 -

S A R (l)

free space reported is not contiguous.
—A Report all data. Equivalent to

— u d q b w c a y v m p C .
- C

In addition to rates, print the actual counts. This
is useful if the rates are 0.

t ? v a \ / t p t t ? c UiVi LiVll JJl_i LJ

To see today's CPU activity so far:
sar

To watch CPU activity evolve for 10 minutes and save
data:

sar - o temp 60 10
To later review disk and tape activity from tha t period:

sar - d - f temp
FILES

/usr /adm/sa /sacM daily data file, where dd are digits
representing the day of the month.

SEE ALSO
sag(lG), sar(lM).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

(

- 3 -

SAR (1M)

NAME
sa l , sa2, sadc - system activity report package

SYNOPSIS
/ u s r / l i b / s a / s a d c [t n] [ofile]
/ u s r / l i b / s a / s a l [t n]
/ u s r / l i b / s a / s a 2 [—ubdycwaqvmprAC] [—s time]
[—e time] [—i sec]

DESCRIPTION
System activity data can be accessed at the special
request of a user (see sar(l)) and automatically on a
routine basis as described here. The operating system
contains a number of counters tha t are incremented as
various system actions occur. These include CPU
utilization counters, buffer usage counters, disk and tape
I/O activity counters, TTY device activity counters,
switching and system-call counters, file-access counters,
queue activity counters, and counters for interprocess
communications.
Sadc and shell procedures, sal and sa2 are used to
sample, save, and process this data.
Sadc, the da ta collector, samples system da ta n times
every t seconds and writes in binary format to ofile or to
standard output . If t and n are omitted, a special record
is written. This facility is used a t system boot time to
mark the time at which the counters restart from zero.
The /etc/rc entry:

su sys - c "/usr/lib/sa/sadc /usr/adm/sa/sa'date +%dl"
writes the special record to the daily da ta file to mark
the system restart .
The shell script sal, a variant of sadc, is used to collect
and store da ta in binary file / u s r / a d m / s a / s a d < i where
dd is the current day. The arguments t and n cause
records to be written n times at an interval of t seconds,
or once if omitted. The entries in
/ u s r / s p o o l / c r o n / c r o n t a b s / s y s (see cron(lM)):

0 * * * 0,6 / u s r / l i b / s a / s a l
0 8 - 1 7 * * 1 - 5 / u s r / l i b / s a / s a l 1200 3
0 1 8 - 7 * * 1 - 5 / u s r / l i b / s a / s a l

will produce records every 20 minutes during working
hours and hourly otherwise.
The shell script sa2, a variant of sor(l) , writes a daily
report in file / u s r / a d m / s a / s a r r f d . The options are
explained in «ar(l) . The entry in

SAR (1M)

/ u s r / s p o o l / c ron /crontabs / sys :
5 18 * * 1 - 5 /usr / l ib /sa/sa2 - s 8:00 - e 18:01 - i
3600 - A

will report important activities hourly during the
working day.
X l i e s i i u v i u i t yji w i c u i i i a j j u a n j u a t a 1111. in.

struct sa {
struct sysinfo si;
/ * see /usr/include/sys/sysinfo.h */
struct minfo mi;
/* defined in /usr/include/sys/sysinfo.h */
int szinode;
/* current size of inode table * /
int. cafi lp* .
/ * current size of file table */
int szproc;
/* current size of proc table */
int szlckf;
/ * current size of file record header table */
int szlckr;
/* current size of file record lock table */
int mszinode;
/ * size of inode table */
int mszfile;
/* size of file table */
int mszproc;
/* size of proc table */
int mszlckf;

/* maximum size of file record header table */
int mszlckr;
/* maximum size of file record lock table */
long inodeovf;
/ * cumulative overflows of inode table */
long fileovf;
/* cumulative overflows of file table */
long procovf;
/* cumulative overflows of proc table */
time_t ts;
/* time stamp */
int apstate;
long devio[NDEVS][4j;
/* device unit information */

#define IO_OPSO
/* cumulative I/O requests */

#define IO_BCNTl
/* cumulative blocks transferred */

#define IO.ACT2

SAR(1M)

/ * cumulative drive busy time in ticks */
#def ine 10 _RESP3

/* cumul. I/O resp time in ticks since boot
}>

FILES
/usr/adm/sa/sarfrf daily data file
/usr/adm/sa/sar(f</ daily report file
/ tmp/sa .adrf l address file

SEE ALSO
cron(lM), sag(lG), sar(l), timex(l).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

SCCSDIFF (1)

NAME
sccsdiff - compare two versions of an SCCS file

SYNOPSIS
s c c s d i f f - r S I D l - r S I D 2 [- p] [- s n] f i l e s

DESCRIPTION

generates the differences between the two versions. Any
number of SCCS files may be specified, but arguments
apply to all files.

FILES
/tmp/get????? Temporary files

SEE ALSO
bdiff(l), get(l), help(l), pr(l).
CTIX Programmer's Guide, Section 9.

DIAGNOSTICS
"file: No differences" If the two versions are the

—TSID? SID1 and SID2 specify the deltas of
an SCCS file that are to be compared.
Versions are passed to b diff(1) in the
order given.

- P pipe output for each file through
pr(l) .

— s n n is the file segment size that bdiff
will pass to dtff{\). This is useful
when diff fails due to a high system
load.

same.
Use help(1) for explanations.

SCRIPT (1)

NAME
script - make typescript of terminal session

SYNOPSIS
script [- a] [- q] [- S shell] [file]

DESCRIPTION
Script makes a typescript of your interaction with the
system. Script forks a shell with standard input and
output diverted to pipes. Input to script is written to
the shell's input pipe; script writes the shell's output
pipe; and a typescript of both is written to file. The
default for file is typescript. File begins and ends with
time stamps for the session. Script terminates with an
error if file already exists.
To terminate script, terminate the shell or type
Control-D (FINISH on Convergent Technologies
Terminals). A Control-D to script terminates the shell
and all programs run from the shell by closing the pipes.
Control-D behaves as though you had typed an infinite
number of Control-Ds.
The run file for the shell is taken from the SHELL
environment variable, set by /oj»n(lM). If SHELL is
not set, / b i n / s h is used.
Here are the options:
—q Quiet operation. Script's opening and closing

messages are suppressed, as are the time stamps
at the beginning and end of file.

- S shell
Use shell as the name of the shell run file.

—a If file already exists, append typescript to it.
WARNINGS

Script's limitations result from its use of pipes:
There is no way to send an end-of-file to the
shell without terminating script.
Programs that use the standard input to
examine and control the user's terminal will
have problems or not work at all. Examples are
stty(l), tset(l), tty(l), ex(l), and vt'(l).
When the user interrupts a printing process,
script at tempts to flush the output backed up in
the pipe for better response. Usually the next
prompt also gets flushed.

S D B (l)

NAME
sdb - symbolic debugger

SYNOPSIS
sdb [-w] [- W] [objfil [corfil [directory-list]]]

DESCRIPTION
Sdb is a symbolic debugger that can be used with C
programs. It may be used to examine their object files
and core files and to provide a controlled environment
for their execution.
Objfil is normally an executable program file which has
been compiled with the —g (debug) option; if it has not
been compiled with the —g option, or if it is not an
executable file, the symbolic capabilities of sdb will be
limited, but the file can still be examined and the
program debugged. The default for objfil is a .out.
Corfil is assumed to be a core image file produced after
executing objfil; the default for corfil is core. The core
file need not be present. A — in place of corfil will force
sdb to ignore any core image file. The colon separated
list of directories (directory-list) is used to locate the
source files used to build objfil.
It is useful to know that at any time there is a current
line and current file. If corfil exists then they are
initially set to the line and file containing the source
statement at which the process terminated. Otherwise,
they are set to the first line in main(J. The current line
and file may be changed with the source file examination
commands.
Initially sdb has a greater-than character (>) prompt,
which indicates that sdb is ready for the user to enter the
first command. After sdb has begun, the prompt is
< x > , where x is the name of the last command given.
By default, warnings are provided if the source files used
in producing objfil cannot be found, or are newer than
objfil. This checking feature and the accompanying
warnings may be disabled by the use of the —W flag.
Names of variables are written just as they are in C.
Note that names in C are now of arbitrary length, sdb
will no longer truncate names. Variables local to a
procedure may be accessed using the form
procedure '.variable. If no procedure name is given, the
procedure containing the current line is used by default.
It is also possible to refer to structure members as
variable.member, pointers to structure members as
variable -> member and array elements as

S D B (1)

variable [number]. Pointers may be dereferenced by
using the form pointer[0]. Combinations of these forms
may also be used. A number may be used in place of a
structure variable name, in which case the number is
viewed as the address of the structure, and the template
used for the structure is that of the last structure
referenced by sdb. An unqualified structure variable may
also be used with various commands. Generally, sdb will
interpret a structure as a set of variables. Thus, sdb will
display the values of all the elements of a structure when
it is requested to display a structure. An exception to
this interpretation occurs when displaying variable
addresses. An entire structure does have an address, and
it is this value sdb displays, not the addresses of
i n d i v i d u a l e lements .

Elements of a multidimensional array may be referenced
as variable [number][number]..., or as
variable[number,number,...J. In place of number, the
form number',number may be used to indicate a range of
values, * may be used to indicate all legitimate values
for that subscript, or subscripts may be omitted entirely
if they are the last subscripts and the full range of values
is desired. As with structures, sdb displays all the values
of an array or of the section of an array if trailing
subscripts are omitted. It displays only the address of
the array itself or of the section specified by the user if
subscripts are omitted.
A particular instance of a variable on the stack may be
referenced by using the form procedure'.variable,number.
All the variations mentioned in naming variables may be
used. Number is the occurrence of the specified
procedure on the stack, counting the top, or most
current, as the first. If no procedure is specified, the
procedure currently executing is used by default.
It is also possible to specify a variable by its address. All
forms of integer constants which are valid in C may be
used, so that addresses may be input in decimal, octal or
hexadecimal.
Line numbers in the source program are referred to as
file-name:number or procedure'.number. In either case
the number is relative to the beginning of the file. If no
procedure or file name is given, the current file is used
by default. If no number is given, the first line of the
named procedure or file is used.
While a process is running under sdb, all addresses refer
to the executing program; otherwise they refer to objfil
or corfil. An initial argument of —w permits overwriting

- 2 -

S D B (1)

locations in objfil.
Addresses

The address in a file associated with a written address is
determined by a mapping associated with that file. Each
mapping is represented by two triples (bl, el, f l) and
(b2, e2, f2) and the file address corresponding to a
written address is calculated as follows:

bl address< el

file address —address+fl-bl
otherwise

b2 address < e2

file address = address + f2-b2,
otherwise, the requested address is not legal. In some
cases (e.g., for programs with separated I and D space)
the two segments for a file may overlap.
The initial setting of both mappings is suitable for
normal a .out and core files. If either file is not of the
kind expected then, for that file, bl is set to 0, el is set
to the maximum file size, and f l is set to 0; in this way
the whole file can be examined with no address
translation.
In order for sdb to be used on large files, all appropriate
values are kept as signed 32-bit integers.

Commands
The commands for examining data in the program are:
t Print a stack trace of the terminated or halted

program.
T Print the top line of the stack trace.
variable / elm

Print the value of variable according to length I
and format m. A numeric count c indicates that a
region of memory, beginning at the address implied
by variable, is to be displayed. The length
specifiers are:

b one byte
h
1

Legal values for m are:
c character
d decimal
u decimal, unsigned

S D B (1)

0 octal
x hexadecimal
f 32-bit single precision floating

point
g 64-bit double precision floating

point
s Assume variable is a string pointer

and print characters starting at the
address pointed to by the variable.

a Print characters starting at the
variable's address. This format
may not be used with register
variables.

p pointer to procedure
1 disassemble machine-language

instruction with addresses printed
numerically and symbolically.

I disassemble machine-language
instruction with addresses just
printed numerically.

The length specifiers are only effective with the
formats c, d, u, o and x. Any of the specifiers, c,
/, and m, may be omitted. If all are omitted, sdb
choses a length and a format suitable for the
variable's type as declared in the program. If m is
specified, then this format is used for displaying
the variable. A length specifier determines the
output length of the value to be displayed,
sometimes resulting in truncation. A count
specifier c tells sdb to display that many units of
memory, beginning at the address of variable. The
number of bytes in one such unit of memory is
determined by the length specifier /, or if no length
is given, by the size associated with the variable. If
a count specifier is used for the s or a command,
then that many characters are printed. Otherwise
successive characters are printed until either a null
byte is reached or 128 characters are printed. The
last variable may be redisplayed with the command

The s/»(l) metacharacters * and T may be used
within procedure and variable names, providing a
limited form of pattern matching. If no procedure
name is given, variables local to the current
procedure and global variables are matched; if a
procedure name is specified then only variables
local to that procedure are matched. To match
only global variables, the form ;pattern is used.

S D B (l)

linenumberllm
variableXlm

Print the value at the address from a .out or I
space given by linenumber or variable (procedure
name), according to the format Im. The default
format is 'i'.

variable=im
linenumber=lm
number=lm

Print the address of variable or linenumber, or the
value of number, in the format specified by Im. If
no format is given, then lx is used. The last
variant of this command provides a convenient way
to convert between decimal, octal and hexadecimal.

vafiuble'valut
Set variable to the given value. The value may be
a number, a character constant or a variable. The
value must be well defined; expressions which
produce more than one value, such as structures,
are not allowed. Character constants are denoted
'character. Numbers are viewed as integers unless
a decimal point or exponent is used. In this case,
they are treated as having the type double.
Registers are viewed as integers. The variable may
be an expression which indicates more than one
variable, such as an array or structure name. If
the address of a variable is given, it is regarded as
the address of a variable of type int. C
conventions are used in any type conversions
necessary to perform the indicated assignment.

f Print the 68881 floating-point registers.
x Print the machine registers and the current

machine-language instruction.
X Print the current machine-language instruction.
The commands for examining source files are:
e procedure
e file-name
e directory/
e directory file-name

The first two forms set the current file to the file
containing procedure or to file-name. The current
line is set to the first line in the named procedure
or file. Source files are assumed to be in directory.
The default is the current working directory. The
latter two forms change the value of directory. If
no procedure, file name, or directory is given, the

- 5 -

S D B (1)

current procedure name and file name are reported.
/regular expression /

Search forward from the current line for a line
containing a string matching regular expression as
in ed{l). The trailing / may be omitted.

?regular expression?
Search backward from the current line for a line
containing a string matching regular expression as
in ed(l). The trailing ? may be deleted.

p Print the current line.
z Print the current line followed by the next 9 lines.

Set the current line to the last line printed.
w Window. Print the 10 lines around the current

i : _ -l i n e .

number
Set the current line to the given line number.
Print the new current line.

count+
Advance the current line by count lines. Print the
new current line.

count-
Retreat the current line by count lines. Print the
new current line.

The commands for controlling the execution of the
source program are:
count r args
count R

Run the program with the given arguments. The r
command with no arguments reuses the previous
arguments to the program while the R command
runs the program with no arguments. An
argument beginning with < or > causes
redirection for the standard input or output,
respectively. If count is given, it specifies the
number of breakpoints to be ignored.

linenumber c count
linenumber C count

Continue after a breakpoint or interrupt. If count
is given, it specifies the breakpoint at which to
stop after ignoring count - 1 breakpoints. C
continues with the signal which caused the
program to stop reactivated and c ignores it. If a
line number is specified, a temporary breakpoint is
placed at the line and execution is continued. This

S D B (l)

temporary breakpoint is deleted when the
command finishes.

linenumber g count
Continue after a breakpoint with execution
resumed at the given line. If count is given, it
specifies the number of breakpoints to be ignored.

s count
S count

Single step the program through count lines. If no
count is given then the program is run for one line.
S is equivalent to s except it steps through
procedure calls.

i
I Single step by one machine-language instruction. I

steps with the signal which caused the program to
stop reactivated and i ignores it.

variable$m count
addressrm count

Single step (as with s) until the specified location is
modified with a new value. If count is omitted, it
is effectively infinity. Variable must be accessible
from the current procedure. Since this command is
done by software, it can be very slow.

level v
Toggle verbose mode, for use when single stepping
with S, s or m. If level is omitted, then just the
current source file and/or subroutine name is
printed when either changes. If level is 1 or
greater, each C source line is printed before it is
executed; if level is 2 or greater, each assembler
statement is also printed. A v turns verbose mode
off if it is on for any level.

k Kill the program being debugged.
procedurefargl ,arg2,...)
procedure(argl,arg2,...)/m

Execute the named procedure with the given
arguments. Arguments can be integer, character or
string constants or names of variables accessible
from the current procedure. The second form
causes the value returned by the procedure to be
printed according to format m. If no format is
given, it defaults to d.

linenumber b commands
Set a breakpoint at the given line. If a procedure
name without a line number is given (e.g.,
"proc:"), a breakpoint is placed at the first line in

- 7 -

S D B (l)

the procedure even if it was not compiled with the
—g option. If no linenumber is given, a breakpoint
is placed at the current line. If no commands are
given, execution stops just before the breakpoint
and control is returned to sdb. Otherwise the
commands are executed when the breakpoint is
encountered and execution continues. Multiple
commands are specified by separating them with
semicolons. If k is used as a command to execute
at a breakpoint, control returns to sdb, instead of
continuing execution.

B Print a list of the currently active breakpoints.
linenumber d

Delete a breakpoint at the given line. If no
Unenumber is given then the breakpoints are
deleted interactively. Each breakpoint location is
printed and a line is read from the standard input.
If the line begins with a y or d then the breakpoint
is deleted.

D Delete all breakpoints.
I Print the last executed line.
linenumber a

Announce. If linenumber is of the form
proanumber, the command effectively does a
linenumber b 1. If linenumber is of the form proa,
the command effectively does a proa b T.

Miscellaneous commands:
!command

The command is interpreted by sh{ 1).
new-line

Perform the previous command again.
control-D

Scroll. Print the next 10 lines of instructions,
source or data depending on which was printed
last.

< filename
Read commands from filename until the end of file
is reached, and then continue to accept commands
from standard input. When sdb is told to display a
variable by a command in such a file, the variable
name is displayed along with the value. This
command may not be nested; < may not appear
as a command in a file.

SDB(1)

M Print the address maps.
M [?/][*] b e f

Record new values for the address map. The
arguments ? and / specify the text and da ta maps,
respectively. The first segment, (bl, el, f l) , is
changed unless * is specified, in which case the
second segment (bl, el, f l) , of the mapping is
changed. If fewer than three values are given, the
remaining map parameters are left unchanged.

" string
Print the given string. The C escape sequences of
the form \charaeter are recognized, where
character is a nonnumeric character.

q Exit the debugger.
The following commands also exist and are intended only
for debugging the debugger:
V Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output.
Sdb may be instructed to monitor a given memory
location and stop the program when the value at that
location changes in any given way. For example:

> if x < = 123 The above example instructs sdb
to monitor the value at location x. When the

user gives the command to continue (c), sdb
checks the value of x at every source line
executed and stops the program if the given
condition becomes true. Note that use of this
construct slows the real-time execution of a
program.

The syntax of the 1/command is as follows:
if Shows a list of the current data breakpoints;

assigns a number to each.
if var Monitors the value of var and stops the program

if the value changes. A variable name may be
used for var, as well as a constant address.
Comparisons are done as either 4-byte signed or
4-byte unsigned, depending on the data type.
To perform a 1-byte or 2-byte comparison, an
optional length value may accompany var. An
example of a 2-byte comparison is

if x,2 = Oxff
if var rel value

Compares the value of var to the constant given

- 9 -

S D B (l)

and stops the program if the condition is true.
The values of rel may be = , = = , < , < = ,
> , > = , or ! = .

off n Disables or turns off a data breakpoint without
removing it from the list.

o n n Enables a breakpoint that was turned off,
o u t n Removes a breakpoint from the list.
Conditional breakpoints are used in a manner similar to
data breakpoints, except that the user specifies a place in
the program at which sdb should stop to check the data
values. For example,

mysub:99 b if xyz = 123
The above example instructs sdb to check the value of
xyz every time the program arrives at line 99 of
subroutine mysub. If the condition is true, then
execution stops there, as with a normal breakpoint. This
type of breakpoint does not monitor the value xyz at
every line of code, as the data breakpoint does.

FILES
a.out
core

SEE ALSO
cc(l), sh(l).
a.out(4), core(4).

WARNINGS
When sdb prints the value of an external variable for
which there is no debugging information, a warning is
printed before the value. The value is assumed to be i n t
(integer).
Data which are stored in text sections are
indistinguishable from functions.
Line number information in optimized functions is
unreliable, and some information may be missing.

BUGS
If a procedure is called when the program is not stopped
at a breakpoint (such as when a core image is being
debugged), all variables are initialized before the
procedure is started. This makes it impossible to use a
procedure which formats data from a core image.
When setting a breakpoint at a procedure, sdb will
inconsistently produce the incorrect line number. This
seems to occur when the object file is newer than the
source file. Recompiling the source program will correct
this problem.

- 10 -

S D I F F (1)

NAME
sdiff - side-by-side difference program

SYNOPSIS
sdiff [options ...] filel file2

DESCRIPTION
Sdiff uses the output of d i f f (l) to produce a side-by-side
listing of two files indicating those lines that are
different. Each line of the two files is printed with a
blank gutter between them if the lines are identical, a <
in the gutter if the line only exists in filel, a > in the
gutter if the line only exists in fileS, and a | for lines
that are different.
For example:

V i i
a
b <
c <
d

>
d
c

The following options exist:
—w n Use the next argument, n, as the width of

the output line. The default line length is
130 characters.

—1 Only print the left side of any lines that are
identical.

—s Do not print identical lines.
—o output Use the next argument, output, as the name

of a third file that is created as a user-
controlled merging of filel and fileS.
Identical lines of filel and fileS are copied
to output. Sets of differences, as produced
by diff(1), are printed; where a set of
differences share a common gutter character.
After printing each set of differences, sdiff
prompts the user with a % and waits for
one of the following user-typed commands:

1 append the left column to
the output file

r append the right column to
the output file

s turn on silent mode; do not
print identical lines

- 1 -

SDIFF (1)

v turn off silent mode
e 1 call the editor with the left

column
e r call the editor with the

right column
e b call the editor with the

concatenation of left and
right

e call the editor with a zero
length file

q exit from the program

On exit from the editor, the resulting file is
concatenated on the end of the output file.

SEE ALSO
diff(l), ed(l).

- 2 -

SED(1)

NAME
sed - stream editor

SYNOPSIS
sed [—n] [—e script] [—f sfile] [files]

DESCRIPTION
Sed copies the named files (standard input default) to
the standard output, edited according to a script of
commands. The —f option causes the script to be taken
from file sfile; these options accumulate. If there is just
one —e option and no —f options, the flag —e may be
omitted. The —n option suppresses the default output.
A script consists of editing commands, one per line, of
the following form:

[address [, address]] function [arguments]
In normal operation, sed cyclically copies a line of input
into a pattern space (unless there is something left after
a D command), applies in sequence all commands whose
addresses select that pattern space, and at the end of
the script copies the pattern space to the standard
output (except under — n) and deletes the pattern space.
Some of the commands use a hold space to save all or
part of the pattern space for subsequent retrieval.
An address is either a decimal number tha t counts input
lines cumulatively across files, a $ that addresses the last
line of input, or a context address, i.e., a /regular
expression/ in the style of erf(l) modified thus:

In a context address, the construction \?regular
expression?, where ? is any character,
is identical to /regular expression/.
MqJo that in the context address
\ x a b c \ x d e f x , the second x stands for
itself, so that the regular expression is
abcxdef.

The escape sequence \ n matches a new-line
embedded in the pattern space.

A period . matches any character except the
terminal new-line of the pattern space.

A command line with no addresses selects every
pattern space.

A command line with one address selects each
pattern space that matches the address.

A command line with two addresses selects the
inclusive range from the first pattern
space that matches the first address
through the next pattern space that
matches the second. (If the second

- 1 -

S E D (1)

address is a number less than or equal to
the line number first selected, only one
line is selected.) Thereafter the process
is repeated, looking again for the first
address.

Editing commands can be applied only to non-selected
pattern spaces by use of the negation function ! (below).
In the following list of functions the maximum number
of permissible addresses for each function is indicated in
parentheses.
The text argument consists of one or more lines, all but
the last of which end with \ to hide the new-line.
Backslashes in text are treated like backslashes in the
replacement string of an s command, and may be used
to protect initial blanks and tabs against the stripping
that is done on every script line. The rfile or wfile
argument must terminate the command line and must be
preceded by exactly one blank. Each wfile is created
before processing begins. There can be at most 10
distinct wfile arguments.

(1) a \
text Append. Place text on the output before

reading the next input line.
(2) b label Branch to the : command bearing the label.

If label is empty, branch to the end of the
script.

(2) c \
text Change. Delete the pattern space. With 0 or

1 address or at the end of a 2-address range,
place text on the output. Start the next
cycle.

(2) d Delete the pattern space. Start the next
cycle.

(2) D Delete the initial segment of the pattern
space through the first new-line. Start the
next cycle.

(2) g Replace the contents of the pattern space by
the contents of the hold space.

(2) G Append the contents of the hold space to the
pattern space.

(2) h Replace the contents of the hold space by the
contents of the pattern space.

(2) H Append the contents of the pattern space to
the hold space.

(1) i \
text Insert. Place text on the standard output.

SED(1)

(2) 1 List the pattern space on the standard output
in an unambiguous form. Non-printing
characters are spelled in two-digit ASCII and
long lines are folded.

(2) n Copy the pattern space to the standard
output. Replace the pattern space with the
next line of input.

(2) N Append the next line of input to the pattern
space with an embedded new-line. (The
current line number changes.)

(2) p Print. Copy the pattern space to the
standard output.

(2) P Copy the initial segment of the pat tern space
through the first new-line to the standard
output.

(1) q Quit. Branch to the end of the script. Do
not start a new cycle.

(2) r rfile Read the contents of rfile. Place them on
the output before reading the next input line.

(2) s/regular expression/replacement/flags
Substitute the replacement string for
instances of the regular expression in the
pattern space. Any character may be used
instead of / . For a fuller description see
ed(1). Flags is zero or more of:

n n = 1 - 512. Substitute for
just the nth occurrence of
the regular expression.

g Global. Substitute for all
nonoverlapping instances of
the regular expression rather
than just the first one.

p Print the pattern space if a
replacement was made,

w wfile Write. Append the pattern
space to wfile if a
replacement was made.

(2) t label Test. Branch to the : command bearing the
label if any substitutions have been made
since the most recent reading of an input line
or execution of a t . If label is empty, branch
to the end of the script.

(2) w wfile
Write. Append the pattern space to wfile.

(2) x Exchange the contents of the pattern and
hold spaces.

(2) y / string 1 / stringS /
Transform. Replace all occurrences of
characters in stringl with the corresponding

- 3 -

SED(1)

character in stringS. The lengths of string 1
and stringS must be equal.

(2)! function
Don't. Apply the function (or group, if
function is {) only to lines not selected by
the address(es).

(0) s label This command does nothing; it bears a label
for b and t commands to branch to.

(1) = Place the current line number on the
standard output as a line.

(2) { Execute the following commands through a
matching } only when the pattern space is
selected.

(0) # If a # appears as the first character on the
first line of a script file, that entire line is
treated as a comment, with one exception. If
the character after the # is an 'n', then the
default output will be suppressed. The rest
of the line after # n is also ignored. A script
file must contain at least one non-comment
line.

SEE ALSO
awk(l), ed(l), grep(l).
CTIX Programmer's Guide, Section 15.

S E T A D D R (1 N M) (M i n i F r a m e O n l y)

NAME
setaddr - set DARPA Internet address from node name

SYNOPSIS
/ e t c / s e t a d d r

DESCRIPTION
Setaddr sets the DARPA Internet address of the system.
It gets the address by using the node name to find the
local system's entry in / e t c / h o s t s (see hosts (4)). The

1 . 1 1 • . g e j . ^

uld appear in
/ e t c / r c (see brc (IM)) after sctvname and before the
networking servers.

system call.

FILES
/e tc/hosts names and addresses of hosts

SETENET (1NM) (MiniFrame Only)

NAME
setenet - write Ethernet address on disk

SYNOPSIS
/ e t c / s e t e n e t address

DESCRIPTION
Setenet writes an Ethernet Address, specified by its
parameter, into the volume home block of disk 0. It is
run once only before any other Ethernet software. The
Ethernet Address is a 32-bit integer that uniquely
identifies each computer system running Ethernet.
Setenet requires it to be in hexadecimal.
Setenet employs »v(l) to actually modify the volume
home block; this produces some irrelevant information
about the bad block table.

FILES
/dev/fp000 reserved area of disk 0

SEE ALSO
iv(l), fp(7).

SETMNT (IM)

NAME
setmnt - establish mount table

SYNOPSIS
/ e t c / s e t m n t

DESCRIPTION
Setmnt creates the / e t c / m n t t a b table (see mnttab (4)),
which is needed for both the mo«n((lM) and umount
commands. Setmnt reads standard input and creates a
mnttab entry for each line. Input lines have the format:

filesys node
where filesys is the name of the file system's special file
(e.g., dsk/c?d?s?) and node is the root name of that file
system. Thus filesys and node become the first two
strings in the mniiab(4) entry.

FILES
/ e tc /mnt tab

SEE ALSO
devnm(lM), mount(lM), mnttab(4).

BUGS
Evil things will happen if filesys or node are longer than
32 characters.
Setmnt silently enforces an upper limit on the maximum
number of mnttab entries.

SETUNAME (1M)

NAME
setuname - set name of system

SYNOPSIS
/ e t c / s e t u n a m e [—s sysname] [—n nodename
[—r release] [—v version]

DESCRIPTION
Setuname sets the values reported by uname. Option
set the same things that they report in uname.
Only the superuser can execute setuname successfully.

SEE ALSO
uname(l), uname(2).

SH(1)

NAME
sh, rsh - shell, the standard/restricted command
programming language

SYNOPSIS
sh [- ace fh iknrs tuvx] [args]
rsh [- ace fh iknrs tuvx] [args]

DESCRIPTION
Sh is a new version of the shell. It replaces the shell in a
previous version of CTIX. Its new features include:
• Functions: user-defined built-in commands. See

Commands below.
• Remembering both previously used and user-

specified executable files in a hash table. See
Execution and Special Commands (for the hash
command) below.

• New parameters for mail checking and
accounting. See Parameter Substitution below.

Definitions
A blank is a tab or a space. A name is a sequence of
letters, digits, or underscores beginning with a letter or
underscore. A parameter is a name, a digit, or any of
the characters *, # , ?, —, $, and !.

Commands
A simple-command is a sequence of non-blank words
separated by blanks . The first word specifies the name
of the command to be executed. Except as specified
below, the remaining words are passed as arguments to
the invoked command. The command name is passed as
argument 0 (see exee(2)). The value of a simple-
command is its exit status if it terminates normally, or
(octal) 200-{status if it terminates abnormally (see
signal(2) for a list of status values).
A pipeline is a sequence of one or more commands
separated by | (or, for historical compatibility, by *).
The standard output of each command but the last is
connected by a ptpe(2) to the standard input of the next
command. Each command is run as a separate process;
the shell waits for the last command to terminate. The
exit status of a pipeline is the exit status of the last
command.
A list is a sequence of one or more pipelines separated by

&, &&, or | | , and optionally terminated by ; or &.
Of these four symbols, ; and & have equal precedence,
which is lower than that of &.&. and | | . The symbols
&& and | | also have equal precedence. A semicolon (;)

- 1 -

SH(1)

causes sequential execution of the preceding pipeline; an
ampersand (&) causes asynchronous execution of the
preceding pipeline (i.e., the shell does not wait for that
pipeline to finish). The symbol & & (| |) causes the list
following it to be executed only if the preceding pipeline
returns a zero (non-zero) exit status. An arbitrary
number of new-lines may appear in a list, instead of
semicolons, to delimit commands.
A command is either a simple-command or one of the
following. Unless otherwise stated, the value returned by
a command is that of the last simple-command executed
in the command.
for name [in word . . .] do list done

Each time a for command is executed, name is
set to the next word taken from the in word list.
If in word . . . is omitted, then the for
command executes the d o list once for each
positional parameter that is set (see Parameter
Substitution below). Execution ends when there
are no more words in the list,

case word in [pattern [| pattern] . . .) list 5;] . . .
esac

A case command executes the list associated
with the first pattern tha t matches word. The
form of the patterns is the same as that used for
file-name generation (see File Name Generation)
except that a slash, a leading dot, or a dot
immediately following a slash need not be
matched explicitly,

if list then list [elif list then list } . . . [else list J fi
The list following if is executed and, if it returns
a zero exit status, the list following the first
then is executed. Otherwise, the list following
elif is executed and, if its value is zero, the list
following the next then is executed. Failing
that , the else list is executed. If no else list or
then list is executed, then the if command
returns a zero exit status,

while list do list done
A while command repeatedly executes the while
list and, if the exit status of the last command
in the list is zero, executes the do list; otherwise
the loop terminates. If no commands in the do
list are executed, then the while command
returns a zero exit status; until may be used in
place of whi le to negate the loop termination
test.

S H (1)

(list)
Execute list in a sub-shell.

{list-,}
list is simply executed.

name () {/»«<;}
Define a function which is referenced by name.
The body of the function is the list of commands
between { and }. Execution of functions is
described below (see Execution).

The following words are only recognized as the first word
of a command and when not quoted:

if then else elif fi case esac for while
until do done { }

Comments
A word beginning with # causes that word and all the
following characters up to a new-line to be ignored.

Command Substitution
The standard output from a command enclosed in a pair
of grave accents (x v) may be used as part or all of a
word; trailing new-lines are removed.

Parameter Substitution
The character $ is used to introduce substitutable
parameters. There are two types of parameters,
positional and keyword. If parameter is a digit, it is a
positional parameter. Positional parameters may be
assigned values by set. Keyword parameters (also
known as variables) may be assigned values by writing:

name = value [name=value] . . .
Pattern-matching is not performed on value. There
cannot be a function and a variable with the same
name .
${parameter}

The value, if any, of the parameter is
substituted. The braces are required only when
parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part
of its name. If parameter is * or all the
positional parameters, starting with $1, are
substituted (separated by spaces). Parameter $0
is set from argument zero when the shell is
invoked.

${parameterx—word}
If parameter is set and is non-null, substitute its
value; otherwise substitute word.

$ {parameter :=word}
If parameter is not set or is null set it to word;

- 3 -

SH(1)

the value of the parameter is substituted.
Positional parameters may not be assigned to in
this way.

$ {parameter il word)
If parameter is set and is non-null, substitute its
value; otherwise, print word and exit from the
shell. If word is omitted, the message
"parameter null or not set" is printed.

$ {parameter:+word}
If parameter is set and is non-null, substitute
word; otherwise substitute nothing.

In the above, word is not evaluated unless it is to be
used as the substituted string, so that , in the following
example, p w d is executed only if d is not set or is null:

echo ${d:~ v pwd v }
If the colon (s) is omitted from the above expressions, the
shell only checks whether parameter is set or not.
The following parameters are automatically set by the
shell:
The number of positional parameters in decimal.
— Flags supplied to the shell on invocation or by

the set command.
? The decimal value returned by the last

synchronously executed command.
$ The process number of this shell.
! The process number of the last background

command invoked.
The following parameters are used by the shell:
HOME The default argument (home directory)

for the cd command.
P A T H The search path for commands (see

Execution below). The user may not
change PATH if executing under rsh.

CDPATH The search path for the cd command.
MAIL If this parameter is set to the name of a

mail file and the MAILPATH
parameter is not set, the shell informs
the user of the arrival of mail in the
specified file.

MAILCHECK This parameter specifies how often (in
seconds) the shell will check for the
arrival of mail in the files specified by
the MAILPATH or MAIL parameters.
The default value is 600 seconds (10
minutes). If set to 0, the shell will
check before each prompt.

SH(1)

A colon (s) separated list of file names.
If this parameter is set, the shell
informs the user of the arrival of mail
in any of the specified files. Each file
name can be followed by % and a
message that will be printed when the
modification time changes. The default
message is you have mail.
Primary prompt string, by default $.
Secondary prompt string, by default > .
Internal field separators, normally
space, tab, and new-line.
If this parameter is set to the name of a
file writable by the user, the shell will
write an accounting record in the file
for each shell procedure executed.
Accounting routines such as acctcom (1)
and acctcms (lM) can be used to
analyze the data collected.
When the shell is invoked, it scans the
environment (see Environment below)
for this name. If it is found and there
is an 'r ' in the file name part of its
value, the shell becomes a restricted
shell.

i n e sneii gives default values to PATH, PS1, PS2,
MAILCHECK and IFS. HOME and MAIL are set by
login(1).

Blank Interpretation
After parameter and command substitution, the results
of substitution are scanned for internal field separator
characters (those found in IFS) and split into distinct
arguments where such characters are found. Explicit
null arguments (" " or ' ') are retained. Implicit null
arguments (those resulting from parameters tha t have no
values) are removed.

File Name Generation
Following substitution, each command word is scanned
for the characters *, T, and [. If one of these characters
appears, the word is regarded as a pattern. The word is
replaced with alphabetically sorted file names that
match the pattern. If no file name is found that matches
the pattern, the word is left unchanged. The character .
at the start of a file name or immediately following a / ,
as well as the character / itself, must be matched
explicitly.

MAIL PATH

PS1
PS2
IFS

SHACCT

SHELL

S H (1)

* Matches any string, including the null
string.

? Matches any single character.
[. . .] Matches any one of the enclosed

characters. A pair of characters
separated by — matches any character
lexically between the pair, inclusive. If
the first character following the opening
[is a !, any character not enclosed is
matched.

Quot ing
The following characters have a special meaning to the
shell and cause termination of a word unless quoted:

; & () | < > new-l ine space t a b
A character may be quoted (i.e., made to stand for itself)
by preceding it with a \ . The pair \new- l ine is ignored.
AJ1 characters enclosed between a pair of single quote
marks (' ') , except a single quote, are quoted. Inside
double quote marks ("") , parameter and command
substitution occurs and \ quotes the characters \ , v ,
and $. "$*" is equivalent to "$1 $2 . . whereas

is equivalent to "$1* »$2"
P rompt ing

When used interactively, the shell prompts with the
value of P S l before reading a command. If at any time
a new-line is typed and further input is needed to
complete a command, the secondary prompt (i.e., the
value of PS2) is issued.

I n p u t / O u t p u t
Before a command is executed, its input and output may
be redirected using a special notation interpreted by the
shell. The following may appear anywhere in a simple-
command or may precede or follow a command and are
not passed on to the invoked command; substitution
occurs before word or digit is used:
< w o r d Use file word as standard input (file

descriptor 0).
> w o r d Use file word as standard output (file

descriptor 1). If the file does not exist, it
is created; otherwise, it is truncated to
zero length.

> > w o r d Use file word as standard output. If the
file exists output is appended to it (by
first seeking to the end-of-file);
otherwise, the file is created.

SH(1)

« [-]word The shell input is read up to a line that
is the same as word, or to an end-of-file.
The resulting document becomes the
standard input. If any character of word
is quoted, no interpretation is placed
upon the characters of the document;
otherwise, parameter and command
substitution occurs, (unescaped) \new-
line is ignored, and \ must be used to
quote the characters \ , $, v , and the first
character of word. If — is appended to
« , all leading tabs are stripped from
word and from the document.

<&dig i t The standard input is duplicated from
file descriptor digit (see rfup(l)).
Similarly for the standard output using

<&— The standard input is closed. Similarly
for the standard output using > .

If any of the above is preceded by a digit, the file
descriptor which will be associated with the file is that
specified by the digit (instead of the default 0 or 1). For
example:

. . . 2 > & 1

associates file descriptor 2 with the file currently
associated with file descriptor 1.
The order in which redirections are specified is
significant. The shell evaluates redirections left-to-right.
For example:

. . . l>xxx 2>&1
first associates file descriptor 1 with file xxx. It
associates file descriptor 2 with the file associated with
file descriptor 1 (i.e. xxx). If the order of redirections
were reversed, file descriptor 2 would be associated with
the terminal (assuming file descriptor 1 had been) and
file descriptor 1 would be associated with file xxx.
If a command is followed by &, the default standard
input for the command is the empty file / d e v / n u l l .
Otherwise, the environment for the execution of a
command contains the file descriptors of the invoking
shell as modified by input/output specifications.
Redirection of output is not allowed in the restricted
shell.

Environment
The environment (see environ(5)) is a list of name-value

- 7 -

S H (1)

pairs that is passed to an executed program in the same
•way as a normal argument list. The shell interacts with
the environment in several ways. On invocation, the
shell scans the environment and creates a parameter for
each name found, giving it the corresponding value. If
the user modifies the value of any of these parameters or
creates new parameters, none of these affects the
environment unless the export command is used to bind
the shell's parameter to the environment (see also se t
—a). A parameter may be removed from the
environment with the unse t command. The
environment seen by any executed command is thus
composed of any unmodified name-value pairs originally
inherited by the shell, minus any pairs removed by
unset, plus any modifications or additions, all of which
must be noted in expor t commands.
The environment for any simple-command may be
augmented by prefixing it with one or more assignments
to parameters. Thus:

TERM=450 cmd
and
(export TERM; TERM=450; cmd)

are equivalent (as far as the execution of cmd is
concerned).
If the — k flag is set, all keyword arguments are placed in
the environment, even if they occur after the command
name. The following first prints a = b c and c:

echo a = b c
set - k
echo a = b c

Signals
The INTERRUPT and QUIT signals for an invoked
command are ignored if the command is followed by &;
otherwise signals have the values inherited by the shell
from its parent, with the exception of signal 11 (but see
also the t rap command below).

Execution
Each time a command is executed, the above
substitutions are carried out. If the command name
matches one of the Special Commands listed below, it is
executed in the shell process. If the command name does
not match a Special Command, but matches the name of
a defined function, the function is executed in the shell
process (note how this differs from the execution of shell
procedures). The positional parameters $1, $2, are
set to the arguments of the function. If the command

SH(1)

name matches neither a Special Command nor the name
of a defined function, a new process is created and an
attempt is made to execute the command via exec(2).
The shell parameter PATH defines the search path for
the directory containing the command. Alternative
directory names are separated by a colon (:). The
default path is s /b ins /usr /b in (specifying the current
directory, /b in , and / u s r / b i n , in that order). Note
that the current directory is specified by a null path
name, which can appear immediately after the equal sign
or between the colon delimiters anywhere else in the
path list. If the command name contains a / the search
path is not used; such commands will not be executed by
the restricted shell. Otherwise, each directory in the
path is searched for an executable file. If the file has
execute permission but is not an a .out file, it is assumed
to be a file containing shell commands. A sub-shell is
spawned to read it. A parenthesized command is also
executed in a sub-shell.
The location in the search path where a command was
found is remembered by the shell (to help avoid
unnecessary execs later). If the command was found in
a relative directory, its location must be re-determined
whenever the current directory changes. The shell
forgets all remembered locations whenever the P A T H
variable is changed or the hash —r command is executed
(see below).

Special Commands
Input/output redirection is now permitted for these
commands. File descriptor 1 is the default output
location.
s No effect; the command does nothing. A zero

exit code is returned.
. file Read and execute commands from file and

return. The search path specified by P A T H is
used to find the directory containing file.

break [n]
Exit from the enclosing for or whi le loop, if
any. If n is specified break n levels,

cont inue [n j
Resume the next iteration of the enclosing for or
while loop. If n is specified, resume at the n-th
enclosing loop,

cd [arg]
Change the current directory to arg. The shell
parameter HOME is the default arg. The shell
parameter CDPATH defines the search path for

SH(1)

the directory containing arg. Alternative
directory names are separated by a colon (:).
The default path is < n u l l > (specifying the
current directory). Note that the current
directory is specified by a null path name, which
can appear immediately after the equal sign or
between the colon delimiters anywhere else in
the path list. If arg begins with a / , the search
path is not used. Otherwise, each directory in
the path is searched for arg. The cd command
may not be executed by rsh.

echo [arg . . .]
Echo arguments. See echo(l) for usage and
description,

eval [arg . . .]
The arguments are read as input to the shell and
the resulting command(s) executed,

exec [arg . . .]
The command specified by the arguments is
executed in place of this shell without creating a
new process. Input /output arguments may
appear and, if no other arguments are given,
cause the shell input /output to be modified,

exit [n]
Causes a shell to exit with the exit status
specified by n. If n is omitted, the exit status is
that of the last command executed (an end-of-
file will also cause the shell to exit.)

export f name . . . }
The given names are marked for automatic
export to the environment of subsequently-
executed commands. If no arguments are given,
a list of ail names that are exported in this shell
is printed. Function names may not be
exported,

hash [— r] [name . . . 1
For each name , the location in the search path
of the command specified by name is determined
and remembered by the shell. The —r option
causes the shell to forget all remembered
locations. If no arguments are given,
information about remembered commands is
presented. Hits is the number of times a
command has been invoked by the shell process.
Cost is a measure of the work required to locate
a command in the search path. There are
certain situations which require that the stored
location of a command be recalculated.
Commands for which this will be done are

- 10 -

SH(1)

indicated by an asterisk (*) adjacent to the hits
information. Cost will be incremented when the
recalculation is done,

n e w g r p j arg . . .]
Equivalent to exec newgrp arg See
newgrp(l) for usage and description,

pwd Print the current working directory. See pwd(1)
for usage and description,

read [name . . . }
One line is read from the standard input and the
first word is assigned to the first name, the
second word to the second name, etc., with
leftover words assigned to the last name. The
return code is 0 unless an end-of-file is
encountered,

readonly [name . . .]
The given names are marked readonly and the
values of the these names may not be changed
by subsequent assignment. If no arguments are
given, a list of all readonly names is printed,

return [n]
Causes a function to exit with the return value
specified by n. If n is omitted, the return status
is that of the last command executed,

set [— a e f h k n t u v x [arg . . .]]
—a Mark variables which are modified or

created for export.
—e Exit immediately if a command exits

with a non-zero exit status.
—f Disable file name generation
—h Locate and remember function

commands as functions are defined
(function commands are normally
located when the function is executed).

—k All keyword arguments are placed in the
environment for a command, not just
those that precede the command name.

—n Read commands but do not execute
them.

—t Exit after reading and executing one
command.

—u Treat unset variables as an error when
substituting,

—v Print shell input lines as they are read,
—x Print commands and their arguments as

they are executed.
— Do not change any of the flags; useful in

setting $1 to —.

- 11 -

SH(1)

Using + rather than - causes these flags to be
turned off. These flags can also be used upon
invocation of the shell. The current set of flags
may be found in $—. The remaining arguments
are positional parameters and are assigned, in
order, to $1, $2, If no arguments are
given, the values of all names are printed,

shif t [n]
The positional parameters from $ n + l . . . are
renamed $1 If n is not given, it is assumed
to be 1.

t e s t
Evaluate conditional expressions. See test(1) for
usage and description.

t imes
Print the accumulated user and system times for
processes run from the shell,

t rap [arg] [n] . . .
The command arg is to be read and executed
when the shell receives signal(s) n. (Note that
arg is scanned once when the trap is set and
once when the trap is taken.) Trap commands
are executed in order of signal number. Any
at tempt to set a trap on a signal that was
ignored on entry to the current shell is
ineffective. An at tempt to trap on signal 11
(memory fault) produces an error. If arg is
absent, all trap(s) n are reset to their original
values. If arg is the null string, this signal is
ignored by the shell and by the commands it
invokes. If n is 0, the command arg is executed
on exit from the shell. The t r a p command with
no arguments prints a list of commands
associated with each signal number,

t y p e [name . . .]
For each name, indicate how it would be
interpreted if used as a command name,

u l imi t [- f] [n j
imposes a size limit of n
—f imposes a size limit of n blocks on files

written by child processes (files of any
size may be read). With no argument,
the current limit is printed.

If no option is given, —f is assumed,
umask [nnn]

The user file-creation mask is set to nnn (see
umask(2)). If nnn is omitted, the current value
of the mask is printed.

- 12 -

SH(1)

u n s e t [name . . .]
For each name, remove the corresponding
variable or function. The variables PATH, PS1,
PS2, MAILCHECK and IFS cannot be unset,

wait [n]
Wait for the specified process and report its
termination status. If n is not given, all
currently active child processes are waited for
and the return code is zero.

Invocation
If the shell is invoked through exec (2) and the first
character of argument zero is —, commands are initially
read from / e t c / p r o f i l e and from $HOME/.profile, if
such files exist. Thereafter, commands are read as
described below, which is also the case when the shell is
invoked as / b i n / s h . The flags below are interpreted by
the shell on invocation only. Note that unless the —c or
—s flag is specified, the first argument is assumed to be
the name of a file containing commands, and the
remaining arguments are passed as positional parameters
to that command file:
—c string If the —c flag is present, commands are read

from string.
—s If the — s flag is present or if no arguments

remain, commands are read from the
standard input. Any remaining arguments
specify the positional parameters. Shell
output (except for Special Commands) is
written to file descriptor 2.

—i If the — i flag is present or if the shell input
and output are attached to a terminal, this
shell is interactive. In this case TERMINATE
is ignored (so that kill 0 does not kill an
interactive shell) and INTERRUPT is caught
and ignored (so that wa i t is interruptible).
In all cases, QUIT is ignored by the shell.

—r If the —r flag is present the shell is a
restricted shell.

The remaining flags and arguments are described under
the set command above.

Rsh Only
Rsh is used to set up login names and execution
environments whose capabilities are more controlled than
those of the standard shell. The actions of rsh are
identical to those of sh, except that the following are
disallowed:

- 13 -

SH(1)

changing directory (see crf(l)),
setting the value of $PATH,
specifying path or command names containing / ,
redirecting output (> and > >) •

The restrictions above are enforced after .profile is
interpreted.
When a command to be executed is found to be a shell
procedure, rsh invokes sh to execute it. Thus, it is
possible to provide to the end-user shell procedures that
have access to the full power of the standard shell, while
imposing a limited menu of commands; this scheme
assumes that the end-user does not have write and
execute permissions in the same directory.
The net effect of these rules is tha t the writer of the
.profile has complete control over user actions, by
performing guaranteed setup actions and leaving the user

propriate directory (probably not the login

The system administrator often sets up a directory of
commands (i.e., / u s r / r b i n) that can be safely invoked
by rsh. Some systems also provide a restricted editor
red.

Errors detected by the shell, such as syntax errors, cause
the shell to return a non-zero exit status. If the shell is
being used non-interactively execution of the shell file is
abandoned. Otherwise, the shell returns the exit status
of the last command executed (see also the exit
command above).

/etc/profile
$HOME/.profile
/ tmp / sn*
/dev/nul l

SEE ALSO
acctcom(l), acctcms(lM), cd(l), csh(l), echo(l), env(l)
expr(l), login(l), newgrp(l), pwd(l), testfl) , umaskfl)
dup(2), exec(2L fork(2), pipe(2), signal(2), ulimit(2)
umask(2), wait(2), a.out(4), profile(4), environ(5).

If the first character in an executable file is csh
assumes that the file is a csh script. For compatibility
with csh, it is recommended that sh scripts begin with a
blank line.

EXIT STATUS

FILES

NOTE

- 14 -

S H (1)

WARNINGS
If a command is executed, and a command with the
same name is installed in a directory in the search path
before the directory where the original command was
found, the shell will continue to exec the original
command. Use the hash command to correct this
situation.
If you move the current directory or one above it, pwd
may not give the correct response. Use the cd command
with a full path name to correct this situation.

- 15 -

SHL(1)

NAME
shl - shell layer manager

SYNOPSIS
shl

DESCRIPTION
Shl allows a user to interact with more than one shell
from a single terminal. The user controls these shells,
known as layers , using the commands described below.
The current layer is the layer which can receive input
from the keyboard. Other layers attempting to read
from the keyboard are blocked. Output from multiple
layers is multiplexed onto the terminal. To have the
output of a layer blocked when it is not current, the stty
option loblk may be set within the layer.
The stty character swtch (set to ~Z if NUL) is used to
switch control to shl from a layer. Shl has its own
prompt, » > , to help distinguish it from a layer.
A layer is a shell which has been bound to a virtual t ty
device (/dev/sxt???). The virtual device can be
manipulated like a real t ty device using stty (1) and
ioctl (2). Each layer has its own process group id.

Defini t ions
A name is a sequence of characters delimited by a blank,
tab or new-line. Only the first eight characters are
significant. The names (l) through (7) cannot be used
when creating a layer. They are used by shl when no
name is supplied. They may be abbreviated to just the
digit.

Commands
The following commands may be issued from the shl
prompt level. Any unique prefix is accepted.
create [name]

Create a layer called name and make it the
current layer. If no argument is given, a layer
will be created with a name of the form (#)
where # is the last digit of the virtual device
bound to the layer. The shell prompt variable
P S l is set to the name of the layer followed by a
space. A maximum of seven layers can be
created,

block name [name ...]
For each name, block the output of the
corresponding layer when it is not the current
layer. This is equivalent to setting the stty
option —loblk within the layer.

SHL(l)

delete name [name . . .]
For each name, delete the corresponding layer.
All processes in the process group of the layer
are sent the SIGHUP signal (see signal(2)).

help (or ?)
Print the syntax of the ehl commands,

l a y e r s [— 1] [name , .]
For each name, list the layer name and its
process group. The —1 option produces a p«(l)-
like listing. If no arguments are given,
information is presented for all existing layers,

resume [name]
Make the layer referenced by name the current
layer. If no argument is given, the last existing
current layer will be resumed,

t ogg le Resume the layer that was current before the
last current layer,

unblock name [name ... }
For each name, do not block the output of the
corresponding layer when it is not the current
layer. This is equivalent to setting the stty
option — loblk within the layer,

quit Exit shl. All layers are sent the SIGHUP signal.
name Make the layer referenced by name the current

layer.
FILES

/dev/sxt/??? Virtual t ty devices
$SHELL Variable containing path name of

the shell to use (default is / b i n / s h) .
/etc/drvload

SEE ALSO
sh(l), stty(l) , ioctl(2), signal(2), sxt(7).
MightyFrame Administrator's Reference Manual.

NOTE
The sxt driver must be loaded before shl can be used.

SHUTDOWN (1 M)

NAME
shutdown, halt - terminate all processing

SYNOPSIS
/ e t c / s h u t d o w n [grace]
/ e t c / h a l t

DESCRIPTION
Shutdown shuts down CTIX in an orderly manner. It
cautiously terminates all currently running processes.
The procedure is designed to interact with the operator
(i.e., the person who invoked shutdown). Shutdown may
instruct the operator to perform some specific tasks, or
to supply certain responses before execution can resume.
Shutdown goes through the following steps:

All users logged on the system are notified to log off
the system by a broadcasted message. The operator
may display his/her own message at this t ime.
Otherwise, the standard file save message is
displayed. User's are given grace seconds (default
60). to log out on their own.
If the operator wishes to run the file-save procedure,
shutdown unmounts all file systems.
All file systems' super blocks are updated before the
system is to be stopped (see sync(l)) . This must be
done before re-booting the system, to insure file
system integrity.

Halt shuts down CTIX in a safe bu t abrupt way. It is
meant for small installations where verbal warnings are
faster than terminal messages.

DIAGNOSTICS
The most common error diagnostic tha t will occur is
device busy. This diagnostic happens when a particular
file system could not be unmounted.

SEE ALSO
mount(lM), sync(l), update(lM).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

SIZE(l)

NAME
size - print section sizes of common object files

SYNOPSIS
size [—o] [—x] [—V] files

DESCRIPTION
The size command produces section size information for
each section in the common object files. The size of the
text, da ta and bss (uninitialized data) sections are
printed along with the total size of the object file. If an
archive file is input to the size command the information
for all archive members is displayed.
Numbers will be printed in decimal unless either the - o
or the —x option is used, in which case they will be
printed in octal or in hexadecimal, respectively.
The —V flag will supply the version information on the
size command.

SEE ALSO
as(l), cc(l), ld(l), a.out(4), ar(4).

DIAGNOSTICS
size: name: cannot open

if name cannot be read.
size: name: bad magic

if name is not an appropriate
common object file.

SLATTACH (1NM)

NAME
slattach, sldetach - attach and detach serial lines as
network interfaces

S Y N O P S I S
/ e t c / s l a t t a c h devname source destination
[baudrate]
/ e t c / s l d e t a c h interfac e-name

D E S C R I P T I O N
Slattach is used to assign a serial (tty) line to a network
interface using the DARPA Internet Protocol, and to
define the source and destination network addresses.
The devname parameter is the name of the device the
serial line is attached to, e.g., /dev/ttyOOl. The source
and destination are either host names present in the host
name data base (see Ao«<«(4)), or DARPA Internet
addresses expressed in the Internet standard "dot
notation". The optional baudrate parameter is used to
set the speed of the connection; if not specified, the
default of 9600 is used.
Only the superuser may attach or detach a network
interface.
Sldetach is used to remove the serial line that is being
used for IP from the network tables and allow it to be
used as a normal terminal again. Interface-name is the
name that is shown by nef«(af(lN); in general, an
interface on ttyOara: will be referred to as slxz.

E X A M P L E S
/etc/slattach ttyOOl tom-src genstar
/etc/slattach /dev/ttyOOl hugo dahl 4800
/etc/sldetach slOl

F I L E S
/etc/hosts, /dev/*

D I A G N O S T I C S
Various messages indicating:
- the specified interface does not exist
- the requested address is unknown
- the user is not the superuser

SEE A L S O
hosts(4), netstat(lN), ifconfig(lNM).

SLEEP(1)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
Sleep suspends execution for time seconds. It is used to
execute a command after a certain amount of time, as
in:

(sleep 105; command)&
or to execute a command every so often, as in:

while true
do

command
sleep 37

done
SEE ALSO

alarm(2), sleep(3C).
BUGS

Time must be less than 2,147,483,647 seconds.

S O R T (l)

—ykmemj f—zrecszl
" [files]

NAME
sort - sort and/or merge files

SYNOPSIS
sort [—emu] j—ooutput]
[-df iMnr] [-btx] [+posl [~pos2

DESCRIPTION
Sort sorts lines of all the named files together and writes
the result on the standard output. The standard input is
read if — is used as a file name or no input files are
named.
Comparisons are based on one or more sort keys
extracted from each line of input. By default, there is
one sort key, the entire input line, and ordering is
lexicographic by bytes in machine collating sequence.
The following options alter the default behavior:
- c Check that the input file is sorted according to the

ordering rules; give no output unless the file is out
of sort.

- m Merge only, the input files are already sorted.
—u Unique: suppress all but one in each set of lines

having equal keys.
—o output

The argument given is the name of an output file
to use instead of the standard output. This file
may be the same as one of the inputs. There may
be optional blanks between - o and output.

—ykmem
The amount of main memory used by the sort has
a large impact on its performance. Sorting a small
file in a large amount of memory is a waste. If this
option is omitted, sort begins using a system
default memory size, and continues to use more
space as needed. If this option is presented with a
value, kmem, sort will start using that number of
kilobytes of memory, unless the administrative
minimum or maximum is violated, in which case
the corresponding extremum will be used. Thus,
—yO is guaranteed to start with minimum memory.
By convention, —y (with no argument) starts with
maximum memory.

—zrecsz
The size of the longest line read is recorded in the
sort phase so buffers can be allocated during the
merge phase. If the sort phase is omitted via the
—c or —m options, a popular system default size

- 1 -

S O R T (1)

will be used. Lines longer than the buffer size will
cause sort to terminate abnormally. Supplying the
actual number of bytes in the longest line to be
merged (or some larger value) will prevent
abnormal termination.

The following options override the default ordering rules.
- d "Dictionary" order: only letters, digits and blanks

(spaces and tabs) are significant in comparisons.
—f Fold lower case letters into upper case.
- i Ignore characters outside the ASCII range 040-0176

in non-numeric comparisons.
- M Compare as months. The first three non-blank

characters of the field are folded to upper case and
compared so that "JAN" < "FEB" < . . . <
"DEC". Invalid fields compare low to "JAN". The
—M option implies the —b option (see below).

- n An initial numeric string, consisting of optional
blanks, optional minus sign, and zero or more
digits with optional decimal point, is sorted by
arithmetic value. The —n option implies the —b
option (see below). Note that the —b option is
only effective when restricted sort key
specifications are in effect.

- r Reverse the sense of comparisons.
When ordering options appear before restricted sort key
specifications, the requested ordering rules are applied
globally to all sort keys. When attached to a specific
sort key (described below), the specified ordering options
override all global ordering options for that key.
The notation +posl — pos2 restricts a sort key to one
beginning at posl and ending at pos2. The characters at
positions posl and pos2 are included in the sort key
(provided that pos2 does not precede posl). A missing
—pos2 means the end of the line.
Specifying posl and pos2 involves the notion of a field, a
minimal sequence of characters followed by a field
separator or a new-line. By default, the first blank
(space or tab) of a sequence of blanks acts as the field
separator. AJ1 blanks in a sequence of blanks are
considered to be part of the next field; for example, all
blanks at the beginning of a line are considered to be
part of the first field. The treatment of field separators
can be altered using the options:

S O R T (1)

—tz Use x as the field separator character; x is not
considered to be part of a field (although it may be
included in a sort key). Each occurrence of x is
significant (e.g., xx delimits an empty field).

—b Ignore leading blanks when determining the
starting and ending positions of a restricted sort
key. If the —b option is specified before the first
-\-posl argument, it will be applied to all -\-posl
arguments. Otherwise, the b flag may be attached
independently to each +posl or —pos2 argument
(see below).

Posl and po»2 each have the form m.n optionally
followed by one or more of the flags bdfinr. A starting
position specified by + m.n is interpreted to mean the

+1st character in the m + l s t field. A missing .n means
.0, indicating the first character of the m + l s t field, ff
the b flag is in effect n is counted from the first non-
blank in the m + ls t field; + m . 0 b refers to the first
non-blank character in the m + lst field.
A last position specified by — m.n is interpreted to mean
the n th character (including separators) after the last
character of the m th field. A missing .n means .0,
indicating the last character of the mth field. If the b
flag is in effect n is counted from the last leading blank
in the m + l s t field; —m.lb refers to the first non-blank
in the m + l s t field.
When there are multiple sort keys, later keys are
compared only after all earlier keys compare equal.
Lines that otherwise compare equal are ordered with all
bytes significant.

EXAMPLES
Sort the contents of in file with the second field as the
sort key:

sort + 1 - 2 infile
Sort, in reverse order, the contents of infilel and infile2,
placing the output in outfile and using the first character
of the second field as the sort key:

sort - r - o outfile +1.0 - 1 . 2 infilel infile2
Sort, in reverse order, the contents of infilel and infile2
using the first non-blank character of the second field as
the sort key:

sort - r + 1.0b -1 .1b infilel infile2
Print the password file (passwd(4)) sorted by the
numeric user ID (the third colon-separated field):

S O R T (1)

sort - t : +2n - 3 /etc/passwd
Print the lines of the already sorted file infile,
suppressing all but the first occurrence of lines having
the same third field (the options —um with just one
input file make the choice of a unique representative
from a set of equal lines predictable):

sort - u m + 2 - 3 infile
FILES

/usr/tmp/stm???
SEE ALSO

comm(l), join(l), uniq(l).
DIAGNOSTICS

Comments and exits with non-zero status for various
trouble conditions (e.g., when input lines are too long),
and for disorder discovered under the —c option. When
the last line of an input file is missing a new-line
character, sort appends one, prints a warning message,
and continues.

S P E L L (1)

NAME
spell, hashmake, spellin, hashcheck - find spelling errors

SYNOPSIS
spell [- v] [- b] [- x] [-1] [- i]
[+local_file] [files]
/ u s r / l i b / s p e l l / h a s h m a k e
/usr / l ib / spe l l / spe l l in n
/ u s r / l i b / s p e l l / h a s h c h e c k spelling_list

DESCRIPTION
Spell collects words from the named files and looks them
up in a spelling list. Words that neither occur among
nor are derivable (by applying certain inflections,
prefixes, and/or suffixes) from words in the spelling list
are printed on the standard output . If no files are
named, words are collected from the standard input.
Spell ignores most troff(l), tbl(1), and eqn{ 1)
constructions.
Under the —v option, all words not literally in the
spelling list are printed, and plausible derivations from
the words in the spelling list are indicated.
Under the —b option, British spelling is checked. Besides
preferring centre, colour, programme, speciality,
travelled, etc., this option insists upon -ise in words like
standardise, Fowler and the OED to the contrary
notwithstanding.
Under the —x option, every plausible stem is printed
with = for each word.
By default, spell (like deroff(1)) follows chains of
included files (.so and .nx troff(1) requests), unless the
names of such included files begin with / u s r / l i b . Under
the —1 option, spell will follow the chains of all included
files. Under the - i option, spell will ignore all chains of
included files.
Under the -{-local_file option, words found in local_Jile
are removed from spell's output. Local_file is the name
of a user-provided file that contains a sorted list of
words, one per line. With this option, the user can
specify a set of words that are correct spellings (in
addition to spell's own spelling list) for each job.
The spelling list is based on many sources, and while
more haphazard than an ordinary dictionary, is also
more effective with respect to proper names and popular
technical words. Coverage of the specialized
vocabularies of biology, medicine, and chemistry is light.

- 1 -

S P E L L (1)

Pertinent auxiliary files may be specified by name
arguments, indicated below with their default settings
(see FILES). Copies of all output are accumulated in the
history file. The stop list filters out misspellings (e.g.,
t h i e r= thy -y+ ie r) that would otherwise pass.
Three routines help maintain and check the hash lists
used by speil:
hashmake

spellin n

hashcheck

EXAMPLES
The following example creates the hashed spell list hlist
and checks the result by comparing the two temporary
files; they should be equal.
cat goodwds | /usr/ l ib/spell /hashmake | sort - u > t m p l
cat tmpl | /usr/lib/spell/spellin vcat, tmpl | wc
> hlist
cat hlist | /usr/lib/spell/hashcheck > t m p 2
diff tmp l tmp2

FILES
D_SPELL=/usr/lib/spell/hlist[ab]

S_SPELL=/usr/lib/spell/hstop
H_SPELL=/usr/lib/spell/spellhist
/ usr/lib/spell/spellprog

SEE ALSO
deroff(l), eqn(l), sed(l), sort(l), tbl(l), tee(l), troff(l).

BUGS
The spelling list's coverage is uneven; new installations
will probably wish to monitor the output for several
months to gather local additions; typically, these are
kept in a separate local file that is added to the hashed
spelling_list via spellin.
The British spelling feature was done by an American.

Reads a list of words from the standard
input and writes the corresponding nine-
digit hash code on the standard output.
Reads n sorted hash codes from the
standard input and writes a compressed
spelling list on the standard output.
Information about the hash coding is
printed on standard error.
Reads a compressed spelling_list and
recreates the nine-digit hash codes for all
the words in it; it writes these codes on
the standard output.

hashed spelling
lists, American &
British
hashed stop list
history file
program

SPLINE(IG)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [options]

DESCRIPTION
Spline takes pairs of numbers from the standard input as
abscissas and ordinates of a function. It produces a
similar set, which is approximately equally spaced and
includes the input set, on the standard output. The
cubic spline output (R. W. Hamming, Numerical
Methods for Scientists and Engineers, 2nd ed., pp. 349ff)
has two continuous derivatives, and sufficiently many
points to look smooth when plotted, for example by
^ r f l p ^ (l G) .

The following options are recognized, each as a separate
argument:
—a Supply abscissas automatically (they are missing

from the input); spacing is given by the next
argument, or is assumed to be 1 if next
argument is not a number.

—k The constant k used in the boundary value
computation: r tt i it » , tt

yo = hi , y« = "Vn-i
is set by the next argument (default k = 0).

—n Space output points so that approximately n
intervals occur between the lower and upper x
limits (default n = 100).

—p Make output periodic, i.e., match derivatives at
ends. First and last input values should
normally agree.

—x Next 1 (or 2) arguments are lower (and upper) x
limits. Normally, these limits are calculated
from the data. Automatic abscissas start at
lower limit (default 0).

SEE ALSO
graph(lG).

DIAGNOSTICS
When data is not strictly monotone in ar, spline
reproduces the input without interpolating extra points.

BUGS
A limit of 1,000 input points is enforced silently.

SPLIT (1)

NAME
split - split a file into pieces

SYNOPSIS
split { — n] [file [name]]

DESCRIPTION
Split reads file and writes it in n-line pieces (default 1000
lines) onto a set of output files. The name of the first
output file is name with aa appended, and so on
lexicographically, up to zz (a maximum of 676 files).
Name cannot be longer than 12 characters. If no output
name is given, x is default.
If no input file is given, or if — is given in its stead, then
the standard input file is used.

SEE ALSO
bfs(l), csplit(l).

STAT(1G)

NAME
stat - statistical network useful with graphical
commands

SYNOPSIS
node-name [options] [files]

DESCRIPTION
Stat is a collection of command level functions (nodes)
that can be interconnected using sh(1) to form a
statistical network. The nodes reside in / u s r / b i n / g r a f
(see j/rapAic«(lG)). Data is passed through the network
as sequences of numbers (vectors), where a number is of
the form:

[sign](digits)(.digits)[e[sign]digits]
evaluated in the usual way. Brackets and parentheses
surround fields. All fields are optional, but at least one
of the fields surrounded by parentheses must be present.
Any character input to a node that is not part of a
number is taken as a delimiter.
Stat nodes are divided into four classes.

Transformers, which map input vector
elements into output vector
elements;

Summarizers, which calculate statistics of
a vector;

Translators, which convert among
formats; and

Generators, which are sources of
definable vectors.

Below is a list of synopses for stat nodes. Most nodes
accept options indicated by a leading minus (—). In
general, an option is specified by a character followed by
a value, such as c5. This is interpreted as c : = 5 (c is
assigned 5). The following keys are used to designate
the expected type of the value:

c characters,
» integer,
/ floating point or integer,
file file name, and
string string of characters, surrounded by quotes

to include a Shell argument delimiter.

STAT(IG)

Options without keys are flags. All nodes except
generators accept files as input, hence it is not indicated
in the synopses.
Transformers:

abs [—c»] - absolute value
columns (similarly for - c options that
follow)

af [—ct t v] - arithmetic function
titled output, verbose

ceil [— ct] - round up to next integer
c u s u m [—ct] - cumulative sum
exp [— ct] - exponential
f loor [— ct] - round down to next integer
g a m m a [— ct] - gamma
list [—ct dstring] - list vector elements

delimiter(s)
log [—ct b /] - logarithm

base
m o d [— ct m /] - modulus

modulus
pa i r [— c t 'F / t / ex i] - pair elements

File containing base vector, x group size
power [—ct p /] - raise to a power

power
r o o t [—ct r /] - take a root

root
r o u n d [—ct pt st] - round to nearest integer,

.5 rounds to 1
places after decimal point,
significant digits

siline [—ct if n t s /] - generate a line given
slope and intercept
intercept, number of positive integers,
slope

sin [—ci] - sine
subse t [—a/ b / ct F/t/e it If nl n p p / st t t] -

generate a subset
above, below, File with master vector,
interval, leave, master contains element
numbers to leave, master contains
element numbers to pick, pick, start ,
terminate

- 2 -

STAT(1G)

Summarizers:
bucket

cor

hilo

lreg

m e a n

po in t

prod
qsort
rank
t o t a l
v a r

Translators:
bar

hist

{ -at ' ci F/i/e h / it 1/ n t] - break into
Duckets
average size, File containing bucket
boundaries, high, interval, low, number
Input data should be sorted
[—Ffile] - correlation coefficient
File containing base vector
[- h 1 o o x o y] - find high and low
values
high only, low only, option form, option
form with x prepended, option form with
y prepended

t- F f i l e i o s] - linear regression
ile containing base vector, intercept

only, option form for siline, slope only

i— f / n i p /] - (trimmed) arithmetic mean
raction, number , percent

[— tf nt p / s] - point from empirical
cumulative density function
fraction, number , percent , sorted input
- internal product
[— ct] - quick sort
- vector rank
- s u m total
- variance

[- a b f g r i w i x / x a y / y a y l / y h /]
- build a bar chart
suppress axes, bold, suppress f rame,
suppress grid, region, wid th in percent, x
origin, suppress x-axis label, y origin,
suppress y-axis label, y-axis lower bound,
y-axis high bound
Data is rounded off to integers.

[- a b f g r i x / x a y / y a y l / y h /] -
build a histogram
suppress axes, bold, suppress f rame,
suppress grid, region, x origin, suppress
x-axis label, y origin, suppress y-axis
label, y-axis lower bound, y-axis high
bound

- 3 -

STAT(IG)

label

pie

plot

t it le

Generators:

[- b c F f i l e h p r t x x u y y r] - label
the axis of a GPS file
bar chart input, retain case, label File,
histogram input, plot input, rotation, x-
axis, upper x-axis, y-axis, r ight y-axis
[—b o p pn t pp t r t v xt y t] - build a
pie chart
bold, values outside pie, value as
percentage(:=100), value as
percentage(:=i), draw percent of pie,
region, no values, x origin, y origin
Unlike other nodes, input is lines of the
form

j < i e f cc >] value [label]
ignore (do not draw) slice, explode
slice, fill slice, color slice c = (
black, red, green, blue)

[—a b cstring d f F f i l e g m r t x / x a
x i / x h / xlf xn i x t yf y a yif yhf
y l / yn t y t] - plot a graph
suppress axes, bold, plotting characters,
disconnected, suppress frame, File
containing x vector, suppress grid, mark
points, region, x origin, suppress x-axis
label, x interval, x high bound, x low
bound, number of ticks on x-axis,
suppress x-axis title, y origin, suppress y-
axis label, y interval, y high bound, y
low bound, number of ticks on y-axis,
suppress y-axis t i t le
[—b c 1 string vstring ustring] - title
a vector or a GPS
title bold, retain case, lower title, upper
title, vector title

gas [—ct if nt s / tf] - generate additive
sequence
interval, number, start , terminate

prime [-ct ht It nt] - generate prime numbers
high, low, number

rand [—ct h / If m / nt st] - generate random
sequence
high, low, multiplier, number, seed

RESTRICTIONS
Some nodes have a limit on the size of the input vector.

- 4 -

STAT(1G)

SEE ALSO
graphics(lG), strtod(3C), gps(4).

- 5 -

STRINGS (1)

NAME
strings - extract the ASCII text strings in a file

SYNOPSIS
s tr ings [- a] [- o] [- #] file ...

DESCRIPTION
Strings looks for ASCII text strings in a file. It is useful
for examining and identifying object and other binary
files. A string is any sequence of 4 or more printing
characters ending with a newline or a null. If the file is
an object file, the search is restricted to the initialized
data space.
Here are the options:
—a Don' t restrict object file searches.
—o Precede each string with its octal offset.

Make # the minimum string length instead of 4.
SEE ALSO

od(l).
WARNING

The algorithm for identifying strings is ra ther primitive.

- 1 -

STRIP (1)

NAME
strip - strip symbol and line number information from a
common object file

SYNOPSIS
strip [-1] [-x] [-r] [-s] [-V] filename

DESCRIPTION
The strip command strips the symbol table and line
number information from common object files, including
archives. Once this has been done, no symbolic
debugging access will be available for that file; therefore,
this command is normally run only on production
modules that have been debugged and tested.
The amount of information stripped from the symbol
table can be controlled by using any of the following
options:
—1 Strip line number information only; do not

strip any symbol table information.
—x Do not strip static or external symbol

information.
—r Reset the relocation indexes into the symbol

table.
- s Reset the line number indexes into the symbol

table (do not remove), reset the relocation
indexes into the symbol table.

—V Print the version of the strip command
executing on the standard error output.

If there are any relocation entries in the object file and
any symbol table information is to be stripped, strip will
complain and terminate without stripping file-name
unless the - r flag is used.
If the strip command is executed on a common archive
file (see ar(4)) the archive symbol table will be removed.
The archive symbol table must be restored by executing
the a r (l) command with the s option before the archive
can be link-edited by the /rf(l) command. Strip will
instruct the user with appropriate warning messages
when this situation arises.
The purpose of this command is to reduce the file
storage overhead taken by the object file.

FILES
/usr/tmp/strp??????

SEE ALSO
ar(l), as(l), cc(l), ld(l), a.out(4), ar(4).

STKlh" (1)

DIAGNOSTICS
strip: name: cannot open

if name cannot be read.
strip: name: bad magic

if name is not an appropriate common
object file.

strip: name: relocation entries present; cannot strip
if name contains relocation entries and the
—r flag is not used, the symbol table
information cannot be stripped.

T

- 2 -

STTY(1)

NAME
stty - set the options for a terminal

SYNOPSIS
s t t y [- a g options

DESCRIPTION
Stty sets certain terminal I/O options for the device that
is the current standard input; without arguments, it
reports the settings of certain options; with the —a
option, it reports all of the option settings; with the —g
option, it reports current settings in a form that can be
used as an argument to another stty command. Detailed
information about the modes listed in the first five
groups below may be found in termto(7). Options in the
last group are implemented using options in the previous
groups. Note that many combinations of options make
no sense, but no sanity checking is performed. The
options are selected from the following:

Control Modes
parenb (—parenb)

parodd (—parodd)
cs5 cs6 cs7 cs8

enable (disable) parity generation
and detection.
select odd (even) parity.
select character size (see
termio(7)).
hang up phone line immediately.

50 75 110 134 150 200 300 600
1200 1800 2400 4800 9600 19200

Set terminal baud

hupcl (—hupcl)

h u p (- h u p)
cstopb (—cstopb)

cread (—cread)
clocal (—clocal)

loblk (- lob lk)

Input Modes
ignbrk (—ignbrk)

rate to the
number given, if possible; (all
speeds are not supported by all
hardware interfaces); extb stands
for 38400 or for external clock
synchronization, depending on the
device.
hang up (do not hang up) a
DATA-PHONE connection on last
close.
same as hupcl (— hupcl).
use two (one) stop bits per
character.
enable (disable) the receiver,
assume a line without (with)
modem control.
block (do not block) output from
a non-current layer.

ignore (do not ignore) break on
input.

STTY (i)

brkint (—brkint)

ignpar (—ignpar)

parmrk (—parmrk)

inpck (—inpck)

istrip (- i s tr ip)

inlcr (- inlcr)

igncr (—igncr)

icrnl (—icrnl)

iuclc (—iuclc)

ixon (—ixon)

ixany (—ixany)

ixoff (- i xo f f)

Outpu t Modes
opost (—opost)

olcuc (—olcuc)

onlcr (—onlcr)

ocrnl (— ocrnl)

onocr (—onocr)

onlret (—onlret)

ofill (-of i l l)

ofdel (—ofdel)
crO c r l cr2 cr3

signal (do not signal) INTR on
break.
ignore (do not ignore) parity
errors.
mark (do not mark) parity errors
(see termio(7)).
enable (disable) input parity
checking.
strip (do not strip) input
characters to seven bits,
map (do not map) NL to CR on
input.
ignore (do not ignore) CR on
input.
map (do not map) CR to NL on
input.
map (do not map) upper-case
alphabetics to lower case on input,
enable (disable) START/STOP
output control. Output is stopped
by sending an ASCII DC3 and
started by sending an ASCII DCl.
allow any character (only DCl) to
restart output.
request that the system send (not
send) START/STOP characters
when the input queue is nearly
empty/full.

post-process output (do not post-
process output; ignore all other
output modes).
map (do not map) lower-case
alphabetics to upper case on
output.
map (do not map) NL to CR-NL
on output.
map (do not map) CR to NL on
output.
do not (do) output CRs at column
zero.
on the terminal NL performs (does
not perform) the CR function,
use fill characters (use timing) for
delays.
fill characters are DELs (NULs).
select style of delay for carriage
returns (see termio(l)).

- 2 -

STTY(1)

nlO n i l

tabO t a b l tab2 tab3

bsO b s l

ffO f f l

vtO v t l

Local Modes
isig (—isig)

icanon (—icanon)

xcase (—xcase)

echo (—echo)

echoe (—echoe)

echok (—echok)

lfkc (—lfkc)

echonl (—echonl)
nof lsh (—noflsh)

Control Assignments
control-character c

select style of delay for line-feeds
(see ferm«o(7)).

J
select style of delay for horizontal
tabs (see termio{7) or «<ermto(7)).
select style of delay for
backspaces (see termioil))
select style of delay for form-feeds
(see termto(7)).
select style of delay for vertical
tabs (see termio(7)).

enable (disable) the checking of
characters against the special
control characters INTR, QUIT,
and SWTCH.
enable (disable) canonical input
(ERASE and KILL processing),
canonical (unprocessed)
upper/lower-case presentation,
echo back (do not echo back)
every character typed,
echo (do not echo) ERASE
character as a backspace-space-
backspace string. Note: this mode
will erase the ERASEed character
on many CRT terminals; however,
it does not keep track of column
position and, as a result, may be
confusing on escaped characters,
tabs, and backspaces,
echo (do not echo) NL after KILL
character.
the same as echok (—echok);
obsolete.
echo (do not echo) NL.
disable (enable) flush after INTR,
QUIT, or SWTCH.

set control-character to c, where
control-character is erase, kill,
intr, quit, swtch, eof, ctab,
min, or t ime (ctab is used with
—stappl; see stermio(7)), (min
and t ime are used with —icanon;
see termio(7)). If c is preceded by
an (escaped from the shell) caret
(*), then the value used is the
corresponding CTRL character

- 3 -

STTY(1)

(e.g., "Ad" is a CTRL-d); "*?" is
interpreted as DEL and is
interpreted as undefined,

line » set line discipline to « (0 < t <
127).

Combinat ion Modes
evenp or parity enable parenb and cs7.
oddp enable parenb, cs7, and parodd.
—parity, —evenp, or —oddp

disable parenb, and set cs8.
raw (—raw or cooked)

enable (disable) raw input and
output (no ERASE, KILL, INTR,
QUIT, SWTCH, EOT, or output
post processing),

nl (—nl) unset (set) icrnl, onlcr. In
addition —nl unsets inlcr, igncr,
ocrnl, and onlret .

lease (- lease) set (unset) xcase, iuclc, and
olcuc.

LCASE (-LCASE) same as lease (- lease) ,
t a b s (—tabs or tab3)

preserve (expand to spaces) tabs
when printing,

ek reset ERASE and KILL characters
back to normal # and

sane resets all modes to some
reasonable values,

t e r m set all modes suitable for the
terminal type term, where term is
one of t ty33 , t ty37 , vt05,
tn300, t i700, or tek .

Cluster Terminals
Options which are meaningless to the RS-422 interface
are ignored by cluster terminals. See termio(7) for
specifics.

SEE ALSO
tabs(l), ioctl(2), termio(7).

- 4 -

S U (1)

NAME
su - become super-user or another user

SYNOPSIS
su [-] [name [arg • • •]]

DESCRIPTION
Su allows one to become another user without logging
off. The default user name is roo t (i.e., super-user).
To use su, the appropriate password must be supplied
(unless one is already root). If the password is correct,
su will execute a new shell with the real and effective
user ID set to that of the specified user. The new shell
will be the optional program named in the shell field of
the specified user's password file entry (see passwrf(4)),
or / b i n / s h if none is specified (see «A(1)). To restore
normal user ID privileges, type an E O F (cntrl-d) to the
new shell.
Any additional arguments given on the command line
are passed to the program invoked as the shell. When
using programs like sA(l), an arg of the form - c string
executes string via the shell and an arg of —r will give
the user a restricted shell. When additional arguments
are passed, / b i n / s h is always used. When no additional
arguments are passed, su uses the shell specified in the
password file.
The following statements are true only if the optional
program named in the shell field of the specified user's
password file entry is like «/i(l). If the first argument to
su is a —, the environment will be changed to what
would be expected if the user actually logged in as the
specified user. This is done by invoking the the program
used as the shell with an argO value whose first
character is —, thus causing first the system's profile
(/ e tc /prof i l e) and then the specified user's profile
(.profile in the new HOME directory) to be executed.
Otherwise, the environment is passea along with the
possible exception of $PATH, which is set to
/ b i n ; / e t c : / u s r / b i n for root. Note that if the optional
program used as the shell is / b i n / s h , the user's profile
can check argO for —sh or —su to determine if it was
invoked by login(l) or SM(1) , respectively. If the user's
program is other than / b i n / s h , then .profile is invoked
with an argO of -program by both login(\) and sw(l).
All attempts to become another user using su are logged
in the log file / u s r / a d m / s u l o g .

EXAMPLES
To become user bin while retaining your previously

- 1 -

S U (1)

exported environment, execute:

su bin

To become user bin but change the environment to what
would be expected if bin had originally logged in,
execute:

su - bin

To execute command with the temporary environment
and permissions of user bin, type:

env(l), login(l), sh(l), passwd(4), profile(4), environ(5).

su - bin - c "command args
FILES

/etc/passwd
/etc/profile
$HOME/.profile
/usr /adm/sulog

system's password file
system's profile
user's profile
log file

SEE ALSO

SUM (1)

NAME
sum - print checksum and block count of a file

SYNOPSIS
sum [—r] file

DESCRIPTION
Sum calculates and prints a 16-bit checksum for the
named file, and also prints the number of blocks in the
file. It is typically used to look for bad spots, or to
validate a file communicated over some transmission
line. The option —r causes an alternate algorithm to be
used in computing the checksum.

SEE ALSO
wc(l).

DIAGNOSTICS
"Read error" is indistinguishable from end of file on
most devices; check the block count.

SWAP (IM)

NAME
swap - swap administrative interface

SYNOPSIS
/ e t c / s w a p —a swapdev swaplow swaplen]]
/ e t c / s w a p —d swapdev swaplow
/ e t c / s w a p —1

DESCRIPTION
Swap provides a method of adding, deleting, and
monitoring the system swap areas used by the memory
manager. The following options are recognized:
—a Add the specified swap area. Swapdev is the name

of block special device, e.g., / d e v / d s k / c 0 d 0 s 2 .
Swaplow is the offset in 1 Kbyte blocks into the
device where the swap area should begin. Swaplen
is the length of the swap area in 1 Kbyte blocks up
to the size of the specified partition. This option
can only be used by the super-user. Swap areas are
normally added by the system start up routine
/ e t c / d r v l o a d .

—d Delete the specified swap area,
name of block special
/ d e v / d s k / c 0 d 0 s 2 . Swaplow is
Kbyte blocks into the device where the swap area
should begin. Using this option marks the swap
area as "being deleted." The system will not
allocate any new blocks from the area, and will try
to free swap blocks from it. The area will remain
in use until all blocks from it are freed. This
option can only be used by the super-user.

—1 List the status of all the swap areas. The output
has four columns:
DEV The swapdev special file for the swap area

if one can be found in the / d e v / d s k or
/ d e v directories, and its major/minor
device number in decimal.

LOW The swaplow value for the area in 1 Kbyte
blocks.

LEN The swaplen value for the area in 1 Kbyte
blocks.

F R E E The number of free 1 Kbyte blocks in the
area. If the swap area is being deleted,
this column will be marked (indel).

Swapdev is the
device, e.g.,

the offset in 1

- 1 -

SYSTEM (4)

NAME
system - system description file

DESCRIPTION
The system description describes tunable variables and
hardware configuration to the CTIX system.
The file is formatted in sections. Each section begins
with a section header (a ! followed by a single word).
Each section varies in format, depending upon the
format required by the program that uses the data
provided by that section.
In the example file the IVMESLOTS section describes
the VME boards for the EEPROM. The slot field is the
slot position in the VME bus. The type field is the board
type; board types may be:

1 CMC Ethernet board
2 Interphase SMD disk controller board
3 Xylogics l /2-inch tape controller board

The address field is the location of the board. The
length field is the address space size of the board. The
optional initialization function name is an initialization
function that is called by the PROM at boot time.
The 1VMECODE section consists of a list of files that
describe the executable code to be loaded into the
EEPROM. This section is required only if a bootable
initialization function was specified.

EXAMPLE
IFILENAMES
PROM_IFILE=/e tc / lddrv/EEPROM.if i le
EEPROM_FILE=/dev/vme/eeproni
INIT_CFILE=tunevar.c
IVMESLOTS
* The following section describes the VME boards
*

*slot type address length [Initialization
* function name]
*

0 2 C1000000 512 initVs32
1 2 C1000200 512
*one CMC Ethernet controller)
2 1 C0DE0200 131072 *

IVMECODE
diskvs32.o

5/86 - 1 -

SYSTEM (4)

SEE ALSO
lddrv(lM), ldeeprom(lM), mktunedrv(lM), vme(7).
MightyFrame Administrator's Reference Manual.

FILES
/etc/system
/dev/vme/eeprom

5/86 - 2 -

SYNC (1)

NAME
sync - update the super block

SYNOPSIS
s y n c

DESCRIPTION
Sync executes the sync system primitive. If the system
is to be stopped, sync must be called to insure file
system integrity. It will flush all previously unwrit ten
system buffers out to disk, thus assuring tha t all file
modifications up to that point will be saved. See sync (2)
for details.

SEE ALSO
sync(2).

TABS(1)

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspee] [+ m n] [—Ttype]

DESCRIPTION
Tabs sets the tab stops on the user's terminal according
to the tab specification tabspee, after clearing any
previous settings. The user's terminal must have
remotely-settable hardware tabs.
Users of GE TermiNet terminals should be aware that
they behave in a different way than most other terminals
for some tab settings. The first number in a list of tab
settings becomes the left margin on a TermiNet
terminal. Thus, any list of tab numbers whose first
element is other than 1 causes a margin to be left on a
TermiNet, but not on other terminals. A tab list
beginning with 1 causes the same effect regardless of
terminal type. It is possible to set a left margin on some
other terminals, although in a different way (see below).
Four types of tab specification are accepted for tabspee :
"canned," repetitive, arbitrary, and file. If no tabspee is
given, the default value is —8, i.e., CTIX "standard"
tabs. The lowest column number is 1. Note that for
tabs, column 1 always refers to the leftmost column on a
terminal, even one whose column markers begin at 0,
e.g., the DASI 300, DASI 300s, and DASI 450.
— code Gives the name of one of a set of "canned"

tabs. The legal codes and their meanings are as
follows:

- a 1,10,16,36,72
Assembler, IBM S/370, first format

—a2 1,10,16,40,72
Assembler, IBM S/370, second format

- c 1,8,12,16,20,55
COBOL, normal format

—c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted).
Using this code, the first typed character
corresponds to card column 7, one space gets
you to column 8, and a tab reaches column 12.
Files using this tab setup should include a
format specification as follows:

< : t - c 2 m6 s66 d : >
—c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67

COBOL compact format (columns 1-6 omitted),
with more tabs than —c2. This is the
recommended format for COBOL. The

TABS (1)

appropriate format specification is:
< :t—c3 m 8 sfift d : >

- f 1,7,11,15,19,23
FORTRAN

- p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/I

—s 1,10,55
SNOBOL

—u 1,12,20,44
UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types
exist:
— n A repetitive specification requests tabs at

columns 1+ n, 1+2*n, etc. Note that such a
setting leaves a left margin of n columns on
TermiNet terminals only. Of particular
importance is the value —8: this represents the
CTIX "standard" tab setting, and is the most
likely tab setting to be found at a terminal. It
is required for use with the nroff —h option for
high-speed output. Another special case is the
value —0, implying no tabs at all.

nl,n2,...
The arbitrary format permits the user to type
any chosen set of numbers, separated by
commas, in ascending order. Up to 40 numbers
are allowed. If any number (except the first
one) is preceded by a plus sign, it is taken as an
increment to be added to the previous value.
Thus, the tab lists 1,10,20,30 and 1,10,+10,+10
are considered identical.

—file If the name of a file is given, tabs reads the
first line of the file, searching for a format
specification. If it finds one there, it sets the
tab stops according to it, otherwise it sets them
as —8. This type of specification may be used
to make sure that a tabbed file is printed with
correct tab settings, and would be used with the
pr(l) command:

tabs — file; pr file
Any of the following may be used also; if a given flag
occurs more than once, the last value given takes effect:
—Ttype Tabs usually needs to know the type of

terminal in order to set tabs and always needs
to know the type to set margins. Type is a
name listed in term(5). If no —T flag is
supplied, tabs searches for the $TERM value in

TABS (1)

the environment (see e»mron(5)). If no type
can be found, tabs tries a sequence that will
work for many terminals.

+ m n The margin argument may be used for some
terminals. It causes all tabs to be moved over
n columns by making column n+1 the left
margin. If + m is given without a value of n,
the value assumed is 10. For a TermiNet, the
first value in the tab list should be 1, or the
margin will move even further to the right.
The normal (leftmost) margin on most
terminals is obtained by + m 0 . The margin for
most terminals is reset only when the + m flag
is given explicitly.

Tab and margin setting is performed via the standard
output.

DIAGNOSTICS
illegal tabs when arbitrary tabs are ordered

incorrectly.
illegal increment when a zero or missing increment is

found in an arbitrary specification.
unknown tab code when a "canned" code cannot be

found.
can't open if — f i l e option used, and file can't

be opened.
file indirection if — f i l e option used and the

specification in that file points to
yet another file. Indirection of this
form is not permitted.

SEE ALSO
nroff(l), environ(5), term(5).

BUGS
There is no consistency among different terminals
regarding ways of clearing tabs and setting the left
margin.
It is generally impossible to usefully change the left
margin without also setting tabs.
Tabs clears only 20 tabs (on terminals requiring a long
sequence), but is willing to set 64.

TAIL (1)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [± [number] [lbc[f]]] [file]

DESCRIPTION
Tail copies the named file to the standard output
beginning at a designated place. If no file is named, the
standard input is used.
Copying begins at distance + number from the
beginning, or -number from the end of the input (if
number is null, the value 10 is assumed). Number is
counted in units of lines, blocks, or characters, according
to the appended option 1, b, or c. When no units are
specified, counting is by lines.
With the —f ("follow") option, if the input file is not a
pipe, the program will not terminate after the line of the
input file has been copied, but will enter an endless loop,
wherein it sleeps for a second and then attempts to read
and copy further records from the input file. Thus it
may be used to monitor the growth of a file that is being
written by some other process. For example, the
command:

tail - f fred
will print the last ten lines of the file fred, followed by
any lines tha t are appended to fred between the time
tail is initiated and killed. As another example, the
command:

tail -15cf fred
will print the last 15 characters of the file fred, followed
by any lines that are appended to f red between the time
tail is initiated and killed.

SEE ALSO
dd(l), head(l).

BUGS
Tails relative to the end of the file are treasured up in a
buffer, and thus are limited in length. Various kinds of
anomalous behavior may happen with character special
files.

T A R (l)

NAME
tar - tape file archiver

SYNOPSIS
tar [key] [files]

DESCRIPTION
Tar saves and restores files on magnetic tape. Its
actions are controlled by the key argument. The key is
a string of characters containing at most one function
letter and possibly one or more function modifiers. The
key may not include spaces. Other arguments to the
command are files (or directory names) specifying which
files are to be dumped or restored. In all cases,
appearance of a directory name refers to the files and
(recursively) subdirectories of that directory.
The function portion of the key is specified by one of the
following letters:
r The named files are written on the end of the

tape. The c function implies this function.
Blocked tapes cannot be appended,

x The named files are extracted from the tape. If
a named file matches a directory whose
contents had been written onto the tape, this
directory is (recursively) extracted. If a named
file on tape does not exist on the system, the
file is created with the same mode as the one on
tape except that the set>user-ID and set-group-
ID bits are not set unless you are super-user. If
the files exist, their modes are not changed
except for the bits described above. The owner,
group, and modification time are restored (if
possible). If no files argument is given, the
entire content of the tape is extracted. Note
that if several files with the same name are on
the tape, the last one overwrites all earlier ones,

t The names of all the files on the tape are listed,
u The named files are added to the tape if they

are not already there, or have been modified
since last written on that tape. Blocked tapes
(including QIC tapes) cannot be overwritten,

c Create a new tape; writing begins at the
beginning of the tape, instead of after the last
file. This command implies the r function.

The following characters may be used in addition to the
letter that selects the desired function:

Where # is a tape drive number (0 , . . . , 7) , and
s is the density (1 - low (800 bpi), m - medium

T A R (l)

(1600 bpi), or h - high (6250 bpi)). This
modifier selects the drive on which the tape is
mounted. The default is 0 . The density option
is ignored on some tapes, such as QIC tapes,

v Normally, tar does its work silently. The v
(verbose) option causes it to type the name of
each file it treats, preceded by the function
letter. With the t function, v gives more
information about the tape entries than just the
name.

w Causes tar to print the action to be taken,
followed by the name of the file, and then wait
for the user's confirmation. If a word beginning
with y is given, the action is performed. Any
other input means "no",

i Causes tar to use the next argument as the
name of the archive. By default,
/dev /mt /cOdO?? and /dev/rqic /cOd?,
respectively, are tried. If the name of the file is
—, tar writes to the standard output or reads
from the standard input, whichever is
appropriate. Thus, tar can be used as the head
or tail of a pipeline. Tar can also be used to
move hierarchies with the command:

cd fromdir; tar cf - . | (cd todir;
tar xf -)

b Causes tar to use the next argument as the
blocking factor for tape records (512 bytes).
The default is 1 for most tape drives, 128 for
QIC tape, and the maximum is 128. This
option should only be used with raw magnetic
tape archives (see f above). The block size is
determined automatically when reading tapes
(key letters x and t) .

1 Tells tar to complain if it cannot resolve all of
the links to the files being dumped. If 1 is not
specified, no error messages are printed,

m Tells tar not to restore the modification times.
The modification time of the file will be the
time of extraction,

o Causes extracted files to take on the user and
group identifier of the user running the program
rather than those on the tape.

The following command may be used to archive onto a
QIC tape:

cd dir; tar c

T A R (l)

FILES
/dev/mt/cOd?
/dev/rqic/cOdO??
/ tmp / t a r*

DIAGNOSTICS
Complaints about bad key characters and tape
read/write errors.
Complaints if enough memory is not available to hold
the link tables.

BUGS
There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are
going to be updated. The current magnetic tape driver
cannot backspace raw magnetic tape. If the archive is
on a disk file, the b option should not be used at all,
because updating an archive stored on disk can destroy
it.
The current limit on file-name length is 100 characters.
Note that tar cOm is not the same as t a r cmO.

TBL(1)

NAME
tbl - format tables for nroff or troff

SYNOPSIS
tbl [- T X] [files]

DESCRIPTION
Tbl is a preprocessor that formats tables for nroff. The
input files are copied to the standard output, except for
lines between .TS and .TE command lines, which are
assumed to describe tables and are re-formatted by tbl.
(The .TS and .TE command lines are not altered by tbl).
.TS is followed by global options. The available global
options are:

center center the table (default is left-
adjust);

expand make the table as wide as the current
line length;

box enclose the table in a box;
doublebox

enclose the table in a double box;
allbox enclose each item of the table in a

box;
tab (ar) use the character x instead of a tab

to separate items in a line of input
data.

The global options, if any, are terminated with a semi-
colon (;).
Next come lines describing the format of each line of the
table. Each such format line describes one line of the
actual table, except that the last format line (which must
end with a period) describes all remaining lines of the
table. Each column of each line of the table is described
by a single key-letter, optionally followed by specifiers
that determine the font and point size of the
corresponding item, that indicate where vertical bars are
to appear between columns, that determine column
width, inter-column spacing, etc. The available key-
letters are:

c center item within the column;
r right-adjust item within the column;
1 left-adjust item within the column;
n numerically adjust item in the column:

units positions of numbers are aligned
vertically;

s span previous item on the left into this
column;

TBL(1)

a center longest line in this column and
then left-adjust all other lines in this
column with respect to that centered
line;
span down previous entry in this
column;

_ replace this entry with a horizontal line;
= replace this entry with a double

horizontal line.
The characters B and I stand for the bold and italic
fonts, respectively; the character | indicates a vertical
line between columns.
The format lines are followed by lines containing the
actual data for the table, followed finally by .TE.
Within such data lines, data items are normally
separated by tab characters.
If a data line consists of only _ or = , a single or double
line, respectively, is drawn across the table at that point;
if a single item in a data line consists of only _ or = ,
then that item is replaced by a single or double line.
Full details of all these and other features of tbl are
given in the reference manual cited below.
The - T X option forces tbl to use only full vertical line
motions, making the output more suitable for devices
that cannot generate partial vertical line motions (e.g.,
line printers).
If no file names are given as arguments (or if — is
specified as the last argument), tbl reads the standard
input, so it may be used as a filter. When it is used with
eqn (I) or neqn, tbl should come first to minimize the
volume of data passed through pipes.

EXAMPLE
If we let —• represent a tab (which should be typed as a
genuine tab), then the input:

•TS
center box ;
cB s s
cl cl s

c c
1 | n n .
Household Population

Town—• Households
—•Number—•Size

Bedminster—•789—<-3.26

- 2 -

TBL(1)

Bernards Twp.—v3087->3.74
Bernardsville—>2018—*3.30
Bound Brook—>3425—>3.04
Bridgewater—>7897—+3.81
Far Hills—>240—+3.19
.TE

yields:
Household Populat ion
Town Households

Number Size
Bedminster
Bernards Twp.
Bernardsville
Bound Brook
Bridgewater
Far Hills

789 3.26
3087 3.74
2018 3.30
3425 3.04
7897 3.81

240 3.19
SEE ALSO

neqn(l), mm(l), nroff(l), mm(5), mv(5).
BUGS

See BUGS under nro//(l).

T D L (l)

NAME
tdl, gtdl, ptdl - RS-232 terminal download

SYNOPSIS
/ u s r / l o c a l / b i n / t d l [t y p e]
/ u s r / l o c a l / b l n / g t d l f runfile 1
/ u s r / I o c a l / b i n / p t d l [runfile J

DESCRIPTION
Tdl, gtdl, and ptdl download a terminal system image
over a an RS-232 line. The program is run from the
terminal that is to receive the system image, which must
be a Convergent Technologies terminal running in boot
ROM emulation mode.
Type is a number that specifies one of the standard
terminal types. If type is omitted, tdl sends an escape
sequence to the terminal to discover its type, (ff the user
has not used the boot ROM T command, the escape
sequence produces a "101" on a Programmable Terminal
and a "201" on a Graphics Terminal. These cause tdl to
download / u s r / l i b / i v / w s l 0 1 . 2 3 2 or
/ u s r / l i b / i v / w s 2 0 1 . 2 3 2 , respectively.)
Runfile is the name of a download image file.
Ptdl and gtdl require a terminal with a Release 1.0 boot
ROM. Tdl requires a terminal with a Release 2.0 boot
ROM.
To use tdl, follow this procedure:
1. Turn the terminal on while holding down the

space bar. Be sure to keep the space bar down
until the boot ROM prompt appears on the
screen.

2. Use the boot ROM commands to set whatever
communication options you need. Do not use
the T (system image type) command unless you
need a nonstandard type.

3 Enter the boot ROM E (emulate serial terminal)
command.

4. If necessary, establish a connection with the host
system and log in as tdl, ptdl, or gtdl.

5. Run tdl, ptdl, or gtdl with no parameters.
To allow users to download their terminals by logging in,
for example, as tdl , add the appropriate login entries to
/ e t c / p a s s w d :
tdl::50:l:Terminal Down Load:/: /usr/ local /bin/tdl
ptdl::51:l:PT232 Download (1.0 boot R O M) : / : /usr/ local /bin/ptdl

- 1 -

TDL(1)

gtdl::52:l:GT232 Download (1.0 boot R O M) : / : /usr / local /b in/gtdl

The download area must be specified on the disk; see
iv(l).

F I L E S
/usr/lib/iv/ws*.232 CTIX copies of the system

images
/usr/local/bin/ws*.232 checked if system image not

in /usr / l ib / iv
When acting on a type sent from the terminal, tdl
downloads /usr / l iv / iv /wsa:zar .232, where xxx is the
three-digit terminal type. If that file is missing, tdl looks
for /usr/ local /bin /wsa:xa: .232.

SEE ALSO
i v W - • „
Programmable Terminal Programmer's Guide.
Graphic Terminal Programmer's Guide.

DIAGNOSTICS
The terminal displays dashs (—) to indicate successfully
transmitted blocks, questions marks (?) to indicate
nonfatal tranmission errors. A fatal transmission error
produces an appropriate message from the terminal and
a return to the boot ROM emulate code; you may need to
press the RETURN key to get a shell prompt.

WARNINGS
Tdl, tdtl, and ptdl do not verify that the download file is
a valid terminal system image.
The 2.0 GT boot ROM does not support downloading run
images greater than 65,536 bytes. Attempting to
download images greater than 65,536 bytes may cause
the terminal to fail.

TEE(1)

NAME
tee - pipe fitting

SYNOPSIS
t ee [- i] [- a] [file] ...

DESCRIPTION
Tee transcribes the standard input to the standard
output and makes copies in the files. The —1 option
ignores interrupts; the —a option causes the output to be
appended to the files rather than overwriting them.

U - -

I

TERM (4)

NAME
term - format of compiled term file.

SYNOPSIS
t e r m

DESCRIPTION
Compiled terminfo descriptions are placed under the
directory / u s r / l i b / t e r m i n f o . In order to avoid a linear
search of a huge CTIX system directory a two-level
scheme is used: / u s r / l i b / t e r m i n f o / c / n a m e where
name is the name of the terminal, and c is the first
character of name. Thus, act4 can be found in the file
/ u s r / l i b / t e r m i n f o / a / a c t 4 . Synonyms for the same
terminal are implemented by multiple links to the same
compiled file.
The format has been chosen so that it will be the same
on all hardware. An 8 or more bit byte is assumed, but
no assumptions about byte ordering or sign extension are
made.
The compiled file is created with the f«c(lM) program,
and read by the routine setupterm. Both of these pieces
of software are part of curses(3X). The file is divided
into six parts: the header, terminal names, boolean flags,
numbers, strings, and string table.
The header section begins the file. This section contains
six short integers in the format described below. These
integers are (1) the magic number (octal 0432); (2) the
size, in bytes, of the names section; (3) the number of
bytes in the boolean section; (4) the number of short
integers in the numbers section; (5) the number of offsets
(short integers) in the strings section; (6) the size, in
bytes, of the string table.
Short integers are stored in two 8-bit bytes. The first
byte contains the least significant 8 bits of the value,
and the second byte contains the most significant 8 bits.
(Thus, the value represented is 256*second+first.) The
value - 1 is represented by 0377, 0377; other negative
values are illegal. The - 1 generally means that a
capability is missing from this terminal. Note that this
format corresponds to the hardware of the VAX and
PDP-11. Machines where this does not correspond to the
hardware read the integers as two bytes and compute the
result.
The terminal names section comes next. It contains the
first line of the terminfo description, listing the various
names for the terminal, separated by the character.
The section is terminated with an ASCII NUL character.

5/86 - 1 -

TERMINFO (4)

database, and always corresponds to the old t e rmcap
capability name.
Capability names have no hard length limit, but an
informal limit of 5 characters has been adopted to keep
them short and to allow the tabs in the source file caps
to line up nicely. Whenever possible, names are chosen
to be the same as or similar to the ANSI X3.64-1979
standard. Semantics are also intended to match those of
the specification.
(P) indicates that padding may be specified
(G) indicates that the string is passed through tparm

with parameters as given (#«)•
(*) indicates that padding may be based on the

number of lines affected
(#4-) indicates the j^1 parameter.

Variable Cap- I. Description
Booleans name Code

auto_left_margin, bw bw cubl wraps from column 0 to last
column

auto_right_margin, am am Terminal has automatic margins
beehive_glitch, xsb xb Beehive (f l = e s c a p e , f 2 = c t r l C)
ceol_standout_glitch, xhp xs Standout not erased by overwriting

(hp)
eat_newline_glitch, xenl xn newline ignored after 80 cols

(Concept)
erase_overstrike, eo eo Can erase overstrikes with a blank
generic_type, gn gn Generic line type (e.g.,, dialup,

switch).
hard_copy, he he Hardcopy terminal
has_function_Hne hfl hf Terminal has a function key label

line
has_meta_key, km km Has a meta key (shift, sets parity

bit)
has_status_line, hs hs Has extra "status line"
insert_null_glitch, in in Insert mode distinguishes nulls
memory_above, da da Display may be retained above the

screen
memory _below, db db Display may be retained below the

screen
move_insert_mode, mir mi Safe to move while in insert mode
move_standout_mode, msgr ms Safe to move in standout modes
over_strike, OS OS Terminal overstrikes
status_line_esc_ok, eslok es Escape can be used on the status

line

5/86 2 -

TERMINFO (4)

teleray_glitch, xt xt T a b s ruin, magic so char (Teleray
1061)

tilde_glitch, hz hz Hazeltine; can not print ~'s
transparent_underline, ul ul underline character overstrikes
xon_xoff , xon x o Terminal uses x o n / x o f f handshaking

N u m b e r s :
columns, cols C O Number of co lumns in a line
init_tabs, it it Tabs initially every # spaces
l ine_attribute ldaat LA Line drawing character attr ibute
lines, lines li Number of lines on screen or page
l ines_of_memory, lm lm Lines of memory if > lines. 0 means

varies
magic_cookie_glitch, xmc s g Number of blank chars left by smso

or rmso
padding_baud_rate, pb pb Lowest baud where cr /n l padding is

needed
virtual_terminal, vt vt Virtual terminal number (UNIX

system)
width_status_l ine, wsl ws No . columns in s t a t u s line

S t r l n g s t
back_tab, cbt bt Back tab (P)
bell, bel bl Audible signal (bell) (P)
carriage_return, cr cr Carriage return (P*)
change_scroll_region, csr cs change to l ines # 1 through # 2

(vtlOO) (PG)
clear_all_tabs, tbc ct Clear all tab s tops (P)
clearjscreen, clear cl Clear screen and home cursor (P*)
clr_eol, el ce Clear to end of l ine (P)
clr_eos, ed cd Clear to end of display (P*)
column_address, hpa ch Set cursor column (PG)
command_character, cmdch CC Term, sett-able cmd char in

prototype
cursor_address, cup cm Screen rel. cursor mot ion row # 1 col

2 (PG)
cursor_down, c u d l do D o w n one line
cursor_home, home ho ' Home cursor (if no cup)
cursor _invisible, civis vi Make cursor invisible
cursor_left, c u b l le Move cursor left one space
cursor_mem_address, rnrcup C M Memory relative cursor addressing
cursor_normal, cnorm ve Make cursor appear normal (undo

v s / v i)
cursor _right, c u f l nd Non-destructive space (cursor right)
cursor_to_ll, 11 11 Last line, first co lumn (if no cup)
cursor_up, c u u l up Upline (cursor up)
cursor_visible, cvvis vs Make cursor very visible
delete_character, d c h l dc Delete character (P*)

- 3 -

TtiRMINb'O (4)

delete_line, dl l dl Delete line (P*)
dis_status_line, dsl ds Disable status line
down_half_line, hd hd Half-line down (forward 1 / 2

linefeed)
enter_alt_charset_mode, smacs as Start alternate character set (P)
enter_blink_mode, blink mb Turn on blinking
enter_bold_mode, bold md Turn on bold (extra bright) mode
enter_ca_mode, smcup ti String t o begin programs that use

cup
expand center; lw(1.4i) lw(.4i) lw(.4i)
lw(1.8i).

enter_delete_mode, smdc dm Delete mode (enter)
enter_dim_mode, dim mh Turn on half-bright mode
enter_insert_mode, smir im Insert mode (enter);
enter_protected_mode, prot mp Turn on protected mode
enter_reverse_mode, rev mr Turn on reverse video mode
enter_secure_mode, invis mk Turn on blank mode (chars

invisible)
enter_standout_mode, smso so Begin stand out mode
enter_underline_mode, smul us Start underscore mode
erase_chars ech ec Erase # 1 characters (PG)
exit_alt_charset_mode, rmacs ae End alternate character set (P)
exi t_attri b u te_mod e, sgrO me Turn off all attributes
exit_ca_mode, rmcup te String t o end programs that use cup
exit_delete_mode, rmdc ed End delete mode
exit_insert_mode, rmir ei End insert mode
exit_standout_mode, rmso se End stand out mode
exit_underline_mode, rmul ue End underscore mode
flash_screen, flash vb Visible bell (may not move cursor)
form_feed, ff ff Hardcopy terminal page eject (P*)
from_status_line, fsl fs Return from status line
init_lstring, is l i l Terminal initialization string
init_2string, is2 14 Terminal initialization string
init_3string, is3 i3 Terminal initialization string
init_file, if if Name of file containing is
insert_character, ichl ic Insert character (P)
insert j ine , i l l al Add new blank line (P*)
insert_padding, 'P ip Insert pad after character inserted (p*)
key_backspace, kbs kb Sent by backspace key
key_catab, ktbc ka Sent by clear-all-tabs key
key_clear, kclr kC Sent by clear screen or erase key
key_ctab, kctab kt Sent by clear-tab key
key_dc, kdchl kD Sent by delete character key
key_dl, kdl l kL Sent by delete line key
key_down, kcudl kd Sent by terminal down arrow key
key_eic, krmir kM Sent by rmir or smir in insert mode
key_eol, kel kE Sent by clear-to-end-of-line key
key_eos, ked kS Sent by clear-to-end-of-screen key
key_fO, kfO kO Sent by function key fO

- 4 -

T E R M I N F O (4)

k e y j l , k f l k l Sent by function key f l
keyJIO, kflO ka Sent by function key flO
keyJ2 , kf2 k2 Sent by function key f2
keyJ3 , kf3 k3 Sent by function key f3
key_f4, kf4 k4 Sent by function key f4
key_f5, kf5 k5 Sent by function key f5
keyJ6 , kf6 k6 Sent by function key f6
keyJ7 , kf7 k7 Sent by function key f7
key_f8, kf8 k8 Sent by function key f8
keyJ9 , kf9 k9 Sent by function key f9
key_home, khome kh Sent by home key
k e y j c , kichl kl Sent by ins char/enter ins mode key
k e y j l , kill kA Sent by insert line
k e y j e f t , kcubl kl Sent by terminal left arrow key
k e y j l , kll kH Sent by home-down key
key_npage, knp kN Sent by next-page key
key_ppage, kpp kP Sent by previous-page key
key_right, kcufl kr Sent by terminal right arrow key
key_sf, kind kF Sent by scroll-forward/down key
key_sr, kri kR Sent by scroll-backward/up key
key_stab, khts kT Sent by set-tab key
key_up, kcuul ku Sent by terminal up arrow key
keypadjocal , rmkx ke Out of "keypad transmit" mode
keypad_xmit, smkx ks Put terminal in "keypad transmit

mode
lab_fO, iro 10 Labels on function key fO if not fO
Iab_fl, Ifl 11 Labels on function key f l if not f l
labJIO, lflO la Labels on function key flO if not flO
lab_f2, lf2 12 Labels on function key f2 if not f2
lab_f3, ira 13 Labels on function key f3 if not f3
labJ4 , lf4 14 Labels on function key f4 if not f4
lab_f5, lfS 15 Labels on function key f5 if not f5
lab J 6 , ire 16 Labels on function key f6 if not f6
lab_f7, lf7 17 Labels on function key f7 if not f7
lab_f8, 1C8 18 Labels on function key f8 if not f8
lab_f9, lf9 19 Labels on function key f9 if not f9
ld_upleft ldul TL Upper left corner box character
ld_upright ldur TR Upper right corner box character
ld_botleft ldul BL Bottom left corner box character
ld_botright ldbl BR Bottom right corner box character
ld_vertleft ldvl VL Left-hand side box character
ld_vertright ldvr VR Right-hand side box character
ldj iortop ldht TH Top side box character
ld_horbot ldhb BH Bottom horizontal box character
ld_upleft ldul TL Upper left corner box character
ld_upleft ldul TL Upper left corner box character
ld_upleft ldul TL Upper left corner box character
meta_on, smm mm Turn on "meta mode" (8th bit)
meta_off, rmm mo Turn off "meta mode"

- 5

T E R M I N F O (4)

newline, nel nw Newline (behaves like cr followed by If)
pad_char, pad pc Pad character (rather than null)
parm_dch, dch DC Delete # 1 chars (PG*)
parm_delete_line, dl DL Delete # 1 lines (PG*)
parm_down_cursor, cud DO Move cursor down # 1 lines (PG*)
parm_ich, ich 1C Insert # 1 blank chars (PG*)
parm_index, indn SF Scroll forward # 1 lines (PG)
parm_insert_line, il AL Add # 1 new blank lines (PG*)
parm_left_cursor, cub LE Move cursor left # 1 spaces (PG)
parm_right_cursor, cuf RI Move cursor right # 1 spaces (PG*)
parm_rindex, rin SR Scroll backward # 1 lines (PG)
parm_up_cursor, cuu UP Move cursor up # 1 lines (PG*)
pkey_key, pfkey Pk Prog funct key # 1 to type string # 2
pkeyjoca l , pfloc Pi Prog funct key # 1 to execute string # 2
pkey_xmit, pfx px Prog funct key # 1 to xmit string # 2
print_screen, mcO ps Print contents of the screen
prtr_off, mc4 pf Turn off the printer
prtr_on, mc5 po Turn on the printer
repeat_char, rep rp Repeat char # 1 # 2 times. (PG*)
reset_lstring, rsl r l Reset terminal completely to sane

modes.
reset_2string, rs2 r2 Reset terminal completely to sane

modes.
reset_3string, rs3 r3 Reset terminal completely t o sane

modes.
reset_file, rf rf Name of file containing reset string
restore_cursor, rc rc Restore cursor to position of last sc
row_address, vpa cv Vertical position absolute set row) (PG)
save_cursor, sc sc Save cursor position (P)
scroll_forward, ind sf Scroll text up (P)
scroll_reverse, ri sr Scroll text down (P)
set_attributes, sgr sa Define the video attributes (PG9)
set_tab, hts St Set a tab in all rows, current column
set_window, wind wi Current window is lines # l - # 2

cols # 3 - # 4
tab, ht ta Tab to next 8 space hardware tab stop
to_status_line, tsl ts Go to status line, column # 1
underline_char, uc uc Underscore one char and move past it
up_half_line, hu hu Half-line up (reverse 1 / 2 linefeed)
init_prog, iprog iP Path name of program for init
key_al, ka l K1 Upper left of keypad
key_a3, ka3 K 3 Upper right of keypad
key_b2, kb2 K2 Center of keypad
key_cl, kcl K4 Lower left of keypad
key_c3, kc3 K5 Lower right of keypad
prtr_non, mc5p pO Turn on the printer for # 1 bytes

5/86 - 6 -

TERMINFO (4)

A Sample Entry
The following entry, which describes the Concept-100, is
among the more complex entries in the terminfo file as of
this writing.

conceptlOO | c l00 | concept | c l04 | c l 0 0 - 4 p | concept 100,
am, be l=*G, b l a n k = \ E H , b l i n k = \ E C , c l e a r = * L $ < 2 » > , c n o r m = \ E w ,

cols#80, c r = A M $ < 9 > , c u b l = * H , c u d l = * J , c u f l = \ E = ,
c u p = \ E a % p l % ' '%+%c%p2%' '%+%c,
c u u l = \ E ; , c v v i s = \ E W , db, d c h l = \ E * A $ < 1 6 * > , d i m = \ E E , d l l = \ E " B $ < 3 * > ,
e d = \ E * C $ < 1 6 * > , e l = \ E " U $ < 1 6 > , eo, n a s h = \ E k $ < 2 0 > \ E K , h t = \ t $ < 8 > ,
i l l = \ E * R $ < 3 * > , in, ind=*J , , i n d = * J $ < 9 > , i p = $ < 1 6 * > ,
i s 2 = \ E U \ E f \ E 7 \ E 5 \ E 8 \ E l \ E N H \ E K \ E \ 2 0 0 \ E o & \ 2 0 0 \ E o \ 4 7 \ E ,
kbs="h, k c u b l = \ E > , k c u d l = \ E < , k c u f l = \ E = , k c u u l = \ E ; ,
k f l = \ E 5 , k f 2 = \ E 6 , k f 3 = \ E 7 , k h o m e = \ E ? ,
l ines#24, mir, pb#9600 , p r o t = \ E I , r e p = \ E r % p l % c % p 2 % ' ' % + % c $ < . 2 * > ,
r e v = \ E D , r m c u p = \ E v $ < 6 > \ E p \ r \ n , r m i r = \ E \ 2 0 0 , r m k x = \ E x ,
r m s o = \ E d \ E e , r m u l = \ E g , r m u l = \ E g , s g r 0 = \ E N \ 2 0 0 ,
s m c u p = \ E U \ E v 8p \Ep \r , s m i r = \ E " P , s m k x = \ E X , s m s o = \ E E \ E D ,
s m u l = \ E G , tabs, ul, v t # 8 , xenl,

Entries may continue onto multiple lines by placing
white space at the beginning of each line except the first.
Comments may be included on lines beginning with
" # " . Capabilities in terminfo are of three types:
Boolean capabilities which indicate that the terminal has
some particular feature, numeric capabilities giving the
size of the terminal or the size of particular delays, and
string capabilities, which give a sequence which can be
used to perform particular terminal operations.

Types of Capabilities
All capabilities have names. For instance, the fact that
the Concept has automatic margins (i.e., an automatic
return and linefeed when the end of a line is reached) is
indicated by the capability a m . Hence the description of
the Concept includes a m . Numeric capabilities are
followed by the character ' # ' and then the value. Thus
cols, which indicates the number of columns the
terminal has, gives the value '80' for the Concept.
Finally, string valued capabilities, such as el (clear to
end of line sequence) are given by the two-character
code, an ' = ' , and then a string ending at the next
following ', ' . A delay in milliseconds may appear
anywhere in such a capability, enclosed in $ < . . >
brackets, as in e l = \ E K $ < 3 > , and padding characters
are supplied by tputs to provide this delay. The delay
can be either a number, e.g., '20', or a number followed
by an '*', i.e., '3*'. A '*' indicates tha t the padding
required is proportional to the number of lines affected

5/86 - 7 -

T E R M I N F O (4)

by the operation, and the amount given is the per-
affected-unit padding required. (In the case of insert
character, the factor is still the number of lines affected.
This is always one unless the terminal has xenl and the
software uses it.) When a '*' is specified, it is sometimes
useful to give a delay of the form '3.5' to specify a delay
per unit to tenths of milliseconds. (Only one decimal
place is allowed.)
A number of escape sequences are provided in the string
valued capabilities for easy encoding of characters there.
Both \ E and \ e map to an ESCAPE character, Ax maps
to a control-x for any appropriate x, and the sequences
\ n \1 \ r \ t \ b \ f \ s give a newline, linefeed, return,
tab, backspace, formfeed, and space. Other escapes
include for *, \ \ for \ , \ , for comma, \ : for :, and \ 0
for null. (\0 will produce \200, which does not terminate
a string but behaves as a null character on most
terminals.) Finally, characters may be given as three
octal digits after a \ .
Sometimes individual capabilities must be commented
out. To do this, put a period before the capability
name. For example, see the second ind in the example
above.

P repa r ing Descr ip t ions
We now outline how to prepare descriptions of terminals.
The most effective way to prepare a terminal description
is by imitating the description of a similar terminal in
terminfo and to build up a description gradually, using
partial descriptions with vi to check that they are
correct. Be aware tha t a very unusual terminal may
expose deficiencies in the ability of the terminfo file to
describe it or bugs in vi. To easily test a new terminal
description you can set the environment variable
TERMINFO to a pathname of a directory containing the
compiled description you are working on and programs
will look there ra ther than in / u s r / l i b / t e r m i n f o . To get
the padding for insert line right (if the terminal
manufacturer did not document it) a severe test is to
edit / e tc /passwd a t 9600 baud, delete 16 or so lines from
the middle of the screen, then hit the 'u ' key several
times quickly. If the terminal messes up, more padding
is usually needed. A similar test can be used for insert
character.

Basic Capabi l i t i e s
The number of columns on each line for the terminal is
given by the co ls numeric capability. If the terminal is
a CRT, then the number of lines on the screen is given

5/86 - 8 -

T E R M I N F O (4)

by the lines capability. If the terminal wraps around to
the beginning of the next line when it reaches the right
margin, then it should have the a m capability. If the
terminal can clear its screen, leaving the cursor in the
home position, then this is given by the c lear string
capability. If the terminal overstrikes (rather than
clearing a position when a character is struck over) then
it should have the os capability. If the terminal is a
printing terminal, with no soft copy unit, give it both he
and os. (os applies to storage scope terminals, such as
TEKTRONIX 4010 series, as well as hard copy and APL
terminals.) If there is a code to move the cursor to the
left edge of the current row, give this as c r . (Normally
this will be carriage return, control M.) If there is a code
to produce an audible signal (bell, beep, etc) give this as
bel.

If there is a code to move the cursor one position to the
left (such as backspace) that capability should be given
as c u b l . Similarly, codes to move to the right, up, and
down should be given as c u f l , c u u l , and c u d l . These
local cursor motions should not alter the text they pass
over, for example, you would not normally use ' c u f l = '
because the space would erase the character moved over.
A very important point here is that the local cursor
motions encoded in terminfo are undefined at the left
and top edges of a CRT terminal. Programs should
never at tempt to backspace around the left edge, unless
bw is given, and never at tempt to go up locally off the
top. In order to scroll text up, a program will go to the
bottom left corner of the screen and send the ind (index)
string.
To scroll text down, a program goes to the top left
corner of the screen and sends the ri (reverse index)
string. The strings ind and ri are undefined when not
on their respective corners of the screen.
Parameterized versions of the scrolling sequences are
indn and r in which have the same semantics as ind and
ri except that they take one parameter, and scroll that
many lines. They are also undefined except at the
appropriate edge of the screen.
The a m capability tells whether the cursor sticks at the
right edge of the screen when text is output , but this
does not necessarily apply to a c u f l from the last
column. The only local motion which is defined from
the left edge is if bw is given, then a c u b l from the left
edge will move to the right edge of the previous row. If
bw is not given, the effect is undefined. This is useful

5/86 - 9 -

TERMINFO (4)

for drawing a box around the edge of the screen, for
example. If the terminal has switch selectable automatic
margins, the terminfo file usually assumes that this is on;
i.e., am. If the terminal has a command which moves to
the first column of the next line, that command can be
given as nel (newline). It does not matter if the
command clears the remainder of the current line, so if
the terminal has no cr and If it may still be possible to
craft a working nel out of one or both of them.
These capabilities suffice to describe hardcopy and
glass-tty terminals. Thus the model 33 teletype is
described as
33 | tty33 | tty | model 33 teletype,
bel=*G, cols#72, cr='M, cudl=AJ, he, ind=*J, os,
while the Lear Siegler ADM-3 is described as
adm3 | 3 | lsi adm3,
am, bel="G, clear="Z, cols#80, cr=~M, c u b l = H , cudl="J,
ind=AJ, lines#24,

Parameter ized Strings
Cursor addressing and other strings requiring parameters
in the terminal are described by a parameterized string
capability, with printf(3S) like escapes %x in it. For
example, to address the cursor, the cup capability is
given, using two parameters: the row and column to
address to. (Rows and columns are numbered from zero
and refer to the physical screen visible to the user, not to
any unseen memory.) If the terminal has memory
relative cursor addressing, that can be indicated by
mrcup.
The parameter mechanism uses a stack and special %
codes to manipulate it. Typically a sequence will push
one of the parameters onto the stack and then print it in
some format. Often more complex operations are
necessary.
The % encodings have the following meanings:
%%
%d
%2d
%3d
%02d
%03d
%c
%s

outputs '%'
print pop() as in printf
print pop() like %2d
print pop() like %3d

as in printf
print pop() gives %c
print pop() gives %s

push ith parm
set variable [a-z] to pop()

5/86 - 10 -

TERMINFO (4)

%g[a-z] get variable [a-z] and push it
%'c' char constant c
%{nn} integer constant nn

%+ % - %* %/ %m
arithmetic (%m is mod): push(pop()
op pop())

%& %\ % ' bit operations: push(pop() op pop())
% = % > % < logical operations: push(pop()

op pop())
%\ %~ unary operations push(op pop())
%\ add 1 to first two parms (for ANSI

terminals)

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional.
else-if's are possible ala Algol 68:
%? c. %t b. %e c0 %t b„ %e c ,
%t bg %e c j %t b^%e %; _
c. are conditions, d- are bodies,

l ' l

Binary operations are in postfix form with the operands
in the usual order. That is, to get x-5 one would use
"%gx%{5}%~".
Consider the HP2645, which, to get to row 3 and column
12, needs to be sent \E&al2c03Y padded for 6
milliseconds. Note that the order of the rows and
columns is inverted here, and that the row and column
are printed as two digits. Thus its cup capability is
cup=6\E&%p2%2dc%pl%2dY.
The Microterm ACT-IV needs the current row and
column sent preceded by a AT, with the row and column
simply encoded in binary, c u p = * T % p l % c % p 2 % c .
Terminals which use %c need to be able to backspace
the cursor (cubl) . and to move the cursor up one line on
the screen (cuul) . This is necessary because it is not
always safe to transmit \ n "D and \ r , as the system
may change or discard them. (The library routines
dealing with terminfo set t ty modes so that tabs are
never expanded, so \ t is safe to send. This turns out to
be essential for the Ann Arbor 4080.)
A final example is the LSI ADM-3a, which uses row and
column offset by a blank character, thus
c u p = \ E = % p l % ' '%+%c%p2%' '%+%c. After
sending ' \ E = ' , this pushes the first parameter, pushes
the ASCII value for a space (32), adds them (pushing the
sum on the stack in place of the two previous values)

- 11 -

TEKMINFO(4)

and outputs that value as a character. Then the same is
done for the second parameter. More complex arithmetic
is possible using the stack.
If the terminal has row or column absolute cursor
addressing, these can be given as single parameter
capabilities hpa (horizontal position absolute) and v p a
(vertical position absolute). Sometimes these are shorter
than the more general two parameter sequence (as with
the hp2645) and can be used in preference to cup • If
there are parameterized local motions (e.g., move n
spaces to the right) these can be given as cud, cub, cuf,
and cuu with a single parameter indicating how many
spaces to move. These are primarily useful if the
terminal does not have cup, such as the TEKTRONIX
4025.

Cursor Motions
If the terminal has a fast way to home the cursor (to
very upper left corner of screen) then this can be given
as home; similarly a fast way of getting to the lower
left-hand corner can be given as 11; this may involve
going up with c u u l from the home position, but a
program should never do this itself (unless 11 does)
because it can make no assumption about the effect of
moving up from the home position. Note that the home
position is the same as addressing to (0,0): to the top left
corner of the screen, not of memory. (Thus, the \ E H
sequence on HP terminals cannot be used for home.)

Area Clears
If the terminal can clear from the current position to the
end of the line, leaving the cursor where it is, this should
be given as el. If the terminal can clear from the current
position to the end of the display, then this should be
given as ed. E d is only defined from the first column of
a line. (Thus, it can be simulated by a request to delete
a large number of lines, if a true ed is not available.)

Inser t /de le te line
If the terminal can open a new blank line before the line
where the cursor is, this should be given as ill; this is
done only from the first position of a line. The cursor
must then appear on the newly blank line. If the
terminal can delete the line which the cursor is on, then
this should be given as d l l ; this is done only from the
first position on the line to be deleted. Versions of i l l
and d l l which take a single parameter and insert or
delete that many lines can be given as il and dl. If the
terminal has a settable scrolling region (like the vtlOO)
the command to set this can be described with the csr

5/86 - 12 -

TpiJX/IlVTpn t A\ i L j i b m i i i r kj ^ ̂ j

capability, which takes two parameters: the top and
bottom lines of the scrolling region. The cursor position
is, alas, undefined after using this command. It is
possible to get the effect of insert or delete line using this
command - the sc and rc (save and restore cursor)
commands are also useful. Inserting lines at the top or
bottom of the screen can also be done using ri or ind on
many terminals without a true insert/delete line, and is
often faster even on terminals with those features.
If the terminal has the ability to define a window as part
of memory, which all commands affect, it should be
given as the parameterized string wind. The four
parameters are the starting and ending lines in memory
and the starting and ending columns in memory, in that
order.
If the terminal can retain display memory above, then
the da capability should be given; if display memory can
be retained below, then db should be given. These
indicate that deleting a line or scrolling may bring non-
blank lines up from below or that scrolling back with ri
may bring down non-blank lines.

Inser t /Delete Charac ter
There are two basic kinds of intelligent terminals with
respect to insert/delete character which can be described
using terminfo. The most common insert/delete
character operations affect only the characters on the
current line and shift characters off the end of the line
rigidly. Other terminals, such as the Concept 100 and
the Perkin Elmer Owl, make a distinction between typed
and untyped blanks on the screen, shifting upon an
insert or delete only to an untyped blank on the screen
which is either eliminated, or expanded to two untyped
blanks. You can determine the kind of terminal you
have by clearing the screen and then typing text
separated by cursor motions. Type abc def using local
cursor motions (not spaces) between the abc and the def.
Then position the cursor before the abc and put the
terminal in insert mode. If typing characters causes the
rest of the line to shift rigidly and characters to fall off
the end, then your terminal does not distinguish between
blanks and untyped positions. If the abc shifts over to
the def which then move together around the end of the
current line and onto the next as you insert, you have
the second type of terminal, and should give the
capability in, which stands for insert null. While these
are two logically separate attributes (one line vs.
multiline insert mode, and special t reatment of untyped
spaces) we have seen no terminals whose insert mode

5/86 - 13 -

TERMINFO (4)

cannot be described with the single attr ibute.
Terminfo can describe both terminals which have an
insert mode, and terminals which send a simple sequence
to open a blank position on the current line. Give as
smir the sequence to get into insert mode. Give as rmir
the sequence to leave insert mode. Now give as i c h l
any sequence needed to be seat just before sending the
character to be inserted. Most terminals with a true
insert mode will not give i ch l ; terminals which send a
sequence to open a screen position should give it here.
(If your terminal has both, insert mode is usually
preferable to i c h l . Do not give both unless the terminal
actually requires both to be used in combination.) If post
insert padding is needed, give this as a number of
milliseconds in ip (a string option). Any other sequence
which may need to be sent af ter an insert of a single
character may also be given in ip. If your terminal
needs both to be placed into an 'insert mode' and a
special code to precede each inserted character, then
both s m i r / r m i r and i c h l can be given, and both will be
used. The ich capability, with one parameter, n , will
repeat the effects of i c h l n times.

It is occasionally necessary to move around while in
insert mode to delete characters on the same line (e.g., if
there is a t ab after the insertion position). If your
terminal allows motion while in insert mode you can give
the capability mir to speed up inserting in this case.
Omitt ing mir will affect only speed. Some terminals
(notably Datamedia's) must not have mir because of the
way their insert mode works.
Finally, you can specify d c h l to delete a single
character, dch with one parameter, n , to delete n
characters, and delete mode by giving s m d c and r m d c
to enter and exit delete mode (any mode the terminal
needs to be placed in for d c h l to work).
A command to erase n characters (equivalent to
output t ing n blanks without moving the cursor) can be
given as e ch with one parameter.

Highl ight ing, Under l in ing, and Visible Bells
If your terminal has one or more kinds of display
attributes, these can be represented in a number of
different ways. You should choose one display form as
standout mode, representing a good, high contrast, easy-
on-the-eyes, format for highlighting error messages and
other at tention getters. (If you have a choice, reverse
video plus half-bright is good, or reverse video alone.)
The sequences to enter and exit s tandout mode are given

5 /86 - 14 -

TERMINFO(4)

as s m s o and rmso, respectively. If the code to change
into or out of standout mode leaves one or even two
blank spaces on the screen, as the TVI 912 and Teleray
1061 do, then xmc should be given to tell how many
spaces are left.
Codes to begin underlining and end underlining can be
given as smul and rmul respectively. If the terminal
has a code to underline the current character and move
the cursor one space to the right, such as the Microterm
Mime, this can be given as uc.
Other capabilities to enter various highlighting modes
include blink (blinking) bold (bold or extra bright) dim
(dim or half-bright) invis (blanking or invisible text)
prot (protected) rev (reverse video) sgrO (turn off all
attribute modes) smacs (enter alternate character set
mode) and rmacs (exit alternate character set mode).
Turning on any of these modes singly may or may not
turn off other modes.
If there is a sequence to set arbitrary combinations of
modes, this should be given as sgr (set attributes),
taking 7 parameters. Each parameter is either 0 or 1, as
the corresponding attribute is on or off. The 7
parameters are, in order: standout, underline, reverse,
blink, dim, bold, alternate character set. Not all modes
need be supported by sgr, only those for which
corresponding separate attribute commands exist.
Terminals with the "magic cookie" glitch (xmc) deposit
special "cookies" when they receive mode-setting
sequences, which affect the display algorithm rather than
having extra bits for each character. Some terminals,
such as the HP 2621, automatically leave standout mode
when they move to a new line or the cursor is addressed.
Programs using standout mode should exit standout
mode before moving the cursor or sending a newline,
unless the msgr capability, asserting tha t it is safe to
move in standout mode, is present.
If the terminal has a way of flashing the screen to
indicate an error quietly (a bell replacement) then this
can be given as flash; it must not move the cursor.
If the cursor needs to be made more visible than normal
when it is not on the bottom line (to make, for example,
a non-blinking underline into an easier to find block or
blinking underline) give this sequence as cvvis. If there
is a way to make the cursor completely invisible, give
that as civis. The capability cnorm should be given
which undoes the effects of both of these modes.

- 15 -

TELNET(IN)

NAME
telnet - user interface to TELNET protocol

SYNOPSIS
/ u s r / l o c a l / b i n / t e l n e t [node]

DESCRIPTION
Telnet establishes connections to other nodes using the
TELNET protocol. It is more general than rlogin(lN)
because TELNET servers run under a wider variety of
operating systems. However, rlogin is more convenient
to use.

Establishing a Single Connection
If node is specified, telnet establishes a connection to
that node. Node can be a node name or a DARPA
Internet address in dot notation (see Aos£s(4N)). While
the connection remains open, telnet is in input mode (see
below). When the connection is closed, telnet
terminates. Usually, the remote system closes the
connection when you log out. To close the connection
yourself, use the escape character to enter the close
command (see below).

Command Mode
If node is not specified, telnet enters command mode.
Telnet prints its prompt (" t e l n e t > ") and understands
the following commands. Telnet understands a
truncated command name as long as it isn't ambiguous
("ope" is valid; "op" is not).

? [command] Give summaries of commands.
If command is specified, give
summary of just that
command.
Send the telenet command A O
(abort output) and an out-of-
band signal to the remote
server with DM as the
synchronizing mark.
Send the telenet command
A Y T (are you there?) and an
out-of-band signal to the
remote server with DM as the
synchronizing mark.
Send the telnet command
B R E A K to the remote server.
Send the telnet command EC
(erase character) to the remote
server.

A O

A Y T

B R E A K

E C

TELNET(IN)

EL

IP

S Y N C H

crmod

close

do option

dont option

escape

help [command

Send the telnet command EL
(erase line) to the remote
server.
Send the telenet command IP
(interrupt process) and an out-
of-band signal to the remote
server with D M as the
synchronizing mark.
Send an out-of-band signal to
the remote server with D M as
the synchronizing mark.
Toggle carriage return mode.
Initially carriage return mode is
off. When carriage return
mode is on, carriage return
characters from the remote
host are expanded to a carriage
return followed by a line feed.
Close the current connection.
Useful only with the escape
character (see "Input Mode,"
below).
Tell the remote server to
process option. This command
is used mostly for testing
option negotiation.
Tell the remote server to stop
processing option. This
command is used mostly for
testing option negotiation.
Change the escape character
used in input mode (see below).
Telnet prompts for a new
escape character; press a key
that generates a single
character, then press the
RETURN key. To leave the
escape character unchanged,
press RETURN without entering
a character.

Give summaries of commands.
If command is specified, give
summary of just that
command.

TELNET(IN)

Open a connection to node.
While the connection remains
open, telnet is in input mode
(see below). If you close the
connection with a telnet
command from input mode,
telnet returns to command
mode; if the connection is
closed from the other end,
telnet terminates. Usually, the
remote system closes the
connection when you log out.
Toggle viewing of TELNET
options negotiations. Initially
viewing is off. When viewing is
on, telnet shows its negotiations
with the telnetd.
Close any open connection and
terminate telnet.
Show the current connection
and escape character.
Tell the remote server we will
process option. This command
is used mostly for testing
option negotiation.
Tell the remote server we won't
process option. This command
is used mostly for testing
option negotiation.

escape character Send the escape character to
the remote host.

Input Mode
Telnet enters input mode when a connection is opened
and leaves it when a connection is closed. In input mode
all text typed goes to the remote node except when the
escape character is typed.
To enter a single telnet command without first closing
the connection, press the escape character at any time in
input mode. Initially the escape character is control-[
ASCII GS; octal 035); Telnet gives its prompt
" t e l n e t > ") and executes a single command line instead

of sending it to the remote node. After you press the
RETURN key and the command is executed, telnet
resumes sending your input to the remote node, unless
your command closed the connection (close or quit).

open node

options

quit

s ta tus

will option

w o n t option

TELNET(IN)

Use the escape command to change the escape
character.

Telnet Options
Once a connection is established, both sides negotiate
various options to get the best possible service. The
following options are recognized:
B I N A R Y

Controls transmission of binary data.
E C H O

Controls echoing.
S G A Suppress go ahead.
S T A T U S

Status of options.
T M Timing Mark.
E X O P L Extended Options List.

SEE ALSO
rlogin(lN), telnetd(lNM).

- 4 -

TELNETD (1NM)

NAME
telnetd - DARPA TELNET protocol server

SYNOPSIS
/ e t c / t e l n e t d [— d] [port]

DESCRIPTION
Telnetd is a server which supports the DARPA standard
TELNET virtual terminal protocol. The TELNET
server operates at the port indicated in the " telnet"
service description; see services(4). This port number
may be overridden (for debugging purposes) by
specifying a port number on the command line. If the
— d option is specified, each socket created by telnetd will
have debugging enabled (see SO_DEBUG in soeifcet(2N)).
Telnetd operates by allocating a virtual-terminal device
(see vt(7j) for a client, then creating a login process
which has the slave side of the pseudo-terminal as stdin,
s tdout , and stderr. Telnetd manipulates the master
side of the pseudo terminal, implementing the TELNET
protocol and passing characters between the client and
login process.
When a TELNET session is started up, telnetd sends a
TELNET option to the client side indicating a
willingness to do "remote echo" of characters. The
pseudo terminal allocated to the client is configured to
operate in "cooked" mode, and with XTABS and
CRMOD enabled (see tty{7)). Aside from this initial
setup, the only mode changes telnetd will carry out are
those required for echoing characters at the client side of
the connection.
The following options are recognized:
B I N A R Y

Controls transmission of binary data.
E C H O

Controls echoing.
S G A Suppress go ahead.
S T A T U S

Status of options.
T M Timing Mark.
E X O P L Extended Options List.

SEE ALSO
telnet(lN).

TEST(l)

NAME
test - condition evaluation command

SYNOPSIS
tes t expr
[expr]

DESCRIPTION
Test evaluates the expression expr and, if its value is
true, returns a zero (true) exit status; otherwise, a non-
zero (false) exit status is returned; test also returns a
non-zero exit status if there are no arguments. The
following primitives are used to construct expr:
- r file true if file exists and is readable.
—w file true if file exists and is writable.
—x file true if file exists and is executable.
- f file true if file exists and is a regular file.
—d file true if file exists and is a directory.
—c file true if file exists and is a character special

file.
—b file true if file exists and is a block special file.
—p file true if file exists and is a named pipe (fifo).
—u file true if file exists and its set-user-ID bit is

set.
- g file true if file exists and its set-group-ID bit is

set.
—k file true if file exists and its sticky bit is set.
—s file true if file exists and has a size greater

than zero.
- t [fildes] true if the open file whose file descriptor

number is fildes (l by default) is associated
with a terminal device.

- z si true if the length of string si is zero.
—n si true if the length of the string si is non-

zero.
si = s2 true if strings si and s2 are identical.
si ! = s2 true if strings si and s2 are not identical.
si true if si is not the null string.
nl —eq n2 true if the integers nl and n2 are

algebraically equal. Any of the
comparisons —ne, —gt, — ge, —It, and —le
may be used in place of —eq.

TEST(l)

These primaries may be combined with the following
operators:
! unary negation operator,
—a binary and operator.
—o binary or operator (—a has higher

precedence than —o).
(expr) parentheses for grouping.
Notice that all the operators and flags are separate
arguments to test. Notice also that parentheses are
meaningful to the shell and, therefore, must be escaped.

SEE ALSO
expr(l), find(l), sh(l).

WARNING
In the second form of the command (i.e., the one that
uses [], rather than the word test), the square brackets
must be delimited by blanks.
Some UNIX systems do not recognize the second form of
the command.

TFTP(IN)

NAME
t f tp - user interface to the DARPA T F T P protocol

SYNOPSIS
t f t p [host [port]]

DESCRIPTION
Tftp is the user interface to the ARPANET standard
Trivial File Transfer Protocol. The program allows a
user to transfer files to and from a remote network site.
The client host with which tftp is to communicate may
be specified on the command line. If this is done, tftp
will immediately attempt to establish a connection to a
TFTP server on that host. Otherwise, tftp will enter its
command interpreter and await instructions from the
user. When tftp is awaiting commands from the user,
the prompt

t f t p >
appears. The following commands are recognized by
tftp-.
connect

connect to remote tftp
mode set file to transfer mode
put send file
get receive file
quit exit tftp
verbose

toggle verbose mode
trace toggle packet tracing
s ta tus show current status
rexmt set total retransmission
? print help information
t imeout

set total retransmission timeout
The use of tftp does not require an account or password
on the remote system. Due to the lack of authentication
information, tftp will allow only publicly readable files to
be accessed.

FILES
/etc/hosts

SEE ALSO
tftpd(lNM).

TFTP(IN)

WARNINGS
Due to the unreliability of the transport protocol (UDP)
and the scarcity of T F T P implementations, it is
uncertain whether it really works.
The search permissions of the directories leading to the
files accessed are not checked.

TFTPD(1NM)

NAME
tf tpd - DARPA Trivial File Transfer Protocol server

SYNOPSIS
/ e t c / t f t p d [- d] [port]

DESCRIPTION
Tftpd is a server which supports the DARPA Trivial File
Transfer Protocol. The TFTP server operates at the
port indicated in the " t f t p " service description; see
services(4). This port number may be overridden (for
debugging purposes) by specifying a port number on the
command line. If the —d option is specified, each socket
created by tftpd will have debugging enabled (see
SO_DEBUG in «oeifcef(2N)).
The use of tftp does not require an account or password
on the remote system. Due to the lack of authentication
information, tftpd will allow only publicly readable files
to be accessed. Note that this extends the concept of
"public" to include all users on all hosts that can be
reached through the network; this may not be
appropriate on all systems, and its implications should be
considered before enabling tf tp service.

SEE ALSO
tf tp(lN), netman(lN).

BUGS
This server is known only to be self consistent (i.e. it
operates with the user T F T P program, tftp(IN)). Due to
the unreliability of the transport protocol (UDP) and the
scarcity of T F T P implementations, it is uncertain
whether it really works.
The search permissions of the directories leading to the
files accessed are not checked.

- 1 -

TIC (1M)

NAME
tic - terminfo compiler

SYNOPSIS
t ic [— v[n]] file ...

DESCRIPTION
Tic translates terminfo files from the source format into
the compiled format. The results are placed in the
directory / u s r / l i b / t e r m i n f o .
The —v (verbose) option causes tic to output trace
information showing its progress. If the optional integer
is appended, the level of verbosity can be increased.
Tic compiles all terminfo descriptions in the given files.
When a u s e = field is discovered, tic searches first the
current file, then the master file, which is
". / terminfo.src".
If the environment variable TERMINFO is set, the
results are placed there instead of / u s r / l i b / t e r m i n f o .
Some limitations: total compiled entries cannot exceed
4096 bytes. The name field cannot exceed 128 bytes.

FILES
/usr / l ib / te rminfo/* /* compiled terminal capability
data base

SEE ALSO
curses(3X), terminfo(4).

BUGS
Instead of searching . / terminfo.src , it should check for
an existing compiled entry.

- 1 -

TIME (1)

NAME
time - time a command

SYNOPSIS
t ime command

DESCRIPTION
The command is executed; after it is complete, time
prints the elapsed time during the command, the time
spent in the system, and the time spent in execution of
the command. Times are reported in seconds.
The times are printed on standard error.

SEE ALSO
timex(l), times(2).

TIMEX (1)

NAME
timex - time a command; report process data and
system activity

SYNOPSIS
t imex [options] command

DESCRIPTION
The given command is executed; the elapsed time, user
time and system time spent in execution are reported in
seconds. Optionally, process accounting data for the
command and all its children can be listed or
summarized, and total system activity during the
execution interval can be reported.
The output of timex is written on standard error.
Options are:
—p List process accounting records for command and

all its children. Suboptions f , h, k, m, r, and t
modify the data items reported, as defined in
acctcom(l). The number of blocks read or written
and the number of characters transferred are
always reported.

—o Report the total number of blocks read or written
and total characters transferred by command and
all its children.

—s Report total system activity (not just that due to
command) that occurred during the execution
interval of command. All the data items listed in
aar(l) are reported.

SEE ALSO
acctcom(l), sar(l).

WARNING
Process records associated with command are selected
from the accounting file / u s r / a d m / p a c c t by inference,
since process genealogy is not available. Background
processes having the same user-id, terminal-id, and
execution time window will be spuriously included.

EXAMPLES
A simple example:

- 1 -

TIMEX (1)

timex - o p s sleep 60
A terminal session of arbitrary complexity can be
measured by timing a sub-shell:

timex -opskmt sh
session commands

EOT

- 2 -

TOC (1G)

NAME
toe - graphical table of contents routines

SYNOPSIS
dtoc [directory]
t t o c mm-file
v t o c [—cdhnimsvn] [TTOC file]

DESCRIPTION
All of the commands listed below reside in
/ u s r / b i n / g r a f (see graphics (1G)).
dtoc Dtoc makes a textual table of contents,

TTOC, of all subdirectories beginning at
directory (directory defaults to .). The list
has one entry per directory. The entry fields
from left to right are level number, directory
name, and the number of ordinary readable
files in the directory. Dtoc is useful in
making a visual display of all or parts of a
file system. The following will make a visual
display of all the readable directories under

dtoc / I v toc I td
t t o c Output is the table of contents generated by

the TC macro of mm(l) translated to TTOC
format. The input is assumed to be an mm
file that uses the .H family of macros for
section headers. If no file is given, the
standard input is assumed.

v t o c Vtoc produces a GPS describing a hierarchy
chart from a TTOC. The output drawing
consists of boxes containing text connected in
a tree structure. If no file is given, the
standard input is assumed. Each TTOC entry
describes one box and has the form:

id [line-weight,line-style] "text" [mark]

where:
id is an alternating sequence of

numbers and dots. The id
specifies the position of the
entry in the hierarchy. The id
0. is the root of the tree.

line-weight is either:
n, normal-weight; or
m, medium-weight; or
b, bold-weight.

TOC (1G)

is either:
so, solid-line;
do, dotted-line;
dd, dot-dash

line;
da, dashed-line;

or
Id, long-dashed

is a character string surrounded
by quotes. The characters
between the quotes become the
contents of the box. To include
a quote within a box it must be
escaped (\") .
is a character string
(surrounded by quotes if it
contains spaces), with included
dots being escaped. The string
is put above the top right
corner of the box. To include
either a quote or a dot within a
mark it must be escaped.

Entry example: 1.1 b,da "ABC" DEF
Entries may span more than one line by
escaping the new-line (\new-line) .

Comments are surrounded by the / * , * / pair.
They may appear anywhere in a TTOC.

Options:
c Use text as entered (default is all upper

case).
d Connect the boxes with diagonal lines.
hn Horizontal interbox space is n% of box

width.
i Suppress the box id.
m Suppress the box mark.
s Do not compact boxes horizontally.
vn Vertical interbox space is n% of box

height.

SEE ALSO
graphics(lG), gps(4).

- 2 -

lint-style

text

mark

TOUCH(1)

NAME
touch - update access and modification times of a file

SYNOPSIS
touch [— amc] [mmddhhmm[yy]] files

DESCRIPTION
Touch causes the access and modification times of each
argument to be updated. The file name is created if it
does not exist. If no time is specified (see date(1)) the
current time is used. The —a and —m options cause
touch to update only the access or modification times
respectively (default is —am). The —c option silently
prevents touch from creating the file if it did not
previously exist.
The return code from touch is the number of files for
which the times could not be successfully modified
(including files that did not exist and were not created).

SEE ALSO
date(l), utime(2).

TPLOT(1G)

NAME
tplot - graphics filters

SYNOPSIS
tplot [—Tterminal [—e raster]]

DESCRIPTION
These commands read plotting instructions (see plot(4))
from the standard input and in general produce, on the
standard output, plotting instructions suitable for a
particular terminal. If no terminal is specified, the
environment parameter $TERM (see environ(5)) is used.
Known terminals are:
300 DASI 300.
300S DASI 300s.
450 DASI 450.
4014 TEKTRONIX 4014.
ver Versatec D1200A. This version of plot places a

scan-converted image in / u s r / t m p / r a s t e r $ $
and sends the result directly to the plotter
device, rather than to the standard output. The
—e option causes a previously scan-converted file
raster to be sent to the plotter.

/usr / l ib/ t300
/usr/ l ib/ t300s
/usr / l ib / t450
/usr/lib/14014

FILES

SEE ALSO
plot(3X), plot(4), term(5).

TPUT(1)

NAME
tput - query terminfo database

SYNOPSIS
t p u t [—Ttype] capname

DESCRIPTION
Tput uses the terminfo(4) database to make terminal-
dependent capabilities and information available to the
shell. Tput outputs a string if the attribute (capability
name) is of type string, or an integer if the attribute is
of type integer. If the attribute is of type boolean, tput
simply sets the exit code (0 for TRUE, 1 for FALSE),
and does no output.
-Ttype

the environment variable

Capname

EXAMPLES
t p u t clear

indicates the type of terminal. Normally
this flag is unnecessary, as the default is
taken from
$TERM.
indicates the attribute from the terminfo
database. See terminfo(4).

t p u t cols

t p u t - T 4 5 0 cols

b o l d = ' t p u t smso'

t p u t he

FILES

Echo clear-screen sequence for the
current terminal.
Print the number of columns for the
current terminal.
Print the number of columns for the
450 terminal.

Set shell variable "bold" to stand-
out mode sequence for current
terminal. This might be followed by
a prompt:
echo "${bold}PIease type in
your name: \ c*
Set exit code to indicate if current
terminal is a hardcopy terminal.

Terminal descriptor files
Definition files

/ e t c / t e rm/? /*
/usr/ include/term.h
/usr/include/curses.h

DIAGNOSTICS
Tput prints error messages and returns the following
error codes on error:
—1 Usage error.
—2 Bad terminal type.
—3 Bad capname.

TPUT(1)

In addition, if a capname is requested for a terminal that
has no value for that capname (e.g., t p u t —T450 lines),
— 1 is printed.

SEE ALSO
stty(l), terminfo(4).

TR (1)

NAME
t r - translate characters

SYNOPSIS
tr [- c d s] [stringl [string2]]

DESCRIPTION
Tr copies the standard input to the standard output
with substitution or deletion of selected characters.
Input characters found in stringl are mapped into the
corresponding characters of stringS. Any combination of
the options —cds may be used:
—c Complements the set of characters in stringl

with respect to the universe of characters whose
ASCII codes are 001 through 377 octal.

—d Deletes all input characters in stringl.
—s Squeezes all strings of repeated output

characters that are in stringS to single
characters.

The following abbreviation conventions may be used to
introduce ranges of characters or repeated characters
into the strings:
[a—z] Stands for the string of characters whose ASCII

codes run from character a to character z,
inclusive.

[a*n] Stands for n repetitions of a. If the first digit
of n is 0, n is considered octal; otherwise, n is
taken to be decimal. A zero or missing n is
taken to be huge; this facility is useful for
padding stringS.

The escape character \ may be used as in the shell to
remove special meaning from any character in a string.
In addition, \ followed by 1, 2, or 3 octal digits stands
for the character whose ASCII code is given by those
digits.
The following example creates a list of all the words in
filel one per line in file 2, where a word is taken to be a
maximal string of alphabetics. The strings are quoted to
protect the special characters from interpretation by the
shell; 012 is the ASCII code for newline.

t r - c s "[A-Z][a-z]" "[\012*]" < f i l e l >fi le2
SEE ALSO

ed(l), sh(l), ascii(5).

TR (1)

BUGS
Will not handle ASCII NUL in stringl or string2; always
deletes NUL from input.

TROFF(1)

NAME
troff - typeset text

SYNOPSIS
troff [options files

DESCRIPTION
Troff formats text contained in files (standard input by
default) for a Wang Laboratories, Inc., C / A / T
phototypesetter. Its capabilities are described in the
NROFF/ TROFF User's Manual cited below.
An argument consisting of a minus (—) is taken to be a
file name corresponding to the standard input. The
options, which may appear in any order, but must
appear before the files, are:
—olist Print only pages whose page numbers appear

in the list of numbers and ranges, separated
by commas. A range N—M means pages N
through M; an initial —N means from the
beginning to page N; and a final N— means
from N to the end. (See BUGS below.)

—nN Number first generated page N.
—sN Stop every N pages. Troff will stop the

phototypesetter every N pages, produce a
trailer to allow changing cassettes, and resume
when the typesetter's start button is pressed.

—r aN Set register a (which must have a one-
character name) to N .

—i Read standard input after files are exhausted.
—q Invoke the simultaneous input-output mode of

the .rd request.
— z Print only messages generated by . tm

(terminal message) requests.
—mname Prepend to the input files the non-compacted

(ASCII text) macro file
/ u s r / l i b / t m a c / t m a c . n a m e .

—cname Prepend to the input files the compacted
macro files
/ u s r / l i b / m a c r o s / c m p . [n t] . dt].name and
/ u s r / l i b / m a c r o s / u c m p . [n t .name.
Compact the macros used in this invocation of
troff, placing the output in files [dt] .name in
the current directory (see the May 1979
Addendum to the NROFF j TROFF User's
Manual for details of compacting macro files).
Direct output to the standard output instead
of the phototypesetter.
Refrain from feeding out paper and stopping
phototypesetter at the end of the run.

—k name

-t

- f

- 1 -

TROFF(1)

—w Wait until phototypesetter is available, if it is
currently busy.

—b Report whether the phototypesetter is busy or
available. No text processing is done,

—a Send a printable ASCII approximation of the
results to the standard output.

—pN Print all characters in point size N while
retaining all prescribed spacings and motions,
to reduce phototypesetter elapsed time,

- g Prepare output for the Murray Hill
Computation Center phototypesetter and
direct it to the standard output (this option is
not usable on most systems). This option is
not compatible with trie —s option;
furthermore, when this option is invoked, all
.fp (font position) requests (if any) in the troff
input must come before the first break, and
no .tl requests may come before the first
break.

—Tname Use font-width tables for device name (the
font tables are found in
/ u s r / l i b / f o n t / n a m e / *) . Currently, no
names are supported.

FILES
/usr / l ib /suf tab suffix hyphenation tables
/ t m p / t a $ # temporary file
/usr / l ib / tmac/ tmac.* standard macro files and pointers
/usr / l ib/macros/* standard macro files
/us r / l ib / fon t /* font width tables for troff

SEE ALSO
NROFF/ TROFF User's Manual and A TROFF Tutorial
in the UNIX System Document Processing Guide.
cw(l), eqn(l), mmt(l) , nroff(l), tbl(l), tc(l), mm(5),
mv(5).

BUGS
Troff believes in Eastern Standard Time; as a result,
depending on the time of the year and on your local time
zone, the date that troff generates may be off by one
day from your idea of what the date is.
When troff is used with the —olist option inside a
pipeline (e.g., with one or more of cw(l), eqn(1), and
(6/(1)), it may cause a harmless "broken pipe" diagnostic
if the last page of the document is not specified in list.

- 2 -

TRPT(1NM)

NAME
trpt - print protocol trace

SYNOPSIS
trpt [- a] [- s] [- t] [- j] [- p hex-address]
[system [core]]

DESCRIPTION
Trpt interrogates the buffer of TCP trace records created
when a socket is marked for debugging (see
setsockopt{2N)), and prints a readable description of
these records. When no options are supplied, trpt prints
all the trace records found in the system grouped
according to TCP connection protocol control block
(PCB). The following options may be used to alter this
behavior.
—s in addition to the normal output, print a

detailed description of the packet sequencing
information,

—t in addition to the normal output, print the
values for all timers at each point in the trace,

—j just give a list of the protocol control block
addresses for which there are trace records,

- p show only trace records associated with the
protocol control block who's address follows,

—a in addition to the normal output, print the
values of the source and destination addresses
for each packet recorded.

The recommended use of trpt is as follows. Isolate the
problem and enable debugging on the socket(s) involved
in the connection. Find the address of the protocol
control blocks associated with the sockets using the —A
option to nets<a<(lN). Then run trpt with the —p
option, supplying the associated protocol control block
addresses. If there are many sockets using the debugging
option, the —j option may be useful in checking to see if
any trace records are present for the socket in question.
If debugging is being performed on a system or core file
other than the default, the last two arguments may be
used to supplant the defaults.

CONFIGURATION
To use trpt, your kernel must be configured for network
debugging. See con/i j(lM) and master(4). The
tcptrace parameter must be non-zero for tracing to
occur.

TRPT(INM)

FILES
/unix
/dev/kmem

SEE ALSO
setsockopt(2N), netstat(lN)

DIAGNOSTICS
"no namelist" when the system image doesn't contain
the proper symbols to find the trace buffer; others which
should be self explanatory.

WARNINGS
Trace will be incomplete for connections using intelligent
network controllers.

TRUE(1)

NAME
true, false - provide truth values

SYNOPSIS
true
false

DESCRIPTION
True does nothing, successfully. False does nothing,
unsuccessfully. They are typically used in input to sA(l)
such as:

while true
do

command
done

SEE ALSO
sh(l).

DIAGNOSTICS
True has exit status zero, false nonzero.

TSF,T (1)

NAME
tset - set terminal, terminal inteface, and terminal
environment

SYNOPSIS
tset [options] (—m [pseudotype\[test speed]:type ...]
[type \

DESCRIPTION
Tset initializes your terminal. Its primary use is in login
scripts (see profile(4)) to set terminal options, terminal
interface options, and environment variables. Its
secondary use is to restore the terminal interface and
terminal after an editor or other video program has
crashed.
To restore the terminal interface and terminal, just type
"tset". It may be necessary to end the command with
Control-J or the NEXT key instead of the RETURN key.
To set up login initialization, construct a command with
the options and arguments you need and place it in your
login script.
An argument indicates a terminal type to use in place of
the T E R M environment variable. If the argument
begins with a question mark, tset prompts you for a
terminal type; if you enter a blank line, you get the type
specified by the argument. Terminal type arguments (in
conjunction with the — or —s options) are useful at
installations where none of the terminals are
permanently connected to the host.
Tset accepts the following options.
- Print the terminal type. This is useful for

setting the T E R M environment variable in the
.profile file:

export TERM
TERM= v tset - '?adm3a ' v

- s Print commands that will set the TERM and
TERMCAP environment variables. The value
for T E R M C A P contains a description of the
terminal; this makes it unnecessary for programs
to read the terminal capability file each time
they start up. For example:

eval v t s e t - s '?adm3a ' v

Tset uses the SHELL environment variable to
decide the kind of commands to print.

TSET(1)

- S Prints values for T E R M and T E R M C A P
Useful only in .login; if you use the values to set
a shell variable, you get a two-element array.

—ec Set the erase character to c . Indicate a control
character with a If c is missing, tset uses the
value of your backspace key; this is usually
control-H. You also get control-H if your
terminal lacks a backspace key.

—kc Set the kill character to c. Indicate a control
character with a If c is missing tset uses
control-X.

- I Don't initialize the terminal.
— Q Don't remind user of erase and kill values.
—mpseudotype testspeed'.type

Use one or more —m options in place of a type
argument when you want tset to figure out your
terminal type for you. Pseudotype should be a
type that your installation has reserved for a
class of "sof t " connections, such as dialup,
arpanet , or plugboard. A missing pseudotype
means "any type.". Test and speed indicate a
class of baud rates. Test is = or @ for
"equals"; < for "less than"; > for "greater
than"; or ! = , ! < , or ! > for negations. A
missing speed indication means "all speeds."
Type is the type to assume if the pseudotype and
terminal speeds match. Type can begin with a
question mark to indicate a user query. Thus,

tset m 'd i a lup@300: t r s80 ' -m 'dialup.tO '

prints "trs80" if T E R M is "dialup" and the
baud rate is 300; "tO" if T E R M is "dialup" and
the baud rate isn't 300; and the value of T E R M
otherwise.

FILES
/e tc / t ty type type wired to each port
/e tc / termcap terminal capability database

SEE ALSO
sh(l), stty(l) , profile(4), ttytype(4), termcap(4),
environ(5).

DIAGNOSTICS
Nonzero return status if it could not process all options
and user input. This is useful to confirm that user
entered known terminal type: see profile(4) for an
example.

- 2 -

TSORT(1)

NAME
tsort - topological sort

SYNOPSIS
t sort [file]

DESCRIPTION
Tsort produces on the standard output a totally ordered
list of items consistent with a partial ordering of items
mentioned in the input file. If no file is specified, the
standard input is understood.
The input consists of pairs of items (nonempty strings)
separated by blanks. Pairs of different items indicate
ordering. Pairs of identical items indicate presence, but
not ordering.

SEE ALSO
lorder(l).

DIAGNOSTICS
Odd data: there is an odd number of fields in the input
file.

BUGS
Uses a quadratic algorithm; not worth fixing for the
typical use of ordering a library archive file.

- 1 -

TTY(1)

NAME
tty - get the name of the terminal

SYNOPSIS
t t y [- s]

DESCRIPTION
Tty prints the path name of the user's terminal. The —s
option inhibits printing of the terminal path name,
allowing one to test just the exit code.

EXIT CODES
2 if invalid options were specified,
0 if standard input is a terminal,
1 otherwise.

DIAGNOSTICS
"not a t t y " if the standard input is not a terminal and
—s is not specified.

UL(1)

NAME
ul - do underlining

SYNOPSIS
ul [— i] [— t terminal] [name ...]

DESCRIPTION
Ul reads the named files (or standard input if none are
given) and translates occurances of underscores to the
sequence which indicates underlining for the terminal in
use, as specified by the environment variable TERM.
The —t option overrides the terminal kind specified in
the environment. The file /e tc / termcap is read to
determine the appropriate sequences for underlining. If
the terminal is incapable of underlining, but is capable of
a standout mode then that is used instead. If the
terminal can overstrike, or handles underlining
automatically, ul degenerates to eat(l). If the terminal
cannot underline, underlining is ignored.
The — i option causes ul to indicate underlining onto by a
separate line containing appropriate dashes ' - ' ; this is
useful when you want to look at the underlining which is
present in an nroff output stream on a crt-terminal.

SEE ALSO
man(l), nroff(l), colcrt(l)

AUTHOR
Mark Horton wrote ul. The — i option was originally a
option of the editor ex(l), then an iul command.

BUGS
Nroff usually outputs a series of backspaces and
underlines intermixed with the text to indicate
underlining. No attempt is made to optimize the
backward motion.

UMASK (1)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [ooo]

DESCRIPTION
The user file-creation mode mask is set to ooo. The
three octal digits refer to read/write/execute permissions
for owner, group, and others, respectively (see chmod(2)
and umask(2)). The value of each specified digit is
subtracted from the corresponding "digit" specified by
the system for the creation of a file (see creat(2)). For
example, umask 022 removes group and others write
permission (files normally created with mode 777
become mode 755; files created with mode 666 become
mode 644).
If ooo is omitted, the current value of the mask is
printed.
Umask is recognized and executed by the shell.

SEE ALSO
chmod(l), sh(l), chmod(2), creat(2), umask(2).

i .

- 1 -

UNAME (1)

NAME
uname - print name of current CTIX system

SYNOPSIS
uname [— snrvma]

DESCRIPTION
Uname prints the name of the CTIX system on the
standard output file. It is mainly useful to determine
which system one is using. The options cause selected
information returned by uname (2) to be printed:
—s print the system name (default).
- n print the nodename (the nodename may be a

name that the system is known by to a
communications network).

—r print the operating system release.
- v print the operating system version.
- m print the machine hardware name.
—a print all the above information.
Arguments not recognized default the command to the
—s option.

SEE ALSO
uname(2).

UNGET(1)

NAME
unget - undo a previous get of an SCCS file

SYNOPSIS
u n g e t [—rSID] [-s] [-n] files

DESCRIPTION
Unget undoes the effect of a g e t —e done prior to
creating the intended new delta. If a directory is named,
unget behaves as though each file in the directory were
specified as a named file, except that non-SCCS files and
unreadable files are silently ignored. If a name of — is
given, the standard input is read with each line being
taken as the name of an SCCS file to be processed.
Keyletter arguments apply independently to each named
file.

—tSID Uniquely identifies which delta is no
longer intended. (This would have
been specified by get as the "new
delta"). The use of this keyletter is
necessary only if two or more
outstanding gets for editing on the
same SCCS file were done by the
same person (login name). A
diagnostic results if the specified SID
is ambiguous, or if it is necessary and
omitted on the command line.

—s Suppresses the printout, on the
standard output, of the intended
delta's SID.

- n Causes the retention of the gotten file
which would normally be removed
from the current directory.

SEE ALSO
delta(l), get(l), help(l), sact(l).

DIAGNOSTICS
Use help(1) for explanations.

UNIQ (1)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [- u d c [+ n] [- n]] [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In
the normal case, the second and succeeding copies of
repeated lines are removed; the remainder is written on
the output file. Input and output should always be
different. Note that repeated lines must be adjacent in
order to be found; see sor<(l). If the —u flag is used,
just the lines that are not repeated in the original file are
output. The —d option specifies that one copy of just
the repeated lines is to be written. The normal mode
output is the union of the —u and —d mode outputs.
The —c option supersedes —u and —d and generates an
output report in default style but with each line
preceded by a count of the number of times it occurred.
The n arguments specify skipping an initial portion of
each line in the comparison:
— n The first n fields together with any blanks

before each are ignored. A field is defined as a
string of non-space, non-tab characters
separated by tabs and spaces from its
neighbors.

- f n The first n characters are ignored. Fields are
skipped before characters.

SEE ALSO
comm(l), sort(l).

UNITS (1)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION
Units converts quantities expressed in various standard
scales to their equivalents in other scales. It works
interactively in this fashion:

You have: inch
You want: cm

* 2.540000e+00
/ 3.937008e-01

A quantity is specified as a multiplicative combination of
units optionally preceded by a numeric multiplier.
Powers are indicated by suffixed positive integers,
division by the usual sign:

You have: 15 lbs f o r c e / i n 2
You want: a t m

* 1.020689e+00
/ 9.797299e-01

Units only does multiplicative scale changes; thus it can
convert Kelvin to Rankine, bu t not Celsius to
Fahrenheit. Most familiar units, abbreviations, and
metric prefixes are recognized, together with a generous
leavening of exotica and a few constants of nature
including:

pi ratio of circumference to diameter,
c speed of light,
e charge on an electron,
g acceleration of gravity,
force same as g,
mole Avogadro's number,
water pressure head per unit height of water,
au astronomical unit.

P o u n d is not recognized as a unit of mass; lb is.
Compound names are run together, (e.g., l ightyear).
British units that differ from their U.S. counterparts are
prefixed thus: brgallon. For a complete list of units,
type:

cat /usr / l ib /uni t tab
FILES

/usr / l ib /uni t tab

UPDATE(IM)

NAME
update - provide disk synchronization

SYNOPSIS
update [s]

DESCRIPTION
Update implements regular synchronization. Run it only
once, in background; normally there is an update
command in / e t c / r c .
Update executes an infinite loop with two actions:
• A sleep for s seconds (30 seconds default).
• A sync system call. This feature calls for less

overhead than the practice of having the cron
command run sync.

FILES
/dev /dsk /* - disk interfaces

SEE ALSO
ioctl(2), sleep(3), fp(7).

UUCLEAN(1M)

NAME
uuclean - uucp spool directory clean-up

SYNOPSIS
/ u s r / l i b / u u c p / u u c l e a n [options]

DESCRIPTION
Uuclean will scan the spool directory for files with the
specified prefix and delete all those which are older than
the specified number of hours.
The following options are available.
—ddirectory Clean directory instead of the spool

directory. If directory is not a valid spool
directory it cannot contain "work files" i.e.,
files whose names s tar t with "C.". These
files have special meaning to uuclean
pertaining to uucp job statistics.

—ppre Scan for files with pre as the file prefix.
Up to 10 —p arguments may be specified.
A —p without any pre following will cause
all files older than the specified time to be
deleted.

—ntime Files whose age is more than time hours
will be deleted if the prefix test is satisfied,
(default time is 72 hours)

—•wfile The default action for uuclean is to remove
files which are older than a specified time
(see —n option). The —-w option is used to
find those files older than time hours,
however, the files are not deleted. If the
argument file is present the warning is
placed in file, otherwise, the warnings will
go to the standard output.

- says Only files destined for system sys are
examined. Up to 10 — s arguments may be
specified.

—m/t'/e The —m option sends mail to the owner of
the file when it is deleted. If a file is
specified then an entry is placed in file.

This program is typically started by cron(lM).
FILES

/usr / l ib /uucp directory with commands used by
uuclean internally

/usr/spool/uucp spool directory
SEE ALSO

cron(lM), uucp(lC), uux(lC).

- 1 -

UUCP(1C)

NAME
uucp, uulog, uuname - CTIX system to CTIX system
copy

SYNOPSIS
uucp [options] source-files destination-file
uulog [options]
uuname [— 1] [—v]

DESCRIPTION
Uucp.

Uucp copies files named by the source-file arguments to
the destination-file argument. A file name may be a
path name on your machine, or may have the form:

system-name!path-name
where system-name is taken from a list of system names
which uucp knows about. The system-name may also be
a list of names such as

system-name !system-name!... !system-name!path-
name

in which case an attempt is made to send the file via the
specified route, and only to a destination in PUBDIR (see
below). Care should be taken to insure that
intermediate nodes in the route are willing to foward
information.
The shell metacharacters T, * and [. . .] appearing in
path-name will be expanded on the appropriate system.
Path names may be one of:

(1) a full path name;
(2) a path name preceded by "user where

user is a login name on the specified
system and is replaced by that user's
login directory;

(3) a path name preceded by " /user where
user is a login name on the specified
system and is replaced by that user's
directory under PUBDIR;

(4) anything else is prefixed by the current
directory.

If the result is an erroneous path name for the remote
system the copy will fail. If the destination-file is a
directory, the last part of the source-file name is used.
Uucp preserves execute permissions across the
transmission and gives 0666 read and write permissions

- 1 -

UUCP(IC)

(see chmod{2)).
The following options are interpreted by uucp:
—d Make all necessary directories for the file copy

(default).
—f Do not make intermediate directories for the file

copy.
—c Use the source file when copying out rather than

copying the file to the spool directory (default).
—C Copy the source file to the spool directory.
—m/«7e Report status of the transfer in file. If file is

omitted, send mail to the requester when the
copy is completed.

—n user
Notify user on the remote system that a file was
sent.

—esys Send the uucp command to system sys to be
executed there. (Note: this will only be
successful if the remote machine allows the uucp
command to be executed by
/ u s r / l i b / u u c p / uuxqt.)

—r Queue job but do not s tar t the file transfer
process. By default a file transfer process is
started each time uucp is invoked.

—j Control writing of the uucp job number to
standard output (see below).

Uucp associates a job number with each request. This
job number can be used by uustat to obtain status or
terminate the job.
The environment variable J O B N O and the -j option are
used to control the listing of the uucp job number on
standard output. If the environment variable J O B N O
is undefined or set to OFF, the job number will not be
listed (default). If uucp is then invoked with the -j
option, the job number will be listed. If the environment
variable J O B N O is set to O N and is exported, a job
number will be written to standard output each time
uucp is invoked. In this case, the - j option will supress
output of the job number.

Uulog
Uulog queries a summary log of uucp and ««a:(lC)
transactions in the file /u sr / spoo l /uucp /LOGFILE.

UUCP(1C)

The options cause uulog to print logging information:
—Bsys Print information about work involving system

ays. If aya is not specified, then logging
information for all systems will be printed.

—u user
Print information about, work done for the
specified, user. If user is not specified then
logging information for all users will be printed.

Uuname.
Uuname lists the uucp names of known systems. The —1
option returns the local system name. The —v option
will print additional information about each system. A
description will be printed for each system that has a
line of information in / u s r / l i b / u u c p / A D M I N . The
format of ADMIN is: ayaname tab description tab.

FILES
/usr/spool/uucp spool directory
/usr/spool/uucppublic public directory for receiving and

sending (PUBDIR)
/usr / l ib /uucp/* other data and program files

SEE ALSO
mail(l), uux(lC), chmod(2).

WARNING
The domain of remotely accessible files can (and for
obvious security reasons, usually should) be severely
restricted. You will very likely not be able to fetch files
by path name; ask a responsible person on the remote
system to send them to you. For the same reasons, you
will probably not be able to send files to arbitrary path
names. As distributed, the remotely accessible files are
those whose names begin / u s r / s p o o l / u u c p p u b l i c
(equivalent to ~nuucp or just ~j.

NOTES
In order to send files that begin with a dot (e.g., .profile)
the files must by qualified with a dot. For example:
.profile, .prof*, .profil? are correct; whereas *prof*,
?profile are incorrect.
Uucp will not generate a job number for a strictly local
transaction.

BUGS
All files received by uucp will be owned by uucp.
The —m option will only work sending files or receiving
a single file. Receiving multiple files specified by special
shell characters ? * [. . .] will not activate the —m
option.

UUCP(1C)

The —m option will not work if all transactions are local
or if uucp is executed remotely via the - e option.
The —n option will function only when the source and
destination are not on the same machine.
Only the first six characters of a system-name are
significant. Any excess characters are ignored.

UUCPD(1NM)

NAME
uucpd - network uucp server

SYNOPSIS
/ e t c / u u c p d

DESCRIPTION
Uucpd is the network server for CTIX network file
transfer using the uucp user interface and protocols. It is
similar to the rshd (1NM) server, except:
1) The remote socket need not be privileged, and
2) The shell invoked must be

/ usr / l ib / uucp / uucico.
A network uucp connection is indicated with the INET
keyword in / u s r / l i b / u u c p / L . s y s . Uucpd is normally
executed by the startup file, / e t c / r c .

SEE ALSO
rshd(lN), uucp(lC).

UUSTAT(1C)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uus ta t [options]

DESCRIPTION
Uustat will display the status of, or cancel, previously
specified uucp commands, or provide general status on
uucp connections to other systems. The following
options are recognized:
—jjobn Report the status of the uucp request jobn.

If all is used for jobn, the status of all uucp
requests is reported. An argument must be
supplied otherwise the usage message will be
printed and the request will fail.

—\ijobn Kill the uucp request whose job number is
jobn. The killed uucp request must belong to
the person issuing the uustat command unless
one is the super-user.

—pjobn Rejuvenate jobn. That is, jobn is touched so
that its modification time is set to the
current time. This prevents uuclean from
deleting the job until the jobs modification
time reaches the limit imposed by uuclean.

—chour Remove the status entries which are older
than hour hours. This administrative option
can only be initiated by the user uucp or the
super-user.

—uuser Report the status of all uucp requests issued
by user.

—Bsys Report the status of all uucp requests which
communicate with remote system sys.

—ohour Report the status of all uucp requests which
are older than hour hours.

—yhour Report the status of all uucp requests which
are younger than hour hours.

—mmch Report the status of accessibility of machine
mch. If mch is specified as all, then the
status of all machines known to the local
uucp are provided.

—Mmch This is the same as the -m option except
that two times are printed. The time that
the last status was obtained and the time
that the last successful transfer to that
system occurred.

—O Report the uucp status using the octal status
codes listed below. If this option is not
specified, the verbose description is printed

UUSTAT(1C)

with each uucp request.
—q List the number of jobs and other control

files queued for each machine and the time of
the oldest and youngest file queued for each
machine. If a lock file exists for that system,
its date of creation is listed.

When no options are given, uustat outputs the status of
all uucp requests issued by the current user. Note that
only one of the options —j, —m, —k, —c, —r, can be used
with the rest of the other options.
For example, the command:

uustat - u h d c - smht sa -y72
will print the status of all uucp requests that were issued
by user hdc to communicate with system mhtsa within
the last 72 hours. The meanings of the job request
status are:

status
job-number user remote-system command-

time status-time
where the status may be either an octal number or a
verbose description. The octal code corresponds to the
following description:

OCTAL STATUS
000001 the copy failed, but the reason

cannot be determined
000002 permission to access local file is

denied
000004 permission to access remote file is

denied
000010 bad uucp command is generated
000020 remote system cannot create

temporary file
000040 cannot copy to remote directory
000100 cannot copy to local directory
000200 local system cannot create temporary

file
000400 cannot execute uucp
001000 copy (partially) succeeded
002000 copy finished, job deleted
004000 job is queued
010000 job killed (incomplete)
020000 job killed (complete)

The meanings of the machine accessibility status are:
system-name time status

- 2 -

UUSTAT(1C)

where time is the latest status time and status is a self-
explanatory description of the machine status.

FILES
/usr/spool/uucp spool directory
/usr / l ib/uucp/L_stat system status file
/usr / l ib /uucp/R_sta t request s tatus file

SEE ALSO
uucp(lC).

{

- 3 -

UUSUB(IM)

NAME
uusub - monitor uucp network

SYNOPSIS
/ u s r / l i b / u u c p / u u s u b [options]

DESCRIPTION
Uusub defines a uucp subnetwork and monitors the
connection and traffic among the members of the
subnetwork. The following options are available:
—asys Add sys to the subnetwork.
—d«y« Delete sys from the subnetwork.
—1 Report the statistics on connections.
—r Report the statistics on traffic amount.
—f Flush the connection statistics,
- u h r Gather the traffic statistics over the past hr

hours.
—csys Exercise the connection to the system sys. If

sys is specified as all, then exercise the
connection to all the systems in the subnetwork.

The meanings of the connections report are:
sys #cal l # o k time #dev #login #nack #o ther

where sys is the remote system name, if call is the
number of times the local system tries to call sys since
the last flush was done, and #ok is the number of
successful connections, time is the latest successful
connect time, #dev is the number of unsuccessful
connections because of no available device (e.g., ACU),
#login is the number of unsuccessful connections
because of login failure, #nack is the number of
unsuccessful connections because of no response (e.g.,
line busy, system down), and #other is the number of
unsuccessful connections because of other reasons.
The meanings of the traffic statistics are:

sfile sbyte rfile rbyte
where sfile is the number of files sent and sbyte is the
number of bytes sent over the period of time indicated in
the latest uusub command with the — uhr option.
Similarly, rfile and rbyte are the numbers of files and
bytes received.
The command:

uusub - c all - u 24

UUSUB(1M)

is typically started by cron (1M) once a day.
FILES

/usr/spool/uucp/SYSLOG system log file
/usr / l ib/uucp/L_sub connection statistics
/usr / l ib/uucp/R_sub traffic statistics

SEE ALSO
uucp(lC), uustat(lC).

UUTO (1C)

NAME
uuto, uupick - public CTIX-to-CTIX system file copy

SYNOPSIS
uuto j options] source-files destination
uupick [—8 system]

DESCRIPTION
Uuto sends source-files to destination. Uuto uses the
uucp(lC) facility to send files, while it allows the local
system to control the file access. A source-file name is a
path name on your machine. Destination has the form:

system!tt«er
where system is taken from a list of system names that
uucp knows about (see uuname). Logname is the login
name of someone on the specified system.
Two options are available:
—p Copy the source file into the spool directory

before transmission.
—m Send mail to the sender when the copy is

complete.
The files (or sub-trees if directories are specified) are sent
to PUBDIR on system, where PUBDIR is a public
directory defined in the uucp source. Specifically the
files are sent to

PUBDIR/receive/u«er/mpya(em/files.
The destined recipient is notified by mail(l) of the
arrival of files.
Uupick accepts or rejects the files transmitted to the
user. Specifically, uupick searches PUBDIR for files
destined for the user. For each entry (file or directory)
found, the following message is printed on the standard
output:

f r o m system: [file file-name] [dir dirname] ?
Uupick then reads a line from the standard input to
determine the disposition of the file:
<new-l ine> Go on to next entry.
d Delete the entry.
m [dir] Move the entry to named directory dir

(current directory is default).
a [dir] Same as m except moving all the files

sent from system.
p Print the content of the file.

UUTO(1C)

q Stop.
EOT (control-d) Same as q.
Icommand Escape to the shell to do command.
* Print a command summary.
Uupick invoked with the —asystem option will only
search the PUBDIR for files sent f rom system.

FILES
PUBDIR/usr/spool/uucppublic public directory

NOTES
In order to send files that begin with a dot (e.g., .profile)
the files must be qualified with a dot. For example:
.profile, .prof*, .profil? are correct; whereas *prof*,
?profile are incorrect.

SEE ALSO
mail(l), uuclean(lM), uucp(lC), uustat(lC), uux(lC).

UUX(1C)

NAME
uux - CTIX-to-CTIX system command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION
Uux will gather zero or more files from various systems,
execute a command on a specified system and then send
standard output to a file on a specified system. Note
that, for security reasons, many installations will limit
the list of commands executable on behalf of an
incoming request from uux. Many sites will permit little
more than the receipt of mail (see mail(l)) via uux.
The command-string is made up of one or more
arguments that look like a Shell command line, except
that the command and file names may be prefixed by
system-namel. A null system-name is interpreted as the
local system.
File names may be one of

(1) a full path name;
(2) a path name preceded by ~xxx where xxx is a
login name on the specified system and is
replaced by that user's login directory;
(3) anything else is prefixed by the current
directory.

As an example, the command
uux " !diff usg! /usr /dan/f l pwba! /a4 /dan / f l >
!fl .diff"

will get the f l files from the "usg" and "pwba"
machines, execute a diff command and put the results in
f l . d i f f in the local directory.
Any special shell characters such as < > ; | should be
quoted either by quoting the entire command-string, or
quoting the special characters as individual arguments.
Uux will at tempt to get all files to the execution system.
For files which are output files, the file name must be
escaped using parentheses. For example, the command

uux aluucp b!/usr/file \ (c! /usr / f i le \)
will send a uucp command to system " a " to get
/ u s r / f i l e from system " b " and send it to system "c" .
Uux will notify you if the requested command on the
remote system was disallowed. The response comes by
remote mail from the remote machine. Executable
commands are listed in / u s r / l i b / u u c p / L . c m d s on the

- 1 -

UUX(1C)

remote system. The format of the L .cmds file is:
cmd,machinel,machine2,...

If no machines are specified, then any machine can
execute cmd. If machines are specified, only the listed
machines can execute cmd. If the desired command is
not listed in L.sys then no machine can execute that
command.
Redirection of standard input and output is usually
restricted to files in PUBDIR. Directories into which
redirection is allowed must be specified in
/ usr / l ib / uucp /USERFILE by the system
administrator.
The following options are interpreted by uux:
- The standard input to uux is made the standard

input to the command-string.
—n Send no notification to user.
—mfile Report status of the transfer in file. If file is

omitted, send mail to the requester when the
copy is completed.

—j Control writing of the uucp job number to
standard output.

Uux associates a job number with each request. This job
number can be used by uustat to obtain status or
terminate the job.
The environment variable JOBNO and the - j option are
used to control the listing of the uux job number on
standard output. If the environment variable JOBNO is
undefined of set to OFF, the job number will not be
listed (default). If uuco is then invoked with the —j
option, the job number will be listed. If the environment
variable JOBNO is set to ON and is exported, a job
number will be written to standard output each time uux
is invoked. In this case, the —j option will suppress
output of the job number.

FILES
/usr/spool/uucp
/ usr/spool/uucppublic
/us r / l ib /uucp/*

spool directory
public directory (PUBDIR)
other data and programs

SEE ALSO
mail(l), uuclean(lM), uucp(lC).

BUGS
Only the first command of a shell pipeline may have a
system-namel. All other commands are executed on the
system of the first command.

- 2 -

UUX(1C)

The use of the shell metacharacter * will probably not
do what you want it to do. The shell tokens < < and
> > are not implemented.
Only the first six characters of the aystcm-name are
significant. Any excess characters are ignored.

V A L (l)

NAME
val - validate SCCS file

SYNOPSIS
val —
val [—s] [—rSID] [—mname] [— ytype] files

DESCRIPTION
Val determines if the specified file is an SCCS file
meeting the characteristics specified by the optional
argument list. Arguments to val may appear in any
order. The arguments consist of keyletter arguments,
which begin with a —, and named files.
Val has a special argument, —, which causes reading of
the standard input until an end-of-file condition is
detected. Each line read is independently processed as if
it were a command line argument list.
Val generates diagnostic messages on the standard
output for each command line and file processed and also
returns a single 8-bit code upon exit as described below.
The keyletter arguments are defined as follows. The
effects of any keyletter argument apply independently to
each named file on the command line.

—s The presence of this argument
silences the diagnostic message
normally generated on the
standard output for any error that
is detected while processing each
named file on a given command
line.

—rSID The argument value SID (SCCS
/Identification String) is an SCCS
delta number. A check is made to
determine if the SID is ambiguous
(e. g., r l is ambiguous because it
physically does not exist but
implies 1.1, 1.2, etc., which may
exist) or invalid (e. g., rl .O or
rl.1.0 are invalid because neither
case can exist as a valid delta
number). If the SID is valid and
not ambiguous, a check is made to
determine if it actually exists.

—m name The argument value name is
compared with the SCCS %M%
keyword in file.

VAL(1)

—y type The argument value type is
compared with the SCCS %Y%
keyword in file.

The 8-bit code returned by val is a disjunction of the
possible errors, i. e., can be interpreted as a bit string
where (moving from left to right) set bits are interpreted
as follows:

bit 0 = missing file argument;
bit 1 = unknown or duplicate keyletter argument;
bit 2 = corrupted SCCS file;
bit 3 = cannot open file or file not SCCS;
bit 4 = SID is invalid or ambiguous;
bit 5 == SID does not exist;
bit 6 = %Y%, - y mismatch;
bit 7 = %M%, - m mismatch;

Note that val can process two or more files on a given
command line and in turn can process multiple command
lines (when reading the standard input). In these cases
an aggregate code is returned - a logical OR of the
codes generated for each command line and file
processed.

SEE ALSO
admin(l), delta(l), get(l), help(l), prs(l).

DIAGNOSTICS
Use help(1) for explanations.

BUGS
Val can process up to 50 files on a single command line.
Any number above 50 will produce a core dump.

VC(1)

NAME
vc - version control

SYNOPSIS
vc [—a] [—t] [—cchar] [—s] [keyword=value
keyword=value]

DESCRIPTION
The vc command copies lines from the standard input to
the standard output under control of its arguments and
control statements encountered in the standard input. In
the process of performing the copy operation, user
declared keywords may be replaced by their string value
when they appear in plain text and/or control
statements.
The copying of lines from the standard input to the
standard output is conditional, based on tests (in control
statements) of keyword values specified in control
statements or as vc command arguments.
A control statement is a single line beginning with a
control character, except as modified by the —t keyletter
(see below). The default control character is colon (:),
except as modified by the —c keyletter (see below).
Input lines beginning with a backslash (\) followed by a
control character are not control lines and are copied to
the standard output with the backslash removed. Lines
beginning with a backslash followed by a non-control
character are copied in their entirety.
A keyword is composed of 9 or less alphanumerics; the
first must be alphabetic. A value is any ASCII string
that can be created with ed(1); a numeric value is an
unsigned string of digits. Keyword values may not
contain blanks or tabs.
Replacement of keywords by values is done whenever a
keyword surrounded by control characters is encountered
on a version control statement. The —a keyletter (see
below) forces replacement of keywords in all lines of
text. An uninterpreted control character may be
included in a value by preceding it with \ . If a literal \
is desired, then it too must be preceded by \ .
Keylet ter A r g u m e n t s

—a Forces replacement of keywords
surrounded by control characters
with their assigned value in all
text lines and not just in vc
statements.

VC(1)

- t All characters from the beginning
of a line up to and including the
first tab character are ignored for
the purpose of detecting a control
statement. If one is found, all
characters up to and including the
tab are discarded.

—cchar Specifies a control character to be
used in place of :.

—s Silences warning messages (not
error) that are normally printed
on the diagnostic output.

Version Control S ta tements
:dcl keyword[, keyword]

Used to declare keywords. All keywords must be
declared.

:asg keyword=value
Used to assign values to keywords. An asg
statement overrides the assignment for the
corresponding keyword on the vc command line
and all previous asg ' s for that keyword. Keywords
declared, but not assigned values have null values.

:if condition

:end
Used to skip lines of the standard input. If the
condition is true all lines between the if statement
and the matching end statement are copied to the
standard output. If the condition is false, all
intervening lines are discarded, including control
statements. Note that intervening if statements
and matching end statements are recognized solely
for the purpose of maintaining the proper if-end
matching.
The syntax of a condition iss
< c o n d > : : = ["not"] < o r >
< o r > : : = < a n d > | < a n d > < o r >
< a n d > : : = < e x p > | < e x p > "&"

< a n d >
< e x p > : : = "(" < o r > ")" | < v a l u e >

< o p > < value >
< o p > : : = " = " | " ! = " | " < " | " > "
< v a l u e > : : = <arbi t rary ASCII s t r ing> |

< numeric string >

VC(1)

The available operators and their meanings are:

! =
& and
I or

equal
not equal

> greater than
< less than
() used for logical groupings
not may only occur immediately after

the i f , and when present, inverts
the value of the entire condition

The > and < operate only on unsigned integer
values (e.g., : 012 > 12 is false). All other
operators take strings as arguments (e.g., : 012 ! =
12 is true). The precedence of the operators (from
highest to lowest) is:

= ! = > < all of equal precedence &

Parentheses may be used to alter the order of
precedence.
Values must be separated from operators or
parentheses by at least one blank or tab.

::text
Used for keyword replacement on lines that are
copied to the standard output . The two leading
control characters are removed, and keywords
surrounded by control characters in text are
replaced by their value before the line is copied to
the output file. This action is independent of the
—a keyletter.

:on
:off

Turn on or off keyword replacement on all lines.
:ctl char Change the control character to char.
:msg message

Prints the given message on the diagnostic output.
:err message

Prints the given message followed by:
ERROR: err statement on line ... (915)

on the diagnostic output. Vc halts execution, and
returns an exit code of 1.

SEE ALSO
ed(l), help(l).

- 3 -

VC(1)

DIAGNOSTICS
Use help(l) for explanations.

EXIT CODES
0 - normal
1 - any error

VI(1)

NAME
vi - screen-oriented (visual) display editor based on ex

SYNOPSIS
v i [- t tag 1 [-p file } [- 1] [- w n] [- R]
[-{-command j name ...

view [- t tag] [- r file] [- !] [- w n] [- R]
[-{-command] name ...

vedi t [- t tag } [- r file] [—I] [- w n] [- R]
[-{-command] name ...

DESCRIPTION
Vt (visual) is a display-oriented text editor based on an
underlying line editor ex(l). It is possible to use the
command mode of ex from within vt and vice-versa.
When using vi, changes you make to the file are
reflected in what you see on your terminal screen. The
position of the cursor on the screen indicates the position
within the file.

INVOCATION
The following invocation options are interpreted by vi:
—t tag Edit the file containing the tag and

position the editor at its definition.
—r/t'/e Recover file after an editor or system

crash. If file is not specified a list of all
saved files will be printed.

—1 LISP mode; indents appropriately for
lisp code, the () {} [[and 1] commands
in vi and open are modified to have
meaning for lisp .

—wn Set the default window size to n. This
is useful when using the editor over a
slow speed line.

—R Read only mode; the readonly flag is
set, preventing accidental overwriting of
the file.

+ command The specified ex command is
interpreted before editing begins.

The name argument indicates files to be edited.
The view invocation is the same as vi except that the
readonly flag is set.
The vedit invocation is intended for beginners. The
report flag is set to 1, and the s h o w m o d e and novice

V l (l)

flags are set. These defaults make it easier to get started
learning the editor.

VI MODES
Command Normal and initial mode. Other modes

return to command mode upon
completion. ESC (escape; GO on
Convergent Technologies terminals) is
used to cancel a partial command.

Input Entered b y a i A I o O c C s S R .
Arbitrary text may then be entered.
Input mode is normally terminated with
ESC character, or abnormally with
interrupt.

Last line Reading input for : / ? or !; terminate
with CR to execute, interrupt to
cancel.

COMMAND SUMMARY
The following sequences represent special keys:
E S C Escape key. GO on Convergent Technologies

terminals.
'x Control key: hold down the C T R L key

(C O D E on Convergent Technologies terminals)
and press x.
R E T U R N or C A R R I A G E R E T U R N key.
Circumflex (A). On teletypewriter-style
terminals, usually an up arrow (f) .

CR

R

Sample commands
- i t -
h j k 1
ifeartESC
cwnewESC
easESC
x
d w
dd
3dd
u
ZZ
:q!CR
/textCR
*U *D
•.ex cmrfCR

arrow keys move the cursor
same as arrow keys
insert text
change word to new
pluralize word
delete a character
delete a word
delete a line
... 3 lines
undo previous change
exit vi, saving changes
quit, discarding changes
search for text
scroll up or down
any ex or ed command

VI(1)

Counts before vi commands
Numbers may be typed as a prefix to some commands.
They are interpreted in one of these ways.
line/column number z G I
scroll amount AD *U
repeat effect most of the rest

In terrupt ing, canceling
E S C end insert or incomplete cmd

(delete or rubout) interrupts
~L reprint screen if scrambles it
~R reprint screen if *L is —>• key

File manipulat ion
swCR write back changes
sqCR quit
:q iCR quit, discard changes
se nameCR edit file name
:e!CR reedit, discard changes
se + nameCR edit, starting at end
:e + n C R edit starting at line n
se # C R edit alternate file
*f synonym for se #
:w nameCR write file name
:w! nameCR overwrite file name
s shCR run shell, then return
slemrfCR run emd, then return
snCR edit next file in arglist
:n argsCR specify new arglist
AG show current file and line
sta tagCR to tag file entry tag
*] sta, following word is tag

In general, any ex or ed command (such as substitute or
global) may be typed, preceded by a colon and followed
by a C R .

Posit ioning within file
*F forward screen
' B backward screen
' D scroll down half screen
AU scroll up half screen
G go to specified line (end default)
/pat next line matching pat
jpat prev line matching pat
n repeat last / or ?
N reverse last / or T
/pat/+n nth line after pat
*pat?—n nth line before pat
I next section/function
[previous section/function

beginning of sentence

- 3 -

VI(1)

end of sentence
beginning of paragraph
end of paragraph
find matching () { or }

Adjust ing the screen
AL clear and redraw
AR retype, eliminate @ lines
z C R redraw, current at window top
_ r-<p „+ U — v ^ i t . . . A*J u w t / w i u
z .CR ... at center
/ pat/z—CR pat line at bottom
zn .CR use n line window
*E scroll window down 1 line
AY scroll window up 1 line

Marking and returning
move cursor to previous context

' ' of f i i«ot n i f n i n l i n o
.. . uv iuov iivyn~ >* UttV> iil 1111V

m i mark current position with letter x
'x move cursor to mark x
'x ... at first non-white in line

Line positioning
H top line on screen
L last line on screen
M middle line on screen
+ next line, at first non-white
— previous line, at first non-white
C R return, same as +
J. or j next line, same column
f or k previous line, same column

Character positioning
first non white

0 beginning of line
$ end of line
h or —• forward
1 or <— backwards
AH same as <—
space same as —*
fx find x forward
Fx f backward
tx up to x forward
Tx back up to x
j repeat last f F t or T

inverse of j
to specified column
find matching ({) or } is

VI(1)

Words, sentences, paragraphs
w word forward
b back word
e end of word
) to next sentence
| to next paragraph
f back sentence
I back paragraph
W blank delimited word
B back W
E to end of W

Commands for LISP Mode
) Forward s-expression
I ... but do not stop at atoms

Back s-expression
... but do not stop at atoms

Corrections during insert
*H erase last character
*W erase last word
erase your erase, same as "H
kill your kill, erase input this line

quotes *H, your erase and kill
JSC ends insertion, back to command

interrupt, terminates insert
*D backtab over autoindent
| * D kill autoindent, save for next
0 *D ... but at margin next also
"V quote non-printing character

Insert and replace
a append after cursor
1 insert before cursor
A append at end of line
I insert before first non-blank
o open line below
O open above
rx replace single char with x
Rfex tESC replace characters

Operators
Operators are followed by a cursor motion, and affect all
text that would have been moved over. For example,
since w moves over a word, dw deletes the word that
would be moved over. Double the operator, e.g. d d to
affect whole lines,

d delete
c change
y yank lines to buffer
< left shift

t

*T

VI(1)

> right shift
! filter through command
= indent for LISP

Miscellaneous Operat ions
C change rest of line (c$)
D delete rest of line (d$)
s substitute chars (cl)
S substitute lines (cc)
J join lines
x delete characters (dl)
X ... before cursor (ah)
Y yank lines (yy)

Yank and P u t
Put inserts the text most recently deleted or yanked.
T T : R _ I F F J . • . 1 , , . I M • uuwcvci, ii a uunci is uaiucu, one HI mau uuuti to
put instead,

p put back text after cursor
P put before cursor
"xp put from buffer x
"xy yank to buffer x
"xd delete into buffer x

Undo, Redo, Retr ieve
u undo last change
U restore current line

repeat last change
' d p retrieve rf'th last delete

AUTHOR
Vi and ex were developed by The University of
California, Berkeley, California, Computer Science
Division, Department of Electrical Engineering and
Computer Science.

SEE ALSO
ex (1).
CTIX Programmer'8 Guide.

CAVEATS AND BUGS
Software tabs using *T work only immediately after the
autoindent.
Left and right shifts on intelligent terminals do not make
use of insert and delete character operations in the
terminal.
There should be an interactive help facility and a tutorial
suited for beginners.
Due to export restrictions, encryption features are not
available outside the United States.

- 6 -

VME(7)

/ * Address of the board; in MightyFrame I /O space * /
uint address;

/ * Amount of address space taken up by the board * /
uint length;

/ * Pointer to an optional initialization function * /
int (*initfp)();

} slots[VME_SLOTS);

/ * Reserve the rest for controller code * /
char drivers[7860];

};
#def ine VMEE_DLAG 0 / * Dia« has cleared/set EEPROM * /
#def ine VMEE_LGADED 1 j~ unix has loaded driver information * /

#de f ine VMET_CMC 1 / * CMC Ethernet controller * /
#de f ine VMET_V3200 2 / * Interphase SMD controller * /

/ d e v / v m e / a l 6 64K bytes of short address space
/dev /vme/a24 32M bytes of standard address

space
/dev/vme/a32l low 2 gigabytes of extended

address space
/dev/vme/a32h high 2 gigabytes of extended

address space
/dev/vme/eeprom 8K VME interface EEPROM

SEE ALSO
ldeeprom(lM), system(4), mem(7).
MightyFrame VME Expansion Manual.

FILES

(

VOLCOPY(1M)

NAME
volcopy, labelit - copy file systems with label checking

SYNOPSIS
/ e t c / v o l c o p y [options] fsname speciall volnamel
special2 volname2
/ e t c / l a b e l i t special [fsname volume [—n]]

DESCRIPTION
Volcopy makes a literal copy of the file system using a
blocksize matched to the device. Options are:

—a invoke a verification sequence requiring
a positive operator response instead of
the standard 10-second delay before the
copy is made,

- s (default) i nvoke the DEL. if v / r o n z
verification sequence,

—to The output file is a disk section (also
called slice or partition), but is to be
treated like a tape.

—ti The input file is a disk section, but is to
be treated like a tape.

Other options are used only with tapes:
—bpidensity bits-per-inch (i.e.,

8 0 0 / 1 6 0 0 / 8 2 5 0)
size of reel in feet (i.e.,
1 2 0 0 / 2 4 0 0) ,
beginning reel number for a
restarted copy,
use double buffered I /O.
Use —bpi and —feet values
appropriate for quarter-inch tape
cartridge.

If —ti or —to is specified, the "reel" capacity is simply
the size of the disk section; the "reel" is assumed to be
on a removable disk, such as a floppy.
For a true tape such as half-inch reel-to-reel or quarter-
inch cartridge, capacity is derived from tape length and
density. The program requests length and density
information if it is not given on the command line or is
not recorded on an input tape label. If the file system is
too large to fit on one reel, volcopy will prompt for
additional reels. Labels of all reels are checked. Tapes
may be mounted alternately on two or more drives. If
volcopy is interrupted, it will ask if the user wants to
quit or wants a shell. In the latter case, the user can
perform other operations (e.g., labelit) and return to
volcopy by exiting the new shell.

—feetsize

—reelnum

- b u f
- Q

VOLCOPY(IM)

The fsname argument represents the mounted name
(e.g.: root, u l , etc.) of the filsystem being copied.
The special should be the physical disk section or tape
(e.g., / d e v / r d s k / c 0 d 0 s 5 , / d e v / r m t O , etc.).
The volname is the physical volume name (e.g.: pk3,
t 0122 , etc.) and should match the externa! label sticker.
Such label names are limited to six or fewer characters.
Volname may be - to use the existing volume name.
Speciall and volnamel are the device and volume from
which the copy of the file system is being extracted.
Specials and volname2 are the target device and volume.
Fsname and volname are recorded in the last 12
characters of the superblock (char f sname [6],
v olriarrie [6];).
Labelit can be used to provide initial labels for
unmounted disk or tape file systems. With the optional
arguments omitted, labelit prints current label values.
The —n option provides for initial labeling of new tapes
only (this destroys previous contents). The —t option
puts tape headers on media other than tape.

FILES
/etc/log/filesave.log a record of file systems/volumes

copied
EXAMPLE

The following command backs up the root file system to
a tape:

volcopy - a roo t / dev / rd sk / cOdOs l dO / d e v / r m t O dO epoch l

SEE ALSO
sh(l), fs(4).

WARNINGS
Labelit applied to a mounted file system will appear to
succeed, but the next reboot or umount will remove the
label.

BUGS
Only device names beginning / d e v / r m t are
automatically treated as tapes. Tape record sizes are
determined both by density and by drive type. Records
are 5,120 bytes long at 800 and 1600 bits-per-inch, and
25,600 bytes long at 6250 bits-per-inch.

V T (7)

NAME
vt - virtual terminal

DESCRIPTION
A virtual terminal provides a terminal-like
communication channel between two processes. Each
virtual terminal consists of two devices: a slave device,
whose name is of the form /dev/ t typza: , where xx is the
virtual terminal number; and a master device, whose
name is of the form / dev/vtzx , where xx is the virtual
terminal number. Tne slave device responds to system
calls just like a real terminal (see termio(7)) so that it
can control interactive programs such as vi. But instead
of doing actual input/output, reads and writes on the
slave device are written and read on the corresponding
master device by another process. A typical use of a
virtual terminal is to put a network server on the master
device and login program on the slave.
The number of virtual terminals must be configured.
See confiff(lM).
The process on the master device can exercise flow
control on the slave device, much as a real terminal
would use XON/XOFF to exercise flow control on a
terminal device. The parameterless ioct/(2) TIOCSTOP
stops output to the slave device as if with an XOFF
character; the parameterless ioctl(2) TIOCSTART restarts
output, as if with an XON character.

FILES
/dev/t typ?? slave devices
/dev/vt?? master devices

SEE ALSO
config(lM), ttyname(3C), termio(7).

5/86 - 1 -

WINDOW (7)

NAME
window - window management primitives

SYNOPSIS
^include < sy s / w i n d o w . h >

DESCRIPTION
Window managment (wm(l)) provides a superset of
windowless terminal features. This entry describes
terminal file features special to window management.
Window management features are designed not to
interfere with programs that do not know about window
management. Such design includes simple extensions to
the UNIX System's standard concepts of file descriptor
and control terminal.
• Each terminal file descriptor has an associated

window number, a small positive integer that
identifies a window. A window number is the
most primitive way to refer to a window, and
should not be confused with the window ID used
by window management subroutines. A new
window gets the smallest window number not
already in use. Closing a window frees its
number for possible assignment to a later
window. Output and control calls on the file
descriptor apply only to the descriptor's window;
input calls succeed only when the window is
active.

A file descriptor created by a dup (2) or inherited
across a fork(2) inherits the original descriptor's
window number. All the file descriptors in such
a chain of inheritance, provided they belong to
processes in the same process group, are affected
when ioctl changes the window number of any of
them.

• When a process group's control terminal is under
window managment, the process group is
actually controlled by a particular window.
Such can have more than one process group,
each controlled by a different window.
Keyboard-generated signals (interrupt and quit)
go to the process group controlled by the active
window.

When the user creates a new window by using the SPLIT
key, the window manager forks a process for that
window. The new process inherits file descriptors for
standard input (0), standard output (1), and standard
error (2) that are associated with the new window. The

WAIT (1)

NAME
wait - await completion of process

SYNOPSIS
•wait

DESCRIPTION
Wait until all processes started with & have completed,
and report on abnormal terminations.
Because the wait(2) system call must be executed in the
parent process, the shell itself executes wait, without
creating a new process.

SEE ALSO
sh(l), wait(2).

BUGS
Not all the processes of a 3- or more-stage pipeline are
children of the shell, and thus cannot be waited for.

WALL(IM)

NAME
wall - write to all users

SYNOPSIS
/ e t c / w a l l

DESCRIPTION
Wall reads its standard input until an end-of-file. It
then sends this message to all currently logged-in users
preceded by:

Broadcast Message from . . .
It is used to warn all users, typically prior to shutting
down the system.
The sender must be super-user to override any
protections the users may have invoked (see me«(/(l)).

FILES
/dev / t ty*

SEE ALSO
mesg(l), write(l).

DIAGNOSTICS
"Cannot send to ..." when the open on a user's tty file
fails.

WC(1)

NAME
wc - word count

SYNOPSIS
wc [—Iwc] [names]

DESCRIPTION
Wc counts lines, words, and characters in the named
files, or in the standard input if no names appear. It
also keeps a total count for all named files. A word is a
maximal string of characters delimited by spaces, tabs,
or new-lines.
The options 1, w, and c may be used in any combination
to specify that a subset of lines, words, and characters
are to be reported. The default is —lwc.
When names are specified 011 the command line, they
will be printed along with the counts.

WHAT(1)

NAME
what - identify SCCS files

SYNOPSIS
w h a t [—s] files

DESCRIPTION
What searches the given files for all occurrences of the
pattern that get(1) substitutes for %Z% (this is @(#) at
this printing) and prints out what follows until the first

> , new-line, \ , or null character. For example, if the
C program in file f.c contains

char ident[] = " @(#)identification information ";
and f .c is compiled to yield f .o and a.out, then the
command

what f.c f.o a.out
will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

What is intended to be used in conjunction with the
command get(1), which automatically inserts identifying
information, but it can also be used where the
information is inserted manually. Only one option
exists:
s Quit after finding the first occurrence of pattern

in each file.
SEE ALSO

get(l), help(l).
DIAGNOSTICS

Exit status if - if any matches are found, otherwise 1.
Use kelp(l) for explanations.

BUGS
It is possible that an unintended occurrence of the
pattern @(#) could be found just by chance, but this
causes no harm in nearly all cases.

WHO(1)

NAME
who - who is on the system

SYNOPSIS
-who [—uTHIpdbrtasq] [file]
w h o am i
w h o am I

DESCRIPTION
Who can list the user's name, terminal line, login time,
elapsed time since activity occurred on the line, and the
process-ID of the command interpreter (shell) for each
current CTIX system user. It examines the / e t c / u t m p
file to obtain its information. If file is given, that file is
examined. Usually, file will be / e t c / w t m p , which
contains a history of all the logins since the file was last
created.
Who with the am i or am I option identifies the
invoking user.
Except for the default — s option, the general format for
output entries is:

name [state] line time activity pid
[comment] [exit]

With options, who can list logins, logoffs, reboots, and
changes to the system clock, as well as other processes
spawned by the init process. These options are:
—u This option lists only those users who are

currently logged in. The name is the user's login
name. The line is the name of the line as found
in the directory / d e v . The time is the time that
the user logged in. The activity is the number of
hours and minutes since activity last occurred on
that particular line. A dot (.) indicates that the
terminal has seen activity in the last minute and
is therefore "current". If more than twenty-four
hours have elapsed or the line has not been used
since boot time, the entry is marked old. This
field is useful when trying to determine whether a
person is working at the terminal or not. The pid
is the process-ID of the user's shell. The comment
is the comment field associated with this line as
found in / e t c / i n i t t a b (see inittabf4)). This can
contain information about where the terminal is
located, the telephone number of the dataset, type
of terminal if hard-wired, etc.

—T This option is the same as the —u option, except
that the state of the terminal line is printed. The

- 1 -

WHO(1)

state describes whether someone else can write to
that terminal. A + appears if the terminal is
writable by anyone; a — appears if i t is not.
Root can write to ail lines having a + or a — in
the state field. If a bad line is encountered, a ? is
printed.

—I This option lists only those lines on which the
system is waiting for someone to login. The name
field is LOGIN in such cases. Other fields are the
same as for user entries except that the state field
does not exist.

—H This option will print column headings above the
regular output.

—a This is a quick who, displaying only the names
and the number of users currently logged on.
When this option is used, all other options are
ignored.

—p This option lists any other process which is
currently active and has been previously spawned
by init. The name field is the name of the
program executed by init as found in
/ e t c / in i t tab . The state, line, and activity fields
nave no meaning. The comment field shows the
id field of the line from / e t c / i n i t t a b that
spawned this process. See inittab (4).

- d This option displays all processes that have
expired and not been respawned by init. The exit
field appears for dead processes and contains the
termination and exit values (as returned by
wait(2)), of the dead process. This can be useful
in determining why a process terminated.

- b This option indicates the time and date of the last
reboot.

—r This option indicates the current run-level of the
init process. Following the run-level and date
information are three fields which indicate the
current state, the number of times that state was
previously entered, and the previous state.

—t This option indicates the last change to the
system clock (via the date(1) command) by root .
See ««(1).

—a This option processes / e t c / u t m p or the named
file with all options turned on.

- s This option is the default and lists only the name,
line and time fields.

- 2 -

WHO(1)

FILES
/ e tc /u tmp
/e tc /wtmp
/ etc / init tab

SEE ALSO
init(lM) date(l), login(l), mesg(l), su(l), wait(2),
inittab(4), utmp(4).

I

- 3 -

WHODO(IM)

NAME
whodo - who is doing what

SYNOPSIS
/ e t c / w h o do

DESCRIPTION
Whodo produces merged, reformatted, and dated output
from the wAo(l) and ps(l) commands.

FILES
etc/passwd

SEE ALSO
ps(l), who(l).

WM(1)

NAME
wm - window management

SYNOPSIS
exec / u s r / l o c a l / b i n / w m [- k][- s][—]
[passparam]

DESCRIPTION
Wm is the window manager. It provides services to
application programs running under its control and to
users using terminals under its control. The window
manager can divide the terminal screen into windows
that the user can use like separate terminals. Other
services include placement, size, scrolling, and
synchronization of windows. Wm requires a Convergent
Technologies Programmable_ Terminal or Graphics
Terminal on a cluster line. The window manager must
be running for the window management library functions
to work.
The window manager is normally executed in place of
the user's login shell by the exec command in
/ e t c / p r o f i l e or the user's own .profile. The window
manager then executes the user's shell each time the user
splits a window. The SHELL environment variable
(normally set by /oj«n(lM)to / b i n / s h) provides the full
pathname of the initial program run in the windows.
When wm starts, the user sees four regions on the screen,
going from top to bottom:

• A message line. A single line, always at the top of
the screen. It holds messages and prompts from
application programs.

• A tag line. A single line, always above each
window, which labels the particular application
program or display that is active in the window.

• The window. The main display area used by
programs. Text input and output to the shell or an
application program goes here. The window is a
window into a virtual display. An application
program can use the virtual display as a 28-line
screen, regardless of the size of the window. The
virtual display is usually larger than the window.
Normally the window manager automatically
positions the window over the part of the virtual
display that contains the cursor. If the user
program moves the cursor to a part of the virtual
display not in the window, the window manager
scrolls the window until the cursor is visible again.
The user can also scroll the display (see below).

- 1 -

WM(1)

• The function key line. A single line, always at the
bottom of the screen, that labels the function keys
for the currently active window.

Wm accepts user commands activated by the ACTION
key; such commands are not seen by the user program.
Use the ACTION key like the CODE or SHIFT keys: hold
down the ACTION key and press the other key used with
it. Holding down the ACTION key changes the function
key line to show how ACTION changes the meanings of
the function keys.
Here are the valid wm user commands:
ACTION-FIO (SPLIT)

Split the active window, creating a new window.
The new window and its tag line replace the
bottom half of the window "being split. Any
program running in the old window is
unaffected. The virtual display of the old
window is unchanged, though less of it is visible.
The user shell then starts up in the new window.
The new window is active; all other windows are
inactive. Programs running in inactive windows
continue to run, but input calls will not return
until the user reactivates the window and types
something. Keyboard input goes to the active
window.
Each window, whether active on inactive, has its
own message line, function key line, and cursor,
but the terminal only displays them if they
belong to the active window. (Application
programs can also make the cursor invisible.) If
an application program in a inactive window
writes to the message line, the message is not
visible until you make that window active again.
On Programmable Terminals the active
window's tag line is displayed full intensity, with
the other tag lines displayed half intensity. On
Graphics Terminals the active window's tag line
is displayed in bold, with the other tag lines
displayed without bold.
When the SPLIT key creates a new window, wm
automatically provides a program to run in the
window. The program is a process group leader;
the new process group is controlled by the new
window and has terminal file descriptors
associated with the new window. The program
is a shell unless wm was run with the —k option.

WM(1)

When all processes in the process group die, wm
automatically closes the window.

Programs can also have the window manager create
windows, using wmop(3X). The window manager does
not automatically provide programs for such windows.

The SPLIT key becomes inoperative if the
terminal already displays its maximum number
of windows or if a user program has disabled
window splitting.

ACTION-F9 (BELOW)
The window below the active window becomes
the active window with the old active window
becoming inactive. The new active window
takes over the message line and the function key
line, and its cursor becomes visible.
ACTION-1 is the same as ACTION-F9.

ACTION-F8 (ABOVE)
The window above the active window becomes
the active window. ACTION-1 is the same as
ACTION-F8.

ACTION- n
Activate window n, where n is a number from 1
to 4. A window's number is assigned when it's
first created, with a new window getting the
lowest unused number. Unless erased by a user
program, the window number is displayed on the
left end of the tag line.

ACTION-F7 (SWAP j)
The active window and the window below it
trade places.

ACTION-F6 (SWAP ?)
The active window and the window above it
trade places.

ACTION-F5 (SHRINK)
The active window decreases in size by 1 line.
Ignored if the window is already 0 lines long
(only the tag line visible).

ACTION-SHIFT-F5
The active window decreases in size by 4 lines.
If the window is already less than 4 lines long, it
becomes 0 lines long.

ACTION-CODE-F5
The active window becomes 0 lines long.

WM(1)

Shrinking the top window increases the size of the
window below; shrinking any other window increases the
size of the window above.
ACTION-F4 (GROW)

The active window increases in size by 1 line.
Ignored if the other windows are all 0 lines long.

ACTION-SHIFT-F4
The active window increases in size by 4 lines.
If the other windows don't have 4 lines to spare,
the active window increases until all other
windows are 0 lines long.

ACTION-F3 (MAX)
ACTION-CODE-F4

The active window increases in size until all
other windows are 0 lines long.

Growing the top window decreases the size of the
window below; growing any other window window
decreases the size of window below. If the window that
would otherwise shrink is already 0 lines long, the next
window shrinks. If all the windows below the second or
third window are 0 lines long, space comes from the
windows above.
ACTION-SCROLL UP

The active window is scrolled up a line. Ignored
if the window already shows the very bottom of
the virtual display or if the cursor is on the
window's top line.

ACTION-SCROLL DOWN
The active window is scrolled down a line.
Ignored if the window already shows the very
top of the virtual display or if the cursor is on
the window's bottom line.

Wm understands the following options:
- k Run keyprompt(l) in the first window

and in manually-created (SPLIT key)
windows instead of the shell.

- s Disable the SPLIT key. The user cannot
create new windows, but programs
running under wm still can.

- c Run the CTIX Office Applications
Interface in the first window instead of
the shell; disable the SPLIT key (as with

WM(1)

- s above). The Office Applications
Interface is a separate product and must
have been previously installed for this
option to work.
End of wm options. Subsequent
parameters are passed to the shell,
keyprompt, or the Office Applications
Interface, even if they begin with a dash
(")•

Parameters other than options are passed unchanged to
programs executed by wm.
Wm uses or sets the following environment parameters:
T E R M If already set, wm passes it unchanged

to its own children. If not already set,
wm has the terminal identify itself and
sets T E R M to p t or g t accordingly.

S H E L L Name of the shell's executable file. If
—k and —c aren't specified, S H E L L is
the initial program in the first window
and in user-created (SPLIT windows. If
—k or —c is specified, S H E L L must
still have a useful value, such as
/bin/sh.

K E Y P R O M P T
The name of keyprompt's executable
file. If K E Y P R O M P T is not defined,
/ u s r / o a / k e y p r o m p t is used.

C T I X O A The name of the Office Application
Interface's executable file. If CTDCOA
is not defined, / u s r / o a / c t i x o a is used.

T E R M P A R M If the user's terminal is a Graphics
Terminal, wm reads the 32 bytes in the
terminal's EAPROM, codes them in
hexadecimal, and provides its children
with those 64 digits in T E R M P A R M .

SEE ALSO
sh(l).

WARNING
If a program quickly outputs two things at the virtual
display's top and bottom, the user can easily miss one of
them. This normally is the fault of programs, originally
designed for terminals without window features, that use
the bottom line as a message line. Use the terminal
message line instead.

WM(1)

BUGS . j
Write(1) messages appear only in the first window.
Some caA(l) features may not work with wm.

- 6 -

WRITE (1)

NAME
write - write to another user

SYNOPSIS
write user [line]

DESCRIPTION
Write copies lines from your terminal to that of another
user. When first called, it sends the message:

Message f rom yourname (tty???) [date }. . .
to the person you want to talk to. When it has
successfully completed the connection, it also sends two
bells to your own terminal to indicate that what you are
typing is being sent.
The recipient of the message should write back at this
point. Communication continues until an end of file is
read from the terminal or an interrupt is sent, or the
recipient has executed "mesg n". At that point write
writes E O T on the other terminal and exits.
If you want to write to a user who is logged in more than
once, the line argument may be used to indicate which
line or terminal to send to (e.g., ttyOOO); otherwise, the
first writable instance of the user found in / e t c / u t m p is
assumed and the following message posted:

user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of
the mesg(l) command. Writing to others is normally
allowed by default. Certain commands, in particular
nroff(l) and pr(l) disallow messages in order to prevent
interference with their output. However, if the user has
super-user permissions, messages can be forced onto a
write-inhibited terminal.
If the character ! is found at the beginning of a line,
write calls the shell to execute the rest of the line as a
command.
The following protocol is suggested for using write: when
you first write to another user, wait for them to write
back before starting to send. Each person should end a
message with a distinctive signal (i.e., (o) for "over") so
that the other person knows when to reply. The signal
(oo) (for "over and out") is suggested when conversation
is to be terminated.

WRITE (1)

FILES
/ e t c /u tmp to find user
/b in/sh to execute !

SEE ALSO
mail(l), mesg(l), nroff(l), pr(l), sh(l), who(l).

DIAGNOSTICS
"user not logged on" if the person you are trying to

write to is not logged on.
"Permission denied" if the person you are trying to

write to denies that permission (with mesg).
11 Warning: cannot respond, set mesg -y" if your terminal

is set to mesg n and the recipient cannot respond
to you.

"Can no longer write to user" if the recipient has denied
permission (mesg n) after you had started
writing.

XARGS(1)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags] [command [initial-arguments]]

DESCRIPTION
Xargs combines the fixed initial-arguments with
arguments read from standard input to execute the
specified command one or more times. The number of
arguments read for each command invocation and the
manner in which they are combined are determined by
the flags specified.
Command, which may be a shell file, is searched for,
using one's $PATH. If command is omitted, / b i n / e c h o
is used.
Arguments read in from standard input are defined to be
contiguous strings of characters delimited by one or more
blanks, tabs, or new-lines; empty lines are always
discarded. Blanks and tabs may be embedded as part of
an argument if escaped or quote. Characters enclosed in
quotes (single or double) are taken literally, and the
delimiting quotes are removed. Outside of quoted strings
a backslash (\) will escape the next character.
Each argument list is constructed starting with the
initial-arguments, followed by some number of
arguments read from standard input (Exception: see —1
flag). Flags —i, —1, and —n determine how arguments
are selected for each command invocation. When none
of these flags are coded, the initial-arguments are
followed by arguments read continuously from standard
input until an internal buffer is full, and then command
is executed with the accumulated args. This process is
repeated until there are no more args. When there are
flag conflicts (e.g., —1 vs. — n), the last flag has
precedence. Flag values are:
—Inumber Command is executed for each

non-empty number lines of
arguments from standard input.
The last invocation of command
will be with fewer lines of
arguments if fewer than number
remain. A line is considered to
end with the first new-line unless
the last character of the line is a
blank or a tab; a trailing
blank/ tab signals continuation
through the next non-empty line.

XARGS(1)

If number is omitted, 1 is
assumed. Option —x is forced.

ireplstr Insert mode: command is executed
for each line from standard input,
taking the entire line as a single
arg, inserting it in initial-
arguments for each occurrence of
replstr. A maximum of 5
arguments in initial-arguments
may each contain one or more
instances of replstr. Blanks and
tabs at the beginning of each line
are thrown away. Constructed
arguments may not grow larger
than 255 characters, and option
—x is also forced. { } is assumed
for replstr if not specified.

nnumber Execute command using as many
standard input arguments as
possible, up to number arguments
maximum. Fewer arguments will
be used if their total size is
greater than size characters, and
for the last invocation if there are
fewer than number arguments
remaining. If option —x is also
coded, each number arguments
must fit in the size limitation,
else xargs terminates execution.

t Trace mode: The command and
each constructed argument list are
echoed to file descriptor 2 just
prior to their execution.

p Prompt mode: The user is asked
whether to execute command each
invocation. Trace mode (—t) is
turned on to print the command
instance to be executed, followed
by a ?. • . prompt. A reply of y
(optionally followed by anything)
will execute the command;
anything else, including just a
carriage return, skips that
particular invocation of command.

x Causes xargs to terminate if any
argument list would be greater
than size characters; —x is forced

- 2 -

XARGS(1)

by the options —i and —1. When
neither of the options —i, —1, or
—n are coded, the total length of
all arguments must be within the
size limit.

—ssize The maximum total size of each
argument list is set to size
characters; size must be a positive
integer less than or equal to 470.
If - s is not coded, 470 is taken as
the default. Note that the
character count for size includes
one extra character for each
argument and the count of
characters in the command name.

—eeofstr Eofstr is taken as the logical end-
of-file string. Underbar (_) is
assumed for the logical EOF
string if —e is not coded. The
value —e with no eofstr coded
turns off the logical EOF string
capability (underbar is taken
literally). Xargs reads standard
input until either end-of-file or the
logical EOF string is encountered.

Xargs will terminate if either it receives a return code of
— 1 from, or if it cannot execute, command. When
command is a shell program, it should explicitly exit (see
«A(l)) with an appropriate value to avoid accidentally
returning with —1.

EXAMPLES
The following will move all files from directory $1 to
directory $2, and echo each move command just before
doing it:

Is $1 | xargs - i - t mv $ l / { } $2/{ }
The following will combine the output of the
parenthesized commands onto one line, which is then
echoed to the end of file log:

(logname; date; echo $0 $*) | xargs
> > l o g

The user is asked which files in the current directory are
to be archived and archives them into arch (1.) one at a
time, or (2.) many at a time.

1. Is xargs - p - 1 ar r arch
2. Is xargs - p -1 | xargs ar r arch

XARGS(1)

The following will execute d i f f (l) with successive pairs of
arguments originally typed as shell arguments:

echo $* | xargs - n 2 diff
SEE ALSO

sh(l).
DIAGNOSTICS

Self-explanatory.

XSTR(1)

NAME
xstr - extract and share strings in C programs

SYNOPSIS

xstr —c source

xstr

xstr source
DESCRIPTION

Xstr creates a version of a C program in which all strings
are contained in a single external array, xstr. This
optimizes the program in two ways:
• Redundant characters are removed from the

object file. A string that is identical to a string
earlier in the program is eliminated. A string
that is a terminal substring of a longer string is
also eliminated, but only if xstr sees the longer
string first.

• The xstr array can be made read-only (shared),
reducing space and swapping.

Compiling and linking a program with xstr requires three
changes in the usual procedure:
1. Instead of compiling the source files, pass each

source file to xstr with the —c option (see first
synopsis above). This produces a file x.c which
is compiled in place of source.
X.c contains the same code as source but with
each string replaced by an expression of the form
(&xstr[n«m6er]), where number is the
appropriate offset in xstr. Xstr also creates or
updates the file strings in the current directory
to include strings encountered in source.
Source can be a —, indicating standard input.
This is useful when the C preprocessor produces
or suppresses strings. The command to use the
preprocessor with xstr takes the form

cc —E source | xs tr —c —
2. Run xstr without parameters (second synopsis

above). Xstr uses strings to create xs.c, a file
that declares the xstr array. Compile xs.c.

3. Link the object file compiled from xs.c (normally
called xs.o) together with all the object files
produced in step 1.

XSTR(1)

Strings is only touched when a string is added or
removed. Thus make(l) can speed things up by making
xs.o dependent on strings.
If a program has a single source file, pass it to xstr
without the —c option (third synopsis above). This
creates x.c and xs.c without touching strings.

The following makefile uses xstr to produce a program
from three source files: main.c, uno.e, and omega, e.

a.out: main.o uno.o omega.o xs.o

EXAMPLE

cc main.o uno.o omega.o xs.o

xs.o: strings
xstr
cc -c xs.c

.c.o:
cc -E $*.c | xstr -c -
cc -c x.c
mv x.o $*.o

FILES
strings
x.c
xs.c
/ tmp/xs*

strings found in source
massaged C source
definition of xstr array
Temp file

YACC(1)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [—vdlt] grammar

DESCRIPTION
Yacc converts a context-free grammar into a set of
tables for a simple automaton •which executes an LR(1)
parsing algorithm. The grammar may be ambiguous;
specified precedence rules are used to break ambiguities.
The output file, y.tab.c, must be compiled by the C
compiler to produce a program yyparse. This program
must be loaded with the lexical analyzer program, yylex,
as well as main and yyerror, an error handling routine.
These routines must be supplied by the user; lex(1) is
useful for creating lexical analyzers usable by yacc.
If the —v flag is given, the file y . o u t p u t is prepared,
which contains a description of the parsing tables and a
report on conflicts generated by ambiguities in the
grammar.
If the - d flag is used, the file y . t ab .h is generated with
the ^ d e f i n e statements that associate the yaec-assigned
"token codes" with the user-declared "token names".
This allows source files other than y . tab .c to access the
token codes.
If the —1 flag is given, the code produced in y . tab.c will
not contain any #I ine constructs. This should only be
used after the grammar and the associated actions are
fully debugged.
Runtime debugging code is always generated in y . tab .c
under conditional compilation control. By default, this
code is not included when y . tab .c is compiled.
However, when yacc''s — t option is used, this debugging
code will be compiled by default. Independent of
whether the - t option was used, the runtime debugging
code is under the control of YYDEBUG, a pre-processor
symbol. If YYDEBUG has a non-zero value, then the
debugging code is included. If its value is zero, then the
code will not be included. The size and execution time
of a program produced without the runtime debugging
code will be smaller and slightly faster.

FILES
y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp,

YACC(1)

yacc.debug, yacc.acts temporary files
/usr/ l ib/yaccpar parser prototype for C programs

SEE ALSO
lex/1), malloc(3X).
CTIX Programmer's Guide, Section 18.

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is
reported on the standard error output; a more detailed
report is found in the y . ou tput file. Similarly, if some
rules are not reachable from the start symbol, this is also
reported.

BUGS
Because file names are fixed, at most one yacc process
can be active in a given directory at a time.

