
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 4, 5-23 (1974)

The Mobile Programming System, Janus
S. S. COLEMAN, P. C. POOLE AND W. M. WAITE

Department of Electrical Engineering, University of Colorado, Boulder, Colorado 80302, U.S.A.

SUMMARY
Janus is a symbolic language used to embody the information which is normally passed
from the analysis phase of a compiler to the code generators. It is designed for transporting
software: A program coded in a high level language can be translated to Janus on one
computer, and the resulting output translated to assembly code on another. (The STAGE2
macro processor could be used for the second translation.) In th is paper we present the
principles upon which Janus is based, and show that it is suited to a wide range of source
languages and target computers.

KEY WORDS Portability Intermediate language UNCOL Abstract machine model

INTRODUCTION
The Mobile Programming System14 is a collection of highly portable software which can
be implemented by means of a full bootstrap.6* Each routine is expressed as a program for
a ficticious computer known as an abstract machine model. These programs can be translated
to assembly code programs for the target computer by a macro processor.6s7-8 T o start the
bootstrap, a simple macro processor (equivalent to approximately 80 lines of FORTRAN
codel) must be implemented on the target machine. Similar systems have been described
by other authors.9-11

A previous papers gave a critical evaluation of the abstract machine modelling technique
and of three particular models. The main conclusion reached was that, while the technique
has been demonstrated to be viable for constructing portable software, major problems are
associated with the design of a suitable abstract machine model (and its programming
language) for a given application. The task is not easy even for experienced programmers.
Further, the diversity of designs led to implementations which could not make use of
earlier realizations even though the models had many features in common. The effort
required to move software was therefore greater than it needed to be.

Further standardization appeared to be the key to our difficulties, so we undertook an
examination of existing programming languages, translators and machines to determine a
set of common structural attributes. The results of this study, summarized in the next
section, led to the design of a3 extensible intermediate language. We named this language
Janw, after the Roman deity who was the patron of gates and doors. An intermediate
language is a gate, through which an algorithm must pass to reach the machine. We found
that our major design problem was to determine the 'width' of the gate: How much
information about the source program must be carried in the intermediate code to permit
efficient implementation on a variety of hardware.

It is well known that the translation of a programming language consists of two steps-
analysis and code generation. In the next section, we will suggest separating these steps.

Received 25 April I973
Revised 20 August 1973

5
&, 1974 by John Wiley & Sona, Ltd.

6 S. S. COLEMAN, P. C. POOLE AND W. M. WAITE

Indeed, compilers have been designed12 to use a common body of procedures for code
generation : there is one procedure for each object statement type, and these are called by the
analysis routines with vectors describing the particular instance of the statement to be
generated. We conceive of Janus as a symbolic representation of these calls. By expressing
this information in symbolic form, we can extract the algorithm and implement it on another
machine simply by providing code generation procedures.

Interpretive versions of the code generators can be written in the form of macros which
express constructs of the intermediate language in terms of the assembly code of the target
computer. These macros are interpreted by a macro processor, and ‘called’ by the lines of
symbolic Janus code. We shall show the form of these symbolic lines and explain the
information which they contain. We shall also indicate how the code generation macros
might be implemented on the major classes of computers.

It will be clear to the reader even at this point that there is an UNCOL-like flavour about
the design of Janus. We shall compare Janus with similar projects such as UNCOLlS-16
and SLANG.17 We should perhaps stress that each of these names actually denotes a family
of abstract machines. All machines in each family have a common basic structure, and a
common symbolic language is used to program them. The set of instructions may, however,
vary considerably from one member of the family to another. As Sibley points out:”

‘No stigma will be attached to such (variations in the instruction set) since the techniques
used for processing the (symbolic instructions) are relatively independent of any particular
set of them.’

It is this variability of instruction set which allows one to use the same intermediate
language as a means for encoding programs to solve many different problems.

THE ORGANIZATION OF JANUS
Every programming language has three components.

(1) A set of primitive modes: classes of data items which are considered atomic in the
language. Examples are integers, reals and Booleans.

(2) A set of primitive operators: commands which transform data items and are not
themselves defined in terms of other operators. Examples are integer subtraction,
real multiplication and the relational operator ‘less than’ with real operands.

(3) A set of formation rules: mechanisms which allow a user to construct new modes and
operators from existing ones. Examples are the mechanisms for defining arrays and
procedures.

The particular sets of primitive modes and operators provided by a programming language
are determined by the class of problems for which the language is designed. The set of
formation rules, on the other hand, seems to be largely independent of problem class.18
Table I summarizes the formation rules normally found in ‘high-level’ languages.

When a language is translated, the primitive modes and operators appear essentially
unchanged in the machine code. Primitive operators may be realized by single instructions,
instruction sequences or subroutine calls ; nevertheless, there is a one-to-one correspondence
between the appearance of the operator in the source code and the appearance of its
realization in the machine code. In contrast, many of the formation rules are dealt with by
the translator, and appear in a drastically altered form (if they appear at all) in the machine
code. This alteration of the formation rules is one of the primary purposes of the translator,

MOBILE PROGRAMMING SYSTEM 7

and it is dependent upon the source language rather than the target machine. Thus we may
partition a translator into two sections, as shown in Figure l(a). The analyser which deals
with the formation rules depends upon the source language, while the code generator
depends upon the target computer.

Table I. Formation rula

Operator creation Mode creation

Expression Array
Conditional (and case) Structure (record)
Iteration Reference (pointer)
Procedure Domain restriction
Coroutine Enumeration

It is clear that the major flow of information across the interface in Figure l(a) is from
left to right. This information consists primarily of operator/operand pairs which specify
the sequence of actions embodied in the source program.13

Depends upon source language

Analyser 3 generator language Machine

Source

language

Depends upon target computer

(a) A conventional translator

Symbolic Source 4 Analyser 1 Januscode

language generator Janus code
I I I

Machine

language
STAGE2 Assembler

Symbolic

Janus code

(b) Janus as an intermediate language

Figure I . The translation process

In conventional translators there is also some flow of information from right to left across
the interface. Our study showed that this information was related to the fact that some of the
formation rules of Table I are at least partially reflected in the architecture of real computers.
We can therefore compensate for our lack of right-to-left flow by including additional
information in the Janus instructions about certain formation rules.

Figure l(b) illustrates the role of Jams in the translation process: The translator is split
along the interface of Figure l(a). A small module attached to the analyser encodes the
information normally passed across the interface from left to right. The encoded information
constitutes a symbolic program, which can then be transmitted to another computer. Janus

8 S. S. COLEMAN, P. C. POOLE AND W. M. WAITE

specifies the structure of this symbolic program, but says nothing about the particular set
of operators and modes which can be used.

The symbolic Janus code is translated to the assembly language of the target computer by
a program such as STAGE2.4 Simple translation rules are supplied by the user to describe
the various Janus constructs and the primitive modes and operators. Final translation to
objects code is provided by the normal assembler of the target computer.

The Jams architecture
Our design for the Janus family of abstract machines is based upon the relationship

between existing languages and existing hardware. Each component of Figure 2 models a
specific language characteristic; the precise form of the model was chosen to simplify the
generation of machine code from symbolic Janus. (The code generator should be simplified
at the expense of the analyser because the former must be respecified for each machine
while the latter remains unchanged.)

I Memory

I Stack I
Figure 2. The architecture of the Janus family of abstract machines

The memory and the processor model the explictly named operands and the primitive
operators, respectively. Details of the structure and capabilities of these components are
omitted from the definition of Janus because they depend upon the particular set of
primitive modes and operators provided by the abstract machine. We maintain a separate
documentf9 which contains complete specifications of all primitive modes and operators
used in abstract machines of the Janus family. This document provides a ‘library’ for
abstract machine designers, but does not prevent them from adding new modes or operators
when necessary.

An expression is used to avoid explicitly naming the intermediate results of a computation,
and hence this formation rule introduces anonymous operands. The accumulator and the
stack of Figure 2 model anonymous operands in the same way that the memory models
explicitly named operands.

Figure 2 favours target computers with a single arithmetic register, or with multiple
arithmetic registers and register/storage arithmetic. Three other possible organizations
come to mind:

(1) Register file (CDC 6000, 7000).
(2) Stack (Burroughs 5000, 6000).
(3) No programmable registers (IBM 1400, 1620).

(The register file machine is similar to the multiple register machine, except that it has no

MOBILE PROGRAMMING SYSTEM 9

register/storage arithmetic. All operands must be loaded into registers before any arithmetic
can take place.)

For machines of types (1) and (2), it is necessary to expand certain symbolic Janus
instructions into sequences of machine instructions as shown in Figure 3. This expansion
is easy to do, because the code generator need not consider the context in which the
instruction occurs. Suppose, however, that Janus were essentially postfix [Figure 3(c)].
Translation for a single register machine would require that a sequence of instructions be
merged. Contextual information would have to be kept by the code generator in order to
determine that the second LOAD should generate nothing, and that its operand should be
saved and attached to the ADD. Although such context-dependence presents no theoretical
difficulties, it does complicate the code generator.

A = BiC

(a) A typical expression

LOAD 8

ADD C

STORE A

(b) Sequence of operatorloperand pairs equivalent to (a)

LOAD B

LOAD C

ADD

STORE A

(c) Expansion of (b) for a stack machine

Figure 3. Use of operatorloperand pairs

Machines with no programmable registers have no provision for anonymous operands,
and hence all operands must be given names by the code generator. Correct code can always
be produced by simulating a machine with a single arithmetic register, although a slight
optimization is sometimes possible by considering context. The trend in computer archi-
tecture seems to be away from machines of this type.

An array or structure is an aggregate which is recognized as a distinct entity, but whose
components may be used individually as operands. Access to a component is provided by
an index, which defines a location within the aggregate. An index might be specified by any
expression, and hence may involve anonymous results. This is the reason for the Janus
index register and its association with the stack: It is used in the computation of an index
expression just as the accumulator is used in the computation of other expressions. The
index register is distinct from the accumulator because its content is used to form operands
for operations on the accumulator.

Again, the organization of Figure 2 favours a certain class of target computers-those with
explicit index registers. Although this class seems to represent the mainstream of computer

10 S. S. COLEMAN, P. C. POOLE AND W. M. WAITE

architecture, we have encountered three other mechanisms for component addressing:
(1) Index modification on a stack (Burroughs 5000, 6000).
(2) Indirect addressing (IBM 1620, Siemens 305, 306).
(3) Program modification (IBM 1620).

The model which we have chosen provides enough information to generate correct code in
each case without retaining contextual information. (A model more closely related to any
of these three mechanisms would require contextual information if code were to be
generated for a machine with an index register.)

Figure 2 thus reflects the use of expressions to form complex operations from primitive
operators, and the use of arrays and structures to create complex data items from primitive
modes. Since there appears to be widespread agreement about how these particular
formation rules should be implemented in hardware, Figure 2 also reflects the organization
of contemporary computers.

There is less agreement regarding the hardware realization of conditionals, iterations and
procedures. Our study indicates that these formation rules do not have a strong influence on
the over-all organization of a machine; they are reflected in the set of operators which is
provided. Let us consider each in turn, examining their implementation on contemporary
computers, and then presenting the operators which we recommend to users of Janus.

Conditionals
Conditionals are usually provided in one or more of three ways:
(1) A conditional transfer based upon the relationship between the content of a register

(2) A conditional transfer based upon the relationship between the contents of two

(3) A conditional transfer based upon a previously set condition code.

and zero.

registers.

The critical questions here are whether the abstract machine should have an explicit
condition code, and whether a comparison should destroy the contents of the accumulator.

If the condition code is explicit, and is not changed by every instruction, then it may be
tested long after it was set. We are not aware of any useful constructs in high level languages
which would generate such code. Further, we believe that the overhead associated with
maintaining the contents of the accumulator and condition code on machines using method
(1) is too large. There are, however, situations in which we will have unnecessary overhead
if the contents of the accumulator is always destroyed by a comparison. (Such code would
usually be generated by certain kinds of cme statements.aOnal) Hence we advocate a middle
course : provide both destructive and non-destructive comparison operators, and assume
that these set a condition code which is destroyed by any instruction other than a conditional
transfer. Also assume that the accumulator is destroyed by any transfer of control except
one following a non-destructive comparison. The target of such a transfer can be defined by
a special pseudo, thus permitting the implementor to save the accumulator at the non-
destructive comparison operator and restore it after the transfer. We will illustrate this
approach in more detail later.

Iterations
An iteration may proceed under count control, or it may continue until a certain condition

holds. The former is a special case of the latter, but it is sufficiently important to merit

MOBILE PROGRAMMING SYSTEM 11

separate consideration. Some computers have special instructions (e.g. I JP,zz BXLE,
BXH23) which will modify a register, test it and transfer control if some condition is met.
Other computers have special memory locations which perform similar functions.24 More-
over, some languagesz1* z5 provide iterations under count control in which the controlled
variable may be anonymous. Even if the controlled variable is not anonymous, the pro-
grammer is not permitted to make assignments to it.

This indicates that the abstract machine model might provide an iteration counter which
can be incremented and tested by a transfer instruction. We have not incorporated such a
register because we have not been able to formulate the instructions to manipulate it in
such a way that they apply to most computers.

Procedures
A procedure invocation involves both parameter passing and status saving. There are

four common hardware mechanisms for status saving:
(1) Relevant status is placed on a stack by the hardware when a subroutine jump is

executed (Burroughs 5500, ICL KDF 9).
(2) Relevant status is placed in a register by the hardware when a subroutine jump is

executed (Data General NOVA, UNIVAC 1108, IBM 360).
(3) Relevant status is placed in memory by the hardware when a subroutine jump is

executed. The memory location bears some fixed relationship to the target of the
subroutine jump (CDC 3000, 6000, XDS 940, UNIVAC 1108).

(4) A separate instruction is provided for saving the relevant status (GE 645).
The makeup of the ‘relevant status’ depends entirely upon the computer. At the least,
it is the return address.

Because of the diversity in status saving methods, one must use a high level model for
a procedure call. We advocate three instructions :

(1) Return jump is used in the calling program to actually invoke the procedure.
(2) Link appears as the first executable instruction of the procedure body.
(3) Return is used in the procedure body to actually return from the procedure.

These instructions are interdependent, a fact which may be used by the implementor to
match any one of the four status saving methods mentioned above.

In some cases the procedure call mechanism provided by the target machine is such that
there is no difference in cost between recursive and non-recursive calls. Unfortunately,
this is not true in general. Most modular programs employ one or more short procedures
which are never used recursively. Calls to these procedures often appear in inner loops,
where the overhead required for recursion builds rapidly. If a program requires recursive
procedures, we strongly suggest two versions of return jump, link and return-recursive
and non-recursive.

Parameter mechanisms (reference, value, etc.) are primarily determined by the source
language. We will not discuss them in detail except to say that Janus operators must be
able to manipulate parameters as addresses or values. The location of parameters in the
calling sequence is system-dependent ; our study has shown that there are three common
techniques :

(1) Parameters are stored in the calling program in the vicinity of the return jump.
(2) Parameters are stored in a fixed area of the called program.
(3) Parameters are stored in registers or on a stack.

12 S. S. COLEMAN, P. C. POOLE AND W. M. WAITE

A diversity of parameter mechanisms, like the diversity of status saving methods,

(1) CALL marks the beginning of the code required to compute arguments at run
time. (For example, to obtain the address of A(I) when arguments are passed by
reference.)

(2) CEND marks the end of a set of storage reservation pseudos which define the
argument list.

These pseudos, in conjunction with the three procedure call instructions discussed above,
can be used to create procedure calls conforming to a wide variety of conventions. We shall
present a detailed example and discuss various realizations later.

Other formation rules
As far as we know, there are no common hardware mechanisms for providing coroutine

linkage. Thus the designer of an abstract machine is free to provide coroutine linkage in any
way he sees fit. We would suggest that an explicit coroutine call operation be provided, but
we make no attempt to specify its properties. When (and if) hardware coroutine linkage is
developed, we shall reconsider the question.

Reference modes are represented by addresses or by descriptor^.^^^ 27 A primitive mode
ADDR may be used to describe either representation. A ‘load immediate’ instruction
creates an entity of ADDR mode which references the operand of the instruction, and leaves
it in the accumulator. A pseudo which allows one to preset a reference in memory is also
required.

The three remaining formation rules for mode creation listed in Table I have only a
minor effect on the abstract machine. They are primarily the concern of the compiler,
which uses domain restriction to provide additional information for generating checking
code during debug runs and models the enumerated elements of a new mode with small
integers. Domain restriction could also result in new modes for the abstract machine model
if the designer felt that significant storage economies would be possible.28

demands a high-level model. We use two special pseudos:

THE SYMBOLIC REPRESENTATION OF JANUS

The symbolic Janus program is an encoding of the information which passes across the
interface of Figure l(a). Our design goal was to present the information in a form which
would simplify the process of producing assembly language for the target computer. In this
section we shall discuss the form of the encoding, explaining the need for each piece of
information. The next section gives examples of symbolic Janus programs. Although it
would certainly be possible for a human programmer to write Janus, we do not advocate
such an approach. We assume that the code will always be produced as the output of some
translator.

Janus has two basic formats for executable instructions :
operator model mode2
operator mode reference

The first of these is used for instructions which may be broadly classed as mode conversion
(fix, float) and value conversion (negate, truncate) operations which modify the contents of
the accumulator. Model and mode2 are the initial and final modes, respectively, of the
accumulator contents. The second instruction format is used when an operand other than
the accumulator must be specified. We distinguish three major classes of references :

MOBILE PROGRAMMING SYSTEM 13

references to explicitly named operands, references to anonymous operands and references
to constant operands. Each class presents unique problems, which we shall discuss in the
following subsections.

Explicitly named operands
Each reference to an explicitly named operand specifies a symbol and an index. (If the

operand is not a component of an aggregate, then the index is null.) Normally, the attributes
of each symbol would be specified by declaration and stored in a dictionary by the translator.
The symbol would serve as a key to the dictionary, allowing the translator to access the
attributes of the operand each time it was used. However, dictionary lookup is a time and
space consuming process for STAGE2 which we wished to avoid if possible.

Examination of the usual attributes of an operand revealed two which influenced the
translation of the reference into machine code:

(1) Category.
(2) Address.

T h e category provides an interpretation of the operand-it tells what sort of operand is
being represented. For example, categories can be used to distinguish arguments, formal
parameters and particular storage areas (local, global, dynamic, etc.). Often these operands
will require different translations, or significant optimization may be possible for some on
certain machines.28 Such special treatment can be provided only if it is possible to distinguish
the operands which require it. Hence we decided to include the category explicitly in each
reference.

On most machines the value of the address does not affect the sequence of instructions
needed to accomplish the reference. Provided that the symbol in the Janus instruction is
acceptable to the target machine’s assembler, it may be used unchanged in the output code.
Under these circumstances no dictionary lookup is required to establish the address during
the STAGE2 run. If either condition is violated, then a lookup will be necessary.

I t is useful to separate the index of an aggregate reference into two parts: theJixed ofse t
(whose value may be obtained from the program text) and the variable offset (whose value
must be determined during execution). On many computers the base address and fixed
offset may be combined at translation time to form an ‘effective base address’. The final
address is then obtained at run time by addition of the variable offset. Such a procedure will
not work on a machine which references arrays via descriptors.26.27 There, code must be
generated to combine the fixed and variable offsets to form the index at run time. The
final address is then obtained from the contents of the descriptor and this index.

We have therefore given instructions which reference explicitly named operands the
following general form :

operator mode category symbol(fixed)variable

Either or both of the offset specifications may be omitted.

Anonymous operands
A reference to an anonymous operand is a reference to the top element of the stack.

If the target computer does not have a hardware stack, then the Janus stack must be simulated
in memory. This means that anonymous operands require much the same information as
explicitly named operands. (If the target computer does have a hardware stack, the extra
information is simply ignored.) All references to anonymous operands are in the same
category, and hence the category field of the instruction can be used to indicate that the

14 S. S. COLEMAN, P. C. POOLE AND W. M. WAITE

operand is anonymous. The address specifies a location within the current frame of the
simulated stack; component references are impossible and thus no index is required.

The only problem is that entities of different modes require different amounts of storage
and, in some cases, must be aligned on different address boundaries. It would be wasteful to
simulate the stack by an array of fixed size elements, and hence the actual address corre-
sponding to a particular operand must be determined by the contents of the stack at the
time the operand is pushed on to the stack. Most of the bookkeeping associated with this
storage allocation can be performed by the analyser ;zs only the actual address assignment
must be deferred until the characteristics of the target machine are known.

Three pieces of information are sufficient to determine the address at which to store a
new element:

(1) The address of the previous element.
(2) The size of the previous element.
(3) The alignment of the new element.

Items (1) and (2) can be combined to determine the first address beyond the previous
element, and item (3) can be used to determine the proper boundary. The address of the
new element is then assigned to the symbol for the anonymous operand, which would be
used to provide item (1) for the next new element. (Note that both the size and alignment of
an item can be determined from its mode.)

We have therefore given instructions which reference anonymous operands the following
general form:

operator mode STACK symbol(size)previous

Both ‘size’ and ‘previous’ would be omitted if the operand were the first on the stack.

Constant operands
A reference to a constant operand may or may not involve a memory reference on the

target machine: the value can often be incorporated into the instruction itself if the constant
satisfies certain machine-dependent constraints. When this cannot be done, the constant
must be placed in memory. All references to constant operands are in the same category,
and hence the category field of the instruction can be used to indicate that the operand is a
constant. It is also useful to associate a symbol with the constant in case the target machine’s
assembler is incapable of handling literals.

We distinguish four types of constants :
(1) As-is.
(2) Expression.
(3) Symbolic.
(4) Character code.

An as-is constant is independent of the target computer, and its value can be placed directly
into the Janus code. All others are machine-dependent, and hence must be expressed
symbolically.

A constant of type (2) is usually associated with the addressing structure of the target
computer. Its complexity is limited by the translator ; STAGE2 permits integers, variables
with integer values and the operators + , - , *, and /. Parentheses may be used and nested
to any depth (subject to storage limitations). Each Janus mode identifier is assumed to be
a variable whose value is the number of target machine address units occupied by an entity
of the corresponding mode.

MOBILE PROGRAMMING SYSTEM 15

Some algorithms use machine-dependent constants which are unrelated to the addressing
structure. The range reduction used in computing EXP(X), for example, requires the
natural logarithm of the base of the computer’s a r i t h m e t i ~ . ~ ~ Such constants may not
satisfy the constraints on variables allowed in expressions, and hence must be treated
differently. Their values are preset in the memory of the translator by a pseudo, and are
substituted into the Janus instruction when a type (3) reference is detected.

Character codes could be handled using a type (3) reference, but we have found that this
requires excessive amounts of translator memory. I t is a simple matter for the translator
to compute the integer equivalent of a character,6 and hence we treat such constants
separately.

We have therefore given instructions which reference constant operands the following
form :

operator mode CONST symbol() type value

Storage reservation
To reserve storage for an operand we must know the mode of the operand, whether it is

an array and the number of array elements. (Simple variables are not equivalent to arrays of
length 1 on a computer which references arrays via descriptors.26*27) If the contents of the
reserved area are to be initialized, most assemblers require that the initial values be presented
at the time the storage reservation is made. This requirement presents a problem only
when the operand is an array whose elements are to have different initial values. In all
other cases, a constant (of the form discussed in the last subsection) can be attached to the
reservation pseudo.

The storage requirements of the entire array should be stated in a single pseudo so that
a descriptor for the array can be constructed. If all elements have the same initial value,
that value can be attached to the pseudo. Otherwise, the pseudo is flagged to indicate that
initialization follows. The initial values can then be defined by a sequence of pseudos,
each of which sets or skips a block of elements. The total number of elements specified by
the sequence should equal the number of elements in the array.

We have therefore given the storage reservation pseudo the following general form :

SPACE mode category symbol(e1ements)flag type value

If ‘flag’ is present, initial value specifications follow this pseudo; ‘symbol’ and ‘flag’ will
both be omitted on those specifications.

EXAMPLES OF JANUS CODE

Our purpose here is to make the discussion of the previous sections concrete, and to
indicate the correspondence between Janus and machine code. We shall not attempt to
illustrate all of the features of the language, nor shall we dwell upon the details of
representation.

The SPACE pseudo
Figure 4 contains several storage reservations, both with and without initialization. The

constant types are flagged by ‘A’ (as-is), ‘E’ (expression), ‘M’ (symbolic) and ‘C’ (character
code). A plus is used as the ‘initialization to follow’ flag. We have found that generated
symbols of the form ‘Gn’ are accepted by most assemblers, and hence we can avoid a
dictionary lookup in STAGEZ.

16 S. S. COLEMAN, P. C. POOLE AND W. M. WAITE

SPACE INT LOCAL G1() . SIMPLE VARIABLE

SPACE INT LOCAL G2(31. THREE-ELEMENT ARRAY

(a) Reservation without initialization

SPACE INT LOCAL G3(I C X.

SPACE REAL LOCAL G4() M LNBASE.

SPACE INT LOCAL G5(15) A 6.

CHARACTER CODE

SYMBOLIC CONSTANT

FIFTEEN IDENTICAL ELEMENTS

(b) Reservation with initialization

SPACE INT LOCAL G6(4)+. DECLARE ARRAY, INITIALIZATION FOLLOWS

SPACE INT LOCAL (1) A 0. FIRST ELEMENT IS INITIALIZED

SPACE INT LOCAL (1 1 . SECOND ELEMENT IS N O T

SPACE INT LOCAL (2) A 1. THIRD AND FOURTH ARE

(c)
Figure 4. Use of the SPACE pseudo

Separate initialization of array elements

A Jams procedure
The procedure of Figure 5 calculates the square root of a positive real number, using

Newton’s iteration.30 We have simplified the algorithm somewhat in order to concentrate
on the features of Janus.

The first line specifies the mode of the result and the number of parameters, as well
as the name of the routine. In most cases this information will not be used for the translation
of BEGIN; it is included to ease the implementation of certain linkage conventions.

A SPACE declaration is given for each parameter. These declarations may or may not
reserve storage. They serve to identify the mode of the parameter and to associate a symbol
with the parameter position. Declarations of parameters are distinguished by the category
PARAM, and hence may be treated specially by the translator.

LINKN is a special form of LINK, which conveys the additional information that this
procedure does not invoke other procedures. Some optimization may be possible in this
case if parameter addresses are passed in registers. A single STAGE2 macro can be provided
to translate both LINK and LINKN, thus ignoring the added information. This would
normally be done for the first implementation in order to bring a program up quickly.31

CMPNF is another example of the use of additional information attached to an operator.
A non-destructive comparison, CMPN, is used to check the content of the accumulator
without destroying it. On a multiple-register computer, the Janus accumulator might be
assigned to different registers in different parts of the program. If the value of the
accumulator is used after a jump, and if we are translating the Janus code in a single pass,
then we must insure that the accumulator occupies a standard register before the jump.
The F indicates, however, that the value of the accumulator is used only in the ‘fall-through’
path, and hence its position need not be standardized at this point. The LOC pseudo
defines a label and also indicates whether the contents of the accumulator and index register
are significant at that point.

MOBILE PROGRAMMING SYSTEM 17

BEGIN REAL PROC SQRT(1)

SPACE REAL PARAM G92(1 ,

SPACE REAL LOCAL G93() .
LINKN REAL PROC SORT(1).

LOAD REAL PARAM G92() .
CMPNF REAL CONST G22() A OEO.

JLT, I INSTR CODE G99() .
LOC REAL VOID G93(1 .

STORE REAL LOCAL G93(1 .

LOAD REAL PARAM G92(I .

DIV REAL LOCAL G93(1 .

ADD REAL LOCAL G93(1 .

DIV REAL CONST G88() A 2E0.

CMPN REAL LOCAL G93(1 .

JNE, I INSTR CODE G98(1 .

RETURN REAL PROC SQRT(1).

LOC VOID VOID G99.

SQRT RETURNS A REAL AND HAS ONE PARAMETER

DECLARE THE FORMAL PARAMETER

DECLARE A LOCAL VARIABLE

PERFORM LlNKAGE DUTIES I F NECESSARY

ACCESS THE VALUE OF THE FORMAL PARAMETER

DOES NOT DESTROY THE ACCUMULATOR CONTENTS

ABORT THE RUN ON A NEGATIVE ARGUMENT

ACCUMULATOR CONTENTS REAL, INDEX IRRELEVANT

SAVE THE CURRENT GUESS

RECALL THE VALUE OF THE FORMAL PARAMETER

DIVIDE BY THE CURRENT GUESS AT THE ROOT

AVERAGE THE RESULT WITH THE CURRENT GUESS

TO GET A NEW GUESS

DOES NOT DESTROY ACCUMULATOR CONTENTS

REFINE THE GUESS AGAIN IF NECESSARY

ELSE RETURN WITH RESULT IN ACCUMULATOR

ACCUMULATOR AND INDEX CONTENTS IRRELEVANT

MSG STRNG CONSTG100() A NEGATIVE ARGUMENT FOR SQRT.

ABOUT REAL PROC SQRT(1).

END SORT.

ABANDON THE EVALUATION OF THE PROCEDURE

Figure 5. A Jams procedure

The operand of the conditional jump is the specified address, not the contents of that
address, and hence an immediate modifier (indicated by ‘,I,) is used.

Procedure call
in order to run

programs written in Janus with those written in other languages one must be able to translate
a Janus procedure call into the standard calling sequence assumed by the other languages.
Thus it is extremely important to be able to recognize parameter setup and parameter use
in the Janus code. If these constructs can be recognized, then translation rules can be
written to match virtually any conventions.

As a concrete example, consider the procedure call of Figure 6(a). The first and third
arguments are to be passed by value, while the second and fourth are to be passed by
reference. Computation is required to obtain the third and fourth arguments. W e assume
that the procedure returns a value in the accumulator.

Figure 6(b) shows the Janus version of the call. (We have used the variable names
instead of generated symbols for clarity.) Two specifications of the arguments are given.
The first, lying between CALL and RJMP, shows how they are computed. T h e second,
lying between RJMP and CEND, is a list of argument addresses.

One of the problems with procedure calls is that of insuring

18 S. S. COLEMAN, P. C. POOLE AND W. M. WAITE

The translation of DII + 31 reflects the fact that an array index is an integer which must
be multiplied by the number of address units per element before being used. Multiplication
of the fixed offset can be carried out at translate time; a separate Janus instruction performs
the multiplication of the variable offset. (The ' + ' in the variable offset field of the reference
specifies an anonymous operand in the index register.)

F(l,A,B+C,D[1+3])

(a) A procedure call

CALL REAL PROC F()

ARGIS INT CONST C1(A 1

ARGIS, I REAL LOCAL A(

LOAD REAL LOCAL B()

ADD REAL LOCAL C(1

STARG REAL TEMP T1()

LDX INT LOCAL I()

MPX INT CONST C2() E REAL

LOAD, I REAL LOCAL D(3' REAL)+

STARG ADDR ARG Ll(3'ADDR)

RJMP REAL PROC F(

SPACE ADDR ARG L1(4)+

SPACE ADDR ARG (1) A C1

SPACEADDRARG (1) A A

SPACE ADDR ARG (1) A T1

SPACE ADDR ARG (1)

CEND REAL PROC F()

(b) Janus code for (a)

Figure 6. Example of a procedure call

We now indicate how this procedure call would be translated for several interface
conventions :

Stack
CALL produces a 'mark stack' instruction and ARGIS places a value on

the stack. (The second line of Figure 6(b) places the integer constant 1 on the stack, while
the third line stacks the address of the local variable A.) STARG generates nothing, since
the value of B + C and the address of D[I+3] will have already been placed on the stack.
WJMP generates the jump to the procedure and then causes the translator to ignore
succeeding statements up to and including CEND.

Hardware.

MOBILE PROGRAMMING SYSTEM 19

Software. Same as hardware example, except that STARG must generate code to
transfer a value from the register in which it is computed to the appropriate location on the
simulated stack. The operand of the STARG operation is ignored.

List of addresses following the jump to the procedure
CALL and ARGIS generate no executable code, although an ARGIS with a constant

operand would cause the translator to subsequently output a declaration for the constant.
STARG produces a normal store. RJMP becomes the subroutine jump and the SPACE
declarations result in an initialized argument list. CEND either generates nothing or plants
the target label for a jump over the argument list.

List of addresses within the procedure body
CALL sets up the location of the argument list. ARGIS and STARG generate code to

move information into it. For example, the STARG in line 6 would cause the value of
B + C to be stored in T I and the address of T1 to be placed in the third position of the
argument list. RJMP generates the return jump to the subroutine and causes the translator
to ignore subsequent lines up to and including CEND.

List of values within the procedure body
Same as the previous list, except that ARGIS and STARG store values instead of

addresses into the argument list.
The calling sequence will not easily handle the case in which values are stored following

the jump to the procedure. However, we suggest that this form is unlikely to be used in
practice: access to the arguments from within the procedure body would involve some
kind of indexing or indirection, and space to store the arguments would be needed at every
call.

REVIEW OF RELATED WORK

This section contains short descriptions of three projects whose goals are related to those of
Janus. We have presented them in a similar format, related to our discussion of Janus, in
order to make comparison possible. Each description concludes with a brief critique.

UNCOL
UNCOL was originally proposed13-15 to solve the n x m translator problem: a straight-

forward implementation of n languages on m machines requires one translator for each
language/machine pair. This number could be reduced to n+m if a universal computer-
oriented language were available: One analyser would be required to translate each of the
n languages into UNCOI,, and one code generator would be required to translate UNCOL
for each target computer. Since the analysers themselves were to be written in UNCOL,
the entire system could be moved to a new computer simply by writing a code generator
for that machine.

Steel16 is the only author who gives any concrete proposals for the implementation of
UNCOL, and his specification is far from complete. We surmise that the organization of
the abstract machine was similar to ours, with a ' . . . generalized and exceedingly pliable
accumulator-like gadget . . . ' but no stack. Each instruction consisted of an operator/
operand pair. Steel listed approximately twenty operators, and pointed out that the meaning
of each depends upon the mode of its operand. (He also provided modifiers for each operator
which specified that the operand should be negated or its absolute value taken.)

20 S. S. COLEMAN, P. C. POOLE AND W. M. WAITE

The operand of an UNCOL instruction was specified by location only. No mode or
category information was given in the instruction ; a separate ‘data description’ was used.
(Steel mentioned the data description only briefly, and did not present any details.) A
location consisted of a base and an index, and could be the start of a chain of indirect
references, I t was possible to specify a fixed depth of indirection, or to allow indirection to
be controlled by the contents of the referenced locations. The base and index were them-
selves locations, and hence could also be subject to indexing and indirection.

A pair of brackets, DEFINE and E N D DEFINITION, were to be used in an un-
specified manner to identify groups of instructions which implemented certain complex
operations. These brackets were to be recognized by the code generator if the target
computer had hardware facilities to perform the complex operation. Their function was
similar to that of a macro definition, except that the complete expansion was present in the
UNCOL text at each use.

Finally, Steel mentioned that additional declaratives were being considered. These
declaratives would specify flow information which was deduced from the original program,
and would permit the code generator to optimize the object program. No declaratives were
given in the paper; Steel said that work was then under way to determine a suitable set.

The UNCOL project was abandoned before a more complete specification of the
language was published, but we doubt that the designers rejected the basic idea. They may
have fcund that compilation techniques were not clearly understood, and that adaptable
translators were difficult to write. We feel that a decade of advances in these areas,
especially the latter, enhance the chances for Janus to succeed. Powerful macro processors such
as STAGE2 allow us to modify translation techniques as we experiment with Janus features.

SLANG
SLANG” was the result of a project initiated early in 1960 for the purpose of developing

a programming language suited to the task of writing compilers. The approach was similar
to that of UNCOL, except that the analysers had access to some ‘general information’
about the target machine. This included such items as the characteristics of storage (word
size, addressability), of instructions (number per word, can they overlap word boundaries ?)
and of registers (how many, what capabilities ?). Using this information, the analyser
produced a sequence of instructions for an E-machine. Sibley claimed that this output
could not be considered an UNCOL because the analyser would produce different
instruction sequences when give different machine descriptions.

The organization of the E-machine was not specified; we surmise that it had only a
memory and a processor. Each instruction consisted of an operator and an appropriate
number of operands. Sibley listed fifty-five operators, and did not say that the meaning of
an operator depended upon the modes of its operands. Since he had distinct operators for
index arithmetic, we assume that a particular operator could accept operands only of a
particular mode.

Each operand of an E-machine instruction was specified by a single symbol or integer.
No mode information was given because it was irrelevant for the remainder of the translation.
(’l’he effect of the operand mode had already been taken into account by the analyser.) Since
the analyser had access to the details of the addressing structure on the target machine, it
could generate the instructions necessary to manage index registers ; hence there was no
need to specify indexing or indirection for the operand itself.

The set of E-machine instructions was not fixed. If a particular target computer had
hardware facilities to perform some complex operation, a new instruction would be provided.

MOBILE PROGRAMMING SYSTEM 21

This instruction would be produced by the analyser only for machines on which it was
appropriate. Sibley did not give details about how the analyser could make this decision.

Finally, Sibley mentioned that additional pseudos could be used for conditionally
including sequences of instructions in the generated code. These pseudos were apparently
not used to provide flow information, since all global optimization was done by the analyser.
‘Peephole optimization’33 was carried out as the E-machine instructions were translated, and
conditionals might have been useful there.

SLANG probably failed because the problem of an adaptable analyser was never
adequately solved. We believe that this approach is a dead end, and that the adaptability
must come in the translation from the intermediate language to machine code.

OCODE
OCODE3P is the intermediate language used for the BCPL35*36 compiler. T h e design

criteria were similar to those of Janus, except that there was no need for extensibility. Thus
OCODE is a single language rather than a family, and the characteristics of the abstract
machine are completely specified.

The OCODE machine consists of a memory, a processor and two memory address
registers, S and P. The memory is an array of integer elements, represented by bit patterns.
Each instruction consists of an operator and an appropriate number of operands. Richards
lists forty-eight operators, none of which is subject to any kind of modification.

Each operand of an OCODE instruction is specified by a single symbol or integer.
No mode information is needed because only one mode is available. Many of the operators
do not specify operands; they access their operands relative to the location addressed by S.
Thus memory is used as a stack, with S addressing the current top. P addresses the base of
the current stuck frame (the area of memory associated with a procedure invocation), and
other operators have non-negative integer operands which are interpreted either as offsets
from this point or as absolute memory locations.

Richards mentions that one of the best ways for the OCODE translator to perform local
optimization is to simulate the state of S and emit instructions ‘only when it becomes
necessary to simplify the simulation’. He also states that one advantage of this technique is
that it is ‘relatively machine independent and hence much of [an OCODE translator] for
one machine can be used . . . for another’.

As of October 1970, OCODE had been used to transport the BCPL compiler to between
ten and twenty different machines. Richards does not list them, but we suspect that none
had a hardware stack. Such computers usually do not provide mechanisms for altering the
stack pointer and base of the current stack frame explicitly, but both operations are available
in OCODE. Nevertheless, we feel that OCODE has been successful in its intended
application and has demonstrated the feasibility of the intermediate language approach to
translation.

CONCLUSION

Janus has now been implemented, via the STAGE2 macro processor, on two computers.
We estimate that approximately two man-weeks of effort are required to construct the
macros for a new machine. This would be the effort required to implement the first piece of
Janus software; subsequent software would require only the additions to the original set
of macros.

T o verify the viability of our approach, we decided to modify the code generation
routines of the Pascal and BCPL compilers. When these modifications are complete, we

22 S. S. COLEMAN, P. C. POOLE AND W. M. WAITE

will be able to translate programs written in Pascal and BCPL into Janus. Thus we will be
able to compare machine code generated directly from these languages with code generated
via Janus. Since the compiler’s analysis phase will be the same in both cases, any differences
can be attributed to the use of the intermediate code. (Pascal and BCPL were chosen
because their compilers were readily available and easily modified.) Preliminary results
from the Pascal project3’ indicate that code produced by using Janus as an intermediate
language is approximately the same size as that produced by the standard compiler for the
CDC 6400,28 and runs about 10 per cent slower.

ACKNOWLEDGEMENT

This work was supported by the National Science Foundation under Grant G J-32471.

REFERENCES

1 . R. J. Orgass and W. ICI. Waite, ‘A base for a mobile programming system’, Comm. ACM, 12, 507

2. W. M. Waite, ‘Building a mobile programming system’, ComputerJ. 13, 28 (1970).
3. P. C. Poole and W. M. Waite, ‘Machine independent software’, Proc. ACM Second Symposium on

4. W. M. Waite, ‘The mobile programming system: STAGEZ’, Comm. ACM, 13, 415 (1970).
5. W. M. Waite, Implementing Software for Non-numeric Applications, Prentice-Hall, Englewood

6. M. C. Newey, Y. C. Poole and W. M. Waite, ‘Abstract machine modelling to produce portable

7. P. J. Brown, ‘The ML/1 macro processor’, Comm. ACM, 10, 618 (1967).
8. C. Strachey, ‘A general purpose macrogenerator’, ComputerJ. 8, 225 (1965).
9. P. J. Brown, ‘Using a macro processor to aid software implementation’, ComputerJ. 12, 327 (1969).

10. R. E. Griswold, The Macro Implementation of S N O B O L I , W. H. Freeman, San Francisco, 1972.
11. M. I. Halpern, ‘Machine independence: its technology and economics’, Comm. ACM, 8, 782 (1965).
12. P. C. Capon, D. Morris, J. S. Rohl and I. R. Wilson, ‘The MU5 compiler target language and

autocode’, Computer J. 15, 109 (1972).
13. 0. Mock, J. Olsztyn, J. Strong, T. Steel, A. Tritter and J. Wegstein, ‘The problem of programming

communications with changing machines: a proposed solution’, Comm. A C M , 1, 12 (1958);
1, 9 (1958).

14. T. B. Steel, Jr., ‘UNCOL, universal computer oriented language revisited’, Datamation, 6, 18
(1960).

15. T. B. Steel, Jr., ‘ U N C O L : the myth and the fact’, in Annual Review in Automatic Programming,
Vol. 2 (Ed. R. Goodman), Pergamon Press, New York, 1961, p. 325.

16. T. B. Steel, Jr., ‘A first version of UNCOL’, Proc. A F I P S WJCC, 19, 371 (1961).
17. R. A. Sibley, ‘The SLANG system’, Comm. ACM, 4, 75 (1961).
18. M. V. Wilkes, ‘The outer and inner syntax of a programming language’, ComputerJ. 11,260 (1968).
19. Janus Summary, Dept. of Electrical Engr., Univ. of Colorado, Boulder, Colorado, 1973.
20. W. A. Wulf, D. B. Russell and A. N. Habermann, ‘BLISS: a language for systems programming’,

21. A. van Wijngaarden, B. J. MaiUoux, J. E. L. Peck and C. H. A. Koster, ‘Report on the algorithmic

22. 3800Computer System Reference Manual, 600162300, Control Data Corp., St. Paul, Minnesota, 1968.
23. IBM System/360 Principles of Operation, A22-6821-5, IBM Corp., Poughkeepsie, N.Y., 1967.
24. How to Use the Nooa Computers, DG NM-5, Data General Corp., Southboro, Mass., 1971.
25. M. Rain, M A R Y Formal Syntacti: Specification, Computing Centre, Technical University of

26. J. Iliffe, Basic Machine Principles, American Elsevier, New York, 1968.
27. B5500 Information Processing Systems Reference Manual, 1021 326, Burroughs Corp., Detroit,

(1969).

Operating System Principles, 19 (1 969).

Cliffs, N.J., 1973.

software-a review and evaluation’, Software-Practice and Experience, 2, 107-1 36 (1972).

Comm. A C M , 14, 780 (1971).

language ALGOL 68’, Numerische Mathmat ik , 14, 79 (1969).

Norway, Trondheim, 1972.

Mich.. 1967.

MOBILE PROGRAMMING SYSTEM 23

28. N. Wirth, ‘The design of a PASCAL compiler’, Software-Practice and Experience, 1, 309-333

29. M. Kanner, P. Kosinski and C. L. Robinson, ‘The structure of yet another Algol compiler’,

30. J. F. Hart (Ed.), Computer Approximations, John Wiley, New York, 1968.
31. P. J. Brown, ‘Levels of language for portable software’, Comm. A C M , 15, 1059 (1972).
32. J. B. Dennis, ‘Modularity’, in Adwunced Course on Software Engineering (Ed. F. L. Bauer), Springer-

33. W. M. McKeeman, ‘Peephole optimization’, C m m . ACM, 8, 443 (1965).
34. M. Richards, ‘The portability of the BCPL compiler’, Software-Practice and Experience, 1,

35. M. Richards, The BCPL Reference Manual, Tech. Memo. 69/1, Computer Laboratory, Cambridge,

36. M. Richards, ‘BCPL: a tool for compiler writing and system programming’, Proc. A F I P S SJCC,

37. L. B. Weber, A Machine Independent Pascal Compiler. M.S. Thesis, Univ. of Colorado, Boulder,

(1971).

Comm. A C M , 8,427 (1965).

Verlag, Berlin, 1973.

135-146 (1971).

1969.

557 (1969).

1973.

