Australian Un

Ix systems

User Group Newsletter

Volume 9 - Number 2

April 1988

The Australian UNIX* systems User Group Newsletter

Volume 9 Number 2

April 1988

CONTENTS

AUUG General Information .« « « « ¢« e e e e e e e e e s e e e e
Editorial
AUUG Institutional Members
Call for Papers - AUUG ’88
Adelaide UNIX Users Group Information
Softway Advertisement
A Note on Security and UNIX .
Parallel Programming Facilities on the Sequent Series of Machines
From the ;login: Newsletter - Volume 13 Number 2
Fifth Workshop on Real-Time Software and Operating Systems .
Call for Papers - UNIX Security Workshop
Call for Papers - Workshop on UNIX and Supercomputers
EUUG Spring 1988 Conference
Call for Papers - EUUG Autumn Conference
Future Bvents . . « « « ¢« « « o o« e o« e e e e e
Fifth Annual Computer GO Tournament .
An Update on UNIX and C Statndards Activities
Publications Available
Want to get Published?
Interested in China?
From the EUUG Newsletter - Volume 8 Number 1
Security of Ethernet Under UNIX and Internet Protocol
An Adapation of Spell to French
Benchmarking in the AFUU
News from the Netherlands .
12u is alive and good-looking
UK Activities
UKUUG UKnet Workshop

© 3 N AW

10
11
17
29
30
31
32
33
33
34
34
35
40
41
41
42
43
52
56
60

64

66
68

AUUGN : 1 Vol 9 No 2

From the EUUG Newsletter - Volume 8 Number 1 continued

AFUU goveming board changes . . .
EUUG Spring 1988 - The Technical Programme . . .
10 Yearsof the EUUG

New Directions for UNIX - Call for Papers - EUUG Autumn 1988 Conference .

EUnet « o v . v v e e e e e e e e e e
EUnetUpdate
The Santa Fe Trail

News from dt+@andrew.cmuedu
Draft Proposed ANSI/ISO C Standard and POSIX Standards Developments

C Compiler Validation
UNIXClinic « o « o v o v v v e e
UNIX User Groups and Publications
AT&T and Sun Microsystems Announce New Computer Platform
Book Review - The X/OPEN Portablity Guide
AUUG Membership Catorgories
AUUGForms« « « « « v v v « .

70

70

72

74

76

77

77

82

86

89

92

94

97

102

. 104
. 105
107

Copyright © 1988. AUUGN is the journal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies are not made or distributed for commercial advantage and
credit to the source must be given. Abstracting with credit is permitted. No other reproduction is
permitted without prior permission of the Australian UNIX systems User Group.

*’

UNIX is a registered trademark of AT&T in the USA and other countries.

Vol 9 No 2 2

AUUGN

AUUG General Information

Memberships and Subscriptions

Membership, Change of Address, and Subscription forms can be found at the end of this issue.

All correspondence concerning membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,

Kensington, N.S.W. 2033.
AUSTRALIA

General Correspondence

All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
Department of Computer Science,
Melbourne University,

Parkville, Victoria 3052.
AUSTRALIA

ACSnet: auug@munnari.oz

AUUG Executive

President

Treasurer

Committee
Members

John Lions

Johnl@cheops.eecs.unsw.oz
School of Electrical Engineering

and Computer Science,
University of New South Wales,
New South Wales

Chris Maltby
chris@softway.sw.oz
Softway Pty. Ltd.,

New South Wales
Chris Campbell
chris@comperex.oz
Comperex Pty. Limited,
New South Wales

Tim Roper
timr@labtam.oz

Labtam Limited,
Victoria

Next AUUG Meeting

The next meeting will be held in Melbourne at the Southern Cross Hotel from the 13th to the 15th of September 1988.

Futher details will be provided in the next issue.

AUUGN

Secretary

Robert Elz

kre@munnari.oz

Department of Computer Science,
University of Melbourne,
Victoria

Piers Lauder

piers@basser.cs.su.oz

Basser Department of Computer Science,
Sydney University,

New South Wales

Peter Wischart
pjw@anucsd.oz

NEC Information Systems,
Canberra

Vol 9 No 2

AUUG Newsletter

Editorial

This is my ten issue as Editor of the Newsletter and the last one I will produce while working for the
Monash University Computer Centre. By the time you have received this issue, I will have started in
my new postion at Webster Computer Corporation. I happy to report my new employers have expressed
the desire to support me in my role as Editor of this Newsletter. Please note, my new address given
below.

I wish to thank the Computer Centre and Department of Computer Science at Monash University for the
support they have given to enable me to produce the Newsletter.

As I have reported in previous issues, I have moved the printing and envolope packing of the Newsletter
to Pink Panther in Melbourne. After a few minor hickups this seems to be now being working
smoothly.

I am disappointed that the last few issues of the Newsletter have been dominated by reprints from
;login: and EUUGN. 1 would be pleased if we could increase the Australian content of the Newsletter.
I again ask you to think seriously about contributing an article to the AUUGN.,

You should also consider producing a paper to present at the Winter Conference which will be held at
the Southern Cross Hotel in Melbourne during September. The Call for Papers appears in this issue,
and the deadline for abstracts is mid-June.

I hope you enjoy this issue and look forward to producing many more.

REMEMBER, if the mailing label that comes with this issue is highlighted, it is time to renew your
AUUG membership.

AUUGN Correspondence

All correspondence reguarding the AUUGN should be addressed to:-

John Carey

AUUGN Editor

Webster Computer Corporation
1270 Ferntree Gully Road
Scoresby, Victoria 3179
AUSTRALIA

ACSnet: john@wcc.oz

Phone: +61 3 764 1100

Vol 9 No 2 4 AUUGN

Contributions

The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is Friday the 17th of June 1988.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by via electronic mail and formatted using troff -mm and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -mm, pic, tbl, eqn)
as well TeX, and LaTeX will be accepted.

Hardcopy submissions should be on A4 with 35 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.
Advertising

Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. The current rate is AUD$ 200 dollars per page.

Mailing Lists

For the purchase of the AUUGN mailing list, please contact Chris Maltby.

Disclaimer

Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committee.

AUUGN 5 Vol 9 No 2

Vol 9 No 2

AUUG Institutional Members

Altos Computer Systems Pty Limited
Australian National University
Australian Telescope Computer Group (CSIRO)
Australian Wool Corporation
Ballarat Base Hospital
Department of Industry, Technology and Resources, Victoria
Digital Equipment Corporation (Australia) Pty. Limited
Fujitsu Australia Limited
Hewlett Packard Australia Limited
Hewlett-Packard, Australian Software Operation
Honeywell Information Systems
Intercept Computers Pty. Limited
James Cook University of North Queensland
Macquarie Bank Limited
Macquarie University
Nixdorf Computer Pty Limited
Olivetti Australia Pty Ltd
Prime Computer Research & Development
Pyramid Technology Australia
Q. H. Tours Limited
Queensland Government Computer Centre
Sanyo Office Machines Pty Limited
Sigma Data Corporation Pty Ltd
South Australian Institute of Technology
Sun Microsystems Australia
Swinburne Institute of Technology
Tattersall Sweep Consultation
University of Adelaide
University of Melbourne
University of New England
University of New South Wales
University of Sydney

AUUGN

Call For Papers

AUUG ’88

Australian Unix systems User Group
Winter Conference and Exhibition 1988

September 13-15 1988, Melbourne, Australia

Summary

The 1988 Winter Conference and Exhibition of the Australian UNIX{ systems User
Group will be held on Tuesday 13th — Thursday 15th September 1988 at the Southern

Cross Hotel in Melbourne, Australia.
The conference theme is Networking — Linking the UNIX World.
AUUG is pleased to announce that the guest speakers will include:

Ken Thompson Bell Laboratories

Michael Lesk Bell Communications Research

Mike Karels University of California at Berkeley
Papers

Papers on topics related to computer networks and UNIX are now invited. Some sug-
gested topics include but are not restricted to:

Operating system and programming language support for networks
Distributed file systems and their application

Networked window systems

ISO/OSI and UNIX

Security aspects of computer networks

Legal and social aspects of computer networks

Protocol specification methods

Harnessing new technologies

Network applications under UNIX
Papers on other (non networking) aspects of the UNIX system are also sought.

Authors of papers presented at the conference will receive complimentary admission to
the conference and the dinner. AUUG will again hold a competition for the best paper
by a full time student at an Australian educational institution. The prize for this

1 UNIX is a trademark of Bell Laboratories.

AUUGN 7 Vol 9 No 2

competition will be an expense paid return trip from within Australia to the conference
to present the winning paper. A cash prize in lieu of this may be paid at the discre-
tion of AUUG. Students should indicate with their abstract whether they wish to enter
the competition. AUUG reserves the right to not award the prize if no entries of a
suitable standard are forthcoming.

A special issue of the group’s newsletter AUUGN containing the conference proceed-
ings will be printed for distribution to attendees at the conference.

Acceptance of papers will be based on an extended abstract and will be subject to
receipt of the final paper by the due date. Abstracts and final papers should be sub-
mitted to the programme committee chair:

Tim Roper Phone: International +61 3 5871444

AUUG 88 National 03 5871444

Labtam Limited Fax: International +61 3 5805581

PO Box 297 National 03 5805581

Mordialloc Telex: LABTAM AA33550

Victoria 3195 ACSnet: timr@labtam.oz

Australia UUCP: uunet!munnari!labtam.oz!timr
ARPA: timr%]labtam.oz@uunet.uu.net

Final papers may be sent via electronic mail and formatted using troff and any of the
standard UNIX macro and preprocessor packages (-ms, —me, —mm, pic, tbl, eqn) or
with TeX or LaTeX. Alternatively, final papers may be submitted as camera ready
copy on A4 paper with 35mm margins left at the top and bottom. Intending authors
unable to produce either of these forms are requested to contact the programme com-

mittee chair.

Timetable

Receipt of Extended Abstracts
Letters of Acceptance Sent
Receipt of Final Papers
Conference and Exhibition

Vol 9 No 2

Monday 13th June
Monday 4th July
Monday 8th August
13th—-15th September

AUUGN

Adelaide UNIX Users Group

The Adelaide UNIX Users Group has been meeting on a formal basis for 12 months.
Meetings are held on the third Wednesday of each month. To date, all meetings have
been held at the University of Adelaide. However, it was recently decided to change
the meeting time from noon to 6pm. This has necessitated a change of venue, and, as
from April, meetings will be held at the offices of Olivetti Australia.

" In addition to disseminating information about new products and network status, time
is allocated at each meeting for the raising of specific UNIX related problems and for
a brief (15-20 minute) presentation on an area of interest. Listed below is a sampling
of recent talks.

D. Jarvis "The UNIX Literature"

K. Maciunas "Security"

R. Lamacraft "UNIX on Micros"

W. Hosking "Office Automation”

P. Cheney "Commercial Applications of UNIX"
J. Jarvis "troff/ditroff"

The mailing list currently numbers 34, with a healthy representation (40%) from
commercial enterprises. For further information, contact Dennis Jarvis
(dhj@aegir.dmt.oz) on (08) 268 0156.

Dennis Jarvis,
Secretary, AdUUG.

Dennis Jarvis, CSIRO, PO Box 4, Woodville, S.A. 5011, Australia.
UUCP: {decvax,pesnta,vax135} !mulga'aegir.dmt.oz!dhj

PHONE: +61 8 268 0156 ARPA: dhj%aegir.dmt.oz!dhj@seismo.arpa
CSNET: dhj@aegir.dmt.oz

AUUGN ' 9 Vol 9 No 2

Softway Pty Limited (Incorporated in NSW) QN
PR N &
PO Box 305, Strawberry Hills, NSW 2012, Australia \\\§ \a\&

AN
First Floor, 120 Chalmers St, Strawberry Hills NSW SH w

T (02) 698 2322 Fax (02) 699 9174

S

N\

NN

N
NAN

SOFTWAY PRODUCTS

SUN-III (ACSnet)
BBBackup

C++ Translator
UNIxT System V

Technical Backup

L & & & & &

Courses:
- Beginner's Workshop
- Fast Start to UNIX
- System Administrators’ Workshop

@ Documenter's Workbench 2.0
- and various back-end drivers
- PostScript support of plain text
- support for graphs and images
@ Ports & Device Drivers
@ Intelligent Benchmarking
@ Biway - Bi-directional modem software

T UNIX is a trademark of AT&T Bell Labs.

Vol 9 No 2 10 AUUGN

A Note on Security and UNIX

M. Anderson
Department of Computer Science
Monash University

ABSTRACT

Demand for secure systems is rising. UNIX in its basic form is not adequate to meet this
demand. This note discusses very briefly two modification methods, capabilities and access
control lists, which may be used to provide a better class of protection for UNIX files.

1. INTRODUCTION

With the increasing demand for more secure systems and the rising popularity of UNIX in
the commercial arena, pressure will be placed on the system to provide a secure operating
environment. Already, some UNIX like systems exist where various security policies can be
implemented. The purpose of this note is to discuss briefly some of the aspects which must be
considered when going about providing a more secure environment than that available on
"vanilla" UNIX systems. Note that there is no intention of going into detail over well known
security problems. Rather, we call attention to two particular methods which can be used to
provide a better level of security in UNIX. Several references are supplied where details of
implementation and a discussion of effects can be garnered.

2. PROTECTION

Protection of files in UNIX is specified by three sets of permission bits, one for owner, one
for group, and one for everyone else. Directories specifying files and the permission sets
associated with them are arranged in the well known hierarchy.

The basic protection mechanism for UNIX is quite inadequate for any serious security
requirements. This is not meant as a harsh criticism as the mechanism was never meant originally
to stand up to vigorous protection issues and was implemented more to prevent users from
tripping over each other. A typical example of a protection problem is the inability to specify fine
grained access control such as indicating which particular users may access a file irrespective of
system defined groups.

A UNIX like system, Secure Xenix (SX) (Chapman et al, 1987), is able to get around the
problem by implementing "access control lists" (ACL). The APOLLO domain (Leach et al, 1985)

AUUGN 11 Vol 9 No 2

system also supplies ACL’s in its UNIX implementation. Another solution to the problem is to
implement "capabilities” which are functionally equivalent to ACL’s (Laur, Needham, 1979).
Both are described below.

In an ACL system, each file has an associated ACL. Each list contains tuples. Each tuple,
typically, comprises a username and a set of permission bits. ACL’s allow owners of files to
specify what type of access can be granted to any particular user for any particular file of theirs.
Hence it is possible to specify access for groups, and particular users who may not be in the
group. SX still implements the basic UNIX protection mechanism but the owner of the file has
the choice to convert the conventional permission format of a file into the ACL format.

Capabhilities are like "tickets" which authorise some type of access to files. A capability
specifies a file and a set of access permissions. There can be more than one capability refering to
the same file and the capabilities needn’t have the same access permissions. For example, there
may be a capability which gives read and write access to a file, and another which gives read
only access to the file.

There is more than one way to implement capabilities and their properties can have
numerous sideffects. It is outside the scope of this note to go into any real detail concerning all
the properties of capabilities. In the context of interest regard capabilities as tickets which can be
"held" by processes, duplicated, destroyed, and passed on to other processes. Naturally
capabilities must be unforgeable so only the system itself should be able to manufacture them.

If a process does not have a capability to a file, then it cannot gain access to that file. Hence
finegrained access control can be achieved by a user when starting up a process by supplying it
with capabilities it may need. There are two important sideffects when capabilities are present.
First, how are they disseminated when a program is run? If the program asks for a filename in
order to gain access to the corresponding file then there must be some method of indicating the
transmission of an appropriate capability as well as the name of the file. Hence some easily
managed protocol must be developed. Such a protocol might involve some form of control
character appearing with a filename indicating to a compiler or command interpreter that a
capability should accompany the filename. One could also envisage optional characters specifying
what access permissions were allowed in the transmitted capability.

The second sideffect is that "setuid" programs are no longer necessary. Capabilities to files
can be, depending on the implementation, embedded in the code body.

The implementation of capabilities or ACL’s to provide a better class of protection is user
visible and makes redundant the original UNIX protection mechanism. Whether users can accept
such a change remains to be seen. Access control lists are probably a more "natural”
implementation for users to deal with as a list can disseminate user names along with access
permissions. Capabilities, while granting access to a file, do not necessarily identify users.
However, we will see in the next section why it is not good simply to abandon the capability
route.

3. VIRUSES

Viruses are code fragments implanted into programs in order to perform a function other
than that intended by the program’s owner. Typically, these functions are harmful to the executor

Vol 9 No 2 12 AUUGN

of the program. One other function of a virus is to reproduce by implanting a copy of itself in
some other executable program.

UNIX is particularly vulnerable to viruses. Consider a program which contains a virus.
Assume it is executed by some unwitting user. On execution, the virus gains all the privileges of
the user. Probably the first thing it does is go about reproduction. This is achieved by the
following. The virus searches for write accessible, executable files. There is no point for a user
to remove write access privilege to executables they own in the hope that the virus will be
stymied as it can always manipulate the privileges temporarily to gain access to the files. Having
found an executable the virus copies itself into a suitable part of the code body section. It then
changes the program entry point in the header to point to the start of the virus code. At the end
of the virus code a jump to the original entry point is implanted. The next time that executable
is run by the user, or better still by some other poor user, the process of reproduction continues.
At some predetermined "trigger" condition, e.g. a certain date, the virus performs some function
which leaves the user and probably the system for that matter, in some highly undesirable state.

The basic problem in vanilla UNIX is that when a user executes someone else program the
writer of the program gains, temporarily, all the executor’s privileges. ACL’s as described above
are of not much use as the virus has the same privileges as the executor and thus can gain access
to their files.

The use of capabilities can prevent the propagation of and subsequently aid in the detection
of viruses. Remember that a process can only access those files for which it has capabilities.
Unless the process is running a compiler, in which case the user has taken great care to ensure
that it is the system compiler being used, it is unlikely that the process requires capabilities with
write access to executable files. If a virus attempts reproduction, the process will incur an access
violation and thus alert a user to a possible virus. The disadvantage of having to implement a
protocol to distribute capabilities on executing a program is shown to confer an advantage here.
Another advantage is that any damage from malicious procedures can be limited to specific files.

Access control lists can be implemented to provide the same finegrained protection.
However, a method of identifying the process and what context it is running in (called a subject)
must be provided. Hence the tuples listing just usernames are not sufficient. The end result can
be an explosion in the list sizes and a confusing problem for the user in distributing access.

If a virus infects system utilities, especially a compiler, then real problems become apparent.
Many different users, including the super user, execute utilities and system compilers. Hence a
virus could spread to all parts of the system and effectively gain super user privileges. The
resultant carnage would be catastrophic. The only recourse to a heavily infected system is to
restore a "clean" version of the system from some medium such as tape. Prevention is better
than cure and for relatively static system utilities it is better to store them on write protected
disks or in roms.

4. CONFINEMENT

While capabilities and ACL’s provide fine grained, flexible access control, there is as yet no
support for security management. That is, support for controlling the flow of information.

AUUGN 13 Vol 9 No 2

Consider the following: A user has a program capable of operating on some type of data.
Another user wants the use of the program to operate on their data. Unfortunately, both users are
suspicious of each other and A wishes to ensure that B cannot ascertain the method used by the
program let alone examine the source or binary code while B wishes to ensure that the program
is unable to report to anyone, including its owner, anything about the data it operates on. Such is
the nature of the confinement problem.

The desired solution exhibits properties whereby a user cannot tell anything about a server
program and the server has its output channels specified by the client (executor of the server).
The ability for a client to specify what information outlets are available to a server on each use of
the server is said to be the imposition of a "discretionary security policy" on the part of the
client.

UNIX systems are capable of implementing part of the solution in that they can prevent
clients from obtaining information on the server by setting the execute only permission bit.
Unfortunately it falls far short of implementing a full solution as a program can always find a
means to communicate with its owner. The same can be said of a system implementing
capabilities or ACL’s as described in the previous sections.

In SX, each file has a security "clearance" and "category" associated with it. When a user
logs on, he specifies at which clearance and any processes created during the login session inherit
that clearance. Together, the clearance and category satisfy the constraints of the Bell and La
Padula lattice model. Rather than explain in detail what a lattice security model is and the
definition of categories, keep in mind the simple lattice formed by the well known military model
comprising of several clearances ranging from confidential to top secret. A person with top secret
clearance can read documents at that clearance or lower. S/he can only write documents at the
their current clearance or higher. The rule preventing downgrading a file or writing into one with
a lower clearance than your own is called the * property. Campbell (1985) provides a simple,
and readable description of lattices in her report on computer security. The military model,
without categories, forms a one dimensional lattice with the flow of information towards the top
secret clearance level.

A system such as SX contains a partial solution to the confinement problem in that
programs can operate on high clearance data files and not be able to divulge their contents to
their owners if the owners can only read files of a lower clearance. Unfortunately, the solution
does not cater to all situations as the client and server may have unsuitable clearances for the
client. The security policy being imposed here is "non discretionary" in the sense that the client
must play by its rules and systemwide in the sense that all users in the system are under its
jurisdiction.

While a systemwide non discretionary security policy may satisfy some users, other users
and groups will demand security policies applicable to their group. This may or may not include
lattice models. What is needed is for the system to provide support for discretionary security
policies and a framework for building coexisting non discretionary policies. It would also be
desirable that users which can satisfy certain constraints, to be able to move from the jurisdiction
of one policy defined by a group to another.

Vol 9 No 2 14 AUUGN

Something more than simple ACL’s or capabilities is required to implement discretionary
security policies.

There is a capability based multiprocessor system at Monash with a confinement mechanism
able to implement confinement in the fashion defined at the beginning of the section. While the
actual kernel of the multiprocessor is capability based and the confinement mechanism is part of
that kernel, the UNIX system being implemented as a set of ordinary processes above the kernel
will be able to use both the capability and confinement mechanisms to supply its users with
strong finegrained protection and security management. Groups of users are able to construct their
own security policies and use the system’s confinement mechanism to enforce them.

4.1. COVERT CHANNELS

The security mechanisms have only been described in the context of controlling the flow of
information through overt channels. However, it may be possible for a program to disseminate
information to unauthorised users through covert channels. Covert channels exist in many forms
and their existence is dependent on the system. Rather than a formal definition of a covert
channel, a simple example will highlight their salient characteristics. A timing channel, one
which exists in any timeshared computer, is CPU modulation. A server can modulate the system
load by the creation and subsequent deletion of many processes. The server’s owner can
demodulate the signal by sampling the load. Thus information can be transfered. Of course other
processes in the system can cause problems by introducing the equivalent of "noise" into the
system. Information theory techniques exist whereby no matter the amount of noise placed on a
covert channel, information can be passed. However, the more noise, the more sophisticated the
algorithm required and the lower the bandwidth of the channel.

Covert channels are graded according to their bandwidth. Some are only one or two bits per
minute and thus generally of no real consequence but others could be several thousand baud.
There is no real assurance that the covert channels discussed by Chapman et al in SX cannot be
usefully exploited.

Various mechanisms exist in the multiprocessor constructed at Monash to limit covert
channel bandwidth (Anderson, 1987).

For a description of a systematic method for identifying covert channels in a system see
Kemmerer (1982).

5. CONCLUSION

The demand for more secure systems is rising. Vanilla UNIX systems are not adequate to
meet this demand. However, relatively simple, user visible modifications can go some way to
transforming a UNIX system into a relatively secure one. Probably the most important single
modification that should be considered is the introduction of a new access control mechanism via
capabilities or access control lists. These mechanisms are valuable tools in building non
discretionary security policies for the system. It should be noted however, that it is a non trivial
task to provide support for discretionary policies which come from confinement given the
definitions of capabilities and access control lists in many systems.

AUUGN 15 Vol 9 No 2

It is stated without proof and somewhat provocatively that capabilities in the long run will
prove more flexible than ACL’s. A hint as to why is tied up with the probability that users will
demand more privacy. Hence a need for systems which are highly secure but are still able to '
deal with anonymous individuals and groups can be envisioned. Some capability based systems
such as the multiprocessor built at Monash are already capable of meeting such a criterion.
ACL’s, with their inherent authentication and identification mechanism, may not be suitable for
such an environment. In this case it is assumed that implementing relatively static pseudonyms is
not acceptable as it may lead to user identification. However, until users can grapple with the
characteristics of capabilities ACL’s specifying access on a user basis are probably more suitable
in the interim.

REFERENCES

Anderson, Pose, Wallace 1986:
A Password Capability System,
The Computer Journal.
VOL 29, 1.

Anderson 1987:
A Password Capability System,
Ph.D. Thesis,
Monash University.

Campbell 1985:
Computer Security: A Status Report,
Proc. of the 18th Hawaii Int. Conf.
on System Sciences.

Chapman et al 1987:
Design and Implementation of Secure Xenix,
IEEE Trans. on Soft. Engineering.
VOL SE-13, 2.

Kemmerer 1982:
A Practical Approach to Identifying
Storage and Timing Channels,
1982 IEEE Symp. on Security and Privacy.

Laur, Needham 1979:
On the Duality of Operating System Structures,
SIGOPS VOL 13, 2.

Leach et al 1985:

The File System of an Integrated Local Network,
Proc. of the 1985b ACM Computer Science Conference.

Vol 9 No 2 16 AUUGN

T

Parallel Programming Facilities on the Sequent Series of Machines
Frank Crawford (frank@teti.qhtours.oz)

Q.H. Tours
PO 630, North Sydney 2060

and

Jagoda Crawford (jc@atom.oz)

Australian Nuclear Science and Technology Organisation
Private Mailbag 1, Menai 2234

1. INTRODUCTION

One of the most exciting machines in the USA at present, at least as far as the UNIX™ community
is concerned, is the Balance™ and Symmetry series by Sequent. These are all multiprocessor systems
having between 2 and 30 processors per machine. Further, they provide libraries to allow the
programmer to explore the multiprocessing capabilities by allowing a single application to consist of
multiple closely cooperating processes. Utilities such as make, sh and apply have been enhanced to take
advantage of the parallel processing facilities.

The operating system, DYNIX, is a fairly standard 4.2 BSD UNIX, at least at the user interface, with
only a few minor enhancements for multiprocessing, however the kernel has been greatly modified in
the area of the scheduling algorithms, to provide the multiprocessing support. There is a System V
Application Environment (SVAE), but this currently has no direct support for parallel processing.

As with most commercial UNIX systems compilers are available for C, Pascal and Fortran 77, all of
which can make use of the Parallel Programming Library. Further, as will be detailed later, third party
products such as an Ada Development System and a Restructuring Fortran Complier are available.

2. HARDWARE

The main feature that makes the Sequent systems unique is the hardware, which is designed to
support multiple processors. In fact there is no single processor version available, the basic building
block is a dual processor board.

Sequent markets two ranges, the Balance series and the Symmetry series, which mainly differ in the
CPU. For the Balance series the CPU is a National Semiconductor Series 32000 microprocessor
(currently a NS32032, giving a performance of about 0.7 MIPS/CPU), with a NS32082 Memory
Management Unit and a NS32081 Floating Point Unit. The Symmetry Series consists of Intel 80386
microprocessor (about 3 MIPS/CPU), with a 80387 Floating Point Unit and an optional Floating Point
Accelerator based on the 1167 chip from Weitek Corp. Also included is a proprietary data cache.

The remainder of the system is as would be expected for a multiprocessor system, it has a high
speed bus connecting the CPU’s to a shared memory subsystem and Dual Channel Disk Controllers. It
also supports a SCSI and a Multibus interface.

The Balance Series includes hardware support for atomic locks, which is crucial for synchronisation
within a multiprocessing environment, whereas the Symmetry Series handles this by a special instruction

+ The work presented in this paper was made possible with the support of Sigma Data Corp., by making available documentation
and system time.

UNIX is a registered trademark of AT&T in the USA and other countries.
™ Balance, Symmetry and DYNIX are trademarks of Sequent Computer Systems Inc.

™

AUUGN 17 Vol 9 No 2

within the microprocessor instruction set.

2.1 Balance Series Locking Mechanisms

The hardware support within the Balance Series consists of a set of locks (called Atomic Lock
Memory or ALM) on each Multibus adapter board. Each board has a section of memory that consists of
32 x 2 KB regions which are accessed through special devices in the directory /dev/alm (alm00..alm31).
These devices are opened by a process and then mapped into its virtual address space using the system
call mmap().

A lock is a 32-bit double word in the ALM, of which only the least-significant bit is used!. The
state of the lock is either locked (1) or unlocked (0). Reading a lock returns its current state, and at the
same time setting it automatically to locked. This operation is indivisible. Writing a 0 to a lock unlocks
the lock.

A simple approach based on the above (see Fig 1) can result in high bus usage. To reduce this a
programmer can implement a shadow lock, i.e. keep a copy of the ALM in shared memory (see Fig 2).
As reads from shared memory are cached, subsequent reads are satisfied from this cache until the cache
controller detects a write to the shadow variable on the system bus.

/%
* Lock the ALM lock whose address is lockp.
*/

lock (lockp)

char *lockp;
{
while (*lockp & 1)

continue;
}
/*
* Unlock the ALM lock whose address is lockp.
*/

unlock (lockp)
char *lockp;
{
*lockp = 0;
}
Figure 1. Simple ALM Spin-lock.

2.2 Symmetry Series Locking Mechanisms

The locking mechanism used by the Symmetry Series is based on the System Bus, and is
implemented in the Symmetry assembly language. To set the bus lock any instruction can be proceeded
by the prefix Jock. This blocks any other bus access for the duration of the instruction. Further the
xchg instruction is always locked whether it is prefixed by lock or not. The basic difference between the
Balance and Symmetry is that in the Symmetry any byte can be used as a lock, this greatly simplifies
caching problems at the expense of having to resort to assembler to write locking procedures.

3. PARALLEL PROGRAMMING

DYNIX provides a number of low-level facilities to allow parallel programming, e.g. fork() and
shared memory facilities. To simplify their use, a library of procedures, called the Parallel Programming
Library (PPL), has been provided, however before studying this, a summary of the low-level facilities is
given.

1. Reads and writes to other bits within the word are possible but the results are undefined.

Vol 9 No 2 18 AUUGN

struct lock_t {

char *lk_alm; /* address of ALM lock */
char 1lk_shadow; /* shadow in memory */

}i

/*

* Lock the ALM lock whose address is lockp.

*/

lock (lockp)
register struct lock_t *lockp;
{
/* Go for the ALM lock. */
while (*(lockp->1lk alm) & 1) {
/%
* Didn’t get it. Spin until shadow
* is unlocked and try again.
*/
while (lockp->1k_shadow)
continue;
)
/* G