CTIX™ OPERATING SYSTEM MANUAL

Version B
Volume 1

Specifications Subject to Change.

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Convergent, CT-DBMS, CT-MAIL, CT-Net, CTIX, CTOS,
DISTRIX, Document Designer, The Operator,
AWS, CWS, IWS, MegaFrame, MiniFrame,
MightyFrame, and X-Bus, are trademarks
of Convergent Technologies, Inc.

CTIX is derived from UNIX System V by Convergent
Technologies under license from AT&T. UNIX is a trademark of
AT&T Bell Laboratories.

Material excerpted from the UNIX System V User Reference
Manual, Administrator Reference Manual, and Programmer
Reference Manual is Copyright 1984 by AT&T Technologies.
Reprinted by permission.

This software and documentation is based in part on the Fourth
Berkeley Software Distribution under license from the Regents of
the University of California.

This manual was prepared on a Convergent Technologies
MegaFrame Computer System and was printed on an Imagen
8/300 Laser Printer.

First Edition (November 1985) B-09-00634-01

Copyright © 1985 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. Title to and ownership of the documentation
contained herein shall at all times remain in Convergent
Technologies, Inc., and/or its suppliers. The full copyright
notice may not be modified except with the express written
consent of Convergent Technologies, Inc.

HOW TO USE THIS MANUAL

The CTIX Operating System Manual, Version B, describes the
commands, system calls, libraries, data files, and device
interfaces that make up the CTIX Operating System on
MiniFrame Computer Systems and MightyFrame Computer
Systems. Only internal-use and unbundled software products are
excluded. This manual should always be your starting point
when you need to find the documentation for a CTIX feature
with which you are unfamiliar.

The manual consists of a large number of short entries,
sometimes called “the man pages,” after the command which
accesses the entries when they are kept online. Each entry
briefly documents some feature of CTIX. Some features require
longer documentation than an entry in this manual; such features
have an entry that outlines the feature and cross-references the
manual that documents the feature fully. Entries that do not
refer to other manuals are self-contained and are the final word
on the features they describe.

Organization of the manual. The entries are organized into
seven sections in two volumes:

Volume 1:
1. Commands and Application Programs.

Volume 2:

2. System Calls.
Subroutines and Libraries.
File Formats.
Miscellaneous Facilities.
Games.

Special files.

N oUW

Within each section, entries are alphabetical by title, except for
an tntro entry at the beginning of each section.

Entry Title Conventions. An entry title looks like this
example:

erf(3M)

Lntry Type
ection Number

ame

Name is the name of the entry. Section Number indicates the
section that contains the entry. In this case, the entry is in
Section 3, which is in Volume 2. Entry Type is only on entries
that belong to special categories; refer to the section’s tniro entry
for an explanation. In this case, a reference to tntro(3) would tell
you that erf3M) describes functions from the Math Library,
which the C compiler does not load by default.

T B0 =~ - T 1
Finding the entry you need. To find out whi

need, refer to the following guides:

. The Permuted Index. This indexes each significant word
in each entry’s description. It is useful when you only
have a general notion what you’re looking for. It is also
useful when you know the name of the command,
function, etc., that you are interested in, but there is no
entry by that name. To simplify its use, a complete
Permuted Index for both volumes is in each volume.

° The Table of Contents. This is a simple list of entries,
by section, together with the entry descriptions. Volume
1 has a Table of Contents for Section 1. Volume 2 has a
Table of Contents for Sections 2 through 7.

. The Table of Related Entries. For Volume 1 only. A
table of entries organized so that related entries are
grouped together.

Section organization. Each section begins with an intro entry,
which provides important general information for that section.

Section 1, Commands and Application Programs, describes
programs intended to be invoked directly by the user or by
command language procedures, as opposed to subroutines, which
are intended to be called by the user’s programs. Commands
generally reside in the directory /bin (for binary programs).
Some programs also reside in /usr/bin, to save space in /bin.
These directories are searched automatically by the command
interpreter called the shell. Commands that were not
transported from UNIX System V reside in /usr/local/bin; this
directory is recommended for locally implemented programs.
Some administrative commands reside in /ete and various other
places. The /etc directory is searched automatically if you are
logged in as root; otherwise type out the full path name given
under SYNOPSIS or change the PATH environment variable to
include the command’s directory.

Section 2, System Calls, describes the entries into the CTIX
kernel, including the C language interfaces.

o

Section 3, Subroutines and Libraries, describes the available
library functions or subroutines. Their binary versions reside in
various system libraries in the directories /lib and /usr/lib. See
intro(3) for descriptions of these libraries and the files in which
they are stored.

Section 4, File Formats, documents the structure of particular
kinds of files; for example, the format of the output of the link
editor is given in a.out(4). Excluded are files used by only one
command (for example, the assembler’s intermediate files). In
general, the C language struct declarations corresponding to
these formats can be found in the directories /usr/include and
/usr/include/sys.

Section 5, Miscellaneous Facilities, contains a variety of things.
Included are descriptions of character sets, macro packages, etc.

Section 8, Games, describes the games and educational programs
that reside in the directory /usr/games.

Section 7, Special Files, discusses the characteristics of files that
actually refer to input/output devices.

Entry organization. All entries are based on a common
format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly
states its purpose.

The SYNOPSIS part summarizes the use of the program
being described. A few conventions are used, particularly in
Section 1 (Commands):

Boldface strings are literals and are to be typed just as
they appear.

Italic strings usually represent substitutable argument
prototypes and program names found elsewhere in the
manual (they are underlined in the typed version of the
entries).

Square brackets [] around an argument prototype
indicate that the argument is optional. When an
argument prototype is given as ‘“‘name” or “file”, it
always refers to a file name.

Ellipses ... are used to show that the previous
argument prototype may be repeated.

A final convention is used by the commands themselves.
An argument beginning with a minus —, plus +, or
equal sign = is often taken to be some sort of flag

argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files
whose names begin with —, 4, or =.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where
appropriate.

The FILES part gives the file names that are built into the

program.
The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic
indications that may be produced. Messages that are
intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes
deficiencies. Occasionally, the suggested fix is also
described.

A table of contents and a permuted index derived from that
table precede Section 1. On each indez line, the title of the
entry to which that line refers is followed by the appropriate
section number in parentheses. This is important because there
is considerable duplication of names among the sections, arising
principally from commands that exist only to exercise a
particular system call.

If the entries are online, they are available via the catman(1)
command.

HOW TO GET STARTED

This discussion provides the basic information you need to get
started on CTIX: how to log in and log out, how to communicate
through your terminal, and how to run a program. (See the
CTIX Programmer’s Guide for a more complete introduction to
the system.)

Logging in. Most MightyFrame and MiniFrame terminals are
either cluster or 9600 baud asynchronous terminals. An unused
terminal prompts login:.

Most asynchronous terminals have a speed switch that should be
set to the appropriate speed and a half-/full-duplex switch that
should be set to full-duplex. When a connection (at the speed of
the terminal) has been established, the system types login: and
you then type your user name followed by the ‘“return’ key. If
you have a password (and you should!), the system asks for it,
but does not print (“echo”) it on the terminal. After you have
logged in, the ‘‘return’, ‘“new-line”’, and “line-feed” keys will
give exactly the same result.

It is important that you type your login name in lower case if
possible; if you type upper-case letters, CTIX will assume that
your terminal cannot generate lower-case letters and that you
mean all subsequent upper-case input to be treated as lower case.

When you have logged in successfully, the shell will type a § to
you. (The shell is described below under How to run a program.)

For more information, consult login{1), which discusses the login
sequence in more detail, and stty(1), which tells you how to
describe the characteristics of your terminal to the system.
Profile(4) tells how to have the shell automatically perform
startup tasks when you log in. To log out, type an end-of-file
indication to the shell (ASCII EOT character; the FINISH key on
a Convergent Programmable Terminal, control-d on most
others). The shell terminates and the login: message appears
again.

How to communicate through your terminal. When you
type, the system is gathering your characters and saving them.
These characters will not be given to a program until you type a
“return” (or “new-line’’), as described above in Logging in.

Terminal input/output is full-duplex. It has full read-ahead,
which means that you can type at any time, even while a
program is typing at you. Of course, if you type during output,

the output will have interspersed in it the input characters.
However, whatever you type will be saved and interpreted in the
correct sequence. There is a limit to the amount of read-ahead,
but it is generous and not likely to be exceeded unless the system
is in trouble. When the read-ahead limit is exceeded, the system
throws away all the saved characters.

On an input line from a terminal, the character @ “kills’ all the
characters typed before it. The BACKSPACE character {(control-h
if your terminal lacks a backspace key) erases the last character
typed. Successive uses of BACKSPACE will erase characters back
to, but not beyond, the beginning of the line; @ and
BACKSPACE can be typed as themselves by preceding them with
\ (thus, to erase a \, you need two BACKSPACEs). These default

erase and kill characters can be changed; see stty(1).

The ASCII DC3 (control-s) character can be used to temporarily
stop output. It is useful with CRT terminals to prevent output
from disappearing before it can be read. Output is resumed
when a DC1 (control-q) or a second DC3 (or any other character,
for that matter) is typed. The DC1 and DC3 characters are not
passed to any other program when used in this manner.

The ASCII DEL (ak.a. “rubout”, Programmable Terminal
DELETE key) character is not passed to programs, but instead
generates an interrupt signal, just like the ‘“‘break”, “interrupt”,
or ‘‘attention” signal. This signal generally causes whatever
program you are running to terminate. It is typically used to
stop a long printout that you don’t want. However, programs
can arrange either to ignore this signal altogether, or to be
notified when it happens (instead of being terminated). The
editor ed(1), for example, catches interrupts and stops what it is
doing, instead of terminating, so that an interrupt can be used to
halt an editor printout without losing the file being edited.

The quit signal is generated by typing the ASCIl FS character
(Programmable Terminal CODE-CANCEL, Control-\ on other
terminals). It not only causes a running program to terminate,
but also generates a file with the “core image’ of the terminated
process. Quit is useful for debugging.

The system tries to be intelligent as to whether you have a
terminal with the ‘“‘new-line”’ function, or whether it must be
simulated with a ‘“‘carriage-return” and ‘‘line-feed”’ pair. In the
latter case, all snput ‘‘carriage-return’ characters are changed to
“line-feed” characters (the standard line delimiter), and a

“carriage-return’’ and ‘‘line-feed” pair is echoed to the terminal.
If you get into the wrong mode, the stty(1) command will rescue
you.

Tab characters are used freely in programs. If your terminal
does not have the tab function, you can arrange to have tab
characters changed into spaces during output, and echoed as
spaces during input. Again, the stty(1) command will set or reset
this mode. The system assumes that tabs are set every eight
character positions. The tabs(1) command will set tab stops on
your terminal, if that is possible.

How to run a program. When you have successfully logged
on, a program called the shell is listening to your terminal. The
shell reads the lines you type, splits them into a command name
and its arguments, and executes the command. A command is
simply an executable program. Normally, the shell looks first in
your current directory (see The current directory below) for a
program with the given name, and if none is there, then in
system directories. There is nothing special about system-
provided commands except that they are kept in directories
where the shell can find them. You can also keep commands in
your own directories and arrange for the shell to find them there.

The command name is the first word on an input line to the
shell; the command and its arguments are separated from one
another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain
control and type a $§ at you to indicate that it is ready for
another command. The shell has many other capabilities, which
are described in detail in sh(1).

The current directory. The CTIX file system is arranged in a
hierarchy of directories. When the system administrator gave
you a user name, he or she also created a directory for you
(ordinarily with the same name as your user name, and known as
your login or home directory). When you log in, that directory
becomes your current or working directory, and any file name
you type is by default assumed to be in that directory. Because
you are the owner of this directory, you have full permissions to
read, write, alter, or destroy its contents. Permissions to have
your will with other directories and files will have been granted
or denied to you by their respective owners, or by the system
administrator. To change the current directory use ¢d(1).

Path names. To refer to files not in the current directory, you
must use a path name. Full path names begin with /, which is
the name of the root directory of the whole file system. After

the slash comes the name of each directory containing the next
sub-directory (followed by a /), until finally the file name is
reached (e.g., /usr/ae/filex refers to file filex in directory ae,
while ae is itself a subdirectory of usr; usr springs directly from
the root directory). See sntro(2) for a formal definition of path
name.

If your current directory contains subdirectories, the path names
of files therein begin with the name of the corresponding
subdirectory (without a prefixed /). Without important
exception, a path name may be used anywhere a file name is

required.

Important commands that modify the contents of files are ¢p(1),
mv, and rm(1), which respectively copy, move (i.e., rename), and
remove files. To find out the status of files or directories, use
Is(1). Use mkdir(1) for making directories and rmdir(1) for
destroying them.

For a fuller discussion of the file system, see the references cited
at the beginning of the INTRODUCTION above. It may also be
useful to glance through Section 2 of this manual, which
discusses system calls, even if you don’t intend to deal with the
system at that level.

Writing a program. To enter the text of a source program
into a file, use ed(1), ez(1), or vi(1). After the program text has
been entered with the editor and written into a file (whose name
has the appropriate suffix), you can give the name of that file to
the appropriate language processor as an argument. Normally,
the output of the language processor will be left in a file in the
current directory named a.out (if that output is precious, use
mv(1) to give it a less vulnerable name).

When you have finally gone through this entire process without
provoking any diagnostics, the resulting program can be run by
giving its name to the shell in response to the $ prompt.

If any execution (run-time) errors occur, you will need adb(1) to
examine the remains of your program.

Your programs can receive arguments from the command line
just as system programs do; see ezec(2).

Surprises. Certain commands provide inter-user
communication. Even if you do not plan to use them, it would
be well to learn something about them, because someone else
may aim them at you. To communicate with another user
currently logged in, write(1) is used; masdl(1) will leave a message

whose presence will be announced to another user when he or she
next logs in. The corresponding entries in this manual also
suggest how to respond to these two commands if you are their
target.

When you log in, a message-of-the-day may greet you before the
first $.

Changes from UNIX System V. The CTIX Operating System
Manual, Version B, documents CTIX for MightyFrame and
MiniFrame systems, which is derived from UNIX System V,
Release 2.2.

The CTIX Operating System Manual, Version B, also includes
descriptions of the CTIX Internetworking programs and tools.

These are the important changes in UNIX software in CTIX:

The language support provided by the bs, efl, ratfor, sno,
and f77 programs. In their place, Convergent Technologies
can provide the following CTIX languages: GSA high level
COBOL; GSA-certified FORTRAN 77; Pascal; BASIC, with
both a compiler and interpreter and compatible with
Convergent Technologies workstation BASIC.

A terminal name 1s of the form ttyzzz instead of ttyzz.
RS-232 terminal numbers range from tty000 to tty255; RS-
422 terminal numbers range from tty256 to tty511.

There are two changes in terminal defaults. The default
speed for RS-232 terminals is 9600 baud instead of 300 baud.
The default erase character for all terminals is BACKSPACE
(control-h if your terminal lacks a BACKSPACE key) instead

of #.
Ls columnizes its output by default if the standard output is
a terminal, making /s easier to use on video terminals. This

convention and the associated —C option are borrowed {rom
the Berkeley Software Distribution.

Many Berkeley Software Distribution programs, libraries,
and networking programs are included. See especially the
indispensible head(1), mklost+found(1), more(l), renice(1),
and ul(1). In addition to the AT&T curses (based on
terminfo(4)), the Berkeley ocurse library (based on
termcap(4)) is supported.

PERMUTED INDEX

/functions of HP 2640 and
/special functions of HP
special functions of /
/functions of DASI
functions of DASI/ 300,
/Jof DASI 300 and
/1tol3: convert between
comparison. diff3:
TEKTRONIX 4014/
/for the TEKTRONIX
functions of the DASI/
functions of the DASI
between long integer/
fault.

absolute value.

adb:

abs: return integer
ceiling, remainder,

tiop: terminal

socket. accept:
connection on a socket.
allow/prevent LP/
times of/ touch: update
times. utime: set file
accessibility of a/
numerical/ graphics:
drvalloc, drvbind:

in a/ sputl, sgetl:
sadp: disk

common object file

file systems for optimal
locking: exclusive
/endutent, utmpname:
access: determine

or disable process
acctecon2: connect-time
acctpre2: process

shell procedures for
acctwtmp: overview of
/and miscellaneous
diskusg - generate disk
acct: per-process
/search and print process
/merge or add total
/summary from per-process
/manipulate connect
runacct: run daily
process accounting.
accounting file format.
from per-process/

print process/

2621-series terminals. . . .
2640 and 2621-series/ . . .
300, 300s: handle .
300 and 300s terminal
300s: handle special

300s terminals.
3-byte integers and long/ . .
3-way differential file . . .
4014: paginator for the . . .
4014 terminal.
450: handle special
450 terminal. /special . . .
aB4l, 164a: convert
abort: generate an IOT . .
abs: return integer
absolute debugger.
absolute value.
absolute value/ /floor, . . .
accelerator interface.
accept a connectionon a . .
accept: accepta «
accept, reject: . ¢ o 4 . o .
access and modification . ,
access and modification . .
access: determine
access graphicaland
access loadable drivers. . . .
access long integer data . .
access profiler.
access routines. ldfen: . . .
access time. fcopy
access to regions of a/ . . .
access utmp file entry. . . .
accessibility of afile.
accounting. /enable
accounting. acctconl, . . .
accounting. acctprel, . . .
accounting. /turnacct: . . .
accounting and/ /accton, .
accounting commands. . . .
accounting data by user/ . .
accounting file format. . . .
accounting file(s).
accounting files.
accounting records.
accounting records.
accounting. .+ « » o . . .
acct: enable or disable . , .
acct: per-process c e e
acctems: command summary
acctcom: search and

.
s,
.

accept(2N)
accept(2N)
accept(1M)
touch(l)
utime(2)
access(2)
graphies(1G)
1ddrv(2)
sputl(3X)
sadp(1M)
ldfen(4)
deopy(1M)
locking(2)
getut(3C)
access(2)
acct(2)
accteon({1M)
acctpre(1M)
acctsh(1M)
acct{(IM)
acct(1M)
diskusg(1M)
acct(4)
acctcom(l)
acctmerg(1M)
acctems(1M)
fwtmp(1M)
runacct{1M)
acet(2)
acct(4)
acctems(1M)
acctcom(1)

connect-time/
accounting. acctconl,
accton, acctwtmp:/
acctwtmp:/ acctdisk,
total accounting files.
acctdisk, acctdusg,
process accounting.
accounting. acctprel,
/acctdusg, accton,
sin, cos, tan, asin,
killall: kill all

sag: system

sal, sa2, sadc: system
sar: system

SCCS file editing
process data and system
hopefully interesting,
acctmerg: merge or
putenv: change or

/set DARPA Internet
/inet_netof: Internet
setenet: write Ethernet
administer SCCS files.
admin: create and
interface. swap: swap
Cave.

alarm: set s process
alarm clock.

data segment space
calloc: main memory
fast main memory
accept, reject:

running process/ renice:
sort: sort

and link editor output.
/to commands and
maintainer for portable/
format.

number: convert
arithmetic/ be:
maintainer for/ ar:
cpio: format of cpio

ar; common

header of a member of an
/convert object and
ldahread: read the

tar: tape file
maintainer for portable
cpio: copy file

varargs: handle variable
Joutput of a varargs
Xargs: construct

/get option letter from
expr: evaluate

echo: echo

acctconl, acctcon2: . .
acctcon2: connect-time .
acctdisk, acctdusg, . .

acctdusg, accton,

acctmerg: merge or add
accton, acctwtmp:/ . .
acctprel, acetpre2: . .
acctpre2: process . . .
acctwtmp: overview of/
acos, atan, atanZ:;/ . .
active processes.
activity graph.
activity report package.
activity reporter. . . .
activity. /print current

activity. /report

adage. /print a random,
adb: absolute debugger.

add total accounting/ .
add valueto/
address from node name.
address manipulation/ .
address on disk.
admin: createand . . .
administer SCCS files. .
administrative
advent: explore Colossal
alarm clock.
alarm: set a process .
allocation. /change .
allocator. /realloc, .
allocator. /mallinfo: .
allow/prevent LP/ .
alter priority of
and/or merge files. . .
a.out: common assembler
application programs. .
ar: archive and library .
ar: common archive file

Arabic numerals to/ . .
arbitrary-precision . . .
archive and library . .
archive.
archive file format. . .
archive file. /archive .
archive files to common/
archive header of a/ . .
archiver. . . . + . .« &
archives. /and library .

archives in and out. . . .

argument list.
argument list.
argument list(s) and/ .
argument vector. . . .
arguments as an/ . . .
arguments. « + o o o o

acctcon(1M)
acctcon(1M)
acct(IM)
acct(1M)
acctmerg(1M)
acct(1M)
acctpre(1M)
acctpre(1M)
acct(1M)
trig(3M)
killall(1M)
sag(1G)
sar{1M)
sar(1)

sact(1)
timex(1)
fortune(6)
adb(1)
acctmerg(1M)
putenv(3C)
setaddr(1NM)
inet(3N)
setenet(1INM)
admin(1)
admin(1)
swap(1M)
advent(6)
alarm(2)
alarm(2)
brk(2)
mallo¢(3C)
malloc(3X)
accept(1M)

. renice(1)

e o e+ o

sort(1)
a.out(4)
intro(1)
ar(1)

ar(4)
number(6)

ldahread(3X)
convert(1)
ldahread (3X)
tar(1)

ar(1)

cpio(1)
varargs(5)
vprintf(3S)
xargs(1)
getopt(3C)
expr(1)
echo(1)

be: arbitrary-precision
drill in number facts.
expr: evaluate arguments

/and detach serial lines
/locate a terminal to use
asa: interpret

carriage control/

ascii: map of

hd: hexadecimal and
character set.

long integer and base-84
atof: convert

strings: extract the
date/ /localtime, gmtime,
sin, cos, tan,

help:

editor/ a.out: common
as:

assertion.

assert: verify program
setbuf, setvbuf:

out the list of blocks
commands at a later/
cos, tan, asin, acos,
/tan, asin, acos, atan,
string to/

strtod,

integer. strtol, atol,
string to/ strtol,
slattach, sldetach:
process. wait:

and processing/
ungetc: push character
backgammon.

back: the game of

finc: fast incremental
recover files from a

modem capability data
terminal capability data
terminal capability data
/between long integer and
/(visual) display editor
proto file; set links
deliver portions of/

at a later time. at,
arithmetic language.
list of blocks/

drvload: system/ bre,
copy.

¢b: C program
i0, j1, jn, y0, y1, yn:

/install object files in

arithmetic language. .
arithmetic: provide .
as an expression. ., .
as: assembler. .
as network interfaces.
as the virtual system/
ASA carriage control/
asa: interpret ASA .
ASCII character set. .
ascii file dump. . . .
ascii: map of ASCII ., .
ASCII string. /between
ASCH string to/ . . .
ASCII text strings in a/
asctime, tzset: convert .
asin, acos, atan, atan2:/
ask for help.
assembler and link .
asseimbler.
assert: verify program
assertion.
assign buffering toa/ .
associated with/ /print
at, batch: execute
atan, atan2:/ sin, . . .
atan2: trigonometric/
atof: convert ASCII .,
atof: convert string to/
atoi: convert string to
atol, atoi: convert
attach and detach serial/
await completion of
awk: pattern scanning
back into input stream.
back: the game of
backgammon.
backup.
backup tape. frec: . . .
banner: make posters. .
base. modemcap: smart
base. termcap:
base. terminfo:
base-64 ASCII string. .
based on ex.

« ¢ 00

based on. /lists from . .

basename, dirname: . .
batch: execute commands
be: arbitrary-precision .
bcheck: print out the
beheckre, re, powerfail, .
beopy: interactive block
bdiff: big diff. . . .

beautifier.
bfs: big file scanner.
binary directories. .

.
.

Bessel functions,.
.

. atof(3C)

be(1)
arithmetic(6)
expr(1)

as(1)
slattach(1NM)
conlocate(1M)
asa(1)

asa(1)

ascii(5)

hd(1)

ascii(5)
3541(3C)

strings(1)
ctime(3C)
trig{3M)
help(1)
a.out(4)

. as(l)
. assert(3X)

. wait(1)
. awk(1)

assert(3X)
setbuf(3S)
beheck(1M)
at(1)
trig(3M)
trig(3M)
atof(3C)
strtod(3C) B
strtol(3C) -
strtol(3C)
slattach(1NM)

ungetc(3S)

. back(6)

back(6)
finc(1M)
frec(1M)
banner(1)
modemcap(5)

. termcap(4)

terminfo(4)
2641(3C)
vi(1)

qlist(1)
basename(1)
at(1)

be(1)

. bcheck(IM)

bre(1M)
beopy{1M)
bdiff(1)
¢b(1)
bessel(3M)
bfs(1)

. cpset(1M)

fread, fwrite:

table. bsearch:
/tdelete, twalk: manage
bind:

socket,.

jack.

bj: the game of

beopy: interactive

sum: print checksum and
sync: update the super
/print out the list of
number of free disk
manipulate Volume Home
powerfail, drvload:/
segment space/

sorted table.

stdio: standard

setbuf, setvbuf: assign
mknod:

vme: VME

between host and network
swab: swap

ce:

cflow: generate

cpp: the

includes: determine

cb:

lint: a

cxref: generate

ctrace:

and share strings in
cprofile: setting up a

de: desk

cal: print

service,

system. cu:

returned by stat system
malloc, free, realloc,
malloc, free, realloc,
/introduction to system
link and unlink system
requests to an LP/ lp,
modemecap: smart modem
termecap: terminal
terminfo: terminal

asa: interpret ASA
(variant of ex for

print files,

catman: create the

files for the manual.
advent: explore Colossal
beautifier.

directory.
commentary of an SCCS/

binary input/output. . .

binary search a sorted

binary search trees. . . .

bind a name to a socket.
bind: bind a name toa .

fread(3S)

. bsearch(3C)
. tsearch(3C)

bj: the game of black . . .

black jack.
block copy. « « &« « + &

block count of a file. . . .

bloek. & o 0 ¢ 4 e s
blocks associated with/
blocks. df: report . . .
Blocks (VHB). libdev: .
bre, beheckre, re, . .
brk, sbrk: change data .
bsearch: binary search a
buffered input/output/
buffering to a stream.
build special file. . .
bus interface.
byte order. /values
bytes.
C compiler.
C flowgraph.
C language preprocessor.
C language preprocessor/
C program beautifier.

C program checker. . . .

C program/
C program debugger.

C programs. /extract .
C shell environment at/
cal: print calendar. . .
calculator. .+
calendar. . « «
calendar: reminder . . .
call another computer
call. stat: data . . .
calloc: main memory/
calloc, mallopt,/ . . .
calls and error numbers.
calls. /unlink: exercise
cancel: send/cancel .
capability data base. .
capability data base. .

capability data base.

carriage control/ .

casual users). /editor

cat: concatenate and .
cat files for the/ . . .
catman: create the cat
Cave.
cb: C program
ce: C compiler.
cd: change working
cde: change the delta .

bind(2N)
bind(2N)
bj(6)
bj(6)

. becopy(1M)
. sum(l)

sync(1)

beheck(1IM)

. df(IM)

libdev(3X)
bre(1M)

. brk(2)
. bsearch(3C)

stdio(35)
setbuf(3S)

. mknod(1M)

vme(7)

. byteorder(3N)

swab(3C)

. cpp(l)

includes(1)
cb(1)
lint(1)
exref(1)

. ctrace(1)

xstr(1)
cprofile(4)

. cal(1)
. de(1)

cal(1)
calendar(1)
cu(1C)
stat(5)
malloc(3C)

. mallo¢(3X)

. . intro(2)

. link(1M)

Ip(1)

. modemcap(5)

termcap(4)
terminfo(4)
asa(1)
edit(1)
cat(1)

. catman(1)
. catman(l)

advent(6)

. cb(1)
. .oec(l)

ed(1)
cde(1)

ceiling,/ floor,

/ceil, fmod, fabs: floor,
flowgraph.

delta: make a delta

of running process by
create an interprocess
terminal’s local RS-232
input/ ungete: push
for/ eqnchar: special
the user. cuserid: get
[fgete, getw: get
/fpute, putw: put

ascii: map of ASCII
ASA carriage control
toascii: translate
isascii: classify

tr: translate

dodisk, lastlogin,/
directory.

/file system consistency
constant-width text/ cw,
mathematical/ eqn, neqn,
lint: a C program
password /group file
file systems with label
systems processed by/
documents/ mm, osdd,
of a file. sum: print
group. chown,

times: get process and
wait: wait for

file.

group of a file.
owner or group.
directory.

directory for a/
lastlogin,/ chargefee,
/isentrl, isascii:
uucp spool directory
screen.

clri:

clear:

status/ ferror, feof,
interpreter) with

set a process alarm
cron:

used.

Idclose, ldaclose:
close:

descriptor.

fclose, fflush:

line-feeds.
advent: explore

ceil, fmod, fabs: floor, . .
ceiling, remainder,/ . . .
cflow: generate C . ., . .
(change) to an SCCS/ . .
changing nice. /priority .
channel. pipe:
channels. /controlling . .
character back into . . .
character definitions . . .
character login name of .
character or word from a/

character or wordona/ .
characterset.
characters. /interpret . .
characters. /_tolower, . .
characters. /isentrl, . . .
characters.
chargefee, ckpacet, . . .
chdir: change working . .
check and interactive/ . .
checkew: prepare
checkeq: format
checker. .« . ¢ ¢ ¢ s o &
checkers. pwck, grpek: . .
checking. /labelit: copy .
checklist: listof file . . .
checkmm: print/check . .
checksum and block count
chgrp: change owner or
child process times. . . .
child process to stop or/ .
chmod: change mode. . .
chmod: change mode of .
chown: change owner and

chown, chgrp: change . .
chroot: change root . . .
chroot: change root . . .
ckpacct, dodisk,
classify characters. . . .
clean-up. uuclean:
clear: clear terminal . . .
clear i-node.
clear terminal screen. . .
clearerr, fileno: stream . .
C-like syntax. /(command
clock. alarm:
clock demon. . .,
clock: report CPU time .
close a common object/ .
close a file descriptor. . .
close: close a file
close or flush a stream. . .
clri: clear i-node.
cmp: compare two files. .
col: filter reverse
Colossal Cave.

floor(3M)
floor(3M)
cflow(1)
delta(1)
renice(1)
pipe(2)
tp(7)
ungetc(3

eqncha

(
cuserid(3S)
gete(3S)
pute(3S)
ascii(5)
asa(1)
conv(3C)
ctype(3C)
tr(1)
acctsh(1M)
chdir(2)
fsck(1M)
cw(1)
eqn(1)
lint(1)
pwck(1M)
voleopy(1M)
checklist(4)
mm(1)
sum(1)
chown(1)
times(2)
wait(2)
chmod(1)
chmod(2)
chown(2)
chown(1)
chroot(2)
chroot(1M)
acctsh(1M)
ctype(3C)
uuclean(1M)
clear(1)
clri(1M)
clear(1)
ferror(3S)
¢sh(1)
alarm(2)
cron{1M)
clock(3C)
ldclose(3X)
close(2)
close(2)
fclose(3S)
clri(1M)
emp(1)
col(1)
advent(6)

deltas.

comb:

lines common to two/
nice: run a

root directory for a

env: set environment for
rcmd: remote shell

uux: CTIX-to-CTIX system
hangups/ nohup:runa
with/ csh: a shell
getopt: parse

executable file for

/the standard /restricted
a stream to a remote
data and/ timex: time a
stream to a remote
per-process/ acctems:
system: issue a shell
condition evaiuation
time: time a

list(s) and execute
miscellaneous accounting
intro: introduction to

at, batch: execute
graphical and numerical
install: install

useful with graphical
¢de: change the delta
format. ar:

link editor/ a.out:

and archive files to
access routines. ldfen:
ldopen, ldaopen: open a
/line number entries of a
/ldaclose: close a

/the file header of a

Jof a section of a

/file header of a

/of a section of a
/section header of a
/section of a

symbol table entry of a
/symbol table entry of a
/to the symbol table of a
/line number entries in a
nm: print name list of
/information for a
/section header for a
/information from a
/retrieve symbol name for
symbol table/ syms:
filehdr: file header for
1d: link editor for

/print section sizes of
/select or reject lines
/report inter-process

comb: combine SCCS . .
combine SCCS deltas. . .
comm: select or reject . .
command at low priority.

command. chroot: change

command execution.
command execution. . . .
command execution. . . .
command immuneto . .
(command interpreter) . .
command options.
command. path: locate .
command programming/ .
command. /for returning

command; report process .
command. rexec: return .
command summary from .
command.
command. test:
command.
command. /argument
commands. /and
commands and application/
commands at a later/

commands. /access . . .
commands.« .
commands. /network . .

commentary of an SCCS/
common archive file
common assembler and .
common formats. fobject

common object file
common object file for/ .
common object file/ . . .
common object file. . . .
common object file. . . .
common object file. . . .

common object file. . . .
common object file. . . .
common object file. . . .
common object file. . . .
common object file. /a .

object file. . . .
object file. . . .
object file. . . .
object file. . . .
object file. . . .
object file. . . .

common
common
common
common
common
common

common object file. . . .
common object file/ . . .
common object file . . .
common object files. . . .
common object files. . . .

common object files. . . .
common to two sorted/
communication facilities/

comb(1)
comb(1)
comm(1)
nice(1)
chroot(1M)
env(1)
remd(1N)
uux(1C)
nohup(1)
csh(1)
getopt(1)
path(1)
sh(1)
remd(3N)
timex(1)
rexec(3N)
acctems(1M)
system(3S)
test(i)
time(1)
xargs(1)
acct(1IM)
intro(1)
at(1)
graphics(1G)
install(1M)
stat(1G)
ede(1)
ar(4)
a.out(4)
convert(1)
1dfen(4)
Idopen(3X)
ldiread(3X)
ldclose(3X)
1dfhread(3X)
ldlseek(3X)
Idohseek (3X)
ldrseek(3X)
ldshread(3X)
ldsseek (3X)
1dtbindex(3X)
ldtbread(3X)
1dtbseek(3X)
linenum(4)
nm(1)
reloc(4)
scnhdr(4)
strip(1)
ldgetname(3X)
syms(4)
filehdr(4)
1d(1)

size(1)
comm(1)
ipes(1)

/standard interprocess
create an endpoint for
diff: differential file
cmp:

an SCCS file. sccadiff:
3-way differential file
dircmp: directory
regular/ regemp, regex:
/regular expression
regular expression
term: format of

ce: C

tic: terminfo

yacc: yet another

/erfe: error function and
wait: await

pack, pcat, unpack:
symbol table/ ldtbindex:
cu: call another

files. cat:

command. test:
syatem.

config:

interface/ ifconfig:
spooling/ lpadmin:
terminal to use as the/
/wtmpfix: manipulate
connection on a socket.
getpeername: get name of
out-going terminal line
accept: accept a
connect: initiate a

part of a full-duplex
listen: listen for
accteonl, accteon2:
fsck, dfsck: file system
as the virtual system
terminal.

console:

math: math functions and
cw, checkew: prepare
mkfs:

list(s) and/ xargs:
/tbl, and eqn

Is: list

toc: graphical table of
esplit:

/interpret ASA carriage
ioctl:

fentl: file

init, telinit: process
msgctl: message
semctl: semaphore
shmetl: shared memory
fentl: file

status inquiry and job

communication package.
communication. socket:
comparator.
compare two files.
compare two versions of
comparison. diff3: . . .
comparison.
compile and execute . .
compile and match/
compile. regemp: .
compiled term file..

compiler.
compiler. .,
compiler-compiler, . . .
complementary error/ .
completion of process. .
compress and expand/ .
compute the index of a .
computer system. o+ o o
concatenate and print .
condition evaluation . .
config: configure a CTIX

configure a CTIX system.

configure network . . .
configure the LP . .
conlocate: locate a . .

connect accounting/ . .
connect: initiate a . .

connected peer.
connection. fan
connection on a socket.

connection on a socket.

connection. /shut down
connections on a socket.
connect-time accounting.
consistency check and/ .
console. fto use . . .
console: console . . .
console terminal. . .
constants.
constant-width text for/
construct a file system. .
construct argument . .,
constructs.
contents of directory. .
contents routines. . . .
context split. .+ « + ¢ .
control characters. . . .
control device.,
control. .
control initialization. . .
control operations. . .
control operations. . .
control operations. . .
control options. « « . .
control. uustat: uucp .

e« s e s

stdipe(3C)
socket{2N)
diff(1)

emp(1)
scesdiff(1)
diff3(1)
diremp(1)
regemp(3X)
regexp(5)
regemp(1)
term(4)

cc(1)

tic(1M)
yace(1)
erf(3M)
wait(1)
pack(1)
ldtbindex(3X)
cu(1C)

cat(1)

test(1)
config(1M)
config(1M)
ifconfig(1INM)
Ipadmin(1M)
conlocate(1M)
fwtmp(1M)
connect(2N)
getpeername(2N)
dial(3C)
accept(2N)
connect(2N)
shutdown(2N)
listen(2N)
acctconSlM)
fsck(1M
conlocate(1M)
consoie(7)
console(7)
math(5)

ew(1)
mkfs{1M)
xargs(1)
deroff(1)

Is(1)

toc(1G)
csplit(1)
asa(1)

ioctl(2)
fentl(2)
init(1M)
msgetl(2)
semctl(2)
shmet)(2)
fentl(5)
uustat(1C)

vce: version

interface. tty:

local RS-232/ tp:
terminals. term:

units:

dd:

to English. number:
floating-point/ atof:
integers/ 13tol, Itol3:
integer and/ a64l, 164a:
and archive files to/
/gmtime, asctime, tzset:
ecvt, fevt, gevt:

scanf, fscanf, sscanf:
archive files/ convert:
strtod, atof:

strtol, atol, atoi:
/htons, ntohl, ntohs:
dd: convert and

beopy: interactive block
and out. cpio:

optimal access/ dcopy:
label/ volcopy, labelit:
files. ep, ln, mv:

rep: remote file

system to CTIX system
CTIX-to-CTIX system file
image file.

core: format of

atan, atan2:/ sin,
functions. sinh,

print checksum and block
we: word

or move [iles.

cpio: format of

in and out.

archive.

preprocessor.

shell environment at/
files in binary/

clock: report

craps: the game of
craps.

images.

or rewrite an existing/
tmpnam, tempnam:
rewrite an/ creat:
fork:

ctags:

tmpfile:
communication. socket:
channel. pipe:

SCCS files. admin:
the manual. catman:
umask: set and get file

control. . + 4 ¢ 4 .
controlling terminal . .
controlling terminal’s .
conventional names for .
conversion program. . .
convert and copy a file.
convert Arabic numerals
convert ASCII string to
convert between 3-byte
convert between long .
convert: convert object .
convert date and time to/
convert floating-point/ .
convert formatted input.
convert object and . .
convert string to/
convert string to/
convert values between/
copy a fiie.
copy.
copy file archivesin . .
copy file systems for . .
copy file systems with .
copy, link or move . . .
copy.
copy. /uuname: CTIX .
copy. /uupick: public .
core: format of core . .
core image file.
cos, tan, asin, acos, . .
cosh, tanh: hyperbolic .
count of a file. sum: . .
count.
¢p, In, mv: copy, link .
cpio archive.
cpio: copy file archives .
cpio: format of cpio . .
cpp: the C ianguage . .
cprofile: setting up a C .
cpset: install object . .
CPU time used.
craps.
craps: the gameof . . .
crash: examine system .
creat: create a new file .
create a name fora/ . .
create a new fileor . .
create a new process, .
create a tags file. . . .
create a temporary file.
create an endpoint for .
create an interprocess .
create and administer .
create the cat files for .
creation mask.
cron: clock demon. . .

» s 5 e s s s 0

.

ve(l)
tty(7)
tp(7)
term(5)
units(1}
dd(1)
number(6)
atof(3C)
13tol(3C)
a641(3C)
convert(1)
ctime(3C)
ecvt(3C)
scanf(3S)
convert(1)
strtod(3C)
strtol(3C)
byteorder(3N)
dd(1)
beopy(1M)
cpio(1)
deopy(1M)
volcopy(1M)
ep(1)
rep(1N)
uuep(1C)
uuto(1C)
core(4)
core(4)
trig(3M)
sinh(3M)
sum(1)
we(l)
ep(1)
cpio(4)
epio(1)
cpio(4)
cpp(l)
cprofile(4)
cpset(1M)
clock(3C)
craps(6)
craps(6)
crash(1M)
creat(2)
tmpnam(3S}
creat(2)
fork(2)
ctags(1)
tmpfile(3S)
socket(2N)
pipe(2)
admin(1)
catman(1)
umask(2)
cron(1M)

file.

crontab - user
generate C program
optimization/ curses:
generate hashing/
interpreter) with/

remote terminal.

file.

name for terminal,
gmtime, asctime, tzset:/
software.

config: configure a
/uuname: CTIX system to
uucp, uulog, uuname:
print name of current
get name of current
command execution. uux:
uuto, uupick: public
debugger.

computer system.

ttt,

uname: print name of
uname: get name of
gethostname: get name of
editing/ sact: print

in the utmp file of the
getcwd: get path-name of
handling and/
interpolate smooth

login name of the user.
fields of each line of/

of each line of a/ cut:
constant-width text for/
program/

cron: clock

the error-logging
runacct: run

from node/ setaddr: set
Transfer Protocol/ ftpd:
server. telnetd:

/user interface to the
Transfer/ tftpd:
/special functions of
/special functions of the
command; report process
smart modem capability
terminal capability
terminal capability
generate disk accounting
access long integer

lock process, text, or
prof: display profile
system call, stat:

brk, sbrk: change

types: primitive system

crontab - user crontab . .
crontab file.
cross-reference. cxref: . .
CRT screen handling and

crypt, setkey, encrypt: . .
csh: a shell (command . .
csplit: context split. . . .
ct: spawn gettytoa . . .
ctags: create a tags . . .
ctermid: generate file ., ,
ctime, localtime,
ctinstall: install
CTIX system. + + « « o .
CTIX system copy. . . .
CTIX system to CTIX/ .
CTIX system. uname: . .
CTIX system. uname: . .
CTIX-to-CTIX system . .
CTIX-to-CTIX system file/
ctrace: C program
cu: call another
cubic: tic-tac-toe.
current CTIX system. . .
current CTIX system. . .
current host.
current SCCS file

current user. /the slot .

current working/ . . .

curses: CRT screen . . .
curve, spline: . « « « .,
cuserid: get character . .
cut: cut out selected . . .
cut out selected fields . .
cw, checkew: prepare , .
cxref: generate C ., . . .
demon. « . «
demon. /terminate . . .
daily accounting.
DARPA Internet address .
DARPA Internet File . .
DARPA TELNET protocol
DARPA TFTP protocol. .
DARPA Trivial File
DASI 300 and 300s/
DASI 450 terminal. . , .
data and system/ /time a
data base. modemcap: . .
data base. termcap: . . .
data base. terminfo: . . .
data by user ID. /- . . .
data in a/ sputl, sgetl: . .
data in memory. plock: .
data. o . 0 0 4. . ..
data returned by stat . .
data segment space/ . . .
data types.

crontab(1)
crontab(1)
cxref(1)
curses(3X)
erypt(3C)
esh(l)
esplit(1)
ct(1C)
ctags(1)
ctermid(35)
ctime(3C)
ctinstall(1)
config(1M)
uuep(1C)
uuep(1C)
uname(1)
uname(2)
wux(1C)
uuto(1C)
ctrace(1)
cu(1C)
t££(6)
uname(1)
uname(2)
gethostname(3N})
sact(1)
ttyslot(3C)
getewd(3C)
curses(3X)
spline(1G)
cuserid(3S)
cut(1)

cut(1)

ew(1)

exref(1)
cron(1M)
errstop(1M)
runacct(1M)
setaddr{1NM)
ftpd(1NM)
telnetd(1NM)
titp(1N)
tftpd(1NM)
300(1)

450(1)

timex(1)
modemcap(5)
termcap(4)
terminfo(4)
diskusg(1M}
sputl{3X)
plock(2)

prof(1)

stat(5)

brk(2)

types(5)

join: relational

the mkfs(1) proto file
tput: query terminfo
/asctime, tzset: convert
date: print and set the
date.

for optimal access/

file.

adb: absoiute

ctrace: C program
fsdb: file system

sdb: symbolic

negn. /special character
basename, dirname:

a file. tail:
commentary of an SCCS
SCCS/ delta: make a
SCCS/ cde: change the
rmdel: remove a
(change) to an SCCS/
comb: combine SCCS
errdemon: error-logging
mesg: permit or
nroff/troff, tbl, and/
system: system

close: close a file
duplicate an open file
de:

/sldetach: attach and
of a file. access:
preprocessor/ includes:
file:

drivers: loadable

for finite width output
table. master: master
ioctl: control

devnm:

/tekset, td: graphical

free disk blocks.
consistency check/ fsck,
out-going terminal line/
bdiff: big

comparator.

differential file/

sdiff: side-by-side

files. diffmk: mark
comparator. diff:

diff3: 3-way

between files.
directories.

comparison.

object files in binary
dir: format of

rmdir: remove files or

database operator. . . .
database. /using . . .

database. . . . <

date and time to string.
date. + « . . .
date: print and set the .
dc: desk calculator. . .
deopy: copy file systems
dd: convert and copy a

debugger.
debugger. . ¢ < . . .
debugger.
debugger.

definitions for eqn and
deliver portions of path/
deliver the last part of .
delta. /change the delta
delta (change) toan . .
delta commentary of an
delta from an SCCS file.
delta: make a delta .
deltas.
demon.
deny messages.
deroff: remove
description file.
descriptor. . .
descriptor. dup:
desk calculator. .
detach serial lines as/
determine accessibility
determine C language
determine file type. .
device drivers.
device. /fold long lines
device information . .
device. « « 4 . ¢ o
device name.
device routines and/ .
devnm: device name. .
df: report number of .
dfsck: file system . .

dial: establish an .

diff. «

diff: differential file

diff3: 3-way
difference program. .
differences between .
differential file
differential file/
diffmk: mark differences
dir: formatof
dircmp: directory . . .
directories. /install .
directories.
directories. rm, . . .

-10 -

join(1)
qinstall(1)
tput(1)
ctime(3C)
date(1)
date(1)
de(1)
deopy(IM)

. dd(1)

adb(1)

ctrace(1)
fsdb(1M)
sdb(1)
eqnchar(5)
basename(1)

. tail(1)

ede(1)
delta(1)
ede(1)
rmdel(1)
delta(1)

. comb(1)

errdemon(1M)
mesg(1)
deroff(1)
system(4)

. close(2)

dup(2)

de(1)
slattach(1NM)
access(2)
includes(1)
file(1)
drivers(7)
fold(1)

. master(4)

ioct1(2)
devnm(1M)
gdev(1G)
devnm(1M)
df(1M)
fsck(1M)

. dial(3C)
. bdiff(1)

difr(1)
difr3(1)
1)

. sdiff(

diffmk(1)

. difr(1)

(
difr3(1)
diffmk(1)

. dir(4)
. diremp(1)
. cpset(IM)
. dir(4)
. rm(1)

cd: change working
chdir: change working
chroot: change root
uuclean: uucp spool
diremp:

unlink: remove

chroot: change root
/make 2 lost+found

of current working

ls: list contents of
mkdir, mkdirs: make a
mvdir: move a

pwd: working

or/ mknod: make a
portions of/ basename,
LP printers. enable,
acct: enable or

modes, speed, and line
sadp:

user/ diskusg - generate
report number of free
exchangeable

disk: general

driver.

Ethernet address on
update: provide

du: summarize
accounting data by user/
mount, umount: mount and
disk.

/screen-oriented (visual)
prof:

hypot: Euclidean
generate uniformly
/checkmm: print/check
package for formatting
and/ mmt, mvt: typeset
chargefee, ckpacct,
whodo: who is

/atof: convert string to
ptdl: RS-232 terminal
Irand48, nrand48,/
graph:

arithmetic: provide
disk: general disk

sxt: pseudo-device
drivers: loadable device
/manage loadable
drvbind: access loadable
drivers.

access loadable/
drivers. drvalloc,
bcheckre, re, powerfail,
usage.

parts of an object/
status information from

directory. .+« .« cd(l)
directory. chdir(2)
directory. chroot(2)
directory clean-up. « « « + uuclean(1M}
directory comparison. . . . diremp(1)
directory entry. unlink(2)
directory for a command. . . chroot(iM)
directory for fsck. mklost+found(1)
directory. /path-name . . . getewd(3C)
directory. 18{1)
directory. . .« « mkdir(l)
directory. mvdir(IM)
directory name. pwd(l)
directory, or a special . . . mknod(2)
dirname: deliver basename(1)
disable: enable/disable . . . enable(1)
disable process/ acct{2)
discipline. /type, getty(1M)
disk access profiler. sadp(1M)
disk accounting data by . . diskusg(1M)
disk blocks. df: df(IM)
disk. dismount: remove . . dismount(1)
disk driver. disk(7)
disk: general disk disk(7)
disk. setenet: write setenet(1NM)
disk synchronization. . . . update(1M)
disk usage. . . « du(l)
diskusg - generate disk . . . diskusg(IM)
dismount file system. . . . mount(1M)
dismount: remove exchangeable dismount(1)
display editor based on/ . . vi(1)
display profile data. prof(1)
distance function. hypot(3M)
distributed/ /lcong48: . . . drand48(3C)
documents formatted with/ . mm(1)
documents. /the MM macro mm(5)
documents, view graphs, . . mmt(l)
dodisk, lastlogin,/ acctsh(1M)
doing what. .« whodo(IM)
double-precision number. . . strtod(3C)
download. tdl, gtdl, tdl(1)
drand48, erand48, drand48(3C)
draw a graph. graph(IG)
drill in number facts. . . . arithmetic(6)
driver. « . ¢ ¢ ¢ disk(7?)
driver. « . .« v . 0 0. . 8xt(7)
drivers. .« . « ¢ o« . . . drivers(7)
drivers. . . s ¢ o« . o o lddrv(IM)
drivers. drvalloe, lddrv(2)

drivers: loadable device
drvalloc, drvbind: . . .
drvbind: access loadable

e o o a2 s e

. drivers(7)
. 1ddrv(2)

1ddrv(2)

drvload: system/ bre, . . . brc(1IM)
du: summarize disk . du(l)
dump: dump selected . . . dump(l)
dump. [error records and . errdead(1M)

- 11 -

and ascii file

od: octal

an object file. dump:
file descriptor.
descriptor. dup:
echo:

convert floating-point/
prog
(variant of ex for/
print current SCCS file
/(visual) display

ed, red: text

ex: text

files. 1d: link

ged: graphical

assembler and link

sed: stream

for casual/ edit: text
ldeeprom: load

/user, real group, and
/getegid: get real user,
split {77, ratfor, or

file for a/ grep,
enable/disable LP/
process/ acct:

enable, disable:
hashing/ crypt, setkey,
generate hashing
locations in program.
/getgrnam, setgrent,
host entry. /sethostent,
/getnetbyname, setnetent,
socket: create an
protocol/ /setprotoent,
/getpwnam, setpwent,
entry. /setservent,
/pututline, setutent,
Arabic numerals to
nlist: get

linenum: line number
man, manprog: print
/macros for formatting
/manipulate line number
a/ /seek to line number
a/ /seek to relocation
wtmp: utmp and wtmp
get group file

get network host
endnetent: get network
get protocol

get password file
endservent: get service
access utmp file

object file symbol table

[, sm A abaed
l'alll. €HU, CTULTAL,

dump. hd: hexadecimal .
dump. + 4 ¢ o o 4 .
dump selected parts of . .
dup: duplicate an open . .
duplicate an open file . .
echo arguments. «
echo: echo arguments. . .
ecvt, fevt, gevt: o o 0 o
ed, red: text editor. . . .
edata: last locations in . .
edit: text editor
editing activity. sact: . .
editor based onex. . . .
editor. + « s 4 o 0 0 ..
editor. « + «
editor for common object .
editor. . ¢« ¢
editor output. /common .
editor. « ¢« ¢+ o 0 . ..
editor (variant of ex . . .
EEPROM.
effective group IDs. . . .
effective user, real/ . . .
efl files. fsplit:
egrep, fgrep: searcha . .
enable, disable: ,
enable or disable
enable/disable LP/ . . .
encrypt: generate
encryption. [femerypt: . .
end, etext, edata: last . .
endgrent, fgetgrent: get/ .
endhostent: get network .
endnetent: get network/ .
endpoint for/
endprotoent: get
endpwent, fgetpwent: get/
endservent: get service . .
endutent, utmpname:/ . .
English. /eonvert
entries from name list. . .
entries in a common/ . .
entries in this manual. . .
entries in this manual. . .
entries of a common/ . .
entries of a section of . .
entries of a sectionof . .
entry formats. utmp, . .
entry. /fgetgrent:
entry. /endhostent: . . .
entry. /setnetent,
entry. /endprotoent: . .
entry. /fgetpwent: . . .
entry. /setservent, . . .
entry. /utmpname: . . .
entry. /name for common

-12-

hd(1)
od(1)
dump(1)
dup(2)
dup(2)
echo(1)
echo(1)
ecvt(3C)
ed(1)

andiarny
Enaov)

edit(1)

sact(1)

vi(1)

ed(1)

ex(1)

1d(1)

ged(1G)
a.out(4)

sed(1)

edit(1)
ldeeprom(1M)
getuid(2)
getuid(2)
fsplit(1)
grep(1)
enable(1)
acct(2)
enable(1)
crypt(3C)
crypt(3C)
end(3C)
getgrent(3C)
gethostent(3N)
getnetent(3N)
socket(2N)
getprotoent(3N)
getpwent(3C)
getservent(3N)
getut(3C)
number(6)
nlist(3C)
linenum(4)
man(1)

man(5)
ldlread(3X)
ldlseek(3X)
ldrseek(3X)
utmp(4)
getgrent(3C)
gethostent(3N)
getnetent(3N)
getprotoent(3N)
getpwent(3C)
getservent(3N)
getut(3C)
ldgetname(3X)

/index of a symbol table
/an indexed symbol table
write password file
unlink: remove directory
command execution.
environment.

/setting up a C shell
profile: setting up an
environ: user

getenv: return value for
change or add value to
inteface, and terminal
definitions for

nroff /troff, tbl, and
format mathematical/
character definitions/
rhosts: remote
nrand48,/ drand48,
td: graphical/ hpd,
function and/
complementary/ erf,
interface.

records and status/
demon.

format.

sys_nerr:/ perror,

erf, erfec:

S /and complementary
. /sys_nerr: system
/to system calls and
errdead: extract
matherr:

errfile:

errstop: terminate the
errdemon:

err:

a report of logged
hashcheck: find spelling
of logged errors.
error-logging demon.
terminal line/ dial:
setmnt:

loadable drivers.
locations in/ end,
disk. setenet: write
function. hypot:
expression. expr:

test: condition

/text editor (variant of

display editor based on
crash:

regions of a/ locking:
execve, execlp, execvp:/
execvp:/ execl, execv,

entry of a common object/
entry of a common object/
entry. putpwent:
entry. PO
env: set environment for
environ: user
environment at login/ .
environment at login/ .
environment. .
environment for command
environment name. . .
environment. putenv: .
environment. /terminal
eqn and neqn. /character
eqn constructs. /remove
eqn, neqn, checkeq: . .
egqnchar: special
equivalent users. . . .
erand48, Irand48, . . .
erase, hardcopy, tekset,
erf, erfc:error o o« o .
erfc: error function and
err: error-logging . . .
errdead: extract error .
errdemon: error-logging
errfile: error-log file . .
errno, sys_errlist, . . .
error function and/ . .
error function.
error messages. . « o .
error numbers. . . .
error records and status /
error-handling function.
error-log file format. . .
error-logging demon. . .
error-logging demon. . .
error-logging interface. .
errors. errpt: process .
errors. /spellin,
errpt: process a report .
errstop: terminate the .
establish an out-going .
establish mount table.
/ete/lddrv/lddry: manage
etext, edata: last . . .
Ethernet address on . .
Euclidean distance . . .
evaluate arguments as an
evaluation command. .
ex for casual users). . .
ex: text editor.
ex. /(visual)
examine system images.
exclusive accessto . . .
execl, execv, execle, . .
execle, execve, execlp, .

- 13 -

ldtbindex(3X)
ldtbread(3X)
putpwent(3C)
unlink(2)
env(1)
environ(5)
cprofile(4)
profile(4)
environ(5)
env(i)
getenv(3C)
putenv(3C)
tset(1)
eqnchar(5)
deroff(1)
eqn(1)
eqnchar(5)
rhosts(4N)
drand48(3C
gdev(1G)
erf(3M)
erf(3M)
err(7)
errdead(1M)
errdemon(1M)
errfile(4)
perror(3C)
erf(3M)
erf(3M)
perror(3C)
intro(2)
errdead(1M)
matherr(3M)
errfile(4)
errstop(1M)
errdemon(1M)
err(7)
errpt(1M)
spell(1)
errpt(1M)
errstop(1M)
dial(3C)
setmnt(1M)
1ddrv(1M)
end(3C)
setenet(1INM)
hypot(3M)
expr(1)
test(1)
edit(1)

ex(1)

vi(1)
crash(1M)
locking(2)
exec(2)
exec(2)

/execv, execle, execve,
command. path: locate
execve, execlp, execvp:
Jargument list(s) and
later time. at, batch:
regex: compile and
environment for command
sleep: suspend

sleep: suspend

monitor: prepare
remote shell command
rexecd: remote

profil:

system command
execlp, execvp:/ execl,
execl, execv, execle,
/execle, execve, execlp,
system/ link, unlink:
a new file or rewrite an
process.

process. exit,

sqrt: exponential,/
unpack: compress and
and/ expand, unexpand:
tabs to spaces, and/
advent:

/log, log10, pow, sqrt:
as an expression.
match/ regexp: regular
regcmp: regular
evaluate arguments as an
and execute regular
strings in C/ xstr:

and status/ errdead:
strings in a/ strings:
files. fsplit: split

floor, ceil, fmod,
factor:

values. true,

in a machine-independent
finc:

/mallopt, mallinfo:

abort: generate an IOT
flush a stream.

options.
floating-point/ ecvt,
fopen, freopen,
stream status/ ferror,
fileno: stream status/
and statistics for a/
stream. fclose,

gete, getchar,
/setgrent, endgrent,
/setpwent, endpwent,

execlp, execvp: execute/ .
executable file for
execute a file. /execle, . .
execute command.
execute commands at a .
execute regular/ regemp, .
execution. env:set . . .
execution for an/
execution for interval. . .
execution profile.
execution. remd:
execution server.
execution time profile. . .
execution. /CTIX-to-CTIX
execv, execle, execve, . . .
execve, execlp, execvp:/ .
execvp: execute g file. . .
exercise link and unlink .
existing one. /create . . .
exit, _exit: terminate . . .

_exit: terminate

exp, log, logl0, pow, . . .
expand files. /peat, . . .
expand tabs to spaces, . .
expand, unexpand: expand
explore Colossal Cave. . .
exponential, logarithm,/ .
expr: evaluate arguments .
expression compile and . .
expression compile. . . .
expression. eXpr: . . o o
expression. /compile . . .
extract and share
extract error records . . .
extract the ASCII text . .
77, ratfor,orefl
fabs: floor, ceiling,/ . . .
factor a number.
factor: factor a number. .
false: provide truth . . .
fashion.. /integer data . .
fast incremental backup. .
fast main memory/ . . .
fault. . « o ¢ ¢ o o .+ .
fclose, fflush: close or . .
fentl: file control.
fentl: file control
fevt, gevt: convert
fdopen: open a stream. . .
feof, clearerr, fileno: . . .
ferror, feof, clearerr, . . .
ff: list file names
fflush: close or flusha . .
fgete, getw: get/
fgetgrent: get group/ . .
fgetpwent: get password/ .

- 14 -

exec(2)
path(1)
exec(2)
xargs(1)
at(1)
regemp(3X)
env(l)
sleep(1)
sleep(3C)
monitor(3C
remd(1N)
rexecd(1NM)
profil(2)
uux(1C)
exec(2)
exec(2)
exec(2)
link(1M)
creat(2)
exit(2)
exit(2)
exp(3M)
pack(1)
expand(1)
expand(1)
advent(6)
exp(3M)
expr(1)
regexp(5)
regemp(1)
expr(1)
regemp(3X)
xstr(1)
errdead(1M)
strings(1)
fsplit(1)
floor(3M)
factor(1)
factor(1)
true(1)
sputl(3X)
fine(1M)
malloc¢(3X)
abort(3C)
felose(3S)
fentl(2)
fentl(5)
ecvt(3C)
fopen(3
ferror(3
ferror (3!
ff(1M)
felose(3S
getc(3S)
getgrent(3)
getpwent(3

manit

\J

S)
S)
S)
)

C)

——

a stream. gets,

a pattern. grep, egrep,
modification/ utime: set
1dfen: common object
accessibility of a

tar: tape

out. cpio: copy

grpck: password/group
chmod: change mode of
owner and group of a
diff: differential

3-way differential

fentl:

fentl:

rcp: remote
CTIX-to-CTIX system
format of core image
umask: set and get
crontab - user erontab
ctags: create a tags
fields of each line of a
using the mkfs(1) proto
dd: convert and copy a
(change) to an SCCS
close: close a

dup: duplicate an open
type.

hexadecimal and ascii
— parts of an object
’ sact: print current SCCS
fgetgrent: get group
fgetpwent: get password
utmpname: access utmp
putpwent: write password
execvp: execute a
/egrep, fgrep: search a
path: locate executable
fopen a common objeet
per-process accounting
ar: common archive
errfile: error-log

intro: introduction to
of a common object

get a version of an SCCS
group: group

object files. filehdr:
ldfhread: read the

/seek to the optional
split: split a

issue identification

a member of an archive
close a common object
of a common object

of a common object

of a common object

of a common object

fgets: get a string from . . . gets(3S)
fgrep: search afile for . . . grep(l)
file accessand utime(2)
file access routines. ldfen(4)
file. access: determine . . . access(2)
file archiver., . . tar(l)

file archives inand cpio(l)
file checkers. pwek, pwek(IM)
filee.00¢..... chmod(2)
file. chown: change chown(2)
file comparator. diff(1)

file comparison. diff3: . . . diff3(1)
filecontrol. .« . « fentl(2)
file control options. fentl(5)
filecopy. « « v « « « ¢« .+ . rep(IN)
file copy. /public uuto(1C)
file. core: .« core(4)
file creation mask. umask(2)
file. crontab(l}
file. « . oo oo ... ctags(l)
file. /cut out selected . . . cut(l)

file database. /software . . qinstall(1)
file, o oo oe oo, ddl)
file. /make a delta delta(l)
file descriptor. close(2)
file descriptor. dup(2)
file: determine file file(1)

file dump. hd: hd(1)

file. /dump selected dump(l)
file editing activity. sact(l)
file entry. /endgrent, . . . getgrent(3C)
file entry. /endpwent, . . . getpwent(3C)
file entry. /endutent, . . . getut(3C)
fileentry. putpwent(3C)
file. /execve, execlp, exec(2)
file for a pattern. . o o« grep(l)
file for command. path(1)
file for reading. ldopen(3X)
file format. acet: acct(4)

file format. .
file format. . . « « . . .
file formats. .
file function. /entries .
file. get: .
filee. o oo oo oo,
file header for common . . .

file header of a common/
file header of a common/
file into pieces.
file. issue:
file. /archive header of
file. /ldaclose:
file. /the file header
file. /of a section
file. /file header
file. /of a section

-15 -

ar(4)
errfile(4)
intro{4)
ldIread(3X)
get(1)
group(4)
filehdr(4)
ldfhread(3X)
ldohseek(3X)
split(1)
issue(4)
ldahread(3X)
ldclose(3X)
1dfhread(3X)
ldlseek(3X)
Idohseek(3X)
ldrseek(3X)

of a common object

of a common object
entry of a common object
entry of a common object
table of a common object
in a common object
link: link to a

file;/ qlist: print out
access to regions of a

an ifile from an object
mknod: build special

or a special or ordinary
ctermid: generate
mktemp: make a unique
statistics/ ff: list

the format of a text

list of common object
null: the null

/the slot in the utmp
/processes using a
creat: create a new
passwd: password
subsequent lines of one
soft-copy/ pg:

/ftell: reposition a

Iseek: move read /write
prs: print an SCCS
read: read from

for a common object

a delta from an SCCS
bfs: big

two versions of an SCCS
scesfile: format of SCCS
for a common object
/file lists from proto
i-node. openi: open a
stat, fstat: get

ASCII text strings in a
from a common object
/using a file or

and block count of a
synchronous write on a
/name for common object
syms: common object
check and/ fsck, dfsck:
fsdb:

and statistics for a

fs:

mkfs: construct a
mount and dismount
mount: mount a

ustat: get

mnttab: mounted
umount: unmount a
system description
access/ dcopy: copy

file. /section header .
file. /section
file. /of a symbol table
file. /symbol table .
file. /to the symbol .
file. /number entries

file.
file lists from proto .
file. /exclusive
file. mkifile: make . .
file.
file. /make a directory,
file name for terminal.

file name.
file names and
file. newform: change

file. nm: print name .
file.

file of the current/ .
file or file structure. .
file or rewrite an/ . .
file.
file. /several files or .
file perusal filter for .
file pointer ina/ . .
file pointer.
file.
file.
file. /information . .
file. rmdel: remove .
file scanner.
file. scesdiff: compare
file.
file. /section header .
file; set links based/ .
file specified by
file status.
file. /extract th
file. /information
file structure.
file. /print checksum
file. swrite:
file symbol table entry.
file symbol table/
file system consistency
file system debugger.
file system. /file names
file system format. .
file system.
file system. /umount:
file system.
file system statistics. .
file system table.
file system.
file. system:
file systems for optimal

LR N A Y

- 16 -

ldshread(3X)
ldsseek(3X)
ldtbindex(3X)
Idtbread(3X)
ldtbseek(3X)
linenum(4)
link(2)
qlist(1)
locking(2)
mkifile(1M)
mknod(1M)
mknod(2)
ctermid(3S)
mktemp(3C)
f1(1M)
newform(1)
nm(1)
null(7)
ttvslot{3C)
VigEim v~y

fuser(

bfs(1)
scesdiff(1)
scesfile(4)
scnhdr(4)
qlist(1)
openi(2)
stat(2)
strings(1)
strip(1)
fuser(1M)
sum(1)
swrite(2)
ldgetname(3X)
syms(4)
fsck(1M)
fsdb(1M)
fr(1M)
fs(4)
mkfs(1M)
mount(1M)
mount(2)
ustat(2)
mnttab(4)
umount(2)
system(4)
deopy(1M)

by/ checklist: list of
volcopy, labelit: copy
the last part of a
format of compiled term
create a temporary

a name for a temporary
modification times of a
ftp:

ftpd: DARPA Internet
tftpd: DARPA Trivial
ftw: walk a

file: determine

TZ: time zone

previous get of an SCCS
repeated lines in a

val: validate SCCS
write: write on a

umask: set

common object files,
ferror, feof, clearerr,
print process accounting
or add total accounting
and administer SCCS
concatenate and print
cmp: compare two
common to two sorted
mv: copy, link or move
mark differences between
header for common object
find: find

catman: create the cat
tape. frec: recover
specification in text

{77, ratfor, or eft

format of graphical
cpset: install object
preprocessor include
introduction to special
editor for common object
lockf: record locking on
rm, rmdir: remove
/same lines of several
compress and expand
pr: print

sizes of common object
sort: sort and/or merge
/object and archive
what: identify SCCS

pg: file perusal

greek: select terminal
nl: line numbering
line-feeds. col:

device routines and
tplot: graphics

backup.

find:

file systems processed

file systems with label/
file. tail: deliver ., . . .
file.. term:
file. tmpfile: . . .
file. /tempnam: create .
file. /update access and
file transfer program. .
File Transfer Protocol/
File Transfer Protocol/
file tree.

file type.
file. .
file. .
file. .
file. .
file. .
file-creation mode mask.
filehdr: file header for .
fileno: stream status/ .
file(s). /search and .
files. acctmerg: merge
files. admin: create
files. cat:
files.
files.
files.
files.
files.
files.
files for the manual.
files from a backup
files. fspec: format
files. fsplit: split
files. /string, . .
files in binary/ .
files. /C language
files. intro:
files. 1d: link
files.
files
files
files.
files.
files. /print section
filee.
files to common formats
files.
filter for soft-copy/
filter.
filter.
filter reverse
filters. /td: graphical .
filters. « « & « & & 4 &
finc: fast incremental
find files.

unget: undo a
uniq: report .

for reject lines .
¢cp, In, .
diffmk:
filehdr: file . .

e o s s e 2 e

or directories. .
or subsequent/
/pcat, unpack:

- 17 -

. . checklist(4)

* & e & & e s s s & & s * + 8 8 e & 8 8 & e a & 4 & & T 4 e 3 * o+ v s »

. voleopy(IM)

. tail(1)

. term(4)

tmpfile(3S)

. tmpnam(3S)

. touch(1)

ftp(1N)

ftpd(1NM)

. titpd{INM)

. ftw(3C)

. file(1)

. tz(4)

unget(1) -
unig(1)

. val(1)
write(2)
umask(1)
filehdr(4)
ferror(3S)
acctcom(1)
acctmerg(1M)
admin(1)
cat(1)
¢mp(1)
comm(1)
ep(1)
diffmk(1)
filehdr(4)

. find(1)
catman(1)
frec(1M)
fspec(4)
fsplit(1)

. gps(4)

. cpset(1M)

. includes(1)
. intro(7)
1d(1)
lockf(3C)
rm(1)
paste(1)
pack(1)
pr(1)

size(1)
sort{1)
convert(1)
what(1)
pg(1)
greek(1)
nl(1)
. col(1)
gdev(1G)
tplot(1G)
finc(1M)
find(1)

s s s e

s e * o

hyphen:

ttyname, isatty:

for an object/ lorder:
/spellin, hashcheck:
utmp file of/ ttyslot:
/fold long lines for
fish: play “Go

dass micoa

/convert ASCII string to
/fevt, gevt: convert
/manipulate parts of
floor, ceiling,/

floor, ceil, fmod, fabs:
cflow: generate C

fclose, fflush: close or
ceiling,/ floor, ceil,

for finite width output/
finite width/ fold:
open a stream.

process.

accounting file

ar: common archive file
errfile: error-log file

fs: file system

for/ eqn, neqn, checkeq:
newform: change the
inode:

file.. term:

file. core:

cpio:

dir:

/primitive string,
scesfile:

text files. fspec:

object file symbol table
or troff. tbl:

nroff:

archive files to common
introduction to file
utmp and wtmp entry
fscanf, sscanf: convert
varargs/ /vsprintf: print
/fprintf, sprintf: print
/print/check documents
/the macro package for
/the MM macro package for
this/ man: macros for
management. netman:
hopefully interesting,/
formatted/ printf,
pute, putchar,

stream. puts,
input/output.

a backup tape.

find: find files.
find hyphenated words.

find name of a terminal.

find ordering relation .
find speiling errors. . .
find the slot in the . .
finite width output/ . .
Fish”.

fish: play “Go Fish”. . .

Pledin o

Livuingg. ® ® = @ ° s e
floating-point number. .
floating-point number to/
floating-point numbers.
floor, ceil, fmod, fabs:

floor, ceiling,/ « + . .
flowgraph. . . « . .
flush a stream. . . .
fmod, fabs: floor, . .
fold: fold long lines .
fold long lines for . .

fork: create a new . . .
format. /per-process .
format.
format.
format. <« « ¢ & o &
format mathematical text
format of a text file. . .
format of an i-node. . .
format of compiled term

format of core image . .
format of cpio archive. .
format of directories. .
format of graphical/ . .

s e e 2 e s o

format of SCCS file. .
format specification in
format. syms: common
format tables for nroff
format text.
formats. /object and

formats. intro:
formats. utmp, wtmp:
formatted input. scanf,

e e o a2 e

. find(1)
. hyphen(1)
. ttyname(3C)

lorder(1)
spell(1)
ttyslot(3C)

. fold(1)
. fish(6)

fish(6)
tee(1)
atof(3C)
ecvt(3C)
frexp(3C)
floor(3M)

. floor(3M)
. cflow(1)

felose(3S)
floor(3M)
fold(1)

.« fold(1)
fopen, freopen, fdopen: . .

formatted output ofa . .

formatted output. . . .
formatted with the MM/
formatting a permuted/

fopen(3S)

. fork(2)

acct(4)

. ar(4)

errfile(4)
fs(4)

. eqn(l)

formatting documents. . .

formatting entriesin . .
form-based network . .
fortune: print a random,
fprintf, sprintf: print . .
fpute, putw: put/
fputs: put a string on a

newform(1)
inode(4)
term(4)
core(4)
cpio(4)
dir(4)
gps(4)
scesfile(4)
fspec(4)
syms(4)
tbi(1)
nroff(1)
convert(1)
intro(4)
utmp(4)
scanf(3S)
vprintf(3S)
printf(3S)
mm(1)
mptx(5)
mm(5)

. man(5)
. netman(1NM)
. fortune(6)

fread, fwrite: binary

frec: recover files from

.18 -

printf(3S)
pute(38)
puts(3S)
fread(3S)
frec(1M)

df: report number of
main memory,/ malloc,
mallopt,/ malloc,
stream. fopen,
manipulate parts of/
frec: recover files

/line number information
/receive a message

get character or word
fgets: get a siring
mkifile: make an ifile
rmdel: remove a delta
/get option letter

and status information
read: read

ncheck: generate names
nlist: get entries

DARPA Internet address
acctems: command summary
/print out file lists
getpw: get name

formatted input. scanf,
systems processed by
consistency check and/
lost+found directory for
debugger.

reposition a file/
specification in text/
ratfor, or efl files.

stat,

pointer/ fseek, rewind,
interprocess/

program.

File Transfer Protocol/

/shut down part of a
erf, erfc: error

and complementary error
gamma: log gamma
Euclidean distance

of a common object file
matherr: error-handling
prof: profile within a
math: math

jn, y0, y1, yn: Bessel
power, square root
absolute value

ocurse: optimized screen
/300s: handle special

hp: handle special

450/ 450: handle special
cosh, tanh: hyperbolic
atan?2: trigonometric
processes using a file/
input /output. fread,

free disk blocks.

free, realioc, calloc: . .

free, realloc, calloc, .
freopen, fdopen: open a
frexp, ldexp, modf: .
from a backup tape, .
from a common object/
from a socket.
from a stream. /getw:

from a siream. gets, . .

from an object file. .
from an SCCS file. .
from argument vector.
from dump. /records

fromfile. .,
from i-numbers.
from name list.
from node name. [set
from per-process/
from proto file; set/ .
from UID.
fs: file system format.
fscanf, sscanf: convert
fsck. /list of file
fsck, dfsck: file system
fsck. /make a .
fsdb: file system . . .
fseek, rewind, ftell: .

fspec: format

fsplit: split 177,
fstat: get file status, .

ftell: reposition a file . .

ftok: standard
ftp: file transfer . . .
ftpd: DARPA Internet
ftw: walk a file tree.

full-duplex connection.
function and/
function. /function
function. .
function. hypot: .

function. /entries
function. . .
function. .
functions and constants.
functions. j0, j1,
functions. /logarithm,

functions. /remainder, .

functions. « . « . .
functions of DASI 300/

functions of HP 2640 and/

functions of the DASI
functions. sinh,
functions. /acos, atan,
fuser: identify
fwrite: binary

-19 -

df(1M)
mallo¢(3C)
mallo¢(3X)

. fopen(3S)

frexp(3C)

. frec(1M)

strip(1)
recv(2N)
gete(3S)
gets(3S)
mkifile(1M)
rmdel(1)

. getopt(3C)

errdead(1M)
read(2)
ncheck(1M)
nlist(3C)

. setaddr(1NM)

acetemsl 1M)

ctems(1M)
qlist(1)
getpw(3C)

fs(4)

scanf(3S)
checklist(4)
fsck(1M)
mklost+found(1)
fsdb(1M)
fseek(3S)

fspec(4)

fsplit(1)

. stat(2)

s o o & a4 ® @ e »

fseek(3S)
stdipe(3C)
ftp(1N)
ftpd(INM)
ftw(3C)
shutdown(2N)
erf(3M)
erf(3M)
gamma(3M)

. hypot(3M)

ldIread(3X)

. matherr(3M)
. prof(5)

math(5)
bessel(3M)

. exp(3M)

floor(3M)
ocurse(3X)

. 300(1)
. hp(1)

450(1)
sinh(3M)
trig(3M)
fuser(1M)
fread(3S)

manipulate connect/
moo: guessing

back: the

bj: the

craps: the

wump: the

trk: trekkie

intro: introduction to
gamma: log
function.

ecvt, fevt,

maze:
abort:

cflow:

cross-reference. cxref:
data by user/ diskusg -
terminal. ctermid:
crypt, setkey, encrypt:
i-numbers. ncheck:
simple lexical/ lex:
/seed48, lcong48:
simple random-number
stream. gets, fgets:
file. get:

getsockopt, setsockopt:
ulimit:

of the user. cuserid:
/getchar, fgete, getw:
list. nlist:

umask: set and

stat, fstat:

statistics. ustat:
SCCS file.

/endgrent, fgetgrent:
getlogin:

logname:

msgget:

getpw:

peer. getpeername:
system, uname:

host. gethostname:
/setnetent, endnetent:
/sethostent, endhostent:
unget: undo a previous
argument/ getopt:
/endpwent, fgetpwent:
working/ getewd:
process times. times:
/getpgrp, getppid:
/endprotoent:

user,/ /getgid, getegid:
/setservent, endservent:
semget:

segment. shmget:
getsockname:

fwtmp, wtmpfix:
BAME. o » o o s o o o o
game of backgammon. . .
game of black jack. . . .
game of craps. o+ . o o .
game of hunt-the-wumpus.
BAIME. &« @ o 0 s 4 v .o
BAIMES. « o o o o o o & «
gamma function.
gamma: log gamma . . .
gevt: convert/
ged: graphical editor. . .
generate a maze.
generate an JOT fault. . .
generate C flowgraph. . .
generate C program . . .
generate disk accounting .
generate file name for . .
generate hashing/
generate names from . . .
generate programs for . .
generate uniformly/ . . .
generator. rand, srand: .
get a string froma . . .
get a version of an SCCS .
get and set options on/ .
get and set user limits. . .
get character login name .
get character or word/ . .
get entries from name . .
get file creation mask. . .
get file status.
get file system
get: get a version of an . .
get group file entry.
get login name. . .
get login name. . .
get message queue.

get name from UID. . . .
get name of connected . .
get name of current CTIX

get name of current . . .
get network entry.
get network host entry. .
get of an SCCS file. . . .
get option letter from . .
get password file entry. .
get path-name of current .
get process and child . .
get process, process/ . . .
get protocol entry.
get real user, effective . .
get service entry.
get set of semaphores. . .
get shared memory . . .
get socket name.

fwtmp(1M)
moo(6)
back(6)
bj(6)
craps(6)
wump(6)
trk(6)
intro(6)
gamma(3M)
gamma(3M)

gammanciMi

ecvt(3C)
ged(1G)
maze(6)
abort(3C)
cflow(1)
exref(1)
diskusg(1M)
ctermid(3S)
erypt(3C)
ncheck(1IM)
lex(1)
drand48(3C)
rand(3C)
gets(3S)

get(1)
getsockopt(2N])
ulimit(2)
cuserid(3S)
gete(3S)
nlist(3C)
umask(2)
stat(2)

ustat(2)

get(1)
getgrent(3C)
getlogin(3C)
logname(1)
msgget(2)
getpw(3C)
getpeername(2N)
uname(2)
gethostname(3N)
getnetent(3N)
gethostent(3N)
unget(1)
getopt(3C)
getpwent(3C)
getewd(3C)
times(2)
getpid(2)
getprotoent(3N)
getuid(2)
getservent(3N)
semget(2)
shmget(2)
getsockname(2N)

terminal. tty:
time:
getw: get character or/
get character or/ gete,
current working/
getuid, geteuid, getgid,
environment name.
getegid: get/ getuid,
real/ getuid, geteuld
getgrnam, seugrem,/
setgrent,/ getgrent,
getgrent, getgrgid,
gethostent,
/gethostbyaddr,
gethostbyaddr,/
current host.

name.

getnetent,

getnetent, getnetbyaddr,
getnetbyname,/

letter from argument/
options.

password.

connected peer.
process,/ getpid,
getppid: get process,/
getpid, getpgrp,
/getprotobynumber,
getprotoent,
getprotobynumber,/
UD.

getpwnam, setpwent,/
getpwent, getpwuid,
setpwent,/ getpwent,
string from a stream.
/getservbyport,
getservent,
getservbyport,/

name,

get and set options on/
settings used by

type, modes, speed, and/
terminal. ct: spawn
terminal settings used/
getegid: get real user,/
getutline, pututline,/
pututline,/ getutent,
getutent, getutid,

getc, getchar, fgetc,
ctime, localtime,

fish: play

longjmp: non-local
string, format of/

graph: draw a
sag: system activity

get the name of the . .
get time.
getc, getchar, fgete, . .
getchar, fgetc, getw: .

getcwd: get path-name of
getegid: get real user,/ .
getenv: return value for

geteuid, getgid,
getgid, getegid: get
geigrent, getgrgid, . .
getgrgid, getgrnam, .
getgrnam, setgrent,/ .
gethostbyaddr,/
gethostbyname,/ . . .
gethostent,
gethostname: get name of
getlogin: get login
getnetbyaddr,/

PO

getnetent, getnetbyaddr,
getopt: get option
getopt: parse command
getpass: read a
getpeername: get name of
getpgrp, getppid: get .
getpid, getpgrp,
getppid: get process,/
getprotobyname,/ . . .
getprotobynumber,/ . .
getprotoent,
getpw: get name from .
getpwent, getpwuid, . .

getnetbyname, setnetent,/

« s o @

getpwnam, setpwent,/
getpwuid, getpwnam,
gets, fgets: get a . ., . .
getservbyname,/
getservbyport,/
getservent, .
getsockname: get socket
getsockopt, setsockopt: .
getty. /and terminal .
getty: set terminal . . .
getty to a remote
gettydefs: speed and . .
getuid, geteuid, getgid, .
getutent, getutid,
getutid, getutline,
getutline, pututline,/ .
getw: get character or/ .
gmtime, asctime, tzset:/
“Go Fish”.
goto. setjmp,
gps: graphical primitive
graph: draw a graph. .
graph.
graph.

s 3 s s e

-921 -

tty(1)

time(2)
gete(3S)
gete(3S)
getewd(3C)
getuid(2)
getenv(3C)
getuid(2)
getuid(2)
getgrent(3C)
getgrent(3C)
getgrent(3C)
gethostent(3N)
gethostent(3N)
gethostent(3N)
gethostname(3N)
getlogin(3C)
getnetent(3N)

getnatent! AN}

GEVASLTOV oIy

getnetent(3N)
getopt(3C)
getopt(1)
getpass(3C)
getpeername(2N)
getpid(2)
getpid(2)
getpid(2)
getprotoent(3N)
getprotoent(3N)
getprotoent(3N)
getpw(3C)
getpwent(3C)
getpwent(3C)
getpwent(3C)
gets(3S)
getservent(3N)
getservent(3N)
getservent(3N)
getsockname(2N)
getsockopt(2N)
gettydefs(4)
getty(1IM)
ct(1C)
gettydefs(4)
getuid(2)
getut{3C)
getut(3C)
getut{3C)
getc(3S)
ctime(3C)
fish(6)
setjmp(3C)
gps(4)
graph{1G)
graph(1G)
sag(1G)

graphics: access
/network useful with
hardcopy, tekset, td:
ged:

/string, format of

string, format of/ gps:
contents routines. toc:
gutil:

graphical and numerical/
tnlat:

tplot:
plot:

subroutines. plot:
/typeset documents, view
/for typesetting view
filter.

search a file for a/
/effective user, real

/get process, process
chgrp: change owner or
/endgrent, fgetgrent: get
group:

setpgrp: set process

id: print user and
group, and effective
setgid: set user and
newgrp: log in to a new
chown: change owner and
signal to a process or a
/update, and regenerate
file checkers. pwek,
signals. ssignal,

/or relocate a PT or
terminal download. tdl,
hangman:

moo:

utilities.

processing. shutdown,
of DASI 300/ 300, 300s:
of HP 2640 and/ hp:
of the DASI 450/ 450:
list. varargs:

curses: CRT screen

/run a command immune to
graphical/ hpd, erase,
hinv:

/hdestroy: manage
/hashmake, spellin,
/encrypt: generate
hashcheck: find/ spell,
manage hash/ hsearch,
ascii file dump.
hsearch, hcreate,
object/ senhdr: section
files. filehdr: file

graphical and numerical/ . . graphics(1G)
graphical commands. . . . stat(1G)
graphical device/ /erase, . . gdev(1G)
graphical editor. ged(1G)
graphical files. gps(4)
graphical primitive gps(4)
graphical tableof toc(1G)
graphical utilities. gutil(1G)
graphics: access graphics(1G)
graphics filters. tplot(1G)
graphics interface. plot(4)
graphics interface plot(3X)
graphs, and slides. mmt(1)
graphs and slides. mv(5)
greek: select terminal . . . greek(1)
grep, egrep, fgrep: o « « . grep(l)

group, and effective/ .
group, and parent/

. getuid(2)
. getpid(2)

group. chown, chown(1)
group file entry. getgrent(3C)
group file. group(4)
group: group file. . . . group(4)

groupID.
group IDs and names.
group IDs. [user, real

. setpgrp(2)
. id(1)
. getuid(2)

group IDs. setuid, setuid(2)
Group. « « + + o « o « o o newgrp(l)
groupof afile. chown(2)
group of processes. /a . . . kill(2)
groups of programs. make(l)
grpck: password/group . . . pwck(1M)
gsignal: software ssignal(3C)
GT local printer. mktpy(l)
gtdl, ptdl: RS-232 tdl(1)
guess the word. hangman(6)
guessing game. mMoo(6)
gutil: graphical gutil(1G)
halt: terminate all shutdown(1M)
handle special functions . . 300(1)
handle special functions . . hp(1)
handle special functions . . 450(1)
handle variable argument . varargs(5)
handling and/ curses(3X)
hangman: guess the word. . hangman(6)
hangups and quits. nohup(i)
hardcopy, tekset, td: gdev(1G)
hinv(1M)

hash search tables. . .
hashcheck: find spelling/
hashing encryption.
hashmake, spellin,
hcreate, hdestroy:
hd: hexadecimal and . . .
hdestroy: manage hash/ .
header for a common . . .
header for common object .

hardware inventory.

P S

-2 .

. hsearch(3C)
. spell(1)
. crypt(3C)

spell(1)
hsearch(3C)
hd(1)
hsearch(3C)
senhdr(4)
filehdr(4)

ldfhread: read the file
to the optional file
indexed /named section
[read the archive

help: ask for

file dump. hd:
inventory.

/manipulate Volume
fortune: print a random,
[convert values between
endhostent: get network
get name of current
network.

/special functions of
functions of HP 2640/
tekset, td: graphicat/
hdestroy: manage hash/
ntohs: convert values/
convert values/ htonl,
wump: the game of
sinh, cosh, tanh:

words.

hyphen: find

distance function.
accounting data by user
set or shared memory
IDs and names.

set process group

issue: issue

a file or file/ fuser:
what:

id: print user and group
and parent process

and effective group

set user and group
network interface/

file. mkifile: make an
core: format of core
crash: examine system
nohup: run a command
/C language preprocessor
language preprocessor/
finc: fast

/tgoto, tputs: terminal
formatting a permuted
ldtbindex: compute the
ptx: permuted

entry/ ldtbread: read an
/ldnshread: read an

of/ /ldnsseek: seek to an
inet_ntoa,/

Internet/ /inet_makeaddr,
/inet_network, inet_ntoa,
address/ /inet_lnaof,
inet_addr,

header of a common/ . . .

header of a common/ /seek
header of a common/ /an
header of a member of an/
help: ask for help.

. ldshread

help. « v o ¢ v ¢ o 0 o 4 W

hexadecimal and ascii . .
hinv: hardware
Home Blocks (VHB). . . .

hopefully interesting,/ . . .

host and network byte/ .
host entry. /sethostent, .
host. gethostname: . . .
hosts: list of nodeson . .
HP 2640 and 2621-series/
hp: handle special . . .
hpd, erase, hardcopy,
hsearch, hcreate, .
htonl, htons, ntohl

i ’ y

htons, ntohl, ntohs: .

hunt-the-wumpus. .
hyperbolic functions.
hyphen: find hyphenated
hyphenated words. ., .
hypot: Euclidean . . .
ID. /- generate disk . .
id. /queue, semaphore .
id: print user and group
ID. setpgrp:
identification file. . . .
identify processes using
identify SCCS files. . .
IDs and names.
IDs. /process group, .
IDs. /user, real group,
IDs. setuid, setgid: .
ifconfig: configure . .
ifile from an object . . .
image file.
images.
immune to hangups and/
include files.
includes: determine C .
incremental backup. . .
independent operations.
index. /package for . .
index of a symbol table/
index.
indexed symbol table
indexed /named section/
indexed /named section .
inet_addr, inet_network,
inet_lnaof, inet_netof:
inet_makeaddr,/
inet_netof: Internet . . .
inet_network, inet_ntoa,/

e ® o 82 s e s e e s 4 e e

-93.

Idfhread
ldohseek

—_

3X)
3X)
3X)
3X)

PP

ldahread
help(1)
help(1)
hd(1)
hinv(1M)
libdev(3X)
fortune(6)
byteorder(3N)
gethostent(3N)

Py

gethostname(3N)

hosts(4N)

hpél
. hp(1

gdev(1G)

. hsearch(3C)

byteorder(3N)
byteorder(3N)
wump(6)
sinh(3M)
hyphen(1)
hyphen(1)
hypot(3M)
diskusg(1M)
iperm(1)
id(1)
setpgrp(2)

. issue(4)

fuser(1M)
what(1)
id(1)
getpid(2)
getuid(2)
setuid(2)
ifconfig(1INM)
mkifile(1M)
core(4)
crash(1M)
nohup(1)
includes(1)
includes(1)
fine(1M)
termeap(3X)
mptx(5)
1dtbindex(3X)
ptx(1)
Idtbread(3X)
ldshread(3X)
ldsseek(3X)
inet(3N)

. inet(3N

inec(SNg
inet(3Ng

. inet(3N

inet_addr, inet_network,
inittab: script for the
control initialization.
telinit: process control
/drvload: system
volume. iv:

a socket. connect:
process. popen, pclose:
init process,

clri: clear

i-node.

inode: format of an
open a file specified by
blocks associated with
/start and stop terminal
convert formatted

push character back into
fread, fwrite: binary
stdio: standard buffered
fileno: stream status
uustat: uucp status
software/ qinstall:
install:

commands.

binary/ cpset:

or GT/ mktpy, mvtpy:
ctinstall:

/set terminal, terminal
abs: return

/convert between long
/sgetl: access long

atoi: convert string to
/convert between 3-byte
3-byte integers and long
beopy:

processing/ mailx:
/consistency check and
/a random, hopefully
err: error-logging

qic:

1p: parallel printer

mem, kmem: system memory
/configure network
plot: graphics

plot: graphics

swap administrative
termio: general terminal
terminal accelerator
protocol. telnet: user
TFTP/ tftp: user
controlling terminal
vme: VME bus

serial lines as network
node/ setaddr: set DARPA
/inet_lnaof, inet_netof:
Protocol/ ftpd: DARPA

inet_ntoa,/
init process.
init, telinit: process . .
initialization. init, . . .
initialization shell/ . .
initialize and maintain .
initiate a connection on

initiate pipe to/froma .
inittab: script for the .
i-node. « 4« ¢ 0 06
inode: format of an . .
i-node. « . . . 4 o . .
i-node. openi:
i-node(s). /the list of .
input and output. . . .
input. /fscanf, sscanf: .
input stream. ungetce: .
input/output.
input/output package. .
inquiries. /clearerr, . .
inquiry and job control.

install and verify . . .
install commands. . .
install: install
install object files in .
install or relocate a PT
install software.
inteface, and terminal/
integer absolute value.
integer and base-64/ .
integer dataina/ . .
integer. strtol, atol, .
integers and long/ . .
integers. /between .
interactive block copy. .
interactive message . .
interactive repair.
interesting, adage. . . .
interface.
interface for QIC tape. .
interface.
interface.
interface parameters. .
interface.
interface subroutines. .
interface. swap: . « . .
interface.
interface. tiop: . « .+ .
interface to TELNET .
interface to the DARPA
interface. tty:
interface.
interfaces. /and detach

Internet address from .
Internet address/ . . .
Internet File Transfer .

e o s s s s .

- 24 -

inet(3N)
inittab(4)
init(1M)
init(1M)
bre(IM)
iv(1)
connect(2N)
popen(3S)
inittab(4)
elri(1M

elri{IM)
inode(4)
inode(4)
openi(2)
becheck(1M)
rsterm(1M)
scanf(3S)
ungetc(3S)
fread(3S)
stdio(3S)
ferror(3S)
uustat(1C)
ginstall(1)
install{1M)
instali(1M)
cpset(1M)
mktpy(1)
ctinstall(1)
tset(1)
abs(3C)
2641(3C)
sputl(3X)
strtol(3C)
13t01(3C)
13t0l(3C)
beopy(1M)
mailx(1)
fsck(1M)
fortune(6)
err(7)

qic(7)

1p(7)
mem(7)
ifconfig{1INM)
plot(4)
plot(3X)
swap(1M)
termio(7)
tiop(7)
telnet(1N)
tftp(1N)
tty(7)
vme(7)
slattach(1NM)
setaddr(1NM)
inet(3N)
ftpd(1NM}

and numbers for the
protocols: list of
services: list of

curve. spline:

control/ asa:

csh: a shell (command
pipe: create an

ipes: report

ftok: standard

suspend execution for an
suspend execution for
commands and/

file formats.

games.

miscellany.

special files.
subroutines and/
system calls and error/
and application/ intro:
formats. intro:

intro:

miscellany. intro:

files. intro:
subroutines and/ intro:
calls and error/ intro:
generate names from
hinv: hardware

abort: generate an
queue, semaphore set or/
inter-process/
Jisdigit, isxdigit,
islower, isdigit,/
/isgraph, iscntrl,
terminal. ttyname,
/isprint, isgraph,
/isupper, islower,
/ispunect, isprint,
isalpha, isupper,
/isspace, ispunct,
/isalnum, isspace,
/isxdigit, isalnum,
system:

file. issue:
identification file.
isdigit,/ isalpha,
/islower, isdigit,
news: print news
maintain volume.
Bessel functions.
Bessel functions. j0,
bj: the game of black
functions. j0, j1,
database operator.
/nrand48, mrand48,
processes, killall:

internet. /names . . .
Internet protocols. . . .
Internet services. . . .
interpolate smooth . .
interpret ASA carriage .
interpreter) with C-like/
interprocess channel. . .
inter-process/
interprocess/

interval. sleep:
interval. sleep:

intro: introduction to .
intro: introduction to .
intro: introduction to .
intro: introduction to .
intro: introduction to .
intro: introduction to

intro: introduction to .
introduction to command
introduction to file .

introduction to games. .
introduction to
introduction to special .
introduction to
introduction to system .
i-numbers. ncheck:

8

inventory. . « ¢ « o
ioctl: control device. . .
IOT fault.

iperm: remove a message
ipes:report « ¢ ¢ . o .
isalnum, isspace,/ . . .
isalpha, isupper,
isascii: classify/
isatty: find name of a .
iscntrl, isascii:/
isdigit, isxdigit,/ . . .
isgraph, isentel,/ . . .
islower, isdigit,/
isprint, isgraph,/
ispunct, isprint,/ . . .
isspace, ispunct,/ . . .
issue a shell command. .
issue identification . . .
issue: issue
isupper, islower,
isxdigit, isalnum,/ . . .
items.
iv: initializeand
jo)jlrjnxyoyylr yn: . .
jll jnr yo; ylv yn: L
Jack. o 4 s e e e . . e
in, y0, y1, yn: Bessel . .
join: relational
jrand48, srand48,/ . . .
kill all active

- 95 -

.

networks(4N)
protocols(4N) .
services(4N) |
spline(1G)
asa(l)
csh(1)
pipe(2)
ipes(1)
stdipe(3C)
sleep(1)
sleep(3C)
intro(1)
intro(4)
intro(6)
intro(5;

HY T A Y

IRVrogd) ;
intro(4) |
intro{6) :
intro(5)

intro(7) ‘
intro(3) |
intro(2)
ncheck(1M)
hinv(1M)
ioctl(2)
abort(3C) -
iperm(1)
ipes(1)
ctype(3C)
ctype(3C)
ctype(3C)
ttyname(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
system(3S)
issue(4)
issue(4)
ctype(3C)
ctype(3C)
news(1)

iv(1)
bessel(3M)
bessel(3M)
bj(8)
bessel(3M)
join(1)
drand48(3C)
Killall(1M)

process or a group of/
process.

processes.

interface. mem,

quiz: test your

between 3-byte integers/
long integer and/ a64l,
/copy file systems with
systems with/ volcopy,
scanning and processing
/arithmetic

cpp: the C

includes: determine C
/command programming
/ckpacet, dodisk,

shl: shell

/srand48, seed48,
common object files.
object file. ldclose,
archive header of a/
object file for/ ldopen,
a common object file.

parts of/ frexp,

file access routines.
header of a common/
symbol name for common/
manipulate/ ldiread,
ldlread, 1dlinit,

ldlitem: manipulate/

to line number entries/
number entries/ ldlseek,
relocation/ ldrseek,
Idshread,

indexed /named/ ldsseek,
optional file header of/
common object file for/
to relocation entries/
read an indexed/named/
to an indexed/named/
index of a symbol table/
indexed symbol table/
symbol table of a/
getopt: get option

for simple lexical/
programs for simple
update. lsearch,

Volume Home Blocks/
to subroutines and
relation for an object

ar: archive and

ulimit: get and set user
/an out-going terminal
/type, modes, speed, and
line: read one

common object/ linenum:

kill: send a signal to a .
kill: terminatea ., . . .
killall: kill all active . .
kmem: system memory .
knowledge.
13tol, itol3: convert . .
164a: convert between .
label checking.
labelit: copy file
language. awk: pattern

language. . .
language preprocessor.
language preprocessor/
language. + + « o o .
lastlogin, monacct,/ .
layer manager.
lcong48: generate/ . .
1d: link editor for
ldaclose: ¢lose 2 common
ldahread: read the . . .
Idaopen: open a common

Idclose, ldaclose: close .

ldeeprom: load EEPROM.

ldexp, modf: manipulate
Idfen: common object .
Idfhread: read the file .
ldgetname: retrieve
ldlinit, 1dlitem:
ldlitem: manipulate line/
Idlread, ldlinit,
ldlseek, ldniseek: seek
ldnlseek: seek to line .
ldnrseek: seek to
ldnshread: read an/
ldnsseek: seek to an .
ldohseek: seek to the . .
ldopen, ldaopen: open a
ldrseek, ldnrseek: seek

s & s 8 e s 8 s v e

Idshread, ldnshread: . . .

ldsseek, ldnsseek: seek .
ldtbindex: compute the
ldtbread: read an
ldtbseek: seek to the . .
letter from argument/
lex: generate programs
lexical tasks. /generate

libdev: manipulate . . .
libraries. /introduction

library maintainer for/ .
limits. + ¢« ¢ « ¢ & « &
line connection. ., . . .
line discipline.
line. . .
line number entries in a

- 96 -

kill(2)
kill(1)

. killall(1M)
. mem(7)

quiz(6)

. 13t0l(3C)
. aB4(3C

)
voleopy(1M)
volcopy(1M)

. awk(l)

be(1)
epp(1)

. includes(1)

sh(1)

. acctsh(IM)

shl(1)
drand48(3C)
1d(1)
1dclose(3X)
Idahread(3X)
ldopen(3X)
ldclose(3X)
ldeeprom(1M)

. frexp(3C)
. ldfen(4)

1dfhread(3X)
Idgetname(3X)
1dIread(3X)
ldIread(3X)
ldlread(3X)

. ldlseek(3X)

ldlseek (3X)

. ldrseek(3X)
. ldshread(3X)
. ldsseek(3X)

ldohseek(3X)

. ldopen(3X)
. ldrseek(3X)

A

1dshread(3X)

. ldsseek(3X)
. ldtbindex(3X)

ldtbread(3X)

. ldtbseek(3X)

getopt(3C)

. lex(1)
. lex(1)
Ifind: linear search and . . .
. libdev(3X)
. intro(3)

library. /find ordering . . .

lsearch(3C)

lorder(1)
ar(1)

. ulimit(2)
. dial(3C)

getty(1M)

. line(1)
. linenum(4)

/ldlitem: manipulate
/ldnlseek: seek to
strip: strip symbol and
nl:

selected fields of each
/requests to an LP
lpset: set parallel

Ipr:

update. isearch, Iifind:
col: filter reverse

entries in a common/
/attach and detach serial
comm: select or reject
output/ fold: fold long
head: give first few
uniq: report repeated
/files or subsequent

or/ paste: merge same
link, unlink: exercise
object files. 1d:
/common assembler and

¢p, In, mv: copy,

link:

link and unlink system/
from proto file; set
checker.

directory. ls:

statistics for a/ ff:

get entries from name
beheck: print out the
file. nm: print name
processed by/ checklist:
protocols. protocols:
services. services:
network. hosts:

by terminal/ ttytype:
handle variable argument
of a varargs argument
on a socket. listen:
connections on a/
/construct argument
qlist: print out file
move files. ¢p,
|deeprom:

drivers:
/ete/lddrv/lddrv: manage
/drvbind: access
asctime, tzset:/ ctime,
as the/ conlocate:

for command. path:
end, etext, edata: last
data in memory. plock:
files.

access to regions of a/

line number entries of a/
line number entries of a/
line number information/
line numbering filter. .
line of a file. /cut out
line printer.
line printer options.

line printer spooler.

line: read one line. .
linear search and .
line-feeds.
linenum: line number
lines as network/ . .
lines common to two/

lines for finite width .
lines. .
linesinafile.

o e o o .

lines of one file. . .
lines of several files

link and unlink system/
link editor for common .
link editor output. . .
link: link to a file. . .
link or move files. . .
link toafile.
link, unlink: exercise .
links based on. /lists
lint; a C program
list contents of . .
list file names and .
list. nlist:
list of blocks/
list of common object
list of file systems . .
list of Internet . . .
list of Internet . . .
list of nodeson

e« 3 8 & 8 s e 8 s e e e 6 s .

o o o e
a4 2 s & 4 s & =

« s e 2 e

list of terminal types
list. varargs:
list. /formatted output
listen for connections

listen: listen for
list(s) and execute/ .
lists from proto file;/

In, mv: copy, link or .
load EEPROM.
loadable device drivers.

loadable drivers. . . .
loadable drivers. . . .
localtime, gmtime, . .
locate a terminal to use
locate executable file .
locations in program.

lock process, text, or .
lockf: record locking on
locking: exclusive . . .

e o e ¢ o

-« e 0

- 27 -

@ 6 e o 8 e e 8 8 e 8 e ® 6 B e & & s & ® & 8 8 & & e 8 e * e s e s &6 s e o »

L Y

@ & = 6 e & e e 3 8 2 s a4 & & & 8 e &8 % e * 8z s a

ldiread(3X)
ldiseek(3X)
strip(1)
nl(1)

Isearch(3C)
col(1)
linenum(4)
stattach(1NM)
comm(1)
fold(1)
head(1)
uniq(1)
paste(1)
paste(l)
link(1M)
1d(1)
a.out(4)
link(2)
cp(1)
link(2)
link(1M)
qlist(1)
lint(1)

. 1s(1)
. (M)

¢ s & o o

nlist(3C)
beheck(1M)
am(1)
checklist(4)
protocols(4N)

. services(4N)

e o o s & & 8 s e 6 = s e e s e e & e @

hosts(41N)
ttytype(4)
varargs(5)
vprintf(3S)
listen(2N)
listen(2N)
xargs(1)
qlist(1)

ep(1)
Ideeprom(1M)
drivers(7)
1ddrv(1M)
1ddrv(2)
ctime(3C)
conlocate(1M)
path(1)
end(3C)
plock(2)
lockf(3C)
locking(2)

lockf: record

gamma:

newgrp:

exponential,/ exp,
exponential,/ exp, log,
/pow, sqrt: exponential,
process a report of
network. rwho: who is
getlogin: get

fogname: get

cuserid: get character
logname: return
passwd: change

a C shell environment at
up an environment at

name of user.

/184a; convert between

/164a;
sputl, sgetl: access
3-byte integers and
width output/ fold: fold
setjmp,

relation for an object/
mklost+found: make a
nice: run a command at
requests to an LP line/
/requests to an
interface.

disable: enable/disable
/lpmove: start/stop the
reject: allow/prevent
Ipadmin: configure the
Ipstat: print

LP spooling system.
LP/ lpsched, lpshut,
spooler.

start/stop the LP/
printer options.
start/stop the/ lpsched,
information.

drand48, erand48,
directory.

search and update.

file pointer.

3-byte integers/ 13tol,

values. values:

/long integer data in a
formatting a/ mptx: the
formatting/ mm: the MM
typesetting/ mv: a troff
m4:

entries in this/ man:
formatted with the MM
mail to users or read

locking on files.
log gamma function. . . .
log in to & new group. . .
log, l0og10, pow, sqrt: . . .
logl0, pow, sqrt:
logarithm, power, square/
logged errors. errpt:
logged in on local
login name.
fogin name.
login name of the user. . .
login name of user. . . .
login password.
login: sign on.
login time. /setting up . .
login time. /setting . . .
logname: get login name. .
logname: return login . .
long integer and base-64/
long integer data ina/ . .
long integers. /between .
long lines for finite
longjmp: non-local goto. .
lorder: find ordering
lost+found directory for/ .
low priority.
lp, cancel: send/cancel . .
LP line printer.
Ip: parallel printer
LP printers. enable, . . .
LP request scheduler and/
LP requests. accept,
LP spooling system.
LP status information. . .
Ipadmin: configure the . .
Ipmove: start/stop the . .

lpr: line printer
lpsched, lpshut, lpmove:

lpset: set parallel line .
Ipshut, lpmove:
Ipstat: print LP status . .
Irand48, nrand48,/ . . .
Is; list contentsof
Isearch, Ifind: linear . . .
lseek: move read/write . .
ltol3: convert between . .
m4: macro processor. ..
machine-dependent . . .
machine-independent/ . .
macro package for
macro package for . .
macro packagefor
macro processor.
macros for formatting . .
macros. /documents . . .
mail. mail, rmail: send . .

- 98-

lockf(3C)
gamma(3M)
newgrp(1)
exp(3M)
exp(3M)
exp(3M)
errpt(1M)
rwho(1N)
getlogin(3C)

logname(1)

cuserid(3S)
logname(3X)
passwd(1)
login(1)
eprofile(4)
profile(4)
logname(1)
logname(3X)
a641(3C)
sputl(3X)
13tol(3C)
fold(1)
setjmp(3C)
lorder(1)
mklost+found(1)
nice(1)

Ipsched(1M)
accept(1M)
Ipadmin(1M)
Ipstat(1)
Ipadmin(1M)
Ipsched(1M)

. lpr(1)

Ipsched(1M)
Ipset(1M)
Ipsched(1M)
Ipstat(1)
drand48(3C)
1s(1)
Isearch(3C)
lseek(2)
13tol(3C)
m4(1)
values(5)
sputl(3X)
mptx(5)
mm(5)
mv(5)

m4(1)
man(5)
mm(1)
mail(1)

to users or read mail.
mail. mail, rmail: send
message processing/
/free, realloe, calloc:
/mallopt, mallinfo: fast
regenerate groups/ make:
iv: initialize and

ar: archive and library
an SCCS file. delta:
mkdir, mkdirs:

special or/ mknod:
directory/ mklost+found:
mktemp:

object file. mkifile:
and regenerate groups/
banner:

terminal/ script:
memory/ [calloe, mallopt,
calloc: main memory/
calloc, mallopt,/

/Iree, realloc, calloc,
formatting entries in/
entries in this manual.
/tfind, tdelete, twalk:
/hcreate, hdestroy:
fetefiddry/lddry:
form-based network
window: window

wm: window

shl: shell layer

fwtmp, wtmpfix:
/1dlinit, 1dlitem:

frexp, ldexp, modf:
tables. route: manually
Blocks (VHB). libdev:
/Internet address

in this manual. man,
the cat files for the
print entries in this
entries in this

routing tables. route:
terminal input/ rsterm:
set. ascii:

files. diffmk:

set file-creation mode
and get file creation
information/ master:
information table.
expression compile and
constants. math:
constants.

/neqn, checkeq: format
function.

maze: generate a
vax: provide truth/

mail, rmail: send mail . .
mail to users or read . . .
mailx: interactive
main memory allocator. .
main memory allocator. .
maintain, update, and . .
maintain volume. .
maintainer for portable/ .
make a delta (change) to .

make a directory

cLory.

make a directory,ora . .
make a lost+found . . .
make a unique file name. .
make an ifile froman . .
make: maintain, update, .

D L L

make posters.

make typescriptof . . .
mallinfo: fast main . . .
malloe, free, realloc, . . .
malloc, free, realloe, . . .
mallopt, mallinfo: fast/ .
man: macros for
man, manprog: print . . .
manage binary search/ . .
manage hash search/ . .
manage loadable drivers. .
management. netman: . .
management primitives. .
management.
manager.
manipulate connect/ . .
manipulate line number/
manipulate parts of/ . .
manipulate the routing .
manipulate Volume Home
manipulation routines. .
manprog: print entries .
manual. catman: create
manual. man, manprog:
manual. /for formatting
manually manipulate the
manually start and stop
map of ASCII character
mark differences between
mask. umask:
mask. umask: set
master device
master: master device , .
match routines. /regular .
math functions and . . .
math: math functions and
mathematical text for/ . .
matherr: error-handling .
maze: generate a maze. . .
MAZE. & o« o v o o o = «
mc68k, pdpll, udb, u3bs,

LRI N S}

« s e

« o & @

mail(1)
mail(1)
mailx(1)
malloc¢(3C)
malloc(3X)
make(1)
iv(1)

ar(1)
delta(1)

mkdir(1)
mknod(2)
mklost+found(1)
mktemp(3C)
mkifile(1M)
make(1)
banner(1)
script(1)
malloc(3X)
malloc(3C)
malloc(3X)

)

man(1)
tsearch(3C)
hsearch(3C)
1ddrv(1M)
netman(1NM)
window(7)
wm(1)
shl(1)
fwtmp(1M)
ldlread(3X)
frexp(3C)
route(1INM)
libdev(3X)
inet(3N)

. man(1)

catman(1)
man(1)
man(5)
route(1NM)
raterm(1M)
ascii(5)
diffmk(1

regexp(5)
math(5)
math(5)
eqn(1)
matherr(3M)
maze(6)
maze(6)
machid(1)

interface.

memepy, memset: memory/
memset: memory,/ memcepy,
memory/ memccpy, memchr,
memccepy, memchr, mememp,
realloc, calloc: main
/mallinfo: fast main
shmetl: shared

semaphore set or shared
mem, kmem: system
/mememp, memepy, memset:
shmop: shared

text, or data in

shmget: get shared
memchr, memecmp, memepy,
sort: sort and /or
accounting/ acctmerg:
several files or/ paste:
messages.

operations. msgctl:
/recvfrom: receive a
msgop:

mailx: interactive

msgget: get

set or/ iperm: remove a
send, sendto: send a

mesg: permit or deny
sys_nerr: system error
directory.

directory. mkdir,

system.

/software using the

from an object file.
lost+found directory/

file.

or a special or/

file name.

relocate a PT or GT/
formatting/ mm: the
formatted with the
print/check documents/
for formatting/
documents, view graphs,/
system table.

chmod: change

umask: set file-creation
chmod: change

base. modemcap: smart
capability data base.

/set terminal type,

of/ frexp, ldexp,

touch: update access and
/set file access and
/dodisk, lastlogin,
execution profile.

uusub:

mem, kmem: system memory

memecepy, memchr, mememp,

memchr, mememp, memepy,
memcmp, memcpy, memset:

memcpy, memset: memory/

memory allocator. /free,
memory allocator.
memory control/
memory id. /queue, . .
memory interface. . . .
memory operations. . .
memory operations. . .
memory. /lock process,

memory segment.

memset: memory/ memecpy,

merge files.
merge or add total . .
merge same linesof . .
mesg: permit or deny .
message control
message from a socket. .
message operations. . .
message processing/ . .
message queue.

message queue, semaphore

message to a socket. . .
messages.
messages. /sys_errlist, .
mkdir, mkdirs: make a .
mkdirs: make a
mkfs: construct a file .
mk{s(1) proto file/ . . .
mkifile: make an ifile .
mklost+found: make a .
mknod: build special . .
mknod: make a directory,
mktemp: make a unique
mktpy, mvtpy: install or
MM macro package for
MM macros. /documents
mm, osdd, checkmm:

mm: the MM macro package

mmt, mvt: typeset

mnttab: mounted file .
mode. + o ¢ s 4 o o
mode mask.
mode of file.
modem capability data .
modemcap: smart modem
modes, speed, and line/

modf: manipulate parts

modification times of a/

modification times. . .
monacct, nulladm,/ . .
monitor: prepare
monitor uucp network. .

.

mem(7)
memory(3
memory(3
memory(3
memory(3
malloc(3C
malloce(3X
shmetl(2)
iperm(1)
mEm\':’)
memory(3C)
shmop(2)
plock(2)
shmget(2)
memory(3C)
sort(1)
acctmerg(1M)
paste(1)

mesg(1)
msgctl(2)
recv(2N)
msgop(2)
mailx(1)
msgget(2)
iperm(1)
send(2N)
mesg(1)
perror(3C)
mkdir(1)
mkdir(1)
mkfs(1M)
ginstall(1)
mkifile(1M)
mklost+found(1)
mknod(1M)
mknod(2)
mktemp(3C)
mktpy(1)

mm(5)

mm(1)

mm(1)

mm(5)

mmt(1)
mnttab(4)
chmod(1)
umask(1)
chmod(2)
modemcap(5)
modemcap(5)
getty (IM)
frexp(3C)
touch(1)
utime(2)
acctsh(1M)
monitor{3C)
uusub(1M)

C)
C)
C)
)
)
)

perusal.

mount:

system. mount, umount:
system.

setmnt: establish
dismount file system.
table. mnttab:

mvdir:

in, mv: copy, link or
pointer. lseek:

LP request scheduler and
for formatting a/
/Irand48, nrand48,
operations.

queue.

operations.

package for typesetting/
files. ¢p, In,

view graphs, and/ mmt,
relocate a PT or/ mktpy,
from i-numbers.
mathematical text/ eqn,
definitions for eqn and
network management.
/values between host and
/endnetent: get
/endhostent: get

hosts: list of nodes on
ifconfig: configure
detach serial lines as
netman: form-based

is logged in on local

stat: statistical

uucpd:

uusub: monitor uucp
numbers for the/

format of a text file.
group.

news: print

a process.
process by changing
low priority.

filter.

name list.

common object file.
Internet address from
rwhod:

hosts: list of

immune to hangups and/
setjmp, longimp:
/erand48, Irand48,

mathematical text for

moo: guessing game,
more, page: text
mount a file system,
mount and dismount file .
mount: mount a file
mount table. . , .
mount, umount: mount and
mounted file system
move 8 directory.
move files. cp,

move read/write file . . .
move requests. /the . . .
mptx: the macro package
mrand48, jrand48,/
msgcetl: message control .
msgget: get message . . .
msgop: message

mv: a troff macro

link or move . .

« o

« s .

mv: ¢opy,
mvdir: move a directory. .
mvt: typeset documents, .
mvtpy: install or
ncheck: generate names .
neqn, checkeq: format . .
neqn. /special character .
netman: form-based . . .
network byte order.
network entry.
network host entry.
network.
network interface/ . . .
network interfaces. /and .
network management. . .
network. rwho: who . . .
network useful with/ . .
network uucp server. . .
network.
networks: names and . .
newform: change the . . .
newgrp: log in to a new
news items.
news: print news items. .
nice: change priority of . .
nice. /of running
nice: run a command at
nl: line numbering
nlist: get entries from .
nm: print name list of .
node name. [set DARPA
node status server.
nodes on network.
nohup: run & command .
non-local goto.
nrand48, mrand48,/ . . .
nroff: format text.
nroff or troff. /format . .

L S S N Y

L N R)

-31-

moo(B)
more(1)
mount(2)
mount(1M)
mount(2)
setmnt(1M)
mount(1M)
mnttab(4)
mvdir(1IM)
cp(1)

lseek(2)
Ipsched(1M)
mptx(5)
drand48(3C)
msgetl(2)
msgget(2)
msgop(2)
mv(5)

ep(l)
mvdir(1M)
mmt(1)
mktpy(1)
ncheck(1M)
eqn(1)
eqnchar(5)
netman(1NM)
byteorder(3N)
getnetent(3N)
gethostent(3N)
hosts(4N)
ifconfig(1NM)
slattach{1NM)
netman(1NM)
rwho(1N)
stat(1G)
uucpd(1NM)
uusub(1M)
networks(4N)
newform(1)
newgrp(1)
news(1)
news(1)
nice(2)
renice(1)
nice(1)

nl(1)

nlist{3C)
nm(1)
setaddr(1NM)
rwhod (INM)
hosts{4N)
nohup(1)
setjmp(3C)
drand48(3C)
aroff(1}
eqn(1)

tbl: format tables for
eqn/ deroff: remove
values/ htonl, htons,
htonl, htons, ntohl,
null: the

/lastlogin, monacct,

nl: line

number: convert Arabic
/access graphical and

to/ convert: convert
routines. ldfen: common
selected parts of an
/ldaopen: open a common
/entries of a common
Idaclose: close a common
file header of a common
of a section of a common
file header of a common
of a section of a common
header of a common
/section of a common
table entry of a common
table entry of a common
symbol table of a common
entries in a common
make an ifile from an
name list of common
information for a common
header for a common
/from a common

/symbol name for common
format. syms: common
file header for common
cpset: install

link editor for common
section sizes of common
ordering relation for an
od:

functions.

file/ ldopen, ldaopen:
i-node. openi:

fopen, freopen, fdopen:
dup: duplicate an
writing. open:

or writing.

specified by i-node.
profiler. prf:

/pride, prfsnap, pripr:
memcpy, memset: memory
msgctl: message control
msgop: message
semaphore control
semop: semaphore
shared memory control

nroff or troff.
nroff/troff, tbl, and . .
ntohl, ntohs: convert . .
ntohs: convert values/ .
null file. . .. ¢ . ..
null: the null file. . . .
nulladm, pretmp,/ . . .
numbering filter, . . .
numerals to English. . .
numerical commands. .
object and archive files .
object file access . . .
object file. dump: dump
object file for reading. .
object file function. . .
object file. ldclose, . .
object file. /read the .
object file. /entries . .
object file. /optional .
object file. /entries . .
object file. /section . .
object file. . « . & ¢ »
object file. /a symbol .
object file. /symbol . .
object file. /to the . .
object file. /number . .
object file. mkifile: . .
object file. nm: print .
object file. /relocation .
object file. /section . .
object file. .« ¢« & & . &
object file symbol table/
object file symbol table

object files. filehdr: . .
object files in binary/ .
object files. I1d:
object files. /print . .
object library. /find . .
octal dump.
ocurse: optimized screen
od: octal dump.
open a common object .
open a file specified by .
open a stream.
open file descriptor. . .
open for readingor . .
open: open for reading .
openi: open a file . . .
operating system . . .
operating system/ . . .
operations. /memcmp, .
operations. .+ + . ¢ o+ .
operations. .«
operations. semctl: . .
operations.
operations. shmetl: . .

-32-

tbl(1)
deroff(1)
byteorder(3N)
byteorder(3N)
null(7)
null(7)
acctsh(1M)
nl(1)
number(6)
graphics(1G)
convert(1)
ldfen(4)
dump(1)
ldopen(3X)
ldlread(3X)
ldclose(3X)
ldfhread(3X)
ldiseek(3X)
ldohseek(3X)
ldrseek(3X)
ldshread(3X)
ldsseek(3X)
Idtbindex(3X)
ldtbread(3X)
ldtbseek(3X)
linenum(4)
mkifile(1M)
nm(1)
reloc(4)
scnhdr(4)
strip(1)
ldgetname(3X)
syms(4)
filehdr(4)
cpset(1M)
14(1)

size(1)
lorder(1)
od(1)
ocurse(3X)
od(1)
ldopen(3X)
openi(2)
fopen(3S)
dup(2)
open(2)
open(2)
openi(2)
pri(7)
profiler(1M)
memory(3C)
msgctl(2)
msgop(2)
semctl(2)
semop(2)
shmeti(2)

P ————e R

shmop: shared memory
strcespn, strtok: string
terminal independent
relational database
/copy file systems for
/CRT screen handling and
functions. ocurse:
argument/ getopt: get
a/ ldohseek: seek to the
fentl: file control

stty: set the

getopt: parse command
parallel line printer
/setsockopt: get and set
object/ lorder: find

Jor a special or
print/check/ mm,

dial: establish an

and link editor

lines for finite width
/print formatted
sprintf: print formatted
stop terminal input and
and/ /accton, acctwtmp:
file. chown: change
chown, chgrp: change
compress and expand/
and optimization

mptx: the macro

mm: the MM macro
view/ mv: a troff macro
system activity report
buffered input/output
communication

more,

TEKTRONIX 4014/ 4014:
options. lpset: set
interface. lp:

network interface
/process group, and
getopt:

password.

/endpwent, fgetpwent: get
putpwent: write
passwd:

getpass: read a
passwd: change login
checkers. pwck, grpck:
of several files or/

file for command.
deliver portions of
working/ getcwd: get
search a file for a
processing/ awk:

until signal.

operations.
operations. /strspn, . .
operations. /tputs: ., .
operator. join:
optimal access time. ., .
optimization package. .
optimized screen . . .
option letter from . . .
optional file header of .

io
options.

options for a terminal. .
options.
options. lpset:set . . .
options on sockets. . .
ordering relation for an
ordinary file.
osdd, checkmm:
out-going terminal line/
output. fassembler . .
output device. /long .
output of a varargs/ . .
output. /fprintf,
output. /start and . .
overview of accounting .
owner and group of a .
owner or group.
pack, pcat, unpack: . .
package. /handling
package for formatting a/
package for formatting/
package for typesetting
package. /sa2, sadec: .
package. /standard .
package. /interprocess
page: text perusal. . . .
paginator for the . . .
parallel line printer . .
parallel printer
parameters. /configure
parent process IDs. . .
parse command options.
passwd: change login .
passwd: password file. .
password file entry. . .
password file entry. . .
password file.
password.
password.
password /group file .
paste: merge same lines
path: locate executable
path names. /dirname:
path-name of current
pattern. [egrep, fgrep:
pattern scanning and .
pause: suspend process

e 1 s & s

L

shmop(2)
string(3C)
termeap(3X)
join(1)
deopy(1IM)
curses(3X)
ocurse(3X)
getopt(3C)
ldohseek (3X)
fentl(5)
stty(1)
getopt(1)
Ipset(1M)
getsockopt(2N)
lorder(1)
mknod(2)
mm(1)
dial(3C)
a.out{4)
fold(1)
vprintf(3S)
printf(3S)
rsterm{1M)
acct(1M)
chown(2)
chown(1)
pack(1)
curses(3X)
mptx(5)
mm(5)

mv(5)
sar(1M)
stdio(3S)
stdip¢(3C)
more(1)
4014(1)
1pset(1M)
1p(7)
ifconfig(1NM)
getpid(2)
getopt(1)
passwd(1)
passwd(4)
getpwent(3C)
putpwent(3C)
passwd(4)
getpass(3C)
passwd(1)
pwek(1M)
paste(1)
path(1)
basename(1)
getewd(3C)
grep(1)
awk(1)
pause(2)

and expand files. pack,
to/from a/ popen,
provide truth/ mc68k,
get name of connected
mesg:

package for formatting 2
ptx:

file format. acct:
/command summary from
sys_errlist, sys_nerr:/
soft-copy/ pg: file
more, page: text

for soft-copy/

split: split a file into
interprocess channel.
tee:

popen, pclose: initiate
fish:

text, or data in/
interface.

subroutines.

/ttell: reposition a file
move read/write file
pipe to/from a process.
library maintainer for
/dirname: deliver
banner: make

exp, log, logl0,
/exponential, logarithm,
bre, beheckre, re,

/monacct, nulladm,
/nulladm, pretmp,

text for/ cw, checkew:
profile. monitor:

cpp: the C language
/determine C language
file. unget: undoa
profiler.

prfld, prfstat,

prfsnap, pripr:/
/pristat, prfde, prfsnap,
prfld, pristat, pride,
prfpr: operating/ prfld,
of/ gps: graphical
types. types:

window management
hopefully/ fortune:
prs:

date:

cal:

count of a file. sum:
editing activity. sact:
manual. man, manprog:
cat: concatenate and
pr:

pcat, unpack: compress

pclose: initiate pipe . .
pdpll, u3b, u3b5, vax: .
peer. getpeername: . .
permit or deny messages.
permuted index. /macro
permuted index. .+ . . .
per-process accounting .
per-process accounting/

perror, errno,

perusal filter for
perusal.
pg: file perusal filter . .
pieces. « o o« o s o o .
pipe: createan
pipe fitting.
pipe to/from a process.

play “Go Fish”.
plock: lock process, . .
plot: graphics . . + . .
plot: graphics interface .
pointer in a stream. . .
pointer. lseek:
popen, pclose: initiate .
portable archives. /and

portions of path names.

posters.
pow, sqrt: exponential,/

power, square root/ . .
powerfail, drvload:/ . .
pr: print files,

¢ e 8 s s o o

“ e o .

prctmp, prdaily,/

prdaily, prtacet,/ . . .
prepare constant-width
prepare execution . . .
Preprocessor. .« o o » o
preprocessor include/ .
previous get of an SCCS
prf: operating system .
pride, prisnap, pripr:/ .
prfld, prfstat, prfde, . .
pripr: operating system/
prfsnap, pripr:/
pristat, prfde, prfsnap, .
primitive string, format
primitive system data .
primitives. window: . .
print a random,
print an SCCS file. . .
print and set the date. .
print calendar.

print checksum and block

print current SCCS file

print entries in this . .
print files.
print files.

-34 -

pack(1)
popen(3S)
machid(1)
getpeername(2N)
mesg(1)

mptx(5)

ptx(1)

acct(4)
acctems(1M)
perror(3C)

pg(1)
more(1)
pe(1)
split(1)
pipe(2)
tee(1)
popen(3S)
fish(6)
plock(2)
plot(4)
plot(3X)
fseek(3S)
lseek(2)
popen(3S)
ar(1)
basename(1)
banner(1)
exp(3M)
exp(3M)
bre(1M)

. pr(1)

acctsh(1M)
acctsh(1M)
cw(1)
monitor(3C)
epp(1)
includes(1)
unget(1)
pr(7)
profiler(1M)
profiler(1M)
profiler(1M)
profiler(1M)
profiler(1M)
gps(4)
types(5)
window(7)
fortune(6)
prs(1)
date(1)
cal(1)
surmn(1)
sact(1)
man(1)
cat(1)
pr(1)

of/ /viprintf, vsprintf:
/fprintf, sprintf:
information. lpstat:
common object file. nm:
CTIX system. uname:
news:

from proto file;/ qlist:
blocks/ beheck:
acctcom: search and
trpt:

common object/ size:
and names. id:

mm, osdd, checkmm:
Ip: parallel

requests to an LP line
a PT or GT local
Ipset: set parallel line
lpr: line

enable/disable LP
sprintf: print/

run a command at low
nice: change

process/ renice: alter
logged errors. errpt:
acct: enable or disable
acctprel, acetpre2:
/search and print
alarm: set a

process/ times: get
/priority of running
init, telinit:

/time a command; report
exit, _exit: terminate
fork: create a new
/getppid: get process,
setpgrp: set

group, and parent
script for the init

kill: terminate a
change priority of a
kill: send a signal to a
initiate pipe to/from a
/getpgrp, getppid: get
ps: report

in memory. plock: lock
get process and child
wait: wait for child
ptrace:

pause; suspend

await completion of
/list of file systems

a process or a group of
killall: kill all active
or file/ fuser: identify
/pattern scanning and
halt: terminate all

print formatted output

print formatted output.

print LP status
print name listof . . .
print name of current .
print news items. . . .
print out file lists . . .
print out the list of . .
print process accounting/
print protocol trace. . .
print section sizes of . .
print user and group IDs
print/check documents/

printer interface. . . .
printer. /send/cancel

printer. [or relocate .
printer options. . . .
printer spooler. . . .
printers. /disable: . . .

printf, {printf,
priority. nice: . . .
priority of a process.
priority of running

process a report of .
process accounting.

process accounting.

process accounting/ . .
process alarm clock. . .
process and child . . .
process by changing/ .
process control/
process data and system/
process.
process.
process group, and/ . .
process group ID. . . .
process IDs, /process .
process. inittab: . . .
process.
process. nice: . . . o .
process or a group of/ .
process. popen, pclose: .
process, process group,/

process status.
process, text, or data .
process times. times: .
process to stop or/ . .
process trace.
process until signal. . .
process. wait: . « . . .
processed by fsck. . . .
processes. /a signal to .
processes.
processes using a file . .
processing language. . .
processing. shutdown, .

-35-

vprintf(3S)
printf(3S)
Ipstat(1)
nm(1)
uname(1)
news(1)
qlist(1)
beheck(1M)
acctcom(1)
trpt(1INM)
size(1)
id(1)
mm(1)
Ip(7)

Ip(1)
mktpy(1)
Ipset(1M)
lpr(1)
enable(1)
printf(3S)
nice(1)
nice(2)
renice(1)
errpt(1M)
acct(2)
acctpre(1M)
acctcom(1)
alarm(2)
times(2)
renice(1)
init(1M)
timex(1)
exit(2)
fork(2)
getpid(2)
setpgrp(2)
getpid(2)
inittab{4)
Kili(1)
nice(2)
kill(2)
popen(3S)
getpid(2)
ps(1)
plock(2)
times(2)
wait(2)
ptrace(2)
pause(2)
wait{1)
checklist(4)
kill(2)
killall(1M)
fuser(1M)
awk(1)
shutdown(1M)

/interactive message
m4: macro

truth value about your
data.

function.

profile.

prof: display

prepare execution
profil: execution time
environment at login/
function. prof:

prf: operating system
prfpr: operating system
sadp: disk access
/command

Jusing the mkfs(1)

/Jout file lists from
/endprotoent: get
Internet File Transfer
telnetd: DARPA TELNET
Trivial File Transfer
user interface to TELNET
to the DARPA TFTP
trpt: print

Internet protocols.

list of Internet

update:

facts. arithmetic:
/pdp11, u3b, udb5, vax:
true, false:

/pretmp, prdaily,
status.

sxt:

Juniformly distributed
/install or relocate a
download. tdl, gtdl,

input stream. ungetec:
putw: put character or/
put character or/ putc,
value to environment.
file entry.

string on a stream.
/getutid, getutline,
pute, putchar, fpute,
password /group file/
name.

tape.

gic: interface for

verily software using/
lists from proto file;/

tput:
msgget: get message

processing system.
processor.
processor type. /provide .
prof: display profile
prof: profile withina . . .
profil: execution time . .
profile data.

profile. monitor:
profile. « & ¢« ¢ « ¢ 4« o &
profile: setting upan . .
profile withina . . + . .
profiler. ., . .« . .« ..

profiler. /prfsnap,
profiler.
programming language. .
proto file database. . . .
proto file; set links/
protocol entry.
Protocol server. /DARPA
protocol server.
Protocol server. /DARPA
protocol. telnet: . .
protocol. /interface .
protocol trace. . . .

protocols: list of . .
protocols. protocols:
provide disk/
provide drill in number .
provide truth value/ . . .
provide truth values. . .
prs: print an SCCS file. .
prtacct, runacet,/
ps: report process
pseudo-device driver. . .
pseudo-random numbers. .
PT or GT local printer. .
ptdl: RS-232 terminal . .
ptrace: process trace. ..
ptx: permuted index. . .
push character back into .
pute, putchar, fpute, . . .
putchar, fputc, putw: . .
putenv: change or add . .
putpwent: write password

puts, fputs: put a
pututline, setutent,/ . . .
putw: put character or/ .
pwek, grpck:
pwd: working directory .
gic: interface for QIC . .
QIC tape.
qinstall: installand . . .
qlist: print out file
gsort: quicker sort. . . .
query terminfo database. .
queue.

-

mailx(1)
m4(1)
machid(1)
prof(1)
prof(5)
profil(2)
prof(1)
monitor(3C)
profil(2)
profile(4)
prof(5)

prf(7)
profiler(1M)
sadp(1M)
sh(1)
ginstall(1)
qlist(1) :
getprotoent(3N)
ftpd(1INM)
telnetd(1NM)
tftpd(1NM)
telnet(1N)
tftp(IN)
trpt(1INM)
protocols(4N)
protocols(4N)
update(1M)
arithmetic(6)
machid(1)
true(l)

prs(1)
acctsh(1M)
ps(1)

sxt(7)
drand48(3C)
mktpy(1)
tdl(1)
ptrace(2)
ptx(1)
ungetc(3S)
pute(3S)
pute(3S)
putenv(3C)
putpwent(3C}
puts(3S)
getut(3C)
pute(3S)
pwek(IM)
pwd(1)

qic(7)

qic(7)
ginstall(1)
qlist(1)
gsort(3C)
tput(1)
msgget(2)

iperm: remove a message
gsort:

immune to hangups and
knowledge.
random-number/
fortune: print a

rand, srand: simple
fsplit: split {77,

system/ bre, beheckre,
command execution.
ruserok: routines for/

getpass:

table entry/ ldtbread:
Idshread, ldnshread:
read:

send mail to users or
line:

of a member/ ldahread:
a common/ ldfhread:

a common object file for
open: open for

Iseek: move

memory/ malloc, free,
mallopt,/ malloc, free,
system.

reboot:

/specify what to do upon
socket. recv, recvfrom:
lockf:

per-process accounting
errdead: extract error
connect accounting
backup tape. frec:

a message from a/
message from a/ recv,
ed,

and execute regular/
expression compile.
/maintain, update, and
execute regular/ regemp,
expression compile and/
/exclusive access to
compile and/ regexp:
compile. regcmp:
/compile and execute
requests. accept,

two/ comm: select or
lorder: find ordering
operator. join:
information for a/
mktpy, mvtpy: install or
/ldnrseek: seek to

for a common/ reloc:
/fabs: floor, ceiling,

queue, semaphore set or/
quickersort.
quits. /run a command

quiz: test your
rand, srand: simple . .
random, hopefully/ . .

random-number generator.

ratfor, or efl files. , . .
rc, powerfail, drvioad: .
remd: remote shell . . .
remd, rresvport, o . . .
rcp: remote file copy. .
read a password. . . .
read an indexed symbol
read an indexed /named/
read from file. e ¢ o .
read mail. mail, rmail: .
read one line.
read: read from fil

read the archive header

read the file header of .
reading. /ldaopen: open

reading or writing. . .
read/write file pointer. .
realloc, calloc: main . .
realloc, calloe,
reboot: reboot the . . .
reboot the system. . . .
recelpt of a signal. . . .
receive a message from a
record locking on files. .
records. /summary from
records and status/ . .
records. /manipulate .
recover files froma . .
recv, recvfrom: receive .
recvfrom: receivea . .
red: text editor.
regemp, regex: compile .
regemp: regular . ., . .
regenerate groups of/ .
regex: compile and . . .
regexp: regular
regions of a file.
regular expression . . .
regular expression e e
regular expression. . .
reject: allow /prevent LP

reject lines common to .
relation for an object/ .
relational database . .
reloc: relocation
relocate a PT or GT/ .
relocation entries of 3/ .
relocation information .
remainder, absolute/ . .

- 37 -

iperm(1)
gsort(3C)
nohup(1)
quiz(6)
rand(3C)
fortune(6)
rand(3C)
fsplit(1)
bre(1M)
remd(1N)
remd(3N)
rep(1N)
getpass(3C)
ldtbread(3X)
ldshread(3X)
read(2)
mail(1)
line(1)

read(2)

ldahread(3X)
ldfhread(3X)
ldopen(3X)
open(2)
Iseek(2)
malloc(3C)
malloc¢(3X)
reboot(1M)
reboot(1M)
signal(2)
recv(2N)
lockf(3C)
acctems(1M)
errdead(1M)
fwtmp(1M)
frec(1IM)
recv(2N)
recv(2N)
ed{1)
regemp(3X)
regemp(1)
make(1)
regemp(3X)
regexp(5)
locking(2)
regexp(5)
regemp(1)
regemp(3X)
accept(1M)
comm(1)
lorder(1)
join(1)
reloc(4)
mktpy(1)
ldrseek(3X)
reloc(4)
floor(3M)

calendar:

returning a stream to &
return stream to a
rhosts:

rexecd:

rep:

execution. remd:

ct: spawn getty toa
SCCS file. rmdel:
semaphore set or/ iperm:
unlink:

directories. rm, rmdir:
disk/ dismount:

and eqn/ deroff:

of running process by/
check and interactive
file. uniq: report

clock:

communication/ ipes:
isk blocks. df:
errpt: process a

sadc: system activity
timex: time a command;
ps:

a file. uniq:

sar: system activity
fseek, rewind, ftell:
move/ /start/stop the LP
reject: allow/prevent LP
scheduler and move
syslocal: special system
Ip, cancel: send/cancel
common/ ldgetname:
value. abs:

user. logname:

remote command. rexec:
environment/ getenv:
call. stat: data
/ruserok: routines for
col: filter

reposition a/ fseek,
/create a new file or

a remote command.
server.

equivalent users.

or directories.

users or read/ mail,
from an SCCS file.
directories. rm,

chroot: change
command. chroot: change
/logarithm, power, square
manipulate the routing/
/td: graphical device
/rresvport, ruserok:
address manipulation

reminder service.
remote command. /for .
remote command. rexec:
remote equivalent users.

remote execution server.

remote file copy.
remote shell command .
remote terminal. . . .
remove a delta from an

remove a message queue,
remove directory entry.

remove files or
remove exchangeable . .
remove nroff /troff, tbl, .
renice: alter priority . .
repair. /consistency . .
repeated linesina . . .
report CPU time used. .

report inter-process . .
report number of free .
report of logged errors. .
report package. /sa2, .
report process data and/
report process status. .
report repeated lines in

reporter.
reposition a file/
request scheduler and .
requests. accept,
requests. /LP request .
requests.
requests to an LP line/ .
retrieve symbol name for
return integer absolute .
return login name of . .
return streamtoa . . .
return value for
returned by stat system

returning a stream to a/
reverse line-feeds. . . .
rewind, ftell:
rewrite an existing one.

rexec: return stream to .
rexecd: remote execution
rhosts: remote
rm, rmdir: remove files .
rmail: send mailto . .
rmdel: remove a delta .
rmdir; remove filesor .
root directory.
root directory fora . .
root functions.
route: manually
routines and filters. . .
routines for returning a/
routines. /Internet . .

calendar(1)
remd(3N)
rexec(3N)
rhosts(4N)
rexecd(1NM)
rep(1N)
rcmdSlN)
ct(1C
rmdel(1)
iperm(1)
unlink(2)
rm(1)
dismount(1)
deroff(1)
renice(1)
fsck(1M)
uniq(1)
clock(3C)

. ines(1)

df(1M)
errpt(1M)
sar(1M)
timex(1)
ps(1)

uniq(1)

sar(1)
fseek(3S)
Ipsched(1M)
accept(1M)
Ipsched(1M)
syslocal(2)
Ip(1)
ldgetname(3X)
abs(3C)
logname(3X)
rexec(3N)
getenv(3C)
stat(5)
remd(3N)
col(1)
faeek(3S)
creat(2)
rexec(3N)
rexecd(1NM)
rhosts(4N)
rm(1)
mail(1)
rmdel(1)
rm(1)
chroot(2)
chroot(1M)
exp(3M)
route(1NM)
gdev(1G)
remd(3N)
inet{3N)

object file access
compile and match
table of contents
manually manipulate the
routines for/ remd,
/terminal’s local

tdl, gtdl, ptdl:
standard/restricted/ sh,
and stop terminal input/
priority. nice:

hangups and/ nohup:
runacct:

accounting.

/prdaily, prtacct,
/alter priority of

remd, rresvport,

on local network.
server.

activity report/
activity report/ sal,
file editing activity.
report/ sal, sa2,
profiler.

graph.

reporter.

segment space/ brk,
convert formatted/

bfs: big file

language. awk: pattern
delta commentary of an
comb: combine

a delta (change) to an
sact: print current

get: get a version of an
prs: print an

remove a delta from an
two versions of an
sccsfile: format of

a previous get of an
val: validate

create and administer
what: identify

versions of an SCCS/
file.

/the LP request

for a common object/
clear: clear terminal
ocurse: optimized
curses: CRT

display editor/ vi:
process. inittab:

of terminal session.
initialization shell

difference program.
grep, egrep, fgrep:

routines. ldfen: common
routines. /expression .
routines. /graphical . .
routing tables. route:

rresvport, ruserok:

RS-232 channels. . . .
RS-232 terminal/ . . .
rsh: shell, the . ., . . .
rsterm: manually start

run a command at iow ., .
run a command immune to

run daily accounting.
runacct: run daily

runacct, shutacet,/
running process by/ . .

LI Y

ruserok: routines for/ . .

rwho: who is logged in .
rwhod: node status . .
sal, sa2, sadc: system
sa2, sadc: system
sact: print current SCCS
sadc: system activity . .
sadp: disk access .
sag: system activity
sar: system activity
sbrk: change data .
scanf, fscanf, sscanf:
SCANNET. + o o o o
scanning and processing
SCCS delta. /change the
SCCS deltas. . o . . .
SCCS file. delta: make
SCCS file editing/ . .
SCCS file. .
SCCS file.
SCCS file. rmdel: . .
SCCS file. /compare
SCCS file.
SCCS file. unget: undo
SCCSfile. . o o v o
SCCS files. admin: . .
SCCS files.
scesdiff: compare two
scesfile: format of SCCS
scheduler and move/ .
scnhdr: section header
screen.
screen functions.
screen handling and/
screen-oriented (visual)
script for the init
script: make typescript
scripts. /system
sdb: symbolic debugger.
sdiff: side-by-side

e e o @

e 2 2 2 3

search afile fora/

-39 -

1dfcn(4
regexp(5)
toc(1G)
route(1NM)
remd(3N)
tp(7)

tdl(1)

sh(1)

. rsterm(1M)

nice(1)
nohup(1)
runacct(1M)
runacet{1M)
acctsh(1IM)

. renice(1)

remd(3N)
rwho(1N)

. rwhod(1INM)

sar{1M)
sar(1M)
sact(1)

. sar(1M)

sadp(1M)
sag(1G)
sar(1)

. brk{2)

@ ¢ ¢ o ¢ o 4 o s ° & s e e = @

scanf(3S)
bfs(1)
awk(1)
ede(1)
comb(1)
delta(1)
sact(1)
get(1)
prs(1)
rmdel(1)
scesdiff(1)
scesfile(4)
unget(1)
val(1)
admin(1)
what(1)

. scesdiff(1)

scesfile(4)
lpsched(1M)
scnhdr(4)
clear(1)
ocurse(3X)
curses(3X)

. vi(1)

. inittab(4)

script(1)

. bre(IM)
. sdb(1)

.

sdiff(1)
grep(1)

bsearch: binary
accounting/ acctcom:
Isearch, Ifind: linear
hdestroy: manage hash
twalk: manage binary
common object/ scnhdr:
/read an indexed /named
line number entries of a
relocation entries of a
/to an indexed /named
object/ size: print

/irand48, srand48,
ldsseek, ldnsseek:
ldlseek, ldnlseek:
ldrseek, ldnrseek:

file header/ ldohseek:
of a common/ ldtbseek:

get shared memory

brk, sbrk: change data
common to two/ comm:
greek:

line of a/ cut: cut out
object file. dump: dump
operations. semctl:
semop:

/remove a message queue,
semget: get set of
control operations.
semaphores.

operations.

socket. send, sendto:
process or a/ kill:

read mail. mail, rmail:
message to a socket,.

an LP line/ lp, cancel:
to a socket. send,
/attach and detach

File Transfer Protocol
rexecd: remote execution
rwhod: node status
DARPA TELNET protocol
File Transfer Protocol
uucpd: network uucp
typescript of terminal
Internet address from/
buffering to a stream.
address on disk.

group IDs. setuid,
/getgrgid, getgrnam,
get/ /gethostbyname,
non-local goto.

generate hashing/ crypt,
table.

get/ /getnetbyname,
group ID.

search a sorted table. .
search and print process
search and update.
search tables. /hcreate,
search trees. /tdelete, .
section header fora . .
section header of a/
section of a common/ /to
section of a common/ /to
section of a common/ .
section sizes of common
sed: stream editor.
seed48, lcong48:/
seektoan/
seek to line number/ . .
seek to relocation/ . . .
seek to the optional . .
seek to the symbol table
segment, shmget:
segment space/
select or reject lines . .
select terminal filter. . .
selected fields of each .
selected partsofan . .
semaphore control . . .
semaphore operations. .
semaphore set or shared/
semaphores.
semctl: semaphore . . .
semget: get set of . . .
semop: semaphore . . .
send a messagetoa . .
send a signaltoa . . .
send mail to usersor . .
send, sendto: send 2 . .
send/cancel requests to
sendto: send a message .
serial lines as network/

server. /DARPA Internet ‘

SEIVEr. 4 o o o o & = &
SEIVET. 4 & « o o & o o
server. telnetd:

server. /DARPA Trivial
server,
session. script: make .
setaddr: set DARPA . .
setbuf, setvbuf: assign .
setenet: write Ethernet .
setgid: set user and .
setgrent, endgrent,/ .
sethostent, endhostent:
setjmp, longjmp:
setkey, encrypt:

setmnt: establish mount

setnetent, endnetent: .
setpgrp: set process .

bsearch(3C)
acctcom(1)
lsearch(3C)
hsearch(3C)
tsearch(3C)
senhdr(4)
ldshread(3X)
1dlseek(3X)
ldrseek(3X)
idsseek{3X)
size(1)
sed(1)

drand 48(3C)
ldsseek(3X)
ldlseek(3X)
1drseek(3X)
1dohseek(3X)
1dtbseek(3X)
shmget(2)
brk(2)
comm(1)
greek(1)
cut(1)
dump(1)
semetl(2)
semop(2)
iperm(1)
semget(2)

. semctl(2)

« o o =

semget(2)
semop(2)
send(2N)
kill(2)

mail(1)
send(2N)
Ip(1)
send(2N)
slattach(1NM)
ftpd(1INM)
rexecd(1NM)
rwhod(1NM)
telnetd(1INM)
tftpd(INM)
uucpd(1NM)
seript(1)
setaddr(1NM)
setbuf(3S)
setenet(1INM)
setuid(2)
getgrent(3C)
gethostent(3N)
setjmp(3C)
crypt(3C)
setmnt(1M)
getnetent(3N)
setpgrp(2)

/getprotobyname,
/getpwuid, getpwnam,
get/ /getservbyname,

options on/ getsockopt,
environment/ cprofile:
environment at/ profile:
/speed and terminal
and group IDs.

system.

/getutline, pututline,
buffering to a/ setbuf,
integer data in/ sputl,
standard/restricted/
xstr: extract and
operations. shmectl:
/queue, semaphore set or
operations. shmop:
shmget: get

remd: remote
interpreter)/ csh: a
system: issue a

cprofile: setting up a C
shl:

/startup, turnacct:
system initialization

sh, rsh:

manager.

control operations.
memory segment.
operations.

full-duplex/ shutdown:

/prtacct, runacct,

terminate all/

of a full-duplex/
program. sdiff:

login:

suspend process until
to do upon receipt of a
do upon receipt of a/
group of/ kill: send a
gsignal: software
/generate programs for
generator. rand, srand:
acos, atan, atan2:/
hyperbolic functions.
sizes of common object/
size: print section
attach and detach/
detach serial/ slattach,
for an interval.

for interval.

view graphs, and

view graphs and

the/ ttyslot: find the
data base. modemcap:
spline: interpolate

setprotoent,/
setpwent, endpwent,/ . .
setservent, endservent: . .
setsockopt: get and set . .
setting up a C shell , .
setting up an
settings used by getty. .
setuid, setgid: set user .

setuname: set name of
setutent, endutent,/ .
setvbuf: assign
sgetl: accesslong
sh, rsh: shell, the
share stringsinC/ . . .
shared memory control . .
shared memory id.
shared memory
shared memory segment. .
shell command execution.

shell (command
shell command.
shell environment at/ . .
shell layer manager. . .
shell procedures for/ . .
shell scripts. /drvload: .
shell, the/
shl: shell layer
shmetl: shared memory

shmget: get shared . .
shmop: shared memory .
shut down partofa . .
shutacct, startup,/ . .
shutdown, halt:
shutdown: shut down part
side-by-side difference . .
sign on.
signal. pause: .,
signal. /specify what . .
signal: specify what to . .
signal to a processora . .
signals. ssignal,
simple lexical tasks. . . .
simple random-number . .
sin, cos, tan, asin,
sinh, cosh, tanh:
size: print section
sizes of common object/ .
slattach, sldetach:
sldetach: attach and . . .
sleep: suspend execution .
sleep: suspend execution
slides. /documents, . . .
slides. /for typesetting . .
slot in the utmp file of . .
smart modem capability .
smooth curve.,

e & 4 o o

e« a2 e a2 s s s s s & »

- 41 -

getprotoent(3N)
getpwent(3C)
getservent(3N)
getsockopt(2N)
cprofile(4)
profile(4)
gettydefs(4)

. setuid(2)

setuname(1M)
getut(3C)
setbuf(3S)
sputl(3X)
sh(1)
xstr(1)
shmetl(2)
iperm(1)
shmop(2)
shmget(2
remd(1IN

emd(1}
esh(1)
system(3S)
cprofile(4)
shl(1)
acctsh(1M)
bre(1M)

sh(1)

shl(1)
shmetl(2)
shmget(2)
shmop(2)
shutdown(2N)
acctsh(1M)
shutdown(1M)
shutdown(2N)
sdiff(1)
login(1)
pause(2)
signal(2)
signal(2)
kill(2)
ssignal(3C)
lex(1)
rand(3C)
trig(3M)
sinh(3M)
size(1)

size(1)
slattach(1NM)
slattach(1NM)
sleep(1)
sleep(3C)
mmt(1)

mv(5)
ttyslot(3C)
modemecap(5)
spline(1G)

~—

=

accept a connection on a
bind: bind a name to a
a connection on a
endpoint for/

for connections on a
getsockname: get
receive a message from a
send a message to a

get and set options on
/file perusal fiiter for
ctinstall: install

ssignal, gsignal:

/install and verify

sort:

gsort: quicker

files.

tsort: topological

lines common to two
bgearch: binary search 2
change data segment
/unexpand: expand tabs to
terminal. ct:

files. fspec: format
openi: open a file
receipt of a/ signal:
terminal type, modes,
settings/ gettydefs:
spellin, hashcheck:/
spell, hashmake,
/spellin, hashcheck: find
smooth curve.

pieces. split:

csplit: context

efl files. fsplit:

pieces.

clean-up. uuclean: uucp
lpr: line printer
/eonfigure the LP
printf, fprintf,

long integer data in a/
exp, log, log10, pow,
/logarithm, power,
random-number/ rand,
/mrand48, jrand48,
scanf, fscanf,

software signals.

input /output/ stdio:
communication/ ftok:
sh, rsh: shell, the
input/ rsterm: manually
Ipsched, Ipshut, lpmove:
/runacct, shutacct,

stat system call.

status.

network useful with/
stat: data returned by

socket. accept:
socket.
socket. finitiate . . .
socket: createan ., . .
socket. listen: listen .
socket name.
socket. recv, recvfrom:
socket. send, sendto:
sockets. /setsockopt:
soft-copy terminals. .
software.
software signals.
software using the/ . .
sort and/or merge files.
sort.
sort: sort and/or merge
sort.
sorted files. /or reject .
sorted table. .

space allocation. /sbrk:
spaces, and vice versa. .
spawn getty to a remote
specification in text
specified by i-node.
specify what to do upon
speed, and line/ /set .
speed and terminal
spell, hashmake,
spellin, hashcheck: find/
spelling errors.
spline: interpolate . . .
split a file into
split. o ¢« ¢ ¢« 0w ¢ ¢ o
split {77, ratfor,or . .

" s s e o s s s .

split: split a file into
spool directory
spooler.
spooling system.
sprint{: print formatted/
sputl, sgetl: access , . .
sqrt: exponential,/ . .
square root functions.
srand: simple ., .
srand48, seed48,/
sscanf: convert/ .
ssignal, gsignal: .
standard buffered . . .
standard interprocess .
standard/restricted/ .
start and stop terminal
start/stop the LP/
startup, turnacct: shell/
stat: data returned by .
stat, fstat: get file
stat: statistical
stat systemcall,

e o s s o o »

- 42 -

accept(2N)
bind(2N)
connect(2N)
socket(2N)

. listen(2N)

getsockname(2N)
recv(2N)
send(2N)
getsockopt(2N)
pg(i)
ctinstall(1)
ssignal(3C)
ginstall(1)
sort(1)
gsort(3C)
sort(1)
tsort(1)
comm(1)
bsearch(3C)
brk(2)
expand(1)
ct(1C)
fapec(4)
openi(2)
signal(2)
getty(1M)
gettydefs(4)
spell(1)
spell(1
spell(1
spline(1G)
split(1)
esplit(1)
fsplit(1)
split(1)
uuclean(1M)
lpr(1)
lpadmin(1M)
printf(3S)
sputl(3X)
exp(3M)
exp(3M)
rand(3C)
drand48(3C)
scanf(3S)
ssignal(3C)
stdio(3S)
stdipe(3C)
sh(1)
rsterm(1M)
lpsched(1M)
acctsh(1M)
stat(5)
stat(2)
stat{1G)
stat(5)

useful with/ stat:

/list file names and
ustat: get file system
dump. /error records and
Ipstat: print LP
clearerr, fileno: stream
control. uustat: uucp
communication facilities
ps: report process
rwhod: node

stat, fstat: get file
input/output package.

for child process to
/manually start and
strnemp, strepy,/
/strepy, strnepy, strlen,
streat, strncat,

/stremp, strnemp,
/strpbrk, strspn,

sed:

fflush: close or flush a
freopen, fdopen: open a
a file pointer in a
character or word from a
get a string from a
character or word on a
fputs: put a string on a
assign buffering to a
[feof, clearerr, fileno:
/routines for returning a
command. rexec: return
back into input

and base-64 ASCH
convert date and time to
floating-point number to
gps: graphical primitive
gets, fgets: get a

puts, fputs: put a
[strspn, strespn, strtok:
strtod, atof: convert
atof: convert ASCII
/atol, atoi: convert
ASCII text strings in a/
/extract the ASCII text
xstr: extract and share
line number information/
number/ strip:

/strepy, strnepy,
strnemp,/ streat,
strcat, strncat, stremp,
/stremp, strnemp, strepy,
/strlen, strche, strrehr,
/strnepy, strlen, strehr,
/strrchr, strpbrk,

string to/

statistical network . . .
statistics for a file/ . .
statistics. .+ «
status information from
status information. . .
status inquiries. /feof, .
status inquiry and job .
status. /inter-process .
status. « + o . 4 4 . .
stalus se 3

status.
stdio: standard buffered

stime: set time. . ., . .
stop or terminate. /[wait
stop terminal input and/
strcat, strncat, stremp, .
strehr, strrehr,/ . . .
stremp, strnemp, strepy,/
strepy, strnepy, strien,/

strespn, strtok: string/ .
stream editor.
stream. fclose,
stream. fopen,
stream. /reposition . .
stream. /getw:get . .
stream. gets, fgets: . .
stream. /putw:put . .
stream. puts, . . .
stream. /setvbuf: . . .
stream status inquiries.

stream to a remote/ . .
stream to a remote . .
stream. /push character
string. /long integer . .
string. /asctime, tzset: .
string. /gevt: convert .
string, format of/ . . .

D N

string from a stream. . . .

string on a stream. . .
string operations. . . .
stringto/ .+
string to floating-point/

string to integer. . . .
strings: extract the . .
strings in a file.
strings in C programs. .
strip: strip symbol and .
strip symbol and line .
strien, strehr, strrchr,/ .
strncat, stremp, + 4 o
strnemp, strepy,/ . . .
strnepy, strlen, strehr,/

strpbrk, strspn,/ . . .
strrchr, strpbrk,/ . . .
strspn, strespn, strtok:/

strtod, atof: convert . .

- 43 -

stat(1G)
1(1M)
ustat(2)
errdead(1M)
Ipstat(1)
ferror(3S)
uustat(1C)
ipes(1)

ps(1)
rwhod{1NM)
stat(2)
stdio(3S)
stime(2)
wait(2)
rsterm(1M)
string(3C)
string(3C)
string(3C)

. string(3C)

string(3C)
sed(1)
felose(3S)
fopen(3S)
fseek(3S)
gete(3S)
gets(3S)
pute(3S)
puts(3S)
setbuf(3S)
ferror(3S)
remd(3N)
rexec(3N)
ungetc(3S)
2641(3C)
ctime(3C)
ecvt(3C)
gps(4)
gets(3S)
puts(3S)
string(3C)
strtod(3C)
atof(3C)
strtol(3C)
strings(1)
strings(1)
xstr(1)
strip(1)
strip(1)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
strtod(3C)

strspn, strespn,
convert string to/
using a file or file

for a terminal.
another user.

intro: introduction to
plot: graphics interface
Jof several files or
block count of a file.
du:

acctems: command
sync: update the
sync: update

user. su: become
interval. sleep:
interval. sleep:
signal. pause:

. swap:
swab:
administrative/

write on a file.

driver.

strip: strip

ldgetname: retrieve

/for common object file
/compute the index of a
common/ /read an indexed
syms: common object file
ldtbseek: seek to the

sdb:

symbol table format.
super-block.

block.

update: provide disk

file. swrite:

interpreter) with C-like
system/ perror, errno,
requests.

/errno, sys_errlist,

binary search a sorted
object file symbol

/the index of a symbol
/read an indexed symbol
object file symbol

device information
mounted file system
/seek to the symbol

toc: graphical

setmnt: establish mount
troff. tbl: format
manage hash search
manipulate the routing
tabs: set

terminal.

expand, unexpand: expand

strtok: string/ /strpbrk, .
strtol, atol, atoi:
structure. /processes . .
stty: set the options . . .
su: become super-user or
subroutines and/
subroutines.
subsequent lines of one/
sum: print checksum and .
summarize disk usage. . .
summary from per-process/
super block.
super-block.
super-user or another . .
suspend execution for an .
suspend execution for . .
suspend process until . .
swab: swap bytes.

L

s e s e o .

swap administrative s

apsa istr .
swap bytes.
swap: swap
swrite: synchronous .
sxt: pseudo-device
symbol and line number/ .
symbol name for common/
symbol table entry.
symbol table entry of a/ .
symbol table entry of a .
symbol table format. . . .
symbol table of a common/
symbolic debugger. . . .
syms: common object file .

sync: update
sync: update the super .

synchronization. .,
synchronous write ona .
syntax. /shell (command .
sys_errlist, sys_nerr: . . .
syslocal: special system . .
sys_nerr: system error/ . .
table. bsearch:
table entry. /for common

table entry of a common/

table entry of 2 common/

table format. fcommon .
table. master: master . ,
table. mnttab:
table of a common object/
table of contents/
table.
tables for nroffor
tables. /hdestroy:

tables. route: manually
tabs on a terminal. . .
tabs: set tabsona
tabs to spaces, and vice/ .

- 44 -

string(3C)
strtol(3C)
fuser(1M)
stty(1)
su(1)
intro(3)
plot(3X)
paste(1)
sum(1)
du(l)
acctems(1M)
syne(1)
syne(2)
su(l)
sleep(1)
sleep(3C)

strip(1)
ldgetname(3X)
ldgetname(3X)
1dtbindex(3X)
ldtbread(3X)
syms(4)
1dtbseek(3X)
sdb(1)
syms(4)
sync(2)
syne(1)
update(1M)
swrite(2)
esh(1)
perror(3C)
syslocal(2)
perror(3C)
bsearch(3C)
ldgetname(3X)
1dtbindex(3X)
1dtbread(3X)
syms(4)
master(4)
mattab(4)
ldtbseek(3X)
toc(1G)
setmnt(1M)
tbl(1)
hsearch(3C)
route(1NM)
tabs(1)
tabs(1)
expand(1)

ctags: create a

part of a file.

atan2:/ sin, cos,
functions. sinh, cosh,
tar:

files from a backup
qgic: interface for QIC

for simple lexical
/remove nroff/troff,
nroff or troff.

/erase, hardcopy, tekset,
binary/ tsearch, tfind,

terminal download.

hpd, erase, hardcopy,
4014: paginator for the
initialization. init,
telnetd: DARPA

/user interface to

to TELNET protocol.
protocol server.

for a temporary/ tmpnam,
tmpfile: create a

/create a name for a

for terminals.

term: format of compiled
term file..

capability data base.

for the TEKTRONIX 4014
of the DASI 450
interface. tiop:

base. termcap:

base. terminfo:

console: console

spawn getty to a remote
generate file name for
tdl, gtdl, ptdl: RS-232
/terminal inteface, and
greek: select

/tgetstr, tgoto, tputs:
/manually start and stop
tset: set terminal,
termio: general

tty: controlling

establish an out-going

of terminal types by
clear: clear

/make typescript of

by, gettydefs: speed and
set the options for a
tabs: set tabs on a
inteface, and/ tset: set
conlocate: locate a

tty: get the name of the
isatty: find name of a

tags file.
tail: deliver the last
tan, asin, acos, atan,
tanh; hyperbolic
tape file archiver.
tape. frec:recover
tape.
tar: tape file archiver. . . .
tasks. /programs
tbi, and eqn constructs. . .
tbl: format tables for . . .
td: graphical device/
tdelete, twalk: manage . . .
tdl, gtdl, ptdl: RS-232 . . .
tee: pipe fitting.
tekset, td: graphical/ . . .
TEKTRONIX 4014 termmal
telinit: process control

TELNET protocol server, .
TELNET protocol.
telnet: user interface
telnetd: DARPA TELNET .
tempnam: create a name . ,
temporary file.
temporary file.
term: conventional names .
term file..
term: format of compiled
termeap: terminal
terminal. /paginator .
terminal. /functions . .

* 8 e s s e & o @

e s & e 2 s 2 s s s

terminal accelerator
terminal capability data . .
terminal capability data . .

terminal. .« ¢ ¢ o 0 0 .
terminal. ct
terminal. ctermid:
terminal download.
terminal environment. .
terminal filter. .

terminal independent/ . . .
terminal input and/ . .

terminal inteface, and/ . . .
terminal interface.
terminal interface.
terminal line/ dial:
terminal number. /list . . .
terminal screen.
terminal session.
terminal settings used . . .
terminal. stty: .
terminal. 0.

LI T S SR Y

terminal, terminal
terminal to use as the/ . .
terminal.
terminal.

« = e .

ttyname,

- 45 -

ctags(1)
tail(1)
trig(3M)
sinh(3M)
tar(1)
frec(1M)
qie(7)
tar(1)
lex(1)
deroff(1)
thi(1)
gdev(1G)
tsearch(3C)
tdl(1)
tee(1)
gdev(1G)
4014(1)
init(1M)

talnat AINM)

VENCLVa NIV

telnet(1N)
telnet(1N)
telnetd(1NM)
tmpnam(3S)
tmpfile(3S)
tmpnam(3S)
term(5)
term(4)
term(4)
termeap(4)
4014(1)
450(1)
tiop(7)
termcap(4)
terminfo(4)
console(7)
ct(1C)
ctermid(3S)
tdi(1)

tset(1)
greek(1)
termeap(3X)
rsterm(1M)
tset(1)
termio(7)
ty(7)
dial(3C)
ttytype(4)
clear(1)
script(1)
gettydefs(4)
stty(1)
tabs(1)
tset(1)
conlocate(1M)
tty(1)
ttyname(3C)

speed, and/ getty: set
ttytype: list of

of DASI 300 and 300s
HP 2640 and 2621-series
tp: controlling

filter for soft-copy
conventional names for
kill:

shutdown, halt:

exit, _exit:
error-logging/ errstop:
child process to stop or
tic:

tput: query

capability data base.
interface.

evaluation command.
quiz:

ed, red:

ex:

ex for casual/ edit:
change the format of a
format specification in
/format mathematical
/prepare constant-width
nroff: format

plock: lock process,
more, page:

/extract the ASCII
troff: typeset

manage binary/ tsearch,
interface to the DARPA
the DARPA TFTP/
File Transfer Protocol/
tgetflag, tgetstr,/
tgetent, tgetnum,
tgetstr,/ tgetent,
/tgetnum, tgetflag,
/tgetflag, tgetstr,

ttt, cubic:

process data and/ timex:
time:

commands at a later
environment at login

for optimal access

profil: execution
an environment at login
stime: set

time: get

/taset: convert date and
clock: report CPU

TZ:

child process times.

terminal type, modes, .
terminal types by/ . .
terminals. /functions .
terminals. /functions of
terminal’s local RS-232/
terminals. /file perusal
terminals. term: . . .
terminate a process. . .
terminateall/
terminate process. . . .
terminate the
terminate. /wait for . .
terminfo compiler. . . .
terminfo database. . .
terminfo: terminal . . .
termio: general terminal
test: condition
test your knowledge. . .
text editor.
text editor.
text editor (variant of .
text file. newform: ., .
text files. fspec: + . . &
text for nroff or troff. .
text for troff.
text. o« ¢« o ¢ o 0 o 4
text, or data in memory.
text perusal.
text strings in a file.
text. o o o ¢ 0 o o 0
tfind, tdelete, twalk: . .
TFTP protocol. fuser .
tftp: user interface to .
tftpd: DARPA Trivial .
tgetent, tgethum, . . .
tgetflag, tgetstr,/ . . .
tgetnum, tgetflag, . . .
tgetstr, tgoto, tputs:/ .
tgoto, tputs: terminal/ .
tic: terminfo compiler. .
tic-tac-toe. .+ ¢ o o .+ .
time a command; report
time a command.
time. /batch: execute .
time. /up a C shell
time. /copy file systems
time: get time.
time profile.
time. /setting up
time.
time: time a command. .
time. .« o ¢ 4 . . .
time to string.
time used.
time zone file.
times: get process and .

e s s e »

“ s e
D A)

¢ s e s e

- 46 -

getty(1M)
ttytype(4)
300(1)

hp(1)

tp(7)

rg(1)

term(5)

kill(1)
shutdown(1M)
exit(2)
errstop(1M)
wait(2)
tic(1M)
tput(1)
terminfo(4)
termio(7)
test(1)

quiz(6)

ed(1)

ex(1)

edit(1)
newform(1)
fspec(4)

eqn(1)

ew(1)

nroff(1)
plock(2)
more(1)
strings(1)
troff(1)
tsearch(3C)
tftp(1N)
tftp(1N)
tftpd(1INM)
termeap(3X)
termcap(3X)
termecap(3X)
termeap(3X)
termeap(3X)
tic(1M)
ttt(6)
timex(1)
time(1)
at(1)
cprofile(4)
deopy(1M)
time(2)
profil(2)
profile(4)
stime(2)
time(1)
time(2)
ctime(3C)
clock(3C)
tz(4)
times(2)

access and modification
and child process

access and modification
report process data and/
accelerator interface.
temporary file.

a name for a temporary/
/_toupper, _tolower,
contents routines.
/pclose: initiate pipe
/tolower, _toupper,
_tolower,/ toupper,
tsort:

acctmerg: merge or add
modification times of a/
toupper, tolower,
_toupper, _tolower,/
terminal’s local RS-232/

databage,

/teetstr, tgoto,
characters.

ptrace: process

trpt: print protocol

ftp: file

DARPA Internet File
/DARPA Trivial File
/_tolower, toascii:

tr:

ftw: walk a file

manage binary search
trk:

/asin, acos, atan, atan2:
Protocol/ tftpd: DARPA

constant-width text for
text for nroff or
typesetting view/ mv: a
tables for nroff or

trace.

truth values.

/u3b, u3b5, vax: provide
true, false: provide
twalk: manage binary/
terminal inteface, and/

terminal interface.
terminal.

name of a terminal.

in the utmp file of the/
terminal types by/
/shutacet, startup,
tsearch, tfind, tdelete,
file: determine file

times of a file. /update
times. /get process
times. utime: set file .
timex: time a command;
tiop: terminal
tmpfile: createa
tmpnam, tempnam: create
toascii: translate/ ., . ,
toc: graphical table of
to/from a process. . .
_tolower, toascii:/
tolower, _toupper, . .
topological sort.
total accounting files,
touch: update access and
_toupper, _tolower,/ . .
toupper, tolower, . .
tp: controlling
tplot: graphics filters.
tput: query terminfo
tputs: terminal/ . .
tr: translate . .
trace. .
trace. .
transfer program. .
Transfer Protocol/ ft
Transfer Protocol /
translate characters.
translate charscters.
tree. o+ v ¢ o 8 o o
trees. /tdelete, twalk:
trekkie game.
trigonometric functions.
Trivial File Transfer . .
trk: trekkie game.
troff. [checkcw: prepare
troff. /mathematical .
troff macro package for
troff. tbl: format
troff: typeset text. . . .
trpt: print protocol . .
true, false: provide
truth value about your/
truth values.
tsearch, tfind, tdelete,
tset: set terminal,
tsort: topological sort.
ttt, cubic: tic-tac-toe.
tty: controlling
tty: get the name of the
ttyname, isatty: find .
ttyslot: find the siot .
ttytype: list of
turnacct: shell/
twalk: manage binary/
type.

* e e o o »

a e e e« e o

. s s

pd:

@ 6 s ® 4 6 e W s s s e s & 4 ° = e o 3 e e & s =

- 47 -

e @ e e 3 s & 8 & & @ s a 8w s =T e a8 + + T s * s @ P w @ ® s e ®3 e ® = & e * w e » e 6 " e e . w e » s e v s =

touch(1)
times(2)
utime(2)
timex(1)
tiop(7)
tmpfile(3S)
tmpnam(3S)
conv(3C)
toc(1G)
popen(3S)
conv%SC
conv SC;
tsort(1)
acctmerg(1M)
touch(1)
conv(3C)
conv(3C)
tp(7)
tplot(1G)
tput(i)
termeap(3X)
tr(1)
ptrace(2)
trpt(1NM)
ftp(1N)
ftpd(1NM)
tftpd(1NM)
conv(3C)
tr(le
ftw(3C)
tsearch(3C)
trk(6)
trig(3M)
tftpd(INM)
trk(6)

ew(1)

eqn(1)

mv(5)

tbi(1)
troff(1)
trpt(1INM)
true(1}
machid(1)
true(1)
tsearch(3C)
tset(1)
tsort(1)
£44(6)

tty(7)

tty(1)
ttyname(3C)
ttyslot(3C)
ttytype(4)
acctsh(1M)
tsearch(3C)
file(1)

about your processor
getty: set terminal

/list of terminal

data types.

primitive system data
session. script: make
graphs, and/ mmt, mvt:
troff:

/troff macro package for

time/ /gmtime, asctime,
truth/ mc68k, pdpll,
mc68k, pdpll, u3b,
getpw: get name from

limits.

creation mask.

mode mask.

dismount file/ mount,
system.

current CTIX system.
current CTIX system.
ul: do

an SCCS file. unget:
spaces, and/ expand,
get of an SCCS file.
back into input stream.
/lcong48: generate
lines in a file.

mktemp: make a
program.

and unlink system/ link,
entry.

/exercise link and
umount:

expand/ pack, peat,
modification/ touch:
groups/ make: maintain,
Ifind: linear search and
synchronization.

syne:

sync:

du: summarize disk
/statistical network
names. id: print
setuid, setgid: set
crontab -

login name of the

real/ /getegid: get real
environ:

disk accounting data by
protocol. telnet:
DARPA TFTP/ tftp:
ulimit: get and set
return login name of
/get real user, effective

type. /truth value . .
type, modes, speed, and/
types by terminal/ . .
types: primitive system

types. types:
typescript of terminal .
typeset documents, view
typeset text.
typesetting view graphs/
TZ: time zone file.
tzset: convert date and .
u3b, u3bb, vax: provide

u3b$§, vax: provide truth/
UID.
ul: do underlining. . . .
ulimit: get and set user

umask: set and get file .
umask: set file-creation .
umount: mount and . .

D B S I)

unt: unmount a file

uname: get name of . .
uname: print name of .
underlining.
undo a previous get of .
unexpand: expand tabs to
unget: undo a previous .
ungetc: push character .
uniformly distributed/ .
uniq: report repeated .
unique file name.
units: conversion . . .
unlink: exercise link . .
unlink: remove directory
unlink system calls. . .
unmount a file system. .
unpack: compress and .
update access and . . .
update, and regenerate .

update. lsearch,

update: provide disk .
update super-block. .
update the super block.
usage.
useful with graphical/
user and group IDs and
user and group IDs. . .
user crontab file,. . . .
user. /get character . .
user, effective user, . .
user environment. . . .
user ID. /- generate .
user interface to TELNET
user interface to the
user limits.
user.
user, real group, and/ .

- 48 -

« o s
« ¢ 2 s & s e

logname:

machid(1)
getty (IM)
ttytype(4)
types(5)
types(5)
seript(1)
mmt(1)
troff(1)
my(5)

tz{4)
ctime(3C)
machid(1)
machid(1)
getpw(3C)
ul(1)
ulimit(2)
umask(2)
umask(1)
mount(1M)
umount(2)
uname(2)
uname(1)
ul(1)
unget(1)
expand(1)
unget(1)
ungetc(3S)
drand48(3C)
uniq(1)
mktemp(3C)
units(1)
link(1M)
unlink(2)
link(1M)
umount(2)
pack(1)
touch(1)
make(1)
Isearch(3C)
update(1M)
sync(2)
sync(1)
du(1)
stat(1G)
id(1)
setuid(2)
crontab(1)
cuserid(3S)
getuid(2)
environ(5)
diskusg(1M)
telnet(1N)
tftp(1N)
ulimit(2)
logname(3X)
getuid(2)

super-user or another
utmp file of the current
write: write to another
of ex for casual

/rmail: send mail to
remote equivalent

wall: write to all
/identify processes
/and verify software
statistics.

gutil: graphical

and modification times.
formats. utmp, wtmp:
/utmpname: access
/find the slot in the
wtmp entry formats.
/setutent, endutent,
directory clean-up.
uusub: monitor

uucpd: network
clean-up. uuclean:

job control. uustat:
CTIX system to CTIX/
server.

system to CTIX/ uucp,
CTIX/ uucp, uulog,
CTIX-to-CTIX/ uuto,
inquiry and job/
network.
CTIX-to-CTIX system/
command execution.

val:

u3b5, vax: provide truth
return integer absolute
name, getenv: return
/remainder, absolute
putenv: change or add
/ntohl, ntohs: convert
machine-dependent/
false: provide truth
machine-dependent
/formatted output of a
argument list.

varargs: handle

edit: text editor

mc68k, pdpll, udb, u3bb,

letter from argument
assertion. assert:
qinstall: install and
tabs to spaces, and vice
ve:

get: get a

scesdiff: compare two
print/ vprintf,

user. su: become
user. /the slot in the , .
user.
users). /editor (variant .
users or read mail.
users. rhosts:
users.
using a file or file/ . . .
using the mkfs(1) proto/
ustat: get file system ., .
utilities.
utime: set file access . .
utmp and wtmp entry .
utmp file entry.
utmp file of the current/
utmp, wtmp: utmp and

utmpname: access utmp/ .
uuclean: uucp spool
ducp network.
uucp server.

uucp spool directory
uucp status inquiry and .
uucp, uulog, uuname: . .
uucpd: network uucp . .
uulog, uuname: CTIX . .
uuname: CTIX system to .
uupick: public
uustat: yucp status . .
uusub: monitor uuep . . .
uuto, uupick: public
uux: CTIX-to-CTIX system
val: validate SCCS file. .
validate SCCS file. . . .
value about your/ /u3b, .
value. abs:
value for environment . .
value functions.
value to environment. . .
values between host and/

values:,
values. true,
values. values:
varargs argument list. . .
varargs: handle variable .
variable argument list. . .
(variant of ex for/
vax: provide truth value/ ,
ve: version control.
vector. [get option
verify program
verily software using/ . .
versa. /unexpand: expand

version control.
version of an SCCS file. .
versions of an SCCS/ . .
viprintf, vsprintf:

« e e

e o e o o

¢ 2 s s s s s .

L S)

L Y

L

- 49 -

su(1)
ttyslot(3C)
write(1)
edit(1)
mail(1)
rhosts(4N)
wall(1M)
fuser(1M)
ginstall{1)
ustat(2)
gutil(1G)
utime(2)
utmp(4)
getut(3C)
ttyslot(3C)
utmp(4)
getut(3C)
uuclean(1M)
uusub(1M)
uuepd{1NM)
uuclean(IM}
uustat(1C)
uuep(1C)
uuepd(1NM)
uucp(1C)
uucp(1C)
uuto(1C)
uustat(1C)
vusub(1M)
uuto(1C)
uux(1C)
val(1)
val(1)
machid(1)
abs(3C)
getenv(3C)
floor(3M)
putenv{3C)
byteorder(3N)
values(5)
true(1)
values(5)
vprintf(3S)
varargs(5)
varargs(5)
edit(1)
machid(1)
ve(l)
getopt(3C)
assert(3X)
qinstall(1)
expand(1)
ve(l)
get(1)
scesdiff(1)
vprint{(3S)

Volume Home Blocks
(visual) display editor/
tabs to spaces, and

/mvt: typeset documents,
/package for typesetting
/a terminal to use as the
vi: screen-oriented

vme:

file systems with label/
libdev: manipulate
initialize and maintain
vsprintf: print/
vprintf, viprintf,

of process.

to stop or/ wait:
process to stop or/
ftw:

files.

of a/ signal: specify
whodo:

local network. rwho:
who:

system.

what.

/long lines for finite
primitives. window:
wm:

management primitives.

cd: change

chdir: change

/get path-name of current
pwd:

on disk. setenet:

swrite: synchronous
write:

entry. putpwent:

wall:

write:

user.
open for reading or
utmp, wtmp: utmp and
entry formats. utmp,
connect/ fwtmp,
hunt-the-wumpus.
argument list(s) and/
strings in C programs.
functions. j0, j1, jn,
J0, j1, jm, 0,
compiler-compiler.

j0, i1, jn, y0, y1,

TZ: time

(VHB). /manipulate . .
vi: screen-oriented . . .
vice versa. /expand . .
view graphs, and slides.

view graphs and slides. .
virtual system console. .
(visual) display editor/ .
VME bus interface. . .
vme: VME bus interface.
volcopy, labelit: copy .
Volume Home Blocks/ .
volume. iv:
vprintf, viprintf, . . .
vsprintf: print/
wait: await completion .
wait for child process .
wait: wait for child . .
walk a file tree.

wall: write tcall . . .

wc: word count.
what: identify SCCS . .
what to do upon receipt

who is doing what. . .
whois logged inon . .
who is on the system. .
who: who is on the . .
whodo: who is doing . .
width output device. . .
window management .
window management. .
window: window . . .

wm: window management.

working directory. . . .
working directory. . . .
working directory. . . .
working directory name.

write Ethernet address .
write on a file.
write on a file.
write password file . .
write to all users. . . .
write to another user. .
write: write on a file. .
write: write to another .
writing. open:
wtmp entry formats, . .
wtmp: utmp and wtmp

wtmpfix: manipulate . .
wump: the game of . .
xargs: construct
xstr: extract and share .
y0, y1, yn: Bessel . . .
¥1, yn: Bessel/
yace: yet another . . .
yn: Bessel functions. . .
zone file.

- 50 -

libdev(3X)
vi(1)
expand(1)
mmt(1)
mv(5)
conlocate(1M)
vi(1)

vme(7)
vme(7)
volcopy(1M)
libdev(3X)
iv(1)
vprintf(3S)
vprintf(3S)
wait(1)
wait(2)
wait(2)
ftw(3C)

. wn"(lM)

we(l)
what(1)
signal(2)
whodo(1M)
rwho(1N)
who(1)
who(1)
whodo(1M)
fold(1)
window(7)
wm(1)
window(7)
wm(1)
cd(1)
chdir(2)
getcwd(3C)
pwd(1)
setenet(INM)
swrite(2)
write(2)
putpwent(3C)
wall(1M)
write(1)
write(2)
write(1)
open(2)
utmp(4)
utmp(4)
fwtmp(1M)
wump(6)
xargs(1)
xstr(1)
bessel(3M)
bessel(3M)
yace(l)
bessel(3M)
tz(4)

TABLE OF CONTENTS

1. Commands and Application Programs

introintroduction to commands and application programs
300 . . . handle special functions of DASI 300 and 300s terminals
4014 paginator for the TEKTRONIX 4014 terminal
450 handle special functions of the DASI 450 terminal
accept .+ « 4+ 4 o o 4« o s o o o .allow/prevent LP requests
acct « .« . . . v ¢ o v s . . .OvVerview of accounting commands
acctcms . command summary from per-process accounting records
accteomsearch and print process accounting file(s)
acctcon « « ¢« « v ¢« ¢« ¢ « 4 « + » o .connect-time accounting
acctmergIerge or add total accounting files
ACCEPIC & v o &+ ¢ o o o » & o o o 0 o 9. - . process accounting
acetsh . .« ¢« ..+« . .shell procedures for accounting
adb . . . ¢ ¢ i o v i v v v s v s v s« . . absolute debugger
admincreate and administer SCCS files
ar + + « + « oarchive and library maintainer for portable archives
A5 « 4 s 4 o 4 e s e s s s s s s s s s o s s o « «assembler
a3 . . « » - « .« . . «iDnterpret ASA carriage control characters
at ¢« . . .execute commands at a later time
awk.pattern scanning and processing language
banner « « + ¢« . ¢« . . ¢ . 4 ¢ s+ s e e« .. .make posters
basenamedeliver portions of path names
bearbitrary-precision arithmetic language
bcheck print out the list of blocks associated with i-node(s)
bcopy ¢+ e+ ..« . .interactive block copy
bdiff ¢ . s e et e e e e e s . s . . . bigdiff
bfs. . « v o v v o v v v v v s v v s« s . . . bigfile scanner
bre «system initialization shell scripts
cal e+ e e v e e e . . .printecalendar
calendar . .+ 4 v ... 0.remmderservxce
Cabv v v 4 v e s e e s e e e e .concatenate and print files
catmancreate the cat files for the manual
¢cb e s e e e . o Cprogram beautifier
CC 4o v o « o o o s s s o s s s s a s o o s s« o «Ccompiler
¢d v s« s s s s e+« .« .change working directory
edcchange the delta commentary of an SCCS delta
eflow o .o« . .generate C flowgraph
chmod« .¢ ..+ e es oo .. .change mode
chownchange owner or group
chrootchange root directory for a command
clear ¢ e < s e e+ e oo .clear terminal screen
elri v v v o v s e e s e s e e e e e e s s o o .« .clear i-node
CINP « « « o o o s o v s o s « « & » » o o «compare two files
col v . v e o v« . . .filter reverse line-feeds
combcombineSCCS deltas
commselect or reject lines common to two sorted files

-1-

config « « -« . v ¢+configure a CTIX system
conlocate . locateatermmal to use as the virtual system console
convertconvert object and archive files to common formats
3copy,llnkormoveflles
CPIO + « v ¢ o« o s o s o« » « « »copy file archives in and out
CPP « + o+ « ¢« o o« o » o s« « « « « «the C language preprocessor
cpset « . . « . «install object files in binary directories
crash . . « ¢ « ¢« « + ¢« s s« « &+ + +» « .6examine system images
CTO « & « s o o = o s s o = s s s s s s o « « «clock demon
crontabcrontab - user crontab file
eshashell (command interpreter) with C-like syntax
esplit « v & ¢ ¢ i 4w e e s e e e e @« « s s s . .cOntext split
et v v v o ¢« ¢ v e s . 4« « .Spawn getty to a remote terminal
CtagS « « ¢ o 4+ 4 o 4 4 s e s s s o+ o o .cCreate a tags file
ctinstallinstall software
ClIACe o v o ¢ o o o o & o o o 8 o s 4 e .Cprogramdebugger
CU' + o o « o « o s o o s s s o ocall another computer system
cut . «cutoutselected fields of each line of a file
CW « o « « « s « o« o » o« »Dprepare constant-width text for troff
exref <generate C program cross-reference
date . .« ¢ ¢ ¢ s ¢ ¢ s e s s« s s . .print and set the date
dC « 4 4 4 e e s s s s e e s s s s e s s o« + odesk calculator
dcopy .« « + + + « . « .copy file systems for optimal access time
dd . .. ¢ ¢ v e vt .convert and copy a file
delta.makeadelta(change) to an SCCS file
deroffremove nroff/troff, tbl, and eqn constructs
devim . .« ¢ ¢ ¢ 4 s 4 e s e e 4 s s e s s s« «device name
dfreport number of free disk blocks
diff « .+differential file comparator
diff8 «3way differential file comparison
diffmkmark differences between files
diremp . . ¢ ¢4« ¢ s« e+ o« . odirectory comparison
diskusg diskusg - generate disk accounting data by user ID
dismountremove exchangeable disk
duosummarize disk usage
dump « . ¢ v 0 e e 0. .dump selected parts of an object file
echo . v v ¢ v v v s ¢ v s v v v v s« s+« .echoarguments
ed........................texteditor
edit « text editor (variant of ex for casual users)
enableenable/disable LP printers
env . . « « « .+ » « » oset environment for command execution
eqh « « . o . format mathematical text for nroff or troff
errdead . . extract error records and status information from dump
errdemon « + ¢ « ¢ ¢ 4 4 4 o o « s o o . .error-logging demon
ertpt « . .« v ¢« . ¢« . « . . .processa report of logged errors
errstop . . « + « + « terminate the error-logging demon
X o 4 s e s s 0 s s s s s s s s s s s s« s« » »text editor
expandexpand tabs to spaces, and vice versa
eXPr « « + + « « + « « . . .evaluate arguments as an expression
factor « « . . v . . o4 .o e ..« factor a number

-2.

ftlistfile names and statistics for a file system

file v v v v v v i h e e « « . determine file type
flme ... 000 .. « « « « « . . fast incremental backup
find0 000000 v o o« o o+ . . find files

foldfoldlong lines for fmlte width output device
frecrecover files from a backup tape

fsck file system consistency check and interactive repair
fsdb e e e e e e e s e e e e file system debugger
fsplit « « « v v v v v v v e . .spht {77, ratfor, or efl files
7 o fﬂe transfer program

ftpd DARPA Internet File Tra.nsfer Protocol server
fuserIidentify processes using a file or file structure
fwtmp « .« . . manipulate connect accounting records
gdevgraphical device routines and filters
ged e v s e - .. .graphical editor
getgeta version of an SCCS file
getoptparse command options
gettyset terminal type, modes, speed, and line discipline
graph . . ¢ . . v v 4 4 v 4 s s e s s e« . . .drawa graph
graphics access graphical and numerical commands
greek ¢ ¢ 4o« . .select terminal filter
EI€D + v v 4 4 . e e e e e e e . search a file for a pattern
gutil e e e e e e e e . graphxcal utilities
hd . . o0 0o s e e . .hexademmal and ascii file dump
head+ v . . .give first few lines
help.o v oo v o s oo .. .askforhelp
hinv vevvee.. . hardware inventory
hp . handle special functions of HP 2640 and 2621-series terminals
hyphenfind hyphenated words
d............ .printuser and group IDs and names
ifconfigconfigure network interface parameters
includes determine C language preprocessor include files
mit e « « « « « « . oprocess control initialization
install e e e e « . . install commands
Ipcrm . remove message queue, semaphore set or shared memory id
ipcsreport inter-process communication facilities status
IV o v « v « ¢ v v « s « s+ . .initialize and maintain volume
JOil. v« v v v . v v ...« . . .relational database operator

kil ¢+ « s s s e s « s & « + « .terminate a process
killall v o o 0 0 o0 o oo oL . .« . kill all active processes
de o .o oo v v link editor for common object files
ddrv.. . . o0 00 0L + « « .« . . . manage loadable drivers

ldeeprom . + « v v ¢ ¢t it v v v v e v . W . .load EEPROM
lexgenerate programs for simple lexical tasks
line . . ¢ v v v v v v v v v s s e s e« o« . .readone line
linkexercise link and unlink system calls
lint « o « o oo oo+ .. .aCprogram checker

login............ « « « . .+ . .signon
logname « « « o« » + » «getlogin name
lorder fmd ordermg relation for an object library

-3-

p oo . . .send/cancel requests to an LP line printer
lpadminconfigure the LP spooling system
Ipr « ¢ v v ¢ ¢ v 4 e s o v o o« s s+ o . line printer spooler
Ipsched . . start/stop the LP request scheduler and move requests
Ipsetsetparallel line printer options
Ipstat+print LP status information
Is «+ . ¢ v s v v v s« v o+« s . . .list contents of directory
M4 . . . & . s 4 s s e s s s s s s s s & o «INACTO Processor
machid . . . , . . provide truth value about your processor type
mail « .«« . .send mail to users or read mail
mailxinteractive message processing system
make maintain, update, and regenerate groups of programs
MAl « « « « o « « s o o s s o » » o print entries in this manual
INESE « + » o o « o o « « o s + o « « o permit or deny messages
mkdir4¢.........makeadirectory
mkfs.construct a file system
mkifilemakean ifile from an object file
mklost+found . . ., make a lost+found directory for fsck
mknod ¢t vt e e e e s« build special file
mktpyinstall or relocate a PT or GT local printer
mmprint/check documents formatted with the MM macros
mmt.typeset documents, view graphs, and slides
IMNOTE & « o o o o « s o o s o« o s o s « =« s « » «textperusal
mount. . « + « « ¢« « « . . . mount and dismount file system
MVAIT e « « v ¢ o v s ¢ s o s o s s « o« s« « move a directory
ncheckgenerate names from i-numbers
netman . « « ¢« + « « « « o o . form-based network management
newform+ « « . . .change the format of a text file
NEWETD « &« « « + « s » » » s s s s » « »login to anew group
NEWS .+ & &+ 2 o o ¢ o o s s o o s o o« s+ « « o Pprint news items
DICE « « &+ « o o« s « o s » » «» »Iunacommand at low priority
nl. »linenumbering filter
IM « + » « » « « o o« » » «print name list of common object file
nohup.run a command immune tc hangups and quits
NTOff & v v @ v ¢ ¢ 4 e e e s s s e s s 4 o o o oformat text
0d. v v v v e e s e s s e s s e s e s s e s . ooctal dump
pack ¢+compressand expand files
PassWd « « ¢« 4 4 4 4 4 s o « s s s s o o change login password
paste merge same lines of several files or subsequent lines of one file
pathlocate executable file for command
PE » + » + « « « « o « o flile perusal filter for soft-copy terminals
PI v ¢ ¢ e e s s o 5 s 5 o s o o s s s » . . . print files
03 o .dlsplayprohledata
profilero0perating system profiler
PFS « o o o o ¢ o o ¢ o s s o o = s s « « oprint an SCCS file
PS+ ¢ ¢ s o ¢« ¢ o s s s s s o s o o o o »Ieport process status
PUX ¢ ¢ v e o ¢ s ¢ ¢ e e o s e s o o« .« » »permuted index
pwek. . v . v v v« v« vpassword/group file checkers
pwd . . . ¢ ¢« . . v e s . s s s« « .wWorking directory name
ginstallinstall and verify software using the mkfs(1)

- 4-

qlist print out file lists from proto file; set links based on
remd . . . ¢ ..+ .« . . .remote shell command execution
TCP &« v ¢ & o v s o e s s e s s o o« o . .remote file copy
rebootreboot the system
TEECMP + « 4w o &+ o + + « « + « o . . egular expression compile
renice alter priority of running process by changing nice
reXe€d . . 4 4 - 4 o s s« « «Temote execution server
TM ¢ & ¢« v « o o o s s o s « s+ » «Temove files or directories
rmdelremove a delta from an SCCS file
route . « manually manipulate the routing tables
rsterm manually start and stop terminal input and output
rupacct . . 4 s 4 4 4 ¢ 4 e . .. o . . .rundaily accounting
rwhowhoislogged in on local network
rwhodnodestatus server
sactprint current SCCS file editing activity
58P« 4 ¢ 4 ¢+ ¢ 4 v s e w e s o s« o «disk access profiler
SAE .+ ¢ ¢ 4 4 4 s s & . s s 4 o . . .system activity graph
SAL & « « s 4 ¢ s s o s s s 4 s « o« .« «System activity reporter
Sal « « v s + o o o o « « « « . »8ystem activity report package
scesdiffcompare two versions of an SCCS file
seript « « &« + « - « .« . . . make typescript of terminal session
sdb+symbolic debugger
sdiffside-by-side difference program
Sed .« . . 4 4 4 e s 0t e e a s s s s s s . . »stream editor
setaddrset DARPA Internet address from node name
setenet o write Ethernet address on disk
setmnt ¢+ ¢establish mount table
Setuname . . + « 4+ v ¢ ¢ s » » » ¢ + & o »5et name of system
sh . shell, the standard/restricted command programming language
shl oo oo oo+ o «. . .shelllayer manager
shutdownterminate all processing
SiZ€ . . « .+ s « « . .Pprint section sizes of common object files
slattach attach and detach serial lines as network interfaces
sleepsuspend execution for an interval
SOIt o « & v s 4 s+ & v« v o « =+« . «sort and/or merge files
spellfindspelling errors
splineinterpolate smooth curve
split vsplitafileinto pieces
stat statistical network useful with graphical commands
strings .+extract the ASCII text strings in a file
strip + strip symbol and line number information
stty .+« ¢+ «setthe options for a terminal
SU. ¢« « « o « o o » » » o« + «become super-user or another user
sum « « » « « oprint checksum and block count of a file
SWaP . ¢ 4 4+ ¢ s o« » « » . oSwap administrative interface
SYNC .+ « &+ « & o ¢ o o« « « s s+ « » o« « »update the super block
tabs 4 4 . 4 4 e+ s« . . .5ettabs on a terminal
tail « o o vdeliver the last part of a file
tar « & & 4 ¢ v s ¢ 4 v 4w s s e s e 4 o « o . tapefile archiver
17+ .format tables for nroff or troff

-5-

tdl . v 4 e v e e e e e e v o v o« . RS-232 terminal download

tEE v 4 s e s e s e e e e e . . « « « « pipe fitting
telnet . « + . . « +user mt,erfa.ce to TELNET protocol
telnetd . .« .« ¢ .0 0. DARPA TELNET protocol server

test . . v . e ¢« ¢« « .« o . .condition evaluation command
tftp userinterface to the DARPA TFTP protocol
titpd DARPA Trivial File Transfer Protocol server
tic . « o .. e e s e e e e « « « « » terminfo compiler
timetlmeacommand
timex . .time a command; report process data and system activity
toC . « v + 4+ » » « « » + . «graphical table of contents routines
touchupdate access and modification times of a file
tplot v+ . ¢ ¢ ¢« v v o4 o e o v v« o« .+ .graphics filters
tput « . ¢ . . o . - v . v v o ¢ . . . query terminfo database
T & v @ v s e v e v e e v e s s s « s . otransiate characters
troff o ¢ v 0 e e 4 e . e e s e s v s e e« . . . typeset text
BIPL « v 4 4 ¢ ¢ ¢ 4 4 4 4 s s e « o« « »print protocol trace
LTUE & o o o « o o o s o s « o+ o o« « o« « «provide truth values
tset . . . set terminal, terminal inteface, and terminal environment
ESOTL o o w & o ¢ o o = o a o s o s o o » « » o topological sort
tY « « v o o o ¢ o o ¢ v s s+ . - get the name of the terminal
ul . s s i v s e v s e e e e e e e s o s o s »dounderlining
umask+ . . . ¢ ¢ . .« . . .setfile-creation mode mask
uname . . » » « » » » « « «print name of current CTIX system
unget . . .+ « « « « +» « « . undo a previous get of an SCCS file
UNIQ + ¢ » o« o ¢ o s « s « « o« o »Teport repeated lines in a file
UNIES « 4 ¢ 4 o ¢ o ¢ 4 s s s s s e . & . .CODVErsiON program
update . . « + ¢ « « + . .+ + » . .provide disk synchronization
uuclean« . .+ + + . » .uucp spool directory clean-up
UUCP + + » o o o o » « « » « CTIX system to CTIX system copy
wuepd .« v . v 4 v s 4 ¢ s s e s« o s »network uucp server
uustatuucp status inquiry and job control
yusub o .4 v monitor uucp network
WUt0 ¢ o+ « o o « o o+ » o« public CTIX-to-CTIX system file copy
UUX & « + o o o o o o« CTIX-to-CTIX system command execution
Val &« v v v 4 e e v e s e v s s e s o« o «validate SCCS file
vc......................versmncontrol
vi . «screen-oriented (visual) display editor based on ex
volcopy + + « « +» « » « o . copy file systems with label checking
walb e o o v 0 0 . e .. « « » « »await completion of process
wall o . . o s 00 e o e e . . . Write to all users
WC ¢ « o o o 2 o 5 o s s s s s« s o o s s s« « «wWord count
what + . v ¢ v ¢ ¢ v s s s ¢ o« o « « o oidentify SCCS files
who. « ¢ ¢ v v v v v v v v v v+« « «whoison the system
whodo . . &+ ¢ ¢« + ¢ ¢+ + v« « « + « + « +» « Who is doing what
WI 2 » » « 2 « o o s o a « s s o+ o » « window management
WIEE « & ¢ o 4 « 4 ¢ ¢ « 4 o s+ + « » »Write to another user
Xargsconstruct argument list{s} and execute command
xstrextract and share strings in C programs
YACC « + o o s s « s o o s « o+ «yet another compiler-compiler

TABLE OF RELATED ENTRIES

Administration

Accounting and Profiling

acct . . .overview of accounting and miscellanecus accounting commands
acctems command summary from per-process accounting records
acctcom .+ < 4 s+ » » » » . earch and print process accounting file(s)
ACCLCON & o & o o o o o ¢ o s & & o o « o = «connect-time accounting
ACCLMErg « « « s « o o » s & » « & . Merge or add total accounting files
BCCLPTC & & s o o 3 o o » o s s ¢ o ¢ o o s & » o o process accounting
acetsh « o« v o v o v v ¢ ¢ v s ¢ .« .shell procedures for accounting
fwtmp . . + « s s ¢« « « o « » « Mmanipulate connect accounting records
Profl o 4 o v o ¢ ¢ o ¢ v e o s s e s o o s o o« o display profile data
TURACCY ¢« o o o ¢ o ¢« o o o o o o o o o « o o « orun daily accounting
SAI + 4 4 o ¢ 4 4 e s s s e s o s s s o o « «System activity reporter
SAT « s ¢ s o o s s o s s o s s o o« 8ystem activity report package

Backups

ff e o o o o o ¢« s o+ o olist file names and statistics for a file system
fine ¢« « o« « ¢« o 4 o s 4 o e o s e s s oo «lastincremental backup
frece « ¢ « ¢« o o o o o ¢ s ¢ « « » o «recover files from a backup tape
VOICOPY « o o ¢ o« ¢ o o o o » « « o copy file systems with label checking

Controlling System State

Pre s o« ¢ « ¢« o o o o ¢ s o o s o » o s8ystem initialization shell scripts
€rash « o o« ¢ « o o ¢ o o s 2 s s o o o o ¢ o oexamine system images
getty «set terminal type, modes, speed, and line discipline
iRt o o 4 o ¢ o o o s e ¢ s o ¢ o « s o »process control initialization
killall © ¢« v v ¢ ¢ ¢ e s e s v o o v s o« o . Kkillall active processes
login ¢« v ¢ ¢ 4 vt o i e e e e e e s e e s s e e s s s s . «SigRON
Shutdown o « « o 4+ 4 o o ¢ ¢ o s s o o o o » «terminate all processing
wall « ¢ . ¢ 0 e e e e e e e e s e e s s s e s s« owrite to all users

Disk Management

DCOPY o ¢ o o & o s ¢ « o o s o s s & « o o o »interactive block copy
el o e i e e i e i e et e e e s s e s s s s s o o ocleari-node
dCOPY « + o « o « o o o » o« « »copy file systems for optimal access time
devnm . . ¢ 4 4 4 4 4o 4 s e s e s e s s e e s s e s« odevice name
df « ¢ ¢ o v s s ¢ o s s s s s o o« «report number of free disk blocks
fsck « « o « o « o o .file system consistency check and interactive repair
fsdb & v & 4 e i e s e e e e e s e u s s s o o ofilesystem debugger
fuser« .« . . . «identify processes using a file or file structure
link o ¢ v+ o « o o ¢ v ¢ ¢+ s+ o »exercice link and unlink system calls
MKfS &« ¢ o o ¢ o v o o o o s o o o o o o o » oconstruct a file system
mklost+found make alost+found directory for fsck
mount + . « « « s o s ¢« o o+ » » - mount and dismount file system
MYAIr o o o ¢ o v ¢ ¢« o o s o o6 o s s s o s+ «movea directory
ncheck + « ¢ ¢« « ¢ ¢ ¢« o o o ¢ o « « »generate names from i-numbers
SetmNb « . 4 ¢ 4 4 ¢ 4 4 o ¢ s s s o s o o« o o oestablish mount table
SYNC ¢ + « « o o o« o s ¢« o « o o o o o s s » »update the super block

General

conlocate . «locate a terminal to use as the virtual system console
config « v o o ¢ ¢ o ¢ e v o s 4 s o oo oo oconfigure a CTIX system
cpset . . ¢ ¢ s s 4 o o » » o« o «install object files in binary directories
CION « « o o ¢ s 5 o s ¢ « s s s s s s o s s s s s « »clock daemon
dismount++ .. . oremove floppy or cartridge disk
errdead extract error records and status information from dump
errdeMON « « v o« + o o s o ¢ 4 o ¢ o s o &« o »error-logging demon
TPt o ¢ ¢ 4 4 4 e 4 4 o s o « o o o «Pprocessareport of logged errors
errstoP « & « + ¢« ¢+ ¢ o « o ¢ o+ o oberminaie the error-logging daemon
install 4 4 s i 4 e e s e e e s e e s s oinstall commands
IV 4 o o o o ¢ s o s e e o o s o s s o« «initialize and maintain volume
mknod . . . v ¢ s 0 o s s e 4 s e e e o o o «build special file
path . . . ¢ ¢ v ¢ s ¢« o v o o+ o «locate executable file for command
PWEk .+ ¢ ¢ s s 4 v e o e v oo .o o «password/group file checkers
rsterm manually start and stop terminal input and output
SetUNAMme + « « o o o « o ¢ ¢ o ¢« o o o ¢« s+ o « o «Set name of system
update + < ¢« ¢ ¢ ¢ ¢ 4 ¢ o s o o o o o o »provide disk synchronization
whodo 000t «whoisdoing what

Interprocess Communication
ipermremove a message queue, semaphore set or shared memory id
iPCS + .+ « « « « « o . report inter-process communication facilities status

Basic File Commands

€8l + 4 4 ¢ v 4 s s s e s e e s e s o s o «concatenate and print files
chmod « ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o ¢« o s s o s o o s s« s s s «change mode
ChOWR ¢« & o 4 o ¢ ¢« ¢ « o o o s o s o o » » o change owner or group
diremp « ¢ ¢« ¢« ¢ ¢ s ¢ o o s e s s 0 o s s s o »directory comparison
CP o o s o s ¢ o ¢ o o o s s s 3 s s 0 s s« «cCOpY,link or move files
dd ¢ ¢t e b e e 4 e s e s s s e e s s e s e «convert and copy a file
file e« o o ¢ o ¢ ¢ ¢ e e o s o s e o oo o0 oo o «determine file type
find + ¢« 4 ¢ o o ¢ 6 s s s 0 8 e s s s s 6 e e e s s s s e ofindfiles
I8 ¢ ¢ v e o o o s o e o s e s e e s s oo o .list contents of directory
PWA « ¢ ¢ ¢ o o o s o a6 e o« o s s s o »working directory name
mkdir « ¢« o ¢ ¢« 4 o 4o ¢ ¢ s e o s s s s s s« s s »Mmakea directory
PIN s o o o o » s o ¢« o s o s o o s s o o o o remove files or directories
umask ¢« s s ¢ ¢ 4 s e 6 e o s s s o o o «8etfile-creation mode mask

Basic General Commands

calendar . . ¢ ¢ 4 4 o 4 ¢ e 4 s s s s e s s s o a oreminder service
date « « « « 4« 4 o e 4 o s e e s s s s o s s » «print and set the date
id ¢ 4o s o e e o s s e s oo o oprint user and group IDs and names
kill & 4 o s v o e i e e s e e s s s e s e o . o oterminate a process
logname .« o « o ¢ o o o ¢ « o s s s e ¢ ¢ o s o o o ogetlogin name
NEWEIP o « o « o o o o o o » o s s « « « o » « «logintoanew group
NEWS &+ & « o s ¢ o s s s » o s « o s s o » s o s » «print news items
passWd . . ¢ ¢ s s s o ¢ s o s s o s « o s o o changelogin password
PS o o o o o o s s s s s 4 e v e e s e s s s « oreport process status
UNAME o ¢ ¢ o o o o o s o ¢« s o o o s o« s o o« o print name of system
Who &+ v ¢ v v s ¢ o o e v ¢ e s s o o oo oo «whoisonthesystem

Communication Between Systems (uucp)

Cb o o ¢ o o o o s o s o o o s+ o o «Spawn getty to a remote terminal
CU « « o « ¢ » o s s o =« o o o « o s » »call another computer system

-9.-

uuclean « .« 4 ¢ v v 4 s e 4o e s o s o« o Uucp spool directory clean-up
UUCP « ¢ o « « o o s o o o o« o « o COpy data between computer systems
uustat + . 4 o o 4 ¢ 4 ¢ s o « & o . UUCp Status inquiry and job control
uusub + . . ¢ ¢ s ¢t o ¢ o s s e e s o . s s s . monitor uucp network
uuto « .+ « « + « . . public computer system-to-computer system file copy
UUX o o o o o s s ¢ s o s o o s o o remote system command execution

Communication Between Users

mail + . « .« s 4 s e s e e s e o s« o8end mail to users or read mail
mailx ¢interactive message processing system
MESE .+ o o ¢ e o s ¢ o s o s ¢ o o« = o « o o permit or deny messages
WEIt€ o« ¢ 4 & « « o o s 4 o o o » s s s s » o o « Write to another user

Document Formatting and Checking

ol ¢ v i v e i e e e e et e e e e e as s s . filter reverse line-feeds
CW o o o « s o s s o s o o o o » «prepare constant-width text for troff
deroff . « . .« « .+ « o+ o oremove nroff/troff, tbl, and eqn constructs
QU o v ¢ ¢ o ¢ s s e s ¢ e s s e s s e s s s o «summarize disk usage
24T + o o o s s o o s o « « o format mathematical text for nroff or troff
greek . . o 4 s s 0 e o e s e o s e e s e s s . oselect terminal filter
hyphen « & & ¢« o s ¢ ¢ ¢« ¢ ¢ s ¢ o« o o o o o ofind hyphenated words
mmprint/check documents formatted with the MM macros
mmb ¢ ¢ ¢ s ¢ s o o o o o otypeset documents, view graphs, and slides
Rroff v v o 4 o 4 ¢ 4 e v e s s s e s e s s s s s s s s ofOrmat text
PEX ¢ & o « o o ¢ e ¢ o s o a6 s s o o e e o s s s »permuted index
8pell o ¢ ¢ 4 e v s s e e s s e s o s s s s o s s ofind spelling errors
thl o« ¢ 4 « ¢ ¢ « s ¢ e s s v s « s« » »format tables for nroff or troff
troff o o i e e e e s e e e e s e e e e s s s s s s . s typeset text

Internetworking Tools

fEP « ¢« o 4 o ¢ o o s o 4o s ¢ v o s s o s s s o filetransfer progtam
ftpd . . . « . ¢« « « « « « DARPA Internet File Transfer Protocol server
ifeonfig « « « « o« « ¢ « &« « « o . configure network interface parameters
mkhostS + « ¢« ¢« ¢« ¢ o o s ¢ « o o« » o +» » make node name commands
netMan .« . « o « s o o s » o« » « « « form-based network management
netstat « + « 4+ ¢ ¢« o o s ¢ o s o s s s s s » o »show network status
remd ¢ . - v v e s 6 e s s o s = o - «remote shell command execution
TCP o o s o o o o o ¢ s o o o ¢ ¢ o s o s o s s » o oremote file copy
rexecd . . . ¢ 4 4 s s s e s s s o s s s« « o remote execution server
FlOgIR o ¢ ¢ v ¢ o ¢ o s ¢ o o ¢ o s o ¢ s o s » « s » o remote login
rlogind « « ¢« 4 ¢« ¢« ¢ ¢« o o o s s e s o s e s o o «remote login server
FTOULE o ¢ « o ¢ o o o o o o ¢ o« o o s o o & o« remove files or directories
r8hd o & ¢ o ¢ ¢ 4 4 6 s ¢ o s s s e s s s s o+ « »remote shell server
ruptime . . . < « . . odisplay status of notes on local network
rwho. « « ¢« v o s ¢ s o s s o s » «whois loggin in on local network
rwhod ¢ ¢ & ¢ ¢ o s ¢ o 4 o o s s e o s s s o 4 s «node status server
setaddr « . . « ¢« .+ . o «8¢t DARPA Internet address from nodename
setenet « « « v v s s s s v s s o o o o o write Ethernet address on disk
slattachattach serial lines as network interfaces
sldetach ¢ . . « . . «detach serial lines as network interfaces
telnet . « « o . ¢« ¢« « ¢ s . . « . .userinterface to TELNET protocol
telnetd « o ¢« ¢« « o« ¢ o s o s s « » « DARPA TELNET protocol server
ttp « « ¢ ¢ o ¢+ ¢« ¢ .+ o userinterface to the DARPA TFTP protocol
tftpd « + « . « + « « + « « DARPA Trivial File Transfer Protocol server
BPPL o« 4 4 o ¢ 4 ¢ e ¢ o 0 s s s s s s o s o o «print protocol trace

-3-

Mathematics Tools

be + v v s o v e o4 e oo« . .arbitrary-precision arithmetic language
dC o o o 4 o o s s s s e s s e e n e e s s s s s s o desk calculator
fACLOr « ¢« & ¢ & ¢ o o o s o o o o s o s s s & o « o ofactor a number
spline « « ¢ ¢ ¢ ¢ 4 o e s v 4 s e o s s s o ointerpolate smooth curve
UNIS & 4 4 4 4 4 o 6 e s e s e a s e s s« « o »CONVErsion program

Miscellaneous

MAN - & « = s « s = ¢« = = = = » = » « « »Drint entries in this manual
Bl e s e e e i s st et e et e s e e s o s .line numbering filter
pack . + . . ¢ . . s 4 4 e e e s e+ s« o ocompressand expand files
SCHPt 4w 4 o s ¢ ¢ 4 o s s s« » « o Make typescript of terminal session
SU o s s o ¢ s s o s o« o s o o o o obecome super-user or another user
WC ¢ s o o ¢ o o ¢ o ¢ s s 6 5 2 65 0 8 s s s s s s« «wordcount

Offline Storage

CPIO ¢ 4 o o o o o s o s a s s o « s « o ocopy file archives in and out
87 ¢ o o o s ¢ » o s s s 2 5 s ¢ s s s = =« « 2 o »tapefile archiver

Printer Spooling

BCCEPL « « » o ¢ ¢ 4 o ¢ o o o o o o o » o oallow/prevent LP requests
enable « « « « v ¢ s ¢ e o s ¢ ¢t o« o .enable/disable LP printers
Ip « « « ¢ « v v s s e oo «s8end/cancel requests to an LP line printer
lpadmin « .+ ... ¢+« . .configure the LP spooling system
PP e ¢ ¢ o ¢ ¢ s o o e s ¢ o s o s s o s o oo » olineprinter spooler
Ipschedstart/stop the LP request scheduler and move requests
Ipset « & o ¢« s ¢« « o s s s ¢ v s o o o o8¢t parallel line printer options
Ipstat « ¢ o o ¢ ¢ ¢« « v s o o ¢ a s s o o o print LP status information

Program Development

adb 4 o ¢« ¢ ¢ 6 e v o s s s s e s e s s s s o o oabsolute debugger
8F « « « « « » « o o oarchive and library maintainer for portable archives
Q5 4+ s ¢ ¢ s s o s s o v s s s s s s s s s s s« o« Mc68010 assembler
b o v i s i e s s i s s e e s e s e e s s« Cprogram beautifier
CCa o o o o s o ¢ 8 s o o s o ¢ s s s s o 2o s s e o «Ccompiler
eflow « o o v o s s e s v v e v v u o o o« . .generate C flow graph
CPP + + » o s » o s » o« s s s » s o » » »the Clanguage preprocessor
CLABS + « & o ¢ 4 4 e 4o o v s s o e s s e o s s o o ocreate atags file
exref o « 4 o 4 4 s s o s e s o « o «generate C program cross reference
dump « ¢« o ¢ o « o s o s o o « o « dump selected parts of an object file
fsplit o« « o ¢ « ¢ o o e v o o o o o+ « «8plit fortran, ratfor, or efl files
hd ¢ . v v o v o e v e oo v e o4 o, hexadecimal and ascii file dump
Id o ¢ ¢ e ¢ v v o v s s e e s o« olinkeditor for common object files
lint e o o o o o ¢ o ¢ o v o s « s s s s s s o « »8C program checker
lorder+find ordering relation for an object library
M4 ¢ ¢ ¢ o 4 o ¢ o o o s o o o s s s o s o s s s o o MACTO Processor
make. maintain, update, and regenerate groups of programs
DM« o o « o s « s o s s o o o o« oprint name list of common object file
0d 4 v i e i e e e e e e e e et e e e e s s e s soctal dump
TEECMP » s » » » » o o s o s o s s s » » » oTegular expression compile
S8iZ€ + o o « ¢ « 4+ s o o s » o . print section sizes of common object files
SEPINES « + ¢ v ¢ o v « o o o o o o extract the ASCII text strings in a file
strip . strip symbol and line number information from a common object file
tiMe o o ¢ o o ¢ o o o « o o o o s s 4 s s s s« » otimeacommand

- 4-

timex.time a command; report process data and system activity
touch « « « « « + + + « « o update access and modification times of a file
PSOFt o 4 ¢ o o o s s 4 s o o e v s o s s o+ s . . «topological sort
XStr ¢ o 4 ¢ 4 o « + o o o 4 o oextract and share strings in C programs

Source Code Control System

admin ¢ . 4 ¢ ¢ s e« s+ s . .create and administer SCCS files
ede « « + o o o « o « « »change the delta commentary of an SCCS delta
COMb ¢« v 4 ¢« ¢« ¢ ¢ ¢+ o s o o s s s ¢ s o s o« »combine SCCS deltas
delta « o ¢ « v ¢« o v ¢+« « . .makeadelta (change) to an SCCS file
geb . ¢« 4 o 4 4 ¢ 4 6 e e s s e e s s+ «getaversion of an SCCS file
help ¢« ¢ ¢ o v v o v v v e v s s e e e e e e s e s s o »askfor help
PTS « « s o ¢ o « o o o a o s o s o o o« s s o o+ « »print an SCCS file
rmdel .+ . . ¢« ... ¢+« .remove adelta from an SCCS file
sact « 4 s . 4 ¢ 4 ¢ ¢ « o o o . print current SCCS file editing activity
scesdiff o o o ¢ 4w 4 ¢ o v ¢ ¢+ o o compare two versions of an SCCS file
unget .+ +» ¢« o ¢« o ¢« s » « o « o « o undoa previous get of an SCCS file
Val & o v s 4 s s s s e s s s s e s s e e e o+« «validate SCCS file
Y€ 4 o 4 4 o o o s s s o s o s o s s s s e s s« s« « «vVersion control
what + o o & ¢ o 4 ¢ s s 4 s s s e s s s s o . o «identify SCCS files

Terminal Support

300handle special functions of DASI 300 and 300s terminals
4014+ « .+ « « +» o paginator for the TEKTRONIX 4014 terminal
450 . « .+ . « « . « « o handle special functions of the DASI 450 terminal
38 + « o s 4 s o s ¢ o o « o »interpret ASA carriage control characters
clear ¢« . . . ¢ 4t v i 4 e 4 4 e s e o s s e o« .clear terminal screen
hp handle special functions of HP 2640 and 2621-series terminals
SthY « + » ¢ o 4 o 4« o ¢« o s o o s o » o o3¢t the options for a terminal
tabs « ¢ 4 o o 4 v 4 e 4 4 s s s e s s s o s o o8ettabsona terminal
tdl o o o e e e e e e v e e e e e e e s s o «r5232terminal download
BIC & o s 4 e e i i s e 4 e s e s s s e s s e« »terminfo compiler
tset set terminal, terminal inteface, and terminal environment
By o « o 4 v s o v e v v s s s e s s s s s s . get the terminal’s name
W & s+ o o o ¢ o s s s o o s s a o s s s s o »window management

Text Tools

Browsers, Editors, and Splitters

bfS v ¢ 4 4 e e e e e s s e e e e s s e e s s s« .bigfile scanner
esplit v o v e v i e e e e e s e s e e e s e s 4« . . ocontext split
€d 4 4 v et e e s e e e s e s e s e e s s e e s s . s .texteditor
X o ¢ o 5 s o o s e 8 4 s e w s oa s s v seosas s s s »texteditor
MOTE « « ¢« o s « o s o s o o « o o s o s s o » s o o o »text perusal
newform . + « « . « ¢ .« e« s+ s . . ochange the format of a text file
PB + ¢ ¢ o« o o s « o « o o« . file perusal filter for soft-copy terminals
SPlit + ¢ v v e e e e e v e e e e s e s« s s« o8plitafileinto pieces
Vie .+« e+« o . oscreen-oriented (visual) display editor based on ex

Comparing Files

bdiff & & v v e e e e e e e e e e s e e e s e e s e e e s e . bigdiff
CIMP &+ « o« o o o o o o ¢ o o ¢« s o s s s s o o o » »compare two files
COMM « « » « « » » o « «8elect or reject lines common to two sorted files
diff v et v e e . . .differential file comparator
diff8. . ..« .. oo+ v .« .« .3way differential file comparison

-5-

diffmk ¢+ ee e o .mark differences between files
sdiff w o v ¢ v o v o v e v v o s« « . .side-by-side difference program

Customizable Filters and Text Programming Languages

awkpattern scanning and processing language
CUb v 4 ¢ s ¢ e 4 s o o o » »cut out selected fields of each line of a file
fold . . ¢« ¢+« ,foldlonglines for finite width output device
Bre€P « o« ¢ s « o« o o o s o o o s o o o o o «8earch afile for a pattern
join ¢ & v v v ¢ 4 o4 s s e s v+ . . ,relational database operator
lexgenerate programs for simple lexical tasks
paste merge same lines of several files or subsequent lines of one file
PT 4 o ¢ o o o o ¢« ¢« s s s s s s o o o s s a s s o s s o oprintfiles
88d 4 4 4 4 ¢ 4 o 4 e s s s s s s s e s e s s s s a « «stream editor
S8OTb ¢ « o o ¢ ¢« ¢ o o s s s o o o v o s o+ o o80rt and/or merge files
tall . v v v e e s s e s s e w e o s s« o deliver the last part of 2 file
B ¢ o o ¢ o o s 2 v s o « ¢ s 4 e o s e o o« » otranslate characters
URIQ & o o o o s o o s s s o o o o o o o «report repeated lines in a file
YACC « ¢ ¢ o ¢ s s s o s s o o o o o o oYyet another compiler-compiler

Graphics and Displays

banner . ¢« ¢ 4 ¢ o 4 ¢ s s e 4 e s e s s s s s s s o . make posters
cal ¢« o . e e v e 4 e s e s s e e e s s s a s s s o s oprintcalendar
Graph & « ¢ 4 4 o v v e 4 e e s s s e e e s s s s s o . drawagraph

Using and Programming the Shell

basename « « « ¢ o s ¢+ o ¢ ¢ s o » o « o deliver portions of path names
chroot« . 4+ e« .+ . .change root directory for a command
€d ¢ ¢« s ¢ v ¢t ¢« e o s s e e e 0 e o » «change working directory
€cho ¢ ¢« 4 ¢ 4 4 4 4 e s s s 4 e s e e e s o o s oechoarguments
€Y .« . o » s « o o s s « » « «8e¢t environment for command execution
EXPI 4 « o « o o s ¢ + « ¢ o » » oevaluate arguments as an expression
BetOPt ¢ « 4+ ¢ ¢« 4 ¢ o ¢ ¢ s s 4 s # « s o o o parse command options
line & & v o ¢« ¢ o s e e s o o 4 s s e e s s e s s« oreadoneline
machid « « ¢« ¢ ¢ 4 ¢ ¢ o ¢« o ¢ o e s o o o s s s o s o processor type
NICE « o « o o = « « o s o « s o o o « «Tun a command at low priority
nohup « . « « s+ 4+ « » » »run a command immune to hangups and quits
shshell, the standard/restricted command programming language
sleep. « « - ¢« ¢ s s s s s s« = = - .suspend execution for an interval
tee & v 4 4 e s s 4 s s s s e s e e e s s e e s e s s . «pipefitting
test . .« ¢ ¢ ¢ ¢ 4 4 4 s s s s s s » o «condition evaluation command
frU€ ¢ o« « o ¢ ¢ o s s o s o o o s o ¢ o » s o o« «provide truth values
WAt . 4 ¢ o o s o o s s e s o s+ s » » »8await completion of process
X8I5S+ « « « « o« o o » »construct argument list(s) and execute command

INTRO (1)

NAME
intro - introduction to commands and application
programs

DESCRIPTION
This section describes, in alphabetical order, publicly-
accessible commands. Certain distinctions of purpose are
made in the headings:

1) Commands of general utility.
1C) Commands for communication with other
systems.

(1G) Commands used primarily for graphics and
computer-aided design.

1IM) Commands for system maintenance and
administration.

(1IN), (1INM)
Commands for the CTIX TCP/IP networking
packages. To use these commands you must
have a special version of the CTIX kernel that
supports TCP/IP.

COMMAND SYNTAX
Unless otherwise noted, commands described in this
section accept options and other arguments according to
the following syntax:

—

name (option(s)] [cmdarg(s)]

where:
name The name of an executable file.
option — noargletter(s) or,

~ argletter < >optarg
where <> is optional white space.

noargletter A single letter representing an option
without an argument.

argletter A single letter representing an option
requiring an argument.

optarg Argument (character string) satisfying
preceding argletter.

emdarg Path name (or other command argument)
not beginning with — or, — by itself

indicating the standard input.
SEE ALSO
getopt(1), exit(2), wait(2), getopt(3C).
Section 6 of this volume for computer games.
How to Get Started, at the front of this volume.

DIAGNOSTICS
Upon termination, each command returns two bytes of

-1-

BUGS

WAR

LAFs VAN

T
i

INTRO(1)

status, one supplied by the system and giving the cause
for termination, and (in the case of ‘“normal”
termination) one supplied by the program ‘see wait(2)
and ezit(2)). The former byte is 0 for normal
termination; the latter is customarily 0 for successful
execution and non-zero to indicate troubles such as
erroneous parameters, bad or inaccessible data, or other
inability to cope with the task at hand. It is called
variously “‘exit code”, ‘“‘exit status’, or ‘“‘return code”’,
and is described only where special conventions are
involved.

Regretfully, many commands do not adhere to the
aforementioned syntax.

NGQQ

ANRTD

Some commands produce unexpected results when
processing files containing null characters. These
commands often treat text input lines as strings and
therefore become confused upon encountering a null
character (the string terminator) within a line.

300(1)

NAME
300, 300s - handle special functions of DASI 300 and
300s terminals

SYNOPSIS
300 [+12 | [-n | [=dt,lc |
300s [+12 | [—n | { —dt}lc]
DESCRIPTION

The 800 command supports special functions and
optimizes the use of the DASI 300 (GSI 300 or DTC 300)
terminal, 800s performs the same functions for the DASI
300s (GSI 300s or DTC 300s) terminal. It converts half-
line forward, half-line reverse, and full-line reverse
motions to the correct vertical motions. It also attempts
to draw Greek letters and other special symbols. It
permits convenient use of 12-pitch text. It also reduces
printing time 5 to 70%. The 8300 command can be used
to print equations neatly, in the sequence:

neqn file ... | nroff | 300

WARNING: if your terminal has a PLOT switch, make
sure it is turned on before 300 is used.

The behavior of 800 can be modified by the optional flag
arguments to handle 12-pitch text, fractional line
spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text.
DASI 300 terminals normally allow only two
combinations: 10-pitch, 6 lines/inch, or 12-
pitch, 8 lines/inch. To obtain the 12-pitch, 6
lines per inch combination, the user should
turn the PITCH switch to 12, and use the +12
option.

-n controls the size of half-line spacing. A half-
line is, by default, equal to 4 vertical plot
increments. Because each increment equals
1/48 of an inch, a 10-pitch line-feed requires 8
increments, while a 12-pitch line-feed needs
only 6. The first digit of n overrides the
default value, thus allowing for individual
taste in the appearance of subscripts and
superscripts. For example, nroff half-lines
could be made to act as quarter-lines by using
—2. The user could also obtain appropriate
half-lines for 12-pitch, 8 lines/inch mode by
using the option —3 alone, having set the
PITCH switch to 12-pitch.

300(1)

—~dt,l,c controls delay factors. The default setting is
-d3,90,30. DASI 300 terminals sometimes
produce peculiar output when faced with very
long lines, too many tab characters, or long
strings of blankless, non-identical characters.
One null (delay) character is inserted in a line
for every set
contiguous string of ¢ non-blank, non-tab
characters. If a line is longer than [bytes,
1+(total length)/20 nulls are inserted at the
end of that line. Items can be omitted from
the end of the list, implying use of the default
values. Also, a value of zero for t (¢) results
in two null bytes per tab (character). The
former may be needed for C programs, the
latter for files like /etc/passwd. Because
terminal behavior varies according to the
specific characters printed and the load on a
system, the user may have to experiment with
these values to get correct output. The —d
option exists only as a last resort for those few
cases that do not otherwise print properly.
For example, the file /etc/passwd may be
printed using —-d8,30,6. The value —d0,1 is a
good one to use for C programs that have
many levels of indentation.

£ ¢
of t tabs, and for every

Note that the delay control interacts heavily
with the prevailing carriage return and line-
feed delays. The stty(1) modes nl0 ¢r2 or nl0
er83 are recommended for most uses.

The 800 command can be used with the nroff —s flag or
.rd requests, when it is necessary to insert paper
manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must
use the line-feed key to get any response.

In many (but not all) cases, the following sequences are
equivalent:

nroff —T300 files ... and nroff files...| 300
nroff —T300-12 files ... and nroff files...]|
300 +12

The use of 800 can thus often be avoided unless special
delays or options are required; in a few cases, however,
the additional movement optimization of 300 may
produce better-aligned output.

300(1)

The negn names of, and resulting output for, the Greek
and special characters supported by 800 are shown in
greek(5).

SEE ALSO

BUGS

450(1), eqn(1), graphglG), mesg(1), nroff(1), stty(1),
tabs(1), tbl(1), tplot(1G), greek(5).

Some special characters cannot be correctly printed in
column 1 because the print head cannot be moved to the
left from there.

If your output contains Greek and/or reverse line-feeds,
use a friction-feed platen instead of a forms tractor;
although good enough for drafts, the latter has a
tendency to slip when reversing direction, distorting
Greek characters and misaligning the first line of text
after one or more reverse line-feeds.

NAME

4014(1)

4014 - paginator for the TEKTRONIX 4014 terminal

SYNOPSIS

4014 { —t | [-n] [—eN] [=pL] [file |

DESCRIPTION

The output of 4014 is intended for a TEKTRONIX 4014
terminal; 4014 arranges for 66 lines to fit on the screen,
divides the screen into N columns, and contributes an
eight-space page offset in the (default) single-column
case. Tabs, spaces, and backspaces are collected and
plotted when necessary. TELETYPE Model 37 half- and
reverse-line sequences are interpreted and plotted. At
the end of each page, 4014 waits for a new-line (empty
line) from the keyboard before continuing on to the next
page. In this wailt state, the command emd will send
the emd to the shell.

The command line options are:

-t Do not wait between pages (useful for directing
output into a file).

-n Start printing at the current cursor position and
never erase the screen.

—cN Divide the screen into N columns and wait after
the last column.

—-pL Set page length to L; L accepts the scale factors
i (inches) and I (lines); default is lines.

SEE ALSO

pr(1), te(1), troff(1).

NAME

450(1)

450 — handle special functions of the DASI 450 terminal

SYNOPSIS

450

DESCRIPTION

The 450 command supports special functions of, and
optimizes the use of, the DASI 450 terminal, or any
terminal that is functionally identical, such as the
DIABLO 1620 or XEROX 1700. It converts half-line
forward, half-line reverse, and full-line reverse motions to
the correct vertical motions. It also attempts to draw
Greek letters and other special symbols in the same
manner as 300(1). Use 450 to print equations neatly, in
the sequence:

neqn file ... | nroff | 450

WARNING: make sure that the PLOT switch on your
terminal is ON before 450 is used. The SPACING switch
should be put in the desired position (either 10- or 12-
pitch). In either case, vertical spacing is 6 lines/inch,
unless dynamically changed to 8 lines per inch by an
appropriate escape sequence.

Use 450 with the nroff —s flag or .rd requests when it is
necessary to insert paper manually or change fonts in the
middle of a document. Instead of hitting the return key
in these cases, you must use the line-feed key to get any
response.

In many (but not all) cases, the use of 450 can be
eliminated in favor of one of the following:

nroff —T450 files ...
or
nroff —T450-12 files ...

The use of 450 can thus often be avoided unless special
delays or options are required; in a few cases, however,
the additional movement optimization of 450 may
produce better-aligned output.

The negn names of, and resulting output for, the Greek
and special characters supported by 450 are shown in
greek(5).

SEE ALSO

BUGS

300(1), eqn(l), graph(1G), mesg(l), nroff(1), stty(1),
tabs(1), tbl(1), tplot(1G), greek(5)

Some special characters cannot be correctly printed in
column 1 because the print head cannot be moved to the

-1-

450(1)

left from there.

If your output contains Greek and/or reverse line-feeds,
use a friction-feed platen instead of a forms tractor;
although good enough for drafts, the latter has a
tendency to slip when reversing direction, distorting
Greek characters and misaligning the first line of text

R ina_fands

Y U e e wr o wees A
after one or more reverse line-feeds.

———r

NAME

ACCEPT (1M)

accept, reject — allow/prevent LP requests

SYNOPSIS

/usr/lib/accept destinations
/usr/lib/reject [—r|reason || destinations

DESCRIPTION

BV 5o L0349

FILES

Accept allows Ip(1) to accept requests for the named
destinations. A destination can be either a printer or a
class of printers. Use [lpstat(l) to find the status of
destinations.

Reject prevents Ip(1) from accepting requests for the
named destinations. A destination can be either a
printer or a class of printers. Use Ipstat(1) to find the
status of destinations. The following option is useful
with reject.

—r| reason| Associates a reason with preventing Ip
from accepting requests. This reason
applies to all printers mentioned up to the
next —r option. Reason is reported by Ip
when users direct requests to the named
destinations and by lpstat(1). If the —r
option is not present or the —r option is
given without a reason, then a default
reason will be used.

/usr/spool/lp/*

SEE ALSO

enable(1), Ip(1), Ipadmin(1M), Ipsched(1M), Ipstat(1).
MightyFrame Administrator’s Reference Manual.
MiniFrame Administralor’s Manual.

NAME

ACCT(1M)

SYNOPSIS

acctdisk, acctdusg, accton, acctwtmp - overview of
accounting and miscellaneous accounting commands
/usr/lib/acct/acctdisk

Jusr/lib/acct/acctdusg | ~u file] [—p file]

/usr/lib/acct/accton | file |
/usr/lib/acct/acctwtmp "reason”

DESCRIPTION

Accounting software is structured as a set of tools
(consisting of both C programs and shell procedures) that
can be used to build accounting systems. Acctsh(1M)
describes the set of shell procedures built on top of the C
programs.

Connect time accounting is handled by various programs
that write records into /etc/utmp/, as described in
utmp(4). The programs described in acctcon(1M)
convert this file into session and charging records, which
are then summarized by acctmerg(1M).

Process accounting is performed by the CTIX System
kernel. Upon termination of a process, one record per
process is written to a file (normally /usr/adm/pacct).
The programs in acctprc(1M) summarize this data for
charging purposes; acctems(1M) is used to summarize
command usage. Current process data may be examined
using acctcom(1).

Process accounting and connect time accounting (or any
accounting records in the format described in acct(4))
can be merged and summarized into total accounting
records by acctmerg (see tacct format in acct(4)).
Prtacct (see acctsh(1IM)) is used to format any or all
accounting records.

Acctdisk reads lines that contain user ID, login name,
and number of disk blocks and converts them to total
accounting records that can be merged with other
accounting records.

Acctdusg reads its standard input (usually from find /
—print) and computes disk resource consumption
(including indirect blocks) by login. If —u is given,
records consisting of those file names for which acctdusg
charges no one are placed in file &(a potential source for
finding users trying to avoid disk charges). If —p is
given, file is the name of the password file. This option
1s not needed if the password file is /etc/passwd. (See
diskusg(1M) for more details.)

-1-

FILES

ACCT (1M)

Accton alone turns process accounting off. If file is
given, it must be the name of an existing file, to which
the kernel appends process accounting records (see
acct(2) and acci(4)).

Acctwtmp writes a utmp(4) record to its standard
output. The record contains the current time and a
string of characters that describe the reason. A record
type of ACCOUNTING is assigned (see utmp(4)). Reason
must be a string of 11 or less characters, numbers, $, or
spaces. For example, the following are suggestions for
use in reboot and shutdown procedures, respectively:

acctwtmp uname >> /ete/wtmp
acctwtmp “file save” >> /etc/wtmp

/ete /passwd used for login name to user ID
conversions
/usr/lib/acct holds all accounting commands listed

in sub-class 1M of this manual
/usr/adm/pacct current process accounting file
/ete/wtmp login/logoff history file

SEE ALSO

acctems(1M), acctcom&z acctcon(1M), acctmerg(1M),
acctpre(1M), acctsh(1M), dxskusg(lM) fwtmp(1M)}),
runacct{1M) a,cct(2), a.cct(), utmp(4).

CTIX Programmcr s Guide.

MightyFrame Administrator’s Reference Manual.
MiniFrame Administrator’s Manual.

ACCTCMS (1M)

NAME
acctems - command summary from per-process
accounting records

SYNOPSIS

/usr/lib/acct/acctems [options] files

DESCRIPTION
Acctems reads one or more files, normally in the form
described in acct(4). It adds all records for processes
that executed identically-named commands, sorts them,
and writes them to the standard output, normally using
an internal summary format. The options are:

-a Print output in ASCII rather than in the internal
summary format. The output includes command
name, number of times executed, total kcore-
minutes, total CPU minutes, total real minutes,
mean size (in K), mean CPU minutes per
invocation, and ‘“hog factor’”, characters
transferred, and blocks read and written, as in
acctcom(1). Output is normally sorted by total
kcore-minutes.

—-c Sort by total CPU time, rather than total kcore-

minutes.

-j Combine all commands invoked only once under
“xxkother”.

-n Sort by number of command invocations.

-8 Any file names encountered hereafter are already
in internal summary format.

-t Process all records as total accounting records.

The default internal summary format splits each
field into prime and non-prime time parts. This
option combines the prime and non-prime time
parts into a single field that is the total of both,
and provides upward compatibility with old style
acctems internal summary format records.

The following options may be used only with the —a
option.

-p Output a prime-time-only command summary.

-o Output a non-prime (offshift) time only
command summary.

When —p and —o are used together, a combination
prime and non-prime time report is produced. All the
output summaries will be total usage except number of
times executed, CPU minutes, and real minutes which
will be split into prime and non-prime.

ACCTCMS (1M)

A typical sequence for performing daily command
accounting and for maintaining a running total is:

acctems file ... >today

cp total previoustotal

acctems —-s today previoustotal >total
acctcms —a —s today

SEE ALSO

BUGS

H

acct(IM), acctcom(l), acctcon(IM), acctmerg(1M),
acctpre(IM), acctsh(lM), fwtmp(IM), runacct(IM
acct(2), acct(4), utmp(4).

MightyFrame Administrator’s Reference Manual.
MiniFrame Administrator’s Manual.

Unpredictable output results if —t is used on new style
internal summary format files, or if it is not used with
old style internal summary format files.

ACCTCOM(1)

NAME

acctcom ~ search and print process accounting file(s)
SYNOPSIS

acctcom [[options | [file]] . . .
DESCRIPTION

Acctecom reads ile, the standard input, or

/usr/adm/pacct, in the form described by acct(4) and
writes selected records to the standard output. Each
record represents the execution of one process. The
output shows the COMMAND NAME, USER,
TTYNAME, START TIME, END TIME, REAL
SEC), CPU (SEC), MEAN SIZE(K), and optionally, F
the fork/ezec flag: 1 for fork without ezec), STAT (the
system exit status), HOG FACTOR, KCORE MIN,
CPU FACTOR, CHARS TRNSFD, and BLOCKS
READ (total blocks read and written).

The command name is prepended with a # if it was
executed with super-user privileges. If a process is not
associated with a known terminal, a ? is printed in the
TTYNAME field.

If no files are specified, and if the standard input is
associated with a terminal or /dev/null (as is the case
when using & in the shell), /usr/adm/pacct is read;
otherwise the standard input is read.

If any file arguments are given, they are read in their
respective order. Each file 1s normally read forward, i.e.,
in chronological order by process completion time. The
file /usr/adm/pacct is usually the current file to be
examined; a busy system may need several such files of
which all but the current file are found in
/usr/adm/pacctf. The options are:

-a Show some average statistics about the
processes selected. The statistics will be
printed after the output records.

-b Read backwards, showing latest
commands first. This option has no effect
when the standard input is read.

-f Print the fork/ezec flag and system exit
status columns in the output.
~h Instead of mean memory size, show the

fraction of total available CPU time
consumed by the process during its
execution. This “hog factor” is computed
as:

(total CPU time)/(elapsed time).

-t

—-v
-1 line

-u user

—g group

-d mm/dd

—8 time
—e time
—S time

—E time

—n pattern

-q
—o ofile

~H factor

ACCTCOM (1)

Print columns containing the 1/O counts
in the output.

Instead of memory size, show total kecore-
minutes.

Show mean core size (the default).

Show CPU factor (user time/(system-time
+ user-tiimnej.

Show separate system and user CPU
times.

Exclude column headings from the output.
Show only processes belonging to terminal
/dev/line.

Show only processes belonging to user
that may be specified by: a user ID, a
login name that is then converted to a
user ID, a # which designates only those
processes executed with super-user
privileges, or ! which designates only
those processes associated with unknown
user IDs.

Show only processes belonging to group.
The group may be designated by either
the group ID or group name.

Any time arguments following this flag
are assumed to occur on the given month
mm and the day dd rather than during
last 24 hours. This is needed for looking
at old files.

Select processes existing at or after time,
given in the format hr [:min | :sec u
Select processes existing at or before
time .

Select processes starting at or after time .
Select processes ending at or before time .
Using the same ttme for both —8 and —-E
shows the processes that existed at time.
Show only commands matching pattern
that may be a regular expression as in
ed(1) except that + means one or more
occurrences.

Do not print any output records, just
print the average statistics as with the —a
option,

Copy selected process records in the input
data format to ofile; supress standard
output printing.

Show only processes that exceed factor,
where factor is the ‘“hog factor” as
explained in option —h above.

-9

FILES

ACCTCOM(1)

-0 sec Show only processes with CPU system
time exceeding sec seconds.

—C sec Show only processes with total CPU time,
system plus user, exceeding sec seconds.

—I chars Show only processes transferring more

characters than chars.
Listing options together has the effect of a logical and.

/etc/passwd
/usr/adm/pacct

/etc/group

SEE ALSO

BUGS

ps(1),

acgtle)i acctems(1M), acctcon(IM), acctmerg(1M),
acctpre(IM), acctsh(1M), fwtmp(1M), runacct(1M), su(1),
acct(2), acct(4), utmp(4).

MightyFrame Adminstrator’s Reference Manual.

MiniFrame Adminsstrator’s Manual.

Acctcom only reports on processes that have terminated;
use ps(l) for active processes. If time exceeds the
present time and option —d is not used, then time is
interpreted as occurring on the previous day.

-

NAME

ACCTCON(1M)

acctconl, acctcon2 — connect-time accounting

SYNOPSIS

/usr/lib/acct/accteconl [options]
/usr/lib/acct/acctcon2

DESCRIPTION

Accteonl converts a sequence of login/logoff records
read from its standard input to a sequence of records,
one per login session. Its input should normally be
redirected from /ete/wtmp. Its output is ASCII, giving
device, user ID, login name, prime connect time
(seconds), non-prime connect time (seconds), session
starting time (numeric), and starting date and time. The
options are:

-p Print input only, showing line name, login
name, and time (in both numeric and date/time
formats).

-t Accteonl maintains a list of lines on which users

are logged in. When it reaches the end of its
input, it emits a session record for each line that
still appears to be active. It normally assumes
that its input is a current file, so that it uses the
current time as the ending time for each session
still in progress. The —t flag causes it to use,
instead, the last time found in its input, thus
assuring reasonable and repeatable numbers for
non-current files.

—~l file File is created to contain a summary of line
usage showing line name, number of minutes
used, percentage of total elapsed time used,
number of sessions charged, number of logins,
and number of logoffs. This file helps track line
usage, identify bad lines, and find software and
hardware oddities. Hang-up, termination of
{ogin(1) and termination of the login shell each
generate logoff records, so that the number of
logoffs is often three to four times the number
of sessions. See init(1M) and utmp(4).

—o file File is filled with an overall record for the
accounting period, giving starting time, ending
time, number of reboots, and number of date
changes.

Acctecon? expects as input a sequence of login session
records and converts them into total accounting records
(see tacct format in acct(4)).

ACCTCON (1M)

EXAMPLES

These commands are typically used as shown below.
The file ctmp is created only for the use of acctprc(1M)
commands:

accteconl —t —1 lineuse —o reboots <wtmp | sort +1n +2
>ctmp
accteconZ <ctmp | acctmerg >ctacct

FILES
/ete/wtmp

SEE ALSO
acct(IM), acctems(1M), acctcom(l), acctmerg(IM),
acctpre(1M), acctsh(IM), fwtmp(1M), nit(1M), login(1),
runacct{1M)}, acct(2), acct(4), utmp(4).
MightyFrame Administrator’s Reference Manual.
MiniFrame Administrator’s Manual.

BUGS

The line usage report is confused by date changes. Use
wtmpfiz (see fwtmp(1M)) to correct this situation.

ACCTMERG (1M)

NAME

acctmerg — merge or add total accounting files
SYNOPSIS

/usr/lib/acct/acctmerg [options] [file] . . .
DESCRIPTION

Accetmerg reads its standard input and up to nine

additional files, all in the tacet format (see acct(4)) or
an ASCIl version thereof. It merges these inputs by
adding records whose keys (normally user ID and name)
are identical, and expects the inputs to be sorted on
those keys. Options are:

—a Produce output in ASCII version of tacet.

—i Input files are in ASCII version of tacct.

—p Print input with no processing.

—t Produce a single record that totals all input.

—u Summarize by user ID, rather than user ID and
name.

—v Produce output in verbose ASCII format, with more
precise notation for floating point numbers.

The following sequence is useful for making “repairs’ to
any file kept in this format:

EXAMPLES
acctmerg —v <filel >file2
edit file? as desired . . .
acctmerg —a <file2 >filel
SEE ALSO

acct(IM), acctems(1IM), acctcom(l), acctcon(1M),
acctpre(IM), acctsh 1M3, fwtmp(1M), runacct{1M
acct(2), acct(4), utmp(4).

MightyFrame Administrator’s Reference Manual.
MiniFrame Administrator’s Manual.

’

NAME

ACCTPRC(1M)

acctprcl, acctprc2 — process accounting

SYNOPSIS

DESC

/usr/lib/acet/acctprel [ctmp)]
/usr/lib/acct/acctpre2

RIPTION

Acctprel reads input in the form described by acct(4),
adds login names corresponding to user IDs, then writes
for each process an ASCII line giving user ID, login name,
prime CPU time (tics), non-prime CPU time (tics), and
mean memory size (in memory segment units). If ctmp
is given, it is expected to contain a list of login sessions,
in the form described in acctcon(1M), sorted by user ID
and login name. If this file is not supplied, it obtains
login names from the password file. The information in
ctmp helps it distinguish among different login names
that share the same user ID.

Acctpre? reads records in the form written by acetprel,
summarizes them by user ID and name, then writes the
sorted summaries to the standard output as total
accounting records.

These commands are typically used as shown below:

acctprel ctmp < /usr/adm/pacct | acctpre2
>ptacct

FILES
/etc/passwd

SEE ALSO
acct(IM), acctems(1M), acctcom(l), acctcon(1IM),
acctmerg(MM) acctsh(1M), cron(lM) fwtmp(1M),
runacc acct(2), a.cct(4 , utmp(4).
MightyFrame Administrator’s Reference Manual.
MimFrame Administrator’s Manual.

BUGS
Although it is possible to distinguish among login names
that share user IDs for commands run normally, it is
difficult to do this for those commands run from
cron(1M), for example. More precise conversion can be
done by faking login sessions on the console via the
acctwtmp program in acct(1M).

NOTE

A memory segment of the mean memory size is a unit of
measure for the number of bytes in a logical memory
segment on a particular processor. For example, on
Convergent Technologies systems this measure would be
in 4-kilobyte units.

NAME

ACCTSH(1M)

chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm,
pretmp, prdaily, prtacct, runacct, shutacct, startup,
turnacct — shell procedures for accounting

SYNOPSIS

/usr/lib/acct/chargefee login-name number
/usr/lib/acet/ckpacet [blocks|
/usr/lib/acct/dodisk [-o] [files ...]
/usr/lib/acct/lastlogin
/usr/lib/acct/monacct number
/usr/lib/acct/nulladm file
/usr/lib/acct/prctmp
/usr/lib/acct/prdaily [-1] [-¢] [mmdd]
/usr/lib/acet/prtacct file | "heading”]
/usr/lib/acct/runacct {[mmdd| [mmdd state]
/usr/lib/acct/shutacct | "reason” |
/usr/lib/acet/startup
/usr/lib/acct/turnacct on | off | switch

DESCRIPTION

Chargefee can be invoked to charge a number of units to
login-name. A record is written to /usr/adm/fee, to
be merged with other accounting records during the
night.

Ckpacct should be initiated via cron(lMi). It periodically
checks the size of /usr/adm/pacct. If the size exceeds
blocks, 1000 by default, turnacct will be invoked with
argument switch. If the number of free 512-byte disk
blocks in the /usr file system falls below 500, ckpacct
will automatically turn off the collection of process
accounting records via the off argument to turnacct.
When at least this number of blocks is restored, the
accounting will be activated again. This feature is
sensitive to the frequency at which ckpacet is executed,
usually by cron.

Dodisk should be invoked by c¢ron to perform the disk
accounting functions. By default, it will do disk
accounting on the special files in /etc/checklist. If the
—o flag is used, it will do a slower version of disk
accounting by login directory. Files specify the one or
more filesystem names where disk accounting will be
done. If files are used, disk accounting will be done on
these filesystems only. If the —o flag is used, files should

-1-

ACCTSH(1M)

be mount points of mounted filesystem. If omitted, they
should be the special file names of mountable
filesystems.

Lastlogin is invoked by runacet to update
/usr/adm/acct/sum/loginlog, which shows the last
date on which each person logged in.

Monacet should be invoked once each month or each
accounting period. Number indicates which month or
period it is. If number is not given, it defaults to the
current month (01-12). This default 1s useful if monacct
is to executed via cron(IM) on the first day of each
month. Monacct creates suminary files in
/usr/adm/acct/fiscal and restarts summary files in
/usr/adm/acct/sum.

Nulladm creates file with mode 664 and insures that
owner and group are adm. It is called by various
accounting shell procedures.

Pretmp can be used to print the session record file
(normally /usr/adm/acct/nite/ctmp created by
accteonl (see acctcon(1M)).

Prdaily is invoked by runacct to format a report of the
previous day’s accounting data. The report resides in
/usr/adm/acct/sum/rprtmmdd where mmdd is the
month and day of the report. The current daily
accounting reports may be printed by typing prdaily.
Previous days’ accounting reports can be printed by
using the mmdd option and specifying the exact report
date desired. The -1 flag prints a report of exceptional
usage by login id for the specified date. Previous daily
reports are cleaned up and therefore inaccessible after
each invocation of monacct. The —c flag prints a report
of exceptional resource usage by command and may be
used on current day’s accounting data only.

Prtacet can be used to format and print any total
accounting (tacct) file.

Runacet performs the accumulation of connect, process,
fee, and disk accounting on a daily basis. It also creates
summaries of command usage. For more information,
see runacci(1M).

Shutacct should be invoked during a system shutdown
(usually in /etc/shutdown) to turn process accounting
off and append a “reason’ record to /etc/wtmp.

Startup should be called by /etc/re to turn the
accounting on whenever the system is brought up.

FILES

ACCTSH(1M)

Turnacct is an interface to accton (see acct(1M)) to turn
process accounting on or off. The switch argument
turns accounting off, moves the current
/usr/adm/pacct to the next free name in
/usr/adm/pacctincr (where tncr is a number starting
with 1 and incrementing by one for each additional
pacct file), then turns accounting back on again. This
procedure is called by ckpacet and thus can be taken
care of by the c¢ron and used to keep pacct to a
reasonable size.

/usr/adm/fee accumulator for fees
/usr/adm/pacct current file for per-process accounting

/usr/adm/pacct*
used if pacct gets large and during
execution of daily accounting procedure
/ete/wtmp login /logoff summary

/usr/lib/acct/ptelus.awk
contains the limits for exceptional usage
by login id

/usr/lib/acct/ptecms.awk
contains the limits for exceptional usage
by command name

/usr/adm/acct/nite
working directory

/usr/lib/acct holds all accounting commands listed in
sub-class 1M of this manual

/usr/adm/acct/sum
summary directory, should be saved

SEE ALSO

acct(IM), acctems(1M), acctcom(l), acctcon(1IM),
acctmerg(1M), acctpre(1M), cron(lM), diskusg(1M
fwtmp(1M), runacct(1M), acct(2), acct(4), utmp(4).
MightyFrame Admeinistrator’s Reference Manual.
MiniFrame Administrator’s Manual.

b

NAME

ADB(1)

adb - absolute debugger

SYNOPSIS

adb [—w] [objfil [corfil | |

DESCRIPTION

Adb is a general purpose debugging program. It

v he
used to examine files and to provide a contr ll d
environment for the execution of CTIX programs.

Objfil is normally an executable program file, preferably
containing a symbol table; if not then the symbolic
features of adb cannot be used although the file can still
be examined. The default for objfil is a.out. Corfil is
assumed to be a core image file produced after executing
objfil; the default for corfil is core.

Requests to adb are read from the standard input and
responses are to the standard output. If the —w flag is
present then both objfil and corfil are created if
necessary and opened for reading and writing so that
files can be modified using edb. Adb ignores QUIT;
INTERRUPT causes return to the next adb command.

In general requests to adb are of the form
[address| [, count| [command] | ;]

If address is present then dot is set to address. Initially
dot is set to 0. For most commands count specifies how
many times the command will be executed. The default
count is 1. Address and count are expressions.

The interpretation of an address depends on the context
it is used in. If a subprocess is being debugged then
addresses are interpreted in the usual way in the address
space of the subprocess. For further details of address
mapping see ADDRESSES.

EXPRESSIONS
. The value of dot.
+ The value of dot incremented by the current
increment.
" The value of dot decremented by the current
increment.
" The last address typed.

integer Hexadecimal by default or if preceded by Ox;
octal if preceded by 0o or 00; decimal if
preceded by Ot or OT.

integer.fraction
A 32-bit floating point number.

-1-

'ecee!

ADB(1)

The ASCII value of up to 4 characters. A \ may
be used to escape a ’.

< name

symbol

(exp)

The value of name, which is either a variable
name or a 68010/68020 register name. Adb
maintains a number of variables (see
VARIABLES) named by single letters or digits. If
name is a register name, then the value of the
register is obtained from the system header in
corfil. The registers are dO through d7, a0
through a7, sp, pe, cc, sr, and usp.

A symbol is a sequence of upper or lower case
letters, underscores or digits, not starting with a
digit. The value of the symbol is taken from
the symbol table in obsfdl.

From C, only external variables are available as
symbols. The symbol name is the same as the C
variable name, except that an underscore (_) is
prepended to any name that is the same as the
name for a register.

The value of the expression ezp.

Monadic operators:

*ezp The contents of the location addressed
by ezp in corfil.

@eczp The contents of the location addressed
by exp in objfil.

—exp Integer negation.
~ezp Bitwise complement.

Dyadic operators are left associative and are less binding
than monadic operators.

COMMANDS

el+e2 Integer addition.
el—e2 Integer subtraction.
el*¢2 Integer multiplication.
¢1%e?2 Integer division.
el&e? Bitwise conjunction.
el] e2 Bitwise disjunction.

el#e2 EI rounded up to the next multiple of
e2.

Most commands consist of a verb followed by a modifier
or list of modifiers. The following verbs are available.
(The commands ? and / may be followed by *; see

-9.

ADB(1)

ADDRESSES for further details.)

2

Locations starting at address in objfil are
printed according to the format f. dot is
incremented by the sum of the increments for
each format letter (q.v.).

Locations starting at address in corfil are
printed according to the format f and dot is
incremented as for ?.

The value of address itself is printed in the
styles indicated by the format f. (For i format ?
is printed for the parts of the instruction that
reference subsequent words.)

A format consists of one or more characters that specify
a style of printing. Each format character may be
preceded by a decimal integer that is a repeat count for
the format character. While stepping through a format,
dot is incremented by the amount given for each format
letter. If no format is given then the last format is used.
The format letters available are as follows:

o 2 Print 2 bytes in octal. All octal

numbers output by adb are preceded by

0.

Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32-bit value as a floating point

number.

Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the

following escape convention. Character

values 000 to 040 are printed as @

followed by the corresponding character

in the range 0100 to 0140. The

character @ is printed as @@.

s n Print the addressed characters until a
zero character is reached.

S n Print a string using the @ escape
convention. The value n is the length
of the string including its zero

Qoo™ "™ce NN UQ-@-Q O
e i OO W DD W DD e DD DD

-3-

ADB(1)

terminator.
Y4 Print 4 bytes in date format (see
ctime(3C)).
Print as machine instructions. The
value n is the number of bytes occupied
by the instruction. This style of
printing causes variables 1 and 2 to be
set to the offset parts of the source and
destination, respectively.
a0 Print the value of dot in symbolic form.
Symbols are checked to ensure that they
have an appropriate type as indicated
below.

—e
=

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

p 2 Print the addressed value in symbolic
form using the same rules for symbol
lookup as a.

t 0 When preceded by an integer, tabs to
the next appropriate tab stop. For
example, 8t moves to the next 8-space
tab stop.

0 Print a space.

Print a new-line.

.." 0 Print the enclosed string.

Dot is decremented by the current
increment. Nothing is printed.

IEE N-I, |
o

+ Dot is incremented by 1. Nothing is
printed.

- Dot is decremented by 1. Nothing is
printed.

new-line
Repeat the previous command with a count of 1.

[?/]1 value mask
Words starting at dot are masked with mask
and compared with value until a match is found.
If L is used then the match is for 4 bytes at a
time instead of 2. If no match is found then dot
is unchanged; otherwise dot is set to the
matched location. If mask is omitted then -1 is
used.

[?/]w value ...
Write the 2-byte walue into the addressed
location. If the command is W, write 4 bytes.
Odd addresses are not allowed when writing to
the subprocess address space.

- 4-

ADB(1)

[?/]m 61 el f1

>name

New va.{ ues for (b1, el, f1) are recorded. If less
than three expresswns are given then the
remaining map parameters are left unchanged.
If the ? or / is followed by * then the second
segment (b2, 2, f2) of the mapping is changed.
If the list is terminated by ? or / then the file
(objftl or corfil, respectlvely) is used for
subsequent requests. (So that, for example, /m?
will cause / to refer to objfil.)

Dot is assigned to the wvariable or register
named.

A shell is called to read the rest of the line
following !.

$modifier

Miscellaneous commands. The available
modifiers are:

<f Read commands from the file f and
return.

>f Send output to the file f, which is
created if it does not exist.

r Print the general registers and the
instruction addressed by pe. Dot is set
to pe.

b Print all breakpoints and their
associated counts and commands.

c C stack backtrace. If address is given

then it is taken as the address of the
current frame (instead of fp). If count
is given then only the first count frames
are printed.

e The names and values of external
variables are printed.

w Set the page width for output to address
default 80).

s et the limit for symbol matches to

address (default 255).

All integers input are regarded as octal.
Reset integer input as described in
EXPRESSIONS.

Exit from adb.

Print all non-zero variables.

Print the 68881 floating-point registers.

a0

X Y-

m

tmodifier
Manage a subprocess. Available modifiers are:

VARIABLES

be

L |

c8

88

ADB(1)
Print the address map.

Set breakpoint at address. The
breakpoint is executed count—1 times
before causing a stop. Each time the
UlCdl&pUulb is encountered the command
¢ is executed. If this command sets dot
to zero then the breakpoint causes a
stop.

Delete breakpoint at address.

Run objfil as a subprocess. If address is
given explicitly then the program is
entered at this point; otherwise the
program is entered at its standard entry
point. The value count specifies how
many breakpoints are to be ignored
before stopping. Arguments to the
subprocess may be supplied on the same
line as the command. An argument
starting with < or > causes the
standard input or output to Dbe
established for the command. All
signals are turned on on entry to the
subprocess.

The subprocess is continued with signal
s (see signal(2)). U address is given
then the subprocess is continued at this
address. If no signal is specified then
the signal that caused the subprocess to
stop is sent. Breakpoint skipping is the
same as for r.

As for ¢ except that the subprocess is
single stepped count times. If there is
no current subprocess then objfil is run
as a subprocess as for r. In this case no
signal can be sent; the remainder of the
line is treated as arguments to the
subprocess.

The current subprocess, if any, is
terminated.

Adb provides a number of variables. Named variables
are set initially by edb but are not used subsequently.
Numbered variables are reserved for communication as

follows.

0

The last value printed.

ADB(1)

1 The last offset part of an instruction
source.
2 The previous value of variable 1.

On entry the following are set from the system header in
the corfil. If corfil does not appear to be a core file,
then these values are set from objfil.

b The base address of the data segment.

d The data segment size.

e The entry point.

m The “magic” number (0407, 0410, or
0413).

The stack segment size.

The text segment size.

[}

ADDRESSES

FILES

The address in a file associated with a written address is
determined by a mapping associated with that file. Each
mapping is represented by two triples (b1, el, f1) and
(b2, e2, f2) and the file address corresponding to a
written address is calculated as follows:

b1 <address <el => file address=—=address+f1-b1
otherwise

b2 <address <ef => file address—address+f2-52,

otherwise, the requested address is not legal. In some
cases (e.g., for programs with separated I and D space)
the two segments for a file may overlap. If a ? or / is
followed by an * then only the second triple is used.

The initial setting of both mappings is suitable for
normal a.out and core files. If either file is not of the
kind expected then, for that file, b1 is set to 0, el is set
to the maximum file size and fI is set to O; in this way
the whole file can be examined with no address
translation.

In order for adb to be used on large files all appropriate
values are kept as signed 32-bit integers.

/dev/kmem
/dev/swap
a.out

core

SEE ALSO

ptrace(2), a.out(4), core(4).

DIAGNOSTICS

“Adb” when there is no current command or format.
Comments about inaccessible files, syntax errors,

BUGS

ADB(1)

abnormal termination of commands, etc. Exit status is
0, unless last command failed or returned nonzero status.

A breakpoint set at the entry point is not effective on
initial entry to the program.

When single stepping, system calls do not count as an
executed instruction.

Local variables whose names are the same as an external
variable may foul up the accessing of the external.

NAME

ADMIN(1)

admin — create and administer SCCS files

SYNOPSIS

—tiname
] [[—alogilll] [—elogin]

adminf{—n] [=i[name]] i[-—-rrel]
[—3] files

—fflag[flag-val]] [—dflag[flag-val
Lm[mg‘list]] [—]]y[[comment]] [~h

DESCRIPTION

Admin is used to create new SCCS files and change
parameters of existing ones. Arguments to admin, which
may appear in any order, consist of keyletter arguments,
which begin with —, and named files (note that SCCS file
names must begin with the characters 8.). If a named
file does not exist, it is created, and its parameters are
initialized according to the specified keyletter arguments.
Parameters not initialized by a keyletter argument are
assigned a default value. If a named file does exist,
parameters corresponding to specified keyletter
arguments are changed, and other parameters are left as
is.

If a directory is named, admin behaves as though each
file in the directory were specified as a named file,
except that non-SCCS files (last component of the path
name does not begin with 8.) and unreadable files are
silently ignored. If a name of — is given, the standard
input is read; each line of the standard input is taken to
be the name of an SCCS file to be processed. Again,
non-SCCS files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each 1is
explained as though only one named file is to be
processed since the effects of the arguments apply
independently to each named file.

-n This keyletter indicates that a
new SCCS file is to be created.
—i[name] The name of a file from which the

text for a new SCCS file is to be
taken. The text constitutes the
first delta of the file (see —r
keyletter for delta numbering
scheme). If the i keyletter is used,
but the file name is omitted, the
text is obtained by reading the
standard input until an end-of-file
is encountered. If this keyletter is
omitted, then the SCCS file is
created empty. Only one SCCS
file may be created by an admin

-1-

—rrel

—t[name]

~fflag

ADMIN(1)

ceerl

command on which the i keyletter
is supplied. Using a single admin
to create two or more SCCS files
requires that they be created
empty (no —i keyletter). Note
that the —i keyletter implies the
—n keyleiter.

The release into which the initial
delta is inserted. This keyletter
may be used only if the -—i
keyletter is also used. If the —r
keyletter is not used, the initial
delta is inserted into release 1.
The level of the initial delta is
always 1 (by default initial deltas
are named 1.1).

The name of a file from which
descriptive text for the SCCS file
is to be taken. If the —t keyletter
is used and admin is creating a
new SCCS file (the —n and/or —i
keyletters also used), the
descriptive text file name must
also be supplied. In the case of
existing SCCS files: (1) a -t
keyletter without a file name
causes removal of descriptive text
(if any) currently in the SCCS file,
and (2) a —t keyletter with a file
name causes text (if any) in the
named file to replace the
descriptive text (if any) currently
in the SCCS file.

This keyletter specifies a flag,
and, possibly, a value for the flag,
to be placed in the SCCS file.
Several f keyletters may be
supplied on a single admin
command line. The allowable
flags and their values are:

Allows use of the —b keyletter on
a get(l) command to create
branch deltas.

The highest release {i.e.,
“ceiling”), a number less than or
equal to 9999, which may be
retrieved by a get(1) command for

-92-

ADMIN(1)

ffloor

dsip

istr

[

st

editing. The default value for an
unspecified ¢ flag is 9999.

The lowest release (i.e., “floor”), a
number greater than 0 but less
than 9999, which may be
retrieved by a get(1) command for
editing. The default value for an
unspecified f flag is 1.

The default delta number (SID) to
be used by a get(1) command.

Causes the ”"No id keywords
(ge6)” message issued by get(1) or
delta(l) to be treated as a fatal
error. In the absence of this flag,
the message is only a warning.
The message is issued if no SCCS
identification ~ keywords (see
get(1)) are found in the text
retrieved or stored in the SCCS
file. If a value is supplied, the
keywords must exactly match the
given string, however the string
must contain a keyword, and no
embedded newlines.

Allows concurrent get(1)
commands for editing on the same
SID of an SCCS file. This allows
multiple concurrent updates to
the same version of the SCCS file.

A list of releases to which deltas
can no longer be made (get —e
against one of these ‘locked”
releases fails). The list has the
following syntax:

<list> = <range> | <list> ,
<range >

<range> 1= RELFEASE
NUMBER | a

The character a in the [list is
equivalent to specifying all
releases for the named SCCS file.

Causes delta(l) to create a “‘null”
delta in each of those releases (if
any) being skipped when a delta is
made in a new release {e.g., in
making delta 5.1 after delta 2.7,

-3-

~dflag

ADMIN(1)

qtext

mmod

tiype

vpgm

lhst

releases 3 and 4 are skipped).
These null deltas serve as “anchor
points’’ so that branch deltas may
later be created from them. The
absence of this flag causes skipped
releases to be non-existent in the
SCCSs file, preventing branch
deltas from being created from
them in the future.

User definable text substituted for
all occurrences of the %Q%
keyword in SCCS file text
retrieved by get(1).

Mod ule name of the SCCS file
substituted for all occurrences of
the %M% keyword in SCCS file
text retrieved by get(1). If the m
flag is not specified, the value
assigned is the name of the SCCS
file with the leading s. removed.

Type of module in the SCCS file
substituted for all occurrences of
%Y% keyword in SCCS file text
retrieved by get{1).

Causes delta(1) to prompt for
Modification Request (MR)
numbers as the reason for creating
a delta. The optional value
specifies the name of an MR
number validity checking program
(see delta(1)). (If this flag is set
when creating an SCCS file, the m
keyletter must also be used even
if its value is null).

Causes removal (deletion) of the
specified flag from an SCCS file.
The —d keyletter may be specified
only when processing existing
SCCS files. Several —d keyletters
may be supplied on a single
admin command. See the -—f
keyletter for allowable flag names.

A list of releases to Dbe
“unlocked”. See the —f keyletter
for a description of the 1 flag and
the syntax of a list.

—alogin

—elogin

—y[comment)

—m|mrlist]

ADMIN(1)

A login name, or numerical CTIX
system group ID, to be added to
the list of users which may make
deltas (changes) to the SCCS file.
A group ID 1is equivalent to
specifying all login names common
to that group ID. Several a
keyletters may be used on a single
admin command line. As many
logins, or numerical group IDs, as
desired may be on the list
simultaneously. If the list of users
is empty, then anyone may add
deltas. If logtn or group ID is
preceded by a ! they are to be
denied permission to make deltas.

A login name, or numerical group
ID, to be erased from the list of
users allowed to make deltas
gchanges) to the SCCS file.
pecifying a group ID is equivalent
to specifying all login names
common to that group ID. Several
e keyletters may be used on a
single admtn command line.

The comment text is inserted into
the SCCS file as a comment for
the initial delta in a manner
identical to that of delta(1).
Omission of the -y keyletter
results in a default comment line
being inserted in the form:

date and time created
YY/MM/DD HH:MM:SS by login

The —y keyletter is valid only if
the —i and/or —mn keyletters are
specified (i.e., a new SCCS file is
being created).

The list of Modification Requests
(MR} numbers is inserted into the
SCCS file as the reason for
creating the initial delta in a
manner identical to delta(1). The
v flag must be set and the MR
numbers are validated if the v
flag has a value (the name of an
MR number validation program).

-5-

FILES

ADMIN(1)

Diagnostics will occur if the v flag
is not set or MR validation fails.

-h Causes admin to check the
structure of the SCCS file (see
sccsfile(5)), and to compare a
newly computed check-sum {the
sum of all the characters in the
SCCS file except those in the first
line) with the check-sum that is
stored in the first line of the SCCS
file. Appropriate error diagnostics
are produced.

This keyletter inhibits writing on
the file, so that it nullifies the
effect of any other keyletters
supplied, and is, therefore, only

meaningful when processing
existing files.
. The SCCS file check-sum is

recomputed and stored in the first
line of the SCCS file (see —h,
above).

Note that use of this keyletter on
a truly corrupted file may prevent
future detection of the corruption.

The last component of all SCCS file names must be of
the form s.file-name. New SCCS files are given mode
444 (see chmod(1)). Write permission in the pertinent
directory is, of course, required to create a file. All
writing done by admin is to a temporary x-file, called
x.file-name, (see get(1)), created with mode 444 if the
admin command is creating a new SCCS file, or with the
same mode as the SCCS file if it exists. After successful
execution of admin, the SCCS file is removed (if it exists),
and the x-file is renamed with the name of the SCCS file.
This ensures that changes are made to the SCCS file only
if no errors occurred.

It is recommended that directories containing SCCS files
be mode 755 and that SCCS files themselves be mode
444. The mode of the directories allows only the owner
to modify SCCS files contained in the directories. The
mode of the SCCS files prevents any modification at all
except by SCCS commands.

If it should be necessary to patch an SCCS file for any
reason, the mode may be changed to 644 by the owner

-6-

ADMIN (1)

allowing use of ed(1). Care must be taken! The edited
file should always be processed by an admin -h to
check for corruption followed by an admin -z to
generate a proper check-sum. Another admin -h is
recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called
g.file-name), which is used to prevent simultaneous
updates to the SCCS file by different users. See get(1)
for further information.

SEE ALSO
delta(1), ed(1), get(1), help(1), prs(1), what(1), sccsfile(4).
CTIX Programmer’s Guide, Section 9.

DIAGNOSTICS
Use help(1) for explanations.

AR(1)

NAME
ar — archive and library maintainer for portable archives

SYNOPSIS
ar key [posname | afile [name] ...

DESCRIPTION

The Ar command maintains groups of files combined
into a single archive file. Its main use is to create and
update library files as used by the link editor. It can be
used, though, for any similar purpose. The magic string
and the file headers used by ar consist of printable ASCII
characters. If an archive 1s composed of printable files,
the entire archive is printable.

When ar creates an archive, it creates headers in a
format that is portable across all machines. The
portable archive format and structure is described in
detail in ar(4). The archive symbol table (described in
ar(4)) is used by the link editor (/d(1)) to effect multiple
passes over libraries of object files in an efficient manner.
An archive symbol table i1s only created and maintained
by ar when there is at least one object file in the
archive. The archive symbol table is in a specially
named file which is always the first file in the archive.
This file is never mentioned or accessible to the user.
Whenever the ar(1) command is used to create or update
the contents of such an archive, the symbol table is
rebuilt. The s option described below will force the
symbol table to be rebuilt.

Key is an optional —, followed by one character from the
set drqtpmx, optionally concatenated with one or more
of vuaibels. Afile is the archive file. The naemes are
constituent files in the archive file. The meanings of the
key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If
the optional character u is used with r, then
only those files with dates of modification later
than the archive files are replaced. If an
optional positioning character from the set abi is
used, then the posname argument must be
present and specifies that new files are to be
placed after &) or before (b or i) posname.
Otherwise new files are placed at the end.

q Quickly append the named files to the end of
the archive file. Optional positioning characters
are invalid. The command does not check
whether the added members are already in the

-1-

FILES

SEE ALSO

NOTES

T

AR(1)

archive. Useful only to avoid quadratic behavior
when creating a large archive piece-by-piece.

Print a table of contents of the archive file. If
no names are given, all files in the archive are

tabled. If names are given, only those files are
tabled.

Print the named files in the archive.

Move the named files to the end of the archive.
If a positioning character is present, then the
posname argument must be present and, asin r,
specifies where the files are to be moved.

Extract the named files. If no names are given,
all files in the archive are extracted. In neither
case does x alter the archive file.

Give a verbose file-by-file description of the
making of a new archive file from the old
archive and the constituent files. When used
with t, give a long listing of all information
about the files. When used with x, precede each
file with a name.

Suppress the message that is produced by
default when afile is created.

Place temporary files in the local current
working directory, rather than in the directory
specified by the environment variable TMPDIR
or in the default directory /tmp.

Force the regeneration of the archive symbol
table even if ar(l) is not invoked with a
command which will modify the archive
contents. This command is useful to restore the
archive symbol table after the strip(1) command
has been used on the archive.

/tmp/ar* temporaries

convert(1), file(1), 1d(1}, lorder(1), strip(1), tmpnam(3S),
a.out(4), ar(4).

This archive format is new to this release. ar will not
accept archive files in the old format; the convert(1)
command can be used to change an older archive file
into an archive file that is recognized by this ar
command.

BUGS

AR(1)

If the same file is mentioned twice in an argument list, it
may be put in the archive twice.

AS(1)

NAME
as — assembler

SYNOPSIS -) R bwl
r_svf—[gﬁ i c:ui]ce}iT:] (=il [-m] [-R] [-r] [-[bwl]]

The as command translates mc68010 or mc68020
assembly language in sourcefile into object code. The
result is a common object file, suitable for input to the
link editor. The following flags may be specified in any
order:

—o objfile Put the output of the assembly in objfile. By
default, the output file name is formed by
removing the .s suffix, if there is one, from
the input file name and appending a .o suffix.

-n Turn off long/short address optimization. By
default, address optimization takes place.

-j Invoke the long-jump assembler. The address
optimization algorithm chooses between long
and short address lengths, with short lengths
chosen when possible. Often, three distinct
lengths are allowed by the machine
architecture; a choice must be made between
two of those lengths, When the two choices
given to the assembler exclude the largest
length allowed, then some addresses might be
unrepresentable. The long-jump assembler
will always have the largest length as one of
its allowable choices. If the assembler is
invoked without this option, and the case
arises where an address is unrepresentable by
either of the two allowed choices, then the
user will be informed of the error, and
advised to try again using the —j option.

—-m Run the m4 macro pre-processor on the input
to the assembler.

-R Remove (unlink) the input file after assembly
is completed.

-r Place all assembled data (normally placed in
the data section) into the text section. This
option effectively disables the .data pseudo
operation. This option is off by default.

—[bwl] Create byte (b), halfword (w) or long (1)
displacements for undefined symbols. (An
undefined symbol is a reference to a symbol

-1-

FILES

AS(1)

whose definition is external to the input file
or a forward reference.} The default value for
this option is long (1) displacements.

-V Write the version number of the assembler
being run on the standard error output.

PR

=T Truncate symbols to eight characiers.

/usr/tmp/as[1-6| XXXXXX temporary files

SEE ALSO

1d(1), m4(1), nm(1), strip(1), a.out{4).

WARNING

BUGS

If the —m (m4 macro pre-processor invocation) option is
used, keywords for m4 (see m4 1)2 cannot be used as
symbols (variables, functions, labels) in the input file
since m4 cannot determine which are assembler symbols
and which are real m4 macros.

Use the —b or —w option only when undefined symbols
are known to refer to locations representable by the
specified default displacement. Use of either option
when assembling a file containing a reference to a
symbol that is to be resolved by the loader can lead to
unpredictable results, since the loader may be unable to
place the address of the symbol into the space provided.

The .align assembler directive is not guaranteed to work
in the .text section when optimization is performed.

Arithmetic expressions may only have one forward
referenced symbol per expression.

ASA(1)

NAME

asa — interpret ASA carriage control characters
SYNOPSIS

asa | files]
DESCRIPTION

Asa interprets the output of FORTRAN programs that
utilize ASA carriage control characters. It processes
either the files whose names are given as arguments or
the standard input if no file names are supplied. The
first character of each line is assumed to be a control
character; their meanings are:

I {blank) single new line before printing

0 double new line before printing
1 new page before printing
+ overprint previous line.

Lines beginning with other than the above characters are
treated as if they began with ’ /. The first character of
a line is not printed. If any such lines appear, an
appropriate diagnostic will appear on standard error.
This program forces the first line of each input file to
start on a new page.

To view correctly the output of FORTRAN programs
which use ASA carriage control characters, asa could be
used as a filter thusly:

a.out | asa | Ip
and the output, properly formatted and paginated,
would be directed to the line printer. FORTRAN output

sent to a file could be viewed by:

asa file

AT(1)

NAME
at, batch — execute commands at a later time

SYNOPSIS
at time | date | [+ increment |
at -rjob...
at -lﬂjob... |

batch

DESCRIPTION
At and batch read commands from standard input to be
executed at a later time. At allows you to specify when
the commands should be executed, while jobs queued
with betch will execute when system load level permits.
At -r removes jobs previously scheduled with at. The -l
option reports all jobs scheduled for the invoking user.

Standard output and standard error output are mailed to
the user unless they are redirected elsewhere. The shell
environment variables, current directory, umask, and
ulimit are retained when the commands are executed.
Open file descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in
the file /usr/lib/cron/at.allow. If that file does not
exist, the file /usr/lib/cron/at.deny is checked to
determine if the user should be denied access to at. If
neither file exists, only root is allowed to submit a job.
If at.deny exists and is empty, global usage is
permitted. If at.allow exists and is empty, no usage is
permitted. If at.allow exists, at.deny is ignored. The
allow/deny files consist of one user name per line.

The time may be specified as 1, 2, or 4 digits. One and
two digit numbers are taken to be hours, four digits to
be hours and minutes. The time may alternately be
specified as two numbers separated by a colon, meaning
hour:minute. A suffix am or pm may be appended;
otherwise a 24-hour clock time is understood. The suffix
gulu may be used to indicate GMT. The special names
noon, midnight, now, and next are also recognized.

An optional date may be specified as either a month
name followed by a day number (and possibly year
number preceded by an optional comma) or a day of the
week (fully spelled or abbreviated to three characters).
Two special ‘‘days”, today and tomorrow are
recognized. If no date is given, today is assumed if the
given hour is greater than the current hour and
tomorrow is assumed if it is less. If the given month is
less than the current month (and no year is given), next
year is assumed.

AT(1)

The optional increment is simply a number suffixed by
one of the following: minutes, hours, days, weeks,
months, or years. (The singular form is also accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24

at now + 1 day
at 5 pm Friday

At and batch write the job number and schedule time to
standard error.

Batch submits a batch job. It is almost equivalent to
“at now”, but not quite. For one, it goes into a different
queue. For another, ‘‘at now” will respond with the
error message ‘‘too late”’.

At -r removes jobs previously scheduled by at or batch.
The job number is the number given to you previously
by the at or batch command. You can also get job
numbers by typing at-l. You can only remove your own
jobs unless you are the super-user.

EXAMPLES

FILES

The at and batch commands read from standard input
the commands to be executed at a later time. Sh(1)
provides different ways of specifying standard input.
Within your commands, it may be useful to redirect
standard output.

This sequence can be used at a terminal:
batch
nroff filename > outfile
< code-D>
(hold down ’code’ and depress 'D’)

This sequence, which demonstrates redirecting standard
error to a pipe, is useful in a shell procedure (the
sequence of output redirection specifications is
significant):

batch < <!

?roff filename 2> &1 > outfile | mail loginid

To have a job reschedule itself, invoke at from within
the shell procedure, by including code similar to the
following within the shell file:

echo "sh shellfile” | at 1900 thursday next week

Jusr/lib/cron main cron directory
/usr/lib/cron/at.allow list of allowed users

-92-

AT(1)

Jusr/lib/cron/at.deny list of denied users
/usr/lib/cron/queue scheduling information
/usr/spool/cron/atjobs spool area
SEE ALSO
cron(1), kill(1), mail(1), nice(1), ps(1), sh(1).
NOTE
At always runs /bin/sh, not csh.

DIAGNOSTICS
Complains about various syntax errors and times out of
range.

AWK (1)

NAME

awk -~ pattern scanning and processing language
SYNOPSIS

awk [—Fc | [prog | [parameters] [files]
DESCRIPTION

Awk scans each input file for lines that match any of a
set of patterns specified in prog. With each pattern in
prog there can be an associated action that will be
performed when a line of a file matches the pattern.
The set of patterns may appear literally as prog, or in a
file specified as —f file. The prog string should be
enclosed in single quotes (') to protect it from the shell.

Parameters, in the form x=... y==_.. etc., may be passed
to awk.

Files are read in order; if there are no files, the standard
input is read. The file name — means the standard
input. Each line is matched against the pattern portion
of every pattern-action statement; the associated action
is performed for each matched pattern.

An input line is made up of fields separated by white
space. (This default can be changed by using FS; see
below). The fields are denoted $1, $2, .. .; $0 refers to
the entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern
always matches. An action is a sequence of statements.
A statement can be one of the following:

if (conditional) statement
[else statement |
while (conditional) statement
for (expression ; conditional ; expression)

statement
break
continue
{ [statement] ... }
variable = expression

print | expression-list]
> expression

printf format | , expression-list |
[>expression]
next skip remaining patterns on

skip j
this input line
#

exit skip the rest of the input

AWK (1)

Statements are terminated by semicolons, new-lines, or
right braces. An empty expression-list stands for the
whole line. Expressions take on string or numeric values

as appropriate, and are built using the operators +, —, *,
/, %, and concatenation (indicated by a blank). The C
operators ++, ——, +=, —=, *==, /=, and %= are

also available in expressions. Variables may be scalars,
array elements (denoted x[i]) or fields. Variables are
initialized to the null string. Array subscripts may be
any string, not necessarily numeric; this allows for a
fo;m of associative memory. String constants are quoted
The print statement prints its arguments on the
standard output (or on a file if >expr is present),
separated by the current output field separator, and
terminated by the output record separator. The printf
statement formats its expression list according to the
format (see printf(3S)).

The built-in function length returns the length of its
argument taken as a string, or of the whole line if no
argument. There are also built-in functions ezp, log,
sgrt, and int. The last truncates its argument to an
integer; substr(s, m, n) returns the n-character
substring of s that begins at position m. The function
sprintf(fmt, expr, ezpr, ...) formats the expressions
according to the prinif(3S) format given by fmt and
returns the resulting string.

Patterns are arbitrary Boolean combinations (!, | |, &&,
and parentheses) of regular expressions and relational
expressions. Regular expressions must be surrounded by
slashes and are as in egrep (see grep(1)). Isolated regular
expressions in a pattern apply to the entire line. Regular
expressions may also occur in relational expressions. A
pattern may consist of two patterns separated by a
comma; in this case, the action is performed for all lines
between an occurrence of the first pattern and the next
occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C,
and a matchop is either ~ (for contains) or !” (for does
not contain). A conditional is an arithmetic expression,
a relational expression, or a Boolean combination of
these.

AWK (1)

The special patterns BEGIN and END may be used to
capture control before the first input line is read and
after the last. BEGIN must be the first pattern, END the
last.

A single character ¢ may be used to separate the fields
by starting the program with:
BEGIN {FS = ¢ }

or by using the —F¢ option.

Other variable names with special meanings include NF,
the number of fields in the current record; NR, the
ordinal number of the current record; FILENAME, the
name of the current input file; OFS, the output field
separator (default blank); ORS, the output record

separator (default new-line); and OFMT, the output
format for numbers (default %.8g).

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:
{ s +=$1} .
END print “sum 18", s, ” average 1s”,
s/NR }
Print fields in reverse order:
{ for i = NF; i > 0; —-1) print $i }
Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous
one:

$1 != prev { print; prev = $1 }
Print file, filling in page numbers starting at 5:

/Page/ é $2 t,: n++; }
prin

command line: awk —f program n==5 input

AWK (1)

SEE ALSO

BUGS

grepg(lex(1), malloc(3X) sed(1).
Programmer s Guide, Section 16.

Input white space is not preserved on output if fields are
involved.

There are no explicit conversions between numbers and
strings. To force an expression to be treated as a
number add 0 to it; to force it to be treated as a string
concatenate the null string (* *) to it.

BANNER (1)

NAME

banner — make posters
SYNOPSIS

banner strings
DESCRIPTION

Banner prints its arguments {each up to 1§ characters
long) in large letters on the standard output.

SEE ALSO
echo(1).

BASENAME (1)

NAME
basename, dirname — deliver portions of path names

SYNOPSIS
basename string | suffix |
dirname string

DESCRIPTION
Basename deletes any prefix ending in / and the suffir
(if present in string) from string, and prints the result on
the standard output. It is normally used inside
substitution marks F * +) within shell procedures.

Dirname delivers all but the last level of the path name
in string.

EXAMPLES
The following example, invoked with the argument
/usr/src/cmd/cat.c, compiles the named file and
moves the output to a file named cat in the current
directory:

cc $1
mv a.out “‘basename $1 .¢c°

The following example will set the shell variable NAME
to /usr/src}cmd:

NAME="*dirname /usr/src/cmd/cat.c*

SEE ALSO
sh(1).
BUGS

The basename of / is null and is considered an error.

BC(1)

NAME

bc — arbitrary-precision arithmetic language
SYNOPSIS

be [—c][-1]]file ...]
DESCRIPTION

Bec is an interactive processor for a language that
resembles C but provides unlimited precision arithmetic.
It takes input from any files given, then reads the
standard input. The —1 argument stands for the name of
an arbitrary precision math library. The syntax for be
programs is as follows; L means letter a-z, E means
expression, S means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L l E]
The words “‘ibase”, ‘““obase’’, and “‘scale”’

Other operands
arbitrarily long numbers with optional sign and
decimal point.

(E)

sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)
Operators
+ -/ % A
(% is remainder; ~ is power)
++ —- (prefix and postfix; apply to names)”
= =4 =- = =/ =% = A
Statements
(5;.8)
S;...;8
if(E)S
while (E) S

for(E;E;E)S
null statement
break

quit

BC(1)

Function definitions
define L (L,...,L){
autoL, ..., L
S;...8
return (E)

}

Functions in —1 math library

s(x sine

c(x cosine

e(x exponential
1(x) log

a(x) arctangent

i(n,x) Bessel function
All function arguments are passed by value.

The value of a statement that is an expression is printed
unless the main operator is an assignment. FEither
semicolons or new-lines may separate statements.
Assignment to scale influences the number of digits to
be retained on arithmetic operations in the manner of
de(1). Assignments to tbase or obase set the input and
output number radix respectively.

The same letter may be used as an array, a function, and
a simple variable simultaneously. All variables are
global to the program. ‘“Auto’ variables are pushed
down during function calls. When using arrays as
function arguments or defining them as automatic
variables empty square brackets must follow the array
name.

Be is actually a preprocessor for dc(1), which it invokes
automatically, unless the —e (compile only) option is
present. In this case the de¢ input is sent to the standard
output instead.

EXAMPLE

scale = 20
define e(x){
autoa, b, c,1,s

a=1
b=1
s =1

for(i==1; l====1; i++){

FILES

BC(1)

a = axx
b = b*i
¢ o= a/b
1f() return(s)
s = s+c

b

}
!
defines a function to compute an approximate value of
the exponential function and

for(i=1; i <=10; i++) e(i)

prints approximate values of the exponential function of
the first ten integers.

Jusr/lib/lib.b mathematical library
Jusr/bin/de desk calculator proper

SEE ALSO

de(1).

CTIX Programmer’s Guide, Section 12,
BUGS

No| | yet.

For statement must have all three E’s.
Quit is interpreted when read, not when executed.

BCHECK (1M)

NAME
bcheck — print out the list of blocks associated with i-
node(s)

SYNOPSIS
/usr/local/bin/bcheck | -1 <number> | <special
device >

DESCRIPTION
Bcheck will print out a list of all 1024-byte blocks
associated with each i-node for a filesystem on a
< special device>>. If the - <number>> option is given,
the printout is restricted to the i-node <number>.

EXAMPLES
bcheck /dev/rdsk/c0d0sl

beheck -i 2 /dev/rdsk/c0d0s3

SEE ALSO
ncheck(1M).

BCOPY (1M)

NAME

bcopy - interactive block copy
SYNOPSIS

/ete/beopy

DESCRIPTION
Bcopy copies from and to files starting at arbitrary block
(512-byte) boundaries.

The following questions are asked:

to: (y())u name the file or device to be copied
to).

offset: (you provide the starting ‘“to” block
number).

from: (you name the file or device to be copied
from).

offset: (you provide the starting “from” block
number).

count: (you reply with the number of blocks to
be copied).

After count is exhausted, the from question is repeated
(giving you a chance to concatenate blocks at the
to+offset+count location). If you answer from with a
carriage return, everything starts over.

Two consecutive carriage returns terminate bcopy.

SEE ALSO
cpio(1), dd(1).

NAME

BDIFF (1)

bdiff - big diff

SYNOPSIS

bdiff filel file2 [n] [-s]

DESCRIPTION

FILES

Bdiff is used in a manner analogous to diff{1) to find
which lines must be changed in two files to bring them
into agreement. Its purpose is to allow processing of files
which are too large for diff. Bdiff ignores lines common
to the beginning of both files, splits the remainder of
each file into n-line segments, and invokes diff upon
corresponding segments. The value of n is 3500 by
default. If the optional third argument is given, and it is
numeric, it is used as the value for n. This is useful in
those cases in which 3500-line segments are too large for
diff, causing it to fail. If filel (file2) is —, the standard
input is read. The optional —s (silent) argument
specifies that no diagnostics are to be printed by bdeff
(note, however, that this does not suppress possible
exclamations by diff. If both optional arguments are
specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line
numbers adjusted to account for the segmenting of the
files (that is, to make it look as if the files had been
processed whole). Note that because of the segmenting
of the files, bdiff does not necessarily find a smallest
sufficient set of file differences.

SEE ALSO

diff(1).

DIAGNOSTICS

Use help(1) for explanations.

BFS(1)

NAME

bfs — big file scanner
SYNOPSIS

bfs [—] name
DESCRIPTION

The Bfs command is {almost) like ed(1) except that it is
read-only and processes much larger files. Files can be
up to 1024K bytes (the maximum possible size) and 32K
lines, with up to 512 characters, including new-line, per
line. Bfs is usually more efficient than ed for scanning a
file, since the file is not copied to a buffer. It is most
useful for identifying sections of a large file where
csplit(1) can be used to divide it into more manageable
pieces for editing.

Normally, the size of the file being scanned is printed, as
is the size of any file written with the w command. The
optional — suppresses printing of sizes. Input is
prompted with * if P and a carriage return are typed as
in ed. Prompting can be turned off again by inputting
another P and carriage return. Note that messages are
given in response to errors if prompting is turned on.

All address expressions described under ed are supported,
with the exception of finite range constructions (({\} .
In addition, regular expressions may be surrounded wit
two symbols besides / and ?: > indicates downward
search without wrap-around, and < indicates upward
search without wrap-around. Since bfs uses a different
regular expression-matching routine from ed, the regular
expressions accepted are slightly wider in scope (see
regemp(3X)). There is a slight difference in mark names:
only the letters a through z may be used, and all 26
marks are remembered.

The e, g, v, k, n, p, q, w, =, ! and null commands
operate as described under ed, except that the default
command list for g and v is the null command, not p.
Commands such as ———, +++4—, +++=, —12, and
+4p are accepted. Note that 1,10p and 1,10 will both
print the first ten lines. The f command only prints the
name of the file being scanned; there is no remembered
file name. The w command is independent of output

diversion, truncation, or crunching (see the
xo, xt and x¢ commands, below). The following
additional commands are available:

xf file

Further commands are taken from the named
file. When an end-of-file is reached, an

-1-

BFS(1)

interrupt signal is received or an error occurs,
reading resumes with the file containing the
xf. The Xf commands may be nested to a
depth of 10.

xn List the marks currently in use (marks are set
by the k commnad).

xo [file]
Further output from the p and null
commands is diverted to the named file,
which, if necessary, is created mode 666. If
file is missing, output is diverted to the
standard output. Note that each diversion
causes truncation or creation of the file.

: label

This positions a label in a command file.
The label i1s terminated by new-line, and
blanks between the : and the start of the
label are ignored. This command may also
be used to insert comments into a command
file, since labels need not be referenced.

Yxb/regular expression/label
A jump (either upward or downward) is made
to label if the command succeeds. It fails
under any of the following conditions:
1. Either address is not between 1
and $.
2. The second address is less than
the first.
3. The regular expression does not
match at least one line in the
specified range, including the first
and last lines.

On success, . 1s set to the line matched and a
jump is made to [abel. This command is the
only one that does not issue an error message
on bad addresses, so it may be used to test
whether addresses are bad before other
commands are executed. Note that the
command

xb/"/ label

is an unconditional jump.

The xb command is allowed only if it is read
from someplace other than a terminal. If it is
read from a pipe only a downward jump is
possible.

BFS(1)

xt number
Output from the p and null commands is
truncated to at most number characters. The
initial number is 255.

xv|digit] [spaces] [value]

The variable name is the specified digit
following the xv. The commands xv5100 or
xv5 100 both assign the value 100 to the
variable 5. The command Xv81,100p
assigns the value 1,100p to the variable 8.
To reference a variable, put a %% in front of
the variable name. For example, using the
above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100
and print each line containing a match. To
escape the special meaning of %%, a \ must
precede it.

g/" *\%]cds|/p

could be used to match and list lines
containing printf of characters, decimal
integers, or strings.

Another feature of the xv command is that
the first line of output from a CTIX command
can be stored into a variable. The only
requirement is that the first character of
value be an !. For example:

.w junk

xvblcat junk

Irm junk

techo "%%5"”
xvBlexpr %6 + 1

would put the current line into variable 5,
print it, and increment the variable 8 by one.
To escape the special meaning of ! as the first
character of value, precede it with a \.

SEE ALSO

BFS(1)

xv7\!date
stores the value !date into variable 7.

xbg label
xbn label

These two commands will test the last saved
return code from the execution of a CTIX
command (!command) or nonzero value,
respectively, to the specified label. The two
examples below both search for the next five
lines containing the string size.

xv55

1

size

)/cv5!eé(pr %5 - 1
4f 0965 1= 0 exit 2
xbn 1

xv45

1

/size/

xvdlexpr %4 - 1
1if 094 = 0 exit 2
xbz 1

xc [switch]

If switch is 1, output from the p and null
commands is crunched; if switch is 0 it is
not. Without an argument, xe reverses
switch. Initially switeh 1s set for no
crunching. Crunched output has strings of
tabs and blanks reduced to one blank and
blank lines suppressed.

csplit(1), ed(1), regemp(3X).

BFS(1)

DIAGNOSTICS
? for errors in commands, if prompting is turned off.
Self-explanatory error messages when prompting is on.

BRC(IM)

NAME
bre, bcheckre, rc, powerfail, drvload - system
initialization shell scripts

SYNOPSIS
/ete/bre

/etc/beheckre
/ete/re
/etc/powerfail
/ete/drvload

DESCRIPTION
The bre, becheckre, rc, drvload, and powerfail shell
procedures are executed via entries in /etc/inittab by
init(IM). Execpt for powerfail, they are run when the
system is changed out of SINGLE USER mode. Powerfail
is executed whenever a system power failure is detected.

The bre procedure clears the mounted file system table,
/etc/mnttab (see mnttab(4)).

The beheckre procedure performs all the necessary
consistency checks to prepare the system to change into
multi-user mode. It actually contains two procedures:
an interactive procedure that runs fsck(1M) and sets the
time; and a noninteractive procedure that only checks
the file system. The administrator chooses the
interactive or noninteractive procedure by modifying the
line in bcheckrc that sets the variable CONSOLE,
PRESENT for interactive, ABSENT to
noninteractive. If the ABSENT procedure fails because
of file system problems or because it was interrupted
from the controlling terminal, it switches the system to
state 6, which is normally CTIX Administrator Mode.
On a MightyFrame system beheckrc also sets the date to
the date currently in the real-time clock.

The rc procedure starts all system daemons before the
terminal lines are enabled for multi-user mode. In
addition, file systems are mounted and accounting, error
logging, system activity logging, and printer spooling (if
the Ip(1) system is in use) are activated in this
procedure.

The powerfail procedure is invoked when the system
detects a power failure condition. It calls halt(1M) to
bring down the system gracefully.

The drvload procedure causes any desired device drivers
and swap areas to be loaded into the system. The
system namelist is rebuilt from /unix prior to loading

-1-

BRC(1M)

any drivers. This procedure uses hinv(1M) to determine
what hardware exists and then loads the appropriate
drivers.

These shell procedures, in particular re may be used for
several run-level states. The who(l) command may be
used to get the run-level information.

FILES
/unix
/ete/log/confile
SEE ALSO
conlocate(1M), date(1), fsck(IM), halt(1), hinv(1M),
init(1M), shutdown(1M), who(1), inittab(4), mnttab(4).

CAL(1)

NAME

cal — print calendar
SYNOPSIS

cal [[month | year |
DESCRIPTION

Cual prints a calendar for the specified year. If a month
is also specified, a calendar just for that month is
printed. If neither is specified, a calendar for the present
month is printed. Year can be between 1 and 9999.
The month is a number between 1 and 12. The calendar
produced is that for England and her colonies.

Try September 1752.

BUGS
The year is always considered to start in January even
though this is historically naive.
Beware that ‘“cal 83" refers to the early Christian era,
not the 20th century.

CALENDAR (1)

NAME
calendar - reminder service

SYNOPSIS
calendar | - |

DESCRIPTION
Calendar consults the file calendar in the current
directory and prints out lines that contain today’s or
tomorrow’s date anywhere in the line. Most reasonable
month-day dates such as ‘“‘Aug. 24,” “august 24,”
“8/24,” etc., are recognized, but not “24 August” or
“24/8”. On weekends ‘“tomorrow” extends through
Monday.
When an argument is present, calendar does its job for
every user who has a file calendar in the login directory
and sends them any positive results by masl(1).
Normally this is done daily by facilities in the CTIX
operating system:.

FILES
/usr/lib/calprog to figure out today’s and

tomorrow’s dates

/etc/passwd
/tmp/cal*

SEE ALSO
mail(1).

BUGS

Your calendar must be public information for you to get
reminder service.

Calendar’s extended idea of ‘‘tomorrow” does not
account for holidays.

CAT(1)

NAME
cat — concatenate and print files

SYNOPSIS
cat [—u | [-8][-v [~t] [—e] | file ...

DESCRIPTION
Cat reads each file in sequence and writes it on the
standard output. Thus:

cat file
prints the file, and:
cat filel file2 >file3

concatenates the first two files and places the result on
the third.
If no input file is given, or if the argument - is
encountered, cat reads from the standard input file.
Output is buffered unless the —u option is specified.
The —s option makes cat silent about non-existent files.
The —v option causes non-printing characters (with the
exception of tabs, new-lines and form-feeds) to be
rinted visibly. Control characters are printed “X
Fcontrol—x); the DEL character (octal 0177) is printed “?.
Non-ASCII characters (with the high bit set) are printed
as M-z, where z is the character specified by the seven
low order bits.
When used with the —v option, —t causes tabs to be
printed as "I's, and —e causes a $ character to be printed
at the end of each line (prior to the new-line). The —t
and —e options are ignored if the —v option is not
specified.

WARNING

Command formats such as

cat filel file2 >filel
will cause the original data in filef to be lost; therefore,
take care when using shell special characters.

SEE ALSO
cp(1), pg(1), pr(1).

CATMAN(1)

NAME

catman ~ create the cat files for the manual
SYNOPSIS

/etc/catman [~p] [-n | [—w] [sections]
DESCRIPTION

FILES

Catman creates the preformatted versions of the on-line
manual from the nroff input files. Each manual page is
examined and those whose preformatted versions are
missing or out of date are recreated. If any changes are
made, catman will recreate the /usr/lib/whatis
database.

If there is one parameter not starting with a —, it is
taken to be a list of manual sections to look in. For
example

catman 123

will cause the updating to happen only to manual
sections 1, 2, and 3.

Options:
-n prevents creation of /usr/lib/whatis.
-p prints what would be done instead of doing it.

-w causes only the /usr/lib/whatis database to be
created. No manual reformatting is done.

/usr/man/man?/*.* raw (nroff input) manual sections
/usr/man/cat?/*.* preformatted manual pages

/usr/lib/makewhatis commands to make whatis
database

SEE ALSO

man(1).

CB(1)

NAME

¢b — C program beautifier
SYNOPSIS

eb [—s][=] [-1leng]| file ... |
DESCRIPTION

Cb reads C programs either from its arguments or from
the standard input and writes them on the standard
output with spacing and indentation that displays the
structure of the code. Under default options, ¢b
preserves all user new-lines. Under the —s flag c¢b
canonicalizes the code to the style of Kernighan and
Ritchie in The C Programming Language. The —j flag
causes split lines to be put back together. The -1l flag
causes cb to split lines that are longer than leng.

SEE ALSO

BUGS

ce(1).
The C Programming Language by B. W, Kernighan and
D. M. Ritchie.

Punctuation that is hidden in preprocessor statements
will cause indentation errors.

cc(1)

NAME

cc — C compiler
SYNOPSIS

cc [option | ... file ...
DESCRIPTION

Ce is the CTIX Portable C compiler. It accepts several
types of arguments:

Arguments whose names end with .c are taken to be C
source programs. They are compiled, and each object
program is left on the file whose name is that of the
source with .o substituted for .c. The .o file is normally
deleted, however, if a single C program is compiled and
loaded all at one go.

In the same way, arguments whose names end with .s
are taken to be assembly source programs and are
assembled, producing a .o file.

The following options are interpreted by cc. See ld(1)
for link editor options and ¢pp(1} for more preprocessor

options.

—# Display without execution each command that
c¢ generates.

- Suppress the link edit phase of the compilation
and force an object file to be produced even if
only one program is compiled.

-p Arrange for the compiler to produce code that

counts the number of times each routine is
called; also, if link editing takes place, replace
the standard startoff routine by one that
automatically calls monitor(3C) at the start and
arranges to write out a mon.out file at normal
termination of execution of the object program.
An execution profile can then be generated by
use of prof(1).

-g Cause the compiler to generate additional
information needed for the use of sdb(1).
-0 Invoke an object-code optimizer.

-S Compile the named C programs and leave the
assembler-language output on corresponding
files suffixed .s.

-E Run only cpp(1) on the named C programs and
send the result to the standard output.

cc(1)

-P Run only ¢pp(1) on the named C programs and
leave the result on corresponding files suffixed
.

—B88020 Generate code for the me68020 processor.

—68881 Generate code for the mc68881 floating-point
COprocessor.

—88010 Generate code for the mc68010 processor.
—B88000 Generate code for the mc68000 processor.

-v Verbose. Print pass names as they are
performed.
-T Truncate variable names to eight characters.

Tell the loader to match eight character names
(same as —G in the loader).

-w Tell the linker (/d) not to print warnings about
symbols that partially matched.

The C compiler uses one of three code generators for the
68010, 68020, and 68020/68881. You can select one of
these by two mechanisms. The first is to specify the
number on the command line. The second is to use the
CENVIRON shell variable.

The CENVIRON variable has the following syntax:
CPU=xxxxx, FPU=yyyyy

where CPU indicates the central processor to generate
for and FPU indicates the style of floating-point math to
use. zrrzr may be 68010 or 68020, and yyyyy may be
68881 or SOFTWARE. The FPU parameter may be
deleted; the default is SOFTWARE. The CENVIRON
variable should always be set to the appropriate values
in the .profile or .cshre files.

The C compiler interprets two shell variables which,
along with the CENVIRON variable, allow cross-
compilation for any CTIX machine:

LIBROOT This variable is a path which is
prepended to normal library names
when searching for a library. See also
ld(1).

INCROOT This variable is a path which is
prepended to the /usr/include and
usr/include/sys directories during
include file searches. See also epp(1).

The following options are useful only on systems where
work is being done on the C compiler. CTIX normally
comes with only one version of the compiler, and that

-92-

cc(1)

version works in a single pass. The options below
provide for alternative versions of the compiler, including
two-pass versions.

~Bstring
Construct, pathnames for substitute preprocessor,
compiler, assembler and link editor passes by
concatenating string with the suffixes cpp
(pre rocessor%, c0, (or ccom (compiler first
pa,sss, ccom?20, ccom20.81, or comp (see under
FILES below), ¢l (compiler second pass), c2
optimizer) (or optim), as (assembler), and Id
link editor). If string is empty it is taken to be
/lib/o.

—t[p012al]
Find only the designated preprocessor, compiler,
assembler and link editor passes in the files
whose names are constructed by a —B option.
In the absence of a —B option, the string is
taken to be /lib/m. The value —t " is
equivalent to —tp012.

~We,argl[,arg2...
Hand off the argument(s| argi to pass ¢ where ¢
is one of [p012al] indicating preprocessor,
compiler first pass, compiler second pass,
optimizer, assembler, or link editor, respectively.

-d This option is no longer allowed because of a
conflict of meaning. The —W option must be
used to specify precisely its destination. To
indicate the —d option for the link editor, use
-Wl,—-d.

Other arguments are taken to be either link editor
option arguments, C preprocessor option arguments, or
C-compatible object programs, typically produced by an
earlier ce run, or perhaps libraries of C-compatible
routines. These programs, together with the results of
any compilations specified, are linked (in the order
given) to produce an executable program with the name
a.out.

Note that modules appear to Id in the same order they
(or their source code versions) appear to cc. Thus a
library or object file should appear in the ce argument
list after any module that refers to it.

The C language standard was extended to include
arbitrary length variable names. The option pair

cc(1)

“~Wp,—T —-WO0,-XT"” will cause the current compiler
to behave the same as previous compilers with respect to
the length of variable names.

FILES
file.c input file
file.o object file
a.out linked output
/tmp/ctm* temporary
/lib/cpp C preprocessor ¢pp(1)
/lib/ccom compiler
/1ib/ccom?20 68020 compiler
/lib/ccom?20.81 68020/68881 compiler
/lxb/optlm optional optimizer
/bin/as assembler, as(1)
/bin/1d link edltor 1d(1)
/lib/crt0.0 runtime startoff
/lib/mert0.0 profiling startoff
/lib/libc.a standard C library, see section {3)

/lib/libp/lib/*.a profiled versions of libraries

SEE ALSO
})2 cpp(1 as(l 1d(1), prof(1), monitor(3C).
Programmcr s Guide, Section 12.
he C Programming Language by B. W. Kernighan and
D. M. Ritchie.

NOTES
By default, the return value from a C program is
completely random. The only two guaranteed ways to
return a specific value are to explicitly call ezit(2) or to
leave the function main() with a ‘“return ezpression;”
construct.

DIAGNOSTICS
The diagnostics produced by C itself are intended to be
self-explanatory. Occasional messages may be produced
by the assembler or the link editor.

cD(1)

NAME
¢d - change working directory

SYNOPSIS
cd | directory]

DESCRIPTION
If directory is not specified, the value of shell parameter
$HOME 1is used as the new working directory. If
directory specifies a complete path starting with /, ., . .,
directory becomes the new working directory. If neither
case applies, ¢d tries to find the designated directory
relative to one of the paths specified by the $SCDPATH
shell variable. $CDPATH has the same syntax as, and
similar semantics to, the $PATH shell variable. Cd
must have execute (search) permission in directory.
Because a new process is created to execute each
command, ¢d would be ineffective if it were written as a
normal command; therefore, it 1is recognized and 1is
internal to the shell.

SEE ALSO

pwd(1), sh(1), chdir(2).

CDC(1)

NAME

cdc — change the delta commentary of an SCCS delta
SYNOPSIS

cde —rSID [—m|mrlist]] [~y[comment]] files
DESCRIPTION

Cde changes the delta commentary, for the SID specified
by the —r keyletter, of each named SCCS file.

Delta commentary is defined to be the Modification
Request (MR) and comment information normally
specified via the delta(l) command (-m and -y
keyletters).

If a directory is named, c¢dc behaves as though each file
in the directory were specified as a named file, except
that non-SCCS files (last component of the path name
does not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is
read (see WARNINGS); each line of the standard input is
taken to be the name of an SCCS file to be processed.

Arguments to e¢de, which may appear in any order,
consist of keyletter arguments and file names.

All the described keyletter arguments apply
independently to each named file:

—rSID Used to specify the SCCS
IDentification (SID) string of a
delta for which the delta
commentary is to be changed.

—m[mrlist] If the SCCS file has the v flag set
(see admin(1)) then a list of MR
numbers to be added and/or
deleted in the delta commentary
of the SID specified by the —r
keyletter may be supplied. A null
MR list has no effect.

MR entries are added to the list
of MRs in the same manner as
that of delta(l). In order to
delete an MR, precede the MR
number with the character ! (see
EXAMPLES). If the MR to be
deleted is currently in the list of
MRs, it is removed and changed
into a ‘““comment” line. A list of
all deleted MRs is placed in the
comment section of the delta
commentary and preceded by a

-1-

—y|comment]

CDC(1)

comment line stating that they
were deleted.

If ~m is not used and the
standard input is a terminal, the
prompt MRs? is issued on the
standard output before the
standard input is read; if the
standard input is not a terminal,
no prompt is issued. The MRs?
prompt always precedes the
comments? prompt (see -y
keyletter).

MRs in a list are separated by
blanks and/or tab characters. An
unescaped new-line character
terminates the MR list.

Note that if the v flag has a value
(see admin(1)), it is taken to be
the name of a program (or shell
procedure) which validates the
correctness of the MR numbers.
If a non-zero exit status is
returned from the MR number
validation program, cde
terminates and the delta
commentary remains unchanged.

Arbitrary text used to replace the
comment(s) already existing for
the delta specified by the -—r
keyletter. The previous
comments are kept and preceded
by a comment line stating that
they were changed. A null
comment has no effect.

If —y is not specified and the
standard input is a terminal, the
prompt comments? is issued on
the standard output before the
standard input is read; if the
standard input is not a terminal,
no prompt is issued. An
unescaped new-line character
terminates the comment text.

The exact permissions necessary to modify the
SCCS file are documented in the Source Code
Control System User’s Guide. Simply stated, they

-2-

cDpC(1)

are either (1) i you made the delta, you can
change its delta commentary; or (2) if you own the
file and directory you can modify the delta
commentary.

EXAMPLES
cde -rl.8 —m"bl78-12345 !'bl77-54321 bi79-00001"
~ytrouble s.file
adds bl78-12345 and bl79-00001 to the MR list, removes

bl77-54321 from the MR list, and adds the comment
trouble to delta 1.8 of s.file.

cde —rl.6 s.file
MRs? 'bl77-54321 bl78-12345 bl179-00001
comments? trouble

does the same thing.

WARNINGS
If SCCS file names are supplied to the ¢de command via
the standard input (— on the command line), then the
—m and -y keyletters must also be used.

FILES
x-file see delta(l
z-file see delta(l
SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1), scesfile(4).
CTIX Programmer’s Guide, Section 9.

DIAGNOSTICS
Use help(1) for explanations.

CFLOW(1)

NAME

cflow — generate C flowgraph
SYNOPSIS

cflow [—r] [—ix] [-i_] [~dnum] files
DESCRIPTION

Cflow analyzes a collection of C, YACC, LEX, assembler,
and object files and attempts to build a graph charting
the external references. Files suffixed in .y, .1, .c, and .i
are YACC’d, LEX’d, and C-preprocessed (bypassed for .i
files) as appropriate and then run through the first pass
of lint(1). (The -1, —D, and —U options of the C-
preprocessor are also understood.) Files suffixed with .s
are assembled and information is extracted (as in .0 files{
from the symbol table. The output of all this non-trivia
processing is collected and turned into a graph of
external references which is displayed upon the standard
output.

Each line of output begins with a reference (i.e., line)
number, followed by a suitable number of tabs indicating
the level. Then the name of the global (normally only a
function not defined as an external or beginning with an
underscore; see below for the —i inclusion option) a colon
and its definition. For information extracted from C F
source, the definition consists of an abstract type
declaration (e.g., char #), and, delimited by angle
brackets, the name of the source file and the line number
where the definition was found. Definitions extracted
from object files indicate the file name and location
counter under which the symbol appeared (e.g., text).
Leading underscores in C-style external names are
deleted.

Once a definition of a name has been printed, subsequent
references to that name contain only the reference
number of the line where the definition may be found.
For undefined references, only < > is printed.

As an example, given the following in file.c:
int i

main()

{

the command

cflow —ix file.c

produces the output

main: int(), <file.c 4>
f:int(), <file.c 11>
h: <>
i: int, <file.c 1>

Tt QOB =

g: <>

When the nesting level becomes too deep, the —e option

of pr(1)

can be used to compress the tab expansion to

something less than every eight spaces.

The following options are interpreted by cflow:

~r

—ix

DIAGNOSTICS

Reverse the “caller:callee” relationship
producing an inverted listing showing the callers
of each function. The listing is also sorted in
lexicographical order by callee.

Include external and static data symbols. The
default i1s to include only functions in the
flowgraph.

Include names that begin with an underscore.
The default is to exclude these functions {(and
data if -z is used).

The num decimal integer indicates the depth at
which the flowgraph is cut off. By default this
is a very large number. Attempts to set the
cutoff depth to a nonpositive integer will be
met with contempt.

Complains about bad options. Complains about multiple
definitions and only believes the first. Other messages
may come from the various programs used (e.g., the C-
preprocessor).

SEE ALSO

as(1), ce(1), epp(1), lex(1), lint(1), nm(1), pr(1), yace(1).

CFLOW (1)

BUGS
Files produced by lez(1) and yace(l) cause the reordering
of line number declarations which can confuse cflow. To
get proper results, feed cflow the yace or lez input.

NAME

CHMOD (1)

chmod ~ change mode

SYNOPSIS

chmod mode files

DESCRIPTION

The permissions of the named files are changed
according to mode, which may be absolute or symbolic.
An absolute mode is an octal number constructed from
the OR of the following modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit, see chmod(2)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by
owner

0070 read, write, execute (search) by group

0007 read, write, execute (search) by
others

A symbolic mode has the form:
[who | op permission [op permission |

The who part is a combination of the letters u (for user’s
permissions), g (group) and o (other). The letter a
stands for ugo, the default if who is omitted.

Op can be + to add permission to the file’s mode, — to
take away permission, or = to assign permission
absolutely (all other bits will be reset).

Permisston is any combination of the letters r (read), w
(write), x (execute), s (set owner or group ID) and t (save
text, or sticky); u, g, or o indicate that permission is to
be taken from the current mode. Omitting permission is
only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be
given. Operations are performed in the order specified.
The letter s is only useful with u or g and t only works
with u.

Only the owner of a file (or the super-user) may change
its mode. Only the super-user may set the sticky bit. In
order to set the group ID, the group of the file must
correspond to your current group ID.

CHMOD (1)

EXAMPLES
The first example denies write permission to others, the
second makes a file executable:

chmod o-w file
chmod +x file

SEE ALSO
Is(1), chmod(2).

CHOWN (1)

NAME
chown, chgrp - change owner or group

SYNOPSIS
chown owner file ...

chgrp group file ...

DESCRIPTION
Chown changes the owner of the files to owner. The
owner may be either a decimal user ID or a login name
found in the password file.

Chgrp changes the group ID of the files to group. The
group may be either a decimal group ID or a group name
found in the group file.

If either command is invoked by other than the super-
user, the set-user-ID and set-group-ID bits of the file
mode, 04000 and 02000, respectively, will be cleared.

FILES
/ete/passwd
/ete/group

SEE ALSO
chown(2), group(4), passwd(4).

CHROOT (1M)

NAME
chroot — change root directory for a conmand
SYNOPSIS
/ete/chroot newroot command
DESCRIPTION
The given command is executed relative to the new root.
The meaning of any initial slashes (/) in path names is
changed for a command and any of its children to
newroot. Furthermore, the initial] working directory is
newroot.
Notice that:
chroot newroot command >x
will create the file x relative to the original root, not the
new one.
This command is restricted to the super-user.
The new root path name is always relative to the current
root: even if a chroot is currently in effect, the newroot
argument is relative to the current root of the running
process.
SEE ALSO
chdir(2).
BUGS

One should exercise extreme caution when referencing
special files in the new root file system.

CLEAR (1)

NAME
clear — clear terminal screen

SYNOPSIS
clear

DESCRIPTION
Clear prints the string that clears your terminal’s screen.
The program obtains this string from the termcap(5)
database, using the TERM environment variable to
determine the type of terminal.

FILES
/etc/termcap terminal capability data base

SEE ALSO
sh(1), termcap(5).

NAME

CLRI(1M)

clri — clear i-node

SYNOPSIS

/etc/clri file-system i-number ...

DESCRIPTION

Clri writes zeros on the 64 bytes occupied by the i-node
numbered t-number. File-system must be a special file
name referring to a device containing a file system.
After clrt is executed any blocks in the affected file will
show up as mlssmg” in an fsck(IM) of the file-system.
This command should only be used in emergencies and
extreme care should be exercised.

Read and write permission is required on the specified
file-system device. The i-node becomes allocatable.

The primary purpose of this routine is to remove a file
which for some reason appears in no directory. If it is
used to zap an i-node which does appear in a directory,
care should be taken to track down the entry and
remove it. Otherwise, when the i-node is reallocated to
some new file, the old entry will still point to that file.
At that point removing the old entry will destroy the
new file. The new entry will again point to an
unallocated i-node, so the whole cycle is likely to be
repeated again and again.

SEE ALSO

BUGS

fsck(1M), fsdb(1M), ncheck(1M), fs(4).

If the file is open, clr? is likely to be ineffective.

NAME

CMP (1)

cmp - compare two files

SYNOPSIS

cmp [-1] [-8] filel file2

DESCRIPTION

The two files are compared. (If filel is —, the standard
input is used.) Under default options, ¢emp makes no
comment if the files are the same; 1f they differ, it
announces the byte and line number at which the
difference occurred. If one file is an initial subsequence
of the other, that fact is noted.

Options:

-1 Print the byte number (decimal) and the differing
bytes (octal) for each difference.

—s Print nothing for differing files; return codes only.

SEE ALSO

comm(1), diff(1).

DIAGNOSTICS

Exit code 0 is returned for identical files, 1 for different
files, and 2 for an inaccessible or missing argument.

COL(1)

NAME

col — filter reverse line-feeds
SYNOPSIS

col | —bfpx |
DESCRIPTION

Col reads from the standard input and writes onto the
standard output. It performs the line overlays implied
by reverse line feeds (ASCII code ESC-7), and by forward
and reverse half-line feeds (ESC-9 and ESC-8). Col is
particularly useful for filtering-multicolumn output made
with the .rt command of nroff and output resulting from
use of the tbl(1) preprocessor.

If the —b option is given, col assumes that the output
device in use is not capable of backspacing. In this case,
if two or more characters are to appear in the same
place, only the last one read will be output.

Although col accepts half-line motions in its input, it
normally does not emit them on output. Instead, text
that would appear between lines is moved to the next
lower full-line boundary. This treatment can be
suppressed by the —f (fine) option; in this case, the
output from col may contain forward half-line feeds
(ESC-Q}, but will still never contain either kind of
reverse line motion.

Unless the —x option is given, col will convert white
space to tabs on output wherever possible to shorten
printing time.

The ASCII control characters SO (\016) and SI (\017) are
assumed by eol to start and end text in an alternate
character set. The character set to which each input
character belongs is remembered, and on output SI and
SO characters are generated as appropriate to ensure
that each character is printed in the correct character
set. i

On input, the only control characters accepted are space,
backspace, tab, return, new-line, SI, SO, VT (\013), and
ESC followed by 7, 8, or 9. The VT character 1s an
alternate form of full reverse line-feed, included for
compatibility with some earlier programs of this type.
All other non-printing characters are ignored.

Normally, col will ignore any unknown to it escape
sequences found in its input; the —p option may be used
to cause col to output these sequences as regular
characters, subject to overprinting from reverse line
motions. The use of this option is highly discouraged

COL(1)

unless the user is fully aware of the textual position of
the escape sequences.

SEE ALSO

NOTES

BUGS

nroff(1), tbl(1).

The input format accepted by col matches the output
produced by nroff with either the —-T37 or -Tlp
options. Use —T37 (and the —f option of col) if the
ultimate disposition of the output of col will be a device
that can interpret half-line motions, and —Tlp otherwise.

Cannot back up more than 128 lines.

Allows at most 800 characters, including backspaces, on
a line.

Local vertical motions that would result in backing up
over the first line of the document are ignored. As a
result, the first line must not have any superscripts.

COMB(1)

NAME

comb - combine SCCS deltas
SYNOPSIS

comb [-o] [-s| [~psid] [—clist] files
DESCRIPTION

Comb generates a shell procedure (sce sh{1)) which,
when run, will reconstruct the given SCCS files. The
reconstructed files will, hopefully, be smaller than the
original files. The arguments may be specified in any
order, but all keyletter arguments apply to all named
SCCS files. If a directory is named, comb behaves as
though each file in the directory were specified as a
named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of — is given, the
standard input is read; each line of the input is taken to
be the name of an SCCS file to be processed; non-SCCS
files and unreadable files are silently ignored.

The generated shell procedure is written on the standard
output.

The keyletter arguments are as follows. Each is
explained as though only one named file is to be
processed, but the effects of any keyletter argument
apply independently to each named file.

—pSID The SCCS IDentification string (SID) of the
oldest delta to be preserved. All older deltas
are discarded in the reconstructed file.

—clist A list (see get(1) for the syntax of a lisf) of
deltas to be preserved. All other deltas are
discarded.

-0 For each get -—e generated, this argument
causes the reconstructed file to be accessed at
the release of the delta to be created, otherwise
the reconstructed file would be accessed at the
most recent ancestor. Use of the —o keyletter
may decrease the size of the reconstructed SCCS
file. It may also alter the shape of the delta
tree of the original file.

-8 This argument causes comb to generate a shell
procedure which, when run, will produce a
report giving, for each file: the file name, size
(in blocks) after combining, original size (also in
blocks), and percentage change computed by:

100 * (original — combined) / original
It is recommended that before any SCCS files

COMB(1)

are actually combined, one should use this
option to determine exactly how much space is
saved by the combining process.

If no keyletter arguments are specified, comb will
preserve only leaf deltas and the minimal number of
ancestors needed to preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.

SEE ALSO
admin(1), delta(l), get(1), help(1), prs(1), sh(1),
scesfile(4).
CTIX Programmer’s Guide, Section 9.

DIAGNOSTICS
Use help(1) for explanations.

BUGS

Comb may rearrange the shape of the tree of deltas. It
may not save any space; in fact, it is possible for the
reconstructed file to actually be larger than the original.

COMM(1)

NAME

comm - select or reject lines common to two sorted files
SYNOPSIS

comm | — [123]] filel file2
DESCRIPTION

Comm reads ﬁlel and fucp, which should be ordered in
ASCII collating sequence (see sori(1) and produces a
three-column output: lines only in filel; lines only in
fle2; and lines in both files. The file name — means the
standard input.

Flags 1, 2, or 3 suppress printing of the corresponding
column. Thus comm —12 prints only the lines common
to the two files; comm —23 prints only lines in the first
file but not in the second; comm —123 is a no-op.

SEE ALSO
cmp(1), diff(1), sort(1), unig(1).

CONFIG(IM)

NAME
config — configure a CTIX system

SYNOPSIS
/ete/config [—t | [-1 file | [—¢ file | [—m file |
dfile

DESCRIPTION

Config is a program that takes a description of a CTIX
system, generates a configuration table file, and
generates a hardware interface file. The configuration
table file is a C program defining the configuration
tables for the various devices on the system. The
hardware interface file provides information regarding
the interface between the hardware and device handlers.

The -1 option specifies the name of the hardware
interface file; low.s is the default.

The —c option specifies the name of the configuration
table file; conf.c is the default name.

The —-m option specifies the name of the file that
contains all the information regarding supported devices;
/ete/master is the default name. This file is supplied i
with the CTIX system and should not be modified unless
the user fully understands its construction.

|

The —t option requests a short table of major device
numbers for character and block type devices. This can
facilitate the creation of special files.

The user must supply dfile; it must contain device
information for the user’s system. This file is divided
into two parts. The first part contains physical device
specifications. The second part contains system-
dependent information. Any line with an asterisk (*) in
column 1 is a comment.

First Part of dfile
Each line contains one field:

devname

where devname is the name of the device (as it appears
in the /etc/master device table).

Second Part of dfile
The second part contains two different types of lines.
Note that all specifications of this part are required,
although their order is arbitrary.

1. Root/ pipe device spectfication
Two lines of three fields each:

CONFIG (1M

minor
minor

devname
devname

root

pipe
where minor is the minor device number (in octal) of the
slice on the winchester.

. Swap device specification

One line that contains five fields, and one line that
contains three fields, as follows:

swap devname minor swplo nswap

where swplo is the lowest disk block (decimal) in the
swap area and nswap is the maximum number of 1K-
byte disk blocks (decimal) in the swap area. The kernel
sizes the actual swap area size and configures itself for
up to this maximum.

. Parameter spectfication

There are any number of lines of two fields each, chosen
from the following list. Number is decimal. This list is
not complete; parameters not on the list either must not
be changed or have no effect.

buffers number /* number of 1024-byte file system
caching buffers */
dmmxsz number

/*

inodes number /*
filess number /*
nflocks number /*
mounts number /*
regions number /*
procs number /#
maxproc number
*
maxfsiz number /*
maxumem number
%*

cbufsize number

*
mesg Oorl /#
msgmax number

*

msgmni number

/*

max number of pages per
loadable driver */
max open inodes in system */
max open files in system */
max locks active in system *
max file systems mounted *
total number of regions in system */
max processes in system */

max processes per user ID *
ulimit default in 512-byte blocks */

max number of pages per process */

console circular buffer size in bytes */
configure for messages */

max chars in a message */

max active message queues */

CONFIG(1M)

msgmnb number
/* max total chars in message
queues */
msgtql number /* max messages in system */
msgssz number
msgseq number /* msgssz * msgseq = number bytes of
system buffering */
nlldrv number /* max number of loadable drivers */
sem Oorl /* configure for semaphores */
semmni number /* max active semaphores */
semmns number /* max semaphores in system */
semmsi number /* max semaphores per ID */
semopm number
* max operations per semop call */
semumenumber /* max undo structures per process */
semmnu number
/* max undo structures in
system */
shmem O or1 /* configure for shared memory */
shmmax number
/* max bytes in a shared segment */
shmmin number /* min bytes in a shared segment */
shmmninumber /* max active shared segments */
shmseg number /* max attached segments per process */
shmbrk number /* gap in pages between data and
shared memory */
debugger 0 or 1 /* configure low-level
kernel debugger */

Certain parameters if set to 0 will allow the kernel to
autoconfigure. Procs, regions, clists, i-nodes, files, and
buffers are autoconfigurable. The number of procs is
based on the number of users; regions, i_nodes, and files
are based on the number of procs. The number of clists
is based on the number of serial and cluster ports. The
number of buffers is based on the amount of physical
memory. Any or all of these may be overridden.
Maxumem may also be set to 0, in which case it floats
between IM byte plus one quarter of the total swap
space.

EXAMPLE

To configure a system with the following devices:

Onboard quarter-inch tape

Onboard ST506 disks (root)

Interphase SMD disk controller

RS-232-C (any number of ports)

one parallel line printer

root device is a winchester (drive 0, section 1
pipe device is a winchester ?drive 0, section 1;

-3-

CONFIG(1M)

swap device is a winchester (drive 0, section 2),
with a swplo of 1 and an nswap of 8000

number of buffers is 100

number of processes is 100

maximum number of processes per user ID is 25

number of mounts is 6

number of inodes is 100

number of files is 120

number of character buffers is 64

messages are to be included

semaphores are to be included

The actual system configuration would be specified as

follows:

diskonbd

Vsmd3200

serial

qic

console

plp

root diskonbd 01

pipe diskonbd 01

swap diskonbd 02 0 8000
* Comments may be inserted in this manner
buffers 100

procs 100
maxproc 25
mounts 6
inodes 100
files 120
mesg 1
sema 1
clists 64
FILES
/etc/master default input master device table
low.s default output hardware interface file
conf.c default output configuration table file
SEE ALSO
ldeeprom(IM), master(4).
DIAGNOSTICS

BUGS

Diagnostics are routed to the standard output and are
self-explanatory.

The —t option does not know about devices that have

aliases.

CONSOLE(7)

FILES
/dev/console
/ete/log/confile

SEE ALSO
conlocate(1M), syslocal(2).

WARNING
Normal system processing is suspended while the kernel
debugger is active.

5/86 -2-

NAME

DISK(7)

disk — general disk driver

SYNOPSIS

#finclude <sys/types.h>
#include <sys/gdisk.h>
#include <sys/gdioctl.h>

DESCRIPTION

5/86

The files
/dev/rdsk/c0d0s0

through
/d:v/rdsk/c:rdzsz

an
/dev /dsk/c0d0s0

through

/dev/dsk/czdzsz

refer to CTIX device names and slices, where ez is the
controller number, dz is the drive number, sz is the slice
number, and z is a hexadecimal digit. An r in the
name indicates the character (raw) interface,

MightyFrame and MiniFrame format a disk with 512-
byte physical sectors. Winchester disks have 17 physical
sectors per track. SMD drives have 33 to 65 physical
sectors per track.

Block inpuyoutput uses 1024-byte logical blocks.
Winchester disks have 8 logical blocks on each track,
with the leftover physical block available as an alternate
for a bad block. SMD disks have 16 to 32 logical blocks
on each track, with the leftover physical block available
as an alternate for a bad block.

Logical block zero contains the Volume Home Block,
which describes the disk. The following structure defines
the volume home block.

struct vhbd {
uint magic; /* Mitiframe disk format code */
int chksum; /* adjustment so 32 bit sum starting
from magic for 1K bytes sums to -1 */
struct gdswprt dsk; /* specific description of this disk */
struct partit partab[MAXSLICE[;/* partition table */
struct resdes{ /* reserved area special files */
daddr_t blkstart; /* start logical block # */
ushort nblocks; /* length in logical blocks
(zero implies not present) */
} resmap|8};
/* resmap consists of the following entries:
loader area
* bad block table

——

CONLOCATE(1M)

NAME
conlocate -~ locate a terminal to use as the virtual
system console

SYNOPSIS
/etc/conlocate | —r | [—in | [~t |

DESCRIPTION

FILES

Conlocate searches for a terminal to use as the system
console, /dev/syscon. It scans /etc/inittab for
terminals that get a getiy(1M) in state 6, and spawns
children to monitor the terminals for attempted logins.
Each child does all the I/O control and login verification
of the getty-login sequence, but only root is actually
permitted to log in. The first terminal to have root log
in has its tty linked to /dev/syscon. Conlocate then
writes the new virtual system console’s communication
options, which have just been set from the values in
/ete/gettydefs, to its own standard output, using
stty(1) —g format.

Conlocate understands the following options:

-r If /dev/syscon exists and is openable, exit
without scanning for a new one.

—in Scan run level n instead of run level 6.

-t Begin by monitoring for logins on the existing

/dev/syscon. If root logs in at that terminal
within 20 seconds, abandon the search for
another console.

/dev /syscon virtual system console
/etc/inittab definitions of operating states
/etc/gettydefs communication options

SEE ALSO

init (1M), stty(1), gettydefs(4), inittab(4), termio(7).

WARNING

Beware of collision with other processes that might be
trying to open the same terminals, especially gettys
spawned by tnit.

CONVERT(1)

NAME
convert — convert object and archive files to common
formats

SYNOPSIS
convert [-5] infile outfile

DESCRIPTION

Convert transforms input tnfile to output oulfile. Infile
must be different from outfile. The —5 option causes
convert to work exactly as it did for UNIX system release
5.0. Infile may be any one of the following:

1) a pre-UNIX system 5.0 object file or
link-edited (a.out) module (only with the
—bB option),

2) a pre-UNIX system 5.0 archive of object

files or link edited (a.out) modules (only
with the —5 option), or

3) a UNIX system 5.0 archive file (without
the —5 option).

Convert will transform tnfile to one of the following
(respectively):

1) an equivalent UNIX system 5.0 object
file or link edited (a.out) module (with
the —5 option),

2) an equivalent UNIX system 5.0 archive
of equivalent object files or link edited
(a.out) modules (with the —5 option),
and

3) an equivalent UNIX system 5.0 release
2.0 portable archive containing
unaltered members (without the -5
option).

All other types of input to the convert command will be
passed unmodified from the input file to the output file
(along with appropriate warning messages). When
transforming archive files with the —5 option, the
convert(l) command will inform the user that the
archive symbol table has been deleted. To generate an
archive symbol table, this archive file must be
transformed again by convert without the —5 option to
create a UNIX system 5.0 archive file. Then the archive
symbol table may be created by executing the ar(1)
command with the ts option. If a UNIX system 5.0
archive with an archive symbol table is being
transformed, the archive symbol table will automatically
be converted.

CONVERT (1)

FILES
/tmp/conv*
SEE ALSO
ar(1), arcv(1), a.out(4), ar(4).

CP(1)

NAME

¢p, In, mv - copy, link or move files
SYNOPSIS

cp filel | file2 f] target

In | _ft] filel [file2 ...| target

mv [—f] filel | file2 ...] target
DESCRIPTION

Filel is copied (linked, moved) to target. Under no
circumstance can filel and target be the same (take care
when using sh(1) and ¢sh(1) metacharacters). If target
is a directory, then one or more files are copied (linked,
moved) to that directory. If target is a file, its contents
are destroyed.

If mv or In determines that the mode of target forbids
writing, it will print the mode (see chmod(2)), ask for a
response, and read the standard input for one line (if the
standard input is a terminal); if the line begins with y,
the mv or In occurs, if permissible; if not, the command
exits. No questions are asked and the mv or In is done
when the —f option is used or if the standard input is not
a terminal.

Only mv will allow filel to be a directory, in which case
the directory rename will occur only if the two
directories have the same parent; file! is renamed target.
If filel is a file and target is a link to another file with

links, the other links remain and target becomes a new
file.

When using e¢p, if target is not a file, a new file is
created which has the same mode as filel except that the
sticky bit is not set unless you are super-user; the owner
and group of target are those of the user. If targetis a
file, copying a file into farget does not change its mode,
owner, nor group. The last modification time of target
(and last access time, if target did not exist) and the last
access time of filel are set to the time the copy was
made. If target is a link to a file, all links remain and
the file i1s changed.

SEE ALSO

cpio(1), rm(1), chmod(2).

WARNING

When the destination of a copy is a file that already
exists, ¢p will try to overwrite it, not remove it; this
preserves the destination files ownership, and so forth. If
the destination file has an ownership you do not want,
remove it before doing the copy.

BUGS

CP(1)

If file1 and target lie on different file systems, mv must
copy the file and delete the original. In this case the
owner name becomes that of the copying process and
any linking relationship with other files is lost.

Ln will not link across file systems.

CPIO(1)

NAME

cpio — copy file archives in and out
SYNOPSIS

cpio —o [acBQv |

cpio ~i [BQedmrtuvfsSb8 | | patterns |

cpio —p [adlmuv | directory
DESCRIPTION

Cpio —o (copy out) reads the standard input to obtain a
list of path names and copies those files onto the
standard output together with path name and status
information. Output is padded to a 512-byte boundary.

Cpio —i (copy in) extracts files from the standard input,
which is assumed to be the product of a previous cpio
—o. Only files with names that match patterns are
selected. Patterns are given in the name-generating
notation of sh{1). In patterns, meta-characters ?, *, and
[...] match the slash / character. Multiple patterns
may be specified and if no patterns are specified, the
default for patterns is * (i.e., select all files). The
extracted files are conditionally created and copied into
the current directory tree based upon the options
described below. The permissions of the files will be
those of the previous ¢pio —o. The owner and group of
the files will be that of the current user unless the user is
super-user, which causes c¢pfo to retain the owner and
group of the files of the previous epio —o.

Cpio —p (pass) reads the standard input to obtain a list
of path names of files that are conditionally created and
copied into the destination directory tree based upon the
options described below.

The meanings of the available options are:

a Reset access times of input files after they have
been copied.
B Input/output is to be blocked 5,120 bytes to the

record (does not apply to the pass option;
meaningful only with data directed to or from
dev/rmt?? or raw floppy disks).

Q nput/output is to be blocked 65,536 bytes to
the record. Works like —B option, with which it
is mutually exclusive. The —Q option optimizes
quarter-inch tape access.

d Directories are to be created as needed.

c Write header information in ASCII character
form for portability.

CPIO (1)

r Interactively rename files. If the user types a
null line, the file is skipped.

t Print a table of contents of the input. No files
are created.

u Copy unconditionally (normally, an older file will
not replace a newer file with the same name).

v Verbose: causes a list of file names to be

printed. When used with the t option, the table
of contents looks like the output of an ls —I
command (see I3(1)).
1 Whenever possible, link files rather than copying
them. Usable only with the —p option.
m Retain previous file modification time. This
option is ineffective on directories that are being
copied.
Copy in all files except those in patterns.
Swap bytes. Use only with the —i option.
Swap halfwords. Use only with the —i option.
Swap both bytes and halfwords. Use only with
the —i option.
Process an old (i.e., UNIX System Sizth Edition
format) file. Only useful with —i (copy in).

-] TR

EXAMPLES

The first example below copies the contents of a
directory into an archive; the second duplicates a
directory hierarchy:

ls | cpio —o >/dev/mt0

cd olddir
find . —depth —print | cpio —pdl newdir

The trivial case “find . -depth —print | cpio -oB
> /dev/rmt0”’ can be handled more efficiently by:

find . —cpio /dev/rmt0

SEE ALSO

NOTES

BUGS

ar(1), find(1), cpio(4).

The —-Q option can be used with the —p option to
improve performance, but at the penalty of using more
memory.

Path names are restricted to 128 characters. If there are
too many unique linked files, the program runs out of
memory to keep track of them and, thereafter, linking
information is lost. Only the super-user can copy special
files.

CPP(1)

NAME

cpp - the C language preprocessor
SYNOPSIS

/lib/epp [option ...] [ifile [ofile]]
DESCRIPTION

Cpp is the C language preprocessor which is invoked as
the first pass of any C compilation using the cc(1)
command. Thus the output of ¢pp is designed to be in a
form acceptable as input to the next pass of the C
compiler. As the C language evolves, ¢pp and the rest of
the C compilation package will be modified to follow
these changes. Therefore, the use of ¢pp other than in
this framework is not suggested. The preferred way to
invoke ¢pp is through the ¢c¢(1) command, since the
functionality of e¢pp may someday be moved elsewhere.
See m4(1) for a general macro processor.

Cpp optionally accepts two file names as arguments.
Ifile and ofile are respectively the input and output for
the preprocessor. They default to standard input and
standard output if not supplied.

The following options to cpp are recognized:

-P Preprocess the input without producing the line
control information used by the next pass of the
C compiler.

-C By default, cpp strips C-style comments. If the
—C option is specified, all comments (except
those found on cpp directive lines) are passed
along.

~Uname
Remove any initial definition of name, where
name 1s a reserved symbol that is predefined by
the particular preprocessor. The current list of
these possibly reserved symbols includes:

operating system:
ibm, gcos, os, tss, unix

hardware: interdata, pdpl1, u370, u3b,
u3b5, vax, mc68k, mc68000,
mc68010, mc68020

system variants: RES, RT

line(1): lint
—Dname
—Dname=def

Define name as if by a #tdefine directive. If no
=def is given, name is defined as 1. The —D

-1-

CPP(1)

option has lower precedence that the —U option.
That is, if the same name is used in both a —-U
option and a —-D option, the name will be
undefined regardless of the order of the options.

-T Preprocessor symbols are no longer restricted to
eight characters. The —T option forces cpp to
use only the first eight characters for
distinguishing different preprocessor names.
This behavior is the same as previous
preprocessors with respect to the length of names
and is included for backward compatability.

~Idir Change the algorithm for searching for
##include files whose names do not begin with /
to look in dir before looking in the directories on
the standard list. Thus, #include files whose
names are enclosed in * * will be searched for
first in the directory of the file with the
#include line, then in directories named in -I
options, and last in directories on a standard list.
For #include files whose names are enclosed in
< >, the directory of the file with the #include
line is not searched. By default, cpp searches for
the name enclosed in < > in /usr/include;
however, if the shell variable INCROOT is set,
cpp prepends the value of INCROOT to the
standard list. This is particularly useful for
cross-machine compilation.

Two special names are understood by c¢pp. The name
_ _LINE_ _ is defined as the current line number (as a
decimal integer) as known by cpp, and _ _FILE_ _ is
defined as the current file name (as a C string) as known
by ¢pp. They can be used anywhere (including in

macros) just as any other defined name.

All epp directives start with lines begun by #. Any
number of blanks and tabs are allowed between the #
and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with
token-string.

#define name(arg, ..., arg) token-string
Notice that there can be no space between name
and the (. Replace subsequent instances of name
followed by a (, a list of comma-separated set of
tokens, and a) by token-string, where each
occurrence of an arg in the token-string is
replaced by the corresponding token in the

-2-

CPP(1)

comma-separated list. When a macro with
arguments is expanded, the arguments are
placed into the expanded token-string
unchanged. After the entire foken-string has
been expanded, cpp re-starts its scan for names
to expand at the beginning of the newly created
token-string.
#undef name

Cause the definition of name (if any) to be
forgotten from now on.

#finclude " filename”

#include < filename >
Include at this point the contents of filename
(which will then be run through ¢pp). When the
<filename > notation is used, filename is only
searched for in the standard places. See the —I
option above for more detail.

#tline integer-constant ” filename”
Causes ¢pp to generate line control information
for the next pass of the C compiler. Integer-
constant is the line number of the next line and
filename is the file where it comes from. If
" filename” is not given, the current file name is
unchanged.

Fendif
Ends a section of lines begun by a test directive
(##if, #ifdef, or #ifndef). Each test directive
must have a matching #endif.

Ftifdef name
The lines following will appear in the output if
and only if name has been the subject of a
previous #define without being the subject of
an intervening fundef.

#ifndef name
The lines following will not appear in the output
if and only if name has been the subject of a
previous #define without being the subject of
an intervening #fundef.

#if constant-expression
Lines following will appear in the output if and
only if the constant-expression evaluates to non-
zero. All binary non-assignment C operators,
the ?: operator, the unary —, !, and ~ operators
are all legal in constant-expression. The
precedence of the operators is the same as
defined by the C language. There is also a

-3-

CPP (1)

unary operator defined, which can be used in
constant-expression in these two forms: defined
(name) or defined name. This allows the
utility of #fifdef and #ifndef in a #if directive.
Only these operators, integer constants, and
names which are known by ¢pp should be used in
constant-expression. In particular, the sizeof
operator is not available.

f#felse Reverses the notion of the test directive which
matches this directive. So if lines previous to
this directive are ignored, the following lines will
appear in the output. And vice versa.

The test directives and the possible #else directives can

be nested.
FILES
/usr/include standard directory for #finclude
files
SEE ALSO
cc(1), m4(1).
DIAGNOSTICS

The error messages produced by cpp are intended to be
self-explanatory. The line number and filename where
the error occurred are printed along with the diagnostic.

NOTES
When new-line characters were found in argument lists
for macros to be expanded, previous versions of ¢pp put
out the new-lines as they were found and expanded. The
current version of cpp replaces these new-lines with
blanks to alleviate problems that the previous versions
had when this occurred.

NAME

CPSET (1M)

cpset — install object files in binary directories

SYNOPSIS

cpset [-o] object directory [mode owner group]

DESCRIPTION

Cpset is used to install the specified object file in the
given directory. The mode, owner, and group, of the
destination file may be specified on the command line.
If this data is omitted, two results are possible:

If the wuser of c¢pset has administrative
permissions (that is, the user’s numerical ID is
less than 100), the following defaults are
provided:

mode — 0755
owner ~ bin
group — bin

If the user is not an administrator, the default,
owner, and group of the destination file will be
that of the invoker.

An optional argument of —o will force epsef to move
object to OLDobject in the destination directory before
installing the new object.

For example:
cpset echo /bin 0755 bin bin
cpset echo /bin
cpset echo /bin/echo

All the examples above have the same effect (assuming
the user is an administrator). The file echo will be
copied into /bin and will be given 0755, bin, bin as the
mode, owner, and group, respectively.

Cpset utilizes the file /usr/src/destinations to
determine the final destination of a file. The locations
file contains pairs of pathnames separated by spaces or
tabs. The first name is the ”official” destination (for
example: /bin/echo). The second name is the new
destination. For example, if echo is moved from /bin to
éusr/bin, the entry in /usr/src/destinations would
e:

/bin/echo /usr/bin/echo

When the actual installation happens, c¢pset verifies that
the "old” pathname does not exist. If a file exists at
that location, cpset issues a warning and continues. This

-1-

CPSET(1M)

file does not exist on a distribution tape; it is used by
sites to track local command movement. The procedures
used to build the source will be responsible for defining
the ”official” locations of the source.

Cross Generation
The environment variable ROOT will be used to locate
the destination file (in the form
$ROOT /usr/src/destinations). This is necessary in
the cases where cross generation is being done on a
production system.

SEE ALSO
install(1M), make(1).

CRASH(1M)

NAME
crash - examine system images

SYNOPSIS
/ete/crash | system | [namelist |

DESCRIPTION
Crash is an interactive utility for examining an
operating system core image. It has facilities for
interpreting and formatting the various control
structures in the system and certain miscellaneous
functions that are useful when perusing a dump.
The arguments to crash are the file name where the
system image can be found and a namelist file to be
used for symbol values.
The default values are /dev/kmem and /unix; hence,
crash with no arguments can be used to examine an
active system. If a system image file is given, it is
assumed to be a system core dump and the default
process is set to be that of the process running at the
time of the crash. This is determined by a value stored
in a fixed location by the dump mechanism.
The system image may be /dev/kmem, regular files, or
partition zero of a disk.

COMMANDS

Input to crash is typically of the form:
command [options] [structures to be printed].

When allowed, options will modify the format of the
printout. If no specific structure elements are specified,
all valid entries will be used. As an example, proc — 12
15 8 would print process table slots 12, 15, and 3 in a
long format, while proc would print the entire process
table in standard format.

In general, those commands that perform 1/0 with
addresses assume hexadecimal on 32-bit machines and
octal on 16-bit machines.

The current repertory consists of:

user | list of process table entries |
Aliases: uarea, u_aresa, u.
Print the user structure of the named process as
determined by the information contained in the
process table entry. If no entry number is given,
the information from the last executing process
will be printed. Swapped processes produce an
error message.

CRASH(1M)

trace [—ﬂ [list of process table entries |
iases: t.

Generate a kernel stack trace of the current
process. If the —r option is used, the trace
begins at the saved stack frame pointer in kfp.
Otherwise the trace starts at the value of the fp
stored in u_rsav. H no entry number is given,
the information from the last executing process
will be printed.

kfp | stack frame pointer |
Aliases: r8, fp.
Print the program’s idea of the start of the
current stack frame (set initially from a fixed
location in the dump) if no argument is given, or
set the frame pointer to the supplied value.

stack | list of process table entries |
Aliases: stk, s, kernel, k.
Format a dump of the kernel stack of a process.
The addresses shown are virtual system data
addresses rather than true physical locations. If
no entry number is given, the information from
the last executing process will be printed.

proc | —lill']] [list of process table entries]
lases: ps, p.
Format the process table. The —r option causes
only runnable processes to be printed. The —
alone generates a longer listing.

i-node [— | [list of inode table entries |
Aliases: ino, i.
Format the i-node table. The — option will also
print the i-node data block addresses.

file [list of file table entries]
Aliases: files, f.
Format the file table.

lek Aliases: 1
Print the active and sleep record lock tables;
also verify the correctness of the record locking
linked lists.

mount [list of mount table entries |
Aliases: mnt, m.
Format the mount table.

tty [type] [—] [list of tty entries |
Aliases: term, pt, gt, ser.
Print the tty structures. The type argument
determines which structure will be used (such as
pt or ser; the last type is remembered.) The —

-92.

stat

var

CRASH(1M)

option prints the stty(1) parameters for the given
line.

Print certain statistics found in the dump.
These include the panic string (if a panic
occurred), time of crash, system name, and the
registers saved in low memory by the dump
mechanism.

Aliases: tunables, tunable, tune, v.
Print the tunable system parameters.

buf | options | [list of buffer headers |

Aliases: hdr, bufhdr.

Format the system buffer headers. With no
parameters, all buffer headers are shown. With
no options but a list of indexes or addresses, only
the specified buffer headers are shown. With an
option and a single index or address, the chain of
buffer headers beginning at the specified buffer
header i1s shown. Various option show various
chains:

-a Trace the available chain both ways by

following both the av_forw and av_back
fields in the headers.

—af Trace the available chain by following
the av_forw fields.

—ab Trace the available chain by following
the av_back. fields.

—f Trace the chain for the device by
following the b_forw fields. —b Trace
the chain for the device by following the
b_back fields.

-n Follow the b_forw, b_back, av_forw, and
av_back fields for n headers each.

- Follow the b_forw, b_back, av_forw, and
av_back fields all the way through their
chains.

buffer | format | [list of buffers]

Alias: b.

Print the data in a system buffer according to
format. If format is omitted, the previous
format is used. Valid formats include decimal,
octal, hex, character, byte, directory, i-
node, and write. The last creates a file in the
current directory (see FILES) containing the
buffer data.

CRASH(IM)

callout
Aliases: calls, call, ¢, timeout, time, tout.
Print all entries in the callout table.

region &)region table number l}regicn table address |
rints region table. Region table address must
be of the form Ox

fcallout
Aliases: fecalls, fcall, fe, ftimeout, ftime,
ftout.
Print all entries in the fcallout table.

map [list of map names |
Format the named system map structures.

nm [list of symbols ll
Print symbol value and type as found in the
namelist file.

ts | list of text addresses]
Find the closest text symbols to the given
addresses.

ds [list of data addresses |
Find the closest data symbols to the given
addresses.

cblk [-
F]ormat the cblock table. The - option checks
cblock usage.

pm | symbol name or address | | count | [format |

od [symbol name or address | | count | [format |
Aliases: dump, rd.
Dump count data values starting at the symbol
value or address given according to format. Od
dumps virtual addresses; pm dumps physical

addresses. Allowable formats are octal,
longoct, decimal, longdec, character, hex, or
byte.

shm | —F] [list of shared memory header table entries |
ormat the shared memory header table. If the
- option is used, also display information about
the last change, the last shmop, and attached
processes.

shminfo
Display the system’s shared memory information
structure.

msg | _Fl [list of ipc message queue header table entries}f
ormat the ipc message queu header table.
the — option is used, also display information

- 4-

CRASH(IM)

about the last change, the last msgop, and any
messages on the queue contained in the message
headers.

msginfo
Print the system message information structure.

msgtext [format |

[list of ipc message queue header table entries]
Print the text of the messages on a queue
according to format. If format is omitted, the
previous format is used.

! Escape to shell.
q Exit from crash.

notify [list of notification table entries]
Print a requested notification.

unotifyé list of process table entries]
rint queued notifications for given process.

? [start letter |
Print synopsis of commands. Optional start
letter prints only those commands beginning
with that letter.

pfdat [list of page frame numbers |
Alias: pf
Print information about a physical page of
memory.

pfree | -lJ [list of page frame numbers |
If no options are given, print out number of
pages on free list. With the option ’-’, print all
pages on free list. Giving a specific page number
simply reports whether that page is on the free

list.
phash | list of hash slots |
Alias: ph

Print hash lists of physical pages. With no
arguments, print all hash lists with their
respective pages.

pregion | list of process table entries |
Alias: prg
Print currently attached regions of a process.

w Print toggle warning. Primarily useful in
tracking virtual to physical address translations.

ALTASES
There are built-in aliases for many of the formats as well
as those listed for the commands. Some of them are:

CRASH(1M)

byte
character
decimal

b

cfxa.r, c.
dec, ec.
FORMATS AND FORMAT ALIASES

Here are the standard formats and format aliases:

Format Meaning
byte byte
bytedec byte of decimal
byteoct byte of octal
bytehex byte of hexadecimal

character ASCIH character

worddec 2 bytes

wordoct 2 bytes
wordhex 2 bytes

Aliases
b
bd
bo
bh, bx
char, ¢
wd, decimal,
dec, e

wo, octal, oct, o
wx, wh

Id, D

lo, O

Ix, X, hex, h, x
direct, dir, d
ino, i

w

/usr/include/sys/*.h header files for table and structure

information

default system image file
default namelist file
files created containing buffer data

longdec 4 bytes
longoct 4 bytes
longhex 4 bytes
directory directory
inode inode
write write
FILES
/dev/kmem
unix
uf.#
SEE ALSO

mount(1M), nm(1), ps(1), sh(1), stty(1).

NAME

CRON(1M)

cron — clock demon

SYNOPSIS

/etc/cron

DESCRIPTION

FILES

Cron executes commands at specified dates and times.
Regularly scheduled commands can be specified
according to the instructions found in crontab files; users
can submit their own crontab file via the crontad
command. Commands which are to be executed only
once may be submitted via the at command. Since cron
never exits, it should be executed only once. This is best
done by running cron from the initialization process
through the file ;etc/rc (see tnit(1M)).

Cron only examines crontab files and at command files
during process initialization and when a file changes.
This reduces the overhead of checking for new or
changed files at regularly scheduled intervals.

/usr/lib/cron

main cron directory
/usr/lib/cron/log

accounting information
/usr/spool/cron

spool area

SEE ALSO

at(1), crontab(1), init(1M), sh(}g.
MightyFrame Administrator’s Reference Manual.
MiniFrame Admsnistrator’s Manual.

DIAGNOSTICS

A history of all actions taken by c¢ron are recorded in

/usr/lib/cron/log.

NAME

CRONTAB(1)

crontab - user crontab file

SYNOPSIS

crontab [file]
crontab -r
crontab -1

DESCRIPTION

Crontab copies the specified file, or standard input if no
file is specified, into a directory that holds all users’
crontabs. The —r option removes a user’s crontab from
the crontab directory. Crontab —1 will list the crontab
file for the invoking user.

A user is permltted to use crontab if their name appears
in the file éusr lib/cron/cron.allow. If that file does
not exist, the file /usr/lib/cron/cron.deny is checked
to determine if the user should be denied access to
crontab. If neither file exists, only root is allowed to
submit a job. If cron.deny exists and is emtpy, global
usage is permitted. If cron.allow exists and is empty,
no usage is permitted. If cron.allow exists, cron.deny
is ignored. The allow/deny files consist of one user name
per line.

A crontab file consists of lines of six fields each. The
fields are separated by spaces or tabs. The first five are
integer patterns that specify the following:

minute (0-59),

hour (0-23),

day of the month (1-31),

month of the year (1-12),

day of the week (0-6 with 0=Sunday).

Each of these patterns may be either an asterisk
(meaning all legal values), or a list of elements separated
by commas. An element is either a number, or two
numbers separated by a minus sign (meaning an
inclusive range). Note that the specification of days may
be made by two fields (day of the month and day of the
week). If both are specified as a list of elements, both
are adhered to. For example, 0 0 1,15 * 1 would run a
command on the first and fifteenth of each month, as
well as on every Monday. To specify days by only one
field, the other field should be set to * (for example, 0 0
* * 1 would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that
is executed by the shell at the specified times. A percent
character in this field (unless escaped by \) is translated

-1-

CRONTAB(1)

to a new-line character. Only the first line (up to a % or
end of line) of the command field is executed by the
shell. The other lines are made available to the
command as standard input.

The shell is invoked from your $HOME directory with
an arg0 of sh. Users who desire to have their .profile
executed must explicitly do so in the crontab file. Cron
supplies a default environment for every shell, defining
HOME, LOGNAME, SHELL(=/bin/sh), TZ, and
PATH(=:/bin:/usr/bin:/usr /local/bin).

NOTE: Users should remember to redirect the standard
output and standard error of their commands! If this is
not done, any generated output or errors will be mailed
to the user.

FILES
/usr/lib/cron main cron directory
/usr/spool /cron/crontabs spool area
/usr/lib/cron/log accounting information
/usr/lib/cron/cron.allow list of allowed users
/usr/lib/cron/cron.deny list of denied users

SEE ALSO

BUGS

cron(1M), sh(1).
MightyFrame Administrator’s Reference Manual.
MiniFrame Administrator’s Manual.

Crontab runs sh even if your login shell is ¢sh.

—

NAME

CSH(1)

csh — a shell (command interpreter) with C-like syntax

SYNOPSIS

csh [—cefinstvVxX | [arg ... |

DESCRIPTION

Csh is a first implementation of a command language
interpreter incorporating a history mechanism fee
History Substitutions) job control facilities (see Jobs)
and a C-like syntax.

An instance of csh begins by executing commands from
the file .eshrec in the home directory of the invoker. If
this is a login shell, then it also executes /ete/cprofile
and commands from the file .login there. It is typical
for users on crt’s to put fset(1) in their .login files.

In the normal case, the shell will then begin reading
commands from the terminal, prompting with ‘% °.
Processing of arguments and the use of the shell to
process files containing command scripts will be
described later.

The shell then repeatedly performs the following actions:
a line of command input is read and broken into words.
This sequence of words is placed on the command history
list and then parsed. Finally each command in the
current line is executed.

When a login shell terminates, it executes commands
from the file .Jogout in the user’s home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs

with the following exceptions. The characters & | ; <
> (form separate words. If doubled in &&, | |,
< <or> > these pairs form single words. These parser

metacharacters may be made part of other words, or
revented their special meaning, by preceding them with
. A newline preceded by a \ is equivalent to a blank.

In addition strings enclosed in matched pairs of
quotations, °, *, or " form parts of a word,
metacharacters in these strings, including blanks and
tabs, do not form separate words. These quotations have
semantics to be described subsequently. Within pairs of
" or characters a newline preceded by a \ gives a true
newline character.

When the shell’s input is not a terminal, the character #
introduces a comment which continues to the end of the
input line. It is prevented this special meaning when
preceded by \ and in quotations using *, *, and

-1-

CSH(1)

Commands

A simple command is a sequence of words, the first of
which specifies the command to be executed. A simple
command or a sequence of simple commands separated
by the | character forms a pipeline. The output of each
command in a pipeline is connected to the input of the
next. Sequences of pipelines may be separated by ‘;’,
and are then executed sequentially. A sequence of
pipelines may be executed without immediately waiting
for it to terminate by following it with an &.

Any of the above may be placed in () to form a simple
command (which may be a component of a pipeline, etc.)
It is also possible to separate pipelines with | | or &&
indicating, as in the C language, that the second is to be
executed only if the first succeeds or fails, respectively.
(See Ezpresstons.)

Jobs

The shell associates a job with each pipeline. It keeps a
table of current jobs, printed by the jobs command, and
assigns them small integer numbers. When a job is
started asynchronously with &, the shell prints a line
which looks like:

1) 1234

indicating that the jobs which was started
asynchronously was job number 1 and had one (top-
level) process, whose process id was 1234.

The shell maintains a notion of the current and previous
jobs. In output pertaining to jobs, the current job is
marked with a + and the previous job with a —.

Status reporting

This shell learns immediately whenever a process
changes state. It normally informs you whenever a job
becomes blocked so that no further progress is possible,
but only just before it prints a prompt. This is done so
that it does not otherwise disturb your work. If,
however, you set the shell variable notify, the shell will
notify you immediately of changes of status in
background jobs. There is also a shell command notify
which marks a single process so that its status changes
will be immediately reported. By default notify marks
the current process; simply say ‘notify’ after starting a
background job to mark it.

CSH(1)

Substitutions

We now describe the various transformations the shell
performs on the input in the order in which they occur.

History substitutions

History substitutions place words f{rom previous
command input as portions of new commands, making it
easy to repeat commands, repeat arguments of a
previous command in the current command, or fix
spelling mistakes in the previous command with little
typing and a high degree of confidence. History
substitutions begin with the character ! and may begin
anywhere in the input stream (with the proviso that
they do not nest.) This ! may be preceded by a \ to
prevent its special meaning; for convenience, a ! is passed
unchanged when it is followed by a blank, tab, newline,
== or (. (History substitutions also occur when an input
line begins with f. This special abbreviation will be
described later.) Any input line which contains history
substitution is echoed on the terminal before it is
executed as it could have been typed without history
substitution.

Commands input from the terminal which consist of one
or more words are saved on the history list. The history
substitutions reintroduce sequences of words from these
saved commands into the input stream. The size of
which is controlled by the history variable; the previous
command is always retained, regardless of its value.
Commands are numbered sequentially from 1.

For definiteness, consider the following output from the
history command:

9 write michael
10 ex write.c

11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It
is not usually necessary to use event numbers, but the
current event number can be made part of the prompt by
placing ! in the prompt string.

With the current event 13 we can refer to previous
events by event number !11, relatively as in !-2
(referring to the same event), by a prefix of a command
word as in !d for event 12 or wri for event 9, or by a
string contained in a word in the command as in !?mic?
also referring to event 9. These forms, without further
modification, simply reintroduce the words of the
specified events, each separated by a single blank. As a

-3-

CSH(1)

special case !! refers to the previous command; thus !!
alone is essentially a redo.

To select words from an event we can follow the event
specification by : and a designator for the desired words.
The words of a input line are numbered from 0, the first
(usually command) word being 0, the second word (first
argument) being 1, etc. The basic word designators are:

0 first (command) word

n n ’th argument

% first argument, i.e., 1
last argument

% word matched by (immediately preceding) ?s?
search

r-y range of words

-y abbreviates 0—

* abbreviates T—%, or nothing if only one word in
event

T * abbreviates z - $

= like z * but omitting word ‘$’

The : separating the event specification from the word
designator can be omitted if the argument selector begins
with a 1, §, *, — or %. After the optional word
designator can be placed a sequence of modifiers, each
preceded by a :. The following modifiers are defined:

h Remove a trailing pathname component, leaving

the head.

r Remove a trailing .xxx component, leaving the
root name.

e Remove all but the extension .xxx part.

Substitute { for r

t Remove all leading pathname components,
leaving the tail.

& Repeat the previous substitution.

g Apply the change globally, prefixing the above,
e.g., g&.

P Print the new command but do not execute it.

q Quote the substituted words, preventing further
substitutions.

x Like q, but break into words at blanks, tabs and
newlines.

Unless preceded by a ‘g’ the modification is applied only
to the first modifiable word. With substitutions, it is an
error for no word to be applicable.

The left hand side of substitutions are not regular
expressions in the sense of the editors, but rather strings.
Any character may be used as the delimiter in place of
/; a \ quotes the delimiter into the ! and r strings. The

- 4-

CSH(1)

& character in the right hand side is replaced by the
text from the left. A \ quotes & also. A null ! uses the
previous string either from a [or from a contextual scan
string s in !?s?. The trailing delimiter in the
substitution may be omitted if a newline follows
immediately as may the trailing ‘?’ in a contextual scan.
A history reference may be given without an event
specification, e.g. ‘!$’. In this case the reference is to the
previous command unless a previous history reference
occurred on the same line in which case this form repeats
the previous reference. Thus !?foo?{ !$ gives the first
and last arguments from the command matching ?foo?.
A special abbreviation of a history reference occurs when
the first non-blank character of an input line is a ‘1’.
This is equivalent to !:s1 providing a convenient
shorthand for substitutions on the text of the previous
line. Thus tIbflib fixes the spelling of lib in the
previous command. Finally, a history substitution may
be surrounded with { and } if necessary to insulate it
from the characters which follow. Thus, after ls ~1d
“paul we might do !{l}a to do Is-1d “paula, while !la
would look for a command starting la.

Quotations with “and ”

The quotation of strings by ~ and can be used to
prevent all or some of the remaining substitutions.
Strings enclosed in ° are prevented any further
interpretation. Strings enclosed in may be expanded as
described below.

In both cases the resulting text becomes (all or part of) a
single word; only in one special case (see Command
Substitition below) does a quoted string yield parts of
more than one word; “ quoted strings never do.

Alias substitution

The shell maintains a list of aliases which can be
established, displayed and modified by the alias and
unalias commands. After a command line is scanned, it
is parsed into distinct commands and the first word of
each command, left-to-right, is checked to see if it has
an alias. H it does, then the text which is the alias for
that command is reread with the history mechanism
available as though that command were the previous
input line. The resulting words replace the command
and argument list. If no reference is made to the history
list, then the argument list is left unchanged.

Thus if the alias for ls is lIs —1 the command ls /usr
would map to Is —1 /usr, the argument list here being

-5-

CSH(1)

undisturbed. Similarly if the alias for lookup was grep
!t /etc/pasawd then lookup bill would map to grep
bill /etc/passwd.

If an alias is found, the word transformation of the input
text is performed and the aliasing process begins again
on the reformed input line. Looping is prevented if the
first word of the new text is the same as the old by
flagging it to prevent further aliasing. Other loops are
detected and cause an error.

Note that the mechanism allows aliases to introduce
parser metasyntax. Thus we can alias print “pr \!*
Ipr” to make a command which pr’s its arguments to the
line printer.

Variable substitution

The shell maintains a set of variables, each of which has
as value a list of zero or more words. Some of these
variables are set by the shell or referred to by it. For
instance, the argv variable is an image of the shell’s
argument list, and words of this variable’s value are
referred to in special ways.

The values of variables may be displayed and changed
by using the sef and unset commands. Of the variables
referred to by the shell a number are toggles; the shell
does not care what their value is, only whether they are
set or not. For instance, the verbose variable is a toggle
which causes command input to be echoed. The setting
of this variable results from the —v command line
option.

Other operations treat variables numerically. The @
command permits numeric calculations to be performed
and the result assigned to a variable. Variable values
are, however, always represented as (zero or more
strings. For the purposes of numeric operations, the nul
string is considered to be zero, and the second and
subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before
each command is executed, variable substitution is
performed keyed by $ characters. This expansion can be
prevented by preceding the $ with a \ except within s
where it always occurs, and within ‘s where it never
occurs. Strings quoted by * are interpreted later (see
Command substitution below) so $ substitution does not
occur there until later, if at all. A $ is passed unchanged
if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable
expansion, and are variable expanded separately.

-6-

CSH(1)

Otherwise, the command name and entire argument list
are expanded together. It is thus possible for the first
(command) word to this point to generate more than one
word, the first of which becomes the command name,
and the rest of which become arguments.

Unless enclosed in * or given the :q modifier, the results
of variable substitution may eventually be command and
filename substituted. Within a variable whose value
consists of multiple words expands to a (portion of) a
single word, with the words of the variables value
separated by blanks. When the :q modifier is applied to
a substitution the variable will expand to multiple words
with each word separated by a blank and quoted to
prevent later command or filename substitution.

The following metasequences are provided for
introducing variable values into the shell input. Except
as noted, it is an error to reference a variable which is
not set.

$name

${name}
Are replaced by the words of the value of variable
name, each separated by a blank. Braces insulate
name from following characters which would
otherwise be part of it. Shell variables have names
consisting of up to 20 letters and digits starting
with a letter. The underscore character is
considered a letter.
If name is not a shell variable, but is set in the
environment, then that value is returned (but :
modifiers and the other forms given below are not
available in this case).

$name(selector]

${name[selector|}
May be used to select only some of the words from
the value of name. The selector is subjected to ‘§’
substitution and may consist of a single number or
two numbers separated by a . The first word of a
variables value is numbered 1. If the first number
of a range is omitted it defaults to 1. If the last
member of a range is omitted it defaults to
$#name. The selector * selects all words. It is
not an error for a range to be empty if the second
argument is omitted or in range.

$#name

${#name}
Gives the number of words in the variable. This is
useful for later use in a ‘[selector]’.

-7

CSH(1)

$0
Substitutes the name of the file from which
command input is being read. An error occurs if
the name is not known.

$number

${number})

~ Equivalent to $argv[number].
$x

Equivalent to $argv[*].

The modifiers :h, :t, :r, :q, and :x may be applied to the
substitutions above as may :gh, :gt, and :gr. If braces {
} appear in the command form then the modifiers must
appear within the braces. The current implementation
allows only one : modifier on each $ expansion.

The following substitutions may not be modified with :
modifiers.

$7name
${’name}
Substitutes the string 1 if name is set, O if it is not.
$20
Substitutes 1 if the current input filename is
known, 0 if it is not.
3 ‘
Substitute the (decimal) process number of the
(parent) shell.
$<

Substitutes a line from the standard input, with no
further interpretation thereafter. It can be used to
read from the keyboard in a shell script.

Command and filename substitution

The remaining substitutions, command and filename
substitution, are applied selectively to the arguments of
builtin commands. This means that portions of
expressions which are not evaluated are not subjected to
these expansions. For commands which are not internal
to the shell, the command name is substituted separately
from the argument list. This occurs very late, after
input-output redirection is performed, and in a child of
the main shell.

Command substitution

Command substitution is indicated by a command
enclosed in *. The output from such a command is
normally broken into separate words at blanks, tabs and
newlines, with null words being discarded, this text then

-8-

CSH(1)

replacing the original string. Within s, only newlines
force new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new
word. Note that it is thus possible for a command
substitution to yield only part of a word, even if the
command outputs a complete line.

Filename substitution

If a word contains any of the characters *, ?, [, or { or
begins with the character =, then that word is a
candidate for filename substitution, also known as
‘‘globbing.” This word is then regarded as a pattern, and
replaced with an alphabetically sorted list of file names
which match the pattern. In a list of words specifying
filename substitution it is an error for no pattern to
match an existing file name, but it is not required for
each pattern to match. Only the metacharacters *, ?
and | imply pattern matching, the characters ~, and f
being more akin to abbreviations.

In matching filenames, the character . at the beginning
of a filename or immediately following a /, as well as the
character / must be matched explicitly. The character *
matches any string of characters, including the null
string. The character ? matches any single character.
The sequence [...] matches any one of the characters
enclosed. Within [...], a pair of characters separated by
— matches any character lexically between the two.

The character ~ at the beginning of a filename is used to
refer to home directories. Standing alone, ie., 7, it
expands to the invokers home directory as reflected in
the value of the variable home. When followed by a
name consisting of letters, digits and — characters the
shell searches for a user with that name and substitutes
their home directory; thus “ken might expand to
usr/ken and "ken/chmach to /usr/ken/chmach.
f the character ~ is followed by a character other than a
letter or / or appears not at the beginning of a word, it
is left undisturbed.

The metanotation a{b,c,d}e is a shorthand for abe ace
ade . Left to right order is preserved, with results of
matches being sorted separately at a low level to
preserve this order. This construct may be nested. Thus
“source/sl/{oldls, s&.c expands to
/usr/source/sl/oldls.c éusr/source/sl/ls.c whether
or not these files exist without any chance of error if the
home directory for source is /usr/source. Similarly
../{memo,*box} might expand to ../memo ../box

-g-

CSH(1)

../mbox . (Note that memo was not sorted with the
results of matching $box.) As a special case {,} and {}
are passed undisturbed.

Input/output

The standard input and standard output of a command
may be redirected with the following syntax:

< name
Open file name (which is first variable, command
and filename expanded) as the standard input.

< < word

Read the shell input up to a line which is identical
to word. Word is not subjected to variable,
filename or command substitution, and each input
line is compared to word before any substitutions
are done on this input line. Unless a quoting \, ,
‘ or ° appears in word variable and command
substitution is performed on the intervening lines,
allowing \ to quote §, \, and *. Commands which
are substituted have all blanks, tabs, and newlines
preserved, except for the final newline which is
dropped. The resultant text is placed in an
anonymous temporary file which is given to the
command as standard input.

> name

>! name

>& name

>&! name
The file name is used as standard output. If the
file does not exist then it is created; if the file
iexists, its is truncated, its previous contents being
ost.

If the variable noclobber is set, then the file must
not exist or be a character special file (e.g., a
terminal or /dev/null) or an error results. This
helps prevent accidental destruction of files. In
this case the ! forms can be used and suppress this
check.

The forms involving & route the diagnostic output
into the specified file as well as the standard
output. Name is expanded in the same way as <
input filenames are.

> > name
>>& name
>>! name
> >&! name
Uses file name as standard output like > but

- 10 -

CSH(1)

places output at the end of the file. If the variable
noclobber is set, then it is an error for the file not
to exist unless one of the ! forms is given.
Otherwise similar to >.

A command receives the environment in which the shell
was invoked as modified by the input-output parameters
and the presence of the command in a pipeline. Thus,
unlike some previous shells, commands run from a file of
shell commands have no access to the text of the
commands by default; rather they receive the original
standard input of the shell. The < < mechanism should
be used to present inline data. This permits shell
command scripts to function as components of pipelines
and allows the shell to block read its input.

Diagnostic output may be directed through a pipe with
the standard output. Simply use the form | & rather
than just |.

Expressions

A number of the builtin commands (to be described
subsequently) take expressions, in which the operators
are similar to those of C, with the same precedence.
These expressions appear in the @, ezit, if, and whtle
commands. The following operators are available:

[l&&|1&=—'=——"'“<—>=
<> <K< > +-*/ %! ()
Here the precedence increases to the right, ==, =,
= ,and 1", <=, >=, <, and >, <<, and >> +’
and —, , and % bemg, in groups, at the same level.
The ==, 1=, =", and ! operators compare their
arguments as strings; all others operate on numbers.
The operators =" and !” are like = and == except

that the right hand side is a pattern (containing, e.g., *’s,
s and instances of |...]) against which the left hand
operand is matched. hxs reduces the need for use of the
switch statement in shell scripts when all that is really
needed is pattern matching.

Strings that begin with O are considered octal numbers.
Null or missing arguments are considered 0. The result
of all expressions are strings, which represent decimal
numbers. It is important to note that no two
components of an expression can appear in the same
word; except when adjacent to components of
expressions which are syntactically significant to the
parser (& |, <, >, (,)) they should be surrounded by
spaces.

- 11 -

CSH(1)

Also available in expressions as primitive operands are
command executions enclosed in { and } and file
enquiries of the form —Iname where [1s one of:

read access
write access
execute access
existence
ownership
Zero size
plain file
directory

Q..""tNO(‘bki"!

The specified name is command and filename expanded
and then tested to see if it has the specified relationship
to the real user. If the file does not exist or is
inaccessible then all enquiries return false, i.e., O.
Command executions succeed, returning true, i.e., 1, if
the command exits with status O, otherwise they fail,
returning false, ie., 0. If more detailed status
information is required then the command should be
executed outside of an expression and the variable status
examined.

Control flow

The shell contains a number of commands which can be
used to regulate the flow of control in command files
(shell scripts) and (in limited but useful ways) from
terminal input. These commands all operate by forcing
the shell to reread or skip in its input and, due to the
implementation, restrict the placement of some of the
commands.

The foreach, switch, and while statements, as well as the
if-then-else form of the if statement require that the
major keywords appear in a single simple command on
an input line as shown below.

If the shell’s input is not seekable, the shell buffers up
input whenever a loop is being read and performs seeks
in this internal buffer to accomplish the rereading
implied by the loop. (To the extent that this allows,
backward goto’s will succeed on non-seekable inputs.)

Builtin commands

Builtin commands are executed within the shell. If a
builtin command occurs as any component of a pipeline
except the last, it is executed in a subshell.

-12-

alias
alias
alias

CSH(1)

name

name wordlist

The first form prints all aliases. The second form
prints the alias for name. The final form assigns
the specified wordlist as the alias of name; wordlist
is command and filename substituted. Name is not
allowed to be alias or unalias.

break

Causes execution to resume after the end of the
nearest enclosing foreach or while. The remaining
commands on the current line are executed.
Multi-level breaks are thus possible by writing
them all on one line.

breaksw

Causes a break from a switch, resuming after the
endsw.

case label:

cd

A label in a switch statement as discussed below.

cd name
chdir

chdir name

Change the shells working directory to directory
name. If no argument is given then change to the
home directory of the user.

If name is not found as a subdirectory of the
current directory (and does not begin with /, ./ or
../), then each component of the variable cdpath is
checked to see if it has a subdirectory name.
Finally, if all else fails but name is a shell variable
whose value begins with /, then this is tried to see
if it is a directory.

continue

Continue execution of the nearest enclosing while
or foreach. The rest of the commands on the
current line are executed.

default:

dirs

Labels the default case in a switch statement. The
default should come after all case labels.

Prints the directory stack; the top of the stack is at
the left, the first directory in the stack being the
current directory.

- 13 -

CSH(1)

echo wordlist

echo —n wordlist
The specified words are written to the shells
standard output, separated by spaces, and
terminated with a newline unless the —n option is
specified. Note that this differs from /bin/echo.

else

end

endif

endsw
See the description of the foreack, ¢f, switch, and
while statements below.

eval arg ... ,

(As in sh(1).) The arguments are read as input to
the shell and the resulting command(s) executed in
the context of the current shell. This is usually
used to execute commands generated as the result
of command or variable substitution, since parsing
occurs before these substitutions. See tset(1) for an
example of using eval.

exec command
The specified command is executed in place of the
current shell.

exit

exit(expr)
The shell exits either with the value of the status
variable (first form) or with the value of the
specified ezpr (second form).

foreach name (wordlist)

end
The variable name is successively set to each
member of wordlist and the sequence of commands
between this command and the matching end are
executed. (Both foreach and end must appear
alone on separate lines.)

The builtin command continue may be used to
continue the loop prematurely and the builtin
command breek to terminate it prematurely.
When this command is read from the terminal, the
loop is read up once prompting with ? before any
statements in the loop are executed. If you make a
mistake typing in a loop at the terminal you can
rub it out.

glob wordlist
Like echo but no \ escapes are recognized and

- 14 -

CSH(1)

words are delimited by null characters in the
output, Useful for programs which wish to use the
shell to filename expand a list of words.

goto word
The specified word is filename and command
expanded to yield a string of the form ‘label’. The
shell rewinds its input as much as possible and
searches for a line of the form ‘label:’ possibly
preceded by blanks or tabs. Execution continues
after the specified line.

history

history n

history —r n
Displays the history event list; if n is given only
the n most recent events are printed. The —r
option reverses the order of printout to be most
recent first rather than oldest first.

if (expr) command

If the specified expression evaluates true, then the
single command with arguments is executed.
Variable substitution on command happens early,
at the same time it does for the rest of the ff
command. Command must be a simple command,
not a pipeline, a command list, or a parenthesized
command list. Input/output redirection occurs
even if ezpr is false, when command is not
executed (this is a bug).

if (expr) then
else if (expr2) then
else’

endif
If the specified ezpr is true then the commands to
the first else are executed; else if ezpr2 is true then
the commands to the second else are executed, etc.
Any number of else-ff pairs are possible; only one
endif is needed. The else part is likewise optional.
The words else and endif must appear at the
eginning of input lines; the #f must appear alone
on its input line or after an else.)

jobs

jobs -1
Lists the active jobs; given the —l options lists
process id’s in addition to the normal information.

- 15 -

CSH(1)

kill %job

kill —sig %job ..

kill pid

kill —sig pid ...

kill -1
Sends either the TERM (terminate) signal or the
specified signal to the specified jobs or processes.
Signals are either given by number or by names (as
given in /usr/include/signal.h, stripped of the
prefix “SIG‘”) The signal names are listed by kl"
—1. There is no default, saying just kill does not
send a signal to the current job.

limit

limit resource

limit resource mazimum-use
Limits the consumption by the current process and
each process it creates to not individually exceed
mazimum-use on the specified resource. If no
maztmum-use is given, then the current limit is
printed; if no resource is given, then all limitations
are given.

Resources controllable currently include filesize
(the largest single file which can be created).

The mazimum-use may be given as a (floating
point or integer) number followed by a scale factor.
The default scale i Is ‘k’ or ‘kilobytes’ (1024 bytes);
a scale factor of ‘m’ or ‘megabytes’ may also be
used.

For both resource names and scale factors,
unambiguous prefixes of the names suffice.

login
Terminate a login shell, replacing it with an
instance of /bin/login. This is one way to log off,
included for compatibility with sh(1)

logout
Terminate a login shell. Especially useful if
tgnoreeof is set.

nice

nice +number

nice command

nice +number command
The first form sets the nice for this shell to 4. The
second form sets the ntce to the given number.
The final two forms run command at priority 4 and
number respectively. The super-user may specify
negative niceness by using nice —number

- 16 -

CSH(1)

Command is always executed in a sub-shell, and
the restrictions place on commands in simple f
statements apply.

nohup

nohup command
The first form can be used in shell seripts to cause
hangups to be ignored for the remainder of the
script. The second form causes the specified
command to be run with hangups ignored. All
processes detached with & are effectively nohup’ed.

notify

notify %job ...
Causes the shell to notify the user asynchronously
when the status of the current or specified jobs
changes; normally notification is presented before a
prompt. This is automatic if the shell variable
notify is set.

onintr

onintr -

onintr label
Control the action of the shell on interrupts. The
first form restores the default action of the shell on
interrupts which is to terminate shell scripts or to
return to the terminal command input level. The
second form onintr — causes all interrupts to be
ignored. The final form causes the shell to execute
a gotolabel when an interrupt is received or a child
process terminates because it was interrupted.

In any case, if the shell is running detached and
interrupts are being ignored, all forms of onintr
have no meaning and interrupts continue to be
ignored by the shell and all invoked commands.

popd

popd +n
Pops the directory stack, returning to the new top
directory. With a argument ‘+n’ discards the n th
entry in the stack. The elements of the directory
stack are numbered from O starting at the top.

pushd

pushd name

pushd +n
With no arguments, pushd exchanges the top two
elements of the directory stack. Given a name
argument, pushd changes to the new directory (a la
cds and pushes the old current working directory
(as in cwd) onto the directory stack. With a

-17 -

CSH(1)

numeric argument, rotates the nth argument of
the directory stack around to be the top element
and changes to it. The members of the directory
stack are numbered from the top starting at 0.

rehash

Causes the internal hash table of the contents of
the directories in the path variable to be
recomputed. This is needed if new commands are
added to directories in the path while you are
logged in. This should only be necessary if you
add commands to one of your own directories, or if
a systems programmer changes the contents of one
of the system directories.

repeat count command
The specified command which is subject to the
same restrictions as the command in the one line if
statement above, is executed count times. I/O
redirections occur exactly once, even if count is 0.

set

set name

set name=word

set name[index|=word

set name=(wordlist)
The first form of the command shows the value of
all shell variables. Variables which have other
than a single word as value print as a
parenthesized word list. The second form sets
name to the null string. The third form sets name
to the single word. The fourth form sets the
index’th component of name to word; this
component must already exist. The final form sets
name to the list of words in wordlist. In all cases
the value is command and filename expanded.

These arguments may be repeated to set multiple
values in a single set command. Note however,
that variable expansion happens for all arguments
before any setting occurs.

setenv name value
Sets the value of environment variable name to be
value, a single string. The most commonly used
environment variables USER, TERM, PATH, and
CDPATH are automatically imported to and
exported from the csh variables user, term, path,
and cdpath; there is no need to use setenv for these.

- 18 -

shift

CSH(1)

shift variable

The members of argyv are shifted to the left,
discarding argv/1/. It 1s an error for argv not to be
set or to have less than one word as value. The
second form performs the same function on the
specified variable.

source name

The shell reads commands from name. Source
commands may be nested; if they are nested too
deeply the shell may run out of file descriptors. An
error in a source at any level terminates all nested
source commands.

switch (string)
case strl:

breaksw

&éfault:

b;éaksw
endsw

time
time

Each case label is successively matched, against the
specified string which is first command and
filename expanded. The file metacharacters *, ?,
and [...] may be used in the case labels, which are
variable expanded. If none of the labels match
before a ‘default’ label is found, then the execution
begins after the default label. Each case label and
the default label must appear at the beginning of a
line. The command breaksw causes execution to
continue after the endsw. Otherwise control may
fall through case labels and default labels as in C.
I no label matches and there is no default,
execution continues after the endsw.

command

With no argument, a summary of time used by this
shell and its children is printed. If arguments are
given the specified simple command is timed and a
time summary as described under the time variable
is printed. If necessary, an extra shell is created to
print the time statistic when the command
completes.

ulimit —f n

imposes a size limit of n.
—f imposes a size limit of n blocks on files written

-19 -

CSH(1)

by child processes (files of any size may be read).
With no argument, the current limit is printed.

umask

umask value
The file creation mask is displayed (first form) or
set to the specified value (second form). The mask
is given in octal. Common values for the mask are
002 giving all access to the group and read and
execute access to others or 022 giving all access

except no write access for users in the group or -

others.

unalias pattern
All aliases whose names match the specified
pattern are discarded. Thus all aliases are removed
by ‘unalias *’. It is not an error for nothing to be
unaliased.

unhash
Use of the internal hash table to speed location of
executed programs is disabled.

unset pattern
All variables whose names match the specified
pattern are removed. Thus all variables are
removed by ‘unset *’; this has noticeably
distasteful side-effects. It is not an error for
nothing to be unset.

unsetenv pattern
Removes all variables whose name match the
specified pattern from the environment. See also
the setenv command above and printenv(1).

wait
All background jobs are waited for. If the shell is
interactive, then an interrupt can disrupt the wait,
at which time the shell prints names and job
numbers of all jobs known to be outstanding.

while (expr)

end

While the specified expression evaluates non-zero,
the commands between the while and the matching
end are evaluated. Break and continue may be
used to terminate or continue the loop
prematurely. (The while and end must appear
alone on their input lines.) Prompting occurs here
the first time through the loop as for the foreach
statement if the input is a terminal.

- 90 -

CSH(1)

@

@ name = expr

@ name[indexr:= expr
The first form prints the values of all the shell
variables. The second form sets the specified name
to the value of expr. If the expression contains <,
>, &, or |, then at least this part of the expression
must be placed within (). The third form assigns
the value of expr to the index’th argument of name.
Both name and its index’th component must
already exist. Beware of conflicts between the kill
character and this use of @.

The operators #=, +=, etc., are available as in
C. The space separating the name from the
assignment operator is optional. Spaces are,
however, mandatory in separating components of
ezxpr which would otherwise be single words.

Special postfix ++4 and — — operators increment
and decrement name respectively, i.e., @ i+4++.

Pre-defined and environment variables

The following variables have special meaning to the
shell. Of these, argv, cwd, home, path, cdpath, prompt,
shell and status are always set by the shell. Except for
cwd and status this setting occurs only at initialization;
these variables will not then be modified unless this is
done explicitly by the user.

This shell copies the environment variable USER into
the variable user, TERM into term, and HOME into
home, and copies these back into the environment
whenever the normal shell variables are reset. The
environment variable PATH is likewise handled; it is not
necessary to worry about its setting other than in the file
.eshre as inferior csh processes will import the definition
of path from the environment, and re-export it if you
then change it.

argv Set to the arguments to the shell, it is
from this variable that positional
parameters are substituted, ie., $1 is
replaced by $argv[1], etc.

cedpath Gives a list of alternate directories
searched to find subdirectories in chdir
commands.

ewd The full pathname of the current
directory.

.91 -

echo

histchars

history

home

.
ignoreeof

mail

CSH(1)

Set when the —x command line option
is given. Causes each command and its
arguments to be echoed just before it is
executed. For non-builtin commands
all expansions occur before echoing.
Builtin commands are echoed before
command and filename substitution,
since these substitutions are then done
selectively.

Can be given a string value to change
the characters used in history
substitution. The first character of its
value is used as the history substitution
character, replacing the default
character !. The second character of its
value replaces the character 1 in quick
substitutions.

Can be given a numeric value to control
the size of the history list. Any
command which has been referenced in
this many events will not be discarded.
Too large values of history may run the
shell out of memory. The last executed
command is always saved on the history
list.

The home directory of the invoker,
initialized from the environment. The
filename expansion of ~ refers to this
variable.

If set the shell ignores end-of-file from
input devices which are terminals. This

prevents shells from accidentally being
killed by code-D’s.

The files where the shell checks for
mail. This is done after each command
completion which will result in a
prompt, if a specified interval has
elapsed. The shell says “‘You have new
mail.” if the file exists with an access
time not greater than its modify time.

If the first word of the value of matl is
numeric it specifies a different mail
checking interval, in seconds, than the
default, which is 10 minutes.

If multiple mail files are specified, then
the shell says ‘New mail in name’ when

-99 .

noclobber

noglob

nonomatch

notify

path

prompt

CSH(1)

there is mail in the file name.

As described in the section on
Input/output, restrictions are placed on
output redirection to insure that files
are not accidentally destroyed, and that
> > redirections refer to existing files.

If set, filename expansion is inhibited.
This is most useful in shell scripts
which are not dealing with filenames, or
after a list of filenames has been
obtained and further expansions are not
desirable.

If set, it 1s not an error for a filename
expansion to not match any existing
files; rather the primitive pattern is
returned. It is still an error for the
primitive pattern to be malformed, i.e.,
echo { still gives an error.

If set, the shell notifies asynchronously
of job completions. The default is to
rather present job completions just
before printing a prompt.

Each word of the path variable specifies
a directory in which commands are to
be sought for execution. A null word
specifies the current directory. If there
is no path variable then only full path
names will execute. The usual search
path is ., /bin, and /usr/bin, but this
may vary from system to system. For
the super-user the default search path is
/ete, /bin, and /usr/bin. A shell
which 1s given neither the —¢ nor the
—t option will normally hash the
contents of the directories in the path
variable after reading .cshre, and each
time the path variable is reset. If new
commands are added to these
directories while the shell is active, it
may be necessary to give the rehash or
the commands may not be found.

The string which is printed before each
command is read from an interactive
terminal input. If a ! appears in the
string it will be replaced by the current
event number unless a preceding \ is

- 923 -

CSH(1)

given. Default is %9, or # for the
super-user.

shell The file in which the shell object code
resides. This is used in forking shells to
interpret files which have execute bits
set, but which are not executable by the
system. (See the description of Non-
builtin ommand FErecution below.
Initialized to the (system-dependent
home of the shell.

status The status returned by the last
command. If it terminated abnormally,
then 0200 is added to the status.
Builtin commands which fail return exit
status 1, all other builtin commands set
status 0.

time Controls automatic timing of
commands. If set, then any command
which takes more than this many cpu
seconds will cause a line giving user,
system, and real times and a utilization
percentage which is the ratio of user
plus system times to real time to be
printed when it terminates.

verbose Set by the —v command line option,
causes the words of each command to
be printed after history substitution.

Non-builtin command execution

When a command to be executed is found to not be a
builtin command, the shell attempts to execute the
command via ezecv(2). Each word in the variable path
names a directory from which the shell will attempt to
execute the command. If it is given neither a —e nor a
—t option, the shell will hash the names in these
directories into an internal table so that it will only try
an erec in a directory if there is a possibility that the
command resides there. This greatly speeds command
location when a large number of directories are present
in the search path. If this mechanism has been turned
off (via unhash), or if the shell was given a —c or —t
argument, and in any case for each directory component
of path which does not begin with a /, the shell
concatenates with the given command name to form a
path name of a file which it then attempts to execute.

Parenthesized commands are always executed in a
subshell. Thus (cd ; pwd) ; pwd prints the home

- 924 -

CSH(1)

directory; leaving you where you were (printing this after
the home directory), while ed ; pwd leaves you in the
home directory. Parenthesized commands are most often
used to prevent chdir from affecting the current shell.

If the file has execute permissions but is not an
executable binary to the system, then it is assumed to be
a file containing shell commands and a new shell is
spawned to read it.

If there is an altas for shell then the words of the alias
will be prepended to the argument list to form the shell
command. The first word of the alfas should be the full
path name of the shell (e.g., $shell). Note that this is a
special, late occurring, case of altes substitution, and
only allows words to be prepended to the argument list
without modification.

Argument list processing

If argument O to the shell is — then this is a login shell.
The flag arguments are interpreted as follows:

—¢ Commands are read from the (single) following
argument which must be present. Any remaining
arguments are placed in argv.

—e The shell exits if any invoked command terminates
abnormally or yields a non-zero exit status.

—f The shell will start faster, because it will neither
search for nor execute commands from the file
.cshre in the invoker’s home directory.

—i The shell is interactive and prompts for its top-
level input, even if it appears to not be a terminal.
Shells are interactive without this option if their
inputs and outputs are terminals.

—n Commands are parsed, but not executed. This aids
in syntactic checking of shell scripts.

—s8 Command input is taken from the standard input.

—t A single line of input is read and executed. A
may be used to escape the newline at the end o
this line and continue onto another line.

—v Causes the verbose variable to be set, with the
effect that command input is echoed after history
substitution.

—~x Causes the echo variable to be set, so that
commands are echoed immediately before
execution.

- 925 -

CSH(1)

-V Causes the verbose variable to be set even before
.cshre is executed.

-X Isto—-xas -V isto —v.

After processing of flag arguments if arguments remain
but none of the —e, —i, —8, or —t options was given the
first argument is taken as the name of a file of
commands to be executed. The shell opens this file, and
saves its name for possible resubstitution by $0. Since
many systems use either the standard version 6 or
version 7 shells whose shell scripts are not compatible
with this shell, the shell will execute such a ‘“‘standard”
shell if the first character of a script is not a #, ie., if
the script does not start with a comment. Remaining
arguments initialize the variable argv.

Signal handling

The shell normally ignores gqust signals. Jobs running
detached (by the & command) are immune to signals
generated from the keyboard, including hangups. Other
signals have the values which the shell inherited from its
parent. The shells handling of interrupts and terminate
signals in shell scripts can be controlled by onintr. Login
shells catch the terminate signal; otherwise this signal is
passed on to children from the state in the shell’s parent.
In no case are interrupts allowed when a login shell is
reading the file .logout.

AUTHOR

William Joy. Job control and directory stack features
first implemented by J.E. Kulp of I.I.LA.S.A, Laxenburg,
Austria, with different syntax than that used now.

FILES
/etc/cprofile Read by the login shell before .eshre.
"/.cshre Read at beginning of execution by each
shell.
~/ login Read by login shell, after .cshre at
login.
"/ .logout Read by login shell, at logout.
/bin/sh Standard shell, for shell scripts not
starting with a #.
/tmp/sh* Temporary file for < <.
/etc/passwd Source of home directories for "name.
LIMITATIONS

Words can be no longer than 1024 characters. The
system limits argument lists to 10240 characters. The
number of arguments to a command which involves

- 96 -

CSH(1)

filename expansion is limited to 1/6’th the number of
characters allowed in an argument list. Command
substitutions may substitute no more characters than are
allowed in an argument list. To detect looping, the shell
restricts the number of alias substitutions on a single line
to 20.

SEE ALSC

NOTES

BUGS

sh(1), shl(1), access(2), fork(2), pipe(2), umask(2),
wa1t(2) aout(5)

Csh may not be compatible with some shell commands,
such as at(1), newgrp(1), and wm(1).

If the flrst character in an executable file is #, the file is
interpreted as a ¢sh script. Because # is interpreted as a
comment delimiter by sh, it is recommended that sh
scripts begin with a blank line.

Alias substitution is most often used to clumsily simulate
shell procedures; shell procedures should be provided
rather than aliases.

Commands within loops, prompted for by ?, are not
placed in the history list. Csh should parse the control
structure rather recognizing built-in commands. This
would allow control commands to be placed anywhere, to
be combined with |, and to be used with & and ;
metasyntax.

It should be possible to use the : modifiers on the output
of command substitutions. All and more than one :
modifier should be allowed on $ substitutions.

- 97 -

NAME

CSPLIT(1)

csplit — context split

SYNOPSIS

esplit [-s8] [—k| [f prefix| file argl [. . .

DESCRIPTION
Csplit reads file and separates it intc n-+1 sections,

defined by the arguments argl. .. argn.

argn|

By default

the sections are placed in xx00 . . . xxn (n may not be
greater than 99). These sections get the following pieces

of file:

00: From the start of file up to (but not
including) the line referenced by arg!.
01: From the line referenced by argl up to the

line referenced by arg2.

n+1: From the line referenced by argn to the

end of file.

If the file argument is a —, then standard input is used.

The options to csplit are:

-8 Csplit normally prints the character
counts for each file created. If the —s
option is present, csplit suppresses the
printing of all character counts.

-k Csplit normally removes created files if
an error occurs. If the —k option is
present, csplit leaves previously created

files intact.

~f prefix If the —f option is used, the created
files are named prefiz00 . . . prefizn.

The default is xx00 . . .

The arguments (argl
combination of the following:

xxn.

argn) to csplit can be a

/rezp/ A file is to be created for the section
from the current line up to (but not
including) the line containing the regular

expression rezp. The

current line

becomes the line containing rezp. This
argument may be followed by an
optional + or — some number of lines

(e.g., /Page/—5).
%rexp %

This argument is the same as /rezp/,
except that no file i1s created for the

section.

-1-

S

CSPLIT(1)

Inno A file 1s to be created from the current
line up to (but not including) inno. The
current line becomes Inno.

{num} Repeat argument. This argument may
follow any of the above arguments. If it
follows a rezxp type argument, that
argument is applied num more times. If
it follows Inno, the file will be split every
Inno lines (num times) from that point.

Enclose all rezp type arguments that contain blanks or -
other characters meaningful to the Shell in the
appropriate quotes. Regular expressions may not contain
embedded new-lines. Csplit does not affect the original

file; it is the users responsibility to remove it.

EXAMPLES
esplit —f cobol file !/procedure
division/! /par5./ /parl6./

This example creates four files, cobol00 . . . cobol03.
After editing the ““split” files, they can be recombined as
follows:

cat cobol0{0-3] > file
Note that this example overwrites the original file.

esplit —k file 100 {99}

This example would split the file at every 100 lines, up
to 10,000 lines. The —k option causes the created files
to be retained if there are less than 10,000 lines;
however, an error message would still be printed.

esplit —k prog.c '%main(%' '/"}/+1' {20}

Assuming that prog.c follows the normal C coding
convention of ending routines with a } at the beginning
of the line, this example will create a file containing each
separate C routine {up to 21) in prog.c.

SEE ALSO
ed(1), sh(1), regexp(5).
DIAGNOSTICS
Self explanatory except for:
arg — out of range
which means that the given argument did not reference a
line between the current position and the end of the file.

CT(1C)

NAME

ct — spawn getty to a remote terminal
SYNOPSIS

et [-h | [—v][—wn | [—sspeed] telno ...
DESCRIPTION

Ct dials the phone number of a modem that is attached
to a terminal, and spawns a getty process to that
terminal. Telno is a telephone number, with equal signs
for secondary dial tones and minus signs for delays at
appropriate places. If more than one telephone number
is specified, ¢t will try each in succession until one
answers; this is useful for specifying alternate dialing
paths.

Ct will try each line listed in the file /usr/lib/uucp/L-
devices until it finds an available line with appropriate
attributes or runs out of entries. If there are no free
lines, ¢t will ask if it should wait for one, and if so, for
how many minutes it should wait before it gives up. Ct
will continue to try to open the dialers at one-minute
intervals until the specified limit is exceeded. The
dialogue may be overridden by specifying the —wn
option, where n is the maximum number of minutes that
¢t is to wait for a line.

Normally, ¢t will hang up the current line, so that that
line can answer the incoming call. The —h option will
prevent this action. If the —v option is used, ¢t will
send a running narrative to the standard error output
stream.

The data rate may be set with the —s option, where
speed is expressed in baud. The default rate is 300.

After the user on the destination terminal logs out, ct
prompts, Reconnect? If the response begins with the
letter n the line will be dropped; otherwise, getty will be
started again and the login: prompt will be printed.

Of course, the destination terminal must be attached to
a modem that can answer the telephone.

FILES
/usr/lib/uucp/L-devices
Jusr/adm/ctlog

SEE ALSO

cu(1C), login(1), uucp(1C).

CTAGS(1)

NAME
ctags — create a tags file

SYNOPSIS
ctags [-u | [-v] [-w]| [-x | name ...

DESCRIPTION
Ctags creates a tags file, tags, from the specified C,
Pascal, and FORTRAN sources. The ez(l) tags
command uses a tags file to find specified objects,
functions in this case, in a group of files. Each line of
the tags file contains the function name, the file in which
it is defined, and a scanning pattern used to find the
function definition, with the fields separated by blanks
or tabs.
If a file’s name ends with .c or .h, it is searched for C
function and macro definitions. The main function is
treated as a special case, so as to permit multiple
programs in one directory: the tag is the name of the
file, striped of leading directory names and trailing .c,
with M prepended.
If a file’s name does not end with .e¢ or .h, it is searched
for Pascal definitions, then for FORTRAN definitions,
then for C definitions.
These are the options:
—w No warning diagnostics.
—u Update the tags file. (It is usually faster just to

rebuild the tags file.)
—a Append new definitions to the end of the tags file.
—x Process a list of function definitions, with line
numbers and file names.

FILES
tags output tags file

SEE ALSO
ex(1), vi(1).

AUTHOR
Ken Arnold; FORTRAN added by Jim Kleckner; Bill
Joy added Pascal and —x replacing caref; C typedefs
added by Ed Pelegri-Llopart.

WARNING

Recognition of FORTRAN and Pascal objects is done is a
very simpleminded way. No attempt is made to deal
with block structure.

CTINSTALL (1)

NAME
ctinstall — install software

SYNOPSIS
/install/ctinstall | update | install | | groups ... |

DESCRIPTION
Ctinstall is used to install operating system software and
application software from quarter-inch tape and diskette
media. It must be invoked in single-user mode.

If no arguments are provided to ctinstall, the user will be
prompted for the required information. The option
tnstall is for raw, or first installs; update is for software
updates; groups is any number of group names specified
in the software product’s associated proto file.

EXAMPLE
A sample installation session is illustrated here. User
responses are shown in bold type. A carriage return is
implied after all user input.

ed/

halt

Ok To Stop Or Reset Processor
/install/ctinstall

@(#)ctinstall 1.1
Positioning the Tape for Product Installation.
Update or new installation of ISAM 5.00 ('update’ or ‘install')?: install

Running fsck on root file system.
If there are any problems the system will re-boot.
After the system is back up re-execute /install/ctinstall in single user mode.

/dev/dsk/c0d0s1
File System: Volume:

** Phase 1 - Check Blocks and Sizes

** Phase 2 - Check Pathnames

** Phase 3 - Check Connectivity

** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List

NNN files NNNN blocks NNNN free

Unmounting /usr.

Running fsck on /usr file system.

CTINSTALL(1)

/dev/dsk/c0d0s3
File System: Volume:

** Phase 1 - Check Blocks and Sizes

** Phase 2 - Check Pathnames

** Phase 3 - Check Connectivity

** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List

NNN files NNNN blocks NNNN free

Re-mounting /usr. -

Please enter your group choices for ISAM separated by blanks.
Your choices are:

ISAM
If you'd like all of the groups, type 'all’: ISAM

This procedure will install the following ISAM 5.00 group(s) on your system:
ISAM

BE SURE YOU BACK UP ANYTHING YOU HAVE CHANGED
BEFORE PROCEEDING.

Type ’yes’ to continue: yes |

Starting to Install Group(s) ISAM. '
Installing Group ISAM. i

Calculating size required for group ISAM.

Installation will require an additional NNN root Blocks (512 Byte Blocks).
(Currently NNNN 512 Byte blocks are available on root.)

Installation will require an additional NNN /usr Blocks (512 Byte Blocks).
(Currently NNNN 512 Byte blocks are available on /usr.)

Installing required ISAM files.
install /IsamRel
usr/include/isam.h
usr/include/iserc.h

usr/lib /isam/IsamConfig
usr/lib/isam/IsamCreate
usr /lib /isam/IsamProtect
usr /lib /isam/IsamReorg
usr/lib /isam/IsamStat

usr /lib /isam/IsamStop
usr/lib /isam/IsamTransfer
usr/lib /isam/IxFilter

CTINSTALL(1)

usr/lib /isam/IxSpec
usr/lib /isam/isam

Checking permissions, modes and omissions on new ISAM commands.
Completed Installation of Group ISAM.
Rewinding tape.

Installation Complete.

SEE ALSO
qlist(1), qinstallp).
Release Notice for software product being installed.
BUGS
Ctinstall does not understand mountable file systems
other than /usr.

CTRACE(1)

NAME

ctrace — C program debugger
SYNOPSIS

ctrace | options | | file |
DESCRIPTION

Ctrace allows you to follow the execution of a C
program, statement by statement. The effect is similar
to executing a shell procedure with the —x option.
Ctrace reads the C program in file (or from standard
input if you do not specify file), inserts statements to
print the text of each executable statement and the
values of all variables referenced or modified, and writes
the modified program to the standard output. You must
put the output of ctrace into a temporary file because
the c¢e(l) command does not allow the use of a pipe.
You then compile and execute this file.

As each statement in the program executes it will be
listed at the terminal, followed by the name and value of
any variables referenced or modified in the statement,
followed by any output from the statement. Loops in
the trace output are detected and tracing is stopped until
the loop is exited or a different sequence of statements
within the loop is executed. A warning message is
printed every 1000 times through the loop to help you
detect infinite loops. The trace output goes to the
standard output so you can put it into a file for
examination with an editor or the b&fs(1) or tasl(1)
commands.

The only options you will commonly use are:

—f functions Trace only these functions.
~v functions Trace all but these functions.

You may want to add to the default formats for printing
variables. Long and pointer variables are always printed
as signed integers. Pointers to character arrays are also
printed as strings if appropriate. Char, short, and int
variables are also printed as signed integers and, if
appropriate, as characters. Double variables are printed
as floating point numbers in scientific notation. You can
request that variables be printed in additional formats, if
appropriate, with these options:

-0 Octal

—-x Hexadecimal
-u Unsigned

—e Floating point

CTRACE(1)

These options are used only in special circumstances:

—1In

-P

Check n consecutively executed statements for
looping trace output, instead of the default of 20.
Use 0 to get all the trace output from loops.
Suppress redundant trace output from simple
assignment statements and string copy function
calls. This option can hide a bug caused by use
of the = operator in place of the === operator.
Trace n variables per statement instead of the
default of 10 (the maximum number is 20). The
Diagnostics section explains when to use this
option.

Run the C preprocessor on the input before
tracing it. You can also use the —D, —I, and -U
¢c¢(1) preprocessor options.

These options are used to tailor the run-time trace
package when the traced program will run in an
environment other than CTIX or other UNIX-compatible
systems:

-b

EXAMPLE

Use only basic functions in the trace code, that
is, those in ctype(3C), printf(3S), and string(3C).
These are wusually available even In cross-
compilers for microprocessors. In particular, this
option is needed when the traced program runs
under an operating system that does not have
signal(2), fflush(3S), longsmp(3C), or setymp(3C).
Change the trace print function from the default
of ’printf(’. For example, 'fprintf(stderr,” would
send the trace to the standard error output.

Use file fin place of the runtime.c trace function
package. This lets you change the entire print
function, instead of just the name and leading
arguments (see the -p option).

If the file le.c contains this C program:

1 #include <stdio.h>

2 I{nain() /* count lines in input */
3

4 int ¢, nl;

5

6 nl = 0;

7 while ((¢c = getchar()) != EOF)
8 if (¢ ="\n’)

9 +-+nl;

10 printf(”%d\n”, nl);

CTRACE(1)

and you enter these commands and test data:

cc le.c
a.out

1
(entl-d),

the program will be compiled and executed. The output
of the program will be the number 2, which is not
correct because there is only one line in the test data.
The error in this program is common, but subtle. If you
invoke ctrace with these commands:

ctrace lc.c >temp.c
cc temp.c
a.out

the output will be:

2 main()
6 nl = 0;
nl==0

7 while ((¢ = ge/tchar()) != EOF)

The program is now waiting for input. If you enter the
same test data as before, the output will be:

*c==4(19or’{”‘;
8 if (¢ =’\n’
/* ¢ ==10o0r"\n’ */
9 ++nl
7 while ((c = getc(xar 1= EOF/)
/¥ ¢ ===100r \n’ *

8 if (¢ = "\n’)

/¥ ¢ ==100r \n’ */
9 ++nl,

* nl == *

7 while ((¢ = getchar()) = EOF)

If you now enter an end of file character (cntl-d) the
final outpuc will be:

[*¥ ¢ ==-1%

10 prmtf(”%d\n” 1);
/* nl == /2
return

Note that the program output printed at the end of the
trace line for the nl variable. Also note the return
comment added by ctrace at the end of the trace output.
This shows the implicit return at the terminating brace
in the function.

CTRACE(1)

The trace output shows that variable ¢ is assigned the
value 'l’ in line 7, but in line 8 it has the value ’\n’.
Once your attention is drawn to this if statement, you
will probably realize that you used the assignment
operator (==) in place of the equal operator (==). You
can easily miss this error during code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire
program file, unless you use the -f or -v options to trace
specific functions. This does not give you statement by
statement control of the tracing, nor does it let you turn
the tracing off and on when executing the traced
program.

You can do both of these by adding ctroff() and ctron()
function calls to your program to turn the tracing off
and on, respectively, at execution time. Thus, you can
code arbitrarily complex criteria for trace control with if
statements, and you can even conditionally include this
code because ctrace defines the CTRACE preprocessor
variable. For example:

#ifdef CTRACE
if (c ==V && i > 1000)
ctron();
#endif

You can also call these functions from sdb(1) if you
compile with the -g option. For example, to trace all
but lines 7 to 10 in the main function, enter:

sdb a.out
main:7b ctroff()
main:11b ctron()
r

You can also turn the trace off and on by setting static
variable tr_ct_ to 0 and 1, respectively. This is useful if
you are using a debugger that cannot call these functions
directly, such as adb(1).

DIAGNOSTICS
This section contains diagnostic messages from both
ctrace and cc(1), since the traced code often gets some
¢c warning messages. You can get c¢c error messages in
some rare cases, all of which can be avoided.

Ctrace Diagnostics
warning: some vartables are not traced in this statement
Only 10 variables are traced in a statement to

-4 -

CTRACE(1)

prevent the C compiler ”"out of tree space;
simplify expression” error. Use the -t option to
increase this number.

warning: statement too long to trace
This statement is over 400 characters long.
Make sure that you are using tabs to indent your
code, not spaces.

cannot handle preprocessor code, use -P option
This is wusually caused by #ifdef/#endif
preprocessor statements in the middle of a C
statement, or by a semicolon at the end of a
#define preprocessor statement.

Wf ... else if’ sequence too long
Split the sequence by removing an else from the
middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input,
along with any appropriate -D, -I, and -U
preprocessor options. If you still get the error
message, check the Warnings section below.

Cc Diagnostics
warning: floating point not implemented
warning: tllegal combination of pointer and integer
warning: statement not reached
warning: sizeof returns 0
Ignore these messages.

compiler takes size of function
See the cirace "possible syntax error” message
above.

yace stack overflow
See the ctrace "’if ... else if’ sequence too long”
message above.

out of tree space, stmplify expression
Use the -t option to reduce the number of traced
variables per statement from the default of 10.
Ignore the ”ctrace: too many variables to trace”
warnings you will now get.

redeclaration of signal
Either correct this declaration of signal(2), or
remove it and #include <signal.h>.
WARNINGS
You will get a ctrace syntax error if you omit the
semicolon at the end of the last element declaration in a
structure or union, just before the right brace (}). This
is optional in some C compilers.

- 5-

BUGS

FILES

CTRACE(1)

Defining a function with the same name as a system
function may cause a syntax error if the number of
arguments is changed. Just use a different name.

Ctrace assumes that BADMAG is a preprocessor macro,
and that EOF and NULL are #defined constants.
Declaring any of these to be variables, e.g. "int EOF;”,
will cause a syntax error.

Ctrace does not know about the components of
aggregates like structures, unions, and arrays. It cannot
choose a format to print all the components of an
aggregate when an assignment is made to the entire
aggregate. Ctrace may choose to print the address of an
aggregate or use the wrong format (e.g., %e for a
structure with two integer members) when printing the
value of an aggregate.

Pointer values are always treated as pointers to
character strings.

Fhe loop trace output elimination is done separately for
each file of a multi-file program. This can result in
functions called from a loop still being traced, or the
elimination of trace output from one function in a file
until another in the same file is called.

runtime.c run-time trace package

SEE ALSO

signal(2), ctype(3C), fflush(3S), longjmp(3C), printf(3S),
setjmp(3C), string(3C).

cu(1c)

NAME
cu — call another computer system
SYNOPSIS
cu [-sspeed] [-lline] [-h] [-t] [-d] [-m]
[-o] [~e] [-n] telno | systemname | dir
DESCRIPTION

Cu calls up another computer system or a terminal. It
manages an interactive conversation with possible
transfers of ASCII files.

cu

accepts the following options and arguments.

—sspeed

—lline

-t

Specifies the transmission speed(110, 150, 300,
600, 1200, 4800, 9600); 300 1s the default value.
Most modems are either 300 or 1200 baud.
Directly connected lines may be set to a speed
higher than 1200 baud.

Specifies a device name to use as the
communication line. This can be used to
override searching for the first available line
having the right speed. When the -1 option is
used without the -s option, the speed of a line is
taken from the file /usr/lib/uucp/L-devices.
When the -1 and -s options are used
simultaneously, cu will search the L-devices file
to check if the requested speed for the requested
line is available. If so, the connection will be
made at the requested speed; otherwise an error
message will be printed and the call will not be
made. The specified device is generally a directly
connected asynchronous line (e.g., /dev/ttyab),
in this case a phone number is not required but
the string dir may be use to specify a null acu. If
the specified device is associated with an auto
dialer, a phone number must be provided.

Emulates local echo, supporting calls to other
computer systems which expect terminals to be
set to half-duplex mode.

Used when dialing an ASCII terminal which has
been set to auto answer. Appropriate mapping
of carriage-return to carriage-return-line-feed
pairs is set.

Causes diagnostic traces to be printed.

Designates that even parity is to be generated
for data sent to the remote.

cu(1c)

-0 Designates that odd parity is to be generated for
data sent to the remote.

-m Designates a direct line which has modem
control.

-n Will request the phone number to be dialed from
the user rather than taking it from the command
line.

telno When using an automatic dialer the argument is
the telephone number with equal signs for
secondary dial tone or minus signs for delays, at
appropriate places.

systemname

A uucp system name may be used rather than a
phone number; in this case, cu will obtain an
appropriate direct line or phone number from -
/usr/lib/uucp/L.sys (the appropriate baud
rate 1s also read along with phone numbers). Cu
will try each phone number or direct line for
systemname in the L.sys file until a connection
is made or all the entries are tried.

dir Using dir insures that cu will use the line
specified by the -1 option.

After making the connection, e¢u runs as two processes:
the transmit process reads data from the standard input
and, except for lines beginning with 7, passes it to the
remote system; the receive process accepts data from the
remote system and, except for lines beginning with ~,
passes it to the standard output. Normally, an
automatic DC3/DC1 protocol is used to control input
from the remote so the buffer is not overrun. Lines
beginning with ~ have special meanings.

The transmit process interprets the following:

" terminate the conversation.

-1 escape to an interactive shell on
the local system.

lemd . .. run ¢md on the local system (via
sh —¢).

“$emd . . . run ¢md locally and send its

output to the remote system.

“%%cd change the directory on the local
system. NOTE: “led will cause
the command to be run by a
sub-shell; probably not what
was intended.

-92.

cu(1C)

"%take from [to] copy file from (on the remote
system) to file to on the local
system. If to is omitted, the from
argument is used in both places.

“%put from [to | copy file from (on local system) to
file to on remote system. If to is
omitted, the from argument is
used in both places.

send the line to the remote

system.

“%%break transmit a BREAK to the
remote system.

~%%nostop toggles between DC3/DC1 input

control protocol and no input
control. This is useful in case the
remote system is one which does
not respond properly to the DC3
and DC1 characters.

The recetve process normally copies data from the
remote system to its standard output. A line from the
remote that begins with ~> initiates an output diversion
to a file. The complete sequence is:

> [>]: file

zero or more lines to be written to file

>

Data from the remote is diverted (or appended, if >> is
used) to file. The trailing "> terminates the diversion.

The use of "Z%put requires stty(1) and cat(l) on the
remote side. It also requires that the current erase and
kill characters on the remote system be identical to the
current ones on the local system. Backslashes are
inserted at appropriate places.

The use of "Zptake requires the existence of echo(1) and
cat(1) on the remote system. Also, stty tabs mode
should be set on the remote system if tabs are to be
copied without expansion.

When cu is used on system X to connect to system Y
and subsequently used on system Y to connect to system
Z, commands on system Y can be executed by using ~7.
For example, uname can be executed on Z, X, and Y as
follows:

uname

“luname

cu(1c)

X

"“luname

Y

In general, ~ causes the command to be executed on the
original machine, ”" causes the command to be executed

on the next machine in the chain.

EXAMPLES

FILES

To dial a system whose number is 9 201 555 1212 using
1200 baud:
cu -s1200 9=2015551212

If the speed is not specified, 300 is the default value.
To login to a system connected by a direct line:

cu -1 /dev/ttyXX dir

To dial a system with the specific line and a specific
speed:
cu -s1200 -1 /dev/ttyXX dir

To dial a system using a specific line:
cu -1 /dev/culXX 2015551212

To use a system name:

cu YYYZZZ

usr/lib/uucp/L .sys
/usr;lib;uucp;L-devices
/usr/spool /uucp/LCK..(tty-device)
/dev/null
/usr/lib/uucp/modemcap
/usr/lib/uucp/L-dialcodes

SEE ALSO

cat(1), ct(1C), echo(1), stty(1), uname(1), uucp(1C).

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, non-zero (various
values) otherwise.

Cu buffers input internally.

There is an artificial slowing of transmission by cu
during the “Zput operation so that loss of data is
unlikely.

NAME

CUT(1)

cut — cut out selected fields of each line of a file

SYNOPSIS

cut —clist | filel file2 ...
cut —flist [-d char | [-s

[filel file2 ...]

DESCRIPTION

HINTS

Use cut to cut out columns from a table or fields from
each line of a file; in data base parlance, it implements
the projection of a relation. The fields as specified by
list can be fixed length, i.e., character positions as on a
punched card (—c option), or the length can vary from
line to line and be marked with a field delimiter
character like tab (—f option). Cut can be used as a
filter; if no files are given, the standard input is used.

The meanings of the options are:

list A comma-separated list of integer field
numbers (in increasing order), with optional —
to indicate ranges as in the —o option of
nroff/troff for page ranges; e.g., 1,4,7; 1-3,8;
-8,10 (short for 1-5,10); or 83— (short for
third through last field).

—clist The list following —c (no space) specifies
character positions (e.g.,, —c1—-72 would pass
the first 72 characters of each line).

—flist The list following —f is a list of fields assumed
to be separated in the file by a delimiter
character (see —d); e.g., —f1,7 copies the first
and seventh field only. Lines with no field
delimiters will be passed through intact (useful
for table subheadings), unless —s is specified.

—dchar The character following ~d is the field
delimiter (—f option only). Default is tab.
Space or other characters with special meaning
to the shell must be quoted.

-8 Suppresses lines with no delimiter characters in
case of ~f option. Unless specified, lines with
no delimiters will be passed through untouched.

Either the —e or —f option must be specified.

Use grep(l) to make horizontal ‘‘cuts” (by context)
through a file, or paste(1) to put files together column-
wise Fi.e., horizontally). To reorder columns in a table,
use cut and paste.

CUT(1)

EXAMPLES
cut —d: ~f1,5 /etc/passwd mapping of user IDs
to names
name=>‘who am i | cut -f1 -d” "~ to set name to
current login name.
DIAGNOSTICS
line too long A line can have no more than 1023
characters or fields.
bad list for ¢ / f option
Missing —-e¢ or —f option or
incorrectly specified list. No error

occurs if a line has fewer fields than
the list calls for.

no frelds The list is empty.

SEE ALSO
grep(1), paste(1).

cwW(1)

NAME
cw, checkew ~ prepare constant-width text for troff
SYNOPSIS
ew [=bx | [-rxx | [fo] [t] [+¢t][-d]
[files |

checkew [-Ixx] [-rxx | files

J

DESCRIPTION

Cw is a preprocessor for troff(1) input files that contain
text to be typeset in the constant-width (CW) font.

Text typeset with the CW font resembles the output of
terminals and of line printers. This font is used to
typeset examples of programs and of computer output in
user manuals, programming texts, etc. (An earlier
version of this font was used in typesetting The C
Programming Language by B. W. Kernighan and D. M.
Ritchie.) It has been designed to be quite distinctive (but
not overly obtrusive) when used together with the Times
Roman font.

Because the CW font contains a ‘‘non-standard” set of
characters and because text typeset with it requires
different character and inter-word spacing than is used
for “standard” fonts, documents that use the CW font
must be preprocessed by cw.

The CW font contains the 94 printing ASCII characters:
abcedefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 R
1$&()*+@., /=1 <>{}#

plus eight non-ASCII characters represented by four-

character troff(1) names (in some cases attaching these

names to ‘‘non-standard” graphics):

Character Symbol Troff Name

“Cents’’ sign ct
EBCDIC “‘not”’ sign
Left arrow
Right arrow
Down arrow
Vertical single quote
Control-shift indicator
Visible space indicator
Hyphen

O — q—l T] a
BREEVNS

T |

\(hy

The hyphen is a synonym for the unadorned minus sign
(-). Certain versions of cw recognize two additional
names: \(ua for an up arrow and \(lh for a diagonal left-
up (home) arrow.

CW(1)

Cw recognizes five request lines, as well as user-defined
delimiters. The request lines look like troff(1) macro
requests, and are copied in their entirety by e¢w onto its
output; thus, they can be defined by the user as troff(1)
macros; in fact, the .CW and .CN macros should be so
defined (see HINTS below). The five requests are:

CW Start of text to be set in the CW font; .CW
causes a break; it can take precisely the same
options, in precisely the same format, as are
available on the cw command line.

.CN End of text to be set in the CW font; .CN causes
a break; it can take the same options as are
available on the ew command line.

.CD Change delimiters and/or settings of other
options; takes the same options as are available
on the c¢w command line.

.CP argl arg? arg8 ... argn
All the arguments (which are delimited like
troff(1) macro arguments) are concatenated,
with the odd-numbered arguments set in the CW
font and the even-numbered ones in the
prevailing font.

PC argl arg2 arg8 ... argn
Same as .CP, except that the even-numbered
arguments are set in the CW font and the odd-
numbered ones in the prevailing font.

The .CW and .CN requests are meant to bracket text
(e.g., a program fragment) that is to be typeset in the
CW font ‘“as is.” Normally, cw operates in the
transparent mode. In that mode, except for the .CD
request and the nine special four-character names listed
in the table above, every character between .CW and
.CN request lines stands for itself. In particular, cw
arranges for periods (.) and apostrophes (') at the
beginning of lines, and backslashes (\) everywhere to be
“hidden” from troff(1). The transparent mode can be
turned off (see below), in which case normal troff(1) rules
apply; in particular, lines that begin with . and ’ are
passed through untouched (except if they contain
delimiters—see below). In either case, cw hides the effect
of the font changes generated by the .CW and .CN
requests; cw also defeats all ligatures (fi, ff, etc.) in the
CW font.

The only purpose of the .CD request is to allow the
changing of various options other than just at the
beginning of a document.

-2.

CW (1)

The user can also define delimiters. The left and right
delimiters perform the same function as the .CW /.CN
requests; they are meant, however, to enclose CW
“words” or ‘“‘phrases’’ in running text (see example under
BUGS below). Cw treats text between delimiters in the
same manner as text enclosed by .CW /.CN pairs, except
that, for aesthetic reasons, spaces and backspaces inside
.CW /.CN pairs have the same width as other CW
characters, while spaces and backspaces between
delimiters are half as wide, so they have the same width
as spaces in the prevailing text (but are not adjustable).
Font changes due to delimiters are not hidden.

Delimiters have no special meaning inside .CW /.CN
pairs.

The options are:

~lzz The one- or two-character string zz becomes the
left delimiter; if zz is omitted, the left delimiter
becomes undefined, which it is initially.

-rzz Same for the right delimiter. The left and right
delimiters may (but need not) be different.

-fn The CW font is mounted in font position n;
acceptable values for n are 1, 2, and 3 (default is
3, replacing the bold font). This option is only
useful at the beginning of a document.

-t Turn transparent mode off.

+t Turn transparent mode on (this is the initial
default).

-d Print current option settings on file descriptor 2

in the form of ¢roff(1) comment lines. This
option is meant for debugging.

Cw reads the standard input when no files are specified
(or when - is specified as the last argument), so it can be
used as a filter. Typical usage is:

cw files | troff ...
Checkcw checks that left and right delimiters, as well as

the .CW /.CN pairs, are properly balanced. It prints out
all offending lines.

HINTS

CcW(1)

Typical definitions of the .CW and .CN macros meant to
be used with the mm(5) macro package:

de CW

DS1I

.ps 9

s 10.5p

.ta 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u ...

.de CN

ta .51 1i 1.5i 2i 2.5i 3i ...
VS

.ps

.DE

At the very least, the .CW macro should invoke the
troff(1) no-fill (.nf) mode.

When set in running text, the CW font is meant to be set
in the same point size as the rest of the text. In
displayed matter, on the other hand, it can often be
profitably set one point smaller than the prevailing point
size (the displayed definitions of .CW and .CN above are
one point smaller than the running text on this page).
The CW font is sized so that, when it 1s set in 9-point,
there are 12 characters per inch.

Documents that contain CW text may also contain tables
and/or equations. If this is the case, the order of
preprocessing should be: ew, tbl, and egn. Usually, the
tables contained in such documents will not contain any
CW text, although it is entirely possible to have elements
of the table set in the CW font; of course, care must be
taken that ¢b/(1) format information not be modified by
cw. Attempts to set equations in the CW font are not
likely to be either pleasing or successful.

In the CW font, overstriking is most easily accomplished
with backspaces: letting <- represent a backspace, d<-
<-\(dg yields 1 (Because backspaces are half as wide
between delimiters as inside .CW /.CN pairs—see
above—two backspaces are required for each overstrike
between delimiters.)

FILES

/usr/lib/font /ftCW CW font-width table
SEE ALSO

eqn(1), mmt(1), tbl(1), troff(1), mm(5), mv(5).
WARNINGS

If text preprocessed by cw is to make any sense, it must

- 4.

BUGS

CW(1)

be set on a typesetter equipped with the CW font or on a
STARE facility; on the latter, the CW font appears as
bold, but with the proper CW spacing.

Only a masochist would use periods (.), backslashes (), or
double quotes (”) as delimiters, or as arguments to .CP
and .PC

Certain CW characters don’t concatenate gracefully with
certain Times Roman characters, e.g., a CW ampersand
(&) followed by a Times Roman comma(,); in such cases,
udicious use of troff(1) half- and quarter-spaces (\| and
\;) is most salutary, e.g., one should use _&_\", (rather
than just plain _&_,) to obtain &, (assuming that _ is
used for both delimiters).

Using ew with nroff is silly.

The output of cw is hard to read.

See also BUGS under troff(1).

NAME

CXREF (1)

cxref — generate C program cross-reference

SYNOPSIS

cxref | options | files

DESCRIPTION

Czref analyzes a collection of C files and attempts to
build a cross-reference table. Czref utilizes a special
version of ¢pp to include #define’d information in its
symbol table. It produces a listing on standard output of
all symbols (auto, static, and global) in each file
separately, or with the —c option, in combination. Each
symbol contains an asterisk (*) before the declaring
reference.

In addition to the —D, —I and ~U options (which are
identical to their interpretation by cc(1)), the following
options are interpreted by czref:

—c Print a combined cross-reference of all input
files.
—w<num>

Width option which formats output no wider
than <num> (decimal) columns. This option
will default to 80 if <<num>> is not specified or
is less than 51.

—o file Direct output to named file.

—8 Operate silently; does not print input file
names.
-t Format listing for 80-column width.
FILES
Jusr/lib/xepp special version of C-preprocessor.
SEE ALSO
cc(1).
DIAGNOSTICS
Error messages are unusually cryptic, but usually mean
that you cannot compile these files, anyway.
BUGS

Czref considers a formal argument in a #fdefine macro
definition to be a declaration of that symbol. For
example, a program that d#includes ctype.h will
contain many declarations of the variable c.

DATE(1)

NAME
date — print and set the date
SYNOPSIS
date | mmddhhmmlyy]] [+format
MightyFrame Only:
date | -]
DESCRIPTION

If no argument is given, or if the argument begins with
+, the current date and time are printed. Otherwise,
the current date is set.

The MightyFrame system has a real-time clock that sets
the current system date. The date — command sets the
system time to that of the real-time clock. If arguments
are given, date changes the time on the real-time clock.

The first mm is the month number; dd is the day
number in the month; hk is the hour number (24 hour
system); the second mm is the minute number; yy is the
last 2 digits of the year number and is optional. For
example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is
the default if no year is mentioned. The system operates
in GMT. Date takes care of the conversion to and from
local standard and daylight time.

If the argument begins with +, the output of date is
under the control of the user. The format for the output
is similar to that of the first argument to printf(3S). All
output fields are of fixed size (zero padded if necessary).
Each field descriptor is preceded by % and will be
replaced in the output by its corresponding value. A
single %% is encoded by 9% . All other characters are
copied to the output without change. The string is
always terminated with a new-line character.

Field Descriptors:

insert a new-line character
insert a tab character
month of year — 01 to 12
day of month - 01 to 31
last 2 digits of year — 00 to 99
date as mm/dd/yy

hour - 00 to 23

minute — 00 to 59

second — 00 to 59

time as HH:MM:SS

HuZgmo<ay es

DATE(1)

day of year — 001 to 366

day of week — Sunday = 0
abbreviated weekday — Sun to Sat
abbreviated month — Jan to Dec
time in AM/PM notation

date '+DATE: %m/%d/%y%nTIME:
%H:%M:%S'

would have generated as output:
DATE: 08/01/76

-] it—o

EXAMPLE

TIME: 14:45:05
DIAGNOSTICS
No permission if you are not the super-user and
you try to change the date;
bad conversion if the date set is syntactically
incorrect;
bad format character if the field descriptor is not
recognizable.
SEE ALSO
printf(3S).

MightyFrame Administrator’s Reference Manual.
MiniFrame Administrator’s Manual.

WARNING
It is a bad practice to change the date while the system

is running multi-user.

—

NAME

DC(1)

de — desk calculator

SYNOPSIS

de | file]

DESCRIPTION

De is an arbitrary precision arithmetic package.
Ordinarily it operates on decimal integers, but one may
specify an input base, output base, and a number of
fractional digits to be maintained. (See b¢(1), a
preprocessor for de¢ that provides infix notation and a C-
like syntax that implements functions. Be also provides
reasonable control structures for programs.%1 The overall
structure of dc is a stacking {reverse Polish) calculator.
If an argument is given, input is taken from that file
until its end, then from the standard input. The
following constructions are recognized:

number
The value of the number is pushed on the stack.
A number is an unbroken string of the digits 0-9.
It may be preceded by an underscore (_) to input
a negative number. Numbers may contain
decimal points.

+-/*%"
The top two values on the stack are added (+),
subtracted (=), multiplied (), divided (/),
remaindered (%), or exponentiated (*). The two
entries are popped off the stack; the result is
pushed on the stack in their place. Any fractional
part of an exponent is ignored.

sz The top of the stack is popped and stored into a
register named z, where z may be any character.
If the s is capitalized, = is treated as a stack and
the value is pushed on it.

lz The value in register z is pushed on the stack.
The register = is not altered. All registers start
with zero value. If the 1 is capitalized, register z
is treated as a stack and its top value is popped
onto the main stack.

d The top value on the stack is duplicated.

P The top value on the stack is printed. The top
value remains unchanged. P interprets the top of
the stack as an ASCII string, removes it, and
prints it.

f All values on the stack are printed.

e

-9

-e
o

DC(1)

exits the program. If executing a string, the
recursion level is popped by two. If q is
capitalized, the top value on the stack is popped
and the string execution level is popped by that
value.

treats the top element of the stack as a character
string and executes it as a string of de commands.

replaces the number on the top of the stack with
its scale factor.

puts the bracketed ASCII string onto the top of
the stack.

>z =z

The top two elements of the stack are popped and
compared. Register z is evaluated if they obey
the stated relation.

replaces the top element on the stack by its
square root. Any existing fractional part of the
argument is taken into account, but otherwise the
scale factor is ignored.

interprets the rest of the line as a CTIX system
command.

All values on the stack are popped.

The top value on the stack is popped and used as
the number radix for further input. I pushes the
input base on the top of the stack.

The top value on the stack is popped and used as
the number radix for further output.

pushes the output base on the top of the stack.

the top of the stack is popped, and that value is
used as a non-negative scale [factor: the
appropriate number of places are printed on
output, and maintained during multiplication,
division, and exponentiation. The interaction of
scale factor, input base, and output base will be
reasonable if all are changed together.

The stack level is pushed onto the stack.

replaces the number on the top of the stack with
its length.

A line of input is taken from the input source
(usually the terminal) and executed.

are used by be for array operations.

DC(1)

EXAMPLE
This example prints the first ten values of n!:
(lal+dsa*plal0>y]|sy
Osal
lyx
SEE ALSO
be(1).

DIAGNOSTICS
z 18 unimplemented
where z is an octal number.

stack empty
for not enough elements on the stack to do what
was asked.

Out of space
when the free list is exhausted (too many digits).

Qut of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

DCOPY (1M)

NAME
dcopy — copy file systems for optimal access time

SYNOPSIS
[ete/dcopy }—SX] (—an] [-d] [-v] [-ffsize[:isize]]
mputfs outputis

DESCRIPTION
Dcopy copies file system tnpulfs to outputfs. Inputfs is
the existing file system; outputfs is an appropriately sized
file system, to hold the reorganized result. For best
results snputfs should be the raw device and outputfs
should be the block device. Deopy should be run on
unmounted file systems (in the case of the root file
system, copy to a new slice). With no arguments, dcopy
copies files from dnputfs compressing directories by
removing vacant entries, and spacing consecutive blocks
in a file by the optimal rotational gap. The possible
options are

—-sX supply device information for creating an
optimal organization of blocks in a file. The
forms of X are the same as the —s option of
fack(1M).

—an place the files not accessed in n days after the
free blocks of the destination file system
(default for n is 7). If no n is specified then
no movement occurs.

-d leave order of directory entries as is (default
is to move sub-directories to the beginning of
directories).

-v currently reports how many files were

processed, and how big the source and
destination freelists are.

~ffsize [:is1z¢]
specify the outpuifs file system and inode list
sizes (in blocks). If the option (or :isize) is
not given, the values from the inputfs are
used.

Deopy catches interrupts and quits and then reports on
its progress. To terminate deopy send a quit signal, and
dcopy will no longer catch interrupts or quits.

SEE ALSO
fsck(1M), mkfs(IM), ps(1).

DD(1)

NAME

dd - convert and copy a file
SYNOPSIS

dd [option=value] ...
DESCRIPTION

Dd copies the specified input file to the specified output
with possible conversions. The standard input and
output are used by default. The input and output block
size may be specified to take advantage of raw physical

I/0. -

oplion values

if=file input file name; standard input is

: default

of=file output file name; standard output is
default

ibs=n input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n set both input and output block size,
superseding tbs and obs; also, if no
conversion is specified, it s

particularly efficient since no in-core i
copy need be done

cbs=n conversion buffer size
skip=n skip n input blocks before starting
copy I
seek=n seek n blocks from beginning of ;
output file before copying |
count=n copy only n input blocks ‘
conv=ascii convert EBCDIC to ASCII
ebedic convert ASCII to EBCDIC
ibm slightly different map of ASCII to
EBCDIC
lcase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes

noerror do not stop processing on an error
sync pad every input block to tbs
.y ... several comma-separated conversions

Where sizes are specified, a number of bytes is expected.
A number may end with k, b, or w to specify
multiplication by 1024, 512, or 2, respectively; a pair of
numbers may be separated by x to indicate a product.

Cbs i1s used only if asctt or ebecdic conversion is
specified. In the former case cbs characters are placed
into the conversion buffer, converted to ASCII, and
trailing blanks trimmed and new-line added before
sending the line to the output. In the latter case ASCII

-1-

DD(1)

characters are read into the conversion buffer, converted
to EBCDIC, and blanks added to make up an output
block of size cbs.

After completion, dd reports the number of whole and
partial input and output blocks.

EXAMPLE

This command will read an EBCDIC tape blocked ten
80-byte EBCDIC card images per block into the ASCII file
X :
dd if=/dev/rmt0 of=x i1bs=800 cbs=80
conv=ascii,lcase
Note the use of raw magtape. Dd is especially suited to

I/O on the raw physical devices because it allows reading
and writing in arbitrary block sizes.

SEE ALSO

cp(1).

DIAGNOSTICS

f+p blocks infout) numbers of full and partial
blocks read(written)

The ASCII/EBCDIC conversion tables are taken from the
256-character standard in the CACM Nov, 1968. The
ibm conversion, while less blessed as a standard,
corresponds better to certain IBM print train
conventions. There is no universal solution.

New-lines are inserted only on conversion to ASCII;
padding is done only on conversion to EBCDIC. These
should be separate options.

—

DELTA(1)

NAME
delta — make a delta (change) to an SCCS file

SYNOPSIS

delta [-rSID] [-s| [-n] [-glist] [-m[mrlist]]
[~y[comment]] [~p] files
DESCRIPTION

Delta is used to permanently introduce into the named
SCCS file changes that were made to the file retrieved by
get(1) (called the g-file, or generated file).

Delta makes a delta to each named SCCS file. If a
directory is named, delta behaves as though each file in
the directory were specified as a named file, except that
non-SCCS files (last component of the path name does
not begin with 8.) and unreadable files are silently
ignored. If a name of — is given, the standard input is
read (see WARNINGS); each line of the standard input is
taken to be the name of an SCCS file to be processed.

Delta may issue prompts on the standard output
depending upon certain keyletters specified and flags @ee
admin(1 I() that may be present in the SCCS file (see —m
and —y keyletters below).

Keyletter arguments apply independently to each named
file.

-rSID Uniquely identifies which delta is
to be made to the SCCS file. The
use of this keyletter is necessary
only if two or more outstanding
gets for editing (get —e) on the
same SCCS file were done by the
same person (login name). The
SID value specified with the —r
keyletter can be either the SID
specified on the get command line
or the SID to be made as reported
by the get command (see get 12\)
A diagnostic results if
specified SID is ambiguous, or, if
necessary and omitted on the
command line.

-8 Suppresses the issue, on the
standard output, of the created
delta’s SID, as well as the number
of lines inserted, deleted and
unchanged in the SCCS file.

—glist

—~m|mrlis]

—ylcommen{

DELTA(1)

Specifies retention of the edited
g-file (normally removed at
completion of delta processing).

Specifies a list (see getﬁl) for the
definition of list) of deltas which
are to be tgnored when the file is
accessed at the change level (SID)
created by this delta.

If the SCCS file has the v flag set
S}see admin (1)) then a Modification

equest (MR) number must be
supplied as the reason for creating
the new delta.

If —m is not used and the
standard input is a terminal, the
prompt MRSs? is issued on the
standard output before the
standard input is read; if the
standard input is not a terminal,
no prompt is issued. The MRs?
prompt always precedes the
comments? prompt (see —y
keyletter).

MRs in a list are separated by
blanks and/or tab characters. An
unescaped new-line character
terminates the MR list.

Note that if the v flag has a value
(see admin(1)), it is taken to be
the name of a program (or shell
procedure) which will validate the
correctness of the MR numbers.
If a non-zero exit status is
returned from MR number
validation program, delta
terminates (it is assumed that the
MR numbers were not all valid).

Arbitrary text used to describe the
reason for making the delta. A
null string is considered a valid
comment.

If —y is not specified and the
standard input is a terminal, the
prompt comments? is issued on
the standard output before the
standard input is read; if the

-2

DELTA(1)

standard input is not a terminal,
no prompt is issued. An
unescaped new-line character
terminates the comment text.

-p Causes delta to print (on the
standard output) the SCCS file
differences before and after the
delta is applied in a diff(1)
format.

FILES
All files of the form #-file are explained in the “Source
Code Control System User’s Guide” in Section 9 of the
CTIX Programmer’s Guide. The naming convention for
these files is also described there.

g-file Existed before the execution of delta;
removed after completion of delta.

p-file Existed before the execution of delta;
may exist after completion of delta.

g-file Created during the execution of delta;
removed after completion of delta.

x-file Created during the execution of delta;
renamed to SCCS file after completion of
delta.

z-file Created during the execution of delta;
removed during the execution of delta.

d-file Created during the execution of delta;

removed after completion of delta.
Jusr/bin/bdiff Program to compute differences between
the “gotten’ file and the g-file.

WARNINGS
Lines beginning with an SOH ASCII character {binary
001) cannot be placed in the SCCS file unless the SOH is
escaped. This character has special meaning to SCCS
(see sccsfile(4). (5)) and will cause an error.

A get of many SCCS files, followed by a delta of those
files, should be avoided when the get generates a large

amount of data. Instead, multiple gef/delta sequences
should be used.

If the standard input (—) is specified on the delta
command line, the —m (if necessary) and —y keyletters
must also be present. Omission of these keyletters
causes an error to occur.

Comments are limited to text strings of at most 512
characters.

SEE ALSO
admin(1), bdiff(1), cde(1), get(1), help(1), prs(1),

-3-

DELTA(1)

rmdel(}), scesfile(4).
CTIX Programmer’s Guide, Section 9.

DIAGNOSTICS
Use help(1) for explanations.

DEROFF (1)

NAME

deroff - remove nroff/troff, tbl, and eqn constructs
SYNOPSIS

deroff [—mx | [—w | [files |
DESCRIPTION

Deroff reads each of the files in sequence and removes
all troff(1) requests, macro calls, backslash constructs,
egn(1) constructs (between .EQ and .EN lines, and
between delimiters), and ¢b{(1) descriptions, perhaps
replacing them with white space (blanks and blank
lines), and writes the remainder of the file on the
standard output. Deroff follows chains of included files
(.so and .nx troff commands); if a file has already been
included, a .so naming that file is ignored and a .nx
naming that file terminates execution. If no input file is
given, deroff reads the standard input.

The —m option may be followed by an m, s, or . The
—mm option causes the macros be interpreted so that
only running text is output (i.e., no text from macro
lines.) The —ml option forces the —mm option and also
causes deletion of lists associated with the mm macros.

If the —w option is given, the output is a word list, one
“word” per line, with all other characters deleted.
Otherwise, the output follows the original, with the
deletions mentioned above. In text, a ‘“word” is any
string that contains at least two letters and is composed
of letters, digits, ampersands (&), and apostrophes (’); in
a macro call, however, a “word” is a string that begins
with at least two letters and contains a total of at least
three letters. Delimiters are any characters other than
letters, digits, apostrophes, and ampersands. Trailing
apostrophes and ampersands are removed from “words.”

SEE ALSO

BUGS

eqn(1), nroff(1), tbl(1), troff(1), spell(1).

Deroff is not a complete troff interpreter, so it can be
confused by subtle constructs. Most such errors result in
too much rather than too little output.

The —ml option does not handle nested lists correctly.

DEVNM (1M)

NAME
devnm - device name

SYNOPSIS
/etc/devnm [names |

DESCRIPTION
Devnm identifies the special file associated with the
mounted file system where the argument name resides.
(As a special case, both the block device name and the
swap device name are printed for the argument name /
if swapping is done on the same disk section as the root
file system.) Argument names must be full path names.
This command is most commonly used by /etc/rc (see
brc(1M)) to construct a mount table entry for the root
device.

EXAMPLE
The command:

/etc/devnm /usr
produces
dsk/c0d0s3 /usr

if /usr is mounted on /dev/dsk/c0d0s3.

FILES Jdev/ /
dev/dsk/*
/ete/mnttab

SEE ALSO

bre(1M), setmnt{1M).

NAME

DEVICES (5)

Devices — configuration file for uucp communications
lines

SYNOPSIS

/usr/lib/uucp/Devices

DESCRIPTION

/usr/lib/uucp/Devices is a text file that contains
configuration specifications for communications devices,
such as modems or direct lines. Each line in the file
describes a single device and how it communicates with a
remote system. Comment lines begin with a pound sign
. The UucCP system uses the
/usr/lib/uuep/Devices file in conjunction with the
/usr/lib/uucp /Dialers file to place a call.

Each line containes five or more fields delimited by
spaces. The first field is the line type as specified in the

usr /lib/uucp/Systems file; for direct lines, the first
field is the name of the remote system.

The remaining fields give the device name; the calling
device indicator (such as for 801 calling units), if used;
the speed, which may be specified as ANY; and the
name of the caller as specified in the
/usr/lib/uucp/Dialers file. The last field, the name
of the caller, may be followed by a token format
(containing\D or \T); pairs of these dialer name/token
format fields can be repeated if more than one dialer
must be used in succession to make the connection. If
no token format is specified, a \D is used for a dialer
name that references the /usr/lib/uucp/Dialers file; a

T is used for internal dialer types such as 801. Unused
fields are replaced by a hyphen ().

EXAMPLE

FILES

The following entry configures a 1200-baud intelligent
modem on device contty for use with UUCP:

ACU contty - 1200 penril

Jusr/lib/uucp/Devices
Jusr/lib/uucp/Dialers
Jusr/lib/uucp/Systems

SEE ALSO

5/86

uucp(1Q), dial(3C), Dialers(5).
MightyFrame Administrator’s Reference Manual.

NAME

DIALERS (5)

Dialers - ACU/modem calling protocols

SYNOPSIS

/usr/lib/uucp/Dialers

DESCRIPTION

5/86

Dialers describes the cali-placing protocols for
intelligent modems, ACUs (automatic calling units), and
other serial switched devices such as data switches.
When a connection is requested via the UUCP system,
CTIX looks for a description of the called system in the
/usr /lib/uucp/Systems file, where the type of line is
specified for connection to that system. CTIX then
checks the /usr/lib/uucp/Devices file for a
description of the line, 1ts speed and its Dialers name.
The Dialers name given in the Devices file corresponds
to the first field of the Dialers file.

Dialers is a text file that contains the dialing script for
the modems that are configured in the Devices file.
Each description begins on a new line and has three or
more fields, delimited by spaces.

The first field of the description is the name of the
modem or device as specified in the Devices file.

The second field specifies the codes used by that
particular modem for secondary dial tone (=) and pause
(-); this field enables CTIX to translate from the
standard 801 codes (= and —) to the special characters
used by that particular device.

The remaining fields are the chat script that is necessary
to establish communication with the modem.

The modem chat script is composed of command strings
to the modem and response strings expected in return
from the modem. The strings consist of ASCI and
control characters that are recognized by the individual
modem or device. Spaces delimit the end of a send or
receive sequence. The first string is an expect string.

Several modems and switches are already provided in the
Dialers file. Additional devices can be configured by
studying the manufacturers’ manuals to determine the
appropriate send/receive sequences for other modems.

In the string sequences of the send/receive fields the
following escape sequences represent control codes:

\ddd Octal number.

\e Suppress new line (valid only after \r or at the
end of a field).

-1-

DIALERS (5)

\d Delay (two seconds).

\D Substitute the telephone number (from the
/usr/lib/uucp/Systems file or cu(1C)),
without character translation.

\e Turn off echo checking.

\E Turn on echo checking (for slow devices).

\K Insert a BREAK.

\n New-line.

\p Pause (a slight delay of one-quarter to one-half
second).

\r Carriage return.

\T Substitute the telephone number (from the
/usr/lib/uucp/Systems file or cu(1C)), with
character translation. Character translation
interprets the 801 codes in the second field and
expands any symbols found in the
/usr/lib/uucp/Dialcodes file.

Comments delimited by a pound sign (#), spaces, or
tabs are ignored. Any line terminated by a backslash (\)
continues to the next line.

EXAMPLE

FILES

5/86

The following example establishes communication with a
Ventel modem:

ventel =&-% " Ar\p\r\c $ <K\T%%\r>\c ONLINE!

The first field, ‘‘ventel,” is the name of the modem that
corresponds to a ‘“‘ventel” caller type in the fifth or
subsequent field of a Devices file entry. The second
field describes the modem’s convention for the secondary
dial tone (&) and a pause (%) command. The
remaining fields consist of five strings separated by
spaces. The five strings are interpreted as follows:

1. The first expect string (””) is null.

2. Send to the modem a series of carriage returns to
elicit a prompt.

3. The modem should respond with a dollar sign ($).
4. Send the telephone number (\T) to the modem.

5. Upon connection the modem should respond with the
string 'ONLINE!’.

Jusr/lib/uucp/Devices
/usr/lib/uucp/Dialcodes
/usr/lib/uucp/Systems

-2

DIALERS (5)

SEE ALSO
wucp(1C), dial(3C), Devices(5).
MightyFrame Administrator’s Reference Manual.

5/86 _3-

DF (1M)

NAME

df - report number of free disk blocks
SYNOPSIS

df [-t | [—f] [file-systems |
DESCRIPTION

FILES

Df prints out the number of free 512-byte blocks and
free i-nodes available for on-line file systems by
examining the counts kept in the super-blocks; file-
systems may be specified either by device name (e.g.,
/dev/dsk/c0d0sl) or by mounted directory name (e.g.,
/usr). If the file-systems argument is unspecified, the
free space on all of the mounted file systems is printed.

The —t flag causes the total allocated block figures to be
reported as well.

If the —f flag is given, only an actual count of the blocks
in the free list 1s made (free i-nodes are not reported).
With this option, df will report on raw devices.

/dev/dsk/*
/etc/mnttab

SEE ALSO

fs(4), mnttab(4).

NAME

DIFF (1)

diff - differential file comparator

SYNOPSIS

diff [—efbh | filel file2

DESCRIPTION

FILES

Diff tells what lines must be changed in two files to
bring them into agreement. If filel (file2) is —, the
standard input is used. If filel (file2) is a directory, then
a file in that directory with the name file2 (filel) is used.
The normal output contains lines of these forms:

nl a n3n4
nl,n2 d n8
nl,n2 ¢ n3,n4

These lines resemble ed commands to convert filel into
file2. The numbers after the letters pertain to file2. In
fact, by exchanging a for d and reading backward one
may ascertain equally how to convert file? into filel. As
in ed, identical pairs, where nf = n2 or n8 = n4, are
abbreviated as a single number.

Following each of these lines come all the lines that are
affected in the first file flagged by <, then all the lines
that are affected in the second file flagged by >.

The —b option causes trailing blanks (spaces and tabs) to
be ignored and other strings of blanks to compare equal.

The —e option produces a script of a, ¢, and d
commands for the editor ed, which will recreate file?
from filel. The —f option produces a similar script, not
useful with ed, in the opposite order. In connection with
—e, the following shell program may help maintain
multiple versions of a file. Only an ancestral file ($1
and a chain of version-to-version ed scripts ($2,$3,...
made by diff need be on hand. A “latest version”
appears on the standard output.

(shift; cat $*; echo '1,$p’) | ed - $1
Except in rare circumstances, diff finds a smallest
sufficient set of file differences.

Option —h does a fast, half-hearted job. It works only
when changed stretches are short and well separated, but
does work on files of unlimited length. Options —e and
—f are unavailable with —h.

Jusr/lib/diffh for —h

DIFF (1)

SEE ALSO
cmp(1), comm(1), ed(1).

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences,
2 for trouble.

BUGS
Editing scripts produced under the —e or —f option are
??ive about creating lines consisting of a single period
WARNINGS
Missing newline at end of file X
indicates that the last line of file X did not have a
new-line. If the lines are different, they will be
flagged and output; although the output will seem
to indicate they are the same.

NAME

DIFF3(1)

diff3 — 3-way differential file comparison

SYNOPSIS

diff3 [—ex3] filel file2 file3

DESCRIPTION

FILES

Diff3 compares three versions of a file, and publishes
disagreeing ranges of text flagged with these codes:

P all three files differ
=] filel is different
=== file? is different
mm—— file3 is different

The type of change suffered in converting a given range
of a given file to some other is indicated in one of these
ways:

f:nla Text is to be appended after
line number n1 in file f, where
f=1,2 or3.

finl ,n2ec Text is to be changed in the

range line nl to line n2. If ni
= n2, the range may be
abbreviated to n1.

The original contents of the range follows immediately
after a ¢ indication. When the contents of two files are
identical, the contents of the lower-numbered file is
suppressed.

Under the —e option, diff$ publishes a script for the
editor ed that will incorporate into filel all changes
between file2 and file3, i.e., the changes that normally
would be flagged ==== and ====3. Option ~x
%—3) produces a script to incorporate only changes

agged ==== {=———3). The following command
will apply the resulting script to filel.

ed - filel < script

/tmp/d3*
/usr/{ib/diffi‘lprog

SEE ALSO

BUGS

diff(1).

Text lines that consist of a single . will defeat —e.
Files longer than 64K bytes will not work.

NAME

DIFFMK (1)

diffmk — mark differences between files

SYNOPSIS

diffmk namel name2 name3

DESCRIPTION

Diffmk compares two versions of a file and creates a
third file that includes ‘‘change mark’ commands for
nroff or troff(1). Namel and name?2 are the old and new
versions of the file. Diffmk generates name8, which
contains the lines of name?2 plus inserted formatter
‘‘change mark” (.mc) requests. When name$ is
formatted, changed or inserted text is shown by | at the
right margin of each line. The position of deleted text is
shown by a single *.

If anyone is so inclined, diffmk can be used to produce
listings of C (or other) programs with changes marked.
A typical command line for such use is:

diffmk old.c new.c tmp; nroff macs tmp | pr
where the file macs contains:
pl 1
A 77
.af

.e0
.nc

The .l request might specify a different line length,
depending on the nature of the program being printed.
The .eo and .nc requests are probably needed only for C
programs.

If the characters | and * are inappropriate, a copy of
diffmk can be edited to change them (diffmk is a shell
procedure).

SEE ALSO

BUGS

diff(1), nroff(1), troff(1).

Aesthetic considerations may dictate manual adjustment
of some output. File differences involving only
formatting requests may produce undesirable output, i.e.,
replacing .sp by .sp 2 will produce a ‘‘change mark’ on
the preceding or following line of output.

DIRCMP (1)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [-d | [-s] [—wn] dirl dir2

DESCRIPTION

Diremp examines dir! and dir2 and generates various
tabulated information about the contents of the
directories. Listings of files that are unique to each
directory are generated for all the options. If no option
is entered, a list is output indicating whether the
filenames common to both directories have the same
contents.

-d Compare the contents of files with the same
name in both directories and output a list telling
what must be changed in the two files to bring
them into agreement. The list format is
described in diff(1).

—~8 Suppress messages about identical files.

—wn Change the width of the output line to n
characters. The default width is 72.

SEE ALSO
cmp(1), diff(1).

5/86

DISK(7)

* dump area

* down load image file

* Bootable program,

* size determined by a.out format. nblocks=1.

*

/
char fpulled; /* dismounted last time? */
long time; /* time last came on line */
struct gdswprt2 dsk2; /* Drive specific parameters */
char minires[38}; /* for future mini/miti frame
enhancements */

char sysres{292}; /* custom system area */

struct mntnam mntname(MAXSLICE|;
/* names for auto mounting; null
* string means no auto mount
* not used in mitiframe */

char userres|256}; /* user area */

b

struct gdswprt {

char name[6); /* printf name */
ushort cyls; /* the number of cylinders for this disk */
ushort heads; /* number of heads per cylinder */
ushort psectrk; /* number of physical sectors per track */
ushort pseccyl; /* number of physical sectors per cylinder */
char flags; /* floppy density and high tech drive flags */
char step; /* stepper motor rate to controller -

ST506 only */
ushort sectorsz; /* size of physical sectors (in bytes) */

h

struct gdswprt2 {

short wpceyl; /* value to program for RWC/WPC -
ST506 only */

ushort enetaddr(3]; /* Ethernet station address —
* MiniFrame only */

unchar gapl; /* Gap size on SMD drives */

unchar gap2;

char filler(28};

struct partit{

union {
uint strk; /* start track number (new style) */
struct {
ushort strk; /* start track # */
ushort nsecs; /* # logical blocks available to user */
} old;
} sz;

b

5/86

DISK (7)

If a volume home block is valid, magic is equal to
VHBMAGIC and the 32-bit sum of the volume home
block’s bytes is OXFFFFFFFF (-1); chksum is the
adjustment that makes the sum come out right.

Dsk describes the peculiarities of the disk, including
deliberate deviations from the system standard.
Dsk.flags the bitwise or of zero or more of the following
constants:

FPDENSITY (MiniFrame only) If on, the
disk is double density; if
off, the disk is single
density.

FPMIXDENS (MiniFrame only) If off,
FPDENSITY specifies the
density of the first track; if
on, the first track is single

density regardless of
FPDENSITY.
HITECH (ST506 only) If on, head

select bit 3 is valid; if off,
reduced write current is
valid.

NEWPARTTAB If off, the old style slice
(partition) table is in use; if
on, the new style slice table

is in use.

RWCPWC (ST506 only) If on, set
reduced write current/write
precompensation.
HITECH selects write
precompensation.

EXCHANGEABLE If on, the disk is a floppy

or removable hard disk
cartridge. If off, the disk is
a winchester.

FORMATEXTRA If on, the SMD drive is
formatted with an extra
sector on each track. (This
sector is ignored by CTIX
but is required for some
disk drives, notably the
Eagle-XP.)

Dsk.step specifies a stepper motor rate for the ST506;
use 14 in this field.

5/86

DISK (7)

Partab divides the disk into slices (partitions).

Fpulled indicates whether an exchangeable disk was
properly removed from the drive. The system sets this
field to 1 when the disk is inserted in the drive. To clear
fpulled, run dismount(1M); see that entry.

Mntname, minires, and userres are reserved for future
use.

Resmap describes the files that share Slice 0 with the
Volume Home Block. Provision is made for eight such
files, but only five have been assigned slots in resmap.
Each resmap entry gives the starting location (logical
block number) and length (logical blocks). A length of
zero indicates that the file is not provided. The first five
entries in resmap describe:

1. The loader. When the system is reset or turned
on, the boot prom loads the loader into the
loader address and jumps execution to it. The
function of the loader is to search for and load a
program that will boot the system.

On MightyFrame the loader searches the tape,
onboard Winchester disks 0, 1, and 2, and the
VME, in that order. On MiniFrame the loader
searches the tape, the floppy disk, and
Winchester disks 1 and O, in that order.

On each disk, the loader first checks for a
standalone program. If the disk lacks a
standalone program, the loader checks for a
CTIX kernel, which must be a CTIX executable
object file called /unix in the file system in slice
1. When the loader locates an appropriate
program, it preserves the crash dump table,
loads the program it found at the address it was
linked at (0x0 if unknown) and executes it. If no
disk contains an appropriate file, the loader
continues searching until an appropriate disk is
inserted.

2. The bad block table, which always begins at
logical block 1 of the disk. Each logical block in
the bad block table consists of a four-byte
checksum followed by 127 bad block cells. The
checksum is a value that makes the 32-bit sum
of the logical block be OxFFFFFFFF (-1). A
bad block cell is defined by the following
structure.

5/86

DISK (7)

struct bbeell {
ushort cyl; /* the cylinder of the bad block */
ushort badblk; /* the physical sector address of
the bad block within the cylinder cyl */
ushort altblk; /* track number of alternate */
ushort nxtind; /* index into the cell array for next
bad block cell for this cylinder */
b
A single sequence of numbers, starting from zero,
identifies the checksums and cells. In each cell
in use, cyl identifies a cylinder that contains the
bad block; badblk physical block offset within
the cylinder of the bad block; altblk identifies
the track that contains the alternate block;
neztind (not used in MightyFrame) identifies the
next cell for a bad block on the same cylinder or
is zero if this is the last one.

The dump area. After Reset or Suicide, the
Boot prom dumps processor registers, the
memory map, a crash dump block, and the
contents of physical memory, until it runs out of
room in the dump area.

The down load image area. The down load
images are described by a table at the beginning
of the area. The area is described by the
following array.

struct dldent {

short d_strt;

/* block displacement from down load index */

short d_sz;

/* # of blocks for this entry */
The image number is the index for dldent.
D_strt is the offset in bytes of the image from
the beginning of the down load image area; d_sz
is the size in bytes of the image.

A bootable program, usually a diagnostic. This
is the program the loader considers a substitute
for the /unix file. The program must be in
a.out(4) format with magic number 407 or be a
simple memory image.

If the fifth entry in resmap has a zero address
but a nonzero length, the loader looks at the
beginning of slice 1 for the program.

5/86

DISK(7)

Slice 0 is called the Reserved Area. Only the volume
home block and the files described by resmap can be in
the Reserved Area. A formatted disk used by a working
system certainly has at least one more slice.

Toctl system calls use the following structure.
struct gdioctl {

ushort status; /* status */

struct gdswprt params; /* description of the disk */
struct gdswprt2 params2; /* more description of the disk */
short ectrltyp; /* the type of disk controller */

short driveno;
5
Status is the bitwise or of the following constants.
VALID_VHB A valid Volume Header Block has been

read.
DRV_READY The disk is on line.
PULLED Last removal of disk from drive was not

preceded by proper dismount.

Params is a gdswprt structure, the same type used in the
volume header block.

Dsktype is equal to
GD_WD1010 for Western Digital 1010 ST506

Controller

GD_WD2010 for Western Digital 2010 ST506
Controller

GD_WD2797 for Western Digital 2797 Floppy Disk
Controller

GD_RAMDISK for RAM Disk Emulator
GD_SMD3200 for Interphase SMD3200 disk controller
CTIX understands the following disk zoct! calls.

ioctl(fd, GDIOCTYPE, 0)
Returns GDIOC if fd is a file descriptor for a
disk special file.

ioctl(fd, GDGETA, gdectl_ptr)
Gdcti_ptr 1s a pointer to a gdioctl structure.
Toctl fills the structure with information about

the disk.

ioctl(fd, GDSETA, gdctl_ptr)
Gdetl_ptr is a pointer to a gdioctl structure.
Ioctl passes the description of the disk to the
disk driver. This is primarily meant for reading
disks created by other kinds of computers.

-6-

DISK (7)

ioctl(f{d, GDFORMAT, ptr)

Ptr points to formating information. The disk
driver formats a track.

ioctl(fd, GDDISMNT)

SEE ALSO

foct! informs the driver that the user intends to
remove the disk from the drive. When this
system call successfully returns, the driver has
flushed all data in the buffer cache and waited
for all queued transfers to complete. The last
transfer i1s to write out the Volume Home Block
with the fpulled flag cleared. Once this call
returns the drive is inaccessible until a new disk
is inserted.

1v(1), mknod(1M), ioctl(2).

5/86

NAME

DISKUSG (1M)

diskusg - generate disk accounting data by user ID

SYNOPSIS

/usr/lib/acct/diskusg {options] [files]

DESCRIPTION

Diskusg generates intermediate disk accounting
information from data in files, or the standard input if
omitted. Diskusg outputs lines on the standard output,
one per user, in the following format:

uid login #blocks

where
uid 1s the numerical user ID of the user.
login is the login name of the user; and

#blocks is the total number of 512-byte disk blocks
allocated to this user.

Diskusg normally reads only the i-nodes of file systems
for disk accounting. In this case, files are the special
filenames of these devices.

Diskusg recognizes the following options:

—8 the input data is already in diskusg output
format. Diskusg combines all lines for a
single user into a single line.

-V verbose. Print a list on standard error of
all files that are charged to no one.

—i famlist ignore the data on those file systems whose
file system name is in famlist. Famlist is a
list of file system names separated by
commas or enclose within quotes. Diskusg
compares each name in this list with the

file system name stored in the volume ID
(see ladelit(1M)).

—p file use file as the name of the password file to
generate login names. /etc/passwd is
used by default.

—u file write records to file of files that are
charged to no one. Records consist of the

special file name, the i-node number, and
the user ID.

The output of diskusg is normally the input to acctdisk
(see acct(1M)) which generates total accounting records
that can be merged with other accounting records.
Diskusg is normally run in dodisk (see acctsh(1M)).

DISKUSG (1M)

EXAMPLES

FILES

The following will generate daily disk accounting
information:

for i in sl s3; do
diskusg /dev/rdsk/c0d0$i > dtmp.‘basename $i‘ &
done
wait
diskusg -s dtmp.* | sort +0n +1 | acctdisk > disktacct

/etc/passwd used for user ID to login name
conversions

SEE ALSO

acct(1M), acctsh(1M), acct(4
MightyFrame Administrator’s Reference Manual.
MiniFrame Administrator’s Manual.

NAME

DISMOUNT (1) (MiniFrame Only)

dismount ~ remove exchangeable disk

SYNOPSIS

dismount | —f |

DESCRIPTION

FILES

Dismount must be executed before physical removal of
an exchangeable disk from its drive. For each disk that
is labeled exchangeable (see disk(7)), dismount
syncronizes and unmounts its mounted file systems,
writes out its volume home block, bars further /O, and
clears its “pulled” flag. The last action prevents a
warning message the next time the disk is placed in the
drive.

Once dismount has been run, the exchangeable disk’s
drive is unusable until the dismounted disk is removed.

If a MiniFrame has two kinds of exchangeable disks,
dismount dismounts them both. To restrict dismount to
one disk, specify —f for floppy.

/etc/mnttab mounted file system list
/dev/dsk/* disk reserved area

SEE ALSO

fsck(1M), update(1), disk(7).

DU(1)

NAME
du - summarize disk usage

SYNOPSIS
du [—ars | [names |

DESCRIPTION
Du gives the number of 512-byte blocks contained in all
files and (recursively) directories within each directory
and file specified by the names argument. The block
count includes the indirect blocks of the file. If names is
missing, . is used.
The optional argument —s causes only the grand total
(for each of the specified names) to be given. The
optional argument —a causes an entry to be generated
for each file. Absence of either causes an entry to be
generated for each directory only.
Du is normally silent about directories that cannot be
read, files that cannot be opened, etc. The —r option
will cause du to generate messages in such instances.
A file with two or more links is only counted once.

BUGS

If the —a option is not used, non-directories given as
arguments are not listed.

If there are too many distinct linked files, du will count
the excess files more than once.

Files with holes in them will get an incorrect block
count.

—

NAME

DRIVERS(7)

drivers — loadable device drivers

DESCRIPTION

Init

A loadable driver is equivalent to a fixed, linked-in
device driver. It has access to all kernel subroutines and
global data. After it is loaded, it is effectively part of
the running kernel.

Differences between loadable and ordinary drivers
involve their driver ID, init routine, release routine, and
interrupt processing.

Routine

Loadable drivers may have an init routine that is
executed when the driver is bound, and a release routine
that is executed when the driver is unbound (see
lddrv(1M) for a description of driver allocation and bind
operations). Init routines check for the existence of
hardware, initialize the hardware, put the interrupt
service routine for the hardware into the interrupt chain,
and do other similar tasks.

Release Routine

Release routines make sure the device or driver is idle,
turn off the device, take the interrupt service routine out
of the interrupt chain, and similar tasks. A typical action
for a release routine to take when the device s not idle is
to set an error code in u.u_error and return.

Driver ID

All drivers have a driver ID. Preloaded drivers have a
driver ID of 0. Loaded drivers are given an ID when
they allocate virtual space. The driver ID is
automatically set when the driver is linked. The ID
should never be modified by the driver itself; the ID is
used to identify the driver to the system when making
certain requests.

EXAMPLE

/* init, release, interrupt service routines */
/* for loadable device xyzzy */

#include <sys/drv.h>

#define XYZ_VECNO 0x60 /* interrupt vector number */
#define XYZ_BUSY 1 /* flags */

#define XYZ_OPEN 2

int xyzzint(); /* interrupt service routine */
extern int DFLT_ID;

static int Drv_id = &DFLT_ID; /* set drive ID */

int xy_base;

int xy_flags;

DRIVERS(7)

xy_init()
if (set_vec(Drv_id, XYZ_VECNO, xyzzyint) < 0)

u.u_error = EBUSY;
return;

< do hardware initialization >

}
xy_release()
if (xy_flags & (XY_BUSY | XY_OPEN))
{
u.u_error = EBUSY;
return;
}
< turn off device>
reset_vec (Drv_id, XYZ_VECNO);
}
xyzzyint()
< clear interrupt>
< process interrupt>
}
SEE ALSO

Writing MightyFrame Device Drivers.

5/86 -2-

NAME

DUMP (1)

dump — dump selected parts of an object file

SYNOPSIS

dump [-acfghlorst] [~z name| files

DESCRIPTION

The dump command dumps selected parts of each of its
object file arguments.

This command will accept both object files and archives
of object files. It processes each file argument according
to one or more of the following options:

—&

~f

—Z name

-C

Dump the archive header of each
member of each archive file argument.

Dump the global symbols in the symbol
table of an archive.

Dump each file header.

Dump each optional header.
Dump section headers.

Dump section contents.

Dump relocation information.
Dump line number information.
Dump symbol table entries.

Dump line number entries for the
named function.

Dump the string table.

The following modifiers are used in conjunction with the
options listed above to modify their capabilities.

—d number

+d number

—n name

-pP
—t index

Dump the section number or range of
sections starting at number and ending
either at the last section number or
number specified by +d.

Dump sections in the range either
beginning with first section or beginning
with section specified by —d.

Dump information pertaining only to
the named entity. This modifier applies
to =h, -8, —r, -1, and —t.

Suppress printing of the headers.

Dump only the indexed symbol table
entry. The —t used in conjunction with
+4+t, specifies a range of symbol table
entries.

-1-

DUMP (1)

+t index Dump the symbol table entries in the
range ending with the indexed entry.
The range begins at the first symbol
table entry or at the entry specified by
the —t option.

—u Underline the name of the file for
emphasis.
-v Dump information in symbolic

representation rather than numeric
(e.g., C_STATIC instead of 0X02). This
modifier can be used with all the above
options except —s and —o options of
dump.

—z name,number
Dump line number entry or range of
line numbers starting at number for the
named function.

+g2 number Dump line numbers starting at either
function name or number specified by
—g, up to number specified by +=z.

Blanks separating an option and its modifier are
optional. The comma separating the name from the
number modifying the —g option may be replaced by a
blank.

The dump command attempts to format the information
it dumps in a meaningful way, printing -certain
information in character, hex, octal or decimal
representation as appropriate.

SEE ALSO
a.out(4), ar(4).

NAME

ECHO(1)

echo — echo arguments

SYNOPSIS

echo [arg | ...

DESCRIPTION

Echo writes its arguments separated by blanks and
terminated by a new-line on the standard output. It also
understands C-like escape conventions; beware of
conflicts with the shell’s use of \:

backspace

print line without new-line

form-feed

new-line

carriage return

tab

vertical tab

backslash

the 8-bit character whose ASCII code is
n, an octal number of no more than four
digits, the first of which must be zero.

Echo is useful for producing diagnostics in command
files and for sending known data into a pipe.

SEE ALSO
sh(1).

ED(1)

NAME

ed, red — text editor
SYNOPSIS

ed [— | [file] ..

red [-] [file] ..
DESCRIPTION

Ed is the standard text editor. If the file argument is
given, ed simulates an ¢ command (see below) on the
named file; that is to say, the file is read into ed’s buffer
so that it can be edited. If multiple file arguments are
given, the % argument of the ¢ command becomes
useful. The optional — suppresses the printing of
character counts by e, r, and w commands, of
diagnostics from e and ¢ commands, and of the ! prompt
after a lshell command. Ed operates on a copy of the
file it is editing; changes made to the copy have no effect
on the file until a w (write) command is given. The
copy of the text being edited resides in a temporary file
called the buffer. There is only one buffer.

Red is a restricted version of ed. It will only allow
editing of files in the current directory. It prohibits
executing shell commands via lshell command. Attempts
to bypass these restrictions result in an error message
(restricted shell).

Both ed and red support the fspec(4) formatting
capability. After including a format specification as the
first line of file and invoking ed with your terminal in
stty —tabs or stty tab3 mode (see stty(1), the specified
tab stops will automatically be used when scanning file.
For example, if the first line of a file contained:
<:t5,10,15 s72: >

tab stops would be set at columns 5, 10 and 15, and a
maximum line length of 72 would be imposed. NOTE:
while inputting text, tab characters when typed are
expanded to every eighth column as is the default.

Commands to ed have a simple and regular structure:
zero, one, or two addresses followed by a single-
character command, possibly followed by parameters to
that command. These addresses specify one or more
lines in the buffer. Every command that requires
addresses has default addresses, so that the addresses can
very often be omitted.

In general, only one command may appear on a line.
Certain commands allow the input of text. This text is
placed in the appropriate place in the buffer. While ed
is accepting text, it is said to be in tnput mode. In this

-1-

ED(1)

mode, no commands are recognized; all input is merely
collected. Input mode is left by typing a period (.) alone
at the beginning of a line.

Ed supports a limited form of regular expression
notation; regular expressions are used in addresses to
specify lines and in some commands (e.g.,) to specify
portions of a line that are to be substituted. A regular
expression (RE) specifies a set of character strings. A
member of this set of strings is said to be matched by
the RE. The REs allowed by ed are constructed as
follows:

The following one-character REs match a single
character:

1.1 An ordinary character (not one of those discussed
in 1.2 below) is a one-character RE that matches
itself.

1.2 A backslash () followed by any special character
is a one-character RE that matches the special
character itself. The special characters are:

a. . *% [, and \ (period, asterisk, left square
bracket, and backslash, respectively), which
are always special, ezcept when they appear
within square brackets ({’] ; see 1.4 belowf.

b. ~ (caret or circumflex), which is special at the
beginning of an entire RE (see 3.1 and 3.2
belowl), or when it immediately follows the
left of a pair of square brackets ([]) (see 1.4
below).

c. $ (currency symbol), which is special at the
end of an entire RE (see 3.2 below).

d. The character used to bound (i.e., delimit) an
entire RE, which is special for that RE (for
example, see how slash (/) is used in the ¢
command, below.)

1.3 A period (.) is a one-character RE that matches
any character except new-line.

1.4 A non-empty string of characters enclosed in
square brackets ([]% is a one-character RE that
matches any one character in that string. If,
however, the first character of the string is a
circumflex (*), the one-character RE matches any
character ezcept new-line and the remaining
characters in the string. The * has this special
meaning only if it occurs first in the string. The
minus (—) may be used to indicate a range of

-92.

ED(1)

consecutive ASCII characters; for example, [0-9] is
equivalent to [0123456789]. The — loses this
special meaning if it occurs first (after an initial ~,
if any) or last in the string. The right square
bracket g]) does not terminate such a string when
it is the first character within it (after an initial ~,
if any); e.g., []a—f] matches either a right square
bracket (f% or one of the letters a through f
inclusive. The four characters listed in 1.2.a above
stand for themselves within such a string of
characters.

The following rules may be used to construct REs from
one-character REs:

2.1

2.2

2.3

2.4

2.5

2.6

A one-character RE is a RE that matches whatever
the one-character RE matches.

A one-character RE followed by an asterisk (*) is a
RE that matches zero or more occurrences of the
one-character RE. If there is any choice, the
longest leftmost string that permits a match is
chosen.

A one-character RE followed by \{m\}, \{m,\},
or \{m,n\} is a RE that matches a range of
occurrences of the one-character RE. The values of
m and n must be non-negative integers less than
256; \{m\} matches ezactly m occurrences;
\{m,\} matches at least m occurrences; \{m,n\}
matches any number of occurrences between m
and n inclusive. Whenever a choice exists, the RE
matches as many occurrences as possible.

The concatenation of REs is a RE that matches the
concatenation of the strings matched by each
component of the RE.

A RE enclosed between the character sequences \(
and \) is a RE that matches whatever the
unadorned RE matches.

The expression \n matches the same string of
characters as was matched by an expression
enclosed between \(and \) earlier in the same
RE. Here n is a digit; the sub-expression specified
is that beginning with the n-th occurrence of \(
counting from the left. For example, the
expression ~\(.*#\)\1$ matches a line consisting of
two repeated appearances of the same string.

Finally, an entire RE may be constrained to match only
an initial segment or final segment of a line (or both):

ED(1)

3.1 A circumflex (*) at the beginning of an entire RE
constrains that RE to match an snitial segment of
a line.

3.2 A currency symbol ($) at the end of an entire RE
constrains that RE to match a final segment of a
line.

The construction *entire RE$ constrains the entire RE
to match the entire line.

The null RE (e.g., //) is equivalent to the last RE
encountered. See also the last paragraph before FILES
below.

To understand addressing in ed it is necessary to know
that at any time there is a current line. Generally
speaking, the current line is the last line affected by a
command; the exact effect on the current line is
discussed under the description of each command.
Addresses are constructed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the
buffer.

3. A decimal number n addresses the n-th line of the
buffer.

4. 'z addresses the line marked with the mark name
character z, which must be a lower-case letter.
Lines are marked with the k¥ command described
below.

5. A RE enclosed by slashes (/) addresses the first
line found by searching forward from the line
Jollowing the current line toward the end of the
buffer and stopping at the first line containing a
string matching the RE. If necessary, the search
wraps around to the beginning of the buffer and
continues up to and including the current line, so
that the entire buffer is searched. See also the last
paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the
first line found by searching backward from the
line preceding the current line toward the
beginning of the buffer and stopping at the first
line containing a string matching the RE. If
necessary, the search wraps around to the end of
the buffer and continues up to and including the
current line. See also the last paragraph before
FILES below.

ED(1)

7. An address followed by a plus sign (+) or a minus
sign (—) followed by a decimal number specifies
that address plus (respectively minus) the indicated
number of lines. The plus sign may be omitted.

8. If an address begins with + or —, the addition or
subtraction is taken with respect to the current
line; e.g, —5 is understood to mean .-5.

9. If an address ends with + or —, then 1 is added to
or subtracted from the address, respectively. As a
consequence of this rule and of rule 8 immediately
above, the address — refers to the line preceding
the current line. (To maintain compatibility with
earlier versions of the editor, the character ~ in
addresses is entirely equivalent to —.) Moreover,
trailing + and — characters have a cumulative
effect, so —— refers to the current line less 2.

10. For convenience, a comma (,} stands for the
address pair 1,8, while a semicolon (;) stands for
the pair .,$.

Commands may require zero, one, or two addresses.
Commands that require no addresses regard the presence
of an address as an error. Commands that accept one or
two addresses assume default addresses when an
insufficient number of addresses is given; if more
addresses are given than such a command requires, the
last one(s) are used.

Typically, addresses are separated from each other by a
comma { ,)- They may also be separated by a semicolon
(;)- In the latter case, the current line (.) is set to the
first address, and only then is the second address
calculated. This feature can be used to determine the
starting line for forward and backward searches (see rules
5. and 6. above). The second address of any two-address
sequence must correspond to a line that follows, in the
buffer, the line corresponding to the first address.

In the following list of ed commands, the default
addresses are shown in parentheses. The parentheses are
not part of the address; they show that the given
addresses are the default.

It is generally illegal for more than one command to
appear on a line. However, any command (except ¢, f,
r, or w) may be suffixed by 1, n or p, in which case the
current line is either listed, numbered or printed,
respectively, as discussed below under the I, n and p
commands.

(.)a

<text>

(-)e

<text>

(.,.)d

e file

E file

f file

ED(1)

The append command reads the given text and
appends it after the addressed line; . is left at
the last inserted line, or, if there were none, at
the addressed line. Address 0 is legal for this
command: it causes the ‘““appended’ text to be
placed at the beginning of the buffer. The
maximum number of characters that may be
entered from a terminal is 256 per line (including
the newline character).

The change command deletes the addressed
lines, then accepts input text that replaces these
lines; . is left at the last line input, or, if there
were none, at the first line that was not deleted.

The delete command deletes the addressed lines
from the buffer. The line after the last line
deleted becomes the current line; if the lines
deleted were originally at the end of the buffer,
the new last line becomes the current line.

The edit command causes the entire contents of
the buffer to be deleted, and then the named file
to be read in; . is set to the last line of the
buffer. If no file name is given, the currently-
remembered file name, if any, is used (see the f
command). If % is given in place of a file name,
the next name on the command line argument
list is used. The number of characters read is
typed; file is remembered for possible use as a
default file name in subsequent e, r, and w
commands. If file is replaced by !, the rest of
the line is taken to be a shell (ahgl)) command
whose output is to be read. Such a shell
command is net remembered as the current file
name. See also DIAGNOSTICS below.

The Edit command is like ¢, except that the
editor does not check to see if any changes have
been made to the buffer since the last w
command.

If file is given, the f ile-name command changes

-6 -

ED(1)

the currently-remembered file name to file;
otherwise, it prints the currently-remembered
file name.

(1,%)gI/RE/command list
n the global command, the first step is to mark
every line that matches the given RE. Then, for
every such line, the given command list is
executed with . initially set to that line. A
single command or the first of a list of
commands appears on the same line as the
global command. All lines of a multi-line list
except the last line must be ended with a \; a,
{, and ¢ commands and associated input are
permitted; the . terminating input mode may be
omitted if it would be the last line of the
command list. An empty command list is
equivalent to the p command. The g, G, v, and
V commands are not permitted in the command
list. See also BUGS and the last paragraph
before FILES below.

(1,$)G/RE/

In the interactive Global command, the first
step is to mark every line that matches the given
RE. Then, for every such line, that line is
printed, . is changed to that line, and any one
command (other than one of the a, ¢, ¢, ¢, G,
v, and V commands) may be input and is
executed. After the execution of that command,
the next marked line is printed, and so on; a
new-line acts as a null command; an & causes
the re-execution of the most recent command
executed within the current invocation of G.
Note that the commands input as part of the
execution of the G command may address and
affect any lines in the buffer. The G command
can be terminated by an interrupt signal (ASCII
DEL or BREAK).

The help command gives a short error message
that explains the reason for the most recent ?
diagnostic.

(.)i

ED(1)

The Help command causes ed to enter a mode
in which error messages are printed for all
subsequent ? diagnostics. It will also explain the
previous ? if there was one. The H command
alternately turns this mode on and off; it is
initially off.

<text>

(

(.)kz

(o))

The fnsert command inserts the given text
before the addressed line; . is left at the last
inserted line, or, if there were none, at the
addressed line. This command differs from the
a command only in the placement of the input
text. Address 0 is not legal for this command.
The maximum number of characters that may
be entered from a terminal is 256 per line
(including the newline character).

Ly o
he join command joins contiguous lines by

removing the appropriate new-line characters. If
exactly one address is given, this command does
nothing.

The mark command marks the addressed line
with name z, which must be a lower-case letter.
The address 'z then addresses this line; . is
unchanged.

The list command prints the addressed lines in
an unambiguous way: a few non-printing
characters ge. ., tab, backspace) are represented
by (hopefully) mnemonic overstrikes, all other
non-printing characters are printed in octal, and
long lines are folded. An [command may be
appended to any other command other than e,
f, r,orw.

(.y.)ma

(.y.)n

The move command repositions the addressed
line(s) after the line addressed by a. Address 0
is legal for a and causes the addressed line(s) to
be moved to the beginning of the file; it 1s an
error if address a falls within the range of moved
lines; . is left at the last line moved.

The number command prints the addressed

-8 -

(°)°)p

ED(1)

lines, preceding each line by its line number and
a tab character; . is left at the last line printed.
The n command may be appended to any other
command other than ¢, f, r, or w.

The print command prints the addressed lines; .
is left at the last line printed. The p command
may be appended to any other command other
than e, f, r, or w; for example, dp deletes the
current line and prints the new current line.

The editor will prompt with a =* for all
subsequent commands. The P command
alternately turns this mode on and off; it is
initially off.

The guit command causes ed to exit. No
automatic write of a file is done (but see
DIAGNOSTICS below).

The editor exits without checking if changes
have been made in the buffer since the last w
command.

($)r file

The read command reads in the given file after
the addressed line. If no file name is given, the
currently-remembered file name, if any, is used
(see ¢ and f commands). The currently-
remembered file name is not changed unless file
is the very first file name mentioned since ed
was invoked. Address O is legal for r and causes
the file to be read at the beginning of the buffer.
If the read is successful, the number of
characters read is typed; . is set to the last line
read in. If file is replaced by !, the rest of the
line is taken to be a shell (sh(1)) command
whose output is to be read. For example, "$r
!Is” appends current directory to the end of the
file being edited. Such a shell command is not
remembered as the current file name.

E oy ;s/RE/rcplaccmcnt/ or

oy

s/RE /replacement /g

he substitute command searches each
addressed line for an occurrence of the specified
RE. In each line in which a match is found, all
(non-overlapped) matched strings are replaced

-9-

ED(1)

by the replacement if the global replacement
indicator g appears after the command. If the
global indicator does not appear, only the first
occurrence of the matched string is replaced. It
is an error for the substitution to fail on all
addressed lines. Any character other than space
or new-line may be used instead of / to delimit
the RE and the replacement; . is left at the last
line on which a substitution occurred. See also
the last paragraph before FILES below.

An ampersand (& appearing in the
replacement is replaced by the string matching
the RE on the current line. The special meaning
of & in this context may be suppressed by
preceding it by \. As a more general feature,
the characters \n, where n is a digit, are
replaced by the text matched by the n-th
regular subexpression of the specified RE
enclosed between \(and \). When nested
parenthesized subexpressions are present, n is
determined by counting occurrences of \(
starting from the left. When the character %% is
the only character in the replacement, the
replacement used in the most recent substitute
command is used as the replacement in the
current substitute command. The %% loses its
special meaning when it is in a replacement
string of more than one character or is preceded
by a \
A line may be split by substituting a new-line
character into it. The new-line in the
replacement must be escaped by preceding it by
\. Such substitution cannot be done as part of a
g or v command list.

(+9e)ta ')
This command acts just like the m command,
except that a copy of the addressed lines is
placed after address a (which may be 0); . is left
at the last line of the copy.

The undo command nullifies the effect of the
most recent command that modified anything in
the buffer, namely the most recent a, ¢, d, g, 1,
Jj,m,r, 8t v, G, or Vcommand.

(1,$%)v’{RE/command list
his command is the same as the global
command g except that the command lst is

- 10 -

ED(1)

executed with . initially set to every line that
does not match the RE.
(1,8)V/rE/
his command is the same as the interactive
global command G except that the lines that are
marked during the first step are those that do
not match the RE.

(1,8$)w file

The write command writes the addressed lines
into the named file. If the file does not exist, it
is created with mode 666 (readable and writable
by everyone), unless your umask setting (see
sh(1)) dictates otherwise. The currently-
remembered file name is not changed unless file
is the very first file name mentioned since ed
was invoked. If no file name is given, the
currently-remembered file name, if any, is used
(see ¢ and f commands); . is unchanged. If the
command is successful, the number of characters
written is typed. If file is replaced by !, the rest
of the line is taken to be a shell (ah(l)(g
command whose standard input is the addresse
lines. Such a shell command is not remembered
as the current file name.

($)=
The line number of the addressed line is typed; .
is unchanged by this command.

1shell command
The remainder of the line after the ! is sent to
the CTIX System shell (sh(1)) to be interpreted
as a command. Within the text of that
command, the unescaped character % is
replaced with the remembered file name; if a !
appears as the first character of the shell
command, it is replaced with the text of the
previous shell command. Thus, !! will repeat the
last shell command. If any expansion is
performed, the expanded line is echoed; . is
unchanged.

(.+1)<new-line>
An address alone on a line causes the addressed
line to be printed. A new-line alone is
equivalent to .+1p; it is useful for stepping
forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed
prints a ? and returns to tts command level.

- 11 -

FILES

DIAGNOSTICS
?

ED(1)

Some size limitations: 512 characters per line, 256
characters per global command list, 64 characters per file
name, and 128K characters in the buffer. The limit on
the number of lines depends on the amount of user
memory: each line takes 1 word.

When reading a file, ed discards ASCIl NUL characters
and all characters after the last new-line. Files t&.g.,
a.out) that contain characters not in the ASCII set (bit 8
on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string
(e.g., /) would be the last character before a new-line,
that delimiter may be omitted, in which case the
addressed line 1is printed. The following pairs of
commands are equivalent:

s/s1/s2 s/s1/s2/p

g/s1 g/s1/p

sl ?s1?

/tmp/e# temporary; # is the process number.
ed.hup work is saved here if the terminal is hung up.

! for command errors.

ile for an inaccessible file.

use the kelp and Help commands for
etailed explanations).

If changes have been made in the buffer since the last w
command that wrote the entire buffer, ed warns the user
if an attempt is made to destroy ed’s buffer via the e or
¢ commands: it prints ? and allows one to continue
editing. A second e or ¢ command at this point will
take effect. The — command-line option inhibits this
feature.

SEE ALSO

grep(1), sed(1), sh(1), stty(1), fspec(4), regexp(5).
Other)edltors vi(1), ex(1).

WARNINGS AND BUGS

A !/ command cannot be subject to a ¢ or a v command.
The ! command and the ! escape from the e, r, and w
commands cannot be used if the the editor is invoked
from a restricted shell (see ah(gl)).
The sequence \n in a RE does not match a new-line
character.

The | command mishandles DEL.

Characters are masked to 7 bits on input.

Due to export restrictions, encryption features are not
available.

-12-

EDIT(1)

NAME
edit — text editor (variant of ex for casual users)

SYNOPSIS
edit [-r | name ...

DESCRIPTION
Edst is a variant of the text editor ez recommended for
new or casual users who wish to use a command-oriented
editor. The following brief introduction should help you
get started with edtt. If you are using a CRT terminal you
may want to learn about the display editor vt

BRIEF INTRODUCTION

To edit the contents of an existing file you begin with
the command ‘“‘edit name” to the shell. FEdit makes a
copy of the file which you can then edit, and tells you
how many lines and characters are in the file. To create
a new file, just make up a name for the file and try to
run edit on it; you will cause an error diagnostic, but do
not worry.

Edit prompts for commands with the character ‘’, which
you should see after starting the editor. If you are
editing an existing file, then you will have some lines in
edit’s buffer (its name for the copy of the file you are
editing). Most commands to edit use its ‘“‘current line”’ if
you do not tell them which line to use. Thus if you say
print {which can be abbreviated p) and hit carriage
return (as you should after all edit commands) this
current line will be printed. If you delete (d) the
current line, edit will print the new current line. When
you start editing, edit makes the last line of the file the
current line. If you delete this last line, then the new
last line becomes the current one. In general, after a
delete, the next line in the file becomes the current line.
(Deleting the last line is a special case.)

If you start with an empty file or wish to add some new
lines, then the append (a))' command can be used. After
you give this command (typing a carriage return after
the word append) edit will read lines from your terminal
until you give a line consisting of just a ‘., placing
these lines after the current line. The last line you type
then becomes the current line. The command insert (i)
is like append but places the lines you give before,

rather than after, the current line.

Edit numbers the lines in the buffer, with the first line
having number 1. If you give the command ‘1" then
edit will type this first line. If you then give the
command delete edit will delete the first line, line 2 will

-1-

EDIT(1)

become line 1, and edst will print the current line (the
new line 1) so you can see where you are. In general, the
current line will always be the last line affected by a
command.

You can make a change to some text within the current
line by using the substitute (s) command. You say
“s/old /new/” where old is replaced by the old
characters you want to get rid of and new is the new
characters you want to replace it with.

The command file (f) will tell you how many lines there
are in the buffer you are editing and will say
“{Modified]” if you have changed it. After modifying a
file you can put the buffer text back to replace the file
by giving a write (w) command. You can then leave
the editor by issuing a quit (q) command. If you run
edit on a file, but do not change it, it is not necessary
(but does no harm) to write the file back. If you try to
quit from ed:t after modifying the buffer without writing
it out, you will be warned that there has been ‘‘No
write since last change’” and edit will await another
command. If you wish not to write the buffer out then
you can issue another quit command. The buffer is then
irretrievably discarded, and you return to the shell.

By using the delete and append commands, and giving
line numbers to see lines in the file you can make any
changes you desire. You should learn at least a few
more things, however, if you are to use edit more than a
few times.

The change (¢} command will change the current line to
a sequence of lines you supply (as in append you give
lines up to a line consisting of only a “.””). You can tell
change to change more than one line by giving the line
numbers of the lines you want to change, i.e.,
“3,5change’’. You can print lines this way too. Thus
“1,23p”" prints the first 23 lines of the file.

The undo (u) command will reverse the effect of the last
command you gave which changed the buffer. Thus if
you give a substitute command which does not do what
you want, you can say undo and the old contents of the
line will be restored. You can also undo an undo
command so that you can continue to change your mind.
Edit will give you a warning message when commands
you do affect more than one line of the buffer. If the
amount of change seems unreasonable, you should
consider doing an wundo and looking to see what
happened. If you decide that the change is ok, then you
can undo again to get it back. Note that commands

-9.

EDIT(1)

such as write and qust cannot be undone.

To look at the next line in the buffer you can just hit
carriage return. To look at a number of lines hit "D
(control key and, while it is held down D key, then let
up both) rather than carriage return. This will show you
a half screen of lines on a CRT or 12 lines on a hardcopy
terminal. You can look at the text around where you are
by giving the command “z.””. The current line wiil then
be the last line printed; you can get back to the line
where you were before the ‘“z.”” command by saying
¢ The ¢ command can also be given other followin
characters “z—"" prints a screen of text (or 24 lines%
ending where you are; “z+’’ prints the next screenful. If
you want less than a screenful of lines, type in ”z.12” to
get 12 lines total. This method of giving counts works in
general; thus you can delete 5 lines starting with the
current line with the command ‘““delete 5”.

To find things in the file, you can use line numbers if
you happen to know them; since the line numbers change
when you insert and delete lines this is somewhat
unreliable. You can search backwards and forwards in
the file for strings by giving commands of the form
étext/ to search forward for tezt or Mtext? to search
ackward for tezt. If a search reaches the end of the file
without finding the text it wraps, end around, and
continues to search back to the line where you are. A
useful feature here is a search of the form /“text/ which
searches for tezt at the beginning of a line. Similarly
text$/ searches for tezt at the end of a line. You can
eave off the trailing / or ? in these commands.

The current line has a symbolic name “.”’; this is most
useful in a range of lines as in “.,$print” which prints
the rest of the lines in the file. To get to the last line in
the file you can refer to it by its symbolic name “$.
Thus the command “‘$ delete” or “$d” deletes the last
line in the file, no matter which line was the current line
before. Arithmetic with line references is also possible.
Thus the line “$-5’" is the fifth before the last, and
¢,+20” is 20 lines after the present.

»

You can find out which line you are at by doing ¢‘.=".
This is useful if you wish to move or copy a section of
text within a file or between files. Find out the first and
last line numbers you wish to copy or move (say 10 to
20?. For a move you can then say ‘“10,20delete a’’ which
deletes these lines from the file and places them in a
buffer named a¢. Edit has 26 such buffers named a
through 2. You can later get these lines back by doing

-3-

EDIT(1)

“put a” to put the contents of buffer a after the current
line. If you want to move or copy these lines between
files you can give an edit (e) command after copying the
lines, following it with the name of the other file you
wish to edit, i.e., “‘edit chapter2”. By changing delete to
yank above you can get a pattern for copying lines. If
the text you wish to move or copy is all within one file
then you can just say ‘“10,20move $” for example. It is
not necessary to use named buffers in this case (but you
can if you wish).

SEE ALSO
ex(1), vi(1).

NAME

ENABLE (1)

enable, disable ~ enable/disable LP printers

SYNOPSIS

enable printers
disable [—¢| [—r[reason]| printers

DESCRIPTION

FILES

Enable activates the named printers, enabling them to
print requests taken by Ip(1). Use Ipstat(1l) to find the
status of printers.

Disable deactivates the named printers, disabling them
from printing requests taken by Ip(1). By default, any
requests that are currently printing on the designated
printers will be reprinted in their entirety either on the
same printer or on another member of the same class.
Use Ipstat(1) to find the status of printers. Options
useful with disable are:

—c Cancel any requests that are currently
printing on any of the designated printers.

—r[reason| Associates a reason with the deactivation
of the printers. This reason applies to all
printers mentioned up to the next -r
option. If the —r option is not present or
the —r option is given without a reason,
then a default reason will be used.
Reason is reported by Ipstat(1).

/usr/spool/Ip/*

SEE ALSO

Ip(1), lpstat(1).
MightyFrame Administrator’s Reference Manual.
MiniFrame Admintstrator’s Manual.

NAME

ENV(1)

env -~ set environment for command execution

SYNOPSIS

env (-] [name=value | ... [command args |

DESCRIPTION

Fnv obtains the current environmeni, modifies it
according to its arguments, then executes the command
with the modified environment. Arguments of the form
name==value are merged into the inherited environment
before the command is executed. The — flag causes the
inherited environment to be ignored completely, so that
the command is executed with exactly the environment
specified by the arguments.

If no command is specified, the resulting environment is
printed, one name-value pair per line.

SEE ALSO

sh(1), exec(2), profile(4), environ(5).

EQN(1)

NAME
eqn, neqn, checkeq — format mathematical text for nroff
or troff
SYNOPSIS
eqn [—dxy | [—pn] | —sn | [—fn | [files |
negn [—dxy | [—pn | [-sn | [—fn | [files]

[
checkeq | files]

DESCRIPTION
Eqn is a troff(1) preprocessor for typesetting
mathematical text on a phototypesetter, while negn is
used for the same purpose with nroff on typewriter-like
terminals. Usage is almost always:

eqn files | troff
neqn files | nroff

or equivalent.

If no files are specified (or if — is specified as the last
argument), these programs read the standard input. A
line beginning with .EQ marks the start of an equation;
the end of an equation is marked by a line beginning
with .EN. Neither of these lines is altered, so they may
be defined in macro packages to get centering,
numbering, etc. It is also possible to designate two
characters as delimiters; subsequent text between
delimiters is then treated as egn input. Delimiters may
be set to characters £ and y with the command-line
argument —dzy or (more commonly) with delim zy
between .EQ and .EN. The left and right delimiters
may be the same character; the dollar sign is often used
as such a delimiter. Delimiters are turned off by delim
off. All text that is neither between delimiters nor
between .EQ and .EN is passed through untouched.

The program checkeq reports missing or unbalanced
delimiters and .EQ/.EN pairs.

Tokens within eqn are separated by spaces, tabs, new-
lines, braces, double quotes, tildes, and circumflexes.
Braces {} are used for grouping; generally speaking,
anywhere a single character such as z could appear, a
complicated construction enclosed in braces may be used
instead. Tilde (™) represents a full space in the output,
circumflex (~) half as much.

Subscripts and superscripts are produced with the
keywords sub and sup. Thus =z gub_j makes z;,
a sub k sup 2 produces a;?, while ¢* ¥ is made with
e sup {x sup 2 + y sup 2’}. Fractions are made with

-1-

EQN(1)

over: a over b yields -g—; sgrt makes square roots:
1

1 over sgrt {az sup 2+bz+c} results in ——m———rr
Vezl+bz +¢

The keywords fror’p and to introduce lower and upper

limits: lim Yz is made with
n —00 0

hm from {n -> inf } sum from O to n z sub «. Left

and right brackets, braces, etc., of the right height are

made with left and right:

left [z sup 2 + y sup 2 over alpha right | ~="~ |
produces
2
o2+ | =1.
a

Legal characters after left and right are braces,
brackets, bars, ¢ and f for ceiling and floor, and ” * for
nothing at all (useful for a right-side-only bracket). A
left thing need not have a matching right thing.

Vertical piles of things are made with pile, Ipile, cpile,
and rpile:

pile {a above b above ¢}

produces

a

b.

¢
Piles may have arbitrary numbers of elements; Ipile
left-justifies, pile and cpile center (but with different
vertical spacing), and rpile right justifies. Matrices are
made with matrix:

matriz {‘Ical { z sub 1 above y sub 2} ccol { 1
above 2} }

produces
I 1

y2 2
In addition, there is rcol for a right-justified column.

Diacritical marks are made with dot, dotdot, hat,
tilde,_bar, vec, dyad, and under: z dot = f{t) bar is
¢=1(t), y dotdot bar ~=" n under is § = n, and

zvee ="y dyad isT =Y.

Point sizes and fonts can be changed with size n or size
+n, roman, italic, bold, and font n. Point sizes and
fonts can be changed globally in a document by gsize n
and gfont n, or by the command-line arguments —sn
and ~fn.

EQN(1)

Normally, subscripts and superscripts are reduced by 3
points from the previous size; this may be changed by
the command-line argument —pn.

Successive display arguments can be lined up. Place
mark before the desired lineup point in the first
equation; place lineup at the place that is to line up
vertically in subsequent equations.

Shorthands may be defined or existing keywords
redefined with define:

define thing % replacement %

defines a new token called thing that will be replaced by
replacement whenever it appears thereafter. The %
may be any character that does not occur in

replacement.
Keywords such as sum () mt), inf (o0), and
shorthands such as >= (), and > (—) are

recognized. Greek lettexs Tare spe ed out in the desired
case, as in alpha (@), or GAMMA (T). Mathematical
words such as sin, cos, and log are made Roman
automatlcally Trofj'(l) four-character escapes such as
\(dd (}) and \(bs () may be used anywhere. Strings
enclosed in double quotes ("...”) are passed through
untouched; this permits keywords to be entered as text,
and can be used to communicate with troff(1) when all
elsle fails. Full details are given in the manual cited
below.

SEE ALSO

BUGS

cw(l), mm(1),

mmt{1 nroff(1), tbl(1), troff(1),
eqnchar(S) mm(5), mv (g)) m o) ™

To embolden dlgits, parentheses, etc., 1t is necessary to
quote them, as in bold "12.3”.
See also BUGS under troff(1).

NAME

ERR(7)

err — error-logging interface

DESCRIPTION

FILES

Minor device O of the err driver is the interface between
a process and the system’s error-record collection
routines. The driver may be opened only for reading by
a single process with super-user permissions. Each read
causes an entire error record to be retrieved and
removed; the record is truncated if the read request is for
less than the record’s length.

An appropriate command to the console sends console
information to the error record queue. See console(7).

/dev/error special file

SEE ALSO

errdemon(1M), console(7).

ERRDEAD (1M)

NAME
errdead — extract error records and status information
from dump
SYNOPSIS
/etc/errdead [-ae][f]] | dumpfile | [namelist]
DESCRIPTION

When hardware errors are detected by the system, an
error record that contains information pertinent to the
error 1s generated. If the error-logging demon
errdemon(1M) is not active or if the system crashes
before the record can be placed in the error file, the error
information is held by the system in a local buffer.
errdead examines a system dump (or memory), extracts
such error records, and passes them to errpt(1M) for
analysis.

Errdead understands the following options:

-8 Instead of passing extracted records to
errpt(1M), append them to /usr/adm/errfile,
provided that the dump corresponds to the
namelist and that the dump is newer than the
error file.

—e Only wvalid if —a is also specified. Invoke
errdemon(1M) when done. This is normally
done in the rc script (see bre(IM)).

—f Only valid if —a is also specified. Write
extracted records even if the dump is older than
the error file.

The dumpfile specifies the file (or memory) that is to be
examined; if not given, errdead looks for a dump area by
scanning the available disks in the same order as does
the bootstrap ROM. The system namelist is specified by
namelist; if not given, /unix is used.

FILES
/unix system namelist
/usr/bin/errpt analysis program
/usr/tmp/errXXXXXX temporary file
/usr/adm/errfile repository for error records
/ete /log/confile console file

DIAGNOSTICS
Diagnostics may come from either errdead or errpt. In
either case, they are intended to be self-explanatory.

SEE ALSO

errdemon(1M), errpt(1M).

ERRDEMON (1M)

NAME

errdemon — error-logging demon
SYNOPSIS

/usr/lib/errdemon | -n | [-¢ file | [file |
DESCRIPTION

FILES

The error logging demon errdemon collects error records
from the operating system by reading the special file
/dev/error and places them in file. If file is not
specified when the demon is activated,
}) usr/adm/errfile is used. Note that file is created if it
does not exist; otherwise, error records are appended to
it, so that no previous error data is lost. No analysis of
the error records is done by errdemon; that responsibility
is left to errpt(1M). Errdemon can also extract console
records; the —n option disables this, thus forcing all
console reports to stay in a circular buffer in the kernel.
The —c¢ option allows specifying a console file. The
default console file is })etc/log/confile. The error-
logging demon is terminated by sending it a software kill
signal (see kill(1)). Only the superuser may start the
demon, and only one demon may be active at any time.

/dev/error source of error records
/usr/adm/errfile repository for error records
/ete/log/confile console records
/dev/console

DIAGNOSTICS

The diagnostics produced by errdemon are intended to
be self-explanatory.

SEE ALSO

errpt(1M), errstop(1M), kill(1), err(7).

NAME

ERRPT(1M)

errpt — process a report of logged errors

SYNOPSIS

errpt | options | [files]

DESCRIPTION

Errpt processes data collected by the error logging
mechanism (errdemon(1M)) and generates a report of
that data. The default report is a summary of all errors
posted in the files named. Options apply to all files and
are described below. If no files are specified, errpt
attempts to use /usr/adm/errfile as file.

A summary report notes the options that may limit its
completeness, records the time stamped on the earliest
and latest errors encountered, and gives the total number
of errors of one or more types. Each device summary
contains the total number of wunrecovered errors,
recovered errors, errors unabled to be logged, I/O
operations on the device, and miscellaneous activities
that occurred on the device. The number of times that
errpt has difficulty reading input data is included as
read errors.

Any detailed report contains, in addition to specific error
information, all instances of the error logging process
being started and stopped, and any time changes (via
datc%l)) that took place during the interval being
processed. A summary of each error type included in the
report is appended to a detailed report.

A report may be limited to certain records in the
following ways:

—8 date Ignore all records posted earlier than
date, where date has the form
mmddhhmmyy, consistent in meaning
with the date(1) command.

—e date Ignore all records posted later than
date, whose form 1is as described
above.

-a Produce a detailed report that includes
all error types.

—d devlist A detailed report is limited to data

about devices given in devlist, where
devlist can be one of two forms: a list
of device identifiers separated from
one another by a comma, or a list of
device identifiers enclosed in double
quotes and separated from one another

-1-

-f

ERRPT(1M)

by a comma and/or more spaces.
Errpt is familiar with the block
devices GD? (0 to 15). Additional
identifiers are int, mem, QICO for
1/4-inch tape, and TPO for 1/2-inch
tape, which include detailed reports of
stray-interrupt, and tty and serial
asynchronous terminals memory-parity
type errors, respectively.

Limit the size of a detailed report to n
pages.
In a detailed report, limit the reporting

of block device errors to unrecovered
errors.

Logical blocks in the filesystem are 1024 bytes. Physical
sector numbers are 512-byte blocks.

FILES
/usr/adm/errfile

SEE ALSO

default error file

date(1), errdead(1M), errdemon(1M), errfile(4).

'

ERRSTOP (IM)

NAME
errstop — terminate the error-logging demon

SYNOPSIS
/etc/errstop | namelist |

DESCRIPTION
The error-logging demon errdemon (1M) is terminated by
using errstop. This is accomphshed by executing ps(1)
to determine the demon’s identity and then sending it a
software kill signal (see signal(2 { /unix is used as the
system namelist if none is specified. Only the super-user
may use errstop.

FILES
/unix default system namelist
DIAGNOSTICS
The diagnostics produced by errstop are intended to be
self-explanatory.
SEE ALSO
errdemon(1M), ps(1), kill(2). signal(2).

EX(1)

NAME
ex — text editor

SYNOPSIS
ex [=] [-v] [~t tag | [-r] [-R]
[+command] [-1] name ...

DESCRIPTION

Ez is the root of a family of editors: ez and vi. Fz is a
superset of ed, with the most notable extension being a
display editing facility. Display based editing is the
focus of vi.

If you have a CRT terminal, you may wish to use a
display based editor; in this case see vi(1), which is a
command which focuses on the display editing portion of
ex.

FOR ED USERS

If you have used ed you will find that er has a number
of new features useful on CRT terminals. Intelligent
terminals and high speed terminals are very pleasant to
use with vi. Generally, the editor uses far more of the
capabilities of terminals than ed does, and uses the
terminal capability data base terminfo(4) and the type of
the terminal you are using from the variable TERM in
the environment to determine how to drive your
terminal efficiently. The editor makes use of features
such as insert and delete character and line in its visual
command (which can be abbreviated vi) and which is the
central mode of editing when using vi(1).

Ez contains a number of new features for easily viewing
the text of the file. The £ command gives easy access to
windows of text. Hitting "D causes the editor to scroll a
half-window of text and is more useful for quickly
stepping through a file than just hitting return. Of
course, the screen-oriented visual mode gives constant
access to editing context.

Ez gives you more help when you make mistakes. The
undo (u) command allows you to reverse any single
change which goes astray. FEz gives you a lot of
feedback, normally printing changed lines, and indicates
when more than a few lines are affected by a command
so that it is easy to detect when a command has affected
more lines than it should have.

The editor also normally prevents overwriting existing
files unless you edited them so that you do not
accidentally clobber with a write a file other than the
one you are editing. If the system (or editor) crashes, or
you accidentally hang up the phone, you can use the

-1-

EX(1)

editor recover command to retrieve your work. This

will get you back to within a few lines of where you left
off.

Ez has several features for dealing with more than one
file at a time. You can give it a list of files on the
command line and use the next {n) command to deal
with each in turn. The next command can also be given
a list of filenames, or a pattern as used by the shell to
specify a new set of files to be dealt with. In general,
filenames in the editor may be formed with full shell
metasyntax. The metacharacter ‘%%’ is also available in
forming filenames and is replaced by the name of the
current file.

For moving text between files and within a file the editor
has a group of buffers, named a through z You can
place text in these named buffers and carry it over when
you edit another file.

There is a command & in ez which repeats the last
substitute command. In addition there is a confirmed
substitute command. You give a range of substitutions
to be done and the editor interactively asks whether each
substitution is desired.

It is possible to ignore case of letters in searches and
substitutions. FEz also allows regular expressions which
match words to be constructed. This is convenient, for
example, in searching for the word ‘edit” if your
document also contains the word “editor.”

Ez has a set of options which you can set to tailor it to
your liking. One option which is very useful is the
autoindent option which allows the editor to
automatically supply leading white space to align text.
You can then use the "D key as a backtab and space and
tab forward to align new code easily.

Miscellaneous new useful features include an intelligent
join (J} command which supplies white space between
joined lines automatically, commands < and > which
shift groups of lines, and the ability to filter portions of
the buffer through commands such as sort.

INVOCATION OPTIONS
The following invocation options are interpreted by ez :

- Suppress all interactive-user feedback.
This is useful in processing editor
scripts.

-v Invokes vi.

-t tagfR

—r file

-R

+command

-1

EX(1)

Edit the file containing the tag and
position the editor at its definition.

Recover file after an editor or system
crash. If file is not specified a list of all
saved files will be printed.

Readonly mode set, prevents
accidentally overwriting the file.

Begin editing by executing the specified
editor search or positioning command.

LISP mode; indents appropriately for
lisp code, the () 5} ([and]]pcommands
in vt are modified to have meaning for
lisp.

The name argument indicates files to be edited.

Normal and initial state. Input
prompted for by :. Your kill character
cancels partial command.

Entered by a i and ¢. Arbitrary text
may be entered. Insert is normally
terminated by line having only . on it,
or abnormally with an interrupt.

Entered by vi, terminates with Q or *\.

next n unabbrev una
number nu undo u
unmap unm
preserve pre version ve
print P visual vi
put pu write w
quit q Xit X
read re yank ya
recover rec window %
rewind rew escape !
set se Ishift <
shell sh print next CR
source 80 resubst &
stop st rshift >
substitute s scroll ‘D

/pat next with pat
?pat previous with pat

Ex States
Command
Insert
Visual

Ex command names and abbreviations
abbrev ab
append a
args ar
change ¢
copy co
delete d
edit e
file f
global g
insert i
join J
list 1
map
mark ma
move m

Ex Command Addresses
n line n
. current
$ last
+ next
- previous

~n n before z
7,y z through y
‘x marked with z

-3-

EX(1)

+n n forward o previous context
% 1$

Initializing options
EXINIT place set’s here in environment var.
$HOME/ .exrc editor initialization file
./.exrc editor initialization file
set r enable option
set nor disable option
set r=val give value val
set show changed options
set all show all options
set 2? show value of option z

Most useful options
autoindent ai supply indent
autowrite aw write before changing files
ignorecase ic in scanning
lisp () { } are s-exp’s
list print I for tab, $ at end
magic . [* special in patterns
number nu number lines
paragraphs para macro names which start ...
redraw simulate smart terminal
scroll command mode lines
sections sect INAaCro Names ...
shiftwidth SW for < >, and input ‘D
showmatch sm to) and } as typed
showmode smd show insert mode in vt
slowopen slow stop updates during insert
window visual mode lines
wrapscan ws around end of buffer?
wrapmargin wm automatic line splitting

Scanning pattern formation
i beginning of line

$ end of line

. any character

\< beginning of word
\> end of word

str] any char in str
Tstr ... not in str

z-y ... between z and y

any number of preceding

AUTHOR
Vi and ex are based on software developed by The
University of California, Berkeley, California, Computer
Science Division, Department of Electrical Engineering
and Computer Science.

EX(1)

FILES
/usr/lib/ex?.?strings eIror messages
/usr/lib/ex?.?recover recover command
/usr/lib/ex?.?7preserve preserve command
/usr/lib/terminfo describes capabilities of
terminals
$HOME/ .exrc editor startup file
./ .exre editor startup file
tmp/Exnnann editor temporary
/tmp/Rxnnnnn named buffer temporary
/usr/preserve preservation directory
SEE ALSO

awk(1), ed(1), edit(1), grep(1), sed(1), vi(1), curses(3X),
term(4), terminfo(4).
CTIX Programmer’s Guide.

CAVEATS AND BUGS

The undo command causes all marks to be lost on lines
changed and then restored if the marked lines were
changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than
physical lines. More than a screen full of output may
result if long lines are present.

File input/output errors do not print a name if the
command line ‘-’ option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named
buffers and not used before exiting the editor.

Null characters are discarded in input files and cannot
appear in resultant files.

Due to export restrictions, encryption features are not
available.

EXPAND (1)

NAME
expand, unexpand - expand tabs to spaces, and vice
versa

SYNOPSIS
expand | —tabstop] [—tabl,tab2,... tabn | [file ...]|
unexpand [—a | [file ...]

DESCRIPTION

Ezpand processes the named files or the standard input
writing the standard output with tabs changed into
blanks. Backspace characters are preserved into the
output and decrement the column count for tab
calculations. Ezpand is useful for pre-processing
character files (before sorting, looking at specific
columns, etc.) that contain tabs.

If a single tabstop argument is given then tabs are set
tabstop spaces apart instead of the default 8. If multiple
tabstops are given then the tabs are set at those specific
columns.

Unezpand puts tabs back into the data from the
standard input or the named files and writes the result
on the standard output. By default only leading blanks
and tabs are reconverted to maximal strings of tabs. If
the —a option is given, then tabs are inserted whenever
they would compress the resultant file by replacing two
or more characters.

NAME

EXPR(1)

expr — evaluate arguments as an expression

SYNOPSIS

expr arguments

DESCRIPTION

The arguments are taken as an expression. After

evaluation, the result is written on the standard output.
Terms of the expression must be separated by blanks.
Characters special to the shell must be escaped. Note
that O is returned to indicate a zero value, rather than
the null string. Strings containing blanks or other
special characters should be quoted. Integer-valued
arguments may be preceded by a unary minus sign.
Internally, integers are treated as 32-bit, 2s complement
numbers.

The operators and keywords are listed below.
Characters that need to be escaped are preceded by \.
The list is in order of increasing precedence, with equal
precedence operators grouped within { } symbols.

expr \| eapr
returns the first ezpr if it is neither null nor O,
otherwise returns the second ezpr.

expr \& ezpr
returns the first expr if neither ezpr is null or O,
otherwise returns 0.

expr { =, \>, \>=,\<, \<=,!==} eapr
returns the result of an integer comparison if
both arguments are integers, otherwise returns
the result of a lexical comparison.

expr { +, — } expr
addition or subtraction of integer-valued
arguments.

expr { *, /, %0 } eapr
multiplication, division, or remainder of the
integer-valued arguments.

expr s expr

The matching operator : compares the first
argument with the second argument which must
be a regular expression. Regular expression
syntax is the same as that of ed , except that
all patterns are ‘“‘anchored” egln with *

and, therefore, * is not a spec1al character, m
that context. Normally, the matching operator
returns the number of characters matched (0 on
failure). Alternatively, the \(...\) pattern

-1-

EXPR(1)

symbols can be used to return a portion of the
first argument.

EXAMPLES
1. a==‘expr $a + 1°
adds 1 to the shell variable a.
2. # ‘For $a equal to either ”/usr/abc/file” or
just "file” #
expr $a : ~*/\(*¥\)- \|] $a
returns the last segment of a path name
(i.e., file). Watch out for / alone as an
argument: ezpr will take it as the
division operator (see BUGS below).
3. # A better representation of example 2.
expr //$a 1 sx/\(*\)~
The addition of the // characters
eliminates any ambiguity about the
division operator and simplifies the
whole expression.
4. expr $VAR : ~.*~
returns the number of characters in
$VAR.
SEE ALSO
ed(1), sh(1).
EXIT CODE

As a side effect of expression evaluation, expr returns the
following exit values:

0 if the expression is neither null nor 0
1 if the expression 1s null or 0
2 for invalid expressions.
DIAGNOSTICS
syntazx error for operator/operand errors

non-numeric argument if arithmetic is attempted on
such a string

BUGS
After argument processing by the shell, ezpr cannot tell
the difference between an operator and an operand

except by the value. If $a is an =, the command:
expr $a = ‘=~

looks like:
expr == = =

EXPR(1)

as the arguments are passed to ezpr (and they will all be
taken as the = operator}. The following works:

expr X$a = X==

FACTOR(1)

NAME
factor — factor a number

SYNOPSIS
factor | number |

DESCRIPTION
When factor is invoked without an argument, it waits
for a number to b% typed in. If yoy type in a positive
number less than 2 (about 7.2X 10") it will factor the
number and print its prime factors; each one is printed
the proper number of times. Then it waits for another
number. It exits if it encounters a zero or any non-
numeric character.
If factor is invoked with an argument, it factors the
number as above and then exits.
Maximum time to factor is proportional to /n and
occurs when n is prime or the square of a prime.

DIAGNOSTICS

“Ouch” for input out of range or for garbage input.

NAME

FF(1M)

ff — list file names and statistics for a file system

SYNOPSIS

/ete/ff [options| special

DESCRIPTION

Ff reads the i-list and directories of the special file,
assuming it to be a file system, saving i-node data for
files which match the selection criteria. Output consists
of the path name for each saved i-node, plus any other
file information requested using the print opfions below.
Output fields are positional. The output is produced in
i-node order; fields are separated by tabs. The default
line produced by ffis:

path-name i-number
With all options enabled, output fields would be:
path-name i-number size uid

The argument n in the option descriptions that follow is
used as a decimal integer (optionally signed), where +n
means more than n, —n means less than n, and n means
exactly n. A day is defined as a 24 hour period.

-1 Do not print the i-node number after each
path name.
-1 Generate a supplementary list of all path

names for multiply linked files.

—p prefiz The specified prefiz will be added to each
generated path name. The default is ..

—8 Print the file size, in bytes, after each
path name.

-u Print the owner’s login name after each
path name.

—-an Select if the i-node has been accessed in n
days.

-m n Select if the i-node has been modified in n
days.

-cn Select if the i-node has been changed in n
days.

-n file Select if the i-node has been modified

more recently than the argument file.

—i t-node-list Generate names for only those i-nodes
specified in z-node-list.

EXAMPLES

To generate a list of the names of all files on a specified

-1-

FF(1M)

file system:

ff -1 /dev/rdsk/c0d0sl1

To produce an index of files and i-numbers which are on
a file system and have been modified in the last 24
hours:

ff —m -1 /dev/c0dOsl > /log/incbackup/usr/tuesday

To obtain the path names for i-nodes 451 and 76 on a
specified file system:

ff -1 451,76 /dev/rdsk/c0d1s3

SEE ALSO
finc(1M), find(1), frec(1M), ncheck(1M).

BUGS
Only a single path name out of any possible ones will be
generated for a multiply linked i1-node, unless the -1
option is specified. When -1 is specified, no selection
criteria apply to the names generated. All possible
names for every linked file on the file system will be
included in the output.

On very large file systems, memory may run out before

Jf does.

T

NAME

FILE(1)

file — determine file type

SYNOPSIS

file [—c¢ | [—f ffile | [—m mfile | arg ...

DESCRIPTION

File performs a series of tests on each argument in an
attempt to classify it. If an argument appears to be
ASCIH, file examines the first 512 bytes and tries to guess
its language. If an argument is an executable a.out, file
will print the version stamp, provided it is greater than 0

(see 1d(1)).

If the —f option is given, the next argument is taken to
be a file containing the names of the files to be
examined.

File uses the file /etc/magic to identify files that have
some sort of magic number, that is, any file containing a
numeric or string constant that indicates its type.
Commentary at the beginning of /etc/magic explains
its format.

The —m option instructs file to use an alternate magic
file.

The —c¢ flag causes file to check the magic file for format
errors. This validation is not normally carried out for
reasons of efficiency. No file typing is done under —c.

SEE ALSO

ar(1), 1d(1).

FCNTL(5)

NAME
fentl — file control options

SYNOPSIS
ftinclude <fentl.h>

DESCRIPTION
The fentl(2) function provides for control over open files.
The include file describes requests and arguments to
fentl and open(2).

/* Flag values accessible to open(2) and fentl(2) */
/* (The first three can only be set by open) */

#define O_RDONLY 0
#define O_WRONLY 1
#define O_RDWR 2
#define O_NDELAY 04 /* Non-blocking 1/0 #/
#define O_APPEND 010 /* append
(writes guaranteed at the end) */
#define O_SYNC 020 /* synchronous write option */
#define O_DIRECT 020000 /* perform direct I/O */

#define O_NODIRECT 040000 /x disable direct I/O */

/* Flag values accessible only to open(2) */

#define O_CREAT 00400 /* open with file create
(uses third open arg)+/

#define O_TRUNC 01000 /* open with truncation */

#define O_EXCL 02000 /* exclusive open */

/#* fentl(2) requests */

#define F_DUPFD 0 /* Duplicate fildes */
#define F_GETFD 1 /* Get fildes flags */
#define F_SETFD 2 /* Set fildes flags */
#define F_GETFL 3 /* Get file flags */
#define F_SETFL 4 /* Set file flags */
#define F_GETLK 5 /* Get blocking file locks */
#define F_SETLK 6 /* Set or clear file locks and fail
on busy */
#define F_SETLKW 7 /* Set or clear file locks and wait
on busy */
/* file segment locking control structure */
struct flock {
short I_type;
short l_whence;
long l_start;
long 1_len; /*if 0 then until EOF */
int 1_pid; /* returned with F_GETLK */

5/86 -1-

MBI

/* file segment locking types */

#define F_RDLCK 01
#tdefine F_WRLCK 02
#define F_UNLCK 03
SEE ALSO

fentl(2), open(2).

5/86

FCNTL(5)

/* Read lock */
/* Write lock */
/* Remove locks */

FINC(1M)

NAME
finc — fast incremental backup

SYNOPSIS
finc [selection-criteria] file-system raw-tape

DESCRIPTION

Finc selectively copies the input file-system to the
output raw-tape. The cautious will want to mount the
input file-system read-only to insure an accurate backup,
although acceptable results can be obtained in read-write
mode. The tape must be previously labelled by labelst
(see wvolcopy(1M)). The selection is controlled by the
selection-criteria, accepting only those i-nodes/files for
whom the conditions are true.

It is recommended that production of a finc tape be
preceded by the ff command, and the output of ff be
saved as an index of the tape’s contents. Files on a finc
tape may be recovered with the free command.

The argument n in the selection-eriteria which follow is
used as a decimal integer (optionally signed), where +n
means more than n, —n means less than n, and n means
exactly n. A day is defined as a 24 hours.

- —-an True if the file has been accessed in n
T days.
-m n True if the file has been modified in n
days.
—-cn True if the i-node has been changed in
n days.
—n file True for any file which has been

modified more recently than the
argument file.

EXAMPLES
To write a tape consisting of all files from file-system
/usr modified in the last 48 hours:

finc -m -2 /dev/dsk/c0d0sl /dev/rmt0

SEE ALSO
cpio(1), ff(1M), frec(1M), volcopy(1M).

NAME
find — find files

SYNOPSIS

FIND (1)

find path-name-list expression

DESCRIPTION

Find recursively descends the directory hierarchy for
each path name in the path-name-list (i.e., one or more

path names)

seeking files that match a boolean

erpression written in the primaries given below. In the
descriptions, the argument n is used as a decimal integer
where +n means more than n, —n means less than n
and n means exactly n.

—name file

—perm onum

—~type ¢

—links n

—user uname

—group gname

—size nie]

—atime n

True if file matches the current file
name. Normal shell argument syntax

may be used if escaped (watch out for
[, 7 and *).

True if the file permission flags exactly
match the octal number onum (see
chmod(1)). If onum is prefixed by a
minus sign, more flag bits (017777, see
stat(2)) become significant and the
flags are compared.

True if the type of the file is ¢, where
¢ is b, ¢, d, p, or f for block special
file, character special file, directory,
fifo (a.k.a. named pipe), or plain file,
respectively.

True if the file has n links.

True if the file belongs to the user
uname. If uname is numeric and does
not appear as a login name in the
/etc/passwd file, it is taken as a user
ID.

True if the file belongs to the group
gname. If gname is numeric and does
not appear in the /etc/group file, it
is taken as a group ID.

True if the file is n blocks long (512

bytes per block). If n is followed by a
¢, the size is in characters.

True if the file has been accessed in n
days. The access time of directories in
path-name-list is changed by find itself.

—mtime n
—ctime n

—exec cmd

—ok emd

—print

—cpio device

—newer file

—inum n

—depth

(expression)

FIND (1)

True if the file has been modified in n
days.

True if the file has been changed in n
days.

True if the executed e¢md returns a
zero value as exit status. The end of
emd must be punctuated by an
escaped semicolon. A command
argument {} is replaced by the current
path name.

Like —exec except that the generated
command line is printed with a
question mark first, and is executed
only if the user responds by typing y.

Always true; causes the current path
name to be printed.

Always true; write the current file on
device in cpio (4) format (5120-byte
records).

True if the current file has been
modified more recently than the
argument file.

True if the current file is inode
number n.

Always true; causes descent of the
directory hierarchy to be done so that
all entries in a directory are acted on
before the directory itself. This can be
useful when find is used with cpio(1)
to transfer files that are contained in
directories without write permission.

True if the parenthesized expression is
true (parentheses are special to the
shell and must be escaped).

The primaries may be combined using the following
operators (in order of decreasing precedence):

1) The negation of a primary (! is the unary not

operator).

2) Concatenation of primaries (the and operation is
implied by the juxtaposition of two primaries).

3) Alternation of primaries (—o is the or operator).

EXAMPLE

To remove all files named a.out or *.0 that have not

-92.

FIND (1)

been accessed for a week:

find / \(-name a.out -o —name 'x.0' \)
—atime +7 —exec rm {} \;

FILES
/etc/passwd, /etc/group

SEE ALSO
chmod(1), cpio(1), sh(1), test(1), stat(2), cpio(4), fs(4).

FOLD(1)

NAME
fold - fold long lines for finite width output device

SYNOPSIS
fold | —columns | [file ... |

DESCRIPTION
Fold produces a folded version of its input, inserting
newlines so that none of its output lines is wider than
columns. If columns is omitted, folding is done at 80
columns,.

If tabs are present in the input, columns should be a
multiple of eight.

SEE ALSO
expand(1)

WARNING
Overstriking can be spoiled by folding.

FREC (1M

NAME
frec — recover files from a backup tape
SYNOPSIS
/ete/frec [—p path| [—f regfile | raw-tape
1-number:name ...
DESCRIPTION

Frec recovers files from the specified raw-tape backup
tape written by volcopy(1M) or finc(1M), given their i-
numbers. The data for each recovery request will be
written into the file given by name.
The —p option allows you to specify a default prefixing
path different from your current working directory. This
will be prefixed to any names that are not fully
qualified, i.e., that do not begin with / or ./. If any
directories are missing in the paths of recovery names
they will be created.

—p path Specifies a prefixing path to be used to
fully qualify any names that do not
start with / or ./

~f reqfile Specifies a file which contains recovery
requests. The format is IS
number:newname, one per line.

EXAMPLES

To recover a file, i-number 1216 when backed-up, into a

file named junk in your current working directory:

frec /dev/rmt0 1216:junk

To recover files with i-numbers 14156, 1232, and 3141

into files /usr/src/cmd/a, /usr/src/emd/b and

/usr/joe/a.c:

frec —p /usr/src/cmd /dev/rmtQ 14156:a
1232:b 3141:/usr/joe/a.c
SEE ALSO
cpio(1), ff(1M), finc(1M), volcopy(1M).
BUGS

While paving a path (i.e., creating the intermediate
directories contained in a pathname) frec can only
recover i-node fields for those directories contained on
the tape and requested for recovery.

—

FSCK (1M)

NAME
fsck, dfsck - file system consistency check and
interactive repair

PO et tuck (-] [n) [cac (8] (-Seig) [-8] [-¢ il
ete/fsck -n| [-sc:8] [-s S] [t file
(—][D][[f [-p] (-bB] [-O] | {vi !e-systems]
/etc/dfsck [optionsl | filsysl ... — [options2]
filsys2 .

DESCRIPTION

Fsck

Fsck audits and interactively repairs inconsistent
conditions for CTIX system files. If the file system is
consistent, the number of files, number of blocks used,
and number of blocks free are reported. If the file
system is inconsistent, the operator is prompted for
concurrence before each correction is attempted. It
should be noted that some corrective actions will result
in some loss of data. The amount and severity of data
lost may be determined from the diagnostic output. The
default action for each consistency correction is to wait
for the operator to respond yes or mo. If the operator
does not have write permission fsck will default to a —n
action. Upon completion fsck reports the number of used
and free 1024-byte blocks and the number of files in the
filesystem.

Modifying a mounted file system requires special
precautions by fsck, because a single sync (2) will undo
all of fsck’s repair work. To prevent this, fsck performs
a syslocal(2) RESYNC. The system call forces CTIX to
reread the superblock from the disk.

Fsck has more consistency checks than its predecessors
check, dcheck, feheck, and tcheck combined.

The following options are interpreted by fsck.
—y Assume a yes response to all questions asked by

Jsck.

—-n Assume a no response to all questions asked by
fsck; do not open the file system for writing.

—8Ci8

-8 Ignore the actual free list or bit map and
(unconditionally) reconstruct a new one by
rewriting the super-block of the file system. The
file system should be unmounted while this is
done; if this is not possible, care should be taken
that the system is quiescent.

——

—-Sc:s

—f

FSCK (1M)

If c:s is given on a standard file system, the free
list is organized with ¢ blocks per cylinder and s
blocks skipped. If ¢:s is omitted, the values
originally specified to mkfs are used. If these
vah(lles were not specified, then the value 400:7 is
used.

Conditionally reconstruct the free list or bit map.
This option is like —s above except that the free
list or bit map is rebuilt only if there were no
discrepancies discovered in the file system. Using
—8 will force a no response to all questions asked
by fsck. This option 1s useful for forcing free list
or bit map reorganization on uncontaminated file
systems.

If fsck cannot obtain enough memory to keep its
tables, it uses a scratch file. If the —t option is
specified, the file named in the next argument is
used as the scratch file, if needed. Without the —t
flag, fsck will prompt the operator for the name
of the scratch file. The file chosen should not be
on the file system being checked, and if it is not a
special file or did not already exist, it is removed
when fsck completes.

Quiet fsck. Do not print size-check messages in
Phase 1. Unreferenced fifos will silently be
removed. If fsck requires it, counts in the
superblock will be automatically fixed and the
free list or bit map salvaged.

Directories are checked for consistency. Useful

after system crashes. The following

inconsistencies are sought:

° Entries with null names but nonzero i-
numbers.

. Entries that are not padded to full size
with nulls.

. Invalid . and .. entries.

. Names that contain “/”’.

° Final blocks that are not cleared past
end-of-file.

Fast check. Check block and sizes (Phase 1) and
check the free list or bit map (Phase 521 The free
list or bit map will be reconstructed (Phase 6) if it
is necessary.

Preen file systems only; intended for auto boot.
No operator input is prompted for. Instead, fsck

-92.

FSCK (1M)

applies standard fixes whenever the fix doesn’t
involve loss of data. Only the following problems
are subject to this kind of fix:

Unreferenced i-nodes.

Link counts in i-nodes too large.
Missing blocks in the free list.
Blocks in the free list also in files.
Counts in the super block wrong.

Any problem not of this type causes fsck to
terminate with an error status. The startup script
that runs fsck (normally {etc/bcheckrc) can
specify the —p option to fsck and make a normal
boot contingent upon a normal fsck return status.

~b or —B

-M

-0

Resync file system after modifying (if file system
was mounted).

Convert, file system to new bit map free list
format.

Convert file system to old free list format.

Both —M and —-O imply —s.

If no file-systems are specified, fsck will read a list of
default file systems from the file /ete/checklist.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one i-node
or the free list.
2 Blocks claimed by an i-node or the free
list outside the range of the file system.
3. Incorrect link counts.
4 Size checks:
Incorrect number of blocks.
Directory size not 16-byte aligned.
Bad i-node format.
Blocks not accounted for anywhere.
Directory checks:
File pointing to unallocated i-node.
I-node number out of range.
8. Super Block checks:
More than 65536 i-nodes.
More blocks for i-nodes than there
are in the file system.
9. Bad free block list format.
10. Total free block and/or free i-node count
incorrect.

Nowo

FSCK (1M)

Orphaned files and directories (allocated but
unreferenced) are, with the operator’s concurrence,
reconnected by placing them in the lost4found
directory, if the files are nonempty. The user will be
notified if the file or directory is empty or not. If it is
empty, fsck will silently remove them. Fsck will force
the reconnection of nonempty directories. The name
assigned is the i-node number. The only restriction is
that the directory lost+found must preexist in the root
of the file system being checked and must have empty
slots in which entries can be made. The lost+found
directory is normally created by running
mklost+found(1M) just after the file system is created
with mkfs(1M).

Checking the raw device is almost always faster and
should almost always be used.

Dfsck

NOTE

Dfsck allows two file system checks on two different

drives simultaneously. optionsl and options2 are used

to pass options to fsck for the two sets of file systems. A
— is the separator between the file system groups.

The dfsck program permits an operator to interact with
two fsck(IM) programs at once. To aid in this, dfsck
will print the file system name for each message to the
operator. When answering a question from dfsck, the
operator must prefix the response with a 1 or a 2
(indicating that the answer refers to the first or second
file system group).

Do not use dfsck to check the root file system.

The —b option should nearly always be used.
The raw device should always be used with mounted file
systems.

FILES
/ete/checklist contains default list of file
systems to check.
/etc/checkall optimizing dfsck shell file.
SEE ALSO

BUGS

clri(1M), init(1M), mklost-+found(1M), ncheck(1M),
checkhst(4) fs(4).

MiniFrame Administrator’s Reference Manual.
MightyFrame Administrator’s Reference Manual.

I-node numbers for . and .. in each directory should be
checked for validity.

FSCK (1M)

DIAGNOSTICS
The diagnostics produced by fsck are intended to be

self-explanatory.

If —p was specified and preening was inadequate, a
nonzero status is returned.

NAME

FSDB(1M)

fsdb — file system debugger

SYNOPSIS

/etc/fsdb special | —]

DESCRIPTION

Fsdb can be used to patch up a damaged file system
after a crash. It has conversions to translate block and
i-numbers into their corresponding disk addresses. Also
included are mnemonic offsets to access different parts of
an i-node. These greatly simplify the process of
correcting control block entries or descending the file
system tree.

Fsdb contains several error-checking routines to verify i-
node and block addresses. These can be disabled if
necessary by invoking fsdb with the optional — argument
or by the use of the O symbol. (Fsdb reads the i-size
and f-size entries from the superblock of the file system
as the basis for these checks.)

Numbers are considered decimal by default. Octal
numbers must be prefixed with a zero. During any
assignment operation, numbers are checked for a possible
truncation error due to a size mismatch between source
and destination.

Fsdb reads a block at a time and will therefore work
with raw as well as block I/O. A buffer management
routine is used to retain commonly used blocks of data in
order to reduce the number of read system calls. All
assignment operations result in an immediate write-
through of the corresponding block.

The symbols recognized by fsdb are:
absolute address
convert from i-number to i-node
address
convert to byte address
directory slot offset

/ address arithmetic
quit
save, restore an address
numerical assignment
incremental assignment
decremental assignment
character string assignment
error checking flip flop
general print facilities
file print facility

-

a. o
*

A

SOOI Ve
|4

—prbvr=

FSDB(1M)

double word mode
escape to shell

F buffer status

X hexadecimal or octal address {lip-
flop (default is hexadecimal)

B byte mode

w word mode

D

!

The print facilities generate a formatted output in
various styles. The current address is normalized to an
appropriate boundary before printing begins. It
advances with the printing and is left at the address of
the last item printed. The output can be terminated at
any time by typing the delete character. If a number
follows the p symbol, that many entries are printed. A
check is made to detect block boundary overflows since
logically sequential blocks are generally not physically
sequential. If a count of zero is used, all entries to the
end of the current block are printed. The print options
available are:
i print as i-nodes
print as directories
print as octal words
print as decimal words
print as characters
print as octal bytes
or S print as superblock
print as hexadecimal words
print as hexadecimal bytes

The f symbol is used to print data blocks associated
with the current i-node. If followed by a number, that
block of the file is printed. (Blocks are numbered from
zero.) The desired print option letter follows the block
number, if present, or the f symbol. This print facility
works for small as well as large files. It checks for
special devices and that the block pointers used to find
the data are not zero.

w00 A

Dots, tabs, and spaces may be used as function
delimiters but are not necessary. A line with just a
new-line character will increment the current address by
the size of the data type last printed. That is, the
address is set to the next byte, word, double word,
directory entry or i-node, allowing the user to step
through a region of a file system. Information is printed
in a format appropriate to the data type. Bytes, words
and double words are displayed with the octal address
followed by the value in octal and decimal. A .B or .D
is appended to the address for byte and double word
values, respectively. Directories are printed as a

-92.

FSDB(1M)

directory slot offset followed by the decimal i-number
and the character representation of the entry name. I-
nodes are printed with labeled fields describing each
element.

The following mnemonics are used for i-node
examination and refer to the current working i-node:

md mode
In link count
uid user ID number
gid group ID number
Sz file size
a# data block numbers (0 - 12)
at access time
mt modification time
maj major device number
min minor device number
si #inodes field in superblock
sf #blks field in superblock
sd0 s_dinfo[0] in superblock
sd1 s_dinfo[l] in superblock
=BS set a blank superblock with file
system type 1K and a magic
number
EXAMPLES
3861 prints i-number 386 in an i-node
format. This now becomes the current
working i-node.
In=4 changes the link count for the working
i-node to 4.
In=+1 increments the link count by 1.
fe prints, in ASCII, block zero of the file
associated with the working i-node.
2i.fd prints the first 32 directory entries for
the root i-node of this file system.
d5i.fe changes the current i-node to that
associated with the 5th directory entry
(numbered from zero)} found from the
above command. he first logical
block of the file is then printed in
ASCILI.
512B.p0o prints the superblock of this file
system in octal.
2i.a0b.d7=3 changes the i-number for the seventh

directory slot in the root directory to
3. This example also shows how

FSDB(1M)

several operations can be combined on
one command line.

d7.nm=="name” changes the name field in the directory
slot to the given string. Quotes are
optional when used with nm if the
first character is alphabetic.

a2b.p0d prints the third block of the current i-
node as directory entries.

512.ps prints the superblock

SEE ALSO
fsck(1M), dir(4), fs(4).

FSPLIT (1)

NAME
fsplit — split 77, ratfor, or efl files

SYNOPSIS
fsplit options files

DESCRIPTION
Fsplit splits the named file(s) into separate files, with
one procedure per file. A procedure includes blockdata,
function, main, program, and subroutine program
segments. Procedure X is put in file X.f, X.r, or X.e
depending on the language option chosen, with the
following exceptions: main is put in the file MAIN.[efr]
and unnamed blockdata segments In the files
blockdataN .[efr] where N is a unique integer value for
each file.
The following options pertain:
-f (default) Input files are f77.
-r Input files are ratfor.
—e Input files are Efl.
-8 Strip f77 input lines to 72 or fewer characters

with trailing blanks removed.
SEE ALSO

esplit(1), split(1).

NAME

FTP(1N)

ftp — file transfer program

SYNOPSIS

ftp [—v] [-d][-i][-n][-g] [host]

DESCRIPTION

Ftp is the user interface to the ARPANET standard File
Transfer Protocol. The program copies files to and from
a remote node. It is more general than rep(1N), because
a File Transfer Protocol server is available under a wider
range of operating systems.

The client node with which ftp is to communicate may
be specified on the command line. If this is done, ftp will
immediately attempt to establish a connection to an FTP
server on that host; otherwise, ftp will enter its command
interpreter and await instructions from the user. When
ftp 1s awaiting commands, the prompt “ftp>"" 1is
displayed.

COMMANDS

The following commands are recognized by ftp. Each
machine session begins with one or more open
commands and and ends with one or more close or a
single bye command.

! Invoke a shell on the local machine.

append local-file | remote-file |
Append local-file to a file on the remote
machine. If remote-file is left
unspecified, the remote file is named
after the local file. File transfer uses
the current setting for type.

ascii Set the file transfer type to network
ASCII . This is the default type.

bell Arrange that a bell be sounded after
each file transfer command s
completed.

binary Set the file transfer type to support
binary image transfer.

bye Terminate the FTP session with all the

remote servers and exit fip.

cd remote-directory
Change the working directory on the
remote machine to remote-directory.

close Terminate the FTP session with the
current remote server, and return to the
command interpreter.

-1-

FTP(IN)

copy hostl:filel host2:file2

Copy filel of remote host host! to file?
of remote host host?2 . Connection to
hostl and host2 must be opened prior to
this command. The current setting for
type must be the same for both remote
servers.

delete remote-file

Delete the file remote-file on the remote
machine.

debug [debug-value]

Toggle debugging mode. If an optional
debug-value is specified, it is used to set
the debugging level. When debugging
is on, ftp prints each command sent to
the remote machine, preceded by the
string ‘‘-->"".

dir | remote-directory | | local-file |

get remote-file |

glob

hash

help | command%}

Print a listing of the directory contents
in the directory, remote-directory, and,
optionally, place the output in local-
fle. If no directory is specified, the
current working directory on the remote
machine is used. If no local file is
specified, output comes to the terminal.

local-file |

Retrieve the remote-file and store it on
the local machine. If the local file
name is not specified, it is given the
same name it has on the remote
machine. The current setting for type
is used while transferring the file.

Toggle file name globbing. With file
name globbing enabled, each local file
or pathname is processed for shell
metacharacters. Remote files specified
in mutiple item commands such as
mput are globbed by the remote
server. If globbing is disabled, all files
and pathnames are treated literally.

Toggle hash-sign (“#’’) printing for
each data block transferred. The size of
a data block is 1024 bytes.

rint an informative message about the
meaning of command. If no argument

-9

FTP(1N)

is given, fip prints a list of the known
commands.

led | directory] Change the working directory on the
local machine. If no directory is
specified, the user’s home directory is
used.

Is [remote-directory | | local-file |

Print an abbreviated listing of the
contents of a directory on the remote
machine. If remote-directory is left
unspecified, the current working
directory is used. If no local file is
specified, the output is sent to the
terminal.

mdelete remote-files
Delete the specified files on the remote
machine. H globbing is enabled, the
specification of remote files will first be
expanded using Is.

mdir remote-files local-file
Obtain a directory listing of multiple
files on the remote machine and place
the result in local-file .

mget remote-files
Retrieve the specified files from the
remote machine and place them in the
current local directory. If globbing is
enabled, the specification of remote files
will first be expanded using ls.

mkdir directory-name
Make a directory on the remote
machine.

mls remote-files local-file
Obtain an abbreviated listing of
multiple files on the remote machine
and place the result in local-file.

mput local-files Transfer multiple local files from the
current local directory to the current
working directory on the remote
machine.

open host | port%E
stablish a connection to the specified

host FTP server. An optional port
number may be supplied, in which case,
ftp will attempt to contact an FTP

-3.-

FTP (1N)

server at that port. If the auto-login
option is on default?, ftp will also
attempt to automatically log the user in
to the FTP server (see below).
Connection to host becomes the current
connection, Note that multiple
connections can be made with the open
command. The current connection can
be changed by wusing the open
command for an already connected
host.

prompt Toggle interactive prompting (on by
default). Interactive prompting occurs
during multiple file transfers to allow
the user to selectively retrieve or store
files. If prompting is turned off, any
mget or mput will transfer all files.

put local-file [remote-file |
Store a local file on the remote
machine. If remote-file is left
unspecified, the local file name is used
in naming the remote file. File transfer
uses the current setting for type.

pwd Print the name of the current working
directory on the remote machine.

quit A synonym for bye.

quote argl arg? ...
The arguments specified are sent,
verbatim, to the remote FTP server. A
single FTP reply code is expected in
return.

recv remote-file | local-file |
A synonym for get.

remotehelp [command-name |
Request help from the remote FTP
server. If a command-name is specified,
it is supplied to the server as well.

rename | from | {?to]
ename the file from on the remote
machine, to the file to.

rmdir directory-name
Delete a directory on the remote
machine.

send local-file | remote-file]
A synonym for put.

-4 -

sendport

status
tenex

trace

FTP(IN)

Toggle the use of PORT commands. By
default, ftp will attempt to use a PORT
command when establishing a
connection for each data transfer. If
the PORT command fails, ftp will use
the default data port. When the use of
PORT commands is disabled, no
attempt will be made to use PORT
commands for each data transfer. This
is useful for certain FTP
implementations which do ignore PORT
commands but, incorrectly, indicate
they’ve been accepted.

Show the current status of ftp.

Set the file transfer type to that needed
to talk to TENEX machines.

Toggle packet tracing.

type | type-name |

Set the file transfer type to type-name.
If no type is specified, the current type
is printed. The default type is network
ASCIT .

user user-name [password | [account]

verbose

? [command |

Identify yourself to the remote FTP
server. If the password is not specified
and the server requires it, ftp will
prompt the user for it (after disabling
local echo). If an account field is not
specified, and the FTP server requires
it, the user will be prompted for it.
Unless ftp is invoked with “auto-login”
disabled, this process is done
automatically on initial connection to
the FTP server.

Toggle verbose mode. In verbose mode,
all responses from the FTP server are
displayed to the user. In addition, if
verbose is on, when a file transfer
completes, statistics regarding the
efficiency of the transfer are reported.
By default, verbose is on.

A synonym for help.

Command arguments which have embedded spaces may
be quoted with quote (") marks.

FTP(1N)

FILE NAMING CONVENTIONS
Files specified as arguments to ftp commands are
processed according to the following rules.

1) If the file name “-" is specified, the standard
input (for reading) or standard output (for
writing) is used.

2) If the first character of the file name is |, the
remainder of the argument is interpreted as a
shell command. Ftp then forks a shell, using
popen(3) with the argument supplied, and reads
(writes) from the stdout (stdin). If the shell
command includes spaces, the argument must be
quoted; e.g. “”| 1s -1t"”. A particularly useful
example of this mechanism is: “dir |more”.

3) Failing the above checks, if ‘‘globbing” is
enabled, local file names with shell
metacharacters are expanded.

FILE TRANSFER PARAMETERS
The FTP specification specifies many parameters which
may affect a file transfer. The type may be one of
“ascii”, “‘image” (binary), “ebcdic”’, and ‘‘local byte
size” (for PDP-10s and PDP-20s mostly). Ftp supports
the ASCII and image types of file transfer.

Ftp supports only the default values for the remaining
file transfer parameters: mode, form, and struct.

OPTIONS
Options may be specified at the command line, or to the
command interpreter.

The —v (verbose on) option forces ftp to show all
responses from the remote server, as well as report on
data transfer statistics.

The —n option restrains ftp from attempting ‘‘auto-
login” upon initial connection. If auto-login is enabled,
ftp will check the .netre file in the user’s home directory
for an entry describing an account on the remote
machine. If no entry exists, ftp will use the login name
on the local machine as the user identity on the remote
machine, and prompt for a password and, optionally, an
account with which to login.

The —i option turns off interactive prompting during
multiple file transfers.

The —d option enables debugging.
The —g option disables file name globbing.

FTP(1N)

WARNINGS
Many FTP server implementations do not support the
experimental operations such as print working directory.

Aborting a file transfer does not work correctly; if one
attempts this, the local ftp will likely have to be killed
by hand.

SEE ALSO
rep(1IN).

FTPD(INM)

NAME

ftpd — DARPA Internet File Transfer Protocol server
SYNOPSIS

Jete/ftpd [—d | [=1] [~ttimeout |
DESCRIPTION

Ftpd is the DARPA Internet File Transfer Protocol server
process. It is normally executed by the startup file,
/ete/re.

If the —d option is specified, each socket created will
have debugging turned on (SO_DEBUG). With
debugging enabled, the system will trace all TCP packets
sent and received on a socket.

If the —1 option is specified, each FTP session is logged
on the standard output. This allows a line of the form

/ete/ftpd =1 > /tmp/ftplog

to be used to conveniently maintain a log of FTP
sessions.

The FTP server will timeout an inactive session after 60
seconds. If the —t option is specified, the inactivity
timeout period will be set to tfmeout.

The FTP server currently supports the following FTP
requests; case is not distinguished.

Request Description

ACCT specify account (ignored)

ALLO allocate storage (vacuously)

APPE append to a file

CWD change working directory

DELE delete a file

HELP give help information

LIST give list files in a directory (“Is -1g”)
MODE specify data transfer mode

NLST give name list of files in directory (*ls”)
NOOP do nothing

PASS specify password

PASV set the server in passive mode
PORT specify data connection port

QUIT terminate session

RETR retrieve a file

RNFR specify rename-from file name
RNTO specify rename-to file name

STOR store a file

STRU specify data transfer structure
TYPE specify data transfer type

USER specify user name

XCUP change to parent of current working directory

-1-

FTPD (1NM)

XCWD change working directory

XMKD make a directory

XPWD print the current working directory
XRMD remove a directory

The remaining FTP requests specified in Internet RFC
765 are recognized, but not implemented.

Ftpd interprets file names according to the ‘“‘globbing”
conventions used by the shell.

Fitpd authenticates users according to three rules.

1) The user name must be in the password data
base, /etc/passwd, and not have a null
password. In this case a password must be
provided by the client before any file operations
may be performed.

2) The user name must not appear in the file
/etc/ftpusers, if that file exists.
3) If the user name is “anonymous’ or “ftp”’, an

anonymous ftp account must be present in the
password file (user “ftp”). In this case the user
is allowed to log in by specifying any password;
by convention this is given as the client host’s
name.

In the last case, fipd takes special measures to restrict
the client’s access privileges. The server performs a
chroot}2) command to the home directory of the “ftp”
user. In order that system security is not breached, it is
recommended that the “ftp”” home directory be
constructed with care; the following rules are
recommended.

$HOME Make the home directory owned by “ftp”’
and unwritable by anyone.

$HOME/bin Make this directory owned by the
superuser and unwritable by anyone.
The program [s(1) must be present to
support the list commands. This
program should have mode 111.

$HOME/etc Make this directory owned by the
superuser and unwritable by anyone.
The files passwd(5) and group(5) must be
present for the Is command to work
properly. These files should be mode
444,

$HOME/pub Make this directory mode 777 and owned
by “ftp.” Users should then place files

-2

FTPD (1INM)

which are to be accessible via the
anonymous account in this directory.

SEE ALSO
fep(1N).
“File Transfer Protocol,” RFC 765 in Internet Protocol

Transition Workbook, March 1982. Network Information
Center, SRI International, Menlo Park, CA 94025.

WARNINGS
There is no support for aborting commands.

The anonymous account is inherently dangerous and
should be avoided when possible.

The server must run as the superuser to create sockets
with privileged port numbers. It maintains an effective
user id of the logged in user, reverting to the superuser
only when binding addresses to sockets. The possible
security holes have been extensively scrutinized, but are
possibly incomplete.

FUSER (1M)

NAME
fuser — identify processes using a file or file structure

SYNOPSIS
/ete/fuser [—ku| files [-] [[—ku] files |

DESCRIPTION
Fuser lists the process IDs of the processes using the files
specified as arguments. For block special devices, all
processes using any file on that device are listed. The
process ID is followed by ¢, p or r if the process is using
the file as its current directory, the parent of its current
directory (only when in use by the system), or its root
directory, respectively. If the —u option is specified, the
login name, in parentheses, also follows the process ID.
In addition, if the —k option is specified, the SIGKILL
signal is sent to each process. Only the super-user can
terminate another user’s process (see ki11(2%). Options
may be respecified between groups of files. The new set
of options replaces the old set, with a lone dash canceling
any options currently in force.

The process IDs are printed as a single line on the
standard output, separated by spaces and terminated
with a single new line. All other output is written on
standard error.

EXAMPLES
fuser —ku ﬁdev/dsk/cOdOlsl
When run by the superuser, terminates all
processes that are preventing cartridge file
systems from being unmounted, listing the
process ID and login name of each process as it is

killed.

fuser —u /etc/passwd
Lists process IDs and login names of processes
that have the password file open.

fuser —ku /dev/dsk/c0d0sl —u /etc/passwd
Does both of the above examples in a single
command line.

FILES
/unix for namelist
/dev/kmem for system image
/dev/mem also for system image
SEE ALSO

mount(1M), ps(1), kill(2), signal(2).

NAME

FWTMP (IM)

fwtmp, wtmpfix - manipulate connect accounting
records

SYNOPSIS

etk imseu A

DESCRIPTION
Fwtmp

Fwtmp reads from the standard input and writes to the
standard output, converting binary records of the type
found in wtmp to formatted ASCII records. The ASCII
version is useful to enable editing, via ed(1), bad records
or general purpose maintenance of the file.

The argument —ic is used to denote that input is in
ASCII form, and output is to be written in binary form.

Wtmpfix

FILES

Wtmpfiz is not currently available on MiniFrame.
Wtmpfiz examines the standard input or named files in
wtmp format, corrects the time/date stamps to make
the entries consistent, and writes to the standard output.
A - can be used in place of files to indicate the standard
input. If time/date corrections are not performed,
acctcon! will fault when it encounters certain date-
change records.

Each time the date is set, a pair of date change records
are written to /etc/wtmp. The first record is the old
date denoted by the string old time placed in the line
field and the flag OLD_TIME placed in the type field of
the <utmp.h> structure. The second record specifies
the new date and is denoted by the string new time
placed in the line field and the flag NEW_TIME placed
in the type field. Wimpfiz uses these records to
synchronize all time stamps in the file.

In addition to correcting time/date stamps, wtmpfiz will
check the validity of the name field to ensure that it
consists soley of alphanumeric characters or spaces. If it
encounters a name that is considered invalid, it will
change the login name to INVALID and write a
diagnostic to the standard error. In this way, wtmpfiz
reduces the chance that acciconl will fail when
processing connect accounting records.

/ete/wtmp
Jusr/include/utmp.h

FWTMP (IM)

SEE ALSO
acct(IM), acctems(IM), acctcom(l), acctcon(1M),
acctmerg(1M), acctpre(1M), acctsh(1M), ed(1),
runacct(1M), acct(2), acct(4), utmp(4).

NAME

GDEV(1G)

hpd, erase, hardcopy, tekset, td - graphical device
routines and filters

SYNOPSIS

hpd [-options] [GPS file .. .]

erase

hardcopy
tekset

td [—eurn] [GPS file .. .]

DESCRIPTION

All of the commands described below reside in
/usr/bin/graf (see graphics(1G)).

hpd

erase

Hpd translates a GPS (see gps{4)), to
instructions for the Hewlett-Packard 7221A
Graphics Plotter. A viewing window is
computed from the maximum and minimum
points in file unless the —ua or —r option is
provided. If no file is given, the standard
input is assumed. Options are:

en Select character set n, n between 0 and
5 (see the HP7221A Plotter Operating
and Programming Manual, Appendiz
A).

pn Select pen numbered n, n between 1
and 4 inclusive.

rn Window on GPS region n, n between 1
and 25 inclusive.

sn Slant characters n degrees clockwise
from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport’s
lower left corner to n inches.

xvn Set width of viewport to n inches.

ydn Set y displacement of the viewport’s
lower left corner to n inches.

yvn Set height of viewport to n inches.

Erase sends characters to a TEKTRONIX 4010
series storage terminal to erase the screen.

hardcopy When issued at a TEKTRONIX display

tekset

terminal with a hard copy wunit, hardcopy
generates a screen copy on the unit.

Tekset sends characters to a TEKTRONIX
terminal to clear the display screen, set the

-1-

o

td

SEE ALSO

GDEV(1G)

display mode to alpha, and set characters to
the smallest font.

Td translates a GPS to scope code for a
TEKTRONIX 4010 series storage terminal. A
viewing window is computed from the
maximum and minimum points in file unless
the —u or —r option is provided. If no file is
given, the standard input is assumed.
Options are:
e Do not erase screen before initiating
display.

rn Display GPS region n, n between 1 and
25 1nclusive.

u Display the entire GPS universe.

ged(1G), graphics(1G), gps(4).

NAME

GED(1G)

ged — graphical editor

SYNOPSIS

ged [—euRrn| [GPS file .. .]

DESCRIPTION

Ged is an interactive graphical editor used to display,
construct, and edit GPS files on TEKTRONIX 4010 series
display terminals. If GPS file(s) are given, ged reads
them into an internal display buffer and displays the
buffer. The GPS in the buffer can then be edited. If —
is given as a file name, ged reads a GPS from the
standard input.

Ged accepts the following command line options:

e Do not erase the screen before the initial
display.

rn Display region number n.
u Display the entire GPS universe.
R Restricted shell invoked on use of !.

A GPS file is composed of instances of three graphical
objects: lines, arc, and text. Arec and lines objects have
a start point, or object-handle, followed by zero or more
points, or point-handles. Text has only an object-handle.
The objects are positioned within a Cartesian plane, or
universe, having 64K (-32K to +32K) points, or
untverse-units, on each axis. The universe is divided
into 25 equal sized areas called regions. Regions are
arranged in five rows of five squares each, numbered 1 to
25 from the lower left of the universe to the upper right.

Ged maps rectangular areas, called windows, from the
universe onto the display screen. Windows allow the
user to view pictures from different locations and at
different magnifications. The untverse-window is the
window with minimum magnification, i.e., the window
that views the entire universe. The home-window is the
window that completely displays the contents of the
display buffer.

COMMANDS

Ged commands are entered in stages. Typically each
stage ends with a <er> (return). Prior to the final
<er> the command may be aborted by typing rubout.
The input of a stage may be edited during the stage
using the erase and kill characters of the calling shell.
The prompt * indicates that ged is waiting at stage 1.

Each command consists of a subset of the following

-1-

stages:

1.

2.

3.

4.

5.

GED(1G)

Command line

A command line consists of a command
name followed by argumeni(s) followed by
a <er>. A command name is a single
character. Command arguments are either
option(s) or a file-name. Options are
indicated by a leading —.

Text Text is a sequence of characters terminated
by an unescaped <er>. (120 lines of text
maximum.)

Points Potnts is a sequence of one or more screen
locations (maximum of 30) indicated either
by the terminal crosshairs or by name.
The prompt for entering posnts is the
appearance of the crosshairs. When the
crosshairs are visible, typing:
sp (space) enters the current location as

a point. The point is identified with
a number.

$n enters the previous point numbered n.

>z labels the last point entered with the
upper case letter z.

$x enters the point labeled z.

. establishes the previous poinis as the
current potnts. At the start of a
command the previous points are
those locations given with the
previous command.

= echoes the current ponts.

$.n enters the point numbered n from the
previous points.

erases the last point entered.

@ erases all of the potnts entered.

Prvot The pivot is a single location, entered by
typing <cr> or by using the $ operator,
and indicated with a *.

Destination

The destination is a single location entered
by typing <er>> or by using $.

COMMAND SUMMARY

In the summary, characters typed by the user are printed

-92.

GED(1G)

in bold. Command stages are printed in <talics.
Arguments surrounded by brackets ‘“[]” are optional.
Parentheses “()” surrounding arguments separated by
“or”” means that exactly one of the arguments must be

given.

Construct commands:

Arc [~echo,style,weight] points

Box [—echo,style,weight] points

Circle [~echo,style,weight] points
Hardware [—echo] tezt points

Lines [~echo,style,weight] points

Text [-angle,echo height,mid-point,right-

point,text,weight| tezt points

Edit