
----------------.,.~-.,-~--... ~

B5000/B6000/B7000/A SERIES
BASIC SVSTEIVI SUPPORT

STUDENT GUII)E

March 27, 1986
Relative to Mark 36
Version :2.2

Copyriglht © 1986 Joseph & Cogan Associates, Jnr
A Burroughs Company

TABLE OF CONTENTS

INTRODUCTION. • • . . • . • . • . . ••..• PAGE 1
COURSE DESCRIPTION. • . . •• ...• • PAGE 2

SYSTEM SUPPORT POSITION DESCRIPTION. . .•.•• PAGE 3
CLASS MATERIALS. PAGE 5

COURSE OBJECTIVES. • . . •• • PAGE 6
SCHEDULE • • . • . . . • . . • • . . PAGE 7

DAY 1 . . • . • • • • • • • PAG E 7
DAY 2 • • • • • . • . PAGE 8
DAY 3 • . PAGE 9
DAY 4 . • . • • . PAGE 10
DAY 5 • .••. . PAGE 11
DAY 6 . . . • .. .• • • . PAGE 12
DAY 7.. .•• •• ...•.••..••. PAGE 13
DAY 8 • . • • . . •••• PAGE 14
DAY 9 • . PAGE 15
DAY 10. . . • • . . • .• PAGE 16

HARDWARE OVERVIEW. . • PAGE 17
MONOLITHIC SYSTEMS. . • • • • . . • .. •• PAGE 18

ADVANTAGES. • . . PAGE 18
DISADVANTAGES .• .• • • • • • . PAGE 18.

TIGHTLY COUPLED SYSTEMS. • . ..•.•• PAGE 19
ADVANTAGES. • • . . • • . . • • . PAGE 19
DISADVANTAGES. • • • . •.......• PAGE 19
TIGHTLY-COUPLED SYSTEM DIAGRAM. .••. . •. PAGE 20

LOOSELY-COUPLED SYSTEMS. • . • ••• PAGE 21
ADVANTAGES. • . • . • PAGE 21
DISADVANTAGES. • • • • • • . . . • PAGE 21
LOOSELY-COUPLED SYSTEM DIAGRAM. . • • . PAGE 22

ENVIRONMENTAL MEMORY. • • • • . • . ••...• PAGE 23
ADVANTAGES. • • • • • • • • . .• •••• • •• PAGE 23
DISADVANTAGES. • . • • . • . • •• ..• • • • PAGE 23
B'-7900 REQUESTOR-TYPE ORGANIZATION. • . • • • • • PAGE 24
PARTITIONING ENVIRONMENTAL MEMORY. . • • . • PAGE 25
B7900 CENR AND DENR . . • • . . . PAGE 26
ENVIRONMENTAL MEMORY DIAGRAM.. .•••. • • PAGE 27

SYSTEM NETWORKING. • • • • • • • • • . • •••••• PAGE 28
BURROUGHS NETWORK ARCHITECTURE. • ..•.•. PAGE 29
INTER-SYSTEM CONTROL. • . • • . • • PAGE 30
REMOTE JOB ENTRY. • •. •.••.•••• • • PAGE 31

LARGE SYSTEMS PROGRESSION. • • • • • • •• • PAGE 32
B-5500. . . • . . . • • • • • . . . • • • PAGE 33
B-6700.. .•..•.•.•••• . PAGE 33
B,-6800. . . • •. .••. . ••••••. PAGE 34
B-6900.•.. PAGE 35
B-5900. • • • • . . .••••• PAGE 36
B'-7900.. ••...•.•... PAGE 37
A~3. . • • . . • . • • . • . . • PAGE 38
A3. . . . • • • • • • . . PAGE 39
Al0 . • • • . . . • • . PAGE 40
A15 • • ••....••. PAGE 41

UNIVERSAL INPUT/OUTPUT. • . • • • . .••.....••• PAGE 42
UIO PHILOSOPHY. • • PAGE 43
MAINFRAME INTERFACE • • •• . PAGE 44

Copyriglht © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

I/O BASES •••••
TERMINATOR CARD ••••
BASE CONTROL CARD • •
MAINTENANCE CARD ••
DISTRIBUTION CARD.
PATH SELECTION MODULE.
LINE EXPANSION MODULE.
DATA LINK PROCESSOR ••
UIO EXAMPLE ••••••
FROM DLP TO DISK PACK ••••••
FROM DLP TO DISK PACK ••••.
FROM DLP TO TAPE DRIVE.

DATA WORD FORMATS • • • •
GENERAL INFORMATION ••••

TAG FIELD ••••••••.
INFORMATION FIELD •••••••

• • • • • • • PAGE 45
PAGE 46
PAGE 46

• • • • • PAGE 46
. •••••••••• PAGE 47

• • • • • • PAGE 47
• • PAGE

• • • • • • • PAG E
• • PAGE

• • • • • PAGE
~ • • • • • • • • • PAGE

• • • • • • PAG E
• • • •• •• PAGE

• • PAGE
• • • • • • PAG E

PAGE
SINGLE PRECISION OPERANDS •••••••• • • PAGE

47
48
49
50
51
52
53
54
54
54
55
55
56
57
58
59
59
60
61
62
63
64
65
66
67
67
67
68

RE A L. • • • • • • •• •••• • • • PAGE
INTEGER • • • . • • •. ••• '. • • • • PAGE
BOOLEAN • • • • • • • •
ONE-QUESTION PROBE ••••

DOUBLE PRECISION OPERANDS.
MOST SIGNIFICANT PART -- MSP ••
LEAST SIGNIFICANT PART -- LSP •.
UNINITIALIZED OPERANDS.
TAG 4 WORDS • • • • • .
LANGUAGE EQUIVALENTS .•

PROGRAM CODE WORDS •
MEMORY MANAGEMENT •

OVERV lEW • •
I N-U:SE AREAS • •

S,/, VE. • • • • • • • • •
NON-SAVE ••••••••

• • PAGE
• • PAGE

PAGE
• • • • • • • PAG E

• • • • • • PAGE
· • PAGE
• • PAGE

• • • • • • • PAGE
PAGE

• • PAGE
• • PAGE
• • PAGE

• • • • • • • • • PAG E
• • PAGE

MEMORY LINKS •• ~ •• • .. e • • • • • • • • • PAGE
MEMORY ORGANIZATION ••
AVAILABLE AREAS ••••

SAVE LIST ••••
NON-SAVE LIST ••
AVAILABLE LIST STRUCTURES.

DATA DESCRIPTORS •••••
ORIGINAL DESCRIPTORS ••
COpy DESCRIPTORS ••

OVERLAY •••••.•
DEMAND OVERLAY •••••••

WORKING SET .•••
WSSHERIFF •••.
MIEMORY CONTROLS

OVERLAY GOAL
AVAILMIN ••
FACTOR ••••
M,EMORY PR lOR I TY •

SWAPPER •.••••••
DESCRIPTORS .••••.••

DATA SEGMENT DESCRIPTORS.
ABSENT MOM DESCRIPTORS.

• • • • • • • PAG E
• PAGE

• • • PAGE
• • • . • • PAGE
• • • • • • PAG E

• • PAGE
• • • • • • PAGE

• • PAGE
• • PAGE

• • • PAGE
• • PAGE

• • • • . • • PAG E
• PAGE

PAGE
· • • PAGE

· • • • . • • PAGE
· • • PAGE

• PAGE
· • • PAGE

• • • • • • . • • PAG E
'. • • PAGE

69
70
70
70
70
71
71
71
72
73
74
74
75
75
75
76
76
77
78
79
80

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

LANGUAGE REPRESENTATION
ORIGINAL DESCRIPTOR •••.••••.••••
COpy DESCRIPTOR. •. • ••••

ONE-QUESTION PROBE •••••••.••••
MULTI-DIMENSIONAL ARRAYS. . • •••

MULTI-DIMENSIONAL ARRAY DIAGRAM.
PAGED ARRAYS • • • • • • • • •

PAGED ARRAY DIAGRAM ••
INDEXED DATA DESCRIPTORS ••••••

INDEXED WORD DATA DESCRIPTOR •••••.••••
INDEXED CHARACTER DESCRIPTOR ••
LANGUAGE REPRESENTATIONS •••.

CODE SEGMENT DESCRIPTOR. • • • • • ••.
SOFTWARE CONTROL WORD -- SCW • • • • • . • •

ACTUAL SEGMENT DESCRIPTORS •••••••
ACTUAL SEGMENT DESCRIPTOR MEMORY ••••••

ASD TABLE • • . • • • . • • • • • • • •
ASD VERSUS NON-ASD DESCRIPTORS. • •••

NON-ASD DESCRIPTORS. • • ••.
ASD DESCRIPTORS.. • •••••••

REFERENCE WORDS • • ••
ADDRESS COUPLES. • • •••

FIXED FENCED. • . •••
VARIABLE FENCE. • •••

INDIRECT REFERENCE WORD -- IRW •
FLOATING FENCE •••••
ONE-QUESTION PROBE •••
IRW EXAMPLE ••••••

NORMAL INDIRECT REFERENCE WORD -- NIRW .
NIRW EXAMPLE ••••••

STUFFED INDIRECT REFERENCE WORD -- SIRW ••
E-MODE SIRW •••
NON E-MODE SIRW •••••••••
S~RW EXAMPLE •••

PROGRAM CONTROL WORD -- PCW.
E-MODE ••••••
NON E-MODE ••••

BASIC STACK ARCHITECTURE •••
STACIK. • • • • • • • • •

PROCESS STACK • • • •
CODE SEGMENT DICTIONARY ••
STATEMENTS, COMPOUND STATEMENTS, AND BLOCKS •

STATEMENT. • • • • • • • . ••••
COMPOUND STATEMENT • • •
BLOCK. • • • • • • • • • • • • ..

INTERNAL PROCESSOR REGISTERS •••••.
ENVIRONMENT REGISTERS ••••••

DO •
o 1 • • • • •
02 • •••••
03 - 015 • • • •• • ••••

A:, B, X, AND Y REGISTERS. • •.•.
AROFF AND BROFF REGISTERS .•

LL REGISTER.. • •••
DLL REGISTER ••••••••••

PAGE 81
• • PAGE 81
· . PAGE 82

PAGE 84
• • PAGE 85

PAGE 86
• PAGE 87

• • PAGE 88
PAGE 89
PAGE 90

• • PAGE 91
• • PAGE 92
• • PAGE 93

PAGE 94
• • PAGE 96

PAGE "97
• • PAGE 98
• • PAGE 99

PAGE 100
• • PAGE 101

• PAGE 102
• • PAGE 103
• • PAGE 103

PAGE 103
• • PAGE 104

PAGE 105
• • PAGE 106
· • PAGE 107
• • PAGE 108

PAGE 109
• • PAGE 110
• • PAGE 110
• • PAGE 111
• • PAGE 112
• • PAGE 113
• • PAGE 113
• • PAGE 114
• • PAGE 115
• • PAGE 116

PAGE 117
• • PAGE 1 18
• • PAGE 119

• PAGE 1 19
". PAGE 119

• • PAG E 1 19
• PAGE 120

. •• PAGE 121
• PAGE 122

PAGE 122
• PAGE 122

PAGE 122
PAGE 123

• • PAGE 123
• • PAGE 124
• • PAGE 124

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

F REGISTER. . . • • . . . • • • . • • . • . . • .• PAGE 124
S REGISTER ••••.•••...••.•••.•.•.• PAGE 124
BOTTOM OF STACK REGISTER -- BOSR. • . . •.... PAGE 124
LIMIT OF STACK REGISTER -- LOSR • • • • • . PAGE 124
STACK NUMBER REGISTER -- SNR. . •••.•.•.. PAGE 125
PROGRAM SYLLABLE INDEX -- PSI . . .•.... PAGE 125
PROGRAM WORD INDEX -- PWI •••.••... PAGE 125
SEGMENT DICTIONARY INDEX -- SOl .••.•• PAGE 125
PROGRAM BASE REGISTER -- PBR. PAGE 125
MCP STACK. • . . • . •••.•••..• PAGE 126
STACK VECTOR ARRAY. . PAGE 127

PROCEDURE ENTRY. • . • • • • •• PAGE 128
PROCEDURE EXIT. ••••• •••. • PAGE 129
COBOIL PROCEDURE ENTRY AND EX IT. • . • • . PAGE 130
PROGRAM EXAMPLES. . •• • ••• PAGE 131

STACK LINKAGE WORDS. • • • . . PAGE 135
MARK STACK CONTROL WORD -- MSCW. . • • • • .. PAGE 136

E'-MODE. . . • • . • • • . ••.... PAGE 136
NON E-MODE. • • . • . • . • • . . . PAGE 137

MSCW LEX LEVEL VERSUS HISTORY LINKAGES. . . PAGE 138
LEX LEVEL LINKAGE. • • . . • • . . •• PAGE 138
HISTORY LINKAGE. • • • . • • . .•...• PAGE 138
WHY THE TWO? • • • • . . • . . • .. PAGE 138
LEX LEVEL VERSUS HI~TORY LINK DIAGRAM .. PAGE 139

RETURN CONTROL WORD -- RCW • • • • • • . PAGE 140
E-MODE RCW. • . • . • . • . • . • PAGE 141
NON E-MODE. • • • • • • . PAGE 142

ACTIVATION RECORD. . . • • . . . P~GE 143
TOP OF STACK CONTROL WORD -- TOSCW ...•. . • PAGE 144

E-MODE. • • • . • . . • • • . . •• PAGE 144
NON E -MODE. • • • . . • PAGE 145

PROGRAM INITIALIZATION. • • • • . . • PAGE 146
BASE OF STACK • . • • • • • . . . • • • • • PAGE 147
FIRST EXECUTABLE PCW -- FEP • • • PAGE 148
TASK INITIALIZATION PROCESS. • • PAGE 149

PARAMETERS. • . • . . . • • • • • • • • PAGE 150
PARAMETER PASSING. • • . • • . • . . . • • • • • . PAGE 151
CLASSIFICATIONS OF PARAMETERS. .••••• . ••. PAGE 152

FORMAL. . • • • • • • . . ••. PAGE 152
ACTUAL. . • • • • • •. .. PAGE 152

RE F EI~ENCE TYPES. • . • • . . PAGE 153
BY VALUE. • • . . • . . . • • • . • PAGE 153
BY REFERENCE. • . . • • . • • . PAGE 153
BY NAME . . • . . . • • . • PAGE 153

EXAMPLES . • . • • • . •• •••. . •.. PAGE 154
THUNI< AND ACC I DENTAL ENTRY . . PAGE 155
BY-NAME PARAMETER EXAMPLE. . • • . • . PAGE 156
TYPED PROCEDURES . . •••• . . PAGE 157

STACK REVIEW. . . • . . • PAGE 158
BASIC STACK REVIEW ..••. • PAGE 159
PROGRAMDUMP. • • . • • • . . PAGE 160

HEADER. . • • . . . PAGE 160
BODY. . . • •. ...•. . . PAGE 161
CODE. . . . • . . • • . . • PAGE 162

PROBE. • • . . • . • • • • . • . . . PAGE 165

Copyriglht © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

DUMPANALYZER •••
MEMORY DUMPS .

OVERVIEW ••••••
CAUSES. •

INTRODUCTION.
MOD E S. • • • • • • • •

II~TERACT I VE
STANDARD. • •

SAVEID DUMPS. • •
EXECIUT ION. • •
BASIC CONSTRUCTS.
COMMANDS

AREAS
BOX •
DC. • •
DEADLOCK ••••••
FIB.
HDR •
HELP.
I 0 • • •
IOCB.
LINKS
LOCKS • . . • • •
MD. • . • • • • • •
NAMES • . • • • • •
PIB •
P R I NT E R • • • • • • • • •
PRINTVALUE/PV •
QUEUE • • • . • • •
RELEASE • • • • • •
RELX. •••
REMOTE.
SAVE. • •
SEAR,CH. •

MASK •
PATTERN.

STACK • •
STOP •••
SUMMARY • • •
WH ERE • • • • • • • •
WHO • • • •
ASD CHANGES

ADVANCED STACK ARCHITECTURE •
SHARED GLOBAL ENVIRONMENTS.

OVERVIEW ••••••
EXAMPLE • • • • • • •

INTRINSIC INTERFACE ••
OVERVIEW: ••.•••••••••. '
LINKAGE PROCESS ••••••

MCP INTERFACE •.•
OVERVIEW. . •. • ••••

PASSING PROCEDURES AS PARAMETERS.
OVERVIEW. • • • • •••.
E XAMP L E . • •• •••••

LIBRARY INTERFACE. • •••.

PAGE
• PAGE
• PAGE

• • • • • PAG E
• • • • • PAGE

• PAGE
• • • PAGE
• • • PAGE

• PAGE
• PAGE
· PAGE

· • • • • . PAG E
• • • PAGE

• PAGE
• PAGE
• PAGE
• PAGE
• PAGE
• PAGE

• • • PAGE
• PAGE

• • • • . PAGE
• • • • • • PAG E

• PAGE
· PAGE

• • • • . • PAG E
• .' • • • • • • PAGE

• PAGE
· • • PAGE

• • • • • • PAG E
• • • PAGE

• • • • • • PAGE
• PAGE
• PAGE

• • • PAGE
• • • • • • PAG E

• PAGE
• PAGE

• • • • • • PAG E
• PAGE
• PAGE
• PAGE

• • • • • • • • PAG E
• PAGE
• PAGE
• PAGE
• PAGE
• PAGE
· PAGE
• PAGE

· . • • • PAGE
· • • PAGE
· • • PAGE

• PAGE
· PAGE

167
168
168
169
170
171
171
171
172
173
174
175
175
175
175
175
176
176
176
176
177
177
177
177
177
178
178
178
178
179
179
179
179
180
180
180
181
181
181
182
182
183
184
185
185
186
187
187
188
189
189
190
190
191
192

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

OVERV lEW. · · · · · · · · · · · · · PAGE 192
LINKAGE PROCESS · · PAGE 193
EXAMPLE · · · · · · · · · · PAGE 196

PROGRAM INFORMATION BLOCK -- PIB · PAGE 197
OVERV lEW. · · · · · · · · PAGE 197

FILE INFORMATION BLOCK -- FIB. · · · · PAGE 198
OVERV lEW. · · · · · · · · · · · · · · · · PAGE 198

CODE FILE CONSTRUCTION. · · · · · · · · · · · PAGE 199
INTRODUCTION · · · · · · · · · · · PAGE 200

OPERATING SYSTEM INTERFACE. · · · · · · PAGE 201
CODE FILE LAYOUT. · · · · · · · PAGE 202
SEGMENT ZERO. · · · · · · · · · · PAGE 203
SEGMENT DICTIONARY. · · · · · · · · · PAGE 204
PROBE . · · · · · · · · · · · · PAGE 205
FILE PARAMETER BLOCKS --, FPB. · · · · · PAGE 206
COMPILER/INTRINSIC INTERFACE. · · · PAGE 207
BINDING · · · · · · · · · · · · · · · PAGE 208

OVERV lEW · · · · · · · · · · PAGE 208
GLOBAL DECLARATIONS FOR BINDER '. · PAGE 209
EXTERNAL DECLARATIONS FOR BINDER · PAGE 210
BINDER SYNTAX. · · · · · · · · PAGE 211
BINDER CONVENTIONS · · · · · · '. ~ · · · · · · · · · PAGE 212

UNIVERSAL CLASS · · · PAGE 212
SUB CLASS · · · · · · · · · · PAGE 212

PROGRAM DESCRIPTION · · · '. · · PAGE 213
PROCEDURE DIRECTORY · · · · '. · · · PAGE 214
EXTERNAL DIRECTORY. · · · · · · · PAGE 215
LOCAL DIRECTORY · · · · · · · · · '. PAGE 216
PRINTBINDINFO · · · PAGE 217
FPB/PPB RUN TIME. · · · · · PAGE 218
LINEINFO. · · · · · · PAGE 219

LINE DICTIONARY. · · · · · · · · PAGE 220
FORMAT OF SEQUENCE RECORDS · PAGE 221
EXAMPLE. · · · · · · · · · · · PAGE 222

PROBE. . . · · · · · · · · · ' . · PAGE 223
MACHINE OPERATOR SET. · · · · '. · · · PAGE 224

REVERSE POLISH NOTATION. · · · · · · · · · · · PAGE 225
OVER.VIEW. · · · · · · · · · · PAGE 225
EXAMPLES. · · · · · · · · · PAGE 226

REFERENCE GENERATION OPERATORS · · · · PAGE 227
NAMe. (40-7F) • · · · · · · PAGE 227
U~MC (958C) · · · · · · · · · '. · PAGE 228
STFF (AF) · · · · · ,. · PAGE 228
I ~~DX. (A6) · · · · · · " · PAGE 229
I ~~XA, (E7) · · · · · · · · · · PAGE 229
OCRX. (9585) · · · · · · · " · · · · · PAGE 230
MPCW (BF) · · · · · · " · · · · · PAGE 231

READ EVALUATION OPERATORS. · · · · " · PAGE 232
V,\LC (00-3F) • · · · · · · · · · · · · · PAGE 232
LVLC (9580) · · · · · · · · '. · · · · · PAGE 232
N)(LV (AD) · · · · · · · · · · " · · · · · PAGE 233
N)(VA, (E F) · · · · · · · · · · PAGE 233
N)(LNt (A5) · · · · · " · · · · · · · PAGE 233
EVAL (AC) · · · · · · · PAGE 234
LDAD (BD) · · · · · " · · · PAGE 235

Copyright © 1986 Joseph & Cogan Associates,
A Burroughs Company

Inc.

L.ODT (95BC) · · · · · · · · · · · · · PAGE 235
STORE EVALUATION OPERATORS · · · · PAGE 236

STOD (B8) · PAGE 236
STON (B9) · · · · PAGE 236
STAD (F6) · · · · · · · · · · PAGE 237
STAN (F 7) · · · · · PAGE 237

OVERWRITE OPERATORS. · · · · · · PAGE 238
OVRD (BA) · · · · · · PAGE 238
OVRN (BB) · · · · · · · · · · · PAGE 238

COMPUTATIONAL OPERATORS. · · · · · · · · · · · · PAGE 239
P~DD (80) . · · · · · · · PAGE 239
SUBT (81) · · · · · PAGE 240
fJ~UL T (82) · · · · · · · · · · · · · · PAGE 241
[JIIVD (83) · · · · · · · PAGE 241
NlTGR (87) · · · · · · · · · · · · PAGE 241
NIT I A (86) · · · · · · · · · · · PAGE 241
DIFFERENCE BETWEEN NTGR AND NTIA. · · · · · · · PAGE 241
COMPLEX ARITHMETIC EXAMPLE. · · · · · PAGE 242
IDIV (84) · · · · · · · · PAGE 243
RDIV (85) · · · · PAGE 243
AMIN (9588) · · · · · · · · · PAGE 244
AMAX (958A) · · · · · PAGE 244

LOGICAL OPERATORS. · · · · · · · · · · PAGE 245
LlNOT (92) · · · · · · PAGE 246
LAND (90) · · · · · · · · PAGE 248
LOR (91) . · · · · · · · PAGE 250
LEQV (93) · · · · · · · PAGE 252
EXCLUSIVE OR. · · · · PAGE 254

RELATIONAL OPERATORS · PAGE 256
SAME (94) · · PAGE 257
LlESS (88) · · · · · · · PAGE 259
LSEQ (8B) · · · · · · PAGE 259
EQUl. (8c) · · · · · · · · · · · · · PAGE 260
NEQl. (80) · · · · · · PAGE 260
GREQ (89) · · PAGE 261
GRTR (8A) · · PAGE 261

LITERAL OPERATORS. · · · · · · · PAGE 262
ZERO (BO) · · · · · · · · PAGE 262
ot~E (B 1) • · · · · · · PAGE 262
LT8 (B2) . · · · · · · · · · · · · PAGE 263
LT16 (B3) · · · · · · PAGE 263
LT48 (BE) · · · · · · · · · · · · · · PAGE 264

BRANCHING OPERATORS. · · · · · · · · PAGE 265
STATIC BRANCHES · · · · · · PAGE 266

BRUN (A2) . · · .. " · · · · PAGE 267
BRTR (A 1) . · · .• · · · · · · PAGE 268
BRFL (AO) . · · · · · · ,. · · · · PAGE 269
STATIC BRANCH EXAMPLES · · · · · PAGE 270

DYNAMIC BRANCHES. · · · · · · " · · · · · · · · · PAGE 274
DYNAMIC BRANCH TARGETS · · · · · · PAGE 275
DYNAMIC BRANCH EXAMPLE · · · PAGE 276

WORD MANIPULATION OPERATORS. · · · · · · · PAGE 277
BSET (96) II · · · PAGE 278
DBST (97) · · PAGE 278
BI~tST (9E) · · · · · · · · · · · · · PAGE 279

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

DBRS (9F) • . • . . . • . • . . . • • • . • • • • PAGE 279
I SOL (9A) . . . •• .•.• . . PAGE 280
DISO (9B) • • • . . .•..• PAGE 281
IINSR (9C) . • • PAGE 282
DINS (90) • • • . • PAGE 283
F L TR (98) . • . . . • • • • . . . • PAGE 284
DFTR (99) • • . . • PAGE 285

STACK STRUCTURE. . . • • . • . .. PAGE 286
MIKST (AE) . • • . • • • • . PAGE 287
MIKSN (OF) • . . • • . . . • . . . • • PAGE 287
ENTR (AB).•••••• • • PAGE 288
EXIT (A3) . . . PAGE 289
RETN (A7). PAGE 290
MVST (95AF) . • • . . • . PAGE 291

POINTER OPERATORS. • . ••••• PAGE 292
UNCONDITIONAL TRANSFER. . .••..• PAGE 293

TUND (E6). . . . • . . • PAGE 293
TUNU (EE).• • • • . . . PAGE 293
TW S 0 (0 3). . . . • • • . . P AGE 293
TWSU (DB). . . • • • • . • . PAGE 293
EXAMPLES . . . • PAGE 294

SCAN OPERATORS. . . • •• . PAGE 295
DELETE SCAN OPERATORS. • . . • •• PAGE 295
UPDATE SCAN OPERATORS. • . • . • . . .•••• PAGE 295
EXAMPLES • . • . • • •• .••••...•• PAGE 296

CHARACTER TRANSFER OPERATORS. • . • . • . • . • •. PAGE 297
CHARACTER TRANSFER DELETE.. • ••••••.•• PAGE 297
CHARACTER TRANSFER UPDATE. • . • • • • .• PAGE 298
EXAMPLES • • • . • . . • . • • . . . • • • • PAGE 299

CHARACTER COMPARE OPERATORS • . . • • PAGE 300
CHARACTER COMPARE DELETE • • • • • . PAGE 300
CHARACTER COMPARE UPDATE • • PAGE 300
EXAMPLES . . . • • . . • PAGE 301

EXAMPLES OF COMP I LER-GENERATED CODE. • • • • . • PAGE 302
INTERRUPTS. . . • • • • . • • • • • • PAGE 303

OVERVIEW. • . . • . • • • . • • PAGE 304
OPERATOR DEPENDENT • • • • • PAGE 305

MCP SERVICE.•••• PAGE 305
PRESENCE BIT. . • • •• PAGE 305
PAGED ARRAY. . • • • • • • • PAGE 306
BINDING REQUEST. • • • • • •• PAGE 307
STACK OVERFLOW • • . . •• . •.•.•• PAGE 307
BLOCK EXIT. . . •• PAGE 307

ERROR REPORTING. . . • • • • PAGE 308
INVALID OP • . . .••..• PAGE 308
INVALID INDEX. • . . • • . • • PAGE 309
MEMORY PROTECT • . • • • • . • •. PAGE 309
DIVIDE BY ZERO. • . . . •. PAGE 309
INTEGER OVERFLOW. • ••... PAGE 309

ALAR'''. • ••.... PAGE 310
INVALID ADDRESS. •. . .••..• PAGE 310
UNCORRECTABLE MEMORY ERROR. . • . •. . •.•.•• PAGE 310
LOOP TIMER. •. PAGE 310
HARDWARE ERROR. . . • . • . .• PAGE 310

EXTERNAL. . . . • . . • . . • . • PAGE 311

Copyriglht © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

10 FIN I SH • . • • • • . • •
INTERVAL TIMER .•.••••

PROGRAMMATIC FAULT HANDLING ••
PROGRAMMATIC INTERRUPTS ••••
PROBLEM ANALYSIS TECHNIQUES ••
PROGRAM FAILURE REVIEW ••

• • • • • • • • • • • • • • PAG E
· • • • • • PAG E
• • • • • • PAG E

• • • • • • • • • • • PAG E

FILE INFORMATION BLOCKS •••
FIB STRUCTURE .••••••.••••

SYSTEM SOFTWARE COMPILATION.
OVERVIEW. . • •••
PATCHESFOR • •••••
OPTIONS ••••

COMPILE_ALL.
SKIP_IF_NO_SYMBOL •

REQUIRED FILES •••••••••••
GENERATED FILES •••
PROCESS •••••••

A SERIES PROCESSOR OPERATORS. • •••

• PAGE
• • PAGE

• • • • PAGE
• • • PAGE

• PAGE
• • • • • • • PAG E

• • PAGE
• • • • • • PAG E

• • PAGE
PAGE

• • . . • • PAGE
PAGE

• • • • • • • PAG E
PAGE

OPERATORS LISTED BY MNEMONIC NAME ••
OPERATORS LISTED BY MODE AND OPERATOR ••

PRIMARY MODE OPERATORS ••

• • PAGE
• • • •• PAG E
• • • . • • • PAG E

• • • • • • PAG E
• • PAGE

EDIT MODE OPERATORS .•••
TABLE EDIT MODE OPERATORS •••
VARIANT MODE OPERATORS •••••

BSS ENTRANCE EXAM • . • • • • ••••
BSS EXIT EXAM ••••••••

REVERSE POLISH NOTATION ••
BASIC STACK ARCHITECTURE.
DISPLAY REGISTERS ••
WORD FORMATS • • • •
PROCESSOR OPERATORS.

• • • • • • • . • • PAG E
• • • • • • • • • • PAG E

• • • • • • PAG E
• • • • • • PAG E
• • .• PAGE

• • • • • • • • • • PAG E
· • PAGE

• • • • • • PAG E

311
311
312
313
314
316
317
318
319
320
321
322
322
322
323
323
324
325
327
332
332
335
336
337
339
353
354
356
358
360
364

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 1

INTRODUC:TION

Copyright @ 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 2

COUI~SE DESCRIPTION

ABSTRACT

This course is designed for those persc)nnel who are res;ponsible for maintenance,
consulting and training of the large sYlstem environmentall software and hardware.
Emphasis is on the operating system, compilers, basic hard1ware, associated selected
support utilities, and other subjects required for developing System Support
positions.

Copyriglht © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 3

SYS1rEM SUPPORT POSITION DESCRII~TION

Provide cost-effective support in areas of vendor software, data communications,
prc:>gram development systems, capacity planning, qualiity control and database
m.magement. Technical services include c::onsultin!9, training and support. The primary
us,ers of this group is the programming !staff and operations.

Other key areas:
Operations training
Operational support tools
Operations standards (established with operations

manager)
Establish hardware/software 'event m()nitoring alnd

trending
Assist in development of programmin~1 standards
Effective testing procedures
Effective testing environment
Develop and/ or acquire program deve,lopment tools
Provide internal programmer training
Establish system software implementa1tion

policies and procedures
Establish system software testing procedures
Maintain library of technical documents
Distribution of technical documents
Research an development of current and pro jec:ted

technical hardware/ soft'Nare/ teclhniques

Copyright © 1986 Joseph -& Cogan Associates, Inc.
A Burroughs Company

PAGE 4

PREREQUISIITES

Prc:lrequisites for this course are:

Basic understanding of large system concepts and their programming
languages: COBOL, ALGOL and WFL. Support utiility experience including:
CANDE, LOGANALYZER, DUMPALL, and FILE:DATA.

These requirements will have been met if the follovlling courses have been
completed:

FUNDAMENTAL LARGE SYSTEM SKILLS
ADVANCED LARGE SYSTEM SKILLS
ALGOL
COBOL74

(or acquired experience)

(EP6190)
(EP6190)
(EP6314)

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 5

CLA~;S MATERIALS

Title Burroughs Form Number

A Series System Architecture (VOL-2) 5014954

System Software Support 5014434

B5900 Reference Card 5012099

Student Guide

Appendix

" A CODE f i 1 e construct i on \;/"'

B EVENT word layouts

C F i 1 e I nformat i on Block (F I B) words

D Disk F i 1 e Header (DFH) 1 a'yout

[A9 system description

F Program Information Block (PIB) words

G Misc information

H ATTABLEGEN

Review questions

J Software compilation WFL job

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 6

COUI~SE OBJECTIVES

Understand basic large system hardware.

Understand Burroughs stack architecture.

Understand code file structure.

Under·stand processor operators.

Analyze language constructs for correct and efficient code' generation.

Understand basic components of the opE~rating s1fstem.

Under·stand system software generation techniques.

Understand a majority of the elements of a Pro!Jram dump.

Understand some of the items of a System dump.

Ability to diagnose program failures through the use of a Program dump and a
System dump.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 7

SCHI:DULE

DAY 1

Intlroduce the student with the instructor and vice versa.

The design and content of the class is r"eviewed.

An entrance exam is given to determine the need for revh~w subjects.

A hardware overview is given.

Universal I/O is discussed.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 8

DAY 2

Dalta word formats are reviewed.

Basic memory management is discussed.

Art·ays of all types are covered.

Ac:tual Segment Descriptor (ASD) memory is introduced.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 9

DAY 3

Reiference words are presented.

Basic stack architecture is introduced.

Processor registers are discussed.

First program dumps are generated.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 10

DAY 4

Stack Linkage words are covered.

Program initialization is discussed.

PClrameter passing is presented.

Copyriglht © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 11

DAY 5

DlJIMPANALYZER is covered.

Aclvanced stack architecture topics are introduced.

Copyriglht © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

-------_ ... _-

PAGE 12

DAY 6

Code file construction is covered.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 13

DAY 7

Rc:!verse Polish Notation is reviewed.

Mi:lchine operators are introduced.

Samples of code generation are given.

Copyrigl1t © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 14

DAY 8

More processor operators are covered.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 15

DAY 9

Intf!rrupts are covered.

FIBs are discussed.

SY!5item software generation is covered.

Program failure analysis techniques are enhanced using pro{lram dumps.

Copyright © 1986 Joseph & Cogan Associates, Inc.
• A Bu oughs Company

PAGE 16

DAY 10

A !review of the homework assignment is done.

An exit exam is given and reviewed.

A 'Question and Answer period, if time permits.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 17

HARDWARE ()VERVIEW

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 18

MOI\IOLITHIC SYSTEMS

RE!SOUrCe sharing of memory, CPUs, and 10 processors (such as on S7800s and
B7900s).

Applications have access to all of: memc)ry, CPUs, and 10 processors.

ADVANTAGES

BE!tter utilization of processors.

RE!duced operational support! scheduling.

DISA~DVANT AGES

MI9mory limitation is 6 MS.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 19

TIGHrTL Y COUPLED SYSTEMS

MlLlltiple processor configured under control of a single Master Control Program
(MICP).

Ealch local box has own dedicated Central Proceissor Unit (CPU), 10 processor, and
lo(::al memory.

Communications between local boxes is ,accomplished through GLOBAL memory.

ADV,ANTAGES

In(:reased memor~or entire combined system. ~t (\! of .JJ \J, S ; bl-e

Multiple machine connectivity (i.e. B5900, B6900).

Maintain single machine environment.

DISA~DVANTAGES

Reduced fault tolerance.

Aclding or deleting subsystems requires Hlalt Load (H/L).

Palotitioning of subsystems.

Cr()wding of GLOBAL memory.

Overhead factor in support of Tightly Coupled System (TC).

Copyright © 1986 Joseph & Cogan Associates" Inc.
A Burroughs Company

PAGE 20

TIGHTL Y -COUPLED SYSTEM DI~~GRAIM

GLOBAL

MCP

MEM

LOCAL LOCAL

[~ [~
[:~ [~

PROC 1 PROC 2

DCP DCP

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 21

LOO:SEL Y-COUPLED SYSTEMS

Communication between multiple independent systems.

ECllch system has its own copy of the MCP.

Systems run independently of each other.

GLOBAL memory.

Using GLOBAL memory as a mailbc)x betwe~en systems.

In1ter-·System Control (lSC).

High speed electronic interface between systems.

DIRECT 10 interface now available.

RE~mote Job Entry (RJE).

Other Datacomm options.

ADVANTAGES

RElduced overhead as compared to tightl'V-coupled system.

Independent systems.

DISA~DVANT AGES

Potential split databases.

Volume communication between systems may be slow.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 22

LOO~SEL Y -COUPLED SYSTEM DIAGRAM

.----.....,
LOCAL

L~)

[~
PROC 1

-.--------1

DCP
.------'

GLOBAL

LOCAL

r-:-i
~~

[J
PROC 2

DCP

Copyrigl1t © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

ENVII~~ONMENT AL MEMOR'{
tJ{'le ~ ?

::::::-----
Palr'titioning memory into LOCAL areas called Address Spacl~s.

Eal(:h address space is given an Address Space ~'umber (ASN).

Shared partition is visible to all LOCAL boxes.

Application memory visibility is: 6 MB data, 6 MiB code.

Increased overall memory capacity.

System must still be configured with SUElSYSTEMls. ~

ADV~~NTAGES

Increased overall memory capacity.

Shc~ring of CPU and 10 processors.

DISADVANTAGES

Potential GLOBAL memory crowding.

Sitl9s must still partition application location (SUBSYSTEM).

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

i

1fG(~~y ·-t.------+-__tt_-----+--tllr----, ~UBSY STEM
v M,ODULE

/
48 MB EACH

/

4[j<MJM
MEMORY

------t.t---------tl .. ---.. SUBSYSTEM
MODULE

PAGE 24

Copyrigl1t © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 25

PAR·TITIONING ENVIRONMENTAl. MEl\flORY

Partitioning is done in increments of "page"s.

A "page" is 128KW of memory.

No more than eight (8) pages (1 MW) ()f memctry may bE! included in any address
space.

Number of Shared pages will be the same for each Address Space.

Si,ze of each Local may be different. depending upon the machine.

On an A9:

Assume that 16 pages are available
Assume site specified Shared as three (3) pages
MCP would create two (2) Locals 'with five (5) pages each (8 pages
max - 3 pages global = 5) .
MCP would create a third Lc)cal with three (3) pages (16 pages total -
3 pages for Shared - 2 locals with 5 pages e;ach = 3)

On an A15:

The site can specify the size of the Shared component
Can also specify the size of each Local compctnent
To do this, must use a configuration file

Copyriglht © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 26

87900 CENR AND DENR

87'900 computers have additional registers in the processolrs called:

CENR Code Environment Number Begister

DENR Data Environment Number Register

Ea(::h xENR can address up to 1 MW of memory.

Mclkes total memory visible at one time 2 MW.

Cc,nfiguration like the following is possible:

Shared
Code 4
Data 3

Local (Units are in Pages)
2
4

Ab,ove yields a total of 13 pages or around 1.6 MW.

Limitation is that no Shared component plus any Local component can exceed eight
panes ..

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 27

ENVIIRONMENT AL MEMORY DIA~GRAl\fI

ASN 0 IIIIII~

A
I

IIIIIIIIIIIIIIIIII
I ASN 1
I
I
V

Local

M E MaR Y

Shared

A
I
I
I

ASN 2 I
I
V

Local

A
I
11111/1111111/1111

ASN 3 I
I
I
V

Local

Copyright © 1986 Joseph & Cogan Associates, Inc.
A 8urroughs Company

PAGE 28

SYS1rEM NETWORKING

Copyright © 1986 Joseph & Cogan Associates, Inc.
. A Burroughs Company

PAGE 29

BURF~OUGHS NETWORK ARCHI1rECTURE

BUirroughs Network Architecture (BNA) is the .:mvironmenltal software required to
communicate between systems.

(GLOBAL connected systems, ISC, c)ther datacomm)

NE:TWORK services.

HC)ST services.

FnE~ transfer.

HOST to HOST.

HOST through HOST to HOST.

File OPEN. .M (l ~ C~VI 2~' p, (fYI 2 f'V\.J').-c ~ ~ .
(J(fi tFi ({; . 0 L/ ~ ()

Vktual terminal.

Task execution.

HOST mix display and control.

Least cost and alternate route routing.

TriEinsport media: ISC, DATACOMM, GLOBAL.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 30

INTEI~~--SYSTEM CONTROL

Inter-System Control (lSC) is a high sp1eed chalnnel electronic interface system to
sy~;tem.

Ccmnection is point to point (each conne~ction requires a p,ath).
oC:

Up to 4/16 ports per each connecting unit (HUB}.
/'1

(Depending on which type HUB.

Most DLP and PCC systems can connect.

Limited to only BURROUGHS systems.

DII~IECT 10 interface available (BNA not ,'equired).

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 31

REM()TE JOB ENTRY

Re!mote Job Entry (RJE) provides limited file transfer and connectivity without
requiring BNA.

FilE:! transfer.

ViI"'tual terminals.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 32

LARfGE SYSTEMS PROGRESSIOI\l

The following pages are intended to show the changes that have occurred in
Burroughs Large Systems hardware over the yealrs.

It is also hoped that those new to Burroughs equipment "Ifill become familiar with cl
little of Burroughs' history.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 33

B--5fiOO

Monolithic machine.

"Fk>ating" I/O channels could connect to any I/O device.

Limited memory of 32 KW.

First virtual memory machine. circa 1960.

Di:~icrete components (transistors, resistors, etc.) and diode-register logic as
oplPosed to chips.

B-6jrOO

Chip architecture version of 8-5500.

Multiplexor now has hard I/O channels (cme per device controller).

Faster.

Has memory capacity of one million words, although early style core memory units
WE!!re too large to physically assemble units close enough for 1 MW.

EV~Dlved to planar core memory which c()uld complete the 1 MW memory.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 34

B-6~IOO

Intlroduction of "Global" memory and the concepts of SUBSYSTEMs, "tightly-coupled",
and "loosely-coupled" machines.

Integrated Circuit (lC) memory available cln this mainframe ~Model II) 16K chips.

Fbdng design problems or changing design requires wiring or board changes. This
is complicated, expensive, and very time--consuming.

PROC MPX

CPU

'---.

CH B I[;H 4 DISPLAY
PANEL

C

C

~~ DOT CH 5 II:H 0

MEM J I 10 CAB MOP

I

J
T0830 T0830

CONSOLE

-
LEGEND:

MOP: MAINTENANCE DIAGNOSTIC PROCESSOR

CHn: I/O CHANNEL

MPX: MULTIPLEXOR; I/O PROCESSOR

C[;: [;ENTRAL CONTROL; TRAFFIC COP FOR 1/0 CHANNELS
TO TRANSFER DATA TO MPX

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 35

B·-6~~OO

Sclme processor as 8-6800.

Ie memory on all models.

Multiplexor becomes MLiP (Message Levt:!1 Interface Proces;sor).

Ur1iversal I/O (UIO) devices are added. These are PROM driven, so any logic
ch;anges usually require only PROM chanEles.

Footprint for 1/0 boxes approximately 1/8 of hard 1/0 boxes from previous
architecture. Up to 64 1/0 channels fit where 10 used to.

MAINTENANCE

TEST BUS

~

I
B80

BASE BASE FLOPPY

I 11 .. , ~r-
"0 ~ Dl.jBASE

-
ML IP t-

~n '---

MEM PROC I
CPU 110 CAB

., '" J I ., ..,r--

CONSOLE -

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 36

B--5~~OO

Processor is now "soft" microcode driven.

16;K chips on 8-5930 (upright).
C 4 f'd fR lM2f Mc~ (}t fevt~ \

(vs C-~jp (-f>v-eU

64K chips on 8-5920 (low boy).

UII~) is same as 8-6900.

Stiill only one million words of memory (6.2 Mb).

En1try level system to Large Systems.

,..--+---1---11 :l:~~ D D

I

D CPU D
I

CPU

MAINTENANCE INTERFACE

TEST BUS

RS232

RS232

M?~t=" ----I
~'-r-----ILU LJ ..L !~c-

",,,,7;- r
CONSOLE

LEGEND:

MIP: MAINTENANCE INTERFACE PROCESSOR

MC: MAINTENANCE CARD

MP: MAINTENANCE PROCESSOR

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 37

B-·79~OO

8-'7000 entry into UIO.

8-7800 processor with memory addressing capabilities !~reater than one million
words (CENR and DENR), plus some instruction enhancements.

Total addressable memory 96Mb.

8-!~)900 is Maintenance Processor with c,apability of Attachled Processor online.

8-7800 10M becomes HDU with 8Mb bandpass per port (v,ersus 1 to 2 Mb 10M).

Still memory limitations, although new limiit is 1 Mw Code plus 1 MW Data.

641~(memory chips.

B5900

I I
AP
AMP BASE BASE

I I
BASE

HDU DDT DLP BASE

MEX CPM MSM IDSM

LJ I
T
E

d
S
T

Dc I
B
U

, ... 1

S

ET

CINSOLE

00 !
1
P

I FLOPF'IES -
LEGEND:

MEX: MAINTENANCE EXCHANGE

CPM: CENTRAL PROCESS DR MODULE

MSM: MEMORY SUBSYSTEM MODULE

10SM: INPUT OUTPUT SUBSYSTEM MODULE

AP/AMP: B5900

HDU: HOST DATA UNIT

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

A9

PAGE 38

B- 6000 entry into microcode systems.

NE!W logic: current mode (emitter-coupIE~d logic) plus a pipeline processor
with three stages.

UfO same as before.

M.:!mory capability now greater than one million worps.

Memorv released ~d \4 Mb, but capable O(.9 .. 6~) ')
.;:;;- " Q.. '(of 0 i I •

64K memory chips.

ASD capable without hardware upgrade.
t

j lOV.(\VV

I I

1 n , ••• 1 1 " , ... 1

nST "OS t

[- !

Cd r-- f- DDT

- ri BASE
~

[D-
-f- -

MIP

D -- I--

ITJ--
ISASE

PROC

CPU MEM 10

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

A3

PAGE 39

"A" series entry level system to large systems.

Ult:) same as before.

Cclpable of greater than one million words of memory.

Mi:IX memory is 48 Mb.

2Ei6K memory chips.

In···built winchester disks. uf 10 4

Hals monolithic 2-by capability (two processors can see, share, and address all of
mE3!mory.

ASD capable with hardware upgrade.

ETll00

-1 DISK .1
BASE DR PROC (DPTIONAL) -i 'UK ,1

MEM ! PROC ! UIO DLPS

! l r-1 ' 1 M DISK
D

I - f--

j
D

~ ,I L

1 DISK

CPU

LEGEND:

UIP: USER INTERFACE PRDCESSDR

SMD: SYSTEM MAINTENANCE DISK

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 40

A'10

Similar to AS.

Has 256K memory chips.

Has improved arithmetic capabilities.

Mc)nolithic 2-by machine.

ASD capable without hardware upgrade.

Copyright © 1986 Joseph & Cogan Associates" Inc.
A Burroughs Company

---.-----~ -~- ~

A'15
01" f.-.'i a;!::fJ-- ~ ~~
Largest current system in Burroughs line.

/

Monolithic 87000 requestor type architecture. /'

Same UIO as 87900. }/

New processor and memory with purgeless cache.

CUI"rent maximum memory, as documented by marketing, is ~96 MB.

256K memory chips.

ASD capable with hardware upgrade.

B6900
0
D
T

0
APi L
AMP P BASE BASE

0
0
T

0
L
p-

HOU BASE BASE

MEX CPM MSM IDSM

ILJ I

I I I

I I ET 1100 ET 2000 ET 2000

CONSOLE

E I MIP

EJ EJ
EJ ~

l
EJ ~

I MAINT STA - - _---.---J
--

LEGEND:

SMP: SYSTEM MAINTENANCE PROCESSOR

NOTE: BASE 0 (ZERO) IS SHARED BY SMP AND All.,

PAGE 41

<:
s

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Bu~~oughs Company

PAGE 42

UNIVERSAL INPUT/OUTPUT

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 43

UIO PHILOSOPHY

Universal 1/0 was originally developed tID reduce the amount of work done by thE~

mi:!inframe and offload it to a separate 110 subsystem.

The intent of UIO is that any given 1/0 is generic to the MCP. In actual fact, this
is not so. A card reader can't be read backwards, for example. However, much
01f the work of older "hard" II Os has now been offloaded to a "smart" 1/0
subsystem.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 44

MAI~~FRAME INTERFACE

All Universal 1/0 (UIO) operations originate on the mainframe and connect to the
Ult:) Subsystem through an 110 processor ..

II C)I processors are known as HDUs (Host Data Unit) [8-7900 and A 15] or MLiPs
(Me:!ssage Level Interface Processor).

The:! output from these 1/0 processors is called a Messctge Level Interface (MLI)
which is an 1/0 ~~ UIO ports.

Copyright © 1986 Joseph & Cogan Associates" Inc.
A Burroughs Company

PAGE 45

1/0 8tA,SES

An 110 Base is nothing more than a rack of circuit boards with a common
bac:kpllane.

Cel"tain cards must be in a base. These include:

o Terminator Cards (TC) at both ends.

o Base Control Card (BCC).

o Mainte'nance Card (MC) to the left of the right-hand Terminator Card.

Other cards may optionally appear in a base. They are:

o Distribution Cards (DC).

o Path Selection Modules (PSM).

o Line Expansion Modules (LEM).

o Data Link Processors (DLP).

Copyright © 1986 .Joseph & Cogan Associates" Inc.
A Burroughs Company

PAGE 46

TERI'IIINATOR CARD

A Terminator Card (TC) provides electrical signal termination for the common bus
(bi:lckplane) which all cards in the base connect to.

There must be one at each end of the bus.

BASI: CONTROL CARD

A Base Control Card (BCC) contains information about which host owns which
cards (DLPs). This allows two host systems to FREE and ACQUIRE different
devices.

At Halt/Load time, the BCC can also in'Form the MCP what devices reside in this
base.

MAlr~TENANCE CARD

Pr()vides a path for maintenance to the base. This maintenance can be used to
te:Sit cards in the base.

Provides clocking for the base.

Copyright @ 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 47

DISTRIBUTION CARD

A Distribution Card (DC) provides the interface between the base and the host.

A DC communicates with the host through an MLI.

A DC communicates with the base throu!gh the DLI (backpllane bUs).

There~ will be one DC for each host whiich has an MLI int,o this base.

//'PATH -SELECTION MODULE
(~ (6 V\i ,"~o(\J("
\ "

If more than one host talks to the same~ base (j.e. more than one DC in a base), a
PSith Selection Module (PSM) needs to ble inserted into the base.

The PSM provides a "traffic cop" function to insure that both mainframes do not
aUempt to use the backplane of the bas.e or the BCC simultaneously.

LINE EXPANSION MODULE

A Line expansion Module (LEM) enables ,a host to be connected to more bases by
expanding one MLI to up to seven MLis.

Even though a LEM physically resides in a base, it accepts only electrical power
from the base. It does not use the backplane for c:ommunication with other
eh~ments in the base.

LE:lMs are used when a port needs to c,ontrol more than one DC (eight DLPs). By
fe,eding an MLI (port) into an LEM, the output from the L.EM can be input to from
tw'o to seven DCs which yields control 4::>ver sixteen to fifty-six DLPs.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 48

DATJ~ LINK PROCESSOR

Data Link Processors (DLP) are devicE!-dependent logic cards that provide the
int'l!rface between the host(s) and the peripheral device(s).

A IDLP can consist of two, three, or more cards, depending upon the device type.

SOlne of the current DLPs are:

CR1
HT1
MT1
MT2
ODT1

Q ___ ~LSP1
d;;v TP2
y- \ '----~NSP3

Card Reader
206, 207, 659, 6~77 Disk Pack
PE Tape
PE/GCR Tape
Operator Display Terminal
Line Support Proc:essor (Datacom)
Buffered Printer 11200/2000 Ipm
Datacom Network Support Processor

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 49

UIO IEXAMPLE

A typical path for data in the UIO environment,

M
A
I
N
F
R
A
M
E

U
I
o

B
A
S
E

P
E
R
I
P
H
E
R
A
L

'r
I/O

CPU

I I
DLI

DLP

CABLE
CONTROLLER

IIIIII
IDATAI
IIIIII

MEM

DC f MLI

IIIIII
IDATAI
IIIIII

DISK DRIVE

HDU

LEM

-

-

M
L
I

Copy'right © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 50

FRorVi DLP TO DISK PACK:

The following diagram is typical of what is outboard from a disk DLP (without an
exchange). It shows a 2 X 8 configuration.

[

" DLP

·11r------'
I
I

11111/11
I
I
I
I
I
I
I
I
I
IIIII

DLP

/
I
IIIIIIII

CONTROLLER

CONTROLLER

I
I
I
I

11111

IIIIIIIIIII
I
11111111111
I
IIIIIIIIIII
I
11111111111

IIIIII

.

-
I
I
I
I

I
IIIIII -

DISK PACK
DRIVE CONTROLLER

1/1111111111 I
IIIIII

I1IIIIIIIIIIIIIII
IIIIII

-

DRIVE

0

1

2

3

4

5

6

7

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 51

FRO"II DLP TO DISK PACK

ThE~ following diagram shows a typical 4 X 16 disk pack configuration with
exchange,

[
-'J/IIII

DLP
. -

-
-

AO CO-
Al Cl-
A2 C2-

11111r!

~
CONTROLLER - A3 C3- CONTROLLER

- BO 00-
-

. -
CONTROLLER -[

-'J/IIII
DLP

Bl 01-
B2 02-
B3 03-

i"'

CONTROLLER
IIIII-r--l

~

DPDC DPDC

1111/111111111111111111111111111111/111111111111111/
I /
I DRIVES / DRIVES
I /

0 I A1 AO 1111 /111 4
I B 1 BO I /
I Cl CO 1111 /111 · 1 5
I 01 DO I /

2 1111/1 111111111/11111 /111 6
I ./

A3 A2 I I I I / I I I · 3 . 7
B3 B2
C31 C2 1111 /111 · 8 12
C31 02 I /

11/1/1 111111111/11111 /111 9 13
I I /
I 1111 /111 · 10 . 14
I I /

1 1 I EXCHANGE 1111 /111 15
I / I I I I

111111111111111111111111/1111111111/111111111111111/

Copyright © 1986 Joseph & Cogan Associates, Inc,
A Burroughs Company

FRO~iI DLP TO TAPE DRIVE

Thl~ following example shows a typical GCR/PE configuraticln.

~t///// _. I
I
I

III

g.////~
I
I
I

~I I I I

////g
I
I

III

PAGE 52

////g
I
I
I

[REMOTE leU TCU

////[
TCU REMOTE TCU

/
DRIVES I

8

9

10

1 1

12

13

14

15

~

~

~

io

/
IIIIII

/
11111/

/
IIIIII

I
IIIIII

I
IIIIII

I
IIIIII

I
IIIIII

I
IIIIII

LEGEND:

DLP: DATA LINK PROCESSOR (UIO)

TCU: TAPE CONTROL UNIT

NOTE:

I
I DRIVES
I
IIIIII
I
IIIIII
I
IIIIII
I
IIIIII
I
IIIIII
I
IIIIII
/
IIIIII
I
IIIIII

"

"

"

"

0

1

2

3

4

5

6

7

EXCHANGE CAPABILITIES ARE BUILT INTO THE TCU'S

Copyright © 1986 Joseph & Cogan Associates" Inc.
A Burroughs Company

PAGE 53

DATA WORD FORMATS

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 54

GENI:RAL INFORMATION

\I~iords are the fundamental units of data.

INFORMATION FIELD

47 43 39 35 31 27 23 19 15 11 07 03

46 42 38 34 30 26 22 18 14 10 06 02

45 41 37 33 211 25 21 17 13 09 05 01

44 40 36 32 28 24 20 16 12 08 04 00

TAG FIELD

Prc:>vides general ~ interpretation of data contained in word iinformation field.

The Tag:

Bit 51 of the TAG is only valid Ort E-MODE systems.. .

Bits 50:3 are the only bits currently valid.

Current value range: 0-7.

Even tags serve primarily as computation arguments.

Odd tags primarily serve as reference arguments or Icontrol structures.

Bit 48 is considered the "Memory Protect" bit; MOIst operators will get an
error if they try to update a word where bit 48 is Ion.

INFORMATION FIELD

Main portion of the word.

Int,erpretation depends on TAG value.

Bits 47:48.

ME3!aning of the word may also depend on context and difi'erent bit values.

Bits may wrap from 0 to 47 if operators require.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

SINGLE PRECISION OPERANDS

REAL ..

TAG REAL

\\ \ E E M M M M M M M M M

,\\
\\~7 43 39 35 31 27 23 19 15 11 07 03

MS E M M M M M M M M M M

46 42 38 34 30 26 22 18 14 10 06 02

ES E M M M M M M M M M M

45 41 37 33 29 26 21 17 13 09 05 01

E E M M M M M M M M M M

44 40 36 32 28 24 20 16 12 08 04 00

o

46:::01 Sign of the MANTISSA (0 = positive , 1 = negative)

Sign of the EXPONENT (0 = positive , 1 = negative)

44::06 EXPONENT field.

38,::39 MANTISSA field.

MANTISSA is the magnitude of the number before scaling.

EXPONENT is the power of eight to which the MANTISSA is scaled.
~~

FOI~mula for calculation of decimal value:

(MS) (M) * (8 ** (ES) (E))

Limits on the range of values for a REA,L values are:

Absolute value may not exceed 4.31359146674 @ 68
Except for zero, absolute value may not be less than

&75811540203 @ -47

PAGE 55

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 56

INTEt::;ER

TAG INTEGER

0 0 M M M M M M M M M

47 43 39 35 31 27 23 19 15 11 07 03

MS 0 M M M M M .M M M M M

46 42 38 34 30 26 22 18 14 10 06 02

0 0 M M M M M M M M M M

45 41 37 33 29 25 21 17 13 09 05 01

0 0 M M M M M M M M M M

44 40 36 32 28 24 20 16 12 08 04 00

TA,G 0

46:01 Sign of the MANTISSA (0 = positive , 1 = negative)

45:01 Sign of the EXPONENT (Alwa~'s 0)

44:06 EXPONENT field (Always 0).

38:39 MANTISSA field.

MANT'ISSA is the magnitude of the numbler before scaling.

Formula for calculation of decimal value:

(MS) (M)

IN1r'EGER is the same as a REAL except that the EXPONEN'T is always O.

Th(:~ compilers force the exponent 0 by !~enerating integeriz:ing operators.

Th(:~ hardware can not distinguish between a REAL or a IN'TEGER.

Thc:~ absolute value for an INTEGER may never exceed:

549,755,813,887

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 57

TAG BOOLEAN

0 0 0 0 0 0 0 0 0 0 0

47 43 39 35 31 27 23 19 15 11 07 03

0 0 0 0 0 0 0 0 0 0 0 0

46 42 38 34 30 26 22 18 14 10 06 02

0 0 0 0 0 0 0 0 0 0 0 0

46 41 37 33 29 26 21 17 13 09 05 01

0 0 0 0 0 0 0 0 Q 0 0 B
I

44 40 36 32 28 24 20 16 12 08 04 00

TAG o

00:011 BOOLEAN logical value (1 = irRUE, 0 = FALSE)

The hardware uses bit 0 for conditional branching.

A" other bits are ignored.

The hardware can not distinguish betweEm a REAL, INTEGE:R and a BOOLEAN.

Other' bits may be on or off, but they eire not used in condition checking.

Miclny logical operations operate on a" bits in para"el.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 58

ONE··-QUESTION PROBE

If REALs, INTEGERs, and BOOLEANs all have the same ta!~ of zero, how does the
prc)cessor know what type of data it's working with and \/lVhat to do with it?

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 59

DOUIBLE PRECISION OPERANDS

MOS;T SIGNIFICANT PART -- MSP

TAG DDUBLE (MSP)

E E"""I M M M M M M M M M

47 43 39 35 31 27 23 19 16 11 07 03

MS E M M M M M M M M M M

48 42 38 34 30 28 22 18 14 10 06 02

ES E M M M M M M M M M M

45 41 37 33 29 26 21 17 13 09 05 01

I!-"" E M M M M M M M M M M

44 40 36 32 28 24 20 16 12 08 04 00

TA.G 2

46:.01 Sign of the MANTISSA (0 = positive I 1 = negative)

45:01 Sign of the EXPONENT (0' = positive I 1 = negative)

44:06 Low order 6 bits of the EXPONENT.

38:39 The integer portion of the MANTISSA.

MANTISSA is the magnitude of the number before scaling.

EX.lPONENT is the power of eight to which the MANTISSA is scaled.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 60

LEA~:.T SIGNIFICANT PART LSP

DOUBLE (LSP I

EE EE EE ME ME ME ME ME ME ME ME ME

47 43 39 35 31 27 23 19 15 11 07 03

EE EE ME ME ME ME ME ME ME ME ME ME
':

46 42, 38 34 30 26 22 18 14 10 08 02

EE EE ': ME ME ME ME ME ME ME ME ME ME

45 4t 37 33 29 25 21 17 13 09 05 01

EE EE i ME ME ME ME ME ME ME ME ME ME
i

44 4~ 36 32 28 24 20 16 12 08 04 00

TAG 2

The high order 9 bits of the EXPONENT.

3S~:39 The fractional portion of the MANTISSA.

Mj~NTISSA is the magnitude of the number before scaling.

EXPONE~T is the power of eight to which the MANTISSA is scaled.

The actual value of the EXPONENT field is:
EXPONENT:= 0

& MSP., [05:44:06]
& LSP.[14:47:09]

Thle maximum absolute value for a DOUBLE operand is:
1.94882938205028079124469 * (10 ** 29603)

The minimum absolute value, except for zero, is:
1.9385458571375858335564 * ("0 ** -28581)

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 61

UNINIITIALIZED OPERANDS

TAG UNINITIALIZED OPERANDS

0 0 0 0 0 0 0 0 0 0 0

47 43 39 35 31 27 23 19 15 11 07 03

0 0 0 0 0 0 0 0 0 0 0 0

46 42 38 34 30 26 22 18 14 10 08 02

0 0 0 0 0 0 0 0 0 0 0 0

45 41 37 33 29 25 21 17 13 09 05 01

0 0 0 0 0 0 0 0 0 0 0 0

44 40 36 32 28 24 20 16 12 08 04 00

TAG 6

47':48 All bits 0

Cclin be interpreted by the hardware as ct 48 bit vector.

AI:so used by the compilers for initial setting for some! variables, most notably
AHRAY REFERENCEs and POINTERs.

Thiis operand is primarily used as a

Copyright @ 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 62

TAG 4 WORDS

TA.G TAG 4 WORD

0 0 0 0 0 0 0 0 0 0 0

47 43 39 35 31 27 23 19 15 11 07 03

0 0 0 0 0 0 0 0 0 0 0 0

46 42 38 34 30 26 22 18 14 10 06 02

0 0 0 0 0 0 0 0 0 0 0 0

45 41 37 33 29 25 21 17 13 09 05 01

0 0 0 0 0 0 0 0 0 0 0 0

44 40 36 32 28 24 20 16 12 08 04 00

TAG 4

47:48 All bits 0

This 1word is used for various software needs:
(i.e. ON ANYFAUL T, ON RESTART, ,and INTERRUPT).

This word is reserved for applications in future levels of architecture.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 63

LANC:;UAGE EQUIVALENTS

ALGOL COBOL68 COBOL74 TYPE TAG

RE,~L COMP-4 REAL ()'c) Single Prec 0
INTEGER COMP-l N/A Single Prec 0
INTEGER COMP BINARY Single Prec 0
BOOLEAN N/A N/A Single Prec 0
DOUBL.E COMP-5 DOUBLE ("c) Double Prec 2

? EVENT EVENT EVENT Double Prec 2 .cE-- .,
POINTER N/A N/A Uninit Var 6
ARRAY

IREFERENCE N/A N/A Uninit Var 6

Note: Starred ()'c) COBOL74 i terns ane new as of Release 3.6.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 64

PROC3RAM CODE WORDS

Vclriable length operator sequences are s:tored in arrays of Program Code Words.

CClntains six 8-bit syllables, numbered zero to five (0 - 5).

TAG PROGRAM CODE WORDS

0 0 1 1 2 2 3 3 4 4 5 5

47 43 39 35 31 27 23 19 15 11 07 03

0 0 1 1 2 :2 3 3 4 4 5 5

46 42 38 34 30 26 22 18 14 10 06 02

0 0 1 1 :2 2 3 3 4 4 5 5

45 41 37 33 29 25 21 17 13 09 05 01

0 0 1 1 2 :2 3 3 4 4 5 5

44 40 36 32 28 24 20 16 12 08 06 00

TA,G 3

47:08 Code syllable 0

39:08 Code syllable 1

31:08 Code syllable 2

23:08 Code syllable 3

15:08 Code syllable 4

07:08 Code syllable 5

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 65

MEMORY MANAGE:MENT

Copyright © 1986 Joseph & Cogan Associates, Inc,
A Burroughs Company

PAGE 66

OVEFIVIEW

Vir'tual memory management technique that is designed to satisfy memory needs of
a program quickly and efficiently.

Me!mory is organized into two major components:

IN-USE AREAS
AV AILABLE AREAS

Eac::h memory area is preceded and followed by link w()rds which describe the
COlrltents and status of that area.

A I)ESCRIPTOR references the portion of' memory containinlg -tRat-:99ntaiAS"" the data
or code.

Copyright © 1986 Joseph & Cogan Associates,. Inc.
A BurrDughs CDmpany

IN-USE AREAS

These areas have two general types:

SAVI~:

SAVE
NON-SAVE

PAGE 67

SJ~'vE ares are required to be resident in memory from time they are allocated to
thj:! time they are de-allocated.

Thle r'easons for SAVE areas are varied: \\ ~~ ~ 0
I/O buffer. \ ._ pJ-I'\ ~ ,t.:,

DIRECT arrays. - 1: a ~\\ \f' .
Critical MCP or application code.
Critical MCP structures:

TASK
STACK
FILE INFORMATION~BLOCK (FIB)

Critical application structures.

Most SAVE areas must remain at their. assigned memory location for extended
pe,"iods of time. .::::::::::::::

NON··-SAVE

Most NON-SAVE memory ares can be overlayed to disk by the MCP.

Th.~se' areas are automatically re-allocated to memory whe" they are needed.

SOlme NON-SAVE memory areas must be resident in memory but are allowed to
mc)ve -- considered to be "sticky" memolry. (RESIDENT arf~as: DCALGOL).

(' ~v)
\fJ) <~ ~

. -1 '\ \ C J-af'\;. t!"

~ fi '
~'~

Copyright © 1986 Joseph & Cogan Associates, Inc_
A Burroughs Company

PAGE 68

MEIVIORY LINKS { Nllse

LINKA

LlI~KA

LlI~KB

LII~'KC

ACTUAL DATA

LII~KZ

LINKS LINKC ACTUAL DATA

Contains address of olriginal descriptor (MOM).
Contains length of are!a. ,\1\ \)JCl '("~ '.:;)
Contains type of area (ODDBALLF).

Contains the STACK number who owns 1the MOM.

Code location where data was allocated..

Will vary in length fOI~ most occurrances.

Similar to LlNKA for backwards memory chaining.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 69

MEMIORY ORGANIZATION

Indiscriminate mixing of SAVE and OVERLAY ABLE areas would cause inefficient
US!:! of memory space such as in the case of checkerboarding.

Clustering of SAVE and NON-SAVE areas helps avoid the checkerboarding
problem.

MEMORY ORGANIZATION

~-------------------------------~-------------------------------

SAVE NON-SAVE

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 70

AVAIILABLE AREAS 2 \l~~5 VV1 fr~
L)l\.. b(~ct.

OrHanized in two lists to attempt to allocate SAVE ares into low memory and
NON-SAVE into high memory_

SAVE:: LIST

Is ,a list of all available memory areas that could be used as SAVE memory_

NON··-SAVE LIST

Isa list of all available memory areas that could be used as NON-SAVE memory.

A V AIILABLE LIST STRUCTURES

ThE! SAVE and NON-SAVE lists are ordered by size whell'e the smallest piece of
memory is first.

If there are duplicate areas with the same size (Le. three areas of 25 words),
"side lists" are linked into the primary area in the list.

ThE~se "side lists" help reduce the number of duplicate entriies the MCP has to scan
thr10ugh when looking for memory.

MC::PI AS uses a MOD function to jump to a location in the list and then proceed
from forward, thereby skipping areas of memory it knows to be too small.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 71

DAT~~ DESCRIPTORS

Thle structures that reference actual memory areas (bounded by memory links).

ORIGilNAL DESCRIPTORS

There is only one original descriptor (MC)M) for an area oif memory.

Update access to MOM descriptors . is restricted since pertinent
information would be lost if they were modified.

MC:>M descriptors control allocation, de-'allocation, and overlay of memory
se~~ments.

COP~~(DESCRIPTORS

Priimarily is a duplicate descriptor.

Muy point to a memory segment (same as MOM) if resident.

Muy point to the MOM descriptor (if not resident: ABSENT).

Buiilt by the compiler when request to access an ORIGINAL data segment in a
different SIZE (WORDS, EBCDIC, HEX).

Buiilt where processor operators require updates to a descriptor.

Nc~te: A discussion of ASO memory will be included later.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Bu~~oughs Company

PAGE 72

OVEF~LAY

ME!mory requests for an area size which can not be satisfied from the available
Iis1t cause the system to overlay memory which is non-saV4:!, in-use areas.

Each task is assigned an overlay file.

Each MOM descriptor has space reserved in this file the first time it is made
pn:!sent.

Overlay space is retained until memory segment is deallocated.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 73

OEM,AND OVERLAY

Requests for forced overlay occur orlly when there is not enough contiguous
mE!mory available for the size of the request.

From a rotating point in memory (called the LEFTOFF p()inter), in-use areas are
moved or overlayed until there is enough memory to satisfy the requested size.

Movement of data requires search and update of MOM and COpy descriptors.

IN-USE (10 WORDS)

IN-USE (60 WORDS)

IN-USE (40 WORDS)

AVAIL (100 WORDS)

IN-USE (30 WORDS)

IN-USE (50 WORDS)

IN-USE (60 WORDS)

If the request was for 300 words of mE~mory:

All of the above IN-USE areas will be moved or overlayed to satisfy the
request.

The last area will be split, the remainder addled to the appropriate
AVAILABLE list.

Mcljority of applications are written in C()BOL.

COIBOL programs tend to be coded with many small data segments (average area
ma1(be as small as 60 words).

Lal"ge data requests could cause a signiHcant memory management burden.

Copyright © 1986 Joseph & Cogan Associates" Inc.
A Burroughs Company

PAGE 74

WOFtKING SET

W()RKING SET is defined as the amount of physical memory required to run a task
ef1f'ectively.

WSS;HERIFF

Intlernal MCP process that forces overla~rs to occur at a predefined rate.

This approach is to prevent bursts of overlays by causing areas not used often to ~y
be overlayed. _\

Increased processor overhead to support WORKING SET memory management.

Overlays may occur more often than in IOEMAND overlay.

WS;SHERIFF is initiated when OVERLAY GiOAL is greater than O.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 75

MEIV'IORY CONTROLS

NAME FACTOR

MEMORY PRIORITY 4

OVEI:~LA Y GOAL

PE!rCent of OVERLA Y ABLE memory that iis attempted to be overlayed per minute.

AVAILMIN

Active programs are suspended in priority order if the clctual AVAILABLE memory
falls below the AVAILMIN percentage of actual memory.

The attempt is to slow down the Irequests for memory and OVERLAY the
OVER LA Y ABLE areas of the suspended task.

SAVE: areas are not OVER LA YEO.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 76

FAC1lrOR

Thiis is the percentage of actual memory the scheduling me'chanism assumes it has.

Lo,'wer than 100% may cause more tasks to become scheduled with potentially less
mE~mo,ry management overhead.

Hi!~helr than 100% may cause tasks to bE! executed when they normally should have
been scheduled.

Hi!~her FACTOR settings may increase oVlerhead to support memory management.

MEIVIORY PRIORITY

Attempt to add priority as a criteria to the OVERLAY decision.

Lo'wer priority tasks may tend to have more OVERLAY activity under WORKING SET
than higher priority tasks.

Time to find overlay areas to meet a given size may be longer under MEMORY
PBIORITY control.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 77

SWA~PPER

This facility allows TIME-SLICING to service users in a resource sharing
environment.

A portion of memory is reserved for SWAPPER to manage.

ThE~ bounds for all data segments for a given task are contiguous.

Ta~;ks are overlayed to a file call SYSTEM/SWAPDISK when it no longer requires
thE!' processor or has exceeded a pre- determined time slic::e.

A 'Few 10's will occur to overlay or make a program activre reducing the number of
10's required to make independent data segments resident.

Pr4:>grams will conform to the normal DEMAND overlay scheme if not enough
me!mory is available within is limited scope.

Ta!;ks requiring little processor utilization are favored.

SVI~rAPPER is not available on ASD machines (MCPI AS).

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 78

OEseR I PTOR~;

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 79

DAT,,~ SEGMENT DESCRIPTORS

Dc~lta descriptor is the word type that dl9scribes data segments.

A virtual data segment is an array of elements where an j91ement of the array is a
single word, a double word pair, or a sub-word character requiring 4 or 8 bits.

TAG

TAG

47:01

4Ei:01

4E»:01

4~k01

4~l:01

4~~:03

3St:201

1St:201

DATA DESCRIPTOR FORMAT

PR RO L L L L L A A A A A

47 43 38 35 31 27 23 19 115 11 07 03

C 52 L L L L L A A A A A

46 42 36 34 30 26 22 16 14 10 06 02

0 52 L L L L L A A A A A

45 41 37 33 28 25 21 17 13 08 OS 01

PG 52 L L L L L A A A A A

44 40 36 32 2. 24 20 16 12 06 04 00

5

Present bit (0 = absent, 1 = present).

C b ' (0 M;O,MI 1) opy It = onglna, = copy.

Indexed bit (0 = un-indexed, 1 = indexed),

Paged bit (0 = non-pages, 1 = paged).

Read-only bit (0 = read/write" 1 = read-only).

The type of array element (SIZEF).

0 = Single Precision
1 = Double Precision
2 = Hex 3> \,..(.)(t!) 6-- t>l*'-- ~ - '\1)CL--4 = EBCDIC

The number of elements in the array (LENGTHF) ..

If the descriptor is:

Present MOM: Address in memory of the array
Absent MOM: See alternatE! description of 1 H:20
Present Copy: Address in memory of the array
Absent Copy: Address in me!mory of MOM

For Absent MOMs, there is a second description of bits 19:20 on the next page.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 80

ABSE::NT MOM DESCRIPTORS

IF

Fo," non-present (Le. absent) MOM Descriptors, the following is the specification
for bits [19:2d1 :

19:01 (OlA YFllEF) is 1, the data has been overlayed and bits 18: 19 are the
reltative record number in the program's overlay file which contains the actual data

ELSE
IF

18:01 (CODEFllEF) is 1, this is an original descriptor for read-only and code
se!gments and bits 17: 18 are the relative record number in the code file of the
code segment or read- only array data

ELSE
this is a "virgin" MOM and bits 17: 18 must be evaluated as follows:

If [17:011 = 0, then bits [16: 1 tI indicate:

o = NON-SAVE array
1 = SAVE array
2 = EVENT array

>2 = ARRAY information table (AIT)

If [17:011 = 1, then bits [16: 1 tI indicate:

o = DIRECT array
1 = DOPE vector

>2 = OWN array information table (OAT)

Copyright © 1986 Joseph & Cogan Associates" Inc.
A Burroughs Company

LANC;UAGE REPRESENTATION
ORIGI~NAL DESCRIPTOR

ALGOL COBOL68

REAL ARRAY 01 ITEM COMP.

COBOL74

01 ITEM B I NARY.

01 ITEM COMP-1. N/A

EBCDIC ARRAY 01 ITEM DISPLAY. 01 ITEM DISPLAY.

HEX ARRAY 01 ITEM COMP-2. N/A

PAGE 81

Copyright © 1986 Joseph & Cogan Associates" Inc.
A Burroughs Company

PAGE 82

COP~~(DESCRIPTOR

ALGOL

EBCDIC ARRAY EA[O: 179];
HEX ARRAY HA [0] = EA;
ARRAY A [0] EA;

EA
TAG 5
COpy BIT 0
ELEMENT_SIZE 4 (EBCD I C)
LENGTH 180
ADDRESS 0 (Absent MOM never used)

HA
TAG 5
COpy BIT 1
ELEMENT_SIZE 2 (HEX)
LENGTH 360
ADDRESS EA (COpy po i nts . to MOM)

A TAG 5
COpy BIT 1
ELEMENT_SIZE 0 (I~ORD array)
LENGTH 30
ADDRESS EA (COpy points to MOM)

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

OlEA.

EA

HA

A

03 ITEM-2
03 HA
03 ITEM-4
03 A
03 ITEM-6

TAG
COpy BIT
ELEMENT_SIZE
LENGTH
ADDRESS

TAG
COpy BIT
ELEMENT_SIZE
LENGTH
ADDRESS

TAG
COpy BIT
ELEMENT_SIZE
LENGTH
ADDRESS

COBOL74

COMP

BINARY

5
0
4

180
0

,5
1
2

360
EA

,5
1
o

30

PIC X (002) .
PIC X (003) .
PIC X (002) .
PIC 9 (011) .
PI C X (168) .

(MOM desc r i ptor)
(EBCD I C)

(MOM absent never used)

(HEX)

(COpy po i nts to MOM)

PAGE 83

EA (COpy points to MOM)

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 84

ONE··-QUESTION PROBE

In the example on the prior page, each of the descriptors describe the entire
record. However, the individual items are much smaller than that. For example,
thE! data item HA starts at the third EBCDIC character in the record and is three
HE~X characters in length, yet the descriptor for HA indiciates a length of 360 Hex
characters. How does the system kno"v what piece(s) of the record to use and
what to ignore?

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 85

MUL··rl-DIMENSIONAL ARRAYS

Th.~ ORIGINAL descriptor (sometimes ccilled a DOPE) will point to a vector of
OFIIGINAL descriptors (sometimes called t:l DOPE vector).

This will continue until the last vector has ORIGINAL descriptors which actually
point to the data segment(s).

Eac:h of these vectors of ORIGINAL dl~scriptors will be SAVE memory and will
have the length of the next dimension.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 86

MULllrl-DIMENSIONAL ARRAY DIAGR)~M

2 p

p

o p

ARRAY A [0:2,0:5J;
A [0, 1 J : = 1 1 1 ;
A [1, 3J : = 222;
A [2,5] := 333;

6

6

6

o 2 345

ill
0 1 2 345

0 1 2 345

1
1
1 ID

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 87

PAGI::D ARRA YS

PAGED arrays (sometimes called SEGMENTED) divide Iclrge data segments into
multiple data segments.

Thl3 structure is the same as a MUL TI-It>IMENSIONAL array except that the PAGED
bit = 1.

Tht3 size of the individual data segments is 256 words.

Access to elements of the PAGED array is transparent to the program.

Automatic segmentation occurs by default if the array is n~::>t declared LONG and is
grt:!ater than 1024 words.

The3 upper bound which causes truncation can be changed by an ODT command.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGI::D ARRAY DIAGRAM

4

3 p

~,_2 8_0_""-----'- 2

p

---1 p

o

ARRAY A [0:1279J;
A [256] : = 256;
A [512] : = 512;
A [768] := 768;

256

256

256

256

256

PAGE 88

o 254 255

768 ill
0 1 254 255

512 ill
0 1 254 255

256 ill

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 89

INDE:XED DATA DESCRIPTORS

R':lference an individual element of a data segment.

Must be a COPY.

CBln not be PAGED.

Copyright © 1986 Joseph & Cogan Associate~', Inc.
A Burroughs Company

PAGE 90

INDE::XED WORD DATA DESCRIPTOR

TAG INDEXED WDRD DATA DESC~IPTOR

PR RO I I I I I A A A A A

47 43 39 35 31 27 23 19 15 11 07 03

1 SZ I I I I I A A A A A

46 42 38 34 30 26 22 18 14 10 06 02

1 SZ I I I I I A A A A A

45 41 37 33 29 25 21 17 13 09 05 01

0 SZ I I I I I A A A A A

44 40 36 32 28 24 20 16 '12 08 04 00

5

47:01 Present bit (0 = absent, 1 = present).

41!$:01 Copy bit (1 = COpy)

4!~k01 Indexed bit (1 = indexed).

44:01 Paged bit (0 = non-pages)

4::1::01' Read-only bit (0.= read/write, 1 = read-only).

4:;~,:03 The type of array element (S~ZEF).

o = Single Precision INIOEXED SINGLE DO ..
1 = Double Precision INDEXED DOUBLE DID.

30:20 Index
;)9 I (,)tjr~

(V0(W ~';'l'~' J ~
-t~lJ'Q t y\~ ,~

1!:t:20 Address

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 91

INDE'XED CHARACTER DESCRIPTOR

TAC INDEXED CHARACTER DATA DESCRIPTOR

PR RO CI WI WI WI WI A A A A A

47 43 39 35 31 27 23 19 1 S 11 07 03

1 52 CI WI WI WI WI A A A A A

46 42 38 34 30 26 22 18 14 10 06 02

1 52 CI WI WI WI WI A A A A A

45 41 37 33 29 2S 21 17 13 09 05 01

0 52 CI WI WI WI WI A A A A A

44 40 36 32 28 24 20 16 12 08 04 00

5

4,':01 Present bit (0 = absent. 1 = present).

46;:01 Copy bit (1 = COpy).

Indexed bit (1 = indexed).

44:01 Paged bit (0 = non-pages).

43:::01 Read-only bit (0 = read/write. 1 = read-only).

42.::03 The type of array element (SIZEF).

2 = HEX
4 = EBCDIC

39::04 Character Index in SIZEF units ..

35::16 WORD index (regardless of SIZEF).

19:::20 Address

Copyright © 1986 Joseph & Cogan Associatesl , Inc.
A Burroughs Company

PAGE 92

LAN'I::;UAGE REPRESENTATIONS

ARRAY A [0:29];

ALGOL COBOL68

POINTER N/A
POINTER(A,O) N/A
POINTER(A,4) N/A
PO I NTER (A) N/A
POINTER(A,8) N/A

COBOL74

N/A
N/A
N/A
N/A
N/A

Copyright © 1986 Joseph & Cogan Associates" Inc.
A Burroughs Company

PAGE 93

COCIIE SEGMENT DESCRIPTOR

TAG CODE SEGMENT DESCRIPTOR

PR 0 0 SL SL SL A A A A A

47 43 39 35 31 27 23 19 15 11 07 03

C S2 0 0 SL SL 5L A A A A A

46 42 38 34 30 26 22 18 14 10 06 02

52 0 0 5L SL SL A /It. A A A

45 41 37 33 29 25 21 17 13 09 05 01

0 52 0 SL 5L SL SL A
i

A A A A

44 40 36 32 28 24 20 16 ; 12 08 04 00

TAG 3

47:01 Present bit (0 = absent, 1 = present).

Copy bit (0 = original, 1 = copy).

SIZEF must be zero (Le. WOR.Ds).

3B:07 Must be zero

3:1!:13 The number of code words in the segment.

Present:
Memory address of the base word of the data segment.

Absent Copy:
Address of the original descriptor.

If the descriptor is an Absent MOM, bit [19:0 11 will bE! zero and bits [18: 19]
take on new meaning:

1U:01

17::18

If 1, the code segment has never been touched;
if 0, the code segment has been touched.

Address of the code segment in the code file.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 94

SOF-1rWARE CONTROL WORD -- sew
A BLOCK (in ALGOL) is defined as a BEGIN ... END pair with declarations.

The SCW is used by the system to te'rminate a BLOCK which may have present
OHIGINAL descriptors or other structur'es 1which referenc:e entities outside of this
sti3ck.

BL..OCKEXIT is the MCP software procedure which returns the data segments to thE!
appropriate available memory list upon attempt to EXIT a BLOCK.

The SCW has a mask which designates the type of memory areas which may neecl
to be returned.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Bu~~oughs Company

PAGE 95

TAG SOFTWARE CONTROL WORD (SCW)

1 0 0 0 0 0 0 M M M PC PC

47 43 39 3S 31 27 23 19 1 S 11 07 03

0 0 0 0 0 0 0 M M 0 PC PC

46 42 38 34 30 26 22 18 14 10 06 02

0 0 0 0 0 0 0 M M PC PC PC

45 41 37 33 29 25 21 17 13 09 05 01

0 0 0 0 0 0 0 M M PC PC PC

44 40 36 32 28 24 20 16 12 08 04 00

6

47'::01 Bit = 1.

Mask field defining element t~'pes in BLOCK.

17'::01 Non local GO TO.

16:::01 DIRECT array.

FAULT (e.g. ON ANYFAUL T).

14::01 INTERRUPT.

13::01 FILE.

12::01 Multi-dimensional array(s).

11::01 Single-dimensional array(s).

09: 10 Count of dependent processes whiich have this block as its CRITICAL BLOCK.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 96

ACTUAL SEGMENT DE~SCRIPTORS

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 97

ACTIUAL SEGMENT DESCRIPTOR MEIVIORY

ASD memory is part of the MCP/ AS (Advanced System) pr'oduct.

Available only on Burroughs A Series cc~mputers.

A::I and A 15 require hardware modifications to run MCP/ AS.

A!3 and A 1 0 do not require hardware modifications to run MCP/ AS.

Advantages:

Expands monolithic memory size to 4 GW (2**32 = :24 g-bytes).

SUBSYSTEM concept goes away.

SWAPPER goes away.

Reduces stack searching.

All descriptors point to the ASD table.

Reduced MCP and user complexity.

Addition of new' resource-saving features.

Disadvantages:

Additional reference for each memory access.

Hardware upgrade on some machines.

MiEljor benefit will be to users with memory problems.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 98

ASD; TABLE

Table size (i.e. number of entries) settable at Cold StCllrt time and via the new
O[)T command ASO.

Ei31ch entry in the ASO table is four words long and consists of pieces of
ini"ormation about memory such as:

o whether the array is present in memory or not

o its addresses, both actual and virtual

o its length

o whether it's been changed (the "dirty" bit)

o stack number of MOM descriptor

o if it's a dope vector or not

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 99

ASO VERSUS NON-ASO DESCRIPTOF~S

DE~scriptors in the non-ASO environment are of only one type: Actual.

In an ASO environment, there are two types of descriptors:

Virtual (what used to be Actual on non-ASO)

Actual (the four-word ASO table e'ntry)

Ncm-ASO Actual descriptors take the following basic form:

[J
Non-ASO Actual Descriptor

Control Length

[51:04] Tag of 5
[47:08] Control
[39:20] Length
[19:20] Address

Address

ASlO Virtual descriptors take the' following basic form:

[J
ASD Virtual Descriptor

Control Length AU 'n •••]

[5 1 : 04] Tag 0 f 5
[47:08] Control
[39:20] Length
[19:20] ASD Index

Copyright © 1986 Joseph & Cogan Associates" Inc.
A Burroughs Company

PAGE 100

NON'-ASD DESCRIPTORS

Non-ASD Descriptors are handled as follows:

Non-ASD Stack with Non-Present Descriptors

_MC~_M -+-----~E=:=J

Non~ASD Stack with Present Descriptors

-_._.-
Cctpy

-M-a~M-·-I----------"'~ E in Memory I

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Bur.roughs Company

PAGE 101

ASD DESCRIPTORS

ASD Descriptors are handled as follows:

ASD Stack with Non-Present Desclriptors

ASD Table

~----~--~ ~ ___ A_S_D_E_n_t_r_y __ ,~------~'1 ove~

ASD Stack with Present Descriptors

ASD Table

Co IPY

MO M , ~_A_S_D_E_n_t_r_Y_-:----------~>1 Array in Memory I

._--

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 102

REFERENCE WOIRDS

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 103

ADDRESS COUPLES

A pair of indices (Lex Level, Offset} that reference a word in the current
addressing environment.

Le:K Level represents a LEXICAL region which is in the current addressing
environment.

Of:'fset is a the number of words from an Activation Record in the current
addressing environment.

Ex;amples:

(2,4)
(4,22)

Acldress Couples are generated in one o'f two forms:

FIXEI:) FENCED

The Lex level and Offset are fixed as tt:> their maximum ranges.

VARIABLE FENCE

Thf~ Lex level and Offset ranges depend on the current Lex Level at the time of
thE~ execution of the reference.

Copyright @ 1986 Joseph & Cogan Associates', Inc.
A Burroughs Company

INDIF:IECT REFERENCE WORD

TAG

47 43 39

0

46 42 38

45 41 37

44 40 36

4Ei:01 Bit = 0

,/

\
INDIRECT REFERENCE WORD CVRW)

35 31 27

34 30 26

33 29 25

32 28 24

23

22

21

20

j

18

17

16

(
\\

15

14

A

13

A

12

A A

11 07

A A

10 06

A A

09 05

A A

08 04

13~: 14 Lex level and Offset fields (variable fence)

PAGE 104

A

03

A

02

A

01

A

00

The least significant bit of the Lex Level starts at bit 13 and 'continues to the
ri61ht up to the variable fence.

leg.,)f
Thle ~st significant bit of the Offset starts at bit 0 and continues to the left up
to the variable fence.

But where's the fence?

NUlmber of bits valid in LEX level depends on current Lex Level at the time of the
eXlecution of the reference.

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 105

FLOJ~~ TING FENCE

Problem:

One field [13: 141 that contains two subfields: Lex Level clnd Offset.

Both fields can vary in size.

How does one determine where the "fenlce" (or dividing line) is?

Solution:

Telke the currently-running Lex Level (not what is being referenced).

DE!termine how many bits are needed to represent that LeJI(Level.

That's how big the lex level field is.

The remaining bits are for the Offset.

Table for Determining Where the "Fence" Is

LL

o
1
2
3
4
5
6
7
8
9

110
1 1
112
l3
14
15

LEX BITS

2
2
3
3
3
3
4
4
4
4
4
4
4
4

OFFSET BITS

13
13
12
12
1 1
1 1
1 1
1 1
10
10
10
10
10
10
10
10

MAX OFFSET

8191
8191

~-4095
4095
2047
2047
2047
2047
1023
1023
1023
1023
1023
1023
1023
1023

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company

PAGE 106

ONE·,·QUESTION PROBE

What problems or limitations are inherent in the above "floating fence" concept?

Copyright © 1986 Joseph & Cogan Associates" Inc.
A Burroughs Company

PAGE 107

IRW EXAMPLE

INDIRECT REFERENCE WORD (IRW)

EXAMPLE

0 0 0

47 43 39 35 31 27 23 19 15 11 07 03

0 0 0 1

46 42 38 34 30 26 22 18 14 \0 06 02

0 0 0 0

45 41 37 33 29 25 21 17 13 09 05 01

I 1 0 0 1

44 40 36 32 28 24 20 16 12 08 04 00

o o 5

Assume LL = 3.

The above IRW 1005 is actually a reference to (2,5).

Copyright © 1986 Joseph & Cogan Associates, Inc.
A Burroughs Company


~~~~~ PAGE 108 

NORIMAL INDIRECT REFERENCE WORtD NIRW 

Valid only on E-MODE machines. 

LE:X level range 0-15. 

INI)EX range always 0-1023, without re~,ard to Lex Level. 

Eclsier to read in dumps, too. 

TAG NORMAL INDIRECT REFERENCE WORD INIRW) 

LL I I I 

47 43 39 36 31 27 23 19 16 11 07 03 

0' LL I I I , 
46 42 38 34 30 26 22 L.!!I 14 10 06 02 

LL I I I 

46 41 37 33 29 26 21 17 13 09 06 01 

LL I I I 

44 40 36 32 28 24 20 16 12 08 04 00 

1 a~:o 1 Bit = 0 denotes NIRW. 

1 !5i:04 Fixed LEX level field. 

11::12 Fixed INDEX field. 

. Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 109 

NIRVV EXAMPLE 

TAG NORMAL INDIRECT REFERENCE WORD (NIRW) 

EXAMPLE 

0 0 0 

47 43 39 35 31 27 23 19 15 11 07 03 

0 0 0 1 

46 42 38 34 :1:> 26 22 18 14 10 06 02 

1 0 0 0 

45 41 37 33 29 25 21 17 13 09 05 01 

0 0 0 1 

44 40 36 32 28 24 20 16 12 08 04 00 

o 0 

The above NIRW 2005 is actually a reference to (2,5). 

E-IMODE machines convert IRWs to NIRv\fs. 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 110 

STUF::FED INDIRECT REFERENCE WORlD SIRW 

Like a NIRW because it references a loc:ation in an addressing environment. 

Poiints to the same location regardless of the state of the current lexical 
addressing environment. 

Call'l reference anywhere in memory. 

Can reference an item even if it's not within the scope of the stack's addressing 
environment. 

E-MC:)DE SIRW 

TAG STUFFED INDIRECT REFERENCE WORD (SIRW) 

SN SN SN D D D D OF OF OF 

47 43 39 35 31 27 23 19 15 11 07 03 

SN SN SN D D D D C) OF OF OF 

46 42 38. 34 30 26 22 18 14 10 06 02 

SN SN SN D D D D OF OF OF 

45 41 37 33 29 25 21 17 13 09 05 01 

SN SN SN D D D D OF OF OF OF 

44 40 36 32 28 24 20 16 12 08 04 00 

47:: 12 The Stack Number of the STACK containing the referenced location. 

35:: 16 The DISPLACEMENT from the base of the stack to the base of the 
Activation Record. 

18:: 1 Bit = 1 denotes SIRW. 

12:: 13 The OFFSET from the base of the activation relcord to the referenced 
loc:ation. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 111 

NON E-MODE SIRW 

4!it: 1 0 The Stack Number of the STACK containing the ref.~renced location. 

4E):O 1 Bit = 1 denotes SIRW. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



SIRV'II EXAMPLE 

Given that an SIRW contains the following information: 

47: 12 Stack Number 020. 

35: 16 Displacement of 01 FE. 

12: 13 Offset of 007. 

Th,e following diagram illustrates the SIRW mechanism: 

REFERENCED WORD ---> 4---

RCW 

MSCW 4---

ACTIVATION ~ 
RECOIRD ~ 

STACK NUMBER 020 
(STEP 1) 

OFFSET OF 007 
_(STEP 3) 

DISPLACEMENT OF OlFE 
(STEP 2) 

PAGE 112 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 113 

PRO(:;RAM CONTROL WORD -- PC"" 

Points to a code syllable in a code segment. 

Normally used for procedure entry. 

TAG 

TAG 

47:12 

35:03 

32:13 

19:01 

18:01 

17:04 

13:01 

12:13 

PROGRAM CONTROL WORD (PCW) 

SN SN SN PSI PWI PWI PWI CS LL SOl SOl SOl 

47 43 38 35 31 27 23 19 15 11 07 03 

SN SN SN PSI PWI PWI PWI 0 LL SOl SOl SOl 

46 42 38 34 30 26 22 18 14 10 06 02 

SN SN SN PSI PWI PWI PWI LL SOLl SOl SOl SOl 

45 41 37 33 29 2S 21 17 13 08 05 01 

SN SN SN PWI PWI PWI PWI LL SOl SOl SOl SOl 

44 40 36 32 28 24 20 16 12 08 04 00 

7 

SNR value· when MPCW (Make PCW) is executed. 

The syllable index into the code word. 

PROGRAM SYLLABLE INDEX (PSI). 

The word index into the code~ segment. 

PROGRAM WORD INDEX: (PWI). 

CONTROL STATE (1 =CONTROL state, O=NORMAL state) 

CONTROL STATE 
NORMAL STATE 

./IA OJA,...-() ~lAAc>V{- \0 ,..J no E!xternal interrupts. - . ~~ r 
external interrupts allowed. 

Must be zero. 

The Lexical Level for the ne\l" activation record. 

The SEGMENT DICTIONARY LEX LEVEL (SDLI-). 

D[OJ: 
0[1]: 

Bit = 0 (MCP code segments). 
Bit = 1 (USER code segment). 

The SEGMENT DICTIONARY INIOEX (SOl). 
Code segment descriptor is at address D[SIOLLJ + SOl or as an 
address couple: (SDLL,SOI). 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company . 



PAGE 114 

NON E-MODE 

4£i·:10 SNR value when MPCW executed. 

1fl:05 The lex level for the new activation record. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 115 

BASIC STACK ARCHITECTURE 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



SJ~ VE data segment. 

Mic!intains a "last in first out" (LIFO) structure. 

Contains program data or references to data (data could be code). 

DE!,fines program environments. 

Physical top of STACK (LOSR [Limit of Stack Register]). 

Logical top of STACK (S Register). 

There are multiple PSEUDO STACK structures. 

FILE INFORMATION BLOCKS. 

PROCESS INFORMATION BLOCKS. 

TJ!~GS /11111111 
I 
V 

6 

5 

0 

0 

3 

3 

3 

3 

TOP OF STACK 

,c;.111111 
I 

,c;.111111 
I 

,c;.11111111111 WORDS 
I 

,c;.111111 
I 

11:.111111 
I 

,c;.111111 
I 

,c;.111111 
I 

,c;.111111 

BOTTOM OF STACK 

OF ME~lORY 

PAGE 116 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 117 

PRO(::ESS STACK 

Each execution of a code file has its own PROCESS stack. 

Cclin be indirectly shared by other PROCESS stacks. 

DaJ'ta unique to this run of the program iis kept in the Process Stack. 

E)(PRESSION STACK is the last active p()rtion of the STACK where expressions are 
eViBluated. 

Commonly (and erroneously) called "the 0 [2] stack. 

At any instant in time, shows the exact state of a program, including: 

- all procedures that have been entered 
- the value(s) of all variables 

Copyright © 1986 .Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 118 

CODIt: SEGMENT DICTIONARY 

E)C:ecutable code is contained in segments defined by dl9scriptors located in the 
CODE SEGMENT DICTIONARY, sometimes called the SEGME:NT DICTIONARY. 

May contain descriptors to READ-ONLY arrays. 

Mi:IY contain SINGLE- or DOUBLE-precision operands. 

ItElms directly or indirectly in the CODE SEGMENT DICTIONARY are never modified 
by an application program. 

Ealch application has at least one Segment Dictionary. 

A segment of code may only be referenced by one CODE SEGMENT DICTIONARY. 

Multiple PROCESS stacks can share CODE SEGMENT DICTIONARIES and its 
associated code. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 119 

ST A1'rEMENTS, COMPOUND ST ATEME:NTS, AND BL()CKS 

A STATEMENT is a simple statement without a BEGIN ... ENCI pair surrounding it. 

X := 3 READ (INFILE,14,INBUF) 

COIV11POUND STATEMENT 

ZE~ro of more STATEMENTs bounded by a BEGIN ... ENO pair and having no. 
dE~clarations. 

BLOC::K 

BEGIN 
END 

BEGIN 
X : = 3; 
END 

BEGIN 
Y : = 2; 
THRU 10 DO; 
END 

A COMPOUND STATEMENT with declarations. 

BEGIN 
REAL X; 
END 

BEGIN 
REAL A,B,C; 
A : = 2; 
B : = 3; 
END 

Every block gets its own code segment. 

BEGIN 
DEFINE NEWSEGMENT = #; 
END 

Every block gets its own Segment Descriptor in the SegmEmt Dictionary. 

These facts are noted in the compile listing with both art Address Couple for the 
Selgment Descriptor and in the Code File Address. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 120 

INTEI:~NAL PROCESSOR REGISTERS 

Each processor contains one set of special purpose regist~~rs. 

So,me registers contain memory addresse:s for program environments (ENVIRONMENT 
re!~isters). 

Other registers pertinent to execution and efficient indirect access to data. 

Most of these registers contain a physical memory address which is use as a base 
fOlr' indirect access to data or data segment references. 

Mclintained as an array of registers. 

Copyright © 1986 Joseph & Cogan Associatesl Inc. 
A Burroughs Company 



PAGE 121 

ENVIIRONMENT REGISTERS 

Addressing environments of the executing code stream consists of a set of local 
addressing spaces contained within stacks. 

Re"ferred to as ACTIVATION RECORDS, LEXICAL REGIONS, or DISPLAY REGISTERS. 

Each region is given an environment number. 

Thc~ environments range from 0 to 15 (o,lder hardware can go higher). 

These environments are designated as DO - D 15 or D [0] - D [15]. 

Thc~ current addressing environments is a linked list of LEXICAL REGIONS. 

Copyright © "986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



00 

01 

02 

PAGE 122 

Mcemory address of the most global ACTIVATION RECORD (MCP stack). 

Primarily the memory address of the CODE SEGMENT DICTIONARY ACTIVATION 
re'cord. 

Mi:lY point to MCP LEXICAL regions. 

May address other pseudo STACK structures as LEXICAL I"egions. 

FILE INFORMATION BLOCK. 

PROGRAM INFORMATION BLOCK. 

Priimarily memory address of applications· outer block LEXICAL region. 

M,ElY also point to MCP nested- LEXICAL regions. 

03 _ .. 015 

The current hardware supports these LEXICAL regions. 

Older hardware may address environments up to D [31] . 

Current hardware reference these Environments indirectly 
rec::ord chaining. 

ACTIVATION 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 123 

A, B.r X, AND Y REGISTERS 

Th·e A and B registers are considered to be the two "top of stack registers". 

Whenever two operands are operated on, the values, or their addresses must be in 
thle~ two top of stack registers. 

The X and Y registers are considered extensions of the A and B registers, 
re!;pectively. 

For example, if a double variable is put on the top of the stack, the MSP 
may go in the A or B register and the LSP would go in the respective 
extension register. If the MSP was put in the A register, the LSP would be 
put in the X register. 

AROII=F AND BROFF REGISTERS 

The AROFF and BROFF registers indicate whether the A and B registers· contain 
vallid data, respectively. 

When information is placed in a regist1er, the appropriatt:! xROFF register is set. 
When the data in the register is invalidated, such as by a STOD operator, the 
xR:OFIF register is reset. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 124 

LL R:EGISTER 

The lexical level of the topmost ACTIVATION record in the current addressing 
en v ironment. 

DLL REGISTER 

The memory address of the base of the topmost ACTIVATION record. 

He!ad of the lexical chain. 

F REGISTER 

Delfines the head of the historical chain (the most current activation record). 

S RE~GISTER 
ME:!mory address of' the last valid item in the topmost ACTIVATION record. 

Le'gical top of stack. 

BonrOM OF STACK REGISTER -- B()SR 

ME!!mory address of the base of the STACK. 

LIMI1r OF STACK REGISTER -- LOSR 

ME~mory address of the bottom element in the stack as delfined by its entry in the 
STACK VECTOR ARRA~ 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 125 

ST AC:K NUMBER REGISTER -- SNR 

Inclex into the 5T ACK VECTOR ARRAY. 

Used by the hardware to index into the 5T ACK VECTOR ARRAY. 

PROc;;RAM SYLLABLE INDEX -- PSI 

Cur"rent code syllable pointer. 

PROc;;RAM WORD INDEX --- PWI 

Current word index of the active segment descriptor. 

SEGnnENT DICTIONARY INDEX -- 5011 

Index into the segment dictionary of the code's descriptor. 

PROC:iRAM BASE REGISTER -- PBR 

Me!mory address of the first word of the current code se!~ment. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 126 

MCFl STACK 

Contains data, indirect data references cmd code segment references for the MCP. 

Ol.lter BLOCK of the MCP. 

Sometimes referred to as the 0 [oJ stack. 

This environment is visible to all STACKs present in the system. 

The highest in the hierarchy of data addressing environments. 

Contains some physical structures for the hardware. 

The 0 [oJ register points near the base of the MCP stack. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 127 

STAtCK VECTOR ARRAY 

Vc:!ctor (array) of active and available STACK entries in the system. 

Each word in the Stack Vector may bE! a data descript()r which may point to a 
sti3ck. 

Mnximum number of stacks depends on the total memory tBvaiiable (current maximum 
4(96). 

The STACK VECTOR DESCRIPTOR (SVD) is declared in the MCP addressing 
environment. 

SVD is located at D [oJ + 2 (i.e. Address Couple (0,2)). 

MCP 

"'- STACKS -;:. 

.5 SVD 

i 
i 

o [oJ -;~ 

.... 

o STACK VECTOR ARRAY 4095 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 128 

PROC::EDURE ENTRY 

En1tering a procedure is a four-step process that the compiler must generate code 
for: 

MKST (Insert a Mark Stack Control Word) 
NAMC (Generate an IRW to a PCW) 
<optional parameter placement> 
ENTR (Actually enter the procedure) 

We will omit the discussion of parameter passing until 
later. 

Before executing the ENTR operator, the top of the stack 
has: 

An incomplete MSCW. 
An IRW to the PCW of the procedure to be entered. 

When the ENTR operator is executed: 

The ·1 RW is turned into an RCW. 
The MSCW is completed and marked as "entered". 
o Registers are updated as per the PCW.· 
The processor starts executing where the PCW dictated. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 129 

PROC::EDURE EXIT 

A procedure is exited when the EXIT or RETN operator is 
executed. (The RETN operator will be discussed later.) 

When an EXIT operator is executed: 

The S register is set to F - 1. 
The F register is set to point to the prior MSCW by 
following the History Link in the current MSCW. 
The RCW is evaluated to determine, among other things, 
where to start executing code. 
D registers are updated by fol lowing the Lex Level 
Links from the new MSCW. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 130 

COBOL PROCEDURE ENTRY AND EXIT 

As COBOL is not a block structured language, it does not 
handle procedure entry and exit (I.e. PERFORMs) the same way 
that block structured languages do. 

When the COBOL compiler encounters a PERFORM statement, it 
determines where the exit point is for the PERFORM. 

A "serial number" is assigned to every possible exit point. 

Entering a procedure (doing the PERFORM) consists of the 
compiler placing on top of the stack a PCW of where to come 
bclck to and then the "ser i a 1 number" of the ex it po i nt. A 
"~,o to" is done to enter the procedure. 

At every exit point, code exists to see if the serial number 
left on top of the stack matches the serial number for the 
exit point y6u are at. 

If the "serial numbers" donlt match, the program falls 
through to the next statement. 

If the "serial numbers" do match, the PCW left on t.he stack 
is, used to do a "go to" back to the PERFORM. 

The concept of a BAD GO TO does not exist in COBOL. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Bu~~oughS Company 



PROt::;RAM EXAMPLES 

BEGIN 
REAL 

R 
,R2 
, 

INTEGER 
I 

; 
DOUBLE 

D 
; 

ARRAY 
AR [0: 9J 

; 
DOUBLE ARRAY 

DA [0:9J 
; 

EBCDIC ARRAY 
EA [0:9J 

; 
HEX ARRAY 

HA [0: 9] 
; 

POINTER 
P UNINITIALIZED 

,P_INITIALIZED . , 
ARRAY REFERENCE 

AR_REF_UNINITIALIZED 

P_INITIALIZED := EA [9J; 

-_._--> 

END OF PROGRAM. 

(2,2) 
(2,3) 

(2,4) 

(2,6) 

(2, 7) 

(2,9) 

(2, A) 

(2, B) 
(2, C) 

(2, D) 

PAGE 131 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



BEGIN 
REAL 

R 

ARRAY 
A [0: 9] 

; 
EBCDIC ARRAY 

AR [0] = A 

POINTER 
GP 

; 
PROCEDURE P; 

BEGIN 
REAL 

R2 

ARRAY 
A2 [0:9] 

POINTER 
P"A 

,PA2 

PA := POINTER (A [2]) + 3:: 
PA2:= POINTER (A2 [2]) + 3; 

-- .. _-,----> 

P; 

END • 
• • endf ii xed 

END; 

(2,2) 

(2,4) 

(2,5) 

(2,6) 

(3,2) 

(3,4) 
(3,5) 

PAGE 132 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



BEGIN 
REAL 

R 

ARRAY 
A [0: 9] 

, 
EBCDIC ARRAY 

AR [0] = A 

POINTER 
GP 

; 
PROCEDURE P; 

BEGIN 
REAL 

R2 
; 

ARRAY 
A2 [0:9] 

; 
POINTER 

PA 
,PA2 
; 

PROCEDURE P2; 
BEGIN 
ARRAY A3 [0:9]; 
POINTER PA3; 

PA := POINTER (A [2]) + 3; 
PA2:= POINTER (A2 [2]) + 3; 
PA3:= POINTER (A3 [2]) + 3; 

------,--------> 

P; 

P2; 
END; 

END; 

END OF PROGRAM. 

(2,2) 

(2,3) 

(2,4) 

(2,5) 

(2,6) 

(3,2) 

(3,3) 

(3,4) 
(3,5) 

(3,6) 

(4,2) 
(4,3) 

PAGE 133 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



BEGIN 
REAL 

R 

ARRAY 
A [0: 9] 

EBCDIC ARRAY 
AR [0] = A 

POINTER 
GP 

; 
PRO C E D U REG P PRO C; b'i 

BEGIN ) 
REAL R2; I 

-_. __ ._----> 

END; 
PROCEDURE P; 

BEGIN 

REAL 
R2 

; 
ARRAY 

A2 [0:9] 
; 

POINTER 
PA 

,PA2 
; 

PROCEDURE P2; 
BEGIN 

I 

ARRAY A3 [0:9]; 
POINTER PA3; 

PA := P INTER (A [2]) + 3; 
PA2:= PINTER (A2 [2]) + 3; 
PA3:= PINTER (A3 [2]) + 3; 
GPPROC; 

END; 
R2 := 75; 
P2k~ 
END; ~ 

R := 50; 

P;~ ~~~r5~ 
END OF PROGRAM. 

(2,2) 

(2,3) 

(2,4) 

1(2,5) 

1(2,6) 

(3,2) 

(2, 7) 

~:3, 2) 

(:3,3) 

(3,4) 
(3 t 5) 

(3,6) 

(4,2) 
(4,3) 

PAGE 134 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 135 

STACK LINKAGE WORDS 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 136 

MAR:K STACK CONTROL WORD IMSCW 

To place information in the stack as tC) where prior MSCWs are as well as what 
"0" register should point here. 

TAG MARK STACK CONTROL WORD (MSCW) 

SN SN SN D D D D RS LL HL HL HL 

47 43 39 35 31 27 23 19 15 11 07 03 

SN SN SN D D D D E LL HL HL HL 

46 42 38 34 30 26 22 18 14 10 06 02 

SN SN SN D D D D LL HL HL HL HL 

45 41 37 33 29 25 21 17 13 09 05 01 

SN SN SN D D D D LL HL HL HL HL 

44 40 36 32 28 24 20 1 B 12 08 04 00 

47'::12 STACK of previous Lex Levell's Activation Record. 

35,:: 16 The DISPLACEMENT field. 
18::01 The ENTERED bit (0 = not entered, 1 = entered.1. 

17::04 The LEX Level which this activation record runs. 

13::14 The HISTORY between this MSCW and the prior MSCW. 

Bits 47: 12 and 35: 16 are collectively called the "Lex Level Linkage". They point to 
thf3! prior Lex Level's Activation Record. For example, if we're running at Lex 
Level 4, the Lex Level Linkage would pc>int to the Activatiion Record for Lex Level 
3. This mayor may not be in the same stack. 

Bits 13: 14 are called the "History Linkage". They pOint to the prior Activation 
Record's MSCW in this stack without regard to Lex Levels. 

,\,. -')lDlClce.~ \/ 
(j., ~ ~ ,It., ~ 5~ C" c \'-

~ljJ'-\"\;\ 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



NON E-MODE 

TAG 

18:05 

13: 14 

MARK STACK CONTROL WORO 

OS SN SN 0 0 0 0 
RS I 

LL HL HL 

47 43 311 35 31 27 23 1111 15 11 07 

E SN SN 0 0 D 0 LL LL HL HL 

46 42 38 34 30 26 22 18 14 10 06 

SN SN SN 0 0 0 0 LL HL HL HL 

45 41 37 33 211 25 21 17 13 011 05 

SN SN SN 0 0 0 0 LL HL HL HL 

44 40 38 32 28 24 20 16 12 08 04 

TAG 3 

47:01 Previous Lex Level's Activation Record is in a 
OIFFERENT STACK. 

48:01 

45: 10 

35: 18 

The entered bit (0 : not entered, 1 • entered). 

STACK number of prior Lex Level's Activation 
Record. 

DISPLACEMENT from aOSR to MSCW of Prior Lex Level. 

111:01 Position in operator flow to restart: 
o • restart from beginning, 1 • restart from next 
syllable. 

The LEX level which the actlvation.record runs. 

The HISTORY LINK. 

PAGE 137 

HL 

03 

HL 

02 

HL 

01 

HL 

00 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 138 

MSC:W LEX LEVEL VERSUS HISTORY' LINKAGES 

LEX LEVEL LINKAGE 

The Stack Number/Displacement fields together constitute the 
Lex L~vel Linkage. 

The L~x Level Linkage identifies where the prior Lex Level's 
D register should point. 

For example, if D (3) pOints at the current MSCW. the Lex 
Level Linkage can be used to locate the MSCW where D (2) 
pOints. This mayor may not be in the same stack. 

HIST'ORY LINKAGE 

The History Link field pOints to the prior MSCW in this 
stack. 

No consideration Is given as to Lex Levels for the History 
L i nkat~e . 

WH'{ THE TWO 

The two linkages are mainly used for procedure exit. 

The History Linkage is used to know how far to cut back the 
stack when the program exits a procedure. 

The Lox Leyel Linkage is used to re-establish the addressing 
environment to what it was prior to entering the procedure. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 139 

LEX LEVEL VERSUS HISTORY LINK DIAGRAM 

0[3] > -I MSCW I----

.c:-

~O[3] > 

...;:. ...... ...... 

MSCW 

] 
0[0] > MSCW - 0[1] > MSCW 0[2] > MSCW 

~ 

MCP SEG OICT PROCESS 

Lexical Links are shown on the left sides of the stacks. 

Histor'v Links are shown on the right sides of the stacks. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 140 

RETl~RN CONTROL WORD -- RCW 

To tell the hardware where to continue executing code when this procedure is 
exited. 

Note that an RCW tells where to go -- not necessarilly w'here we came from. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



E-M~:)DE RCW 

TAG 

TA,G 

47:01 

46:01 

45:01 

44:01 

43:01 

41:01 

40:02 

35:03 

RETURN CONTROL WORD 

EX RS EO PSI PWI PWI PWI CS LL 501 SOl SOl 

47 43 38 35 31 27 23 19 15 11 07 03 

OF PSI PWI PWI PWI 0 LL SOl SOl SOl 

46 42 38 34 30 26 22 18 14 10 06 02 

TF BE PSI PWI PWI PWI LL SOLL SOl SDI SDI 

45 41 37 33 29 2S 21 17 13 09 05 01 

FL ED PWI PWI PWI PWI LL SOl SOl SOl 501 

44 40 36 32 28 24 20 16 12 08 04 00 

3 

External sign flip-flop. ') (7 
~ --\() 0,.\0 

Overflow flip-flop. 0 \; .)) 1..( 

\., 
True/false flip-flop. 

Float flip-flop. 

Restart indicator (0 = initial, 11 = restart state) 

Arms BLOCKEXIT interrupt from EXIT or RETN 
o = disarmed, 1 = armed 

Optimization of EXIT /RETN. 

The syllable code stream pointer. 
PROGRAM SYLLABLE INDEX (PSI). 

32:13 Word index into the code segment. PROGRAM WOR:D 
IN[)EX (PWI). 

19::01 

18::01 

17::04 

13:;01 

12::13 

CONTROL STATE 
1 = CONTROL STATE: no ex:ternal interrupts, 
o = NORMAL STATE: external interrupts allowed. 

Must be zero. 

The lexical level for the new activation record. 

The SEGMENT DICTIONARY L.EX LEVEL (SDLL). 
0: D [oJ (MCP code segment) 
1: 0 [1 J (USER code segment) 

The SEGMENT DICTIONARY INDEX (SOl). 
Points to the code segment descriptor. 

PAGE 141 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 142 

NON E-MODE 

Thl~ following bits are not valid: 

43::01 RS 

41::01 BE 

40::02 EO 

Thl~ following bits are not included: 

42::01 True/false occupied flip-flop. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 143 

ACTIIVATION RECORD 

A combination of MSCW and RCW that is generated as a result of entering a 
prc)cedure. 

An Activation Record indicates things about this procedure such as: 

The Lex Level (and hence what D register points at it) the procedure runs at. 

The location of the prior Lex Level's Activation Record (the Lex Level 
Linkage). 

The location of the prior MSCW in this stack (the Hiistory Linkage). 

Where to go when this procedure is EXITed (provided by the RCW). 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Bu~~oughs Company 



u 
PAGE 144 

------.~ 

( '~ 1 
I~ ~ STA_~~K CONTROL WORD TOSCW ('L ll"'ILdf~ 

~~ , £,">\0- v> Ii 
Goes at th(bott~rJ of a Process stack when the stack is inactive. ~ t:"-sC 

C7 / / 
It allows the processor to set up some of its registers :such as Sand F when it: 

~"--' 

goes to execute this stack. 

When the Process stack is active, the processor id (a number from zero to eight) 
is in the bottom of the stack. 

E--MIDDE 

TA.G TOP OF STACK CONTROL WORD 

SH SH SH SH SF SF SF 

47 43 39 35 31 27 23 19 15 11 07 03 

SH SH SH SH SF SF SF 

46 42 38 34 30 26 22 18 14 10 06 02 

SH SH SH SH SF SF SF SF 

45 4·1 37 33 29 25 21 17 13 09 05 01 

SH SH SH SH SF Sf< SF SF 

44 40 36 32 28 24 20 16 12 08 04 00 

TAG 3 

35:16 Logical Stack Height (SH). S:= BOSR + SH. 

13:14 S to F Displacement (SF). F:= S - SF. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 145 

NON E-MODE 

Th,e f'ollowing fields have been deleted: 

47'::01 ES 

46:::01 OF 

45::01 TF 

44.::01 FL 

42::01 TFOF 

41::01 C:Compare flip-flop. 

19::01 CS 

18:05 LL 

Th.~ above deleted fields can be obtained from the other STACK linkage words. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 146 

PROGRAM INITIALI:ZATION 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
. A Burroughs Company 



PAGE 147 

BASIl: OF STACK 

Contains the fixed portion of the stack built by the MCP. 

Contains a descriptor to the program's T ASKFILE. 

Contains a descriptor to the array information table (A IT) used for' 
multi··dimensioned arrays. 

Contains a descriptor to the OWN information table (OIT) used for arrays declaredl 
O';VN. 

Dummy MSCW. 

Contains overlay file information pointers. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 148 

FIRSJ'r EXECUTABLE PCW -- FEP 

PC:W located in the segment dictionary which represents the first syllable of 
e>l:ecution in the program. 

Normally points to the stack building code of the outer block. 

Location of FEP is pointed to by the i:irst record of tht~ code file usually called 
SE:GMENT ZERO or BLOCK ZERO. 

Normally ALGOL location is at (1,2). 

Floats for COBOL (after last variable entered in the segment dictionary). 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 149 

T ASt( INITIALIZATION PROCESS 

1" MCP searches for the code file. 

2" MCP validates code file kind. 

3.. SEGMENT ZERO of code file is read into memory. 

4. SEGMENT DICTIONARY size determined. 

5. STACK number selected for SEGMENT DICTIONARY. 

6. Space acquired for the SEGMENT DIICTIONARY. 

7. STACK VECTOR ARRAY descriptor updated. 

8. Compiler-built SEGMENT DICTIONARY read from code file to memory starting 
at MSCW slot after fixed BASE. 

9. STACK number selected for PROCESS stack. 

10. Fixed BASE built. 

11. Dummy MSCW, RCW built called DUMMY RUN (used as platform for 
execution of NORMALEOJ). 

12. MSCW RCW pair built return set to execute NORMALI:OJ. 

13. MSCW RCW spare built to be used as user RCW exit" 

14. MSCW RCW pair built for entry intc) NORMALBOJ. 

15. Rest of stack filled with 4IBADBADBADBAO". 

16. STACK inserted into queue for tasks waiting for the processor (READYQ) in 
priority order. 

17.. Stack selected by processor. 

18" 

19" 

EXITS into NORMALBOJ. 

/' 
NORMALBOJ performs remaining initialization tasks. 

20" NORMALBOJ installs FEP into USER RCW previously built. 

21" NORMALBOJ exits into user code. 

22" Upon completion of user task, the processor EXITS inlto NORMALEOJ. 

23" NORMALEOJ performs task terminatiion duties. 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 150 

PARA.METER!; 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 151 

PAR~~METER PASSING 

Pclrameters are a formalized way of g~vlng selected information to and receiving 
se!lected information back from a procedure. 

Pclrameters to a procedure appear first in the stack before any local variables. 

Sequence of events for entering a procf:!dure with parameters is: 

Mark the stack with an MSCW 

Create an IRW to the PCW location where the procedure we are 
entering is. 

Place actual parameter(s) on top of stack 

Enter procedure. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs company 



PAGE 152 

CLA::;SIFICATIONS OF PARAMETERS 

FORfVlAL 

P21rameters which are described in the procedure header. 

Tr.~ated as local variables to the procedure body. 

Palrameters are assigned the first local index cell(s) priclr to declarations of the 
prc)cedure body. 

ACTI.JAL 

Pailloameters actually passed to the procedure in invocation statement. 

ACTUAL parameters must match FORMAL. parameters~ in number and type. 

BEGIN 
REAL R; 

PROCEDURE P (W); 
REAL W; % FORMAL PARAMETER W 

BEGIN 
W := 52; 
END OF PROCEDURE P; 

P (R); % ACTUAL PARAMETER R 
END OF PROGRAM. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 153 

REFE:RENCE TYPES 

BY \'ALUE 

Ac:tuail expression is evaluated once prior to procedure cal.!. 

Any r'eference to the associated FORMAL parameter within the procedure body only 
modifies the local procedure copy and does not affect thE! ACTUAL parameter. 

BY FtEFERENCE 

A reference to the ACTUAL parameter is passed (SIRW). 

Any use of the associated FORMAL parameter causes intE~rrogation or modification 
to the ACTUAL parameter passed. 

BY I\~IAME 

Eac:h use of the associated FORMAL parameter causes re-calculation of the 
ACTUAL reference. 

Re'-calculation causes a procedure entry called "accidental len try". 

So,metimes called "THUNK". 

Expressions (i.e. 3 + X) can be passed, but only interrc.gation is allowed if the 
re!;;ult does not produce a reference. 

Any attempt to store into a non reference producing AICTUAL parameter would 
calLJse program fault (INVALID OP). 

A 'Further description will follow in a few pages. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



EXAIMPLES 

BEGIN 
REAL 

ACTUAL_I 
,ACTUAL_J 

PROCEDURE P (FORMAL_I, FORMAL~); 
VALUE FORMAL_J; 
REAL 

FORMAL_I 
, FORMAL_J 
; 

BEGIN 
REAL LOCAL_X; 
FORMAL_I := 52; 
FORMAL_J := ACTUAL_I + 2; 
END OF PROCEDURE P; 

% Main line of program. 
ACTUAL_' := 20; 
ACTUAL_J := 100; 

P (ACTUAL_I, ACTUAL_J); 
END OF PROGRAM. 

(2,2) 
(2,3) 

(3,4) 

PAGE 154 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Bu~~oughs Company 



PAGE 155 

THUI\lK AND ACCIDENTAL ENTRY 

Pclssing an expression as a parameter causes the expression to be re-evaluated at 
e",er~' reference in the "passed-to" procedure. 

How does this re-evaluation occur? 

Upon detecting that an expression is; being passed "by name", the compiler 
ge!ner'ates a small procedure that will do, the re-evaluation. 

Then, instead of passing a value or data address to the' procedure, the compiler 
ge!ner'ates code which passes an SIRW to the pew for the procedure that does 
thE! re-evaluation. 

Whenever the called procedure asks fc)r the value or address of the "by name" 
pallrameter, the hardware automatically invokes the procedure to do the 
re·-evaluation. 

This automatic procedure invocation by 1the hardware is wlhere the name "accidental 
entry" is derived from. It is also called a "thunk". 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 156 

BY -I'JAME PARAMETER EX.AMPLE 

Consider the following program example: 

BEGIN 
REAL Y; 

PROCEDURE A (B); 
REAL B; 

BEGIN 
B : = 3; 
Y : = 2; 
B := 5; 
END OF PROCEDURE A; 

REAL ARAY X [0:9]; 

% Main line of program. 
A (X [Y]) ; 
END OF PROGRAM. 

What has this program just done? 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 157 

TYPED PROCEDURES 

CCililed "functions". 

Is really nothing more than a procedure that returns a value. 

VE!ry similar to the Intrinsic functions such as SIN, COS, T.AN, and TIME. 

When entering a procedure, an extra location is placed in the stack for the 
"procedure value". 

The compiler notes this if $ SET STACK is set. 
The procedure value comes after (my parameters. 
The procedure value comes before any local variables. 

Instead of doing a normal EXIT operator to exit a procedure, the compiler will 
generate a RETN (Return) operator. This operator exits the procedure, but leaves 
whatever value was on top of the stack as the value of the procedure. It is the 
compiler's responsibility to make sure the procedure ValUE! is on top of the stack 
when the RETN operator is executed. 

In fact, this is how "thunks" are done~. The compiler generates a small typed 
procedure that returns :the result of the expression that is re-evaluated at every 
uSiEige. 

Copyright © 1986 Joseph & Cogan Associates., Inc. 
A Burroughs Company 



PAGE 158 

STACK REVIE~W 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 159 

BASIIC STACK REVIEW 

RE!view PROGRAMDUMP for: 

JSDI CONCEPTS/LL2 

Find location of address couples. 

Find location of SDI:PWI:PSI. (003:0000: 1} 

Find length of each segment. 

X IS SEGMENT 00004. 

x (004) LENGTH IS 8 WORDS. 

Notice outer block identification is BLOC:K#1. 

This is because there is no explicit nam~:! like a procedure has. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
. A Burroughs Company 



PROC:;RAMDUMP 

HEA[)ER 

MIX numbers. 
Machine 
BOSR location 
Local BOX location. 

Program name. 

MCP Field Release.Patch Release.Cycle 
MCP name. 
INTRINSICS 

SYSTEM SERIAL. 
HOSTNAME. • 

Cause of dump. 
PROGRAM REQUESTED 
FAULT TERMINATION 
DSED TERMINATION 
SPO REQUESTED 

RCW history. 
Line number (notice they are absent: no LINEII'IFO) 
SDI:PWI:PSI 

PROGRAMDUMP options. 

PAGE 160 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



LOSR 
LOSR - BOSR = Relative off!;et 

Items -by column: 
Offset 
Address couple 
Environment Locations (0 regilster settings). 
TAG 
Stack word 
Word type (OP, RCW, SEG, CODE) 
Word description 

PAGE 161 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 162 

CODE 

SE:G OESC is the code segment descript()r (SOl) for each BCW. 

CODE: represents a moving window of actual code. 

>01 1808EABOF60 < represents SOI:PWI for' code lexical regi()n will return to. 

SE:GMENT dictionary DUMP is helpful if code that appears is not enough to analyze 
cOlde history that caused the failure. 

OPTION = CODE 

Locate the PWI:PSI for each RCW. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



JSIC>I CONCEPTS/LL3 

Build the stack (at PROGRAMDUMP~. 

Include: 

SEGMENT DICTIONARY stack. 
BASE 
Program code segments 
First Executable P'CW (FEP). 

PROCESS stack. 
BASE 
Stack building code for Outer Block 
Stack for local pr·ocedure X. 
S 
F 
BOSR 
LOSR 
MSCW 

History linkage. 
Activation rlecord linkage. 

RCW 

Re"view PROGRAMDUMP. 

Find code syllable each RCW is pointing to. 

PAGE 163 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



JSDI CONCEPTS/LL4 

Build the stack with the following: 

Include: 

SEGMENT DICTIONARY stack. 
BASE 
Program code segments 
First Executable PCW (FEP). 

PROCESS stack. 
BASE 
Stack building code for Outer Block 
Stack for local pr·ocedures. 
S 
F 
BOSR 
LOSR 
MSCW 

History linkage. 
Activation record linkage. 

RCW 

PAGE 164 

Copyright @ 1986 Joseph & Cogan Associatesj • Inc. 
A Burroughs Company 



PROI~E 

Gi \len the following program: 

BEGIN 
REAL VAR1,VAR2; 
DOUBLE VAR3; 

PROCEDURE D (01,02,D3); 
VALUE 01,02,03; 
REAL 01,02,03; 

PROGRAMOUMP; 

PROCEDURE A (A 1 , A2) ; 
VALUE A1,A2; 
REAL A1,A2; 

BEGIN 

ARRAY X [0: 10J ; 

PROCEDURE C (C 1) ; 
REAL C 1 ; 

o (C1 ,VAR1 ,VAR2); 

PROCEDURE 8 (81); 
VALUE 81; 
REAL 81; 

C (81); 

B (A 1) ; 
END; 

VAR1 := 1; 
VAR2 := 18; 
A (VAR 1 , VAR2) ; 

END OF PROGRAM. 

PAGE 165 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 166 

Build the stacks at the point in which the program forced a program dump. 

Inl::lude the following: 

SEGMENT DICTIONARY stack. 
BASE 
Program code se!~ment descriptors 
First Executable PCW (FEP) 

PROCESS stack. 
BASE 
Stack building code for Outer Block 
Stack for local procedures 
S 
F 
BOSR 
LOSR 
MSCW 

History linkage. 
Activation record linkage. 

RCW 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 167 

DUMPANAL YZIER 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 168 

MEIVIORY DUMPS 

OVEF~VIEW 

ME!!mory dumps are a snapshot of memor'y. 

Multi-'processing is discontinued during dumping the contents of memory. 

A MEMDUMP routine within the MCP ,executes in a pOlrtion of memory that is 
reserved for dumping without destroying the state of usablle memory. 

ME!dia, for output is usually TAPE. 

Dump to disk is also possible. 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 169 

CAUSES 

Operator requested using the DUMP OD1r command. 

Operator requested using the 77DP primitive. 

System generated because of: 

Potential software failures. 

Potential hardware failures. 

General diagnostic. 

Reset TERMINATE; MCP run-time option (any failure such as INVALID INDEX 
or SEG ARRAY ERROR will cause a dump). 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 170 

INTR10DUCTION 

DlJIMPANALYZER produces user-specified subsets of information from a memory 
dump. 

Arlalyzes information according to param49ters given or def,ault . 

. Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 171 

MOIJ~ES 

INTEI:tACTIVE 

Co,mmands are processed separately as it is entered by thE~ user. 

Can specify where output is to be sent (printer or remote). 

STAr~DARD 

Commands entered completely before processing. 

OU1tput always directed to the printer. 

Copyright © 1986 .Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 172 

SAVI::D DUMPS 

Stj:>red for future processing without requiring original memory dump input TAPE. 

Faste,' future processing. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 173 

EXEC::UTION 

Normal tape input. 

RUN *SYSTEM/OUMPANAL YZER; 

Silved dump. 

RUN *SYSTEM/DUMPANAL YZER; 
FILE TAPEIN (KIND=DISK, TITLE=MEMORY IDUMP/TITLE); 

SE~lect run mode: STANDARD or INTERACTIVE 

M'E!mory dump tape is processed with the following responses: 

Initial options display. 

Initializing. 

Reading <dump file name> 

Initializing stack info. 

Lineinfol names. 

Enter requests ... 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs company 



PAGE 174 

BASIC CONSTRUCTS 

Numbers default is hexadecimal. 

<siimple address> 

<absolute> 

4F3A2 

<simple locatioJ1> 

STK 4A3 

PIB A6 

STK 682 + 7 

RV M [47AC2I 

<multiple addres§> 

More than one memory address. 

4AF3 FOR A6 

3BAC TO 3BCB 

STK 32 LOSR TO BOSB 

<simple value> 
M [4A32J 

DEC 100 

Partial words are available. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 175 

COIVIMANDS 

AREJ~S 

Prints contents of memory areas. 

Arleas can be searched by type or size. 

AREAS SIZE 512 

AREAS ODDBALL FIBMARK 

BOX 

De':signates local box to use for some memory commands. 

DC 

Causes a full data communications analysis to be· printed. 

DEA[:)LOCK 

Causes information to be printed regarding stacks that hold locks or waiting for a 
loc:k. 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 176 

FIB 

Analyzes a FIB at a given address. 

FIB AT 4A3DE 

HDR 

Caluses an analysis of the disk file headl!!r stack. 

HELF~ 

Provides information about DUMPANAL YZER commands. 

HELP AREAS 

HELP HELP 

HELP <number> 

10 

Invokes input/output analysis of all peripherals. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 177 

IOC8~ 

CCiluses an 110 control block to be print49d. 

LINK:S 

Prints; the address and contents of each link of a memory area. 

LOCI(S 

Reiports on the status of soft (PROCURED) locks. 

MD 

Dumps the contents of a group of addn:!ss in memory with no analysis. 

MD 6DE43 FOR A6 

NAMIES 

CCiluses the entire list of MCP names and 0 [0] relative adldress. 

NCilmes appear in numeric and alphabetic sequences. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 178 

PIB 

Prints; the contents of a PIS. 

PRIN"TER 

Routes output to the printer instead of the terminal. 

PRIN'1TVALUE/PV 

Di:Siplays the specified <simple value> in several possible fOIl"ms. 

QUEI.JE 

Dis,plays DCALGOL queues. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 179 

RELEASE 

Closes the current print file. 

REL)( 

Causes the current print file to be closed and printed (using SYSTEM/BACKUP). 

RO'lutes output to the terminal rather than the printer. 

SAVI: 

Causes the memory dump to be stored c~n disk for future use. 

MC::P names and memory contents are Iretained releasing the need of having the 
cUlr'rent MCP code file and original memory dump tape. 

SAVE "MEMORY /DUMP" 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 180 

SEAF~CH 

Pn:>vides the ability to check each word in memory for a specified pattern of bits. 

Ciln search including TAG. 

SEARCH MOMDESC RANGE 3DE9 F:OR 6F 

Command which initiates a memory sear~ch for a specific PATTERN optionally using 
a IMASK. 

Used to mask fields for searching. 

PAT1rERN 

Bit configuration to search for. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 181 

Cc31uses the contents of a stack to be interpreted and printed. 

STOI!) 

TEtrminates execution. 

SUMIMARY 

Provides the list of stacks in the machine and the status of the stacks at the time 
th'E~ dump was take. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 182 

WHE:~RE 

Displays the 0[0] relative location of <MCP global names>. 

WHERE BLOCKEXIT 

Response: OOA BLOCKEXIT 

WHC) 

Displays the MCP global name for a 0[0] relative address. 

WHO OOA 

Response: OOA BLOCKEXIT 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 183 

ASO CHANGES 

OLJMPANALYZER now allows the displaying of memory poinlted to by an ASD entry 
by using the "via" option: 

MO via 4425 for 20 

(will print out the twenty words of memory pointed to by ASO entry 
4425) 

ASDNUMBER <asd # > [EXPAND] 

The above command will display the ASD entry reque!sted. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 184 

ADVANCED STACK AR(:HITECTURE 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 185 

SHAI~ED GLOBAL ENVIRONMENTS 

Internal procedures may be initiated as a separate :stack executing in step 
(SYNCHRONOUS) or in parallel (ASYNCHRONOUS). 

Th,e external task(s) is(are) dependent upon the initiator (or parent). 

The block which is designated as the CRITICAL BLOCK must not attempt to exit 
be,'fore its dependent children terminate. If this happens, a CRITICAL BLOCK EXIT 
error is issued. 

The scope of visibility of variables remains the same if the procedure was invoked 
in the caller. 

Global variables may be interrogated or modified by the caller and all dependent 
processes. 

Re!source protection (LOCKs) is the means to coordinate access to shared 
val~iables. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



What will be the value of the variable I at EOT? 

BEGIN 
REAL I; 
TASK TSK; 

PROCEDURE P; 
BEGIN 
REAL X; 
X : = 24; 
I := 52; 
END OF PROCEDURE P; 

I := 22; 
PROCESS P [TSK]; 
I := 75; 

WHILE TSK.STATUS GEQ 0 DO 
WAITANDRESET (MYSELF.EXCEPTIONEVENT); 

END OF PROGRAM. 

PAGE 186 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 187 

INTRIINSIC INTERFACE 

Intrinsics are a set of general utility routines which can be invoked as if they 
where procedures declared in each programs environment. 

The environmental software comes with a set of these routines which appear in 
thj:! GENERALSUPPORT library. 

Thl9 user has the option to create his own utility routine library (lNTRINSICS). 

This interface was available prior to the implementation of libraries. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 188 

LINK/AGE PROCESS 

1. The first call to an intrinsic (i.e SORT) causes a slot to be reserved in thE~ 
program's SEGMENT DICTIONARY. 

I : = SQRT (9) ; 
(1,5) = SQRT 

2. This slot contains an invalid word required for proc1edure entry (PCW). 

5 070000 000001 <--- Intrinsic Number 

3. The code to execute the above call to SORT would be: 

ALGOL: 

SQRT (9) 

CODE: 

(1 ,5) 
MKST 
NAMe 
LT8 
ENTR 

9 <--------- Parameter to the SQRT Intrinsic 

4. The ENTR would cause an INVALID OPERATOR intelrrupt to to occur due to 
the fact that it is trying to enter a data descriptor instead of a PCW. 

Note: This type of interrupt (entering it tag 5 word with an Element Size of 7) is 
called a "Binding Request". 

5. The hardware interrupt routine would recognize 1the TAG of 5 and the 
ELEMENT size of 7 as an INTRINSIC call. 

6. The address field contains the numeric mnemonic representation of SORT. 

7. The MCP then changes the invalid TAG 5 word to a SIRW pointing to the 
location of the PCW in the GENERAL SUPPORT LIBRARY or the INTRINSIC 
stack. 

8. The INTRINSIC stack contains data, PCWS and SE(:;MENT descriptors (much 
like the MCP stack). 

9. The intrinsic routines run at LEX h:!vel 2. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 189 

MCF· INTERFACE 

1. Each call to an MCP procedure (i.e PROGRAMDUMP) causes a slot to be 
reserved in the programs SEGMEN"r DICTIONARY. 

PROGRAMDUMP (ARRAYS); 
(1,5) = MCP reference 

2. This slot contains an in.valid word required for procE~dure entry (PCW). 

5 070000 FFE017 

3. The code to execute the above celli to PROGRAMDUMP would be: 

MKST 
NAMC (l, 5) 
<OPTIONS Parameter> 
ENTR 

4. The ENTR would cause an INVALID OPERATOR interrupt to to occur due 
to it finding a data descriptor instead of a PCW. 

5. The hardware interrupt routine would recognize the TAG of 5, the ELEMENT 
size of 7 and the FFE in the length and address fiE!lds as an MCP procedure 
call. 

6. The address field contains the mnemonic representation of PROGRAMDUMP. 

7. The MCP then changes the invalid TAG 5 word to a SIRW pointing to the 
location of the pew in the MCP stack. 

8. The MCP stack contains data, PCWS and SEGMENT descriptors. 

9. The MCP intrinsic routines run at L.EX level 1 since they are actually declared 
at LEX level O. 

10.. The ENTR operator is re-executed and the MCP procedure is invoked since 
the target is now a valid PCW. 

11.. Actua"y, a" MCP or INTRINSIC refE~rences are resolv~ed in NORMALBOJ. 

Copyright @ 1986 Joseph & Cogan Associates, Inc. 
A Bu~~oughs Company 



PAS~:)ING PROCEDURES AS PARAME1rERS 

OVEI:~VIEW 

Procedures may also be passed as parameters to other procedures. 

Procedures may be passed to: 
Internal procedures that are invoked. 

PAGE 190 

Internal procedures that are executed as dependent processes. 

Separately compiled programs. 

Ac:tivation record environment depend on the location in which the procedure 
passed as a parameter is DECLARED. 

There may be multiple D [2] references in this complex stalck linkage environment. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



EXAlfVlPLE 

BEGIN 
REAL R; 
TASK TSK; 

Main Program 

PROCEDURE P; 
PROGRAMDUMP; 

PROCEDURE EXT (PROC) ; 
~ROCEDURE PROC 0; 

'--~__ FORMA L ; 
EXTERNAL; 

REPLACE TSK.NAME BY "OBJECT/EXT."; 
PROCESS EXT (P) [TSK]; 

WHILE TSK.STATUS GEQ 0 DO 

(2,2) 
(2,3) 

(2,4) 

(2,5) 
(3,2) 

WAITANDRESET (MYSELF.EXCEPTIONEVENT); 

END OF PROGRAM. 

OBJECT/EXT 

$ LEVEL 2 

PROCEDURE EXT PROC (P 1) ; 
PROCEDURE P 1 0; (2,2) 

FORMAL; 
BEGIN 
REAL X; (2,3) 
P 1 ; 
END OF PROCEDURE EXT_PROC AND PROGRAM. 

PAGE 191 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 192 

LIBRIARY INTERFACE 

This type of linkage essentially is the same as passing a procedure as a parameter. 

The syntax to invoke the library procedure is different. 

The caller and the library are usually separate programs. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



LINK,AGE PROCESS 
THE CALLER 

1. The compiler builds a TEMPLATE which describe the 
following: 

o attributes of the library 
o TITLE of the code file 
o Procedures which should appear in the library 

PAGE 193 

o The count and type of the parameters of tht~ library routine. 

2:. The compiler builds an invalid PCW at the location where the procedure in 
the library is declared in the caller. 

PROCEDURE P_IN_LIB; 
LIBRARY LIB; 

5 670001 4808E9 

(2,5) 

(2,5) 

3;" The caller invokes the procedure with the following code: 

MKST 
NAMC (2,5) 
ENTR 

4,.. The ENTR operator would cause an INVALID OPERATOR interrupt because the 
target is not a PCW. 

5,.. The MCP hardware interrupt routinE~ would recognize that this is a library call 
because: 

TAG 5 
INDEX bit on 
ELEMENT size 7 

6.. The ADDRESS field of this word contains the memory address of the actual 
location of the TEMPLATE. 

7. The LENGTH field contains an index into the TEMPLATE for the procedure 
which we are trying to invoke. 

8. An MCP library linkage routine is call which causes the actual library to be 
automatically invoked. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 194 

R After the linkage is made the MCP routine inserted an SIRW at (2,5) which 
points to the actual PCW for the library procedure. 

10. The ENTR operator is re-executed. 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 195 

THE LIBRARY 

11. The library begins executing as a normal program. 

~!. For each procedure referenced in the EXPORT declaration the compiler 
inserts into a library DIRECTORY the name of the procedure, the number and 
types of parameters, and an SIRW to t~e actual PCYV for the procedure. 

~1. When the library program executes a FREEZE, an MCP procedure is called to 
make this program a LIBRARY. 

o Shrinks the stack. 

o Looks around for any task looking for this program as a library. 

4k When a caller is found the libra,"y procedure which it wants to invoke is 
searched for in the libraries DIREC:TORY. 

51. The count and type of parameters are verified in both the callers TEMPLATE 
and the libraries DICTIONARY. 

6;, If the parameters match the libraries SIRW for the actual procedure is placed 
in the callers slot reserved for thE~ procedure. 

7'.. All references to procedures which the caller wants in a library are resolved 
at upon the first reference. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



EXAIVIPLE 

CALLER 

BEGIN 
REAL X; (2,2) 
LIB R A R Y LIB (T I T L E = II 0 B J E C T / LIB. II) ; (2 , 3) 

PROCEDURE P_IN_LIB; 
LIBRARY LIB; 

END OF PROGRAM~ 

OBJECT/LIB 

BEGIN 

PROCEDURE GLOBAL_P; 
PROGRAMDUMP; 

PROCEDURE P_IN_LIB; 
BEGIN . 
REAL R; 
GLOBAL_P; 
END OF PROCEDURE P_IN_LIB; 

EXPORT P_IN_LIB; 

FREEZE (TEMPORARY); 

END OF PROGRAM. 

(2,2) 

(2,3) 

(3,2) 

--,~.----.,---------------------

PAGE 196 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 197 

PROC:;RAM INFORMATION BLOCK -- PIB 

Thl:! PIB contains TASK attribute information. 

An'v reference to TASK attributes causes 0[01] to point into the PIB structure. 

The PIB is treated like a stack so that access to attributes is accomplished by 
no,"mal variable addressing since the activation record pointed to by 0 [01] 
contains all of the PIB information. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 198 

FILE INFORMATION BLOCK: -- FIB 

OVElf~VIEW 

The FIB contains directly or indirectly all the elements of the file structure. 

Many of these elements are FILE attributes. 

RE:iferencing the FILE structure causes 0 [01] to point within the FIB. 

The FIB is treated like a stack so that access to attributes is accomplished by 
normal variable addressing since the activation record pointed to by 0 [01] 
ccmtains all of the FIB information. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 199 

CODE FILE (:ONSTRUCTION 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 200 

INTRODUCTION 

The following subjects will be reviewed in appendix B IICode File Constructionll 

and with program listings. 

Code File Layout 

Segment Zero 

Segment Dictionary 

File Parameter Blocks (FPBs) 

Compiler Iintrinsic Interface 

Binding 

Lineinfo 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 201 

OPEFtATING SYSTEM INTERFACE 

Copyright © 1986 .Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 202 

COOlE FILE LAYOUT 

RE!view the text in the appendix. 

DE!monstrate actual SEGMENT ZERO in dumpall listing of: 

CODESTRUCTURE/TEST ISTACI( 

/, . f 
{ 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 203 

SEGfVlENT ZERO 

REwiew the text in the appendix. 

Build the following of the SEGMENT DICTIONARY. 

Fixed portion of the stack (BASE). 

Actually perform READWITHT AGS. 

First location is the MSCW. 

U~;e the dumpall listing of: 

CODESTRUCTURE/TEST I STACK 

Build the SEGMENT DICTIONARY from the dumpall list. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 204 

SEGI'~IIENT DICTIONARY 

Once you have built the SEGMENT DIC1'IONARY, relate all stack items to address 
couples in the compile listing. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Bu~~oughs Company 



PAGE 205 

PROE:IE 

Us;ing the dumpall listing: 

CODESTRUCTURE/TEST / STACK 

1. Build the complete SEGMENT DICTIONARY including the BASE and analyze each 
of the fields of each of the words. 

2. Locate and determine the value of the fields of the FEP. 

3. Find the code syllable pointed to by the FEP. 

4. [Find the syllable pointed to by PCWS given to you b\, the instructor. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 206 

FILE PARAMETER BLOCKS -- FPB 

RE:!view the text of the appendix. 

RE~view the DUMPALL listing. 

Records 1 and 2 (0 relative) are FPBS. 

Copyright © 1986 Joseph & Cogan "Associates, Inc. 
A Burroughs Company 



PAGE 207 

COMIPILER/INTRINSIC INTERFACE 

Compiler places invalid descriptors (SIZEF: = 7) in the Segment Dictionary. 

MCP changes them to SIRWs to the procedure's actual PC'V. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Bu~~oughs Company 



PAGE 208 

The:! process of merging separately-compiiled procedures into a main host creating a 
sirlgle executing unit. 

BII\JDING also allows inter-language proc€!dures to be combined and invoked. 

The:! BINDER is a compiler who is responsible for merging of the separate code 
piE!ces into one. 

This facility was developed before librariies were implemen·- ted. 

M,InY sites still use the binder. 

Th.~ MCP is built with separate inter-lan~Juage modules which is bound to the MCP 
host producing a running MCP code file. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 209 

GLOI~:lAL DECLARATIONS FOR BINDEI~ 

The languages provide the capability to reference GLOBAL variables when compiling 
a separate unit. 

[ 

] 

ALGOL 

REAL GLOBAL_Rl; 
PROCEDURE GLOBAL_PROCEDURE; 
FILE GLOBAL_FILE; 

COBOL 

01 GLOBAL_RECORD GLOBAL. 
03 GLOBAL-ELEM PICTURE x (lOO) • 

Copyright @ 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 210 

EXTE::RNAL DECLARATIONS FOR BIN[)ER 

The syntax for declaring an external pro1cedure which is to be bound is: 

ALGOL 

BEGIN 

PROCEDURE BOUNDPROC; 
EXTERNAL; % Note that the body of the 

BOUNDPROC; 

END; 

% procedure is replaced by the 
% word EXTERNAL. 

% A normal invocation. 

COBOL74 

DECLARATIVES. 

BOUNDPROC. 
USE AS EXTERNAL PROCEDURE. 

END DECLARATIVES. 

PERFORM BOUNDPROC. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs company 



PAGE 211 

BINC~ER SYNTAX 

The syntax for binding includes: 

HOST IS OBJECT/HOST; 
BIND BOUNDPROC FROM OBJECT/BOUNDPROC; 

The binder must know about the names and address couples in both the host and 
thE~ separate routine to resolve the diffE,rences. 

If the BINDER does not find a reference in the HOST that was declared GLOBAL 
in the routine to be bound, the BINDER will add this item to the HOSTS outer 
bk)ck declarations. 

In1ternal procedures may be replaced using the BINDER. 

The resultant code file has the FILEKIND of BOUNDCODE. 

BCllUNDCODE files may be used as HOSTs. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 212 

BINDIER CONVENTIONS 

SEle Appendix B, Code File Information, of the Student Appendix. 

Fo,:r BINDER to be able to do its job, it must be able tel find out about all of a 
pr()gram's declarations. 

Thilese declarations are encoded and k1ept in the code file (unless the compiler 
dollar option NOBINDINFO is set). 

UNIV'IERSAL CLASS 

Is used to determine the rough category of tokens in the code file. 

This could be things such as INFORMATION KEYWORD, DJ\TA DESCRIPTOR, 
PC:W, FILE, TASK, etc. 

SUB CLASS 

Wi1thin a given Universal Class, what mor'e specifically is bl:!ing discussed. 

Fo," example, for a Universal Class of 2 [two] (48-bit Op,erand), some of 
tht3! possible Sub Classes recognized are: 

o Single Precision Operand (INTEGER) 
1 Single Precision Operand (REAL) 
2 Single Precision Operand (BOOLEAN) 
3 WORD Variable 
4 REFERENCE Variable 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 213 

PRO~GRAM DESCRIPTION 

A structure in the code file that defilnes all procedures in the program and all 
e)cternal references, such as intrinsics and global variables. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 214 

PROfCEDURE DIRECTORY 

A structure in the code file that lists all of the procedures in a program, 
rE~gardless of their lex level. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 215 

EXTE::RNAL DIRECTORY 

A directory of what items are outside of this program. such as intrinsics. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 216 

LOCA~L DIRECTORY 

FClr each procedure, there is a Local Directory enumerating the items declared 
within that procedure. 

These items could be ARRAYs, REALs, INTEGERs, and even other PROCEDUREs. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 217 

PRINTBINDINFO 

RE!view example in the Printed Listings. 

Documented in the System Software Support Manual. 

Mainly, reads a code file and generates its declarations., without any executable 
code. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 218 

FPB/IPPB RUN TIME 

Re~view the File Parameter Block and Pr()gram Parameter Blocks in the code file. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
. A BurroughS Company 



PAGE 219 

LINEIINFO 

This information relates SDI:PWI:PSI locations to program s:equence numbers. 

Used to when analyzing RCWs when producing a PROGRAM DUMP. 

Controlled by the following compiler doBar option: 

$ SET LINEINFO 

DE!faults to SET when compiling under CANOE. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 220 

LINE DICTIONARY 

This item is the READONL Y descriptor r,eferenced by the SOl , (",). 

Ench word of the LINE DICTIONARY c()ntains the relativE! record in the code file~ 
of: the beginning of the sequence information. 

The LINE DICTIONARY is indexed by the SOl of the code pointer we are trying tel 
find the sequence number for. 

SO 1:0 SO I : 1 SO I: 2 SO I: 3 

000000000000 000000000000 0001000000000 000000000002 

R«:icord 2 of the code file contains the sequence number information for SOl 3. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 221 

FORfVlAT OF SEQUENCE RECORDS 

Word 0: 

Word 1: 

Word 2-N: 

[39:20] Total character count of entire sequence number record 
starting at word 1. 

[ 19:20] Back link to previolls sequence information for the same SOl. 

2 bytes PWI:PSI. for the beginning of the code for the following 
sequence number. 

1 byte 

SSSSSS 

[15:12] PWI 

[02:03] PSI 

15 11 

14 10 

. 
13 9 

12 8 

3 

7 

-
8 2 

5 1 

4 0 

--

Binary length of the sequence numbe!r. 

Actual sequence number. 

Word 1 format c()ntinues until end of sequence information. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



~ {~ 
~~lr'vs 0 ~ 

0-(, ~ 

l"'-~ /!'-_ ",,\\05 
EXAIMPLE -"" \9.rP If" 

~ur D" Ass me SD I : 3 \ ?{\tLf 0 f 
\.-0 }~~ 

ooooo}cooooo t:a~~FOFOFO 
willA-

;~\ 
~ , (r~ t7()(:> 

FOF 1 F 1 FOFO~jFOFOFOFO 
F ~I F7FOF~oocrtl 08fOFOFOFOF 3 

I 

F7FOF90015p8 FOFOFOFOF3F8 

FOFO') 
.... , ... ..J 

Total length 

3:0:0 starts 

3:i[):1 starts 

3: '1:4 starts 

3::2:5 starts 

2C (44) characters. 

sequence 1100 

sequence 1700 

sequence 3700 

sequence 3800 

~"2., 

~f5 I, 00 
/il 

If an RCW contains 3: 1:2, what line would it reference~ 

PAGE 222 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PROI:3E 

Using dumpall listing for: 

CODESTRUCTURE/LINEDICTIONARY 

1. Build SEGMENT DICTIONARY. 

~:. Find FEP. 

3:. Find syllable pointed to by FEP. 

4~. Find line numbers for instructor given SDI:PWI:PSI 
sequences. 

5)" Build 3 items of the EXTERNAL dirlectory. 

61" Locate 1 procedure directory record. 

7'" Locate and process 5 items from a LOCAL directory. 

S;" Identify if there is any run time FPB/PPB information. 

PAGE 223 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 224 

MACHINE OPERATC)R SET 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 225 

REVE::RSE POLISH NOTATION 

Arithmetic or logical notational system using only operands and operators arranged 
in sequence or strings. 

Eliiminates the need for intermediate stor'age for multiple computations. 

WE~II suited to stack architecture. 

E)(:ample: 
A + B + C 

Reverse Polish Notation 

AB+C+ A 0c -t t 

Polish Notation 

++ABC 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 226 

EXAIVIPLES 
Expression Reverse Pol ish String 

7 'lc (B + c) 7BC+ 1, 

A AND B AND NOT C A BAND C NOT AND 

') 2W V +-~+-

A t..,J C..,or- oJ 

A ( (P -c 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



REFE:~RENCE GENERATION OPERATOR:S 

NAIV'IC 40-7F 

PAGE 227 

N.:lme call operator transforms an address-couple in the code stream into: 

NON-EMODE: an IRW 

E-MODE: an NIRW 

The address couple given in the code stream is variable fence. 

5002 

7003 

4017 

6005 

NAMe (2,2) 

NAMe (3,3) 

NAMe (0,17) 

NAMe (1,5) 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 228 

LNMIC 958C 

Long name call is equivalent to NAMe except that its parclmeter is a fixed fence. 

STFF:: AF 

The stuff operator converts an IRW or an NIRW into an SIRW. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 229 

IND)( A6 

The index operator applies an integer index to an un-indexed data descriptor and 
leuves on top of the stack an Indexed Data Descriptor to the specified element. 

If the data descriptor is a word data descriptor, the result is an Indexed Word 
Darta Descriptor. 

If the data descriptor is a Character Da1ta Descriptor, the result is a Pointer. 

IR'N chaining will occur, if required. 

INXA., E7 

Thl:! index by means of address couple operator is functionally equivalent to the 
INI:)X operator except that the address couple follows the INXA operator as a 
fix led fence. 

Copyright © 1986 Joseph & Cogan Associatesp Inc. 
A Burroughs Company 



PAGE 230 

OCR~X. 9585 

The Occurs Index operator computes an offset into a record. 

It is primarily used by COBOL for array handling and ALGC)L for CASE statements. 

The two top-of-stack items must be: 

Occurs Index Word (Index Control Word) 

Index 

Thl3 format of an Occurs Index Word is: 

[47:16] Width Coefficient (width of each occurrance) 
[31:16] Upper Bound (one-relative) 
[15:16] Offset Coefficient (from beginning of record) 

OCRX calculates a zero-relative offset from the beginning of the record which can 
be used by the INDX (or similar) operator. 

Thl3 formula used by OCRX is: 

Relative Index = Offset + (Index - 1) *·Width 

As the OCRX operator assumes one-relative indices, if the Index value is less than 
one or greater than the Upper Bound, an INVALID INDEX interrupt will occur. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 231 

MPCW BF 

The make PCW constructs a PCW at the top of the stack from a six syllable 
pal"ameter in the code stream. 

The TAG is changed to a 7. 

The SNR is also inserted into the STKNRF. 

Thle parameter to the MPCW operator must start on a wOI"d boundary. 

Arty syllables after the MPCW and before the parameter are ignored (usually filled 
wilth Hex IFF"s). 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 232 

REA[) EVALUATION OPERATORS 

VALe:: 00-3F 

The value call operator evaluates a re!ference chain whose head is an address 
cc,uple parameter. 

The end result must be an operand. 

If a PCW must be evaluated, accidental procedure entry is performed. 

The parameter is a variable fence address couple. 

E)~AMPLES: 

1002 

3003 

2002 

LVLC: 9580 

VALe (2,2) 

VALe (~3/) 

VALe (1,2) 

The long value call is equivalent to tlhe VALC except that its parameter is a 
fb:ed-fence address couple. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 233 

NXL'" AD 

The index and load value operator performs an INDX operation to produce an 
Indexed Word Data Descriptor and then evaluates the Indexed word data descriptor 
to fetch an operand. 

IRVV chaining can occur. 

EF 

Thle index and load value by means of, fixed fence address couple parameter is 
fUlrlctionally the same as the NXL V opercltor. 

NXLr~~ A5 

The index and load name operator performs an INDEX operation to produce a 
Indexed Word Data Descriptor and thEm evaluates to fetch an un-indexed data 
descriptor. 

CClpy bit action occurs. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 234 

EVA I .• AC 

The evaluate operator is used to evaluate a reference chain in order to locatE! 
some target and then leave on top oi~ the stack the rE!ference whose evaluation 
produced the targeL 

This operator is used when the actual target is needed for execution of another­
operator (String transfer). 

NE:WP uses this operator prior to passiing a parameter by reference to guarantee~ 

thE! SIRW points to the target. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 235 

LOAID BO 

The load operator fetches a target and places it on top ()f the stack. 

If the reference is a NIRW (lRW NON-EMODE) the target is fetched and placed on 
top of the stack. 

If the reference is a Word or a Double Indexed Data Descriptor the target is 
fe!'tched and placed on top of the stack. 

If the target is a Data Descriptor I ~ bit action will occur. 
, --,------

95BC 

The load transparent operator performs a LOAD operation. 

The reference can be a 20 bit address reference. 

If the target is a Data Descriptor I 00 co~ bit action 
is fetched and place on top of the stack). 

occurs (an original descriptor' 

\~~ 
~l}...~Q\J.-

\P ~~r 

c? ~( 
,>\~oZ v ~/ 1 

" (~(\.<02
1 

~ ~ 
"~~ rtt}l ~61 ~~,~~ 
'" _w- ~~ ~r-.~' 

f JR ~ c>j.+ r-<:) , 
/ .. , .J 

'11 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 236 

STOI~~E EVALUATION OPERATORS 

STOI::> B8 

The store delete operator places the operand at the top of the stack at the 
re1Ference pointer. 

The order of the operand and reference pointer may vary. 

The reference pointer may be an NIRW (lRW for NON-EMODE) or an Indexed Data 
DE!scriptor. 

IR'W chaining may occur. 

If the target referenced is a pew accidental procedure I:!ntry occurs producing a 
ne'w reference. 

Both the reference and the operand are deleted from the top of the stack. 

If the target location has the memory protect bit on, an interrupt occurs. 

STor~~ B9 

Thte store non-delete operator performs a STOD function, except that at 
co,mpletion of the operation the original operand is left on stop of the stack. 

The reference is deleted from the top of the stack. 

If the! target location has the memory protect bit on, an interrupt occurs. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 237 

STAI:) F6 

The store delete by means of address couple is functionally equivalent to the 
51'00 operator except that the refE~rence is a fixed-fence address couple 
par'ameter. 

Belth the reference and the operand are deleted from the top of the stack. 

If the target location has the memory protect bit on, an interrupt occurs. 

STAr\! F7 

The store non-delete by means of address couple is func:tionally equivalent to the 
51'ON operator except that the reference is a fixed-fenced address couple 
par'ameter. 

Thl~ reference is deleted from the top of the stack. 

If the' target location has the memory protect bit on, an interrupt occurs. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 238 

OVEI~~WRITE OPERATORS 

OVRII) BA 

An overwrite delete essentially perfol~ms the STOD operator I except that no 
in1terrupt occurs if the target has the mt9mory protect bit on (Le. has an odd tag). 

The reference and the operand are deleted from the top of the stack. 

OVRII\I BB 

The overwrite non-delete functional pE~rforms a OVRD operator except that the 
operand is left on top of the stack. 

The reference is deleted from the top of the stack. 

Copyright © 1986 Joseph & Cogan Associate~~, Inc. 
A Burroughs Company 



PAGE 239 

COIV11PUT ATIONAL OPERATORS 

The add operator performs an arithmetic: ADD operation on the top 2 operands on 
top of the stack. 

The result is left on the top of the stack. 

Pr(ogram Segment: 

REAL 
R1 

,R2 

R1 := R1 + R2; 

Code String: 

Non-EMODE: 
1002 1003 

VALe (2,2) VALe (2,3) 

EMODE: 
1002 1003 

VALe (2,2) VALe (2,3) 

80 
ADD 

80 
ADD 

(2,2) 
(2,3) 

5002 
NAMe (2,2) 

F62002 
STAD 

s8 
STOD 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs CompMny 



PAGE 240 

SUB1r 81 

The subtract operator takes the numeric value of the top item and algebraically 
subtracts is from the numeric value of the second item in the stack. 

Thle r'esult is rounded and left on top of the stack. 

Program Segment: 

REAL 
Rl 

,R2 
,R3 

R 1 : = R2 - R3; 

Code String: 

Non-EMODE: 
1003 

VALC (2,3) 
1004 

VALe (2,4) 

(2,2) 
(2,3) 
(2,4) 

81 5002 
SUBT I~AMC (2,2) 

81 
SUBT 

F62002 
STAD 

B8 
STOD 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 241 

MULlir 82 

The9 multiply operator algebraically multiplies the top two it,ems in the stack. 

The result is rounded and left on top 01: the stack. 

DIV[) 83 

Thf9 divide operator algebraically divides the numeric valUf~ of the second item by. 
thf:~ numeric value of the first item in the stack. 

Thf~ result is rounded and left on top of the stack. 

87 

INTEGER function in ALGOL. 

The integerize rounded operator converts the operand on top of the stack to an 
intf~ger by rounding and leaving the resutt on top of the stack. 

NTIA 86 

EN'TiER function in ALGOL. 

Int.~gerize truncated returns the greatest integer value less than or equal to the 
op.~rand. 

DIFFE::RENCE BETWEEN NTGR AND N-rIA 

Thf~re is a small but significant difference9 between the two operators. Effectively, 
NTIGR adds 0.5 to the value and then does an NTIA. 

Thlf~ following table should help to iIIustriate: 
f'l r£.i 

Value NTGR NTIA 
."-( 1Vi. ?t' () .Nf 

3.2 3 3 ~ 

3.5 4 3 
, 

-3 .. 2 -3 -1+ --3 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



COIVIIPLEX ARITHMETIC EX.AMPLE 
Pr'ogram Segment: 

BEGIN 
REAL 

Rl 
,R2 
,R3 

INTEGER 
I 1 

, 12 

I 1 : = R 1 + R2 ,'e 12 / R3; 

REwerse Polish Notation String: 

R 1 R2 12 ,'e R3 / + I 1 : = 

Code String: 

Non EMODE: 

(2,2) 
(2,3) 
(2,4) 

(2,5) 
(2,6) 

1002 1003 1005 82 
VALe (2,2) VALe (2,3) VALe (2,5) MULT 

1004 83 80 87 5005 B8 
VALe (2,4) DIVD ADD NTGR NAMe (2,5) 5TOD 

EMODE: 
1002 1003 1005 82 

VALe (2,2) VALe (2,3) VALe (2,5) MULT 

1004 83 80 87 
VALe (2,4) DIVD ADD NTGR 

F62005 
5TAD 

PAGE 242 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 243 

IDIV 84 

The integer divide operator causes the numeric value of the second item in the 
stiEICk to be divided by the numeric value of the first item in the stack. 

The fractional part of the quotient is discarded. 

The integer part is left on top of the stack. 

E)C,amples: 

RDIV' 85 

R : = R 1 D I V R2; 

8 DIV 2 = 4 
8 DIV 3 = 2 
8 DIV 5 1 

\ 

The r'emainder divide causes the numeric value of the second item in the stack to 
be' divided by the first item in the stack. 

Thle integer quotient with remainder is generated. 

The r'emainder is left on top of the stack. 

EXiamples: 

R := Rl MOD R2; 

8 MOD 2 = 0 
8 MOD 3 = 2 
8 MOD 5 = 3 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 244 

AMI~J 9588 

Th.~ arithmetic minimum compares the numerical values of the top two items on top 
of the stack. 

Th.~ lesser of the two items is left on top of the stack. 

AMA~,X 958A 

Th.~ arithmetic maximum compares the numerical values of the top two items in the 
stClck. 

Th.~ greater of the two items is left on top of the stack. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 245 

LOGIICAL OPERATORS 

Logical operators use one or two items on top of thE~ stack as 48 or 96 bit 
VE!ctors. 

These items may be of any type. 

The logical operation is applied in parallel to each bit of the vector. 

The logical value of the result depends only on bit zero. 

TRUE = 

FALSE = 0 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A BurroughS Company 



PAGE 246 

The LOGICAL NOT operator causes all bits of the item Ort top of the stack to be 
cc,mplemented. . 

Th,e TAG is unchanged. 

Program Segment: 

REAL 
R1 

BOOLEAN 
B1 

R 1 : = 

(2,2) 

(2,3) 

1" 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0000 1 000 11 100001 1 100000001 101 10010" ; 
B1 := NOT BOOLEAN (R1); 

Code Segment: 

VALe (2~2) LNOT NAMe ~,3) STOD 

Re!sult: 

Before 1"101110101110110000100011100001110000000110110010"; 
.After 1"010001010001011111011100011110001111111001001101"; 

The logical value of B 1 is TRUE. 

Program Segment: 

REAL 
R1 

,R2 

R1 := FALSE; % A WORD OF ALL ZEROS 

R:2 : = REAL (NOT R 1) ; 

Code String: 

(2,2) 
(2,3) 

ZERO NAMe (R 1) STON VALe (2,2) LNOT NAMe (2,3) STOD 

Re·:sult: 

IBefore: 1 "000000000000000000000000000000000000000000000000" 
I~ f te r : 1" 1 1 1 1 1 1 1 1 1 1 1 1 ~ 1 1 1 1 1 11 111 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 " 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 247 

Thle logical value of R2 is TRUE. 

Thle above example is functionally the same as the commol1ly used: 

R2 := REAL (NOT FALSE); 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 248 

LANI:) 90 

Logically ANDs the two items on top of the stack. 

Th(e result is left on top of the stack. 

Th(e TAG is double-precision if the result is double. 

The TAG is the same as the TAG of thE~ second item in the stack. 

The truth table for LAND is as follows: 

AND 0 1 

0 0 0 

1 0 1 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



Program Segment: 

IREAL 
R1 

,R2 
,R3 

IR 1 : = 
111 0100001001 1 11 1 1 1010101010001 1 1 1 1 100001 11 10001 101" ; 

R2 := 
1"101000101000010101000111111000101010000111000110"; 

R3 := REAL (BOOLEAN (R1) AND BOOLEAN (R2»; 

Cc:.de String: 

VALC (R 1) VALC (R2) LAND NAMIC (R3) STOD 

RE!sults: 

R 1 : 1"010000100111 1111010101010001 111110000111 10001101" 
R2: 1"101000101000010101000111111000101010000111000110" 

After: 000000100000010101000101000000101000000110000100 

The logical value of R3 is FALSE. 

PAGE 249 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 250 

LOR 91 

Logically ORs the top two items in the stack. 

The r'esult is left on top of the stack. 

If the result is double-precision the T A~i is double. 

Other'wise the TAG is the same as the second item in the stack. 

The truth table for LOR is as follows: 

OR 0 1 

0 0 1 

1 1 1 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



Program Segment: 

REAL 
R1 

,R2 
,R3 

R 1 : = 
1 "0 1 0000 1 00 1 1 1 1 1 1 1 a 1 a 1 a 1 a 1 000 1 1 1 1 1 1 0000 1 1 1 1000 1 1 a 1" ; 

R2 := 
1" 1 a 1 000 1 a 1 0000 1 a 1 a 1 000 1 1 1 1 11 000 1 a 1 a 1 0000 1 1 1 000 1 1 0" ; 

R3 := REAL (BOOLEAN (R1) OR BOOLEAN (R2»; 

Code String: 

VALe (R 1) VALe (R2) LOR NAMe (R3) STOD 

Results: 

R 1 : 1 "0 1 0000 1 00 11 111 110 1 a 1 a 1 a 1 000 1 '1111 10000 1 111000 11 a 1" 
R 2 : 1 " 10 1 000 1 010000 1 a 1 a 1 000 1 1 1 1 1 'I 000 1 a 1 a 1 0000 1 1 1 000 1 1 0" 

After: 111000101111111101010111111111111010011111001111 

Thf~ logical value of R3 is TRUE. 

PAGE 251 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 252 

LEO',I 93 

The result of the logical equivalence of the top two items on the stack is 
pe!rformed. 

The result is left on top of the stack. 

If the result is double-precision the TAG is double. 

Other'wise the TAG is the same as the second item on thE~ stack. 

The truth table for LEQV is as follows: 

EQV 0 1 

0 1 0 

1 0 1 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



P,'ogram Segment: 

REAL 
R1 

,R2 
,R3 

R 1 : = 
1"0 1 0000 1 00 1111111 a 1 a 1 a 1 01000 1 1 11 1 10000 11 11000 11 a 1" ; 

R2 := 
1" 101000 1 a 1 0000 1 a 1 a 1 000 11 111 1000 1 a 1 a 1 0000 11 '1000 1 10" ; 

R3 := REAL (BOOLEAN (R 1) EQV BOOLEAN (R2»; 

Code String: 

VALe (R 1) VALe (R2) LEQV NAMe (R3) STOD 

R 1 : 1"0 1 0000 1 00 1111111 a 1 0 1 a 1 a 1 0100 111111 0000 1 11 '1000 11 a 1" 
R2: 1" 10 1 000 1 a 1 0000 1 0 1 a 1 000 111111 000 1 a 1 a 1 0000 1 11 1000 11 a" 

After:· 000 11111 00000 1 a 1 1 r 1 a 11 0 1 000000 1 a 11 a 11 00 111 a 11 0100 

The logical value of R3 is FALSE. 

PAGE 253 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 254 

EXCl .. USIVE OR 

There is no processor operator that per'forms the EXCLUSIVE OR operation. 

Th'e f'ollowing simulates this function using the logical operators already discussed. 

Th,e truth table for EXCLUSIVE OR is as follows: 

XOR r 0 1 
I 

-~- - .. --
-"'''''- --'---

0 0 1 

1 1 0 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 255 

Progr'am Segment: 

REAL 
Rl 

,R2 
,R3 

R 1 : = 
1"01000010011 1 11 1 1010101010001 1 1 1 1 100001 1 1 10001 101" ; 

R2 := 
1"101000101000010101000111111000101010000111000110"; 

R3 : = REAL (NOT (BOOLEAN (R 1) EQV BOOLEAN (R2»); 

Code String: 

VALe (R 1) VALe (R2) LEQV LNOT NAMe (R3) STOD 

RE!sults: 

R 1 : 
R2: 

EQV 
'Temp: 

LNOT 
,After: 

1"010000100111111101010101000111111000011110001101 11 

1"101000101000010101000111111000101010000111000110" 

000111110000010111101101000000101101100110110100 

111000001111101000010010111111010010011001001011 

Thle logical value of R3 is TRUE. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 256 

RELA~~TIONAL OPERATORS 

The relational operators algebraically compare the numeric value of the top two 
operands on top of the stack. 

Th,e result is left on top of the stack. 

Th'e form of the result is a BOOLEAN. 

BIT ZERO 

= TRUE 

o = FALSE 

All other bits of the result are O. ~ 

;~ 
~~ 

Copyright @ 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 257 

SAIV~E 94 

The lIogical SAME operators actually per'forms the function of logical operators. 

The top two items in the stack are compared bit by bit for equal. 

Alii bits are compared in parallel. 

The result is left on top of the stack. 

The result is a BOOLEAN. 

If all bits are the same, the result is TRUE. 

If all bits are not the same, the result is fALSE. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



Progr'am Segment: 

REAL 
R1 

,R2 

BOOLEAN 
B1 

R 1 : = 

PAGE 258 

1" 0 1 0000 1 00 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 000 1 1 1 1 1 1 0000 1 1 1 1 000 1 1 0 1" ; 
R2 := 

1"101000101000010101000111111000101010000111000110 11
; 

B1 := R1 IS R2; 

Code Stream: 

VALe (R 1) VALe (R2) SAME NAMe (B 1) STOO 

Re!sult: 

R 1 : 111 0100001001 11 1 1 1 1010101010001 1 1 1 1 100001 1 1 10001 101 11 

R2: 111 10100010100001010100011111100010101000011100011011 

SAME ---------------------------------------------------
After: 000000000000000000000000000000000000000000000000 

The value of B 1 is FALSE. 

Copyright @ 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 259 

LESS;, 88 

LESS leaves TRUE result if the second from top-of-stack: operand is arithmetically 
le!;s than the top of stack operand and a FALSE result otlherwise. 

R 1 LSS R2 

LSECll 88 

LSIEQ leaves TRUE result if the second from top-of-stack operand is arithmetically 
less than or equal to the top of stack operand and a FALSE result otherwise. 

Rl LEQ R2 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 260 

EQUIL 8e 

E(lUL leaves TRUE result if the second from top-of-stacl( operand is arithmeticallv 
equal to the top of stack operand and a FALSE result otherwise. 

Rl EQL R2 

NEQl 80 

NlcEQL leaves TRUE result if the second from top-of-stac~c operand is arithmetically 
not equal to the top of stack operand iand a FALSE result otherwise. 

Rl NEQ R2 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 261 

GRE<:l 89 

GBEQ leaves TRUE result if the second from top-of-stack. operand is arithmetically 
grl:!ater than or equal to the top of stack operand and a IFALSE result otherwise. 

Rl GEQ R2 

GHTR leaves TRUE result if the second from top-of-stack operand is arithmetically 
gr,eater than the top of stack operand and a FALSE result otherwise. 

Rl GTR R2 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 262 

LITEFIAL OPERATORS 

Plclces a single precision constant on top of the stack. 

ZERCl~ BO 

ZERO leaves on the top of the stac:k a single-precision word with all bits 
ini1tialized to zero. 

Program Segment: 

Rl := 0; 

Code Stream: 

ZERO NAMC (Rl) 5TOD 

ONE 81 

OI\IE leaves on the top of the stack a 1-bit integer equal to 1. 

Program Segment: 

Rl := 1; 

Code Stream: 

ONE NAMC (Rl) 5TOD 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 263 

LT8 82 

Insert 8 bit literal~ l§aves on top of the stack an 8-bit integer that is a copy oiF 
its one-syllable parameter. 

Program Segment: 

R 1 : = 100; % R 1 = (2,2) 

Code Stream: 

B264 5002 s8 

LT8 (100) NAMC (R 1) STOO 

LT1E§ 83 

Inl:.ert 16 bit liter~) leaves on top of the stack a 16-bit integer that is a copy 
v 

of' its two-syllable parameter. 

Progr'am Segment: 

R 1 : = 4096; % R 1 = (2,2) 

Code Stream: 

B31000 5002 B8 

LT 16 (4096) NAMC (R 1) STOO 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 264 

LT41:~ BE 

Insert 48 bit literal leaves on the top c)f the stack a single-precision operand that 
is a copy of its six-syllable parameter. 

Siimilar to the MPCW operator. 

The parameter (j.e. the 48 bit literal) must start on a word boundary. 

All syllables are ignored between the L '"48 operator and its parameter. 

P,'ogram Segment: 

Rl := IIABCDEF II ; 

Code Stream: 

BEFFFFFFFFFF C1C2C3C4C5C6 

\ LT48 lIlABCDEF II ) 

% R 1 = (2,2) 

5002 B8 

NAMC (R 1) STOD 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 265 

BRAI\lCHING OPERATORS 

Pr,c)vide for altering the processor's sequence through the code stream. 

Brimches may be conditional or un-conditional. 

Mc31Y be static or dynamic. 

Copyright © 1986 Joseph & 'Cogan Associates, Inc. 
A Burroughs Company 



PAGE 266 

ST A 1rlC BRANCHES 

A two-syllable parameter designates the PWI:PSI within the current segment. 

Bri1lnching may only occur within the same code-segment (SOl). 

[15:03] PSI 

[ 1 2 : 1 3] = PW I 

.---

'/. 15 11 

1,4 10 

I 
13 

jL..-- 9 

12 B 

EXi1lmple: 

Value PWI PSI 

6005 5 3 

~ 

7 3 

I 
B 2 

5 1 

I 
4 0 

Copyright © 1986 ,Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 267 

BRUr\l A2 

Prc)cessor registers PSI and PWI are set from the parameter. 

Th(e code-stream transfers to the next ()perator in that code segment. 

GO TO XIT 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 268 

The top-of-stack item is interpreted as a BOOLEAN value. 

If the logical value is FALSE: 

PWI:PSI are set to the next operator. 

Sequential processing continues. 

Fall through. 

If the logical value is TRUE: 

PWI:PSI are set to parameter values. 

The processor begins execution at that point in the code-stream. 

Actual branch occurs. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 269 

BRFL" AO 

The top-of-stack item is interpreted as a BOOLEAN value. 

If the logical value is TRUE: 

PWI:PSI are set to the next operator. 

Sequential processing continues. 

Fall through. 

If the logical value is FALSE: 

PWI:PSI are set to parameter values. 

The processor begins execution at that point in the code-stream. 

Actual branch occurs. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 270 

ST A -ric BRANCH EXAMPLES 

Program Segment: 

BEGIN 
REAL 

Rl 
,R2 
,R3 

BOOLEAN 
B 

Rl := 25; 
R2 : = 35; 

I F (B : = R 1 GTR R2) 
THEN 

R 1 : = R2 
ELSE 

Rl := R3; 

END. 

(2,2) 
(2,3) 
(2,4) 

(2,5) 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Bu~~oughS Company 



PAGE 271 

Code Stream: 

IF (B := Rl GTR R2) THEN 

VALe (R1) VALe (R2) GRTR NAMe (B) STON BRFL 7:3 

3:4:2 1002 1003 8A 5005 B9 A06007 

%-----------------------------------------------------------
R 1 : = R2 

VALe (R2) NAMe (R 1) STOO BRUN 8: 2 

3: 6: ~ 1003 5002 B8 A24008 

%-----------------------------------------------------------
ELSE 

R1 := R3; 

VALe (R3) NAMe (R 1) STOO 

1004 5002 B8 

%-----------------------------------------------------------
3:8:2 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



Progr'am Segment: 

REAL 
Rl 

,R2 
,R3 

BOOLEAN 
B 

Rl := 25; 
R2 := 35; 

IF NOT (B 
THEN 

Rl := 
ELSE 

Rl := 

END. 

:= Rl GTR R2) 

R2 

R3; 

(2,2) 
(2,3) 
(2,4) 

PAGE 272 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 273 

Code Stream: 

IF NOT (B := R1 GTR R2) THEN 

VALe (R 1) VALe (R2) GRTR NAMe (B) STON BRTR 7: 3 

1002 1003 8A 5005 B9 A06007 

%-----------------------------------------------------------
R 1 : = R2 

VALe (R2) NAMe (R 1) STOD BRUN 8: 2 

3:f;: 1 1003 5002 B8 A24008 

%-----------------------------------------------------------
ELSE 

Rl := R3; 

VALe (R3) NAMe (R 1) STOD 

1004 5002 B8 

%-----------------------------------------------------------
3:8:2: 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 274 

DYNJAMIC BRANCHES 

The top-of-stack item contains the code-stream pointers. 

The branch may with the current segment or a different segment. 

IR\N chaining will occur if the item on top of the stctck is an NIRW (lRW On! 

non-EMODE). 

If the target is a pew: 

SDI:PWI:PSI are set from the pew. 

The LEX level in the pew must bE~ the same as the current LEX level (LL). 

The control state indicator is ignored. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burrougns Company 



DYN~~MIC BRANCH TARGETS 

If the target is an operand: 

Integerized. 

Rounded. 

Uses a 14 bit integer. 

Example: 

[15:02J = Ignored 

[13:13J = PWI (note awkward shape of field) 

[00:01] = PSI indicator: 

15 11 

14 10 

13 9 

12 8 

If this bit is on, 
PSI := 3, 

else 
PS I : = 0 

7 3 

6 2 

1 
5 

4 [3 

Value PWI PSI 
0015 A 3 

The operand form is typically used in thle CASE statement. 

itA 

PAGE 275 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 276 

DYN~~MIC BRANCH EXAMPLE 

77 I PIC 9 (11) B I NARY. 

PAR-A-SEC SECTION. 
PAR-A. 

PERFORM PAR-B-SEC. 

MPCW BF 
LT8 B2 
NAMC 
OBUN AA 

3:4:0 
04 
501A 

STOP RUN. 

PAIR-B-SEC SECTION. 

PAIR-B. 
MOVE 1 TO I. 

ONE Bl 
NAMC (I) 5005 
STOO B8 

OUPL B7 
LT8 B2 04 
SAME 94 
BRFL AO 5:5 
OLET B5 
OBUN AA 

(2, 1 A) 

I = (2,5) 

3: 1 : 5 
3: 1 : 5 

3: 1 : 5 
3:3:0 
3:3:2 
3:3:5 
3:4:0 

PCW = 4:3:5 @ (2,lA) 
4:3:5 
4:3:5 

4:3:5 
4:4:0 
4:4:2 

4:4:3 
4:4:4 
4:4:5 
4:5:0 
4:5:3 
4:5:4 
4:5:5 

If the PERFORM target paragraph was in the same section, a BRUN would have 
bee!!n used. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 277 

WOAI:D MANIPULATION OPERATORS 

Provide the capability to alter any partial field of a word in the stack. 

Ba~;ic elements. 

Destination word. 

Source word. 

Number of bits to transfer. 

Fie!ld bits. 

Destination start bit ("to" bit). 

Source start bit ("from" bit). 

ThE! altered, destination item is left on top of the stack. 

If the source is double-precision the sec:ond word (LSP) is discarded. 

If the destination is double-precision thle first word is alltered, the second word 
remains unchanged. 

Static and dynamic operators. 

St.31tic operators obtain the following values from the parameter: 

Source start bit. 

Destination start bit. 

Number of bits to transfer. 

Dynamic obtain its these values from items on top of the stack. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 278 

BSE'" 96 

Bit set initializes a destination bit to 1. 

The3 destination bit is specified by the pi1lrameter. 

The9 destination is the word on top of the stack. 

The9 result is left on top of the stack. 

Program Segment: 

R 1 • [36: 1] : = 1; % Rl = (2,F) 

Code Stream: 

lOOF 9624 500F B8 
.. 
VALe (R 1) BSET (36) NAMe (R 1) STOD 

DYl1amic bit set is functionally the same as the BSET operator. 

The9 destination bit is the item on top oiF the stack. 

The:! destination word is the second item on top of the stack. 

The9 result is left on top of the stack. 

Program Segment: 

R 1 • [B IT: 1] : = 1; % Rl ,- (2,2F), BIT = (3,7) 

102F 3007 97 502F B8 

VALe (R1) VALe (BIT) DBST N.AMC (Rl) STOD 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 279 

Bit reset initializes a destination bit to o. 

The destination bit is specified by the parameter. 

The destination is the word on top of the stack. 

The result is left on top of the stack. 

DBR:S 9F 

Dvnamic bit is functionally the same as 1the BRST operator" 

The destination bit is the item on top o'f the stack. 

The destination word is the second item on top of the stiack. 

The result is left on top of the stack. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



ISOL 9A 

FiE!ld isolate: 

Initializes a single precision destina1tion word to zero. 

Sets its low order field from a fie!ld in the source. 

Thc~ source start bit is the first parametc~r. 

Thc~ number of bits to isolate is the second parameter. 

Thc~ destination start bit is calculated as follows: 

destination start bit = number of biits to transfer - 1. 

Pr~:)gram Segment: 

I. [47:08] % 1 = (2, 7) 

Code Stream: 

VALe (I) ISOL 1+7:08 

1007 9A2F08 

Source start bit: 

Destination start bit: 

Number of bits: 

ThE! result is left on top of the stack. 

47 

07 

08 

PAGE 280 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 281 

OISO 98 

Thc:~ dynamic field isolate is functionally the same as the ISOL operator. 

Thc:~ initial stack state is as follows: 

Number of bits. 

Source start bit. 

Source item. 

Thc:~ result is left on top of the stack. 

Program Segment: 

REAL 

R1 
R2 
R3 

R1 

R1 
,R2 
,R3 

:= 
:= 
:= 

:= 

100; 
47; 
08; 

R1. [R2:R3J; 

Code Stream: 

(2,2) 
(2,3) 
(2,4) 

VALe (R 1) VALe (R2) VALe (R3) D I SO NAMe (R 1) STOD 

1002 1003 1004 9B 5002 B8 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 282 

INSR 9C 

Thle field insert sets a field of the de:stination from the low order field of the 
source. 

Thle initial stack state: 

Source item. 

Destination item. 

Thle destination start bit is the first parameter. 

Thle number of bits is the second parameter. 

Thle source start bit is calculated as follows: 

Source start bit = number of bits - 1 

Program Segment: 

REAL 
R1 (2,2) 

, R2 (2,3) 

R 1 • [47: oS] : = R2; 

Code Stream: 

VALC (Rl) VALC (R2) INSR 47:oS NAMe (R1) STOD 

1002 1003 9C2FOS 5002 BS 

Source start bit: 07 

Destination start bit: 47 

Number of bits: oS 

The:! result is left on top of the stack. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 283 

DINS 90 

The:! dynamic field insert is functionally the same as the INSR operator. 

The:! initial stack state is as follows: 

Source item. 

Number of bits. 

Destination start bit. 

Destination item. 

The9 result is left on top of the stack. 

Program Segment: 

REAL 
R1 

,R2 
,R3 

R1 := 
R2 := 
R3 := 

100; 
47; 
08; 

R1. [R2:R3J 

Cc.de Stream: 

:= R 1 ; 

(2,2) 
(2; 3) 
(2,4) 

VALe (R 1) VALe (R2) VALe (R3) VALe (R 1) 

1002 1003 1004 1002 

DINS NAMe (R 1) STOO 

9B 5002 B8 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 284 

FLTR 98 

Fie!ld transfer sets a field of the destination from a field of the source. 

ThE~ initial stack state. 

Source item. 

Destination item. 

Parameter values. 

Destination start bit. 

Source start bit. 

Number of bits. 

The~ result is left on top of the stack. 

Program Segment: 

REAL 
R1 

,R2 
,R3 

Rl := R2 & R3 [47:35:08]; 

Code Stream: 

VALe (R2) VALe (R3) FLTR 47:3S:08 

1003 1004 982F2308 

(2,2) 
(2,3) 
(2,4) 

NAMe (R 1) 

5002 

STOD 

a8 

~/') . 

1\ 
r-\ 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 285 

Th.~ dynamic field transfer is functionally the same as the FL TR operator, except 
thE3~ parameters are located on top of the stack. 

Th.~ initial stack state. 

Number of bits. 

Source start bit. 

Destination start bit. 

Source item. 

Destination item. 

Th.~ result is left on top of the stack. 

Program Segment: 

REAL 
Rl 

,R2 
,R3 
,R4 
,R5 
,R6 

Rl := R2 & R3 [R4:R5:R6]; 

Cc~de Stream: 

(2,2) 
(2,3) 
(2,4) 
(2,5) 
(2,6) 
(2, 7) 

VALe (R2) VALe (R3) VALe (R4) VALe (R5) VALe (R6) 

1003 1004 1005 1006 1007 

DFTR NAMe (R 1) STOD 

99 5002 B8 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 286 

ST AC::K STRUCTURE 

Provide procedure entry and exit. 

Sets, saves, and restores processor state components. 

Milintains linkage of activation records, both historical and lexical. 

Dh;play update required upon procedure I!!xit or entry. 

Display update is terminated when looping through decrea~sin9 lexical levels by the 
foillowing: 

The new value for DCD is the sam~e as the current. 

The environment number (j) is less than the previous value of LL. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 287 

Mclrk stack builds an inactive MSCW (Mark Stack Contr()1 Word) on top of the 
stclck. 

Inserted at the head of the historical chiain. 

ThE:! difference between the current loca1tion of the MSCW and F is calculated (5 + 
1 .- F). 

This difference is inserted in the HISTOR:Y _LINK field of the MSCW. 

MKSII\I OF 

ThE:! mark-stack bound to name-call is functionally equivalent to the MKST operator. 

ThE~ operator immediately following the MKSN must be a NAMC. 

Obser'vance to the MKSN rules is critical. 

E-MODE operator. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 288 

AB 

The:! enter operator completes the procedure entry process. 

As.sumes prior execution of MKST. 

Imlctive MSCW must be at F. 

F ... 1 must be a PCW after IRW chainin!9. 

Completes the MSCW. 

Inserts MSCW at the head of the appropriate lexical chain. 

The LL field is filled with the LL i:ield of the PCW. 

The MSCW is marked as entered. 

Constructs an RCW. 

Saves the current processor code-stream pointer. 

Saves BOOLEAN accumulators. 

LL set to the current LL prior to procedure entry. 

CS (control state) set to the value in the PCW. 

Initializes processor state for the procedure being entered. 

Code-stream pointer. 

Addressing environment. 

Tr,iJnsfers control to the code-stream pointers set from the PCW. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 289 

EXIT A3 

Th(~ EXIT deletes the topmost activation record from the stack. 

Returns execution to the prior activation record. 

S lis set to D [LLJ - 1. 

F is set to the location referenced by: 

Current F - MSCW.historylink 

Th(~ following registers are set from the fields in the RCV,l: 

LL 

Boolean processor accumulators: -rFFF I OFFF 

CS (control state) 

Processor code-stream pointers (SI)I:PWI:PSI) 

COlntrol is transferred to the code-stream pointed to by the RCW. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



RETI'J A7 

Thle RETURN operator is exactly the save 

The top-of-stack item is retained. 

The returned item is placed onto the top of the s.tack after the top most 
activation record is deleted. 

Copyright © 1986 Joseph & Cogan Associates, Inc . 
. A Burroughs Company 



PAGE 291 

95AF 

ThE~ move to stack changes the procesisor's site of actiivity by deactivating the 
cUI'rent stack and activating a destina- tion stack. 

A new memory addressing environment is established. 

A -rOSCW is stored at the base of the inactive stack. 

TO'SCW of the destination stack used t() find the height ,IS) and the start of the 
historical chain (F). 

ThIE~ TOSCW is sufficient by itself to activate the stack. 

Single precision top_of _stack item used as the destination stack number. 
fl 

,-\~ 
~ 

l~' 
[23: 12] Destination environment number. 

[11:12] Destination stack number. 

Re~)tores the stack state. 

BOSR Stack descriptor.address. 

LOSR := Stack descriptor.length + BOSR. 

S := TOSCW.stack_height + BOSR. 

F := S - TOSCW.SF _displacement. 

Updates the LEXICAL environment state. 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 292 

POIN1'TER OPERATORS 

Deal with sequences of word or character elements in an array. 

Oplerations include: 

Scanning 

Comparing 

Transferring 

Editing 

Most pointer operations require initial stack arguments that specify: 

Length 

Source 

Destination 

Source can be an operand. 

Source and destination pointers can be updated in {nost operations. 

Length can be updated to reflect the number of items left to process. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 293 

UNC~DNDITIONAL TRANSFER 

TUNI:) E6 

TriEinsfer Characters Unconditional DE!lete transfers al specified number of 
ch iar acters. 

The initial stack state: 

Length 

Source 

Destination 

No results are left on the stack. 

TUNI.J EE 

Transfer characters unconditional IJpdcElte functionally E!quivalent to the TUND 
operator, except: 

Updated source and destination- pointers are left on the stack. 

No updated length because operation is unconditional. 

Compiler generates DLET if one of the pointers is not required to be updated. 

D3 

Tr;ans,fer words delete performs an unconditional transfer, except: 

Length is in units of words. 

Actual transfer is word at a time. 

No result left on top of the stack. 

DB 
Transfer words update performs is functionally the saml~ as I the TWSD operator' 
e)l~cept: 

The updated source and destination pointers are left on top of the stack. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



EXAfVlPLES 

Program Segment: 

REPLACE P BY P2 FOR COUNT; 

Code Stream: 

NAMC (P) LOAD NAMC (P2) LOAD VALC (COUNT) TUND 

REPLACE P:P BY P2:P2 FOR COUNT; 

NAMC (P) LOAD NAMC (P2) LOAID VALC (COUNT) TUNU 

NAMC (P2) OVRD NAMC (P) OVRID 

Program Segment: 

REPLACE P:P BY P2 FOR COUNT WORDS; 

Code Stream: 

NAMC (P) LOAD NAMC (P2) LOAID VALC (COUNT) TWSU 

DLET NAMC (P) OVRD 

PAGE 294 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 295 

SCAr\! OPERATORS 

ChlElracter-relative scan operators sequentially compare ench source character to 
the~ delimiter character. 

The:! initial stack state. 

Delimiter. 1')1Lo\-~{1. ,?~~v~ . 
Length. 

Source. 

DELETE SCAN OPERATORS 

The:! following operators leave no results on the stack: 

SGTD (95F2) (scan while greater delete) 

SGI:D (95F 1) (scan while greater or equall delete) 

SEOD (95F4) (scan while equal delete) 

SNI:D (95F5) (scan while not equal delete) 

SLlc:D (95F3) (scan while less than or equal delete) 

SLSD (95FO) (scan while less than delete)1 

UPD)~ TE SCAN OPERATORS 

The:! update scan operators are the same as the delete scan operators except: 

Updated length left on the stack. 

Updated source pointer left on top of the stack. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



EXAfVlPLES 

Program Segment: 

SCAN P FOR 10 WHILE 

Code Stream: 

= II II. , 

NAMC (P) LOAD L T8 (10) L T8 (II II) S EQD 

Program Segment: 

SCAN P:P FOR COUNT: 10 UNTIL 

Code Stream: 

III II. , 

NAMC (P) LOAD LT8 (10) LT8 (II II) SNEU 

NAMC (COUNT) STOD NAMC (P) OVRD 

PAGE 296 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 297 

CHAI~ACTEIR TRANSFER OPERATORS 

Character-relaltive transfer sequentially compares each source character to the 
deiiimiter char;acter. 

Each source c::haracter that satisfies the relation is transfelrred to the destination. 

Initial stack state: 

Delimiter· 

Length 

Source 

Destination 

CHAI~ACTEIR TRANSFER DELETE 

Thle following operators leave no results on the stack: 

TCiiTD (E2) (transfer while greater delete) 

TCiiED (E 1) (transfer while greater than or equal) 

TE:QO (E4) (tr;ansfer while equal) 

T~IEO (E5) (trcinsfer while not equal delete) 

TL.EO (EB) (trclnsfer while less than or equal) 

TL.SO (EO) (trclnsfer while less than delete) 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 298 

CHAI:~ACTER TRANSFER UPDATE 

The character transfer operators perform a characters trarlsfer except: 

The updated length is left on top of the stack. 

The update source is left on the stack. 

The updated destination is left on the stack. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 299 

EXA~~PLES 

Program Source: 

REPLACE P BY P2 FOR 10 WH I LE NEQ II "; 

Code Stream: 

NAMC (P) LOAD NAMC (P2) LOAD L T8 (10) L T8 (" ") TNED 

Program Source: 

REPLACE P BY P2:P2 FOR 10 UNTIl. NEQ II "; 

Code Stream: 

NAMC (P) LOAD NAMC (P2) LOAD L T8 (10) L T8 (" ") TEQU 

DLET NAMC (P2) OVRD DLET 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 300 

CHAI:~ACTER COMPARE OPERATORS 

Ch;aracter-sequence compare apply a relational comparison of each source. 

Thc~ TFFF boolean accumulator is set to 1 if the relation is satisfied and 0 if the 
reliation fails. 

Thc~ initial stack state. 

Length 

Source 1 

Source2 

CHAI~~ACTER COMPARE DELETE 

Thc~ following operators terminate when the actual relation is determined. 

Nc. result is left on top of the stack. 

CGTD (F2) (compare char~cters greater delete) 

CGED (F 1) (compare characters greater than or equal delete) 

CEQO (F4) (compare characters equal delete) 

CNED (F5) (compare characters not equal delete) 

CLEO (F3) (compare characters less than or equal dellete) 

CLSD (FO) (compare characters less than delete) 

CHAlf=lACTER COMPARE UPDATE 

Th'e character-sequence compare update operators per'form the same as the 
character-sequence compare delete operators except: 

Both source pointers are update and left on the sta(:k. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 301 

EXAIVIPLES 

Program Segment: 

B := P GTR P2 FOR 3; 

Code Stream: 

NAMC (P) LOAD NAMC (P2) LOAD L T8 (3) CGTD 

RTF F NAMC (B) STOD 

Program Segment: 

B := P:P GTR P2 FOR 3; 

Code Stream: 

NAMC (p) LOAD NAMC (P2) LOAD L T8 (3) CGTU 

DLET NAMC (P) OVRD RTFF NAMC (B) STOD 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 302 

EXAr~PLES OF COMPILER-GENERATEID CODE 

Review the following listing analyzing as many of the constructs that time permits. 

CODESTRING/POINTERS 

CODESTRING/STRINGEX 

CODESTRING/SCANPOINTERS 

CODESTRING/TRANSLATE 

CODESTRINGI ACCIDENTAL 

CODESTRINGI GOTOSOL VER 

CODESTRING/PASSBYNAME 

CODESTRING/TYPEDPROCEDURE 

CODESTRING/PERFORMS 

CODESTRING/NESTEDPERFORMS 

CODESTRING/WORDTYPES 

CODESTRING/LOWERBOUNDS 

CODESTRING/CASE 

CODESTRING/TADS 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 303 

INTERRUPTS 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Com~ny 



PAGE 304 

An interrupt is an automatic invocation of an operating system procedure. 

MC~ly be invoked by: 

Operators (operator dependent) 

Between operators (external iinterrupts) 

Any time (alarm interrupts). 

An interrupt causes an MCP procedure (HAROWAREINTERR:UPT) whose PCW, or an 
SIBW chain, is located a 0[0] + 3. 

The following is the steps to interrupt entry: 

Invoke MKST. 

Place an NIRW (lRW non-E-MOOE) to 0[0] + 3. 

Place a variable numbers of words (depending on hardware type) on the 
stack. 

Invoke ENTR. 

Intlerrupts are divided into three classes: 

001 

Alarm 

External 

An operator dependent interrupt is invoked directly by the current 
operator to request an MCP service required by the operator or to 
report a programming or opelrator fault. 

An Alarm interrupt is triggtered by hardwarle fault detection during 
operator execution. 

An External interrupt is invoked between op.!rators to report events 
that are independent of the E!xecuting code. 

The optional parameters include: 

P 1 parameter (also called interrupt 10 parameter). 

P2 parameter. 

Contents vary depending on type on interrupt. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 305 

OPERATOR DEPENDENT 

MCP SERVICE 

Requests for an MCP service that is an extension of the hardware operators. 

Us(ed by operators to gain access to a data array or program code-segment that 
is not present in memory. 

Occur's if the presence bit in the data descriptor = O. 

Thc:! P2 parameter is a copy of the data descriptor that cclused the interrupt. 

If the descriptor is a COpy descriptol~, the address filed contains the memory 
lo(::ation of the original data descriptor. 

A presence bit interrupt is not. generated if the descriptor is a COpy and the 
oriiginal descriptor is present in memory. 

(NOTE: Not true on some earlier har'dwareJ 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 306 

PAGE:~D ARRAY 

USIE~d by pointer operators to indicate an attempt to access beyond the end of the 
arriay or page. 

Att1empt to access a word that has the memory protect bit. = 1. 

If the data array is not segmented an error is generated. 

If the data array is segmented (virtual): 

If at the end of the data segment 

Error condition (Seg Array Erlr or Paged Array IErr) 

Otherwise 

Next array page made resident in memory 

Pointer updated on the stack. 

Return from the interrupt procedure to resume the operator on the next 
page of the array. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 307 

BINDING REQUEST 

Ge!nerated when IRW chaining produces cl data descriptor that has an SIZEF = 7. 

Except EV AL. 

Intcerpreted by the software. 

STA(:K OVERFLOW 

Attempt to add an item on the stack passed the limit. 

S !greater than LOSR. 

MC::P attempts to extend the stack and resume processing. 

BLOC::K EXIT 

EXIT and RETN operators can generate this interrupt. 

Int1errupt generated when attempt to deallocate an activation record that has the 
block._ exit bit of the RCW = 1. 

(NOTE: A-Series only) 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 308 

ERRC)R REPORTING 

Programming, compiler or operator faults. 

INVA.LID OP 

Generated by execution of NVLD (invalid operator). 

No other operator generates this interrupt. 

Other interrupts that are similar in naturE~: 

UNDEFINED OPERATOR 

INVALID STACK ARGUMENT 

INVALID ARGUMENT VALUE 

INVALID CODE PARAIYIETER 

INVALID REFERENCE 

INVALID REFERENCE CHAIN 

INVALID OBJECT 

When an application program encounters an INVALID OP message, it is usually due 
to an application bug such as not having initialized a variable properly. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 309 

INV A~LID INDEX 

Attempt to access an array element not within a valid inde!x range for that array. 

MEMIORY PROTECT 

Attempt to write into a memory location that has a memory protected word. 

DIVI[)E BY ZERO 

Gelner'ated by arithmetic divide operators if the numer'ic interpretation of the 
top-of-stack operand (the divisor) is zero. 

INTEt3ER OVERFLOW 

Indicates that an operand required to have an integer vallie cannot be represented 
as an integer. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 310 

ALAF~M 

AICllrm interrupts are triggered by hardwar'e fault detection. 

INVALID ADDRESS 

UNC()RRECT ABLE MEMOR'{ ERROR 

HAR[:)WARE ERROR 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 311 

EXTE:RNAL 

Reports events that are independent of the executing COdE' stream. 

If in Control State, the EXTERNAL int1errupt is normally queued until return to 
Normal State. 

10 FINISH 

CallUsed by the 10 subsystem to report a physical 10 completion. 

Not necessarily generated for each physical 10 complete. 

INTEI:~VAL TIMER 

Pell"iodically set by MCP processor contr4:>1 procedures to Etnforce task priority. 

Pr'E!Vents lower priority CPU-bound tasks from maintaining control of the processor. 

System relies on interrupt driven mechanism. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 312 

PRO(3RAMMATIC FAULT HANDLING 

Programs can handle various faults and interrupts if they so desire. 

This is done through the use of the ON <fault list> statement in ALGOL. 

A program has the ability to continue running after detecting the fault, or 
ter·minating. 

HISTORY information can be obtained to be used in the fault processing, if desired. 

Example: 

BEGIN 
REAL ARRAY A [0:9]; 
REAL NDX; 
ON INVALIDINDEX, 

BEGIN 
o I SPLAY (" I NVAL I 0 I NDIEX WHEN NDX WAS: II CAT 

STR I NG (NDX, :~() ) ; 
END; 

WHILE TRUE DO 
BEGIN 

END; 

A [NDX] := NDX; 
NDX := ,'c,+ 1; 
END; 

The above program would issue thle message: 

INVALID INDEX WHEN NDX WAS: 10 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 313 

PROC;RAMMATIC INTERRUPTS 

It is possible to write software interrupts that can be entE!red dynamically. 

In other words, at program compilation time, there mayor may not be an explicit 
calli on the INTERRUPT. 

IN1r'ERRUPTs look just like PROCEDUREs, and can be called just like procedures, or 
thE!y can be ATTACHed to an EVENT. 

If ATTACHed to an EVENT, whenever the EVENT is CAIJSEd, the INTERRUPT is 
dynamically entered. 

EXiElmple: 

BEGIN 
FILE F; 
REAL RECORD_CNTR; 

INTERRUPT DISPLAY_RECORD_CNTR; 
BEGIN 
D I SPLAY (liRE CORDS READ = II CAT 

STRING (RECORD_CNTR,*»; 
END OF INTERRUPT DISPLAY_RECORD_CNTR; 

ATTACH DISPLAY RECORD CNTR TO MYSELF.EXCEPTIONEVENT; 
WHILE NOT READ-(F) DO-RECORD_CNTR := * + 1; 
END OF PROGRAM. 

While this program is running, doing a ?'mix nbr>HI will CAUSE the event 
MYSELF.EXCEPTIONEVENT. The MCP will automatically call the INTERRUPT 
DISPLAY_RECORD _ CNTR which will in turn DISPLAY the number of records read 
from file F. 

When DISPLA Y _RECORD _ CNTR exits, thE! program will resume processing where it 
wals. 

Unliess the INTERRUPT informs the program that it has been called, the program 
do.~sn't even know that an interrupt occurred. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 314 

PROE~LEM ANALYSIS TECHNIQUES 

Rec::ommended steps in using program dump to help reSOlVE! program failure. 

Observe MCP release.cycle.patch levels. 

Identify system by using system serial number. 

Notice local box (relate to SUBSYSTEM). 

Review RCW history. 

Record MCP history locations. 

May be useful to determine E!xactly what MCP was doing. 

Find first USER RCW. 

Notice if this activation record history belongs to another environment. 

Could be LIBRARY call. 

Is this lexical region MCP procedure HARDWARE INTI:RRUPT. 

Identify syllable that failed. 

Record P2 parameter. 

May be useful later. 

Reverse from that syllable until loc:ation of a stateml:!nt end syllable. 

STOD 

TUND 

EXIT 

Proceed from the next syllable forward until the operator that failed. 

Build temporary stack of results of re-executing the operators. 

Continue passed operator that failE!d until statement rend. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 315 

Observe stack cells between next two MSCWs. 

Top stack items could be residual cells from operat()r that failed. 

PAGED ARRAY error. 

Updated length. 

Updated source pointer. 

Updated destination pointer. 

INVALID INDEX. 

Actual index. 

P2 is descriptor we arle trying to index. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 316 

PROC;RAM FAILURE REVIEW 

Review program listings/ dumps as outlined by the instructor. 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Bu~~oughs Company 



PAGE 317 

FILE INFORMATION BLOCKS 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 318 

FIB ~;TRUCTURE 

Label equation block. 

Dh)k file headers. 

Layout in appendix. 

Buffers. 

10CB. 

LClgical record area. 

Tn:msaction count. 

Physical 10 count. 

READS 

WRITES 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 319 

~;VSTEM SOFTWARE COlMPILATION 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 320 

OVEF~VIEW 

Per"iodic requirement to compile environmental software. 

Install patches. 

Install flashes. 

Generate compiled listings. 

Bur"roughs provides most of the symbolics with software rlelease tapes. 

Can react quickly to install recommended software modifications intended to 
cor"reet environmental software problems. 

Sy~;tem provided WORK FLOW JOB ""hich can COmpilE! most all or selected 
soHware components. 

Rejfer to appendix for source listing of 'NFL job. 

Documented in A-SERIES SYSTEM SUPPCIRT. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 321 

PATC::HESFOR 

PA,'TCHESFORI <software item>. 

For' each <software item> present, the WFL job will execute a software 
compilation. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Bu~~oughs Company 



PAGE 322 

OPTI~ONS 

Module selection options. 

Th.~se options are BOOLEAN variables. 

Valid values: 

TRUE 

FALSE 

COMPILE_ALL:=TRUE; 

COMIPILE ALL 

Option allows all of the system software to be c·ompiled regardless if a 
PA:rCHESFOR files is present. 

FAILSE means selective compilation. 

SKIP IF NO SYMBOL 

So·ftware modules are skipped if their c()rresponding symb()1 files are not present. 

Cal' be combined" with COMPILE_ALL option. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 323 

REQl.JIRED FILES 

WI::L/ COMPILE/ SOFTWARE 

SYSTEM/DCALGOL 

PA~TCHESFOR/ <each software item to compile> 

Symbolic file for compilation 

DJl~.T ABASE/PROPERTIES 

GENE::RATED FILES 

CClde file (for each successful compilatio,n) 

CC)~MPLETED/ <software item> 

Symbolic files (only if needed). 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 324 

PROC::ESS 

Generate PATCHESFOR/<software item> patch files. 

SYSTEM/PATCH format. 

Load symbolic. 

START WFL job. 

Respond to ODT input requests: 

Only required if job not run under privileged usercode. 

Ins.ure successful compile: 

COMPLETED/ <software item > resid~:mt. 

Re1rer to listing for errors (if any). 

COlrrect and restart process. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Comp.ny 



PAGE 325 

J~ SERIES PROCESSOR ()PERATORS 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 326 

BURROUGHS A SERIES PROCESSOR OPERATOI=tS 

He!re is a detailed description of the columns used in each of the tables that 
appear on the following pages in this section: 

This is the Mnemonic code given the operator. 

Mode The "Mode" of the operator: 

<blank> is Primary Mode 
e is Edit Mode; 
t is Table Edit Mode (not a true mode); 
v is Variant Mode. 

Op The Hexadecimal code for the operator. 

Syls Number of code syllables for the total instruction. 

Function A description of the function of the operator. 

References Page numbers in the Burroughs A-Series System 
Architecture Reference Manual, Volume 2 (Form 
5014954, April, 1985) where the operators are 
documented. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 327 

OPEFtATORS LISTED BY MNEMONIC I\lAME 

Mne Mode Op Syls Function References 

ADD 80 1 Add 3-007 B-07 
AMAX v 958A 2 Arithmetic Maximum 3-009 B-07 
AMliN v 9588 2 Arithmetic Minimum 3-009 B-07 
ASRT v 9580 3 Assert 3-101 B-08 
BCD v 9577 3 Binary Convert to Decimal 3-016 B-08 
BRFL AO 3 Branch False 3-049 B-08 
BRTR A1 3 Branch True 3-049 B-09 
BRST 9E 2 Bit Reset 3-022 B-09 
BRUN A2 3 Branch Unconditional 3-049 B-09 
BSET 96 2 Bit Set 3-022 B-09 
CBON v 95BB 2 Count Binary Ones 3-021 B-09 
CEQD F4 1 Compare Chars Equal Delete 3-081 B-10 
CEQU FC Compare Chars Equa'i Update 3-081 B-10 
CGED F 1 Compare Chars Greater or Equal De l,ete 3-081 B-10 
CGEU F9 Compare Chars Greater or Equal Update 3-081 B-l1 
CGTD F2 Compare Chars Greater Delete 3-081 B-1 1 
CGTU FA Compare Chars Greater Update 3-081 B-11 
CHSN 8E Change Sign 3-025 B-11 
CLED F3 1 Compare Chars Less or Equal Delete 3-081 B:-1 'I 
CLEU FB 1 Compare Chars Less or Equal Update 3-081 B-1 'I 
CLSD FO 1 Compare 'Chars Less Delete 3-081 B-12 
CLSU F8 1 Compare Chars Less Update 3-081 B-12 
CNED F5 1 Compare Chars Not Equal Delete 3-081 B-12 
CNEU FD 1 Compare Chars Not Equal Update 3-081 B-12 
CUIO v 954C 2 Communicate with Universal I/O 3-099 B-12 
DBCD v 957F 2 Dynam c Binary Convert to Decimal 3-017 B-13 
DBFL A8 1 Dynam c Branch False 3-051 B-13 
DBRS 9F 1 Dynam c Bit Reset 3-022 B-13 
DBST 97 1 Dynam c Bit Set 3-022 B-11+ 
DBTR A9 1 Dynam c Branch Tru«~ 3-051 B-14 
DBUN AA 1 Dynam c Branch Unconditional 3-050 B-14 
DEXI v 9547 2 Disable External Interrupts 3-068 B-14 
DFTR 99 1 Dynamic Field Transfer 3-024 B-15 
DINS 9D 1 Dynamic Field Insert 3-024 B-15 
DISO 9B 1 Dynamic Field Isolate 3-023 B-16 
DIVD 83 1 Divide 3-008 B-16 
DLAY v 95F6 3 Delay 3-100 B-16 
DLET B5 1 Delete Top-of-stack 3-064 B-17 
DRNT v 9583 2 Dynamic Range Test 3-010 B-17 
DSLF C1 1 Dynamic Scale Left 3-013 B-17 
DSRF C7 1 Dynamic Scale Right Final 3-015 B-18 
DSRR C9 1 Dynamic Scale Right Rounded 3-015 B-18 
DSRS C5 1 Dynamic Scale Right Save 3-014 B-18 
DSRT C3 1 Dynamic Scale Right Truncate 3-014 B-19 
DUPL B7 1 Dupl icate Top-of-stack 3-065 B-19 
EEXI v 9546 2 Enable External Interrupts 3-068 B-19 
ENDE I~ DE 1 End Edit 3-099 B-19 
ENDF e 05 3 End Float 3-097 B-20 

Copyright © 1986 Joseph & Cogan Associates, 
A Burroughs Company 

Inc. 



Mne 

ENTR 
EQUIL 
EVAIL 
EXCH 
EXIT 
EXPIJ 
EXSIJ 
EXSIU 
FLTR 
GREQ 
GRTR 
HALT 
HALT 

CLiD 
CRID 
CUID 
CVID 
CVIU 
DIV 
OLE 
MKS 
NDX 
NOP 
NSC 
NSC 
NSG 
NSR 
NSU 
NSU 
NX.A 
SOL 

JO liN 
LAND 
LEQV 
LESS 
LKID 
LLLU 
LNMC 
LNOT 
LOAD 
LOOT 
LOOT 
LOG2 
LOK 
LOKC 
LOR 
LSEQ 
LT8 
LT16 
LT48 

Mode Op 

AB 
8c 
AC 
B6 
A3 
DO 
02 
DA 
98 
89 
8A 

v 95DF 
I:' OF 
v 9575 
v 9576 

A4 
CA 
CB 
84 

v 9544 
CF 
A6 

IE~ 08 
le~ DO 
t DO 
le~ 09 

9C 
le~ DC 
t DC 

E7 
9A 

v 9542 
90 
93 
88 

v 95B3 
v 95BD 
v 958c 

92 
BD 
Be 

v 95BC 
v 958B 
v 95BO 
v 95B1 

91 
8B 
B2 
B3 
BE 

Syls 

1 
1 
4 
1 
1 
2 
1 
2 
2 
1 
1 
1 
1 
2 
1 
1 
1 
3 
4 
3 
3 
2 
3 
3 
3 
2 
1 
1 
1 
2 
2 
4 
1 
1 
1 
2 
2 
2 
2 
1 
1 
2 
3 
7-12 

Function 

Enter 
Equal To 
Evaluate 
Exchange Top-of-stack 
Exit 
Execute Sngl Edit Op, Sngl Ptr Update 
Execute Single Edit Operator Delete 
Execute Single Edit Operator Update 
Field Transfer 
Greater Than or Equal To 
Greater Than 
Conditional Processor Halt 
Conditional Processor Halt 

nput Convert Left-Signed Delete 
nput Convert Right-Signed Delete 
nput Convert Unsigned Delete 
nput Convert Delete 
nput Convert Update 
nteger Divide 
dle Until Interrupt 
nsert Mark Stack 
ndex 
nsert Overpunch 
nsert Conditional 
nsert Conditional 
nsert Display Sign 

Field Insert 
Insert Unconditional 
Insert Unconditional 
Index Via Address-Couple 
Field Isolate 
Set Two Singles to Double 
Logical And 
Logical Equivalence 
Less Than 
Read Interlock Status 
Linked List Lookup 
Long Name Call 
Logical Not 
Load 
Load Transparent 
Load Transparent 
Leading One Test 
Lock Interlock 
Conditional Lock Interlock 
Logical Or 
Less Than or Equal To 
Insert 8-Bit Literal 
Insert 16-Bit Literal 
Insert 48-Bit Literal 

PAGE 328 

References 

3-054 B-21 
3-009 B-22 
3-038 B-22 
3-064 B-22 
3-059 B-23 
3-094 B-24 
3-094 B-24 
3-094 B-25 
3-024 B-25 
3-009 B-25 
3-009 B-25 
3-101 B-26 
3-101 B-26 
3-089 B-26 
3-089 B-26 
3-089 B-26 
3-089 B-27 
3-089 B-27 
3-008 B-27 
3-099 B-27 
3-054 B-28 
3-032 B-29 
3-096 B-30 
3-096 B-30 
3-096 B-30 
3-096 B-31 
3-023 B-31 
3-096 B-31 
3-096 B-31 
3-033 B-32 
3-023 B-32 
3-020 B-33 
3-017 B-33 
3-018 B-33 
3-009 B-33 
3-048 8-34 
3-071 B-34 
3-031 B-35 
3-017 B-35 
3-039 B-35 
3-039 B-36 
3-039 B-36 
3-021 B-36 
3-047 B-36 
3-048 B-37 
3-018 B-37 
3-009 B-37 
3-018 B-37 
3-018 B-37 
3-019 B-38 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



Mne Mode Op Syls 

LVLC 
MCHR 
MCHR 
MFI.T 
MFl.T 
MINS 
MINS 
MKSN 
MKST 
MPeW 
MULT 
MULX 
MVNU 
MVNU 
MVST 
NAMC 
NEQL 
NOOP 
NOOP 
NORM 
NTGD 
NTGR 
NTIA 
NTTD 
NVL.D 
NVL.D 
NXL.N 
NXL.V 
NXVA 
OCRX 
ONE 
OVRD 
OVRN 
PAC:D 
PAC:U 
PAllS 
PKL.D 
PKRD 
PKLlD 
PUSH 
RDIV 
RDL.K 
REMC 
RETN 
RIPS 
RNGiT 
ROFF 
RPR.R 
RSDN 
RSNR 

v 9580 
e 07 
t 07 
e 01 
t 01 
e DO 
t DO 

OF 
AE 
BF 
82 
8F 

4 
1 
2 
5 
5 
2 
3 
1 
1 
7-12 
1 
1 

e 06 1 
t 06 2 
v 95AF 2 

40-7F 2 
80 1 
FE 1 

v 95FE 2 
v 958E 2 
v 9587 2 

87 1 
86 1 

v 9586 2 
FF 1 

v 95FF 2 
A5 1 
AD 1 
EF 3 

v 9585 2 
B 1 1 
BA 1 
BB 1 
01 1 
09 1 

v 9584 2 
v 9573 2 
v 9574 2 
v 9572 2 

B4 1 
85 

v 95BA 
v 9592 

A7 
v 9598 
v 9582 

07 
v 95B8 
v 95B7 
v 9581 

1 
2 
2 
1 
2 
4 
1 
2 
2 
2 

Function 

Long Value Call 
Move Chars 
Move Chars 
Move with Float 
Move with Float 
Move with Insert 
Move with Insert 
Mark-Stack Bound to Name-Call 
Mark Stack 
Make PCW 
Multiply 
Extended Multiply 
Move Numeric Unconditional 
Move Numeric Unconditional 
Move to Stack 
Name Ca 11 
Not Equal To 
No Operation.. 
No Operation 
Norma 1 i ze 
Integerize Double-Precision Rounded 
Integerize Rounded 
Integerize Truncated 
Integerize Double-Precision Truncated 
Inval id Operator 
Invalid Operator 
Index and Load Name 
Index and Load Value 
Index and Load Value Via Addr-Couple 
Occurs Index 
Insert Literal One 
Overwrite Delete 
Overwrite Non-Delete 
Pack Delete 
Pack Update 
Pause Unt ill nterrupt 
Pack Left-Signed 
Pack Right-Signed 
Pack Unsigned 
Push Working Stack Onto Activation Rec 
Remainder Divide 
Read Lock 
Read External Memory Control 
Return 
Read Internal Processor State 
Range Test 
Read and Reset Overflow Fl ip-Flop 
Read Processor Register 
Rotate Stack Down 
Read Stack Number 

PAGE 329 

References 

3-036 B-38 
3-097 B-38 
3-097 B-38 
3-098 B-38 
3-098 B-38 
3-098 B-39 
3-098 B-39 
3-053 B-39 
3-052 B-39 
3-034 B-40 
3-007 B-40 
3-008 B-40 
3-097 B-41 
3-097 B-41 
3-062 B-42 
3-031 B-~3 
3-009 B-43 
3-100 B-~3 
3-100 B-43 
3-008 B-43 
3-012 B-~4 
3-011 B-44 
3-011 B-44 
3-011 B-44 
3-101 B-45 
3-1018-45 
3-037 B-45 
3-036 B-46 
3-037 B-47 
3-025 B-47 
3-018 B-48 
3-043 B-48 
3-043 B-48 
3-086 B-48 
3-086 B-49 
3-099 B-49 
3-086 B-49 
3-086 B-49 
3-086 B-50 
3-100 B-50 
3-008 B-50 
3-044 B-51 
3-099 B-51 
3-061 B-52 
3-067 B-52 
3-010 B-53 
3-070 8-53 
3-067 B-53 
3-065 B-54 
3-066 B-54 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



Mne Mode Op Syls 

RSTF 
RSUP 
RTAG 
RTFF 
RTOD 
RUNI 
SAME 
SClF 
SCRF 
SCRR 
SCRS 
SCRT 
SEQD 
SEQU 
SFDC 
SFDC 
SFSC 
SFSC 
SGED 
SGEU 
SGTD 
SGTU 
SHOW 
SINT 
SISO 
SLED 
SLEU 
SLSD 
SLSU 
SNED 
SNEU 
SNGl 
SNGT 
SPlT 
SPRR 
SRC.H 
SRDC 
SRDC 
SRSC 
SRSC 
STA,D 
STAG 
STA.N 
STFF 
STOD 
STON 
STOP 
SUBT 
SWFD 
SWFU 

e 04 1 
v 9586 2 
v 9585 2 

DE 1 
v 95A7 2 
v 9541 2 

94 1 
CO 2 
c6 2 
c8 2 
c4 2 
C2 2 

v 95F4 2 
v 95FC 2 
I;! DA 1 
t DA 2 
I~ 02 1 
t 02 2 
v 95F 1 2 
v 95F9 2 
v 95F2 2 
v 95FA 2 
v 95DE 2 
v 9545 1 

05 1 
v 95F3 2 
v 95FB 2 
v 95FO 2 
v 95F8 2 
v 95F5 2 
v 95FD 2 

CD 1 
CC 1 

v 9543 2 
v 9589 2 
v 958E 2 
e 08 1 
t DB 2 
e 03 1 
t 03 2 

F6 3 
v 9584 2 

F7 3 
AF 1 
88 1 
89 1 

v 958F 2 
81 1 

v 9504 2 
v 95DC 2 

Function 

Reset Float Flip-Flop 
Rotate Stack Up 
Read Tag 
Read True-False Fl ip-Flop 
Read Time of Day Clock 
Indicate Running 
log i ca 1 Equa 1 i ty 
Scale left 
Scale Right Final 
Scale Right Rounded 
Scale Right Save 
Scale Right Truncate 
Scan Whi le Equal Delete 
Scan While Equal Update 
Skip Forward Destination Chars 
Skip Forward Destination Chars 
Skip Forward Source Chars 
Skip Forward Source Chars 
Scan While Greater or Equal Delete 
Scan While Greater or Equal Update 
Scan While"Greater Delete 
Scan While Greater Update 
Primitive Display 
Set Interval Timer 
String Isolate 
Scan While less or Equal Delete 
Scan While less or Equal Update 
Scan While less Delete 
Scan While less Update 
Scan While Not Equal Delete 
Scan While Not Equal Update 
Set to Single-Precision Rounded 
Set to Single-Precision Truncated 
Set Double to Two Singles 
Set Processor Register 
Masked Search for Equal 
Skip Reverse Destination Chars 
Skip Reverse Destination Chars 
Skip Reverse Source Chars 
Skip Reverse Source Chars 
Store Delete Via Address-Couple 
Set Tag 
Store Non-Delete Via Address-Couple 
Stuff 
Store Delete 
Store Non-Delete 
Unconditional Processor Halt 
Subtract 
Scan While False Delete 
Scan While False Update 

PAGE 330 

References 

3-099 8-54 
3-065 8-54 
3-021 8-55 
3-066 8-55 
3-067 8-5.5 
3-070 8-5.5 
3-018 8-56 
3-013 8-56 
3-015 8-56 
3-015 8-5'7 
3-014 B-5'7 
3-014 8-57 
3-079 8-58 
3-079 8-58 
3-079 8-58 
3-095 8-58 
3-095 8-59 
3-095 8-59 
3-079 8-59 
3-079 8-59 
3-079 8-59 
3-079 8-59 
3-091 8-60 
3-068 8-60 
3-083 8-61 
3-079 8-61 
3-079 8-61 
3-079 8-62 
3-079 8-62 
3-079 8-62 
3-079 8-62 
3-011 8-62 
3-011 8-63 
3-020 8-63 
3-069 8-64 
3-072 B-64 
3-095 8-64 
3-095 8-64 
3-095 8-65 
3-095 8-65 
3-042 8-65 
3-019 8-66 
3-042 8-66 
3-032 8-66 
3-042 8-67 
3-042 8-68 
3-101 8-68 
3-007 B-68 
3-082 8-69 
3-082 8-69 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



Mne Mode Op Syls 

SWTD 
SWTU 
SXSN 
TEED 
TEEU 
TEQD 
TEQU 
TGED 
TGEU 
TGTD 
TGTU 
TLED 
TLEU 
TLSD 
TLSU 
TNED 
TNEU 
TRNS 
TUND 
TUNU 
TWFD 
TWFU 
TWOD 
TWOU 
TWSD 
TWSU 
TWTD 
TWTU 
UNLK 
UPLD 
UPLU 
UPRD 
UPRU 
UPUD 
UPUU 
USND 
USNU 
VALC 
VARI 
WATI 
WEMC 
WHOI 
WIPS 
WTOD 
XTNO 
ZERO 
ZIC 

v 
v 

v 

v 
v 

v 
v 
v 
v 
v 
v 
v 
v 
v 
v 
v 

v 

v 
v 
v 

v 

9505 2 
9500 2 
06 1 
DO 1 
08 
E4 
EC 
E 1 
E9 
E2 
EA 
E3 
EB 
EO 
E8 
E5 1 
ED 1 
9507 2 
E6 1 
EE 1 
9502 2 
95DA 2 
04 1 
DC 1 
03 1 
DB 1 
9503 2 
95DB 2 
95B2 2 
9570 2 
9578 2 
9571 2 
9579 2 
9501 2 
9509 2 
9500 2 
9508 2 
00-3F 2 
95 1 
95A4 2 
9593 2 
954E 2 
9599 2 
9549 2 
CE 1 
BO 1 
9540 2 

Function 

Scan Whi le True Delete 
Scan While True Upda~e 
Set External Sign Flip-Flop 
Table Enter Edit Delete 
Table Enter Edit Update 
Transfer Wh le Equal Delete 
Transfer Wh le Equal Update 
Transfer Wh le Greater or Equal Delete 
Transfer Wh le Greater or Equal Update 
Transfer Wh le Greater Delete 
Transfer Wh le Greater Update 
Transfer Wh le Less or Equal Delete 
Transfer Wh le Less or Equal Update 
Transfer Wh le Less Delete 
Transfer Wh le Less Update 
Transfer Wh le Not Equal Delete 
Transfer Wh le Not Equal Update 
Translate 
Transfer Chars Unconditional Delete 
"Transfer Chars Unconditional Update 
Transfer While False Delete 
Transfer Wh i 1 e Fa 1 se" Update 
Transfer Words Overwrite Delete 
Transfer Words Overwrite Update 
Transfer Words Delete 
Transfer Words Update 
Transfer While True Delete 
Transfer While True Update 
Unlock Interlock 
Unpack Left-Signed Delete 
Unpack Left-Signed Update 
Unpack Right-Signed Delete 
Unpack Right-Signed Update 
Unpack Unsigned De]ete 
Unpack Unsigned Update 
Unpack Signed Delete 
Unpack Signed Update 
Value Call 
Introduce Variant Operator 
Read Machine Identification 
Write External Memory Control 
Read Processor Identification 
Write Internal Processor State 
Write Time-of-Day Clock 
Set to Double-Precision 
Insert Literal Zero 
Zero Interrupt_Count 

PAGE 331 

References 

3-082 B-69 
3-082 B-70 
3-068 B-70 
3-093 B-70 
3-093 B-71 
3-080 B-71 
3-080 B-72 
3-080 B-72 
3-080 B-72 
3-080 B-72 
3-080 B-72 
3-080 B-72 
3-080 B-73 
3-080 B-7.3 
3-080 B-73 
3-080 B-73 
3-080 B-73 
3-084 B-74 
3-078 B-75 
3-078 B-75 
3-083 B-76 
3-083 B-76 
3-090 B-77 
3-090 B-77 
3-090 B-78 
3-090 B-78 
3-083 B-79 
3-083 B-79 
3-047 B-79 
3-088 B-79 
3-088 B-79 
3-088 B-79 
3-088 B-80 
3-087 B-80 
3-087 B-80 
3-088 B-8"1 
3-088 B-81 
3-035 B-8"1 
3-101 B-81 
3-066 B-82 
3-100 B-82 
3-066 B-82 
3-070 B-82 
3-068 B-83 
3-020 B-83 
3-0 18 B-8:~ 
3-070 B-83 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Bu~roughs Company 



PAGE 332 

OPEFtATORS LISTED BY MODE AND OPERATOR 

PRIMIARY MODE OPERATORS 

Mne Mode Op Sy1s Function References 

VALC 00-3F 2 Value Call 3-035 B-81 
NAMC 40-7F 2 Name Ca 11 3-031 B-43 
ADD 80 1 Add 3-007 B-07 
SUBT 81 1 Subtract 3-007 B-68 
MULT 82 1 Multiply 3-007 B-40 
DIVD 83 Divide 3-008 B-16 
IDIV 84 Integer Divide 3-008 B-27 
RDIV 85 Remainder Divide 3-008 B-50 
NTIA 86 Integerize Truncated 3-011 B-44 
NTGR 87 Integerize Rounded 3-011 B-44 
LESS 88 Less Than 3-009 B-33 
GREQ 89 Greater Than or Equal To 3-009 B-25 
GRTR 8A Greater Than 3-009 B-25 
LSEQ 8B Less Than or Equal To 3-009 B-37 
EQUL 8c Equal To 3-009 B-22 
NEQL 8D 1 Not Equal To 3-009 B-43 
CHSN 8E 1 Change Sign 3-025 B-11 
MULX 8F 1 Extended Multiply 3-008 B-40 
LAND 90 1 Logical And 3-017 B-33 
LOR 91 1 Logical Or 3-018 B-37 
LNOT 92 1 Logical Not 3-017 B-35 
LEQV 93 1 Logical Equ i va 1 encle 3-018 B-33 
SAME 94 1 Logical Equality 3-018 B-56 
VARI 95 1 Introduce Variant Operator 3-101 B-81 
BSET 96 2 Bit Set 3-022 B-09 
DBST 97 1 Dynamic Bit Set 3-022 B-14 
FLTR 98 4 Field Transfer 3-024 B-25 
DFTR 99 1 Dynamic Field Transfer 3-024 B-15 
ISOL 9A 3 Field Isolate 3-023 B-32 
DISO 9B 1 Dynamic Field Isolate 3-023 B-16 
INSR 9C 3 Field Insert 3-023 B-31 
DINS 9D 1 Dynamic Field Insert 3-024 B-15 
BRST 9E 2 Bit Reset 3-022 B-09 
DBRS 9F 1 Dynamic Bit Reset 3-022 B-13 
BRFL AO 3 Branch False 3-049 B-08 
BRTR A1 3 Branch True 3-049 B-09 
BRUN A2 3 Branch Unconditional 3-049 B-09 
EXIT A3 1 Exit 3-059 B-23 
ICUD A4 1 Input Convert Unsigned Delete 3-089 B-26 
NXLN A5 1 Index and Load Name 3-037 B-45 
INDX A6 1 Index 3-032 B-29 
RETN A7 1 Return 3-061 B-52 
DBFL A8 1 Dynamic Branch False 3-051 B-13 
DBTR A9 Dynamic Branch True 3-051 B-14 
DBUIN AA Dynamic Branch Unconditional 3-050 B-14 

Copyright © 1986 Joseph & Cogan Associates, 
A Burroughs Company 

Inc. 



Mne Mode Op 

ENTR AB 
EVAL AC 
NXLV AD 
MKST AE 
STFF AF 
ZERO BO 
ONE B 1 
LT8 B2 
LT16 B3 
PUSH B4 
DLET B5 
EXCH B6 
DUPL B7 
STOD B8 
STON B9 
OVRD BA 
OVRN BB 
LOOT BC 
LOAD BD 
L T48 BE 
MPCW BF 
SCLF CO 
DsLF C1 
SCRT C2 
DSRT C3 
SCRS C4 
DSRS C5 
SCRF c6 
DSRF C7 
SCRR c8 
DSRR C9 
ICVD CA 
ICVU CB 
SNGT CC 
SNGL CD 
XTND CE 
IMKS CF 
TEED DO 
PACD 01 
EXSD 02 
TWSD 03 
TWOD 04 
SISO 05 
SXSN 06 
ROFF 07 
TEEU 08 
PACU 09 
EXSU DA 
TWSU DB 
TWOU DC 

Syls 

1 
1 
1 
2 
3 
1 
1 
1 

1 
1 
1 
1 
1 
7-12 
7-12 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
1 
1 
1 
1 
1 
1 

Function 

Enter 
Evaluate 
Index and Load Value 
Mark Stack 
Stuff 
Insert Literal Zero 
Insert Literal One 
Insert 8-Bit Literal 
Insert 16-Bit Literal 
Push Working Stack Onto Activation Rec 
Delete Top-of-stack 
Exchange Top-of-stack 
Dupl icate Top-of-stack 
Store Delete 
Store Non-Delete 
Overwrite Delete 
Overwrite Non-Delete 
Load Transparent 
Load 
Insert 48-Bit Literal 
Make PCW 
Scale Left 
Dynamic Scale Left 
Scale Right Truncate 
Dynamic Scale Right Truncate 
Scale Right Save 
Dynamic Scale Right Save 
Scale Right Final 
Dynamic Scale Right Final 
Scale Right Rounded 
Dynamic Scale Right Rounded 
Input Convert Delete 
Input Convert Update 
Set to Single-Precision Truncated 
Set to Single-Precision Rounded 
Set to Double-Precision 
Insert Mark Stack 
Table Enter Edit Delete 
Pack Delete 
Execute Single Edit Operator Delete 
Transfer Words Delete 
Transfer Words Overwrite Delete 
String Isolate 
Set External Sign Fl ip-Flop 
Read and Reset Overflow Flip-Flop 
Table Enter Edit Update 
Pack Update 
Execute Single Edit Operator Update 
Transfer Words Update 
Transfer Words Overwrite Update 

PAGE 333 

References 

3-054 B-21 
3-038 B-22 
3-036 B-46 
3-052 B-39 
3-032 B-66 
3-018 B-83 
3-018 B-48 
3-018 B-37 
3-018 B-37 
3-100 B-50 
3-064 B-17 
3-064 B-22 
3-065 B-19 
3-042 8-67 
3-042 B-68 
3-043 B-48 
3-043 B-48 
3-039 B-36 
3-039 B-35 
3-019 B-38 
3-034 B-40 
3-013 B-56 
3-013 B-17 
3-014 B-57 
3-014 B-19 
3-014 B-57 
3-014 B-18 
3-015 B-56 
3-015 B-18 
3-015 B-57 
3-015 B-18 
3-089 B-27 
3-089 B-27 
3-011 B-63 
3-011 B-62 
3-020 B-83 
3-054 B-28 
3-093 B-70 
3-086 B-48 
3-094 B-24 
3-090 B-78 
3-090 B-77 
3-083 B-61 
3-068 B-70 
3-070 B-53 
3-093 B-71 
3-086 B-49 
3-094 B-25 
3-090 B-78 
3-090 B-77 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 334 

Mne: Mode Op Syls Function References 

EXPU DD Execute Sngl Edit Op, Sngl Ptr Update 3-094 B-24 
RTFF DE Read True-False Flip-Flop 3-066 B-55 
MKSN DF Mark-Stack Bound to Name-Call 3-053 B-39 
TLSD EO Transfer Wh le Less Delete 3-080 B-73 
TGED E 1 Transfer Wh le Greater or Equal Delete 3-080 B-72 
TGTD E2 Transfer Wh le Greater Delete 3-080 B-72 
TLED E3 Transfer Wh le Less or Equal Delete 3-080 B-72 
TEQD E4 Transfer Wh le Equal Delete 3-080 B-71 
TNED E5 Transfer Wh le Not Equal Delete 3-080 B-73 
TUNID E6 1 Transfer Chars Unconditional Delete 3-078 B-75 
INXA E7 3 Index Via Address-Couple 3-033 B-32 
TLSU E8 1 Transfer Wh le Less Update 3-080 B-73 
TGEU E9 1 Transfer Wh le Greater or Equal Update 3-080 B-72 
TGTU EA 1 Transfer Wh le Greater Update 3-080 B-72 
TLEU EB 1 Transfer Wh le Less or Equal Update 3-080 B-73 
TEQU EC 1 Transfer Wh le Equal Update 3-080 B-72 
TNEU ED 1 Transfer Wh le Not Equal Update 3-080 B-73 
TUNIU EE 1 Transfer Chars Unconditional Update 3-078 B-75 
NXVA EF 3 Index and Load Value Via Addr-Souple 3-037 B-47 
CLSD FO 1 Compare Chars Less Delete 3-081 B-12 
CGED F 1 1 Compare Chars Greater or Equal Delete 3-081 B-10 
CGTD F2 1 Compare Chars Greater Delete 3-081 B-11 
CLE.D F3 1 Compare Chars Less or Equal De 1 ete. 3-081 B-11 
CEQD F4 1 Compare Chars Equal Delete 3-081 B-10 
CNED F5 1 Compare Chars Not Equal Delete 3-081 B-12 
STAD F6 3 Store Delete Via Address-Couple 3-042 B-65 
STAN F7 3 Store Non-Delete Via Address-Couple 3-042 B-66 
CLSU F8 1 Compare Chars Less Update 3-081 B-12 
CGE.U F9 1 Compare Chars Greater or Equal Update 3-081 B-11 
CGTU FA 1 Compare Chars Greater Update 3-081 B-11 
CLE.U FB 1 Compare Chars Less or Equal Update: 3-081 B-11 
CEQU FC 1 Compare Chars Equal Update 3-081 B-10 
CNEU FD 1 Compare Chars Not Equal Update 3-081 B-12 
NOOP FE 1 No Operation 3-100 B-43 
NVL.D FF 1 Inval id Operator 3-101 B-45 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 335 

EDIT MODE OPERATORS 

Mne Mode Op Syls 

MINS 
MFLT 
SFSC 
SRSC 
RSTF 
ENDF 
MVNU 
MCHR 
INOP 
INSG 
SF DC 
SRDC 
INSU 
INSC 
ENDE 
HALT 

Ie DO 
Ie 01 
ce D2 
ce 03 
ce 04 
Ie 05 
Ie 06 
Ie 07 
Ie 08 
Ie 09 
ce DA 
ce 08 
ce DC 
Ie DO 
Ie DE 
Ie OF 

2 

5 
1 
1 
1 
3 
1 
1 
1 
3 
1 
1 
2 
3 
1 
1 

Function 

Move with Insert 
Move with Float 
Skip Forward Source Chars 
Skip Reverse Source Chars 
Reset Float Flip-Flop 
End Float 
Move Numeric Unconditional 
Move Chars 
Insert Overpunch 
Insert Display Sign 
Skip Forward Destination Chars 
Skip Reverse Destination Chars 
Insert Unconditional 
Insert Conditional 
End Edit 
Conditional Processor Halt 

References 

3-098 8-39 
3-098 8-38 
3-095 8-59 
3-095 8-65 
3-099 8-54 
3-097 8-20 
3-097 8-41 
3-097 8-38 
3-096 8-30 
3-096 8-31 
3-095 8-58 
3-095 8-64 
3-096 8-31 
3-096 8-30 
3-099 8-19 
3-101 8-26 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 336 

TABll.E EDIT MODE OPERATORS 

Mne Mc),de Op Sy1s Function References 

MINS t DO 3 Move with Insert 3-098 8-39 
MFl.T t D1 5 Move wi th Float 3-098 8-38 
SFSC t D2 2 Skip Forward Source Chars 3-095 8-59 
SRSC t D3 2 Skip Reverse Source Chars 3-095 8-65 
MVNU t D6 2 Move Numeric Unconditional 3-097 8-41 
MCHR t D7 2 Move Chars 3-097 8-38 
SFDC t DA 2 Skip Forward Destination Chars 3-095 8-58 
SRDC t D8 2 Skip Reverse Destination Chars 3-095 8-64 
INSU t DC 3 Insert Unconditional 3-096 B-31 
INSC t DD 4 Insert Conditional 3-096 8-30 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 337 

VARI"ANT MODE OPERATORS 

Mne 

ZIC 
RUNI 
JOIN 
SPLT 
IDLE 
SINT 
EEXI 
DEXI 
WTOD 
CUIO 
WHOI 
UPLD 
UPRD. 
PKUD 
PKLD 
PKRD 
ICLD 
ICRD 
BCD 
UPLU 
UPRU 
DBCD 
ASR.T 
RSNIR 
RNGT 
DRNT 
PAUS 
OCR:X 
NTTD 
NTGD 
AMIN 
AMA.X 
LOG2 
LNMC 
LVLC 
NOR:M 
REMC 
WEMC 
RIPS 
WIPS 
WAll 
RTOD 
MVST 
LOK. 
LOKC 
UNL.K 
LKID 

Mode Op 

v 9540 
v 9541 
v 9542 
v 9543 
v 9544 
v 9545 
v 9546 
v 9547 
v 9549 
v 954C 
v 954E 
v 9570 
v 9571 
v 9572 
v 9573 
v 9574 
v 9575 
v 9576 
v 9577 
v 9578 
v 9579 
v 957F 
v 9580 
v 9581 
v 9582 
v 9583 
v 9584 
v 9585 
v 9586 
v 9587 
v 9588 
v 958A 
v 958B 
v 958c 
v 9580 
v 958E 
v 9592 
v 9593 
v 9598 
v 9599 
v 95A4 
v 95A7 
v 95AF 
v 95BO 
v 95Bl 
v 95B2 
v 95B3 

Syls 

2 
2 
2 
2 
2 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
2 
2 
2 
3 
2 
4 
2 
2 
2 
2 
2 
2 
2 
2 
4 
4 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

Function 

Zero Interrupt_Count 
Indicate Running 
Set Two Singles to Double 
Set Double to Two Singles 
Idle Until InterrulPt 
Set Interval Timer 
Enable External Interrupts 
Disable External Interrupts 
Write Time-of-Day Clock 
Communicate with Universal I/O 
Read Processor Identification 
Unpack Left-Signed Delete 
Unpack Right-Signed Delete 
Pack Unsigned 
Pack Left-Signed 
Pack Right-Signed 
Input Convert Left-Signed Delete 
Input Convert Right-Signed Delete 
Binary Convert to Decimal 
Unpack Left-Signed Update 
Unpack Right-Signed Update 
Dynamic Binary Convert to Decimal 
Assert 
Read Stack Number 
Range Test 
Dynamic Range Test 
Pause Until Interrupt 
Occurs Index 
Integerize Double-Precision Truncated 
Integerize Double-Precision Rounded 
Arithmetic Minimum 
Arithmetic Maximum 
Leading One Test 
Long Name Call 
Long Value Call 
Normalize 
Read External Memory Control 
Write External Memory Control 
Read Internal Processor State 
Write Internal Processor State 
Read Machine Identification 
Read Time of Day Clock 
Move to Stack 
Lock Interlock 
Conditional Lock Interlock 
Unlock ~nterlock 

Read Interlock Status 

References 

3-070 B-83 
3-070 B-55 
3-020 B-33 
3-020 B-63 
3-099 B-27 
3-068 B-60 
3-068 B-19 
3-068 B-14 
3-068 B-83 
3-099 B-12 
3-066 B-82 
3-088 B-79 
3-088 B-79 
3-086 B-50 
3-086 B-49 
3-086 B-49 
3-089 B-26 
3-089 B-26 
3-016 B-08 
3-088 B-79 
3-088 B-80 
3-017 B-13 
3-101 B-08 
3-066 B-54 
3-010 B-53 
3-010 B-17 
3-099 B-49 
3-025 B-47 
3-011 B-44 
3-012 B-44 
3-009 B-07 
3-009 B-07 
3-021 B-36 
3-031 B-35 
3-036 B-38 
3-008 B-43 
3-099 B-51 
3-100 B-82 
3-067 8-52 
3-070 B-82 
3-066 B-82 
3-067 B-55 
3-062 B-42 
3-047 B-36 
3-048 B-37 
3-047 B-79 
3-048 B-34 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



Mne 

STAG 
RTAG 
RSUP 
RSDN 
RPRR 
SPRR 
RDLK 
CBON 
LOOT 
LLLU 
SRCH 
STOP 
USND 
UPUD 
TWFD 
TWTD 
SWFD 
SWTD 
TRNS 
USNU 
UPUU 
TWFU 
TWTU 
SWFU 
SWTU 
SHOW 
HALT 
SLSD 
SGED 
SGTD 
SLED 
SEQO 
SNED 
DLAY 
SLSU 
SGEU 
SGTU 
SLEU 
SEQU 
SNEU 
NOOP 
NVLD 

Mode Op 

v 95B4 
v 95B5 
v 95B6 
v 95B7 
v 95B8 
v 95B9 
v 95BA 
v 95BB 
v 95BC 
v 95BD 
v 95BE 
v 95BF 
v 9500 
v 9501 
v 9502 
v 9503 
v 9504 
v 9505 
v 9507 
v 9508 
v 9509 
v 95DA 
v 95DB 
v 95DC 
v 9500 
v 950E 
v 95DF 
v 95FO 
v 95F1 
v 95F2 
v 95F3 
v 95F4 
v 95F5 
v 95F6 
v 95F8 
v 95F9 
v 95FA 
v 95FB 
v 95FC 
v 95FD 
v 95FE 
v 95FF 

Syls 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
2 
2 
2 
2 
2 
2 
2 
2 

Function 

Set Tag 
Read Tag 
Rotate Stack Up 
Rotate Stack Down 
Read Processor Register 
Set Processor Register 
Read Lock 
Count Binary Ones 
Load Transparent 
Linked List Lookup 
Masked Search for Equal 
Unconditional Processor Halt 
Unpack Signed Delete 
Unpack Unsigned Delete 
Transfer While False Delete 
Transfer While True Delete 
Scan While False Delete 
Scan While True Delete 
Translate 
Unpack Signed Update 
Unpack Unsigned Update 
Transfer While False Update 
Transfer While True Update 
Scan While-False Update 
Scan While True Update 
Primitive Display 
Conditional Processor Halt 
Scan Wh le Less Delete 
Scan Wh le Greater or Equal Delete 
Scan Wh le Greater Delete 
Scan Wh le Less or Equal Delete 
Scan Wh le Equal Delete 
Scan Wh le Not Equal Delete 
Delay 
Scan Wh le Less Update 
Scan Wh le Greater or Equal Update 
Scan Wh le Greater Update 
Scan Wh le Less or Equal Update 
Scan Wh le Equal Update 
Scan Wh le Not Equal Update 
No Operation 
Inval id Operator 

PAGE 338 

References 

3-019 B-66 
3-021 B-55 
3-065 B-54 
3-065 B-54 
3-067 B-53 
3-069 B-64 
3-044 B-51 
3-021 B-09 
3-039 B-36 
3-071 B-34 
3-072 B-64 
3-101 B-68 
3-088 B-81 
3-087 B-80 
3-083 B-76 
3-083 B-79 
3-082 B-69 
3-082 B-69 
3-084 B-74 
3-088 B-81 
3-087 8-80 

"3-083 B-76 
3-083 B-79 
3-082 B-69 
3-082 B-70 
3-091 B-60 
3-101 8-26 
3-079 B-62 
3-079 B-59 
3-079 B-59 
3-079 B-61 
3-079 B-58 
3-079 B-62 
3-100 B-16 
3-079 8-62 
3-079 B-59 
3-079 8-59 
3-079 B-61 
3-079 B-58 
3-079 B-62 
3-100 B-43 
3-101 B-45 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 339 

BSS ENTRANCE EXAM 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



The foillowing questions relate to the ALGOL compiler. 

1. How many bits in a WORD? 

2. How many bits in a BYTE? 

3. How many bytes in a WORD? 

4. What is the Decimal value of Hexadec:imal A27? 

5. What is the purpose of the Tag? 

6. Can data be normally stored into an c)dd Tag word? 

7. Each program has two basic STACK structures. 

8. Solve the following Hexadecimal operations: 

A34 
+ 3BC 

1000 
FFF 

PAGE 340 

v",hich contain data; 

which contain code. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 341 

9. Can an ALGOL identifier begin with a number? 

10. What is the purpose of the EXPONENT field in a fk)ating point WORD (type 
REAL)'? 

11. What is the difference between INTEGER and REAL words? 

12. Logical operators OR, AND, and NO'T operate only on bit O. 

TRUE FALSE 

Copyright @ 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 342 

13. This question has two parts: 

(a) What will the following literals produce? 
Show your answer as though the value had been stored in a 
single-precision variable (e.g. REAL X;). 

For Example: 
8 I ASCDEF" = 4"C1C2C3C4C5C6" 

8 I CAS" = ------, 
80"CAS" = ------, 

48o"C3C1C2" = ------
(b) In the third part of (a) abOVE!, what does the 480 before the quoted 
literal mean? 

14. Which of the following statements valid? 
Note: DONE is a BOOLEAN variable'. 

(a) I F DONE 
THEN 

ELSE 
VAL:=O; 

(b) I F DONE THEN; 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 343 

15.. Give an example of an explicitly numbered CASE statE~ment. 

16. Give an example of an implicitly numbered CASE statE!ment. 

17. What will happen to a program that executes a CASE statement that has an 
arithmetic expression for the argument 1that is not within the range of any of the 
splE~cified cases. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 344 

18" Give an example of a BAD GO TO. 

19" Must the lower bound of an ARRAY always be ZERO? 

20" What is the function of the followin!}: 

TRUTHSET 

TRANSLATET ABLE 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 345 

2 'I. What is the purpose of the VALUE arithmetic REAL intrinsic function? For 
e)[ample. VALUE (TERMINATED). 

2~~. What is a FIB and what is it used for? 

2~L Which I/O type is usually more efficiient? 

SEQUENTIAL RANDOM 

2~f. What will A[O] contain after exec::ution of each of the following REPLACE 
st.Eltements: 

REAL I; 
r : =4" C 1" ; 

a) REPLACE PO I NTER (A) BY I FOR 1; 

b) REPLACE PO I NTER (A) BY I. ['7: 48] FOR 1 

25" What is the difference between FOf~MAL and ACTUAl. parameters? 

26. Can a PROCEDURE be passed as a parameter to another PROCEDURE? 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 346 

27. What happens when an expression is passed as a "call by name" parameter? 

. 28. What is the purpose of LEXICOGRAPHIC (LEX) levels? 

29. What LEX level will a procedure run at? 

30. Will a procedure always run at a LlEX level higher them the caller? 

31. What is the purpose of the MCP procedure BLOCKEXI1-? 

32. What is the purpose of the SHARINGi dollar card optioln? 

33. Give an example of an indirect LlBRJ~RY procedure call. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 347 

34. What statements cause an INDEPENI)ENT process to be invoked? 

35. What statements cause a DEPENDEN1" process to be invoked? 

36., What is a PIS and what is it used for? 

37., What is the difference between an ASYNCHRONOUS and a SYNCHRONOUS 
prc:)cess? 

38., What is the purpose of the followin!~ verbs: 

PROCURE 

LIBERATE 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 348 

39. Give an example of the use of the EXCEPTIONEVENT task attribute. 

40 .. What is the purpose of an INTERRUPT procedure? 

41" What is the purpose of an EPILOG procedure? 

42 .. What is a DOPE vector? 

43,,, Give an example of address equati~n? 

44" What is the purpose of the OWN phirase in declarations? 

45i,. Give an example of the use of ARRAY REFERENCE var'iables? 

4E;. What is a TAG sort? 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 349 

47" What is the difference between the iFo"owing dollar card actions: 

SET 

RESET 

POP 

48" What is' the purpose of user-defined dollar options? 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
, A Burroughs Company 



PAGE 350 

50. What is the function of the followin~~: 

MASKSEARCH 

ONES 

FIRSTONE 

LlSTLOOKUP 

ARRAYSEARCH 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 351 

The following questions relate to the COBOL74 compiler. 

51 .. What is the difference between an INDEX and a SUBSCRIPT? 

52.. What is the advantage of the USAGE: BINARY? 

53 .. Is the code generated for handling tables is the same as it is in ALGOL? 

Yes No 

54" How are FILE attributes declared? 

55.. lis it possible to PERFORM a paragr,aph in another SECTION? 

56.. What is the default entrypoint name for a COBOL 7 4 liibrary? 

57.. What can change the default entrypoint name for a C~DBOL74 library? 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 352 

58" What causes the creation of a new code segment? 

59" What USAGE types are their and what internal formats do they have? 

60. Where is the operational SIGN carriled for different numeric data types? 

61. What must the compiler generate for arithmetic computations using DISPLAY 
typ1e numeric data items? 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 353 

BSS EXIT EXAM 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 354 

REVE::RSE POLISH NOTATION 

Write an equivalent Reverse Polish string for each of the following arithmetic 
expressions: 

1. «A+ (B'IeC» - «B"eC) +A» ,'eD 

2. A+B- (C'Ie (D+E» 

3. « ( A + B ) 'Ie ( C - 0 ) ) / z ) + Y 

4. (X + y ) ,'c C / ( ( A - ( B + C ) ) * J ) 

5. (A + ( B * C ) ) / 0 

6. (A / B ) + ( C ,'e 0 ) - ( E ,'e ( ( A + B ) / c ) ) 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 355 

W,oite an equivalent arithmetic expression for each of the following Polish strings: 

1. A B + C D - * X + y -

2. A B * C / E + F -

3. A B + C - D * F / 

4. ABC D E + / - * 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 356 

BASIIC STACK ARCHITECTURE 

f . 

11. ( .. T}orFe than __ lie one process can use the same 

~~. /~, F: 
L One process may access more than one SEGMENT DICTIONARY. 

T , F: 
A code segment may be referenced by several PCWs, each of which give an 
entry point into the code. 

~k TT~tJXICOGRAPHIC level at which a procedure will execute depends on the 
LEX level of the calling procedure. !,So 

!i T H F:) 
A ~.dcedure running at LEX level 3 may declare a procedure which will run 
at LEX level 3. 

6i./ T}' F: 
l;fhe STACK VECTOR is an array oi: data descriptors, each of which describes 

an area of memory allocated as a STACK or SEt3MENT DICTIONARY. All 
STACKs and SEGMENT DICTIONARIIES, including the MCP are thus described. 

7'" T' F: 
The memory address of the STACK VECTOR descriptor depends on the 
setting of the D [0] register. 

8·" rT\' F: 
\~he process stack is a record of the current state of execution of a 

program. ~ [~('(S vt ~l.l\IV'<j2 ~dJr 6 cf..v.J- IAJ) r . 
9.. '1' fi;: . ),..--- CW' ~ 

destflKafion address. 

10.. '1' F: 
When the processor attempts to execute a progrl3m segment that is not 
resident in memory, an interrupt occurs. 

11. ~~=~t all data addressing ~~:n~::ative to a DISPLAY register. 

12. (T)/ F: 
-the LEX level a procedure will run at is determined at compile time. 

Copyright © 1986 Joseph & Cogan Associates" Inc. 
A Burroughs Company 



PAGE 357 

15., Draw the PROCESS stack for the following program illS it would appear at the 
place pointed to by the arrow: 

BEGIN 
REAL A,B,C; 

PROCEDURE PRO (A,B,C); 
VALUE B,C; 
REAL A,B,C; 

BEGIN 
INTEGER I,J,K; 
I : =J: =6; 
K: = ( (I )'cC) + (B-J»; 
A:=A+K; 

-_ ... _-----> 

END OF PROCEDURE PRO; 

% Main 1 ine of program. 
A:=7; 
B:=5; 
PRO (A, B, C) ; 
END OF PROGRAM. 

Copyright © 1986 ,Joseph & Cogan Associatesl , Inc. 
A Burroughs Company 



DISPll_A Y REGISTERS 
~~J~ 

-J P-

PAGE 358 

1. (T J F: . / . \fd,\v~~ 
--The F register contains an iP).dEfx which, when added to the contents of 
BOSR, locates a MSCW. I' 

2. T IfF:\ 
Th~[2] register points to the same location as do.~s BOSR. 

? 3. r/fl, fi 
.. The 'i.S[ 1] register always points to a program SEGME:NT DICTIONARY. 

4. ,T)I F: 
L-'I'he F register of a central processor points to the last MSCW in the STACK 

which is active on that processor. 

5. 'r 18 
Tags are used to address DISPLAY registers. 

6. T n~ 
DEW points to a program's SEGMENT DICTIONARY. 

/-) 

7. ('T/ I F: 
<b [0] points to the MCP's stack. 

8. T I F: / 
DISPLAY registers indicate Jhe:::'(EX level a procedure' is running at. 

/,/' ,//", ~''''---------.. ----.. ----

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 359 

9. A procedure is declared at LEX level 3 and called ~ LI:X level 5. 
[)ISPLAY register points to the MSCW for this procedure? 

What 

1 ()I. What processor register contains the memory addrE!ss of the most recently 
built MSCW? F 

1 ~I. TT:~ of stack registers (A and B) hold the current object code being 
executed. 

1 ~~. Segment descriptors contained in the users program SEGMENT DICTIONARY 
art:! addressed relative to what processor register? 

"" V( \ ) 

1 ~~/.i. TA )""'n'l F: 
l )~ t instruction is referenced by [SDI:PWI:PSIJ. 

Copyright © 1986 Joseph & Cogan Associates .. Inc. 
A Burroughs Company 



PAGE 360 

WOF~D FORMATS 

/ ) 
1" l~n ~:CW contains a return point in a code sequence. 

2., 'r I@ 
A tag of 8 indicates a PCW. 

3. TA/(F:')M ./ 
WI descriptor is at\rays indexE:!d. 

4. (TY F: 
\... .... The choice of dimensions for an array can affect the number of data 

descriptors in dope vectors. 

5. Ue F~oscw indirectly contains the Sand F register settings for an inactive 
stack. 

6. ~~I F: ~ 
'U MSCW is generated w~n a proc:edure is entered. 

-7 7. f~1 F: 

Lthe overlay bit indicates if the data area has been overlayed. 

8.eY") F: 
15ata arrays are not allocated in 
accessed. 

memory until an item 

9" T 1 /F~; ") 
It Ynecessary for the programmer to initialize stuck data items to zero, 
otherwise the item will contain any miscellaneous value. 

10" I'n a MSCW, the displacement field is relative to which processor register? 

.-------------------------------------------------------------------------------.-----
Copyright © 1986 .Joseph & Cogan Associates., Inc. 

A Burroughs Company 



PAGE 361 

11.. Given the following RCW where willi the procedure e)(:it to? 

3 500621 894007 

SOLL JrO MIl' 

501 

PWI 

PSI 

LL 5 
CS (Norma 1 or Contro 1) 

12. A process has just caused the following 2 words 1to be plas.,.ed..,on top of 
stack 15E. v c 

A. What is 

3 00+60 A9B~2C . 

3 1Sf4A 10C'p22 

r 

( \ ) / ( 
(;) (;) " I, 

v/' 

,6 r, '-~~ / 
\ ~ I, J 

the stack number of the procedure we (lIre entering? 

/'J ~ B. Is the PCW for the procedure 'we are entering in this stack? 

~! ,\.i S 
\ 0/ ~~ 

C. What Lex Level are we going to? ~3 

D. What is the LEX level of the procedure we came' from? 

G 
E. What is the SOI:PWI:PSI when vve left the procedure? 

5 

13. In a data descriptor, a SIZEF of 7 means what? 

Copyright © 1986 ,Joseph & Cogan Associates,. Inc. 
A Bu~~oughs Company 



PAGE 362 

14. The first word of a process stack contains either: 

_--H-'I"-~_,,~ __ n_' i, D or 

15. T I IF:) 
An ~RW makes it possible to addr'ess memory locaH9ns~e 
any stack. , ,{/,Y\ ~ • , __ ell' M£.-J(. CAl ,,;}. -;t0l I~ 

not within 

/./' _ J ~~~ jJ.p8 J~Y 
16. T I/F: ) 

MS'cWs and RCWs always occur in pairs. 

17r{j~; exiting a procedure, if the SDLL bit (bit 
is selected as the SDI base otherwise D [0] is 

13) of the RCW is one, D [1] 
selected. 

18. When are the fields of a MSCW inserted and what are their purposes? 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A BurrouQhs Company 



PAGE 363 

19. Given the following RCW, where will the procedure exit to? 

3 000401 80A003 

MCP/USER IJ~ 

SOl ~ 

PWI li 

PSI 2-

LL 2-

CS f\'b( IM.J (Norma 1 or Cont.ro 1) 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 364 

PROCESSOR OPERATORS 

1" (!)I F: 
The' TOSCW is built by the MVST (move to stack) mctchilne instruction. 

2" T I F: 1 
A code syllable is 4 bits long . 

. ("~ ... ~\ 

3" TIfF:) 
An 'J(60 instruction adds the top o'f stack to a word in memory. 

4" (T)I F: 
""Segment 0 of a code file is is used to contain information used by the MCP 
necessary for task initiation. 

5" The MVST machine instruction CaUSE!S the central processor to access a data 
dE!Scriptor at 0[0] + 2. To what does c-t~~ata descriptor point? 

/~·l'L.bl.. ~ 
~ 4r"-

6" Generate machine code or assembly language for: 

X := A [ B [I , J ] + K ]; 

f\()V\N2. 5 

\f~ L 
tJ" /-1'1 
l/6c ,J 

l\J X l-\j 
-VrVL ~ ~k 
(J;J- J 
N'i..L-~ 
(\.fiVA" c 'J. 
/t°\) 
tt' J..-I 

Copyright © 1986 Jos,eph & Cogan Associates, Inc. 
A Burroughs Company 



7" What is the missing statement in: 

BEGIN 
REAL X,Y,Z; 

--'""-------> i~-:. J " ___ . 
COD E IS: 1003 1004 B204 8 'I 82 5002 B8 (NON - EMOD E) 

1003 1004 B204 81 82 F62002 (EMODE) 

8" When executing a MVST where do we get the following: 

A. Stack to go to. 1-o~( vJ 
B. BOSR of new stack. 510.<\ ...... ,t'?C-\cr( 

PAGE 365 

C. LOSR. x\(H;lr\,):Q.C,: W tJ;. ~jr<" t-5 '0) 

10'l~ ,-\f.A~ l'V~W D. S register. 

E. DISPLAY reg settings. U\A,aA N.. rv\.- S (lJV " 

\f 0f 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 366 

9. A program aborted at: 

28:260:3 

Just before the program aborted : 

0[1] was set to 11307 

0[2] "was set to 1108f: 

,)v_Oj\ 
The contents of several memory locations are given belc:>w: ~. ~ \,-1", " 

\ ~ 
ADIDRESS ~"\ A} 

011843 0 E53100 6527BO 0 lEF50B 01 F A31 0 DABDAB DABDAB 

11 ,3E 3 5 080000 2407EB 3 800000 F1552 3 000000 Q1005C2 

11.3F5 3 800001 122FAl 5 08001B A40870 3 800002 2215C6 

1 1 ,3F B 5 880008 70C441 3 000001 0006Al 3 800000 c16A48 

11,3FE 3 800000 F1420E 3 800002 B15FE2 3 800001 315F9B 

11,4011 3 800003 013FFA 3 800028 A13C8A 3 800001 115CF 1 

111404 3 000000 0005C3 5 080001 7403B2 3 000000 Q1006A4 

llIDC4 5 800001 011DA4 o 000000 000213 o 628000 0140000 

131DB9 3 41EDBD 95BE60 3 04B99A 2E01AO 3 218B20 Q129A17 

13EF6 3 3BA610 03B810 3 075005 AD700A 3 B8A262 ~,OB3B3 

14.210 3 CB3453 8B0985 3 BFFFFF FFFFFF 3 5695A3 9B6c30 

16,A4J~ 3 B20380 95BC95 3 B9AE60 2EB208 3 ABA3A3 223F20 

Determine why the program aborted. 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 367 

10. Given the following partial program and code: 

Write the ALGOL statements which compiled into the following code: 

$ SET LIST STACK CODE 
BEGIN 
REAL A,B,C,D; 

PROCE DURE PRO (X, Y ,D) ; 
VALUE X,D; 
REAL X,Y,D; 

BEGIN 
INTEGER I,ll; 
LABEL L; 

FFB2057006B9 877005B83004 B2058cA10006 7003AC300630 023005300480 
1004808280B8 A3BOBOB4A220 OOFFFFFFFFFF 

-_._-_._---> 

-_._------> 

-_._-_._---> 

L: 
END OF PROCEDURE PRO; 

FFB2035002B8 B2045003B8B1 5004B8B20450 05B8AE500610 028203805003 
AF1004ABA3BO BOBOBOBFFFFF 00020060E004 B4A22000FFFF 

-_._-_._---> 

-_._-_._---> 

END OF PROGRAM. 

Copyright © 1986 Jos,eph & Cogan Associates, Inc. 
A Burroughs Company 



PAGE 368 

Copyright © 1986 Joseph & Cogan Associates, Inc. 
A Burroughs Company 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368

