A—-A-P Recipe Executive

A-A-P Recipe Executive

Table of Contents

A—A—P RECIPEEXECULIVE..... ..o]
STz Y (010 [T A T= Y= TR :

|. Tutorial

A "Hello WOrld" (Of SOMS).....coo i 5
UsiNg Aapto COMPIIE"NEIIO.C" uuiiiiiiiiiitii bbb e e e be s e eessesssssssssssssssssssesssnsssnssansseneenes 5
Otherthingsto dowith "hello WOrId"............ooooiiiii 6
TSNV e] Y01 [(or= 1 [T 6

VariableSANAASSIGNMENTSuviiiiiieeiieeee et e e ettt ettt ettt et e e e et et e e et e e e e aa e e e e e e aaaaaaaaaaaaaaaaaaaaaaaaaas 7
(@0 18] 0101 157
[T 0T 0 [T o =P :
Compiling MUILIPIE PrOQIAIMS.vveiiiiiiieiieiieeiieeeeeeeeeeeeee e ettt e e e et et et e e et e e e e e e e e e e e et e e e e e eaaaaaaaaaaaaaaaaaaaaaaaaaaeas 10
Kinds of thingSyou canbuild.............ccooviiiiiiiiii 11

Chapter 3. Publishing @ WeD SIte.........ccoiiiiiiiiiieiieee e, 12
UPIoadingTRE FIIES.o ——————————————————— 12
GeneratinGHTML FlE.........ccooiiiiiii oo aae e ane s nnesnnennnenneenernenne 12
Using":rule" to GeneratéSeveraHTML FileS..........coovvviiiiiiiiiiii 13

DOWNIOAAING.....cieiieeeieeeeee e —————————————— 1
L0 0] 0 =0 Lo PP 1

Chapter 5. BUIIING VAKANTSccviiiiiiiiieiieeeeeeeeee ettt 17
(@ 11X O 10 o< T T T TTPTRPT 1

Two Choices

(O T o1 (=Y A ST © FTTaTo AV 1 1) o PP 2(
(@F] al0 [1To]AT=] TP 2!

PVENONBIOCK.ccciieeceeeeeeeeeeee e ——————— 2
D 0 =T TS 0] 0 PP 2
FUMNEIREAMING ... uvvuutiiuiiiiiiiiiiiieeiteeiresbieseeeseessssessessseeseessaeeseeeseeeeeeeeeeeeeetaeeeteetateaaeaaaaaaaaaataaaaaaaaaaaaaaaees 2!

Chapter 7. Version Control WIth CV Sot ab st bneannseanreesesnnennnnes 24
Downloading(ChECKOUL).......cviiiiiiiieeeeeeee e, 24
GettingPASIA FIFEWALL........coiiiiiiiiiiii et e e e ettt ettt s st s e st s et s st s s e s ssnsssessnnsennnnnenees 24
(0o o =T T aTo (@ 1= o) PP PPPPPP 25
FUMNEIREAMING vvuvtiiiiiiiiiiiitiiieiteearetbiesbeeseessseessessseeseessaeeseeeeeeeeeeeeeeeeeetaeeeaeeteteaeeaaeaaaaaaaaaaaaaaaaaaaaaaaees 2"

Chapter 8. FiletypPeSand ACHIONS.uuuuuuiuuuiiiiiuriiiieeruerrrerarrrrreereerreer—ae————.—————————————..rerrrerrerrrr————. 26
N LT IR 0T o) 1= PP 2¢€
Defining aFiletypeby SUFfiX......covviiiiiii 26

A-A-P Recipe Executive

Table of Contents

Chapter 8. Filetypesand Actions
[DI=]iTal e TN @foTa] o 1=y N o (o) o SRR 27
ANOtherUSEOf FlEYPESooeiiieeeieeeeee e, 27

Chapter 9. More Than ONE RECIPE.cuuviiiiiiieiiieee ettt 29
(O 11 [0 (Y o T 2
ShANNGSEIINGS....ccieeeeieeeee e —— 3
EXECULINGARECIDE. ..o ——————— 31
FetChiNQARECIDE. .. oo —————————— 3]

Chapter 10.Commandsin @PIPE......c..oviiiiii e, 33
ChangingatiMeStAMM.......co oot ——————————————————— 33
Creatingafile froM PIECES.......ovvviiiiiiiieie e 34
Pipeoutputin @VAIIADIE.uiiiiiii e e e e e e e s —essaaaa—aaeaeeaaeaeraaraeaareaaaraeraaaees 34
Creatingafile from SCratChL............cooiiii i e 35

TS YAV F= T a U= PP 4

Chapter 12. HOW It @Il WOTKS........viiiiiiiiiiiieeeeeeeeee ettt 42
How ReCIpESAIE EXECULEM.coieeeeeeeeeee e 42
COMMONRECIPESIIUCTUIE.eiiieeiiiiiieei ettt eea s 42
Building A Targetln TheFIrSEStEP....ovvviiiiiiieei e, 43
NS T o T TSI (=Y o1 PP 4¢
USINGMUILIPIE RECIPESciiiiiiiiiiieieee ettt 44
RECIPEEXECULIONDETAIIS.......evvieeiiiiiiiiiieee ettt 45
O EISY @AY /= 1 =1 o] [T 4f
SPECIAICNAIACIEIS.ceiieeeeeeee e, 4¢
T T 1= PP 4

Chapter 13. DependenciesRUIeSand ACLIONScooiiiiiiii i annannes 48
BUI COMMIBINGAS. .. eet ettt ettt ettt et et e e et e et eeea e e e e e e e e e eee e e ea e e ean e e een e reeseeeenreesseeanareenreenns 4¢

N aTY A0 Yo [§Tel1Ta]a @0] aTa L= TATe K- RO 48

RUIESAND DEPENAENCIES.ceiiieiiieiiiieieee ettt 49
YT TN V0 =) RS 5(
AutomaticdependenCENECKINGuuuiiiiiiiiiiii bbb er e esebesssesssssssassssssssassnsseeeeaeeeees 51

AttributesOverrulingVariables.............oovviiiiiii 51

VUL TAIQBLS ..o ————— 5!
ST 01Ul (07 =1 5
[DI=T ot alo [Tale @0l NN DI (=Tox (o 4/ PRPPPPP 53
21011 [o I @daTaaT 0 F= a0 STTo LT (L 53

(O T o =Y AV VT 0] £ TSRS SPRRRRR 5!
THEBDIR VAKADIE. . ..ccv ettt ettt ettt e et e et e et e e ettt e et e e et reeaeee et reeareeenareeanreennaeees BE

Compileonly WhennNEEAEA...........ooooi i 55

A-A-P Recipe Executive

Table of Contents

Chapter 14. Variants
Building multiple variantSat ONCe..............ooviiiiiiii e, 57

(O T o1 =Y ST = U1 o] [T o110 o SRS RPPRPRR 5¢
USING SECUINBTODY e vtttveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeete ettt ee et ettt e ettt ettt e ta e et eaaeeeaetae et e e e aaeaaaaaaaaaaaaaaaaaaeaaaaaaaaaeaaaaaaaaeas 5¢
USINGANOINEIMELNOM. .. . eeiiiiiiiiiiiiiiee aaaeaaaaaaaaaas 60
(O aF=TaTo 110 Te AN U PRSP 6(
Distributing GeNEIAtEAFIIES.o ie i e ie i e bbb e e e e e b ee bt e st e e st aeaaeesaanraeeeanreeees 61
(70T o XVA 1T PN I 1 =TS A] o TR 61

(O T o) =Y ST =) (o] 11 T RSP SSURPRPRRR 6.
[=atedaTTaTe TN aTe I o F= LA aT FO PSRRI 62
B TSN oY (o] 07 AN 1| 01U (=TT 63
Defining Your OWNIMELNOM...... ..ottt e e bt sebss s s s sssssssssssansseesseneeees 64
CACNING e ———————— €

USING SUDBVEISION. c..coiiiiiiiiiieeeeee e 7:
Using ANOtherVersionCoNtrol SYSEEIM.uuuuuuuiiuiiiiiiiiiitriirieererrrrerrerrrerrrer ... 72

Chapter 19. USINGCVS. ... uuiiiiiiiiiieiiieeteeeeeeeeeeeeeeeeeeeeeeeeee ettt eeeteeettetttettettattttatattatttettteetaa et eaaaaaeaaaataaaaaaaaaaaaaeaaaaaas 7
(@] 0] 2= 11110 o 7 AN 1Y/ [0 Yo [=P 74
FOICNING. ..ceiiieieieeeeeeeeee e, 7
ChECKINGIN.....ciiiieeeeee s 7
Distributing Your ProjectWith CVS.... ..o anreanrennees 76
L0 LTI T IS Y0 U o= (0] o =P 71

(O T o) =Y 2 IO 1S T o Y1 o 8C
USING PYENONLINES.ceiiiiiiiieeeeeeeeeeeee ettt ettt e et e aaaaaeas 8C
USING PYtNONEXPIESSIONS.o eeiieee ettt annaane 80
PVNONBIOCK.cciiiiiiieeeeeeeeeeee e —————————— 8
USEfUIPYENONIIEMSo e 8=

Chapter 22. Porting an APPLICALION.oooei i 85
B L=l o =T o = PP 8!
RN == 1 o] (SR 8
DT 0T T0 [T Ton o1 107 | AP 87
DepeNdeNCIEEOr VaAliOUSSIEPS ittt uaaaaae e e ae e eaeeeeeeeseessssssssssssssssssssssssssssssssnsessnnsenes 89

A-A-P Recipe Executive

Table of Contents

Chapter 22. Porting an Application

0] =TT 101 10 o PRSPPI 9!
Chapter 23. Automatic CONfiQUIALION.ceiiiiiiieiee e e e e s e e et aneennennaesneeeneennennnnes 94
Chapter 24. UsSiNGAULOCONE. ... 96

RUNNINGThEe CoNfiQUIESCIIPLo 96

RememberingConfigUrEAIQUIMENLES.cooiiiiii i ee e eee e e e nne s aannraneennrennees 96

VariantsSANd CONfIQUIE.........cooi i 97

RUNNINQAULOCONS ... it ee et et e e s es s ss st ee s ssessssssessseesaeeseesseeeseeeseeeeeeeaeeeeeeaeeeeeeees 97

Using A DistributedCONfIQUIESCIIDE. ... uuuuuturuiririiiitiiiiiitrttrrreeerrerreesrerrrrerreerreere—e.————————————————rrrrrr 97

ST 2T o] o1 To L@ 0] aile 11171 1o o PP 97

A ComMPIEtEEXAMPIE.....cceiieeieeeeeeeeee e ———— 98
Chapter 25. Automatic Packagelnstall.............cooovviiiiiiiiii 100

[(LT B e Y=Yy L AT L0 T T 10C

Adding SUPPOIMFEOr @ PACKAGE.uuuuuiiiiiiiiiiiiiiiirtiersresrresrreesrreseesreeeeeeereeerreerrrrrrrrerrrretrrrtarrtarrtrereeees 101

INStalling ON MS=WINAOWS........cciiiiiiiiiiiieee e, 101

Building andINStalliNGON UNIX.........eeiiiiiiiiiiiiiieeieeeieeeeeee e ee ettt e e e e e et e et e e e e e e e e e e e e e e e e aaeaaaaaaaaaaaaaaaaaas 102

INStalling 8 SPECITICPACKAGE. uuvviiiiiiiiiiiiiiiiiiiieeee et ee et e et e e e eaeeaaaaaaaaaaaaaaaaaaaaaaaans 103

L@ 1= 107107 116 o NS 10
Chapter 26. DEDUQQINGA RECIPE.uuuuuuiuiiiiiiiiiirttiertrerirsereerrersree ...ttt 105

T LTSTST2 T = PPN 10
Chapter 27. Differencesfrom Make.............oooii i ————— 107

T [o A1 TSI 0 0TI A L0 Aoy o AT 107

USeOf ENVIFONMENIVALADIESoeeeeeeee ettt ettt ettt et e et e et et et e e e e e et e e ea e erraeerearernans 107

SignaturednsteadOf TIMESIAMPS.ccvviiiiiiiieiiiee e 108
Chapter 28. Customizing Filetype Detectionand ACLIONS............ccoovviiiiiiiiiiiiieeeeeeeeeeee 109

1 =a YA 01T BT (=Y o) P 10¢

=T o LT T TN (0 P 11

DY r= 10 LN o (o] TR 11:

SPECIHVINGACHIONS. ...t ——————————————— 117
Chapter 29. Customizing Automatic DEPEAENCIES.........ccceeiieiieeeeee e, 116
Chapter 30. Customizing Default TOOIS............cooviiiiiii 118

o Lo Lo N A=Y 0o PP 11€

[0 LT o NS o T=Tod 1 o 1o Yo 119
U, REfEIENCEMEAINUAL.ceeneeee ettt ettt ettt e e et e ettt e et et e e e ea s e e seea e reean s eanreeaeeeanreeareeanarennas 12(
Chapter 31. Aap Command Ling ArQUMENTS..........ccoviiiiiiieiiee e, 121

ThreeKinds Of AFQUMENLES.........oociiiiiieee s 121

(@ 01110 01 USRS 12

A-A-P Recipe Executive

Table of Contents

Chapter 32. RECIDE SYIIAX. ...uuuuuuueiuiirtrrrrurrrirrrrerrerrreerrerreeeeeeeereee—rreeeetretretttttttttttttttttttaetttettaateaetaaaeaaeeaeeaaeaeens 12-
Chapter 33.Variables and SCOPES.........coooeiii i 128
USINGVANADIES. ... —— 12¢
R OR o LVA [Ty T 1110 PP 12¢
Y=L E= 1 0] L= LT [o PP 13(
L0 LTI To IS Yoo] o= PSSR SUPRRRRP 13
=0 [1T AT=T0 S o 0] o= P 13(
[0 ST B 00] 0TSO 13
VariablesIn BuUild CoOMMANAS eeeeeeee et e e e e et e et et e et e et e et reea e eeaereeaerersaeeenaeeerareeenns 133
Chapter 34. CommONVariablES.........ooooiiiiii o 135
(O T o) =] Ao T AN TS 10 018 0T=] 01 TSRS URURS SRR 14(
T oTT] 0 7= 0 PP 14
] Fo o N TS [01 . P 141
(O T 01 =Y AT ST 1] 0] (=P 14
SHCKY ATTIDULES. ...ttt ettt st e et s e st e s s s s s s s e s s s e e s seeeeeeseeeseeeeeeeeeeeeeeeaeees 14¢
TN C B CKAIIDULEt ees e ettt ettt et et ettt e e e et e e e et e e e e e e et e e e eaeee e eeeearee s e eeesareeanseenrraes 14EF
HandlingCircular DEPENAENCIES.uuuuuuuurruuriuuriuuirurieareaererrreerrerrrrrrerrrees————————————errrerrrrrrr 146
(O T o) (=Y AT 1=y 0YA 0 T= N0 [(=Tos (1o o TP 148
ThEPIOQIAM ..., 14
DL (<Y o1 1T o WP 14
The PYINONMOGUIE.......uuiiiiiiiiiiiiiiiieieee et et eeeeeetetee e e e et e aaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaens 14€
FormatOf FiletypeDeteCtONRUIESccvviiiiiiiiiieeeee e, 149
Chapter 38. A—A—P Python fUNCHIONS.........ccoo e 152
Chapter 39. A—A—P COMMANAS.........cooiiiii ittt aasaneaanaaaassanennnrnnnes 158
Commandggroupeddy FUNCHONAIILY.cvvvriiiiiiiiiiiii e 158
Alphabeticallist Of COMMANGAS.........uuuiiiiiiiiiiiiiiiiiiiei e ererrrrrrrerrrrrarerarrreeraeeees 160
Commonargument$or COMMEANGS.........uuuuuuuuuuuuuruuurruneaareenrearrrarrarrea——re—eea—rereeareerrsrsresrrerreerrerrrnerees 183
L ISR 1€
A Y 0T 0T 0) =TSP 18
APPENIX A. LICENSE. ... —————————— 18

A-A-P Recipe Executive

Bram Moolenaar

Copyright © 2002-2003 by Stichting NLnet Labs

This is the documentation for version 1.023 of the Recipe Executive, commonly known as the "aap"
command. It is part of the A-A-P project.

NOTE: Not all parts have been done properly. Some chapters do contain lots of information but still need to
be organized and the layout is to be done.

The web site of A-A-P can be found here: http://www.a—-a-p.org/

The HTML version of this manual can be read on-line: http://www.a—a-p.org/exec/index.html As a single
file:_http://www.a—a—p.org/exec/exec.html.

The PDF version of this manual can be found here: http://www.a—a—p.org/exec/exec.pdf

The plain text version of this manual:_http://www.a—a—p.org/exec/exec.txt.

Copyright (C) 2002-2003 Stichting NLnet Labs

The license for copying, using, modifying, distributing, etc this documentation and the
A-A-P files can be found in Appendix A.

Table of Contents
|._Tutorial

1. Getting Started
2._Compiling a Program
3._Publishing a Web Site
4. Distributing a Program
5. Building Variants
6._Using Python
7._Version Control with CVS
8._Filetypes and Actions
9._More Than One Recipe
10_Commands in a Pipe
11_A Ported Application

Il. User Manual
12. How it all works
13_Dependencies. Rules and Actions
14, Variants
15, Publishing
16._Fetching

A-A-P Recipe Executive 1

http://www.a-a-p.org/
http://www.a-a-p.org/exec/index.html
http://www.a-a-p.org/exec/exec.html
http://www.a-a-p.org/exec/exec.pdf
http://www.a-a-p.org/exec/exec.txt

A-A-P Recipe Executive

17 _Installing
18_Version Control

19_Using CVS
20 _lssue Tracking
21._Using Pythaon
22 _Porting an Application
23_Automatic Configuration
24 _Using Autoconf
25_Automatic Package Install
26._Debugqging a Recipe
27 Differences from make
28_Customizing Filetype Detection and Actions
29_Customizing Automatic Depedencies
30_Customizing Default Tools

I1l. Reference Manual
31_Aap Command Line Arguments
32_Recipe Syntax
33_Variables and Scopes
34, Common Variables

35_Assignments

36, Attributes

37 _Filetype detection
38_A-A-P Python functions
39, A-A-P Commands

IV._Appendixes
A_License

List of Tables

2-1.items in a dependency

12-1. Special characters in the ":print" command
17-1_Install targets

17-2_Settings for the install target
32-1._Notation

34-1._Naming scheme for variables
34-2 _Standard Variables

36-1_Virtual Targets
36-2._Sticky attributes
36-3 _supported check attribute values

A-A-P Recipe Executive

|. Tutorial

Table of Contents

1._Getting Started

2. Compiling a Program

3. Publishing a Web Site

4. Distributing a Program

5. Building Variants
6._Using Python

7._Version Control with CVS
8._Filetypes and Actions
9._More Than One Recipe
10_Commands in a Pipe

11_A Ported Application

|. Tutorial

Chapter 1. Getting Started

To start using Aap you must have two applications:

* Python version 1.5 or later
* Aap

Python is often installed already. Try this:
python -V

If you get a "Command not found" error you still need to install Python. Help for this can be found on the
Python web site: www.python.org/download/.

For obtaining and installing Aap look here: www.a—a—p.org/download.html.
To check if your Aap program is working, type this command:
aap ——help

You should get a list of the command line arguments. Note that there are two dashes before "help". You car
read details about the command line arguments in Chapter 31.

Chapter 1. Getting Started 4

http://www.python.org/download/
http://www.a-a-p.org/download.html

Chapter 2. Compiling a Program

A "Hello world" (of sorts)

Most programming languages start with a short example that prints a "hello world" message. With Aap, this
also possible. In a file called main.aap, enter the following:

:print Hello, World!
Now run Aap by entering aap at the command line. Aap will respond something like this:

% aap

Hello, World!

Aap: No target on the command line and no $TARGET, build rules or "all"
target in a recipe

As you can see, Aap outputs the desired text, but also prints an error message. This is because Aap is not ¢
programming language, but a language for describing how to compile and build programs (written in other
languages). In other words, if you have written a "hello world" program in some language, then you can use
Aap to compile that program.

Using Aap to compile "hello.c"

Suppose you have written a "hello world" program in C, and the sources are stored in a file called hello.c.
Aap already knows about the C language (and several others), so the instructions to Aap about how to com
this program are very short. Instructions for Aap are stored in a file with the extension .aap. Such a file is
called a recipe.

This is the recipe for compiling such a program with Aap:
:program hello : hello.c

Write this text in a file main.aap, in the same directory as hello.c. Now invoke Aap to compile
hello.c into the program hello:

% Is

hello.c main.aap

% aap

Aap: Creating directory "/home/mool/tmp/build-FreeBSD4 5 RELEASE"

Aap: cc —l/usr/local/include —g —O2 —E —MM hello.c > build-FreeBSD4_5_ RELEASE/hello.c.aap
Aap: cc —l/usr/local/include —g —O2 —c -0 build—-FreeBSD4_5_RELEASE/hello.o hello.c

Aap: cc —L/usr/local/lib —g —O2 —o hello build-FreeBSD4_5_ RELEASE/hello.o

A WN P

You see the commands Aap uses to compile the program:

1. A directory is created to write the intermediate results in. This directory is different for each platform,
thus you can compile the same program for different systems without cleaning up.

Chapter 2. Compiling a Program 5

A-A-P Recipe Executive

2. Dependencies are figured out for the source file. Aap will automatically detect dependencies on
included files and knows that if one of the included files changed compilation needs to be done, ever
when the file itself didn't change. In this example, Aap uses the C compiler with the —MM option to
determine the included files.

3. The "hello.c" program file is compiled into the "hello.o0" object file (on MS-Windows that would be
"hello.obj").

4. The "hello.o" object file is linked to produce the "hello" program (on MS-Windows this would be
"hello.exe", the ".exe" is added automatically).

Other things to do with "hello world"

The same simple recipe not only specifies how to build the "hello" program, it can also be used to install the
program:

% aap install PREFIX=try

Aap: Creating directory "try/bin/"

Aap: Copied "test/hello" to "try/bin/hello”
Aap: /usr/bin/strip 'try/bin/hello’

The PREFIX variable specifies where to install the program. The default is /usr/local. For the example
we use the try directory, which doesn't exist. Aap creates it for you.

Other ways that this recipe can be used:
aap uninstall undo installing the program
aap clean cleanup the generated files

aap cleanALL cleanup all files (careful!)

See the reference manual for details about :program.

Several Source Files

When you have several files with source code you can specify them as a list:

:program myprogram : main.c
version.c
help.c

There are three source files: main.c, version.c and help.c. Notice that it is not necessary to use a line
continuation character, as you would have to do in a Makefile. The list ends at a line where the indent is eqt
to or less than what the assignment started with. The amount of indent for the continuation lines is irrelevant
so long as it's more than the indent of the first line.

The Makefile-style line continuation with a backslash just before the line break can also be used, by the wa

Indents are very important, just like in a Python script. Make sure your tabstop is always set to the standard
value of eight, otherwise you might run into trouble when mixing tabs and spaces!

When you give a list of files to :program, Aap will determine dependencies and compile each of the source
files in turn, and then link them all together into an executable.

Other things to do with "hello world" 6

A-A-P Recipe Executive
Variables and Assignments

Sometimes it is convenient to have an abbreviation for a long list of files. Aap supports this through variable:
(just like the make command and the shell).

An assignment has the form:
variablename = expression

The variable name is the usual combination of letters, digits and underscore. It must start with a letter. Uppe
and lower case letters can be used and case matters. To see this in action, write this recipe in a file with the
name try.aap:

foo = one

Foo = two

FOO = three

:print $foo $Foo $FOO
Aap normally reads the recipe from main.aap, but you can tell it to read a different file if you want to. Use
the —f flag for this. Now execute the recipe:

% aap —ftry.aap
one two three
Aap: No target on the command line and no build rules or "all" target in a recipe

The_:print command prints its argument. You can see that a variable name preceded with a dollar is replace
by the value of the variable. The three variables that only differ by case each have a different value. Aap als
complains that there is nothing to build, just like in_the hello world example.

If you want text directly after the variable's value, for example, to append an extension to the value of a
variable, the text may be impossible to distinguish from a variable name. In these cases you must put
parenthesis around the variable name, so that Aap knows where it ends:

all:
MakeName = Make
:print $(MakeName)file # 'f' can be in a variable name
:print $(MakeName).txt # "' can be in a variable name
:print $MakeName-more # '-'is not in a variable name

% aap —ftry.aap
Makefile
Make.txt
Make—more

%

All Aap commands, except the assignment, start with a colon. That makes them easy to recognize.
Some characters in the expression have a special meaning. The :print command also handles a few argume

in a special way. To avoid the special meaning use the $(x) form, where "x" is the special character. For
example, to print a literal dollar use $($). See the user manual for a complete list.

Variables and Assignments 7

A-A-P Recipe Executive
Comments

Someone who sees this recipe would like to know what it's for. This requires adding comments. These start
with a "#" character and extend until the end of the line (like in a Makefile and Python script).

It is also possible to associate a comment with a specific item:

A—A—P recipe for compiling "myprogram"
:program myprogram { comment = MyProgram is really great } :

main.c # startup stuff
version.c # just the date stamp
help.c # display a help message

Now run Aap with a "comment" argument:

% aap comment

target "myprogram": MyProgram is really great

target "clean": delete generated files that are not distributed

target "cleanmore": delete all generated files

target "cleanALL": delete all generated files, AAPDIR and build—*
directories

target "install": install files

target "uninstall": delete installed files

%

The text inside curly braces is called an attribute. In this case the attribute name is "comment" and the
attribute value is "MyProgram is really great". An attribute can be used to attach extra information to a file
name. We will encounter more attributes later on.

Dependencies

Let's go back to the "Hello world" example and find out what happens when you change a source file. Use tl
hello.c file:

#include <stdio.h>
#include "hello.h"
main()

printf("Hello %s\n", world);
}

The included "hello.h" file defines "world":

#define world "World!"

If you run Aap, the "hello" program will be built as before. If you run Aap again you will notice that nothing
happens. Aap remembers that "hello.c" was already compiled. Now try this:

% touch hello.c

% aap
%

Comments 8

A-A-P Recipe Executive

If you have been using the "make" program you would expect something to happen. But Aap checks the
contents of the file, not the timestamp. A signature of "hello.c" is computed and if it is still the same as befor
Aap knows that it does not need to be compiled, even though "hello.c" is newer than the "hello" program.

Aap uses the mechanism of dependencies. When you use the :program command Aap knows that the targe
depends on the sources. When one of the sources changes, the commands to build the target from the soul
must be executed. This can also be specified explicitly:

hello$EXESUF : $BDIR/hello$OBJSUF
:do build $source

$BDIR/hello$OBJSUF : hello.c
:do compile $source

The generic form of a dependency is:

target : list—of—sources
build-commands

The colon after the target is important, it separates the target from the sources. It is not required to put a spe
before it, but there must be a space after it. We mostly put white space before the colon, so that it is easy to
spot. There could be several targets, but that is unusual.

There are two dependencies in the example. In the first one the target is "hellocSEXESUF", the source file is
"$BDIR/hello$OBJSUF" and the build command is ":do build $source". This specifies how to build the
"helloSEXESUF" program from the "$BDIR/hello$OBJSUF" object file. The second dependency specifies
how to compile "hello.c" into "$BDIR/hello$OBJSUF" with the command ":do compile $source". The

"BDIR" variable holds the name of the platform—-dependent directory for intermediate results, as mentioned i
the first example of this chapter. In case you need it, the SEXESUF variable Aap is empty on Unix and ".exe
on MS-Windows.

The relation between the two dependencies in the example is that the source of the first one is the target in-
second one. The logic is that Aap follows the dependencies and executes the associated build commands. |
this case "hello$EXESUF" depends on "$BDIR/hello$OBJSUF", which then depends on "hello.c". The last
dependency is handled first, thus first hello.c is compiled by the build command of the second dependency,
and then linked into "hello $EXESUF" by the build command of the first dependency.

Now change the "hello.h" file by replacing "World" with 'Universe":

#define world "Universe!"

If you now run Aap with "aap hello" or "aap hello.exe" the "hello" program will be built. But you never
mentioned the "hello.h" file in the recipe. How did Aap find out the change in this file matters? When Aap is
run to update the "hello" program, this is what will happen:

1. The first dependency with "hello$EXESUF" as the target is found, it depends on
"$BDIR/hello$OBJSUF".

2. The second dependency with "$BDIR/hello$OBJSUF" as the target is found. The source file "hello.c'
is recognized as a C program file. It is inspected for included files. This finds the "hello.h" file.
"stdio.h" is ignored, since it is a system file. "hello.h" is added to the list of files that the target
depends on.

Comments 9

A-A-P Recipe Executive

3. Each file that the target depends on is updated. In this case "hello.c" and "hello.h". No dependency
has been specified for them and the files exist, thus nothing happens.

4. Aap computes signatures for "hello.c" and "hello.h". It also computes a signature for the build
commands. If one of them changed since the last time the target was built, or the target was never
built before, the target is considered "outdated" and the build commands are executed.

5. The second dependency is now finished, "$BDIR/hello$OBJSUF" is up—to—date. Aap goes back to
the first dependency.

6. Aap computes a signature for "$BDIR/hello$OBJSUF". Note that this happens after the second
dependency was handled, it may have changed the file. It also computes a signature for the build
command. If one of them changed since the last time the target was built, or the target was never bu
before, the target is considered "outdated" and the build commands are executed.

Now try this: Append a comment to one of the lines in the "hello.c" file. This means the file is changed, thus
when invoking Aap it will compile "hello.c". But the program is not built, because the produced intermediate
file "$BDIR/hello$OBJSUF" is still equal to what it was the last time. When compiling a large program with
many dependencies this mechanism avoids that adding a comment may cause a snowball effect. (Note: sor
compilers include line numbers or a timestamp in the object file, in that case building the program will happe

anyway).
Compiling Multiple Programs

Suppose you have a number of sources files that are used to build two programs. You need to specify whicl
files are used for which program. Here is an example:

1. Common = help.c util.c

2

3. all: foo bar

4.

5. :program foo : $Common foo.c
6

7. :program bar : $Common bar.c

This recipe defines three targets: "all", "foo" and "bar". "foo" and "bar are programs that Aap can build from
source files. But the "all" target is not a file. This is called a virtual target: A name used for a target that does

not exist as a file. Let's list the terminology of the items in a dependency:

Table 2-1. items in a dependency

source item on the right hand side of a
dependency

source file source that is a file

virtual source source that is NOT a file

target on the left hand side of a
dependency

target file target that is a file

virtual target target that is NOT a file

node source or target

file node source or target that is a file

Compiling Multiple Programs 10

A-A-P Recipe Executive

virtual node source or target that is NOT a file

Aap knows the target with the name "all" is always used as a virtual target. There are a few other names wh
Aap knows are virtual, see Table 36-1. For other targets you need to specify it with the "{virtual}" attribute.

The first dependency has no build commands. This only specifies that "all" depends on "foo" and "bar". Thu:
when Aap updates the "all" target, this dependency specifies that "foo" and "bar" need to be updated. Since
the "all" target is the default target, this dependency causes both "foo" and "bar" to be updated when Aap is
started without an argument. You can use "aap foo" to build "foo" only. The dependencies for "all* and "bar"
will not be used then.

The two files help.c and util.c are used by both the "foo" and the "bar" program. To avoid having to
type the file names twice, the "Common" variable is used.

Kinds of things you can build

Not everything you want to build is a program. Your recipe might need too build a library or a libtool archive.
In these cases, :lib, :dll or :ltlib provide the same level of automation as :program does for programs. The
:produce command is more generic, you can use this to build various kinds of things.

If all else fails, you can use Aap like the make program and explicitly list the commands you need to build
your project.

Kinds of things you can build 11

Chapter 3. Publishing a Web Site

If you are maintaining a web site it is often a good idea to edit the files on your local system. After trying out
the changes you then need to upload the changed files to the web server. A-A—P can be used to identify the
files that changed and upload these files only. This is called publishing.

Uploading The Files

Here is an example of a recipe:

Files = index.html
project.html
links.html
images/logo.png
:attr {publish = scp://user@ftp.foo.org/public_html/%file%} $Files

That's all. You just need to specify the files you want to publish and the URL that says how and where to
upload them to. Now "aap publish" will find out which files have changed and upload them:

% aap publish

Aap: Uploading [/home/mool/www/foo/index.html] to scp://user@ftp.foo.org/public_html/index.html
Aap: scp '/home/mool/www/vim/index.html' 'user@ftp.foo.org:public_html/index.html’

Aap: Uploaded "/home/mool/wwwi/vim/index.html" to "scp://user@ftp.foo.org/public_html/index.htm|"
%

The first time you execute the recipe all files will be uploaded. Aap will create the "images" directory for you.
If you had already uploaded the files and want to avoid doing it again, first run the recipe with: "aap publish
——touch". Aap will compute the signatures of the files as they are now and remember them. Only files that a
changed will be uploaded from now on.

The_:attr command uses its first argument as an attribute and further arguments as file names. It will attach |
attribute to each of the files. In this case the "publish” attribute is added, which specifies the URL where to
upload a file to. In the example the "scp" protocol is used, which is a good method for uploading files to a
public server. "ftp" can be used as well, but this means your password will go over the internet, which is not
safe. The special item "%file%" is replaced with the name of the file being published.

Generating a HTML File

Itis common for HTML files to consist of a standard header, a body with the useful info and a footer. You
don't want to manually add the header and footer to each page. When the header changes you would have
make the same change in many different files. Instead, use the recipe to generate the HTML files.

Let's start with a simple example: Generate the index.html file. Put the common header, containing a logo al
navigation links, in "header.part". The footer, containing contact info for the maintainer, goes in "footer.part".
The useful contents of the page goes in "index_body.part". Now you can use this recipe to generate
"index.html" and publish it:

Files = index.html
images/logo.png
:attr {publish = scp://user@ftp.foo.org/public_html/%file%} $Files

Chapter 3. Publishing a Web Site 12

A-A-P Recipe Executive

all: $Files

publish: $Files
:publishall

index.html: header.part index_body.part footer.part
:cat $source >! $target

Notice that only the published files are put in the "Files" variable. These files get a "publish" attribute, which
tells Aap that these are the files that need to be uploaded. The ".part" files are not published, thus they do n
get the "publish" attribute.

Three dependencies follow. The "all" target is the virtual target we have seen before. It specifies that the
default work for this recipe is to update the files in the "Files" variable. This means you don't accidentally
upload the files by running "aap" without arguments. The normal way of use is to run "aap", check if the
produced HTML file looks OK, then use "aap publish" to upload the file.

For "index.html" a target is specified with a build command_The :cat command concatenates the source file
"$source" stands for the source files used in the dependency: "header.part, "index_body.part" and
"footer.part”. The resulting text is written to "$target”, which is the target of the dependency, thus
"index.html". The ">I" is used to redirect the output of the :cat command and overwrite any existing result.
This works just like the Unix "cat” command.

In the dependency with the "publish” target the :publishall command is used. This command goes through a
the files which were given a "publish" attribute with_the :attr command. Note that this does not work:

This won't work.
Files = index.html {publish = scp://user@ftp.foo.org/public_html/%file%}

Using a "publish" attribute in an assignment will not make it used with the :publishall command.

Using ":rule" to Generate Several HTML Files

Your web site contains several pages, thus you need to specify how to generate each HTML page. This
quickly becomes a lot of typing. We would rather specify once how to make a "xxx.html" file from a
"xxx_body.part" file, and then give the list of names to use for "xxx" (if you have assocations with the name
"xxx_body.part" that is your own imagination! :-). This is how it's done:

Files = *.html

images/*.png
:attr {publish = scp://user@ftp.foo.org/public_html/%file%} $Files
all: $Files

publish: $Files
:publishall

‘rule %.html : header.part %_body.part footer.part
:cat $source >! $target

This is very similar to the example that only generates the "index.html" file. The first difference is in the value
of "Files": It contains wildcards. These wildcards are expanded when they are used where a file name is

Using ":rule" to Generate Several HTML Files 13

A-A-P Recipe Executive

expected. The expansion is not done in the assignment! More about that later. In the three places where $F
is used the wildcard expansion results in a list of all "*.html" files in the current directory and all "*.png" files
in the "images" directory.

The second difference is that there is no specific dependency for the "index.html" file but a :rule command. |
looks very much the same, but the word "index" has been replaced by a percent character. You could read t
rule command as a dependency where the "%" stands for "anything". In the example the target is
"anything.html" and in the sources we find "anything_body.part". Obviously these two occurrences of
"anything" are the same word.

If you have made HTML pages, you know they contain a title. We ignored that until now. The following
recipe will handle a title, stored in the file "xxx_title.part". You also need a file "start.part", which contains the
HTML code that goes before the title.

Files = *.html
images/*.png
:attr {publish = scp://user@ftp.foo.org/public_html/%file%} $Files

all: $Files

publish: $Files
:publishall

:rule %.html : start.part %_title.part header.part %_body.part footer.part
:cat $source >! $target

Notice that "%" is now used three times in_the :rule command. It stands for the same word every time.

After writing this recipe you can forget what changes you made to what file. A-A—P will take care of
generating and uploading those HTML files that are affected. For example, if you change "header.part”, all tl
HTML files are generated and uploaded. If you change "index_title.part" only "index.html" will be done.

There is one catch: You must create an (empty) xxx.html file the first time, otherwise it will not be found with
"* html". And you have to be careful not to have other "xxx.html" files in this directory. You might want to
explicitly specify all the HTML files instead of using wildcards.

A similar recipe is actually used to update the A—A-P website. It's a bit more complicated, because not all
pages use the same header.

Using ":rule" to Generate Several HTML Files 14

Chapter 4. Distributing a Program

Open source software needs to be distributed. This chapter gives a simple example of how you can upload
your files and make it easy for others to download and install your program.

Downloading

To make it easy for others to obtain the latest version of your program, you give them a recipe. That is all th
need. In the recipe you describe how to download the files and compile the program. Here is an example:

Origin = ftp://ftp.mysite.org/pub/theprog
‘recipe {fetch = $Origin/main.aap}

1

2

3

4

5 Source = main.c
6 version.c

7 Header = common.h
8
9
1
1

:attr {fetch = $Origin/%file%} $Source $Header
0
1 :program theprog : $Source
The first line specifies the location where all the files can be found. It is good idea to specify this only once. |

you would use the text all over the recipe it is more difficult to read and it would be more work when the URL
changes.

Line 3 specifies where this recipe can be obtained. After obtaining this recipe once, it can be updated with a
simple command:

% aap refresh

Aap: Updating recipe "main.aap"

Aap: Attempting download of "ftp://ftp.mysite.org/pub/theprog/main.aap”

Aap: Downloaded "ftp://ftp.mysite.org/pub/theprog/main.aap" to "/home/mool/.aap/cache/98092140.aap"
Aap: Copied file from cache: "main.aap”

%

The messages from Aap are a bit verbose. This is just in case the downloading is very slow, you will have
some idea of what is going on.

Lines 5 to 7 define the source files. This is not different from the examples that were used to compile a
program, except that we explicitly mention the header file used.

Line 9 specifies where the files can be fetched from. This is done by giving the source and header files the
fetch attribute. The :attr command does not cause the files to be fetched yet. When a file is used
somewhere and it has a fetch attribute, then it is fetched. Thus files that are not used will not be fetched.

A user of your program stores this recipe as main.aap and runs aap without arguments. What will happen
is:

1. Dependencies will be created by the :program command to build "theprog" from main.c and
version.c.

Chapter 4. Distributing a Program 15

A-A-P Recipe Executive

2. The target "theprog" depends on main.c and version.c. Since these files do not exist and they

do have a fetch attribute, they are fetched.
3. The main.c file is inspected for dependencies. It includes the common.h file, which is
automatically added to the list of dependencies. Since common.h does not exist and has a fetch

attribute, it is fetched as well.
4. Now that all the files are present they are compiled and linked into "theprog".

Uploading

You need to upload the files mentioned in the recipe above. This needs to be repeated each time one of the
files changes. This is essentially the same as publishing a web site. You will need to upload both the source
files and the recipe itself. The {publish} attribute can be used for this. You can add the following two lines to

the recipe above in order to upload all the files:

URL = scp://user@ftp.mysite.org//pub/theprog/%ifile%
:attr {publish = $URL} $Source $Header main.aap

Now you can use aap publish to upload your source files as well.

Uploading 16

Chapter 5. Building Variants

A-A-P provides a way to build two variants of the same application. You just need to specify what is
different about them. A-A-P will then take care of putting the resulting files in a different directory, so that
you don't have to recompile everything when you toggle between two variants.

For the details see_:variant in the reference manual.

One Choice

Quite often you want to compile an application for release with maximal optimizing. But the optimizer
confuses the debugger, thus when stepping through the program to locate a problem, you want to recompile
without optimizing. Here is an example:

Source = main.c version.c gui.c

:variant Build
release
OPTIMIZE = 4
Target = myprog
debug
DEBUG =yes
Target = myprogd

O©COoO~NOOULA,WNPEP

10
11 :program $Target : $Source

Write this recipe as "main.aap" and run Aap without arguments. This will build "myprog" and use a directory
for the object files that ends in "-release". The release variant is the first one mentioned, that makes it the
default choice.

The first argument for the :variant command is Build. This is the name of the variable that specifies

what variant will be selected. The names of the alternatives are specified with a bit more indent in lines 4 an
7. For each alternative two commands are given, again with more indent. Note that the indent not only make
it easy for you to see the parts of the :variant command, they are essential for Aap to recognize them.

To select the "debug" variant the Build variable must be set to "debug". A convenient way to do this is by
specifying this on the command line:

% aap Build=debug

This will build the "myprogd” program for debugging instead of for release. The DEBUG variable is
recognized by Aap. The object files are stored in a directory ending in "—debug". Once you finished
debugging and fixed the problem in, for example, "gui.c”, running Aap to build the release variant will only
compile the modified file. There is no need to compile all the C files, because the object files for the "release
variant are still in the "-release" directory.

Two Choices

You can extend the Build variant with more items, for example "profile". This is useful for alternatives that
exclude each other. Another possibility is to add a second :variant command. Let us extend the example
with a selection of the user interface type.

Chapter 5. Building Variants 17

A-A-P Recipe Executive
Source = main.c version.c gui.c

:variant Build
release
OPTIMIZE = 4
Target = myprog
debug
DEBUG =yes
Target = myprogd

O©COoO~NOOULA,WNPEP

10

11 Gui ?= motif
12 :variant Gui
13 console

14 motif

15 Source += motif.c
16 gtk

17 Source += gtk.c

18

19 DEFINE += -DGUI=$Gui
20

21 :program $Target : $Source

The :variant command in line 12 uses the Gui variable to select one of "console”, "motif" or "gtk".

Together with the earlier :variant command this offers six alternatives: "release" with "console", "debug"
with "console”, "release” with "motif", etc. To build "debug"” with "gtk" use this command:

% aap Build=debug Gui=gtk
In line 11 an optional assignment "?="is used. This assignment is skipped if the Gui variable already has a

value. Thus if Gui was given a value on the command line, as in the example above, it will keep this value.
Otherwise it will get the value "motif".

Note: Environment variables are not used for variables in the recipe, like make does. When you happen to
have a Gui environment variable, this will not influence the variant in the recipe. This is especially ugeful if
you are not aware of what environment variables are set and/or which variables are used in the recipe. If y«
intentionally want to use an environment variable this can be specified with a Python expression (sge the
next chapter).

Inline 15, 17 and 19 the append assignment "+="is used. This appends the argument to an existing variabl
A space is inserted if the value was not empty. For the variant "motif* the result of line 15 is that Source
becomes "main.c version.c gui.c motif.c".

The "motif" and "gtk" variants each add a source file in line 15 and 17. For the console version no extra file i
needed. The object files for each combination of variants end up in a different directory. Ultimately you get
object files in each of the six directories ("SYS" stands for the platform being used):

directory contains files

build-SYS-release—-console main, version,
gui

build-SYS-debug-console main, version,
gui

Chapter 5. Building Variants 18

build-SYS-release—motif
build-SYS-debug—-motif
build-SYS-release—gtk

build-SYS-debug—-gtk

A-A-P Recipe Executive

main, version,
gui, motif
main, version,
gui, motif
main, version,
gui, gtk

main, version,
gui, gtk

See the user manual for more examples of using variants.

Chapter 5. Building Variants

19

Chapter 6. Using Python

In various places in the recipe Python commands and expressions can be used. Python is a powerful and
portable scripting language. In most recipes you will only use a few Python items. But where needed you ca
do just about anything with it.

Conditionals

When a recipe needs to work both on Unix and on MS-Windows you quickly run into the problem that the
compiler does not use the same arguments. Here is an example how you can handle that.

@if OSTYPE == "posix":

INCLUDE += —l/usr/local/include
@else:

INCLUDE += —Ic:/vc/include

all:
:print INCLUDE is "$INCLUDE"

The first and third line start with the "@" character. This means a Python command follows. The other lines
are normal recipe lines. You can see how these two kinds of lines can be mixed.

The first line is a simple "if" statement. The OSTYPE variable is compared with the string "posix". If they
compare equal, the next line is executed. When the OSTYPE variable has a different value the line below
@else: is executed. Executing this recipe on Unix:

% aap
INCLUDE is "—l/usr/local/include"
%

OSTYPE has the value "posix" only on Unix and Unix-like systems. Executing the recipe on MS-Windows,
where OSTYPE has the value "mswin™:

C:>aap
INCLUDE is "-Ic:/vc/include"
C:>

Note that the Python conditional commands end in a colon. Don't forget to add it, you will get an error
message! The indent is used to form blocks, thus you must take care to align the "@if" and "@else" lines.

You can include more lines in a block, without the need for extra characters, such as { } in C:

@if OSTYPE == "posix":
INCLUDE += —l/usr/local/include
LDFLAGS += —L/usr/local
@else:
INCLUDE += -Ic:/vc/include
LDFLAGS += -Lc:/vc/lib

Chapter 6. Using Python 20

A-A-P Recipe Executive
Scope

In Aap commands a variable without a scope is searched for in other scopes. Unfortunately, this does not
happen for variables used in Python. To search other scopes you need to prepend " _no." before the variabl
name. Changing the above example to print the result from Python:

@if OSTYPE == "posix":

INCLUDE += —l/usr/local/include
@else:

INCLUDE += —Ic:/vc/include

all:
@print 'INCLUDE is "%s" % _no.INCLUDE

Loops
Python has a "for" loop that is very flexible. In a recipe it is often used to go over a list of items. Example:

@for name in ["solaris", "hpux", "linux", "freebsd"]:
fname = README_$name
@if os.path.exists(fname):
Files += $fname
all:
:print $Files

OO WN P

The first line contains a list of strings. A Python list uses square brackets. The lines 2 to 4 are executed with
the name variable set to each value in the list, thus four times. The indent of line 5 is equal to the @for line,
this indicates the "for" loop has ended.

Note how the name and fname variables are used without a dollar in the Python code. This might be a bit
confusing at first. Try to remember that you only put a dollar before a variable name in the argument of a
recipe command.

In line 2 the fname variable is set to "README_" plus the value of nhame. The os.path.exists()
function in line 3 tests if a file exists. Assuming all four files exist, this is the result of executing this recipe:

% aap
README_solaris README_hpux README_linux README_ freebsd
%

Python Block

When the number of Python lines gets longer, the "@" characters become annoying. It is easier to put the i
in a block. Example:

:python
Files="
for name in ["solaris”, "hpux", "linux", "freebsd"]:
fname = "README_" + name
if 0s.path.exists(fname):
if Files:
Files = Files + "'

Scope 21

A-A-P Recipe Executive
Files = Files + fname

all:
:print $Files

This does the same thing as the above recipe, but now using Python commands. As usual, the :python
block ends where the indent is equal to or less than that of the :python line.

When using the :python command, make sure you get the assignments right. Up to the "=" character the
Python assignment is the same as the recipe assignment, but what comes after it is different.

Expressions

In many places a Python expression can be used. For example, the glob() function can be used to expand
wildcards:

Source = ‘glob("*.c")’
Python users know that the glob() function returns a list of items. Aap automatically converts the list to a

string, because all Aap variables are strings. A space is inserted in between the items and quotes are addec
around items that contain a space.

It is actually a bit dangerous to get the list of source files with the glob() function, because a "test.c" ffile
that you temporarily used will accidentally be included. It is often better to list the source files explicitly.

Why use glob() when you can use wildcards directly? The difference is that the expansion with glob()
takes place immediately, thus $Source will get the expanded value. When using wildcards directly the
expansion is done when using the variable, but that depends on where it is used. For example, the :print
command does not do wildcard expansion:

pattern = *.c
expanded = “glob(pattern)
all:
:print pattern $pattern expands into $expanded

When "foo.c" and "bar.c" exist, the output will be:
% aap
pattern *.c expands into foo.c bar.c
%

The following example turns the list of source files into a list of header files:

Source = “glob("*.c")
Header = “sufreplace(".c", ".h", Source)
all:

:print Source is "$Source"

:print Header is "$Header"

Running Aap in a directory with "main.c" and "version.c"?

Expressions 22

A-A-P Recipe Executive

% aap

Source is "version.c main.c"
Header is "version.h main.h"
%

The sufreplace() function takes three arguments. The first argument is the suffix which is to be replaced. Th

middle argument is the replacement suffix. The last argument is the name of a variable that is a list of name
or a Python expression. In this example each name in Source ending in ".c" will be changed to end in ".h".

Further Reading

The User manual Chapter 21 has more information. Documentation about Python can be found on its web
site;_http://www.python.org/doc/

Further Reading 23

http://www.python.org/doc/

Chapter 7. Version Control with CVS

CVS is often used for development of Open Source Software. A-A-P provides facilities to obtain the latest
version of an application and for checking in changes you made.

Downloading (Checkout)

For downloading a whole module you only need to specify the location of the CVS server and the name of ti
module. Here is an example that obtains the A-A-P Recipe Executive:

CVSROQOT = :pserver:anonymous@cvs.a—a—p.sf.net:/cvsroot/a—a—p
all:
:fetch {fetch = cvs://$CVSROOT} Exec

Write this recipe as "main.aap” and run aap. The directory "Exec” will be created and all files in the module
obtained from the CVS server:

% aap

Aap: CVS checkout for node "Exec"

Aap: cvs —d:pserver:anonymous@cvs.a—a—p.sf.net:/cvsroot/a—a—p checkout 'Exec'
cvs server: Updating Exec

U Exec/Action.py

U Exec/Args.py

]
%

If there is a request for a password just hit enter (mostly there is no password).

The :fetch command takes care of obtaining the latest version of the items mentioned as arguments.
Usually the argument is one module, in this example it is "Exec". That CVS needs to be used is specified wi
the fetch attribute. This is a kind of URL, starting with "cvs://" and then the CVS root specification. In the
example the CVSROOT variable was used. This is not required, it just makes the recipe easier to understan

If the software has been updated, you can get the latest version by running "aap" again. CVS will take care
obtaining the changed files.

Note that all this only works when you have the "cvs" command installed. When it cannot be found Aap will
ask you want Aap to install it for you. Whether this works depends on your system.

Getting Past A Firewall

Firewalls may block the use of a CVS connection. Some servers have setup another way to connect, so tha
firewalls will not cause problems. This uses port 80, normally used for http connections. Here is the above
example using a different "pserver" address:

CVSROOT = :pserver:anonymous@-cvs—pserver.sf.net:80/cvsroot/a—a—p
all:
:fetch {fetch = cvs://$CVSROOT} Exec

Chapter 7. Version Control with CVS 24

A-A-P Recipe Executive

This doesn't always work through a proxy though. If you have problems connecting to the CVS server, try
reading the information at this link.

Uploading (Checkin)

You are the maintainer of a project and want to distribute your latest changes, so that others can obtain the
software with a recipe as used above. This means you need to checkin your files to the CVS server. This is
done by listing the files that need to be distributed and giving them a commit attribute. Example:

CVSUSER_FOO = johndoe
CVSROOT = :ext:$CVSUSER_FOO@cvs.foo.sf.net:/cvsroot/foo
Files = main.c
common.h
version.c
:attr {commit = cvs://$CVSROOT} $Files

Write this as "cvs.aap" and run aap —f cvs.aap revise . What will happen is:

1. Files that you changed since the last checkin will be checked in to the CVS server.

2. Files that you added to the list of files with a commit attribute will be added to the CVS module.

3. Files that you removed from the list of files with a commit attribute will be removed from the CVS
module.

This means that you must take care the Files variable lists exactly those files you want to appear in the CVS
module, nothing more and nothing less. Be careful with using something like *.c, it might find more files
that you intended.

Note: This only works when the CVS module was already setup. Read the CVS documentation on how to d
this. The A-A-P user manual has useful hints as well.

In the example the CVSUSER_FOO variable is explicitly set, thus this recipe only works for one user. Bettel
to move this line to your own default recipe, e.g., "~/.aap/startup/default.aap”. Then the above recipe does n
explicitly contain your user name and can also be used by others.

Once you tested this recipe and it works, you can easily distribute your software with aap —f cvs.aap
revise. You don't have to worry about the exact CVS commands to be used. However, don't use this when

you want to checkin only some of the changes you made. And the example does not work well when others
are also changing the same module.

Further Reading

The User manual Chapter 18 has more information about version control and Chapter 19 about using CVS.

Uploading (Checkin) 25

http://sourceforge.net/docman/display_doc.php?docid=768&group_id=1

Chapter 8. Filetypes and Actions

A-A-P can recognize what the type of a file is, either by looking at the file name or by inspecting the
contents of the file. The filetype can then be used to decide how to perform an action with the file.

A New Type of File

Suppose you are using the "foo" programming language and want to use A-A-P to compile your programs.
Once this is has been setup you can compile "hello.foo" into the "hello" program with a simple recipe:

:program hello : hello.foo
You need to explain Aap how to deal with "foo" files. This is done with a recipe:

filetype
suffix foo foo

:action compile foo
:sys foocomp $?FOOFLAGS $source —o $target

:route foo object
compile

For Unix, write this recipe as "/usr/local/share/aap/startup/foo.aap" or "~/.aap/startup/foo.aap". The recipes i
these "startup” directories are always read when Aap starts up.

Now try it out, using the simple recipe at the top as "main.aap":

% aap

Aap: foocomp hello.foo —o build-FreeBSD4_5 RELEASE/hello.o

Aap: cc —L/usr/local/lib —g —O2 —o hello build-FreeBSD4_5_ RELEASE/hello.o
%

The "foo.aap" recipe does three things:

1. The :filetype command is used to tell A-A-P to recognize your "hello.foo" file as being a "foo"
file.

2. The :action command is used to specify how the "foocomp" compiler is used to compile a "foo"
program into an object file. The user can set the FOOFLAGS variable to options he wants to use. Th
convention is that the option variable is in uppercase, starts with the filetype and ends in "FLAGS".

3. The :route command is used to specify which actions are to be used to turn a "foo" file into an
"object" file.

Defining a Filetype by Suffix

The :filetype command is followed by the line "suffix foo foo". The first word "suffix" means that

recognizing is done by the suffix of the file name (the suffix is what comes after the last dot in the name). Th
second word is the suffix and the third word is the type. Quite often the type is equal to the suffix, but not
always. Here are a few more examples of lines used with :filetype:

Chapter 8. Filetypes and Actions 26

A-A-P Recipe Executive

filetype
suffix fooh foo
suffix bash sh

It is also possible to recognize a file by matching the name with a pattern, checking the contents of the file o
using a Python script. See the user manual.

Defining a Compile Action

The lower half of "foo.aap" specifies the compile action for the "foo" filetype:

:action compile foo
:sys foocomp $source —o $target

The :action command has two arguments. The first one specifies the kind of action that is being defined.
In this case "compile". This action is used to make an object file from a source file. The second argument
specifies the type of source file this action is used for, in this case "foo".

Below the :action line the build commands are specified. In this case just one, there could be more. The
:sys command invokes an exteral program, "foocomp"”, and passes the arguments. In an action $source is
expanded to the source of the action and $target to the target. These are obtained from the :do command
that invokes the action. Example:

:do compile {target = “src2obj("main.foo")'} main.foo

This :do command invokes the compile action, specified with its first argument. The target is specified as an
attribute to the action, the source is the following argument "main.foo". When executing the :do command
the filetype of "main.foo" is detected to be "foo", resulting in the compile action for "foo" to be invoked. In
the build command of the action $source and $target are replaced, resulting in:

:sys foocomp main.foo —o “src2obj("main.foo")’

Note that in many cases $target is passed implicitly from a dependency and does not appear in the :do
command argument.

Another Use of Filetypes

When building a program you often want to include the date and time when it was built. A simple way of
doing this is creating a source file "version.c" that contains the timestamp. This file needs to be compiled
every time your program is built. Here is an example how this can be done:

program prog : main.c work.c

:attr prog {filetype = myprog}

:action build myprog object
version_obj = “src2obj("version.c")’
:do compile {target = $version_obj} version.c
:do build {filetype = program} $source $version_obj

O~NO UL WN P

The target "prog" is explicitly given a different filetype in line 3. The default filetype for a program is

Defining a Compile Action 27

A-A-P Recipe Executive

"program”, here it is set to "myprog". This allows us to specify a different build action for "prog".

Write the recipe as "main.aap" (without the line numbers) and execute it with aap. The first time all the files
will be compiled and linked together. Executing aap again will do nothing. Thus the timestamp used in
"version.c" will not be updated if the files were not changed. If you now make a change in "main.c" and run
aap you will see that both "main.c" and "version.c" are compiled.

The :action command in line 5 has three arguments. The first one "build" is the kind of action, like before.
The second argument "myprog" specifies the target filetype, the third one "object" the source filetype. Thus
the template is:

:action kind-of-action target-filetype source-filetype

This order may seem a bit strange. Remember that putting the target left of the source also happens in a
dependency and an assignment.

There are three commands for the build action, lines 6 to 8. The first one assigns the name of the object file
for "version.c" to version_obj. "version.c" was not included in the :program command at the top, it is
compiled here explicitly in line 7. This is what makes sure "version.c" is compiled each time "prog" is built.
The other source files will be compiled with the default rules for :command.

Finally the :do build command in line 8 invokes the build action to link all the object files together. Note

that the filetype for the build action is explicitly defined to "program". This is required for this :do command
to use the default action for a program target. Otherwise the action would invoke itself, since the filetype for
$target is "myprog".

For more information about customizing filetype detection and actions see Chapter 28.

Defining a Compile Action 28

Chapter 9. More Than One Recipe

When you are working on a project that is split up in several directories it is convenient to use one recipe for
each directory. There are several ways to split up the work and use a recipe from another recipe.

Children

A large program can be split in several parts. This makes it easy for several persons to work in parallel. You
then need to allow the files in each part to be compiled separately and also want to build the complete
program. A convenient way to do this is putting files in separate directories and creating a recipe in each
directory. The recipe at the top level is called the parent. Here is an example that includes two recipes in
subdirectories, called the children:

:child core/main.aap # sets Core_obj
:child util/main.aap # sets Util_obj

A WDNPRF

:program theprog : core/$*Core_obj util/$*Util_obj

In the first two lines the child recipes are included. These specify how the source files in each directory are t
be compiled and assign the list of object files to Core_obj and Util_obj. This parent recipe then defines
how the object files are linked together to build the program "theprog".

In line 4 a special mechanism is used. Assume that Core_obj has the value "main.c version.c". Then
"core/$*Core_obj" will expand into "core/main.c core/version.c". Thus "core/" is prepended to each item in
Core_obj. This is called rc—style expansion. You can remember it by thinking of the "*" to multiply the
items.

An important thing to notice is that the parent recipe does not need to know what files are present in the
subdirectories. Only the child recipes contain the list of files. Thus when a file is added, only one recipe nee
to be changed. The "core/main.aap"” recipe contains the list of files in the "core" directory:

Source = main.c
version.c

1

2

3

4 CPPFLAGS += —I../util
5

6 _top.Core_obj = ‘src2obj(Source)’
7

8

all: $_top.Core_obj
Variables in a child recipe are local to that recipe. The CPPFLAGS variable that is changed in line 4 will
remain unchanged in the parent recipe and other children. That is desired here, since finding header files in
"../util" is only needed for source files used in this recipe.

The Core_obj variable we do want to be available in the parent recipe. That is done by prepending the
" top" scope name. The generic way to use a scope is:

{scopename} . {variablename}

Several scope names are defined, such as "_recipe" for the current recipe and "_top" for the toplevel recipe.
The full list of scope names can be found in the reference manual, chapter "Recipe Syntax and Semantics".

Chapter 9. More Than One Recipe 29

A-A-P Recipe Executive

When a variable is used without a scope name, it is looked up in the local scope and surrounding scopes. T
the variables from the parent recipe are also available in the child. But when assigning to a variable without
scope, it is always set in the local scope only. To make the variable appear in another scope you must give
scope name.

The value of Core_obj is set with a Python expression. The src20bj() function takes a list of source file
names and transforms them into object file names. This takes care of changing the files in Source to prepen
$BDIR and change the file suffix to $OBJSUF. It also takes care of using the "var_BDIR" attribute if it is
present.

In the last line is specified what happens when running aap without arguments in the "core" directory: The
object files are built. There is no specification for how this is done, thus the default rules will be used.

All the files in the child recipe are defined without mentioning the "core" directory. That is because all parent
and child recipes are executed with the current directory set to where the recipe is. Note the files in
Core_obj are passed to the parent recipe, which is in a different directory. That is why the parent recipe had
to prepend "core/" when using Core_obj. This is so that the child recipe doesn't need to know what its
directory name is, only the parent recipe contains this directory name.

Sharing Settings

Another mechanism to use a recipe is by including it. This is useful to put common variables and rules in a
recipe that is included by several other recipes. Example:

CPPFLAGS += -DFOOBAR
‘rule %$OBJISUF : %.foo
:sys foocomp $source —o $target

This recipe adds something to CPPFLAGS and defines a rule to turn a ".foo" file into an object file. Suppose
you want to include this recipe in all the recipes in your project. Write the above recipe as "common.aap" in
the top directory of the project. Then in "core/main.aap" and "util/main.aap" put this command at the top:

sinclude ../common.aap

The :include command works like the commands in the included recipe were typed instead of the
sinclude command. There is no change of directory, like with the :child command and the included
recipe uses the same scope.

In the toplevel recipe you need include "common.aap" as well. Suppose you include it in the first line of the
recipe, before the :child commands. The children also include "common.aap"”. The CPPFLAGS variable
would first be appended to in the toplevel recipe, then passed to the child and appended to again. That is nc
what is supposed to happen.

To avoid this, add the {once} option to the :include command. This means that the recipe is only included
once and not a second time. The child recipes use:

sinclude {once} ../common.aap

And the parent uses:

Sharing