RECOMP II USERS' PROGRAM NO, 103k

PROGRAM TITLE: SIGNAL CORPS RECOMP ALGEBRAIC TRANSLATOR - SALT
PROGRAM CLASSIFICATION: Executive and Control

AUTHOR: T. J. Tobias
U. S. Army Signal Engineering Agency '
Arlington Hall Station
Arlington, Virginia

This program was modified and adapted for use
with a subroutine package - RECOMP II Program

No. 50 = P32 by L. Raphael and A. W, England,
and the text was rewritten by R. S. Lynn of
Autonetics Industrial Products,

CHECKED BY: R. S. Lynn and H., D, Goddard

PURPOSE: The Signal Corps RECOMP Algebraic Translator
(SALT) is a one pass compiler system which
translates from algebraic statements into a
SCRAP assembly language program, This program
may then be assembled by use of the SCRAP

processor,
DATE: January 1960

REISSUED: January 1961

Published by
RECOMP Users' ILibrary
at
AUTONETICS INDUSTRIAL PRODUCTS

A DIVISION OF NORTH AMERICAN AVIATION, INC.
3400 E, 70th St., long Beach 5, Calif.

1.
2

_3,
Le
Se

TABLE OF CONTENTIS
SUMMARY OF OPERATING INSTRUCTIONS
EXPRESSING PROBLEMS IN SALT FORMAT
SALT STATEMENT GRAMMAR
RESTRICTIONS
OPERATING INSTRUCTIONS
EXAMPIE
CODIﬁG INFORMATION

Page
Page
Page
?age
Page

Page

1-12
13
13 - 15
15 - 26
27

1.
2.
3.
Lo

5
6o
Te

8.
9.

10.

11.

12,

13.

SUMMARY OF OPERATING INSTRUCTIONS

See $L for Greater Detail

Load and irerify SALT compiler
Press Start 1.
Type in SALT coding

After the last statement, END$, has been punched, tear off
and label SALT=-punched tape.

Load and verify SCRAP Assembly.
Place SALT-punched tape in photoreader.

Set sense switch B on if printout of first pass is desired,
Set sense switch D on. Sense switch C must be off,

Press Start 1.

After END OF FIRST PASS is typed, advance several folds of
blank tape and press Start 3. This punches SAVE material,

Tear off and label first pass punched tape, and place it in
the photoreader.

Sense switch D is not used. Set sense switch C off, If printed
copy of second pass, including absolute coding, Is desired, set
sense switch B on, Press Start 2. ‘

When second pass has completed punching, tear off and label the
tape. Thlis is the SCRAP assembled program,

If the first and second passes were not run sequentially, or if
memory contents were altered, load SCRAP Assembly, then the
SAVE material. Place first pass punched tape in photoreader and
go to step 11, _

To use the SCRAP assembled program, load the program tape and PPP-2,
or the single tape containing the assembled program plus. subroutmes
from PPP-2, See §1L.3 (h). Set the location counter to the origin,
which is usually 3000,0, and press the Start button.

1,

1.1

L2

1.3

24
2.1

SIGNAL CORPS RECOMP ALGEBRATC TRANSLATOR

SALT

INTRODUCTION

SALT is a RECOMP II program which allows the user to express his
problem in a simple format, eliminating for the user the task of
machine language programming and coding. SALT translates state-
ments in this simple format to a RECOMP II symbolic code format
which is later assembled by the SCRAP program into absolute
machine language. The assembled program utilizes relevant sube
routines contained in RECOMP II Program No. 50, Program Prepara-
tion Package Number Two,

This combination of programs enables the RECOMP II to offer what
is known as "automatic programming.”

' EXPRESSING PROBLEMS IN SALT FORMAT

Expressing a problem in SALT language is much like writing in
standard mathematical notation. Additionally, SALT language is
used to provide for input and output of information, Statements
in SALT language may be grouped as:

ARITHMETIC STATEMENTS - which are the algebraic equations used in
solving the problem,

INPUT/OUTPUT STATEMENTS - which provide for input of information
from the typewriter or photoreader and output of information on
the typewriter, and

CONTROL STATEMENTS - which are used for transfer of control from
one statement to another in the program. Such statements are used
to control repetitions and conditional transfers,

SALT STATEMENT GRAMMAR

STATEMENT ELEMENTS

SALT statements consist of combinations of numbers, variables,
subscripted variables, functions, expressions, and keywords.

2.1.1

2.1,2

2,1.3

NUMBERS

Numbers in SALT are the ordinary decimal numbers, in the common format.,
They are restricted in that they may contain no more than fifteen (15)
characters, counting the decimal point, if used, as a character,

Neither the integral part nor the fractional part of a number may con-
tain more than eleven (11) characters.

For example,

723,
+7

Plus signs may be omitted

- VARTABLES

A variable is an all-alphabetic word containing at most eight (8)
letters., See § 3.1 for restrictions on variable names,

Examples of permissible variablesg are:

DELTA X
NSUBSIX ITEM

SUBSCRIPTED VARIABLES

Subscripted variables have the form V(K) or V(K,J), where V is a
variable and K and J are either numbers or variables, The names of a
subscripted variable should contain at most seven (7) letters, because
the assembly program, SCRAP, places a letter K at the beginning of
the subscripted variable name. Using eight (8) letters may not cause
an error in the machine language program, but the assembly printout
will replace the first letter with a X, as mentioned above,

Subscripted variables in SALT may refer to elements in a one or a two
dimensional list or table. Examples of proper subscripted variables
are:)

MATRIX(I,J)

MATRIX (ROW,COLUMN)
X(5)

X(J)

MATRIX(5,J)
VECTOR(PS

An example of a subscripted variable which is not permitted is
TENSOR (I,J,K). .If the user attempts to input a third dimension, the
program will reject the input and result in an error return, -

2.i.h

2.1.5

The subscripts themselves may represent mixed number values, but only .
the integer part is used in the machine language program., SCRAP will
print out the fractional part on the assembly printout if a mixed
number was entered in SALT. However, the machine language program
shifts off the fraction part in computing addresses.

FUNCTIONS
Functions have the form F(E), where F is the alphabetic name of a

function, and E is an expression as described under §2.1.5. The
following functions are defined in SALT and SCRAP.

SQRT(E) means —\J/E

SIN(E) Sine of E (automatic angie reduction)
COS(E) cosine of E (automatic angle reduction)#*
"TAN(E) tangent of E (automatic angle reduction):
ARCTAN(E) Arctangent of E

ARCSIN(E) Arcsine of E

ARCCOS(E) Arccosine of E

LOGTWO(E) long

10G(E) logyoE (common logarithm)

LN(E) logeE (natural logarithm)

ABS(E). |=]

EXP(E) oF

EXPTWO(E) 2

EXPTEN(E) 10"

ANGRED(E) E modulo 77 s in radians

s#Arguments of trigonometric functions must be in radians.
Additional functions may be defined by the user. See $ 6.1.
EXPRESSIONS

An EXPRESSION is a statement element or a combination of elements.
Numbers, variables, subscripted variables and functions are expressions.

If X and Y are expressions, then the following are also expressions:

+Y X/Y (means X—=Y)

Y X&Y (means X times Y)
X+Y X'y (means XY)
XY

() ((X)+(1)) (means X+Y, 1llustrating use of

' more parentheses than are
, required)

(X)

(~¥)

(+1)

Note that using parentheses when not required is permitted. If the
user attempts to input X++Y or any other case of two signs in jux=
taposition, the program will reject the statement and error return,
Examples of expressions are:

A%(X12)+B&X+C . meaning AXZ4BX+C
(A+2)/(N-1) = SQRT(2&A) meaning g:% - \/ZA

X
(X(1,3)/K) & ARCTAN(1.770) = Y'LOG(K/J) meaning _i} Arctan 1.770 -

K

K
log
y 10 J

2.1.6 KEYWORDS

Keywords relate elements in SALT statements in a manner that is easier
to 1llustrate than to define, In the following discussion, a "ta
refers to a symbolic location assigned to a SALT statement. See % 2.1.6.3.

2,1.6,1 ARITHMETIC STATEMENTS
Keywords used in arithmetic statements are:

equality sign

addition

subtraction
maltiplication

division

exponentiation
terminates the statement

O Ry o

In general, arithmetic statements have the form:

Variable: expression §

The value of the variable is deﬁned by the expression. For example:

LIST(A,B) :SQRT(LIST(1,19))+10&ALPHAS
GROUP :GROUP+1%

Arithmetic statements may have a location tage In the following
examples, MODIFY and COMPUTE are location tags assigned to their
respective statements,

MODIFY, X:X-1$
COMPUTE, ELEMENT(5) :ELEMENT(5) /ELEMENT(J) $

An arithmetic statement may contain any EXPRESSION that is proper
under the conditions of §2.1.5, describing EXPRESSIONS,.

2.1.6,2 INPUT/OUTPUT STATEMENTS
| Keywords used for input/output are:
READY, READZ, PRINT, CXP, TAB, and CRR
READY statements have the form

READY variable$ or
READY subscripted variable$

READY statements may have a location tag. One value only is typed in
on a READY statement, Examples qf proper READY statements are:

01, READY X$

READY - Y$

INPUT, READY MATRIX(I,J)$
READY TABLE(ITEM,6)$

23, READY DATA$

The format of the value typed in is discussed fully in the descrip-
"tion for Program Preparation Package Number Two.

These examples of proper formats should make the input format clear. The
format is variable, as shown.

41 7 053
-1 ..)4
1 +3,9599

+1.0 698,763

The numbers are typed using the top keys of the typewriter using any
common format for the values. In addition, extremely large or small
values may be inputlgsing the notation recognized by AN-007.1.

121416 means 21 X 10'°, 1)4-10 means 1l X 1010, 1,6+6 means 1.6 X 10°,
and so on. The form may be expressed *a+b, where "a" is any proper
value in common format times 10 to the *B- power, where |a|< 239-1, and

Ib)£ 511,

READZ

PRINT

CXp

TAB

Terminate the typing of the value with a carriage return, tab, space
or blank, '

statements have the form

READZ variable$ or
READZ subscripted variable$

READZ statements will not carry location tags thru the second pass of
SCRAP. Therefore, they may not be addressed by any tag given them in
SALT. If it is necessary to address them, a dummy statement before the
READZ statement may be used. The dummy statement is of the form

tag, CONTINUE$ or
tag, CRR$

The READZ causes the photoreader to try to read paper tape and to store
the input information in the memory, starting at the location assigned
to the variable., The information may be in any proper mode - N, C, F,
or L. The tape may be prepared off-line, After the last word to be
entered, there must be at least eight (8) spaces, then 122131 C/R S.
The eight spaces allow the logic time to change modes, the L22131 sets

‘the location counter to location 2213,1, the carriage return acts as an

enter code, and the letter S acts as a start code,
statements have the form

PRINT varisble§
For example,

PRINT ANSWER$ or
PRINT MATRIX(K,J)$

Print statements may have a location tag. The PRINT statement types

the value of the variable in fixed point format if the exponent -~ power
of ten == of the variable is between ~13 and +39. Otherwise, the value
is typed in floating point format. Any formatting of output must be
taken care of by the user, as no carriage return nor tab is included in
the PRINT subroutine.

statements have the form

CXP$

The CXP statement may be used as a check-point during program debugging,
If Sense Switch B is on,it will type the absolute memory location of the
CXP cormand that will be in the final SCRAP assembled machine language
program, followed by the contents of the A and R registers in floating
point format. The A and R are not destroyed. CXP statements may carry
a location tag.

statements have the form
TAB$
TAB statements may be tagged. This command causes the typewriter to tab

if and only if the tab defeat switch is in the off position. 'Otherwise,
the typewriter will carriage return.

CRB statements have the form

CRR$

CRR statements may be tagged. This command causes the typewriter to
letter shift and carriage return.

2.1.6.3 CONTROL STATEMENTS

A location tag is the symbolic name of a certain location. Location tags
are involved in most control statements. Tags are either all Arabic
nunerals or all alphabetic characters. The numerals may be from 0O
through 99. The location 00 is distinet from O, If more than two digits
are attempted as a tag, the SCRAP assembly will cut off and ignore the
excess leading numerals. As many as eight alphabetic characters may *e
used for a tag. Array and routine names should be restricted to seven
letters, because the SCRAP program places a K or an R in front of the
name, and if there are already eight letters, a misspelling will occur.
This does not necessarily cause an error in the final machine language
problem, however. A tag identifying a statement is followed by a comma,
as in the examples

DONE,GO TO FINISH$
18,K:K+M3

GO T0 statements are of the fom

. GOTO tag$ or
GO TO tagh

The GOTO statement may be tagged. This statement unconditionally'
transfers control to the location specified by the tag in the address.
Examples of GOTC statements are

23, GOTO START$
GOTO 14$,
ENDPASS, GO TO ITERATE$

IF " statements have two forms;

(a) IF (expression) minus, zero, plus $
(b) IF (SENSE n) on, off §

These statements may be tagged. In form (a), three location tags follow
the parentheses, They need not be distinct; that is, two tags may be
the same, or all three for that matter. Control is transferred to one
of these locations according to the value of (expression).

In form (b), n stands for B, C, or D, referring to the three sense switches
on the console, Two location tags follow the parentheses. Control is
"transferred to one of these locations according to the condition of the

gense switch referred to., Examples of proper IF statements are

TEST,IF(X-3.L4) REDO,REDO,OUT$
IF(SENSE D) OUTPUT,ITERATE$

In the first example, if X-3.l is negative or zero, control is trans-
ferred to location REDO., If X-3.L4 is positive, control is transferred
to OUT, In the second example, if sense switch D is on, control is
transferred to OUTPUT., Otherwise, control is transferred to ITERATE.

statements have the forn;
DO tag FOR variable l.1l,(inc.)u.l.$

The DO statement controls iteration loops. The variable may be a
variable or a subscript. The value of the variable goes from 1l.l., -
lower limit, to u.l, upper limit, by increments of inc, The tag specifie
the last statement in the range of the DO statement. For example,

LOOP, DO SWITCH FOR K 1(1)M$ means "perform all state=~
ments starting just past the DO statement down to and
including the SWITCH statement, with K=1 the first time,
K=2 the second time, and so on until incrementing K by 1
would make it greater than M."

DO ITERATE FOR K 1(2)7%
FUNCTION: THETA(K)/SIGMA(K)$
CRR$

PRINT FUNCTION$

TAB$

ITERATE, PRINT K$

This DO loop would print out

(actual value of function)

6,/0y : 1..0000000000
93/ T3 3,0000000000
95/ 0 5,0000000000
e,,/ 07 7.0000000000

Do loops may be contained within the range of another DO loop. A
simple example is

DO OUTPUT FOR K 1(1)3$
' Range of

Range of outer loop
PRINT MATRIX(K,J)¢ " inner loop

DO OQUTPUT FOR J 1(1)L$-

OUTPUT,CRR$

‘This would print

M3,

Note that the inner DO loop is done before control is transferred to
the outer DO loop. The DO loops are said to be "nested."

Note some restrictions on the use of DO loops. In the diagrams, the

brackets represent the range of statements under control of a DO
statement.,

(a) If the range of a DO statement includes another DO
statement, all statements in the range of this second
statement must also be in the ‘range of the first DO
statement.

Permitted Not Permitted

STOP

CONTINUE

ARRAY

10

(b) No transfer of control by IF or GOTO statements is permitted
into the range of any DO statement from outside its range,
since such transfers would not permit the DO loop to be
properly indexed,

Permitted Not permitted

) .

) W | —

(¢) The last statement in the range of a DO loop may not be an
IF or a GOTO statement. A CONTINUE statement may be used as
a dummy last statement.
statements have the form
STOP$

A STOP statement may be tagged. A halt is generated in the final machine

language program. The STOP should be used only at the end of a program,

usually, because it is not possible to continue the program after a
STOP merely by pressing start button. The location counter would have
to be changed before the program could be continued.

statements usually have the form
tag, CONTINUE$

CONTINUE statements are dummy statements which are used as last state-
ments in a DO loop instead of an IF or GOTO, and as a means of tagging
an ARRAY or READZ, which may not be directly tagged. For example:

START, CONTINUE$
ARRAY REGION(5,10)$
RDZ, CONTINUE$
READZ DATA$

statements have the form

ARRAY subscripted variable Eitems)$
or ARRAY subscripted variable {rows, columns)$

11

ARRAY statements may not be directly tagged, but may be addressed
using a dumny statement, as described in the preceding paragraph.
ARRAY statements save storage space for vectors and matrices, which
are to be defined and used in the program. ARRAY statements must come
before any reference whatsoever to a subscripted variable, and it is
provident to make all ARRAY statements the first statements in a SALT
progranm.

ARRAY LIST (23)$ would save storage for 23 floating point values in a
region called LIST. ARRAY TABLE (5,6)$ would save storage for 5 X 6 = 30
floating point values in a region called TABIE,

PAUSE statements have the unique form
PAUSE$

The SCRAP assembly will halt at this point in the program. For use
of this special instruction, see the SCRAP program description.

ENTER SCRAP statements have the unique form
ENTER SCRAP$

This permits the typing of SCRAP coding in the manner described in the
SCRAP program description. One enters SCRAP coding to accomplish that
which may not be done with SALT statements. The SALT compiler ordinarily
generates SCRAP coding for assembly by the SCRAP program. There are no
provisions in SALT for generating alphanumeric output. This problem is
solved by entering the proper SCRAP coding directly, using the ENTER SCRAP
statement. ‘

To input SCRAP coding, set margins at 10 and 90, and tab stops at 20, 35,
and 50, Suppose that two function values had been computed using regular
SALT coding; say X and X prime. Let these values be in symbolic locations
X and XPRIME. The SALT and SCRAP coding to label and output these values

could be:
CRR$
ENTER SCRAP$
. tab - ClA tab A tab L/S X F/S: C/R
tab TYA tab N tab 7760 C/R
tab FCA tab tab X C/R
tab PRINT tab tab C/R
tab CRR tab tab Cc/R
tab CLA tab A tab L/SXF/S': C/R
tab TYA tab N tab 7760 C/R
tab FCA tab tab XPRIME C/R
tab PRINT tab tab c/R
tab HALT tab tab ¢/R

GO TO SALT tab tab tab C/R

- 'ROUTINE

RETURN

12

In the above coding, L/S means letter shift, F/S means figure shift,

and C/R means carriage return, The address 7760 is a special code

used to type alphanmumeric characters. No more than 8 characters includ-
ing shifts may be in the heading. A and N are codes to identify the
information that follows the tab. "Tab" means depress the tab key. The
mnemonic codes CLA, TYA, etc., are typed in as shown. Depressing the
carriage return key terminates each line of SCRAP coding.

Always return to SALT to make an END$ statement. SALT.statements are
accepted after the line of SCRAP coding:

'GOTOSALT tab tab tab C/R

statements have the unique form
 ROUTINE name$

where "name" is the name of the subroutine. This statement allows the
construction of very simple subroutines. The use is illustrated in the
description of the RETURN statement,’
statements have the form

RETURN name$
where "name" is the name of the subroutine. The RETURN statement may
be tagged with the permissible rumerals or up to 7 alpha characters.
Examples of ROUTINE and RETURN statements are

ROUTINE FOFX$ |

Y:(BETA & X'3 +(BETA -7) & X'2)'(BFTA-2)$

RETURN FOFX$
or

" ROUTINE FACTOR$
« (subroutine)

GOBACK, RETURN FACTOR$
When a subroutine is to be used, it is entered with a GOTO name statement
or an IF statement. The SALT statements defining a subroutine should be
near or at the end of the SALT program, after a STOP or GOTO statement
which would prevent control passing sequentially to the coding in ROUTINE,.
In other words, do not place ROUTINE definition in the middle of a pro-
gram, unless care is taken to transfer control around the routine.
statements have the unique form

END$

This must be the very last statement in every SALT program, The compiler

‘will not accept further statements.

.3.
3.1

3,2

3.3

Lo
L.1.1

41,2
' 4.1.3

heloly
hel.5
Le2

2.1

b.2.2

L.2.3

L2,

13

RESTRICTIONS

The following letter combinations may not be used as names of variables
or subscripts.

(a) the single letter C

(b) any function name defined in SALT or SCRAP

(e) any symbolic cormand or pseudo-operation code defined in
SALT or SCRAP, such as CLA or HALT.

(d) -the name of any array prefixed by a X or an R, If, for
example, VECTOR is a subscripted variable, do not use
RVECTOR or KVECTOR.

(e) the name of any subroutine prefixed by an R, If ROUTINE

: SORT is defined in the program, do not use RSORT,
(£) any location tag

Certain restrictions must be recognized in the use of tags.

(a) Tags must be all alpha characters -- up to eight letters --
' or all Arabic numerals -- from 00 to 99. Note that 00 is

, a different tag from O, as Ol is different from 1.

(b) Do not use tags on a READZ statement or an ARRAY statement.

No statement éontaining an arithmetic expression may contain more than
128 variables, numbers, and keywords. ‘

OPERATING INSTRUCTIONS

Load SALT tape., The memory will be cleared by a short program at the
beginning of the tape, after which the tape will continue to load.

The tape may be verified by placing the tape in the photoreader past the
short memory zero program and pressing the Verify button.

Set typewriter margins at 10 and 90, Set tab stops at 20, 35, and 50.
Set tab override switch in the off position.

Advénce at least two folds of blank tape.
Press Start 1 to begin.'
TYPING STATEMENTS

The ALPHA light st be on and the COMPUTE 11ght off before typing each
character.

Each number or name must be separated by a space; figure shift, letter.
shift, or carriage return. A tab does not separate.

The symbols + =& / () ' : & and comma are individually recognized if
they are the first symbols of a new field, but not when contained within
a field, .

‘Typing,extra spaces, letter shifts, figure shifts, or carriage returns
- is permitted, where they do not change the total meaning.

4e2.5

h. 2.6

42,7

be2.8
ko3

Examine each statement for errors. If there are none, type § symbol

‘to enter the statement., If errors are discovered, type "line feed"

symbol next to the M key, and type in the correct statement, If an
error is recognized after the $ has been typed, and before the tape
has begun to punch, it may be corrected by depressing the stop button,
error reset button, and Start 1, Enter the correct statement. If

the incorrect statement has started punching, there is no remedy but
to start the whole operation over again, back to § h.l.1e It is
possible sometimes to patch the error by SALT statements which will
nmullify the error, or to correct the error during the SCRAP first pass,
but in general, this is difficult and perhaps unrewarding. If the
compiler program finds format errors in the statement, there will be an

"ERROR printout. Discover source of error, usually one of field termina-

tion or parenthesis usage, and retype the correct statement,

If there is an output error due to fast typing, press Error Reset button,
Start 1, and retype the statement.

If it is desired to enter SCRAP coding, the SCRAP program description
should be consulted. For simple typing of labels, see remarks under

" ENTER SCRAP statement.

TERMINATION - Every SALT program must end with the statement END$.
Using SCRAP assembly program

It is not necessary to be familiar with SCRAP to be able to process
most SALT programs. The procedure for using SALT and SCRAP is essentially
as follows:

(a) Load SALT compiler tape, and type in the SALT statements

' making up your program. After the last statement has been
punched, advance several folds of leader and tear off the
tape, leaving at least 2 folds for the next tape. It is
provident to write "SALT output, program"
on the tape punched by the SALT compiler program. Reset
the margins and tabs if they have been changed,

(b) Load the SCRAP Assembly tape. Set sense switch C off. Set
sense switch B on if printout of the first pass of SCRAP is
desired. The assembly is very much faster if B is off, Turn
sense switch D on. This will make absolute assignment of
symbolic locations on the first pass.

(e) Place the SALT punched output tape in the photoreader and
press Start 1.

(d) After the typewriter prints END OF FIRST PASS, advance
several folds of blank tape, and press Start 3. This is the .
SAVE routine of SCRAP. This is necessary in order to per=-
form the second pass of the assembly in the event the
computer memory contents will be changed between passes.

5.

15

It is improvident to ignore this procedure. After the

SAVE material is punched, advance several folds of leader

and tear off the first pass output. Leave at least 2 folds

of tape for the next ~»+put leader., Label this tape "SCRAP
FIRST PASS, program" to avoid confusing it with
the 5 other tapes which will be around the computer.

(e) Sense switch C must be off. Place the SCRAP FIRST PASS tape
in the photoreader and press. Start 2. If there has been any
change in the contents of computer memory since the first
pass was punched, relocd the SCRAP Assembly program, then the
SAVE tape, then place the SCRAP FIRST PASS ‘tape in the photo-
reader and press Start 2,

(f) When the second pass is completed, the absolute machine language
tape has been punched. Tear off and label this tape with the
name of the program. This tape will be much shorter than
either the SALT output or the SCRAP FIRST PASS tape. This
final tape will be in command format if sense switch B was on,
and in the more compact alpha format if sense switch B was off.,

(g) The final program is not yet in memory. If it is desired to
try the program, it must be read in through the photoreader,
Then it may be redumped with any dump routine if desired. After
loading the final program, load PPP-2, RECOMP II Program No. 50,
This will halt at 3000, the starting point of the final progranm,
Press Start to begin.

(h) If it is desired to have the entire program on a single tape,
see the description of PPP-2 for the procedure of punching those
subroutines utilized. When this is done, be certain to punch
also the calling sequence regions, :

EXAMPLE

An example of the use of SALT and SCRAP coding to solve a Mortgage Amortiza-
tion problem is shown, The first and second passes of the assembly are
included.

It is desired to compute the monthly payment on a loan, and to obtain a
complete amortization schedule including payment number, principal,

interest, and new balance. The formulas to compute the desired results
may be found in standard textbooks on the subject.

The relationships may be expressed as:
Monthly rate (MONRATE)=yearly rate = 12,

Monthly payment (MONPAY)=balance x monthly rate <= (1l-(monthly rate +1)-N) _
where N is the number of monthly payments. :

~ Interest (INTEREST)=balance x monthly rate.

Principal (PRINCIPL)=monthly payment - interest.,

Balance (BALANCE)=balance - principale

16
The monthly payment will remaiﬁ constant, the interest and balance for -
each month become less, and the principal becomes greater. '
In SALT coding, these relationships may be expressed as:
. MONRATE :RATE/12$
MONPAY:(BALANCE&MONRATE)/(1-MONRATE+1)'N)$
INTEREST:BAIANCE&MONRATE$

" PRINCIPLSMONPAY-INTEREST$

‘BALANCE s BALANCE-PRINCIPL$

These arithmetic statements are used in the SALE coding in the order
shown, MONRATE and MONPAY are computed only once. The INTEREST,
PRINCIPL, and BALANCE are computed for each month, under the control

of a DO statement. The DO statement contains the lower and upper limits
of the payment number, and the amount by which it is incremented.

SALT language may not be used to output headings. The more detailed
SCRAP language must be used for this purpose,

Explanation of Mortgage Amortization Program Coding

The tag START is used at the beginning to permit repetition of the pro-
gram with new data. SCRAP must be entered to type alphanumeric informa-
tion. In the line of coding tagged AREF, the letter shift (L/S) might
have been omitted, because after the initial carriage return, the type-
writer is left in letter shift. In line BREF, the spaces (sp) are for
appearance, OSimilarly, other spaces in alphabetic type addresses are
used to position the output. Blanks (b) are typed to make a total of

8 characters. The code 777n or 776n is used to specify the number of
characters to be typed. An n of zero specifies 8 characters. From 1
‘thru 7 characters are specified by an n of 1 thru 7 respectively.

After SCRAP is entered the second time, note that no L/S is used before
MONTHLY because the CRR leaves the typewrlter in letter shift. The CRR
macro types a L/S C/R.

The 3 READY commands are for the purpose of entering, from the typewriter,
the balance, rate and N when using the final assembled program.

The command pair

CLA G +0006020+5705300
STO N 2256

modifies the output subroutine calling sequence to allow 6 places to the
left of the decimal point, and 2 places to the right.

The DO statement specifies the first payment number as 1, and increments
.this number by 1 each time the statements in the loop are performed, until

17

the computations for the Nth payment are performed. The program then :
transfers to START, and the program may be repeated with new information

if desired.

In the Assignment Table of the first pass printout, the alpha characters
designated by ALFCNOS, ALFCNO6, ALFCN10, and ALFCN12 are printed in.
figure shift rather than letter shift. This is not an error. The type=-
writer is left in figure shift after typing the figures (XX) of any
ALFCNXX, The alpha characters of the other ALFCN words are in letter
shift because a letter shift was typed at the begimning of each of the
address fields. '

In the sample problem, 1200 was entered after BALANCE $ was typed, .09
was ‘entered after RATE was typed, and 2l was entered after N was typed.

START,CRR$

ENTER SCRA%$ - - |
- AREF CLA A YBALANCE

TYA N _ 7770
BREF CLA A% spw$ bbbb
TYA N ?% 'y
READY
FST , SA%QNCE
CLA A A p
TYA N % 1777 *
READY |
FST %RATE m
~ CLA A KN apsp
TYA N 77;ﬁ |
~ READY
FST | N
GOTOSALT
MONRATE :RATE/12$

MONPAY s (BALANCEGMONRATE) /(1=-(MONRATE+1) ' (=N)) $
~ ENTER SCRA®$

CRR |
CLA A MONTHLY .op
TYA N 7Z7o
CLA A PAYMENT b
TYA N TTTT
CLA c +0006020+5T705300
STO N 2256
FCA a MORPAY
PRINT
CRR o bbb
CLA A Apapp PO
TYA N
CLA A .;Zzasnr
TYA N 7770
TAB ,
- CLA A Zopopspp4pPR
TYA N 7720
gLﬁ- A 7?7%PAL
Y N »
TAB : |
CLA A by spapepep INT
TYA N ZZZO
CLA A ST bbb
TYA N |

1775

TAB | b b
an 4 e’
O i
GOTOSALT ‘ m
- CRR$

DO DONE FOR PAYMENT 1(1)N$
PRINT PAYMENT$

TAB$ |
INTEREST : BALANCEGMONRATE$
© PRINCIPL :MONPAY=| NTEREST$
PRINT PRINCIPL$ "
TAB$

PRINT INTEREST$
BALANCE : BALANCE-PRINC 1 PL$
TAB$

PRINT BALANCE$

DONE ,CRR$

GO TO START$

END$

19

LOCATION COMMAND

| ORG
START CRR

~ AREF CLA

TYA

. BREF CLA
TYA
READY
FST

 CLA

CTYA .
READY
FST
CLA

~TYA
'READY
FST
FCA
FOV
FST
FCS
FST
FCA
FAD
LN -
FMP
EXP
FST
FCA
FSB
FST
FCA
FMP
FDV
FST
CRR
CLA.
TYA
CLA
TYA
CLA
'STA
FCA
PRINT
CRR

(

. ADDRESS

+3000
(BALANCE)
+77£o
-

BALANCE
(RATE)

+TT77
RATE

fi
N

RATE

(+12)
MONRATE
N ;
STOREO1
MONRATE
(+1)

~ STOREO!

STOREO]1
(+1)

STOREO1
STOREO]
BALANCE
MONRATE
STOREO]1

- MONPAY

(MON(‘gHLY)
+
(hen)

“3183&020 +5705300
+2256
MONPAY

20

LOCATION COMMAND ADDRESS
CRR

R
: +
ai [
+
LA T
B L™
o +
e
+
TAB '
CLA" (INT)
TYA +7T7{0
Ay
o+
TAB : o :
%2_ (;)
+
g#: (gZLgNCE)
+
CRR 177
. FCA (+1)
TAG O1 FST PAYMENT
FCA - PAYMENT
PRINT
TAB
FCA BALANCE
FMP MONRATE
FST ' INTEREST
FCA MONPAY
FSB - INTEREST
FST PRINCIPL
FCA PRINCIPL
PRINT. ,
TAB '
FCA INTEREST
PRINT -
FCA BALANCE
FSB PRINCIPL
FST BALANCE
TAB
FCA BALANCE
PRINT

DONE CRR

ALFCNO1
ALFCNO2
ALFCNO
ALFCNO
FLOCNO1
FLOCNOZ
ALFCNgg
ALFCN
COMCNOT1
ALFCNgg
ALFCN

- ALFCNO9
- ALFCN10
ALFCN11
ALFCN12

START
AREF
BREF

- BALANCE
RATE

N
MONRATE
STOREO1
MONPAY
TAG 01
PAYMENT
INTEREST

PRINCIPL

DONE
ALFCNO1
ALFCNO2
ALFCNO
ALFCNOY
FLOCNO1
FLOCNO2
ALFCNO
ALFCN

COMCNO1

ALFCNO
ALFCN
ALFCNO9
ALFCN10

 ALFCN11

ALFCN12
ENDTABLE

FCA PAYMENT

FAD -~ (#1)
FST PAYMENT
FSB N
™I TAG 01+00001
TZE TAG 01+00001
TRA START
END |
- BALANCE
RATE
N
+12

+1 Y:
202

+000BB30+5705300

PAYMENT

PR

8,1:80=-)

INT
343s5

+0000000-0030000

+0000000=-0030010
+0000000=0030020
+0000000-0031100
+0000000-=0031120
+0000000=-0031140
+0000000-0031160
+0000000-0031200
+0000000-0031220
+0000000~0030460
+0000000-0031240
+0000000-0031260
+0000000-0031300
+0000000=~0030520
+0000000=0030670
+0000000-0030700
+0000000-0030710
+0000000-0030720
+0000000-0030730
+0000000-0030750
+0000000=0030770
+0000000=-0031

+0000000-0031010

~ +0000000-0031020

+ooooooo_00318§o
+0000000-~003 1050
+0000000-0031050
+0000000-003 1060
+0000000~0031070
+0000000-0031320

END FIRST PASS

22

LOCATION COMMAND

S

ORG
START °© TYC
TYC.
AREF CLA
TYA
BREF CLA
TYA
“TRA
TRA
FST
CLA
TYA
TRA
TRA
FST
CLA
TYA
TRA
TRA
FST
FCA
FDV
FST
FCS
FST
FCA
FAD
TRA
FMP
TRA
FST
FCA
FSB
FST
FCA
FMP
FDV
FST
TYC
TYC
CLA
TYA
CLA
TYA

"ADDRESS

ALFCSOI
+
i

+7764
it
C-00001

BALANCE

- ALFCNO3

AL

C~00001

RATE

ALFCNOh

16

C-00001

RATE
FLOCNO1
MONRATE
N
STOREO!1
MONRATE

- FLOCNO2

+27001
STOREO1
+27201
STOREOL1

FLOCNO2

STOREO1
STOREO1

BALANCE

MONRATE
STOREO1
MONPAY
+00370
+001
ALFCNO

ZZNOG

s

L30000
+7200370+7200100
+00306 TO+ 7277700

+0030700+ T2 77640

+5723100+5730030
+3531100+0030710

 +T2TTTT0+5723100

+5730051+3531120
+0030720+727TT40
+5723100+5730100
+3531140+3031120

+0530730+3531160

+3431140+3531200
+3031160+0430750
+5727001+0731200
+5727201+3531200

~ 4+3030750+0631200

+3531200+3031100
+0731160+0531200
+3531220+72003 70
+7200100+0030770
+T277700+0031000

23

LOCATION COMMAND

CLA
STO
FCA
TRA
TYC
TYC
TYC
TYC

. CLA
TYA
CCLA

TYA
TYC
TYC
CLA

TYA
CLA.

 TYA

TYC
TYC
CLA
TYA

CLA
TYA
TYC -
TYC
CLA
TYA

~ CLA

TYA
TYC
TYC

 FCA

_TAG O1 FST
FCA
TRA
TYC
TYC

"FCA
FMP
FST
FCA
FSB
FST

ADDRESS

COMCNO1

+2256
MON AY
+22g

*88% 0
o+

300100
ALFCNO

s

e

ALFCNO9

AZZZNIO

s
+00
ALFCN11

ALZZNIZ
oI

+00l00
ALFCNO

Ton
I§8?88

FLOCNOZ2
PAYMENT

- PAYMENT

+22531
+00330
+00700
BALANCE
MONRATE
INTEREST
MONPAY
INTEREST
PRINCIPL

+T27T770+0031010

+6022560+3031220

+5722531+7200370
+7200100+T200370
+7200100+0031020
+7277750+0031030
+T277700+7200330
+7200100+0031040
+T277700+0031050
+7277770+7200330
+7200100+003 1060
+T277700+0031070
+7277750+7200330
+7200100+003 1020
+7277750+0030670
+T27T700+7200370
+7200100+3030750
+3531240+3031240

+5722531+7200330

+7200100+3031100
+0731160+3531260
+3031220+0631260

2L

LOCATION COMMAND

DONE

ALFCNO1
- ALFCNO2
ALFCN
ALFC
FLOCNO1

FLOCNO2
ALFCNgg

“ALFCN
- COMCNO1

ALFCNOT

ALFCNOD
N

ALFCN10
ALFCN11
ALFCNI2

FCA
TRA
TYC
TYC
FCA
TRA
FCA
FSB

- FST

TYC
TYC
FCA
TRA
TYC
TYC
FCA
FAD
FST
FSB
™I
TZE
TRA
St
ALPHA
ALPHA
ALPHA

- ALPHA

DECIMAL
DECIMAL

ALPHA

ALPHA
COMMAND
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
END

ADDRESS

PRINCIPL
+22531
+00330
+00100
INTEREST
+22531
BALANCE
PRINCIPL
BSEANgE
+

20130

BALANCE

+22531
roo370
+00

PAYMENT
FLOCNO2
PAYMENT
N .
TAG - 014+00001
TAG 01400001
START

BALANCE)
RATE)
el
+12
(+1)

'sMONTHLY)

PAYMENT)

+0006020+5705300)

PAYMENT?
PR
INCIPAL)
INT)
EREST)

+3531300+3031300

+5722531+7200330
+7200100+3031260

- +5722531+3031100

+0631300+3531100
+7200330+7200100
+3031100+5722531
+T200370+7200100

‘+3031240+0430750

+3531240+063 1140

+5130461+5030461

+573uuuo+huzgzyo
+7710710=1 o1
+7th hl-ogo%ooo

520700-0&&1000
+ 541020~0000000
+6000000-0000000
+0000000~-0000020

+4000000-0000000

+ooooooo-0000001
SRR
-20&1020-5363%50
WA AR RV

- 1h 43 o+gpz?uoo

+ hhlozo 063100
-052022|+ooooooo

25

26

BALANCE $1200

RATE ,09
N 24
MONTHLY PAYMENT 54,82
 PAYMENT PRINCIPAL INTEREST BALANCE
1.00 g.oo 1154.18
2'88 .66 1608 .01
N 1
,88 . 101h Eu
.00 . g:S 82
.00 . Zl Z
.00 . 8 6
2o - e
10,00 Z oo
1.

- —s [\ N DLW UV ONONOYI~I—I OO
®© © 06 06 06 06 06 06 0606 6 066606 06 006 00 0 0
00N ONO =~J =\UN\DI~] O =00\ JI\O N ONOW

0O OV 000 GV 0BT ——J0 O CARAOUT N QO — 00
QINDTEFRIERA RS EBGRRISS

= = N = = O\ CO~INIHLD O~ == QOO O\=s O\—

-
o
8883
UINJIVIIUIVIVOI\IOI\IIUIVL e
F=FOWW N NN = = O O O\NO\O\D COCo~I~I~I ONO\OI
- ® ® 6 0 06 6 86 6 0 6 0606 0 0 o e o 0

13.00° 5 6.76
15200 P
16,00 u22.13
13,00 320,47
19,00 268.02 |
20,00 215.2
21,00 165.03
22,00 108,42
23,00 54,41

2k, 00 1 - +00

6.
6.1

642

27

CODING INFORMATION

FUNCTION TABLE: The SALT compiler contains a list of permissible func-
tion names in locations 2300 to 2327. Three function names -- SQRT, EXP,
and IN -~ must be included. The names for the other functions may be
changed if necessary. The standard revised SALT compiler program recog-
nizes the gunction names described in §2.l.4, whose names are listed in
2300 - 2316, . -

Function names in this table are right justified; preceded by as many
blanks as are necessary to make eight characters total. There must be
a minus zero word after the list.

The SALT compiler does not itself generate any coding for the functions,
The function name is punched out during the SALT phase, to be recognized
as a SCRAP macro, The functions recognized by the standard revised SALT
are defined as macros in the revised SCRAP, SCRAP must generate calling
sequences to the subroutines which will evaluate the function.

- ORIGIN: SALT sets up all program starting locations to be 3000.,0. If

for some reason it is desired to change this starting location, enter
the new location in the following manner, before pressing Start 1.

(a) Set location counter to 0502,0

(b) Turn "fill tab" on typewriter down, and depress F key.

(¢) Type + blank blank XXXX blank C/R, where XXXX is the new
origin,

APPENDIX

TO
RECOMP II USERS' PROGRAM NO. 103l

PROGRAM TITLE: SIGNAL CORP RECOMP ALGEBRAIC TRANSLATOR - SALT

PROGRAM CLASSIFICATION: Executive and Control

AUTHOR:

CHECKED BY:
PURPOSE:

DATE:

H. D. Goddard
Autonetics Industrial Products

RECOMP II Users' Program No. 1034 has been

modified to allow typing of SALT statements
as rapidly as desired, initialize the SALT

program for re-use and to permit processing
of off-line tapes typed in SALT language.

H. D. Goddard

The Signal Corps RECOMP Algebraic Translator
(SALT) is a one pass compiler system which
translates from algebraic statements into
a SCRAP assembly program.

July, 1961

Published by

RECUMP Users' Library
at

AUTONETICS INDUSTRIAL PRODUCTS
A DIVISION OF NORTH AMERICAN AVIATION, INC.
3400 E, 70th Street, Long Beach 5, Calif.

PROGRAM TITLE:

SIGNAL CORP RECOMP ALGEBRAIC TRANSLATUR - SALT

RECOMP II Users' Program No. 103k issued in July, 1961 permits the following:

I

II

III

SALT

statements may be typed as rapidly as desired. However typing speed

is still restricted when typing SCRAP coding via an ENTER SCRAP statement.

The SALT program may be initialized for re-use by depressing ERROR RESET and
START 2, Thus it is not necessary to re-load the SALT tape if compiling a
new program.

NOTE: After initializing for re-use, advance at least two folds of tape and

depress START 1 if typewriter input is to be used or place paper tape
in photoreader and depress START 3 if paper tape input is to be used.

The SALT program can now process an offline prepared tape that has been typed
in SALT language.

To use the SALT program and a tape prepared offline, the following is necess-

ary’

1.

NOTE:

NOTE:

Prepare the offline tape. The SALT input should be typed just as it
would be on line.

There should be at least eight blanks on the tape between each character.
A Friden Flexowriter model FPC-5 modified according to RECOMP Technical
Bulletin No. 21 will automatically insert blanks between each character.

Load and verify the SALT program. To verify, place the program tape in
the photoreader past the zero memory section that is at the beginning of
the tape.

Set tab override switch in the ON position.
Place offline prepared tape in photoreader.

Depress START 3.

This will generate a SALT punched tape. Further processing (i.e. the
generation of the 1lst and 2nd passes in SCRAP) is the same as specified
in RECOMP II Users' Program No. 103l issued in January, 1961.

If the SALT program detects an error while processing an offline prepar-
ed tape, it will do the following:

(a) 1f it is a SALT statement, it will print ERROR or PAIR ERROR
followed by a print out of the statement.

(b) If it is an error in SCRAP coding (i.e. symbolic coding entered
via an ENTER SCRAP statement), it will print SCRAP CODE ERROR.
There will be no print out of the error. ‘

See RECOMP Technical Bulletin No., 21 for information concerning the
preparation and use of a decimal data tape.

