The Ferite Developers Guide 1.0 - Extending and
Embedding The Ferite Engine

May 25, 2005

Contents

1 Introduction

2 Creating Basic Modules

3 Creating Native Modules

3.1
3.2
3.3

3.4

4.1
4.2
4.3

4.4
4.5

Introduction
Buil e e —
Ferite-C File Contents
3.3.1 module-header
3.3.2 module-init
3.3.3 module-deinit L
3.3.4 module-register and module-unregister
3.3.5 Native Functions, the builder way
3.3.6 Classes and Namespaceso v v ...
Dot IMmEIINVA. . o o o o o c oo oo 0oo0o0o . oo o SR
Without Builder
4 Accessing Ferite Internals
Introduction
The Memory Manager v v v v vt et
Working With Variables 0oL
4.3.1 Accessing a Variable’s Data
4.3.2 Changing a Variable’s Type
4.3.3 Creating and Destroying Variables
Working With Namespaces
Working With Objects And Classes
4.5.1 Creating Classes o i
4.5.2 Creating Objects
4.5.3 Accessing Variables. oL

4.5.4 Accessing Functions
4.6 Calling Functions
4.7 Raising Exceptions and Reporting Errors
4.8 Executing Code Snippets Lo Lo
Native Modules - By Hand
5.1 Functions e
52 The Rest e
Embedding Ferite
6.1 Getting The Engine Purring
6.2 Fake Native Modules
Building Modules
7.1 Most Compatible Method: generate-module
7.2 New Method: farm

32
32
35

36
36
39

1 Introduction

It is highly recommended that you read the ferite manual before you continue with
this manual as it relies on the fact your are fluent with the terminology and structure of
a ferite program.

This document is provided to make it easier to do one (or all) of several things: write
a ferite module, write a native module to use with ferite - both with and without us-
ing builder tool, accessing the internals of the ferite engine: calling functions, chang-
ing variables, creating objects etc. It is suggested that you read this with the C api
documentation allowing you to read the up to date information about the functions
discussed.

2 Creating Basic Modules

A module is really nothing more than a ferite script that resides within ferites
module search path. By default, the ferite command line tool will look for modules in
the current directory and the system’s ferite module directory (usually this is found in
the directory /usr/lib/ferite/module-source/, although this fact can change from
platform to platform). The module must have a file extension of either .fe, .fehor .fec
in order to be recognized by ferite. The convention is that constants and the default
values for a module should be stored within a .feh file, modules mixed with native
code should have the extension .fec, and the normal ferite code in a .fe file. It is
important to note that ferite treats all these files the same, it just provides the ability
to have the different extensions to make the intended use of the file more obvious.

Essentially any script that you write can be included as a module. A script can import
modules and other scripts by using either the uses keyword, or the include () operation.
When you import a module, you refer to it by its filename, minus the .fe, .feh or .fec
extension. So mymodule.fe would be imported by uses "mymodule"; - ferite will
automatically search the extensions. ferite will correctly resolve relative paths when
importing a module.

The following example shows a script importing a module and accessing an exposed
function, and the module that is imported. They are in separate files residing in the
same directory.

File 1 (the importer); Name: myscript.fe

uses '"mymodule";
foo.bar();

File 2 (the module); Name: mymodule.fe

uses "console";

namespace foo{
function bar(){
Console.println("Hello there!");

}
}

Execution and result:

$ ferite myscript.fe
Hello there!
$

In the previous example, the module had exposed a namespace (foo), and a function
within that namespace (bar). However, this is not the limit of what can be exposed.

Modules can expose functions, classes, namespaces, and global variables. Like regular
scripts, modules can also modify existing namespaces and classes by using the modifies
keyword. There is nothing special that a module must do in order to expose functionality.
When a module creates a namespace, it is automatically exposed. The same goes for
classes, functions and global variables.

Something that should be noted, is that any code in the anonymous function of the
module will be executed when the module is first imported. You can safely put run-once
initialization code in a module’s anonymous function.

Here is an example of a module taking advantage of several abilities.
Name: myothermodule.fe

uses "console";

global {
number gMyNumber = 7;

}

class myclass {
string WhatISaid;

function constructor(string WhatToSay){
Console.println(WhatToSay) ;
self.WhatISaid = WhatToSay;

}

function tryme(){
Console.println("You called myclass.tryme()!");
Console.println("When created, I said: " + self.WhatISaid);

}
}

namespace mynamespace {
function hellothere(){
Console.println("Hello there!");

}
}

function plainfunction(){
Console.println("You called plainfunction()!");

}

Console.println("I could be a module initializer!");

This code would result in gMyNumber being exposed as a global variable. The class
myclass would be available, as well as all of its class members. The namespace 'my-
namespace’ would also become available, and it would house a single function called
hellothere. You would also get a function called plainfunction placed in the main
namespace, accessible simply by its name. And to top it off, upon the importing of the
module, the Console.println statement would be executed. This is a very important
feature to note, as it allows for module writers to place initialisation code that will be
executed.

The next task is to cover native modules.

3 Creating Native Modules

3.1 Introduction

A native module is a ferite module that contains native code to interface with the
surrounding system. This can be of two main forms, a mix of both native code and
ferite script (which is how the base modules for ferite are written) or they can be
completely made up of native code. Native code, in these examples, is C code.

Native modules can either be written by hand in the native language, written in ferite-c
and converted to 100% native code, or, the prefered option, use ferite-c to build a hybrid
module. This section covers the method used to create a hybrid module. These are
by far the easiest to maintain and very quick and easy to build. Modules that do not
require the ferite-c file at runtime are dicussed later, after builder tool and accessing
the internals of ferite has been dicussed. This is due to the fact that they are harder
to write and require knowledge of the ferite internals.

3.2 Builder

Ferite-c files (.fec) are compiled using a special tool, called builder which is run on the
command line. builder is only used for the creation of native modules. It is not required
in order to run pre-built native modules. Depending on your ferite installation, you
may need to install a development package to have access to builder.

What does builder do?

builder reads a ferite-c file and creates the necessary C source, header files and automake
file that will be needed to compile the module. It takes several command line parameters,
only a few of which we will cover here. You can pass builder either --help or -h on
the command line to see all of the available options. builder, by default, assumes that
you are going to build a hybrid module and generates the code for this.

The switch we are currently most interested is -m. The -m switch allows you to specify
the name of your module to builder. This name will be used to determine the names
of the files builder will create while reading the ferite-c file. If you do not specify a
name using -m, it will defaultto modulename. For simplicity we will also use the -c and -f
switches, which prevent the creation of a config.m4 and Makefile.am, respectively.

Example of using builder:
$ builder -c -f -m mymodule mymodule.fec

When you run builder, it will create several output files, named according to the module
name. The main files created are:

e modulename_core.c (holds the register, unregister, init and deinit functions)

e modulename_misc.c (holds native code for the anonymous/_start function, if any)
e modulename_header.h (holds include statements that the various c files need)

e modulename_classname.c (you will get one of these for every class defined in the
fec)

e modulename_namespacename.c (you will get one of these for every namespace in
the .fec)

These files will need to be compiled into a shared object or a DLL (depending on your
platform). For simplicity, we will simply refer to shared objects from here on, but they
are interchangeable with DLL’s. Both the resulting shared object and the original ferite-
c file are needed for ferite to successfully import the module. You will need to place the
ferite-c file in the module path, which was explained in the previous section. The shared
object will need to be placed in the native search path. This is whereferite looks for all
native modules. It is usually /usr/lib/ferite/module-native/platform, though the
actual location may vary depending on the installation (ex. /usr/lib/ferite/module-native/linux-gnu-

Note: If you are interested in auto generation tools for standalone modules, you will
probably be interested in the generate-module utility. builder creates input files for
automake and the like specifically tailored for modules that will be included with the
ferite source. The generate-module utility is geared more towards auto generation
for standalone modules. The other tool that can be used is farm. Both these tools are
covered later in this guide.

3.3 Ferite-C File Contents

Ferite-c files are very similar to basic modules. In fact you can quite easily run builder
on a basic module. You just would end up with a lot of source files that didn’t have
much content. In order to get some content into those files, we need to tell builder
what parts of our module are written in C, instead of ferite script. To do this, there
are several new sections and keywords that we can place within our ferite-c file.

uses "modulename.lib"

One of the most important pieces of a ferite-c file, is a uses statement at the top that
tells ferite at runtime to load the shared object file for the native module.

When you compile the files that builder creates into a shared object, ferite has no
way of knowing the resulting file’s name. Usually, people will compile it into a file called
modulename.so, where modulename is the name of the module. However this is not
required. You could quite easily compile a module from source obtained by building
bob.fec, and call it jimmy.so.

The solution is to explicitly tell ferite to load a shared object by name. This is
done with a special case of the uses statement. The syntax is much like the normal

uses statement, only you place a .lib extension on the name of the module that is to be
imported. This is such that ferite can know to load the native library for that platform
without forcing the programmer to take into account specifics of that platform.

uses "bob.lib";

This will tell ferite to look in the native module path for a file called bob.so on Linux
and bob.dylib on Mac 0S X, and to import it. This type of a uses statement can also be
used within a regular ferite script to load a native only module.

3.3.1 module-header

The module-header section is where you will place any #include statements, or #define
statements, or anything else that you expect your native code will need. The syntax
for creating a module-header in a ferite-c file is much like defining a global section in a
regular script. The code that is declared within the module-header is availible in all
generated C files.

For example:

module-header {
...your headers go here...

}

Anything you place within the module-header section will be placed in the module-
name_header.h file when builder parses the ferite-c file. This header is then included in
every C source file that builder creates. You can have as many module-header blocks,
the code will just be all placed together in the header file.

Here is an example of a module-header:

module-header {
#include <stdio.h>
#include "utility.h"

}

builder doesn’t do any validity checking in between the curly braces. So if you have ty-
pographical errors, you probably won’t know until you try to compile the module.

3.3.2 module-init

This section allows you to specify native code that is executed when the module is loaded
into a script. It is an optional section, but builder will create an empty module-init
function in the C source. This function will be executed when the uses ”modulename.lib”
is executed.

The module’s _start function (sometimes referred to as the anonymous function) is also
executed when it is first imported, but module-init code is executed first. Also, the _start
function cannot contain native code. So if your module initialization requires multiple
jumps between native and ferite code, you can use the _start function to call native
functions where necessary and use ferite code for everything else.

The syntax for creating a module-init section is similar to module-header:

module-init {
...your code goes here...

}

This will cause all of the code placed within the curly braces to be placed in the module’s
init function. In case you’re interested, the build destination is the modulename_core.c
file, in a function called modulename_init(). The function returns void and has 1 param-
eter, " FeriteScript *script”, which is accessible to the code within the section.

3.3.3 module-deinit

This section is syntactically almost identical to the module-init section. Like module-init,
module-deinit is not a required section. Again, builder will create empty module-deinit
function in the C source for you if you do not specify one. This function is called when
a script is being deleted.

Code in this section is executed when the script that loaded the module is being deleted.
More precisely, it is run by a call to ferite_script_delete(). However, you usually don’t
have to worry about the specifics unless you’re embedding ferite in your application.
For most purposes, just know that this code is run when the script has finished execut-
ing.

Here is an example of a module-deinit section:

module-deinit {
...your code goes here...

}

As you can see, it is basically the same as module-init. The return type is void, so
you shouldn’t try returning anything from this function. It also has the affected script
passed into it, which is accessed exactly the same as you would for module-init.

3.3.4 module-register and module-unregister
When a native module’s shared object is loaded, its register function is called once.

This allows the shared object to setup any system specific things. Symetrically, module-
unregister is only called once, and that is when the ferite module system decides to

10

unload the shared object. They are both blocks of code like module-init and module-
deinit and should be used the same way.

3.3.5 Native Functions, the builder way

When developing a native module with builder it will be necessary to create functions
that can be called by ferite scripts. To make this easy there are only two main differ-
ences between a ferite function and a native function. These are the keyword native
and that the bodies of the functions are written in C.

First we’ll start with an example of how to declare a simple native function:

native function foo() {
...your code goes here...

}

This would result in the C source between the curly braces being placed in one of the
C source files. The exact file and the exact function name created depends on the
namespace or class that the function is declared in. This might vary from version to
version so I won’t get into it here, but feel free to look at the source created. You’ll
probably be able to figure it out from there. To a scripter the function looks and tastes
the same as a normal ferite function.

It should be noted that within each function the following variables are accessable:
e script - a pointer to the FeriteScript in which the function was called.
e function - a pointer to the FeriteFunction which owns the function executing.

e params - the null terminated list of parameters (see Calling Functions for more
information).

e self - Note! for a function that is an object function, selfwill point to the Feri-
teObject*, for a namespace it will point to the FeriteNamespace* that the function
lives in, for a class function it will point to the FeriteClass® the function lives in.

e current_yield block - A pointer to the current closure that may have been passed
into the function. The deliver keyword, that is used within a ferite script, uses
this closure and calls the invoke function on it.

Parameters

The next step is to pass in some variables, and it is pretty easy to do. Simply declare the
variables as you would normally do for any ferite script. When you get inside of the
function, the values passed in will be converted to units that are workable in C with the
same name. Complex objects will be presented to you in the form of pointers to different
types of structs according to their type. All variables are available by the names you

11

gave in the function declaration. Following is a quick breakdown of the different types
and how they convert.

e number - Numbers are converted to doubles because doubles can represent LONG_MAX,
and ferite numbers support floating point values anyways. If you expected to
use the value as an integer in your function you can simply cast the double to a
long. It is a good idea to check that the number passed in is not greater then
LONG_MAX before you cast it to an long, otherwise you might end up with some
funny looking results.

e string - Strings are converted to FeriteString *, and their C-string values are acces-
sible by struct element ’data’. So you can retrieve the value of string mystring by
mystring->data. Following is an example that accesses a string’s value by using it
in a call to strdup.

native function foo(string mystring){
char *mystring copy = strdup(mystring->data);
int length = mystring->length;

}

e object - Objects are instances of classes and represented within C code as Feri-
teObject’s, which must be accessed by reaching into ferite’s internals. This is
covered in the next section ” Accessing Ferite Internals”.

e array - Arrays are represented by a FeriteUnifiedArray™ and must also be accessed
by reaching into ferite’s internals.

e void - A void variable has no conversion and the name is just a pointer to a variable.
The example below illustrates what builder generates given a the function given.

native function example(number x, string s, object o, array a, void
v)
{

printf("Value of x: %f\n", x);

printf("String contents: ¥%s\n", s->data);

printf("Object reference count: %d\n", o->refcount);

printf("Array size: ¥%d\n", a->size);

printf("Type: %d\n", v->type);

}

This is the C code that is generated:

FE_NATIVE FUNCTION(ferite module_example nsoav)

{

double x;
FeriteString *s;
FeriteObject *o;

12

FeriteUnifiedArray *a;
FeriteVariable *v = params[4];
FeriteNamespace *self = FE_CONTAINER_TO_NS;

ferite_get_parameters(params, 5, &x, &s, &o, &a, NULL);

{ /* Main function body. */
#line 5 "test.fec"

printf("Value of x: %f\n", x);

printf("String contents: %s\n", s->data);

printf("Object reference count: %d\n", o->refcount);
printf("Array size: %d\n", a->size);

printf("Type: %d\n", v->type);

}

FE_RETURN_VOID;
self = NULL;

}

The important point being made with this example is how the parameters are automat-
ically converted from FeriteVariable*s to their real types. This makes writing native
functions much easier.

Return Values

Now that we have discussed handling parameters, next you need to know how to return
values from functions. Any time you don’t specify a return value and your function
runs off the end of its scope, builder will assume you meant to return void and will
automatically insert a call to return nothing. This can been seen in the previous example,
where, at the end of the generated code, the following can be seen:

FE_RETURN_VOID;

If returning void is not the desired effect, or you would like to specify a position to return
from other than running off the end of the function’s scope, you will need to specifically
return a value using one of the following C macros. The macros are designed to take a
value from the C code, wrap it up into a FeriteVariable, do a little house keeping and
then return from the function.

e FE_RETURN_VOID - returns void to the caller, this is synonymous with not returning
anything.

e FE_RETURN_TRUE - returns true to the caller.

e FE_RETURN_FALSE - returns false to the caller.

13

e FE_RETURN_LONG(value) - returns a number to the caller with the contents of
the given long.

e FE_RETURN_DOUBLE(value) - returns a number to the caller with the contents of
the given double.

e FE RETURN STR(string, freeme) - returns a FeriteString® to the caller. The
parameter ”string” is passed in as a FeriteString*. If freeme == FE_TRUE, string
is freed using ferite’s memory manager. if freeme == FE_FALSE, it is not freed
at all.

e FE RETURN_CSTR(string, freeme) - returns a char® to the caller. The param-
eter "string” is passed in as a char*. If freeme == FE_TRUE, string is freed using
ferite’s memory manager. if freeme == FE_FALSE, it is not freed at all.

e FE_RETURN_ARRAY(pointer to array) - returns an array to the caller.

e FE RETURN 0BJ(pointer to object) - returns an object to the caller (objects
are instances of classes).

e FE_RETURN_NULL_OBJECT - returns a null object to the caller (useful for functions
that are expected to return an object, but need to signify an error condition).

e FE RETURN_VAR(variable) - returns a FeriteVariable to the caller. This allows
you to return a variable that you have created yourself to the engine. It will tag
the variable allowing ferite to clear it up when it is finished with. If you want to
return a variable, but keep hold of it, you must simply return the variable as you
would an item from a normal ¢ function. eg:

return someVar;

All of these macros actually convert the given return values into a FeriteVariable *

which is then returned to the caller. As a general rule, you should always use the
available macros when mixing C and ferite to prevent your functions from breaking if
the interface ever changes. These macros will be kept up to date, so you are safe to use
them. All the macros tag the variable they create as being disposable; this is a delayed
deletion mechanism that gives ferite permission to free up the variables it has finished
using. This is important to note, especially with FE_RETURN_VAR because you may not
want the variable cleaned up.

And Finally

The previous few sections should give you enough information to get you up on your
feet and writing native functions. To play with ferite’s internals you will need to read
on where this is dicussed in depth. However, here is an example:

uses "Example.lib";

namespace Example {

14

native function Add(number left, number right) {
FE_RETURN_DOUBLE(left + right);
}
native function Error(number code, string error) {
fprintf (stderr, "Error: Y%d: %s\n", (int)code, error->string
)
FE_RETURN_LONG(-1) ;
t
t

3.3.6 Classes and Namespaces

Classes and namespaces in native modules are created exactly like their non-native coun-
terparts. You simply declare the namespace or class in the ferite-c file, and when a script
tells ferite to import the module, ferite will parse the .fec and create the namespaces
and classes as usual and link up the native functions from the shared object. There is
absolutely no syntax change for creating classes and namespaces. Pretty straight forward
isnt it?

There is, however, the added ability to place native functions within classes and names-
paces. The syntax for doing so is no different that what you've already seen, just place
them within the curly braces of the namespace or class that you would like them to be
a part of.

Here is an example of a native function in a namespace:

namespace foo {
native function bar() {
...your code goes here...

¥
}

And here is an example of a native function in a class:

class foo {
native function bar() {
...your code goes here...

}
}

You can also make functions in classes static, as was described in the user manual. So
of course we can make those native functions as well. Simply place the keyword static
in the function declaration.

class foof{
static native function barl(){

15

...your code goes here...
native static function bar2(){
...your code goes here...

}
}

Both barl() and bar2() are native functions that are static within the class foo. The
order of the keywords does not matter.

Self Data

When a native function belonging to an object, or namespace or class, is called, there is

the self variable available. This is a pointer to the FeriteObject /FeriteClass/FeriteNamespace
which is currently executing. Now, to make life easier there is a part of the structure

that allows you, the module writer, to attach any data to it. This is called (and refered

to) as odata and is short for object data. ferite does not and will never touch this. It

is the job of the programmer to deal with it. It is very simple to use, simply access the
odata member on self.

self->odata = get_some_resource();

Example: In the ’filesystem’ module, odata is used to store a pointer to the FILE*
pointer for file streams.

#define SelfObj (FILEx) (self->odata)
3.3.7 Finally
This section should have helped you get off your feet and understand the way in which
builder can help you not only rapidly develop modules but keep them very close to

ferite code. You should look at the .fec files that ship with ferite to clarify any
doubts you have.

3.4 Without Builder

The natural flow of this document means that creating native modules without builder
should be dicussed here. As most of the dicussion requires knowledge dicussed in the next
section, this will be left until after the internals of ferite have been looked at.

16

4 Accessing Ferite Internals

4.1 Introduction

This section is designed to teach you how to access, modify, create, and destroy various
structures within ferite. It covers variables, functions, classes, and namespaces. It will
first cover very basic memory management, then cover variables, namespaces, calling
functions, calling object and class functions, and creating a class.

It should be noted that this section will cover the registering and accessing of methods,
but won’t tell you how to write one from scratch manually. That will be left for the next
section where native modules by hand will be dicussed.

4.2 The Memory Manager

Under normal operation ferite uses its own memory manager, which is basically a sub
allocator, to achieve some significant performance gains over the standard malloc/free
operations. This memory manager is used throughout ferite, and the data that is
passed around in ferite is expected to be allocated under this manager. The rule of
thumb is that any memory that touches ferite should be obtained from ferite or placed
in the odata part, otherwise, it is more than likely that ferite will try and free some
memory and crash.

This memory manager acts much like malloc/free in terms of how you use it. There are
functions that mirror the malloc, calloc, realloc, and free calls.

e fmalloc(size)

e fcalloc(size, blocksize)
e frealloc(ptr, size)

o ffree(ptr)

These functions all act like the functions they replace. However, they are different so
don’t mix calls on memory between malloc/free and fmalloc/ffree. They play well in the
same sand-box, but don’t ask them to swap Tonka trucks with each other.

4.3 Working With Variables
4.3.1 Accessing a Variable’s Data

ferite internally represents all variables using FeriteVariable *’s, and they represent
any native type within ferite. builder, and the return macros you’ve already seen

17

are in place to perform conversions for the sake of convenience. But sometimes you just
need to stick your fingers in the pudding and get dirty.

There are a few bits of general information you can get from a FeriteVariable * without
looking specifically into on variable type. The internal variable name is accessible (it
is a null terminated C string) and usually the variable name has been automatically
generated by an operator or a function. It’s main use within the engine is to store the
hash key the variable has within an array. But if you’d really like to have it, you can
access is by:

var—->name

Much more useful than the variable name is the variable type. This will tell you if the
data held is a number (and what kind), a ferite string, an object, an array, a class,
namespace, or void (nothing at all). It is accessible by:

var->type
It is an integer that can be any one of the following values:
e F_VAR_VOID - a void variable, no value.
e F_VAR_LONG - a number variable as a C long.
e F_VAR DOUBLE - a number variable as a C double.
e F_VAR_STR - a string variable.
e F_VAR_UARRAY - an unified array variable.
e F_VAR_OBJ - an object.
e F_VAR_CLASS - a class.
e F VAR NS - a namespace.

There are a number of additional macros available for accessing the actual data within
different variable types. You should use these macros as much as possible when work-
ing with ferite variables. Internal structures may change, but these macros should
always be up to date and provide exactly the same semantics when it comes to value
access.

e F_VAR_VOID - since this is a void variable, there really isn’t any data to gain access
to.

e F_VAR_LONG - the data can be accesses by VAI(var) . This will make it act exactly
like a C long. You can read its value and set new values.

Example:

VAI (mynum) = 7;

18

e F_VARDOUBLE - the data can be accessed by VAF(var). This will make it act
exactly like a ¢ double. You can read its value and set new values.

Example:
VAF (mynum) = 8.16;

e F_VAR STR - using the VAS(var) macro will get you a FeriteString®, which can
then be used in API functions to perform various operations. You can access the
string’s length and data by using the original FeriteVariable * in the FE_STRLEN(
var) and FE.STR2PTR(var) macros, respectively. FE_STR2PTR behaves like
a char*, and FE_.STRLEN behaves like an int. Whenever you change a string’s
content, you must always update its internal size to reflect the new actual size.

Example:

ffree (FE_.STR2PTR (var)) ;
FE_STR2PTR(var) = fstrdup("My new string!");
FE_STRLEN(var) = strlen(FE_STR2PTR(var));

There are a whole host of functions within the ferite engine for manipulating
FeriteString®’s allowing you to do comparisons and replacements on the strings.
It should also be noted that FeriteString*’s are designed to hold binary data.

e F_VAR OBJECT - using the macro VAO(var) will get you a FeriteObject®, which
can then be used in a variety of API functions to access variables and functions
within that object.

e F_VAR_UARRAY - using the macro VAUA(var) will get you a FeriteUnifiedArray
* which can then be used in the unified array API functions to add, retrieve and
remove values from the array.

e F_VAR CLASS - using the macro VAC(var) will get you a FeriteClass*, which can
then be used in a variety of API functions to access variables and functions within
that class. To get a class passed into a function you must, currently, use the void

type.

e F_VAR NS - using the macro VAN(var) will get you a FeriteNamespace®, which
can then be used in a variety of API functions to access variables and functions
within that namespace. To get a class passed into a function you must, currently,
use the void type.

4.3.2 Changing a Variable’s Type

To change a variable from one type to another you need to call the function ferite variable_convert_to_tj
This takes the script, the variable to change and the new type that you require. The

function will take care of any arrays, objects etc that may still be attached to the variable.

For example, to change a double to a long, you can simply do this:

19

ferite_variable_convert_to_type(script, var, F_VAR_LONG);
VAI(var) = 10;

And to change it back:

ferite_variable_convert_to_type(script, var, F_VARDOUBLE);
VAF (var) = 10.0;

It is considered bad for you to simply change the type of a variable. It is not encouraged
at all. It is therefore on your own head to keep things correct.

4.3.3 Creating and Destroying Variables

Creating variables is quite simple: each variable type has a ’create’ function that returns
a FeriteVariable*. You already know how to manipulate these variables (or at least
get to the information needed to manipulate them), so I'll just quickly run through the
variable types available, and their creation functions. The parameters should be pretty
self-explanitory, if not please refer the the C API document. It should be noted though
that they all take the same argument ”alloc.” This tells ferite whether or not the
name of the variable should be allocated or whether it is static; You should state that
the name is static if you are passing a string constant so that ferite wont waste memory.
E.g.

char *name = strdup("SomeName");
FeriteVariable *copy_name =

ferite_create number_long variable(name, 42, FE_ALLOC);
FeriteVariable *ref name =

ferite_create number_long variable("SomeName", 42, FE_STATIC);
free(name) ;

In the above example, the first allocation of the variable causes ferite to copy the
name, allowing the name variable to be free’d up. The second variable allocation tells
ferite to retain a reference to the name because we know it wont be cleared up.

e F_VAR_VOID - FeriteVariable *ferite_create_void_variable(char *name, int alloc);

e F_VAR LONG - FeriteVariable *ferite_create number_long variable(char *name, long
data, int alloc);

e F_VAR DOUBLE - FeriteVariable *ferite_create_number_double_variable(char *name,
double data, int alloc);

e F_VAR STR - FeriteVariable *ferite_create_string variable(char *name, FeriteString
*data, int alloc);

e F_VAR STR - FeriteVariable *ferite_create_string_variable_from_ptr(char *name, char
*data, int length, int encoding, int alloc); Currently, the encoding value is always

20

FE_CHARSET DEFAULT. The reason for it being set now is so the in the future when
the encoding of a string is important code will still work unmodified.

e F_VAR UARRAY - FeriteVariable *ferite_create_uarray_variable(char *name, int size,
int alloc);

e F_VAR_OBJ - FeriteVariable *ferite_create_object_variable(char *name, int alloc);

e F_VAR_CLASS - FeriteVariable *ferite_create_class_variable(FeriteScript *script, char
*name, FeriteClass *klass, int alloc)

e F_VARNS - FeriteVariable *ferite_create_namespace_variable(FeriteScript *script,
char *name, FeriteNamespace *ns, int alloc)

To delete any ferite variable, you use the ferite_variable _destroy function. This
function takes the current script and a FeriteVariable * as parameters, and it returns
void.

void ferite_variable destroy(
FeriteScript *script,
FeriteVariable *var);

You can use this function on any type of variable. Each will be handled in the ap-
propriate manner according to its type. Strings will have their C string data freed by
ffree and will then be destroyed. Objects will have their destructor called before they
are destroyed. Lastly, unified arrays will have the variables at each of its indexes de-
stroyed in the appropriate manner according to their type and will then, themselves, be
destroyed.

4.4 Working With Namespaces

In this section we’ll cover how to create and delete namespaces, and how to create,
access, and delete variables and how to register and delete functions, and how to find
things within them. Namespaces are created by registering them within the script. This
can be done with the following function:

FeriteNamespace *ferite_register _namespace/(
FeriteScript *script,
char *name,
FeriteNamespace *parent)

The function takes three parameters: the script to register the namespace into, the
name of the namespace you wish to create, and the parent where you wish to create
the new namespace. The parent must be a valid pointer to a FeriteNamespace, you can
either find one with ferite_find namespace, or you can simply use script->mainns to
use the top-level namespace of a script as the parent. If the register is successful, the

21

FeriteNamespace * that refers to the new namespace is returned. The data it points to is
internally allocated, so do not destroy it. If the register failed, it will return NULL.

module-init {
FeriteNamespace *mobile =
ferite register_namespace(script,
"Mobile", script->mainns);

}

Once you have a namespace created, you can delete it with this function:

int ferite delete namespace(FeriteScript *script, FeriteNamespace
*ns)

This will destroy the namespace after recursivly destroying all of its children. This
includes all variables, sub-namespaces, classes and functions. It currently always returns
1.

Creating and deleting namespaces is only fun for a short while. Eventually you’ll want
to put variables into your new namespace, and probably functions and classes as well.
The next three functions will allow you to do just that.

FeriteVariable *ferite register ns_variable(
FeriteScript *script,
FeriteNamespace *ns,

FeriteVariable *var)

This will register a variable into the namespace that you provide. If you’ve recently
created the namespace, you can use the FeriteNamespace * that the register function
returned. Otherwise you will have to look up the FeriteNamespace * to the namespace
you wish to place your variable in using the ferite_find_namespace function. The value
returned is always the same as the value passed in as the var parameter. The variable will
be accessible under the new namespace according to its name stored in the FeriteVariable
struct. So you might want to make sure you set it to something intelligent before you
register it into a namespace. E.g.

module-init {
FeriteNamespace *mobile =
ferite register_namespace(script,

"Mobile",
script->mainns);

FeriteVariable #*signal = ferite_create_number_long variable(
"signal",
0,
FE_STATIC);

ferite register ns_variable(script, mobile, signal);

}

22

FeriteFunction *ferite_register_ ns_function(
FeriteScript *script,
FeriteNamespace *ns,

FeriteFunction *f)

This functions registers a function into the given namespace. The return value is always
the same as the value passed in as the f parameter. Again, the name of the element
comes from the name field of the FeriteFunction struct. Set it before you register the
function.

FeriteClass *ferite_register ns_class(
FeriteScript *script,
FeriteNamespace *ns,
FeriteClass xklass)

This will register a class into the given namespace. The return value is always the same
as the value passed in as the klass parameter. Once again, the name of the element
comes from the name field of the FeriteClass struct. Set the name before you register
the class. Most of the time you will never use this as the standard way to create a class
will also automatically register it, it is merely mentioned here for completness.

The next logical step is gaining access to variable, functions, and classes that are reg-
istered to namespaces. This is done by retrieving a FeriteNamespaceBucket which
contains the information you desire in its data element. The following function is used
for retrieving these buckets:

FeriteNamespaceBucket *ferite_find namespace(
FeriteScript *script,
FeriteNamespace *parent,
char *obj,
int type)

This will return a FeriteNamespaceBucket * on success, or NULL on failure. It takes a
script, and a starting point as the first two parameters. The third parameter is the dot-
delimited name of the object you are looking for, relative to the parent namespace given.
So if you are using the root namespace (script->mainns) as your parent namespace, and
wish to access mynamespace.myothernamespace.myvar, then you would pass ”mynames-
pace.myothernamespace.myvar” as the third parameter. However, if you already have a
FeriteNamespace * that refers to ‘'mynamespace’, then you could pass that in as the par-
ent (2nd parameter) and then access myvar by passing ”myothernamespace.myvar” as
the obj (3rd parameter). Lastly, if you already have the FeriteNamespace * for 'myoth-
ernamespace’, then you would simply pass "myvar” as the obj. Because you are only
dealing with one level of depth, you do not place a period within the obj in that instance.
The fourth, and last, parameter is the type of object you are looking for. It is always
one of the following defined types:

e FENS_NS - retrieves namespaces

23

e FENS_VAR - retrieves variables
e FENS_FNC - retrieves functions
e FENS_CLS - retrieves classes

If you choose to pass 0 to the function, you will get back the named FeriteNamespace-
Bucket if it exists. Using the above defines allows you to tell ferite_find_namespace what
type of bucket you are looking for guaranteeing that what you get back is the correct
item and type.

Again, once you have the bucket, you can access the desired value by looking in the data
element. Example:

FeriteVariable *myvar = NULL;
FeriteNamespaceBucket *nsb = NULL;

nsb = ferite find namespace(script,
script->mainns,
"mynamespace.myvar", FENS_VAR);

if(NULL != nsb){ /* we found it! */
myvar = (FeriteVariable *) nsb->data;
/* we needed to cast because nsb->data is a void* type */

}

At this point I can use myvar just like any other FeriteVarible *, because it is one! When
the value of this variable is changed it will be noticable straight away within the script.
It is also important to note that you must not take these variables you have obtained
and return them to the script via FE_RETURN_VAR. This will cause ferite to delete
the variable and leave dangling pointers. If you wish to return the variable simply return
it like you would a normal c variable:

return myvar;
To get a function is the same process. Example:
FeriteFunction *func = NULL;

FeriteNamespaceBucket *nsb = NULL;

nsb = ferite_find namespace(script,
script->mainns,
"mynamespace.function",
FENS_FNC);

if (NULL !'= nsb){
func = (FeriteFunction*)nsb->data;

24

}....

It is good to note that within ferite’s source, the convention is to call the namespace
bucket variable 'nsb’.

As promised at the beginning of this section, here is how to unregister elements from
namespaces:

void ferite delete namespace_element from namespace(
FeriteScript *script,
FeriteNamespace *ns,
char *name)

This will delete the element name from the namespace ns within the script script. Be
careful though, this function will not burrow down layers of namespaces to find the
element you specify. So you cannot use the dot notation here, this is a deliberate
design choice to stop accidental deletion of the wrong elements. You must first find the
immediate parent of the element (using ferite find namespace), and pass that in as the
namespace ns. You can use this to delete namespaces from within namespaces as well,
and in that case it will also recursively destroy the deleted namespace’s contents.

So that is all there really is to namespaces. They are an excellent form of container both
in and out of scripts!

4.5 Working With Objects And Classes
4.5.1 Creating Classes

Registering classes is much the same as registering namespaces. You first register the
class, then you add the variables and functions you wish to publish in them.

To register a class you use the ferite_register_inherited_class function call. This will
create the class, setup the inheritence, register the class wihin a namespace for you and
return it in one fell swoop.

FeriteClass *ferite_register_inherited_class(
FeriteScript *script,
FeriteNamespace *ns,
char *name,
char *parent)

The first parameter is the script, the second is the namespace in which you want to place
the class, the third is the name of the class by which programmers can reference it and
the fourth is the name of the class the new class inheirts from. The fourth argument can
be in standard dot notation and is the name of the parent class. For instance, it could
be ”Sys.Stream”. The function will start looking for the class in the namespace that is

25

passed to the function, and then start in the top level script namespace. For instance, if
the ”Sys” namespace was passed to the function, you would want to specify ”Stream”.
If you do not wish for your class to inherit from any existing class simply pass NULL and
the new class will be automatically placed as a subclass of the base class ”Obj”.

Registering variables and functions with a class is much the same as registering them
with a namespace, you simply pass an extra parameter to say whether or not the item
is static (linked to the class) or an instance variable (linked to the object created from
the class).

To add a variable you call:

int ferite_register_class_variable(
FeriteScript *script,
FeriteClass x*klass,
FeriteVariable *variable,
int is_static)

The second argument is the class to add the variable to. The class can be obtained
from creating a new class or pulling one out of a namespace. The third argument is the
variable to add. The fourth variable is whether or not the variable is static.

To add a function you call:

int ferite register_class_function(
FeriteScript *script,
FeriteClass x*klass,
FeriteFunction *f,
int is_static)

The arguments are almost identical except for the third one which is a pointer to a
ferite function.

4.5.2 Creating Objects

Creating objects is very straight forward. There are two main method calls that can be
used.

The first is ferite build object. Its pupose is to simply allocate a FeriteVariable*,
allocate the necessary structures (such as it’s instance variables, and pointers to func-
tions) and add it to the ferite garbage collector. ferite build object does not call
the new object’s constructor. This is very useful for when you are doing manual setup
of an object. The prototype for the function is:

FeriteVariable *ferite_build_object(
FeriteScript *script,
FeriteClass *nclass)

26

The second is ferite new_object which does all the same things ferite_build_object
does except it will call the constructor for the new object. It will return an FeriteVari-
able* that is ready to be cleaned up by ferite as and when it is returned to the engine
and no longer wanted. It has the prototype:

FeriteVariable *ferite_new_object(
FeriteScript *script,
FeriteClass *nclass,
FeriteVariable **plist)

The first two arguments are the same for ferite_build_object, the current script and
the class you wish to instantiate. The third argument is the parameter list to be passed
to the object’s constructor. Read the next section on calling functions to find out how
to create one and what they consist of.

4.5.3 Accessing Variables

Firstly, we’ll cover how to access variables within objects and classes. It is done essen-
tially the same way for each. Both FeriteClass and FeriteObject structs have a variables
element that is a hash of all variables within them. To make life slightly easier and code
more understandable there are a couple of functions for retrieving the variables from
either a class or an object.

FeriteVariable *ferite_object_get_var(
FeriteScript *script,
FeriteObject *object,
char *name)

This is for getting the value out of an object. It should be noted that the second argument
is not a FeriteVariable* but a FeriteObject*. This means that is it necessary, if you have
a FeriteVariable* pointing to an object, to call it with VAO(nameOfVariable).

FeriteVariable *ferite_class_get_var(
FeriteScript *script,
FeriteClass x*klass,
char *name)

Both the above functions take the name of the variable to obtain and will return a
pointer to the variable if it exists, or will return NULL if it doesn’t.

For example, for objects you would do this: (assume that some_object is of type Ferite-
Variable * and it is a valid object)

FeriteVariable *myvar = ferite_object_get_var(script,
VAO(some_object),
nmyvarn) ;

27

If myvar is not NULL, then it was successfully retrieved. If you want to do the same
with a class, you do this: (assume that some_class is of type FeriteClass *, and it is a
valid class)

FeriteVariable *myvar = ferite_class_get_var(script,
some_class,
"myvar") ;

Again, if myvar is not NULL, it was successfully retrieved.

4.5.4 Accessing Functions

Getting functions from objects or classes is easy if you can get a variable from them
(Hint: make sure you read the last section!).

To get your hands on a function in an object you simply use the function call ferite _object_get_function.
Suprised? You shouldn’t be. It looks, feels and tastes very similar to ferite_object_get_var
except this time you get a function not a variable.

FeriteFunction *ferite_object_get function(
FeriteScript *script,
FeriteObject *object,
char *name) ;

To get your hands on a function tucked away in a class you simply need to use the
function call ferite_class_get_function.

FeriteFunction *ferite_class_get function(
FeriteScript *script,
FeriteClass *cls,
char *name)

4.6 Calling Functions

Once you have a FeriteFunction *, the next thing you’re probably going to want to do is
call the function it to which it refers. This is one of the trickier things to do in ferite,
but only because it involves several stages in order to complete.

Firstly, you need your FeriteFunction *, which can be obtained by using the ferite_find_namespace
function. Then you’ll need to create a parameter list that you wish to pass to the func-
tion. This is done with the following function:

FeriteVariable *xferite_create_parameter_list_from data(
FeriteScript *script,
char *format,

)

28

This function does its best to make creating parameter lists simple. The first parameter
is the script, the second is a format string that describes the types of variables that
will make up the argument list, and the rest of the parameters are the values to be
used as described by the format string. The format string must be zero or more of the
following;:

e n - a number, the value passed must be a C variable of type double

e | - a number, the value passed must be a C variable of type long

e s - a string, the value passed must be a pointer to FeriteString

e 0 - an object, the value passed must be a pointer to a FeriteObject

e a - an array, the value passed must be a pointer to a FeriteUnified Array

The function will return a parameter list (FeriteVariable **) which can then be used as
a parameter in the next function to be dicussed. For your information, a parameter list
is simply a NULL terminated C array of FeriteVariable* - these are easy to create by
hand, but this function simply aids the creation.

FeriteVariable *ferite_call function(
FeriteScript *script,
void *container,
FeriteObject *block,
FeriteFunction *orig_function,
FeriteVariable #**params)

This function will call the function and return a FeriteVariable *, which will be the
returned value of the called function. It must be caught and destroyed, or you will leak
memory. Even functions returning void will return a fully allocated FeriteVariable * of
type F_ZVAR_VOID.

The first parameter is the script, the second is the pointer to the container of the function,
for instance for a namespace function a FeriteNamespace, for a class a FeriteClass pointer
and an object, a FeriteObject pointer. The third argument is the closure that can be
passed to the function, this can be NULL. The fourth argument is the FeriteFunction
you wish to call, and the last is the parameter list you had created with the previously
described ferite_create_parameter_list_from data() function. The parameter list may be
NULL indicating that the function takes no arguments.

When you are finished with the parameter list, simply delete it with this function:

void ferite_delete_parameter_list(
FeriteScript *script,
FeriteVariable **list);

So there you have it, three steps to calling another function within ferite. Here is a
complete example which calls ’Console.println’ with the string 'Hello World’:

29

FeriteFunction *println = NULL;
FeriteVariable **params = NULL;
FeriteVariable *rval = NULL;

/* Create a string to pass to the function */
FeriteString *hello = ferite str new("Hello World", O, FE_CHARSET DEFAULT

)

/* Find the function in the scripts main namespace */
FeriteNamespaceBucket #*nsb = ferite find namespace(
script,
script->mainns,
"Console.println",
FENS_FNC) ;
FeriteNamespaceBucket *console = ferite find namespace(
script,
script->mainns,
"Console",
FENSNS) ;

if (NULL != nsb) /* Check to see if we have the function ... */

{

println = nsb->data;

/* Create the parameter list */
params = ferite create parameter list from data(script, "s", hello

)

/* Call the function */
rval = ferite call function(script, console, NULL, println, params

)

/* And finally clear up after ourselves */
ferite_delete_parameter_list(script, params);
ferite variable destroy(script, rval);
ferite_str_destroy(script, hello);

}

else

/* We don’t.. let’s print an error! x*/

printf("Cant find ’Console.println’! Is the console module loaded?\n"
)3

The only difference with calling a class or object function compared to that of a names-
pace function is the passing in of the container. There are no other special tricks that

30

are required.

4.7 Raising Exceptions and Reporting Errors

There are times when things go wrong. It’s a painful time, but it need not be. Ferite
provides a means of raising exceptions to force a programmer to deal with errors but
also a means of quietly setting the error information allowing the programmer to check
for non-fatal things.

It is considered good form to return error values from a function call. This is the
route you should take if you require the reporting of errors. For instance, if you have a
function that connects to a resource and returns an object to interact with that resource,
it makes sense to return a null object (FE_RETURN_NULL OBJECT) if that resource can’t
be obtained.

Sometimes it is not possible to return an error value. In these situations it is considered
good form to use the function ferite_set_error [it’s prototype is below]. This sets the
err script object’s values, but does not raise an exception. This allows the programmer
to ignore things if needs be. It takes a number of parameters, the first is the script you
are running in, the second is the error number and the last is the format of a string
[same as printf] describing the error that has occured. It should be documented that
this is the case such that the programmer knows what to look for.

void ferite_set_error(FeriteScript *script, int num, char *fmt,

)

When all hope is lost, there are times when an exception needs to be rasied because
some has gone completely wrong. This is done by calling ferite_error. You can pass
it the error number and the message just like ferite_set_error.

void ferite error(FeriteScript *script, int num, char *fmt,
);

Sometimes it is nice to warn people about not so bad things, and as such there is a
function ferite warning which will place a warning on the script.

void ferite_warning(FeriteScript *script, char *errormsg, ...);

4.8 Executing Code Snippets

Sometimes it is easier to execute a block of code, from within a function, written in
ferite. For this you can use the eval mechanism. What this does is the same as the
eval operator in ferite. It will compile and execute the script and then return the
return value of the main function. For example:

31

rval = ferite_script_eval(script, "Console.println(’Hello World’);"

)

You must destroy the return value using ferite_variable_destroy just as you would
a function call.

32

5 Native Modules - By Hand

The aim of this section is to show you how to write modules by hand. This section is
also very useful for people wanting to embed ferite as it shows how to export an API
by hand.

5.1 Functions

builder makes the following completely automatic. As with normal C functions, we have
to declare our native ferite functions. This is done in three stages. First we declare
the function, then we create our FeriteFunction structure and then we register it with
the ferite engine. To declare the variable, you use the macro FE_NATIVE _FUNCTION,
this is true for both object/class methods and normal namespace functions. This takes
one argument, which is the name of the function you wish to create. After the macro,
you simply write the body of your function as you normally would. For example:

FE_NATIVE FUNCTION(printfnc)

{

printf("We are in our native function!\n");

}

The next thing we need to do is create a FeriteFunction structure with which we can
register the function (using the functions mentioned in the last section). This is a call
toferite_create_external function.

FeriteFunction *ferite_create_external function(
FeriteScript *script,
char *name,
void *(*funcPtr) (FeriteScript*,FeriteFunction*,FeriteVariablexx*),
char *description);

This takes the current script, the name of the function, a pointer to the function, and
its signature description. The third means you simply pass the name of the native
function, eg. in the above example it would be printfnc. The description is slightly
more complicated. It is a null terminated string which takes a number of characters that
describe what arguments the function can take.

e n - number
e s - string

e a - array

o - object

e v - void

33

e . - variable argument list

Each character responds to each type and it allows ferite to make sure that the function
gets passed the correct parameters. To make life slighty clearer, here are a few examples
with the ferite function and what would be the equivelent description for a native
function:

function ex1(string name, number age){ } would be "sn"
function ex2(string format, ...) { } would be "s."

function ex3(object res, string query, array args) { } would be
"osall

To register the function structure you have, you either use ferite register ns_function
orferite register_class_function. You must be aware that you can only register
each created function once! Otherwise ferite will certainly die when it tries to clean
everything up at the end of execution.

So, lets assume that our above print function takes a string and a number and prints out
the string the number of times it is told. The example below will show how to declare,
create and register a FeriteFunction in a namespace. The example will also allow us to
touch on another couple of important areas.

FE_NATIVE_FUNCTION(printfnc); /* Declare the prototype */

FE_NATIVE_FUNCTION(printfnc)

{
FeriteString *print = NULL;
double countd = O;
int i = 0, count = 0;

/* Get the parameters */
ferite_get_parameters(params, 2, &print, &countd); /* #1 */

/* Loop round printing */

count = (long)countd;

for(i = 0; i < count; i++)
printf("%s", print->data);

FE_RETURN_VOID; /* #2 */
}

void module_init(FeriteScript *script)

{

/* Create the function */

34

FeriteFunction *f = ferite_create_external_function(
script,
"printfnc",
printfnc,
"SIl") ;

/* Now register it in the main namespace */
ferite register ns_function(script, script->mainns, f);

}

Point #1 is the main point to be covered.: ferite_get_parameters is a helper function
for getting the values of the parameters into C variables you can manipulate. It is very
important that you do not delete or free the values you have because they point to the
real values. The first is the parameter list you are given and when writing the native
function, it is always called params. The second argument is the number of values from
the parameter list that you want. The rest of the arguments are pointers to the local
C function variables you wish to set. In our example above, the address of the print
and countd variables were passed. This is exactly how builder gets the values from the
parameter list - it is simply hidden from the programmer.

All functions must return something even if it is just a void. Builder hides #2 from
you, but when writing functions from scratch, it is important you remember to return
something.

To get the number of parameters that were passed to the function, you can use the
ferite get_parameter_count. This takes just one argument (params) and returns the
number of variables in it.

int ferite_get_parameter_count(FeriteVariable x*list);
To get the container of the function passed into it, you should use the following macros:

#define FE_CONTAINER_TO_OBJECT (FeriteObject*)__container__
#define FE_CONTAINER_TO_CLASS (FeriteClass*)__container__
#define FE_CONTAINER_TONS (FeriteNamespace*)__container__

These are defined in ferite.h and can be used like follows:

FE_NATIVE_FUNCTION(toString)

{

FeriteObject *self = FE_CONTAINER_TO_OBJECT;
FE_RETURN_CSTR("Example-toString()", FE_FALSE);

}

35

5.2 The Rest

All you have to do to fullfill the requirements of a ferite module is write four func-
tions. These functions are the ones that builder creates for you from module-init,
module-deinit, module-register, and module-unregister.

void modulename _register()

{
/* System wide setup. Called when the
module is loaded from disk. */

}

void modulename init(FeriteScript *script)
{
/* Per script setup. This is where you put the
code to register namespaces, classes, functions and
variables and setup anything the script needs. */

}

void modulename deinit(FeriteScript *script)
{
/* Anything you need to shutdown per script.
Ferite will clean up all structures you have registered
so you do not need to clean those up yourself [eg. the
namespaces you have registered]. */

}

void modulename unregister ()

{

/% System wide shutdown. This gets called when
the ferite engine is being deinitialised. */

}

If you have these four functions exported from your module, ferite should find them
without problem. One thing to note: the name of the module must be the same as
the prefix for each of the functions otherwise ferite will not be able to find them. For
instance in foo.lib the init function must be called foo_init.

You may also want to read the next section as a cunning secret is told that can make
writing native modules easier.

36

6 Embedding Ferite

This section is split into three sub-sections. The first deals with getting the engine up
and running within your application so that scripts can be executed. The second section
deals with the most effcient way of exporting the application’s interface into a script
so that useful things can then be done. The third is how to cheat with builder and
applications.

6.1 Getting The Engine Purring

Ferite is designed to be placed in pretty much anywhere. Therefore it is pretty easy to get
the engine up and running, scripts compiled and then executed, and to clean everything
up afterwards. To explain how to do this, an example is listed below and afterwards
each line is discussed. It is a simple program that shows most of the functionality of the
ferite command line program.

#include <stdio.h>
#include <stdlib.h>
#include <ferite.h>

int main(int argc, char x*argv)
FeriteScript *script;
char *errmsg = NULL, *scriptfile = "test.fe";

if(ferite_init(0, NULL))

{
ferite_add library_search_path(XPLAT_LIBRARY DIR);
ferite_set_library native _path(NATIVE_LIBRARY DIR);

script = ferite_script_compile(scriptfile);
if(ferite_has_compile error(script))
{
errmsg = ferite_get_error_log(script);
fprintf(stderr, "[ferite: compile]\nJ)s", errmsg);

}

else

{

ferite_script_execute(script);
if(ferite has runtime error(script))

{

errmsg = ferite_get_error_log(script);
fprintf(stderr, "[ferite: execution]\nJs", errmsg);

37

¥
}

if (errmsg)

ffree(errmsg);
ferite_script_delete(script);
ferite_deinit();

}

exit(0);

}

And now, the explanation. It should be noted that only the lines that are critical to the
operation of ferite will be dicussed, anything that is standard C will be left out.

#include <stdio.h>
#include <stdlib.h>
#include <ferite.h>

The above is all pretty standard issue. You dont need the stdio.h or stdlib.h headers
to be honest. But with any program they are good practice. The one you do need is
ferite.h. This will pull all the function prototypes and defines into the program so
that the magic may begin. This will ensure that all the headers that are required to
interface with ferite are visible to the compiler.

if(ferite_init(O, NULL))

This line initialises the engine. You must do this before you do anything ferite related.
This is because this call will initialise the ferite memory system, the module system,
the regex engine and potentially more things. The prototype for this function looks like
this:

int ferite_init(int argc, char **argv)

If you don’t call this it is likely that your program will crash and do various other
undefined things. You may call this multiple times and it won’t cause issues. It takes
two arguments. The first is the number of elemetns contained in the argument array.
The second is an array of strings. This is how options are passed into the engine. For
a full list of the options that the ferite engine accepts, please look at the command line
program’s help option. The next step is to setup the paths that ferite looks for when
seraching for a module.

ferite_add library_search path(XPLAT LIBRARY DIR);
ferite_set_library native_path(NATIVE_LIBRARY DIR);

Ferite does what it is told; One of the things that makes it very useful is the ability
to control what modules are availible to be loaded. You can obtain the system wide
defaults using the ferite-config shell script. If you do not call these then the ferite
engine will be unable to load any of the core modules and will only have the API that
the application exports. This is useful for both controlling what the scripters can do and

38

preventing people from loading rogue modules into the system. With the library paths
setup, the next task is to ask ferite to compile a script for us.

script = ferite_script_compile(scriptfile);

This line will compile the script that is in the file in the scriptfile variable. It
will always return a script object. The return will either contain the error informa-
tion or will be an executable script. It is also possible to compile a string into script.
For this you call ferite_compile_string, it takes one argument which is the script
to compile. There are also two more functions, ferite_script_compile with_path
andferite_compile_string with_path, they both take the same arguments as their
respective counterparts, with the exception of an added argument. This is a null ter-
minated array of search paths to add to the module system for the duration of the
compilation. For more in depth information about these two functions please refer to
the C API. For reference here are their prototypes:

FeriteScript *ferite_compile_string(char *str);

FeriteScript *ferite_compile_string with path(char *str, char **paths
)3

FeriteScript *ferite_script_compile(char *filename) ;

FeriteScript *ferite script_compile with path(char *filename, char
*x*paths);

Having compiled the script, it is important to check to see if any errors have oc-
cured:

if(ferite_ has _compile error(script))
{
errmsg = ferite_get_error_log(script);
fprintf(stderr, "[ferite: compile]\n¥)s", errmsg);

}

This is how we check that everything is working. Or not. ferite has_compile_error
will return FE_TRUE if there was a compile error and FE_FALSE if not. If there is an error,
the script will not be executable but you will be able to get the error logs from the script
as shown above. You will need to, when finished, delete the script, and still clean up the
engine. You will also need to free the string returned using ffree.

ferite script_execute(script);

If the program execution has got this far you will be wanting to run the script. You pass
the script to ferite_script_execute which will execute the script. The return value is
the return value from the script’s main function. To find out whether a runtime error
occured you will need to use the code below. NOTE: you can run scripts multiple times
but it is not recommended, as the state of the script can not be guaranteed. As with
compilation, we need to check for errors after we have run the script:

39

if (ferite has runtime error(script))
{
errmsg = ferite_get_error_log(script);
fprintf(stderr, "[ferite: execution]\nJs", errmsg);

}

ferite_has_runtime_error will return true if there has been a runtime error on the
script. To get the messages about the error you will need to use ferite_get_error_log.
This will return the error log as a C string. You will need to free the string returned
with ffree.

if(errmsg)
ffree(errmsg);

Remember to free things!
ferite_script_delete(script);

Once you have finished with your script object you must delete it. This is a call to
ferite_script_delete.

ferite_deinit();

It’s been a long day, you’'ve been running scripts and it’s now time to pack your bags and
go home. There is one last thing to be done - tell ferite to deinitialise. This is done do-
ing ferite_deinit. This will cause all allocated memory via fmalloc/fcalloc/frealloc
to be deallocated, shutdown the module system and anything else that needs to be done.
Once this has been called you can re-initialise the system withferite_init and start all
over again.

So there you have it. That’s how easy it is to get things up and running. It is suggest
that you have a look at the command line program in the ferite distribution for more
options availible or a more concrete example.

6.2 Fake Native Modules

Fake native modules provide a mechanism to export API from the current program to be
included when the script is compiled. This allows your scripts to talk to your program
when they are being compiled. The example below assumes the methods theapp_*
compiled into the application.

ferite module register_fake module("theapp.lib",
theapp_register,
theapp_unregister,
theapp-init,
theapp_deinit);
ferite module_add_preload("theapp.lib");

40

The ferite module_add preload is important so that the module gets compiled into
the script at compile time and therefore allows for initialisation code that gets executed
to access the application. Please note that the .lib extension is very important. This is
so that ferite knows that it is a native module and can handle it correctly (and also
find it). You should refer to the last section on writing native modules by hand for the
information on how to write the native module. For those of you feeling slightly more
lazy, read on, there is a cunning use of builder.

The above code should be placed before the calls to ferite_script_compile or ferite_compile _string.

41

7 Building Modules

The ferite distribution currently ships with two mechanisms for building and deploying
modules to be run on a system with ferite installed. The first, generate-module is a
solution based upon the GNU autotools chain, this is considered to be the old and broken
way of doing things due to the huge effort required to make sure that it is compatible
with the, on average, 5 different versions that ship with the different operating systems.
The second, farm, is a build system written in ferite to provide a sane way of building
libraries, modules and binaries. This method is the prefered method of deployment but
doesn’t currently work on any platform other than Mac OS X and Linux.

At the moment, it is recommend that you ship modules using both methods such that
the end user may choose which path to take.

7.1 Most Compatible Method: generate-module

ferite ships with the command line program called generate-module. This program
takes the name of a ferite module (ending in .fec), and builds a autotools based dis-
tribution for you. Lets assume we have a f.fec module file, and a couple of utility ¢
files that provide helper functions for the code. To execute generate-module we do the
following;:

generate-module f.fec utility.c utility.h

Assuming everything is ok, generate-module will create us a directory f, and build a
autotools distribution. It will copy all the named files provided on the command line
into the distribution. To let you know this is happening, you will get an output like
this:

Ferite Module Distributor (1.0)
Copyright (c) 2000-2002:

Chris Ross <chris@ferite.org>
Sveinung Haslestad <sveinung@cention.se>
Stephan Engstrom <sem@cention.se>

ferite-config: /opt/local/bin/ferite-config

builder: /opt/local/bin/builder

prefix: /opt/local

Using file ’f.fec’

Module name ’f°

Creating Directory ’f’

Reading directory: /opt/local/share/ferite/generate-module/skel
Reading file:

42

Reading file:

Reading file: .cvsignore
Copying .cvsignore to f/
Reading file: AUTHORS
Copying AUTHORS to f/
Reading file: autogen.sh
Copying autogen.sh to f/
Reading file: Changelog
Copying Changelog to f/
Reading file: config.h.in
Copying config.h.in to f/
Reading file: configure.ac
Copying configure.ac to f/
Reading file: CVS

Reading file: Makefile.am
Copying Makefile.am to f/
Reading file: Makefile.in
Copying Makefile.in to f/
Reading file: README
Copying README to f/

Reading file: stamp-h.in
Copying stamp-h.in to f/
Reading file: wudcl.sh
Copying udcl.sh to f/
Copying module source over...
Copying module source over...
Copying module source over...
Running builder...

Finished!, now to build a tarball run:
cd f && ./autogen.sh && make dist
People will then be able to configure and install the tarball

If you wish to add any special checking to to the configure script
please edit f/config.md

To use the module and generate a configure script, change into the directory and run
./autogen. sh.

43

7.2 New Method: farm

At the moment, generating a module from a ferite module code is trivial with farm.
To tell farm what to do, it is necessary to generate a farm.yard file with the module
descriptions. The following is a template detail how to build a module and have it in-
stalled correctly. You may copy and paste the template into a file, replace all occurances
of MODULENAME with the name of your module and you should be good to go.

<?xml version="1.0" 7>
<yard name="MODULENAME">

<module id="MODULENAME" >
<list type="source">
<file name="source/MODULENAME.fec" />
<fileset dir="source" match="utility\.[ch]$" />

</list>
<property type="C">
<program-output program="ferite-config" arguments="--cflags"
/>
</property>
<property type="LD">\
<program-output program="ferite-config" arguments="--libs" />
</property>
<property type="prefix" value="$(FeriteModuleNativeDir)" />
</module>

<phase id="install" depends="build">
<perform action="install" target="MODULENAME" />
<copy file="source/MODULENAME.fec" target="$(FeriteModuleSourceDir)"
/>
<copy file="$(ProductDir)/MODULENAME.xml"
target="$(FeriteModuleDescriptionDir)" />
<execute program="feritedoc" arguments="--regenerate" />
</phase>

</yard>

The above farm.yard file describes the module, what files exist for the module and
the various properties that are required to build it. To use the farm file, you simply
invoke farm build to build the contents, and farm install to install the built products.
Everything generated by farm is always placed in the FarmYard directory that can be
found in the same location as the farm.yard file.

This has been a very quick run through of the use of these tools. As farm mature much
more documentation will be released, however, it is still young (but very usable) and

44

provides a great mechanism for deploying code to a system that has a ferite runtime on
it.

45

