
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 8, 601416 (1978) 

Experience with the Universal Intermediate 
Language Janus 

B. K. HADDON AND W. M. WAITE 

Department of Electrical Engineering, University of Colwado, Boulder, Colorado 80309, U.S.A. 

SUMMARY 
Janus k a symbolic language intended for use as an intermediate language in the transporta- 
tion of software. Since its initial design four years ago, it has been used to implement a 
portable Pascal compiler, in the design of an Algol 68 compiler, and to realize a portable 
package of mathematical routines. These experiences, together with a critical re-evaluation 
of the design criteria, have led to some modification of the specillcations of Janus and an 
increased confidence in the viability of the approach. They have also indicated some problems 
yet to be solved. This paper reviews the significant lessons which we have learned, and quotes 
some results which support our confidence. 

KEY WORDS Portability Intermediate language UNCOL Janus Abstract machine model 

INTRODUCTION 
Janus is a symbolic language used to embody the information normally passed from the 
analysis phase of a compiler to the code generat0r.l Its main purpose is to serve as an 
intermediate language to enhance the portability of software written in high-level languages.* 
It has also been successfully used by human programmers for coding low-level support 
routines. 

Our conceptual orientation is that the Janus language is the ‘assembly’ language for the 
Janus machine, and the structure of the language reflects explicitly the structure of the 
modelled machine. The reasons for depending so strongly upon an abstract machine model 
are explained elsewhere,8 but one of them should be reiterated here: By thinking in terms 
of a machine, we provide ourselves with an Occam’s razor when considering extensions of 
or modifications to the language. In attempting to accommodate the intermediate language 
to some higher-level feature, we look for a realization in terms of a machine, and then give it 
syntactic and semantic form. 

We will adopt the following convention for the remainder of this paper: the word 
‘compiler’ shall be used when speaking of the language processor that accepts a high-level 
source program and produces the intermediate Janus text, and the word ‘translator’ shall 
be used when the processor that generates target code from the Janus is intended. 

In the next section we shall briefly trace the history of Janus, placing the projects from 
which we have drawn our experience into their proper context. The following section 
summarizes some of the changes made to the Janus abstract machine model as a result of 
the experience and insight gained since its initial design. Since the most detailed exposition 

0038-6644/78/0508-0601$01.00 
@ 1978 by John Wiley & Sons, Ltd. 

601 

Received 16 January 1978 
Revised 3 May 1978 



602 B. K. HADDON AND W. M. WAITE 

of the original design was given by Coleman,2 we shall refer to it as the ‘Coleman machine’ 
(although imputing no sole responsibility). 

Our attempts to develop a suitable model for temporary storage are presented in some 
detail in the third section. The problems discussed there are indicative of a theme which 
recurs throughout the paper: in order to preserve information for the translator from the 
compilation phase the Janus code must reflect as far as possible what is happening, and 
avoid attempting to dictate how to accomplish it. One of the most important lessons to be 
learned from our experience is the central role played by this principle. 

Several significant problems remain unresolved ; we indicate their dimensions but do not 
attempt to speculate on their solution. In  spite of these difficulties, we believe Janus to be a 
viable tool and present some results in support of this belief. 

At the appropriate points we shall review the particular aspects of Janus necessary to 
understand our arguments ; we assume, however, that the reader is thoroughly familiar 
with the general concepts of programming language design and implementation.* 

HISTORY 

Janus was first described by Coleman et aZ.,l and the abstract machine model that is 
represented by the Janus language was later further refined by Coleman.2 The initial work 
relied heavily upon earlier experience with the use of abstract machine models to implement 
portable  oftw ware,^ which indicated that the models employed had many features in 
common. Thus the possibility of a universal model incorporating these common features 
was examined, and resulted in the Janus abstract machine. This model has evolved as we have 
gained further experience, leading to the present definit i~n.~ 

The Janus abstraction 
The design of Janus is based upon the observation that the translation of a programming 

language can be divided into two tasks: the analysis of the source text to express the 
program in terms of the abstractions of the given programming language, and the translation 
from the abstractions of the programming language to the abstractions of the target machine. 

One directing principle in the design of the Janus language is that it be a symbolic 
representation of the interface between these tasks, and incorporate in its structure and 
instruction repertoire those abstractions found in many programming languages. The 
suitability of Janus for the representation of algorithmic processes is in part a measure of 
the effectiveness of these abstractions in higher-level languages. Another directing principle 
for the design of Janus is that the re-expression of Janus in terms of target abstractions 
should be as inexpensive (both intellectually and algorithmically) as is feasible. This 
implies that no concept in Janus should be too far away from one which we know can be 
implemented with relative convenience on current hardware. I t  is also important that we 
are able to analyse the syntactic form of Janus with tools at our command (such as the 
STAGE2 macro processor6* ’). As will become apparent in the subsequent discussion, 
achievement of just the right balance between these two principles has been, and continues 
to be, a task requiring attention to both broad generalizations and individual details. 

The PascalJ compiler 
The PascalJ compiler project was an attempt within our group to construct a fully self- 

porting (‘bootstrappable’) system implementing the Pascal language.* The aim of this 



JANUS 603 

project was to write the compiler in Pascal, to compile the compiler using the Pascal system 
available to us, then to use the resulting compiled program to compile its own source, 
hence obtaining a Janus version of the compiler. The full bootstrap could then be accom- 
plished by implementing Janus on the target machine. These aims were in fact realized: the 
PascalJ compiler was developed on a CDC6400, and then transported to a Sigma 3 computer 
here and to an Interdata machine at the University of Melbourne. (This latter implementa- 
tion was carried out by a person not a member of our g r o ~ p . ~ )  The development of this 
compiler refined our notions concerning many details of Janus, particularly those associated 
with the control of the lifetimes (extent) of temporary objects (see the section entitled 
Allocation of Temporaries). However, the most important lessons were those associated 
with the effort needed to perform the full bootstrap and with the engineering of the compiler 
itself. 

In order to transport the compiler, we found it necessary to implement Janus (via 
STAGE2) in full, as we had placed no limitations on the facilities of Janus used within the 
compiler. Experience led to the estimate that at least six man-months would be required to 
define the Janus machine in terms of a target machine, assuming reasonable familiarity with 
both on the part of the implementor. This situation has been improved considerably by the 
development of lower-level abstractions which ease implementation at the cost of restricting 
the class of target computers (see discussion in the section entitled Some Results). 

This initial version of the PascalJ compiler was constructed as a monolithic one-pass 
processor. This presented no problems when executing on a sufficiently large machine, 
apart from the cost of compiling the system using the available Pascal compiler. However, 
the PascalJ compiler was only able to execute on smaller machines by manipulating the 
run-time image to permit considerable overlaying during execution. Although these 
observations are only incidental to the design of the Janus language, they do serve to 
emphasize that portability is achieved only through total system engineering; guaranteeing 
the portability of the intermediate language is not of itself sufficient. 

Algol 68 
The use of the Janus intermediate language in the design of an Algol 68 compilerlo has 

further tested the validity of the abstract modelling concept. The designer has expressed 
some doubt about the sufficiency of the Janus machine, but states that ‘the effects of 
choosing Janus as the intermediate code have been a considerable clarification of the object 
code generator’. 

A source of difficulty has been his design objective of writing the run-time storage 
management routines in Algol 68 itself. We do not have information on precisely how this 
objective is to be accomplished, but it has been proposed that the compiler should be able 
to generate declarations in the Janus code that specifically supply information for the 
garbage collector. Such information is not normally available to the Algol 68 programmer,ll 
hence we expect that additional operations will have to be provided to access this information 
at the Algol 68 level. 

The Janus definition assumes the existence of a minimal storage management scheme in 
order to implement its GRAB and FREE operations. The implementation of Algol 68 
outlined above presumes some interaction with the Janus manager, and thus requires it to 
understand some of the details of the Algol 68 storage organization. This we regard as 
being most unfortunate, as it implies that portions of a Janus implementation would have 
to be rewritten depending on the high-level language being modelled. 



604 B. K. HADDON AND W. M. WAITE 

It is our opinion that the storage management requirements of high-level languages are 
an intimate part of each language, and thus exist at a higher level of abstraction than that of 
the Janus machine (as in the case of parameter passing conventions, where Janus provides 
only a value mechanism as this can be used to implement mechanisms via suitable code 
sequences). The portability of the storage manager for a particular language is then attained 
by writing it in Janus (see below) relying upon the GRAB and FREE primitives merely to 
perform the final mapping into the addressing structure of the target machine. 

Machine-independent mathematical routines 
As part of the total approach to the attainment of portability, a set of basic mathematical 

routines based on the work of Codyl2$ has been coded in Janus. Careful attention was paid 
to parameterizing the code in order to preserve the accuracy of the algorithms across a range 
of precisions, number systems and bases (see the section on Some Results). 

It is important to note that these routines were hand-coded directly in Janus. At the time 
Janus was conceived it was not thought that humans would ever need to write Janus code, 
and still the primary intention is that Janus be a compiler intermediate language. We have 
found for these service routines, however, that hand-coding gives a more appropriate 
degree of control over both the Janus code and the generated target code (the classic 
reason for working in assembly language). Surprisingly, Janus coding has not been found 
to be all that difficult. We are now considering writing a more extensive run-time support 
system in Janus, particularly implementing the activation stack for recursive procedures. 

In order to write the mathematical routines, and to be able to contemplate the recursion 
support, we had to refine our notions concerning non-recursive procedures (especially the 
specification of the non-local environment of such procedures). Problems with the denota- 
tion of real numbers were also encountered. (Both of these subjects are discussed in detail 
below.) 

CHANGES FROM T H E  COLEMAN MACHINE 

The gross organization of the Coleman machine has survived largely intact into the current 
model. The processor, memory and LIFO stack constitute major structures of the present 
Janus machine as they did in the Coleman machine, although each is changed in detail. The 
instruction format of the Coleman machine is also altered only in detail. 

Accumulator and index register 
The Coleman machine incorporated an accumulator and an index register as separate 

structures. It had been felt that the combination of an explicit accumulator and a stack 
surpassed the pure stack as a model for single-accumulator and multiple-register machines. 
I n  practice it was found that a compiler for the Janus machine had to perform a register 
allocation in order to be able to use the accumulator (and the index register), and then 
another register allocation scheme was required in translating the Janus to a target machine. 
Apart from the duplication of effort, it is not clear that an optimal strategy at the Janus level 
would (or even could) be translated to an optimal strategy on the target machine. The 
reason is that the distinction between the accumulator and the stack at the Janus level of 
abstraction could cause some shuffling of operands unnecessary on a multiple-register 
machine or pure stack machine, and the translator to the target machine could not detect this 
as being waste motion. 



JANUS 605 

The properties of the index register in the Coleman machine effectively gave it the 
capabilities of a second accumulator, which proved difficult to implement if the target 
machine index register did not have these properties, or if a second accumulator was not 
available. An explicit assumption in the Coleman design was that index computations could 
be performed while holding a value of interest in the accumulator. 

These difficulties were circumvented by making the stack an operand stack which allows 
operations to be performed upon the top element or elements. This removed the need for 
an accumulator as a separate structure, and the associated allocation problem. The inherent 
pushdown nature of a stack permits index computations to be performed while holding 
values of interest further down the stack. Thus the index register is now regarded simply as 
a register in the processor, hahng no computational ability, serving only as a possible 
element in the memory accessing function. The limitation on the lifetime of a value in the 
index register (available for use in the next instruction only) leaves the implementor free to 
use any indexing method that he wishes (index register, indirection, instruction modifica- 
tion, etc.). 

Contrary to the impression given above, we have not created a ‘pure’ stack machine. 
Translation of pure stack code for a one-accumulator machine (or similar) requires con- 
textual information to be stored so that operators can be combined with the corresponding 
operand addresses. This problem is discussed fully in the original design paper.l Hence the 
Janus code is ‘collapsed’, operations being able to specify at most one operand when desired. 
The expansion of this type of instruction format for a stack machine or a multiple-register 
machine presents no difficulties. 

Memory structure 
The Coleman machine provided a memory essentially linear in structure, divided into a 

number of categories. A reference to memory within a category consisted of a symbolic 
address and an index formed by summing fixed and variable offsets. 

The Janus machine now incorporates a third part in a memory reference: a displacement 
within the structure located above. A further addition to the Janus machine is the base 
register, which can hold a representation of the three-part composite address. Like the index 
register, it is regarded as a part of the processor, taking part only in the addressing 
mechanism, and the value only being available for use in the next instruction. 

These mechanisms give the Janus memory the tree structure of the state used in the 
Vienna Definition Language (VDL).14* l5 Janus is thus able to represent any memory 
structure that can be described in the VDL. A memory access starts from some node in the 
memory structure. The symbolic address, the index and the displacement (any or all of 
which may be null) are treated as a named selector, a computed selector, and another named 
selector respectively, to arrive at a new node. By means of the base register, a further 
addressing sequence can be commenced from the new node. The category part of an 
address can be thought of as a precomputed node (whose relation to the root node of the 
memory is not specified). This addressing scheme handles the Pascal and Algol 68 models 
with little difficulty; an awkward linearization was sometimes required for the Coleman 
machine. This linearization forced a compiler to specify how a structured record was 
to be represented, rather than informing the translator what fields were present in the 
structure. 

Amongst the categories currently defined are STATIC, whose extent is the entire 
program; INTERN, whose extent is one module (there may be more than one module per 
program and/or more than one procedure per module); and DISP, whose extent is that of 



606 B. K. HADDON AND W. M. WAITE 

the recursive procedure containing the declaration. The category field of an instruction 
address may also specify BASED, indicating the current node is given by the base register. 

These changes have caused a small alteration in the instruction format, but it is still 
recognizably the original Coleman style for instructions containing references. The 
Coleman machine had a second format for mode conversions, but this has been abandoned 
entirely in favour of explicit operators performing conversions in specified ways. All in all, 
the concept of mode has not been found to be as important as was assumed in the design of 
the Coleman machine. What was the mode field of an instruction is now considered a 
modifier of the operator, and modifiers that are not the names of modes are permitted. 

Procedure calling 
The procedure call of the Coleman machine was modelled upon the commonly used 

method of parameter passing which stores the parameters or pointers to the parameters in a 
block associated with the call. Thus the calling sequence included both code to evaluate the 
parameters and storage allocation declarations (see Figure l(b)). This form considered 
primariIy the needs of non-recursive invocation, although the authors stated that they 
realized that an alternate form for recursive calls was required. In  the latter case, the para- 
meters cannot remain bound to the calling sequence itself-by some mechanism they must 
be associated with each invocation, usually by copying, or directly storing, onto an activation 
stack. This implies that the storage reservation be performed elsewhere, making the 
declarations in the Coleman form redundant. The present form of the procedure call in 

F(1, A, B + C, D[I + 31) 

CALL REAL PROC F() 
ARGIS INT CONST C1 () A 1 
ARGIS,I REAL LOCAL A() 
LOAD REAL LOCAL B() 
ADD REAL LOCAL C() 
STARG REAL TEMP T1() 
LDX INT LOCAL I() 
MPX INT CONST C2() E REAL 
LOAD,I REAL LOCAL D(3*REAL) + 
STARG ADDR ARG L1(3*ADDR) 
RJMP REAL PROC F() 

SPACE ADDR ARG (1) A C1 
SPACE ADDR ARG (1) A A 
SPACE ADDR ARG (1) A T1 
SPACE ADDR ARG (1) 
CEND REAL PROC F(1) 

SPACE ADDR ARG Ll(4) + 

(b) 

(4 
CALL REAL R F01 
ARG(N) INT A INT 1 
ARGLOC(N) ADDR LOCAL A02 
LOAD REAL LOCAL B03 
ADD REAL LOCAL C04 
ARG(N) REAL 
LOAD INT LOCAL 105 
ADD INT A INT 3 
INDEX INT 
ARGLOC(N) ADDR D06(0)REAL* 
CEND REAL R FO1 

(4 

Figure 1. Example of a procedure call: (a) a procedure call; (a) Coleman code for (a); (c) Janw code for (a)  

Janus is illustrated in Figure l(c). By comparison of Figures l(b) and l(c) it can be seen 
that the form of a procedure call in the Coleman machine was more concerned with the 
how's of accomplishing the parameter and flow of control linkage than the present Janus 
model. The present model does, however, retain sufficient information to generate a local 
parameter block if this method is still to be used for non-recursive procedures. 

The more significant consideration is that of establishing the environment for the 
execution of the procedure. For recursive procedures, we have adopted the usual model.16* l7 



JANUS 607 

A display level is specified for each recursive procedure-the sequence of run-time calls 
builds the addressing environment. A similarly convenient model for non-recursive 
procedures is not known to us, although it is obvious that any model must at least include 
the FORTRAN conventions for local storage and those FORTRAN extensions allowing 
multiple entry points. It was these considerations that led to the definition of INTERN 
category storage. 

We have identified the possible necessity of a third type of procedure call to communicate 
with operating system supplied functions, particularly those associated with input/output. 
In  many systems the calling conventions for these functions are distinct from subroutine 
library conventions. At the present time our experience in this area is limited; it has 
sufficed to simply flag the procedure name as the name of a system function, and to provide 
individual translation rules. 

Division 
Not all the problems that we have encountered affect the gross structure and organization 

of the Janus machine. Many small details must be decided using a variety of different criteria. 
Each demonstrates an aspect of the difficulty in steering a line between our dual objectives. 

For some time, we included in the definition of Janus two integer division operators: 

DIVN [a/bJ Result truncated towards 

DIVZ sign(a/b)*labs(a)/abs(b)J Result truncated towards 
Negative infinity 

Zero 

We reasoned that both were necessary, as it is expensive to synthesize one from the other. 
The argument went that if a high-level language specified one of these operations for its 
integer division, e.g. DIVN, and Janus contained only DIVZ, then a compiler would have 
to generate Janus code to simulate the effect of DIVN. But a given target machine may in 
fact have only a DIVN instruction. But the translator seeing only the DIVZ in the Janus 
text must generate code using the DIVN of the target machine to simulate the effect of the 
DIVZ (the ‘how’ versus ‘what’ effect again)! However, a survey of 20 different machines 
found only one (the EELM KDF91e) that had a DIVN, and a similar survey of high-level 
languages found none that actually specified their integer division to be DIVN (with the 
reservation that a proportion of the languages did not specify the results obtained from 
performing integer division with operands of opposite sign-the only condition under 
which DIVN and DIVZ give different results). As a result, we have deleted DIVN from 
the operator re~ert0ire. l~ 

By a similar line of reasoning, we have two operators for real-to-integer conversion, 
TRUNCN and TRUNCZ performing respectively the truncations described above.le 
Contrary to the findings on division, both forms arise naturally due to the popular use of 
shifts for this conversion. The effect of shifting off the fractional part in a sign-modulus or 
one’s-complement representation is TRUNCZ, in a two’s-complement representation is 
TRUNCN. These questions have also been addressed more recently by Wirth20 in consider- 
ing divide-by-two optimizations. 

It is also interesting to note the effect of the number system on the test for oddness. In 
sign-modulus or two’s-complement it is only necessary to inspect the least significant bit 
of an integer (odd = Isbit). In  a one’s-complement representation, this property is a function 
of the sign and the least significant bit (odd = sign xor Isbit). 



608 B. K. HADDON AND W. M. WAITE 

Real numbers 
In the representation of real numbers in the Coleman version of the language the decimal 

point of the significand was implicitly at the right, interpreting the significand as an integer. 
This has proved to complicate the calculation of the exponent by the translator, since the 
translator is forced to continue counting digits in the significand even after they cease to be 
significant. We have therefore changed our conventions so that the decimai point is now 
assumed to be at the left, interpreting the significand as a fraction. 

In developing the package of mathematical routines we have realized that the accuracy 
of real constants can be critical, yet that simply increasing the number of significant digits 
is not a solution. Apart from the potential loss of significance in the conversion from a 
decimal to another base,21 the translator will frequently have significance limitations that 
contribute to the loss of accuracy. An example will better illustrate this problem. 

In order to preserve accuracy for large argument values, one of the common range 
reduction techniques for sine/cosine12 requires that a particular constant be expressed 
exactly. Consider, as an example, the following 13-bit value (expressed in octal notation) : 

The representation of this value in decimal notation is 

Thus, 34 bits of computational accuracy are required to process the decimal representation 
to produce the exact 13-bit value. An implementor for a machine with 24 bits of floating- 
point accuracy may decide to scan eight, or generously nine, decimal digits of such 
constants, unintentionally introducing catastrophic errors. 

As a consequence of the above, we have introduced real denotations with a binary base 
into Janus. Yet this is not a complete solution, as the compiler then has to be parameterized 
to produce the correct Janus form of constants depending upon the features of the target 
machine (the decimal form still being preferable for decimal machines). Analogous problems 
affecting accuracy that depend upon decimal, binary or hexadecimal normalization also 
exist. 

3.1 104 

3.141 601 5625 

ALLOCATION OF TEMPORARIES 

In compiling a higher-level language, it is frequently necessary for the compiler to 
generate a variable to hold an intermediate result. Examples are values of subexpres- 
sions, array indexes and loop limits. These variables are anonymous to the high-level 
programmer (he does not have names with which to refer to them) and hence the compiler 
has complete control over the pattern of use. 

Many temporaries, particularly those arising as intermediate results in expressions, are 
used in a last-in, first-out manner. The value is usually required but once, as it only enters 
into the computation of the remainder of the expression. The Janus operand stack models 
this style of use, the stack having the required LIFO property, and each operand being 
available at the top of the stack to be combined with others in the desired order. 

Other temporaries, for example those which are the values of common subexpressions, do 
not follow this pattern. These are inherently used more than once, and do not follow the 
LIFO discipline. Manipulation of the stack (i.e. a set of operators to permute and duplicate 
the top few elements in several ways) was considered briefly as a solution, but was rejected 
because it is difficult to recover the intent of these manipulations when translating for a 
non-stack machine. The reason is that such a stack manipulation scheme hides from the 
translator that a particular value is being preserved for later use, as many other objects are 



JANUS 609 

moved just to accomplish the desired end. Similarly, the existence of the accumulator in the 
Coleman machine focused attention upon how to shuffle data to and from the stack rather 
than upon what operations were to be executed. 

The solution adopted for temporaries not following the stack pattern is to have the 
compiler give them names (symbols) in TEMP category storage, thus allowing multiple 
reference and explicitly informing the translator of the purpose of these ,variables. Additional 
pseudo-operations are used to give the details of the variable (e.g. mode) and its final use. 

Limitations on use of temporaries 
With all temporary variables, the intention is that it should be possible for the translator 

to allocate registers (or their equivalent) as often as possible. A translation for a one 
accumulator machine would frequently have the accumulator represent the top stack 
element-a more sophisticated translation for many register machine could manage to use 
registers for several stack elements as well as non-stack temporaries. However, without a 
global analysis of flow of control, this type of optimization is only possible within a basic 
block (a section of code having only one entry point). 

Figure 2 shows a reasonable representation of a pretested count-controlled loop, assuming 
the body of the loop leaves the stack in its original state. This formulation implicitly attempts 
to keep the counter in registers, as would a target machine assembly language programmer 
if he had the registers at his disposal. Unfortunately, the state of the stack cannot be 

LOAD INT LOCAL G201. 
JMP R L21. ENTER LOOP AT BOTTOM 
LOC L18. 
SUB INT A INT 1. 

COUNT FOR LOOP 

LABEL AT TOP OF LOOP 
DECREMENT COUNT 

LOC L21. 
CMP INT A INT 0. 
JMP NE R L18. 

BODY OF LOOP 

BOTTOM OF LOOP 
TEST END 
LOOP I F  NECESSARY 

Figure 2. A loop that does not work 

determined at the label LOC L18 without looking ahead to the jump that references it. In 
this particular example, the stack state happens to be identical to that at the line previous 
to the LOC, but it is important to note this cannot be guaranteed. Note further that this 
sequence of code presents no problem on a real stack machine, or in an implementation that 
simulates a stack during execution. The problem comes from attempting to resolve the 
stack accesses into an equivalent sequence of register or memory accesses at translation 
time. 

We have investigated the use of pseudo-operations at each label to specify the stack state 
-this can be an enormous amount of information, mostly not required, and, where a label 



610 B. K. HADDON AND W. M. WAITE 

is not anonymous (i.e. corresponds to a programmer-defined label), can require the 
compiler to examine the global flow of the source program. We thought for a time we had a 
solution using named temporaries, but there is another aspect of the problem that invalidated 
this approach. 

The form of this proposed solution is illustrated in Figure 3. It essehtially moves the 
contents of the stack to named temporaries (oniy one element of the stack is illustrated). 
No extra target code is implied. A STORE(N) from the stack to the named temporary 

LOAD INT LOCAL G201. 
TEMP INT NONREC T35. 
STORE(N) INT TEMP T35. 
JMP RL21. 
LOC L18. 
LOAD INT TEMP T35. 
SUB INT A INT 1. 
STORE (N) INT TEMP T35. 

(1 ) 

LOC L21. 
(2) LOAD INT TEMP T35. 

CMP(N) INT A INT 0. 
JMP NE R L18. 
RELEASE INT NONREC T35. 

Figure 3. Another loop that does not work 

variable requires that the translator note that the register (or other location) that was the 
top of the stack is now the named temporary, and that the top of stack is now elsewhere (or 
non-existent). Similarly, a LOAD from a named temporary does not necessarily require 
the generation of code at the target level. The point in using named temporaries is to give 
the translator a ‘handle’ on the values. 

The difficulty is ‘standardization’. In  the example of Figure 2, let us assume that some 
sequence of actions has caused the top of the stack to be in some register R2. Assuming also 
a solution to the state of the stack conundrum, it is likely that at LOC L18 this register will 
still be the top of the stack. The problem is to guarantee that at LOC L21 the registers 
assigned to holding the elements of the stack are precisely the same. Since the code in the 
body of the loop is quite arbitrary (perhaps containing a procedure call requiring the 
registers to be flushed and restored) the standardization can only be done by rearranging 
the stack to a predefined order at each branch (which would in general be costly unnecessary 
execution overhead) or remembering the arrangement at each branch (a vast translation 
task) so that the standardization can be performed where necessary (still costly in some 
situations). 

The same difficulty afflicts the use of named temporaries. If a named temporary variable 
is held in a register, it is always possible to generate a code sequence containing sufficient 
other named or anonymous temporaries to cause the register to be flushed before the final 
use of the temporary, and so lead to the possibility of having it reassigned to a different 
register. In  Figure 3, were this to happen, the reference to the named temporary at position 
(1) would not use the same register as position (2), although they are only three Janus 
instructions apart coming around the loop. 



JANUS 61 1 

Our present solution is to have each LOC pseudo void the stack, and not to permit a 
named temporary to be reserved past a LOC. This is undoubtedly overkill and prohibits 
various elementary types of optimization in the translation to target code. However, the 
alternative to this inefficiency is the expense of performing global flow analysis in the Janus 
translators for each target machine. It is not only that this task is beyond the portable tools 
that we have, but that the implementation effort for each target would negate any advantages 
available from Janus-based portable systems. 

The question of standardization of the accumulator (but not of the stack) was addressed 
in the Coleman machine. With only one or two registers involved the amount of information 
to standardize the position can be firmly bounded, and the amount of target code to 
accomplish it need not be excessively expensive in execution time. 

The above considerations also apply to the condition code register. The function of this 
register is unchanged from the Coleman machine, but now we specify that the value is 
preserved on the unsuccessful (‘fall-through’) branch of a test, and is not available at all on 
the successful branch (where the Coleman machine allowed it to be preserved on either or 
both paths at will). 

UNRESOLVED QUESTIONS 

Many aspects of the design of a universal intermediate language are yet to be researched. 
There are a number of questions of which we are already aware; the following is a sample. 

Partword addresses 
Janus at this time has only one address mode, and it is our tacit assumption that values 

of this mode provide sufficient information to access all objects of interest. However, we 
realize that if this set of objects were to include characters occurring within strings, or other 
objects packed without regard to word alignment, then large overheads could be incurred. 
Our feeling is that a second address mode would suffice. 

Comparison of records 
We have a comparison operator, CMPM, that performs a relation test on two specified 

memory areas (two records, two strings, etc). This operator refuses to take a midposition 
between high-level abstraction and simplicity of implementation. Ideally, its implementation 
is a loop of word or byte comparisons, but if the memory areas include items of differing 
modes, correct operation may require a mixture of different comparisons. This wouId entail 
either expansion of the operator into a sequence of comparisons or the generation of a 
template with interpreted execution, both approaches involving complex translation and 
inefficiencies in execution. A further problem is that alignment of fields within the record 
may leave holes which could contain arbitrary information. These holes must be masked or 
skipped during comparison, or the entire area allocated to the record must be cleared 
before each use. 

Exception conditions 
We have introduced the TRAP instruction as a means of programming responses to 

abnormal situations (e.g. violation of an index bound) that arise in the course of a computa- 
tion. TRAP has the semantics of a conditional subroutine call, invoking the support system 
if the condition code has a specified value. We wished to avoid an out-of-line jump for two 
reasons: one is that it is frequently desirable for the handling routine to have the address of 



612 B. K. HADDON AND W. M. WAITE 

the infraction for reporting purposes, and the other is that it is sometimes desired to resume 
the computation after noting or reporting the abnormality. In this latter case, if a jump to 
the handling routine were used, a jump back would be needed, necessitating a LOC label 
at the re-entry point. This LOC would void the operand stack, destroying the computation 
in progress and the usefulness of returning. 

We recognize that many languages have similar exception conditions, but we are not 
sure that it is worth standardizing names for these conditions, and doubt that uniform 
handling routines can be defined. 

Case statements 
Many case statements as they appear in programs in high-level languages are better 

implemented as a chain of conditional statements. The compiler is in a good position to 
decide this in many circumstances, but if it does so, it hides the existence of the case 
construct from the Janus-to-target translator, which may in some other circumstances be in 
a better position to make the decision (e.g. existence of a particular hardware feature for 
multiway branching). We have not yet been able to formulate a Janus representation of the 
case construct that preserves sufficient information in a suitable form for the decision to 
always be left to the translator. 

Loops 
In specifying the Coleman machine, it was statedl that it would be desirable to have a 

loop construct, as many machines do have special facilities of which advantage may be 
taken. We know no better now how to do this than was known then, yet our experience 
provides two motivations: we would like to be able to implement certain loops with a 
counter in a register, but cannot because of the general difficulties with temporaries; we 
also realize that decomposing a loop into tests and umps is telling the translator ‘how’ 
rather than ‘what’. 

Feedback 
Most conventional compilers rely upon some information about the target machine or 

even about actual code generated to modify the behaviour of some parts of their analyser 
modules. Such information is termed ‘feedback’. In  the interests of achieving machine- 
independence, we were willing to forego this luxury2 but it is now clear that some feedback 
is necessary (c.f. the case of the real denotations). We are now attempting to find a suitable 
set of parameters, ‘environmental enquiries’ if you will, for guiding a compiler in its task, 
that can be established a prior;, still leaving it free from needing to know details of the actual 
target code generated. 

SOME RESULTS 
We mentioned above that we had been involved in the implementation of a set of routines 
to provide basic mathematical functions. In this section, we shall present some results of 
that implementation as an indication of the quality of portable software using the Janus 
concept. There are several reasons for our choice of this particular project as a benchmark: 

-basic function routines are implemented on virtually all computers, and hence provide 

-the routines for a given machine are normally hand-coded, and thus present an objective 

-numerical accuracy can be used as a standard measure of the quality of the routine; 

a broad basis for comparisons; 

measure of resource requirements uncontaminated by compiler ineptitude ; 



JANUS 613 

-the structure of the routines is such that basic block optimization is likely to be more 

One might regard the last point as a liability, biasing the results in favour of Janus. This 
may be a correct assessment-certainly some obvious global optimizations are difficult in 
Janus, as discussed above. We feel, however, that the test does tell us a good deal about the 
viability of Janus. As Wulf and his co-workers have pointed out:22 ‘In the final analysis the 
quality of the local code has a greater impact on both the size and speed of the final program 
than any other optimization.’ 

As noted in the Introduction, the basic function routines were hand-coded in Janus and 
parameterized with respect to certain target machine characteristics. They are distributed 
to prospective implementors as a master deck consisting of specialization macros followed 
by code which calls these macros. The implementor’s first step is a STAGE2 run using the 
master deck and one or two parameter cards describing the radix and precision of the target 
computer’s arithmetic unit. This run creates a set of Janus modules tailored to the given 
arithmetic unit. (The parameters govern the overall choice of algorithm and the constants of 
the approximation; see Reference 13 for details.) The tailored Janus modules are then 
implemented on the target machine as any other Janus code would be implemented. 

We also used STAGE2 as the implementation tool for these tests, and in particular 
employed the lower-level abstract machines J1 and J P 3 9  24 as intermediate steps in the 
translation. This implementation technique is the simplest one currently available, and 
would probably be used for the initial evaluation of Janus on most computers: Machine- 
independent STAGE2 macros for translation of Janus to J1 and J1 to JZ are provided as 
part of the Janus distribution. The distribution also contains macros which have been 
developed for translation of J2 to several assembly languages. These macros can be used as 
skeletons to reduce the effort involved in creating macros for a new machine to the order 
of 1-2 man-weeks. 

At the present time we have implementations of SQRT, SIN/COS, ALOG/ALOGlO 
and EXP on three computers: a CDC6400, a General Precision L3055 and a Xerox Sigma 
3. The major characteristics of these machines are summarized in Table I. The machines 
are dissimilar, and the algorithmic techniques of this set of routines are sufficiently varied 

Table I. Machines used in testing basic functions 

important than global flow analysis in reducing time and space. 

Control Data General Precision Xerox 
6400 L3055 Sigma 3 

Registers 8 general purpose 1 accumulator 1 accumulator 
Radix 2 10 2 
Precision (radix digits) 48 8 31 
Machine epsilon* 0.71 E-14 1 .OE-7 0.93E-9 
Floating-point Hardware Hardware Software 
Word 60 bits 8 characters 16 bits 

* Machine epsilon, eps, is the smallest positive floating-point number such that l.OEO+eps+l.OEO. 

that it is expected that the observed trends will be repeated as routines are added to the 
package and the number of implementations increased. 

Table I1 shows some comparisons of the machine-independent implementations relative 
to the standard FORTRAN libraries for each of the tested machines. The overall com- 
parisons displayed are very largely representative of the figures for the individual routines. 
(More detailed measurements than these have been made.26) 



614 B. K. HADDON AND W. M. WAITE 

Table 11. Preliminary comparisons for the mathematical routine package (containing SQRT, 
SIN/COS, ALOGIALOG10 and EXP) 

CDC6400 L305.5 Sigma 3 

Standard library’ 2.9E-14 1666OOE-7 5814003-9 

Machine-independent library* 3.4E-14 393-7 6OE-9 
(ALOG10) (SIN) (LOG) 

(ALOGIO) (EXP) ( E m  
Total size (relative to the library) (%) 105 107 163 
Average execution time (%) 141 114 172 
~ ~~ 

* Worst case maximum relative error. 

The accuracy of the machine-independent routines is uniformly good. I n  fact, our 
testing procedure has turned up some surprisingly large errors in the standard libraries. 
Examination of the code of the library routines indicates that these errors can be fixed quite 
simply, but this apparent simplicity is a result of the expertise acquired with the machine- 
independent algorithms. The major benefit of the portable package is the ability to 
distribute this expertise in the form of Janus code. 

Careful examination of the library routines for the Control Data 6400 indicates that their 
algorithms are quite different from those in the machine-independent package. The 
proportion of floating-point operations is lower, with much of the work carried out using 
bit manipulation and integer arithmetic. Such specialization is impossible given the goals 
of our package, and thus the execution-time penalty constitutes a legitimate cost of 
portability. 

The exceedingly unfavourable comparisons on the Sigma 3 are due to two identified 
causes: (1) no advantage has been taken (as yet) of the ‘short-form’ floating-point software 
operations, thus making each such operation three words longer than thoseused in the standard 
library. This optimization is straightforward and will reduce the total size of the package to 
about 117 per cent of the size of the corresponding library routines; (2) the time figure is 
heavily influenced by the SQRT routine (1.8 ms for the Janus version compared with 0.26 
ms for the standard library). This differential is due to the use of fixed-point arithmetic in 
the standard SQRT rather than floating-point. We are currently working on fixed-point 
implementations for all routines. 

Starting from the Janus text, each implementation was obtained in less than 2 man-weeks 
of effort. The major part of this effort is defining the J2 machine, and is a task independent 
of the package size. Although the manpower investment in the algorithmic design and Janus 
coding is considerable (and proportional to the package size) the low incremental cost per 
implementation would allow a favourable amortization over a reasonable number of 
machines. There is no doubt that the machine-independent mathematical package would 
be an adequate library for most installations, and (should the penalties be critical for a given 
application) could certainly serve while hand-coded routines were developed. 

CONCLUSION 

The design of an abstract machine is in part a search for suitable models of computation. 
The components of the Janus abstraction that have given us the least difficulty are those 
developed from theoretically sound models. The operand stack (reverse Polish expression 
evaluation), the memory (VDL state) and recursive procedures (contour model) have all 



JANUS 615 

been found to be free of awkward exceptions, and map in regular ways into other archi- 
tectures. Where we have no overall theoretical base upon which to build (e.g. global linkage, 
non-recursive procedure activation, looping and branching) we have had to work our way 
through a number of trials to arrive at our present dehitions. 

In devising a model, the ‘how versus what’ principle must be carefully considered. Since 
realizing the importance of this principle, we have made consistent appeal to it. Although 
it does not help to derive better models, it does give us a criterion for rejecting the less useful 
alternatives. Our experience also indicates that any proposed model must be extensively 
tested with a variety of languagelmachine combinations; it is all too easy to overlook 
critical details when building models on paper. 

We are satisfied that the Janus approach to machine-independence is viable, and can be 
used as a tool in porting software. The most critical area at the moment is the lack of 
support routines for implementation. Our current research is concerned with providing 
such support : basic function routines, 1/0 and formatting routines, memory management. 
We are also attempting to develop a standard operating system interface for Janus, and 
investigating alternatives to STAGE2 as code generation tools. 

Above all, we are convinced that the definition of the Janus machine serves as a powerful 
conceptual tool in identifying problems in machine-independence and portability. 

ACKNOWLEDGEMENTS 

Many people have provided feedback on the design of Janus. The detailed comments of 
Hendrik Boom (Mathematisch Centrum), Bernd Eichenauer (GPP, Munich), R. Haentjens 
(Ecole Militaire, Brussels) and Christopher Holt (Argonne National Laboratory) were 
particularly valuable. The Sigma 3 implementation used to obtain the results reported in 
this paper was carried out by T. L. Spear of the Computer Laboratory for Instruction in 
Psychological Research, University of Colorado. 

No. NSF MCS74-20427 A01. 
This work was supported, in part, by the National Science Foundation under Grant 

REFERENCES 
1. S. S. Coleman, P. C. Poole and W. M. Waite, ‘The mobile programming system: Janus’, Software- 

Practice and Experience, 4, 5-23 (1974). 
2. S. S. Coleman, ‘Janus : a universal intermediate language’, PhD. Thesis, University of Colorado (1974). 

N T I S  P B  232 923/AS.  
3. M. C. Newey, P. C. Poole and W. M. Waite, ‘Abstract machine modelling to produce portable soft- 

ware-a review and evaluation’, Software-Practice and Experience, 2, 107-1 36 (1972). 
4. T. W. Pratt, Programming Languages: Design and Implementation, Prentice-Hall Inc., Englewood 

Cliffs, N. J., 1975. 
5. W. M. Waite and B. K. Haddon, ‘A preliminary definition of Janus’, SEG-75-1, Software Engineer- 

ing Group, Department of Electrical Engineering, University of Colorado (revised September 1976). 
6. W. M. Waite, ‘The mobile programming system: STAGE2’, Comm. ACM, 13, 415-421 (1970). 
7. W. M. Waite, Implementing Software for Non-numeric Applications, Prentice-Hall Inc., Englewood 

8. N. Wirth, ‘The programming language Pascal’, Acta Informatica, 1, 35-63 (1971). 
9. K. R. Elz and P. C. Poole, ‘An implementation of Janus’, Proc. SeminarlWorkshop on Programming 

10. H. Boom, ‘Some preliminary experience with Janus’, unpublished report, Mathematisch Centrum, 

Cliffs, N. J., 1973. 

Language Systems, Australian National University, Canberra, (1977). 

Amsterdam, The Netherlands (1976). .~ 
11. A. van Wingaarden et al., ‘Revised report on the algorithmic language Algol 68’, Actu Informtica, 5, 

1-236 (1975). 



616 B. K. HADDON AND W. M. WAITE 

12. W. J. Cody, Jr., ‘Software for the elementary functions’, in Mathematical Software, Academic Press, 
New York, 1971, pp. 171-186. 

13. W. J. Cody, Jr. and W. M. Waite, ‘A software manual working note # 1, preliminary draft of 
chapters 1-4d’ Technical Memorandum No.  321, Applied Mathematics Division, Argonne National 
Laboratory, Argonne, Illinois (1977). 

14. P. Lucas et al., ‘Method and notation for the formal definition of programing languages’, TR 
25.087. IBM Laboratory, Vienna (1968). 

15. P. Wegner, ‘The Vienna definition language’, ACM Comput. Surer. 4, 5-63 (1972). 
16. E. W. Dijkstra, ‘Recursive programming’, Numerische Mathematik, 2, 312-318 (1960). 
17. J. B. Johnston, ‘The contour model of block structured processes’, Proc. Conf. Data Structures in 

18. English Electric-Leo-Marconi, KDF9 Programming Manual, Kidsgrove, Stoke-on-Trent, 

19. W. M. Waite, ‘Janus’, in Software Portability (Ed. P. J. Brown), Cambridge University Press, 

20. N. Wirth, ‘Design and implementation of Modula’, Software-Practice and Experience, 7 ,  67-84 

21. D. W. Matula, ‘In-and-out conversions’, Comm. A C M ,  11, 47-50 (1968). 
22. W. A. Wulf et al., The Design of an Optimizing Compiler, American Elsevier, New York, 1975. 
23. W. M. Waite, ‘ Janus memory mapping: the J1 abstraction’, SEG-76-1, Software Engineering 

24. W. M. Waite, ‘Janus stack mapping: the 52 abstraction’, SEG-78-1, Software Engineering Group, 

25. W. M. Waite and B. K. Haddon, ‘The performance of machine-independent basic function 

Programming Languages, S I G P L A N  Notices, 6 ,  55-82 (1971). 

Staffordshire, 1964. 

Cambridge, England, 1977, 277-290. 

(1 977). 

Group, Department of Electrical Engineering, University of Colorado (1 976). 

Department of Electrical Engineering, University of Colorado (1978). 

routines’ (in preparation). 




